
Diss. ETH No. 21755

Hard Real-Time Guarantees in
Cyber-Physical Systems

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich

(Dr. sc. ETH Zurich)

presented by

PRATYUSH KUMAR

Master of Technology,
Indian Institute of Technology Bombay

born May 4, 1987

citizen of India

accepted on the recommendation of

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Sanjoy Baruah, co-examiner

2014





Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 143

Pratyush Kumar

Hard Real-Time Guarantees in

Cyber-Physical Systems



A dissertation submitted to
ETH Zurich
for the degree of Doctor of Sciences

Diss. ETH No. 21755

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Sanjoy Baruah, co-examiner

Examination date: January 20, 2014

ISBN 978-3-906031-47-7
DOI 10.3929/ethz-a-010068802

http://dx.doi.org/10.3929/ethz-a-010068802


To Maa,

गभ#$ज&म( )तना-./ध( ज1घा3)व5न( गला7स(#" 
सव#9प ;ा5य मात=! > दिAणाय द9र7ता#"" 

!

!





Abstract

By integrating components for sensing, communicating, computing and
actuating, Cyber-Physical Systems (CPSs) enable software applications to
monitor and control events in the physical world. It is widely anticipated
that CPSs will become pervasive in personal and industrial applications.

As deployed CPSs will impact safety of humans and infrastructure,
certifying their correctness is imperative. For an important class of
systems, correctness requires guaranteed timing properties. For instance,
in an automatic stability program of an automobile, the worst-case end-
to-end delay between sensing and actuating could be upper-bounded.

Analysis of such hard real-time guarantees in CPSs is inherently
challenging, because the timing models exhibit variability due to multiple
reasons. Firstly, as CPSs are distributed and heterogeneous, events do not
arrive periodically. Secondly, on modern processors, resource availability
can be non-uniform due to physical effects such as overheating or low
energy supply. Thirdly, timing models can be uncertain either due to
incorrect calibration or simultaneous analysis of multiple designs. Finally,
due to complex components in such CPSs, such as caches, rare and
transient phenomena can result in deviation from nominal timing models.

In three parts of the thesis, we present three templates of solutions to
compute hard real-time guarantees in the presence of the said variability.
• Variability in arrival patterns of events can be absorbed by a run-

time manager which monitors and adapts to incoming events. We
illustrate this by compositionally building demand bound servers
and cool-shapers from efficient constituent units.

• Variability in timing models can be bounded with analysis of sound
abstractions which compactly represent the timing-critical traces
of the system. We illustrate this with the analysis of temperature-
controlled speed-scaling and the analysis of multiple designs within
an Satisfiability Modulo Theory (SMT) solver.

• Variability due to rare and transient phenomena can be exported
through richer guarantees to verify cross-layer objectives such as
stability of a plant in a networked control system. We illustrate this
by proposing and computing settling-time and overshoot metrics.
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Zusammenfassung

Durch die Integration von Sensoren, Aktoren, Kommunikationsmodulen
und Berechnungseneinheiten, ermöglichen Cyber-physische Systeme
Softwareanwendungen für die Überwachung und Steuerung von Ereig-
nissen der physischen Welt. Es wird allgemein erwartet, dass in Zukunft
Cyber-physische Systeme in personenbezogenen und industriellen
Anwendungen allgegenwärtig sein werden.

Da Cyber-physische Systeme die Sicherheit von Mensch und Infra-
struktur beeinflussen werden, ist die Bescheinigung ihrer Korrektheit
zwingend notwendig. Für eine wichtige Klasse von Systemen erfordert
Korrektheit garantierte Zeiteigenschaften. Beispielsweise könnte man
so für das automatisierte Stabilitätsprogramm eines Autos, eine obere
Grenze für die Worstcase Verzögerung zwischen Sensor und Aktor
angeben.

Die Analyse solcher harten Echtzeitgarantien in Cyber-physischen
Systemen ist von Natur aus eine Herausforderung, da Timing-Modelle
wegen unterschiedlichen Gründen Variabilität aufweisen.

Erstens, da Cyber-physische Systeme verteilt und heterogen sind,
treten Ereignisse unregelmässig auf. Zweitens, auf modernen Prozessoren
kann die Verfügbarkeit von Ressourcen, aufgrund von physikalischen
Effekten wie Überhitzung oder niedrige Energieversorgung, ungleichför-
mig sein. Drittens, Timing-Modelle können Unsicherheiten aufweisen,
welche entweder durch eine falsche Kalibrierung oder die gleichzeitige
Analyse von mehreren Entwürfen entstehen. Schliesslich können seltene
und vorübergehende Phänomene, wegen den komplexen Bauteilen in
Cyber-physischen Systemen, wie zum Beispiel Zwischenspeichern, zu
Abweichungen der Timing-Modelle führen.

In den drei Teilen dieser Arbeit präsentieren wir drei Lösungsvorlagen
für die Berechnung harter Echtzeitgarantien im Beisein der oben
genannten Variabilität.

• Die Variabilität der Ankunftszeiten von Ereignissen kann von einem
Laufzeit-Manager absorbiert werden, der eingehende Ereignisse
überwacht und sich entsprechend anpasst. Wir veranschaulichen
dies durch den Aufbau eines Demand-Bound-Servers und Cool-
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Shapers, welche aus einzelnen effizienten Bauteilen zusammenge-
setzt sind.

• Die Variabilität der Timing-Modelle kann durch die Analyse
von Abstraktionen eingegrenzt werden, welche kompakt die
zeitkritischen Abläufe des Systems darstellen. Wir veranschaulichen
dies mit der Analyse von einer temperaturgesteuerten Geschwin-
digkeitsskalierung und der Analyse von mehreren Entwürfen mit
einem Satisfiability Modulo Theory (SMT) Löser.

• Variabilität, die durch seltene und vorübergehende Phänomene
entsteht, kann durch zusätzliche Garantien ausgelagert werden
um so Cross-Layer-Ziele zu verifizieren, wie zum Beispiel die
Stabilität einer Anlage in einem vernetzten Kontrollsystem. Wir
veranschaulichen dies durch die Empfehlung und Berechnung von
Einschwingzeiten und Übersteuerungsmetriken.
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1
Introduction

Cyber-physical systems (CPSs) enable software applications to monitor
and control events in the physical world. For instance, the embedded
systems in a modern car can sense and affect physical parameters such as
the driver’s interaction with the car, the car’s movement on the roads, and
the health conditions within the car. Networking these systems enables
integration at even larger scales, for instance several cars on a street
may interact [YLVZ04]. Many anticipate that such systems will become
pervasive in both personal and industrial applications [RLSS10, Lee08].
However, many scientific challenges remain.

As CPSs impact safety of humans and infrastructure, certifying
their correctness is imperative [SLMR05]. To this end, governmental
agencies have been set up for the avionics (e.g., European Aviation
Safety Agency, U.S. Federal Aviation Authority) and the automotive
(e.g., European Transport Safety Council, National Highway Traffic Safety
Administration) domains. Among other interventions, these authorities
publish standards, such as the ARINC-600 series [C+97] and the DO178B
[Joh98], which specify the design guidelines and safety-levels for different
classes of applications.

For an important class of systems, correctness requires guaranteed
timeliness properties. An example is the Electronic Stability Control
Program (ESP) deployed in modern cars [LMSN04]. The ESP constantly
senses the car’s parameters and actuates stabilizing corrections “to
mitigate rollover accidents”. Indeed, the time-delay between sensing
and actuating affects the correctness of such a program. Other examples
from the automotive domain include the automatic deployment of airbags
and drive-by-wire steering control. Thus, computing certifiable timing
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guarantees is an integral part of the design process of CPSs.

1.1 Real-Time Guarantees in Embedded Sys-

tems

In designing real-time embedded systems, timeliness properties have
been studied since the 80’s. An embedded system often refers to a
resource-constrained computing device that offers a specific functionality,
and is embedded into a larger system. In the following, we highlight some
of the important strands of research in real-time embedded systems.

• Static analysis of software: The primary challenge in any real-time
system is to identify the worst-case execution time (WCET) of each
code-block. Tools, such as aiT [Gmb08], perform such static analysis
using the principles of abstract interpretation [CC77].

• Managing concurrency: For systems with multiple concurrent tasks,
the operating system must manage concurrency while meeting
timing guarantees. This includes scheduling the tasks [ABD+95],
and providing locking mechanisms to share resources [Bra11].

• Modeling architectural effects: As new computer architectures are
used, the design and analysis of real-time systems must be adapted.
Two areas which received attention are multiprocessor scheduling
[SB09] and analysis of caches [LMW96].

• Focus on analytical methods: Conclusively, existing research rec-
ommends the use of analytical methods over simulation-based
methods. Apart from soundness, which is essential in certification,
analytical methods benefit from modularity [Wan06] and sensitivity
analysis [HHJ+05].

1.2 Additional Challenges in Cyber-Physical

Systems

The above research results derived for embedded systems are also
applicable for CPSs. Indeed, to compute timing guarantees for a CPS,
software must be statically analyzed, concurrency of multiple tasks must
be managed, cache and multiprocessor behavior must be considered,
and analytical methods must be adopted. However, the journey from
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embedded systems to CPSs involves several additional challenges. In the
following, we identify some such challenges.

• Massively distributed systems: As noted, CPSs are envisaged to
be networked with each other, and thereby constitute massively
distributed systems. A commercially developed example is the LS-
460 car from Lexus which has about 100 Electronic Control Units
(ECUs) [Tak12]. Furthermore, the ECUs are interconnected with a
variety of communication platforms, such as CAN, FlexRay, and
IDB-1394 [NSSLW05]. In such systems, the commonly adopted
abstraction of periodic arrivals of jobs do not apply. Indeed,
identifying bursts in traffic patterns and avoiding congestion are
major focuses in large heterogeneous networks such as the Internet
[BCC+98].

• New trends in processor architectures: As VLSI feature sizes have
continued to shrink and functional integration has increased, the
power density in microprocessors has multiplied. This has two
major consequences. One, chips are now much hotter, and require
active dynamic thermal management, such as speed-scaling, active
throttling, and task migration [BM01]. This is further complicated
by the spatial locality at several scales: neighboring transistors,
cores on the same processor, different levels on a 3D chip, and across
racks in a server farm. Two, an extrapolation of the current trends
reveals that future processors will be unable to power all available
transistors. This gloomy situation, referred to as “dark silicon”,
is driving micro-architectural decisions [EBA+11]. In both these
cases, the availability of the processor and its offered performance
are not constants, but instead depend on physical parameters like
temperature and energy.

• Irregular timing requirements: The focus on CPSs gives primacy to
cross-layer considerations. A good example is a networked control
system (NCS), wherein sensing, actuation, and communication are
integrated. A cross-layer analysis of an NCS considers the impact
of the delay inserted by the network, including interference and
protocol effects, on the stability of the controlled plant [ZBP01].
Such analysis reveals that timing requirements for a stable plant do
not imply that a fixed deadline must be met by each control signal
[WA07]. The guarantee of stability can be satisfied even if a certain
number of control signals do not arrive within a certain deadline.
In other words, the timing requirements of CPS applications need
not be regular, as is often assumed in schedulability analysis.
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• Uncertainties in design-time models: As CPSs interact with users,
the ambient, and computing units, identifying accurate and tight
design-time models is a considerable challenge. A remedy, in part,
is to identify several models with varying degrees of fidelity. A
case in point is the current approach in mixed-criticality scheduling
[BLS10]: Different levels of pessimism in the design-time models
are translated to different levels of criticality, and each application
is certified at a certain level of criticality. In other words, an if-then

analysis, predicated by different model assumptions, specifies the
timing guarantees. With such multiplicity of design-time models,
there is an additional burden of monitoring and adapting to changes
at run-time.

• Difficult design problems: Configuring large CPSs requires making
several design choices, while satisfying multiple, often conflicting,
hard constraints. Often these design problems do not admit
standard solutions as they do not satisfy properties such as linearity
or convexity. A computational approach to optimally solve such
hard problems is the use of Satisfiability Modulo Theory (SMT)
solvers [DMB11]. An SMT solver can be efficiently applied only if
we can simultaneously analyze a large number of designs. Different
designs may have different parameters. This variability needs to be
effectively abstracted to represent and analyze multiple designs.

A common imperative in all the above challenges is the need to
tolerate variability. Whether it is because jobs arrive in bursts, or
processing speed varies to manage temperature, or control applications
have irregular timing requirements, or validity of models changes at run-
time, or multiple abstracted designs have different parameters, the timing
properties of CPSs should be expected to vary. We argue that a higher
degree of variability is the defining difference in computing hard real-time
guarantees for CPSs, as opposed to embedded systems.

1.3 Aim of the Thesis

With this work, we aim to defend the following thesis:

The essential complexity in providing hard real-time guarantees for cyber-

physical systems is the presence of variability in timing models. It is

possible to effectively manage this variability in several ways: by hiding

it with a run-time manager, by bounding it in formal analysis, and by

exporting it through richer guarantees.
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1.4 Thesis Outline and Contributions

Part I: Absorbing Variability with Run-Time Managers

Prima facie, any variability in a deployed CPS can be absorbed by a
sufficiently intricate run-time manager which (a) monitors variable timing
models, and (b) responds such that timing guarantees are satisfied.
However, this must be tempered by the, often overriding, need for
frugal implementations of run-time managers, both in terms of timing
and memory requirements. In this part of this thesis, we argue that for
the specific case of variable job arrival patterns, modularly designing a
run-time manager can efficiently and effectively absorb variability.

Chapter 2: Isolation of Tasks with Demand Bound Servers

When a task with uncertain execution time executes on a processor,
all other tasks on that processor, may (depending on the scheduling
algorithm and schedulability) miss their deadlines. A principled
approach to mitigate such uncertainty propagation was first proposed
in [SB94], and has hence been referred to as serving tasks through servers.
A server is a run-time manager which ensures that the task(s) served by
it, do not execute for more than a certain reservation. In all the known
servers, this reservation is specified as a certain utilization (or fraction)
of the processor. For tasks with irregular job arrival patterns, which we
expect in a distributed CPS, we show that the utilization-based reservation
introduces a schedulability-gap. We propose a Demand Bound Server (DBS)
wherein the reservation of the server is the sum of the demand bound
functions of all tasks served by the server. We show that DBSs form the
optimal class of servers, with no schedulability-gap. We propose Shifted-
Periodic DBS (SP-DBS) as a specific DBS with an efficient implementation.
Crucially, we show that SP-DBSs can be modularly composed to generate
DBSs with no schedulability gap for a large class of tasks with irregular
arrival patterns. In conclusion, by modularly composing SP-DBSs, the
uncertainty in execution time and the variability in the arrivals patterns
of a task can be effectively and efficiently abstracted from the analysis of
other tasks.

Chapter 3: Shaping Real-Time Tasks To Minimize Peak Temperature

Given the high power density in current generation of processors, limiting
the peak on-chip temperature is a first-class design consideration. Due
to the slow diffusive process of heat dissipation, executing a burst of jobs
can lead to high temperatures. Consequently, spacing out the execution
of jobs, by delaying individual jobs can reduce the peak temperature.
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However, such delaying must not cause real-time jobs to miss their
deadlines. We propose the run-time manager, referred to as cool-shaper,
to balance the temperature and timing objectives. A cool-shaper delays
incoming jobs to conform to a shaping-curve which is the convex-hull of
the demand bound function of the stream of jobs. More specifically, a
cool-shaper monitors the arrival patterns of jobs and dynamically adjusts
the spacing of the jobs according to the shaping-curve. A cool-shaper
is implemented by modularly composing leaky-bucket shapers, which
were first proposed for ATM networks [Rat91] and are efficient in their
operation. We show that a cool-shaper optimally minimizes the peak
temperature while meeting the deadlines of all jobs. In conclusion, by
modularly composing leaky-bucket shapers, the dependence of thermal
objectives on the irregular job arrival patterns can be abstracted out:
we are guaranteed to minimize the peak temperature while meeting all
deadlines.

Part II: Bounding Variability in Formal Analysis

In some CPSs, a run-time manager cannot be designed to absorb
variability in timing models. This could be either because the run-time
manager is designed to satisfy objectives other than timing guarantees,
or because the run-time manager is required to be especially efficient.
In such settings, the variability in the timing models is exposed to the
analysis, whose role it is to bound the timing properties in the presence
of variability. Furthermore, in the design optimization of large CPSs,
multiple designs must be simultaneously analyzed. In this part of
the thesis, we argue that formal analysis procedures can be derived to
compute bounds in the presence of such variability. In particular, we
highlight the effectiveness of deriving abstractions which represent and
bound the variability.

Chapter 4: Analysis of Temperature-Based Feedback Control of Speed

Speed-scaling is an effective technique to manage the on-chip tempera-
ture. However, exact thermal models can be difficult to estimate at design-
time, as they depend on power consumption when executing different
tasks, parameters of heat dissipation, and the ambient temperature. This
uncertainty motivates a run-time manager based on reactive feedback-
control [WB08]: The temperature of the processor is measured with on-
board sensors, and accordingly the speed of the processor is regulated.
This is an example of a CPS where the run-time manager is designed for
an objective different from that of meeting timing guarantees. Apparently,
the computation of timing guarantees for such a CPS is particularly
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challenging: The processing power available to execute a job depends
on the temperature of the processor, which in turn depends on when
and how many jobs were executed earlier. In particular, when the job
arrival patterns are variable, there can be a large number of traces of
jobs, each generating different temperature traces. We show that for
reactive speed-scaling and variable job arrival patterns, there is a specific
critical trace for which the response-time of a specific job is maximized.
Crucially, this critical trace is independent of the thermal parameters of the
processor and the parameters of the run-time manager. Then, the worst-
case response time is obtained by simulating the execution of the critical
trace and observing the response time of a particular job. In conclusion,
identifying the critical trace enables analysis of timing properties even in
the presence of a run-time manager that dynamically changes the speed
of the processor.

Chapter 5: Satisfiability Modulo Real-Time Calculus

Design of CPSs involves configuring several design knobs to satisfy
multiple, often conflicting, design constraints. As an example, speeds
of processors in a distributed real-time system could be chosen to satisfy
delay, buffer-space, and energy constraints. We illustrate with examples
that such a design problem does not have intuitive solutions. For finding
optimal designs for such hard problems, Satisfiability Modulo Theory
(SMT) solvers [BSST09] provide a template for a solution strategy, as
demonstrated for a variety of domains [DMB11]. For the efficient use
of SMT solvers, we need to abstractly represent and analyze multiple
designs. In the speed assignment problem, this means analyzing the
delay, buffer-space and energy constraints for processors whose speeds
may not be known precisely. To this end, we propose abstract arrival

and service curves which extend the arrival and service curves defined in
Real-Time Calculus [TCN00]. We show that operations of RTC can be
extended to abstract curves, based on certain monotonicity properties
of the abstract curves and the operations. We built an SMT solver with
the OpenSMT framework [BPST10]. Experimentally, we showed that
very large speed assignment problems (with ≈ 3 × 1017 designs) can be
optimally solved in under 20 minutes on a typical desktop computer.
In conclusion, we confirm the computational success of SMT solvers for
the speed assignment problem, and thereby provide a template for other
design problems in CPSs.
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Part III: Exporting Variability through Richer Guarantees

Variability in timing models of CPSs can affect the worst-case timing
guarantees. For instance, variability in execution demand can increase
the worst-case response-time. In some CPSs, there is a need for specifying
more than the worst-case guarantees. This is motivated by two different
reasons: one, if the variability is seldom observed, and two, if the
application can tolerate a certain number of violations in the worst-case
timing guarantee. In this part of the thesis, we propose richer timing
guarantees which expose such variability.

Chapter 6: The Settling-Time Metric

In certain CPSs, the timing models exhibit a dual nature: They conform to
a nominal model at most times, which is violated under some exceptional

conditions. An example is the dependence of execution time on the
cache contents. The execution time of a job is exceptionally higher with
a “cold cache”, which is encountered during the first instance of the
task. For computing timing guarantees, both the nominal model and
the exceptional events must be considered together. However, we make
an alternate case of computing two timing guarantees: one, when the
nominal model is always satisfied, and two, when an exceptional event
occurs. In particular, for the latter guarantee we propose the settling-

time metric which specifies the longest interval of time for which jobs
can miss their deadlines after the occurrence of an exceptional event.
We show that settling-time can be analytically computed for different
scheduling algorithms and task models. We show that the Earliest
Deadline First (EDF) scheduling algorithm, which is optimal in terms
of schedulability, optimally minimizes the settling-time. In conclusion, if
design-time models can resolve the difference between nominal models
and exceptional events, we can compute richer timing guarantees.



Part I

Absorbing Variability with

Run-Time Managers





2
Isolation of Tasks with Demand

Bound Servers

2.1 Introduction

When a task with an uncertain execution time executes on a processor, all
other tasks on that processor may (depending on the scheduling algorithm
and schedulability) miss their deadlines. This argument also extends to
tasks with uncertain arrival patterns, for instance an unexpected jitter
in a periodic task. A principled approach to mitigate such uncertainty
propagation was first proposed in [SB94], and has hence been referred to
as serving tasks through servers. A server is a run-time manager which
ensures that the task(s) served by it, do not execute for more than a certain
reservation.

Over the years, several servers have been proposed. They are
classified into dynamic- and static-priority servers, depending on the
underlying scheduler. We study dynamic-priority servers, which expect
an EDF scheduler. Some of the proposed dynamic-priority servers are the
two-level hierarchical scheduler [DL97], the Dynamic Priority Exchange
Server (DPE) [SB94], the Dynamic Sporadic Server (DSS) [SB96, GB95],
the Total Bandwidth Server (TBS) [SB94], the Constant Bandwidth Server
(CBS) [AB98], the Bandwidth Sharing Server (BSS) [LB00], and the PShED
algorithm [LCB00]. In each of these servers, the reservation of the server
is a certain utilization (or bandwidth) of the processor, i.e., the server
reserves a certain fraction of the processor for the task(s) it serves. Even
with hierarchical composition of such servers, the unit of reservation
remains a fraction of the processor. We refer to such a reservation as
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Fig. 2.1 Schedulability-gap: The disadvantage of utilization-based reservation.

utilization-based, and a server which enforces such a reservation as a
utilization-based server.

A utilization-based reservation has some clear advantages. Firstly,
proving schedulability is straight-forward: If the sum of the utilizations
of the servers does not exceed the available processor utilization, then
the servers can be scheduled together. This simple interface leads to
the second advantage, namely, hierarchical decomposition: A reserved
fraction of the processor can be hierarchically divided into smaller
fractions which can be appropriately utilized.

However, utilization-based reservation has a major disadvantage
which we refer to as the schedulability-gap. We illustrate this with an
example.

Example 2.1: Consider two identical processors R1 and R2 scheduling three

tasks A, B, and C, as illustrated in Figure 2.1(a). Task A is mapped on R1, while

tasks B and C are mapped on R2. Tasks A and B belong to a marked-graph that

executes periodically with period 15. The Worst-Case Execution Times (WCETs)

of tasks A and B are 10 and 3, respectively. An iteration of the marked-graph

must complete before the next iteration begins. Task C is an independent periodic

task with WCET 3.5, and period and relative deadline equal to 7.

We now compute the utilization-based reservations on R2 to isolate
the two tasks B and C. These reservations may be enforced with any
of the server algorithms mentioned earlier. To serve task B, we need a
reservation UB = 3/5 = 60 %. To serve task C, we need a reservation
UC = 3.5/7 = 50 %. As UB +UC = 110 % > 100 %, the two reservations are
not schedulable on R2.
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Instead of using utilization-based reservations, let tasks B and C

execute on R2 directly through an EDF scheduler with relative deadlines
5 and 7, respectively. Then the two tasks are schedulable as shown in
Figure 2.1(b): The sum of the demand bound functions of the two tasks
is below the supply function of the full processor, i.e., a line through the
origin with slope 1.

To conclude, tasks B and C can execute on R2 without servers with
guaranteed schedulability, but no utilization-based server can enforce
reservations for the tasks. We refer to this as the schedulability-gap. In
this example, the schedulability-gap arose because the relative deadline
of task B was smaller than its period. Indeed, this is to be expected
for distributed CPSs. Similarly, schedulability-gaps can be identified for
tasks where jobs arrive in bursts, or experience jitter. Thus, we argue that
the schedulability-gap is an outstanding problem in providing timing
isolation amongst tasks sharing resources in CPSs.

We note two points which relate schedulability-gap with existing
works, but highlight key differences.

• Resource reclamation: Consider again Example 2.1 with different
reservations for the tasks on R2: Let us reserve 60 % for task
B and the remaining utilization of 40 % for task C. With this
modification the two reservations (not necessarily the tasks) are
schedulable. If the server serving the task C allows for resource
reclamation, as proposed in [LB00], [CBS00] or [MLBC04], then task
C would reclaim unused utilization from the reservation of task B,
and indeed meet all its deadlines. However, this approach detracts
from the motivation of using servers, namely, to isolate tasks such
that timeliness properties of a task can be analyzed independent of

the behavior of other tasks.

• Interfaces for resource demand and supply. Interfaces exist that
greatly generalize the utilization (or bandwidth) representation.
Well known examples include the periodic supply function [SL04],
explicit deadline periodic supply function [EAL07], and service
curve used in Network Calculus [LBT01]. From the perspective of
the schedulability-gap, the key question is whether there are server
algorithms which enforce such interfaces of resource demand and
supply, and thereby implement task isolation. To the best of our
knowledge, all existing server algorithms enforce utilization-based
resource interfaces, while the more generic interfaces are employed
to analyze (distributed) real-time systems.
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2.1.1 Contributions

Utilization-based reservation suffers from schedulability-gap, i.e., task-
sets exist which are schedulable with an EDF scheduler, but cannot be
isolated with utilization-based servers. Our goal in this chapter is to
define a new class of servers to bridge the schedulability-gap. To this
end, we propose the Demand Bound Server (DBS), which generalizes the
reservation to a demand bound function. This reservation allows a DBS
to tightly reserve the execution demanded by a task. From this tightness,
we derive an optimality result: For any task-set that is schedulable, a
configuration of DBSs exists to isolate the tasks.

As noted, any run-time manager in a real-time CPS, such as the DBS,
must have an efficient implementation. To this end, we take two steps.
Firstly, we propose a Shifted-Periodic Demand Bound Server (SP-DBS),
which is a specific DBS that reserves a shifted-periodic demand bound
function. We show that SP-DBS can be efficiently implemented. Secondly,
we propose composition operations which can hierarchically combine
several SP-DBSs to behave as a single DBS. This enables us to extend
the class of SP-DBSs to a much wider class of DBSs. We argue that this
wider class of DBSs can bridge the schedulability-gap for most practically
arising task-sets in a CPS.

The rest of the chapter is organized as follows. In Section 2.2, we introduce
a DBS and formulate its defining properties and guarantees. In Section 2.3,
we present the implementation of a SP-DBS. In Section 2.4, we propose
compositional operations which operate on SP-DBS and generate a richer
class of DBSs. We summarize in Section 2.5, and include proofs of the
results in an appendix.

2.2 Demand Bound Server

In this section, we present the definition of a Demand Bound Server (DBS).
We then identify two defining properties of a DBS, and consequently two
guarantees of a DBS.

2.2.1 Task-Model

A real-time task is a stream of jobs, where a job is also called an instance

of the task. Each job Ji is characterized by an arrival time ai, an absolute
deadline di, and a worst-case execution time (WCET) Ci. We assume
that the relative deadline (difference between absolute deadline and the
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arrival time) of each job of a task is the same.1 For any specific trace of jobs,
the arrival function R characterizes the resource demand, as defined in
Appendix A.2. In the presence of variability in arrival times and execution
demands of jobs, the set of all possible arrival functions are abstracted by
an arrival curve α, as defined in Appendix A.2.

The resource demand of a trace of jobs can instead be represented by
the demand bound function (DBF), which was first proposed by Baruah
et al. in [BMR90] and is defined thus.

Definition 2.1: (Demand Bound Function) A task has a demand bound

function, dbf, if in the interval of time [t, t + ∆] for any t,∆ > 0, the sum of

the execution times of all jobs that arrive not earlier than t and have deadline not

later that (t + ∆) does not exceed dbf(∆).

A demand bound function is non-negative and non-decreasing. On
a dedicated processor, a task-set is EDF-schedulable if the sum of the
demand bound functions of all tasks is bounded as below

∑

i

dbfi(∆) ≤ ∆, ∀∆ ≥ 0. (2.1)

2.2.2 Defining the DBS

In this work, we define the Demand Bound Server (DBS) as a dynamic-
priority server with a reservation which is given by a demand bound
function denoted as dbfs.2 In this section, we will present the
interpretation of such a reservation.

We first define some notation that characterizes how a DBS behaves.
To serve a task, the DBS must make a sequence of requests for execution.
Since the underlying scheduling discipline is EDF, each such request is
characterized by a 3-tuple (x, y, z) interpreted as follows: At time x the
server requests z time-units to be provided within an absolute deadline
y. Let ρ denote the set of all such 3-tuples of requests made by a DBS to
the EDF scheduler. In terms of these 3-tuples, we define the following
property.

Definition 2.2: (DBS Property I) A DBS characterized by the demand bound

function dbfs must satisfy the following property:
∑

{(x,y,z)∈ρ | x≥t∧ y≤t+∆}

z ≤ dbfs(∆), ∀ t, ∆ ≥ 0. (2.2)

1With minor modifications to our approach, jobs with different relative deadlines can
be considered. However, we require that the absolute deadline of a later arriving job
cannot be earlier.

2 We will use the sub-script s to represent parameters of servers.
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The above property says that for the EDF scheduler, a DBS is
indistinguishable from a task with a demand bound function dbfs.

The dbfs of a DBS also specifies when jobs served by it will complete.
We formally define this specification, by relating dbfs, the arrival function
R, and the output arrival function R′ which is defined in Appendix A.3.

Definition 2.3: (DBS Property II) Let a stream of jobs with an arrival function

R be served by a DBS characterized by dbfs. Let the resultant output arrival

function be given by R′. Then, for any t ≥ 0 there exists s ∈ [0, t], such that

R′(t) ≥ R(s) + dbfs(t − s). (2.3)

The above property says that for any time t, there is some interval [s, t] such
that the jobs that have arrived after s receive at least dbfs(t− s) service no
later than t.3

To conclude, a DBS has a reservation dbfs which is interpreted by the
DBS Properties I and II. Indeed, a server is said to be a DBS if and only if
it satisfies these two properties for some dbfs.

2.2.3 Analysis of a DBS

A server must be characterized by two guarantees, (a) a demand guarantee

which is an upper-bound on the amount of resource that the server can
consume, and (b) a supply guarantee which is the minimum amount of
resource that the server supplies to the task it serves. We now derive
these guarantees of a DBS from its two defining properties.

From DBS Property I we know that a DBS does not request for more
resources than a task with a demand bound function dbfs. Thus, we
can directly extend the EDF schedulability test of (2.1) into the following
demand guarantee.

Theorem 2.1: (Demand Guarantee of a DBS) Let S = {DBSi} denote a set

of DBSs executing on a resource, such that DBSi is characterized by a demand

bound function (dbfs)i. Then, the set of servers is EDF schedulable if and only if
∑

{i | DBSi∈S}

(dbfs)i(∆) ≤ ∆, ∀∆ ≥ 0. (2.4)

3 It is important to distinguish between DBS Property II and similar concepts of a
lower service curve in Real-Time Calculus (RTC) [TCN00] and supply bound function
defined in [SL04]. The lower service curve, βl, as used in RTC, guarantees that in every

interval of any length ∆, the minimum amount of execution guaranteed is βl(∆). Supply
bound function is similarly defined. DBS Property II, on the other hand, provides no
such guarantees, for every interval.
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We choose to specify the supply guarantee of a DBS by the maximum
delay of any job served by the DBS, denoted as dmax. Then, deriving from
DBS Property II and known results in Network Calculus [LBT01] we have
the following relation.

Theorem 2.2: (Supply Guarantee of a DBS) When a stream of jobs with an

arrival curve α is served by a DBS characterized by dbfs, we have

dmax ≤ Del(α, α ⊗ dbfs). (2.5)

In the above relation, the operator ⊗ and the function Del are as defined
in Appendix A.1 and Appendix A.3, respectively.

To conclude, a DBS provides demand and supply guarantees wholly
based on its characteristic dbfs. From these results, it follows that a
task with demand bound function dbf can be served by any DBS while
meeting all deadlines if and only if dbfs ≥ dbf. Combining this with the
optimality of the EDF scheduler, we have the following result.

Optimality of DBS: For a given task-set, if no schedulable
configuration of DBSs exists to serve the tasks while meeting all
deadlines, then the task-set cannot be temporally isolated.

2.3 Shifted-Periodic Demand Bound Server

Thus far, we have defined (with two properties) and characterized (with
two guarantees) a Demand Bound Server (DBS). In this section, we
propose a concrete implementation of a specific class of DBSs, with an
especial focus on an efficient implementation. In particular, we describe
the server algorithm of a DBS where the demand bound function dbfs is
the following periodic stair-case function with an arbitrary initial offset

dbfs(∆) = max
{
0,
(⌊
∆ −Ds

Ps

⌋
+ 1
)
×Qs

}
. (2.6)

We refer to such a function as a shifted-periodic function, and a DBS with
dbfs equal to a shifted-periodic function as a Shifted Periodic DBS (SP-
DBS). A SP-DBS is characterized by a 3-tuple which parameterizes (2.6),
namely (Qs,Ps,Ds), where Qs is the maximum capacity, Ps is the period,
and Ds is the relative deadline.

For Example 2.1 considered earlier, demand bound functions of both
tasks B and C are shifted-periodic functions (Figure 2.1(b)). Thus, SP-
DBSs, if they can be designed, would solve the schedulability-gap for
this specific example, and thereby extend the existing utilization-based
servers. This is the goal of this section.
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Task Queue Server EDF Scheduler

TQNonEmpty TQRemoved

c, d, r

δ

Fig. 2.2 Block diagram of a template for specifying dynamic-priority servers.

2.3.1 General Template of Dynamic-Priority Servers

We first formulate a general template of dynamic-priority servers. We
will use this template to specify the working of a SP-DBS.

To implement task isolation with a dynamic-priority server, we need
three components: a task-queue, an EDF scheduler, and a server. We
characterize the behavior of these components by variables and signals
which are passed between them, as visualized in the block diagram in
Figure 2.2. We now elaborate on this template component-wise.

Task-queue

The task-queue contains, in First-Come-First-Serve (FCFS) order, the
arrived and not yet finished jobs of the task that is served by the server.
Each task-queue has three associated values, namely

• an absolute deadline d that denotes its dynamic-priority as
negotiated with the EDF scheduler,

• a non-negative capacity c that denotes how long the task-queue will
execute before it is evicted out of the EDF-queue, and

• a re-insertion time r that denotes when the task-queue must be re-
inserted into the EDF-queue, if it is not already in the EDF-queue.

If a new job arrives while the task-queue is empty, the task-queue
generates a signal TQNonEmpty. An evicted non-empty task-queue is re-
inserted in the EDF-queue no later than the re-insertion time r.

EDF scheduler

The EDF scheduler is common across all dynamic priority servers on that
resource. It implements the standard EDF policy, but with the following
two minor changes.

• The EDF-queue contains pointers to task-queues instead of pointers
to individual jobs, sorted according to their deadlines. At any time,
the task-queue which is in the EDF-queue and has the smallest
deadline is scheduled. The scheduler maintains, in a variable
denoted δ, the length of time for which the task-queue executes.
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• If either the task-queue becomes empty or if δ equals the capacity
of the task-queue c, the EDF scheduler performs the following
operations

– it evicts the task-queue from its EDF-queue,

– it generates a signal TQRemoved,

– it communicates the value of δ to the server, and

– it resets the value of δ to 0.

Server

The server algorithm is responsible for updating the task-queue
parameters d, c and r, such that appropriate supply and demand
guarantees are satisfied. These updates occur only when either of the
two signals, TQNonEmpty or TQRemoved, are generated.

With this template, a dynamic-priority server can be compactly specified
by (a) the initial assignments to the task-queue parameters, and (b) how
the server algorithm changes the task-queue parameters when the two
signals TQNonEmpty and TQRemoved are generated.

2.3.2 Implementation of an SP-DBS

The capacity of the task-queue, c, must be increased at certain times by
the server. Such an increase is referred to as a replenishment. Further,
at certain times the task-queue is re-inserted into the EDF-queue with a
specific capacity and a deadline. This is referred to as a service request.
To implement replenishments and service requests, an SP-DBS with
parameters (Qs,Ps,Ds) enforces the following two rules.

1. If a service request is generated at a certain time x, then the deadline
of the task-queue is set to at least z = x +Ds.

2. Subsequent to a service request at time x, let the task-queue be
evicted after executing for a certain time y. Then the capacity of the
task-queue can be replenished by the amount y at any time on or
later than x + Ps.

To enforce these rules, an SP-DBS maintains the following three server
variables4

4The server variables are specific to an SP-DBS and must be contrasted from task-
queue variables which are common across all servers.
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Algorithm 1: Server algorithm of an SP-DBS
1 At the start
2 c′ ← Qs, r

′ ← 0, η← empty set // Initialize server parameters

3 c← Qs, d← 0, r←∞ // Initialize task-queue parameters

4

5 When TQNonEmpty is generated
6 d← max{d, current time +Ds} // Generate a new service request

7 r← d −Ds

8 r′ ← d −Ds

9

10 When TQRemoved is generated
11 c← c − δ // Update capacity from EDF scheduler

12 η← η ∪ (r′ + Ps, c
′ − c) // Add entry to future replenishment set

13 c′ ← c

14 if c = 0 then

15 η′ ← {(u, v) | (u, v) ∈ η ∧ u ≤ current time}
16 if η′ is not empty then

17 c← c +
∑
{(u,v)∈η} v // Replenish with all outdated entires in η

18 η← η − η′

19 else

20 (u′, v′) = arg min{(u,v)∈η} u // Replenish with oldest entry in η

21 d← max{d,u′ +Ds}

22 c← v′

23 η← η − (u′, v′)
24 if Task-queue is non-empty then

25 r← d −Ds // Generate a new service request

26 r′ ← d −Ds

• r′ which denotes the time of the last service request,5

• c′ the task-queue capacity at t′,

• a future replenishment set η composed of a set of tuples (u, v), which
denote that at time u the task-queue capacity can replenished by v.

For the described template and server parameters, we detail the
algorithm of an SP-DBS in Algorithm 1. We show that the proposed
algorithm of an SP-DBS implements a valid DBS as it satisfies the two
DBS properties.

Theorem 2.3: SP-DBS satisfies DBS Properties I and II as defined in

Definitions 2.2 and 2.3.

Given that an SP-DBS is a DBS, we benefit from the demand and
supply guarantees proved in Theorems 2.1 and 2.2. Both schedulability

5The value of r′ exactly equals the task-queue re-insertion time r. However, for a soft
variant (Section 2.3.4) and for composition of servers (Section 2.4) the two values differ.
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and delay analyses for an SP-DBS follow from these guarantees. We
illustrate the working of the algorithm for the following example.

Example 2.2: Consider two SP-DBSs: DBS1 and DBS2 with parameters (given

as the tuple (Qs,Ps,Ds)) (3, 6, 5) and (1, 3, 2), respectively. Each server executes

a stream of jobs. The tuples (ai,Ci), i.e., the arrival time and the execution

demand, of the jobs arriving at DBS1 are {(3, 3), (10, 2), (13, 2), (19, 2), (20, 1)}.
The corresponding tuples for DBS2 are {(0, 3), (12, 1), (16, 2), (18, 1)}.

Using Theorem 2.2, we can verify that these two SP-DBSs are
schedulable. We illustrate how the jobs are served by the two servers
in Figure 2.3. The arrival of jobs is shown with upward arrows with
the execution time of the job (unknown to the server) depicted on top of
the arrow. In the figure, we plot the execution pattern, the deadline d

and the capacity c of both the servers over time. Dark boxes under the
deadlines denote times when the task-queue is in the EDF-queue. We
also plot the (input) arrival function R, the output arrival function R′, and
the lower-bound on the output arrival function R ⊗ dbfs (Definition 2.3).

We now illustrate that the two DBS properties are satisfied in the
example. The DBS Property I can be verified by checking (2.2) for each
interval for the two servers. For instance, as ((dbfs)1 + (dbfs)2)(5) = 5,
schedulability in an interval of length 5 where the demand equals 5, will
confirm DBS Property I. Indeed, this is true for the interval [3, 8]. To verify
DBS Property II of SP-DBS, we observe that input and output arrival
functions as satisfy R′ ≥ R ⊗ dbfs, for both the servers (Figure 2.3(c)).
Additionally, it is revealing to compute the value of s for different values
of t such that (2.3) is satisfied.

2.3.3 Implementation complexity

We characterize the overhead of the SP-DBS algorithm with the worst-
case memory and timing complexities. We define a parameter Cmin as the
smallest number such that the execution and arrival times of all jobs, and
the parameter Qs are integral multiples of Cmin. In other words, Cmin is
the time granularity of all scheduling events.

Memory complexity

We ignore the constant memory overhead of maintaining the server
variables c′ and t′. We focus on the future replenishment set η, the size of
which varies. It can be shown that at any point of time, the sum of the
second element v across all tuples of η, does not exceed Qs. Using this and
the defined parameter Cmin, the number of entries in η is at most Qs/C

min.
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(a) DBS1 with parameters (3, 6, 5).
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(c) Input and output arrival functions for DBS1 (left) and DBS2 (right).

Fig. 2.3 Illustration of the SP-DBS algorithm for Example 2.2. Arrival of jobs are shown with
upward arrows with their execution demands. The server deadline and capacity are
shown over time. The area below the deadlines are shaded dark if the corresponding
task-queue is in the EDF-queue. The (input) arrival function R, the output arrival
function R′, and the lower-bound on the output arrival function, R ⊗ dbfs are also
plotted.
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Timing complexity

The elements of η can be sorted by the first element of the tuple u. It
can be shown that the tuples of such a sorted η are added and removed
with a FCFS discipline. Thus, all operations on η happen in constant
time. However, line 15 of Algorithm 1 operates on several entries of η.
The number of entries in η depends on the number of service requests
generated in the past (lines 7 and 25 of Algorithm 1) which have not
yet been replenished. It can be shown that number of service requests
until time t is at most R′(t)/Cmin. As R′(t) ≤ dbfs(t + Ds) ≤ Qs + (Qs/Ps)t,
the maximum number of service requests made to the EDF-queue grows
linearly in time and is inversely related to the parameter Cmin.

To conclude, both the memory and timing complexities of the server
algorithm are bounded, and inversely grow as the granularity of the jobs,
defined in Cmin, falls. If the essential complexity of a very small Cmin is
avoided, then SP-DBS has an efficient implementation.

2.3.4 Soft variant of SP-DBS

In existing research literature, soft6 variants of dynamic-priority priority
servers have been proposed. For instance, the original Constant
Bandwidth Server proposed in [AB98] is a soft server. In such
implementations, whenever the task-queue served by the server is non-
empty, it is inserted into the EDF-queue. Both hard and soft variants have
their relative merits and demerits as discussed in [APSL09].

The presented algorithm of SP-DBS is a hard variant. With
the template of a dynamic-priority server presented in Section 2.3.1,
differentiating between soft and hard variants is straight-forward. A soft
variant requires a minor change: The re-insertion time r is ignored, and
a non-empty task-queue is always in the EDF-queue. For the presented
algorithm of the SP-DBS, it can be proved that with this change, the DBS
Properties I and II still hold.

For Example 2.2 we illustrate the behavior of the soft variant of SP-
DBS in Figure 2.4. Notice the contrast to the earlier hard-variant: The
servers are now workload-conserving, and execute the jobs successively
at the expense of larger server deadlines. The two DBS properties can be
verified from this example.

6The word “soft” here is not used in the same sense as in soft real-time systems. Soft
servers can be characterized by hard real-time properties.
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(c) Input and output arrival functions for DBS1 (left) and DBS2 (right).

Fig. 2.4 Illustration of the soft variant of SP-DBS for Example 2.2. Arrival of jobs are shown with
upward arrows with their execution demands. The server deadline and capacity are
shown over time. Whenever a task-queue is non-empty, it is inserted into the EDF-queue.
The (input) arrival function R, the output arrival function R′, and the lower-bound on
the output arrival function R ⊗ dbfs are also plotted.
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Fig. 2.5 A template for the composition of dynamic-priority servers. The glue logic of the
composed server translates the interface variables between the EDF scheduler and the
constituent servers. The two signals are relayed to all servers.

2.4 Composition Operators for DBSs

We motivate the need for DBSs which further generalize SP-DBSs with
the following example.

Example 2.3: Consider two periodic tasks E and F executing on the same

processor. Task E has a period 1.5, a maximum jitter 0.5 that can be exhibited by

a maximum of 3 consecutive jobs, a WCET 1, and a relative deadline 3. Task F

has a period 6, WCET 1.5, and a relative deadline 2.

Employing (2.1) confirms that the two tasks are EDF-schedulable.
However, they cannot be served by utilization-based servers. Further-
more, it can be shown that the tasks cannot be served by SP-DBSs. This
schedulability-gap is because the demand bound function of task E is
not a shifted-periodic function. Designing an over-provisioned SP-DBS
for task E fails the schedulability test. This is illustrated in Figure 2.6(a).
This motivates the design of a broader class of DBSs. Towards this end,
we propose composition operations that operate on several SP-DBSs to
form a single DBS. In the remainder of this section, we present two such
composition operations, and illustrate their utility.

We first discuss a general template for operations on one or more
DBSs. Let an operation on a set of DBSs, S = {S1,S2, . . .Sn}, compose
them to form a single server, S. We refer to S as the composed server and
S1,S2, . . .Sn as the constituent servers. The composed server must provide
the glue logic to interface the constituent servers with the EDF scheduler,
as shown in Figure 2.5. The glue logic has two functions, (a) to translate
the task-queue parameters as set by the constituent servers on to actual
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task-queue parameters, and (b) to translate the variable δ as provided by
the EDF scheduler on to the constituent servers. All server algorithms
and the glue logic are executed only when the signals TQNonEmpty and
TQRemoved are raised.

For any composition operation, we need to prove that the composed
server is a DBS if all constituent servers are DBSs. If so, furthermore,
it is desirable that demand bound function of the composed server be a
function of the demand bound functions of the constituent servers.

2.4.1 Min-Composition

We now discuss the min-composition operation which is formally defined
as follows.

Definition 2.4: (Min-Composition) A set of DBS {S1,S2, . . .Sn} is said to be

min-composed to form a server S, denoted as S = S1 ∧ S2 ∧ . . . ∧ Sn, if the glue

logic of server S implements the following interface

d := max(d1, d2, . . . dn),

c := min(c1, c2, . . . , cn),

r := max(r1, r2, . . . , rn),

δi := δ, ∀i ∈ {1, 2, . . . ,n}. (2.7)

For the glue logic defined as above, we prove the following property
of the composed server.

Theorem 2.4: Let S := S1 ∧ S2 ∧ . . . ∧ Sn, then the server S is a DBS with

a demand bound function dbfs which is related to (dbfs)i, the demand bound

function of server Si, i ∈ {1, 2, . . . ,n}, as

dbfs := min
(
(dbfs)1, (dbfs)2, . . . , (dbfs)n

)
. (2.8)

The defined min-composition creates a composed server which has
a dbfs that is the minimum of the dbfs of the constituent servers. We
now illustrate the utility of this composition with Example 2.3. As noted,
SP-DBSs cannot schedule the two tasks E and F, though the tasks are
EDF-schedulable (Figure 2.6(a)). This schedulability-gap is attributed to
the demand bound function of task E, which is not a shifted-periodic
function. However, with min-composition we can design a server that
exactly reserves the demand bound function of task E. Consider SE′ =

S1 ∧ S2, where S1 and S2 are SP-DBSs with parameters (1, 1.5, 1.5) and
(1, 1, 2), respectively. As we show in Figure 2.6(b), SE′ has a dbfs equal
to the demand bound function of task E. Thus, min-composition bridges
the schedulability-gap for this example.
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Fig. 2.6 Utility of min-composition for Example 2.3.

2.4.2 Left-Shift

We now discuss a second operation on a single DBS called left-shift. The
operation is formally defined as follows.

Definition 2.5: (Left-Shift) A server S is said to implement left-shift by τ of

a DBS S1, denoted as S := (
τ
← S1), if the glue logic of S behaves as

d := d1 − τ,

c := c1,

r := max(t, r1 − τ)

δ1 := δ. (2.9)

The following result characterizes the left-shift operation.

Theorem 2.5: Let S1 be a DBS with demand bound function (dbfs)1, such that

(dbfs)1(t + τ) ≤ t,∀t ≥ 0. Then, S := (
τ
← S1) defines a DBS with a demand

bound function dbfs given as

dbfs(t) = (dbfs)1(t + τ), t ≥ 0. (2.10)

The left-shift composition generates a server with a dbfs which is a
left-shifted version of the dbfs of the constituent server. We illustrate the
advantage of left-composition in the following example.
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Example 2.4: Let two periodic tasks G and H execute on a processor. Task G

has a period 2, relative deadline 2, a maximum jitter 1 that can be exhibited by a

maximum of 4 consecutive jobs, and a WCET 1. Task H has a period 5, a relative

deadline 2 and WCET 1.

The tasks are EDF schedulable as shown in Figure 2.7(a). As before,
there exists no configuration of utilization-based servers or SP-DBSs that
serves the tasks. Further, no min-composition of SP-DBS can serve the task
set. This schedulability-gap is attributed to the demand bound function
of task G. We now design a server that exactly reserves the demand bound
function of task G. Let S3 and S4 be SP-DBS with parameters (1, 2, 2) and

(1, 1, 6), respectively. Let S34 := S3 ∧ S4 and SG := (
4
← S34). Then, as shown

in Figure 2.7(b), SG has a demand bound function (dbfs)G exactly equal
to the demand bound function of task G. Thus, hierarchical left- and
min-composition bridges the schedulability-gap for this example.

2.5 Summary

Example 2.1 illustrated that SP-DBSs can bridge the schedulability-gap
for tasks with deadlines less than periods. Such tasks are to be expected
in CPSs where the end-to-end deadline of a task-chain may equal the task
period. Examples 2.3 and 2.4 illustrated that composition of SP-DBSs can
bridge the schedulability-gap for tasks with bursts and jitters. Such tasks
are to be expected in distributed CPSs where interference on networks
cause irregularities in arrival times of jobs. In addition, we showed that
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the proposed algorithm of SP-DBS and the composition operations are
efficient to implement. With these arguments, we claim to accomplish
the said goal, i.e., to design a run-time manager to abstract the variability
in the timing properties of one task from the analysis of all other tasks
sharing the same resource.

From these results a design pattern emerges. First, we constructed
a run-time manager that only absorbs a small class of variabilities, but
is efficient to implement. Then we defined composition operations to
modularly build more complex run-time managers which can absorb
a wider class of variabilities. To be effective, such operations need to
sufficiently broaden the class of efficient run-time managers.

Appendix

Proof of Theorem 2.1

This follows from the EDF-schedulability test of (2.1) shown in [BMR90]
and the DBS Property I defined in Definition 2.2. �

Proof of Theorem 2.2

Let R′ be the output arrival function (defined in Appendix A.3) for the
input arrival function R when served by a DBS characterized by dbfs.
Then, the maximum delay of any job dmax is given as

dmax = Del(R,R′). (2.11)

From DBS Property II we know that, for every t ≥ 0, there is some s ∈ [0, t]
such that

R′(t) ≥ R(s) + dbfs(t − s).

This can be written as follows.

R′(t) ≥ inf
0≤u≤t
{ R(u) + dbfs(t − u) }. (2.12)

The R.H.S. is equal to R ⊗ dbfs from the definition of the ⊗ operator
(Appendix A.1). Substituting this in (2.11), the maximum delay is
Del(R,R⊗dbfs). Abstracting arrival functions to arrival curves we derive
the required result. �

Proof of Theorem 2.3

DBS Property I: Let ρ denote the set of all 3-tuples (x, y, z) interpreted as
defined in Section 2.2.2. We describe two properties of the set ρ for an
SP-DBS.



30 Chapter 2. Isolation of Tasks with Demand Bound Servers

1. An SP-DBS requests for new resources in lines 6 and 25 of
Algorithm 1. In either case, the reinsertion time r satisfies d − Ds,
where d is the task-queue deadline. Thus for every (x, y, z) ∈ ρ,
y ≥ x +Ds.

2. Future requests are based on the future replenishment set η. A
new entry is added to η in line 12 of Algorithm 1. The entry
added is (r′ + P, c′ − c) where r′ is the time of the last request, and
(c′ − c) is the consumed budget since the last request. Thus, any
consumed budget is replenished by the same amount Ps time units
later. Further, the initial value of c′ is Qs. Thus, in any interval of
length Ps the total resource requested is at most Qs.

From these two properties of the set ρ we can show that the SP-DBS
has a demand bound function given by (2.6).

DBS Property II: Let R(t) be the input arrival function of any stream of
jobs served by an SP-DBS. Let R′(t) be the corresponding output arrival
function. We need to show that

R′(t) ≥ R(s) +max
{
0,
(⌊

t − s −Ds

Ps

⌋
+ 1
}
×Qs

}
(2.13)

If the task-queue is empty at t, we have R′(t) = R(t). Then we can set
s = t and satisfy (2.13). Let the task-queue be non-empty at time t, with a
deadline dt ≥ t. We consider two cases.

Case (a) with t < dt: There must be a service request at time s′ = dt−Ds,
such that the service provided to the SP-DBS in [s′, dt] is non-zero. If at
time s′ a new task arrives at an empty task-queue, then we can set s = s′

in (2.13). Else, the request was due to a depleted budget, i.e., c = 0 at s′.
This implies that in the interval [s′ − Ps, s

′] the task queue received the
full budget of Qs. At time s′′ = s′ − Ps, a service request is made. If this
is because a new task arrives to an empty task-queue then we set s = s′′

in (2.13). Else, we repeat the above argument. If this process continues
for n iterations, we have s + nPs < t < s + nPs +Ds and R′(t) − R(s) > nQs.
Further as the task-queue is empty at s, we have R′(s) = R(s). Then this s

satisfies (2.13).
Case (b) with t = dt: A request made by the server finishes just

at the deadline. From DBS Property I we know that the server
is schedulable. Thus, there exists some interval [s′, t] in which the
schedulability constraint is tight, i.e., the total resource requested and
received by the SP-DBS in [s′, t] is dbfs(t− s′). If a new task arrives at s′ to
an empty task-queue, we can set s = s′ and satisfy (2.13). Else, we follow
the same argument as in the previous case, and identify s = s′ − nPs such
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that a new task arrives to an empty task-queue. Then, R′(s) = R(s) and
R′(t) − R′(s) = dbfs(t − s). �

Proof of Theorem 2.4

To prove that the resultant server after composition is a DBS, we need
to show that DBS Properties I and II are satisfied for the demand bound
function as given in (2.8).
DBS Property I: Consider any constituent server Si. Since δi = δ

whenever the task-queue executes, the server variable c of Si is decreased.
Furthermore from (2.7), for each request tuple (xi, yi, zi) of Si the
corresponding request tuple (x, y, z) of S has x ≤ xi, y ≥ yi, and z ≤ zi.
Then, from the definition of dbfs in Definition 2.1, the dbfs of the
composed server cannot exceed (dbfs)i.
DBS Property II: The property is to be shown for any constituent DBSs.
To this end, we first define an algorithm of a DBS for a general dbfs. Let
R and R′ denote the input and output arrival functions for some trace
of jobs. Let t denote the current time. Whenever the task-queue is non-
empty and not in the EDF-queue, a general DBS7 will set the task-queue
parameters as follows.

d = min{s | (R ⊗ dbfs)(s) > R′(t)}, (2.14)

c = (R ⊗ dbfs)(d) − R′(t), (2.15)

r = min{s | (R ⊗ dbfs)(s) ≥ R′(t)}. (2.16)

For the min-composition, let each constituent server be characterized by
the above equations. Then, by applying the glue-logic of (2.7) the task-
queue parameters as set by the composed server is given as below.

d = max
Si∈S

(min{s | (R ⊗ (dbfs)i)(s) > R′(t)}) , (2.17)

c = min
Si∈S

((R ⊗ (dbfs)i)(d) − R′(t)) , (2.18)

r = max
Si∈S

(min{s | (R ⊗ (dbfs)i)(s) ≥ R′(t)}) . (2.19)

As R and R′ are the same for the all composed servers, the above equations
simplify as follows.

d = min{s | (R ⊗min
Si∈S

(dbfs)i)(s) > R′(t)}, (2.20)

c = (R ⊗min
Si∈S

(dbfs)i)(d) − R′(t), (2.21)

r = min{s | (R ⊗min
Si∈S

(dbfs)i)(s) ≥ R′(t)}. (2.22)

7 This represents a hard-variant as the task-queue. A soft-variant requires setting
r = t.
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Hence, the composed server satisfies the DBS Property II with a dbfs as
defined in (2.8). �

Proof of Theorem 2.5

To prove that the resultant server after composition is a DBS, we need
to show that DBS Properties I and II are satisfied for the demand bound
function as given in (2.10).
DBS Property I: Since δ1 = δwhenever the task-queue executes, the server
variable c of S1 is decreased. From the glue-logic of (2.9), for each request
tuple (x1, y1, z1) of S1 the corresponding request tuple (x, y, z) of S has
x = x1, y = y1 − τ, and z = z1 − τ. Hence, the dbfs(t) of the composed
server cannot exceed (dbfs)1(t + τ).
DBS Property II: Consider the description of a generic algorithm of a DBS
in the previous proof. By applying the glue-logic defined in (2.9), the task-
queue parameters as set by the composed server satisfies the following
conditions.

d = (min{s | (R ⊗ (dbfs)1)(s) > R′(t)}) − τ, (2.23)

c = min
S1∈S

((R ⊗ (dbfs)1)(d1) − R′(t)) , (2.24)

r = max(t,max
S1∈S

(min{s | (R ⊗ (dbfs)1)(s) ≥ R′(t)}) − τ). (2.25)

Substituting dbfs(t) = dbfs(t + τ) in the above equations satisfies (2.14)
to (2.16). Hence, the composed server satisfies DBS Property II with dbfs

as defined in (2.10). �



3
Shaping Real-Time Tasks to

Minimize Peak-Temperature

3.1 Introduction

The computation of timing guarantees in CPSs must adapt to changing
requirements of processor architectures used in such CPSs. In this chapter,
we study one such requirement, namely system throttling to reduce peak-
temperatures.

One of the primary design concerns in current mainstream processors
is the high power density, which in turn translates to high on-chip
temperatures. High temperatures are detrimental for two reasons. One,
they affect the reliability of the processor. Two, at higher temperatures
the leakage power consumption is higher, thereby causing a vicious cycle
that may lead to thermal run-aways. Consequently, limiting the peak-
temperature is an important design guideline.

Hardware cooling solutions remain the default approach to remove
heat from electronic devices. However, the cost of packaging technology
is increasing exponentially with rising power density: It is estimated
to cost $3 per watt of heat dissipated [SSH+03]. Furthermore, in
mobile devices the constraints of volume and noise emission restrict
the use of standard cooling infrastructure such as fans and ventilators
[TT04]. Finally, in novel 3-dimensional stacking or fabrication of chips,
conventional conductive cooling is less effective [CWZ04]. Consequently,
it is now an established practice to supplement hardware solutions with
run-time software solutions, which are broadly referred to as Dynamic
Thermal Management (DTM) techniques [DM06]. DTM techniques
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comprise of interventions including voltage (and frequency) scaling,
clock-gating and execution-unit throttling.

Clearly, employing DTM techniques can have performance penalties,
and thereby affect timing guarantees. For instance, if a hot processor
is temporarily turned off when a job arrives, it may miss its deadline.
This is particularly challenging if the input trace exhibits variability in job
arrival patterns such as bursts of jobs arriving at unknown points in time.
A run-time manager must anticipate such events, while simultaneously
trying to aggressively minimize the temperature.

Most existing research which considers both temperature and real-
time objectives, focuses on Dynamic Voltage Scaling (DVS). As noted
by Brooks et al. in [BM01], for certain architectures the overhead of
voltage scaling can be substantial. Instead they found throttling certain
components of the architecture or disabling them entirely to be more
effective in reducing temperatures. This is corroborated by the general
push towards near-zero idle power to approximate the idealistic goal of
energy-proportional computing [BH07].

Some research studies have considered non-DVS DTM techniques.
Skadron et al. studied the use of control-theoretic techniques for triggering
fetch-toggling in [SAS02]. This was extended to a predictive policy by
Srinivasan et al. in [SA03]. For chip-multiprocessors (CMPs) Powell
et al. proposed in [GPV04] the “heat-and-run” approach of executing
tasks on a core until it needs cooling, and then migrating to cooler cores.
A related approach is the adaptive workload-distribution algorithm
proposed by Coskun et al. in [CRW07].

None of these studies focuses on guaranteeing hard real-time
properties. Instead they optimize for the best-effort performance, for
a given safe peak-temperature. In this chapter, our aim is to study the
use of throttling as a DTM technique to simultaneously consider peak-
temperature and the worst-case delay of any job. To this end, we advocate
the use of shapers which originate from the networking domain [GGPS96].
We first illustrate their use with an example.

3.1.1 Motivating Example

Example 3.1: Consider a periodic task with period 0.25 s, execution time 0.15 s,

a jitter 0.1 s, and relative deadline equal to period. Consider a specific trace of

jobs of this task, with jobs arriving at times 0, 0.25, 0.4, 0.65, 1s. Let this trace

be executed on a processor with thermal and power parameters (explained in

Section 3.2) as listed in Table 3.1. Let the temperature of the processor at time 0
be 312.5 K.

For the specific trace of jobs in the above example, consider two
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Fig. 3.1 Motivating example for use of shapers to manage timing and peak-temperature
objectives. In the plot of the output traces R′wc and R′

sh
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arrivals, colored blocks denote execution of the jobs, and blank areas denote times then
the processor is idle.

traces with output arrival functions (defined in Appendix A.3) shown
in Figure 3.1. The two output arrival functions are denoted R′wc (for
workload-conserving) and R′sh (for shaped). In R′wc the jobs are executed
continuously until their completion. On the other hand, in R′sh delays
are inserted between “chunks” of the jobs. For both traces, we plot the
temperature of the processor as a function of time. Whenever a job is
executed the temperature rises, and whenever the processor is idle the
temperature falls. As is evident from the figure, the inserted delays in
R′sh allow the processor to cool down intermittently. Consequently, the
peak-temperature is higher for the output trace R′wc (347 K as opposed to
340 K).

While it can reduce peak-temperature, insertion of delays must respect
the deadlines of the jobs. In this particular example, deadlines of all jobs
are satisfied in both the traces. In particular, for R′sh the third job which
arrives earlier with the maximum jitter, meets its deadline. Furthermore,
the delays inserted between chunks of the jobs are variable. After the
jitter in the third job, a larger delay is inserted between chunks of the
fourth job, as no (negative) jitter is anticipated in the next job. This helps
the processor to cool down further.

In conclusion, delays can be inserted between chunks of jobs, i.e., an
input trace can be shaped, to reduce the peak-temperature in comparison
to workload-conserving execution. However, such shaping should be
carefully done. Deadlines of all jobs must be met. Furthermore, there
are opportunities to anticipate future job arrival patterns and to exploit
them to aggressively reduce the temperature. Nevertheless, the overhead
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Fig. 3.2 Block diagram for the use of shapers for dynamic thermal management.

introduced by shaping must be managed.

3.1.2 Contributions

In this chapter, we propose the use of shapers to monitor job arrival times
and execution demands, and to insert appropriate delays to reduce the
peak-temperature of a processor. In particular, we recommend leaky-

bucket shapers which can be efficiently implemented. Within the class
of leaky-bucket shapers, we prove that a specific shaper, referred to as
the convex-hull shaper, optimally minimizes the peak-temperature while
meeting deadlines of all jobs. This optimality holds for the arrival curve
representation of tasks, which can model variable job arrival patterns.
We extend our results to non-zero timing and energy overheads in
transitioning between the two states of the processor. We also consider
shaping multiple tasks which are scheduled with an EDF scheduler.

In conclusion, the contribution of this chapter can be summarized
in the block diagram of Figure 3.2. Multiple tasks are scheduled with
an EDF scheduler. The resultant task-queue is interfaced with a shaper,
which during run-time divides the jobs into smaller chunks and delays
the effective arrival time of these chunks on to the processor. Equipped
with such a shaper, a workload-conserving processor is enabled with the
Dynamic Thermal Management (DTM) technique of throttling.

The rest of this chapter is organized as follows. We define the system
model in Section 3.2. We derive the optimal convex-hull shaper and
outline its implementation in Section 3.3. We extend the results to non-
zero transition overheads and multiple streams of jobs in Section 3.4.
We present evaluation results in Section 3.5. Finally we summarize in
Section 3.6 and present the proofs of results in an appendix.

3.2 System Model

In this section, we define the processor, task and thermal models. We also
outline the problem definition.
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3.2.1 Processor Model

We consider a processor that executes jobs at a fixed frequency. When
executing a job the processor is said to be in the active mode and consumes
power Pact. When not executing any job the processor is said to be in
the idle mode and consumes a lower power Pidl. The idle mode can be
enforced, even when the task-queue is not empty, by techniques such as
execution throttling [BM01] or fetch toggling [SSH+03]. The transition
from active to idle modes has an overhead of ttr time units, during which
time the processor consumes the higher power Pact.

In current VLSI technology nodes, leakage power constitutes a
significant fraction of the total power consumption (up to 40 % [NSG+06]).
As leakage power is highly sensitive to temperature changes, the power
consumption must be considered as a function of the temperature. As
argued in [LDSY07], a linear model works well in practice, i.e., the power
consumption at a temperature T is given as

P(T) = ρT + ω, (3.1)

for some positive parameters ρ and ω. These parameters are different
for the two processor modes, namely active and idle. We reference
these parameters with sub-scripts act and idl to represent the mode of
the processor. In conclusion, the processor model is given by the tuple
P = (ρact, ωact, ρidl, ωidl, ttr).

3.2.2 Task Model

We model a task as a stream of jobs characterized by an arrival curve, α,
as defined in Appendix A.2. Each concrete trace of jobs is characterized
by an input trace, R, that conforms to the arrival curve α, as defined in
Appendix A.2. Further, each task has a relative deadline D, which is
the same for all jobs of that task. We assume that the deadlines of all
jobs are met for a workload-conserving execution, i.e., in the absence of
any shaping no job misses its deadline. From known results in Network
Calculus [LBT01], this assumption is specified as the following relation

α(∆ −D) ≤ ∆, ∀ ∆ ≥ D. (3.2)

In conclusion, the task model is given by the tuple τ = (α,D). We
extend this model to consider multiple such tasks scheduled with an
EDF scheduler in Section 3.4.2.

3.2.3 Thermal Model

For studies in architectural-level thermal management, heat flow is
approximated by the Fourier’s law of heat diffusion assuming that the
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processor is a point source [HGV+06]. For such an approximation,
the temperature of the processor, T, evolves according to the following
differential equation

C
dT

dt
= −G(T − Tamb) + P(T), (3.3)

where C and G are thermal model parameters, Tamb is the ambient
temperature, and P(T) is the power consumed by the processor at
temperature T. For the considered linear power model (3.1), the closed
form solution to the differential equation (3.3), is given as

T(t) = T∞ + (T(0) − T∞) · e−a(t−t0), ∀ t ≥ 0, (3.4)

where,

T∞ =
GTamb + ω

G − ρ
, (3.5)

a =
G − ρ

C
. (3.6)

T∞ is referred to as the steady-state temperature, and a is referred to
as the rate-constant. Both the parameters will be different for the two
modes of the processor. We reference them with sub-scripts to represent
the mode. In conclusion, the thermal model is given by the tuple T =

(T∞act, aact,T
∞

idl, aidl).

3.2.4 Problem Definition

Given are a processor model P, a task model τ, and a thermal model T.
Under this assumption of (3.2), we are to design a run-time manager that
chooses the mode of the processor (active or idle) at all times such that (a)
all jobs complete within their deadlines, and (b) peak-temperature of the
processor is minimized.

3.3 Optimal Leaky-Bucket Shaper

In this section, we assume negligible overhead when transitioning
between the two processor modes. For this simplified setting, we derive
the optimal shaper within the class of leaky-bucket shapers.

3.3.1 Introduction to Shapers

In the area of networking, traffic shaping is a well-studied technique
to regulate flow of packets by buffering and delaying them [GGPS96].
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Fig. 3.3 Block diagram of serial composition of multiple shapers. The arrival curve at the input
of the shaper is α and at the output of the shaper is (α ⊗ σ) which does not exceed σ.

For instance, a shaper may ensure that the output stream has limited
burstiness and thereby reduce the buffer-space required at a downstream
node. When employing shapers for thermal management there is a slight
difference. The temperature of the processor depends on how long the
processor executes rather than how many jobs it executes. Hence, rather
than the conventional approach of shaping based on the number of jobs
(or packets), we consider shapers that shape the execution demand of
jobs.

A shaper is characterized by a shaping curve, denoted σ. The shaper
ensures that the trace of jobs at its output conforms to an arrival curve
σ, independent of the input to the shaper. More specifically, the arrival
curve at the output of a shaper is (α ⊗ σ) [Wan06], where α is the arrival
curve at the input and ⊗ is as defined in Appendix A.1. A shaper is said
to be greedy if it does not delay any job longer than is required to ensure
the above condition.

Shapers can be composed serially, i.e., the output trace from one shaper
can be the input trace of another shaper. So composing two shapers with
shaping curves σ1 and σ2 results in a shaper with an effective shaping
curve σ1 ⊗ σ2. This is illustrated in the block diagram in Figure 3.3.

3.3.2 Leaky-Bucket Shapers

In this chapter, we restrict our study to leaky-bucket shapers, which are
specific greedy shapers that can be efficiently implemented.

A simple leaky-bucket shaper is a greedy shaper, such that its shaping
curve σ is given by three parameters, namely a bucket-size b, a fill-rate r,
and a leak-unit u1, as

σ(∆) =

⌊
b + u + r∆

u

⌋
× u. (3.7)

For a continuous approximation of a simple leaky-bucket, i.e., in the limit
as u→ 0, we have σ(∆) = b + r∆.

1 A simple leaky-bucket shaper can be visualized as follows. Consider a bucket of size
b, with an inlet filling the bucket at a constant rate r, and an outlet greedily leaking water
at the granularity of u. When the bucket is full, the water from the inlet “overflows”.
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Fig. 3.4 Example shaping curve of a leaky-bucket shaper. The leak-unit for both shapers is u =

0.025 s. Notice that the shaping curve, shown in a black solid line, is the minimum of the
shaping curves of the two constituent simple leaky-bucket shapers, whose continuous
approximations (increased by u) are shown in dashed red and blue lines.

Serially composing simple leaky-bucket shapers, as shown in
Figure 3.3, is particularly interesting. If two simple leaky-bucket shapers
with shaping curves σ1 and σ2, and the same leak-unit are composed,
then the resultant shaping curve is given as min(σ1, σ2). As we will
see in Algorithm 2, this simplified composition enables an efficient
implementation. We refer to all shapers generated by serially composing
simple leaky-bucket shapers as leaky-bucket shapers. The leak-unit of
a leaky-bucket shaper equals the identical leak-units of its constituent
simple leaky-bucket shapers. We illustrate the composition of simple
leaky-bucket shapers with the following example.

Example 3.2: Consider two simple leaky-bucket shapers with b1 = 0, r1 =

0.75 s, b2 = 0.06 s, r2 = 0.6 s, and u1 = u2 = 0.025 s. Serially composing

these shapers generates a leaky-bucket shaper whose shaping curve is shown in

Figure 3.4. This shaping curve is used to shape the trace of jobs in Example 3.1,

as was illustrated in Figure 3.1.

3.3.3 Analysis with Leaky-Bucket Shapers

We now present analytical results which help us identify the optimal
leaky-bucket shaper for the said problem definition. Recall that for
optimality we need to meet the deadlines of all jobs and minimize peak-
temperatures. In the following result we characterize worst-case delay
when using shapers.

Lemma 3.1: Given a task with an arrival curve α, that is shaped with a shaping

curve σ and then executed on a dedicated processor. The maximum delay of any

job of this task, denoted dmax, is given by

dmax = Del(α(∆), σ(∆)) + Del(σ(∆),∆). (3.8)
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The above result is interpreted as follows. The maximum delay of the
job is the sum of two delays, namely the maximum delay at the shaper
and the maximum delay at the processor. These two delays are given by
the two summands in (3.8). Each summand uses the Del operator which
is as defined in Appendix A.3.

In the following result we characterize the worst-case temperature
when using shapers by simulating a specified critical trace. This trace is
characterized by its input arrival function derived from the arrival curve
of the task and the shaping curve of the shaper.

Lemma 3.2: Given a task with an arrival curve α, that is shaped with a shaping

curve σ and then executed on a processor. The worst-case temperature is the

temperature of the processor after executing a critical trace of jobs with arrival

function R∗(t) given as

R∗(t) = (α ⊗ σ)(tmax) − (α ⊗ σ)(tmax − t), t ∈ [0, tmax], (3.9)

where [0, tmax] defines the time-domain of interest.

From the above two lemmas, we derive the optimal shaper in the
following result.

Theorem 3.1: Given is a task with an arrival curve α and relative deadline

D. Then the leaky-bucket shaper which minimizes the peak temperature of a

processor executing this task and meets all deadlines has a shaping curve

σch = ConvexHull(α(∆ −D)), (3.10)

where ConvexHull is the smallest convex envelope of all points in its argument.

We refer to the shaper defined in (3.10) as the convex-hull shaper and its
shaping curve as the convex-hull shaping curve. A convex-hull shaper is a
leaky-bucket shaper: Each piecewise-linear segment of its shaping curve
can be realized by a simple leaky-bucket shaper with zero leak-unit. We
illustrate this with an example.

Example 3.3: Consider the periodic task from Example 3.1. The arrival curve

of this task is shown in Figure 3.5(a). For the deadline of 0.25 s, the convex-hull

shaping curve is shown in Figure 3.5(b). Note that the shaping curve is composed

of two piecewise-linear segments which can be realized by composing two simple

leaky-bucket shapers. The continuous approximation of the leaky-bucket shaper

(u = 0) shown in Figure 3.4 is the convex-hull shaper for this task.
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Fig. 3.5 Illustration of a convex-hull shaper.

3.3.4 Implementing the Convex-Hull Shaper

We motivated the exclusive focus on leaky-bucket shapers because
they can be efficiently implemented. We present in Algorithm 2 our
implementation of such a shaper. There are two requirements of the
implementation: (a) access to a programmable timer which generates an
interrupt when the timer underflows, and (b) interrupts when the task-
queue becomes empty or becomes non-empty. Both these requirements
are met for most CPSs.

As described in the algorithm, the shaper maintains a fill-value,
denoted as f , for each constituent simple leaky-bucket shaper of the
convex-hull shaper. These fill-values are modified in two ways: (a) they
are increased at the constant-rate of r up to the maximum value of (b + u)
(line 6), and (b) they are reduced by u whenever the processor transitions
to the active mode (line 20). The shaper allows a task to run only when the
fill-values of all the simple leaky-bucket shapers is greater than or equal
to u (line 8). If this is not the case, then the length of time for which the
processor is to be forced to be idle is computed directly from the fill-values
(line 13). In addition, whenever the task-queue is empty the processor
remains in the idle mode.

3.4 Extensions of Convex-Hull Shaper

In this section, we extend the results for the previous section to consider
(a) non-zero transition overhead between the two modes of the processor,
and (b) multiple streams of jobs scheduled with an EDF scheduler.
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Algorithm 2: Implementation a Convex-Hull Shaper.
Input: Convex-hull shaper is composed of a set of simple leaky-bucket shapers

S. Each shaper Si ∈ S is given by bucket-size bi, fill-rate ri, and leak-unit u.
1 Procedure Initialize()

2 t← 0, t′ ← 0
3 fi ← bi + u, ∀ Si ∈ S

4 Shaper()

5 Procedure Shaper()

6 fi ← min( fi + (t − t′) · ri, bi + u), ∀ i ∈ S

7 t′ ← t

8 if mini∈S fi ≥ u then

9 active← True
10 RunTask()

11 else

12 active← False
13 tidle ← maxSi∈S((u − fi)/ri)
14 Program timer with tidle
15 Put processor in idle mode
16 Procedure RunTask()

17 if task queue is empty then

18 Put processor in idle mode
19 else

20 fi ← fi − u, ∀ Si ∈ S

21 Program timer with u

22 Execute task
23 Interrupt Service Routine TimerUnderflow()

24 if active then

25 active← False
26 Shaper()

27 else

28 active← True
29 RunTask()

30 Interrupt Service Routine TQNonEmpty()

31 if active then

32 Shaper()

33 Interrupt Service Routine TQEmpty()

34 Put processor in idle mode

3.4.1 Non-Zero Transition Overhead

During the transition between modes, for ttr time units the processor
executes no jobs but consumes the power according to the active mode.
Given this, we can model the transition overhead as part of the execution
demand of the jobs. For a given leak-unit u and arrival curve α, let αoh
denote the overhead-aware arrival curve of the task. The leak-unit represents
the smallest unit of time between transitions in modes of the processor.
Then, the total overhead in time, for any interval of length ∆, is at most
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⌈(αoh/u)⌉ttr. From this, we have the following condition on αoh.

αoh ≥ α +
⌈αoh

u

⌉
· ttr. (3.11)

For αoh to be a valid arrival curve, it should be sub-additive [TCN00].
Enforcing this along with (3.11), we arrive at the following definition of
the overhead-aware arrival curve.

αoh =

⌈
α

u − ttr

⌉
· u. (3.12)

We can now modify the definition of the convex-hull shaper, presented it
(3.10), to be overhead-aware as follows.

(σch)oh = ConvexHull(αoh(∆ −D)). (3.13)

By absorbing the transition overhead into the arrival curve we benefit
from the validity of the established results. Indeed, optimality result of
Theorem 3.1 holds for the shaping curve (σch)oh.

3.4.2 Shaping Jobs from Multiple Tasks

So far, we have considered a single stream of jobs, when all jobs have the
same deadline. We extend this to several streams of jobs, with different
deadlines, scheduled with an EDF scheduler. The EDF policy is applied
to all incoming jobs, and then the shaper works on the resultant queue,
as illustrated in the block diagram in Figure 3.2.

Let a task-set τ = {τ1, τ2, . . . , τn} be given, where τi has an arrival curve
αi and a relative deadline Di. For such a task-set we can obtain the demand
bound function, which was introduced in Definition 2.1, as

dbf(∆) =
∑

∀ τi∈τ

αi(∆ −Di). (3.14)

We extend the definition of the convex-hull shaper from (3.10) to the
following.

σch = ConvexHull(dbf) (3.15)

The results presented in Section 3.3 hold under this extension. In
conclusion, EDF scheduler enables us to coalesce the different tasks into
an equivalent task as characterized by the dbf, and we design the convex-
hull shaper for this dbf.
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Power parameters Thermal parameters

ρidl 0.1 W/K G 0.3 W/K
ωidl -25 W C 0.03 J/K
ρact 0.1 W/K a 0.1 ms
ωact -11 W Tamb 300 K

Tab. 3.1 Example processor parameters.

3.5 Experimental Results

We consider a processor with power parameters obtained from [YCTK10].
The thermal parameters are typical parameters sourced from [SSH+03].
The power and thermal parameters are listed in Table 3.1.

We consider a video-conferencing application that consists of three
tasks: a video codec, an audio codec and a network process. All three
tasks are periodic but can exhibit jitter. The timing properties of these
tasks are listed in Table 3.2.

Video Audio Network

Period 0.2 0.2 0.1
Jitter 0.05 0.05 0.03
WCET 0.06 0.03 0.02
Deadline 0.2 0.2 0.1

Tab. 3.2 Example task parameters of a video-conferencing application. All times are in seconds.

3.5.1 Computing the Optimal Shaper

We first compute the peak-temperature of the processor when executing
the three tasks, for a workload-conserving execution, i.e., with no shaping.
Employing Lemma 3.2, we obtain the peak-temperature as Tmax

wc = 346 K.
We illustrate the validity of this bound by generating 20 random traces
of jobs and plotting the evolution of temperature for these traces in
Figure 3.6(a). We also plot the evolution of the temperature for the worst-
case trace (that has the highest peak-temperature) as defined in (3.9).

We now design the shaping curve by finding the optimal convex-
hull shaper. Note that in this example, we consider multiple tasks and
have a non-zero transition overhead. Thus, we have to choose the right
leak-unit u for the convex-hull shaper. To this end, we first compute
the overhead-aware arrival curves αoh, then the demand bound function
dbf, and finally the convex-hull shaper. For different values of u in the
range [0.2, 2]s, we compute the peak-temperature using Lemma 3.2. The
obtained values are plotted in Figure 3.7.
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(a) Workload conserving execution

b

b

b
b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b

b
b
b b b
b
b
b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b
b
b
b
b
b
b
b
b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b b
b b
b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b b
b
b b
b b
b b
b
b
b b
b
b b
b
b
b
b
b b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b b
b
b b
b
b
b
b
b
b
b
b
b
b
b b b b
b
b b b b
b
b b

b

b

b
b b b b b
b
b
b b b
b
b
b b b b b b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b
b
b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b
b
b b
b
b b b b
b
b b b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b
b
b
b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b b
b
b b b
b
b
b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b
b b
b
b b
b b
b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b

b

b

b
b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b
b
b b b b
b
b b b
b b
b
b b b
b
b b
b
b b b
b
b
b
b
b
b
b
b
b
b
b b b b
b
b b b b
b
b b b
b
b
b b b b b
b
b b b
b b b b b b b
b
b b b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b b
b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b
b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b
b
b
b
b b b b
b
b b
b
b
b
b
b
b b bb
b
b b b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
bb b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b b
b
b
b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b

b

b

b
b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b
b b b b b b b b b b
b
b
b b b
b
b
b b b b b b b b b b b b
b
b
b b b b
b
b
b b b b b b b
b
b b b b b
b
b b b b
b
b b b b b b b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b
b b
b
b b b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b b
b
b b
b b
b
b b b
b b
b
b
b b
b
b b
b
b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b
b
b
b b
b
b b b b
b
b b
b b
b
b b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b
b b
b
b
b
b
b
b
b
b
b b b
b
b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b

b

b

b
b b b b b b b b b b b b b b b b b b

b
b
b b b b b b b b b b
b
b
b b b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b
b
b b b b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b
b
b b
b b
b b
b
b
b b
b
b b
b b
b b
b
b
b b
b
b b
b
b b
b
b b
b
b
b
b
b
b
b
b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
bb
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
bb b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b
b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b

b

b

b
b b b
b
b
b b b
b
b
b b b b b b b b b b
b
b
b b b b b b b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b b
b
b b b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
bb b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b
b b
b b b
b b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b b
b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b
bb b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b b
b
b b
b b
b b
b
b
b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b b
b
b b
b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
bb b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b
b b
bb b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b

b

b

b
b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b
b
b
b b
b
b b b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b
b b
b b
b b b
b b
b
b
b
b
b
b
b b
b b
b
b b
b b
b b
b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b
b
b b
b
b b
b
b b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b
b
b
b
b
b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b b b b
b
b b b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
bb b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
bb b
b b
b
b b
b b
bb b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b
b b
b b b
b b
b b b
b b

b

b

b
b b b
b
b
b b b b b b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b
b b b b b
b
b b b b b b b b b b b b b
b
b
b b b
b
b b b b
b
b b b b b b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b
b
b
b
b
b
b b b b
b
b b b b
b
b b b
b
b b
b
b b b b
b
b b b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b
b b b
b b
b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b b
b b
b
b
b
b
b
b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
bb b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b
b
b b b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b
b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b b b b
b
b b b b
b
b b
b b
b
b b

b

b

b
b b b
b
b
b b b b b b b b b b b b b b b b b b b b

b
b
b b b
b
b
b b b
b
b
b b b b b b b
b
b
b b b
b
b
b b b
b
b b b b
b
b b bb
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b
b
b
b
b
b
b b
b
b b b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b b
b b
b
b b
b b
b b b
b b
b
b
b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b
b b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b
b b
b
b b b
b b
b
b b b
b b
b b b
b b
b
b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b

b

b

b
b b b b
b
b
b b b b b b b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b
b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b
b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b
b
b
b b
b
b b b
b b
b
b b b
b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b b
b
b b
b b
b
b b b
b b
b b b
b b
b
b
b
b b
b
b b
b
b
b b
b
b b b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b
b
b
b b
b
b b
b b
b
b b
b b
b
b b
b
b
b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b b
b
b b b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b b
b b
b b b
b b
b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b
b
b b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b
b
b
b
b
b
b b
b b
b
b b
b b
b
b b
b b
b b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b
b b b
b b
b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b
b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b
b b b
b b

310

320

330

340

350

0 0.5 1.0 1.5 2.0

Time (s)

T
em

p
er

a
tu

re
(K

)

338K

(b) Shaped execution

Fig. 3.6 Peak-temperature for workload-conserving and shaped executions. The gray dots
denote the temperature plots for 20 randomly generated traces. The dark lines denote
the temperature plots for the worst-case trace as defined in Lemma 3.2.
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Fig. 3.7 Optimal choice of the leak-unit for the convex-hull shaper for the video-conferencing
application.

It is observed that the peak-temperature is larger for too small and too
large values of u. This is explained as follows. When u is too small, the
processor switches modes often and incurs a large overhead. On the other
hand, if u is too large then enforcing the large granularity of u can increase
the overhead-aware arrival curve (3.12). From the plot, the optimal value
of u = 0.51 s with a peak-temperature Tmax

sh = 338 K. We illustrate this
bound by simulating 20 randomly generated traces and the worst-case
trace from (3.9) as shown in Figure 3.6(b).

In conclusion, for the video conferencing application, with the
obtained shaping curve we reduce the peak-temperature by 8 K, in
comparison to the workload-conserving case.
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Fig. 3.8 Dependence of the peak-temperature on the WCET of the video codec task. For the
given peak-temperature of 346K, shaping tasks can support a much higher WCET than
workload conserving execution.

3.5.2 Exploiting the Lower Peak-Temperature

The advantage of shaping in lowering the peak-temperature can be
translated to an improved workload supported for a given peak-
temperature. Consider for instance that to support higher video
resolution the WCET of the video codec task, denoted Cv, is to be
increased. We identify the largest Cv that can be supported with shaping,
such that the peak-temperature is smaller than the peak-temperature with
no shaping Tmax

wc = 346 K.
We vary Cv in the range [0.06, 0.12)s, and for each value obtain the

optimal peak-temperature with a convex-hull shaper2. From the obtained
plot shown in Figure 3.8 we see that we can increase Cv to 0.102 s with the
peak-temperature Tmax

sh ≤ 346 K. This is a substantial increase, of more
than two-thirds, compared to the original value of 0.06 s. In conclusion,
shaping tasks can be used to support a significantly higher execution
demand for a given bound on the peak-temperature, in comparison to
workload-conserving execution.

3.5.3 Comparison for Randomly Generated Task-Sets

To quantify the advantage of shaping, independent of the task-set, we
perform experiments with randomly generated task-sets. We consider
two periodic tasks with randomly generated periods p1 and p2, with mean
values of 0.2 s each, and jitters p1/2 and p2/2, respectively. The WCETs
of the two tasks, C1 and C2, are randomly generated with mean values of
p1/4 and p2/4, respectively. We define the average utilization of a task-set
as Uav = C1/p1 + C2/p2. We generate 500 such task-sets. For each case,

2For each value of Cv, we compute the overhead-aware arrival curves, the demand
bound function, the optimal value of u (like in Figure 3.7), the convex-hull shaper, and
then the peak-temperature from Lemma 3.2.
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Fig. 3.9 Advantage of shaping for randomly generated task-sets. Light points denote the peak-
temperatures for 500 randomly generated task-sets. The dark lines denote the mean of
the peak-temperatures, at each value Uav.

we obtain the peak-temperatures for the workload-conserving execution
(Tmax

wc ) and for shaping with the optimal convex-hull shaper (Tmax
sh ). We

plot Tmax
wc and Tmax

sh against Uav for the generated task-sets in Figure 3.9.

We denote the mean values for a given Uav as T
max

wc and T
max

sh .

As expected, both T
max

wc and T
max

sh are increasing functions of the
utilization Uav. In all cases, T

max

sh < T
max

wc , with a significant average
difference of 8.8 K across all the task-sets.

We can alternatively interpret this improvement in performance terms
for a given allowed peak-temperature Tmax. For the considered setup, if
the cooling system is efficient enough to allow for a very high temperature
Tmax > 360 K, then shaping tasks is not important as workload conserving
execution itself supports a large utilization. For very small temperature
bounds Tmax < 330 K, again shaping does not provide much benefit as
both methods support only small utilizations. However, for moderate
values of Tmax between 330 K and 360 K, shaping tasks leads to large
improvements in the supported utilization. From our data, on average,
shaping tasks substantially increases the supported utilization by over
40 % in comparison to the workload conserving execution.

Finally, with shaping an increase in utilization of the task-set comes
at the cost of almost linear increase in the peak-temperature. In contrast
T

max

wc is concave, reaching higher peak-temperatures for low utilizations.

From these experiments, we conclude that shaping of tasks is
an effective and efficient method to implement dynamic thermal
management for real-time tasks.
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3.6 Summary

Leaky-bucket shapers are efficient run-time managers which monitor job
arrival times, and insert appropriate delays such that the output trace
conforms to a specific arrival curve. By extending such shapers to monitor
and shape execution demands of jobs, rather than their number, they can
be employed to implement the dynamic thermal management technique
of throttling. We showed that the parameters of the leaky-bucket shapers
can be carefully chosen to meet all timing constraints and minimize the
peak-temperature. The experimental results numerically quantified the
advantage of shaping over workload-conserving execution.

The design pattern identified in the previous chapter repeats. In
this chapter, we composed simple leaky-bucket shapers to design a run-
time manager, called the convex-hull shaper, which is both efficient to
implement and yet can be tuned for the specific parameters of a given
system. We thus conclude this part of the thesis by noting that modularly
composing the run-time manager from efficient constituents is a strongly
motivated design pattern to absorb variability in timing properties in
CPSs.

Appendix

Proof of Lemma 3.1

The maximum delay of any job is the sum of two delays: (a) the maximum
delay introduced by the shaper, and (b) the maximum delay in queuing
and executing on the processor. From Network Calculus [LBT01], the
maximum delay introduced by the shaper is given by Del(α, σ). Also, the
arrival curve at the output of the shaper (and input of the processor) is
given as α′ = α ⊗ σ ≤ σ. Then, the worst-case delay on the processor is
Del(α′, β) ≤ Del(σ, β), where β is the service curve of the processor. In this
chapter, we assume a fully available processor, i.e., β(∆) = ∆. Thus, the
maximum delay on the processor is Del(σ(∆),∆). �

Proof of Lemma 3.2

Given a single stream of jobs with an arrival curve and a dedicated
processor executing it at a constant speed, [RYB+11] presents a technique
to compute the worst-case temperature. In particular, it defines a critical
trace of jobs which when simulated gives the worst-case temperature. For
the arrival curve at the input of the processor equal to (α ⊗ σ) this trace is
defined exactly as in (3.9). �
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Proof of Theorem 3.1

From (3.8), any shaping curve σ that satisfies the deadline D is constrained
as follows.

Del(α, σ) ≤ D,

⇒ σ(∆) ≥ α(∆ −D), ∀ ∆ ≥ 0. (3.16)

A shaper which is the composition of leaky-bucket shapers has a shaping
curve which is a piecewise linear concave function. The smallest such
shaping curve satisfying (3.16), is given as the defined shaping curve σch
in (3.10). Thus any other valid shaping curve σ′ must satisfy σ ≥ σch.
We need to show that the worst-case temperature with the shaping curve
σ′ cannot be smaller than with the shaping curve σch. From Lemma 2
in [RYB+11] we know that the worst-case temperature cannot be lower
with a higher arrival curve. With the shaping curve σ′, the arrival curve
at the input of the processor is not smaller than the arrival curve with the
shaping curve σch. Thus, the worst-case temperature cannot be smaller
with any other shaping curve that satisfies the deadline constraint. �
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Bounding Variability in Formal

Analysis





4
Analysis of Temperature-Based

Feedback Control of Speed

4.1 Introduction

As motivated in the previous chapter, managing on-chip temperature
is a requirement in most modern processors. Such management affects
the timing guarantees provided by the CPS. Consequently, both timing
and temperature objective functions can be simultaneously considered in
optimizing run-time managers such as the shapers from the previous
chapter. Such run-time managers would dynamically adapt the thermal
management while satisfying the timing requirements of executing jobs.

An alternate view is to deliberately isolate the two objectives of
satisfying timing and temperature constraints. Such an isolation may
be motivated for the following two reasons.

• High temperatures affect the physical safety of the CPS. If due
to a software bug the execution demand of a task is larger than
expected, the temperature constraint may be violated leading to
an unavailable processor. This is particularly significant as all

applications sharing the processor are stopped due to a physical
failure on the processor. In such situations, a higher criticality might
be accorded to satisfying the temperature constraint.

• The parameters which need to be modeled and analyzed for
simultaneously considering temperature and timing objectives span
widely. They consist of the physical properties of heat diffusion,
the architectural properties of power generation, and the software
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Processor!

T - sensor!

Speed 
regulator!

Feedback 
controller!

Input jobs! Output jobs!

Temperature!

Speed!

Fig. 4.1 Block diagram of reactive speed scaling. The temperature of the processor is constantly
sensed. The sensed temperature is the input to a feedback controller, which computes
the speed the processor. The speed is then actuated by a speed regulator. Independently,
the processor executes a stream of incoming jobs.

properties of execution demand of jobs. It is not uncommon to
expect design-time models of these parameters to be inaccurate. In
the presence of such uncertainty, robustness can be derived with
the use of feedback control in the run-time manager. Since at
all times the temperature can be sensed, it is more intuitive to
design a feedback controller to exclusively consider the temperature
objective.

The above two reasons, motivate assigning primacy to satisfaction of
the temperature constraints with a feedback controller. In other words,
independent of the executing tasks, we require that the temperature
constraints must be satisfied. Indeed, the timing properties of the tasks
will depend on the chosen controller. In this chapter, we study how to
compute such timing properties.

We consider temperature-based feedback control of speed, which was first
proposed by Wang and Bettati in [WB08]. This setup is depicted in the
block diagram of Figure 4.1. A processor is executing a stream of jobs. The
speed of the processor is regulated by a feedback controller whose input is
the temperature of the processor. As the temperature rises, the controller
will slow down the processor, and vice versa. Typically, a slower speed
corresponds to a smaller power consumption, which can reduce the rate
of temperature increase. If such a controller is carefully designed, the
temperature of the processor can be guaranteed not to exceed a stipulated
bound, independent of the jobs.

The setup in Figure 4.1 is an example of system where a run-time
manager is designed to explicitly manage the temperature, in the presence
of variability and uncertainty. For such a given run-time manager, to
provide hard timing guarantees, we have to derive an efficient and
accurate analysis procedure. Such an analysis is not straightforward for
the following three reasons.
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• The analysis must consider how the controller regulates the speed.
For instance, in Intel Sandy Bridge processors, Turbo Boost runs the
processor at a higher frequency. Given the thermal constraints, this
lasts only for up to 30 − 60s [NRAW11].

• The analysis must consider when earlier jobs were executed. For
instance, a new job arriving when the processor is idle may run at a
higher or lower speed based on when and for how long the processor
was busy earlier. Thus, the classical assumption of working with
busy windows does not apply. This can be challenging if the jobs
exhibit variability in arrival times and execution demands.

• Finally, the results will also depend on initial conditions, i.e., the
temperature of the processor at time 0. For instance, timing
guarantees may not be satisfied if the processor is too hot initially.

To conclude, the presence of a feedback controller to manage the
processor temperature further complicates the challenge of computing
timing guarantees.

4.1.1 Contributions

In this chapter, we identify an analysis procedure to compute hard timing
guarantees for a processor with feedback control of speed executing
a single stream of jobs in First-Come-First-Serve (FCFS) order. This
procedure can consider variability in arrival times and execution demands
of jobs as modeled by an arrival curve. Further, it can consider different
initial temperatures of the processor. Finally, the procedure is efficient to
enable design space exploration inherent in such multi-objective settings.

More specifically, we identify a critical trace of jobs, conforming
to the given arrival curve. By simulating this trace on a thermally-

clipped hypothetical model of the processor, we compute the bound on
the maximum delay of any job. This result depends on a proposed
monotonicity principle which holds under commonly satisfied assumptions
on the power consumption, heat diffusion, and the feedback controller.

The defining characteristic of our result is that the critical trace of jobs
does not depend on the thermal, power, or controller models, or the initial
temperature of the processor. We also show that for a particular class of
faulty temperature sensors, the critical trace does not depend on the error
introduced by the sensors.

The rest of the chapter is organized as follows. We detail the system model
and the problem statement in Section 4.2. In Sections 4.4, 4.5, and 4.6 we
solve the problem for maximum, minimum, and any initial temperature
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of the processor, respectively. We consider faulty temperature sensors in
Section 4.7. We present experimental results in Section 4.8. We summarize
in Section 4.9 and provide proofs of results in an appendix.

4.2 System Model

In this section, we detail the processor model, the thermal model, the
control law, and the task model. We also define the problem statement.

4.2.1 Processor Model

We denote a processor with feedback control of speed as P. We denote
the speed, temperature and power consumption of P at any time t as s(t),
T(t) and P(t), respectively.

The speed of the processor can be regulated to any speed belonging
to a given set of allowed speeds, denoted as S. If and only if there is no
pending workload, the processor is said to be idle with a speed 0. We do
not consider any time or energy overhead in switching between different
speeds. The execution time of a job scales linearly with the processing
speed. For instance, at twice the speed a job completes in half the time.

The power consumption of the processor is modeled a convex
increasing function of the speed, and is given as

P(t) = φ(s(t)). (4.1)

The convexity of φ can be interpreted thus: The total energy consumed
to execute a certain number of processor cycles is monotonically non-
decreasing with the speed. Typically, φ(s) is of the form (p + sq), where
p > 0 is the power consumption of idle processor, and the exponent q is
in the range [2, 3]. Indeed, such a function is convex.

To conclude, the processor model is given by the set of speeds S and
the convex increasing function φ.

4.2.2 Thermal Model

As in the previous chapter, we assume that heat flow is approximated
by the Fourier’s law of heat diffusion assuming that the processor is a
point source [HGV+06]. For such an approximation, the temperature of
the processor, T, evolves according to the following differential equation

C
dT

dt
= −G(T(t) − Tamb) + P(t), (4.2)
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where C and G are thermal model parameters and Tamb is the ambient
temperature. In the time interval [t1, t2], if the speed of the processor is
set to s and there is pending workload, then the closed form solution of
the above differential equation is given as

T(t) = T∞(s) + (T(t1) − T∞(s)) · e−a(t−t1), ∀ t ∈ [t1, t2], (4.3)

where T∞(s) is the steady-state temperature at speed s, and a is the thermal
rate-constant. These parameters are given as

T∞(s) = Tamb +
φ(s)

G
, (4.4)

a =
G

C
. (4.5)

To conclude, the thermal model is given by the parameters G, C, and Tamb.

4.2.3 Control Law for Speed Scaling

The control law is the relation used by the feedback controller to set the
speed of P as a function of its temperature. This law is specified by the
function f , where

s(t) = f (T(t)). (4.6)

We assume that f is monotonically non-increasing, i.e., the speed at higher
temperatures cannot be higher. This models an intuitive class of control
laws where speed scaling is used to limit the temperature.

Once the temperature of the processor is high and there is still pending
workload, there are two options for the feedback controller. Firstly, it
can alternate between two speeds such that the temperature oscillates
within the given bound of a safe temperature. Alternatively, the feedback
controller can maintain a constant speed such that the temperature
saturates to the steady-state temperature at that speed. We assume that
controller follows the latter option, as it is the commonly adopted for
instance in the Intel® Sandy Bridge processors [NRAW11].

How does this assumption constrain the control law f ? Let the
maximum temperature guaranteed by the controller be denoted Tpeak.
Then, once the processor reaches this temperature, it must execute at a
constant speed, say s∗, such that the temperature does not either increase
or decrease. Thus, we have the following condition on f .

f (Tpeak) = s∗, (4.7)

where,

T∞(s∗) = Tpeak. (4.8)
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Given the monotonicity of the f , we have the following condition.

f (T) ≥ s∗, ∀ T < Tpeak. (4.9)

From the above it follows that the s∗ is the slowest-speed assigned by the
controller and is thus denoted as smin.

4.2.4 Task Model

In this chapter, we consider a single stream of jobs executed on the
processor in First-Come-First-Serve (FCFS) order. The execution demand
of jobs is characterized by an arrival curve, denoted α, and as defined in
Appendix A.2. As noted earlier, the arrival curve can represent variability
in job arrival times and execution demands of jobs. In contrast to the
earlier chapters, execution demand is not expressed by the amount of time
required for a job to complete execution. Instead, we use the number of
processor cycles. This is necessary as a single job may execute at multiple
processing speeds due to the speed scaling. The execution time of a job can
be obtained from the execution demand and the speed of the processor.
As an example, a job with an execution demand 1×108 cycles will require
1 s to execute on a processor running at a constant speed of 100 MHz.

4.2.5 Problem Statement

Given P with a set of allowed speeds S, the power consumption as a
function of speed φ, the thermal parameters G, C and Tamb, a control law
for speed scaling f , and the initial temperature T(0). Given also a task
with the arrival curve α which is executed in FCFS order on P. For some
given thor > 0, we want to compute an upper-bound on the delay (or the
response time) of any job that arrives in the interval [0, thor], for any trace
conforming to the arrival curve. This upper-bound is denoted as dmax.

4.3 Illustrating Example

In this section, we will illustrate the working of a processor with feedback
control of speed for an example trace of jobs, which is depicted in the
block diagram of Figure 4.1.

Example 4.1: (Processor Model) Consider a processor with thermal parame-

ters G, C, and Tamb and the functionφ as specified in Figure 4.2. The control law,

f , is also plotted in the figure. With these parameters, the controller guarantees

that the temperature of the processor does not exceed Tpeak = 350 K = T∞(smin),
where smin = 100 MHz.
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Fig. 4.2 Parameters of a processor with feedback control of speed. Note that the φ(s) is a convex
increasing function, and f (T) is a monotonically non-increasing function.
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Fig. 4.3 Illustration of working of a processor with feedback control of speed. The temperature
of the processor is plotted in a thick red line, while the speed is plotted in a thin blue
line. Times and temperatures at which the speed is changed are noted. J1 finishes at
2.2 s with a response time of 2.2 s, while J2 finishes at 6.6 s with a response time of 0.6 s.

Example 4.2: Consider two jobs J1 and J2 arriving at times 0 s and 6 s,

respectively. The execution demands of the jobs are 3×108 cycles and 1×108

cycles, respectively.

We consider the execution of the jobs specified in Example 4.2 on the
processor with parameters specified in Example 4.1. Let the temperature
of the processor initially be T(0) = 310 K. The temperature and the
speed of the processor during the execution of the two jobs are plotted in
Figure 4.3. J1 begins to execute at time 0 at the maximum speed of 200 MHz
with the temperature rising quickly. At time 0.3 s as the temperature
reaches 325 K, the speed is reduced to 150 MHz, according to the control
law f . The temperature continues to rise, but a slower rate. Then at time
1.4 s as the temperature reaches 350 K, the speed is reduced to 100 MHz,
according to the control law f . This speed ensures that the temperature
remains at the upper-bound of 350 K, as T∞(100 MHz) = 350 K. Then at
time 2.2 s, J1 completes execution. Subsequently, the processor remains
idle and cools until J2 arrives at time 6 s. In the interval [6, 6.1]s the
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processor runs at the highest speed of 200 MHz. Then, the speed is
reduced to 150 MHz. Finally, J2 completes execution at time 6.6 s.

Clearly, on such a processor the delay of a job depends on what
has happened earlier. For instance, J1 executes at the highest speed of
200 MHz for 0.3 s, while for J2 the corresponding time is only 0.1 s. This
is because the temperatures at the start of the execution of the two jobs
are different. This clearly depends on both the timing and the thermal
parameters. For instance, if the processor cooled faster or if J1 arrived
earlier, then J2 would be able to execute at the highest speed for longer.

This example illustrates that jobs of the same stream interfere with
each other through the speed scaling. With variable job arrival times
and execution demands, such interference must be carefully considered
in computing the bound dmax. In the next three sections, we will discuss
how to effectively compute this bound for different values of the initial
temperatures.

4.4 Analysis for Maximum Initial Temperature

We analyze the problem for different values of the initial temperature of
the processor, i.e., T(0). The temperature of the processor can vary in the
range [T∞(0),T∞(smin)], where smin is the smallest speed actuated by the
control law. In this section, we consider T(0) = T∞(smin), i.e., the maximum
possible initial temperature. Starting from such a high temperature, the
jobs are anticipated to suffer the largest delay. In the following result we
compute the bound on the delay dmax using the Del operator defined in
Appendix A.3.

Theorem 4.1: The worst-case delay when a stream of jobs with input arrival

rate α is executed on P with T(0) = T∞(smin) is given by

dmax = Del(α(∆), smin∆) (4.10)

The above result is interesting. It says that for the specific case of the
maximum initial temperature, the bound dmax depends only on the task
model (as given by α), and the slowest speed actuated by the feedback
controller smin. In particular, it does not depend on how high the other
available speeds are, how quickly the processor cools, or how carefully
the control law is designed. We illustrate this analysis with an example.

Example 4.3: Consider a task with an execution demand of 0.3×108 cycles. The

jobs arrive at three rates 1 s−1, 2 s−1, and 10 s−1. Such tasks can be modeled
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Fig. 4.4 Arrival curve of the task specified in Example 4.3. The jobs of the tasks arrive at three
different rates 1 s−1, 2 s−1, and 10 s−1.
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Fig. 4.5 Illustration of computation of dmax for the maximum initial temperature for the task
model of Example 4.3 and the processor model of Figure 4.2.

with leaky-buckets, as were used in modeling the shaping curves in the previous

chapter. In this case, corresponding to the three rates, the capacities of the

leaky-buckets in number of jobs are 15, 5, and 1, respectively.

The arrival curve of the task in the above example is shown in
Figure 4.4. Consider the processor model described in Example 4.1. We
illustrate the computation of dmax for the maximum initial temperature in
Figure 4.5. The largest horizontal distance between α and smin∆ is 1.3 s.
This gives the value of dmax according to (4.10).

To conclude, for the specific case of maximum initial temperature, dmax

is given by the relation between α and smin as in (4.10).

4.5 Analysis for Minimum Initial Temperature

In this section, we consider the case of minimum initial temperature. The
minimum temperature is attained when the processor is indefinitely idle
and reaches the temperature T∞(0). Thus, in this section, we compute dmax

for T(0) = T∞(0). To this end, we first derive some useful monotonicity
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principles and then use them to find a critical trace.

4.5.1 Monotonicity Principles

First, we define a unit cycle, denoted as u, as the smallest measure of
the execution time of a job. Conveniently, u may be defined to be one
processor cycle. We assume that the speed of the processor is constant
during the execution of a unit cycle.

We present three results on the execution of a unit cycle on a processor
with feedback control of speed.

Lemma 4.1: Consider the execution of a unit cycle on P. Increasing the

temperature of the processor at the start of the execution of the unit cycle, cannot

lead to (a) an earlier finish time of the unit cycle, and (b) a lower temperature of

the processor at the finish time of the unit cycle.

Lemma 4.2: Consider the execution of a unit cycle on P. Delaying the execution

of the unit cycle cannot lead to an earlier finish time of the unit cycle.

Lemma 4.3: Consider the execution of a unit cycle on P. Delaying the execution

of the unit cycle cannot lead to a lower temperature of the processor measured at

the finish time of the unit cycle in the delayed execution.

From these results, we see that heating up the processor or adding idle
time before the execution of a unit cycle cannot decrease either the finish
time or the temperature at the finish time. Note that these results hold
independent of the values of the power and temperature parameters, and
the control law. However, they do require that the power consumption
be a convex function of the speed, the temperature model be as described
by the Fourier heat model, and the control law to be monotonically non-
decreasing. Deriving from the above lemmas, we have the following
crucial theorem.

Theorem 4.2: (Monotonicity Principle) Consider any given trace of jobs

served by P. Delaying the arrival time of any job of the trace cannot lead to an

earlier finish time of any subsequent job.

To put the above result in perspective, consider the case of a constant
speed processor serving a stream of jobs in FCFS order. It can be verified
that delaying the arrival of any job will not lead to an earlier finish time
of any subsequent job. In other words, delaying the arrival of a job does
not decrease the interference the job has on any subsequent job. This
desirable monotonic relationship between arrival time and interference
holds even for processors with feedback control of speed, as confirmed
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Fig. 4.6 Illustration of the monotonicity principle. The temperature of the processor is plotted
in a thick red line, while the speed is plotted in a thin blue line. The job model is from
Example 4.2 and the processor parameters are as in Figure 4.2. The arrival time of J1 is
delayed from 0 to 3 s. Due to the delay, both jobs J1 and J2 finish later than in the original
case (Figure 4.3).

by the above theorem. This principle motivates the search for an effective
analysis of the delay bound dmax.

We illustrate the monotonicity principle for the processor model of
Example 4.2 and the trace of two jobs specified in Example 4.1. In
the example, two jobs J1 and J2 are executed immediately upon their
arrival. Let us now delay the arrival of J1 by 3 s. With this modification,
the evolution of the processor’s temperature and speed are shown in
Figure 4.6. For either job, the time and temperature when the job finishes
is not smaller than in the earlier case (Figure 4.3). In particular, J2 starts
at the same time in both cases, but finishes later when the arrival of J1

is delayed. Furthermore, delaying the arrival of J1 also increases the
temperature of the processor at the finish time of J2 (from 338 K to 350 K).
This illustrates the monotonicity principle.

4.5.2 Analysis for Minimum Initial Temperature

Given any trace of jobs, we can apply the monotonicity principle to
increase the finish time of the last job by delaying the arrival of all previous
jobs. However, for a given arrival curve of a task, such delaying must
conform to the constraints of the arrival curve. We thus need to identify
a critical trace which delays jobs as much as possible while conforming to
the arrival curve. In the following, we define such a critical trace by its
arrival function.

Definition 4.1: (Critical Trace of Length l) The critical trace of a task with

an arrival curve α and length l has an arrival function R∗ given as

R∗(t) = α(l) − α(l − t), t ∈ [0, l]. (4.11)
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Fig. 4.7 Arrival function of the critical trace of the task described in Example 4.3 of length l = 25 s.
Notice the burst of jobs towards the end of the trace.

The critical trace of length l has jobs arriving in the interval [0, l]. In
particular, the jobs are delayed such that the burst of jobs arrives towards
the end of the trace. We illustrate this with an example. Consider the
arrival curve shown in Figure 4.4. The critical trace of length l = 25 s of
this arrival curve is shown in Figure 4.7. Note that the burst of tasks is
built up towards the end of the trace.

For the above definition of the critical trace, we show the following
crucial result.

Theorem 4.3: Let a task with arrival curve α be executed on P with the

minimum initial temperature. The bound dmax equals the delay of the last job of

the critical trace of length l = thor.

We interpret the above result. To compute the bound on delay, we
need to simulate one specific trace, which is the critical trace of length
equal to the given time horizon. Then the delay of the last job of that trace
equals dmax. Any trace of jobs which conforms to the arrival curve cannot
have a job with a higher delay, arriving within the time horizon [0, thor].

We illustrate the result for processor and task models of Examples 4.1
and 4.3, respectively. We plot arrival function R∗ for the critical trace of
length l = thor = 25 s in Figure 4.7. The evolution of the temperature
and speed of the processor when executing this critical trace is shown in
Figure 4.8. The last job of the critical trace, which arrived at 25 s, finishes
at 26.2 s. Thus, we derive the bound dmax = 1.2 s. Note how the burst of
jobs arriving towards the end heats and slows the processor, and thereby
delays the last job.

To conclude, we showed that a desirable monotonicity principle
characterizes arrival time of a job and its interference on subsequent jobs,
for a processor with temperature-based feedback control of speed. We
employed this principle to show that simulating a defined critical trace of
a task identifies the bound dmax, for the minimum initial temperature.
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Fig. 4.8 Temperature (thick red) and speed (thin blue) of the processor when executing the critical
trace shown in Figure 4.7. Notice how the burst of jobs arrive towards the end of the
trace. The last job finishes at 26.2 s with delay dmax = 1.2 s.

4.6 Analysis for Any Initial Temperature

Thus far, we have considered minimum and maximum initial temper-
atures. In either case, we applied very different principles to compute
the delay bound dmax. The natural question is what happens when the
initial temperature is in between the two extremes. To this end, we first
understand why the presented analysis cannot be extended to any initial
temperature and then develop a modified analysis.

4.6.1 Critical Trace for Non-Minimum Temperature

We try to understand whether Theorem 4.3 extends for any initial
temperature. In other words, does simulating the critical trace of length
thor identify dmax, independent of the initial temperature. Recall that in
the critical trace the burst of jobs arrives towards the end of the trace.
Intuitively, for a high initial temperature a burst of jobs arriving at the
start of the trace may lead to larger delays and temperatures. In other
words, a higher starting temperature may be expected to change critical
trace. We illustrate this with an example.

Example 4.4: Consider a task which merges two periodic streams with periods

3 s and 5 s. The execution demand of jobs of both streams is 0.75×108 cycles.

The arrival curve for this task is shown in Figure 4.9.

For the task from the above example, we construct the arrival function
R∗(t) of a critical trace of length l = 50 s as defined in (4.11). We simulate
the execution of this trace for the initial temperature T(0) = 330 K and
the time-horizon [0, 50]s. The corresponding plots of temperature and
speed are shown in Figure 4.10(a). The value of dmax computed using
Theorem 4.3 is 0.96 s.
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Fig. 4.9 Arrival curve of the task specified in Example 4.4.

Now consider a different trace where two jobs, each with an execution
demand 0.75×108 cycles, arrive at time 0. This conforms to the arrival
curve as the task merges two independent periodic streams. The
temperature and speed traces are plotted in Figure 4.10(b). The value
of dmax computed using Theorem 4.3 is 1.04 s. Clearly, the delay bound
computed with the critical trace in Figure 4.10(a) is incorrect.

The burst of two jobs arriving at the same time also occurs in the
critical trace at time 50 s. The temperature at the start of execution of
these two jobs was about 320 K (Figure 4.10(a)). This is smaller than the
initial temperature of 330 K. Thus, by delaying the burst in the critical
trace, the high initial temperature of the processor does not coincide with
the burst. In this example, this results in an incorrect delay bound.

The monotonicity principle of Theorem 4.2 holds independent of the
initial temperature, i.e., delaying the arrival of a job can lead to a higher
finish time of subsequent jobs. Consequently, a critical trace as defined
in (4.11) must exhibit the worst-case delay and temperature. However,
the length of the critical trace is not known. For the minimum initial
temperature, the length of the critical trace is set equal to the given
time horizon. For a higher initial temperature, the critical trace could
be shorter. Indeed, for the example from above, the trace simulated in
Figure 4.10(b) is a critical trace of length 0. Hence, one solution is to
simulate the critical trace for every length l ∈ [0, thor] and identify the
maximum delay of the last job across all the critical traces. This can be
computationally expensive. In the remainder of this section, we present
an abstraction to avoid this computation.

4.6.2 Abstraction of a Thermally-Clipped Processor

We define a model of a hypothetical processor referred to as a thermally-

clipped processor, denoted as Pclip. In addition to the parameters of P,
defined in Section 4.2, Pclip is characterized by a clipping temperature,
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(a) Simulation of the critical trace of length 50 s for the arrival curve shown in Figure 4.9.
The computed value of dmax = 0.96 s.
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(b) Simulation of a trace of two jobs arriving at time 0. Each job has an execution demand
of 0.75×108 cycles. The computed value of dmax = 1.04 s.

Fig. 4.10 Invalidity of the critical trace for non-minimum temperature. The temperature of the
processor is shown in a thick red line and the speed in a thin blue line. Starting from
a higher temperature of 330 K, the critical trace defined in (4.11) has lower bounds on
delay and temperature than another trace.

denoted as Tclip. The interpretation of this is as follows: Whenever the
temperature of Pclip falls below Tclip, it is forced to Tclip. In other words, the
temperature of Pclip is clipped to Tclip from below. The other parameters,
namely the thermal model, power model, and the control law, all remain
as before.

Let us consider some intuitive examples of thermally-clipped
processors. For Tclip = T∞(0), the corresponding Pclip is identical to P,
as T∞(0) is the minimum temperature of the processor. For Tclip = Tpeak =

T∞(smin), the corresponding Pclip is a constant-speed processor with a
speed equal to smin.

Using this defined notion of thermal clipping, we present below the
analysis of the bounds for any initial temperature.

Theorem 4.4: Let a task with arrival curve α be executed on P with some initial

temperature T(0). The bound dmax equals the delay of the last job of the critical

trace of length thor when simulated on the corresponding Pclip with clipping
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Fig. 4.11 Analysis for the task model of Example 4.4 and processor model of Example 4.1. The
processor has a clipping temperature of T(0) = 330 K. The temperature of the processor
is shown in a thick red line and the speed in a thin blue line. Notice how the temperature
is clipped to 330 K. The computed bound is dmax = 1.04 s.

temperature T(0).

We interpret the above result. As discussed, a critical trace of unknown
length must be simulated on P to identify dmax. This uncertainty of the
length of the critical trace is avoided by defining the abstraction of a
thermally-clipped processor Pclip with clipping temperature T(0). On
such a processor, simulating the critical trace of length thor identifies dmax.

We illustrate this computation with the earlier example. Consider
the task model of Example 4.4 and the processor model of Example 4.1.
For the initial temperature T(0) = 330 K and thor = 50 s, the analysis of
the delay bound using the above theorem is shown in Figure 4.11. Notice
how the temperature is clipped from below to 330 K. The computed value
of dmax = 1.04 s. Indeed, this delay bound hold true for the traces shown
in Figures 4.10(a) and 4.10(b).

The result of Theorem 4.4 provides a unifying analysis for any initial
temperature. For the case of minimum initial temperature, Pclip and P are
identical and thus Theorems 4.3 and 4.4 are equivalent. For the case of
the maximum initial temperature, Pclip behaves identical to a processor
working at the constant speed of smin. For such a processor, from known
results in Network Calculus [LBT01], the worst-case delay is given by
applying the Del operator to the arrival and service curves. This is
identical to the result obtained in Theorem 4.1. To conclude, simulating
the critical trace of length thor on the thermally-clipped processor is a
unified approach to compute dmax for any initial temperature.
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Fig. 4.12 Computing the worst-case delay with a faulty sensor with offset −5 K and saturation at
350 K. The task model is from Example 4.3 and the processor model is from Example 4.1.
The critical trace of length l = 25 s is simulated. The actual and sensed temperature are
shown in thick red and black lines, respectively. The speed is shown in a thin blue line.
The computed bound on the delay is dmax = 0.7 s.

4.7 Faulty Temperature Sensors

Fabricating temperature sensors can be error-prone. The common errors
are (a) offset: the sensed temperature is constantly higher or lower by a
fixed value, and (b) saturation: the sensed temperature does not increase
beyond a threshold. We model errors in the sensor by the transfer function
ǫ, where ǫ(T) is the (erroneous) sensed temperature when the actual
temperature is T. For instance, a sensor which has an offset of −5 K
and saturates at 340 K, has an transfer function

ǫ(T) = max(T − 5, 340). (4.12)

Consider the analysis of P with the minimum initial temperature as
presented in Theorem 4.3. We examine if this analysis can be extended to
consider faulty sensors. The following result identifies the class of error
functions for which this is true.

Theorem 4.5: If ǫ is a monotonically non-decreasing function, Theorem 4.3 can

be used to compute dmax, where the controller works according to the erroneous

sensed temperature.

From the above result, for a large class of error functions, the approach
of simulating the critical trace of length thor on the processor gives the
bound on delay. In particular, the results applies for a sensor with an
offset and/or saturation.

We illustrate this with an example. Consider a faulty sensor with
an error function as in (4.12). Consider the processor and task models of
Examples 4.1 and 4.4, respectively. For thor = 25 s and the minimum initial
temperature, we plot the temperature and speed traces for the critical trace
in Figure 4.12. Indeed, the delay of the last job is the highest. Further, the
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actual and sensed temperatures are maximum when the last job finishes.
Given that the faulty sensor underestimates the actual temperature, the
processor runs faster than it should nominally. Consequently, dmax is
smaller at 0.7 s, compared to 1.2 s for an accurate sensor (Figure 4.8).

To conclude, while the delay bound depends on the error function,
the critical trace remains the same. Hence, the analysis approach of
Theorem 4.3 extends to the case of faulty temperature sensors.

4.8 Experimental Results

In this section, we will present experimental results that evaluate different
aspects of a processor with feedback control of speed. First, we will
numerically highlight the advantage of speed scaling. We will then
illustrate the dependence of the computed bounds on the control law and
the task model. In all experiments, the processor model is as specified in
Example 4.1.

4.8.1 Advantage of Feedback Control of Speed

We first illustrate the advantage of feedback control of speed. Consider
the task model of Example 4.4. We consider a horizon of [0, 50]s, and
the minimum initial temperature. We are required to execute this task
with delay and temperature constraints, namely (a) the relative deadline
of each job is 1 s, and (b) the temperature must not exceed 350 K.

First, we consider two constant speed processors running at speeds
100 MHz and 200 MHz. Theorem 4.4 also applies to constant speed
processors, and thus we simulate the critical trace of length 50 s for these
two cases. The temperature and speed traces are plotted in Figure 4.13(a).
For the processor running at 100 MHz, we have dmax = 1.5 s and
T∞(100 MHz) = 350 K. At this slower speed, the temperature constraint is
met while the delay constraint is not. On the other hand, for the processor
running at 200 MHz, we have dmax = 0.75 s and T∞(200 MHz) > 350 K.
Indeed, for the plotted trace the highest temperature of 363 K exceeds the
temperature constraint. Thus, for the higher speed, the delay constraint
is met while the temperature constraint is not.

Now we consider feedback control of speed with the control law
shown in Figure 4.2. Note that the speeds used in this control law
are between 100 MHz and 200 MHz. Constant execution at either of
these speeds is unable to meet both delay and temperature constraints.
This controller ensures that the temperature does not exceed Tpeak =

T∞(100 MHz) = 350 K. Thus, the temperature constraint is met.
We simulate the critical trace and the obtained plots are shown in
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(a) Temperature plots for two different speeds, namely 200 MHz
(thick red line) and 100 MHz (thin blue line).
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(b) Temperature plot in thick red line and speed plot in thin blue line.

Fig. 4.13 Illustration of the advantage of feedback control of speed. Simulation of the critical trace
shown in Figure 4.7 for the processor model of Figure 4.2. The constraints dmax ≤ 1 s and
Tpeak ≤ 350 K are (a) not satisfied with constant speed processors, but are (b) satisfied by
the feedback control of speed.

Figure 4.13(b). From Theorem 4.3, we have dmax = 0.96 s. Thus, both the
given delay and temperature constraints are satisfied with the feedback
control.

This example illustrates that speed scaling can be effectively used to
trade-off the temperature and delay metrics. Furthermore, the controller
satisfies the temperature constraint independent of the task model.

4.8.2 Finer Control Laws

The control law is a monotonically non-increasing function. In practice,
the control law must be a piecewise constant function, where the
discontinuities denote the temperatures where the speed of the processor
are changed. A natural question then is with what granularity should the
speeds be changed. We consider two control laws shown in Figure 4.14,
which are finer than the original control law of Figure 4.2.

For the task model of Example 4.3, consider thor = 25 s and the
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Fig. 4.14 Two control laws which are finer than the control law of Figure 4.2. In both laws the
discontinuities are uniformly distributed.

minimum initial temperature. The value of dmax for the control law of
Figure 4.2 is 1.2 s. For the control laws of Figures 4.14(a) and 4.14(b)
are 1 s and 1.06 s, respectively. Thus, the worst-case delay does not
monotonically decrease with uniform reduction in granularity in the
control law. To conclude, the control law must be carefully chosen to
minimize dmax.

4.8.3 Dependence of Optimal Control Law on the Task

We continue the experimentation on the choice of the control law. We
consider a control law parameterized by a variable svar as

f (T) = 200 MHz, T < 325 K

= svar, 325 K ≤ T < 350 K

= 100 MHz, T = 350 K.

We consider the task model of Example 4.3, with thor = 25 s and the
minimum initial temperature. We compute dmax for different values of
svar. The obtained values are plotted in Figure 4.15(a). The optimal value
of svar is about 125 MHz.

Then we consider the task model of Example 4.4, with thor = 50 s and
the minimum initial temperature. The corresponding plots of dmax for
different values of svar is shown in Figure 4.15(b). The optimal value of
svar is about 170 MHz.

The optimal values of the svar are different for the two tasks. Indeed,
the plots of Figure 4.15 eminently differ. This example highlights that the
choice of the control law depends on the task model. In conclusion, the
control law should be carefully chosen depending on given constraints
and the task model. Such a choice can be exercised given the efficient
analysis of simulating the critical trace. However, it remains an open
problem.
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Fig. 4.15 Dependence of the bound on delay for different control laws for the task model of (a)
Example 4.3 and (b) Example 4.4. The optimal control law is different for the two task
models.

4.9 Summary

In the previous part of the thesis we considered the design of a run-time
manager to absorb the variability and uncertainty in timing properties. In
this chapter, we consider a given run-time manager which is designed for
a specific objective of managing temperature. In particular, we consider
temperature-based feedback control of speed. In the presence of such a
controller, the challenge is to identify an analysis procedure to compute
the timing guarantees. The analysis must consider the dynamic behavior
of the controller in addition to variability in job arrival times and execution
demands.

We solved this challenge by deriving the critical trace of jobs. By
simulating this trace of jobs on the thermally-clipped model of the
processor, we obtain bounds on the delay of any job and the temperature
of the processor. Crucially, the critical trace of jobs does not depend on
the thermal, power, or controller models, or the initial temperature of the
processor. This result was derived based on the proposed monotonicity
principle which holds under commonly satisfied assumptions on the
model parameters.

We derive the following lesson from the results of this chapter.
Identifying a critical trace of a system to derive the worst-case parameters
is an effective solution in handling variability. Indeed, this approach
goes back to the analysis of the critical instance for fixed-priority systems
[LSD89]. The results of the chapter confirm that such an approach
is applicable even for the apparently complicated temperature-based
feedback control of speed. The difference however is that the bounds are
not analytically derived, but computed by simulating the critical trace.
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Appendix

Proof of Theorem 4.1

smin is the slowest speed of P. Thus, in any interval of length ∆ ≥ 0, the
minimum provided service is smin ·∆. Then, using the standard definition
of Del from Appendix A, we arrive at the upper-bound of (4.10).

Tightness: For the specific input arrival function R = α, during the
execution of the first busy interval, the temperature remains T∞(smin) and
thus the speed remains smin. �

Proof of Lemma 4.1

The control law f is monotonically non-increasing with the temperature
of the processor. Thus, increasing the temperature cannot increase the
speed of execution of the unit cycle and cannot decrease the finish time.
�

Proof of Lemma 4.2

We show this by a contradiction. Consider two schedules S1 and S2

starting at time 0, with the same initial temperature. In S1, a unit cycle is
executed from time 0, while in S2 the unit cycle is executed from some time
s > 0. Let T1 and T2 denote the temperature traces for the two schedules
S1 and S2, respectively. Let P1 and P2 denote the power traces for the two
schedules S1 and S2, respectively. Let S2 finish the execution of the unit
cycle earlier. Then there exists a time u > s such that the two schedules
have executed the same workload in [0,u]. Also the speed at which the
unit cycle is executed in S1 must be less that in S2. From the convexity
of the power function φ we have the following condition on the power
traces.

∫ u

0
P1(t)dt <

∫ u

0
P2(t)dt. (4.13)

Further, P1 is a constant function in [0,u] while P2 is a non-decreasing
function in [0,u]. For the assumed thermal model, we have T1(u) < T2(u).
Then by the monotonicity of the control law, at time u the speed in S1

cannot be less than the speed in S2. This is a contradiction. Hence, the
unit cycle cannot finish earlier in S2. �

Proof of Lemma 4.3

Let S1 and S2 be the two schedules as defined in the previous proof. Let
the unit cycle finish execution at times d1 and d2 in the two schedules,
with d2 ≥ d1. In S1, the processor runs at a constant speed in [0, d1] and
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is idle from [d1, d2]. In S2, the processor is idle in [0, s] and runs at a
higher constant speed in [s, d2]. Then, from Lemma 2 in [RYB+11] the
temperature at time d2 cannot be higher for schedule S1. �

Proof of Theorem 4.2

We prove this by induction on the total number of unit cycles of all jobs
of the considered trace.

Induction Hypothesis: Delaying the execution of any job or increasing
the starting temperature of the processor will not lead to an earlier finish
time of any job.

Basis: For one unit cycle, Lemmas 4.1 and 4.2 prove the induction
hypothesis.

Inductive Step: If the hypothesis holds for all traces with execution
demand c unit cycles, then it holds for all traces with execution demand
(c + 1) unit cycles.

Consider a trace of jobs with total execution demand of (c + 1) unit
cycles. Let S1 and S2 be two schedules of executing the trace on the
processor. In S1 all jobs are executed without any delay, whereas in S2

some jobs are executed with delay. Consider the first unit cycle of the
trace. If the execution of this unit cycle is not delayed in S2, then both
schedules S1 and S2 behave the same until the execution of the first unit
cycle. From thereon, by the inductive hypothesis the property is satisfied
for the smaller trace with c unit cycles. Let the execution of the first unit
cycle be delayed in S2. Let d1 and d2 denote the finish time of this unit
cycle in the two schedules S1 and S2, where d2 ≥ d1. Two cases arise,
depending on the arrival time of the second unit cycle of in the trace,
denoted as s.

Case (a): s ≥ d2. From Lemma 4.3, we have T1(d2) ≤ T2(d2). Further, in the
two schedules the processor is idle in [d2, s]. Thus, T1(s) ≤ T2(s). From
time s, by the inductive hypothesis the property is satisfied for the smaller
trace c unit cycles.

Case (b): s < d2. Modify S1 to form a new schedule S3 such that the second
unit cycle of the trace is delayed to start executing from time d2. From
the induction hypothesis, from the second unit cycle onwards, no job of
schedule S1 will finish any later than the same job in S3. From Lemma 4.3,
we have T3(d2) ≤ T2(d2). Thus, from the induction hypothesis, starting
from time d2, no job of S2 can finish before the same job from S′1. Hence,
no job of S2 finishes before the corresponding job of S1. �
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Proof of Theorem 4.3

We show this with a contradiction. Let the last job of critical trace be
denoted J∗. Let there exist a different trace with arrival function R, such
that a job J′ arriving at time t′ has a higher delay than the delay of J∗ in
the critical trace. Applying Theorem 4.2 on the arrival function R, we can
generate a new arrival function R1 without decreasing the delay of J′ as
follows.

R1(t) = α(t′ − t′′) − α(t′ − t), t ∈ (t′′, t′], (4.14)

= 0, t ∈ [0, t′′]. (4.15)

where t′′ is given as

R(t′) = α(t′ − t′′). (4.16)

The modified arrival function R′ in the interval [t′′, t′] is a suffix of the
function R∗, i.e.,

R1(t) = R∗(t + (thor − t′)), t′′ ≤ t ≤ t′. (4.17)

Consider the common parts of the two function, i.e., R1(t′′ : t′) and
R∗((thor − (t′ − t′′)) : thor). While beginning the execution of this common
part for function R1, the pending workload is zero and the temperature
of the processor is the minimum. Then, applying Theorem 4.2, we know
that the finish time of a job for the function R1 cannot be any higher than
the corresponding job of R∗ (correspondence here is for the the common
parts of the two arrival functions). This contradicts the assumption that
J′ has a higher delay than J∗.

Tightness: The arrival function R∗ of the critical trace conforms to the
arrival function α, and thus characterizes a valid trace. �

Proof of Theorem 4.4

Like in the previous proof, we define the trace with arrival function R1

and compare the common parts of R1 and R∗. At the start of the common
part, the temperature of the processor executing R1 is not more than T(0)
which is the lower bound on the temperature of Pclip when executing R∗.
By repeatedly applying Lemma 4.1 whenever the temperature of Pclip is
forced to T(0) we can show the result.

Tightness: In the simulation of the critical trace on Pclip, let s denote the
latest time when the temperature of Pclip is forced to T(0). The temperature
of Pclip in s− is at least T(0). Thus, at time s the processor is idle. Then, all
jobs arriving in the interval [ρ, thor] are executed in Pclip starting with an
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empty buffer and with no temperature clipping. This is equivalent to the
simulation of a trace with the following arrival function R on P.

R(t) = R∗(t + s) − R∗(s), 0 ≤ t ≤ thor − ρ, (4.18)

= R(τ − s), t > thor − ρ. (4.19)

Then the delay of the last job of the trace with arrival function R on P is
the same as the last job of the critical trace on Pclip. As R conforms to the
arrival curve α it characterizes a valid trace. �

Proof of Theorem 4.5

Theorem 4.3 is satisfied if the control law f is monotonically non-
increasing. Recall that f translates a sensed temperature to a speed,
that is actuated. Given a temperature sensor that is faulty with a transfer
function ǫ, we can define a modified control law f ′ as

f ′(T) = f (ǫ(T)). (4.20)

Given that f and ǫ are monotonic functions, f ′ is also a monotonic
function. By thus absorbing the sensor’s transfer function to the control
law, the validity of Theorem 4.3 can be established for faulty sensors with
a monotonic transfer function. �
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5
Satisfiability Modulo Real-Time

Calculus

5.1 Introduction

Cyber-physical systems are expected to evolve into large and distributed
setups. Indeed, interconnecting multiple heterogeneous devices will
enable new applications. Consider for instance interconnecting multiple
cars on a highway [YLVZ04] or heterogeneous devices in a power
distribution grid [PFR09].

With the increasing scale of CPSs, the resultant design problems
also scale in complexity for several reasons. Firstly, for real-time CPSs
timing guarantees of several interacting applications may have to be
simultaneously considered. Furthermore, platform requirements such
as availability of buffer-space or bounds on energy consumed at each
processor must be considered. Finally, there may be several design knobs
which influence the metrics of interest with intricate dependencies.

We illustrate this challenge and provide a solution strategy for a
specific design problem which we refer to as the speed assignment problem.
In this problem we consider a real-time system with multiple processors
executing multiple applications. Each application has one or more tasks
executing on different processors, where the tasks are interconnected
with dataflow dependencies. The timing properties of all applications,
such as the arrival patterns of events and the execution times of the
tasks, are given. The design problem is to assign a static speed to each
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(All times in s) T11 T21 T22 T31

Period 10 6 - 6
Jitter 4 0 - 0

Execution time 3 0.5 1 1

Fig. 5.1 Block diagram and parameters for Example 5.1.

processor from a given set of speeds.1 This assignment is to be done under
multiple conflicting constraints: (a) applications have end-to-end delay
constraints, (b) processors have finite buffer-space for pending events,
and (c) processors have a finite energy budget in a given interval of time.
This is a discrete optimization problem where the number of designs
grows polynomially in the number of processors and exponentially in the
number of available speeds. For tens of processors and a few different
speeds for each processor, the design space can be very large.

There are several examples of CPSs where such constraints arise.
Timing constraints of distributed systems arise in the interconnection
of Electronic Control Units (ECUs) in a modern automobile [LMSN04]. A
Network-on-Chip (NoC) in a multi-processor system has both timing and
buffer-space constraints [HM04]. In larger systems such as data-centers,
the timing and energy consumption objectives are relevant [FWB07].

Assigning the speed of each processor provides effective design knobs
to regulate timing, buffer-space, and energy metrics. Timing constraints
may be met by increasing speeds. Energy constraints may be met by
decreasing speeds. And buffer constraints may be met by carefully
balancing speeds of different processors. However, such dependencies
are not always intuitive. We illustrate this with an example.

5.1.1 Motivating Example

Example 5.1: Two processors P1 and P2 serve three applications A1, A2, and A3

as shown in Figure 5.1. A1 and A3 comprise of a single task namely T11 and T31,

respectively. A2 comprises of two tasks, namely T21 and T22, interconnected by a

data dependency. A fixed priority scheduler is used on both processors with the

priority ordering T11 > T21 on P1 and T22 > T31 on P2. The timing properties of

the tasks are specified in Figure 5.1.

In the above example, we study the effect of halving the speed of P1,

1 In contrast to the previous chapter where the speed of a processor was dynamically
changing, in this chapter we only consider a static speed. However, this static speed
must be chosen from a given set of allowed speeds.
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i.e., doubling the execution times of T11 and T21. This change has the
following non-intuitive consequences.

• The worst-case delay of application A3 increases from 2 to 4. On the
contrary, we may expect no difference given that the only task of A3

is mapped on to P2, whose speed remains unchanged.

• The worst-case buffer-space required at the input of T22 increases
from 1 event to 3 events. On the contrary, we may expect that
slowing the processor which provides input events to a task will
reduce the required buffer-space.

• The worst-case energy consumption of P2 within intervals of certain
lengths increases. On the contrary, we may expect no difference
given that the speed of P2 remains unchanged.

The above example highlights that changing the speed of a processor
can have non-intuitive effects on timing, buffer-space, and energy
metrics. For larger systems with more processors and applications, such
dependencies can be expected to be more intricate. Thus, the core of
the speed assignment problem which is to understand how to assign the
speed of each processor while satisfying the constraints, is a challenging
problem.

The challenge motivates two responses. Firstly, we need a custom
theory to systematically compute safe bounds on the end-to-end delay,
buffer-space requirement, and energy consumption. Secondly, as the
choice of speeds is not straightforward given that the constraints do not
exhibit well-founded properties such as linearity or convexity, we need a
generic design space exploration engine.

Given that the design space in the speed assignment problem can be
very large, any solution strategy has to be evaluated by its computational
efficiency. One approach in large optimization problems is to adopt
a heuristic strategy such as gradient descent, simulated annealing, or
evolutionary algorithms. However, none of these methods guarantees
optimality, i.e., they may not find a speed assignment satisfying all the
constraints even if there is one. This brings us to the core problem at
hand: How can we reconcile the high complexity of finding a solution to
the speed assignment problem with the need for an optimal solution?

For the said problem, a template of a solution comes from the domain
of formal system verification, namely the use of a Satisfiability Modulo
Theory (SMT) solver [BSST09]. An SMT solver combines a domain-
specific theory solver with a SAT engine to exactly solve a given set of
constraints. If the solver does not find a solution to the set of constrains,
then a proof is furnished of why a solution does not exist. Thus, it
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meets our requirements of providing an optimal solution by integrating
a custom theory with a generic exploration engine.

However, the computational cost of the optimization is an open
question. SMT solvers specify problems as extensions of a SATisfiability
problem [MZ09]. Schaefer showed that even small instances of SAT
problems (with 3 literals per clause) are NP-Hard [Sch78]. However,
efficient computational heuristics have been developed which perform
well in practice. The prime example is the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [DLL62,DP60] which has been demonstrated
to be efficient for a variety of domains [DMB11]. It remains to be seen if
these techniques are effective for the speed assignment problem.

Two enabling principles for the design of an SMT solver are (a)
interpretation and analysis of an incomplete model which formalizes a set
of designs, and (b) computation of a conflict clause which formalizes non-
satisfaction of constraints. In this chapter, we aim to explore if these
principles can be derived for the speed assignment problem, and more
generally for design problems in real-time CPSs.

5.1.2 Contributions

We formulate the speed assignment problem as a SATisfiability problem
interpreted on the background theory of Real-Time Calculus [TCN00].
We solve this SAT problem by designing a custom Satisfiability Modulo
Theory (SMT) solver. To this end, we define abstract arrival and

service curves which generalize the arrival and service curves from
Real-Time Calculus. We show that these abstract curves satisfy
important monotonicity principles. These principles enable us to interpret
incomplete models and generate conflict clauses, the two requisites for
designing an SMT solver.

We implement a custom SMT solver with the OpenSMT [BPST10]
solver framework which is specifically designed to interface a custom
theory solver with the miniSAT solver [ES05]. For the theory solver for
Real-Time Calculus, we use the Modular Performance Analysis (MPA)
toolbox for MATLAB® [Wan06]. The specific nature of abstract curves
enables a convenient design of the theory solver as an application over
the MPA toolbox.

The key advantage of any SMT solver is the deep embedding of the
theory solver within the exploration engine. This deep embedding has
been shown to perform efficiently in practice, for several problems. The
main result of this work is to confirm the computational success of SMT
solvers in the considered case of the speed assignment problem, with
RTC as the background theory. In particular, we show that for problem
instances with large design spaces of about 3 × 1017 speeds assignments,
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the solver computes a valid solution, if there is one, within hundreds of
solver calls to the MPA toolbox. On a typical desktop computer, a solver
call is executed within a couple of seconds.

The empirical results of this chapter motivate solving other design
problems in CPSs with an SMT solver. For design problems with worst-
case timing constraints, the groundwork for such a formulation is the use
of the proposed abstract arrival and service curves. More generally, this
chapter provides a template to use an SMT solver for design problems in
CPSs which require hard guarantees.

The rest of the chapter is organized as follows. We formally specify the
speed assignment problem in Section 5.2. We define abstract arrival and
service curves in Section 5.3. In Section 5.4 we introduce the formal
concepts in verification with SMT solvers. We apply the abstract curves
for the specific problem of speed assignment in Section 5.5. We present
experimental results for a large class of problems in Section 5.6. We
summarize in Section 5.7 and provide proofs of results in an appendix.

5.2 System Model and Problem Definition

In this section, we define the processor and application models, and state
the problem formulation.

5.2.1 Processor Model

We consider a set of processors denoted as P, where the ith processor
is denoted as Pi. The speed of any processor Pi, denoted as si, can be
independently assigned from a set of allowed speeds denoted Si. This is
a static speed assignment, i.e., the speed remains constant once chosen
from the set of allowed speeds. The jth smallest speed in Si is denoted
as Si j. We denote the speeds as multiples of the slowest speeds, which
is normalized to 1. The power consumed by Pi is modeled by a convex
function of its speed, denoted as φi(si). When not executing any task, Pi

is said to be idle and consumes a fixed idle power φi(0).

5.2.2 Application Model

We consider a set of applications denoted as A, where the ith application
is denoted as Ai. An application is represented by a directed acyclic
graph (DAG), where nodes represent tasks and edges represent dataflow
dependencies. We only consider linear task graphs, wherein each node
has an in-degree and out-degree of 1. The jth task of Ai in the topological
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order of the DAG is denoted as Ti j. Events arrive at the input of the first
task of each application. Processing of each event is referred to as a job of
that task. A task processes each event in First-Come-First-Server (FCFS)
order, and subsequently generates an input event for its successor task, if
any.

Each task Ti j is statically mapped to some processor given by a mapping

function m(Ti j). Multiple tasks may be mapped to the same processor. In
such a case, a fixed priority scheduler is used to arbitrated between tasks.
The priority order for each processor is assumed to be given.

Each application Ai is characterized by an input arrival curve2

αi = (αu
i
, αl

i
) which characterizes the execution demand of the events

arriving at the input of task Ti1. Each task Ti j is characterized by the
worst- and best-case execution times of its respective jobs, denoted as
Cu

ij
and Cl

i j
, respectively. These execution times are specified for the

normalized minimum speed of the corresponding processor. At other
speeds, execution times scale linearly.

In the theoretical presentation in this chapter, we assume Cu = Cl = 1
for each task. Including non-unit values of these terms is straightforward
as discussed in [Wan06].

5.2.3 Constraints

We have three categories of constraints as specified below.

• Delay constraints: An application Ai may have an upper-bound on
the end-to-end delay of any event, denoted as Di. The end-to-end
delay of an event is the time delay between its arrival at the first
task of the application and the end of its processing at the last task
of the application.

• Buffer constraints: Each task has an input buffer that queues pending
events. A task Ti j may have an upper-bound on the buffer-space in
terms of number of events, denoted as Bi j.

• Energy constraints: A processor Pi may have an upper-bound on the
energy consumed for any interval of length ∆ ≥ 0 denoted as Eu

i
(∆).

5.2.4 Problem Statement

Given are processor and application models as described above. The
problem is to assign the speed of each processor Pi, i.e., to identify si ∈ Si,
such that all delay, buffer and energy constraints are satisfied. If for a

2 Note that here we use the extended definition of arrival curves with both upper
and lower curves. These are formally defined in Appendix A.2.
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given problem instance no valid speed assignment exists, then this must
be shown to be the case.

5.3 Abstract Arrival and Service Curves

We make a particular choice in the order of presentation in this chapter. We
will first, in this section, define and analyze abstract arrival and service
curves. Subsequently, in the next two sections, we will illustrate their
utility for the specific problem of speed assignment. This ordering is
influenced by the expectation that abstract arrival and service curves
may be relevant in SMT formulations of other design problems, or in
altogether different settings.

In this section, we will study the Greedy Processing Component (GPC)
which is defined in Appendix A.4. The GPC forms the basic unit of
analysis in Modular Performance Analysis (MPA). A GPC is characterized
by two sets of equations. First, the output arrival and service functions α′

and β′ are given in terms of the input arrival and service functions α and β.
Second, upper-bounds on the delay and buffer-space are given in terms of
the input arrival and service functions. The equations formalizing them
are shown in Appendix A.4.

5.3.1 Definition

In this section, we study an abstract component denoted as GPC.
The abstraction arises out of simultaneously considering multiple
configurations of the component. Each configuration of the GPC is a
standard GPC. Two configurations can differ in their input arrival curves,
or input service curves, or both. We denote X as the set of finitely many
configurations, and x ∈ X as a particular configuration of a GPC. We now
define the abstract curves.

Definition 5.1: (Abstract Arrival Curve) Let αx = (αu
x , α

l
x) denote the arrival

curve at the input (or output) of a GPC in the configuration x ∈ X. Then the

input (or output) abstract arrival curve α = ((αu)l, (αl)u) satisfies the following

constraints.

(αu)l ≤ αu
x , ∀ x ∈ X, (5.1)

(αl)u ≥ αl
x, ∀ x ∈ X. (5.2)

The upper abstract arrival curve (αu)l is the lower-bound on the upper
arrival curves across all configurations. Similarly, the lower abstract
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arrival curve (αl)u is the upper-bound on the lower arrival curves across
all configurations.

Definition 5.2: (Abstract Service Curve) Let βx = (βu
x , β

l
x) denote the service

curve at the input (or output) of a GPC in the configuration x ∈ X. Then the

input (or output) abstract service curve β = ((βu)l, (βl)u) satisfies the following

constraints.

(βu)l ≤ βu
x , ∀ x ∈ X, (5.3)

(βl)u ≥ βl
x, ∀ x ∈ X. (5.4)

The upper abstract service curve (βu)l is the lower-bound on the upper
service curves across all configurations. Similarly, the lower abstract
service curve (βl)u is the upper-bound on the lower service curves across
all configurations.

We refer to (αu)l and (βu)l as upper curves, and (αl)u and (βl)u as lower
curves. It is instructive to expand the definition of the abstract curves.
For instance, consider the upper abstract arrival curve (αu)l. For each
configuration x ∈ X, let Rx be a representative3 arrival functions at the
input of a GPC. Then, (αu)l satisfying (5.1) is given as

(αu)l(∆) = min
x∈X

{
sup
t≥0
{Rx(t + ∆) − Rx(t)}

}
, ∀ ∆ ≥ 0. (5.5)

Similarly the other definitions can be expanded. Notice how we consider
only cross-bounds in defining the curves. For instance in (αu)l, the
lower-bound across all configurations and the upper-bound across all
times is considered. Thus, there are two distinct levels of abstraction.
The inner-level abstracts events in time domain to the interval domain,
while the outer-level abstracts the uncertainty in the configuration of
the component. As we will see, these two abstractions play very different
roles. While the inner abstraction is necessary to analyze worst-case (over
time) parameters, the outer abstraction is necessary to analyze incomplete
models in an SMT solver. We illustrate these curves with an example.

Example 5.2: Consider a periodic task in two configurations x1 and x2. In

configuration x1 the period, the jitter, and the execution time of each job are 10,

5, and 1. In configuration x2 the corresponding parameters are 8, 0, and 1,

respectively.

3 We assume that for each x ∈ X, the abstraction of αu
x is tight for given arrival function

Rx, i.e., αu
x(∆) = supt≥0{Rx(t + ∆) − Rx}.
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Fig. 5.2 Illustration of abstract arrival curves for Example 5.2. The arrival curve for a GPC in
configurations (a) x1 and (b) x2. (c) The abstract arrival curve of the corresponding GPC.

GPCα = ((αl)u, (αu)l) α′ = ((α′l)u, (α′u)l)

β = ((βl)u, (βu)l)

β′ = ((β′l)u, (β′u)l)

Fig. 5.3 Block diagram of the abstract Greedy Processing Component (GPC).

The arrival curve corresponding to the standard GPC for configura-
tions x1 and x2 are shown in Figures 5.2(a) and 5.2(b), respectively. The
abstract arrival curve according to Definition 5.1 is shown in Figure 5.2(c).
Notice how the abstract upper curve contains parts of upper curves of
both configurations. Also the abstract lower curve exceeds the abstract
higher curve, which is not the case for the standard GPC.

A GPC can be visualized by the block diagram of Figure 5.3. Like
in the standard GPC, we need to characterize a GPC by its input-output
relations and the delay and buffer bounds. This is the focus of the rest of
this section.

5.3.2 Input-Output Relations of GPC

The input-output relations specify the dependence of the output abstract
curves α′ and β′ on the input abstract curves α and β.

Theorem 5.1: The input and output abstract arrival and service curves of GPC
are given by the following relations.
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(α′u)l = min
{
((αu)l ⊗ (βu)l) ⊘ (βl)u, (βu)l

}
, (5.6)

(α′l)u = min{((αl)u ⊘ (βu)l) ⊗ (βl)u, (βl)u}, (5.7)

(β′u)l = ((βu)l − (αl)u) ⊘ 0, (5.8)

(β′l)u = ((βl)u − (αu)l) ⊗ 0. (5.9)

The operators used in the above equations are defined in Ap-
pendix A.1. These equations mirror the corresponding equations for
the standard GPC, as described in Appendix A.4. This is a significant
property which can be interpreted as follows: The abstract arrival and
service curves defined with only cross-bounds sufficiently describe input-
output relations. For instance, to compute (α′u)l we only need (αu)l, (βl)u

and (βu)l. We do not need (αu)u, (βl)l or (βu)u, assuming these quantities
are correspondingly defined. Thus, to propagate the uncertainty due to
multiple configurations of a GPC, from its inputs to outputs, we only
require the cross-bounds. This can be considered a monotonicity principle.

We illustrate the input-output relations for the Example 5.2. Let the
task be executed on a resource that is a TDMA slot with period 8 and
slot-size 1. For this setting, we compute the output arrival curves for
the two configurations using the standard GPC equations. These are
shown in Figures 5.4(a) and 5.4(b). Notice how the TDMA resource
further widens the gap between the upper and lower curves. Then, we
compute the output abstract arrival curve using (5.6) and (5.7). This
is shown in Figure 5.4(c). Indeed, this curve satisfies (5.1) and (5.2).
Again, the abstract upper curve contains parts of upper curves of both
configurations. Also the abstract lower curve exceeds the abstract higher
curve (first at ∆ = 100).

5.3.3 Delay and Buffer Bounds with GPC
Before we compute the delay and buffer bounds with GPC, we have to
re-define them under the abstraction of multiple configurations. As we
will see in the next two sections, these definitions are motivated by the
application to analysis of incomplete models in an SMT solver.

Definition 5.3: (Abstract Bounds) Let dmax
x and bmax

x denote respectively the

worst-case delay and buffer-space in a GPC in configuration x ∈ X. Then, the

abstract bounds, denoted with underlines, satisfy the following constraints.

dmax ≤ dmax
x , ∀ x ∈ X, (5.10)

bmax ≤ bmax
x , ∀ x ∈ X. (5.11)
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Fig. 5.4 Illustration of abstract output arrival curves for Example 5.2. The output arrival curve
for configuration (a) x1 and (b) x2. (c) The abstract output arrival curve.

Notice that the abstract bounds consider the weakest bounds across all
configurations, and thereby parallel the cross-bounds in the definition of
the abstract curves. In the following result, we show how these bounds
can be computed for a GPC.

Theorem 5.2: The abstract bounds of a GPC are given by the following relations.

dmax = Del((αu)l, (βl)u), (5.12)

bmax = Buf((αu)l, (βl)u). (5.13)

In the above equations, the Del and Buf operators are as defined in
Appendix A.3. These equations mirror the corresponding equations for
the standard GPC, as described in Appendix A.4. The abstract arrival
and service curves defined with only cross-bounds sufficiently describe
the abstract bounds. For instance, to compute dmax we only need (αu)l

and (βl)u. We do not need (αu)u or (βl)l, assuming these quantities are
correspondingly defined. Thus, to propagate the uncertainty due to
multiple configurations of a GPC, from its inputs to the computed bounds,
we only require the cross-bounds. This can be considered as another
monotonicity principle.

The two stated monotonicity principles result in a practical advantage.
They allow us to extend the computational abstractions and techniques
developed for the standard GPC for the analysis of GPC. In particular, an
arrival curveα can be replaced by an abstract arrival curveα, and a service
curve β can be replaced by an abstract service curve β. The corresponding
components of the two curves have the same properties. For instance,
both αu and (αu)l are sub-additive functions [Wan06]. Finally, a GPC with
a single configuration is identical to a standard GPC.
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To conclude, we defined abstract arrival and service curves. We showed
how they are sufficient to characterize input-output relations and bounds
of a GPC. In the next two sections, we will see how to apply this to the
speed assignment problem.

5.4 Basics of a SMT Solver

In this section, we present the basic notations and concepts in the working
of an SMT solver. We adapt these to suit the specific requirements of
our problem. A complete and more formal description is available at
[BM07, BSST09, Str10].

5.4.1 Syntax

A language comprises a signature Σ and a countable set of variables V. Σ
is a finite set of function symbols ΣF and predicate symbols ΣP. Symbols
with zero arity are called constant symbols. A term is any (recursive)
application of a function symbol on other function symbols and variables.
An atomic formula is the application of a predicate symbol on a set of terms.
A clause is the disjunction of a set of atomic formulas or their negations.
The set of quantifier free formulas is the closure of all atomic formulas
under the predicate operators of negation, conjunction, disjunction and
implication. As a matter of convention, formulas are specified in the CNF
template as conjunctions of clauses. In this chapter, we only consider
formulas which are quantifier free, i.e., all variables are free of existential
and universal quantifiers. In such cases, it is convenient to represent the
variables as constant function symbols in ΣF.

5.4.2 Semantics

A model M gives meaning to a language. It interprets the function and
predicate symbols inΣ from a given domain of elements S. As an example,
a function symbol f ∈ ΣF with arity n is interpreted in M as some function
f M : Sn 7→ S. The interpretation of a formula ϕ under M is denoted as ϕM.
A theory T is a set of models, i.e., a theory T constrains the interpretation
of the symbols in Σ. A formula ϕ is said to be satisfiable for a theory T ,
if and only if, there exists a model M ∈ T such that ϕM is ⊤.4 This is
denoted as M |=T ϕ. A clause c is said to be a conflict clause for a given
formula ϕ, if and only if, for any model M, ¬(cM)⇒M 6|=T ϕ.

4 We use ⊤ and ⊥ as the propositional constants true and false.
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A model is said to be incomplete if it does not interpret all symbols,
and complete otherwise.5 By additionally interpreting some symbols
uninterpreted in M, we obtain a set of models M. Any model M′ ∈ M is
said to be a refinement of M. A formula ϕ is said to be M-satisfiable for a
theory T , if and only if, there exists a model M′ ∈M such that M′ |=T ϕ.

In the context of SMT solvers, it is useful to define additional symbols
not in Σ which may be uninterpreted in a model. Such symbols help
define abstractions of other function symbols. In this chapter, we will only
consider additional propositional function symbols. A model M assigns
(some of) these propositional variables from the set {⊤,⊥}. Furthermore,
all function symbols other than the propositional variables are implicitly
interpreted by deductions in the theory T . In this specific case, the
propositional variables encode the design space.

5.4.3 Working of an SMT Solver

An SMT solver comprises of a SAT solver and a theory solver, which
iteratively exchange information. We describe the interaction between
these solvers in the ith iteration.

1. Using an algorithm such as the DPLL procedure [DLL62], the
SAT solver computes a model Mi, i.e., it interprets some of the
propositional variables.

2. The theory solver checks if a given formula ϕ is Mi-satisfiable.
If provably ϕ is not Mi-satisfiable the solver returns Unsat and a
conflict clause ci. Otherwise, it returns Sat and no conflict clause.

3. If the theory solver returns Sat and Mi is complete, we have a
solution to the problem. Otherwise, if the disjunction of all received
conflict clauses is a tautology, then the problem is infeasible. If
neither of these two terminating conditions are satisfied, the solver
moves to the next iteration.

For an efficient SMT solver the theory solver must satisfy two
properties. First, it must be able to verify that a formula is M-satisfiable
for any incomplete model M. Second, it must be able to compute a
conflict clause if a formula is not M-satisfiable. There are other desirable
properties such as incrementality and back-tracability [BSST09] which we
do not consider in this chapter.

5Alternatively and equivalently an incomplete model can be considered as a sub-set
of the formulas which define a theory [BSST09].
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Fig. 5.5 MPA block diagram for Example 5.1. Each task is represented by a GPC. The
interconnection defines equivalence between different input and output curves.

5.5 SMT Solver for Speed Assignment

In this section, we describe how to build the SMT solver for the speed
assignment problem. In particular, we will describe the signature,
the interpretation of incomplete models with abstract curves, and the
generation of conflict clauses.

5.5.1 MPA Block Diagram

In the speed assignment problem, several tasks are executed on multiple
processors. We model the execution of each task as a GPC with abstract
input and output arrival curves. A GPC and its curves are referenced by
sub-scripts matching that of the corresponding task. For instance, task Ti j

has an abstract input arrival curve denoted as α
i j
. The output of a task is

the input of a successor task, if any. Similarly for resources, the output
service curve of a GPC is the input service curve of a lower priority GPC,
if any. For Example 5.1, the relations between the different variables are
illustrated in the block diagram in Figure 5.5. The only curves which are
not abstract are the input arrival curves of each application, i.e., αi for each
application Ai ∈ A. All others are abstract curves whose computation we
will describe later.

5.5.2 Signature and Model

Recall that the signatureΣ comprises of function symbolsΣF and predicate
symbols ΣP. The set of predicate symbols ΣP includes the comparison
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predicates= and≤. The set of function symbolsΣF includes the following.

1. The set of abstract curves for each GPC as described in the
construction of the MPA block diagram and the curve 0. These
are constant symbols.

2. The set of operators used in RTC, including ⊗, ⊘, ⊗, ⊘, Del and Buf.
All these symbols have an arity of 2.

3. For each processor Pi ∈ P, two constant symbols smin
i

and smax
i

.

4. For each processor Pi ∈ P, the a function φi. These symbols have an
arity of 1.

In addition, we define some propositional variables which encode
the design space. For every processor Pi and for each speed Si j ∈ Si,
we define a propositional variable pi j. As we will see, these variables
abstractly represent the speeds of the processors.

The semantics of the symbols in Σ are given by their interpretation in
the model. A model assigns values to the symbols from a domain. For
our custom theory, the symbols are of different types and thus there are
multiple domains: (a) the domain of propositional constants {⊤,⊥}, (b)
the domain of non-negative scalars denoted ℜ+, and (c) the domain of
non-negative non-decreasing functions denoted ℜ∞+ .6 In terms of these
domains we can define the interpretation of each function. For instance,
in a model M, the symbol ⊗M : ℜ∞+ × ℜ

∞
+ 7→ ℜ

∞
+ , and the symbol φM

i
:

ℜ+ 7→ ℜ+.
We are interested in only those models which conform to the theory

of RTC. This applies the following conditions on the interpretations.

1. The RTC operators are as defined. Further the functions φi for each
processor Pi ∈ P is as given by the power consumption as a function
of speed.

2. For each processor Pi ∈ P,

smin
i = Sik, where k = max( {x | (pix 7→ ⊥) ∈M} ∪ {0}) + 1, (5.14)

smax
i = Sik, where k = min( {x | (pix 7→ ⊤) ∈M} ∪ {|Si|}). (5.15)

This interpretation entails the following constraints on T -valid
propositional variables.

(pi j 7→ ⊥) ∈M⇒ (pik 7→ ⊥) ∈M, ∀ k < j, (5.16)

(pi j 7→ ⊤) ∈M⇒ (pik 7→ ⊤) ∈M, ∀ k > j. (5.17)

6 To be precise, a theory over multiple domains is a typed first-order theory. However,
in our case the domainℜ∞+ strictly generalizes propositional variables and non-negative
scalars, forming a linear type hierarchy. In this case, with additional theory predicates,
the domain can be uniformly considered to beℜ∞+ .
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3. For each processor Pi ∈ P,

(βl
i)

u(∆) = smax
i ∆, (5.18)

(βu
i )l(∆) = smin

i ∆. (5.19)

4. The structural relations between abstract curves derived from the
MPA block diagram, i.e., input and output relations of every GPC,
and equivalence due to connections between any two GPCs.

From the above rules, we can conclude that a model M explicitly
interprets only the propositional variables pi j for every processor Pi and
speed Si j. All other interpretations are deduced from the above rules
governing the theory. As the SAT solver computes M, it assigns (some of)
the propositional variables which abstractly represent the design space of
speeds of processors.

5.5.3 Analysis of Incomplete Models

We first identify the formula whose satisfiability we are interested in.
Each constraint can be converted to a formula as described below.

• Delay constraints. For an application Ai with a single task if the
delay constraint is Di, then this is expressed by a formula (ϕd)i given
as

(ϕd)i =
(
dmax(GPC

i1) ≤ Di

)
. (5.20)

For an application of multiple tasks this can be extended with known
results from Network Calculus [LBT01] as

(ϕd)i =
(
Del

(
αu

i , (β
l
i1)u ⊗ (βl

i2)u ⊗ . . . ⊗ (βn
in)u
)
≤ Di

)
, (5.21)

where the tasks of Ai are {Ti1,T12, . . . ,Tin}.

• Buffer constraints. For a task Ti j if the input buffer-space constraint
is Bi j, then this is expressed by the formula (ϕb)i j given as

(ϕb)i j =
(
bmax(GPC

i j
) ≤ Bi j

)
. (5.22)

• Energy constraints. For a processor Pi if the energy consumption
constraint is Eu

i
, then this is expressed by the formula (ϕE)i given as

(ϕE)i =
(
Eu((β′ui )l, smin

i , φi,∆) ≤ Eu
i (∆)
)
, (5.23)

where,

Eu(β, s, φ,∆) = β(∆) × (φ(0) − φ(s)) + ∆ × φ(s). (5.24)
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The overall formula ϕ is the conjunction of the formulas for each of the
specified constraints.

To conclude, given an incomplete model M, we propagate the
uncertainty in the speeds of the processors through the MPA block
diagram with abstract curves defined by the GPC rules. Then, with
the functions bmax, dmax, and Eu, we can check M-satisfiability of ϕ. Thus,
the theory solver is equipped to return Sat or Unsat for any model M.

5.5.4 Generating Conflict Clauses

If the theory solver finds that ϕ is not M-satisfiable, then it must compute
a conflict clause which encodes the reason for the non-satisfiability. This
clause helps the SAT solver in future choices of models. Recall that the
conflict clause c is the disjunction of literals, such that ¬(cM) ⇒ M 6|=T ϕ.
For higher efficiency, it is desirable that the conflict clause has fewer
literals. Implementations of SMT solvers allow multiple conflict clauses
to be returned. Thus, we compute a separate conflict clause for non-
satisfiability of te formula corresponding to each constraint.

In our case, the conflict clause contains only the propositional variables
pi j which are explicitly interpreted in the model M. A propositional
variable in a conflict clause must have a polarity based on its interpretation
in M. For instance, if (pi j 7→ ⊤) ∈ M, then only pi j can be a literal in the
conflict clause, and if (pi j 7→ ⊥) ∈ M, then only ¬pi j can be a literal in
the conflict clause. Thus, generating the conflict clause is equivalent to
finding a sub-set of propositional variables which are interpreted in M.

To the find the required sub-set we devise a compositional strategy.
To this end, we define conflict functions C(·) which map an abstract curve
to a sub-set of the propositional variables. First we define input-output

conflict functions, i.e., conflict functions of output abstract curves of a
GPC in terms of the conflict functions of its input abstract curves. In
the following relations we drop the subscripts indicating the index of the
GPC.

C((α′u)l) = C((αu)l) ∪ C((βu)l) ∪ C((βl)u) (5.25)

C((α′l)u) = C((αl)u) ∪ C((βu)l) ∪ C((βl)u) (5.26)

C((β′u)l) = C((αl)u) ∪ C((βu)l) (5.27)

C((β′l)u) = C((αu)l) ∪ C((βl)u) (5.28)

In addition to the compositional relations, we also have boundary

conflict functions. For the applications, the input arrival curves are given
and do not depend on the model. Thus, for every application we have an
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empty conflict function, i.e.,

C(αl
i) = C(αu

i ) = {}, ∀ Ai ∈ A. (5.29)

For the processors, the input abstract service curves depend on the speed
of the processor as given in (5.18) and (5.19). Thus, the conflict functions
include the propositional variables as given below.

C((βl
i)

u) =
⋃

(pi j 7→⊤)∈M

pi j, ∀ Pi ∈ P, (5.30)

C((βu
i )l) =

⋃

(pi j 7→⊥)∈M

pi j, ∀ Pi ∈ P. (5.31)

Given the above conflict functions, we are now ready to derive the
conflict clauses for the non-satisfaction of each constraint. To this end, we
extend the notion of conflict functions to formulas. For instance, C((ϕd)i)
is the set of propositional variables which form the conflict clause if (ϕd)i

is not M-satisfiable.

Theorem 5.3: For the formulas corresponding to delay, buffer and energy

constraints, the conflict functions are as given below.

C((ϕd)i) =
⋃

∀ Ti j∈Ai

C((βl
i j)

u), (5.32)

C((ϕb)i j) = C((αu
ij)

l) ∪ C((βl
i j)

u), (5.33)

C((ϕE)i) =



⋃

∀ m(Tab)=Pi

C((αu
ab)

l)


 ∪ C((βu

i )l) (5.34)

In the above result, the conflict functions of each formula is given by
the union of the conflict functions of different curves. By recursively
substituting the conflict functions as defined in input-output relations
(5.25) to (5.28) and the boundary conflict functions (5.29) to (5.31), we
arrive at the conflict clauses.

This concludes the presentation of the SMT solver. To summarize, we
described the function and predicate symbols, and their interpretation by
a model under the theory of RTC. In particular, we used abstract curves
and interpreted them using the relations of GPC. The design space of
speeds of the processor are encoded in propositional variables which
are assigned by the SAT solver. Conflict clauses are computed for each
non-satisfiable constraint using the defined conflict functions.
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5.6 Experimental Results

In this section we will discuss our implementation of the SMT solver and
then present experimental results.

5.6.1 Implementation of the Solver

We implemented the SMT solver for the theory of RTC by interfacing
the OpenSMT solver [BPST10] and the Modular Performance Analysis
toolbox [Wan06]. The OpenSMT solver from University of Lugano is
designed specifically for supporting custom theories by providing a
standard interface schema with an efficient SAT engine based on miniSAT
[ES05]. On the other side, the theory solver is built as an application over
the MPA toolbox. This is possible because of the definition of the abstract
curves and their monotonicity principles.

5.6.2 Illustrating Example

We begin with a small example where we detail the interaction between
the SAT solver and the theory solver.

Example 5.3: Two applications A4 and A5 with three tasks each execute on

four processors P3, P4, P5 and P6. The block diagram in Figure 5.6(a) shows the

mapping of tasks to processors. The application and task parameters are shown in

Figure 5.6(a). Each processor has the same set of speeds S = (1, 1.5, 2) and power

function φ(s) = (s2.5 + 0.5)W. Each processor has a periodic energy constraint

with period of 1s. The values of Eu
i
(1s) are shown in Figure 5.6(a).

The design space of the speed assignments is of size 34 = 81. By
exhaustive search we found that none of the 81 speed assignments
satisfies all the constraints, i.e., the problem is unsatisfiable. We will
now demonstrate how the SMT solver comes to the same conclusion.

To visualize the interaction between the SAT and theory solvers,
we represent the model and the conflict clause on a square of cells
representing the design space of the 81 speed assignments. A model
M is represented by all speed assignments which are obtained under
refinement of M. A conflict clause c is represented by all speed
assignments which entail the conflict clause.

We show the details of the solver calls in Figure 5.6(b). The following
observations can be made from this example.

• In 6 solver calls, the solver is able to conclude that none of the 81
speed assignments satisfies all the constraints.
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P3 P4

P5 P6

T11

T21

T12

T22

T13

T23

A4

A5

T41 T42 T43 T51 T52 T53

Exec. Time (ms) 1 2 4 1 3 4
Buffer Bi j 3 2 1 3 1 3

(in ms) A4 A5

Period 10 10
Jitter 20 20

Deadline Di 9 13

P3 P4 P5 P6

Priority T11 > T21 - - T13 > T23

Eu
i
(1s) (in J) 0.71 0.71 1.08 1.26

(a) Block diagram and parameters for Example 5.3.

Model Solver calls Conflict clause

(1-2, 1-2, 1-2, 1-2) 1 Sat

(1, 1, 1, 1) 2 Unsat (1, 1, 1-2, 1)

(1, 1, 1-2, 1.5) 3 Unsat (1, 1, 1-2, 1.5)

(1, 1.5-2, 1-2, 1-1.5) 4 Unsat (1, 1.5-2, 1-2, 1-2)

(1.5-2, 1-2, 1-2, 1-1.5) 5 Unsat (1.5-2, 1-2, 1-2, 1-2)

(1, 1-2, 1-2, 2) 6 Unsat (1, 1-2, 1-2, 2)

(b) The interaction between the SAT solver and the theory solver for Example 5.3. The
model and conflict clause are represented by a box of 81 cells representing the 81 speed
assignments. For a model M, a cell is shaded black if the corresponding speed assignment
is M-satisfiable. For each solver call, the theory solver either returns Sat or Unsat. If it
returns Unsat, it generates one or more conflict clauses. For each generated conflict clause
c, a cell is shaded black if the corresponding speed assignment entails c. Also a cell is
shaded gray if it was shaded black in any of the earlier solver calls.

Fig. 5.6 Illustration of interaction between SAT and theory solvers for Example 5.3
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• In the first solver call, the theory solver returns Sat for the infeasible
problem instance. This illustrates that the abstraction may not
always be tight and may require refinement for an accurate analysis.

• In many solver calls, the model represents multiple speed
assignments. Such incomplete models are analyzed by the theory
solver. This is the first source of efficiency.

• In solver calls 2, 4 and 5, the generated conflict clause covers speed
assignments not in the model. In other words, the theory solver is
able to conclude that other designs not represented by the model
are also infeasible. This is the second source of efficiency.

• In the last solver call, the solver concludes that there is no feasible
speed assignment as the disjunction of all generated conflict clauses
is a tautology.

• Finally, the process also generates a proof for in-feasibility. In
particular, it identifies the constraints which are not satisfied in
the different solver calls and their implication on the feasibility of
designs in the design space.

5.6.3 Larger Problem Instances

In the previous example we noted the following two sources of efficiency
in the use of an SMT solver.

(a) The interpretation and analysis of incomplete models.

(b) The generation of conflict clauses which generalize beyond the
model.

To understand the individual contribution of these two sources, we
consider three variants of the solver.

SAB: This solver is as described in this chapter.

SA: In this solver, we only interpret and analyze complete models.
Whenever the SAT solver generates an incomplete model, the theory
solver trivially generates the output Sat. For complete models, the
system is analyzed and conflict clauses are generated as described.
To build such a solver, we do not need the notion of abstract curves
developed in Section 5.3.

SB: In this solver, we analyze incomplete models, but compute trivial
conflict clauses which include all propositional variables in the
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# Type SAB SA SB Random

1 Sat 64 9 38 38
2 Sat 163 108 4509 122
3 Sat 77 30 41 278
4 Sat 153 434 406 980
5 Sat 289 12195 839 3166
6 Sat 259 1067 552 40771
7 Sat 366 405 3122 >50k
8 Sat 409 1367 4269 >50k
9 Sat 521 >50k 7931 >50k

10 Unsat 1 >50k 1 >50k
11 Unsat 80 >50k 98 >50k
12 Unsat 306 >50k 852 >50k
13 Unsat 416 >50k 6210 >50k

Tab. 5.1 Number of solver calls until termination for the different variants of the solver for
different problem . Each problem instance has about 4 × 1017 speed assignments. When
the solver calls exceeded 50, 000 the problem was terminated.

model. In other words, the conflict clause does not generalize
beyond the given model. To build such a solver, we do not need the
notion of conflict functions developed in Section 5.5.4.

Note that all three variants of the solvers are sound. However, we
expect their performance to be different. To evaluate this we consider 13
problem instances with 25 different processors and 5 distinct speed levels
for each processor. For each problem instance, the design space contains
525 ≈ 3 × 1017 different speed assignments. We consider execution of
10 − 25 applications of 3 − 5 tasks each. The binding of the tasks and
their properties are randomly chosen. The constraints on delay, buffer-
space and energy are also randomly chosen. For each of the 13 problem
instances, we execute the three variants of the solvers multiple times. In
addition, we also use a “Random” solver which picks up a random speed
assignment and checks its feasibility. If the speed assignment is feasible,
it terminates. The average number of solver calls7 for the four solvers are
tabulated in Table 5.1.

We make the following observations from these results.

• SAB solves the problem (both for Sat and Unsat instances) within
a few hundred solver calls. On an average, a solver call takes
about 2 seconds on a desktop computer with 4GiB RAM and a
2.0GHz processor. Thereby, most problems are solved within 20
minutes. Given the large size of the considered design spaces, the
computational efficiency of SAB is encouraging.

7 For variant SA a solver call is accounted only for complete models.
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• The comparison between SA and SB is inconclusive. In problem
instances where a large fraction of the design space is feasible,
SA performs very well and sometimes betters SAB. This can be
attributed to the way SA works: A solver call is initiated only for
complete models. If the design space is largely feasible this approach
can arrive at a solution earlier than in the incremental approach of
SAB and SB. In most other problem instances, especially ones which
are infeasible, SA performs significantly worse than SB.

• SAB performs much better than both SA and SB for most
problem instances. This demonstrates that analysis of incomplete
models and the generation of conflict clauses are complementary
contributories towards efficient exploration of the design space.

To conclude, we illustrated how the designed solver works for the
Example 5.3. With experimental results for large design spaces we
confirmed the computational efficiency of the solver. We also verified
that both the analysis of incomplete models and the generation of conflict
clauses contribute to the efficiency of the solver.

5.7 Summary

The design of distributed real-time CPSs necessitates finding feasible
solutions to large constrained problems. The speed assignment problem
with timing constraints of applications, and buffer-space and energy
constraints of the processors, does not admit trivial solution strategies.
We proposed the use of SMT solvers to optimally solve such a problem
efficiently. If the problem is infeasible, the solver provides a proof which
can direct a subsequent design iteration.

The key enabler was the definition and analysis of abstract arrival
and service curves. These abstract curves quantify the uncertainty in
timing properties due to simultaneous analysis of multiple designs. By
defining the GPC we propagated this uncertainty to output curves and
computed bounds. Enabled with this, we can analyze incomplete models
and generate conflict clauses.

In the previous chapter we showed how the abstractions of a thermally-
clipped processor and a critical trace can analyze timing guarantees in the
presence of large run-time variability. In this chapter, the abstract arrival
and service curves enabled the representation and analysis of multiple
designs. From this part of the thesis, we conclude that abstraction forms
an effective strategy in analysis of complex real-time CPSs.
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Appendix

Proof of Theorem 5.1

Consider the following equation.

(α′u)l = min
{
((αu)l ⊗ (βu)l) ⊘ (βl)u, (βu)l

}
. (5.35)

To show the above equation, we need to show the following property
where X is the set of configurations of the GPC.

min
x∈X
α
′u
x ≥ (α

′u)l (5.36)

⇒ min
x∈X

((αu
x ⊗ β

u
x) ⊘ βl

x) ≥
((

min
x∈X
αu

x

)
⊗

(
min
x∈X
βu

x

))
⊘

(
max

x∈X
βl

x

)
. (5.37)

We need to expand the definition of the operators as follows.

(( f ⊗ g) ⊘ h)(∆) = sup
0≤λ

{
inf

0≤µ≤λ+∆
{ f (µ) + g(λ + ∆ − µ)} − h(λ)

}
(5.38)

Clearly, this function is monotonically non-decreasing in the functions f

and g, and non-increasing in the function h. Thus, (5.37) holds.
Similarly, based on the monotonicity properties of the operators ⊗,

⊘, ⊗ and ⊘ (as defined in Appendix A) we can show the relations of
Theorem 5.1. �

Proof of Theorem 5.2

Consider the delay bound.

dmax = Del((αu)l, (βl)u). (5.39)

To show the above equation, we need to show the following property
where X is the set of configurations of the GPC.

min
x∈X

dmax
x ≥ dmax (5.40)

⇒ min
x∈X

(
Del(αu

x , β
l
x)
)
≥ Del

(
min
x∈X
αu

x ,max
x∈X
βl

x

)
. (5.41)

We need to expand the definition of the Del operator as follows.

Del( f , g) = sup
λ≥0

{
inf{τ ≥ 0 : f (λ) ≤ g(λ + τ)}

}
. (5.42)

Clearly, the above function is monotonically non-decreasing in the
function f and non-increasing in the function g. Thus, (5.41) holds.

Similarly, the buffer bound can be proved based on the monotonicity
of the Buf function as defined in Appendix A. �
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Proof of Theorem 5.3

Consider the formula (ϕd)i corresponding to the delay bound of
application Ai. Let the considered model be M. If for the given model,
(ϕd)M

i
is ⊥, then we have the following condition.

Del

(
(αu

i )M, ((βl
i1)u)M ⊗ ((βl

i2)u)M ⊗ . . . ⊗ ((βn
in)u)M

)
> Di, (5.43)

where the tasks of Ai are {Ti1,T12, . . . ,Tin}. From the previous proof we
know that the Del is monotonically non-decreasing in the first parameter
and monotonically non-increasing in the second parameter, and ⊗ is
monotonically non-decreasing in both operands. Then, we have the
following condition.
(
αu

i ≥ (αu
i )M
)
∧
(
(βl

i1)u ≤ ((βl
i1)u)M

)
∧ . . . ∧

(
(βl

in)u ≤ ((βl
in)u)M

)
⇒ ¬ ((ϕd)i)M.

(5.44)

Now we describe how to expand the L.H.S. of the above entailment. In
particular, we will show how the conflict functions on abstract curves
relate to the L.H.S.

1.
(
αu

i
≥ (αu

i
)M
)

is a tautology as the input arrival curve of the
application is independent of M. This leads to the empty conflict
function of αu

i
as in (5.29).

2. If for some j, βi j is the full resource availability of some processor
Pa, then we have the following condition.

(βl
a ≤ (βl

a)
M)⇒

(
(βl

i j)
u ≤ ((βl

i j)
u)M
)
. (5.45)

Further the L.H.S. can be expanded as follows.
∧

{pab | (pab 7→⊤)∈M}

pab ⇒ (βl
a ≤ (βl

a)
M). (5.46)

Hence, the conflict function on βl is as defined in (5.30).

3. If for some j, βi j is the remaining service curve of some GPC ab, then
we have the following condition.

(
(β
′l
ab)

u ≤ ((β
′l
ab)

u)M
)
⇒
(
(βl

i j)
u ≤ ((βl

i j)
u)M
)
. (5.47)

Given the input-output relation of a GPC in Theorem 5.1, we can
expand the L.H.S. of the above entailment as follows.
(
(βl

ab)
u ≤ ((βl

ab)
u)M
)
∧
(
(αu

ab)
l ≥ ((αu

ab)
l)M
)
⇒
(
(β
′l
ab)

u ≤ ((β
′l
ab)

u)M
)
.

(5.48)

The above operation from the outputs of a GPC to its inputs, is
formalized in the relation of the conflict functions in (5.28). Similarly,
we recursively apply (5.25) to (5.28) to expand the entailment.
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Thus, the entailment of (5.44) is expanded using the rules on the conflict
functions to arrive at a grounded formula on the predicates interpreted
in M. This formula is given by the conjunction of the predicates, with
appropriate polarity, in the conflict function of (ϕd)i as defined in (5.32).

Similarly, we can prove the correctness of the conflict functions of
formulas corresponding to the buffer and energy bounds. �



Part III

Exporting Variability through

Richer Guarantees





6
The Settling-Time Metric

6.1 Introduction

In some real-time CPSs, jobs may be expected to miss their deadlines,
inevitably. Neither an adaptive run-time manager nor a very accurate
analysis may prevent such deadline misses. Often such a system is
considered to be unschedulable and deemed unsuitable for an application
which requires hard timing guarantees. We argue that such systems merit
greater attention and that richer guarantees must be defined to quantify
their behavior. To this end, we propose the settling-time metric in this
chapter.

The focus on richer guarantees is motivated by the satisfaction of two
assumptions: One, if the deadline misses are only seldom observed, and
two, if the application can tolerate a certain number of deadline misses
and still guarantee correct functionality. We discuss these two reasons
briefly.

• Deadline misses may seldom be observed in CPSs where the timing
models exhibit a dual nature: They conform to a nominal model at
most times, which is violated when certain rare-events occur. An
example is the dependence of execution time on the cache contents.
The execution time of a job can be exceptionally higher with a
“cold cache”, which is encountered during the first instance of the
task. Consequently, it is plausible that the first few jobs miss their
deadlines while the others do not. Another example of a rare-event
is the interference from an infrequent task such as a failure recovery
mechanism or a garbage collector.



108 Chapter 6. The Settling-Time Metric

• A class of real-time applications can tolerate a certain number
of deadline misses and still guarantee correct functionality. As
an example consider networked control systems (NCSs) where a
controlled system, also called a plant, cannot be guaranteed to
be stable if the (end-to-end) delay between sensing and actuating
always exceeds a specified relative deadline. However, the plant can
remain stable even if the delays of some of the control signals exceed
the deadline. Indeed, it has been shown that the patterns of deadline
hits and misses which guarantee a particular type of stability, called
exponential stability, form a regular language [WA07].

In both the above cases, it is essential that we provide hard guarantees.
For instance, however seldom, the WCET with a cold cache must be
analyzed and bounded. Similarly, for a NCS the worst-case pattern of
deadline hits and misses must be identified and checked to guarantee
plant stability. Thus, while we aim to extend the schedulability guarantee,
we cannot lose the ability to provide hard timing guarantees to verify
the resultant CPSs. This invalidates the use of stochastic approaches
which guarantee metrics such as average failure rates [BBB03], consider
probabilistic execution times [TDS+95], or probabilistic arrival times
[Jia06].

A closely related stream of research is the study of overload in real-
time scheduling. An overload is said to occur when the system capacity
is inadequate to meet the demand, and can result in deadline misses.
Overloads are not anticipated but may occur exceptionally during run-
time. Different metrics have been proposed to quantify performance
during an overload. One approach is to maximize the cumulative value
function [BPB+00, BSS95], where the value function maps the finish time
of a job to a certain value or reward. Other works have considered the firm

model wherein a job finishing after its deadline has zero value. For the firm
model the effective processor utilization (EPU) has been studied [BH97].
The EPU is the fraction of time the resource spends executing jobs which
finish on or before their deadlines. Another metric is the (m, k)-firm
guarantee, which specifies that at least m jobs out of any k consecutive
jobs must meet their deadlines [HR95]. This was generalized to consider
more intricate patterns in [BBL01]. Different schedulers have been studied
to maximize these proposed metrics.

A constant factor in these and related works is the assumption that
the overload persists. For instance, an overload caused by a higher than
expected execution time of a task is assumed for all jobs of that task.
Under this setting, the challenge is to monitor the incidence of overload,
and if an overload occurs to adapt the schedule to maximize the metric of
interest.
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Fig. 6.1 Illustration of settling-time. Different traces of a property of interest are plotted over
time. A rare-event occurs at time ta. In response, in some traces, the property moves
outside the acceptable range. However, after time tb, for all the traces the property is
again within the acceptable range. The settling-time then is (tb − ta).

In contrast, we interpret overload as caused due to rare-events. The
rare-events and their effects are assumed to be transient. In the absence
of rare-events the system is not under overload and works nominally,
wherein no deadlines are missed. If a rare-event occurs, deadlines
may be missed, but only until a certain time. Two rare-events must be
separated by a minimum inter-arrival time. In other words, we argue for
the deliberate separation of the timing model into two parts: a nominal
model which is satisfied most of the time, and a rare-event model which
can occur infrequently but with bounded minimum inter-arrival times.
This careful separation can isolate the rare and transient conditions under
which deadlines may be missed. As discussed, we believe a transient
model better models the platform and application variabilities in real-
time CPSs.

Our viewpoint is motivated from control systems, where the effect
and response to incident disturbances are studied. More specifically a
controlled system, also called a plant, is designed to remain in a desirable
stable state. If certain disturbances arise, the plant may be evicted out of
the stable state. Then it is of interest to understand how long the plant
would take to return to its stable state. This duration is referred to as
the settling-time. For a generalized setting, we visualize the notion of
settling-time in Figure 6.1. Indeed, the settling-time depends on both the
plant dynamics and the disturbance itself. Furthermore, in the presence
of variability, the computation of settling-time must consider all possible
system traces.
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6.1.1 Contributions

Deriving from this analogy to a control system, we define settling-
time for a real-time system as the longest time for which jobs can miss
their deadlines after the occurrence of a rare-event. A rare-event could
be because of higher than expected execution demand or lower than
expected resource availability. We characterize both these classes of
rare-events within the proposed Rare Events with Settling-Time (REST)
framework. In the REST framework, execution demand and resource
availability are modeled in the abstract interval domain proposed in
Network Calculus [LBT01], which can adequately model variability.

For the REST framework, we provide an analytical method to derive
the settling-time for a single task. We also compute overshoot metrics
such as the maximum tardiness and the maximum number of jobs which
can miss their deadline after the occurrence of a rare-event.

We extend the analysis to multiple tasks scheduled with fixed-priority
and EDF schedulers. We prove that the EDF scheduler optimally
minimizes settling-time, independent of the time and properties of a rare-
event. This extends the known optimality of the EDF scheduler under
schedulability [LL73], but it counters the observed poor performance
of EDF scheduler under persistent overload [Loc86]. We also show
that the Rate-Monotonic (RM) priority assignment is the optimal choice
for periodic implicit deadline task-sets, again extending the known
optimality under schedulability. However, this optimality does not
extend to task-sets with explicit deadlines.

The rest of the chapter is organized as follows. In Section 6.2 we formally
define rare-events and settling-time. In Section 6.3 we compute the
settling-time for the defined rare-event model for a single task. We extend
this to multiple tasks scheduled with an EDF scheduler or a fixed-priority
scheduler in Section 6.4. Finally, we summarize in Section 6.5 and include
proofs of the results in an appendix.

6.2 Rare-Events with Settling-Time (REST)

In this section, we formally define rare-events and settling-time. We refer
to this as the rare-events with Settling-Time (REST) framework.

In the REST framework, the timing properties of the CPS are specified
by two models, namely a nominal model and a rare-event model. The
nominal model characterizes the standard parameters such as bounds
on inter-arrival times of a task and its execution time. In our specific
case, the nominal model specifies the execution demands of tasks with
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Time

≤ ts ≤ ts

≥ pre

Deadline met?

Yes

No

Rare-events

Fig. 6.2 Definition of the REST framework. Rare-events can occur with a minimum inter-arrival
distance of pre time units. The deadlines of jobs may be missed only up to ts time units
after the start of the rare-event.

an arrival curve denoted as α, and the resource availability with a service
curve denoted as β. These are as defined in Appendix A.2. We assume
that the relative deadlines of all jobs of a task are the same, denoted as
D. This model is nominal in the sense that it is satisfied often. However,
under some exceptional conditions, a rare-event can occur which deviates
the timing properties from the nominal model, and is characterized by
the rare-event model. We will subsequently characterize different kinds
of rare-events. Two rare-events must be separated by at least pre time
units.

Under exclusive conformance of the nominal model, all desired timing
properties are satisfied. In this chapter, we only consider the property of
all jobs meeting their respective deadlines. Thus, if the nominal model
is always satisfied, all jobs meet their deadlines. However, when and
after a rare-event occurs, one or more jobs may miss their deadlines. The
settling-time denoted ts is the maximum length of time up to which jobs
can miss their deadlines after the occurrence of a rare-event. The REST
framework is visualized in Figure 6.2.

For given nominal and rare-event models, if ts = 0 then we say that
the real-time system is unconditionally stable. On the other hand, if ts ≥ pre
then we say that the real-time system is unstable. In interesting cases, we
expect conditionally stable systems where ts < pre. The aim in this chapter
is to compute ts for such cases. With this assumption, it suffices to focus
on the effect of a single rare-event on the settling-time. We will follow
this convention throughout the rest of the chapter. In the remainder of
this section, we define two specific kinds of rare-events, namely demand

overflow and supply shortage rare-events.

6.2.1 Demand Overflow

A demand overflow rare-event is a rare-event where the execution
demand of a task exceeds its nominal model. This could be because
of two reasons: (a) a job may arrive with a larger than expected execution
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demand, or (b) additional unexpected jobs may arrive. Rare-events are
instantaneous, i.e., all jobs exceeding their execution demand arrive at
the same time instant and/or all additional jobs arrive at the same time
instant. Recall also that we only analyze the incidence of a single rare-
event. Finally, we assume that any additional jobs caused by the rare-
event of a task have the same relative deadline as the other jobs of that
task.

A demand overflow rare-event is characterized by an execution
demand, denoted as Rre, which is the upper-bound on the additional
cumulative execution demand introduced by the rare-event. Consider
a task with an arrival curve α and a demand overflow rare-event with
execution demand Rre. Let a rare-event occur at time t∗. Let R(t) and R̂(t)
denote the nominal and cumulative (sum of nominal and rare-event)
arrival functions of the task.1 Then, R̂(t) must satisfy the following
conditions.

R̂(t) = R(t), 0 ≤ t ≤ t∗, (6.1)

≤ R(t) + Rre, t > t∗. (6.2)

Just as R(t) is abstracted by the arrival curve α(∆), we can abstract R̂(t)
by the the rare-event-aware arrival curve denoted α̂. This is formalized as
follows.

R̂(t + ∆) − R̂(t) ≤ α̂(∆), ∀ t,∆ ≥ 0. (6.3)

In the following, we show how to compute a valid α̂.

Theorem 6.1: The rare-event-aware arrival curve α̂ is given in terms of the

nominal arrival-curve α and the rare-event execution demand Rre as

α̂ = α + Rre. (6.4)

As in other chapters, the abstraction of arrival functions to arrival
curves enables a compact representation. In particular, (6.4) is defined
independent of when the rare-event occurs. We illustrate this with an
example.

Example 6.1: Consider a periodic task with period and relative deadline of 5.

Nominally, every fourth job has a WCET of 2 and every other job has a WCET of

1. In addition, the task can experience a demand overflow rare-event, whereupon

4 additional jobs with WCET 0.5 arrive.

For the above example, we plot the arrival curve of the task in Figure 6.3(a).

1 We make a particular choice with notations. We denote nominal values, such as
arrival and service functions and curves, by their standard notations. The rare-event-
aware arrival and service functions and curves are denoted with a hat on top.
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(a) A demand overflow rare-
event from Example 6.1. The
nominal arrival curve is shown
in a solid red line, and the
rare-event-aware arrival curve is
shown in a dashed blue line.
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(b) A supply shortage rare-event
from Example 6.2. The nominal
service curve is shown in a solid
red line, and the rare-event-aware
service curve is shown in a dashed
blue line.

Fig. 6.3 Examples of demand overflow and supply shortage rare-events.

6.2.2 Supply Shortage

Deviation from the nominal model, and subsequent deadlines misses, can
also be due to a reduced resource availability. For instance, if a higher
priority task has a demand overflow rare-event, it can reduce the resource
available to a lower priority task. In such cases, the lower priority resource
has a supply shortage rare-event. This rare-event is said to occur at the
same time instant when the causer demand overflow rare-event occurs.

A supply shortage rare-event is characterized by a shortage, denoted
as Cre, which is the upper-bound on the reduction in the available service
of the resource. Consider a resource with a resource curve β and a supply
shortage rare-event with shortage Cre at time t∗. Let C(t) and Ĉ(t) denote
the nominal and reduced (nominal minus the effect of the rare-event)
service functions of the resource. Then, Ĉ(t) must satisfy the following
conditions.

Ĉ(t) = C(t), 0 ≤ t ≤ t∗, (6.5)

≥ (C(t) − Cre)↑, t > t∗, (6.6)

where

f ↑(t) = max
s∈[0,t]

f (s).

Just as C(t) is abstracted by the service curve β(∆), we can abstract Ĉ(t) by
the rare-event-aware service curve denoted β̂. This if formalized as follows.

Ĉ(t + ∆) − Ĉ(t) ≥ β̂(∆), ∀ t,∆ ≥ 0. (6.7)

In the following, we show how to compute a valid β̂.
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Theorem 6.2: The rare-event-aware service curve β̂ is given in terms of the

nominal service-curve β and the rare-event shortage Cre as

β̂ = (β − Cre)↑. (6.8)

We illustrate this with an example.

Example 6.2: Consider a TDMA resource of slot length 2.5 reserved in a period

of 5. Let a low-level processor interrupt the working of the TDMA cycle for a

total of 7 time units. The maximum shortage in this time is Cre = 4.5 time units.

For the above example, we plot the service curve of the resource in
Figure 6.3(b).

6.3 Analysis of the REST model for a Single Task

In this section, we present the analysis of the REST framework for a
single task and resource. We compute the defined settling-time metric
for both the proposed models of rare-events. Further, we will define and
compute two more metrics which characterize the behavior during the
settling-time.

In the analysis we consider a single rare-event which could be either a
demand overflow or a supply shortage. To homogenize the presentation
for both kinds of rare-events, we always use the rare-event-aware curves
α̂ and β̂. For a demand overflow rare-event we set β̂ = β. Similarly, for a
supply shortage rare-event we set α̂ = α.

6.3.1 Computation of Settling-Time

We begin by defining a function which will be subsequently used to
express the settling-time.

Definition 6.1: (Function TS) Function TS with three arguments α, β, and D

is defined as

TS(α, β,D) = sup{∆ ≥ 0 : α(∆ −D) > β(∆))}. (6.9)
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In words, TS(α, β,D) is the smallest argument after which α shifted to
the right by D, is always less than β. If α is the arrival curve of a task and
D is the relative deadline of all jobs of that task, then shifting α to the right
yields the demand bound function, as defined in Definition 2.1. Thus, TS
can be considered the maximum interval length after which the demand
bound function does not exceed the service curve.

With the above definition we can now present the result on computing
the settling-time, which is denoted as ts.

Theorem 6.3: (Settling-Time of a Single Task) The settling-time of a task,

denoted as ts, with arrival curve α̂ and deadline D, served by a resource with

service curve β̂ is given by

ts = TS(α̂, β̂,D). (6.10)

From the above result, settling-time is derived from the simple TS
operation on the rare-event-aware curves and the relative deadline.
Furthermore, the computation is homogeneous for both kinds of rare-
events. Finally, the computation is tight for the given abstraction of arrival
and service curves. In other words, if every arrival function modeled by
α̂ and every service function modeled by β̂ can be observed, then there is
a trace that has a deadline miss ts time-units after a rare-event.

We illustrate this computation for the two earlier examples. Consider
the task model from Example 6.1 and the resource model from
Example 6.2. We analyze two different cases, one with the demand
overflow rare-event specified in Example 6.1 and the other with supply
shortage rare-event specified in Example 6.2. For both these cases,
we compute the settling-time according to (6.10). This is illustrated in
Figure 6.4.

6.3.2 Computation of Overshoot

Apart from settling-time, control engineers are interested in other metrics
as well. For instance, it is often useful to characterize by how far the
property deviates from the acceptable range after a disturbance. This
is referred to as the overshoot. For a real-time CPS, overshoot may
be measured in different ways. We propose two metrics, namely the
maximum tardiness of all jobs and the maximum number of jobs which
can miss their deadlines after a rare-event.
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Fig. 6.4 Computation of settling-time for demand overflow and supply shortage rare-events.
The shifted arrival curve is shown in dashed blue lines, and the service curve is shown
in a solid red line.

Maximum Tardiness

For a job that misses its deadline, tardiness is the difference between its
finishing time and its absolute deadline. The maximum tardiness for the
REST framework, denoted as T̂, can be derived as follows.

Theorem 6.4: (Maximum Tardiness) The maximum tardiness, denoted as T̂,

of a task with arrival curve α̂ and deadline D which is served by a resource with

service curve β̂ is given by

T̂ = D̂ −D, (6.11)

where D̂ is the worst-case response time of any job in the presence of a rare-event

given as

D̂ = Del(α̂, β̂). (6.12)

In the above equation the Del operator is as defined in Appendix A.3. In
words, the worst-case delay of a job with a rare-event is the maximum
horizontal distance between the two curves α̂ and β̂. Then, tardiness is
simply the difference between this delay and the given relative deadline
of the task.

Maximum Number of Deadline Misses

Another metric of interest is the maximum number of jobs which miss
their deadlines during the settling-time, denoted as N̂. So far, our model
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of the task, given by the arrival curve, specifies how long jobs need to
execute but not how many jobs need to execute. For instance, a large
execution demand could either be a single long job or be broken into
many small jobs. To compute N̂, we need bounds on the number of jobs
that arrive both nominally and those due to rare-events. We define them
as follows.

1. The nominal arrival curve of the task α is decomposed as

α(∆) = γ(α(∆)), (6.13)

where γ(n) is the maximum execution demand of any n consecutive
jobs, and α(∆) is the maximum number of jobs that can arrive in any
interval of length ∆ [Wan06].

2. A demand overflow rare-event is characterized by Nre which is the
upper-bound on the number of additional jobs which can arrive.
As before, the cumulative execution demand due to the rare-event
cannot exceed the parameter Rre. For a homogeneous presentation,
for a supply shortage rare-event we set Rre = Nre = 0.

Given these additional parameters, computing N̂ is not immediate.
For instance, (α(ts) + Nre) is not a correct value of N̂. It specifies the
maximum number of jobs which arrive within the settling-time. Instead,
we are interested in the number of jobs which finish within the settling-
time. Furthermore, some jobs finishing within the settling-time may
meet their deadlines, and must not be counted in N̂. Our solution to this
problem, is to define a critical trace. Then by simulating this trace and
observing the number of jobs missing their deadlines we obtain N̂. We
first define this critical trace.

Definition 6.2: (Critical Trace) The critical trace is a specific trace of a REST

framework, which defines a sequence of job arrivals, the execution demand of each

job, and the service function as follows.

1. The rare-event occurs at time 0.

2. Within any interval [0, t), exactly (α(t) + Nre) jobs (including nominal

and rare-event jobs) arrive.

3. For any n ≥ 0, the cumulative execution demand of the first (n+Nre) jobs

(including nominal and rare-event jobs) is exactly (γ(n) + Rre).

4. If multiple jobs arrive at the same time, then the jobs are queued and are

executed in decreasing order of their execution demands.
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Fig. 6.5 Computation of overshoot for demand and supply rare-events. The input arrival
function is shown in dashed blue lines, and the output arrival function is shown in
a solid red line. Arriving jobs are marked with a circle on the input arrival function,
while finishing jobs are marked with a square on the output arrival function.

5. The total service available in any interval [0, t) is exactly β̂(t).

In words, the critical trace is the input trace when the rare-event
occurs at time 0, the jobs arrive as early as possible and with the highest
accumulated workload since time 0, and the resource provides the lowest
accumulated service since time 0. In the following result we show that
this trace leads to the highest number of deadline misses.

Theorem 6.5: (Maximum Number of Deadline Misses) The maximum

number of jobs which miss their deadline after the occurrence of a rare-event is

equal to the number of jobs which miss their deadline for the critical trace defined

in Definition 6.2.

With a rare-event at time 0 in the critical trace, deadlines are missed
only in the interval [0, ts]. Hence, the critical trace is simulated only in
this interval. Interestingly, the worst-case delay D̂ is also obtained as the
largest response-time of a job in the critical trace. We illustrate this with
an example.

For the rare-events detailed in Examples 6.1 and 6.2, we show the
input arrival functions R̂(t) of the critical traces in Figure 6.5. The critical
traces also identify input service functions Ĉ(t), which are not shown. We
simulate the critical traces and obtain the output arrival functions R̂′(t)
as defined in Appendix A.3. The output arrival functions are also shown
in Figure 6.5. Notice that in either case, the rare-event occurs at time
0, jobs arrive as early as possible, and cumulative service function is as
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small as possible. With these simulations, we compute D̂ and N̂. Notice
that for both examples, not all jobs arriving within the settling-time miss
their deadlines. Furthermore, for the demand overflow rare-event shown
in Figure 6.5(a), not all jobs finishing within the settling-time miss their
deadlines.

6.4 Analysis of the REST model for Multiple

Tasks

Thus far, we analyzed the REST framework for a single task. As this
task with modeled with arrival curves and the resource by service curves,
the analysis can be composed modularly to analyze larger systems as
proposed in Modular Performance Analysis (MPA) [Wan06]. However, it
is instructive to explicitly analyze multiple tasks scheduled by common
schedulers. In particular, in this section we consider the fixed priority
and EDF schedulers.

In both cases, we consider a task-set τ = {τ1, τ2, . . . , τn}. Each task τi has
a nominal arrival curve αi and a relative deadline Di. We consider a single
rare-event, i.e., either one of these tasks have a demand overflow rare-
event, or the resource has a supply shortage rare-event. The settling-time
is defined as the maximum of the settling-time of all tasks.

6.4.1 Fixed Priority Scheduler

We assume a preemptive fixed priority scheduler where the priority of
task τi is higher than that of τ j if and only if i < j. In the following result,
we adapt Theorem 6.3 to consider such a fixed priority scheduler.

Theorem 6.6: Consider a REST framework with a resource with service curve

β̂. Under a preemptive fixed-priority scheduling policy, the resource serves the

task-set τ. Then, the settling-time is given as

ts = max
i∈1,2,...,n

(ts)i

where,

(ts)i = TS


α̂i,
(
β̂ −
∑

j<i

α̂ j

)↑
,Di


 . (6.14)

The above result is a direct extension of Theorem 6.3. The settling-
time is the maximum of the settling-times of all tasks. For each task, we
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A
1

B
1 B

1

e A
2 B

2

e
B

3

e A
3

B
2

B
3

A
4 C

1 C
2

A
5

B
4 C

3
A

6
B

5 C
3

ts = 12

A
1 A

2
A

3
A

4 A
5

A
6

B
1 B

1−3

e B
2

B
3

B
4 B

5

C
1 C

2
C

3
C

4

(b) An example trace where deadlines are missed for the longest period of time, which
is 12. Job arrivals are shown with upward arrows. The super-scripts on the task names
indicate the job index. Rare-events are referenced with a sub-script e. Each job executes
for 1 time unit. Jobs which miss their deadline are shown with a shaded box.

Fig. 6.6 Computation of settling-time for the task-set in Example 6.3 for a fixed priority scheduler.

compute the effective service curve of that task using known results from
Modular Performance Analysis (MPA) [Wan06]. Note that the settling-
time of a task does not depend on the properties of all tasks with a lower
priority. This gives an inherent degree of isolation amongst the tasks. We
illustrate this with the following example.

Example 6.3: Consider three periodic tasks A, B, and C, with periods and

relative deadlines 3, 4, and 5, respectively. The WCET of each task is 1. Consider

the priority assignment A > B > C. Task B exhibits a demand overflow rare-

event where up to 3 additional jobs can arrive with WCET of 1.

For the above example, we can verify that all deadlines are met for
the nominal models of the tasks. With the demand overflow rare-event
on task B, we do not expect any deadline misses for the higher priority
task A. But jobs of both tasks B and C can miss their deadlines. We apply
Theorem 6.6 for this example. The resultant computation reveals that
task C has the highest settling-time of 12. We illustrate this computation
in Figure 6.6(a). In Figure 6.6(b), we show an example trace where the a
deadline is missed 12 time-units after the rare-event.
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6.4.2 EDF Scheduler

Now we consider an Earliest Deadline First (EDF) scheduler, which uses
the absolute deadlines of each job to prioritize the execution. The settling-
time is given by the following result.

Theorem 6.7: Consider a REST framework with a resource with service curve β̂.

Under the EDF policy, the resource serves the task-set τ. Then, the settling-time

is given as

ts = TS



∑

τi∈τ

α̂i(∆ −Di), β̂, 0


 . (6.15)

The first argument of the function TS in (6.15) is the demand bound
function of the task. Again, the settling-time can be interpreted as the
maximum interval length at which the demand bound function exceeds
the service curve.

In contrast to the fixed priority scheduler, for the EDF scheduler we do
not compute task-specific settling-times. This lack of task-specific bounds
has been observed as the “domino effect” where persistent overload can
lead to a larger number of deadline misses with an EDF scheduler [Loc86],
and perform worse than even “random” scheduling [JLT85].

We illustrate this computation for Example 6.3 with an EDF scheduler.
As shown in Figure 6.7(a), the settling-time is 7. We plot in Figure 6.7(b) an
example trace where a deadline is missed 7 time-units after the rare-event.

6.4.3 Settling-Time as a Scheduling Metric

In real-time CPSs, the primary question has been whether a task-
set is schedulable or not. Indeed a clear notion of optimality under
schedulability is defined. The optimality of the EDF scheduler is well
known [LL73].

In the presence of rare-events which cause deadline misses, schedula-
bility is not guaranteed. However, two non-schedulable systems can
be compared by their settling-times, where a lower settling-time is
preferable. Thus, settling-time can be a useful scheduling metric.

Optimal Scheduling Algorithm

With this backdrop, it is interesting to ask whether there is a scheduling
algorithm which is optimal in terms of minimizing the settling-time. We
restrict our attention to schedulers which are agnostic of the occurrence
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(b) An example trace where deadlines are missed for the longest period of time, which
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Fig. 6.7 Computation of settling-time for the task-set in Example 6.3 with an EDF scheduler.

of rare-events. In other words, the scheduler does not monitor if a rare-
event occurred and adapt accordingly. Within this class of schedulers, we
show in the following result that the EDF scheduler is optimal.

Theorem 6.8: Under the REST framework, we are given a task-set with the

arrival curves and relative deadlines of each task, the service curve of the resource,

and the characteristics of a rare-event. Then, scheduling the tasks with an EDF

scheduler optimally minimizes the settling-time.

The above result is positive. Under conformance to the nominal
models, the EDF scheduler meets all deadlines with the minimal required
resource utilization. In addition, when rare-events occur, the EDF
scheduler optimally minimizes the settling-time. Indeed, this optimality
holds independent of when the rare-event occurs, whether it is a demand
overflow or a supply shortage rare-event, or what its parameters are. This
result is illustrated in Figures 6.6 and 6.7 for the task-set in Example 6.3.
The settling-time for the EDF scheduler is smaller than that with the
fixed-priority scheduler.
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Priority ts (ts)A (ts)B (ts)C

A > B > C 12 0 6 12

A > C > B 14 0 14 0

B > A > C 12 7 0 12

B > C > A 14 14 0 6

C > A > B 14 0 14 0

C > B > A 14 14 5 0

Tab. 6.1 Settling-time for different priority assignments for task-set in Example 6.3.

Optimal Priority Assignment

In certain CPSs it is desirable to immunize certain tasks from potential
demand overflow rare-events in other tasks, even at the expense of a
larger system-wide settling-time. As we observed, this is possible by
carefully assigning priorities for a fixed-priority scheduler: a task is not
affected by demand overflow rare-events of lower priority tasks. Hence, it
is interesting to identify the effect of priority assignments on the settling-
time.

We illustrate this with the task-set of Example 6.3. For different priority
assignments, we verify that the task-set is schedulable for the nominal
models. Then, for each priority assignment, we identify the task-wise
settling-times using Theorem 6.6. We list the obtained values in Table 6.1.

The (joint) smallest value of the settling time is obtained for the Rate-
Monotonic (RM) priority assignment (A > B > C), i.e., tasks with shorter
periods have higher priorities. This prompts the question if the RM
priority assignment yields the fixed-priority scheduler with the smallest
settling-time. Indeed, we show this is true for periodic tasks with implicit
deadlines, i.e., with relative deadlines equal to periods. To this end, we
first derive the following result on how to change priorities of jobs without
increasing the settling-time.

Lemma 6.1: Given is a task-set of periodic tasks with implicit deadlines. The

settling-time is computed for some demand overflow or supply shortage rare-

event. For a given priority assignment, let τa and τb be two tasks with consecutive

priorities, such that τa has the higher priority. If the period of τa is larger than that

of τb, then swapping the priorities of τa and τb will not increase the settling-time.

This result can be verified for the settling-times listed in Table 6.1. For
instance the result holds for the two pairs of priority assignments: (a)
A > B > C and A > C > B, and (b) B > A > C and B > C > A. Indeed,
starting from any priority assignment with a series of swaps, as discussed
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Fig. 6.8 Computation of settling-time for two priority assignments of the task-set in Example 6.4.
The first TDMA slot is unavailable because of the supply shortage rare-event at time
0. The first jobs of both periodic tasks arrive at time 0. The job index is shown with
a super-script. Jobs missing deadlines are shown with dashed red lines. The priority
assignment E > D has the smaller settling-time.

in the lemma, we can reach the RM priority assignment. Hence, the
RM priority assignment is guaranteed to be optimal as formalized in the
following result.

Theorem 6.9: Under the REST framework, we are given a periodic task-set with

implicit deadlines, the service curve of the resource, and the characteristics of a

rare-event. The tasks are scheduled with a fixed priority scheduler. Then the Rate

Monotonic (RM) priority assignment optimally minimizes the settling-time.

The above result does not extend to periodic tasks with explicit
deadlines, i.e., relative deadlines which are different from the respective
periods. This is shown in the following example.

Example 6.4: Consider a TDMA resource with slot size 3 and period 5. This

resource has a supply shortage where it is unavailable for 5 time-units, i.e., a

rare-event with Cre = 3. Let this resource schedule two periodic tasks D and E

with periods and equal to 6 and 25, respectively. The relative deadlines of the

tasks are 6 and 20, respectively. The WCET of both tasks is 2.

For the above example consider the two possible priority assignments,
(a) D > E, and (b) E > D. The settling-times computed using Theorem 6.6
for these priority assignments are 23 and 19, respectively. We plot the
critical traces for these two priority assignments in Figure 6.8. As D has
the smaller period and a smaller deadline, the RM priority assignment is
D > E. This assignment has the higher settling-time. For this example the
RM priority assignment is equivalent to the Deadline Monotonic (DM)
priority assignment which assigns the higher priority to the task with the
smaller relative deadline. Thus, the RM and DM priority assignments
do not optimally minimize the settling-time for periodic task-sets with
explicit deadlines.
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To conclude, for the REST framework it is pertinent to consider
settling-time as a scheduling metric. The optimality of the EDF scheduler
for this metric generalizes its optimality under schedulability. This is
a positive result and counters the observed poor performance of EDF
under persistent overload. For periodic tasks with implicit deadlines
the RM priority assignment is optimal within the class of fixed-priority
schedulers.

6.5 Summary

We proposed settling-time as a metric to quantify timing properties
of CPSs which are unschedulable. Such a metric requires a careful
separation of nominal models from rare-event models. We argued that
this separation is motivated by the variability in both the platforms and
applications in CPSs. With such a dual model, settling-time is the duration
for which the deadlines may not be met after a rare-event. In other words,
there is outage in providing the timing guarantees, but for a bounded
duration of time.

We showed how to compute the settling-time for a single task, and
for multiple tasks scheduler with EDF and fixed-priority schedulers. We
found the EDF scheduler to optimally minimize the settling-time. For
fixed-priority schedulers, Rate Monotonic (RM) priority assignment is
optimal for periodic tasks with implicit deadlines.

Appendix

Proof of Theorem 6.1

Let the demand overflow rare-event occur at some time t∗. Let the nominal
and rare-event aware arrival functions be R(t) and R̂(t) respectively. Then,
R̂(t) satisfies the constraints (6.1) and (6.2). Then, we have the following
conditions.

R̂(t + ∆) − R̂(t) = R(t + ∆) − R(t) t∗ < [t, t + ∆], (6.16)

≤ R(t + ∆) − R(t) + Rre else. (6.17)

Given that R(t + ∆) − R(t) ≤ α(∆) for any t,∆ ≥ 0, the R.H.S. of the above
constraints is upper-bounded by α(∆) + Rre. Thus, α̂ = α + Rre. �

Proof of Theorem 6.2

A supply shortage rare-event with shortage Cre can be thought of as a
reduction is supply due to a higher priority task with an arrival curve α
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given as below.

α(∆) = Cre, ∆ > 0. (6.18)

Then, from Modular Performance Analysis (MPA) [Wan06] we know that
the available service curve is given as follows.

β̂(∆) = sup
0≤λ≤∆

{β(λ) − α(λ)}, ∀ ∆ ≥ 0. (6.19)

= (β − Cre)↑. (6.20)

�

Proof of Theorem 6.3

We prove this with a contradiction. Let a rare-event occur at time t∗. Let
a job finishing at time t > t∗ + ts miss its deadline, where ts is as defined
in (6.10). Let R̂ and Ĉ denote any rare-event-aware arrival and service
functions. Let u denote the latest time before t when the task-queue was
empty.
Case (a): u > t∗ and Ĉ(u) > Ĉ(t∗). The empty buffer after t∗ marks the end
of the effect of a demand-overflow rare-event. The increase in the service
function after t∗ marks the end of the effect of supply-shortage rare-event.
Thus, in every interval after u, the nominal arrival and service curves
apply, and no job can miss its deadline.
Case (b): u ≤ t∗ or Ĉ(u) = Ĉ(t∗). Define u′ = min(u, t∗). In the busy-
interval2 [u′, t] the accumulated service provided by the resource satisfies
Ĉ(t) − Ĉ(u′) ≥ β̂(t − u′). Thus, the output arrival function R̂′ at time t is
given as below.

R̂′(t) = R̂(u′) + Ĉ(t) − Ĉ(u′) (6.21)

≥ R̂(u′) + β̂(t − u′). (6.22)

Further, the arrival function at time t satisfies the following.

R̂(t −D) ≤ R̂(u′) + α̂(t − u′ −D). (6.23)

Combining (6.22) and (6.23) we have the following condition.

R̂′(t) − R̂(t −D) ≥ β̂(t − u′) − α̂(t − u′ −D). (6.24)

From the definition of ts and because t − u′ ≥ t − t∗ > ts, the R.H.S. of the
above equation is positive. Thus, R̂′(t) > R̂(t − D) which contradicts the
supposition that the job finishing at t has a delay larger than D. �

2An interval is said to be busy if there are pending jobs in the task-queue throughout
the interval.



6.5. Summary 127

Proof of Theorem 6.4

This follows from the definition of Del from Appendix A and the
definition of tardiness. �

Proof of Theorem 6.5

Let R̂∗ and Ĉ∗ denote the rare-event-aware arrival and service functions of
the critical trace defined in Definition 6.2. Let a rare-event occur at time
t∗. Let R̂ and Ĉ be any rare-event-aware arrival and service functions,
respectively. Let R̂′ be the corresponding rare-event-aware output arrival
function. Let the last job missing its deadline finish at time t > t∗. Let u

be the latest time, before t, when the task-queue was empty. We study
the interval [u, t]. From the definition of the critical trace, we have the
following conditions.

R̂(s) − R̂(u) ≤ R̂∗(s − u), ∀ s ∈ [u, t], (6.25)

Ĉ(s) − Ĉ(u) ≥ Ĉ∗(s − u), ∀ s ∈ [u, t]. (6.26)

Starting from an empty task-queue at time u, the arrival function R̂ does
not exceed the arrival function in the critical trace, and the service function
Ĉ does not fall below the service function of the critical trace. Thus, the
number of deadline misses cannot exceed that in the critical trace. �

Proof of Theorem 6.6

For each task τi we can compute the effective rare-event-aware arrival and
service curves. From MPA, the effective service curve of a fixed-priority
task τi is given as

β̂i(∆) = sup
0≤λ≤∆

β̂(λ) −
∑

j≤i

α̂ j(λ)

 . (6.27)

Given that the service curves are super-additive and arrival curves are
sub-additive [LBT01], the above equation can be simplified as follows.

β̂i =


β̂ −

∑

j≤i

α̂ j




↑

. (6.28)

Then, by applying Theorem 6.3 we arrive at (6.14). �

Proof of Theorem 6.7

We show this with a contradiction. Let a rare-event occur at time t∗ and
let a job finishing at time t > t∗+ ts miss its deadline, where ts is as defined
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in (6.15). Let u denote the latest time, before t, when the task-queue was
empty.
Case (a): u > t∗ and Ĉ(u) > Ĉ(t∗). The empty buffer after t∗ marks the end
of the effect of a demand-overflow rare-event. The increase in the service
function after t∗ marks the end of the effect of supply-shortage rare-event.
Thus, in every interval after u, the nominal arrival and service curves
apply, and no job can miss its deadline.
Case (a): u ≤ t∗ or Ĉ(u) = Ĉ(t∗). Define u′ = min(t∗,u). The cumulative
execution demand of all jobs with arrival time and deadline within [u′, t]
is bounded by

∑
τi∈τ
α̂i(t− u′ −Di). Since the job finishing at time t misses

its deadline we have the following condition.
∑

τi∈τ

α̂i(t − u′ −Di) > β̂(t − u). (6.29)

As t − u′ ≥ t − t∗ > ts, the above equation contradicts the definition of ts
in (6.15). �

Proof of Theorem 6.8

Let (ts)EDF denote the settling-time with the EDF scheduler. Consider the
specific trace of jobs with R̂i = α̂i for each task τi ∈ τ, and Ĉ = β̂. Then,
the cumulative execution demand of all jobs with arrival and deadline
within [0, (ts)EDF] is greater than the available service. A scheduler that is
agnostic to the occurrence of rare-events, cannot selectively drop certain
tasks. Thus, independent of the scheduler, some job will miss its deadline
at or later than time (ts)EDF. Thus, no scheduler can have a settling-time
less than that of the EDF scheduler. �

Proof of Lemma 6.1

We can equivalently write (6.14) as

(ts)i = TS



∑

j≤i

α̂i, β̂,Di


 . (6.30)

When the priorities of two tasks with consecutive priorities are swapped,
the settling-times of all other tasks remain unchanged. Thus, to show that
the settling-time does not increase after the priority swap, we only need
to show that the settling-time of the lower priority task, amongst the two
considered tasks, does not increase. In other words, we need to show that
the settling-time of τb in the original priority assignment is not smaller
than the settling-time of τa with the swapped priorities. In either case, the
first two arguments of TS in (6.30) are the same. Further, as the period of
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τa and its implicit deadline are greater than that of τb, the third argument
of TS is higher for the swapped case. It is clear to see that the function
TS is monotonically non-increasing w.r.t. the third argument. Hence, the
settling-time cannot increase due to the swapping of priorities. �

Proof of Theorem 6.9

Given any priority assignment, we can iteratively apply Lemma 6.1
to change the priorities to match the RM priority assignment without
increasing the settling-time. �
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7
Conclusions

7.1 Major Findings

The aim of this thesis was to identify the inherent complexity in
providing hard real-time guarantees for Cyber-Physical Systems (CPSs)
and to demonstrate effective solution strategies. To this end, we had the
following major findings through the thesis.

Variability in the timing models of CPSs. We argued that the timing
analysis of CPSs is more challenging than that of embedded systems.
CPSs are large, distributed, general-purpose, cross-layer and federated
systems. These properties of CPSs introduce variability in the timing
models which are essential for guaranteeing timing properties. We
illustrated this variability with several examples in this thesis.

• In the design of Demand Bound Server (DBS) we highlighted
the challenge of timing isolation amongst multiple tasks in a
distributed and federated CPS. The distributed nature introduces
timing artifacts such as jitter and burst in the input streams, while the
federated nature forces multiple applications of different criticality
levels to interfere.

• In the design of cool-shapers and in the analysis of feedback
controlled speed scaling, we highlighted the effect of actively
managing temperature of general-purpose processors. Using either
system throttling or speed scaling to manage temperature of the
processor introduces variability in the resource availability as
dictated by the heat generation and diffusion properties.
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• In the presentation of the SMT solver we underscored the
importance of simultaneously analyzing multiple designs in
efficiently optimizing large CPSs. This multiplicity translates to
models which express additional variability due to differences in
the considered designs.

• In the proposal for the metric of settling-time, we presented the
need for cross-layer objectives in CPSs. The abstraction of worst-
case delays do not always tightly express the cross-layer objectives.
Instead, guarantees which represent the variability due to rare
timing events, can be more expressive.

Templates of different solution strategies. We proposed multiple
solution strategies to handle variability in timing models of CPSs.

• In Part I of the thesis we presented the run-time managers DBS
and cool-shaper which can dynamically monitor and adapt to
variability. The commonality here was that both run-time managers
were designed modularly by composing efficient constituent units.
The composed run-time manager has a richer set of behaviors than
that of the class of constituent units. We refer to this as the behavioral

composition, which is summarized by the popular thesis of Gestalt
theory that says, “The whole is greater than the sum of the parts”.

• In Part II of the thesis we defined analysis techniques for feedback
controlled speed scaling and multiple designs embedded within a
Satisfiability Modulo Theory (SMT) solver. The commonality here
was the effectiveness of abstraction in representing and analyzing
variability. In particular, the abstraction in the interval domain was
employed to represent both critical traces for a processor with speed
scaling and the properties of incomplete models within iterations of
an SMT solver.

• In Part III of the thesis we argued for the careful separation between
the nominal behavior and the incidence of certain rare-events. Then,
timing guarantees were provided predicated on whether rare-events
occurred within a time interval of length defined as the settling-time.
Such a guarantee better represents the irregular timing requirements
in CPSs such as stability with a network control system.

Wide applicability of the interval domain abstraction. Throughout
the thesis, the presented solution strategies benefited from the applica-
bility and suitability of the abstraction of curves in the interval domain,
namely the arrival and service curves.
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• By representing the demand bound function as the shifted version
of an arrival curve, we motivated and analyzed DBSs and cool-
shapers. In particular, the class of curves which is the minimum
of multiple leaky-bucket shaping curves arose in both the design
of min-composition of SP-DBS and the optimal convex-hull cool-
shaper.

• Arrival and service curves were shown to be relevant in peak
temperature calculation first in [RYB+11]. We extended this to
consider the two common dynamic thermal management (DTM)
techniques of system throttling and speed scaling. In both cases, we
found the expressive power of arrival and service curves adequate
to analyze the worst-case properties.

• By extending the curves to abstract curves which represent multiple
designs in an SMT solver, we showed how to model uncertainty in
the speed of processors. This is enabled by monotonicity principles
satisfied by the arrival and service curves and the operators of
min/max-plus algebra.

• Finally, we showed that by simulating critical traces defined by
the arrival and services we can identify richer guarantees such as
settling-time and number of deadline misses subsequent to a rare-
event.

7.2 Outlook

We now summarize some of the promising directions of future work and
certain reservations which emanate from the findings in this thesis.

Structural composition has been a common motif in the design of
systems: Larger and more complex systems are built by composing
smaller systems. In real-time systems, an influential example of structural
composition is the use of time-triggered architectures [KB03]. The DBS
and the cool-shaper are examples of an alternate kind of composition
where the result of composition is not an enlargement, but an enriching
of behavior. It is a relevant question whether behavioral composition has
examples in other settings.

Feedback control is a backbone in the design of majority of engineering
systems, and benefits from a good base of developed theory. In the timing
analysis of feedback controlled speed scaling we illustrated that worst-
case properties can be derived in the presence of such control. It is
an open question if such an analysis can be extended to other settings.
First examples are the feedback control of resource availability based on
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the currently buffered queue of pending events or the remaining battery
capacity.

SMT solvers represent a practical success of formal methods. We
showed that this extends to the theory of Real-Time Calculus for the
specific speed assignment problem. A natural question is its relevance
in other design problems, such as configuration of schedulers (priority
or bandwidth assignments) and binding decisions (tasks to processors or
data to memory banks).

Cross-layer research is a defining forcing function in the development
of CPSs. How to express and analyze the impact of timing properties
of software blocks on higher system-level goals is an interesting research
question. First examples of such goals are stability of a control plant and
the information sensed with a deployed wireless sensor network.

In spite of the above positives, there is ground for expressing reasonable
skepticism. Providing hard timing guarantees critically depends on
the availability of data to populate required models such as the arrival
and service curves. In this thesis, we did not focus on this challenge.
Furthermore, the very properties which complicate analysis of CPSs may
lower the relevance of worst-case analysis: In contrast to embedded
systems which are carefully designed with formal techniques, large
and open CPSs may be designed with engineering rules-of-thumb. In
such CPSs, the certification of guaranteed properties may be more of an
engineering and even societal challenge, than a theoretical challenge.
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Real-Time Calculus

A.1 Min-Plus/Max-Plus Algebra

The min-plus convolution ⊗ and the min-plus deconvolution ⊘ of two
functions f and g are defined as:

( f ⊗ g)(∆) = inf
0≤λ≤∆

{ f (∆ − λ) + g(λ)}, (A.1)

( f ⊘ g)(∆) = sup
0≤λ≤∆

{ f (∆ + λ) − g(λ)}. (A.2)

The max-plus convolution ⊗ and the min-plus deconvolution ⊘ of two
functions f and g are defined as:

( f⊗g)(∆) = sup
0≤λ≤∆

{ f (∆ − λ) + g(λ)}, (A.3)

( f ⊘ g)(∆) = inf
0≤λ≤∆

{ f (∆ + λ) − g(λ)}. (A.4)

Let f l ≤ f ≤ f u and gl ≤ g ≤ gu. Then, the operators satisfy the following
monotonicity principles.

f l ⊗ gl ≤ f ⊗ g ≤ f u ⊗ gu (A.5)

f l ⊘ gu ≤ f ⊘ g ≤ f u ⊘ gl (A.6)

f l ⊗ gl ≤ f ⊗ g ≤ f u ⊗ gu (A.7)

f l ⊘ gu ≤ f ⊘ g ≤ f u ⊗ gl (A.8)
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A.2 Arrival and Service Functions and Curves

The execution demand of a trace of jobs can be described using an arrival

function R(t) which denotes the cumulative execution demand of all jobs
that arrive in the interval [0, t). The availability of a resource can be
described using a service function C(t) which denotes the cumulative
resource available in the interval [0, t).

It is often convenient to use the same units to describe arrival and
service functions. For instance, on a bus both R and C can have the
number of packets as their units. On a processor, both R and C can have
the number of processing cycles as their units.

While the arrival function R(t) describes one concrete trace of jobs, an
arrival curve α(∆) = (αu(∆), αl(∆)) represents a family of arrival functions
defined as below.

αl(∆) ≤ R(t + ∆) − R(t) ≤ αu(∆), ∀ t,∆ ≥ 0. (A.9)

While the service function C(t) describes one concrete trace of resource
availability, a service curve β(∆) = (βu(∆), βl(Delta)) represents a family of
arrival functions defined as below.

βl(∆) ≤ C(t + ∆) − C(t) ≤ βu(∆), ∀ t,∆ ≥ 0. (A.10)

In Chapters 2 to 4 and 6 we use the arrival curve α and the service
curve β to only denote the upper-arrival curve αu and the lower-service
curve βl, respectively. In Chapter 5 we use the extended definition with
the tuple of upper and lower curves.

A.3 Workload Conserving Resource

A workload conserving resource is one where any pending jobs are
executed whenever the resource is available. The executed trace of
jobs can be described by an output arrival function R′(t) which denotes
the cumulative execution demand received by the trace of jobs in the
interval [0, t). If R(t) is the arrival function of jobs executed by a workload
conserving resource with service function C(t), then the output arrival
function R′(t) is given as:

R′(t) = inf
0≤u≤t
{R(u) + C(t) − C(u)}. (A.11)

The remaining resource availability of a workload conserving resource
after executing a trace of jobs can be described by an output service function

C′(t) which denotes the cumulative resource availability in the interval
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[0, t). If R′(t) is the output arrival function of jobs executed by a workload
conserving resource with service function C(t), then the output service
function C′(t) is given as:

C′(t) = C(t) − R′(t). (A.12)

To distinguish between R(t) and R′(t), the former is described as
the input arrival function, and the latter is the output arrival function.
Similarly, C(t) and C′(t), are described as input and output service
functions.

For given input and output arrival functions, we can compute the
maximum delay suffered by any job, denoted as dmax, as:

dmax ≤ Del(R,R′), (A.13)

where

Del( f , g) = sup
λ≥0
{inf{τ ≥ 0 | f (λ) ≤ g(λ + τ)}}. (A.14)

The Del of two functions can be visualized as the maximum horizontal
distance between the functions.

We can also compute the maximum number of jobs buffered at any
time, denoted as bmax, as:

bmax ≤ Buf(R,R′), (A.15)

where

Buf( f , g) = sup
λ≥0
{ f (λ) − g(λ)}. (A.16)

The Buf of two functions can be visualized as the maximum vertical
distance between the functions.

A.4 Greedy Processing Component

A Greedy Processing Component (GPC) is an abstraction of a workload
conserving processor to enable Modular Performance Analysis (MPA)
[Wan06]. In particular, it relates the arrival and service curves which
abstract the arrival and service functions, respectively, at the inputs and
outputs of a workload conserving processor. The block diagram of a GPC
is shown in Figure A.1. The output arrival curve is denoted as α′ and the
output service curve is denoted as β′.

For some concrete trace if R(t), C(t), R′(t) and C′(t) denote the input
arrival function, the input service function, the output arrival function,
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GPCα = (αl, αu) α′ = (α′l, α′u)

β = (βl, βu)

β′ = (β′l, β′u)

Fig. A.1 Block diagram of the Greedy Processing Component (GPC). The outputs are given in
terms of the inputs as given in (A.21) to (A.24).

and the output service function, then the arrival and service curves bound
these quantities as:

αl(∆) ≤ R(t + ∆) − R(t) ≤ αu(∆), (A.17)

βl(∆) ≤ C(t + ∆) − C(t) ≤ βu(∆), (A.18)

α
′l(∆) ≤ R′(t + ∆) − R′(t) ≤ α

′u(∆), (A.19)

β
′l(∆) ≤ C′(t + ∆) − C′(t) ≤ β

′u(∆). (A.20)

To distinguish between α(∆) and α′(∆), the former is described as the
input arrival curve, and the latter is the output arrival curve. Similarly,
β(∆) and β′(∆), are described as input and output service curves.

The output curves are related to the input curves with the following
relations [TCN00].

α′u = min{(αu ⊗ βu) ⊘ βl, βu}, (A.21)

α′l = min{(αl ⊘ βu) ⊗ βl, βl}, (A.22)

β′u = (βu − αl) ⊘ 0, (A.23)

β′l = (βl − αu) ⊗ 0. (A.24)

Also bounds on the maximum delay and buffer-space are given with
the following relations.

dmax = Del(αu, βl) (A.25)

bmax = Buf(αu, βl). (A.26)
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