
Diss. ETH No. 15251

Analysis and Applications of
Evolutionary Multiobjective

Optimization Algorithms

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of
doctor of sciences

presented by
MARCO LAUMANNS

Dipl.-Inform., University of Dortmund, Germany
born September 30, 1973

citizen of Germany

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Kalyanmoy Deb, co-examiner

2003

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 55

Marco Laumanns

Analysis and Applications of
Evolutionary Multiobjective

Optimization Algorithms

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich
for the degree of Doctor of Sciences

Diss. ETH No. 15251

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Kalyanmoy Deb, co-examiner

Examination date: August 28, 2003

i

Abstract

This thesis deals with the analysis and application of evolutionary algorithms
for optimization problems with multiple objectives. Many application problems
involve (i) a system model that is not given in closed analytical form and (ii)
multiple, often conflicting optimization criteria. Both traits hamper the appli-
cation of classical optimization techniques, which require a certain structure of
the problem and are mostly designed to handle only a single objective. For
this problem domain, the class of randomized search heuristics, to which evo-
lutionary algorithms also belong, have become popular. Due to their population
concept, evolutionary algorithms can process multiple solutions in parallel and
can therefore cope with different objectives more naturally.

Like most randomized search algorithms, evolutionary algorithms are easy
to describe and implement, but hard to analyze theoretically. Despite much
empirical knowledge and successful application, only few theoretical results
concerning their effectiveness and efficiency are available. This holds especially
in the multiobjective case where these questions have not been investigated yet.
However, even from a practical point of view is is important to distinguish

• whether a given algorithm is capable of solving a given problem (effectiveness);
and

• the computational complexity (measured in computation time and memory re-
quirements) of an algorithm to solve a given problem (efficiency).

The aim of this work is to contribute to the understanding of evolutionary
algorithms for multiobjective optimization problems with respect to these ques-
tions. Specifically, the following topics are covered:

• Based on known concepts from decision theory, the topic of quality measure-
ment is addressed, with respect to single solutions (via fitness functions) and
sets of solutions (via quality indicators). The common mathematical framework
allows us to compactly describe existing fitness functions and quality indicators
as well as to analyze them theoretically.

• Convergence properties are investigated for the limit case of infinite running
time, but finite memory resources. Based on the concept of ε-appproximations,
new selection operators are proposed that guarantee the convergence of random-
ized search strategies to a well-defined discrete solution set with simultaneous
consideration of diversity.

• In order to facilitate a running time analysis, simple model algorithms and prob-
lems are proposed and suitable proof techniques developed and applied. The
results achieved concerning the expected running time show that through spe-
cial selection operators, population-based approaches can be advantageous over
multistart-strategies.

ii

• Three case studies from the field of automotive engineering demonstrate how
evolutionary algorithms can systematically be exploited in the design process.
The applications underline the practical relevance of some results from the pre-
vious theoretical investigations.

iii

Zusammenfassung
Diese Arbeit beschäftigt sich mit der Analyse und der Anwendung von evolu-
tionären Algorithmen für Optimierungsprobleme mit mehrfacher Zielsetzung.
Viele praktische Optimierungsprobleme basieren auf System-Modellen, die (i)
nicht in geschlossener analytischer Form darstellbar sind und (ii) mehrere,
konkurrierende Optimierungsziele beinhalten. Beide Eigenschaften erschweren
die Anwendung klassischer Optimierungsverfahren, welche eine gewisse Struk-
tur des Modells voraussetzen und in der Regel nur für Probleme mit einem einzi-
gen Optimierungsziel entworfen wurden. Für diesen Anwendungsfall haben
sogenannte randomisierte Suchverfahren eine gewisse Popularität erreicht, zu
denen auch die Klasse der evolutionären Algorithmen gehört. Durch ihr Popu-
lationskonzept sind evolutionäre Algorithmen in der Lage, mehrere potentielle
Lösungsalternativen des Optimierungsproblems gleichzeitig zu verarbeiten und
so den verschiedenen Optimierungszielen besser gerecht zu werden.

Evolutionäre Algorithmen sind, wie die meisten randomisierte Suchver-
fahren, einfach zu beschreiben und zu implementieren. Ihr Verhalten ist je-
doch oft sehr komplex und einer Analyse nur schwer zugänlich. Trotz mittler-
weile viel Erfahrungswissens und vieler erfolgreicher Anwendungen existieren
bisher nur wenige theoretische Resultate bezüglich ihrer Effektivität und ihrer
Effizienz. Dies gilt insbesondere für den Fall mehrfacher Zielsetzung, für den
diese fundamentalen Fragen bisher noch nie untersucht wurden. Dennoch ist es
auch aus Anwendungssicht wichtig zu wissen

• ob ein gegebener Algorithmus zur Lösung eines gegebenen Problems im Stande
ist (Effektivität) und

• mit welchem Aufwand, gemessen in Rechenzeit oder Speicherplatzbedarf, der
Algorithmus ein gegebenes Problem löst (Effizienz).

Das Ziel dieser Arbeit ist es, zum Verständnis evolutionärer Algorithmen zur
Lösung von Mehrziel-Optimierungsproblemen im Hinblick auf obige Fragen
beizutragen. Speziell werden dazu folgende Themen behandelt:

• Basierend auf bekannten Konzepten der Entscheidungstheorie wird der
Themenbereich der Qualitätsmessung behandelt, sowohl in Bezug auf
Einzellösungen (mittels Fitnessfunktionen) als auch auf Mengen von Lösungen
(mittels Qualitätsindikatoren). Die mathematisch vereinheitlichte Beschrei-
bungsweise erlaubt zum einen, die existierenden Fitnessfunktionen und
Qualitätsindikatoren kompakt zu beschreiben, und zum anderen, ihre Eigen-
schaften zu analysieren.

• Das Konvergenzeigenschaften werden für den Grenzfall unendlicher Laufzeit,
aber endlichen Speicherplatzes untersucht. Basierend auf einem neuar-
tigen Lösungskonzept werden Selektionsoperatoren vorgeschlagen, die die
Konvergenz randomisierter Suchverfahren gegen eine wohldefinierte diskrete
Lösungmenge unter Berücksichtigung von Diversität garantiert.

iv

• Zum Zweck einer ersten Laufzeitanalyse werden einfache Modellalgorithmen
und einfache diskrete Modellprobleme vorgeschlagen sowie geeignete Beweis-
techniken entwickelt. Die damit erzielten Resultate über die erwartete Laufzeit
in Abhängigkeit der Problemgrösse zeigen, dass populationsbasierte Ansätze
durch geschickte Seletionsverfahren Vorteile gegenüber Multistart-Strategien
haben können.

• Anhand dreier Fallstudien aus der Automobiltechnik wird demonstriert, wie
evolutionäre Algorithmen in einem Entwurfswurfsprozess gezielt eingesetzt
werden können. Die Anwendungsbeispiele verdeutlichen die praktische Re-
levanz einzelner Aspekte aus den vorgängigen theoretischen Untersuchungen.

I would like to thank

• Prof. Lothar Thiele for supervising and guiding my research work,

• Prof. Kalyanmoy Deb for his willingness to be the co-examiner of my thesis,

• Prof. Eckart Zitzler for plenty of advice, help, and support.

Contents

List of Symbols and Abbreviations 1

1 Introduction 3
1.1 Background . 3
1.2 Illustrative Example . 5
1.3 Problem Statement . 6
1.4 Thesis Contributions and Overview 8

2 Multiobjective Optimization with Evolutionary Algorithms 11
2.1 Multiobjective Optimization 11
2.2 Evolutionary Algorithms . 15
2.3 Selection under Multiple Objectives 18

2.3.1 Selection based on Fitness Functions 18
2.3.2 Properties of Fitness Functions 20

2.4 Performance Assessment . 24
2.4.1 Approximation Sets and Quality Indicators 26
2.4.2 Absolute Quality Indicators 27
2.4.3 Relative Quality Indicators 34

2.5 Summary . 36

3 Limit Behavior and Global Convergence 37
3.1 Related Work . 38

3.1.1 Algorithms for Guaranteed Convergence 39
3.1.2 Elitist Selection with Focus on Distribution Quality . . . 40
3.1.3 Limitations of Existing Selection Strategies 41

3.2 Algorithms for Convergence and Diversity 41
3.2.1 Concept of Pareto Set Approximation 41
3.2.2 Algorithm to Maintain an ε-approximate Pareto Set . . . 44
3.2.3 Algorithm to Maintain an ε-Pareto Set 46

3.3 Simulations . 48
3.3.1 Convergence Behavior 48
3.3.2 Distribution Behavior 50
3.3.3 Results . 52

3.4 Possible Extensions . 52
3.4.1 Other Definitions of ε-Dominance 52

viii Contents

3.4.2 Guaranteeing Minimum Distances 52
3.4.3 Steering Search by Defining Ranges of Non-acceptance 53
3.4.4 Fixed Archive Size by Dynamic Adaptation of ε 53

3.5 Summary . 55

4 Running Time Analysis 57
4.1 Methodology and Related Work 58
4.2 Two Example Problems . 59
4.3 A Simple Evolutionary Multiobjective Optimizer 62

4.3.1 SEMO . 62
4.3.2 Analysis of SEMO on LOTZ 63
4.3.3 Analysis of SEMO on COCZ and a General Upper

Bound Technique . 64
4.3.4 Comparing SEMO to a (1+1)-EA using Multistarts . . . 66

4.4 Two Improved Evolutionary Multiobjective Optimizers 69
4.4.1 FEMO and the Fair Sampling Strategy 69
4.4.2 GEMO and the Greedy Selection Mechanism 72

4.5 Higher-dimensional Objective Spaces 74
4.5.1 Multiobjective Leading Ones (mLOTZ) Problem 74
4.5.2 Multiobjective Count Ones Problem (mCOCZ) Problem 77

4.6 From One-bit to Independent-bit Mutations 79
4.7 Summary . 80

5 Applications in Automotive Engineering 83
5.1 An Evolutionary Multiobjective Design Framework 84
5.2 Design Space Exploration of Road Trains 86

5.2.1 Optimization Problem 87
5.2.2 Algorithms . 89
5.2.3 Results . 90

5.3 Parameter Optimization of Adaptive Cruise Control Systems . . 93
5.3.1 Optimization Problem 93
5.3.2 Algorithms . 94
5.3.3 Results . 96

5.4 Model Fitting for a Vehicle Dynamics Simulation 100
5.4.1 Optimization Problem 100
5.4.2 Algorithms . 101
5.4.3 Results . 102

5.5 Summary . 102

Bibliography 107

List of Symbols and Abbreviations

IN set of natural numbers {1, 2, . . .}
IR set of real numbers
IRn set of n-dimensional real vectors
P {A} probability of event A
E[T] expectation of random variable T

� fitness function

I quality indicator
X decision space
Y objective space

f objective function
m number of objective functions
n number of decision variables
x decision alternative
y objective vector

EA evolutionary algorithm
MOEA multiobjective evolutionary algorithm
SEMO Simple Evolutionary Multiobjective Optimizer
FEMO Fair Evolutionary Multiobjective Optimizer
GEMO Greedy Evolutionary Multiobjective Optimizer

1
Introduction

1.1 Background
All areas of human interaction with its environment involve decision situations
Decision making should ideally be based on complete knowledge of the alter-
natives at hand as well as their consequences. As the complex nature of the
system under concern often renders exact predictions impossible, one usually
has to rely on models, which provide tractable approximations to reality. Here,
systems analysis plays an important role (Bell et al. 1977), since only a well-
informed decision maker is in a position to take well-founded decisions. In
systems analysis, three interrelated activities can be distinguished based on dif-
ferent points of interest:

Modeling: What are the mechanisms that produce a certain behavior or output
on a given input, and how can they be described?

Simulation: What output is produced by the system for a given input?

Optimization: What input needs to be provided to the system in order to re-
ceive a desired or optimal output?

All three areas are represented by established scientific disciplines with their
own methodologies and approaches.

This thesis focuses on optimization, i.e., the search for optimal solutions
among a set of alternatives. The inputs to the system can be represented by
decision variables of arbitrary domains, and all feasible combinations of these
variables form the set of decision alternatives. The criteria to judge the different
decision alternatives relate to the output they produce. Quantitative criteria are
usually referred to as objectives (Kaliszewski 1994).

4 Chapter 1. Introduction

Decision situations often involve multiple criteria or objectives. In many
cases, objectives are incommensurable, meaning they are not comparable with
respect to magnitude and value, and conflicting, meaning that the different ob-
jectives cannot be arbitrarily improved without decreasing the value of another.
This results in trade-offs between the objectives. Insight into such trade-offs
(e.g. risk vs. profit, labor cost vs. social security, greenhouse gas emissions vs.
nuclear waste) is often of crucial importance for decision making.

Due to the impossibility to achieve optimal values in all objectives simulta-
neously, multiple criteria decision making (MCDM) always involves a choice
problem. The final solution represents a compromise between the different ob-
jectives depending on the preferences of the decision maker. The scientific area
concerned with modeling and analyzing preference structures to formalize the
choice process from usually small, explicit list of alternatives is called multiat-
tribute decision analysis (Keeney and Raiffa 1976; Fandel and Spronk 1985).

Many decision problems, though, contain a large, possibly infinite number
of decision alternatives. In such cases, it is impossible to explicitly compare
all alternatives, and therefore the choice problem is accompanied by a search
problem to filter promising (optimal) from unpromising (non-optimal) alterna-
tives. Problems of this type are treated in the area called multiobjective decision
making or multiobjective optimization. A typical classification of methods for
multiobjective decision making is given by Hwang and Masud (1979), who dis-
tinguish four classes according to when the decision maker’s preferences enter
the formal decision making process:

1. No articulation of preference information (only search),

2. A priori articulation of preference information (choice before search),

3. Progressive articulation of preference information (integration of search and
choice), or

4. A posteriori articulation of preference information (search before choice).

The first class assumes that a global criterion is available to guide the search
without making use of any decision maker preferences. In the second class,
the different objectives are aggregated into one meta-objective so that tradi-
tional single-objective optimization methods can be applied. Here, preferences
come into play at the beginning to define the aggregation via weights, aspiration
levels, etc. The progressive methods allow the decision maker to interactively
specify and modify preferences during the search. The methods in the fourth
class assume that the search is conducted first, and a set of promising alterna-
tives is generated before the decision maker can make the choice, possibly by
resorting to appropriate methods from multiattribute decision analysis.

This thesis concentrates on the fourth class of methods. The aim is to ap-
proximate the set of optimal decision alternatives algorithmically. After this
search process, the generated set of alternatives can serve as an input to the

1.2. Illustrative Example 5

decision maker, who can select a final, single alternative according to her pref-
erences. The latter part is subject of the field of multiattribute decision analysis
and is outside the scope of this thesis.

1.2 Illustrative Example

The aim of this work can be illustrated by the example of a simple decision
problem with two conflicting objectives: A set of four different items is given,
each of which has a certain profit and a certain weight associated with it (see
Figure 1).

Fig. 1: Collection of four items, each of which has a profit and a weight associated with it.

The task is to decide for each item whether we select it or not, and our objectives
are to maximize the total profit and to minimize the total weight of our selection
of items. Any of the 16 possible combinations of the four items represents a
decision alternative and therefore a potential solution to the decision problem.

It can immediately be seen that our two objectives are conflicting, as we can-
not find any collection that has minimal weight and maximal profit at the same
time. We also note the trivial cases of choosing all items, which maximizes the
profit, but also the weight, and choosing no item, which minimizes the weight
and also the profit. But what about the solutions in between, the compromise
solutions? Alternative {2, 3}, e.g., is certainly preferable to {1, 4} as it yields
both a higher profit and a lower weight (we can also say that {2, 3} dominates
{1, 4}), but how does it compare to {1, 2, 4}? Is there an unambiguous and ob-
jective way to tell which solutions are good and which are bad in the whole
solution set, and if so, how can we find good or optimal solutions?

Figure 2 shows a diagram of the objective values of all possible combina-
tions of items, i.e., of all decision alternatives. All these solutions can be classi-
fied according to whether or not there exists another solution that is superior to it
with respect to one objective and not worse regarding the other. If this is not the
case, the respective solution is termed Pareto-optimal (Pareto 1896). It is clear
that no reasonable decision maker would opt for a non Pareto-optimal solution,
regardless of her preferences. Which specific Pareto-optimal solution will be
chosen is subjective and depends on the preferences of the decision maker.

6 Chapter 1. Introduction

Fig. 2: Objective values of all decision alternatives.

The above example is a multiobjective formulation of the 0/1 knapsack
problem, a well-known and well-studied combinatorial optimization problem
(Martello and Toth 1990). The set of Pareto-optimal solutions in the exam-
ple can easily be determined by enumerating all possible decision alternatives.
However, this approach is usually not feasible for larger instances as the de-
cision space grows exponentially with the number of decision variables. The
task of generating the Pareto-optimal set therefore becomes a challenging algo-
rithmic problem. This especially holds for problems where analytical methods
are not applicable, because the underlying mapping of decision alternatives to
objective values is too complex or even unknown.

1.3 Problem Statement

The general problem considered in this work is the following. Given is a defini-
tion of the decision space, which is the set of all possible decision alternatives,
and vector valued objective function, which maps each decision alternative to a
vector of objective values (see Figure 3). In our example, the decision space X
is the set of all subsets of items, and the objective function f assigns each ele-
ment x out of X a value pair, the sum of the profits and the sum of the weights
of the items included in x . In many practical problems, however, we do not
have access to the definition or mathematical description of the objective func-

1.3. Problem Statement 7

tion. Therefore, the objective function has to be regarded as a “black box”. It is
only allowed to evaluate the objective function for a finite number of arbitrarily
chosen decision alternatives. This is of course a more restrictive setting than
the above example of the knapsack problem, where both, the structure (a simple
sum over the items) and the parameters (the individual weights and profit val-
ues) of the objective function is known. Nevertheless, it is a relevant scenario
arising in many applications, especially when objective values are determined
by simulation models, or even by experiments in the physical world.

Fig. 3: Schematic view of black box optimization, where elements of the decision space X
need to be determined such that the components of the corresponding objective vector
are optimal under the mapping f : X �→ IRm, m ∈ IN.

Our task in the above problem is to determine the set of Pareto-optimal deci-
sion alternatives. In many cases, especially when the decision space is very large
or the objective function is very complex, this aim might be difficult or even im-
possible to achieve in reasonable time. In such cases, the aim is rephrased to
finding at least a good approximation of the Pareto-optimal set, i.e., a set of
solutions that are in some sense close to optimal and represent the true Pareto-
optimal set well. The question of what constitutes a good approximation of the
Pareto set forms a central part of this thesis and will be discussed at a later stage.
In the knapsack example one could think of a possible approximation using four
solutions {},{1}, {1, 3}, and {1, 2, 3, 4}.

Not many algorithms are applicable in such an information restricted sce-
nario of black box optimization. One option, which has become very popu-
lar in recent years, is to use evolutionary algorithms, because these algorithms
are formulated independent of the objective function. Evolutionary algorithms
(EAs) are randomized search algorithms inspired by principles of natural evo-
lution (Bäck et al. 1997). Decision alternatives coded as individuals undergo
cycles of variation and selection in order to be steadily improved, so that opti-
mal or near optimal solutions are eventually found. Typically, many solutions
collected in populations are processed simultaneously so that different optimal
solutions can be found in parallel. This makes evolutionary algorithms an attrac-
tive candidate for solving multiobjective optimization problems, where different
Pareto-optimal solutions are sought.

The class of randomized search algorithms is very broad. It ranges from
pure random search or Monte Carlo methods to stochastic local search methods.
In between these extremes, and more recently developed, are methods such as
simulated annealing (Kirkpatrick et al. 1983), tabu search (Glover and Laguna

8 Chapter 1. Introduction

1997) and many other heuristics and meta-heuristics (Ehrgott and Gandibleux
2000). Common features of randomized search algorithms are that they work
iteratively, which means that new search points are generated and evaluated in
discrete time steps, and they explicitly use randomness during some of their
operations. The algorithms considered in this thesis are problem-independent
algorithms in the sense that they do not make any assumptions about the objec-
tive function, such as linearity, differentiability, etc. They work with any kind of
decision space, provided that appropriate search operators are defined. In con-
trast to many other, traditional and more specialized methods, they only require
to evaluate the objective function at arbitrarily chosen search points and are
therefore well suited for our black box optimization scenario. From a concep-
tual point of view, a problem-independent randomized search algorithm can be
seen as a general recipe of how a search space is scanned, and searched through,
in order to find optimal solutions.

Randomized search algorithms typically use mechanisms that are simple to
describe and implement, but exhibit a complex behavior, which is hard to an-
alyze theoretically. Consequently, a lot of empirical knowledge and successful
applications are available, but much less rigorous theoretical results about their
efficiency exist. Nevertheless, theoretical work is important for making more
precise statements about their performance, and to understand the dynamics of
these algorithms. In particular, a theoretical analysis addresses following essen-
tial questions:

• Is a particular algorithm able to find a set of different solutions to a given mul-
tiobjective optimization problem?

• How good are these solution sets?

• How much time is necessary to find the solution sets?

1.4 Thesis Contributions and Overview
This thesis contributes towards the understanding of evolutionary algorithms for
multiobjective optimization problems with respect to the above questions. The
work is structured into four chapters.

Fundamentals of evolutionary multiobjective optimization algorithms.
The vast variety of different instances and implementations of ran-
domized multiobjective optimization algorithms makes it increasingly
difficult to derive general results about their performance, similarities
and differences. The aim of this chapter is to present the basic concepts
of multiobjective optimization and to expose the essential differences be-
tween multiobjective evolutionary algorithms and their single-objective
counterparts. These differences are mainly related to the question how

1.4. Thesis Contributions and Overview 9

single decision alternatives as well as sets of decision alternatives can
be compared under the presence of multiple objectives. Comparing and
grading single decision alternatives plays a crucial role in the selection of
search points, and its algorithmic realization in evolutionary algorithms
is through various so-called fitness assignment schemes. Comparing and
grading sets of decision alternatives is important for comparing the final
outcome of different algorithms, which is facilitated by quality indicators
and therefore plays a major role in empirical performance assessment
of multiobjective optimization algorithms. The analysis is based on the
decision-theoretic concepts of ordered sets. This novel approach allows
(i) to investigate both issues using the same mathematical framework,
(ii) to define and prove properties of several commonly used fitness
assignment schemes as well as various popular quality indicators, and
(iii) to derive new classification schemes.

Limit behavior and global convergence. The limit behavior of a randomized
search algorithm means its dynamics under the assumption that unlim-
ited time resources are available, i.e., the algorithm is allowed to run
for an infinite amount of time. The analysis of the limit behavior al-
lows to make statements about what a randomized search algorithm can
maximally achieve. In case of multiobjective optimization, an algorithm
should be able to find a set of (approximate) Pareto-optimal solutions at
least in the limit of infinite time resources. Though this is almost trivial in
the case of infinite memory (simply by keeping track of all non-dominated
solutions found so far), the case of finite memory has not been solved yet.
Consider, for example, an algorithm with a maximum memory size of two
applied to the above knapsack problem. How would such an algorithm
decide which solution to keep and which to discard in each iteration? To
approach this question, we propose a notion of representative and approx-
imate Pareto sets and investigate the convergence properties of different
algorithms with respect to these solution sets. It is shown how and why
many common multiobjective evolutionary algorithms fail to maintain a
representative set of Pareto-optimal solutions due to the decisions they
make during the selection steps, a deficit that has not been realized be-
fore. To overcome this fundamental limitation, we propose first selection
operators with the desired properties of (i) working with a finite memory
and (ii) guaranteeing the convergence of the generated sequence of solu-
tion sets. The new selection operators are problem independent and can
be used within any randomized search algorithm.

Running time analysis. In addition to global convergence in the limit, we are
also interested in a quantitative analysis, specifically the expected running
time for a given class of problems and the success probability for a given
optimization time. For the knapsack problem, such an analysis would, for
instance, consider the number of time steps a certain algorithm needs on
average to find a specific collection of Pareto-optimal solutions. To judge

10 Chapter 1. Introduction

the scalability of the algorithm, one would then investigate different prob-
lem sizes by varying the number of items, and try to express the expected
running time as a function of the number of items. So far, such results
were only available for the single objective case. Focusing on the opti-
mization of pseudo-Boolean functions, this work presents running time
results for different multiobjective evolutionary algorithms for different
problem scenarios. In particular,

• two pseudo-Boolean model problems are introduced, which are scal-
able in the number of decision variables and number of objectives,

• simple individual-based and population-based multiobjective EAs
are defined, and

• methods to analyze population-based evolutionary algorithms in a
multiobjective framework are presented, which lead to

• complexity results in terms of bounds of the expected running time
of the different algorithms.

These fundamental contributions represent the first running time results
in the multiobjective case. A further motivation for this analysis is to in-
vestigate the benefit of the use of a population in solving multiobjective
problems: is a population-based algorithm searching concurrently for all
optimal solutions in a single run more efficient, or are multiple, separate
runs of a single-objective optimizer searching for different optimal solu-
tions a better strategy?

Applications. A main motivation for the design and analysis of randomized
search algorithms is to apply them to real-world applications, and multi-
objective optimization problems surfaced in many areas. Typically, such
problems contain complex search spaces, where the quality of decision
alternatives is evaluated through simulation using sophisticated computer
models. This usually prevents conventional optimization techniques from
being applicable, and randomized search algorithms are used because
they are independent of the problem representation. Using on a generic
multiobjective design procedure based on evolutionary algorithms, this
chapter presents three case studies from automotive engineering: the de-
sign space exploration of road trains, parameter optimization of adaptive
cruise control systems for trucks, and model fitting for a vehicle dynam-
ics simulation. The aim of this chapter is show the successful application
of this procedure for real-world examples and to exemplify some of the
theoretical concepts devised in the thesis.

2
Multiobjective Optimization with Evolutionary
Algorithms

This chapter addresses the fundamentals of randomized search algorithms, es-
pecially evolutionary algorithms, for multiobjective optimization. The inves-
tigations are based on decision theory. Decision theory is typically used as
a mathematical framework to formally define the multiobjective optimization
problem. Moreover, it also proves to be a powerful tool to derive new results re-
garding important aspects of evolutionary multiobjective optimization, namely
the selection and the performance assessment problem. After introducing the
decision-theoretic foundations of multiobjective optimization, a general model
for randomized search algorithms is presented. The model serves as a baseline,
and as a common framework for the investigations of multiobjective evolution-
ary algorithms throughout this thesis. Then, two specific issues are investigated,
where the peculiarities of multiobjective optimization make the algorithms dif-
fer essentially from their single-objective counterparts: the ranking and selec-
tion of solutions within the algorithms and the performance assessment of al-
gorithms. Both topics will be discussed from the decision-theoretic concept of
preference orderings, which allows for a mathematically rigorous analysis and
categorization of the existing techniques.

2.1 Multiobjective Optimization

The task in multiobjective optimization is to find solutions to problems of the
form

12 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

maximize f (x) = (f1(x), f2(x), . . . , fm(x))

subject to x ∈ X,
(2.1)

where x is called the decision space or search space and its elements x ∈
X decision alternatives or potential solutions. There is generally no further
restriction on the domain of the decision alternatives.

The functional relationship between the decision alternatives and the deci-
sion criteria is established through the objective function f : X �→ IRm, m ∈ IN.
The objective space Y = f (X) is the image of the decision space X under the
objective function f . An element y ∈ Y is called objective vector and its com-
ponents objective values.

In a decision making and optimization context, the notion of optimality de-
pends on how decision alternatives are compared and ordered, i.e., on the prefer-
ence structure of the decision maker. Often, preferences are assumed tacitly and
not made explicit because they are obvious. Consider for example the special
case of m = 1, the well-known case of single-objective optimization. Here, the
meaning of maximization is unambiguous and intuitively clear. The decision
alternatives can be totally ordered according to their (single) objective values
and the optimal solution is the one with the largest objective value. For m ≥ 2,
however, the situation changes and the notion of maximality is not so appar-
ent. From both a practical and a theoretical standpoint, it is therefore necessary
to define the notion of optimality by means of preference structures. Besides
formally clarifying what is actually understood by multiobjective optimization,
it provides the decision-theoretic foundation on which the investigations in the
subsequent sections rely.

The starting point is the basic assumption that a decision maker, who is
confronted with any pair of decision alternatives, either

• clearly prefers one over the other,

• feels indifferent about them, or

• considers the two alternatives as incomparable.

These and other preference relations will then be formally defined and their
properties derived. This allows to characterize optimal solutions as the maxi-
mal elements of decision space under the respective preference ordering. Fi-
nally, these concepts are related back to the multiobjective optimization prob-
lem to clearly specify the meaning of maximization. The following definition
summarizes basic properties of binary relations used in this chapter.

Def. 1: (Properties of binary relations) Let A be a set. A binary relation R ⊂ A × A
is called

2.1. Multiobjective Optimization 13

reflexive if ∀a ∈ A : (a, a) ∈ R
irreflexive if ∀a ∈ A : (a, a) �∈ R
symmetric if ∀a, b ∈ A : (a, b) ∈ R ⇒ (b, a) ∈ R
asymmetric if ∀a, b ∈ A : (a, b) ∈ R ⇒ (b, a) �∈ R
antisymmetric if ∀a, b ∈ A : ((a, b) ∈ R ∧ (b, a) ∈ R) ⇒ a = b
transitive if ∀a, b, c ∈ A : ((a, b) ∈ R ∧ (b, c) ∈ R) ⇒ (a, c) ∈ R
negatively transitive if ∀a, b, c ∈ A : ((a, b) �∈ R ∧ (b, c) �∈ R) ⇒ (a, c) �∈ R
connected if ∀a, b ∈ A : ((a, b) ∈ R ∨ (b, a) ∈ R)

For brevity, the notation aRb will be used to express (a, b) ∈ R. Now, the above
comparison relations can be formalized to construct a preference structure.

Def. 2: (Preference structure) A preference structure on a set A is a partition of A × A
into the three binary relations �, ∼, ‖ such that for a, b ∈ A

• a � b ⇔ a is preferable to b (a dominates b),

• a ∼ b ⇔ a and b are equally preferable,

• a ‖ b ⇔ a and b are incomparable,

where the preference relation � is asymmetric, the indifference relation ∼ is
reflexive and symmetric and the incomparability relation ‖ is irreflexive and
symmetric.

A preference structure can uniquely be represented by the weak preference re-
lation � := � ∪ ∼, since

• a � b ⇔ (a � b ∧ b �� a),

• a ∼ b ⇔ (a � b ∧ b � a),

• a ‖ b ⇔ (a �� b ∧ b �� a).

Though a given preference structure allows to describe the relation of any
two decision alternatives, it is still too general for our purpose as it does not
preclude cycles of the preference relation. For example, a situation where a � b
and b � c, but also c � a holds, is not useful in an optimization context. Thus,
the weak preference relation is additionally required to be transitive. A transitive
preference relation is called a preorder or quasi-order. For convenience, the
following definition also summarizes the other types of order relations used in
the course of this work.

Def. 3: (Order relations) A binary relation is called

• a preorder if it is reflexive and transitive,

• a total preorder if it is reflexive, transitive and connected,

• a total order if it is an antisymmetric total preorder

14 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

• a partial order if it is reflexive, transitive and antisymmetric,

• a strict partial order if it is asymmetric and transitive.

• a strict weak order if it is asymmetric and negatively transitive.

In the following, the decision space, together with the weak preference rela-
tion of the decision maker, is regarded as a preordered set. In a preordered set,
every element might have elements that it precedes and elements that it succeeds
according to the applied order relation. These elements can be summarized in
special sets called the upper and lower section.

Def. 4: (Upper and lower sections) Let (A, �) be a preordered set. With each a ∈ A
we associate the following sets:

• the upper section [a, →) ≡ {x ∈ A : x � a},
• the strict upper section (a, →) ≡ {x ∈ A : x � a},
• the lower section (←, a] ≡ {x ∈ A : a � x},
• the strict lower section (←, a) ≡ {x ∈ A : a � x}.

With this semantic, the maximal elements of the preordered set (A, �) are those
which have an empty strict upper section:

Def. 5: (Maximal set) Let (A, �) be a preordered set. The maximal set A∗ of (A, �)

is defined as
A∗ := {a ∈ A : (a, →) = ∅}

The elements of A∗ are called maximal elements.

The maximal elements are of special interest for the decision maker because
no other decision alternative is preferable to it. In this respect, they represent
optimal decision alternatives. For a multiobjective optimization problem (2.1),
we are now in a position to define the meaning of maximization by specifying
the preference ordering.

Def. 6: (Order relation for decision alternatives and objective vectors) Let a multi-
objective optimization problem be given by the decision space X and the objec-
tive function f : X �→ Y ⊆ IRm, m ∈ IN. For decision alternatives a, b ∈ X
the order relation � f is defined as

a � f b :⇔ f (a) � f (b),

where � ⊆ Y × Y is defined as

f (a) � f (b) :⇔ (fi (a) ≥ fi (b) ∀i ∈ {1, . . . , m}).

2.2. Evolutionary Algorithms 15

In this special case, the maximal set X∗ is called Pareto-optimal set, or Pareto
set in short, and its elements Pareto-optimal decision alternatives or Pareto-
optimal solutions. Its image in objective space, Y ∗ := f (X∗), is called Pareto
front and its elements Pareto-optimal objective vectors.

This thesis treats multiobjective optimization problems under the concept of
Pareto optimality. Nevertheless, other preference orderings give rise to different
notions of optimality; for an overview and discussion the reader is referred to
the literature (Ehrgott 2000). In the following, it makes use of the preference
ordering in the above sense unless otherwise stated and skip the index f of
� f for brevity. The resulting relations � and � will also be termed “weak
dominance” and “dominance” relations such that a is said to dominate b if and
only if a � b. From their definition the following equivalences are immediate:

Cor. 1: Let X be a decision space and f : X �→ Y ⊆ IRm, m ∈ IN. Then for all
decision alternatives a, b ∈ X

a ∼ b ⇔ (fi (a) = fi (b) ∀i ∈ {1, . . . , m})
a � b ⇔ (fi (a) ≥ fi (b) ∀i ∈ {1, . . . , m} ∧ ∃i ∈ {1, . . . , m} : fi (a) > fi (b)).

Furthermore, (X, �) is a preordered set and (Y, �) is a partially ordered set,
while (X, �) and (Y, �) are strictly partially ordered sets.

The aim of the multiobjective optimization algorithms treated in this thesis is
thus to identify X∗, the maximal set of X , and Y ∗, the image of X∗ in objective
space. In cases where it is very difficult the aim is to approximate X∗ with
respect to its image in objective space, i.e., to find a set X ′ ⊆ X such that its
image f (X ′) is a good approximation of Y ∗. In this respect, one goal of this
thesis is to give a useful, formal definition of Pareto set approximation; this
issue will be discussed in Chapter 3.

2.2 Evolutionary Algorithms
This section provides a model of evolutionary algorithms as a special instances
of randomized search algorithms. The purpose of this exposition is two-fold.
After formalization of the multiobjective optimization problem in the previous
section, it is important to define the terminology of the optimization algorithms
used in this thesis. A second aim is to highlight those components of evolu-
tionary algorithm that are especially important in the context of multiobjective
optimization, and to concretize and locate the open questions for the subsequent
investigations. Without sacrificing preciseness, the model shall be as general as
possible, such that the derived results are valid for a broad class of algorithms.

A randomized search algorithm starts with choosing an initial search point
x (0) ∈ X and computes its objective vector f (x (0)). It then proceeds in
discrete time steps t ∈ IN and produces new search points x (t) depending

16 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

on the previously generated ones x (0), . . . , x (t−1) and their objective values
f (x (0)), . . . , f (x (t−1)), until a termination criterion is fulfilled. For efficiency
reasons and because of limited resources of real computers, randomized search
algorithms have to work with finite memory. In particular, it cannot be expected
to be able to store all generated search points, but only a subset of bounded
size. Besides a sample of the generated solutions, however, they are allowed
to accumulate a bounded amount of additional state information. Such state
information is often used as a compact representation of the knowledge gained
during the search process to hopefully generate better solutions in the future.
Evolutionary algorithms implement this memory constraint by the concept of
population. A population is a collection of a finite number of decision alterna-
tives represented as individuals.

Algorithm 1 A Conceptual Evolutionary Algorithm
1: t ← 0
2: A(0) := ∅
3: while terminate(A(t), t) = false do
4: t ← t + 1
5: B(t) ← generate(A(t−1)) {create new offspring population}
6: A(t) ← select(A(t−1), B(t)) {update parent population}
7: end while
8: output(A(t)∗)

A conceptual evolutionary algorithm is depicted above as Algorithm 1. Evo-
lutionary algorithms typically summarize many little time steps into a larger one
called generation. In each generation t , a whole new population B called off-
spring population or simply offspring is generated en bloc from the currently
stored parent population A or parents. At the core of the algorithm are the two
operators generate and select. The operator generate creates a new offspring
population based on the parent population. The parent and offspring population
is then passed to the select operator to decide which individuals to maintain for
the parent population of the next iteration and which individuals to discard. In
evolutionary algorithms, the generate operator is usually given by the repeated
application of the variation operators called mutation and recombination. While
mutation is a unary operator creating one offspring individual on the basis of a
single parent individual, the recombination operator is able to create multiple
offspring from multiple parents. The details for the generation process are not
relevant here.

The question arises whether the reduction of the algorithm to a simple alter-
nation the two operators generate and select is an appropriate model for the
subsequent investigations. Alternatively, one could consider both directions of
either a more detailed or a more compact representation. A more detailed model
is for example used in Bäck (1996). It requires to specify the operators and their
interplay. Thereby it necessarily restricts the number of possible instances, and
the loss of generality can only partially be counteracted by introducing many

2.2. Evolutionary Algorithms 17

algorithmic parameters. More compact formulations were proposed in efforts
to derive a mathematically analyzable, stochastic models of evolutionary algo-
rithms. They typically combine the operators into an overall transition operator
T = select ◦ generate, which maps the state of the algorithm, represented by
the currently stored solutions A(t), to its state A(t+1) at time t +1. In randomized
search algorithms, T is typically stochastic as both the select and the generate
operators can contain randomized operations. The equation

A(t+1) = T(A(t))

suggests that randomized search algorithm can be modeled as Markov chains.
For the case of evolutionary algorithms see, e.g., Rudolph (1997a, 1998b), Vose
(1999), or He and Yao (2002). The main difficulty in using the Markov chain
approach is, however, to bound the state space and to derive a compact and
tractable formulation of the transition matrix. This thesis makes use of the above
algorithmic formulation of evolutionary algorithms, which is sufficient for the
remainder of this chapter as well as the investigations of the limit behavior in
Chapter 3. The details of the operators are only specified where necessary, that
is in the running time analysis of concrete algorithms in Chapter 4 as well as in
the application case studies of Chapter 5.

This section concludes with a short discussion of the role of the generate
used in the above conceptual algorithm before the select operator is treated in
more detail in a separate section. The generate operator is used to create new
search points. In doing so, it normally makes use of the information gathered so
far during the search process and accumulated in the population A. Initially, the
set A is empty because no information has been collected yet. Therefore, the
initial search points are usually drawn at random from the search space. The set
A normally contains a sample of the better search points visited so far. Many al-
gorithms work under the assumption that other promising solutions are in some
respect similar to already known good ones and place the next search points in
their vicinity. Examples for this strategy are the use of a neighborhood in ran-
domized local search and simulated annealing or the mutation operator in evo-
lutionary algorithms. Another idea is to exploit the similarities among multiple
solutions as does the recombination operator in evolutionary algorithms. Other
information about the search history than the actual found search points can be
gathered by the algorithm as well, either in global variables or by augmenting
the representation of the individuals using additional strategy parameters. Com-
mon strategies are, to record the successful search steps in order to proceed in
the same direction, as in the covariance matrix adaptation evolution strategies,
or to avoid cycling and returning to already visited areas, as in tabu search.
A further example of such additional information will be presented within the
FEMO and the GEMO algorithm in Chapter 4. The generate operator is gen-
erally objective function independent in the sense that objective function values
are not explicitly used. In this respect, there is no difference between single
objective and multiobjective optimization. The investigations conducted in this
thesis abstract from the details of the generate operator and focus on issues

18 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

where randomized search algorithms for multiobjective optimization are differ-
ent from their single-objective counterparts.

2.3 Selection under Multiple Objectives

The main role of the selection operator in evolutionary algorithms is to impose a
direction on the search process, while the creation and variation of search points
is usually undertaken in an undirected way. The search direction should be in
accordance with the decision maker’s preference structure so that better decision
alternatives are favored over worse. Thus, it is important to investigate how
selection operators and preference structures are interrelated. This allows for a
more precise characterization and classification of different selection schemes.

2.3.1 Selection based on Fitness Functions

Fig. 4: Division of the selection operator into a fitness assignment process and a sampling
process. The sampling process makes use of the scalar fitness values defined by the
fitness function �.

The task of the selection operator is to discern better search points from
worse. It usually works by first grading or ranking the different alternatives
and then performing the actual selection operation to determine a new set A(t)

out of elements from A(t−1) and B(t−1). The grading is achieved by assigning
each element a ∈ A∪ B a scalar fitness value �(a) as a measure of its quality or
utility 1 within the set of currently stored solutions. The mapping � : A �→ IR is
not restricted to being a pure function of the decision alternative, or its objective
function values, but is a relative measure depending on the other search points
in A. The sampling process of choosing elements from A(t−1) and B(t−1) to
be included in A(t) is then performed using the previously computed � values.
This two-step process is conceptually visualized in Figure 4.

1Though the word “utility” has been used here in an informal and intuitive way, the con-
nection to utility theory is obvious and, as the subsequent considerations reveal, sensible: the
function � can be easily associated with a local approximation of the generally unknown utility
function of the decision maker.

2.3. Selection under Multiple Objectives 19

The sampling itself, which can be done in different ways (deterministically
or randomly, with or without replacement), is of no further relevance here as
there are no fundamental differences from the single-objective case. Compre-
hensive investigations of different sampling schemes can be found, e.g., in Han-
cock (1997) and Blickle and Thiele (1996)2.

The focus of this section is therefore on the fitness assignment. The cen-
tral question is: to what extent do fitness functions respect the given preference
ordering of the decision alternatives when they transform this preorder into the
canonical order on the set of real numbers? It will be shown that information
will necessarily be lost during this reduction, and it appears important to mini-
mize these losses. The following example illustrates this issue.

Ex. 1: (Weighted sum fitness function) Consider the fitness function

�WeightedSum :=
m∑

i=1

wi · fi (x), wi ∈ IR,

applied to the following set A of decision alternatives from the knapsack prob-
lem example using weights w1 = 2 and w2 = −1. The resulting fitness values
are

A = {a, b, c, d}
a = {} f (a) = (0, 0) �WeightedSum(a) = 0
b = {1} f (b) = (4, 1) �WeightedSum(b) = 7
c = {3} f (c) = (4, 2) �WeightedSum(a) = 6
d = {1, 2, 4} f (d) = (7, 4) �WeightedSum(a) = 10

It appears reasonable that the fitness of b is better than the fitness of c as b dom-
inates c. It might be unsatisfactory, though, that the fitness function evaluates
d, a non Pareto-optimal solution, better than a and b, both Pareto-optimal so-
lutions. Of course, at this stage the algorithm cannot know that another Pareto-
optimal solution exists that dominates d. But this excuse fails in the case of
ranking c better than a, because the algorithm knows with b already a solution
that dominates c and could thereby clearly identify c as non-optimal.

We want to formalize the issues raised above. To start with, the notion of
order morphisms is introduced as the key concept to analyze fitness functions
mathematically.

Def. 7: (Order morphisms) Let R be a binary relation on a set A and S a binary
relation on a set B. A function u : A �→ B is called

• an order homomorphism if ∀a, b ∈ A : aRb ⇒ u(a)Su(b)

2Also the common distinction of rank-based and fitness-based selection schemes is not im-
portant here, as the elements can always be totally ordered once the scalar � values are derived.
The reverse way is also possible by defining the � values as the ranks of the elements in the
totally ordered set A.

20 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

• an order isomorphism if ∀a, b ∈ A : aRb ⇔ u(a)Su(b)

For the special case of B being the set of real numbers IR, an order isomor-
phism u is also called a representation of the order relation �. Ideally, one
would therefore look for fitness functions being a representation of the domi-
nance relation such that S is a canonical order on the reals. This would mean
that that there is a one-to-one correspondence between the dominance relation
of the decision alternatives and, e.g., the greater-than relation on their fitness
values. Unfortunately, such a representations does not exist as a consequence of
the following theorem.

Th. 1: (Bridges and Mehta 1995, pp. 8 - 9) Let A be a countable set and � and �
binary relations on X. A necessary and sufficient condition for the existence of
a real-valued function u on A so that

a � b ⇔ u(a) ≥ u(b)

is that � is a total preorder and for

a � b ⇔ u(a) > u(b)

is that � is a strict weak order.

For our fitness function � it is therefore impossible to be an order representation
in the above sense, because the weak dominance � is usually not connected and
the dominance relation � is not negatively transitive (see Definition 3).

To be consistent with the preference structure of the decision maker, a fitness
function should nevertheless be at least an order homomorphism into IR. This
means that a fitness assignment never contradicts the preference relation by
assigning a solution a a better fitness value than b though b is preferred to
a. Such order homomorphisms are easy to construct, for example by simply
assigning each a ∈ A the size of its lower section. Likewise, the weighted sum
fitness function of Example 1 is an order homomorphism.

As a result of these considerations, it can be stated that being an order ho-
momorphism appears to be a minimum requirement for any fitness function.
On the other hand, the ideal case of an order isomorphism does not exist. For
a more precise characterization of fitness functions, we will investigate next
which additional properties are possible and desirable, and classify existing fit-
ness assignment strategies accordingly. This is important as the choice of the
fitness function determines the search direction and thereby strongly influences
the search process and the success of the optimization algorithm.

2.3.2 Properties of Fitness Functions

The aim of this section is to propose a new mathematical classification scheme
for fitness functions and describe their properties based on decision theory. Af-
ter introducing additional concepts that are useful for a compact notation, we

2.3. Selection under Multiple Objectives 21

briefly review the commonly used algorithmic classification of fitness assign-
ment strategies. Then, two additional new mathematical properties are intro-
duced, which extend the concept of order morphisms and allow for a more pre-
cise characterization.

To facilitate the description and analysis of fitness functions, we make use of
the following graph-based coding of the order relation. An ordered set (A, �)

can be regarded as a directed graph, where A is the set of nodes and � the
set of edges. There exists an edge from a to b if and only if a � b. If � is
the dominance relation, the corresponding graph is called a dominance graph.
In case of � being a strict partial order, a more compact formulation can be
achieved by retaining only edges between direct successors:

Def. 8: (Cover relation and minimal dominance graph) Given a strict partial order
� on a set A, the cover relation �c is defined for elements a, b ∈ A so that

a �c b ⇔ (a � b ∧ � ∃c so that a � c � b)

Fig. 5: Dominance graph of some of the decision alternatives of the knapsack problem example
(left) and the resulting minimal dominance graph (right). The maximal elements of A
are depicted by black circles, all other elements by grey circles.

The resulting graph (A, �c) is called a minimal dominance graph. It is the tran-
sitive reduction of (A, �), and its pictorial representation is also known as a
Hasse diagram (Skiena 1990, p.206f). Figure 5 shows an example of a domi-
nance graph and the resulting minimal dominance graph. As addition notation,
it is helpful to define the dimension and the length of preordered sets.

Def. 9: (Dimension and length of preordered sets) Let (A, �) be a preordered set.
The dimension dim(A, �) is the smallest k ∈ IN such that � is the intersection
of k total orders. The length len(A, �) is defined as the length of the longest
path in the associated minimal dominance graph (A, �c), i.e., the number of
nodes on that path.

In the above example, the dimension is 2 as the dominance relation is the inter-
section of the ≥ relation on f1 and the ≤ relation on f2. The length is 4, which
can easily be verified in the figure.

22 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

Traditionally, fitness assignment and selection schemes for multiobjective
evolutionary algorithms are classified from an algorithmic viewpoint. An
overview and discussion of different multiobjective fitness assignment and se-
lection schemes is given by Fonseca and Fleming (1995, 1997) and Horn (1997),
who distinguish

Aggregation selection where � is a function of the different objective values
of a solution independent of the other solutions;

Criterion selection where the solutions are ranked for each objective function;
and

Pareto selection where the solutions are ranked based on the dominance rela-
tion.

The algorithmic classification is primarily descriptive and aimed at an easy com-
prehension and implementation of the methods. However, the choice of fitness
assignment schemes should not be based only on algorithmic aspects. For a
better understanding of their effect on the algorithm, it is necessary to know
their mathematical properties. From a practical viewpoint this is important, for
both choosing an existing scheme as well as for designing a new method. As
discussed above, a minimal requirement is that � is order preserving, i.e., an
order homomorphism regarding the preference orderings � and �. To capture
the other issues raised in Example 1, two further properties concerning the treat-
ment of the maximal elements are introduced, which can be stated as follows.

Def. 10: (Properties of fitness functions) Let (A, �) be a preordered set. A function
� : A �→ IR is called

• max-preferring if [a, →) = ∅ ⇔ (� ∃b ∈ A \ A∗ : �(b) ≥ �(a)) and

• max-indifferent if ∀a, b ∈ A∗ : �(a) = �(b).

A fitness function is called max-preferring, if all maximal elements are ranked
not worse that all other individuals, and max-indifferent, if all maximal ele-
ments are graded equally. In Example 1, the fitness function was neither max-
preferring nor max-indifferent.

Equipped with a compact notation and a formalization of desirable prop-
erties, we are now in a position to give a formal definition and classification
of fitness functions on preordered sets. Table 1 gives a summary of several,
frequently used fitness functions together with their properties of being

(1) an order homomorphism of (A, �) into (IR, ≥),

(2) an order homomorphism of (A, �) into (IR, >),

(3) max-preferring, and

(4) max-indifferent.

2.3. Selection under Multiple Objectives 23

Name �(a) (1) (2) (3) (4)

dominance
grade

−|(a, →)| * * * *

dominance
level

−len((a, →)) * * * *

inverse
dominance
grade

|(←, a)| * *

inverse
dominance
level

len((←, a)) * *

SPEA −
{

(←,a]
|A|+1 , if (a, →) = ∅
1 +∑

b∈[a,→)
(←,b]
|A|+1 , else

* *

SPEA2 −∑
b∈(a,→) |(←, b]| * * * *

rank sum
∑m

i=1 |{b ∈ A : fi (a) > fi (b)}| * *

weighted
sum

∑m
i=1 wi · fi (a), wi ∈ IR+ * (*)

goal vector −||g − f (a)||α, g ∈ IRm * (*)

Tab. 1: Fitness functions and their properties: (1) order homomorphism regarding �, (2) order
homomorphism regarding �, (3) max-preferring, (4) max-indifferent. If the fitness
function � : A �→ IR has a property, the corresponding column is marked with an
asterisk. The symbol (*) for the weighted sum means that the property holds if all
weights are nonnegative and for the goal vector that it holds for all norms Lα with a
finite α. The table is arranged in three sections, which correspond to the classification
of Pareto selection (top section), criterion selection (middle section) and aggregation
selection (bottom section).

It is easy to verify that all four properties are mutually independent. Thus, none
of the proposed criteria to evaluate fitness assignment schemes is redundant.

The first observation is that all of the analyzed fitness functions are order
preserving in the weakest sense, i.e., they represent one of the many possible
order homomorphisms regarding the weak dominance relation �. The induced
rankings essentially differ only in how incomparable decision alternatives are
ranked relatively to each other and guarantee that a preferable alternative is
never ranked worse than a less preferable one. However, not all fitness functions
guarantee that preferable alternatives are always ranked strictly better than less
preferable ones. This is revealed by the fact that some functions are not order
homomorphisms regarding �. This was, for instance, recognized as a deficit in
the SPEA fitness assignment scheme and led to a subsequent modification for
the SPEA2 algorithm (Zitzler et al. 2002).

24 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

As to max-preference and max-indifference, it is noteworthy that the ap-
proaches of criterion selection and aggregation selection usually do not possess
these properties. On the other hand, the approaches based on Pareto selection
do not fulfill these properties automatically, such as the SPEA as well as the
inverse dominance level and inverse dominance grade approaches. In general,
max-indifference appears to be a desirable property, but the lack of discrimi-
nating power between the maximal elements can also have drawbacks when it
comes to bounding the size of the set A; this matter, and its influence on the
convergence property of the algorithm, is subject of a detailed discussion in
Chapter 3; it will be explained why a pure selection based on fitness functions
is usually not sufficient to guarantee convergence.

2.4 Performance Assessment

An important aspect of an algorithm is its performance, i.e., how “good” it is
in carrying out a specific task. For such a characterization one has to evaluate
the quality of the result in relation to the resources that were needed to achieve
it. In our setting, the result of a multiobjective optimization algorithm is a set
of solutions, which makes is necessary to assess the quality of sets of solutions.
This is a similar, but more involved question compared to the one discussed in
the previous section, where the focus was to evaluate and compare only single
solutions.

The main resource of optimization algorithms is computation time, which
can be measured experimentally or calculated theoretically by counting the
number of operations. If the task is to find the optimum, the performance can be
easily defined as the time needed until the optimum is found. If, however, the
optimal solution cannot be found and only approximated within the given time
resources, performance can be defined as the achievable approximation quality
for a given amount of computation time. These are two complementary views
of the same concept, namely investigating the relationship of achieved solution
quality and computation time.

In the special case of randomized search algorithm applied to multiobjective
optimization problems, the quality assessment is not straightforward due to the
following features.

Multi-variateness: Solutions of a multiobjective optimization algorithm are
multi-variate, meaning that they represent vectors in objective space.

Multiple solutions: The output of a multiobjective optimization algorithm is a
set of solutions rather than a single solution.

Stochasticity: The output of a randomized multiobjective optimization algo-
rithm is a random variable (or a random process, if considered over time).

2.4. Performance Assessment 25

The multi-variateness of solutions and the resulting difficulties to grade and
compare them under multiple objectives has been discussed thoroughly in the
previous section. Moreover, when multiple solutions are combined in a set, the
question of how to grade and compare different sets of solutions is even harder
to answer. This issue will be discussed next. The third topic, how to deal with
the stochastic nature of randomized search when assessing its performance, is
not addressed in this thesis.

Fig. 6: Pareto front of a two-dimensional objective space and the images of three different
solution sets.

The main question under concern in this section is: Given different sets
of solutions produced by different algorithms, can we clearly say that one set
is better than another? And if so, how much better is it? Figure 6 shows an
example of a three solution sets A, B, C . It seems reasonable to say that A is
better than C since all elements of C are dominated by some element of A.
But how does A compare to B and B compare to C? And in addition, can we
quantify, how much approximation set A is better than C?

Consequently, we are looking for indicators of the quality of solution sets.
We proceed as follows. First, approximation sets are introduced to capture the
output of a multiobjective optimization algorithm, and the notion of a quality
indicator is formalized. Then, different types of absolute and relative quality
indicators are investigated from a decision-theoretic point of view to answer the
following questions:

26 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

• How well do absolute quality indicators reflect performance differences?

• To what extent are absolute quality indicators in accordance with the general
preference relations on approximation sets?

• What additional information can be gained if several quality indicators are con-
sidered simultaneously?

• Are relative quality indicators a better choice?

2.4.1 Approximation Sets and Quality Indicators

The output of a randomized search algorithm at time t according to Algorithm 1
is the maximal set A(t)∗ of the currently stored search points A(t). The moti-
vation behind concentrating on the maximal set is the assumption that domi-
nated solutions are of no further interest for the decision maker anyway. The
algorithm tries to approximate the Pareto set of the given multiobjective opti-
mization problem as good as possible. The approximation quality, however, is
measured in objective space. For notational convenience, the index t will be
skipped and we carry out our investigations in objective space, i.e., we focus on
f (A∗). The output of an algorithm can hence be formalized as an approxima-
tion set as follow.

Def. 11: (Approximation set) Let a multiobjective optimization problem be given by X
and f : X �→ IRm, m ∈ IN. A set A ⊆ f (X) is called an approximation set if

∀a ∈ A � ∃b ∈ A : b � a

The set of all approximations sets is denoted as A.

As with single decision alternatives or single objective vectors, order re-
lations are needed to compare different approximation sets. The preference
relation of single decision alternatives can be generalized to sets of decision
alternatives.

Def. 12: Let A be the set of all approximation sets and A, B ∈ A. The binary relation
� ⊆ A × A is defined as

A � B :⇔ ∀b ∈ B ∃a ∈ A : a � b

Apparently, (A, �) is a partially ordered set, since � is reflexive, transitive and
antisymmetric. This weak dominance relation defines a preference structure
according to Definition 2. The strict preference relation �, the indifference
relation ∼, and the incomparability relation ‖ can be derived analogously.

With these binary relations one can state qualitative differences between
approximation sets, i.e., whether one approximation set is better, worse, or in-
comparable to another. The only maximal element of (A, �) is A∗ = f (X∗),
the Pareto front itself. By using subsets of �, even stronger preference relations
can be defined on A.

2.4. Performance Assessment 27

Def. 13: Let A be the set of all approximation sets and A, B ∈ A.

• A
.� B ⇔ ∀b ∈ B ∃a ∈ A : a � b (A pointwise dominates B)

• A
.
> B ⇔ ∀b ∈ B ∃a ∈ A : a > b (A is pointwise larger than B)

With
.
> ⊆ .� ⊆ � ⊆ � , the implication hierarchy

A
.
> B ⇒ A

.� B ⇒ A � B ⇒ A � B

is obtained. In addition to this qualitative assessment, one would like to
make more precise, quantitative statements when comparing approximation
sets. Thus many authors have proposed to use functions that assign each ap-
proximation set a real number to reflect its quality, and to compare different
algorithms based on these function values. This approach can be formalized by
the notion of a quality indicator.

Def. 14: (Quality indicator) An absolute quality indicator I is a function I : A �→ IR,
which assigns each approximation set a real value I (A). A relative quality in-
dicator I is a function I : A×A �→ IR that assigns each pair of approximation
sets a real value I (A, B).

2.4.2 Absolute Quality Indicators

The motivation of using quality indicators is to give more precise, quantitative
statements about differences between approximation sets by applying common
metrics (in the mathematical sense) to the scalar values resulting from the indi-
cator. Ideally, a larger quality indicator value would mean that the correspond-
ing approximation set is better, and vice versa:

A � B ⇔ I (A) > I (B)

Following the same argumentation as in the previous section regarding fitness
functions, a numerical representation of (A, �), i.e. an order isomorphism into
the reals, cannot exist because � is not connected. Given this general limitation,
the following questions:

• what can quality indicators achieve,

• what implications do they allow, and

• how useful are they?

The inferential power of quality indicators can be analyzed by investigating
the type of order homomorphism they represent. An order homomorphism of a
relation R ⊆ A × A into S ⊆ IR × IR allows to infer

ARB ⇒ I (A)SI (B).

28 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

By negating this logical implication, we can then arrive at conclusions that can
be drawn from the indicator values:

¬(ARB) ⇐ ¬(I (A)SI (B))

and, if S is asymmetric,

¬(ARB) ⇐ I (B)SI (A)

Thus, we can only infer from the indicator values that A and B are not in rela-
tion R. This already shows that the inferential power regarding our preference
relations on approximation sets is limited, since ¬(ARB) does not imply B R A
unless R is complete. This deficiency is illustrated in the following example.

Fig. 7: Construction principle of the ε-indicator. For each Pareto-optimal objective vector y ∈
Y ∗ (dark shaded points), the corresponding element from a ∈ A (light shaded points)
has to be identified with the minimum ε such that (1 + ε)a � y. The maximum over all
these ε-values determines the indicator value. In this case, Iε(A) = 0.5. Similarly, the
indicator values for the other two sets from Figure 6 can be calculated as Iε(B) = 0.4
and Iε(C) = 1. The grey shaded area corresponds to all objective vectors that are within
a factor of (1 + ε), ε = 0.5, of set A. It can be seen that this area is just large enough to
touch the “critical” Pareto-optimal objective vector (12, 2).

2.4. Performance Assessment 29

Ex. 2: (ε-indicator3) Let f (X) ⊆ IR+m. The ε-indicator Iε is defined as

Iε(A) := inf
ε∈IR

{∀y ∈ Y ∗ ∃a ∈ A : (1 + ε) · a � y}.
The ε-indicator assumes w.l.o.g. a positive objective space and requires the
Pareto front to be known. It can then be calculated in O(m ·|A|·|Y ∗|) arithmetic
operations as

Iε(A) = max
y∈Y ∗ min

a∈A
max

1≤i≤m

ai

yi
− 1,

because for each Pareto-optimal objective vector, we want to find the solution
with the best – the minimum – approximation factor (see also Figure 7. The
overall indicator value is then the maximum over those factors for all Pareto-
optimal objective vectors Y ∗.

On the basis of the conventional order relations applied to the ε-indicator
values and the example sets from Figure 6, it can be stated that

A � C ⇒ Iε(A) ≤ Iε(C)

A �� B ⇐ A �� B ⇐ Iε(A) > Iε(B)

and, since only the pointwise greater relation is a sufficient condition for a strict
inequality of the indicator values,

A
.
> C ⇒ Iε(A) < Iε(C)

C � .> B ⇐ Iε(C) ≥ Iε(B)

Furthermore, Iε(Z) = 0 for a hypothetical set Z would imply that Z = Y ∗ so
that the more complicated relation D := {(0, r) ∈ IR2 : r > 0} can be used to
imply

Z � A ⇐ Iε(Z)DIε(A) ⇔ (Iε(Z) = 0 ∧ Iε(A) > 0).

Here, the negation

Z �� A ⇒ ¬(Iε(Z)DIε(A)) �⇒ Iε(A)DIε(Z)

does not lead to any useful statements. The reason is that the implication fails
because D is not connected.

The last aspect of the example can even be generalized: Although relations
serving as “detectors” of the dominance relation on approximation sets can be
constructed, they have no practical use because they are not connected.

Lem. 1: Let I : A �→ IR be a quality indicator, S ⊂ IR2 and R ⊂ A × A binary
relations, where R is not connected. If for all A, B ∈ A

I (A)SI (B) ⇒ ARB

then S is also not connected.
3A comprehensive treatment of ε-approximations of Pareto-optimal sets will be given in

Chapter 3 in connection with investigation of the convergence behavior of multiobjective evo-
lutionary algorithms

30 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

Proof: Suppose S is connected. Then

ARB ⇒ ¬(B R A) ⇒ ¬(I (B)SI (A)) ⇒ I (A)SI (B)

and therefore
ARB ⇔ I (A)SI (B)

which contradicts Theorem 1. &'
The above consideration shows that connected relations of the indicator val-

ues, e.g., the conventional order relations, allow only limited conclusions re-
garding the approximation sets. Strong statements are only possible for smaller
sets of indicator value pairs. Lemma 1 states, that even though sufficient con-
ditions to detect whether an approximation set is better than another may exist,
they cannot be expressed by a connected relation on I (A). Therefore, such a
relation holds for few pairs only and cannot be an order homomorphism, simply
because it would be an order isomorphism, which is precluded by Theorem 1.
As a result, absolute quality indicators can be classified according to their infer-
ential direction:

1. Quality indicators that are order homomorphism from the set of approximation
sets into the set of indicator values,

2. Quality indicators whose inverse is an order homomorphism from the set of
indicator values to the set of approximation sets,

3. Quality indicators that have no inferential power at all.

Quality indicators of the first type are therefore most frequently used as they
do not contradict the preference relation on approximation sets. Indicators of
the second type are not useful, because they necessarily evaluate some approx-
imation sets better than others though the given preference relation expresses
exactly the opposite.

Table 2 gives an overview of several absolute quality indicators together
with a characterization of their inferential power. In this context, the exam-
ple of the hypervolume indicator proposed by Zitzler and Thiele (1998) allows
the strongest statements. This quality indicator returns the hypervolume of the
fraction of the objective space that is weakly dominated by an approximation set
A.4 From A � B follows IH (A) > IH (B). The reason is that A must contain
at least one objective vector which is not weakly dominated by B, therefore a
certain portion of the objective space is dominated by A but not by B.

Another benefit of being an order homomorphism is that the Pareto front cor-
responds to an extremum in indicator value space. If this extremum is unique,
the quality indicator can be used to detect Pareto-optimality, as suggested by

4Note that f (X) has to be bounded, i.e., there must exist a hypercube in IRn that encloses
f (X). If this requirement is not fulfilled, it can be easily achieved by an appropriate transfor-
mation.

2.4. Performance Assessment 31

Indicator Name
(Reference)

.
>

.� � > ≥

IH Hypervolume indicator
(Zitzler and Thiele 1998)

> > > �≺ �≺

Iε ε-indicator
(Example 2)

> ≥ ≥ �≺ � .<

ID Distance from reference set
(Czyzak and Jaskiewicz 1998)

> ≥ ≥ �≺ � .<

IPF Fraction of Pareto front covered
(Ulungu et al. 1999)

≥ ≥ ≥ �) −

IP Number of Pareto points contained
(Zitzler et al. 2003)

≥ ≥ ≥ �) −

IER Error ratio
(Van Veldhuizen 1999)

≥ ≥ − � .≺ −

Tab. 2: Overview of some absolute quality indicators and their properties. The third column
lists the relation of indicator values that follow from the

.
>,

.� and � relations of the
approximation sets in the top line, while the forth column lists the relations of the
approximation sets that follow from the > and ≥ relations of the indicator values in the
top line.

Fleischer (2003). Fleischer (2002) proved that the hypervolume indicator at-
tains its maximum if and only if its argument is the Pareto front. With the
framework developed in this chapter, it is possible to prove the following, more
general theorem.

Th. 2: Let A be an approximation set and I : A �→ IR a quality indicator. The condi-
tion

I (A) = max{I (B) : B ∈ A}
is

• necessary for A being the Pareto front Y ∗, if I is an order homomorphism of
(A, �) into (IR, ≥), and

• necessary and sufficient for A being the Pareto front Y ∗, if I is an order homo-
morphism of (A, �) into (IR, >).5

Proof: For the necessary conditions assume that A = Y ∗. Therefore, for all
B ∈ A, B �= A: A � B. If I is an order homomorphism of (A, �) into (IR, ≥),
then I (A) ≥ I (B) for all B ∈ A. If I is an order homomorphism of (A, �)

into (IR, >), then I (A) > I (B) for all B ∈ A, B �= A. In both cases, I (A) is
maximum. For the sufficient condition assume A �= P . In this case P � A and,

5Of course, the theorem also holds for quality indicators, where smaller values are consid-
ered better, i.e., for order homomorphisms of (A, �) into (IR, ≤) and (A, �) into (IR,<).

32 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

since I is an order homomorphism of (A, �) into (IR, >), I (P) > I (A), which
contradicts the precondition that I (A) is maximum. &'

Most of the quality indicators listed in Table 2 are order homomorphisms
into (IR, ≤), for which the sufficient condition could not be proven in this gen-
eral manner. This does not preclude that the condition is sufficient for all these
indicators. For the ε-indicator, e.g., only the Pareto front achieves the mini-
mum value of Iε = 0. This, however, can only be found through a case-by-case
inspection of the quality indicators.

One class of indicators that belong to third type of the above enumeration
and do not allow any conclusions to be drawn regarding the dominance rela-
tionship between approximation sets is represented by the various diversity in-
dicators (Srinivas and Deb 1994; Schott 1995; Zitzler 1999; Sayin 2000; Deb
2001; Wu and Azarm 2001). If we consider a pair A, B ∈ A with A � B, in
general the indicator value of A can be less, or greater than, or even equal to, the
value assigned to B (for the diversity indicators mentioned above). Therefore,
the orders induced by these indicators are neither sufficient nor necessary con-
ditions for any of the preference relations defined on approximation sets, and no
statements are possible.

Given these limitations, what further information can be gained by consid-
ering multiple quality indicators at the same time, i.e., quality vectors? Indeed,
many authors have claimed that “the performance of multiobjective optimiz-
ers is a multiobjective problem itself”. We already know that (A, �) cannot
isomorphically be mapped to (IR, ≥) or to any other connected relation on the
reals, but can it be mapped to (IRk, �)? An equivalent question is, what is the
dimension of the partially ordered set (A, s)? If dim(A, �) = k < ∞, then
there would exist a set of k linear orders whose intersection is equal to �. The
purpose of such a collection of k indicators would be to tell:

• if one set is better than the other, how much better it is, or

• if two sets A and B are incomparable to each other, are there certain aspects,
expressed by the scalar indicators, in which A is better than B, and others, where
B is superior to A.

The variety among the indicators proposed suggests that this goal is, at least,
difficult to achieve. The following theorem shows it cannot be achieved in gen-
eral.

Th. 3: (Zitzler et al. 2003) Suppose an optimization problem with m ≥ 2 objectives
where the objective space is Y = IRm. Then, there does not exist a finite combi-
nation of k quality indicators I : A �→ IRk, I = (I1, . . . , Ik) such that I is an
order isomorphism of (A, �) into (IRk, R) for any relation R, i.e.

A � B ⇔ I (A)RI (B)

for any approximation sets A, B ∈ A.

2.4. Performance Assessment 33

2
f

f
1

b

a

a b

(a,a)

(b,b)

S

Fig. 8: Illustration of the construction used in Theorem 3 for a two-dimensional minimization
problem. We consider an open rectangle (a, b)2 and define an open line S within. For
S holds that any two objective vectors contained are incomparable to each other, and
therefore any subset A ⊆ S is an approximation set.

Sketch of proof: The proof is based on the following fundamental results from
set theory (Hrbacek and Jech 1999):

• IR, IRk , and any open interval (a, b) in IR resp. hypercube (a, b)k in IRk have
the same cardinality, denoted as 2ℵ0 , i.e., there is a bijection from any of these
sets to any other;

• If a set S has cardinality 2ℵ0, then the cardinality of the power set P (S) of S is
22ℵ0 , i.e., there is no injection from P (S) to any set of cardinality 2ℵ0.

As we consider the most general case where Y = IRm , it is possible to construct
a set S (see Figure 8) such that any two points contained are incomparable
to each other. Accordingly, any subset A of S is an approximation set and
the power set of S, the cardinality of which is 22ℵ0 , is exactly the set of all
approximation sets A ⊆ S. We will then show that any two approximation sets
A, B ⊆ S with A �= B must differ in at least one of the k indicator values.
Therefore, an injection from a set of cardinality 22ℵ0 to IRk is required, which
finally leads to a contradiction.

Note that Theorem 3 also holds (i) if we only assume that Y contains an
open hypercube in IRm and (ii) if we consider any other preference relations on
A (for ‖ and � it follows directly from Theorem 3, for

.� and
.
> the proof has

to be slightly modified).
The construction of an order isomorphism is possible, however, if we restrict

the cardinality of approximation sets and consider only A′ := {A ∈ A : |A| ≤
l} for a fixed l ∈ IN. In this case one could define a bijective mapping I :
A′ �→ IR such that I is an order isomorphism of (A′, �) into (IR, R), where R

34 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

is defined as aRb :⇔ I −1(a) � I −1(b). The existence of such an indicator is
only of theoretical use since we cannot apply any meaningful metrics to it. &'

As a result we conclude that dim(A, �) = ∞, i.e., we cannot describe
the preference relation on approximations sets with a finite number of scalar
absolute indicators.

2.4.3 Relative Quality Indicators

Relative quality indicators can be used to overcome the difficulties with absolute
indicators. However, they also have a drawback: comparing t algorithms using
a single relative indicator results in t (t −1) distinct indicator values – in contrast
to the t values in the case of an absolute indicator. This renders the analysis and
the presentation of the results more difficult. Nevertheless, Theorem 3 suggests
that this is in the nature of multiobjective optimization problems.

In principle, there are no such theoretical limitations of relative indicators as
for absolute indicators. The reason is that the class of relative indicators contains
the preference relations defined on A, i.e., the preference relation is in fact a
special relative indicator. While preference relations represent binary relations,
the relative indicators are general valued relations. Consider for instance the
indicator

I (A, B) :=

5 if A
.
> B

4 if A
.� B ∧ A � .> B

3 if A � B ∧ A � .� B
2 if A � B ∧ A �� B
1 if A = B
0 else

which is a compact representation of all preference relations we used so far. By
using a finer scale of the values, quality differences can be expressed in more
detail. A function s : IR �→ {0, 1} can then be defined to map I (A, B) to a
preference relation R on A, i.e. s(I (A, B)) ⇔ ARB. Consider the following
example, which is a generalization of the ε-indicator from Example 2.

Ex. 3: (Relative ε-indicator) Let f (X) ⊆ IR+m. The ε-indicator Iε is defined as

Iε(A, B) := inf
ε∈IR

{∀b ∈ B ∃a ∈ A : (1 + ε) · a � b}.

With this definition the following equivalences hold:

A � B ⇔ Iε(A, B) ≤ 0
and A

.
> B ⇔ Iε(A, B) < 0.

Furthermore,

A � B ⇔ A � B ∧ B �� A ⇔ Iε(A, B) ≤ 1 ∧ Iε(B, A) > 1
A = B ⇔ A � B ∧ B � A ⇔ Iε(A, B) = 1 ∧ Iε(B, A) = 1
A ‖ B ⇔ A �� B ∧ B �� A ⇔ Iε(A, B) > 1 ∧ Iε(B, A) > 1.

2.5. Summary 35

The example shows, how the valued relations given by the quality indicator
correspond directly to the binary preference relations, while the magnitude of
the quality indicator values provides additional information about how much
one approximation set is better than another. It also demonstrates how logical
combinations of the indicator values can be used to derive equivalences with
further preference relations.

However, care has to be taken when defining a relative indicator, as not all
existing relative indicators guarantee the existence of any logical combination
to create equivalences with the binary order relations. An example are those
indicators that are, as Knowles and Corne (2002) denote it, symmetric, i.e.,
I (A, B) = c− I (B, A) for a constant c ∈ IR. Even though symmetric indicators
are attractive as only half the number of indicator values have to be considered
in comparison to a general relative indicator, their inferential power is restricted
as shown by the following theorem.

Th. 4: (Zitzler et al. 2003) Let I be a relative quality indicator with I (A, B) =
−I (B, A) for all A, B ∈ A. If

I (A, B) > I (B, A) ⇔ A � B

holds for all A, B ∈ A then also

I (A, B) = I (B, A) = 0 ⇔ (A = B ∨ A||B)

for all A, B ∈ A.

Table 3 gives an overview of several relative quality indicators from the lit-
erature. For each preference relation on approximation sets it depicts the equiv-
alent conditions on the indicator values, if such conditions are possible at all.

2.5 Summary
In this chapter, the fundamentals of evolutionary multiobjective optimization
was discussed from a decision-theoretic point of view. Decision theory, espe-
cially the theory of ordered sets, represents a natural way to treat the general
multiobjective optimization scenario as well as multiobjective optimization al-
gorithms in the same mathematical framework. It allows to precisely specify the
limits and difficulties imposed on any algorithm under the presence of multiple
objectives in contrast to the single-objective optimization scenario.

For evolutionary multiobjective optimization algorithms, the differences to
their single objective counterparts are imminent in the selection operator as well
as in the performance assessment. Both issues are necessarily connected to
order relations: in the former for comparing single decision alternatives and in
the latter for comparing sets of decision alternatives. Common approaches to

36 Chapter 2. Multiobjective Optimization with Evolutionary Algorithms

ind. Iε IC IH2 IR1 IR2 IR3 ILI
.
> Iε(A, B) < 0 - - - - - -

.� - IC(A, B) = 1 - - - - -
IC(B, A) = 0

� Iε(A, B) ≤ 0 IC(A, B) = 1 IH2(A, B) > 0 - - - -
Iε(B, A) > 0 IC(B, A) < 1 IH2(B, A) = 0

� Iε(A, B) ≤ 0 IC(A, B) = 1 IH2(A, B) ≥ 0 - - - -
IH2(B, A) = 0

= Iε(A, B) = 0 IC(A, B) = 1 IH2(A, B) = 0 - - - -
Iε(B, A) = 0 IC(B, A) = 1 IH2(B, A) = 0

‖ Iε(A, B) > 0 IC(A, B) < 1 IH2(A, B) > 0 - - - -
Iε(B, A) > 0 IC(B, A) < 1 IH2(B, A) < 1

IC: Coverage indicator (Zitzler 1999)
IH2: Binary hypervolume indicator (Zitzler 1999)
IR1, IR2, IR3: Utility function indicators R1 to R3 (Hansen and Jaszkiewicz 1998)
ILI: Lines of intersection (Knowles and Corne 2000)

Tab. 3: Overview of relative quality indicators. The entries in the table correspond to relations
of the indicator values that are equivalent with the respective preference relation on the
approximation sets.

both issues are to look for real-valued representations of the underlying order
relations. For selection operators this is formalized by the notion of fitness
functions, for performance assessment by the notion of quality indicators. As
the main result in this chapter, it was proven that an order representation in the
sense of an isomorphism cannot exist in both cases, and the consequences of
this fact were discussed. We proposed further, weaker properties and classified
existing fitness function and quality indicators accordingly.

3
Limit Behavior and Global Convergence

This chapter is devoted to the analysis of the limit behavior of multiobjective
evolutionary algorithms, which is achieved by studying the random sequence
of its solution set (A(t)) and its maximal elements (A(t)∗) for t → ∞. For
a multiobjective optimization algorithm it is desirable that it converges to the
Pareto set at least in the limit, i.e., when unlimited time resources are available.

For a randomized search algorithm, convergence needs to be defined in a
probabilistic sense. A multiobjective optimization algorithm is said to converge
to the Pareto set X∗ with probability one1, if

P
{

lim
t→∞ A(t)∗ ⊆ X∗} = 1.

Sequences of approximation sets that do not converge to a subset of the Pareto
set occur with zero probability. If the equality limt→∞ A(t)∗ = X∗ holds in the
above equation, the algorithm is said to converge to the whole Pareto set.

Convergence to the whole Pareto set can easily be proven if we assume
that (i) every decision alternative is generated with probability one during the
run and (ii) non-dominated alternatives are never discarded from the internal
memory A. As the Pareto set can contain a huge or even infinite number of
solutions, this result is of little practical relevance.

One is actually interested in a bounded approximation of the Pareto set, i.e.,
a solution set of bounded size, which represents the Pareto set well. To fulfill the
first requirement, an algorithm has to work with a solution storage of bounded
size and can therefore in most cases only converge to a subset of the Pareto
set. Nevertheless, this subset should be as diverse as possible in order to be a

1Convergence with probability one is also called almost sure convergence; for an overview
and discussion of different modes of stochastic convergence in the area of evolutionary compu-
tation see Rudolph (1997b).

38 Chapter 3. Limit Behavior and Global Convergence

Fig. 9: Block diagram of Algorithm 1. The select operator has to work with an solution storage
of bounded capacity.

good representation of the Pareto set. In summary, we are therefore looking for
algorithms that

1. converge to the Pareto set,

2. maintain a diverse set of solutions, and

3. work with bounded memory.

The discussion of related work in the following section shows that such
algorithms do not exist so far. The intention of this chapter is to fill this gap
and answer the question, how do we guarantee that an algorithm converges to a
subset of solutions that represents the Pareto set well under the assumption of
unlimited time resources, but limited memory resources.

To achieve this goal, we start by specifying what we understand by a
bounded approximation of the Pareto set. Based on the notion of ε-dominance,
this definition combines the aspects of approximation quality and diversity.
Building on this concept, we propose two new selection operators and prove
that they fulfill all three properties listed above. Section 3.3 then presents some
simulation results to demonstrate the behavior of the new algorithms and to
visualize the important differences to the existing approaches. In Section 3.4
various practically relevant extensions to the new approach are outlined and
discussed.

3.1 Related Work
The task of bounding the size of the stored solution set is performed by the se-
lection operator. This is illustrated in Figure 9, which displays a block diagram
of the conceptual evolutionary algorithm, Algorithm 1. The solution storage

3.1. Related Work 39

will be referred to in the following as the archive of the algorithm; and the fo-
cus of the subsequent investigations is therefore on the archiving strategy of the
selection operator. The archiving strategies proposed in the context of multiob-
jective evolutionary algorithms can be divided into two categories depending on
whether their focus lies on convergence or distribution quality.

3.1.1 Algorithms for Guaranteed Convergence

Theoretic work on convergence in evolutionary multiobjective optimization is
mainly due to Rudolph (1998a, 1998c, 2001), Rudolph and Agapie (2000), and
Hanne (1999, 2001). The aim of the authors was to construct algorithms for
which they can prove convergence to the Pareto set. Their concepts and corre-
sponding algorithms are described in the following.

Efficiency Preservation and the Problem of Deterioration Hanne suggested
(1999) and implemented (2001) a selection strategy for MOEAs based
on the concept of “(negative) efficiency preservation” as a multiobjective
generalization of the “plus” (elitist) selection, also denoted as a (µ + λ)-
strategy2. He defines efficiency preservation as the property of only ac-
cepting new solutions if they dominate at least one of the current solu-
tions. Negative efficiency preservation is given when a solution is dis-
carded only if a dominating solution is accepted in return. Both proper-
ties are mutually independent, and sufficient to preclude the problem of
deterioration. Deterioration occurs, when elements of a solution set at a
given time are dominated by a solution set the algorithm maintained some
time before. This can happen using the standard Pareto-based selection
schemes even under elitism, as well as with virtually all selection schemes
used in the advanced state-of-the-art MOEAs, as will be described shortly.

In Hanne (1999) a convergence proof for a (µ + λ)-MOEA with Gaus-
sian mutation distributions over a compact real search space has been
enabled by the application of a (negative) efficiency preservation selec-
tion scheme. A disadvantage of this approach is that no assumptions can
be made as to the distribution of solutions, since with both efficiency and
negative efficiency preservation arbitrary regions of the objective space –
and hence of the Pareto front – can become unreachable.

Rudolph’s and Agapie’s Elitist MOEAs Similar to Hanne’s idea is Rudolph’s
(1998a) concept of elite preservation. Based on this concept, Rudolph and
Agapie (2000) suggested MOEAs with a fixed-size archive, where a so-
phisticated selection process precludes the problem of deterioration. The

2This notation refers to how the selection operator chooses individuals for the next gener-
ation. The old parent population of size µ is merged with the offspring population of size λ.
Then, the best µ solutions of this union are deterministically chosen to form the parent popula-
tion of the next generation. This selection strategy is called elitist, as the best individuals always
survive. This view, though, holds only if a total order exists on the set of individuals, e.g., for
single-objective optimization.

40 Chapter 3. Limit Behavior and Global Convergence

authors have shown that these algorithms converge to the Pareto set, pro-
vided that their variation operators guarantee to generate each point of the
decision space with a probability not less than an arbitrarily small posi-
tive constant. However, when all archive members are Pareto-optimal,
the algorithm does not allow any new Pareto-optimal solution to enter
the archive. Thus, although the algorithms guarantee convergence to the
Pareto set, they do not guarantee a good distribution of Pareto-optimal
solutions.

3.1.2 Elitist Selection with Focus on Distribution Quality

Efforts to maintain well-distributed solution sets have resulted in a number of
elitist MOEAs which especially address the diversity of the archived solutions
by different mechanisms. We discuss some selected representatives in order to
highlight the typical working principle of the respective selection operators and
the potential deficiencies regarding their convergence properties.

Pareto-Archived Evolution Strategy (PAES) Knowles and Corne (2000)
suggested a simple elitist MOEA using a single parent, single child
(1 + 1)-EA called Pareto-Archived Evolution Strategy (PAES). If a new
solution is not dominated by any archive member it is included in the
archive, deleting in turn all members that it dominates. If the archive ex-
ceeds its maximum size, the acceptance of new solutions is decided by a
histogram-like density measure over a hyper-grid division of the objective
space. This archiving strategy is similar to the one proposed by Kursawe
(1990, 1991), who already used an adaptive distance measure to maintain
a good spread of non-dominated solutions in a fixed-size archive.

Strength Pareto Evolutionary Algorithm (SPEA) Zitzler and Thiele (1999)
have suggested an elitist MOEA using the concept of non-domination
and a secondary population of non-dominated points. After every gener-
ation, the secondary population is updated with the non-dominated off-
spring, while all dominated elements are discarded. If this archive ex-
ceeds its maximum size, a clustering mechanism groups all currently non-
dominated solutions into a pre-defined number of clusters and picks a rep-
resentative solution from each cluster, thereby ensuring diversity among
the external population members.

Elitist Non-Dominated Sorting GA (NSGA-II) In NSGA-II (Deb et al.
2000), the parent and offspring population (each of size N) are combined
and evaluated using (i) a fast non-dominated sorting approach, (ii) an eli-
tist approach, and (iii) an efficient crowding approach. When more than
N population members of the combined population belong to the non-
dominated set, only those that are maximally apart from their neighbors
according to the crowding measure are chosen. This way, like when using
PAES and SPEA, an existing non-dominated solution may get replaced by

3.2. Algorithms for Convergence and Diversity 41

another, since selection is then based only on the specific diversity mea-
sure or on the clustering procedure. In a succession of these steps, deteri-
oration may occur such that convergence can no longer be guaranteed for
any of these algorithms.

3.1.3 Limitations of Existing Selection Strategies

It is clear from the above discussion that the existing elitist MOEAs cannot
achieve both tasks simultaneously, either they enable convergence or they focus
on a good distribution of solutions. The convergence criterion can easily be
fulfilled by dominance preservation; however, a pure implementation of this
approach leaves the distribution aspect unsolved. All algorithms focusing on a
good distribution are on the other hand in danger of deterioration. The diversity-
preservation operator used in each of the above algorithms are primarily geared
to maintain spread among solutions. While doing so, the algorithms have no
way of knowing which solutions are already Pareto-optimal and which are not.
The diversity-preservation operators alway emphasize the less crowded regions
of the non-dominated solutions.

3.2 Algorithms for Convergence and Diversity

The above discussion of existing selection operators reveals that none of them
is able to combine convergence and diversity, as it is desirable for a multiob-
jective optimization algorithm. We want to overcome this fundamental problem
and proceed as follows. First, we discuss why it is important to bound the size
of the archived solution set. These considerations motivate the idea of discrete
Pareto set approximations as an appropriate solution concept for multiobjec-
tive optimization problems. Using the notion of ε-dominance, we show that
the corresponding ε-approximate Pareto sets also comply with the diversity as-
pect. What remains to be addressed is the convergence aspect. To this end,
two selection algorithms are constructed that implement the proposed solution
concept. The idea of the algorithms is to always maintain a ε-approximation of
all solutions produced so far. From this invariance property, the convergence of
the algorithm to a discrete, representative and well-distributed solution set is an
immediate consequence.

3.2.1 Concept of Pareto Set Approximation

In many multiobjective optimization problems, the Pareto set X∗ is of substan-
tial size. Thus, the numerical determination of X∗ is prohibitive, and X∗ as a
result of an optimization is questionable. Moreover, it is not clear at all what
a decision maker can do with such a large result of an optimization run. What
would be more desirable is an approximation of X∗ which approximately dom-
inates all elements of X and is of reasonable size. This set can then be used

42 Chapter 3. Limit Behavior and Global Convergence

f 1

f 2 f

dominated by f

f 2 f

-dominated by f�

f 1
(1+)�f 1

(1+)� f 2

Fig. 10: Graphs visualizing the concepts of dominance (left) and ε-dominance (right).

by a decision maker to determine interesting regions of the decision and objec-
tive space, which can be explored in further optimization runs. Next, we define
a generalization of the dominance relation as visualized in Figure 10 (right).
Without loss of generality, a normalized and positive objective space as well as
a maximization problem is assumed for notational convenience.

Def. 15: (ε-dominance) Let f : X �→ IR+m and a, b ∈ X. Then a is said to ε-dominate
b for some ε > 0, denoted as a �ε b, if and only if for all i ∈ {1, . . . , m}

(1 + ε) · fi (a) ≥ fi (b). (3.1)

Def. 16: (ε-approximate Pareto set) Let X be a set of decision alternatives and ε > 0.
Then a set Xε is called an ε-approximate Pareto set of X, if any vector a ∈ X is
ε-dominated by at least one vector b ∈ Xε, i.e.,

∀a ∈ X : ∃b ∈ Xε such that b �ε a. (3.2)

The set of all ε-approximate Pareto sets of X is denoted as Pε(X). The image
of an ε-approximate Pareto set Fε = f (Xε) is called an ε-approximate Pareto
front.

Of course, the set Xε is not unique. Many different concepts for ε-efficiency3

and the corresponding Pareto set approximations exist in the operations research
literature, a survey is given by Helbig and Pateva (1994). As most of the con-
cepts deal with infinite sets, they are not practical for our purpose of producing
and maintaining a representative subset. Nevertheless, they are of theoretical in-
terest and have properties which can be used for instance in convergence proofs,
see Hanne (1999) for an application in MOEAs.

Using discrete ε-approximations of the Pareto set was suggested simultane-
ously by Evtushenko and Potapov (1987), Reuter (1990), and Ruhe and Fruh-
wirt (1990). As in our approach, each Pareto-optimal point is approximately

3The terms ”efficient” and ”Pareto-optimal” can be used synonymously. While the former
appears to be more frequent in operations research literature, we generally use the latter as it is
more common in the field of evolutionary computation.

3.2. Algorithms for Convergence and Diversity 43

dominated by some point of the representative set. The first two studies use
absolute deviation (additive ε, see below) and the third uses relative deviation
(multiplicative ε as above), but they are not concerned with the size of the rep-
resentative set in the general case.

Regarding the size of such Pareto set approximations, Papadimitriou and
Yannakakis (2000) and Erlebach et al. (2001) have pointed out that under very
mild assumptions, which also hold in our case, there is always an approximate
Pareto set whose size is polynomial in the length of the encoded input, i.e., in
the logarithm of the largest objective value. This can be achieved by placing a
hyper-grid in the objective space using the coordinates 1, (1+ε), (1+ε)2, . . . for
each objective. As it suffices to have one representative solution in each grid cell
and to have only non-dominated cells occupied, it can be seen that for any finite
ε and any set X with bounded image in objective space, i.e., 1 ≤ fi (x) ≤ K for
all x ∈ X, i ∈ {1, . . . , m}, there exists a set Xε containing

|Xε| ≤
(

log K

log (1 + ε)

)m−1

(3.3)

vectors. A proof will be given in connection with Algorithm 3 in Section 3.2.3.
Note that the concept of approximation can also be used if other similar defini-
tions of ε-dominance are used, e.g., the following additive approximation

εi + f (b) ≥ f (a) ∀i ∈ {1, . . . , m} (3.4)

where εi are constants, separately defined for each coordinate. In this case there
exist ε-approximate Pareto sets whose size can be bounded as follows:

|Xε| ≤
m−1∏
j=1

K − 1

εi
(3.5)

where 1 ≤ fi ≤ K , K ≥ εi for all i ∈ {1, . . . , m}. A further refinement of the
concept of ε-approximate Pareto sets leads to the following definition.

Def. 17: (ε-Pareto set) Let X be a set of decision alternatives and ε > 0. Then a set
X∗

ε ⊆ F is called an ε-Pareto set of X if

1. X∗
ε is an ε-approximate Pareto set of X, i.e., X∗

ε ∈ Pε(X), and

2. X∗
ε contains maximal elements of X only, i.e., X∗

ε ⊆ X∗.

The set of all ε-Pareto sets of X is denoted as P∗
ε (X). The image of an ε-Pareto

set F∗
ε = f (X∗

ε) is called an ε-Pareto front.

The above defined concepts are visualized in Figure 11. An ε-Pareto set X∗
ε

not only ε-dominates all decision alternatives in X , but also consists of Pareto-
optimal decision alternatives only, therefore we have P∗

ε (X) ⊆ Pε(X).

44 Chapter 3. Limit Behavior and Global Convergence

f2

f1

F*

�F �F*

f2

f1

F*

Fig. 11: Graphs visualizing the concepts of ε-approximate Pareto front (left) and ε-Pareto front
(right). The Pareto front F∗ is given by the black curve. The black dots represent
an ε-approximate Pareto front Fε and an ε-Pareto front F∗

ε . The shaded area contains
those objective vectors that are ε-dominated by the elements of Fε (left) and F∗

ε (right);
this area must include the whole Pareto front. All elements of the ε-Pareto front F∗

ε

are Pareto-optimal, which is not required for the elements of the ε-approximate Pareto
front.

Since finding the Pareto set of an arbitrary decision space X is usually not
practical because of its size, one needs to be less ambitious in general. There-
fore, the ε-approximate Pareto set is a practical solution concept as it not only
represents all alternatives X but also consists of a smaller number of elements.
Of course, an ε-Pareto set is more attractive as it consists of Pareto-optimal
decision alternatives only.

Diversity can be defined in various ways. Here, we associate diversity with
approximation quality in the sense that we require a good approximation quality
in every region of the Pareto set. Furthermore, the measurement of proximity is
performed in the objective space only. The main reason for excluding the deci-
sion space from the considerations is that any measurement regarding diversity
or proximity relies on the decision space being a metric space. This is not al-
ways the case and therefore hinders the derivation of results which are valid for
all multiobjective optimization problems.

According to Definition 15, the ε value stands for a relative “tolerance”
allowed for the objective values. In contrast, using equation (3.4) we would
allow a constant additive (absolute) tolerance. The choice of the ε value is
application specific: a decision maker should choose a type and magnitude that
suits the (physical) meaning of the objective values best. The ε value further
determines the maximal size of the solution set, and therefore, of the required
memory according to equations (3.3) and (3.5). This is especially important
in higher dimensional objective spaces, where the concept of ε-dominance can
reduce the required number of solutions considerably.

3.2. Algorithms for Convergence and Diversity 45

3.2.2 Algorithm to Maintain an ε-approximate Pareto Set

After the definition of the type of solution set we are aiming at, the next step is
to implement this solution concept algorithmically. First, a select operator is
presented which leads to the maintenance of an ε-approximate Pareto set. The
idea is that new solutions are only accepted if they are not ε-dominated by any
other element of the current archive. If a solution is accepted, all dominated
solutions are removed.

Algorithm 2 select operator for ε-approximate Pareto set
1: Input: A, x
2: if ∃x ′ ∈ A such that x ′ �ε x then
3: A′ := A
4: else
5: D := {x ′ ∈ A : x � x ′}
6: A′ := A ∪ {x} \ D
7: end if
8: Output: A′

Th. 5: Let X (t) = ⋃t
j=1 x (j), 1 ≤ fi (x (j)) ≤ K , be the set of all decision alternatives

created in Algorithm 14 and given to the select operator as defined in Algo-
rithm 2. Then A(t) is an ε-approximate Pareto set of X (t) with bounded size,
i.e.,

1. A(t) ∈ Pε(X (t))

2. |A(t)| ≤
(

log K
log (1+ε)

)m

Proof:

1. Suppose the algorithm is not correct, i.e., A(t) �∈ Pε(X (t)) for some t . According
to Def. 16 this occurs only if some x = f (τ), τ ≤ t is not ε-dominated by any
member of A(t) and is not in A(t).

For x = x (τ) not being in A(t), it can either have been rejected at t = τ or
accepted at t = τ and removed later on. Removal, however, only takes place
when some new x ′ enters A which dominates x (line 6). Since the dominance
relation is transitive, and since it implies ε-dominance, there will always be
an element in A which ε-dominates x , which contradicts the assumption. On
the other hand, x will only be rejected if there is another x ′ ∈ A(τ) which ε-
dominates x (line 2) and – with the same argument as before – can only be
replaced by accepting elements which also ε-dominate x .

4The decision alternatives are assumed to be produced by the generate operator in the
conceptual evolutionary algorithm introduced in Section 2.2.

46 Chapter 3. Limit Behavior and Global Convergence

2. Every x ∈ A(t) defines a hyper-rectangle between x and (1 + ε) · x where no
other element of A(t) can exist because dominated elements are always deleted
from the set. Furthermore, these areas do not overlap since this would mean
that the two corresponding points ε-dominate each other, which is precluded
by the acceptance criterion. The maximum number of non-overlapping hyper-

rectangles in the whole objective space is given by
(

log K
log (1+ε)

)m
. &'

Rudolph and Agapie (2000) defined and discussed two conceptual algo-
rithms called VV and PR whose selection strategy can be regarded as special
cases of Algorithm 2 for ε → 0. In the limit, the ε-dominance becomes the nor-
mal dominance relation, and the algorithm will always maintain a set of only
non-dominated vectors. Of course, according to the previous theorem, the size
of this set might grow to infinity during the course of the algorithm.

3.2.3 Algorithm to Maintain an ε-Pareto Set

In the next step we guarantee – in addition to a minimal distance between points
– that the points in A(t) are maximal elements of all alternatives generated so
far. The following Algorithm 3 has a two level concept. On the coarse level, the
objective space is discretized by a division into boxes (see Algorithm 4), where
each decision alternative uniquely belongs to one box in objective space. Using
a generalized dominance relation on these boxes5, the algorithm always main-
tains a set of non-dominated boxes and thereby guarantees the ε-approximation
property. On the fine level, at most one element is kept per box. Within a box,
each representative vector can only be replaced by a dominating one (similar to
Agapie’s and Rudolph’s algorithm), thus guaranteeing convergence.

Algorithm 3 select operator for ε-Pareto set
1: Input: A, x
2: D := {x ′ ∈ A : box(x) � box(x ′)}
3: if D �= ∅ then
4: A′ := A ∪ {x} \ D
5: else if ∃x ′ : (box(x ′) = box(x) ∧ x � x ′) then
6: A′ := A ∪ {x} \ {x ′}
7: else if � ∃x ′ : box(x ′) � box(x) then
8: A′ := A ∪ {x}
9: else

10: A′ := A
11: end if
12: Output: A′

5The box-dominance relation is not equivalent with the ε-dominance relation, but defined as
the normal dominance relation on the box index vector. Likewise, box-dominance is neither a
sufficient nor a necessary condition for dominance. Both dominance and box-dominance imply
ε-dominance. This property is utilized in the proof of Theorem 6.

3.2. Algorithms for Convergence and Diversity 47

Algorithm 4 function box
1: Input: x
2: for all i ∈ {1, . . . , m} do
3: bi := , log fi (x)

log (1+ε)
-

4: end for
5: b := (b1, . . . , bm)

6: Output: b {box index vector}

Now, the invariance property of the above selection strategy can be proved.
This guarantees the convergence of the sequence of solution sets to the Pareto
set with the required diversity.

Th. 6: Let X (t) = ⋃t
j=1 x (j), 1 ≤ fi (x (j)) ≤ K , be the set of all decision alternatives

created in Algorithm 1 and given to the select operator as defined in Algo-
rithm 3. Then A(t) is an ε-Pareto set of X (t) with bounded size according to
equation (3.3), i.e.,

1. A(t) ∈ P∗
ε (X (t))

2. |A(t)| ≤
(

log K
log (1+ε)

)(m−1)

Proof:

1. Suppose the algorithm is not correct, i.e., A(t) �∈ P∗
ε (X (t)) for some t . Accord-

ing to Def. 17, this occurs only if some x = x (τ), τ ≤ t is (1) not ε-dominated
by any member of A(t) and not in A(t) or (2) in A(t) but not in the Pareto set of
X (t).

Case (1): For x = x (τ) not being in A(t), it can either have been rejected at
t = τ or accepted at t = τ and removed later on. Removal, however, only
takes place when some new x ′ enters A, which dominates x (line 6) or whose
box value dominates that of x (line 4). Since both relations are transitive, and
since they both imply ε-dominance, there will always be an element in A which
ε-dominates x , which contradicts the assumption. On the other hand, x will
only be rejected if there is another x ′ ∈ A(τ) with the same box value and which
is not dominated by x (line 10). This x ′, in turn, ε-dominates x and – with the
same argument as before – can only be replaced by accepting elements which
also ε-dominate x .

Case (2): Since x is not in the Pareto set of X (t), there exists x ′ = x (τ ′), τ ′ �=
τ, x ′ ∈ X∗(t) with x ′ � x . This implies box(x ′) � box(x) or box(x ′) =
box(x). Hence, if τ ′ < τ , x would not have been accepted. If τ ′ > τ , x would
have been removed from A. Thus, x �∈ A(t), which contradicts the assumption.

2. The objective space is divided into
(

log K
log (1+ε)

)m
boxes, and from each box

at most one point can be in A(t) at the same time. Now consider the

48 Chapter 3. Limit Behavior and Global Convergence

(
log K

log (1+ε)

)(m−1)

equivalence classes of boxes where – without loss of generality

– the boxes of each class have the same coordinates in all but one dimension.
There are log K

log (1+ε)
different boxes in each class constituting a chain of dominat-

ing boxes. Hence, only one point from each of these classes can be a member
of A(t) at the same time. &'

As a result, Algorithm 2 and Algorithm 3 use finite memory and succes-
sively update a finite subset of decision alternatives that ε-dominate all alterna-
tives generated so far, thereby solving both the memory bound and the diversity
problem. For Algorithm 3, it can be additionally guaranteed that this subset con-
tains only elements which are not dominated by any of the generated vectors.
Note that specific bounds on the objective values are not used in the algorithms
themselves and are not required to prove the convergence. They are only utilized
to prove the relation between ε and the size of the archive given in the second
claim. The invariance properties of the algorithms assure the monotonicity of
the sequence of archived solution sets, which finally solves the third issue, the
convergence problem.

3.3 Simulations
This section presents some simulation results to demonstrate the behavior of
the proposed algorithms for two example multiobjective optimization problems.
We use instances of the conceptual evolutionary algorithm (specified in Algo-
rithm 1) with a common generate operator and examine different select oper-
ators. An isolated assessment of the selection strategy requires the generator to
act independently from the archive set A(t) to guarantee that exactly the same
sequence of points is given to the selection operator for all different strategies.
Beyond As the exact implementation of the generator is irrelevant, we use stan-
dard multiobjective EAs here and use the decision alternatives in the sequence
of their generation as input for the different selection operators.

3.3.1 Convergence Behavior

At first, we are interested in how different selection strategies affect the con-
vergence of the sequence (A(t)). As a test problem, a two-objective knapsack
problem with 100 items is taken from Zitzler and Thiele (1999). The low num-
ber of decision variables is sufficient to show the anticipated effects, and it was
found advantageous for visualization and comparison to be able to compute the
complete Pareto front f (X∗) beforehand via Integer Linear Programming.

The points given to the selection operator are generated by a standard
NSGA-II with population size 100, one-point crossover with crossover prob-
ability equal to one, and bit-flip mutations (with probability 4/n = 0.04). Fig-
ure 12 shows the output A(t) of sample runs for the different instances after

3.3. Simulations 49

f 2

f 2

f 2 Algorithm 3

NSGA−II

SPEA

1f

1f

1f

34003200

4200

4000

3200

3800

3600

3400

42004000

Archive elements after t=10,000,000

3600 3800 4000 4200

Archive elements after t=5,000,000

Pareto set

Archive elements after t=5,000,000

Pareto set

Archive elements after t=10,000,000

Archive elements after t=5,000,000

4000

Pareto set

Archive elements after t=10,000,000

3200

3400

3600

3800

4200

3200 3400 3600 3800 4000 4200

3200

3400

3600

3800

4000

4200

3200 3400 3600 3800

Fig. 12: Objective space of the knapsack problem, the dots show the elements of the Pareto front
f (X∗). The differentfigures correspond to different instances of theselect operator:
NSGA-II (top), SPEA (middle), and Algorithm 3 (bottom). Eachfigure shows the
objective values for each elements of the solution setA(t) are shown, fort = 5, 000, 000
(with diamonds) and fort = 10, 000, 000 (with boxes). A subset of the samples is
highlighted to visualize the negative effect of losing Pareto-optimal solutions in many
current archiving/selection schemes.

50 Chapter 3. Limit Behavior and Global Convergence

t = 5, 000, 000 andt = 10, 000, 000 iterations (generated objective vectors),
using selection operators from SPEA, NSGA-II (both with maximum archive
size of 20) and Algorithm 3 withε = 0.01.

It is clearly visible that both the archiving (selection) strategies from SPEA
and NSGA-II suffer from the problem of partial deterioration: Non-dominated
points– even those belonging to the“real” Pareto set– can be lost, and in the
long run even be replaced by dominated solutions. This is certainly not desir-
able, and algorithms relying on these strategies cannot claim to be convergent,
even if the generator produces all elements of the Pareto setX∗. In contrast,
Algorithm 3 is able to maintain anε-Pareto set of the generated solutions over
time.

The number of function evaluations in this experiment is high, but necessary
to produce all Pareto-optimal points in this test case, especially at the extremes
of the Pareto front. The non-convergent algorithms can even run infinitely long
without converging the Pareto set, although all Pareto-optimal points are gener-
ated repeatedly.

3.3.2 Distribution Behavior

In order to test for thedistribution behavior only those candidates are taken into
account which fulfill the requirements for convergence: Rudolph’s and Agapie’s
algorithm AR-I and Algorithm 3. As a test case the following continuous three-
dimensional three-objective problem is used:

Maximize f (x) = (f1(x), f2(x), f2(x)),

f1(x) = 3 − (1 + x3) cos(x1π/2) cos(x2π/2)

f2(x) = 3 − (1 + x3) cos(x1π/2) sin(x2π/2)

f3(x) = 3 − (1 + x3) cos(x1π/2) sin(x1π/2)

(3.6)

subject to 0≤ xi ≤ 1, i ∈ {1, 2, 3}.

The Pareto front of this problem is a surface, a quadrant of the hyper-
sphere of radius 1 around(3, 3, 3). For the results shown in Figure 13 the real-
coded NSGA withoutfitness sharing, crossover using SBX (Simulated Binary
Crossover, Deb and Agrawal 1995) with distribution indexη = 5 and popula-
tion size 100 was used to generate the candidate solutions. The distribution qual-
ity is judged in terms of theε-dominance concept, therefore a discretization of
the objective space into boxes (using Algorithm 4 withε = 0.05) is plotted in-
stead of the actual Pareto set. From all boxes intersecting with the Pareto set the
non-dominated ones are highlighted. For anε-approximate Pareto set it is now
sufficient to have exactly one solution in each of those non-dominated boxes.
This condition is fulfilled by the algorithm using the selection strategy Algo-
rithm 3, leading to an almost symmetric distribution covering all regions. The
strategy of AR-1, which does not discriminate among non-dominated points, is
sensitive to the sequence of the generated solution and fails to provide anε-

3.3. Simulations 51

Algorithm AR-1

Algorithm 3, epsilon = 0.05

Nondominated boxes

Archive

1f

1.8
2

2.2
2.4

2.6
2.8

3
3.2

2
2.2

2.4
2.6

2.8
3

3.2

2

2.2

2.4

2.6

2.8

3

3.2

Boxes intersecting with Pareto front

1.8
1.8

1.8
2

2.2
2.4

2.6
2.8

3
3.2

2
2.2

2.4
2.6

2.8
3

3.2

1.8

2

2.2

2.4

2.6

2.8

3

3.2

1.8

1f

f

f3

f

f2

2

3

Fig. 13: Objective space of problem (3.6). The discretization into boxes according to Algo-
rithm 4 is indicated by showing, in dashed lines, all boxes that intersect with the Pareto
front f (X∗). The non-dominated boxes are drawn in bold lines. The circles correspond
to the outputA of different instances of the conceptual evolutionary algorithm, Algo-
rithm 1, using the samegenerate operator. The data set of the upperfigure was created
using a selection operator according to algorithm AR-1; for data set of the lowerfigure,
a the selection operator according to Algorithm 3 was used.

approximation of the Pareto set of similar quality even with an allowed archive
size of 50.

Looking at the graphs of Algorithm 3, one might get the impression that
not all regions of the Pareto set are equally represented by archive members.
However, these examples representoptimal approximations according to the

52 Chapter 3. Limit Behavior and Global Convergence

concepts explained in Section 3.2. They are not intended to give a uniform
distribution on a (hypothetical) surface, which might not even exist, as in the
discrete case.

3.3.3 Results

The simulation results support the claims of the preceding sections. The archive
updating strategy plays a crucial role for the convergence and distribution prop-
erties. The key observations are:

• Rudolph’s and Agapie’s algorithms guarantee convergence, but have no control
over the distribution of points.

• The current MOEAs designed for maintaining a good distribution do not fulfill
the convergence criterion, as has been demonstrated for SPEA and NSGA-II for
a simple test case.

• The algorithms proposed in Section 3.2 fulfill both the convergence criterion
and the desired distribution control.

3.4 Possible Extensions
The above baseline algorithms can be extended in several useful ways. In the
following, some of these extensions and variations are listed and briefly dis-
cussed.

3.4.1 Other Definitions of ε-Dominance

The convergent algorithms can also be implemented with a different definition
of ε-dominance. For example, with the dominance definition given in (3.4),
grids are uniformly sized in the search space. Although the size of the generated
Pareto-optimal set will be different from that presented earlier, the algorithms
given so far also maintain the convergence and preserve the diversity.

Although an identicalε value is suggested in the definition of ε-dominance,
a differentεi can be used for each coordinate of the objective space. This way,
different precisions among the obtained Pareto-optimal vectors can be achieved
in different criteria. The upper bound of the number of Pareto-optimal solution
presented above will get modified accordingly.

3.4.2 Guaranteeing Minimum Distances

Theε-dominance definition and the diversity preservation through grids allow
a diverse and well convergent set of Pareto-optimal vectors to be obtained by
the proposed algorithms. Although diversity among the elements is ensured,
the distance between the obtained neighboring Pareto-optimal objective vectors
may not be uniform. It is guaranteed by the proposed algorithms that one box

3.4. Possible Extensions 53

will have only one solution. But in practice, two vectors lying on two neighbor-
ing boxes may lie very close to each other. To ensure a good diversity among
neighboring vectors, Algorithm 3 may be modified in the following manner. In
addition to discouraging two vectors to lie on the same box, the vectors can also
be discouraged to lie on theeven numbered boxes. This way, vectors can only
lie on the alternate boxes, thereby ensuring a minimum difference ofε in each
objective function value between two neighboring Pareto-optimal vectors.

3.4.3 Steering Search by Defining Ranges of Non-acceptance

In most multiobjective optimization problems, a decision-maker plays an impor-
tant role. If the complete search space is not of importance to a decision-maker,
the above algorithms can be used to search along preferred regions. The con-
cept ofε-dominance will then allow pre-specified precisions to exist among the
obtained preferred Pareto-optimal vectors.

3.4.4 Fixed Archive Size by Dynamic Adaptation of ε

Instead of predetermining an approximation accuracyε, one might ask whether
the algorithm would be able to dynamically adjust its accuracy, so as to always
maintain a set of vectors of a given magnitude. A concept like this is imple-
mented in PAES (see Section 3.1), where the hyper-grid dividing the objec-
tive space is adapted to the current ranges given by the non-dominated vectors.
However, PAES does not guarantee convergence.

Here, two modified versions of the proposed converging algorithms are il-
lustrated. The idea is to start with a minimalε, which is systematically increased
every time the number of archived vectors exceeds a predetermined maximum
size.

Maintaining an ε-Approximate Pareto Set In order to generate anε-
approximate Pareto set with a given upper bounda on its size, Algo-
rithm 2 can be modified. After thefirst pairg(1), g(2) of mutually non-
dominating alternatives have been found, an initialε is calculated accord-
ing to Theorem 5 as

ε = K
′ 1

a1/m − 1 (3.7)

wherea is the maximum archive size.K ′ is set to the current maximum
relative range of them objectives

K ′ := max
1≤i≤m

{
ui

li

}
(3.8)

whereui and li , ui ≥ li > 0, are the current maximum and minimum
values of objective functioni .

From this point onwards, new vectors are accepted according to Algo-
rithm 2, where for each element, a time stamp is recorded. If the archive
exceeds its maximum sizeamax, a largerε must be chosen, using the new

54 Chapter 3. Limit Behavior and Global Convergence

ranges and the above formulas. By this newε, all archive elements are
again compared in the order of their time stamps. Whenever one element
is ε-dominated by an older one, the younger one will be removed. This
way, the ranges will always be increased in order to cover the whole ex-
tent of the currentε-approximate Pareto set. However, if the range of the
actual Pareto set decreases in the later part of the run, there will be no
possibility to decrease theε again without in general losing the property
given by Theorem 5.

For ε-dominance definition given in equation (3.4), equation (3.7) be-
comes

ε = K ′

a1/m

andK ′ is calculated as

K ′ = max
1≤i≤m

{ui − li }.

Agapie’s and Rudolph’s algorithms AR-1 and AR-2 also implement a
fixed-size archive, but with a constantε = 0 during the run. This means
that the guaranteed minimal distance of vectors is also zero, hence not
guaranteeing to maintain anε-approximate Pareto set.

Maintaining an ε-Pareto Set In Algorithm 3, a simple modification would be
to start with a minimalε using afirst pair of mutually non-dominated
vectors as in the previous subsection. Afterwards, the increase ofε is
taken care of by joining boxes and discarding all but the oldest element
from the new, bigger box.

The joining of boxes could be done in several ways, however for ensuring
the convergence property it is important not to move or translate any of
the box limits, in other words, the assignment of the elements to the boxes
must stay the same. A simple implementation could join every second
box, while it suffices to join only in the dimensions where the ranges
have been exceeded by the new element. This means that in the worst
case an area will beε-dominated which is almost twice the size of the
actual Pareto set in each dimension. A more sophisticated approach joins
only two boxes at a time, which eliminates the over-covering, but makes a
complicated book-keeping of several differentε values in each dimension
necessary.

A Bi-start Strategy In cases where the bounds of the Pareto set are much
smaller than the bounds onf (X), both algorithms suffer from their in-
ability to increase the precision again after having reached any level of
coarseness. In the worst case, they might end up with only one solution
ε-dominating the whole Pareto set using a rather largeε.

We illustrate how to use our proposed algorithms to maintain anε-
approximate Pareto set or anε Pareto set, respectively, with a maximum

3.5. Summary 55

predefined cardinalityamax. For this a two-step strategy is followed: At
first, one of the two dynamic algorithms of the previous section is used
to get a rough approximation of the Pareto set. From their results, the
ranges of the Pareto set in the objective space can be determined and used
to calculate afixed ε for a second run of the algorithm. Of course, one
may use differentεi for the different objectives. In the second run the
only required change to the selection operator is that it never accepts any
vectors outside the ranges determined by thefirst run and hence ensuring
that the size of the solution set does not exceed the limitamax.

3.5 Summary
In this chapter, we discussed theε-(approximate) Pareto set as one possible
concept for specifying the desired outcome for evolutionary multiobjective op-
timization under typical memory constraints. The proposed concept is

• theoretically attractive as it helps to construct algorithms with the desired con-
vergence and distribution properties, and

• practically important as it works with a solution set with bounded size and pre-
defined resolution.

Based on the concept ofε-dominance, thefirst selection strategy have been con-
structed that enable and algorithm to maintain anε-Pareto set of the generated
solutions at any time.

As we have exclusively dealt with the selection operator so far, all statements
had to be done with respect to the generated solutions only. In order to claim
convergence to the Pareto set of the whole search space, one has to include
the generator into the analysis. With appropriate assumptions (non-vanishing
probability measure for generating of all search points at any time step), this
step is trivial: the probability of not creating a specific point goes to zero ast
goes to infinity. Analogously to Hanne (1999) or Rudolph and Agapie (2000),
results on the limit behavior such as almost sure convergence and stochastic
convergence to anε-Pareto set can be derived in this way.

Though the limit behavior might be of mainly theoretical interest, it is of
very high practical relevance that now the problem of partial deterioration,
which was imminent even in the elitist MOEAs, can be solved. Using the pro-
posed archiving strategy, the user can be sure to have both, a representative,
well distributed approximation, and a true elitist algorithm in the sense that no
better solution had been found and subsequently lost during the run. Such an
algorithm, calledε-MOEA, has recently been employed by Deb et al. (2003).
Besides its favorable bahavior regarding convergence and distribution of solu-
tions, the authors report empirical running time savings of theε-MOEA of at
least one order of magnitude compared to other MOEAs. This is due to its

56 Chapter 3. Limit Behavior and Global Convergence

simple and efficient archiving strategy based on theε-dominance concept, in
comparison to the complex selection strategies of, e.g., SPEA and NSGA-II,
which were used in the other algorithms of this study.

Interesting behavior occurs when there are interactions between the archive
and the generator. Allowing the archive members to take part in the generat-
ing process has empirically been investigated, e.g., by Laumanns et al. (2000,
2001) using a more general model and a parameter calledelitism intensity. Now,
the theoretical foundation is also given so that the archive members are really
guaranteed to be the best solutions found.

4
Running Time Analysis

The analysis of the limit behavior in the previous chapter led to very general
results, as they were derived independent of the variation operator and inde-
pendent of the objective function. We proved invariance properties of selection
schemes that guarantee, under very mild assumptions, the convergence to the
algorithm to a well-defined representative subset of the Pareto set. Results of
this generality are necessarily not very strong in the sense that nothing could be
said about the convergence time of the algorithms. To judge the efficiency of
an algorithm, it is important to make statements about its time complexity for
solving a certain problem. This is subject of the running time analysis presented
here. Such a running time analysis depends on the specific algorithm and the
specific optimization problem at hand. Thus, generality has to be sacrificed in
order to arrive at strong and more detailed results.

This chapter contains rigorous running time results of evolutionary algo-
rithms applied to some artificial pseudo-Boolean multiobjective optimization
problems. Different population-based algorithms, the simple evolutionary mul-
tiobjective optimizer SEMO and two improved versions, FEMO and GEMO,
are proposed and analyzed. The analysis is carried out on two bi-objective
model problems, LOTZ (Leading Ones Trailing Zeroes) and COCZ (Count
Ones Count Zeroes) as well as on the scalablem-objective versionsmLOTZ
andmCOCZ. For the analysis, we develop and apply two general tools, an upper
bound technique based on a decision space partition, and a randomized graph
search algorithm. Both techniques facilitate the analysis considerably.

Results on the running time of the different population-based algorithms
and for an alternative approach, a multistart (1+1)-EA based on theε-constraint
method, are derived. Main motivation for this analysis is to investigate whether
the use of a population is beneficial in solving multiobjective problems, specif-

58 Chapter 4. Running Time Analysis

ically, whether a population-based EA searching concurrently for all optimal
solutions in a single run is more efficient than separate runs of a (1+1)-EA
searching for different optimal solution separately? The results of this chapter
show that for many of the problems considered, the simple algorithm SEMO is
as efficient as the (1+1)-EA. For some problems, the improved variants FEMO
and GEMO are provably better.

4.1 Methodology and Related Work

A recent overview of the theoretical analysis of evolutionary algorithms is given
by Beyer, Schwefel, and Wegener (2002). A major part of this theory is the run-
ning time analysis, which addresses the question of how long a certain algorithm
takes tofind the optimal solution for a specific problem or a class of problems.
Such an analysis typically contains the following ingredients:

1. Simple, well-defined algorithms, which are simple instances or stochastic mod-
els of EAs,

2. Sample problems (or problem classes), which the algorithms are applied to, and

3. Analytical methods and tools, which are used for the study of the algorithms.

In case of a single objective and discrete search spaces, several results
have been achieved regarding the optimization of pseudo-Boolean functions,
i.e., real-valued functions with Boolean inputs. Followingfirst results by
Mühlenbein (1992) and Rudolph (1997a), a wide range of such problems were
treated by Droste et al. (1998, 2002), who successfully applied and consid-
erably extended analytical methods from thefield of randomized algorithms.
Modeling the EA as a Markov process, Garnier et al. calculated the distribution
of thefirst hitting time of the optimum for the COUNTONES problem (Garnier
et al. 1999) and for long-path problems (Garnier and Kallel 2000). He and Yao
derived bounds for the expected running time using drift analysis (2001), and
exact expressions for thefirst hitting times of population-based EAs directly
from the transition matrix of the associated Markov chains (2002).

In the multiobjective case, only few theoretical results are available. Most
studies were concerned with the limit behavior, which was discussed in the
previous chapter. Only recently, Scharnow et al. (2002) provided a running
time analysis for a (1+1)-EA on the shortest path problem and showed that a
multiobjective formulation of the problem can reduce the time tofind the single
optimum considerably. Thefirst running time analysis of population-based EAs
on a multiobjective problem with conflicting objectives was given in Laumanns
et al. (2002) for a simple bi-objective model problem.

To achieve running time results for different multiobjective evolutionary al-
gorithms and for different problem scenarios, we proceed as follows:

4.2. Two Example Problems 59

• Two pseudo-Boolean model problems, which are scalable in the number of de-
cision variables and number of objectives, are introduced.

• Simple individual-based and population-based multiobjective EAs are defined.

• Methods are developed, how population-based EAs can be analyzed in a multi-
objective setting.

• Complexity results are derived in terms of bounds of the running time of the
different algorithms that hold with high probability, as well as bounds on the
expected running time.

After the multiobjective example problems are introduced in Section 4.2,
Section 4.3 presents the simple evolutionary multiobjective optimizer, SEMO.
A simple and easy to analyze baseline algorithm for multiobjective optimization
problems has been missing so far, and SEMO is presented tofill this gap. The
analysis of SEMO reveals a similar performance on the bi-objective problems as
a (1+1)-EA using multi-starts. In this context, a theorem is developed that can
help bounding the running time for a general class of elitist population-based
EAs on multiobjective problems. In Section 4.4, we propose two algorithmic
improvements, a fair sampling strategy that accelerates the exploration of the
optimal set, and a greedy selection mechanism that leads to a faster progress
towards the optimal set. With these two improvements, implemented in the
algorithms FEMO and GEMO, we are able to prove that population-based algo-
rithms can actually have a lower running time than the (1+1)-EA. The obtained
results are generalized to higher dimensional objective spaces in Section 4.5:
We derive and apply a theorem on a general graph search procedure that mod-
els the behavior of the fair sampling algorithms on the set of optimal solutions.
Section 4.6 discusses the changes and difficulties when independent-bit muta-
tions are used instead of one-bit mutations as considered before in the analysis
of the different algorithms. Finally, Section 4.7 summarizes the results obtained
in this chapter and discusses how these results can lead to a more efficient usage
of multiobjective EAs for other problem domains.

4.2 Two Example Problems

This chapter concentrates on optimization problems that are binary decision
problems withn variables andm ≥ 2 objectives. All objective functions are
to be maximized. The goal is tofind a representation of the Pareto setX ′ ⊆
X∗ such thatf (X ′) = Y ∗, i.e., every Pareto-optimal objective vector is found
together with at least one corresponding decision vector. An alternative and
more compact problem formulation, according to theε-dominance concept of
Chapter 3, is tofind anε-Pareto set forε = 0.

60 Chapter 4. Running Time Analysis

Fig. 14: Objective space of the LOTZ problem withn = 8

For the analysis, we assume that the running time of an algorithm equals the
number of necessary evaluations of the objective function. As the algorithms
defined in the following do not have an explicit stopping rule, we are interested
in the running time until all elements of the Pareto front have been identified
and are contained in the internal memory of the algorithm, together with one
corresponding Pareto-optimal decision vector each.

Unless stated otherwise, the variation operator considered for all algorithms
in this chapter is the so-called one-bit mutation. A new decision vector is pro-
duced by choosing a random positionj ∈ {1, . . . , n} and replacing the valuex j

by 1− x j . All other decision variables remain unchanged.
Thefirst example problem for this analysis is the LOTZ problem. The ab-

breviation LOTZ stands for“Leading Ones, Trailing Zeroes” and means that
we want to simultaneously maximize the number of consecutive ones at the be-
ginning and the number of consecutive zeroes at the end of a bit-string. The
first component, the LEADINGONES function, has been analyzed in detail by
Rudolph (1997a) and Droste et al. (2002).

Def. 18: The pseudo-Boolean function LOTZ : {0, 1}n → IN2 is defined as

LOTZ(x1, . . . , xn) =

 n∑

i=1

i∏
j=1

x j ,

n∑
i=1

n∏
j=i

(1 − x j)

The objective space of LOTZ can be partitioned inton + 1 setsYi , i =
0, . . . , n (see Figure 14). The indexi corresponds to the sum of both objective

4.2. Two Example Problems 61

values, i.e.,(f1, f2) ∈ Yi if i = f1 + f2. Obviously,Yn represents the Pareto
front Y ∗. The sub-domainsXi are defined as the sets containing all decision
vectors which are mapped to elements ofYi . They are of the form 1a0 ∗(n−i−2)

10b with a + b = i for i < n, and 1a0b with a + b = n for Xn. The asterisk
(*) is used as a wildcard symbol and indicates that the corresponding bits can
be chosen arbitrarily as zero or one.

The cardinality of the Pareto setX∗ = Xn is |Xn| = n + 1 and we also
haven + 1 Pareto optimal objective vectors as|Yn | = n + 1. The next setYn−1

is empty. For the remaining sets withi = 0, . . . , n − 2 we have|Yi | = i + 1
and|Xi | = |Yi | · 2n−2−i . As a consequence, the decision spaceX contains 2n

different elements, which are mapped to|Yn | + ∑n−2
i=0 |Yi | = 1/2 · n2 + 1/2 ·

n + 1 = O(n2) different objective vectors.
The LOTZ problem has a particular feature: all non-Pareto-optimal decision

vectors only have one-bit Hamming neighbors that are either better or worse,
but never incomparable to it. This fact facilitates the analysis of the population-
based algorithms, which certainly cannot be expected from other multiobjective
optimization problems. Therefore, we additionally present another simple mul-
tiobjective problem where this condition does not hold. The COCZ problem
is a multiobjective extension of the COUNTONES problem and is defined be-
low. The problem consists of two parts: a cooperative part (thefirst half of
the bit-string) and a conflicting part (the second half of the bit-string). In the
cooperative part, the objective is to maximize the number of ones in both func-
tions. In the conflicting part, thefirst objective is to maximize the number of
ones and the second objective is to maximize the number of zeroes. The single-
objective COUNTONES problem has been extensively studied in the literature
(Mühlenbein 1992, Rudolph 1997a, Droste et al. 1998, Garnier et al. 1999).

Def. 19: The pseudo-Boolean function COCZ : {0, 1}n → IN2 is defined as

COCZ(x1, . . . , xn) =

 n∑

i=1

xi ,

n/2∑
i=1

xi +
n∑

i=n/2+1

(1 − xi)

where n = 2 · k and k ∈ IN.

Also for the COCZ, a partition of the objective space (see Figure 15) pro-
vides an easy understanding of the problem. We distinguishn/2 + 1 sets
Yi , i = 0, . . . , n/2, where the indexi corresponds to the number of ones in
thefirst half of the bit-string. AllYi containn/2+ 1 elements which distinguish
themselves by the number of ones in the second half of the bit-string.Yn/2

represents the Pareto frontY ∗. The cardinality of the Pareto setX∗ = Xn is
|Xn| = 2n/2. However, more Pareto-optimal decision vectors map to objective

vectors in the middle of the Pareto front than to its borders: while

(
n/2
n/4

)
de-

cision vectors map to the objective vector(3n/4, 3n/4), the objective vectors
(n, n/2) and(n/2, n) only have one corresponding element in decision space
each.

62 Chapter 4. Running Time Analysis

Fig. 15: Objective space of the COCZ problem withn = 8

4.3 A Simple Evolutionary Multiobjective Optimizer

Thefield of evolutionary multiobjective optimization is characterized by a vast
variety of EA variants with specialized operators of increasing complexity (Deb
2001; Coello Coello et al. 2002). However, simple algorithms, which can
serve as baseline algorithms for comparisons or theoretical analysis, are miss-
ing. The necessity for a baseline algorithm was already pointed out by Knowles
and Corne (1999) and motivated the invention of the Pareto Archived Evolution
Strategy (PAES). The PAES makes use of a complex archiving and selection
logic and is therefore difficult to analyze theoretically. We therefore propose
and analyze a simple baseline algorithm, which can be seen as a multiobjective
generalization of a(1 + 1)-EA.

4.3.1 SEMO

The Simple Evolutionary Multiobjective Optimizer (SEMO) represents the sim-
plest instance of a population-based EA for multiobjective optimization. SEMO
contains a population of variable size that stores all individuals that are not dom-
inated by any other individuals found so far. At the beginning, the population
is initialized with a single element, which is drawn at random from the decision
space. In each iteration, one parent individualx is drawn from this population
uniformly at random and mutated. The childx ′ is added to the population, if
it is not dominated by any population member and if its objective vector is not

4.3. A Simple Evolutionary Multiobjective Optimizer 63

already contained in the population. All individuals that are dominated by the
child are in turn deleted from the population.

Algorithm 5 Simple Evolutionary Multiobjective Optimizer (SEMO)
1: Choose an initial individualx uniformly from X
2: P ← {x}
3: loop
4: Select one elementx out of P uniformly.
5: Create offspringx ′ by mutation ofx .
6: if � ∃z ∈ P such that(z � x ′ ∨ f (z) = f (x ′)) then
7: P ← (P \ {z ∈ P|x ′ � z}) ∪ {x ′}
8: end if
9: end loop

4.3.2 Analysis of SEMO on LOTZ

We start our analysis with the SEMO algorithm applied to the LOTZ problem.
A run of the SEMO on LOTZ can be divided into two distinct phases: The
first phase lasts until thefirst Pareto-optimal decision alternative has entered
the population, and the second phase ends when the whole Pareto set has been
found.

Lem. 2: The expected running time of Algorithm 5 to find the first Pareto-optimal point
of LOTZ is O(n2).

Proof: During thisfirst phase, the population consists of one individual only, as
a mutation changing the objective values yields either a dominating or a dom-
inated individual. Hence, if an offspring is accepted, it will replace the parent
from which it was produced. We consider the partition of the search space into
distinct subsetsXi as defined above and note that from any subsetXi only points
in X j , j > i are accepted. As there is always a one-bit mutation leading to the
next subset, the probability of improvement is at least 1/n. As there are at most
n − 1 such steps necessary (Xn−1 is empty) the expected time is at mostn2. &'

Lem. 3: After the first Pareto-optimal point is found, the expected running time of Algo-
rithm 5 until all Pareto-optimal points are found is �(n3) and the probability
that the running time is less than n3/c(n) is less than (8e/c(n))n/2.

Proof: We partition this phase inton different sub-phases. Sub-phasei lasts
from the time wheni Pareto-optimal solutions have been found to the time when
the next solution is found.Ti is a random variable denoting the duration of sub-
phasei and the random variableT is the sum of these times. As we always
have a contiguous subset of the Pareto set, only the individuals corresponding
to the outer points of this subset can create a new Pareto-optimal point. The
probability ps(i) to sample such a candidate in phasei is at least 1/ i and at

64 Chapter 4. Running Time Analysis

most 2/ i . A subsequent mutation has a success probability of at least 1/n and
at most 2/n. Hence,ni/4 ≤ E[Ti] ≤ ni . As T = ∑n

i=1 Ti , 1/8n3 + 1/8n2 ≤
E[T] ≤ 1/2n3 + 1/2n2.

To derive a lower bound of the running time which holds with a high proba-
bility we consider the run aftern/2 Pareto-optimal solutions have already been
found. In this case the probability tofind a new Pareto-optimal solution is at
most 4/n2. If we allow n3/c(n) trials, the expected number of successes,S, is
at most 4n/c(n). With Chernoff’s inequality, the probability that we reach the
requiredn/2 + 1 successes tofind the remaining solutions can be bounded as

P {S > n/2} ≤
(

e
1
8c(n)−1

(1
8c(n))

1
8c(n)

)4n/c(n)

≤
(

8e

c(n)

) 1
2n

(4.1)

&'
From the concatenation of the two phases the following theorem can be derived.

Cor. 2: The expected running time of SEMO for LOTZ is �(n3).

4.3.3 Analysis of SEMO on COCZ and a General Upper Bound Technique

The analysis of the SEMO on the LOTZ problem has been facilitated by the
observation that the population does not contain more that one individual until
the Pareto set is reached. In this respect, the COCZ is a more realistic prob-
lem, because the population will certainly start growing before the Pareto set is
reached. Unfortunately, this population growth is hard to analyze in detail and
therefore hard to bound. In the worst case, the population might visit the whole
objective space and move forward with a broad front of solutions. We can,
however, derive the following general upper bound for this worst-case scenario,
which holds not only for SEMO, but for a more general class of population-
based approaches under the assumption of an elitist selection strategy. The idea
behind the following lemma is that it is sufficient for each decision vector to be
mutatedonce into a dominating decision vector. The elitist selection strategy
then guarantees that this decision vector will be discarded from the population
for ever. The result is independent of the sampling (or mating selection) strat-
egy used and depends only on the properties of the variation and replacement
selection operator, which can be formalized as:

Lem. 4: (General upper bound I) Let an algorithm be given that iteratively modifies
a population P by a sequence of variation and selection operations with the
properties

(1) For each y ∈ Y \ Y ∗, the probability that the variation operator applied to
any x ∈ X with f (x) = y produces a dominating decision vector x ′ with
x ′ � x is bounded below by p(y) > 0

(2) A newly generated decision vector will enter the population P only if it is
not dominated by any other element of P.

4.3. A Simple Evolutionary Multiobjective Optimizer 65

(3) A decision vector is deleted from the population P if and only if a dominat-
ing decision vector is included into the population.

Then the expected number of times the variation operator is applied to non-
Pareto optimal decision vectors is bounded above by

∑
y∈Y \Y ∗ p(y)−1.

Proof: Consider any objective vectory′ ∈ Y \ Y ∗ and the corresponding set of
decision vectorsX ′ := f −1(y) = {x ∈ X | f (x) = y}. An element ofX ′ can
only undergo variation, if it is present in the populationP. Let T (X ′) denote
the total number of times that elements fromX ′ undergo variation until for the
first time, anx ′′ is generated withf (x ′′) � y′. Clearly, x ′′ will enter P and
cause all elements ofX ′ being deleted due to property (3). With property (2),
this will further mean that no element ofX ′ will ever be accepted again in the
population, hence no elements ofX ′ will be subject to variation anymore. As
the random variablesT (X ′) are independent it follows with property (1) that
E[T (X ′)] ≤ p(y)−1. The summation over ally′ ∈ Y \ Y ∗ leads to the claimed
expression. &'

In many cases, the summation over all elements inY \ Y ∗ is impractical be-
cause its cardinality is too large. We can, however, also work with larger groups
of decision vectors such that a smaller number of groups has to be accounted
for. The following lemma is an extension of the previous one for arbitrary parti-
tions of the decision space. It is similar to thefitness level technique (Wegener
2000) of single-objective problems and can be seen as a generalization of this
technique for partially ordered objective spaces.

Lem. 5: (General upper bound II) Let the dominated part of the decision space, X \ X∗
be partitioned into k sets X1, . . . , Xk with

⋃
1≤i≤k Xi = X\X∗ and Xi∩X j = ∅

for all i, j . Let the dominance relation on sets be defined as

Xi � X j ⇔ ∀(a, b) ∈ Xi × X j : a � b.

The sets d(Xi) := {X j : X j � Xi } contain all sets X j that dominate set
Xi . If the algorithm fulfills the same properties as in Lemma 4 and p(Xi)

is a lower bound for the probability that a variation applied to an individual
x ∈ Xi produces an individual x ′ in a dominating decision space subset, i.e.,
0 < p(Xi) ≤ minx∈Xi {P

{
x ′ ∈ d(Xi)|x ∈ Xi

}
then the expected number of

times the variation operator is applied to non-Pareto optimal decision vectors
is bounded above by

∑k
i=1 p(Xi)

−1.

Proof: Consider an arbitrary setXi of the decision space partition. An element
of Xi can only undergo variation, if it is present in the populationP. Let T (Xi)

denote the total number of times that elements fromX ′ undergo variation until
for the first time, anx ′′ ∈ d(Xi) is generated. Clearly,x ′′ will enter P and
cause all elements ofXi being deleted due to property (3). With property (2),
this will further mean that no element ofXi will ever be accepted again in the
population, hence no elements ofXi will be subject to variation anymore. As

66 Chapter 4. Running Time Analysis

the random variablesT (Xi) are independent it follows with property (1) that
E[T (Xi)] ≤ p(Xi)

−1. The summation over alli ∈ {1, . . . , k} leads to the
claimed expression. &'

With the help of this lemma it is now possible to prove upper bounds for dif-
ferent problems, given that an appropriate decision space partition and expres-
sions for the improvement probabilitiesp(·) can be derived. We demonstrate
its use by deriving an upper bound for the expected running time of the SEMO
algorithm on the COCZ problem.

Th. 7: The expected running time of SEMO for COCZ is O(n2 logn).

Proof: We divide the total number of objective function evaluation into those
that are required for mutants of non-Pareto-optimal parents and those for mu-
tants of Pareto-optimal parents. Let the parents that are not Pareto-optimal
be divided into groupXi, j := {x ∈ X | f (x) = (n/2 − i + j, n − i − j)},
i, j ∈ {0, . . . , n/2}, where thei refers to the Hamming distance from the Pareto
set and j to the number of ones in the bit-sting. It is obvious that theXi, j

constitute a search space partition according to Lemma 5 and that the SEMO
also fulfills the elitist selection conditions (1) and (2). As a result, the total
number of mutations of non-Pareto-optimal search points can be bounded by∑n/2

j=0

∑n/2
i=1 n/ i = O(n2 logn).

Next, we bound the contribution of mutations of Pareto-optimal points to the
total running time. Letk the number of ones of thefirst Pareto-optimal point
found. Now consider a modified SEMO that starts with this point and never
accepts any non-Pareto-optimal points (their contribution to the running time
has already been bounded) and never accepts any points with more thank ones.
The expected time of this algorithm until the remaining Pareto-optimal points
have been found is

∑k
i=1 n(k + 1 − i)/ i = �(nk logk). For an upper bound,

consider the negative assumption that SEMO has to traverse the whole chain
starting fromk = n/2 twice, to move to both ends of the Pareto front. In every
case, the claimed bound ofO(n2 logn) holds. &'

4.3.4 Comparing SEMO to a (1+1)-EA using Multistarts

An alternative approach tofind a set of Pareto-optimal solutions is the so-called
scalarizing approach (Miettinen 1999). The different objective functions are
aggregated to form a single-objective surrogate problem, on which a single-
objective optimizer can be applied. This scalarization involves parameters to be
set that balance the relative importance of the different objectives. The working
principle of this approach is to use multiple runs of the single-objective opti-
mizer with different parameter settings such that in each run a different Pareto-
optimal solution is found. It is an open problem whether this approach is more
efficient compared to a population-based algorithm that is able to search for the
whole Pareto front in a single run.

This study addresses this question by a theoretical analysis of the differ-
ent approaches. As a representative for the single-objective multistart class, we

4.3. A Simple Evolutionary Multiobjective Optimizer 67

use theε-constraint method (Haimes et al. 1971). Theε-constraint method
works by choosing one objective function as the only objective and the remain-
ing objective functions as constraints. By a systematic variation of the constraint
bounds, different elements of the Pareto front can be obtained (Chankong and
Haimes 1983, p. 285) by solving the constrained single-objective problems

maximize f1 (4.2)

subject to fi ≥ εi ∀2 ≤ i ≤ m, i ∈ IN. (4.3)

The (1+1)-EA therefore needs a set of differentεi values to be specified. For
the following analysis we optimistically assume a best-case scenario, where

• The coordinates of all Pareto-optimal objective vectorsf ∗1, f ∗2, . . . , f ∗|Y ∗| are
known.

• The single-objective (1+1)-EA, Algorithm 6, is run for each of thosef ∗k, 1 ≤
k ≤ |Y ∗|, using the constraint boundsεi = f ∗k

i .

• Each of the|Y ∗| runs of the (1+1)-EA is independently executed until the opti-
mum is found.

Using information about the optimum might appear unfair, but we are
mainly interested in lower bounds for the multistart (1+1)-EA. It is obvious that
a realistic variant cannot be better than this one as it has to make at least one
run for each Pareto-optimal objective vector to be found, plus a number of run
that are redundant because of an non-optimal choice of theεi values. In addi-
tion, the primary goal of the optimization is tofind the Pareto-optimal decision
alternatives.

Algorithm 6 Single-objective (1+1)-EA
1: Choose an initial individualx uniformly from X
2: loop
3: Create offspringx ′ by mutation ofx .
4: g(x) ← ∑

fi ≤εi ,2≤i≤m(εi − fi (x)) {constraint violation byx}
5: g(x ′) ← ∑

fi ≤εi ,2≤i≤m(εi − fi (x ′)) {constraint violation byx ′}
6: if g(x ′) < g(x) ∨ (g(x ′) = g(x) = 0 ∧ f1(x ′) > f1(x)) then
7: x ← x ′
8: end if
9: end loop

The (1+1)-EA proceeds byfirst minimizing the constraint violation given
by the second objective and the different thresholdsε. After the constraint is
satisfied, the algorithm turns to optimize thefirst objective while keeping the
second objective value above the constraint boundary. We give an exact expres-
sion for the expected running time of the (1+1)-EA on the LOTZ and the COCZ
problem.

68 Chapter 4. Running Time Analysis

Th. 8: The expected running time of the multistart (1+1)-EA is 1
2(n3 + n2) for LOTZ

problem and �(n2 logn) for COCZ.

Proof: As the Pareto front of the LOTZ problem containsn + 1 different ele-
ments, the algorithm has to solven + 1 sub-problems with different constraint
values. LetTi , 0 ≤ i ≤ n, denote the running time to solve thei -th sub-problem
whose optimum is given by the point withn − i leading ones andi trailing ze-
roes. Each sub-problem can be further divided inton consecutive sub-phases,
the first i of which correspond tofinding the trailing zeroes starting from the
back and the followingn − i by finding the leading ones starting from the front.
At the beginning of each sub-phase, the bit under concern is with equal prob-
ability 0 or 1. If the bit is already set correctly, this sub-phase has length 0,
otherwise it follows a geometric distribution with parameter(n − 1)/n. Hence,
the lengths of all sub-phases are independent and identically distributed with
expectationn/2. Therefore,

E[T] =
n∑

i=0

E[Ti] = (n + 1)
n2

2
= 1

2
(n3 + n2)

holds for the LOTZ problem. For the COCZ problem, the Pareto front contains
n/2 + 1 different elements. Therefore the algorithm has to solven/2 + 1 sub-
problems with different constraint values. In each of the runs, a bitstring has
to be produced where thefirst n/2 bits, the cooperative section, are ones. We
call this the end of phase 1. Its expected time is�(n logn) as it is equivalent to
solving the COUNTONES problem withn/2 bits (Droste, Jansen, and Wegener
1998) and taking into account that on average every second mutation will be
realized in thefirstn/2 bits. For the upper bound, consider the worst case, where
at the end of thefirst phase thefirst n/2 bits are set to one and the rest can be
any string. Now there are two alternatives. If the constraint is not satisfied, then
some of the ones must be mutated to zero. If the constraint is already satisfied,
then it might be possible to turn some of the zeroes into ones. In both cases,
there are at mostn/2 such candidate bits, which canflip at a random order, and
the expected waiting time for this event is again bounded byO(n logn). Thus,
the expected time for solving one sub-problem is�(n logn) and withn/2 + 1
such problems to solve gives a total expected running time of�(n2 logn). &'

It follows that running time of the simple population-based optimizer SEMO
for both the LOTZ and the COCZ problem is of the same order as the multistart
(1+1)-EA in the assumed best-case scenario. In the next section, we investigate
whether a population-based approach can be provably better than the (1+1)-EA.

4.4. Two Improved Evolutionary Multiobjective Optimizers 69

4.4 Two Improved Evolutionary Multiobjective Opti-
mizers

The SEMO was designed as a simple baseline algorithm. The analysis has
shown that regarding the asymptotic performance, SEMO is as good as the
(1+1)-EA using anε-constraint method both on the LOTZ and on the COCZ
problem. In practise, the simple uniform selection from the population is sel-
domly used though, and the question arises, whether other selection strategies
can improve the running time of the algorithm. In this section, we propose two
modifications of the SEMO algorithm, a fair sampling strategy and a greedy
selection mechanism. With the fair sampling strategy, the FEMO (Fair Evolu-
tionary Multiobjective Optimizer) can solve the LOTZ problem quicker. Using
in addition a greedy selection mechanism, the GEMO (Greedy Evolutionary
Multiobjective Optimizer) is also quicker on the COCZ problem.

4.4.1 FEMO and the Fair Sampling Strategy

The main weakness of the SEMO on the LOTZ problem lies in the fact that
a large number of mutations are allocated to parents whose neighborhood has
already been explored sufficiently. On the other hand, an optimal sampling al-
gorithm would use always the most promising parent at the border of the current
population, leading to a running time of�(n2). Of course, this information is
not available in a black box optimization scenario.

The uniform sampling leads to a situation, where the Pareto-optimal individ-
uals have been sampled unevenly depending on when each individual entered
the population. Thefair sampling strategy implemented by FEMO guarantees
that at the end all individuals receive about thesame number of samples.

The FEMO (see Algorithm 7) implements a fair selection strategy by count-
ing the number of times each individual has been mutated (line 6). The sampling
procedure deterministically chooses the individual which has produced the least
number of offspring so far, ties are broken randomly (line 5).

Algorithm 7 Fair Evolutionary Multiobjective Optimizer (FEMO)
1: Choose an initial individualx uniformly from X
2: w(x) ← 0 {Initialize offspring count}
3: P ← {x}
4: loop
5: Select one elementx out of {y ∈ P|w(y) ≤ w(z) ∀z ∈ P} uniformly.
6: w(x) ← w(x) + 1 {Increment offspring count}
7: Create offspringx ′ by mutation ofx .
8: if � ∃z ∈ P such that(z � x ′ ∨ f (z) = f (x ′)) then
9: P ← (P \ {z ∈ P|x ′ � z}) ∪ {x ′}

10: w(x ′) ← 0 {Initialize offspring count}
11: end if
12: end loop

70 Chapter 4. Running Time Analysis

For the analysis of the FEMO on LOTZ we note that thefirst phase is iden-
tical to the SEMO described before. With the following theorem we prove that
the total running time of FEMO on LOTZ is bounded by�(n2 logn).

The idea is to bound the number times each element that entersP in the
second phase will be mutated. Once thefirst Pareto-optimal point is found,
there is exactly one possible parent for each of the remainingn points. We are
interested in the number of mutations that must be allocated toeach of thesen
parents in order to have at least one successful mutation that leads to the desired
child. Lemma 6 and 7 provide upper and lower bounds on the probability that
a certain number of mutations per parent are sufficient. In Theorem 9 these
probabilities are used to bound the running time of the FEMO algorithm.

Lem. 6: Let the population P of FEMO applied to LOTZ contain exactly one Pareto-
optimal solution and let c > 0 be an arbitrary constant. With probability at
least 1−n1−c, it takes at most c ·n logn mutation trials per solution to generate
all remaining n Pareto-optimal solutions.

Proof: For each individual, the probability that its parent did not generate it
within its first c · n logn mutations is bounded by

(1 − 1/n)c·n logn = (1 − 1

n
)cn logn = (1 − 1

n
)n

c logn

≤
(

1

e

)c logn

= 1

nc

There aren individuals that must be produced with the given number of trials.
These events are independent, so the probability that at least one individual
needs more thanc · n logn trials is bounded above byn1−c. &'

Lem. 7: Let k ∈ {1, . . . , n}, a = k/n, and c > 0 be an arbitrary constant. The proba-
bility that k = a · n individuals are produced in c · n logn mutation steps each
is not larger than e−an(1−c−c/n)

.

Proof: The probability that a parent has created a certain offspring within the
first t = c ·n logn mutations is 1− (1−1/n)t . The probability that this happens
independently for a selection ofk such parent-offspring combinations can thus
be bounded as

(1 − (1 − 1/n)t)k ≤ (1 − 1

nc n+1
n

)an ≤ e
− an

nc(n+1)/n = (ea)−n(1−c−c/n)

&'

Th. 9: With probability at least 1 − O(1/n), the running time FEMO needs from the
discovery of the first two Pareto-optimal objective vectors of LOTZ until the
whole Pareto set has been found lies in the interval [1/4 · 1/p · n logn, 2 ·
1/p · n logn]. Hence, P {T = �(1/p · n logn)} = 1 − O(1/n). Furthermore,
E[T] = O(1/p · n logn).

4.4. Two Improved Evolutionary Multiobjective Optimizers 71

Proof: Let the Pareto-optimal points be indexed according to the order in which
they have entered the setP. Let k ∈ {0, . . . , n} be the index of the individ-
ual that required the largest number of mutations to be produced. We apply
Lemma 6 withc = 2 and notice that this individualk did not need more than
2/p · logn trials with probability 1− O(1/n).

What remains to be shown for the upper bound is that no node will besam-
pled more thant times during the algorithm. This can be guaranteed since there
is always a candidatex ∈ P with w(x) ≤ t (the element that has most recently
been added toP). Hence, any element whose weight has reachedt will never
be sampled again. As there aren such elements, each of which is sampled at
mostt times, the total number of samples (steps) the algorithm takes does not
exceedT = n · t = 2 · 1/p · n logn.

For the lower bound we apply Lemma 7 withc = 1/2 anda = 1/2 so that
k = n/2. With a probability of 1− e−0.5n(0.5−0.5/n)

there is an individual in the
second half which needs at least 1/2 · 1/p · logn trials. Hence, all individuals in
thefirst half have been sampled at least 1/2·1/p·logn−1 times each. Of course,
all individuals in the second half must be sampled at least once. The summation
over all nodes gives a total number of samples of at least 1/4 · 1/p · n logn with
probability 1− O(1/n).

Using the probability bound from Lemma 6, the expected running time can
be bounded withT ′ = pT/(n logn) and

E[T ′] ≤ 1 · P
{
0 ≤ T ′ < 1

}+ 2 · P
{
1 ≤ T ′ < 2

}+ . . .

≤ 3 +
∞∑

c=3

c · P
{
T ′ ≥ c − 1

}

≤ 3 +
∞∑

c=1

(c + 2)n−c

≤ 3 + n

(n − 1)2
+ 2

n − 1

asE[T] = O(1/p · n logn). &'
As discussed earlier, the COCZ problem leads to a possible growth of the

population before the Pareto set is found, for the SEMO as well as for the
FEMO. Thus it is difficult to derive tight upper and lower bounds for the FEMO
on COCZ. Nevertheless, Lemma 5 and the same argumentation as with the
SEMO leads to aO(n2 logn) upper bound. For the lower bound it is suffi-
cient to note that in order tofind the last Pareto-optimal objective vector there is
only one bit that mustflip, the chance of which is 1/n. Due to the fair sampling
strategy, FEMO will therefore allocate�(n) mutation trials for alln/2 other
Pareto-optimal members of the population. In summary:

Th. 10: The expected running time of FEMO for COCZ is bounded above by O(n2 logn)

and below by �(n2)

72 Chapter 4. Running Time Analysis

In the next section we propose a further improvement of the algorithm,
which avoids the population growth as much as possible.

4.4.2 GEMO and the Greedy Selection Mechanism

The Greedy Evolutionary Multiobjective Optimizer (GEMO) is an extension
of the FEMO in order to achieve maximum progress towards the Pareto front.
The main idea is to allocate all search effort to offspring of the most recently
successful mutant, which is implemented as follows.

As long as only mutually non-dominating individuals are found, the algo-
rithm acts like FEMO, in order to spread out the population, and hence the
search effort, fairly and equally. However, when further progress towards the
Pareto front is achieved (realized by the fact that a new individual is found that
dominates elements of the current population), all other remaining population
members are disabled. This means that they cannot produce any offspring for
the time being and is implemented by setting their weight to infinity (line 18).
When GEMOfinally reaches the Pareto front and no further progress is pos-
sible, it will again behave like FEMO. Here, it is necessary to re-enable any
individual that is re-discovered (line 11). Otherwise, such an individuals would
constitute barriers in the objective space that are difficult or, depending on the
mutation distribution, impossible to cross.

Due to the special characteristics of the LOTZ problem, the GEMO behaves
identically to the FEMO here. On the COCZ problem, the new features of the
GEMO algorithm allow us to prove a tight bound of the expected running time.
The proof, is again split into the two phases. The idea is that the new greedy
selection of the last improved individual reduces the time needed on the way
towards the Pareto front considerably.

Th. 11: The expected running time of GEMO for COCZ is �(n2).

Proof: Consider again the two successive phases, where thefirst phase ends
when thefirst Pareto-optimal point is found. The algorithm starts with a random
point. A mutation can cause a step towards the Pareto front (successful step) if
in thefirst half of the bit-sting a zero isflipped, or an incomparable step if any
bit in the second half isflipped. If a one in thefirst halfflips, nothing happens,
because the mutant is dominated by the parent. If an incomparable mutant is not
already in the population, it will be accepted (line 21) while its parent remains,
causing the population to grow. A successful mutation leading to a dominating
child, however, will delete its parent and all other dominated individuals (line
16). The remaining individuals in the population are temporarily disabled from
offspring production (line 18). Now consider the Markov chain withn/2 + 1
states, where the state is given by the number of zeroes in thefirst half of all
population members withw < ∞. The only possible transitions are from state
i to i − 1, which happen with probabilityi/n. The expected time to absorption
into state 0, and hence the time to reach the Pareto set, is bounded by�(n logn).

4.4. Two Improved Evolutionary Multiobjective Optimizers 73

Algorithm 8 Greedy Evolutionary Multiobjective Optimizer (GEMO)
1: Choose an initial individualx uniformly from X
2: w(x) ← 0 {Initialize offspring count}
3: P ← {x}
4: loop
5: Select one elementx out of {y ∈ P|w(y) ≤ w(z) ∀z ∈ P} uniformly.
6: w(x) ← w(x) + 1 {Increment offspring count}
7: Create offspringx ′ by mutation ofx .
8: if � ∃z ∈ P such thatz � x ′ then
9: if ∃z ∈ P such thatf (z) = f (x ′) then

10: if w(z) = ∞ then
11: w(z) ← 0 {Reset offspring count}
12: end if
13: else
14: D ← {z ∈ P|x ′ � z} {Determine individuals dominated byx ′}
15: if D �= ∅ then
16: P ← P \ D {Delete dominated individuals}
17: for all y ∈ P do
18: w(y) ← ∞ {Disable remaining individuals}
19: end for
20: end if
21: P ← P ∪ {x ′} {Add x ′ to population}
22: w(x ′) ← 0 {Initialize offspring count}
23: end if
24: end if
25: end loop

For the second phase, we proceed similarly to the analysis of FEMO on
LOTZ and claim the following: if we allocatec·n mutation trials to each element
of the Pareto front, each one will have produced its neighbor with a probability
depending onc. The failure probability, i.e. the probability that we are not ready
after all thesecn2 mutations in total, can thus be bounded above by

n∑
i=1

(
1 − i

n

)cn

≤
n∑

i=1

(
1

ec

)i

≤ 1

ec − 1
≤
(

1

2

)c−1

.

To bound the expected total number of mutationsT we use the substitution
T ′ = T/n2, and

E[T ′] ≤
∞∑

c=1

c · P
{
c − 1 ≤ T ′ ≤ c

}

≤
∞∑

c=1

c · P
{
T ′ ≥ c − 1

}

74 Chapter 4. Running Time Analysis

≤
∞∑

c=1

c ·
(

1

2

)c−2

= 4
∞∑

c=1

c ·
(

1

2

)c

= 8

leads to an upper bound ofE[T] = 8n2 for the second phase. &'

4.5 Higher-dimensional Objective Spaces
In this section, we generalize the two bi-objective problems from the previous
sections, LOTZ and COCZ, to arbitrary objective space dimensions. Bounds
for the expected running time for the different algorithms are derived for each
problem, where the problem size is again determined by the number of decision
variablesn, while the number of objectivesm is considered as a constant. To
facilitate the analysis of the fair sampling strategy of the GEMO, we derive
a general result on a graph searching process, which serves as a model how
GEMO behaves on the Pareto front.

4.5.1 Multiobjective Leading Ones (mLOTZ) Problem

The LOTZ problem can be generalized to an arbitrary even number of objectives
m by concatenatingm/2 bi-objective LOTZ problems of 2n/m bits each.

Def. 20: The pseudo-Boolean function mLOTZ : {0, 1}n → INm is defined as

mLOTZ(x1, . . . , xn) = (f1, f2, . . . , fm)

with

fk =
{ ∑n′

i=1
∏i

j=1 x j+n′(k−1)/2 if k is odd∑n′
i=1

∏n′
j=i (1 − x j+n′(k−2)/2) else.

where m = 2 · m ′, m ′ ∈ IN, and n = m ′ · n′, n′ ∈ IN.

The construction principle of themLOTZ problem is depicted in Figure 16.
To solvemLOTZ, we are searching for a representation of the Pareto front with
|Y ∗| = (2n/m + 1)m/2 elements.

Th. 12: The expected running time of the (1+1)-EA for mLOTZ is �(nm/2n2).

Proof: For each of the|Y ∗| Pareto-optimal points, we have tofind a unique
bit-string. For each mutation, there are at least one and at mostm bits that
canflip for a success. In addition, a bit is set correctly with probability 1/2
even without mutation, so half of the steps are for free. Hence, the expected

4.5. Higher-dimensional Objective Spaces 75

Fig. 16: Schematic view of themLOTZ problem

running time for each constrained sub-problem is�(n2), and with the number
of |Y ∗| = (2n/m + 1)m/2 sub-problems to be solved the claim follows. &'

To derive an upper bound for the SEMO, we can again make use of the
general upper bound of Lemma 5.

Th. 13: The expected running time of the SEMO and the FEMO applied to mLOTZ is
bounded by O(nm+1).

Proof: We haveO((n/m)m) different objective vectors. Each objective vector
that is not Pareto-optimal receives on averageO(n) mutations until it is im-
proved and deleted forever. With Lemma 5 it follows that the expected total
number of mutations of non-Pareto-optimal decision alternatives is bounded by
O(nm+1). The discovery of the last Pareto-optimal vector takesO(n/m)m/2 · n
time, which is an upper bound the discovery of all Pareto-optimal vectors.&'

For the analysis of the GEMO we again note that the running time is mainly
determined by the exploration of the Pareto front. In the general case, the Pareto
front can be modeled as a graph, where the nodes correspond to the different
Pareto-optimal objective vectors and the directed weighted edges correspond to
mutation probabilities. Instead of analyzing GEMO directly, wefirst define and
analyze a more general randomized graph search algorithm, which is similar to
a process described and analyzed in Alon (2002). The purpose of this approach
is two-fold. First, it gives a more intuitive view of how the different population-
based algorithms behave on the Pareto front. Second, it provides a general tool,
like the upper bound technique of Lemma 5, which facilitates and shortens the
analysis of different real algorithms.

The algorithm assumes that we are given a random starting nodev and a
random operatorjump : V �→ V , which returns for each nodev a neighbor
v′ of v with probability p(v, v′). The purpose of the following algorithm is to
determineV andE using a minimal number of calls tojump.

It will be shown that the above algorithm explores a graphG using
O(

|V |
p log |E |) calls to the functionjump with high probability, wherep is a

lower bound on the edge weights. Thefirst lemma bounds the weight of a node
during a run of the algorithm.

76 Chapter 4. Running Time Analysis

Algorithm 9 Randomized Graph Search
1: w(v) ← 0
2: V ← {v1}; E ← ∅
3: loop
4: Select a nodev out of {v′ ∈ V |w(v) ≤ w(v′) ∀v′ ∈ V } uniformly.
5: w(v) ← w(v) + 1
6: v′ ← jump(v)

7: if v′ �∈ V then
8: w(v) ← 0
9: V ← V ∪ {v′}; E ← E ∪ {(v, v′)}

10: end if
11: end loop

Lem. 8: With probability at most � · e−λ, the weight of a node with � neighbors exceeds
λ
p before all neighbors of the node are found.

Proof: Starting fromw(v) = 0, the weight increases by 1 after each trial. Let
us suppose that the neighbors ofv are{v1, ..., v�}. The weight exceedsλp if it
exceeds this value before neighborv1 is foundor before neighborv2 is found
or ... Using the Boole-Bonferroni inequality, we can bound the probabilityP
we are looking for, according to

P ≤
k=�∑
k=1

Pk = � · P1

wherePk denotes the probability that neighborvk has not been found yet and
w(v) exceedsλp . Now we have

P1 = (1 − p)
λ
p ≤ e−λ P ≤ � · e−λ

&'

Lem. 9: With probability at most |E | · e−λ, the weight of some node exceeds λ
p before all

nodes and edges are found.

Proof: There areN nodes that mustfind all their neighbors. The events that the
weight of a node exceedsλp are independent for all nodes. Using the number of
neighbors�i of nodevi , wefind the probability

i=|V |∑
i=1

�i · e−λ = |E | · e−λ

&'
Now, we can bound the total running time of the exploration algorithm.

4.5. Higher-dimensional Objective Spaces 77

Th. 14: With probability at least 1 − |E |−c, Algorithm 9 explores all nodes and edges
of G using not more that (c + 1)

|V |
p log |E | calls to the function jump. The

expected number of calls to jump is bounded by O(
|V |
p log |E |).

Proof: With λ = (c + 1) log |E | and Lemma 9 wefind that with probability
1 − 1

|E |c , the maximal weight of the nodes inV does not exceed(c+1)
p log |E |

at the time when the whole graph has been explored. Therefore, the function
jump has been called at most|V | (c+1)

p log |E | times. For the expectation, let the

random variableT denote the number of calls tojump, divided by |V |
p log |E |.

With

E(T) ≤ 1 · P{0 ≤ T < 1} + 2 · P{1 ≤ T < 2} + . . .

≤ 3 +
∞∑

c=3

c · P{T ≥ c − 1}

≤ 3 +
∞∑

c=1

(c + 2)|E |−c

≤ 3 + |E |
(|E | − 1)2

+ 2

|E | − 1
= O(1)

the bound on the expected number of calls to jump follows. &'
Th. 15: The running time of the GEMO for mLOTZ is bounded by O(nm/2 · m

2 n logn) =
O(nm/2n logn) with probability at least 1 − O(n−m). The expected running
time is bounded by O(nm/2n logn).

Proof: Consider again two phases depending on whether a Pareto-optimal point
has been found so far. In thefirst phase, there are two types of mutations that
lead to accepting new points: successful mutations (the new points dominates
the old point) and indifferent mutations (the new point and the old point are in-
comparable). Successful mutations cause the active population to shrink to one
elementx and increase the objective sums = ∑m

i=1 fi (x) by one. Indifferent
mutations can cause the population to grow, but keeps constant. Therefore, at
mostn successful mutations are needed in thefirst phase. Since the probability
of a successful mutation is always at least 1/n, the expected running time of
thefirst phase isO(n2). At the end of thefirst phase,P contains exactly one
element of the Pareto set, and we can describe the behavior in phase 2 by the
the model of Algorithm 9. In this case,|V | = (2n/m + 1)m/2, |E | ≤ m|V | and
p = 1/n. Application of Theorem 14 leads to the claimed bounds. &'

4.5.2 Multiobjective Count Ones Problem (mCOCZ) Problem

The idea of themCOCZ is again a concatenation of multiple bi-objective COCZ
problems. However, the bits shall be re-arranged so that thefirst n/2 bits rep-
resent the cooperative part, where the number of ones contributes equally to all

78 Chapter 4. Running Time Analysis

Fig. 17: Schematic view of themCOCZ problem

objectives. The remaining parts represent the mutual tradeoffs between pairs of
objectives.

Def. 21: The pseudo-Boolean function mCOCZ :{0, 1}n → INm is defined as

mCOCZ(x1, . . . , xn) = (f1, f2, . . . , fm)

with

f j =
n/2∑
i=1

xi +
{ ∑n′

i=1 xi+n/2+(j−1)n′/2 if j is odd∑n′
i=1(1 − xi+n/2+(j−2)n′/2) else.

where m = 2 · m ′, m ′ ∈ IN and n = m · n′, n′ ∈ IN.

This gives rise to a Pareto front with|Y ∗| = (n/m+1)m/2 different elements.
The construction principle of themCOCZ problem is depicted in Figure 17.

Th. 16: For the mCOCZ problem, the following bounds for the expected running times
hold:

• �(nm/2n logn) for the (1+1)-EA,

• O(nm+1) for the SEMO and the FEMO.

The running time of the GEMO for mCOCZ is bounded by �(nm/2n logn) with
probability at least 1 − O(n−m).

Proof: The (1+1)-EA has to solve|F∗| = (n/m + 1)m/2 constrained sub-
problems. For each sub-problem we have to at least solve a COUNTONES prob-
lem in thefirst n/2 bits, which takes�(n logn) time. This already proves the
lower bound. For the upper bound we pessimistically assume that we then opti-
mize each of them/2 trade-off sections separately. As all bits within the same
section are interchangeable, this is equivalent with solvingm/2 COUNTONES

problems ofn/m bits, which again takes on average�(n logn) time and proves
the upper bound.

4.6. From One-bit to Independent-bit Mutations 79

For SEMO and FEMO, we again apply Lemma 5 with a search space parti-
tion where each objective vector constitutes its own subset. In each subset, let
k denote the Hamming distance from the Pareto set, i.e. the number of zeros
among thefirstn/2 bits. For eachk there are|F∗| subsets in the partition whose
elements have a Hamming distancek to the Pareto set and whose probability of
improvementpk equalsk/n (flipping one of the zeroes in thefirst half of the
bit-string). With Lemma 5 we can bound the number of mutations allocated to
non-Pareto optimal points byO(nm/2n logn). On the Pareto front, we want to
bound the expected time tofind thek-th element under the conditions thatk − 1
elements are already found. Such a bound is givenO(kn), and the summation
over allk from 1 to|F∗| leads to a total expected running time ofO(nm+1).

For GEMO, let us again consider two phases depending on whether a Pareto-
optimal point has been found so far. In thefirst phase, there are two types of
mutations that lead to accepting new points: successful mutations and indiffer-
ent mutations. Successful mutations cause the active population to shrink to one
elementx and increase the objective sums = ∑m

i=1 fi (x) by one. Indifferent
mutations can cause the population to grow, but keeps constant. Therefore, at
mostn successful mutations are needed in thefirst phase. Since the probability
of a successful mutation is always at least 1/n, the expected running time of
thefirst phase isO(n2). At the end of thefirst phase,P contains exactly one
element of the Pareto set, and we can describe the behavior in phase 2 by the
the model of Algorithm 9. In this case,|V | = (n/m + 1)m/2, |E | ≤ m|V | and
p ≥ 1/n. Application of Theorem 14 leads to the claimed bound. &'

4.6 From One-bit to Independent-bit Mutations

So far, all algorithms in this chapter have been considered with one-bit muta-
tions only as this simplifies the analysis. The disadvantage is that the one-bit
mutation operator is less relevant in practise, because it is a local operator and
will fail on problems, where jumps of more than one bit are required to proceed
the search.

In this section, we discuss the use of the independent-bit mutation operator,
i.e. in a mutation step each bit isflipped independently with probability 1/n.
We expect that upper bounds derived by the general technique of Lemma 5 also
hold in the case of independent-bit mutations. Our argumentation relies mainly
on the success probabilities. We can simply disregard all mutations where not
exactly one bitflips. The expected waiting time from one one-bit mutation to
the next is(1 − 1/n)−(n−1) = O(e), which does not change the order of the
total expected running time. Lemma 5 then assures us that we can work with
the success probabilities alone and completely ignore those mutations, where
not exactly one bitflips.

The situation is different when we try to verify more tighter bounds, like

80 Chapter 4. Running Time Analysis

only for the FEMO on the LOTZ problem. Here, the independent-bit mutations
can produce incomparable individuals and hence cause the population to grow
before it reaches the Pareto set. This problem is somehow similar to the one
encountered in the analysis of FEMO on COCZ with the one-bit mutations, and
it is a so far unsolved challenge to prove tight bounds for both cases.

The effect of mutations thatflip more than one bit has to be taken into ac-
count also for the GEMO algorithm. Here, we are faced with the following
type of negative event that might enlarge the running time: Offspring can be
accepted into the population with a larger Hamming distance from the Pareto
set than their parent. If this offspring then happens to be thefirst in the popu-
lation to produce a dominating child, then the minimum Hamming distance of
the active part of the population can increase. It is therefore necessary to bound
the negative effect of this event.

Altogether it can be stated that bounds for the case of independent-bit mu-
tations can be derived for all scenarios considered in this chapter, but that it
remains open whether these bounds are tight.

4.7 Summary
In this chapter, running time results were derived for different types of evo-
lutionary algorithms on different pseudo-Boolean multiobjective optimization
problems. To achieve this aim, we constructed simple optimization problems as
well as simple algorithms, which represent essential ingredients of the analysis.

As model problems for the analysis, we defined mLOTZ and mCOCZ,
which are composed of unimodal pseudo-Boolean functions and which are
scalable in the number of objectivesm. We proposed and analyzed various
population-based multiobjective EAs:

• The simple population-based algorithm SEMO, and

• Two improved population-based algorithms, FEMO and GEMO,

and compared their running time against a multi-start (1+1)-EA based on the
ε-constraint method. To facilitate the analysis of population-based EAs, we
derived two analytical tools,

• A general upper bound technique based on a partition of the decision space and

• A general randomized graph search algorithm.

While the former can be used to bound the search effort in non-Pareto optimal
regions, the latter helps to analyze the time spent for the exploration of the
Pareto front itself.

The bounds on the expected running times are summarized in Table 4. It was
shown that on the bi-objective problems, the SEMO needs a running time of the

4.7. Summary 81

(1+1)-EA SEMO FEMO GEMO

LOTZ �(n3) �(n3) �(n2 logn) �(n2 logn)

COCZ �(n2 logn) O(n2 logn) O(n2 logn) �(n2)

mLOTZ �(nm/2n2) O(nm+1) O(nm+1) O(nm/2n logn)

mCOCZ �(nm/2n logn) O(nm+1) O(nm+1) O(nm/2n logn)

Tab. 4: Bounds on the expected running time derived in this chapter.

same order as the (1+1)-EA, while it loses its competitiveness with increasing
number of objectives. This is mainly due to SEMO’s poor ability to expand the
population on the Pareto set. The GEMO on the other hand has the lowest run-
ning time on all problems, except for themCOCZ form > 2, where an upper
bound of the same order as for the (1+1)-EA could be given. This bound, how-
ever, is not necessarily tight bound, which allows to speculate whether GEMO
is also quicker on this problem.

To derive tight bounds for the expected running time it is necessary to give
lower and upper bounds of the same growth rate. For some of the analyzed
cases, the upper bound might be too pessimistic so that it was not possible to
prove a matching lower bound. One possibility to approach this problem is to
bound the population-size during the run of the algorithm. However, to be able
to store the whole Pareto front, a large enough population size must be allowed,
implying that in the worst case all possible objective vectors will be visited. If it
is not possible to bound the size of the population on its way towards the Pareto
set, only the general upper bound of Lemma 5 holds, and the running time
advantage of the population-based EAs compared to the (1+1)-EA vanishes in
most cases.

Another possibility is to circumvent this problem through the design of the
algorithm, which was one motivation for the design of the GEMO. The strategy
of the GEMO to focus the search effort on the most recently successful offspring
counteracts the tendency of the population to increase, as long as successful
mutations are possible. It can therefore be viewed as an algorithm that implicitly
notices when the Pareto front is reached and automatically adapts its behavior.
The rationale behind the GEMO strategy is that wefirst want tofind the Pareto
set on the quickest way possible and only thereafter to spread out the population
as quick as possible. This way, the GEMO represents the opposite of the (1+1)-
EA, which searches in all different directions from the start, while the behavior
of the FEMO and the SEMO is somehow in between these two extremes.

There certainly exist multiobjective problems where it is not easy to traverse
the Pareto set, e.g. if its elements are at a large Hamming distance from each
other. In such a case it might be necessary to spread out the population early
in the search in order to make all Pareto-optimal points reachable. Clearly,
the GEMO strategy would be wrong here, because it was designed to prevent
exactly this. Nevertheless, it can be argued that such a scenario is anyway the
domain of scalarizing approaches like the multi-start (1+1)-EA presented in this

82 Chapter 4. Running Time Analysis

chapter.
It was proven for two types of problems that specific population-based mul-

tiobjective optimizers have a provable lower running time than a specific tradi-
tional scalarizing method using multistarts of single-objective optimizers. So
far, it has often been claimed, but never shown, that the use of a population is
beneficial in the context of multiobjective optimization, even without the use
of recombination. The results presented in this chapter are thefirst theoretical
evidence for this claim. Instead of the explicit co-operation using traditional re-
combination operators, implicit cooperation via measuring the successes in the
population is used here.

The importance of both, simple baseline algorithms and simple problems,
for the development of a theoretical foundation of multiobjective evolutionary
algorithms becomes apparent from recent follow-up work in this area. Thierens
(2003) presents a heuristic, non-rigorous running time estimation of SEMO on
a multiobjective COUNTONES problem, while Giel (2003a, 2003b) provides a
rigorous analysis of SEMO with one-bit and independent-bit mutations for the
same problem as well as for LOTZ and another test function.

The availability of appropriate methods and tools has shown to be crucial
for the analysis. The general upper bound technique presented in this chapter,
for instance, allowed us to derive upper bounds for a number of different sce-
narios and to shorten the proofs considerably. One of the many challenging
problems in this area is to give tight bounds for the cases where the population
of a multiobjective EA spreads out before the Pareto set is reached.

The theoretical analysis led to the definition of two new selection schemes
that so far have not been used in standard MOEAs. The results suggest that their
use might be beneficial also in practical applications, which is an interesting area
of future research.

5
Applications in Automotive Engineering

So far, this thesis dealt with the analysis of multiobjective evolutionary algo-
rithms. Theoretical results have been obtained concerning their properties and
performance. Such results are important to better understand the behavior of the
algorithms. This way, theirfields of application, but also their limitations can
be judged realistically. Nevertheless, the ultimate aim of dealing with optimiza-
tion algorithms is to apply them to practical real-world optimization problems.
Thus, the purpose of this chapter is two-fold. Firstly, we want to address multi-
objective optimization problems that are important engineering design problems
by itself. Secondly, these case studies shall serve as examples to highlight and
demonstrate selected issues of the preceding theoretical investigations on prac-
tical applications.

In this chapter, we treat multiobjective decision problems that arise at dif-
ferent stages during the design process of automotive systems. Wefirst propose
a generic problem solving procedure, which contains an automated, computa-
tional part and an interactive part. The automated part integrates simulation
tools with multiobjective optimization techniques based on randomized search
algorithms. We then present and describe the simulation environment used to
evaluate the different decision alternatives. Simulation tools are frequently used
to model various parts of the system that has to be designed, and of its environ-
ment, because experiments with the real system are too time consuming or too
expensive, and integration into a computer-aided optimization process is diffi-
cult. The remaining sections demonstrate the use of the proposed methodology
in three case studies of application problems in the automotive industry.

The first application is a design space exploration for road trains. Road
trains are a new vehicle concept for the European freight traffic sector, and it is
necessary to explore their potential concerning various economic and environ-
mental criteria at a preliminary design stage. For the design space exploration,

84 Chapter 5. Applications in Automotive Engineering

a simple approach based on the SEMO algorithm from Chapter 4.3 is used. A
parameter optimization of adaptive cruise control systems is the second appli-
cation area. The task is to devise afilter structure for an optimal controller
behavior regarding driving performance, safety and fuel consumption. On the
algorithmic side, different instances of thegenerate operators are applied and
compared. The focus is to evaluate which problem representation and variation
operators performs best. This performance is assessed based on the results of
Chapter 2.4. A system identification problem represents the third case study.
The aim is tofit a vehicle dynamics simulation model to data acquired in real
driving tests. A simple, but realistic model is needed for a later integration into
a vehicle dynamics controller. This case study is an example, where a standard
multiobjective EA exhibits the problem of deterioration, which was discussed
in Chapter 3.1. Therefore, the new algorithm based on theε-dominance, Algo-
rithm 3 is applied to guarantee convergence together with the required diversity
of design alternatives.

5.1 An Evolutionary Multiobjective Design Framework
Like many areas of engineering design, vehicle development has changed to
a more and more complex process in recent years. Engineers have to meet
conflicting demands concerning efficiency, performance, costs, etc. The de-
sign problems are typically characterized by the presence of multiple decision
criteria or objectives. Additional difficulties arise due to increasingly complex
system models used in the design process.

Approaches to cope with difficult design problems were typically catego-
rized into experimental and analytical methods. Experimental methods rely on
the intuition and experience of the engineer and often follow a trial-and-error
principle. Analytical methods represent a more formal and systematic approach,
but are normally limited to very simple models. With the advent of sophisticated
computational techniques emerged a third group: design methods based on ar-
tificial and computational intelligence (Zurada et al. 1994). Techniques like
expert systems, fuzzy logic, neural networks, and evolutionary computation al-
low to incorporate the knowledge of the designer into a computer-aided design
process, even with complex system models.

The multiobjective design procedure we adopt here contains the following
components:

• A definition of the design space and the objective functions,

• A system model, which provides the mapping of design alternatives to objective
values,

• An optimization algorithm, which iteratively samples the design space and tries
to improve old or generate new promising solutions automatically, and

5.1. An Evolutionary Multiobjective Design Framework 85

in
pu

t

ou
tp

ut

Alternatives

Decision

V
ariation

Objective values

Preferences

Model
Simulation

Evolutionary Algorithm

Se
le

ct
io

n

Criteria
Multiple

Analysis
Decision

Fig. 18: Integration of system model and multiobjective optimizer in a multiobjective design
framework.

• An interface, which allows the decision maker to guide the search process ac-
cording to his preferences.

Since the design procedure shall be widely applicable, we do not make any
assumptions about the system model, such as linearity, differentiability etc. The
question, which optimization algorithms are suitable for such a black-box sce-
nario, has been discussed in the introduction of this thesis, motivating the use
of evolutionary algorithms.

The design procedure framework is schematically depicted in Figure 18.
Each decision alternative is represented by a distinct combination of input pa-
rameter values, for which the model can be executed to calculate the corre-
sponding objective values. If the number of different alternatives is small, they
can be directly processed further, e.g., by multiple criteria decision analysis
(MCDA). If the number of possible combinations is large, an iterative approach
is followed using the evolutionary algorithm: From a small set of initial alterna-
tives, the better ones are chosen and used to create new solutions by variation.
While the variation step is driven randomly and undirected, the selection step
can incorporate preference information obtained from MCDA (second feedback
loop).

To simulate and evaluate the behavior of different design alternatives, the
traffic simulation tool PELOPS (Ludmann 1998) is used. PELOPS allows to
analyze the interactions between vehicle, driver and the environment. It is
based on the combination of detailed sub-microscopic vehicle models with mi-
croscopic traffic models that enable an investigation of the longitudinal vehicle
behavior as well as an analysis of the traffic course. PELOPS contains the most
important elements of the traffic system - stretch/environment, driver and vehi-
cle, which are connected by interfaces (see Figure 19).

The stretch module allows a detailed description of the influences of a sta-
tionary traffic environment. The course of the road in horizontal and vertical
direction is represented by radius and transitions as well as the number and
width of the lanes. The actual traffic conditions for a vehicle result from the
number of surrounding vehicles and their distances and speeds. The vehicle
module uses the cause-and-effect-principle to calculates the driving force start-
ing from the engine operation point over the clutch, transmission and differential

86 Chapter 5. Applications in Automotive Engineering

100

t

v

v=f(t)

2 1

34

5Rlane
x, v, a

n
gear

point of
gear-

change

gear

lane
v, a

DV

DX

Stretch-Module Handling-Module

lane

a require

α
α

br

thr

α thr

ψ

gear
s

clutch

lane, x, v
a, gear, n

Vehicle-Module

Decision-Module

Fig. 19: Elements of the traffic simulation tool PELOPS.

up to the wheels, where the driving force is then balanced with the driving re-
sistances. The operation point is changed by the alteration of the motor torque
(cause). From the thereby caused acceleration and speed change results the en-
gine speed (effect) under consideration of the drive-line elements. Only such a
detailed description of the vehicle under employment of the cause-and-effect-
principle allows the investigation of control engineering equipment, e.g., the
adaptive cruise control system investigated in Section 5.3 (Breuer et al. 1999).

The link between vehicle and traffic simulation is represented by the driver
module, which is divided into a behavior and a handling model. In the behavior
model, the parameters of the local driving strategy is determined by means of
the actual driving situation and the vehicle environment. The parameters of the
local driving strategy are the desired acceleration, lane and eventually also the
shifted gear. In the handling model, these parameters are converted into vehicle-
specific quantities such as the angle of the acceleration pedal, brake, etc.

5.2 Design Space Exploration of Road Trains

Thefirst example of a development task which was solved by the described pro-
cedure is the layout of the power train for road trains. Increasing the maximum
payload is one possible approach to overcome the increasing traffic problems on
crowded European highways. We focus on a concept for European freight traffic

5.2. Design Space Exploration of Road Trains 87

Fig. 20: Schematic view of the road train and its design variables

featuring two semi-trailers, which are connected by a one-axle dolly (Ludmann
et al. 1999).

The optimization of a whole new vehicle concept with respect to fuel con-
sumption and driving dynamics is a very complex subject, because the lack of
existing data and knowledge leaves a wide open space for experiments concern-
ing the power train and the overall weight of the road train. Furthermore, it is
impossible to acquire knowledge in driving tests as prototypes are too expensive
to be build. Therefore, the vehicle concept is modeled by a vehicle simulation.
The design space exploration of the power-train is achieved by a parameter vari-
ation, performed by a multiobjective evolutionary algorithm.

5.2.1 Optimization Problem

A series of aspects have to be taken into consideration when developing a new
vehicle concept. On the one hand an optimal combination of vehicle weight and
engine power has to be found to ensure efficient driving. On the other hand the
correct choice of gear box type and gear ratio influence driving comfort and per-
formance. The design variables and their range are displayed in Figure 20. The
first four variables are scale factors of different engine and gear box parameters.
The last variable,x5, represents the choice of the gear box type, specifically,
whether the 15th or the 16th gear is chosen to be the direct gear. The direct gear
is the most efficient gear, because the power is not transmitted through toothed
wheels, but directly through the transmission shaft (gear ratio = 1). If the 15th
gear is chosen as the direct gear, the 16th gear has a gear ratio below 1, which is
less efficient. However, the low ratio causes higher engine rates and thus lower
torque, which increases the gear box durability.

An increase of weight leads to an increase of road and climbing resistance.

88 Chapter 5. Applications in Automotive Engineering

Fig. 21: Engine characteristic graph.

This changes the engine operating point and therefore its efficiency and fuel
consumption. Every single driving condition defines a point in the engine char-
acteristic graph (see Figure 21). The number of revolutions is determined by
the velocity of the vehicle and the total gear ratio, consisting of rear-axle ratio
and transmission ratio. The necessary torque is a result of necessary power out-
put (influenced by velocity, efficiency of the gear box, acceleration, and road
gradient) and revolutions. A lower total gear ratio reduces the engine speed.
Under the presumption of constant running resistance due to constant velocity
and road gradient the required power remains unchanged. The line of constant
power indicates this relationship in Figure 21. Long-distance transport vehicles
usually drive rather statically, operating at maximum authorized speed. This
leads to the assumption that the gear ratio should be low enough to provide an
engine operating point in the area of lowest specific fuel consumption. This
area, however, is close to the line of maximum torque. Small increases of the
running resistance, resulting from headwind or road gradient, cannot be com-
pensated by requesting more torque from the engine, but force the driver to shift
gears or to go at a lower speed. Since the drivability of the vehicle requires a
large distance between the most frequent engine operating point and the line
of maximum torque, resulting in powerful engines and high gear ratios, it op-
poses the attempt to reduce the fuel consumption. The goal of the optimization
is to find a combination of overall weight, gear box, engine and driving strat-
egy that minimizes fuel consumption, optimizes the driving performance and
driving convenience.

Ten objective functions are defined to give a complete characterization of

5.2. Design Space Exploration of Road Trains 89

the vehicle performance considering fuel consumption and driveability. The
resulting multiobjective optimizaiton problem can be stated as follows:

Maximize f (x) = (f1(x), . . . , f10(x)),

f1(x) = (−1) · ta1(x) [time for acceleration 0-40 km/h]
f2(x) = (−1) · ta2(x) [time for acceleration 40-90 km/h]
f3(x) = vmax(x) [maximal velocity]
f4(x) = v14(x) [maximal velocity, 1.5 gradient, 14th gear]
f5(x) = v16(x) [maximal velocity, 1.0 gradient, 16th gear]
f6(x) = (−1) · c100(x) [average fuel consumption per ton load, 100 km/h]
f7(x) = (−1) · c80(x) [average fuel consumption per ton load, 80 km/h]
f8(x) = vave(x) [average speed on a highway, including road gradient]
f9(x) = (−1) · ch(x) [average fuel consumption per ton load on a highway]

f10(x) = (−1) · gtot(x) [number of gear shifts on a highway]

subject tox = (x1, . . . , x5) ∈ X = [0, 1]5.

The characteristic valuesta1, ta2, vmax, v14, v16, c100, c80, vave, ch, gtot are
derived by simulation can therefore not be given in closed form. Six simulation
scenarios are used, a full-load acceleration, two constant-velocity scenarios (80
km/h and 100 km/h), two scenarios with constant gradient and the engine oper-
ating at full load and a highway scenario. The highway scenario consists of an
18 km drive over an empty highway, with road gradient varying from -4.5% to
+3.9%.

Another difficulty in the design process of a long-distance freight vehicle is
the large application spectrum. Some carriers operate only in a rather even area,
like the Netherlands for example. It is obvious that they would prefer a road
train version different from one a carrier would choose whose standard route
crosses the Alps. The latter puts much more emphasis on the climbing capacity
than the other.

5.2.2 Algorithms

This application is an example of a design space exploration at a very early
design stage. Here, simplicity of implementation is a main criterion to select
a suitable optimization algorithm. Another aspect is that the archive must be
very large because the possible size of the trade-off surface increases with the
objective space dimension. In this case, its size does not have to be bounded
at all because the long duration of the simulation (about 30 seconds) already
limits the total number of alternatives to be generated in a reasonable amount
of computing time. We therefore use SEMO (see Algorithm 5) and modify it
slightly for our needs.

Each individual represents a decision alternative by a vector of design vari-
ablesx = (x1, x2, . . . , x10) ∈ X . The variation operator for this study only
applies mutation. For each component of the decision vector, a random num-
ber is drawn from a standard normal distribution and multiplied with a scaling

90 Chapter 5. Applications in Automotive Engineering

factorσ . This product is then added to the old componentxi to form the new
componentx ′

i :

x ′
i := xi + σ · ri , ri ∼ N (0, 1) (5.1)

A constant step sizeσ = 0.02 was used for simplicity. Recombination turned
out not to be of use here since the interdependence of the design variables in
every part of the objective space seems to be very high.

In order to avoid genetic drift and an oversampling of easily accessible ob-
jective space regions, it is necessary to employ density dependent selection: In
each iteration the density is estimated for every point represented by the indi-
viduals, and the individuals are selected with a probability reciprocal to this
density. This leads to a more uniform distribution of alternatives in the approx-
imated trade-off surface.

To analyze the quality of the vehicles developed by the evolutionary algo-
rithm, a road train version is designed in a traditional way, based on simple
rules for optimizing a power train of a truck (Wallentowitz 2000). In addition,
two grid searches over the whole design space are performed, each with a total
number of 2160 elements. One of them was restricted to a maximum authorized
speed of 80 km/h, the other to 100 km/h.

5.2.3 Results

A hierarchical approach was used for the design space exploration with the evo-
lutionary algorithm. Thefirst run of the evolutionary algorithm is performed
to narrow down the design variable intervals. An analysis of the trade-offs be-
tween the different objectives leads to the conclusion that a focus on reducing
the fuel consumption would not necessarily worsen the other objective values to
an unacceptable amount. Furthermore, this goal is the main factor for the prof-
itability of a vehicle concept and deserves special attention. Therefore we chose
the average fuel consumption on the highway,f9, as the objective value that de-
fines a ranking of the solutions;f4 and f5 can be used to represent the second
main part of the driving performance, the required climbing ability. In this case
the reduction of the maximum velocity must not exceed 5 km/h. The solutions
that did not meet this criterion were removed from the ranking. The remaining
individuals were ranked according to the fuel consumption on highways. The
top solution was considered as the best version.

With the help of the preliminary solutions shown in Figure 22, the design
variable intervals were narrowed down to

x1 ∈ [0.4, 0.6]
x2 = 1
x3 ∈ [0.3, 0.4]
x4 ∈ [0, 0.5]
x5 = 0

x1 ∈ [0.0, 0, 4]
x2 = 1
x3 ∈ [0.55, 0.85]
x4 ∈ [0, 0.5]
x5 = 0

(100 km/h road train) (80 km/h road train).

5.2. Design Space Exploration of Road Trains 91

Fig. 22: Design variable and specific fuel consumption for the 100 km/h road train (top) and the
80 km/h road train (bottom)

Limited to those intervals, a second run of the same evolutionary algorithm then
fulfilled a more exact approximation of the Pareto set in the region of interest.
Of course, there are other ways to cope with the large number of incompara-
ble alternatives in the presence of many objectives. These typically rely on
preference information, for instance aggregating (or dropping) objectives, lexi-
cographic ordering or the transformation of objectives into constraints. In many
cases, however, it is very difficult to derive an exact numerical representation of
the preferences. Moreover, since we had different decision makers with differ-
ent preferences in mind, the aim isfirst to explore the Pareto set as broadly as
possible with a minimum number of simulations before exploiting interesting
regions through restriction of the decision variable space as described above.
Finally, it should be mentioned that even dropping highly correlated objectives
does not help since these correlations are usually not known in advance, can
differ much in different regions of the search space, and they do not contribute
to the dimensionality of the Pareto set.

92 Chapter 5. Applications in Automotive Engineering

x1 = 0.507
x2 = 1
x3 = 0.183
x4 = 0.256
x5 = 0

x1 = 0.157
x2 = 1
x3 = 0.623
x4 = 0.374
x5 = 0

Fig. 23: Comparison between a normal truck and a road train concerning fuel consumption on
a highway, maximum authorized speed of 100 km/h (left) and 80 km/h (right). In the
boxes, the decision variables corresponding to the chosen road train are listed.

Final results show a huge advantage of road trains with respect to fuel con-
sumption in comparison to normal truck (see Figure 23). A decrease of 23% (80
km/h-version) respectively 26% (100 km/h-version) is achieved on highways in
spite of the rather tough gradients. In steady-state operation fuel consumption
advantages of up to 35% are accomplished. With acceleration being at a sensi-
ble level the road trains have no disadvantages in climbing ability and required
gear shifts.

The comparison of the different road train versions indicates that the evolu-
tionary algorithm is able to generate better solutions than the other approaches.
Showing the same climbing ability and acceleration as the traditionally devel-
oped versions and the ones obtained by a grid-scan over the whole parameter
area, the EA-solution needs about 1% less fuel on the highway. The 100 km/h
version is even better than the best version found by a grid-scan of 1000 ele-
ments distributed over the narrowed intervals.

Figure 25 shows the relation between the objective functionf4 (maximal
velocity in 14th gear with 1.5% road gradient) andf9 (specific fuel consumption
on highway). This relation provides information about the trade-off between
drivability and fuel economy. The creation of 1300 individuals already produces
a rather large number of solutions, which have to be considered better than any
solution that was found without the evolutionary algorithm. This advantage
in efficiency becomes even more important when more sophisticated driving
scenarios– and thus more time consuming simulations– are used, which is
subject to further research.

5.3. Parameter Optimization of Adaptive Cruise Control Systems 93

Fig. 24: Trade-off between velocity (1.5% road gradient) and specific fuel consumption on a
highway for the 100 km/h road train (left) and the 80 km/h road train (right)

5.3 Parameter Optimization of Adaptive Cruise Con-
trol Systems
Crowded motorways and a higher average vehicle speed create increasing diffi-
culties for drivers. The automobile industry tries to compensate these additional
demands by inventing driver assistance systems such as antilock braking system
(ABS), cruise control (CC) and electronic stability control (ESC). In contrast to
the systems mentioned above, adaptive cruise control (ACC) has not been thor-
oughly established yet.

The ACC-system is an enhanced cruise control, not only designed to keep
the vehicle’s speed constant, but also to analyze the traffic situation in front of
the vehicle and regulate its longitudinal dynamics accordingly. Thus, it espe-
cially suits the demands of truck drivers, who frequently have to follow a lead-
ing vehicle. Used effectively, ACC-systems can increase driving safety, make
driving more comfortable and reduce fuel consumption. However, it is rather
difficult to develop a controller that meets the drivers’ requirements concerning
its speed regulating behavior as well as safety criteria and fuel efficiency.

Since experimental testing of each modified controller variant would enor-
mously raise development costs and time, the ACC-system’s behavior is evalu-
ated and analyzed by simulation. This offers the possibility to improve the de-
velopment process further by applying numerical optimization techniques such
as evolutionary algorithms to optimize the ACC-controller.

5.3.1 Optimization Problem

The longitudinal controller is responsible for the translation of the incoming
data about the traffic situation in front of the vehicle and its own driving con-

94 Chapter 5. Applications in Automotive Engineering

Fig. 25: Specific fuel consumption on a highway for the 100 km/h road train (left) and the 80
km/h road train (right).

dition into a desired acceleration. The data produced by the sensor contains
some deviation. This requires four differentfilters in order to create a smooth
acceleration signal. The influence of thesefilters can be regulated by four in-
teger parameters, here represented by the design variablesx1, . . . , x4. Strong
filters result in very smooth signals. However, they somewhat delay the vehi-
cle’s reaction to incoming data and that weakens its driving performance. Two
further design variables,x5, x6 are used to define the longitudinal controller’s
reaction to the vehicle’s distance from the leading vehicle and their relative ve-
locity. Each setting of the design variables represents a decision alternative, and
the resulting controller performance is determined through simulation.

Four objectives are defined to give a sufficient characterization of the ACC-
system’s longitudinal controlling behavior considering driving comfort, fuel ef-
ficiency and safety: All these objective functions are computed within the sim-
ulation. The resulting multiobjective optimization problem can be stated as
follows (where the function values off andg are calculated by the simulator):

Maximize f (x) = (f1(x), . . . , f4(x)),

f1(x) = (−1) · cave(x) [average fuel consumption]
f2(x) = (−1) · tacc(x) [time for acceleration]
f3(x) = (−1) · dvel (x) [velocity deviation]
f4(x) = (−1) · dacc(x) [acceleration deviation]

subject tox = (x1, . . . , x6) ∈ X = {1, 2, . . . , 99}2 × {1, 2, . . . , 16} ×
{1, 2, . . . , 8}3, g(x) ≥ dmin [minimum follow-up distance]

5.3.2 Algorithms

In order to approximate the Pareto set for the constrained multiobjective integer
programming problem above, three methods are applied and compared: a grid

5.3. Parameter Optimization of Adaptive Cruise Control Systems 95

search and two evolutionary algorithms. The computation time of the simulator
makes exhaustive search or complete enumeration of all alternatives impracti-
cal. Thus, a grid search with 215 representative solutions regularly distributed
in the decision variable space is performed. In comparing all these alternatives
to each other, the dominated ones are eliminated and the remaining represent a
first approximation to the non-dominated set as a baseline for comparison.

For the evolutionary algorithms, SPEA2 (Zitzler et al. 2002), an improved
version of the Strength Pareto Evolutionary Algorithm (Zitzler and Thiele
1999), is applied. Theselect operator of SPEA2 works with afixed-size pop-
ulation A; it is basically a(µ + λ)-strategy. Itsfitness assignment scheme of
SPEA2 has been analyzed in Chapter 2.3.2 and was found to possess several
desirable properties. Based in thisfitness assignment, selection is performed in
two steps: environmental selection and mating selection. The bestµ individuals
out of the old parent populationA(t−1) and theλ new offspringB(t−1) survive
and formA(t) according to the following scheme. First, all non-dominated in-
dividuals, i.e., those withfitness value�(a) = 0 are selected. If there are more
thanµ such solutions, a truncation procedure is invoked which iteratively re-
moves the individual which is closest to the others. If less thanµ individuals are
non-dominated, the space isfilled with the dominated individuals in ascending
order of theirfitness values. In the mating selection step, the parent population
of sizeµ is created by binary tournament selection (with replacement) based on
thefitness values.

The generate operator uses two different variation schemes that give rise
to two different instances of the algorithm, r-SPEA2 (using real-valued individ-
uals) and i-SPEA2 (using integer-valued individuals):

Real-valued individuals Many standard search operators are based on a
floating-point representation of (real-valued) decision variables. There-
fore a continuous relaxation of the search space to [0, 99]2 × [0, 16] ×
[0, 8]3 is used, and the variables are rounded to their integer part (plus 1)
before each run of the simulation tool. For the recombination, we use the
SBX-operator (Deb 2001) with distribution indexη = 5. The offspring
individuals are then mutated by adding normal distributed random num-
bers according to Equation 5.1, where the standard deviationσ is set to 5
per cent of the interval length.

Integer-valued individuals As the relaxation produces an artificial blow-up of
the search space a direct representation of the decision variables as integer
numbers might be more appropriate. It also eliminates the potential prob-
lem of mapping several different individuals to the same decision alterna-
tive by the rounding procedure. Search operators working directly on inte-
ger variables are not so common in evolutionary computation. We adopt
the techniques from Rudolph (1994), who developed an EA for integer
programming with maximum entropy mutation distributions that enables
self-adaptive mutation control similar to real-valued evolution strategies.
A successful application to a mixed integer design problem for chemical

96 Chapter 5. Applications in Automotive Engineering

r−SPEA2
grid search

37.8 37.9 38 38.1 38.2 38.3 38.4
f1 0

5
10

15
20

25
30

35
40

45

f3

f4

i−SPEA2

20

16

12

8

4

Fig. 26: Scatter plot of the non-dominated solutions produced by the grid search and the evo-
lutionary algorithm with continuous relaxation (r-SPEA2) and direct integer coding
(i-SPEA) for the objective function valuesf1, f3, f4

plants is reported in Emmerich et al. (2000). Here, the initial mutation
step size was set tos = 2 for all variables.

Both version of SPEA2 were terminated after 3000 objective function evalu-
ations and we choseµ = λ = 20. During the run, a separate archive of all
non-dominated solutions was maintained and output as the approximation to
the non-dominated set at the end of the run.

5.3.3 Results

To evaluate the performance of the evolutionary algorithm, a grid search over
the whole parameter area is performed, along with a manual optimization of the
ACC-controller. The grid search contains 16384 elements, requiring a computa-
tion time of almost 137 hours1. As both instances of the evolutionary algorithm
only used 3000 function evaluations each, and since their internal operations
and data processing can be neglected compared to the simulation, they have a
clear advantage in terms of computation time.

As a first interesting observation from the output of the different algorithms,
no trade-off is visible for the second objectivef2 (acceleration / deceleration
time). All algorithms have found the optimal value of 66.6 for almost all non-
dominated alternatives. This is the optimal value attainable by immediate full
acceleration, without any delays caused by the ACC system. Hence, it can-
not be improved further. The remaining objective values of the different non-

1This estimate is based on the average running time of the simulation on a PC with an AMD
ATHLON 1800 processor

5.3. Parameter Optimization of Adaptive Cruise Control Systems 97

dominated sets are displayed in Figure 26. The trade-off characteristic is visible
from the three-dimensional scatter plot.

One goal of this case study is to conduct a systematic performance assess-
ment and comparison of the different techniques to exemplify the theoretic re-
sults obtained in Chapter 2.4. We start with thehypervolume indicator (Zitzler
and Thiele 1998) as an example of an absolute quality indicator with strong in-
ferential power. The hypervolume indicator calculates the normalized volume
of the dominated space to evaluate a single non-dominated set alone. As it re-
quires a bounded objective space, a reference cuboid is defined between the
ideal point f ∗ and the nadir point given by the maximal objective function val-
ues of the maximal elements of the output of all three algorithms.IH(A) gives
the fraction of this reference volume that is dominated byA. It is clear that the
algorithms should minimize the dominated space. The results given in the last
column of Table 5 show

IH(Ai−SPEA2) > IH(Ar−SPEA2) > IH(Agridsearch)

which allows to conclude

Ai−SPEA2 �≺ Ar−SPEA2 �≺ Agridsearch.

These statements are quite weak, and we have to apply relative quality in-
dicators to arrive at stronger statements. We consider two relative quality in-
dicators proposed by Zitzler and Thiele (1999), thecoverage indicator IC and
the binary hypervolume indicator IH2. Both indicators are among those with
strongest inferential power (see Table 3).

IH2(A, B) i-SPEA2 r-SPEA2 grid search IH(A)

i-SPEA2 0.0038 0.223 0.949
r-SPEA2 0.002 0.188 0.913
grid search 0.0003 0.0018 0.726

Tab. 5: Results of the binary hypervolume indicatorIH2(·, ·) applied to all pairs of algorithms
and the absolute hypervolume indicatorIH(·) (last column).

The coverage indicator provides information about how much of one al-
gorithm’s output has also been reached by the other algorithm. Specifically,
IC(A, B) calculates the relative number of points of setB that are dominated
by at least one point in setA. Table 6 shows the results. It can be seen that
none of the points found by the grid search is better than any point in the non-
dominated sets of the evolutionary algorithms. Also, the SPEA2 working with
the floating point representation does not cover much (less than 10%) of the so-
lutions produced by the integer version, which in turn is able to dominate nearly
half of the solutions of its competitor. However, as far as the preference relations
on approximation sets are concerned, the relations listed in Table 3 lead to the
conclusion that the output of all algorithms is mutually incomparable, because

98 Chapter 5. Applications in Automotive Engineering

Fig. 27: Ranking of solutions according to the scalar utility function (5.2).

all values of the coverage indicator are strictly smaller than one. The same con-
clusion can of course be drawn from the binary hypervolume indicators, whose
results are also listed in Table 5. The binary hypervolumeIH2(A, B) evaluates
to the volume dominated by setA, but not dominated by setB.

IC(A, B) i-SPEA2 r-SPEA2 grid search

i-SPEA2 0.423567 0.991597
r-SPEA2 0.070588 0.991597
grid search 0 0

Tab. 6: Results of the coverage quality indicatorIC(·, ·) applied to the output of all pairs of
algorithms.

This situation of mutually incomparable approximation sets is very typical
for a comparative study, because the performance differences are seldom so
strong that one set entirely dominates another. Nevertheless, the indicator val-
ues provide insight, in which aspects the output of the algorithms differs. In our
case, for instance, the order of the indicator values is always the same, showing
that both evolutionary algorithms at least largely dominate the output of the grid
search, with a slight advantage of the integer-valued version. Such conclusions
can of course be drawn, however, one has to be very careful with the interpreta-
tion of the results, especially to avoid general statements such as “algorithm A
is better than algorithm B” when this is formally incorrect.

We conclude this performance assessment by investigating further perfor-
manceaspects in more detail. These aspects correspond to different preferences
of the decision maker, i.e., which regions of the objective space he is mostly in-

5.3. Parameter Optimization of Adaptive Cruise Control Systems 99

Fig. 28: This graph shows how well each algorithm could approach the minimal value in each
objective dimension separately. The values on each axis is calculated by dividing the
overall minimal value by the minimal value produced by each algorithm.

terested in. Such an assessment is of course asubjective one. All the following
indicators can be seen as special cases of the distance-indicatorID (see Table 2).

One possibility is to define a utility function based on a weighted distance
to an ideal pointf ∗, which is given by the minimal objective values in each
dimension. The difference between each objective value and the optimum value
in the corresponding category is multiplied with a factor which represents the
importance of the category. Thus, the interpretation of the results reflects an
adaptation to the decision maker’s preferences. In this case, the objectivesf1
and f3 are considered most important,f2 is least important. Representing the
distance to the optimal solution, the sum of those values gives the overall quality
of the individual

D(x) = 150(f1(x)− f ∗
1)+(f2(x)− f ∗

2)+6(f3(x)− f ∗
3)+4(f4(x)− f ∗

4) (5.2)

with f ∗ = (37.8339, 66.6, 2.06935, 3.03196). Accordingly, a ranking of the
individuals developed by the different optimization strategies can be produced.
The best 100 solutions are displayed in Figure 27. The two evolutionary algo-
rithms create the best solutions, with a slight advantage of the integer-version in
terms of density close to the optimum solution. 46 out of the top 100 solutions
were created by this integer-version, 40 by the double-version and only 14 by
the grid-search.

Another aspect that can be taken into consideration in order to compare the
different optimization approaches is the total objective space that their solutions
extend to. The minimum overall objective function value, divided by the min-
imum value of a single approach, determines the quality of the optimization

100 Chapter 5. Applications in Automotive Engineering

regarding the corresponding objective. Figure 28 visualizes the performance of
the different optimization approaches in terms of objective space exploration.
While all three approaches reach the optimum in the objectivesf1 and f2, the
grid search shows a performance almost 10% below the optimum inf3 and 5%
in f4. The integer-version of the EA proves to be the best optimization method
with a good performance in all four objectives and an average value of 99.62%.

5.4 Model Fitting for a Vehicle Dynamics Simulation

A crucial element of the application process of simulation and optimization
techniques in vehicle development is model fitting. Here, a MATLAB simula-
tion is to be fitted to data acquired in real driving tests.

The two most important elements of modeling are simplification and exact-
ness. In this case, an extended bicycle model is used for vehicle driving dynam-
ics research. The original bicycle model is a rather simple representation of real
cars, because the four tire contact points are centralized in the longitudinal axle
of the car. Time-delays for the lateral tire force generation enable a sufficiently
exact reproduction of real vehicle measurements. However, it is necessary to fit
a number of vehicle parameters in order to achieve a satisfying performance of
the vehicle model.

5.4.1 Optimization Problem

The two transfer functions yaw rate and lateral acceleration with the input steer-
ing angle are the most important criteria when analyzing the quality of lateral
vehicle dynamics simulation. Both phase lag and gain have to represent the
original vehicle behavior with maximum precision.

The first main task was to develop a model structure that enables sufficient
exactness while remaining as simple as possible. To achieve that, the original bi-
cycle model was extended. Tire phase lags create a delayed reaction to steering
angle changes. In addition to that, the vehicle’s rolling behavior was modeled
in a simple way in order to represent the body movement in relation to the tires.
The following 8 real-valued design variables enable a sufficient adjustment to
different vehicles:

Jz : yaw inertia

cα, f : tire stiffness, front

cα,h : tire stiffness, rear

t f : phase lag front tire

tr : phase lag rear tire

cw : roll stiffness

dw : roll damping

5.4. Model Fitting for a Vehicle Dynamics Simulation 101

Jx : roll inertia

These parameters mainly represent tire characteristics and vehicle mass distri-
bution. The data for other parameters like vehicle mass and length can simply
be measured. Therefore it is not necessary to include those values in the design
parameter set.

Typical manoeuvres for vehicle parameter identification are steering angle
sweeps with a constant lateral acceleration of about 4m/s2. Both transfer func-
tions mentioned above can be derived from those manoeuvres. The comparison
of simulation and driving tests results in the following four-objective optimiza-
tion problem:

Maximize f (x) = (f1(x), . . . , f4(x)),

f1(x) = (−1) · aa(x) [gain deviation, lateral acceleration]
f2(x) = (−1) · ta(x) [phase lag, lateral acceleration]
f3(x) = (−1) · ay(x) [gain deviation, yaw rate]
f4(x) = (−1) · ty(x) [phase lag, yaw rate]

subject tox = (x1, . . . , x8) ∈ X = [0, 1]8.

5.4.2 Algorithms

Given is a multiobjective optimization problem with eight real-valued, normal-
ized decision variables and and objective function with four components. As
we are not primarily focused on a comparison of different algorithms, we start
directly with the SPEA2 described in the previous section.

The generate operators used for this problem again apply recombination
and mutation. A simple discrete recombination was chosen which creates one
offspring solutionx ′ from two parentsx (a) andx (b). For each decision variable
xi , i ∈ {1, . . . , 8}, one parent was determined randomly and its decision variable
copied to the child. The resulting child is then mutated using normal-distributed
random variables, again according to Equation 5.1. The mutation step sizesσ

were chosen in each iteration adaptively: they are determined by the absolute
difference of the parent variables, divided by 2, i.e.,

σi := 1

2
|x (a)

i − x (b)
i |.

The first run of this SPEA2 version soon reached a situation, where the pop-
ulation stagnated and no further progress was visible. Instead, the population
was oscillating around a certain area in objective space. The reason for this was
the problem of deterioration, which was discussed in Chapter 3.1.

To overcome this convergence problem, the selection operator of SPEA2
had to be replaced with theselect operator maintaining anε-Pareto set (see
Algorithm 3). Such convergence problems, which have been verified for many

102 Chapter 5. Applications in Automotive Engineering

multiobjective EAs, indicate that the algorithm is operating close to the Pareto
set. To achieve further progress, special care has to be taken regarding the selec-
tion and deletion of solutions from the archive population. Using Algorithm 3,
instead, guarantees that the set of archived solutions never deteriorates and thus
monotonously converges to the Pareto set.

5.4.3 Results

The evolutionary algorithm was able to find solutions of a sufficient quality
rather quickly. Regarding the final approach to the Pareto set, the selection al-
gorithm maintaining anε-Pareto set showed a considerably better performance
than SPEA2. In the first part of the optimization process, the user can derive
interesting information about the model behavior by analyzing the trade-offs
between the objective functions, since the archive is still rather widely spread
as visualized in Figure 29.

In the course of the optimization, the focus of the decision maker shifts from
diversity to examining the area of the best solutions in detail. To achieve this
goal, we made use of two extensions of the algorithm described in Section 3.4,
ranges of non-acceptance and a dynamic adaptation of theε values. The adap-
tation, however, was not automated, but user driven. Both measures represent
examples of exploiting the second feedback loop in our design framework, the
interaction of the decision-maker with the optimization algorithm. The devel-
opment of the solutions, especially the focusing on interesting regions, is also
visible in Figure 29 for different stages. The upper diagram shows that in the
third stage, more emphasis was put on improving the phase lag deviation of the
yaw rate, so all solutions above a certain threshold were prohibited. This mea-
sure subsequently led to a considerable better approximation of the lower part
of the trade-off surface, keeping the gain deviation of the lateral acceleration
still in the interval between [0.002, 0.01].

The discovered solutions create a simulation environment, in which lateral
vehicle dynamics can be simulated with a rather simple model and a sufficient
exactness. The exactness is demonstrated in Figure 30, where the simulated
time series are plotted against the data of the real vehicle obtained in driving
tests.

The simplicity of the model results in a low computation time, which en-
ables an online use for controlling the vehicle dynamics not only on a general
purpose processor, but also in a vehicle-specific architecture, where it is impos-
sible to run a full scale vehicle simulation. This integration is subject of ongoing
research.

5.4. Model Fitting for a Vehicle Dynamics Simulation 103

Fig. 29: Selected trade-offs between the four objective functions.

104 Chapter 5. Applications in Automotive Engineering

Fig. 30: Comparison of simulated and real vehicle behavior. The solid line is an interpolation of
the measured data from the real vehicle, the dashed line represents the simulation data
obtained from the vehicle model.

5.5 Summary

Evolutionary algorithms proved to be a powerful optimization tool in three dif-
ferent applications. The advantage of black-box optimization of complex sys-
tems, along with the approximation of the Pareto optimal set of solution pro-
vides the development engineer with detailed information about trade-offs be-
tween the different objective functions and helps to understand the problem at
hand.

The road train example showed that even a simple approach is suitable for a
design space exploration task at an early design stage. In addition to a detailed
overview of the tradeoffs between the ten objectives, the evolutionary algorithm
was able to present a solution that dominates the one found by the engineer on
a trial-and-error base.

5.5. Summary 105

The problem related to the design of an adaptive cruise control system was
a parameter optimization of filters used in controller. Here, the effectiveness of
different variation operators was to be compared. The comparative study was
carried out based on the previous results about quality indicators and perfor-
mance assessment.

The last case study was a model fitting problem. Preliminary trials with
a standard multiobjective EA revealed convergence problems. Therefore, the
new selection operator to maintain anε-Pareto set had to be applied. Through
a manual adjustment of theε values, the approximation quality was steadily
increased in the areas of interest of the designer.

106 Chapter 5. Applications in Automotive Engineering

Bibliography

Alon, N. (2002). A random process for searching a graph (comment). Per-
sonal communication.

Bäck, T. (1996).Evolutionary Algorithms in Theory and Practice. New York:
Oxford University Press.

Bäck, T., D. B. Fogel, and Z. Michalewicz (Eds.) (1997).Handbook of Evolu-
tionary Computation. Bristol, UK: IOP Publishing and Oxford Univertity
Press.

Bell, D. E., R. L. Keeney, and H. Raiffa (1977).Conflicting objectives in
decision. International Series on Applied Systems Analysis 1. Chichester:
Wiley.

Beyer, H.-G., H.-P. Schwefel, and I. Wegener (2002). How to analyse evolu-
tionary algorithms.Theoretical Computer Science 287, 101 – 130.

Blickle, T. and L. Thiele (1996). A comparison of selection schemes used in
evolutionary algorithms.Evolutionary Computation 4(4), 361–394.

Breuer, K., M. Weilkes, and J. Ludmann (1999). Development and In-Vehicle
Application of an ACC-controller. In32nd International Symposium On
Automotive Technology And Automation (ISATA’99), Vienna, Austria.

Bridges, D. S. and G. B. Mehta (1995).Representations of Preference Or-
derings. Berlin: Springer.

Chankong, V. and Y. Haimes (1983).Multiobjective Decision Making Theory
and Methodology. Elsevier.

Coello Coello, C. A., D. A. Van Veldhuizen, and G. B. Lamont (2002).Evo-
lutionary Algorithms for Solving Multi-Objective Problems. New York:
Kluwer.

Czyzak, P. and A. Jaskiewicz (1998). Pareto simulated annealing—a meta-
heuristic for multiobjective combinatorial optimization.Multi-Criteria
Decision Analysis 7, 34–47.

Deb, K. (2001).Multi-objective optimization using evolutionary algorithms.
Chichester, UK: Wiley.

Deb, K. and R. B. Agrawal (1995). Simulated binary crossover for continu-
ous search space.Complex Systems 9, 115–148.

108 BIBLIOGRAPHY

Deb, K., S. Agrawal, A. Pratap, and T. Meyarivan (2000). A fast elitist
non-dominated sorting genetic algorithm for multi-objective optimiza-
tion: NSGA-II. In M. Schoenauer et al. (Eds.),Parallel Problem Solving
from Nature (PPSN VI), Lecture Notes in Computer Science Vol. 1917,
pp. 849–858. Springer.

Deb, K., M. Mohan, and S. Mishra (2003). Towards a Quick Computation
of Well-Spread Pareto-Optimal Solutions. In C. M. Fonseca et al. (Eds.),
Evolutionary Multi-Criterion Optimization (EMO 2003), Lecture Notes
in Computer Science Vol. 2632, pp. 222–236. Springer.

Droste, S., T. Jansen, and I. Wegener (1998). A rigorous complexity analysis
of the (1+1) evolutionary algorithm for separable functions with Boolean
inputs.Evolutionary Computation 6(2), 185–196.

Droste, S., T. Jansen, and I. Wegener (2002). On the analysis of the (1+1)
evolutionary algorithm.Theoretical Computer Science 276(1–2), 51–81.

Ehrgott, M. (2000).Multicriteria optimization. Berlin: Springer.

Ehrgott, M. and X. Gandibleux (2000). A Survey and Annotated Bibliog-
raphy of Multiobjective Combinatorial Optimization.OR Spektrum 22,
425–460.

Emmerich, M., M. Grötzner, B. Gross, and M. Sch¨utz (2000). Mixed-integer
evolution strategy for chemical plant optimization with simulators. In
I. C. Parmee (Ed.),Evolutionary Design and Manufacutre — Selected
papers from ACDM’00, pp. 55–67. Springer.

Erlebach, T., H. Kellerer, and U. Pferschy (2001). Approximating multi-
objective knapsack problems. InProceedings of the Seventh International
Workshop on Algorithms and Data Structures (WADS 2001), Lecture
Notes in Computer Science 2125, pp. 210–221. Springer.

Evtushenko, Y. G. and M. A. Potapov (1987). Methods of numerical solution
of multicriterion problem.Soviet mathematics – doklady 34, 420–423.

Fandel, G. and J. Spronk (1985).Multiple Criteria Decision Methods and
Applications. Berlin: Springer.

Fleischer, M. (2002). The Measure of Pareto Optima: Applications to Mul-
tiobjective Metaheuristics. Technical Report 2002-32, Institute for Sys-
tems Research, University of Maryland.

Fleischer, M. (2003). The Measure of Pareto Optima. In C. M. Fonseca et al.
(Eds.),Evolutionary Multi-Criterion Optimization (EMO 2003), Lecture
Notes in Computer Science Vol. 2632, pp. 519–533. Springer.

Fonseca, C. M. and P. J. Fleming (1995). An overview of evolutionary algo-
rithms in multiobjective optimization.Evolutionary Computation 3(1),
1–16.

BIBLIOGRAPHY 109

Fonseca, C. M. and P. J. Fleming (1997). Multiobjective optimization. In
T. Bäck, D. B. Fogel, and Z. Michalewicz (Eds.),Handbook of Evolution-
ary Computation, Bristol, UK, pp. C4.5:1–9. IOP Publishing and Oxford
University Press.

Garnier, J. and L. Kallel (2000). Statistical distribution of the convergence
time of evolutionary algorithms for long-path problems.IEEE Transac-
tions on Evolutionary Computation 4(1), 16 – 30.

Garnier, J., L. Kallel, and M. Schoenauer (1999). Rigorous hitting times for
binary mutations.Evolutionary Computation 7(2), 173–203.

Giel, O. (2003a). Expected runtimes of a simple multi-objective evolution-
ary algorithm. InCongress on Evolutionary Computation (CEC 2003),
Piscataway, NJ. IEEE Press.

Giel, O. (2003b). Runtime analyses for a simple multi-objective evolutionary
algorithm. Technical Report CI-155/03, SFB 531, Universit¨at Dortmund,
Germany.

Glover, F. and M. Laguna (1997).Tabu Search. Boston: Kluwer Academic
Publishers.

Haimes, Y., L. Lasdon, and D. Wismer (1971). On a bicriterion formulation
of the problems of integrated system identification and system optimiza-
tion. IEEE Transactions on Systems, Man, and Cybernetics 1, 296 – 297.

Hancock, P. (1997). A comparison of selection mechanisms. In T. B¨ack,
D. B. Fogel, and Z. Michalewicz (Eds.),Handbook of Evolutionary Com-
putation, pp. C2.8:1–11. Bristol, UK: IOP Publishing and Oxford Univer-
sity Press.

Hanne, T. (1999). On the convergence of multiobjective evolutionary algo-
rithms.European Journal Of Operational Research 117(3), 553–564.

Hanne, T. (2001). Global multiobjective optimization with evolutionary al-
gorithms: Selection mechanisms and mutation control. In E. Zitzler et al.
(Eds.),Evolutionary Multi-Criterion Optimization (EMO 2001), Lecture
Notes in Computer Science Vol. 1993, Berlin, pp. 197–212. Springer.

Hansen, M. P. and A. Jaszkiewicz (1998). Evaluating the quality of approx-
imations of the non-dominated set. Technical report, Institute of Math-
ematical Modeling, Technical University of Denmark. IMM Technical
Report IMM-REP-1998-7.

He, J. and X. Yao (2001). Drift analysis and average time complexity of
evolutionary algorithms.Artificial Intelligence 127, 57 – 85.

He, J. and X. Yao (2002). From an individual to a population: An analysis of
the first hitting time of population-based evolutionary algorithms.IEEE
Transactions on Evolutionary Computation 6(5), 495 – 511.

Helbig, S. and D. Pateva (1994). On several concepts forε-efficiency.OR
Spektrum 16(3), 179–186.

110 BIBLIOGRAPHY

Horn, J. (1997). Multicriterion Decision Making. In T. B¨ack, D. Fogel,
and Z. Michalewicz (Eds.),Handbook of Evolutionary Computation, pp.
F1.9:1–15. Bristol, UK: IOP Publishing and Oxford University Press.

Hrbacek, K. and T. Jech (1999).Introduction to Set Theory. New York: Mar-
cel Dekker, Inc.

Hwang, C.-L. and A. S. M. Masud (1979).Multiple Objectives Decision
Making—Methods and Applications. Berlin: Springer.

Kaliszewski, I. (1994).Quantitative Pareto analysis by cone separation tech-
nique. Boston: Kluwer.

Keeney, R. L. and H. Raiffa (1976).Decisions with Multiple Objectives:
Preferences and Value Tradeoffs. New York: Wiley.

Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi (1983). Optimization by
simulated annealing.Science 220(4598), 671–680.

Knowles, J. and D. Corne (2002). On metrics for comparing non-dominated
sets. InCongress on Evolutionary Computation (CEC 2002), Piscataway,
NJ, pp. 711–716. IEEE Press.

Knowles, J. D. and D. W. Corne (1999). Approximating the non-dominated
front using the Pareto Archived Evolution Strategy. Technical Report
RUCS/1999/TR/005/A, Department of Computer Science, University of
Reading, UK.

Knowles, J. D. and D. W. Corne (2000). Approximating the non-dominated
front using the Pareto Archived Evolution Strategy.Evolutionary Com-
putation 8(2), 149–172.

Kursawe, F. (1990). Evolutionsstrategien f¨ur die Vektoroptimierung. Diplo-
marbeit, Universit¨at Dortmund, Germany (in German).

Kursawe, F. (1991). A variant of evolution strategies for vector optimization.
In H.-P. Schwefel and R. M¨anner (Eds.),Parallel Problem Solving from
Nature (PPSN), pp. 193–197. Springer.

Laumanns, M., L. Thiele, E. Zitzler, E. Welzl, and K. Deb (2002). Running
time analysis of multi-objective evolutionary algorithms on a simple dis-
crete optimization problem. InParallel Problem Solving From Nature
(PPSN VII), Lecture Notes in Computer Science Vol. 2439, pp. 44–53.
Springer.

Laumanns, M., E. Zitzler, and L. Thiele (2000). A unified model for multi-
objective evolutionary algorithms with elitism. InCongress on Evolution-
ary Computation (CEC 2000), pp. 46–53. IEEE Press.

Laumanns, M., E. Zitzler, and L. Thiele (2001). On the effects of archiv-
ing, elitism, and density based selection in evolutionary multi-objective
optimization. In E. Zitzler et al. (Eds.),Evolutionary Multi-Criterion Op-
timization (EMO 2001), Lecture Notes in Computer Science Vol. 1993,
pp. 181–196. Springer.

BIBLIOGRAPHY 111

Ludmann, J. (1998).Beeinflussung des Verkehrsablaufs auf Strassen:
Analyse mit dem fahrzeugorientierten Verkehrssimulationsprogramm
PELOPS. Schriftenreihe Automobiltechnik. Forschungsgesellschaft
Kraftfahrwesen mbH Aachen (in German).

Ludmann, J., D. Neunzig, M. Weilkes, and H. Wallentowitz (1999). The ef-
fectivity of new traffic-technologies and transportation-systems in subur-
ban areas and on motorways.International Transactions in Operational
Research 6(4), 423 – 439.

Martello, S. and P. Toth (1990).Knapsack Problems: Algorithms and Com-
puter Implementations. Chichester: Wiley.

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Boston:
Kluwer.

Mühlenbein, H. (1992). How genetic algorithms really work: I. mutation and
hillclimbing. In R. Männer and B. Manderick (Eds.),Parallel Problem
Solving from Nature (PPSN II, pp. 15–25. Elsevier Science.

Papadimitriou, C. H. and M. Yannakakis (2000). The complexity of tradeoffs,
and optimal access of web sources. InProceedings of the 41st Annual
Symposium on Foundations of Computer Science FOCS 2000, pp. 86–
92.

Pareto, V. (1896).Cours D’Economie Politique, Volume 1. Lausanne: F.
Rouge.

Reuter, H. (1990). An approximation method for the efficiency set of multi-
objective programming problems.Optimization 21, 905–911.

Rudolph, G. (1994). An evolutionary algorithm for integer programming.
In Y. Davidor, H.-P. Schwefel, and R. M¨anner (Eds.),Parallel Problem
Solving from Nature (PPSN III), pp. 139–148. Springer.

Rudolph, G. (1997a).Convergence Properties of Evolutionary Algorithms.
Verlag Dr. Kovač, Hamburg.

Rudolph, G. (1997b). Modes of stochastic convergence. In T. B¨ack, D. B.
Fogel, and Z. Michalewicz (Eds.),Handbook of Evolutionary Computa-
tion, pp. B1.3:1–3. Bristol, UK: IOP Publishing and Oxford University
Press.

Rudolph, G. (1998a). Evolutionary search for minimal elements in partially
ordered finite sets. In V. Porto et al. (Eds.),Evolutionary Programming
VII, Proceedings of the 7th Annual Conference on Evolutionary Program-
ming, pp. 345–353. Springer.

Rudolph, G. (1998b). Finite markov chain results in evolutionary computa-
tion: A tour d’horizon.Fundamenta Informaticae 35, 67–89.

Rudolph, G. (1998c). On a multi-objective evolutionary algorithm and its
convergence to the pareto set. InIEEE Int’l Conf. on Evolutionary Com-
putation (ICEC’98), pp. 511–516. IEEE Press.

112 BIBLIOGRAPHY

Rudolph, G. (2001). Evolutionary Search under Partially Ordered Fitness
Sets. InProceedings of the International NAISO Congress on Information
Science Innovations (ISI 2001), pp. 818–822. ICSC Academic Press.

Rudolph, G. and A. Agapie (2000). Convergence properties of some multi-
objective evolutionary algorithms. InCongress on Evolutionary Compu-
tation (CEC 2000), Volume 2, pp. 1010–1016. IEEE Press.

Ruhe, G. and B. Fruhwirt (1990).ε-optimality for bicriteria programs and its
application to minimum cost flows.Computing 44, 21–34.

Sayin, S. (2000). Measuring the quality of discrete representations of effi-
cient sets in multiple objective mathematical programming.Math. Pro-
gram., Ser. A 87, 543–560.

Scharnow, J., K. Tinnefeld, and I. Wegener (2002). Fitness landscapes based
on sorting and shortest paths problems. In J. J. M. Guervas et al. (Eds.),
Parallel Problem Solving From Nature (PPSN VII), Lecture Notes in
Computer Science Vol. 2439, pp. 54–63. Springer.

Schott, J. (1995). Fault tolerant design using single and multicriteria genetic
algorithm optimization. Master’s thesis, Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology.

Skiena, S. (1990).Implementing Discrete Mathematics. Redwood City, CA:
Addison-Wesley.

Srinivas, N. and K. Deb (1994). Multiobjective optimization using non-
dominated sorting in genetic algorithms.Evolutionary Computation 2(3),
221–248.

Thierens, D. (2003). Convergence Time Analysis for the Multi-objective
Counting Ones Problem. In C. M. Fonseca et al. (Eds.),Evolutionary
Multi-Criterion Optimization (EMO 2003), Lecture Notes in Computer
Science Vol. 2632, pp. 354–364. Springer.

Ulungu, E., J. Teghem, P. Fortemps, and D. Tuyttens (1999). MOSA Method:
A Tool for Solving Multiobjective Compinatorial Optimization Prob-
lems.Journal of Multi-Criteria Decision Analysis 8(4), 221–236.

Van Veldhuizen, D. A. (1999, June).Multiobjective Evolutionary Algo-
rithms: Classifications, Analyses, and New Innovations. Ph. D. thesis,
Graduate School of Engineering of the Air Force Institute of Technology,
Air University.

Vose, M. D. (1999).The simple genetic algorithm: foundations and theory.
Cambridge, MA: MIT Press.

Wallentowitz, H. (2000).Longitudinal Dynamics of Motor Vehicles. Aachen:
Forschungsgesellschaft Kraftfahrwesen mbH.

Wegener, I. (2000). Methods for the analysis of evolutionary algorithms on
pseudo-boolean functions. In R. Sarker, X. Yao, and M. Mohammadian
(Eds.),Evolutionary Optimization, pp. 349–369. Kluwer.

BIBLIOGRAPHY 113

Wu, J. and S. Azarm (2001, March). Metrics for quality assessment of a mul-
tiobjective design optimization solution set.Transactions of the ASME,
Journal of Mechanical Design 123, 18–25.

Zitzler, E. (1999).Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. Ph. D. thesis, Swiss Federal Institute of Tech-
nology (ETH) Zurich, Switzerland. TIK-Schriftenreihe Nr. 30, Diss ETH
No. 13398, Shaker Verlag, Aachen, Germany.

Zitzler, E., M. Laumanns, and L. Thiele (2002). SPEA2: Improving the
Strength Pareto Evolutionary Algorithm for Multiobjective Optimization.
In K. Giannakoglou et al. (Eds.),Evolutionary Methods for Design, Op-
timisation and Control with Application to Industrial Problems (EURO-
GEN 2001), pp. 95–100. International Center for Numerical Methods in
Engineering (CIMNE).

Zitzler, E. and L. Thiele (1998). Multiobjective optimization using evolution-
ary algorithms — a comparative case study. In A. E. Eiben et al. (Eds.),
Parallel Problem Solving from Nature (PPSN V), Lecture Notes in Com-
puter Science Vol. 1498, pp. 292–301. Springer.

Zitzler, E. and L. Thiele (1999). Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach.IEEE Trans-
actions on Evolutionary Computation 3(4), 257–271.

Zitzler, E., L. Thiele, M. Laumanns, C. M. Foneseca, and V. G. da Fonseca
(2003). Performance assessment of multiobjective optimizers: An anal-
ysis and review.IEEE Transactions on Evolutionary Computation 7(2),
117–132.

Zurada, J. M., R. J. Marks II, and C. J. Robinson (Eds.) (1994).Computa-
tional Intelligence: Imitating Life. Piscataway, NJ: IEEE Press.

114 BIBLIOGRAPHY

