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Abstract

Wireless embedded systems are networks of wireless nodes that perform
tasks that involve communication, sensing, and actuation, embedded
in the environment. Since these networks can be large and must run
unattended and safely for a long period of time, costs and energy
are important design factors. As a consequence, system designs are
commonly characterized by very little resources in terms of available
energy, memory, communication bandwidth or processing power. Due
to these resource constraints, inspecting and building such systems is a
challenging task.

In this thesis, we enable increased observability and controllability
when testing wireless embedded systems in a pre-deployment testbed
setting. By measuring several functional and non-functional properties,
tightly time synchronized across the entire network, studying these
systems becomes possible in an unprecedented level of detail. For
this purpose, we propose a new testbed architecture, present new time
synchronization protocols and develop algorithms to trace the program
execution.

The main contributions of this thesis are:

• We design and build a new testbed architecture that enables multi-
modal inspection and control of devices under test. The combina-
tion of the testbed’s services provide a previously unattained level
of visibility into wireless embedded systems.

• We study the effect of time-of-flight in multi-hop time synchro-
nization protocols, and we propose a new protocol that can
effectively compensate propagation delays that stem from dissimilar
wave propagation times between nodes. Compared to previous
approaches, our protocol achieves up to 6.9× better synchronization
accuracy.

• We design and implement a new distributed data acquisition system
that combines fast data acquisition with accurate time synchro-
nization to increase the possible level of detail of observations in
a testbed.

• We describe a new algorithm that can be used to automatically
place instrumentation code into existing programs for control flow
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tracing. The novelty stems from using time information of the
program to keep the induced overhead of instrumentation code
low.

• We showcase the usability of the testbed by employing it in a project
to count devices based on radio interference.



Contents

Abstract i

List of Figures v

List of Tables ix

1 Introduction 1
1.1 Challenges of Inspecting Wireless Embedded Systems . . . . . . 2
1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Contributions and Road Map . . . . . . . . . . . . . . . . . 5

2 FlockLab: A Testbed for Tracing and Profiling of Wireless Embedded
Systems 11
2.1 FlockLab Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 FlockLab Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Benchmarking FlockLab . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 FlockLab in Action . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Time-of-Flight Aware Time Synchronization for Wireless Embedded
Systems 45
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Impact of Propagation Delay . . . . . . . . . . . . . . . . . . . . . 49
3.3 Time-of-Flight Aware Time Synchronization . . . . . . . . . . . . 53
3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Fine-Grained Tracing of Time Sensitive Behavior in Wireless Sensor
Networks 71
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Enabling Fine-Grained Tracing . . . . . . . . . . . . . . . . . . . . 75
4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Testbed Assisted Control Flow Tracing for Wireless Embedded Systems 91



iv Contents

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Control Flow Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Passive, Privacy-preserving Counting of Smartphones via ZigBee
Interference 119
6.1 Background and Terminology . . . . . . . . . . . . . . . . . . . . 123
6.2 DevCnt Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Estimating Smartphone Counts . . . . . . . . . . . . . . . . . . . . 127
6.4 Detecting and Counting Active Wi-Fi Scans . . . . . . . . . . . . . 130
6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7 Conclusions and Outlook 155
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2 Possible Future Directions . . . . . . . . . . . . . . . . . . . . . . . 157

Bibliography 159

List of Publications 173



List of Figures

2.1 The FlockLab observer board with target nodes attached . . . . 12
2.2 High-level schematic of the FlockLab observer hardware. . . . . 16
2.3 Processing of GPIO events, power samples, and serial data on an

observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Layout of the FlockLab deployment . . . . . . . . . . . . . . . 22
2.5 Distribution of the error on time intervals between GPIO events 24
2.6 Timing errors of power profiling . . . . . . . . . . . . . . . . . 26
2.7 Power supply stability and power measurement accuracy . . . . 27
2.8 Comparative performance analysis of CTP/LPL on multiple

platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9 GPIO trace showing a misconfiguration of CTP and LPL on

TinyNodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 Energy measurements using FlockLab . . . . . . . . . . . . . . 35
2.11 Clock drift measurements using FlockLab . . . . . . . . . . . . 37
2.12 Simultaneous power profiling and GPIO tracing on FlockLab . 38

3.1 Experimental setup to show the influence of the capture effect on
slot length measurements . . . . . . . . . . . . . . . . . . . . . 53

3.2 Two-way round-trip measurement. . . . . . . . . . . . . . . . . 54
3.3 Round-trip measurements based on time information embedded

into time synchronization packets . . . . . . . . . . . . . . . . 55
3.4 Unidirectional links prevent round-trip measurements . . . . . 57
3.5 Time diagram of message transmission . . . . . . . . . . . . . . 59
3.6 Message delay distribution of the CC430 radio on a single link . 60
3.7 Testbed layout and software enforced path for the short and long

line topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.8 Comparison of available link delay estimates for immediate and

delayed forwarding . . . . . . . . . . . . . . . . . . . . . . . . 63
3.9 Percentage of compensated links during floods . . . . . . . . . 63
3.10 Cumulative distribution of synchronization errors for TATS,

Glossy and PulseSync . . . . . . . . . . . . . . . . . . . . . . . 66
3.11 Maximal synchronization error over time . . . . . . . . . . . . 67
3.12 Average synchronization errors over time per node . . . . . . . 68

4.1 Overview of a single FlockDaq observer. . . . . . . . . . . . . 77



vi List of Figures

4.2 Overview of clock control algorithm . . . . . . . . . . . . . . . 79
4.3 Data format of GPIO tracing and power profiling packets . . . . 80
4.4 Data flow and memory structure of the data acquisition system . 80
4.5 Generation of a synchronized PPS signal . . . . . . . . . . . . . 82
4.6 Physical arrangement of the data acquisition board on FlockLab 83
4.7 Cumulative distribution function of PPS signal error . . . . . . 86
4.8 Layout of the network during evaluation of time synchronization. 87
4.9 Distribution of synchronization error on node 4 . . . . . . . . . 88
4.10 Absolute time synchronization error of FlockDaq . . . . . . . . 89

5.1 Overview of the tracing process. . . . . . . . . . . . . . . . . . 95
5.2 Examples of leveraging time information to infer the exact

execution path . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3 Excerpt of a CPU clock speed measurement on an MSP430 . . . 97
5.4 Example program with a while loop and resulting annotated graph 99
5.5 Example of an initial witness set . . . . . . . . . . . . . . . . . 101
5.6 Subgraph of the control flow graph that is examined by the

admission test . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.7 Example graph with one strongly connected component . . . . 103
5.8 Number of non-blocking witnesses in each instrumented binary 112
5.9 Program memory utilization for the original program and

instrumented variants . . . . . . . . . . . . . . . . . . . . . . . 112
5.10 Runtime overhead caused by added instructions . . . . . . . . 114
5.11 Average pairwise distance of code coverage between nodes in

the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.12 CPU speed profile at boot time for two different clock calibration

algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 IEEE 802.11b/g (Wi-Fi) and IEEE 802.15.4 (ZigBee) channels . . . 123
6.2 High-level view of DevCnt . . . . . . . . . . . . . . . . . . . . 123
6.3 RSSI sampling, processing, and communication over time in

DevCnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4 Distribution of scan counts in real-world datasets . . . . . . . . 128
6.5 Fraction of devices that can be seen within a certain interval in

the University Wi-Fi dataset . . . . . . . . . . . . . . . . . . . 129
6.6 Example of three original signals and the corresponding trace of

RSSI samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.7 State machine to determine begin and end of a signal . . . . . . 132
6.8 CDF of probe lengths in the University trace . . . . . . . . . . . 133
6.9 RSSI trace of an active Wi-Fi scan . . . . . . . . . . . . . . . . . 134
6.10 Classification of signal clusters . . . . . . . . . . . . . . . . . . 136
6.11 Sum of autocorrelations for an example binary vector . . . . . . 137
6.12 Scan detection rate across six smartphones . . . . . . . . . . . . 145



List of Figures vii

6.13 Average scan detection rate against received signal strength . . 146
6.14 Estimated and real number of Wi-Fi enabled devices . . . . . . 147
6.15 Estimated number of smartphones in a real world trial . . . . . 149





List of Tables

2.1 Clock cycles and time needed to set a GPIO pin on FlockLab
targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Pairwise timing error of GPIO services . . . . . . . . . . . . . . 24
2.3 Minimum interval between consecutive GPIO events for 99%

and 100% capture rate . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Comparison of FlockLab to other existing testbeds supporting

distributed power measurements . . . . . . . . . . . . . . . . . 40

3.1 Overview of reported synchronization errors . . . . . . . . . . 48
3.2 Slot times estimated during Glossy floods. . . . . . . . . . . . . 53
3.3 Structure of synchronization packets. . . . . . . . . . . . . . . . 57
3.4 Standard deviations for message delays on different platforms. . 60
3.5 Accuracies measured for different protocols. . . . . . . . . . . . 65

4.1 Maximal event rates of different target platforms. . . . . . . . . 75
4.2 Measured throughput burst sizes and maximum continuous rate. 85
4.3 Standard deviation and range of the error across the network . . 86

5.1 Recent node platforms . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Binary size and number of program elements for applications

used in the evaluation. . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Number of witnesses used in instrumentation . . . . . . . . . . 111
5.4 Reliability and radio duty cycle of Glossy. . . . . . . . . . . . . 113
5.5 Code coverage of example applications. . . . . . . . . . . . . . 115

6.1 Explored signal features . . . . . . . . . . . . . . . . . . . . . . 134
6.2 List of smartphones and operating systems . . . . . . . . . . . 143
6.3 Scan detection performance with and without interference . . . 144





1
Introduction

Networked wireless embedded systems—known as sensor networks,
cyber-physical systems or the Internet of Things—have been applied in
various fields such as home automation, personal health and medicine,
and surveillance, see e.g. [Sta14]. These networks consist of wireless
sensor nodes that perform tasks that involve communication, sensing, and
actuation. To enable such applications, unattended and safe operation
for a long period of time is a prerequisite. Consequently, driving
factors like energy sources, cost or size lead to system designs that
are characterized by very little resources in terms of memory, energy,
communication bandwidth and processing power. Working at resource
limits increases the possibility and probability of faults. In addition to
these resource constraints, unreliable wireless communication channels
and the complexity inherent in distributed systems renders the task of
building and deploying such networks challenging.

In this thesis, we focus on improving observability and controllability
of such systems in a pre-deployment testbed setting. Better observability
leads to better understandings of the system, thus helping to find
errors and performance issues early on in the design process. System
observability is the basis of methods for automated testing, verification
and optimization [Woe10].

Testbeds, i.e., installations that facilitate experiments on real hardware,
have become a fundamental part in the development cycle of wireless
embedded systems. As opposed to simulation, testing a system in a
real distributed environment exposes it to external factors like multi-
path signal propagation, signal attenuation, temperature changes, or
hardware variations. As it is difficult to accurately model and simulate
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these influencing factors, testing on real hardware is needed for proper
evaluation and validation.

Testbeds provide engineers and researchers with the services to
facilitate testing of wireless embedded systems. A testbed not only
has to implement means to measure and acquire information about
functional properties (output values, program states), but also non-
functional properties like timing or power consumption play an important
role in wireless embedded systems:

• Low-power MAC protocols try to save energy by turning on the
radio transceiver only when needed. For successful communication,
sender and receiver nodes need to have their radio transceivers
turned on at the same time. Coordination of such efforts are sensitive
to timing errors—incorrect timing can severely hamper the system
performance.

• The scarcity of energy resources in wireless embedded systems
emphasizes the need to spend the available energy carefully. For
example, in a multi-hop network, where information has to be
relayed over several hops, running out of energy on relatively
few nodes can lead to an unconnected network, and therefore a
degraded system performance.

We extend the current state of art in testbed infrastructure by
contributing a testbed architecture that is capable of measuring key
properties of program execution and system state in wireless embedded
systems, e.g., power dissipation, program states or the control flow of
a program. We develop methods to enable these measurements in a
well synchronized way, while keeping instrumentation overhead small
enough to only minimally alter the timing behavior of sensor network
applications.

1.1 Challenges of Inspecting Wireless Embed-
ded Systems

Challenges to inspection of wireless embedded system in the context of
testbeds are related to time sensitive operations on resource constrained
devices and distributed measurements.

Observability under scarce resources. Due to the little resources
available in wireless embedded systems, only a small amount thereof
can be allocated to debugging tasks on the device under test. Program
instrumentation to record information about the program state consumes
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additional processing time, and extra memory is needed to store the
generated debug information. Extracting the necessary information
during runtime is difficult, already in the setting of a pre-deployment
testbed.

Instrumentation alters timing of execution. Observation of program
behavior should be as non-intrusive as possible, in order not to alter
program timing. For example in low-power MAC protocols, timing plays
an important role in achieving power efficient communication. Inserting
statements that log certain program activities are bound to influence the
program timing. Such statements could store or update values in non-
volatile memory for later extraction and inspection, or print out program
state information on a serial line during execution. However, accessing
flash memory, or formatting and transmitting information using printf
statements introduce non-negligible delays. Care must been taken to
avoid instrumentation statements in time-critical program parts. There
is a trade-off between completeness of observation and the level of
intrusiveness when instrumenting a program.

Distributed observations. Measurements relating to a distributed
system—recorded at different physical locations—need to be consolidated
into a global view in order to make sense of them. Putting measurements
together requires either time synchronization or other means to globally
order events by time of occurrence. The level of synchronization depends
on the requirements of the measurements. On a radio message level, the
correct order in a sequence of messages might be sufficient. If it comes to
low-power MAC protocols, finer granularities are needed to investigate
the interaction between nodes. Examples of such interactions are
synchronized sleep and active states of radio transceivers, or interference.
In Glossy, a flooding architecture that relies on constructive interference,
packet transmissions on neighboring nodes need to be started with less
than 0.5µs time difference to create constructive interference [FZTS11].

Increasing data volumes. Data generated by inspection needs to be
acquired, collected and processed in order to make use of it. Testbeds
typically provide an out-of-band channel to collect and disseminate data
for every individual node. However, extending possibilities to observe
and control embedded systems leads to an increase of possible data that
can be extracted. When designing testbed architectures, meeting the
required real-time properties and providing sufficient bandwidth and
processing power is a challenging task.
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1.2 State of the Art
As discussed in the following, three important problems remain unsolved
by prior work related to inspection of wireless embedded systems:

1. A testbed architecture that supports multi-modal recording of
power, serial communication and digital states.

2. A method to accurately synchronize measured data in a mixed
indoor/outdoor environment without involving expensive cabling.

3. Support for network-wide, low-overhead tracing of control flow in
wireless embedded systems.

Testbeds. As stated earlier, testing and verifying an implementation on
a testbed is a fundamental step in the development cycle of a wireless
embedded system. Current testbed designs focus on different aspects
like relocatable testbeds [RHLG10], controlled mobility [JGMdDO10],
distributed power measurements [HHP+08] or large scale networks with
hundreds of devices [EAR+06]. Still, access to nodes is mainly provided
through a serial port, enabling printf style debugging. While serial ports
are sufficient for a number of long-term profiling tasks, logging serial data
is highly intrusive and not suited for inspecting timing-sensitive code.

Time synchronization. Time synchronization is an essential service
for many distributed systems. Its goal is to keep clocks progressing
with a similar speed and offset at different locations. A prominent
example is the network time protocol (NTP) to synchronize time in the
Internet [MMBK10].

In the context of wireless embedded systems, the focus of time
synchronization lies on scalability and energy efficiency [MKSL04].
Specifically, a time synchronization protocol in a wireless sensor network
has to address following challenges: (i) the network topology might
change due to changing channel quality, e.g., caused by moving nodes
or changes in the environment. A protocol should foresee mechanisms
to quickly adapt to topology changes. (ii) Time needs to be synchronized
over multiple hops, possibly much farther than in the Internet (NTP
considers a node at hop count (stratum) of 16 as disconnected). For
example, a deployment on the Golden Gate Bridge exhibited a diameter
of 46 hops [KPC+07]. (iii) The hardware is significantly less powerful than
a general purpose computer. This affects clocks, radio communication
and processing power. Accuracies reported by current state-of-the-art
protocols are in the lower microsecond range for networks with a diameter
of up to 30 hops [LSW14].
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If sub-microseconds synchronization is required, methods based on
Ethernet (e.g., PTP [ptp08]) or satellite communication (e.g., GPS) are
commonly used, either relying on expensive cabling or energy demanding
signal processing.

Tracing wireless embedded systems. Traces of program execution help
to understand how a certain program state has been reached, providing
important information to debug or optimize a system. In the context of
this thesis, we discuss tracing approaches in two different settings: (i) in
a deployment and (ii) a pre-deployment testbed setting.

Deployed systems cannot rely on any external hardware support—
all data collection and processing needs to be done on the node
itself. Recorded data is either stored on (non-volatile) memory for
later extraction, or sent over the wireless network to a sink for online
assessment. Clearly, these solutions have to cope with very little
resources, in order not to overload the available communication network,
but also to keep the energy consumption at a reasonable level. In
this category, we find approaches that instrument at different levels of
abstraction, e.g., function calls [LST15], basic blocks [SEZ10], or non-
deterministic inputs [TSBE15]. Commonly, due to limited resources, these
approaches can only trace the program for a short period of time, and also
only selected parts of the program.

In a pre-deployment setting, external hardware offloads parts of the
tracing. In addition, hardware debugging support can be leveraged,
e.g., dedicated tracing ports or on-chip debuggers. The availability and
functionality of such debugging features differs between microcontroller
architectures and families. In the Minerva testbed [SK13], every node
is connected to a debug board to interface with the node’s debugging
module. Such solutions depend heavily on the feature set of a
platform’s debugging module—there is no generic method to trace any
microcontroller architecture. In the real-time domain, execution times
are measured using GPIO lines [BMB10] for worst case execution time
analysis.

1.3 Thesis Contributions and Road Map

Testbed infrastructure (Chapter 2). We design and implement FlockLab,
a new testbed architecture that allows for previously unattained level of
detail in inspection of wireless embedded systems in a pre-deployment
environment. Different to previous approaches, FlockLab has the ability
to acquire and control different modalities in combination throughout the
entire testbed with virtually no impact on the devices under test, thus
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increasing their controllability and observability.
As detailed in Chapter 2, FlockLab consists of following building

blocks:

• The key element in FlockLab is a powerful observer platform
that pairs with up to four different devices under test (targets).
This design decision enables tight control of actions and accurate
measurements on the attached targets, while providing sufficient
processing power to handle possibly large data volumes.

• Every observer instance is capable of measuring and controlling
different modalities: (i) By externally tracing digital GPIO lines, state
on the devices under test can be extracted at a minimal overhead
on the devices themselves. (ii) Control of GPIO lines enables
timely controlled actions on a target. (iii) High resolution power
measurements (up to 56 ksps) allow to put program state and energy
consumption into perspective. (iv) Control of the target voltage
facilitate studying the influence of different voltages, allowing e.g.
to simulate battery depletion. (v) Serial communication between
observer and target can be used for printf debugging.

• A publicly accessible web interface makes the FlockLabdeployment
at ETH Zurich available to the research community. The deployment
consists of up to 31 observer nodes.

We benchmark the services provided by FlockLab, and we demon-
strate its utility for testing, debugging, and evaluating wireless embedded
systems through several real-world test cases.

Time of flight aware multi-hop time synchronization (Chapter 3). To
study measurements at network scale, data needs to have a common
time scale. In Chapter 2, we use NTP [MMBK10], the standard time
synchronization protocol for the Internet to synchronize clocks, resulting
in sufficient synchronization to study node interactions on a radio
message level. However, depending on the phenomena that we want
to observe, better synchronization is required.

In the area of wireless embedded systems, different multi-hop
synchronization protocols have been proposed. In this chapter, we study
the limits of two state-of-the-art protocols and propose the time of flight
aware time synchronization protocol (TATS) to improve synchronization
accuracy. Specifically, Chapter 3 contributes the following:

• We assess the impact of propagation delay on PulseSync [LSW14]
and Glossy [FZTS11], two state-of-the-art time synchronization
protocols that treat propagation delay as a negligible quantity. We
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find that the errors introduced by this assumption are in a similar
range as the overall synchronization error, therefore motivating
the need for incorporating propagation delay compensation into
a protocol design.

• Based on these insights, we design TATS, a new time synchroniza-
tion protocol that combines following building blocks to further
push the limits of time synchronization: (i) Time information is
propagated using fast flooding. (ii) Without additional packets,
propagation delays are measured and (iii) compensated during a
flood. (iv) Consecutive synchronization points are combined in a
linear regression to compute offset and speed of local clocks.

We show in testbed experiments that our new protocol outperforms
Glossy and PulseSync by a factor of up to 6.9, while achieving sub-
microsecond synchronization error over 22 hops.

Synchronized data acquisition system (Chapter 4). When instrumenting
a program using low-overhead GPIO changing instructions, tracing these
changes using an external monitoring device allows to observe system
behavior at a very detailed level. Since such instructions impose only little
impact on the performance and timing of the target, even time sensitive
parts of a program can be instrumented and observed.

Recording such traces in a distributed system poses several challenges
to the data acquisition system. In this chapter, we derive requirements for
such a system. Based on these requirements, we design and implement
FlockDaq, an extension to FlockLab to enable fine grained tracing in the
testbed. As detailed in Chapter 4, the building blocks of FlockDaq are
the following:

• We design and implement a new data acquisition system, which is
built around a field-programmable gate array (FPGA). This design
decision facilitates fast and accurate capture of GPIO state changes
and power samples.

• We introduce a combination of an open-loop controller and a
feedback loop to digitally control the offset and the speed of the data
acquisition system’s internal clock. Input to this control mechanism
is an external time pulse.

• To achieve network wide clock synchronization, we generate the
time pulse on every observer using a protocol that combines
Glossy’s time synchronization with a jitter reduction filter.
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In our evaluation, we find that this data acquisition system is able
to capture state changes at the maximal rate emitted by state-of-the-
art wireless sensor node platforms. In addition, FlockDaq aligns
concurrently recorded traces within 1µs with an empirical probability
of 99.9 %.

Testbed-assisted control flow tracing (Chapter 5). This chapter gives an
answer to the question of where to place instrumentation code (witnesses)
in a program in order to (i) faithfully reconstruct the control flow of
a program after execution, while (ii) imposing only minimal runtime
overhead on the program. We design an algorithm that can be used to
automatically place instrumentation code into existing programs. The
contributions of this chapter are the following:

• We introduce a new witness placing algorithm that is based on an
elaborate static analysis of the program binary, which extracts the
control flow graph of the program together with execution time
information for each possible path in the graph. By exploiting this
time information, we extend an existing non-time-aware placement
algorithm to reduce the number of required witnesses substantially.

• We implement this algorithm in a tool that automatically instru-
ments and replays MSP430 based microcontroller programs.

Testbed experiments involving several typical sensor network appli-
cations show reductions in runtime overhead of up to 38.3 % when
instrumenting the entire program binary. Overall, instrumentation
for control flow tracing adds an overhead of 19 % during execution.
Performance metrics of a time sensitive application (Glossy [FZTS11])
show negligible sensitivity to our instrumentation method, i.e., we could
not measure any significant difference between the original and an
instrumented version.

Use case: Inspecting deployed systems by overhearing radio inter-
ference (Chapter 6). Since its first installation in the year 2012, the
FlockLab testbed has been widely used by people all around the world,
both for educational purposes in lectures and for design and evaluations
for scientific publications. In addition, it has been instrumental to various
projects in the computer engineering group [ZFM+12, KBT12, FZMT12,
FZMT13, ZFMT13, KBT13, SZDF+15, SBBT15, LMT16, ZMK+, SDFG+17].
In the last chapter of this thesis, we exemplary show the benefits of
our testbed infrastructure in a specific use case. In this project, we aim
at counting wireless devices, in this case smartphones, passively and
without intrusion.

In the particular case of smartphones, privacy is an issue because
some messages sent by smartphones contain unique identifiers that
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allow to create user profiles. We approach this problem by overhearing
messages by means of signal strength measurements on a radio receiver
that cannot decode these messages, i.e., we use a IEEE 802.15.4 receiver
to overhear Wi-Fi transmissions. We design and implement DevCnt,
the first system that supports real-time counting of unmodified Wi-Fi
enabled smartphones while preserving the privacy of the smartphone
owners. DevCnt consists of the following contributions:

• By using novel signal processing algorithms that execute on a multi-
hop network of ZigBee devices, DevCnt detects and counts active
Wi-Fi scans performed by smartphones based on characteristic
patterns in RSSI traces.

• Combining these counts with statistical information about the
average active scanning rate, DevCnt faithfully estimates the
number of Wi-Fi enabled smartphones.

DevCnt trades some fidelity in the smartphone count estimations for
improved privacy. Results from controlled and real-world experiments
show that DevCnt provides estimates with an accuracy of up to 91 %.





2
FlockLab:

A Testbed for Tracing
and Profiling of

Wireless Embedded Systems

Testbeds play a key role in developing real-world wireless embedded
systems by providing the facilities to debug and evaluate protocols and
applications in a controlled, yet realistic distributed environment. This
chapter establishes a fundamental testbed infrastructure for multi-modal
inspection of wireless embedded systems. We will later on refine the data
acquisition system of the testbed in Chapter 4.

A review of the spectrum of existing testbeds yields a long
list: relocatable testbeds to study applications in the intended target
environment [RHLG10], testbeds with robots for controlled mobility
experiments [JGMdDO10], testbeds performing distributed power
measurements [HHP+08], homogeneous testbeds with hundreds of
devices [EAR+06], and emulation platforms [GES+04] and heterogeneous
testbed federations [CPC+12] to assess large-scale services on thousands
of nodes.

Despite this broad spectrum, the current practice of testbed-assisted
development revolves around LED and printf debugging: developers
use the nodes’ on-board LEDs to observe conditions in the running
program and printf statements to log diagnostic messages, performance
counters, or program state over the serial port. However, it is well known
that printfs alter the timing behavior and are therefore unsuitable for
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Figure 2.1: FlockLab observer with TelosB, IRIS, Opal, and TinyNode connected
via interface boards.

analyzing timing sensitive code such as radio drivers and MAC protocols.
Perhaps one reason for the unchallenged popularity of these techniques
is their ease of use [SSC10]. Another reason is that current testbeds allow
access to the devices under test only through the serial port. As a result,
developers are left with no other option than to use printfs, a means
suitable for a number of long-term profiling tasks but cumbersome, highly
intrusive, and unsuitable for detailed investigation of interactions among
multiple devices, especially real-time issues.

The current solution for debugging low-level software and hardware
interactions is a logic analyzer and a mixed-signal oscilloscope allowing
to capture and trigger events of interest (e.g., changes in program state or
packet transmissions) at high timing resolution. Different from printfs,
setting digital GPIO pins on a node introduces a known delay of just a few
clock cycles, which makes GPIO tracing a powerful tool for debugging
timing sensitive code. The required equipment, however, limits the setup
to a few nodes on a table, bearing little resemblance to a real multi-hop
setting.
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The main contribution of this chapter is FlockLab, a testbed with
services providing a previously unattained level of visibility into wireless
embedded systems. FlockLab’s novelty stems from the combined
capability of tracing and actuating logical state changes at high level
of detail, accurate timing information in the low microsecond range, and
the possibility to profile and control power over the whole testbed. By
coupling a powerful, stateful observer platform directly with every device
under test, the target, FlockLab decouples data acquisition and control
from centralized data collection. FlockLab leverages distributed target-
observer pairs with deep local storage that are capable of capturing event
and power traces of all targets locally, simultaneously, synchronously,
and at high rates without sacrificing on timing accuracy or incurring data
rate limitations of traditional backchannel-based testbeds [HKWW06,
WASW05].

As such, FlockLab combines the capability of a logic analyzer, power
analyzer, serial data logger, and programmable power supply with
network synchronization and deep local storage adjacent to each target—
distributed across the entire testbed. FlockLab also supports multiple
target platforms, allowing for comparative analysis of applications and
protocols on the same physical topology. It performs distributed power
measurements at higher rate, resolution, and synchronization accuracy
than prior testbeds. Users may apply power profiling and GPIO tracing
against all targets to correlate power samples and logical events, or
dynamically adjust the target supply voltage to emulate battery depletion
effects. Section 2.1 details the services available in FlockLab.

Section 2.2 presents the design of FlockLab to meet the challenges that
arise when providing these services. Based on our FlockLab deployment
at ETH Zurich, which consists of 30 observers in a mixed indoor/outdoor
setting that host Opal, IRIS, TinyNode 184, and TelosB targets as shown
in Figure 2.1, we benchmark FlockLab’s performance in Section 2.3. We
find, for instance, that FlockLab can capture GPIO events reliably up to
a rate of 10 kHz; it can timestamp distributed events and power samples
with an average pairwise error below 40µs; and it measures power draw
with an average error smaller than 0.4 % over six orders of magnitude,
while providing a highly stable and programmable supply voltage. We
further demonstrate in Section 2.4 the utility of FlockLab through various
real-world test cases, including an experiment in which we take a detailed
look into packet propagation and power draw during a Glossy network
flood [FZTS11]. Gaining similar multi-modal insights at this level of detail
would hardly be feasible with any prior testbed. We review related work
in Section 2.5 and conclude in Section 2.6.
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2.1 FlockLab Services
FlockLab delivers new insights into wireless embedded systems by
providing the following key services.

GPIO tracing. An observer can trace level changes of five target GPIO
pins at a rate of up to 10 kHz. Setting a GPIO pin takes only 2–5 clock cycles
on current target platforms, as listed in Table 2.1. Thus, using simple code
instrumentation, this service allows for low-overhead tracing of events
of interest; for example, a trace of packet exchanges may help to debug
a MAC or routing protocol. Like a mixed-signal oscilloscope that can
trigger on digital signals and capture on analog signals, it is also possible
to couple GPIO tracing with GPIO actuation and power profiling using a
callback mechanism: upon detecting a defined pin edge, an observer can
set another GPIO pin or start measuring power.

GPIO actuation. An observer can set, clear, and toggle up to three target
GPIO pins, one of which is the target’s reset pin, either periodically or
at predefined times. This is useful, for example, to create controlled
experiments by triggering some action on all targets at the same time,
such as starting or stopping the nodes, turning on the radio, transmitting
a packet, or freezing and logging a state variable.

Power profiling. An observer can sample the current draw of the target
at a maximum frequency of 28 kHz when operating the ADC in high-
resolution mode and up to 56 kHz when operating it in high-speed
mode. FlockLab defaults to the high-resolution mode since it provides a
higher signal-to-noise ratio (SNR) than the high-speed mode, as further
described in Section 2.2.4. Users specify time windows during which this
service should be running. Resulting power traces can aid in developing
energy-efficient applications and have also been used for conformance
testing [WLT09] and failure diagnosis [KLL+10].

Adjustable supply voltage. An observer can dynamically adjust the
target supply voltage between 1.8 V and 3.3 V in steps of 100 mV. To
introduce repeatable voltage changes, users can select from a range of
predefined charge/discharge curves or define their own voltage-time
profiles. This can be used, for example, to study discharge-dependent
behavior.

Serial I/O. Finally, an observer can read or inject data over the target’s
serial port, which is a standard service available on almost any testbed.
FlockLab supports ASCII data, TOS messages, and SLIP datagrams,
making it compliant with the serial communication available in state-
of-the-art operating systems like TinyOS and Contiki.

FlockLab allows a user to run any combination of the above services
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Platform Microcontroller Speed Cycles Time
TelosB MSP430 F1611 4 MHz 5 1,250 ns
TinyNode 184 MSP430 F2417 12 MHz 5 417 ns
Opal ARM Cortex-M3 96 MHz 5 52 ns
IRIS ATMega1281 8 MHz 2 250 ns

Table 2.1: Clock cycles and time needed to set a GPIO pin on selected FlockLab
targets. The known, minimal delay of GPIO tracing allows for low-overhead debugging
of timing sensitive code.

simultaneously and synchronously on any subset of observers. FlockLab
accurately timestamps data acquired during a test across all services and
observers, thus providing previously unattained insights into local and
distributed system behavior both in detail and at scale. To the best of our
knowledge, this makes FlockLab unique in the spectrum of testbeds for
wireless embedded systems.

2.2 FlockLab Architecture
Providing the above services presents several challenges to the design
of FlockLab. This section highlights these challenges and describes
FlockLab’s hardware and software architecture designed to solve them.

2.2.1 Challenges
• Minimum disruption: FlockLab must not perturb the behavior of

the system under test beyond the minimum necessary to obtain the
desired measurements.

• High accuracy and resolution: FlockLab needs to provide highly
accurate power samples over a dynamic range that spans six orders
of magnitude in current draw, from sleep currents of just 2µA on
a TinyNode up to active currents on the order of 100 mA. The
resolution of power measurements and event traces must approach
or exceed 10 kHz to capture ephemeral radio events, such as clear
channel assessments, which last only 100–200µs.

• Time synchronization: FlockLabmust tightly time-synchronize the
observers against a stable global clock, so as to precisely correlate
events and power samples of one observer as well as across multiple
observers. With sampling rates of at least 10 kHz, events and power
samples must thus be timestamped with 50µs accuracy or better.
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Figure 2.2: High-level schematic of the FlockLab observer hardware.

• Large data volume: FlockLab needs to cope with large data
volumes that arise particularly during high-resolution power
profiling. Samples should not be lost and be quickly processed
to ensure complete and sound measurement data.

• Platform support: FlockLab’s hardware and software architecture
must be designed in such a way that new platforms can be supported
with little effort and cost.

2.2.2 Overview

FlockLab consists of several distributed target-observer pairs and a set of
servers. Observers are powerful platforms that can host up to four devices
under test, the targets, connected through relatively simple interface boards.
Observers implement all services available in FlockLab in hardware
or software. They connect to several backend servers responsible for
coordinating their distributed and synchronized operation, for processing
and storing collected results, and interacting with FlockLab users.
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2.2.3 Observer Hardware

The observer architecture, as depicted in Figure 2.2, is based on a custom-
designed PCB assembly. The main processing unit is a Gumstix XL6P
COM embedded computer, which is driven by a 624 MHz Marvell XScale
PXA270 microprocessor and equipped with 128 MB SDRAM and 32 MB
flash memory. We add an 8 GB SD card to cache test configurations,
program images, and test results. Observers connect to FlockLab servers
preferably through the Ethernet expansion of the Gumstix; USB Wi-Fi
adapters can be used if Ethernet proximity is lacking.

A switching regulator converts a 5–56 V DC input voltage to the 5 V
on-board voltage required by the Gumstix. A linear regulator with low
output noise further down-converts to the 3.3 V on-board voltage required
by other components. The ADS1271, a 24-bit delta-sigma ADC, is used for
power profiling as detailed in Section 2.2.4. Additionally, there are three
USB connectors and a humidity/temperature sensor. In our deployment,
described in Section 2.2.8, we use the readings of the latter to control a
USB-powered fan on four outdoor observers to prevent humidity and
overheating issues.

An observer provides four pin header connectors to attach targets
through interface boards. The following main components are replicated
for each connector: an LM3370 switching regulator to adjust the
target supply voltage in the range of 1.8–3.3 V with 100 mV resolution;
a MAX9923H current-sense amplifier for power measurements; five
incoming and two outgoing GPIO lines to trace and actuate GPIO pins
of the target; UART lines to read and inject data over the target’s serial
port; lines to reset and program the target; an ID line to identify the
interface board as further discussed in Section 2.2.6; and a USB port for
USB-enabled targets and interface boards. Two 8-bit signal translators
match the variable voltage of the target with the 3.3 V on-board voltage of
the observer. Finally, an observer provides nine LEDs controlled by the
GPIO and UART data lines for visual inspection.

Because of the limited number of GPIO pins on the Gumstix, we need
to multiplex the available signal lines between the four targets. We achieve
this by letting the Gumstix enable the two voltage level translators and
the current-sense amplifier of the desired target and disable them for all
other slots. The Gumstix can thus control one target at a time.

The cost of the complete observer PCB assembly amounts to a rough
total of 1000 USD including manufacturing costs.
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Figure 2.3: Processing of GPIO events, power samples, and serial data on an
observer. Timestamping occurs in the bottom half of an interrupt handler using a tick
count taken in the top half, which increases precision and throughput.

2.2.4 Measuring Power
To measure power, we put a small shunt resistor between the switching
regulator and the target. The voltage across the resistor is proportional to
the current draw of the target. We use a MAX9923H high-side current-
sense amplifier to amplify the sense voltage by a gain of 100. The
MAX9923H has low offset voltage and high gain accuracy, providing
precise measurements also at low sense voltages. The output of the
amplifier is then fed into an ADS1271 ADC, whose samples are fetched
by the Gumstix over an SPI bus. Conversion into current is done in the
FlockLab backend based on the shunt resistance, the gain of the amplifier,
and the reference voltage of the ADC.

The choice of the shunt resistor presents a tradeoff. Using a small
resistor reduces the influence on the measurements, whereas using a
large resistor gives a better SNR. Another important factor is the wide
dynamic range of current draw. For instance, a TinyNode draws only
2µA in sleep mode, whereas an Opal draws as much as 49 mA when
both radios are turned on. To prepare FlockLab for even higher current
draws of future platforms, we want to support up to 160 mA. Based on
these considerations, we decided to use a relatively small 150 mΩ shunt
resistor, which still enables the high-gain amplifier to accurately measure
low signal levels.

The ADC has a resolution of 24 bits, which gives a theoretical
resolution of 10 nA in current draw based on the specifications of shunt
resistor, amplifier, and ADC. The ADC features two modes of operation
that are interesting for FlockLab, selectable by a jumper: high-speed
and high-resolution. Using a 14.3 MHz clock source, the ADC samples
at 56 kHz in high-speed mode and at 28 kHz in high-resolution mode.
FlockLab defaults to the latter as it has a higher SNR of 109 dB, while still
providing a sufficiently high sampling rate to capture short-lived radio
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events.

2.2.5 Observer Software
Observers run OpenEmbedded Linux and use Chrony as an
NTP [MMBK10] client to synchronize every 1–2 minute with the
FlockLab NTP server (see Section 2.2.7). This provides the basis
for accurately timestamping GPIO events, power samples, and serial
messages. Observers cache the timestamped data locally before
uploading them to the FlockLab database server, and have a collection
of Python scripts that are used by the FlockLab test management
server to trigger scheduled actions such as starting and stopping a test,
reprogramming a target, and setting the target supply voltage.

Data acquisition and timestamping. To gain access to hardware
connected to the Gumstix—in our case the GPIO lines and the SPI
bus which interfaces with the ADC—we implement data acquisition
and timestamping as kernel modules. Kernel processes run with
highest priority, which helps reduce processing delays and thus increase
throughput.

As shown in Figure 2.3, data acquisition for GPIO tracing, GPIO
actuation, and power profiling starts in interrupt handlers. Triggered
by a hardware or timer interrupt, the top half of a handler serves the
interrupt, reads a counter register to obtain the current time value, and
requests that the bottom half of the handler be executed at some future
time. The bottom half uses then the counter value to compute a precise
Unix timestamp. This approach increases throughput and timestamp
precision, because it minimizes the execution time of the top halves,
enabling interrupt requests to be served at high rate and low jitter.

As for GPIO tracing and GPIO actuation, an observer timestamps
single events. This is however different for power profiling. To reduce
system load and memory consumption, we generate a timestamp only
every 500 ms. Using the constant sampling rate of the ADC, the FlockLab
backend later interpolates the timestamps of single power samples.

Timestamping of serial messages is less critical since these are
already affected by non-deterministic UART transfer delays [DEE03] and
therefore should not be used to log data that require highly accurate
timestamps. For this reason, we process and timestamp serial messages
in userspace.

Data caching. When using FlockLab’s power profiling service, the
observers have to deal with enormous amounts of data, so efficient data
handling is key. Motivated by this, we use a custom-built binary log
file mechanism rather than a full-blown database system. As shown in
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Figure 2.3, kernel FIFO queues are used for transferring acquired data
from kernel to userspace, where a daemon receives the data and writes
them into separate files on the SD card. Upon request from the FlockLab
test management server, an observer uploads accumulated data to the
database server.

2.2.6 Supporting Diverse Target Platforms

FlockLab possesses the flexibility to support diverse target platforms
with little effort in terms of hardware and software. Every observer can
host four targets of possibly different form factors, connectors, features,
and tools required for installing program images. Key to this flexibility
is the use of interface boards: simple PCB assemblies that interconnect
the components on an observer (see Figure 2.2 and Section 2.2.3) with the
corresponding components on the target.

Every platform requires its own custom-designed interface board,
since there is no standardized connector or pin layout for wireless
embedded devices. An interface board may also need to make provisions
for different logic levels.

Additionally, FlockLab imposes a few constraints on the design of
an interface board. First, it needs to fit certain maximum dimensions
and have an appropriate header connector. Second, the components on
an interface board must work with one of the available power supplies:
3.3 V, 5.0 V, or the 1.8–3.3 V DC adjustable voltage. Third, an interface
board must feature a serial ID chip that is compliant with the widely used
DS2401, which is needed to automatically identify the mapping of target
slots to interface boards.

Besides interface boards for TelosB, TinyNode, and Opal designed
by us, external collaborators from IBM designed an interface board for
IRIS, which also supports Mica2 and MicaZ due to pin-compatibility.
We leverage these interface boards in our FlockLab deployment at ETH
Zurich to attach four different platforms to each observer, as shown in
Figure 2.1.

On the software side, it is sufficient to port the reprogramming
tool to the Gumstix to support a new platform. As for serial I/O,
FlockLab observers already support ASCII data, TOS messages, and
SLIP datagrams. The target software requires no special measures, since
embedded operating systems already provide functions for serial I/O and
accessing GPIO pins, and power is measured by the observer.



2.2. FlockLab Architecture 21

2.2.7 Backend Infrastructure
Observers connect via Ethernet or Wi-Fi to a set of servers that provide
all what it takes to make FlockLab a testbed.

Time synchronization server. FlockLab operates its own NTP server
that synchronizes against another server on campus and a high-accuracy
pulse per second (PPS) signal output by a GPS receiver, which provides a
precise time reference. All observers synchronize against this NTP server.

Web server. Users interact with this server to schedule and configure their
tests. Every user is allowed to reserve FlockLab for a certain maximum
duration and number of tests at a time. A test configuration consists of a
single XML file to setup the services and one or more compiled binaries.
A user can run a test as soon as possible or during some specified time
slot, abort a running test, and fetch the results of successfully completed
tests. If requested, a user receives email notifications about started and
completed tests.

Test management server. This server is responsible for operations related
to starting, running, and finalizing scheduled tests. If a test is about to
start, it parses the configuration, prepares programmable images from
the supplied binaries, and dispatches these data to the observers. While a
test is running, it periodically queries the observers for results and stores
them in a database. When a test has finished, it processes the raw data
(e.g., interpolate timestamps, convert to current) and stores them in a
compressed archive.

Database server. This server hosts a MySQL database, which stores
test configurations, and user-specific data such as quotas and login
information.

Monitoring server. Finally, we use Zabbix and Cacti to constantly
monitor all server instances, networking components, and observers. In
case of an abnormal situation, FlockLab administrators are automatically
informed via e-mail and/or SMS to ensure maximum uptime of the
testbed.

2.2.8 Deployment
The FlockLab deployment at ETH Zurich consists of 30 observers, each
hosting a TelosB, IRIS, Opal, and TinyNode 184. As illustrated in
Figure 2.4, 26 observers are deployed indoors across one floor in an office
building, distributed in offices, hallways, and storerooms. Four observers
are deployed outside, sitting on the roof of an adjacent building a few
meters beneath the floor with the indoor observers.
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Figure 2.4: Layout of FlockLab deployment including information about link
qualities and noise.

All indoor observers connect via Ethernet, and have a light acrylic
glass cover to protect against dust. To help the accuracy of NTP by
reducing communication latency and jitter, they are all in the same LAN
segment. The outdoor observers use Wi-Fi due to lack of Ethernet on
the roof, and are housed in robust polycarbonate boxes with controlled
ventilation to avert humidity and overheating problems.

During testbed idle times, the test management server runs an RSSI
scanner on all target platforms, determining the noise level on all channels
and frequency bands, and a test where targets broadcast 500 30-byte
packets each and then report the number of packets they received from
any other target, which gives an estimate of the link qualities in the
testbed. This information is stored in the database and displayed on
the FlockLab website as an overlay on the deployment map as shown
in Figure 2.4, giving users an idea as to what extent their tests may be
affected by external interference (e.g., from co-located Wi-Fi) or limited
connectivity.
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2.3 Benchmarking FlockLab
Using our deployment, we benchmark in this section the accuracy and the
limits of key FlockLab services. We start by evaluating FlockLab’s timing
accuracy, which is fundamental to exploit the full potential of the GPIO
and power profiling services, check the stability of the power supply
and the accuracy of the power measurements, and finally determine the
maximum rate for capturing GPIO events.

2.3.1 Timing Accuracy
2.3.1.1 GPIO Tracing and Actuation

Setup. We randomly select 7 Ethernet-connected observers, and put one
Wi-Fi-connected observer indoors on a table. We evaluate GPIO tracing
and actuation in two separate 1 hours tests. In the first test, we use a
signal cable to connect a GPS clock to one GPIO pin of each observer.
The GPS clock generates a PPS signal, and the observers timestamp the
corresponding GPIO events. In the second test, we connect one GPIO pin
of each observer to a Tektronix MSO4054B mixed-signal oscilloscope.
All observers simultaneously toggle the pins every second, and the
oscilloscope measures the actual timing of these events.

Pairwise timing error. We first measure the pairwise timing error
between simultaneous GPIO events at different observers. This evaluates
the alignment of GPIO traces collected by different observers and, for
GPIO actuation, the precision with which simultaneous actions can be
triggered.

Table 2.2 shows that the average pairwise error is smaller than 40µs
when using the 7 Ethernet-connected observers. If we add the Wi-Fi-
connected observer, the error increases significantly due to higher and
more variable delays in the exchange of NTP packets over Wi-Fi. The
error is similar for GPIO tracing and actuation, as an observer executes
similar operations when timestamping an event or setting a pin.

These results show that FlockLab allows users to align GPIO traces
and to set GPIO pins with an error as small as a few tens of microseconds
when using the indoor observers. This high accuracy is more than
sufficient to trace packet transmissions among targets, as we demonstrate
in Section 2.4.5. The results also show that because of the higher NTP
synchronization error over Wi-Fi, the outdoor observers are less suited
for tests that require sub-millisecond timing accuracy.

Error on time intervals. Using data from the previous experiment, we
also assess the error on time intervals. We compute for each observer the
difference between timestamps of consecutive GPIO events and compare
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GPIO 7 Ethernet 7 Ethernet, 1 Wi-Fi
service avg 85th max avg 85th max

Tracing 36µs 69µs 255µs 166µs 527µs 1,161µs

Actuation 30µs 54µs 394µs 138µs 334µs 1,170µs

Table 2.2: Pairwise timing error of GPIO services. The average error is smaller
than 40µs with Ethernet observers.
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Figure 2.5: Distribution of the error on time intervals between GPIO events. The
average error is -0.011µs.

it to the PPS signal. In this way, we evaluate the precision with which an
observer measures the interval between GPIO events.

Figure 2.5 shows the distribution of the error on time intervals, as
measured by all 8 observers used in the experiment. We see that it
approaches a normal distribution with a sample mean of -0.011µs and
a sample standard deviation of 27µs. The average error is small because
each timestamp is similarly affected by variable interrupt delays on an
observer. We show in Section 2.4 that this precision allows to profile the
radio activity or to measure the clock drift of a target.

2.3.1.2 Power Profiling

Setup. To evaluate the timing accuracy of the power profiling service,
we run a 2 minute test on 6 TelosB targets attached to Ethernet-connected
observers. One transmitter generates a 30-byte packet every 62.5 ms. The
other 5 receivers, located in the transmission range of the transmitter,
have their radios turned on and receive the packets. The corresponding
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observers enable GPIO tracing and power profiling, measuring current1

draws at 28 kHz.
When a start frame delimiter (SFD) interrupt signals the start of a

packet reception, a receiver toggles a GPIO pin and turns on its three on-
board LEDs. As shown in Figure 2.6(a), these operations generate a GPIO
event and an increase in current draw from 22 mA to 34 mA. When the
next SFD interrupt signals the end of a reception, each receiver turns off

its LEDs and the current decreases accordingly. We consider these events
as occurring at the same time, as we measure with an oscilloscope that
the lag due to different time of flight and interrupt delays is smaller than
1µs. To compare power timestamps, we define that a power event occurs
when the current rises above a leds-on threshold of 23 mA.

Timing error between GPIO and power events. We measure the timing
error between GPIO and power events on the same observer by computing
the interval between the GPIO and the respective power timestamp (i.e.,
between a vertical line and the corresponding circle in Figure 2.6(a)).

The solid line in Figure 2.6(b) shows the cumulative distribution of the
timing error, which is 20µs on average and smaller than 29µs in 85 % of
the cases. We see that the average error is close to half the power sampling
period (17µs): power profiling has a lower resolution than GPIO tracing
and most of the timing error comes from the random delay between a
GPIO event and the following power sample.

Pairwise timing error. We now look at the pairwise timing error between
simultaneous power events on different observers (i.e., between two circles
in Figure 2.6(a)).

The dashed line in Figure 2.6(b) shows the cumulative distribution of
this pairwise timing error, averaging around 39µs with an 85th percentile
below 68µs. The error is comparable to that of simultaneous GPIO
events in Section 2.3.1.1, since the sources of time inaccuracies are similar.
Figure 2.6(a) and the test case in Section 2.4.5 confirm that the precise
alignment of power traces in FlockLab allows to match the power draw
of a target to packets exchanged with other targets.

2.3.2 Power Accuracy
We use ad-hoc experiments to check whether an observer accurately
measures the current draw of the target with only minimal impact on
the stability of the target supply voltage.

1We use power and current interchangeably in Secs. 2.3 and 2.4, because FlockLab
supplies a known, stable voltage (see Section 2.3.2) and thus power is directly
proportional to current.
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Figure 2.6: Timing errors of power profiling. Observers timestamp simultaneous
power events with an average pairwise timing error of 39µs.

Setup. We connect the target slot of an observer to a high-precision
Agilent N6705A power analyzer, which acts as a target that draws
predefined currents. The current draws cover the full dynamic range
and proceed in a step-wise fashion as follows: from 0 mA to 1 mA in
steps of 0.1 mA, from 1 mA to 10 mA in steps of 1 mA, and from 10 mA
to 160 mA in steps of 10 mA; each of the 35 steps lasts 3 s. During the
experiment, the observer supplies a nominal voltage of 3.3 V and records
the current drawn by the power analyzer with a resolution of 14 kHz,
while the power analyzer records the voltage supplied by the observer
with a resolution of 24 kHz. We repeat the experiment 32 times, using the
four target slots of eight randomly chosen observers.

Stability of power supply. We first look at the stability of the supply
voltage. To this end, we measure the voltage drop as the difference
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Figure 2.7: Stability of the power supply and accuracy of the power
measurements in FlockLab.
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between the zero-load voltage (i.e., when no current is drawn by the
power analyzer) and the voltage supplied at a certain current draw. The
solid line in Figure 2.7(a) shows that the average voltage drop is at most
a few mV for typical current draws of our targets; for example, an Opal
draws 49 mA when fully active, yielding an average voltage drop of
13 mV. The voltage drop of the other target platforms is even smaller,
because they draw less current.

To put these numbers into perspective, we measure the voltage drop
of two AA alkaline batteries, a typical power supply in real deployments.
The dashed line in Figure 2.7(a) shows that their average voltage drop is
higher than that of an observer, and is above 23 mV already at a current
draw of 20 mA. We compute a linear fit between voltages and currents and
find that a target sees an average resistance of 259 mΩ when connected to
an observer, which is almost four times smaller than what a target would
see with AA batteries (947 mΩ). The results show that power profiling
with FlockLabminimally affects the target supply voltage.

Accuracy of power measurements. Next, we evaluate the accuracy of
power measurements by computing the relative error between the current
draw measured by the observers and the current drawn by the power
analyzer.

The dashed line in Figure 2.7(b) shows that FlockLab underestimates
at currents below 2 mA and slightly overestimates at higher currents.
The relative error is particularly significant for low currents: static offset
errors of the current-sense amplifier, manufacturing errors of the shunt
resistor, and inaccuracies of the amplifier gain introduce a constant offset
and a constant multiplication factor into the measurements. Motivated
by this observation, we use linear regression to estimate these constants
by comparing the measurements from the observers with those from
the power analyzer, effectively calibrating FlockLab’s power profiling
service.

For each observer and target slot, we repeat the experiment and
correct the measured current draw by applying our calibration based
on the constants computed from the previous experiment. The solid
line in Figure 2.7(b) shows that the calibration reduces the relative
error on current draw significantly, especially for currents below 1 mA.
For currents between 0.1 mA and 160 mA, the accuracy of the power
measurements increases by a factor of 6 after calibration.

Based on calibration parameters we computed for all target slots on
all 30 observers, the FlockLab test management server corrects the power
measurements before delivering them to the user. We show in Section 2.4.3
that this results in accurate power measurements allowing to precisely
measure the energy consumed by a target throughout a test.
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Number of
GPIO pins

Power
profiling

Captured GPIO events
99 % 100 %

1
no 80µs 290µs
yes 90µs 280µs

5 interleaved
no 20µs 80µs
yes 30µs 90µs

Table 2.3: Minimum required interval between consecutive GPIO events to
capture 99% and 100% of generated events. An observer captures 99 % of events on
one GPIO pin if they are at least 90µs apart.

2.3.3 Limits in Capturing GPIO Events
The sampling rate of the ADC defines the interval between power
samples. This is different for tracing GPIO events on an observer:
the minimum required interval to reliably capture consecutive events
depends on the interrupt delay and the execution time of the top half of
the interrupt handler. We run experiments to determine this minimum
interval.

Setup. We use all 30 TelosB targets and let them toggle GPIO pins with
an increasing interval. Starting from 10µs, targets increase the interval in
steps of 10µs up to 1 ms, and generate at each setting 100 GPIO events.
We run four tests, each repeated ten times: two where they toggle a single
pin and two where they toggle five pins interleaved. In both cases, we
run one test with and one test without power profiling.

Minimum interval between GPIO events. For each interval, we compare
the number of captured events with the number of generated events.
Table 2.3 lists the minimum required interval to capture 99 % and 100 %
of events. First, we see that FlockLab captures events more reliably when
they are interleaved on 5 GPIO pins. This is because every GPIO pin is
mapped to a specific interrupt flag in the observer’s processor, and no
new events can be captured until the respective flag is cleared.

We further observe that the minimum required interval to capture
GPIO events increases by 10µs when the power profiling service is
enabled. This service increases the load on an observer, leading to
higher interrupt delays and thus to a lower probability that events are
successfully captured. Finally, we note the significant difference between
the minimum required intervals for capturing 99 % or 100 % of events,
since sporadic activity on the observers (e.g., exchanging and processing
NTP packets or storing measurement data into a file) may sometimes
increase the interrupt delay, too.

The following section shows that FlockLab’s GPIO tracing service
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allows to accurately record MCU and radio activity, measure end-to-end
packet delays, monitor the exchange of packets, and measure the clock
drift of a target.

2.4 FlockLab in Action
After presenting the architecture of FlockLab and evaluating its
performance, we now demonstrate the utility of FlockLab for testing,
debugging, and evaluating wireless embedded systems through several
real-world test cases.

2.4.1 Comparative Multi-Platform Analysis
One feature that sets FlockLab apart from other testbeds is the possibility
to test multiple platforms on the same physical topology. Comparative
analyses of this type can provide valuable feedback, for example, to
developers of communication protocols, because the characteristics of
the underlying platform may affect the performance of these protocols
considerably and in non-trivial ways.

In this test case we perform a comparative multi-platform analysis of
the standard TinyOS data collection application. The application uses
CTP [GFJ+09] on top of the LPL [PHC04] link layer to collect data from a
set of nodes at a single sink. We use all 30 observers and all four targets
available in FlockLab: Opal, TinyNode, TelosB, and IRIS. The radios
of these platforms differ in terms of frequency band, maximum transmit
power, modulation scheme, and data rate. For each individual platform
we let the nodes transmit at the highest power setting, and all nodes but
the sink generate a packet every 5 s for a duration of 35 minutes.

We are interested in how each platform affects the trade-offs between
energy consumption, data yield, and end-to-end latency. Since these
key performance metrics are known to be influenced by the operational
parameters of the link-layer protocol [ZFM+12], we further test for each
platform six different LPL wake-up intervals: 20, 50, 100, 200, 500, and
1,000 ms. We thus expect to gain insights into the platform-dependent
sensitivity of the system performance to changes in the LPL wake-up
interval, too.

Without FlockLab. Despite the lack of multiple platforms on other
testbeds, it is not trivial to obtain reliable and unobtrusive measurements
of the performance metrics we are interested in. Data yield can be
measured quite straightforwardly based on the sequence numbers of
received packets, but measuring energy and latency is more difficult.
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On testbeds that do not support power profiling, energy consumption
must be estimated in software. For example, Energest [DOTH07]
provides accurate energy estimations in Contiki but is also intrusive
(see Section 2.4.3). Other operating systems like TinyOS lack a standard
energy estimator. This increases the overhead to obtain energy estimates
in the first place, may lead to incomparable results from different custom-
built estimators, and generally encourages the use of radio duty cycle as
a proxy for energy consumption, which may not be meaningful toward
the total node energy budget.

One approach to measure the end-to-end latency is to log a message
over the serial port when generating a packet at the source and another
message when receiving a packet at the sink. However, serial logging
alters the timing behavior of the application, and the resulting timestamps
are inaccurate due to non-deterministic UART delays [DEE03]. Another
approach is to run a dedicated time synchronization protocol such
as FTSP [MKSL04] concurrently to the protocol under test and to
timestamp packets at the source. But, as shown in [CKJL09], running
multiple network protocols concurrently entails the risk of unanticipated
interactions between protocols that can lead to performance losses or even
failures. Furthermore, for some combinations of platforms and operating
systems there may not be a synchronization protocol readily available.

With FlockLab. The power profiling service in FlockLab provides non-
intrusive current measurements for computing the energy consumption.
The GPIO tracing service can be used to measure the end-to-end latency:
the application toggles a GPIO pin when a source generates a packet
and another GPIO pin when the sink receives a packet. Taking the
interval between both events of the same packet, we obtain non-intrusive
measurements of the end-to-end latency of received packets. The effort is
limited to inserting two GPIO tracing statements in the application code
and configuring the FlockLab services in an XML file.

Figure 2.8(a) shows data yield and Figure 2.8(b) shows end-to-end
latency against average current draw2, for all platforms and LPL wake-
up intervals. As expected, higher data yield and lower end-to-end latency
can generally be achieved at the expense of higher average current draw.
While this holds for all platforms, data yield and end-to-end latency
are better with IRIS, Opal, and TinyNode than with TelosB, since the
higher transmit power of the former platforms leads to shorter routing
paths with CTP. Interestingly, IRIS is least sensitive to changes in the LPL
wake-up interval, and all four platforms draw minimum current at 200 ms
LPL wake-up interval, which is thus the most energy-efficient parameter

2The high current draw with Opal is due to a software issue that prevents the nodes
from entering a low-power mode.
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Figure 2.8: FlockLab enables comparative performance analyses of the same
application on multiple platforms. The plots show performance results from CTP
running atop LPL for different LPL wake-up intervals and platforms, including IRIS
(2.4 GHz, 3 dBm), Opal (868 MHz, 6 dBm), TinyNode (868 MHz, 12.5 dBm), and TelosB
(2.4 GHz, 0 dBm).

setting for this particular topology and traffic load.

2.4.2 Finding and Fixing Bugs
GPIO tracing is also a very powerful debugging tool. We already found
and fixed several bugs this way, and as a concrete example we describe
next how we found and fixed a protocol misconfiguration that caused a
poor performance during initial experiments of the previous test case.

Finding the bug. With LPL wake-up intervals of 500 ms and 1 s, the
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Figure 2.9: GPIO trace showing a misconfiguration of CTP and LPL on
TinyNodes. After receiving a packet, the parent turns off the radio (1) before the
child sends the next packet (2), causing packet loss due to queue overflows.

initial results from TinyNode and Opal nodes were significantly worse
than expected in terms of data yield and end-to-end latency. All sources
were seemingly affected, and we could not pinpoint specific nodes to
debug with a logic analyzer. We thus instrumented the radio stacks to
set different GPIO pins according to the current radio state (i.e., sleeping,
active, receiving, or transmitting) and repeated the experiments with
GPIO tracing enabled. Using printfs instead of GPIO, we would have
run the risk of breaking the timing-sensitive operation of the radio driver
and LPL.

After aligning the GPIO traces of all nodes, we noticed that nodes
located farther away from the sink could communicate properly. The bug
indeed affected mostly nodes close to the sink, which delivered only a
small fraction of the many packets they had to forward. We decided to
focus on these nodes and, by looking deeper into the transfers between
a child and its parent, we found that children were transmitting at most
one packet during an LPL wake-up interval, although they had multiple
packets ready to be sent.

Fixing the bug. With the help of GPIO traces, we were also able to find
and fix the cause of this bug. Figure 2.9 shows an example of the problem,
based on GPIO traces collected from two TinyNodes. After a successful
packet reception, the parent kept the radio on for a short time but went to
sleep (1) before the child could transmit the next packet (2). As a result,
children had to wait until the next regular wake-up of their parents before
they could send the next packet, which caused severe data loss at long
wake-up intervals.

This prompted us to check the configurations of CTP and LPL. Based
on our settings, a TinyNode or Opal node kept the radio on for 20 ms
after a reception, but its children transmitted additional packets only
after 32 ms (the default CTP setting for generic platforms). We fixed this
misconfiguration by changing the value of these parameters based on the
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radios’ data rate and experimental results. For example, on TinyNodes a
parent keeps the radio on for 36 ms after a reception, and a child transmits
the next packet after 10 ms.

2.4.3 Controlling and Profiling Applications

When evaluating applications like data collection it is often desirable not
only to precisely measure performance figures but also to control nodes
during an experiment, for example, to specify which nodes generate
packets and when [ZFM+12], or to emulate failures by turning some
nodes off during a certain interval [GFJ+09]. We now show that FlockLab
greatly helps control and profile typical data collection applications.

In this test case, we run the default data collection application of
Contiki on TelosB targets, that is, Collect on top of ContikiMAC. The
wake-up interval of the latter is 128 ms. We want one node to generate
a packet every 2 s for 260 s, from t = 30 s to t = 290 s. We also want to
measure the energy consumed by that node during these 260 s.

Controlling without FlockLab. A common approach to control an
experiment is to add some logic that, for example, starts and stops the
generation of packets depending on the current time and the identifier of
the node. This approach requires to recompile the application program
for tests that need different parameterization, which is time-consuming.
Most importantly, some form of in-band time synchronization is also
needed if several nodes are to simultaneously start and stop generating
packets, which can, however, degrade the performance of the application
under test [CKJL09].

Controlling with FlockLab. With GPIO actuation we can control the
targets without employing an additional time synchronization within
the application. In our test case, the observer connected to the node of
interest sets a GPIO pin at t = 30 s and clears it at t = 290 s: the target
starts and stops generating packets accordingly. Because the observers
are time-synchronized, it is also possible to let multiple targets start and
stop generating packets simultaneously. Moreover, we can test different
generation patterns by simply modifying the GPIO actuation timings in
the test configuration.

Profiling without FlockLab. On testbeds without power profiling,
the energy consumption of a node can be estimated in software. For
example, Energest measures the time spent by the node in different
states [DOTH07], which can be combined with the current draws in
each state to estimate energy. This method is however intrusive, since
it requires nodes to start and stop counters whenever they change state,
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Figure 2.10: FlockLab can be leveraged to obtain non-intrusive and highly
accurate energy measurements.

and requires changes to existing code to be used on a different platform.

Profiling with FlockLab. Power profiling allows to measure the energy
consumption of any supported target in a completely non-intrusive
fashion. GPIO tracing allows also to profile a target’s operation and
measure state timings by setting GPIO pins according to the MCU and
radio states.

In our test case, we enable power profiling between t = 30 s and
t = 290 s. Figure 2.10(a) shows the energy consumption measured by
FlockLab, averaged over eight test repetitions, and compares it with
measurements from a power analyzer attached to the target and with
software-based estimations using Energest. The non-intrusive FlockLab
measurements are slightly more accurate than the estimations provided
by Energest: the former measures an average energy consumption that is
3.6 % higher than the one measured with the power analyzer, while the
latter underestimates it by 4.6 %. We also see from Figure 2.10(b) that the
state timings measured with GPIO tracing correspond on average within
2.7 % to those reported by Energest. FlockLab is however less intrusive
than Energest; for example, we measure on a TelosB that Energest requires
11 and 21 MCU cycles to start and stop a counter, whereas only 5 cycles
are required to set the level of a GPIO pin on a TelosB.

2.4.4 Measuring Clock Drift
When evaluating communication and time synchronization protocols, it
is often desirable to measure how much the clock of a target drifts from
the nominal frequency during a test. We now demonstrate that FlockLab
allows to run tests where targets experience different clock drifts (e.g., by
using targets located outdoors) and to measure the actual drift during a



36 Chapter 2. FlockLab: A Testbed for Tracing and Profiling of Wireless Embedded Systems

test accurately and minimally intrusive.
In this test case, we want to measure the clock drift of 30 TelosB

targets during a 24 hours experiment. In particular, we are interested in
comparing the drift of indoor and outdoor targets, and in relating the drift
to the temperature measured by the targets’ on-board sensors during the
test.

Without FlockLab. A possible method to measure the clock drift is to
employ FTSP, the default time synchronization protocol in TinyOS, as it
periodically estimates how much the clock of a node drifts compared
to the clock of a root [MKSL04]. As previously discussed, time
synchronization protocols are however intrusive and may affect the
behavior and the performance of the application under test.

With FlockLab. With GPIO tracing we can measure the clock drift of a
target in a simpler and less intrusive way, without the need of running a
synchronization protocol on the target. In our test case, we instrument the
application to toggle a GPIO pin every 0.5 s, and measure the clock drift by
comparing the difference between consecutive GPIO timestamps with the
nominal value of 0.5 s. We then average these drift values over intervals
of 5 minute to limit the GPIO timing errors discussed in Section 2.3.1.1.
To evaluate the accuracy of our measurements, we enable FTSP with a
resynchronization interval of 3 s and use an indoor target as the root.

Figure 2.11(a) shows the temperature measured during the 24 hours
by the FTSP root and three other targets, one located indoors and two
outdoors. We notice that during daytime the outdoor targets experience
significant (but different) temperature variations, while the indoor targets
measure fairly constant temperatures. Figure 2.11(b) shows how the
clocks of the three targets drift compared to the clock of the FTSP root,
measured with GPIO tracing and by FTSP. As expected, we see that
variations in temperature translate into variations in the targets’ clock
speed and thus into varying drift. We also notice that the drift measured
with GPIO tracing corresponds to that estimated by FTSP: their difference
is hardly noticeable in Figure 2.11(b) and averages 0.003 ppm. An
observer performs such accurate drift measurements despite temperature
variations affect also its clock speed, because it resynchronizes at least
every 2 minute with the FlockLab NTP server.

2.4.5 Multi-Modal Monitoring at Network Scale
The possibility of monitoring the activity of multiple targets while simul-
taneously measuring their current draws is invaluable for developers of
low-power wireless applications. This allows, for example, to trace the
exchange of packets among targets, to analyze in which states targets
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Figure 2.11: With FlockLab it is possible to accurately measure clock drift on
multiple targets during an experiment with minimal intrusiveness.

consume most energy, or to detect possible misbehaviors that may cause
targets to reach undesired states or to draw more current than expected.
Unlike previous testbeds, FlockLab offers this possibility, and with a
minimal effort from a user.

As a test case we use the Glossy flooding protocol, which lets an
initiator flood a packet to all receivers within a few milliseconds [FZTS11].
We set the transmit power of 26 TelosB targets to -10 dBm and let Glossy
flood a 30-byte packet every 24 ms, using different initiators in consecutive
floods.

Without FlockLab. With previous testbeds, the only possibility to
monitor state transitions or packet exchanges is to instrument an
application to store timestamps (e.g., into external flash memory)
whenever an event of interest occurs. Nodes print these timestamps at
the end of a test, and the testbed collects them from the serial ports.
As mentioned before, this approach is very intrusive and provides
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Figure 2.12: GPIO tracing and power profiling allow for monitoring the activity
of multiple targets while simultaneously measuring their current draw.
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meaningful results only if the nodes employ some form of in-band time
synchronization. Alternatively, network simulators like Cooja [ODE+06]
can be used to visualize the exchange of packets, but their channel
and hardware models may not accurately reproduce what happens
during an experiment on real devices. With either approach, however,
no information about the instantaneous current draws of the nodes is
available.

With FlockLab. GPIO tracing allows to monitor the radio states of
the targets and the exchange of packets among them with minimal
intrusiveness. In our test case, we simply instrument Glossy to toggle
four GPIO pins whenever the radio state changes: when it is turned on or
off, when it starts or stops receiving or transmitting a packet, and when a
packet reception fails (e.g., because of packet corruption). Together with
GPIO tracing, we enable also power profiling to measure the current draw
of the 26 targets.

Figure 2.12 shows a graphical representation of the radio states and
the current draws of the 26 targets during two consecutive floods with
different initiators, based on a short excerpt of the GPIO and power traces
collected with FlockLab. The timing accuracy of FlockLab allows to
precisely monitor how packets propagate in the network based on the
reported radio states. For example, it is clearly visible that multiple
targets transmit packets simultaneously, which is a peculiarity of Glossy.
It is also possible to analyze the sets of targets transmitting or receiving
at a certain time instant, and study how they are related to the network
topology.

This type of visualization resembles that of the Cooja simulator, but
with FlockLab it is based on information collected during experiments
on real devices and over real wireless links. FlockLab provides also the
current draws of the targets during the experiment. It is thus possible to
correlate logical states and power samples and, for example, to measure
the energy cost of different states. As expected, Figure 2.12 shows that
targets draw most current when the radio is turned on, and in particular
when they are receiving or waiting for a packet; transmissions are indeed
cheaper due to the low transmit power used in the experiment.

To the best of our knowledge, FlockLab is the first testbed that, among
other features, provides the functionality of multiple logic analyzers
and power analyzers—distributed and synchronized across the entire
testbed. We maintain that developers of distributed applications and low-
power wireless protocols can significantly benefit from such augmented
debugging and testing capabilities.
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Testbed #Nodes
Supported Sampling

Resolution
Synchronization

Platforms Rate Error
PowerBench 28 TNOde 5 kHz 12 bit ∼1, 000µs

SANDbed 28 MicaZ 40 kHz 16 bit ∼10, 000µs
w-iLab.t 200 TelosB 10 kHz 12 bit unknown

FlockLab 4×30
Opal, TinyNode 28 kHza

24 bit
avg: 39µs

IRIS, TelosB 56 kHzb 85th%:68µs

Table 2.4: Existing testbeds supporting distributed power measurements.
FlockLab is the only testbed with multiple platforms; it provides the highest resolution,
and timestamps power samples with 20–200× better synchronization accuracy.

ahigh-resolution mode
bhigh-speed mode

2.5 Related Work

Sensor network testbeds. Departing from most of the early installa-
tions [EAR+06, WASW05], emerging testbeds are increasingly diverse and
specialized: relocatable testbeds to evaluate applications in the intended
target environment [RHLG10], testbeds with robots for controlled
mobility experiments [JGMdDO10], and testbed federations to assess
large-scale services [CPC+12]. FlockLab, instead, aims to provide
visibility into the distributed behavior of protocols and applications,
to detect bugs and inefficiencies early in the development cycle. As
such, to the best of our knowledge, FlockLab is the first testbed with
verified support for distributed, synchronized GPIO tracing and actuation
coupled with high-resolution power profiling.

Closest to FlockLab are PowerBench [HHP+08], SANDbed [HWM10],
and w-iLab.t [BVJ+10]. As shown in Table 2.5, these testbeds also provide
distributed power measurements at comparable or lower rates and
resolutions. FlockLab also achieves a better synchronization, allowing
for a better alignment of power traces recorded at different nodes.
Furthermore, FlockLab supports four different platforms and future
platforms can be added with little effort, whereas the other testbeds
support only one platform. We note that w-iLab.t also seems to support
GPIO-based services, but there exists no public information on the
performance of these services in w-iLab.t.

DSN provides coarse network-wide power sensing by sampling the
nodes’ current draw every few minutes [DBK+07]. In addition, like
MoteLab [WASW05], DSN instruments one node with a high-precision
multimeter. FlockLab clearly exceeds the capabilities of these testbeds.
However, the approach of coupling targets with powerful observers is
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inspired by these and other systems [GES+04]. Like FlockLab, many
support multiple platforms [CPC+12, HKWW06], but, unlike FlockLab,
only serial I/O.

Power and energy estimation. Several sensor network simula-
tors [BBV07, SHC+04] and emulators [LWG05] provide power or energy
estimation capabilities. They mainly differ in the level of detail in which
they model hardware components and program execution, and hence in
the accuracy of their estimates. The basic approach consists of recording
the time each hardware component spends in each power state, and
combining these data with a calibrated power model of the target node.

Software-based online energy estimation follows the same approach,
but performs time measurements on real nodes [DOTH07]. Different
from simulation or emulation, intricate effects of interrupts and timers
are automatically taken into account. Changes to existing code, overhead
in terms of processing, memory, and code footprint, and lack of visibility
into the instantaneous power draw are the downside of this approach.

By contrast, FlockLab measures power non-intrusively on several
platforms, enabling detailed profiling prior to deployment. Thus,
FlockLab has advantages especially in the early stages of development,
whereas software-based estimation allows for energy profiling on larger
testbeds.

Power and energy measurement. A number of methods exist for
measuring rather than estimating power or energy. Some target external
profiling [MMJ+05, THBR11], while others enable a node to measure its
own consumption [DFPC08, JDCS07]. Different from FlockLab, none
of them addresses the challenge of synchronizing measurements across
multiple nodes.

SPOT [JDCS07] uses a voltage-to-frequency converter to feed an
energy counter that is read by the node. It achieves high accuracy across
a large dynamic range, assuming a constant supply voltage. Aveksha
adopts a similar approach to obtain power traces [THBR11]. The design
in [TW08] measures also the supply voltage to accurately calculate energy
as the voltage varies. iCount provides energy metering at nearly zero cost
by counting the cycles of a node’s switching regulator [DFPC08].

Quanto [FDLS08] builds on iCount to obtain the energy breakdown per
programmer-defined activity, using regression models and causal activity
tracking. Targeting high-performance sensing platforms, [SMK08]
resolves energy usage at the level of processes and hardware components
using a dedicated integrated circuit. By combining GPIO tracing with
power profiling, also FlockLab can be used to track network-wide
activities and subsequently attribute costs to each activity.
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Sensor network debugging. A wealth of research has been devoted
to diagnosing and debugging wireless embedded systems. Existing
approaches target failures caused by interactions among multiple
nodes [KLA+08, RM09], network faults such as routing and node
failures [LLL+08, RCK+05], or node-local bugs including data races and
stack overflows [SEZ10, YSSW07].

Most of these systems feature a frontend that collects data about the
running system and a backend that analyzes these data for possible
failures. FlockLab does not solve the latter, but it provides correlated
power and event traces in a way that is nearly unobtrusive for the
debugged application. This is in sharp contrast with many debugging
techniques that perturb the timing behavior by adding debug statements,
logging events into non-volatile memory, or transmitting debug messages
in-band with application traffic. Because of this, FlockLab can be highly
effective in detecting failures due to time-critical interactions among
multiple nodes, possibly by applying distributed assertions [RM09] or
data mining techniques [KLA+08] on event traces. Moreover, power
traces can be exploited for conformance testing [WLT09] and failure
diagnosis [KLL+10]. For cycle-accurate debugging of a single node,
however, other solutions may be more suitable.

For instance, Aveksha uses a custom-built debug board to interface
with the on-chip debug module through JTAG [THBR11]. It provides
breakpoints, watchpoints, and program counter polling for very detailed
event tracing, and power measurements that can be correlated with
events of interest. Aveksha is truly non-intrusive, except for breakpoints.
However, the design is tied to MSP430-based platforms, and setting
triggers correctly may require detailed knowledge of machine code and
memory addresses. Instead, FlockLab makes distributed event tracing
as simple as LED and printf debugging, supports several platforms and
MCUs, and facilitates the integration of new ones with little effort.

2.6 Summary

FlockLab is the result of a multi-year effort to push beyond the capabilities
of contemporary testbeds, providing the research community with a
shared tool to study wireless embedded system in unprecedented detail.
By providing new GPIO based tracing and actuation services and higher
resolution power profiling than previous testbed approaches, FlockLab
allows to observe states and power dissipation on all nodes in the testbed
with virtually no impact on devices under test. We presented the design
of FlockLab, benchmarked its performance, and demonstrated its utility
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through real-world test cases.
FlockLab has been in operation for 4 years now. During this time,

more than 160 users from all over the world have used the testbed for their
experiments. FlockLab served educational purposes in several university
classes within ETH Zurich and beyond, as well as for experiments that
were part of more than 40 scientific publications.





3
Time-of-Flight Aware Time

Synchronization for Wireless
Embedded Systems

Distributed measurements, e.g., as performed in FlockLab, need a
common time scale in order to totally or partially order events. In this
chapter, we explore and extend the limits of time synchronization in
wireless multi-hop networks.

The requirements on time synchronization depend on the specific
application area. For many applications, accuracies in the millisecond
range is sufficient [CRM+08]. Other applications like distributed control
in automation or distributed measurements, e.g., for network event
analysis [RGD+15] or data acquisition during flight tests [MGHC07],
require a higher degree of time synchronization in order to guarantee
failure-free operation and faithful alignment of observations. In a testbed
such as FlockLab, tightly synchronized measurements are required
to assess interaction between nodes below the level of single radio
transmissions, e.g., sleep and active states of radio receivers or radio
interference.

Established solutions to synchronize distributed systems with
sub-microsecond precision are in general either based on satellite
communication, such as the Global Positioning System (GPS), or wired
infrastructure. Using GPS, it is possible to acquire very accurate timing,
e.g., standard commodity L1-GPS receivers have an average timing error
of 60 ns [u-b14]. For small and spatially limited deployments, or for
locations without satellite reception, wired approaches are an alternative.
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A prominent example is the precision time protocol [ptp08], which
can leverage existing Ethernet infrastructure. However, the cost for
integrating a GPS receiver is high, both economically and power-wise,
and wired solutions for locations without exiting infrastructure have high
initial cabling cost.

If no wired infrastructure or satellite reception is available or too costly,
e.g., in a building without Ethernet infrastructure, time synchronization
using a network of wireless embedded systems might be a viable
solution. Current approaches achieve synchronization errors in the
millisecond to microsecond range using inexpensive hardware, e.g.,
PulseSync has a worst case synchronization error of 19µs in a 30-hop
line topology [LSW14].

Emerging embedded platforms for cyber-physical systems are more
sophisticated than first generation wireless sensor network platforms,
thereby providing higher clock rates and radio transceivers that are
integrated into computation units. Examples of such integrated chips are
the Texas Instruments CC430 or CC2538 series, combining an MSP430
microcontroller core with a sub-1 GHz radio transceiver or an ARM
Cortex-M3 and an IEEE 802.15.4 compliant 2.4 GHz radio. Existing
wireless time synchronization protocols can profit from this development
in several ways. Faster system clocks result in higher time resolution of
packet timestamps, while integration of MCU and radio core on one chip
facilitates tighter control of the radio core.

In light of these developments, we revisit existing concepts with the
aim to narrow the gap between wireless multi-hop time synchronization
and its wired and GPS counterparts, and therefore bringing flexible and
lower cost time synchronization to a wide set of applications that require
sub-microsecond timing accuracy.

Challenges. To increase the coverage of a wireless network, nodes use
intermittent hops to forward information to receivers that are not in
communication range. When targeting sub-microsecond time accuracy,
propagation delays are not negligible and need to be appropriately
considered when exchanging time information. In addition, it has been
shown that fast propagation of time information is essential, as error
accumulation is proportional to the time spent in the network [LSW09,
ZCH11]. Bringing both objectives together is a non-trivial task.

Contributions and road-map. We identify unequal propagation delays
as an important aspect to further increase the accuracy of current time
synchronization protocols. Based on the obtained insight, we propose
the Time-of-Flight Aware Time Synchronization Protocol (TATS), a new
protocol that compensates propagation delays on communication paths.
TATS builds on existing flooding based synchronization approaches and
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introduces propagation delay measurements without sending additional
packets.

In summary, this chapter makes the following contributions:

• In Section 3.2, we assess the impact of propagation delays on two
state-of-the-art synchronization protocols, namely Glossy [FZTS11]
and PulseSync [LSW09]. We reveal a dependency between the
minimal achievable global synchronization error and network
topology, and thus motivate the need for propagation delay
compensation.

• In Section 3.3, we design TATS, a multi-hop time-synchronization
protocol that compensates the propagation delay experienced on
communication paths with no additional packet complexity.

• We discuss implementation details of TATS on a recent hardware
platform in Section 3.4.

We evaluate TATS in Section 3.5 and compare its performance against
Glossy and PulseSync on FlockLab (see Chapter 2). To show the impact
of network topology on the global synchronization error, we use three
different topologies: a short and a long 22-hop line topology, and a
dynamically built distribution tree. Overall, TATS achieves an average
synchronization error of 0.24µs and a maximal synchronization error
of 0.54µs, which is up to a factor of 6.9 better than its competition.
To the best of our knowledge, we are the first to report of a sub-
microsecond synchronization error over tens of hops using off-the-shelf
wireless embedded nodes.

3.1 Related Work
This section summarizes publications closely related to the proposed
TATS protocol. For an exhaustive survey on time synchronization
protocols, the reader is referred to [SH15].

Wireless sensor networks. Table 3.1 gives an overview on synchro-
nization accuracies reported for time synchronization protocols running
on typical sensor node platforms. Direct comparison by numbers
is not possible because evaluations are conducted under different
circumstances. In addition, accuracies are sometimes reported as mean
absolute error, i.e., the unsigned deviation, and sometimes as mean signed
deviation. The latter generally results in lower values.

TPSN [GKS03] employs a two-way message exchange to measure
the delay introduced by the communication stack. Although such
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Table 3.1: Reported synchronization errors. If not mentioned otherwise, error
values are reported as magnitudes.

Protocol Hops Interval Avg Max Platform

TPSN 1 -b 16.9µs 44µs Mica
FTSP 6 30 s 2.3µs 14µs Mica2
FTSPa 1 10 s 0.13µs c n/a Epic
RATS 11 30 s 2.7µs 26µs Mica2
PulseSync 30 10 s 2.06µs 19µs Opal
Glossy 8 -b 0.4µsc n/a TelosB

ausing virtual high resolution timer [SDS10]
b single measurements, no linear regression
cmean signed deviation, not mean absolute error

measurements include physical propagation delays of electromagnetic
waves, other delays, e.g., jitter in radio interrupts, dominate the
measurements. Different to our approach, TPSN creates a fixed
hierarchical network structure and two messages are exchanged per link
for a two-way delay measurement and time synchronization. In contrast,
TATS builds on a dynamically built flooding tree and only one broadcast
message per node to perform the same measurements.

By employing more sophisticated MAC-layer timestamp-
ing [MKSL04], the measured delay between sending and receiving a
packet has a significantly narrower distribution and can be approximated
by a constant value. This enables time synchronization using only
unidirectional communication, e.g., FTSP [MKSL04], RATS [KDL+06]
and PulseSync [LSW14] synchronize a network by flooding time
information using broadcast messages. Communication patterns are less
complex because flooding does not need a sophisticated routing tree.
Different to TATS, performance of these protocols depends on the choice
of a message delay calibration and on the distribution of propagation
delays between individual nodes.

Glossy [FZTS11], a flooding architecture for wireless sensor networks
based on concurrent transmissions implicitly provides network-wide
synchronization. As such, common reference times can be computed
on every node of the network. In contrast to TATS, Glossy does not
foresee propagation delay compensation or drift compensation.

TATS builds on various concepts introduced by other time syn-
chronization protocols. We use linear regression, as introduced by
RBS [EGE02], to compute the offset and the speed of the local
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clock relative to a reference clock. Same as RATS [KDL+06] and
PulseSync [LSW14], TATS coordinates packet transmissions in order
to achieve fast information propagation over several hops. By doing
so, clock drift on forwarding nodes have a lower impact on time
synchronization error. In [SDS10], the idea of high resolution, low-
power clocks is introduced, which reduces the synchronization error.
To accurately timestamp radio packets, TATS relies on a high frequency
clock.

In summary, propagation delay has been treated as a negligible source
of synchronization error in wireless sensor networks. In contrast to
the mentioned work, we show that propagation delay plays a major
role for sub-microsecond time synchronization accuracy and we propose
TATS, a new time synchronization protocol that compensates for different
propagation delays per link. TATS brings together the simplicity of
unidirectional network flooding and the propagation delay awareness
of two-way message exchange schemes.

High latency acoustic networks. While the need for compensation of
propagation delays in air has been mostly neglected, it is more prominent
in underwater networks [HYW+06]. In water, acoustic waves are used for
communication. Compared to RF communication, the speed of acoustic
waves is five orders of magnitudes slower. Due to different environmental
influences such as multi-path effects or time dependent propagation
characteristics, it is unclear whether such synchronization protocols can
be directly applied to RF based communication. In addition, complex
messaging hinders fast dissemination of time information over several
hops. TSHL [SH+06] employs a two-phase approach to first estimate the
local speed of the clock and then use a two-way message exchange to
measure the propagation delay.

3.2 Impact of Propagation Delay

In this section we motivate that it is important to take propagation delay
into account when designing a time synchronization protocol. We use
the term propagation delay to refer to the duration a signal travels between
the antennas of two communication partners. First, we quantify the
propagation delay in wireless embedded systems and compare it against
other errors present when synchronizing time in multi-hop networks.
Then, we analyze the impact on PulseSync and Glossy, two state-of-
the-art time synchronization protocols that treat propagation delay as a
negligible quantity.
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3.2.1 Time-of-Flight vs. Other Sources of Error
In order to assess the impact of propagation delays in wireless embedded
systems, we put the error into perspective. Radio communication,
based on electromagnetic waves, propagates at the speed of light, i.e.,
approximately 3 × 108 m/s. The indoor communication range of a typical
wireless sensor node is 20–30 m [MEM11]. Accordingly, a message
traveling between two nodes can experience a propagation delay of up to
100 ns.

To put this value into perspective, we consider time synchronization
accuracies reported in literature as listed in Table 3.1. Although one
cannot directly compare the protocols, as they are evaluated on different
hardware platforms and using different settings and algorithms, we get
a good picture of accuracies currently attained. As stated by [LSW09],
synchronization error in a multi-hop network is a function of the network
diameter. The more hops involved, the worse the accuracy. Depending
on the algorithm, the error grows exponentially, linearly, or sub-linearly
(
√

diameter) with the network diameter [LSW09]. To approximate the
error introduced by each hop, we divide the average error by the number
of hops. The lowest value for protocols in Table 3.1 results from the
PulseSync protocol: 2.06µs/30 = 67 ns. Except for TPSN, all the listed
protocols treat propagation delay as being constant.

We conclude that the impact of varying propagation delays is
comparable to the error introduced by other effects like jitter when
timestamping a packet or clock drifts between nodes. For outdoor
deployments, the effect of propagation might be even more severe,
as communication ranges are larger. Some deployments exhibit
node distances of several hundreds to thousands of meters, e.g., on
bridges [KPC+07] or in alpine environments [per].

3.2.2 Existing Multi-hop Time Synchronization Protocols
To assess the potential of propagation delay compensation, we investigate
two recent protocols that are representative for the current state-of-the-
art for time synchronization in wireless sensor networks. We identify
shortcomings that prevent better accuracy just by increasing the frequency
with which nodes re-synchronize. In the following, we use the term
message delay to refer to the time between timestamping a message on the
sender and the receiver. This delay also includes the propagation delay.

PulseSync [LSW14] builds on the insight that it is beneficial to forward
time information as fast as possible through the network. To do that, the
protocol floods pulses through the network. Each node sends exactly one
message within each pulse after having received the message from its
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predecessor. The initiating reference node embeds its current clock value
into the message. All forwarding nodes update the time value by adding
the message delay and the dwell time of the message. Here, the dwell time
is the difference of the local clock values taken at receive-time and at send-
time. The message delay for all pair-wise links is assumed to have the
same normal distribution with a known mean value, i.e., the “differences
in radio propagation times can be neglected in sensor networks” [LSW09].
The message delay is determined during a calibration phase.

Every message received serves as a sample point that relates the
reference node’s time to a local clock value. The slope and the offset of each
node’s local clock is then calculated using least squares linear regression
over the last k sample points. PulseSync implements an optional drift
compensation to reduce the error that is added by updating the time
information in the packet on each node. This error stems from measuring
the dwell time using local clocks that run at a slightly different speeds
than other nodes.

To estimate the impact of calibrating the protocol with a single
propagation delay parameter τc, we assume in the following a network
where packets are perfectly timestamped (no jitter) with an arbitrarily
accurate time resolution. Nodes have perfect clocks without drift and
the message delay is equal to the propagation delay. Let us denote the
number of hops a packet in a pulse travels from the reference node to
node v as hv, and the real accumulated propagation delay on this path
from the reference node to v as τv. Since the constant message delay τc

is added to the reference time at each hop, the error that results from
imperfect knowledge of the propagation delay at node v is hvτc − τv. The
resulting global synchronization error G, i.e., the maximal pairwise error
across all nodes in the network is

G = max
v

(hvτc − τv) −min
v

(hvτc − τv). (3.1)

We see that the resulting global synchronization error heavily depends
on the network topology, i.e., hv and τv. An optimal parameter τc that
minimizes G can be found using linear programming. In general, it is
difficult to find the optimal τc as this requires knowledge of all possible
paths of the flood and the respective path delays. In addition, network
structures change over time, e.g., due to mobility or changes in the
environment, necessitating an adaption of τc. A necessary condition for
the error to vanish completely is that all path delays τv are multiples of
τc, which is very unlikely to be the case in a real wireless sensor network
deployment.

Glossy [FZTS11] is a flooding mechanism based on concurrent
transmissions that allows to disseminate messages in a multi-hop network
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as fast as possible. To synchronize time, an initiator node starts a flood and
embeds its clock value into the first packet. Every node that receives
a packet immediately retransmits it, thereby effectively synchronizing
packets sent in the same slot. With every transmission, a counter value c
contained in the packet is incremented by one. With this information it is
possible to calculate an estimate of the start time of the flood as

ˆtref = Tc0 − c0tslot, (3.2)

where Tc0 is the local time of the first received packet and c0 the counter
value contained in this packet. The propagation delay is contained
in the tslot value, as this is the interval between the start of a packet
transmission with relay counter c and the start of the following packet
transmission with relay counter c+1. Nodes estimate tslot locally using
packet timestamps. In [FZTS11], the authors assume that “tslot is a
network-wide constant, since during a flood nodes never alter the packet
length”.

There are two aspects where propagation delay plays a role: (i)
the timestamp Tc0 is affected by different propagation delays, leading
to a similar effect as for PulseSync if a constant propagation delay is
assumed for the whole network; (ii) the slot time tslot is strictly speaking
not a network-wide constant, but rather depends on the immediate
neighborhood of a node. To show this, we conduct following experiment.
We let Glossy run in a setup as shown in Figure 3.1: three nodes are placed
within different distances to each other. No communication is possible
between the two outer nodes1.

Communication link (I)-(F) experiences a longer delay than link (I)-
(N). Node (I) starts a flood, while (F) and (N) participate in the flood.
After receiving (I)’s message, (F) and (N) are transmitting the message
concurrently. As (N)’s signal is received stronger at (I), due to capture
effect [LF76], the packet sent by (F) has no impact on the timing at (I).
After a while, we turn off (N).

The acquired slot estimates on individual nodes are shown in Table 3.2.
When all nodes are participating in the flood, the estimates are similar.
However, as we turn off the closer node (N), slot estimates become larger
by approximately 150 ns. Such variations in tslot have a large impact on the
calculated reference time (3.2) because they are multiplied by the number
of hops c0.

1Communication channels are enforced by coaxial cables.
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IN F
10 m 50 m

Figure 3.1: Experimental setup to show the influence of the capture effect on
slot length measurements.

Table 3.2: Slot times estimated during Glossy floods.

Initiator (I) Node (F) Node (N)

All nodes 516.78µs 516.78µs 516.78µs
Without (N) 516.93µs 516.95µs -

Difference 0.15µs 0.17µs -

3.2.3 The Need for Propagation Delay Compensation
Varying propagation delays can introduce per-hop errors as high as
100 ns for indoor deployments and are therefore relevant when aiming
for sub-microsecond synchronization accuracy. State-of-the-art time
synchronization protocols handle errors well that stem from clock drift
and message delay jitter, by providing a fast flooding mechanism or
combining several measurement points using linear regression, but lack
the awareness for propagation delays.

3.3 Time-of-Flight Aware Time Synchronization
In this section, we describe TATS, our new protocol that combines per-
link message delay compensation and fast flooding for highly accurate
time synchronization. As seen in Section 3.2, synchronization accuracy
suffers from unknown propagation delays between nodes. Therefore we
want to compensate for this variation across the network, while keeping
the advantages of state-of-the-art protocols, namely high synchronization
accuracy due to fast dissemination, and low overhead due to flooding.
Furthermore, the number of additional messages needed should be
minimal.

We decompose the propagation delay compensation on a link into
two steps: (i) estimating the delay on a link, and (ii) updating the time
value contained in a message by adding the delay estimate. The message
delay on a link can be estimated using two-way delay measurements, as
depicted in Figure 3.2, also applied by TPSN [GKS03]. Two messages are
exchanged per link: node 0 sends a packet to node 1 and remembers the
timestamp T0. Upon reception, node 1 replies with a packet that contains
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Figure 3.2: Two-way round-trip measurement.

the dwell time ω1, which is then used by node 0 to compute the two-way
delay as R1→0 − T0 − ω1, where R1→0 is the reception time of the packet at
node 0. The one-way delay is computed by dividing the two-way delay
by two.

Adding low overhead message delay compensation to existing flooding
based protocols is challenging for three reasons:

1. In contrast to flooding, where every node sends just one broadcast
packet, the two-way delay measurement involves two packets per
link and adds therefore considerable overhead.

2. After a message exchange, only the initiating node (node 0 in
Figure 3.2) knows the delay. As floods are based on broadcasts
and it is therefore unknown who will receive the packet, the delay
estimate has to be compensated by the receiving node(s), hence the
propagation delay knowledge is needed at the receiving node 1.

3. Two-way delay measurements are only feasible if links are
bidirectional. Flooding does not have this restriction and therefore
might use links for which message delays are not obtainable.
Unidirectional links are very common in real deployments,
e.g., [OC10] reports on a testbed where 46 % of the links are
unidirectional.

Next, in Section 3.3.1, we give an overview of our approach. In
Section 3.3.2, we describe our method to measure message delays using
broadcast packets, and finally, we introduce a heuristic that makes our
protocol more resilient to non-symmetric links in Section 3.3.3.

3.3.1 Overview
The aim of TATS is to establish a global time on all nodes in the network
that is synchronized to a reference node. The network is assumed to
be short term stable, i.e., the mean propagation delay between nodes
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Figure 3.3: Round-trip measurements are based on time information embedded
into time synchronization packets. A parent node 0 can acquire several measurements
by listening to the packets that are transmitted by its children 1 and 2.

only changes slowly over time. This assumption is reasonable for static
networks. We use PulseSync [LSW14] as a starting point and extend
it with a propagation delay compensation: Similar as in PulseSync,
messages containing the reference time are periodically flooded to all
nodes, initiated by the reference node. Each node participates in the
flood by (i) reading the reference time (ii) adding the message delay to it
and, (iii) on transmission, adding the dwell time to the reference time. All
communications are broadcasts and nodes transmit once for every flood,
after a random and short timeout after receiving a packet. Each flood
implicitly creates a routing tree, thereby defining a parent-child relation
between nodes.

Received delay-compensated reference times are stored in a table
together with the corresponding local reception times of packets. A node
then performs a least squares linear regression on these value pairs to
calculate the time offset and clock drift of the local clock relative to the
reference clock.

Different to PulseSync, TATS applies individual message delays for
each link in step (ii). Two-way message delays are measured by piggy-
backing additional information onto regular synchronization packets. In
this way, we add propagation delay compensation to PulseSync without
sending additional packets. Next, we detail our approach for propagation
delay measurements.
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3.3.2 Propagation Delay Estimation
Let’s consider Figure 3.3, which depicts a small part of a network
consisting of three nodes. All links are bi-directional, i.e., communication
is possible in both directions. Node 0 starts a flood by sending a broadcast
packet containing the reference time. This packet is received by nodes
1 and 2. After a random timeout, each receiver updates and forwards
the packet. As all transmissions are broadcasts, node 0 overhears the
forwarded packets. This chain of actions resembles the same information
flow as is needed to carry out a round-trip time measurement, as shown
in Figure 3.2. To use this information flow for two-way measurements,
messages need to contain the dwell time ω and the identifier of the
parent. The latter is needed because communication is based on broadcast
packets. Without that information, node 0 could not distinguish between
messages of its child nodes and messages of other nodes. The one-way
message delay between nodes v and w after flood k is computed as

δk
v↔w =

Rw→v − Tv − ωw

2
. (3.3)

Tv and Rw→v are the timestamps taken at node v when node v sent
its message and when it received a message from node w. The dwell
time on w is denoted as ωw. Because propagation delays are short term
stable, a more accurate delay estimate δ̄k

v↔w can be obtained by averaging
N consecutive measurements:

δ̄k
v↔w =

1
N

k∑
i=k−N+1

δi
v↔w (3.4)

In this way, parents can obtain message delay estimates for all links
towards all their children. Every node keeps a number of most recent
delay measurements in a table. As stated in Section 3.2, the estimates are
needed on child nodes to compensate for propagation delays. To inform
child nodes about message delays, parents embed the obtained average
message delay into the time synchronization packet. The resulting packet
format of TATS is shown in Table 3.3. A parent needs to forward estimates
to potentially many children. As only a limited number of estimates fit
into a synchronization message, parents select estimates to send in a
round-robin fashion.

For every received time synchronization message in a flood, a child
node w compensates the message delay by looking up the value belonging
to the link v → w and adds that to the received reference time Gv→w to
obtain the compensated reference time Gw:



3.3. Time-of-Flight Aware Time Synchronization 57

Table 3.3: Structure of synchronization packets.

Name Description

Sequence numbera Sequence number of flood
Reference time Ga Global time

Node ID of parent Parent ID in this flood
Dwell time ω Elapsed time between receiv-

ing and sending

Node ID of measurement Identifies the link of the
measurement

Message delay δ̄ Average message delay
measured by this node

aSame as in PulseSync

Gw = Gv→w + δ̄v↔w (3.5)

The proposed mechanism does not prevent collisions, e.g., node 1
and node 2 in Figure 3.3 could potentially send their packets at the same
time during a flood, therefore render it impossible to perform a delay
measurement. As timeouts are random, eventually, in a consecutive
flood, a measurement will be possible. Because message delays are short
term stable, a certain delay in measuring and distributing estimates is
permitted and has a negligible effect on the performance.

3.3.3 Avoiding Unidirectional Links

A

B

C

m1 m2

m1

Figure 3.4: Unidirectional links prevent round-trip measurements. By
introducing a short delay, intermediate nodes get the chance to forward the time
information over bidirectional links.
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The proposed mechanism for round-trip measurements requires that
links can be used in both ways, otherwise message delay measurements
are not possible. Possible reasons for unidirectional links are interference
or weak signal powers close to a receiver’s sensitivity threshold. In
the situation illustrated in Figure 3.4, node C can hear node A, but
communication in the opposite direction is impossible. Therefore, the
propagation delay between A and C cannot be estimated. If there is an
additional node B with bidirectional links to both A and C, route A→B→C
would allow for round-trip measurements on each link and consequently
propagation delay compensation could be applied. We observe that in
Figure 3.4, node C will eventually receive a message directly from A (m1)
and another one relayed over B (m2). By ignoring the earlier message m1,
we can establish the desired route.

TATS exploits this observation to reduce the number of unidirectional
links used in a flood. Every time a packet is received over a link with
unknown message delay, an additional waiting period is introduced
before forwarding the message. If a messages from a neighbor with
known message delay arrives during this period, the earlier message is
ignored.

Our evaluation in Section 3.5.2 shows that this heuristic results in more
round-trip measurements and less missing delay estimates.

3.4 Implementation
We implement TATS in Contiki OS [con] on a CC430 developer board to
show its feasibility and to benchmark the performance.

Hardware platform. We use the Olimex MSP430-CCRF developer
board [OLI13] as hardware platform for our implementation. This board
features a low-power Texas Instruments CC430F5137 SoC, providing
32 kB of program memory and 4 kB of RAM. The chip integrates an
MSP430 core and a CC1101 sub-1 GHz radio with configurable bit rate and
radio modulation. The on-board printed PCB-antenna is used. A 26 MHz
quartz oscillator provides the basis of a stable 13 MHz system and timer
clock. The quartz has a nominal frequency deviation of ±10 ppm and a
temperature dependent deviation of ±10 ppm over the specified range
from -25 to 75◦C. System time is stored in a 16-bit counter value and
extended, on overflow, by incrementing an additional integer variable to
a 64-bit timestamp.

Message timestamps. For propagation delay measurements, timestamps
are taken on the sending and on the receiving nodes. Packet based radios
like the CC1101 generate interrupts when a synchronization symbol is
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R

Figure 3.5: Timestamps for one message transmission. Timestamps T and R
are inaccurate due to asynchronous clocks and uncertainties introduced with radio
modulation.

detected. These interrupts occur both on the sender and on the receiver.
The chain of events involved in message timestamping is shown in
Figure 3.5. As soon as the sender has transmitted the synchronization
symbol, an interrupt signal is generated. At the next rising edge of the
sender’s clock, the value of the timer register is stored as the timestamp
T. On reception of the synchronization symbol, the receiver stores its
timestamp R in a similar way.

Message timestamps are affected by jitter, which is caused by
asynchronously running digital clocks and conversion between digital
and analog domain when generating or decoding the radio signal. The
smaller the jitter, the more accurate the resulting time synchronization.
Therefore a fast clock is beneficial for synchronization.

We configure the radio to use GFSK modulation and a data rate of
250 kbps. The distribution of the message delay over a short distance,
experimentally measured using two nodes on a desk and an external
logic analyzer, is shown in Figure 3.6. The delay is normally distributed
with a mean value of 13.68µs and a standard deviation of 107 ns.
Compared to other hardware platforms, this is a relatively low value (see
Table 3.4). Lower jitter should potentially lead to lower synchronization
error, provided the clock resolution for timestamps is sufficiently high. In
our case, we can rely on a 77 ns clock resolution. We use the capability of
the MSP430 to capture time values with dedicated capture registers, thus
avoiding software interrupt delays when taking timestamps.
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Figure 3.6: Message delay distribution of the CC430 radio on a single link. The
dashed curve is a fitted normal distribution with a mean value of 13.68µs and a standard
deviation of 107 ns.

Table 3.4: Standard deviations for message delays on different platforms.

Platform Standard deviation

TelosB [PSC05] 41 ns [SDS10]
Opal (AT86RF231) [J+11] 180 ns [LSW14]
Mica2 [HC02] 1.95µs [SW09]
RF230 radio 370 ns [SDS10]
MSP430-CCRF 107 ns

3.5 Evaluation
In this section we evaluate TATS in FlockLab (see Chapter 2). As TATS
does not employ explicit two-way round-trip measurements, we will
evaluate how quickly delays are measured by parents and forwarded to
child nodes. In a second experiment, we do a head-to-head comparison
of TATS against PulseSync and Glossy in different network structures.
Our experiments reveal the following key findings:

• TATS quickly acquires message delay estimates solely based on
network flooding.

• Despite unidirectional links, the acquired delay estimates allow to
compensate propagation delay on 95 % of all involved links.

• In a 22-hop line topology TATS performs up to 6.9× better than
PulseSync with respect to the average maximal synchronization
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error and 3× better than Glossy and PulseSync on a shorter dynamic
topology.

• In all settings, TATS’s maximal synchronization error is clearly below
1 microsecond.

3.5.1 Experimental Setup
A common method to evaluate the synchronization accuracy of a protocol
on real hardware is to put all the sensor nodes into a single broadcast
domain and enforce a logical topology in software, i.e., only certain
links are allowed to be used for communication. The accuracy is then
measured by letting all nodes capture the time of a commonly received
packet [LSW14, MKSL04]. Using a message as common reference is not
preferable in our case as this message is also affected by propagation
delays and would therefore reach different nodes at different time
instances. Moreover, such a setting does not resemble well a real
deployment, where nodes are scattered over a large area.

Therefore we choose a more realistic approach by letting nodes
actually form a real multi-hop network. We run our tests on FlockLab
where 31 nodes are spread over an area of 75 × 35 meters in an office
environment and also outdoors. The detailed layout of the testbed is
shown in Figure 3.7. Since FlockLab’s time accuracy is not sufficient
to accurately measure time in the sub-microsecond range, we equip six
nodes with GPS receivers that generate an accurate reference pulse, i.e.,
a digital signal that has a low-high transition every second. This pulse is
then connected to a GPIO pin of a node and timestamped using capture
registers. The computed global timestamp of this event is then used to
calculate the synchronization error. The employed LEA-6T GPS receivers
provide timing accuracy with a root-mean-square error of 30 ns [u-b14].

For all experiments, we use a transmission power of 10 dBm and a
radio frequency of 870 MHz.

3.5.2 Propagation of Message Delay Estimates
This experiment evaluates the feasibility of message delay measurements
without additional packets, only based on flooding. In TATS, two-
way delays are measured by parent nodes and then forwarded to child
nodes. As described in Section 3.3.3, unidirectional links prevent two-way
delay measurements, therefore TATS introduces a strategy to circumvent
unidirectional links. If a synchronization packet is received over a link
with unknown propagation delay, nodes wait for an additional waiting
period for a synchronization packet on a link with known propagation
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0 10 20 30m

node

node (GPS)

short

long

Figure 3.7: Testbed layout and software enforced path for the short and long line
topology. Nodes in black are equipped with a high precision GPS receiver that generates
a synchronized reference pulse. In the dynamic topology, all nodes participate.

delay. In this experiment, we quantify the impact of this strategy. We run
TATS once without additional timeout (immediate forwarding) and once
with a waiting period of 10 ms (delayed forwarding).

Setup. For each configuration, we let the synchronization protocol run
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Figure 3.8: Available link delay estimates, on parents and on child nodes for
TATS using immediate and delayed forwarding. Measurements propagate quickly
from parents to child nodes. Delayed forwarding achieves 37 % more measurements and
covers 85.5 % of all possible links.
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Figure 3.9: Percentage of compensated links during floods. Both protocol variants
quickly acquire delay measurements for relevant links, while delayed forwarding has more
coverage and stabilizes at a level of 95 %.

for one hour on all nodes in the testbed. The GPS node in the upper
left corner in Figure 3.7 is used as reference node. We configure TATS to
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have a synchronization period of 1 s. For every synchronization round,
nodes report the number of message delays measured (as parent) and
the number of delay measurements received (as child node). In addition,
we count the number of unknown message delays when updating the
global time in forwarded messages. From a regular link measurement on
FlockLab, we extract the number of available communication links to put
our experiment into perspective. On average, we see 101 links between
31 nodes, 29.8 % are mostly unidirectional.

Results. Figure 3.8 shows the average number of estimated link delays
per node, while Figure 3.9 presents the ratio of links that are compensated
when running TATS. The latter uses a subset of all estimated link delays,
i.e., those links that are part of the flooding tree. For both variants,
measurements propagate quickly from parents to child nodes, which
results in a very small difference in available delay estimates between
parents and children. We find that delayed forwarding is beneficial and
achieves 37 % more estimated links than immediate forwarding. Delayed
forwarding leads to an increased coverage of links and also to less missing
estimates while forwarding packets.

This experiment confirms the usefulness of delayed forwarding and
shows that it is feasible to perform two-way delay measurements based
on network flooding, even in the presence of unidirectional links.

3.5.3 Comparison to PulseSync and Glossy
In this experiment, we compare TATS against PulseSync and Glossy. To
assess the synchronization accuracy, the global synchronization error is an
important metric, i.e., the maximal pairwise difference between clock
values of all node in the network. Technically this is not possible with
our setup, as we would need a GPS receiver next to every node. A
representative coverage of the network is attained by placing the GPS
receivers evenly distributed. Instead of the global synchronization error,
we measure the synchronization error relative to the reference node

Gr = max
v∈V

(|tr − tv|). (3.6)

Here, the set V contains all GPS nodes except the reference node r.
The clock values tr and tv are timestamps of GPS pulses, converted to
global time. For each test run, we report the average and the maximum
synchronization error Gr over the duration of the test.

Setup. We measure the accuracy in three different settings: a dynamically
formed network and two different 22-hop line topologies. The dynamic
network has a diameter of approximately 6 hops. Line topologies are
enforced in software as shown in Figure 3.7: line topology short has a
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Table 3.5: Accuracies measured for different protocols.

Setting avg error max error PRR

TATS long 0.21µs 0.54µs [0.96..1.00]
TATS short 0.23µs 0.46µs [0.99..1.00]
TATS dynamic 0.24µs 0.54µs [0.90..1.00]
PulseSync long 1.43µs 1.85µs [0.98..1.00]
PulseSync short 0.93µs 1.31µs [0.99..1.00]
PulseSync dynamic 0.75µs 1.23µs [0.96..1.00]
Glossy dynamic 0.72µs 1.46µs [1.00..1.00]

length of 182 m, while line topology long has a length of 283 m. This
way, we evaluate the impact of different propagation delays and different
network structures on TATS’s synchronization accuracy.

PulseSync is calibrated using a single message delay parame-
ter [LSW14]. We averaged a total of 2014 measurements between
two nodes to estimate this parameter. As we forward packets as fast
as possible, we implement both PulseSync and TATS without drift
compensation, as the effect of drift would be marginal. In case of larger
clock drifts between nodes, caused e.g., by large temperature differences,
drift could be compensated as described in [LSW14].

For a fair comparison, we perform the same linear regression as
in TATS also for Glossy. As enforcing a real 22-hop line topology is
not possible for concurrent transmissions in a setup with unrestricted
communication, we compare Glossy only on the dynamic topology.

We configure all three protocols to use a synchronization interval of
1 s and a regression table of 80 samples. In total, seven different test runs
are performed, each possible combination of protocol and topology once
for a duration of one hour.

Results. Figure 3.10 shows the distribution of the maximal absolute time
difference to the reference node over all synchronization rounds. The error
distribution is stable for TATS on all three topologies, while PulseSync
exhibits varying performance. In addition, the error is significantly higher
than the one of TATS. Both effects can be attributed to the fact that a
single point calibration of message delay cannot sufficiently represent the
conditions in the whole network. Glossy exhibits a similar performance as
PulseSync on the dynamic topology. Figure 3.11 shows the evolution over
time. The error settles for all protocols after only a few synchronization
rounds.

If we consider the average error of individual nodes in Figure 3.12, we
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Figure 3.10: Cumulative distribution of synchronization errors, measured
relative to the reference node. While PulseSync performs different on the three
topologies, TATS can adapt and compensate for different propagation delays.
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Figure 3.11: Maximal synchronization error over time. For better visibility, only
the first 500 rounds are shown.
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Figure 3.12: Average synchronization errors over time per node. Bars indicate
standard deviation.

see that the error is evenly distributed for TATS on all topologies (a), (c),
(e), while nodes running PulseSync are affected by more variance (b), (d),
(f). The distribution for Glossy (g) is similar to PulseSync (f).

Key figures for all test runs are summarized in Table 3.5. TATS
performs up to 6.9× better than PulseSync with respect to average
maximal synchronization error and 3× better than Glossy and PulseSync
on a dynamic topology with smaller diameter. In all settings, TATS’s
maximal synchronization error is below 1 microsecond. The lowest
packet reception rate (PRR), i.e., the ratio between sent and received
synchronization packets, is 0.9 over all test runs. Missing synchronization
packets potentially lead to reduced accuracy, as less sampling points for
the linear regression are available.
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3.6 Summary
We have presented TATS, a new and highly precise time synchronization
protocol for wireless embedded systems. TATS combines fast flooding
and message delay compensation at similar message cost as existing
protocols without delay compensation. Experiments on a testbed
that resembles real deployment scenarios well with respect to node
distances show that (i) TATS achieves up to 6.9× better accuracy than
state-of-the-art protocols, and (ii) can synchronize even networks with
large diameters of up to 22 hops within sub-microsecond accuracy.
This makes time synchronization using wireless sensor networks a
viable option to wired or GPS-based high precision systems. More
generally, TATS can be employed wherever precise clock synchronization
is necessary. We explore in the next chapter the idea of using a wireless
time synchronization protocol like TATS to date distributed events in
FlockLab.





4
Fine-Grained Tracing of Time

Sensitive Behavior in Wireless
Sensor Networks

While the currently available testbed services already cover many areas
beyond the basic needs of wireless embedded application engineers,
support still lacks for network-wide, fine-grained cycle-accurate event
tracing to enable inspection of time sensitive system behavior. To illustrate
this, we consider two examples:

1. Low-power MAC protocols require exact and coordinated timing
of actions to ensure efficient operation, e.g., Glossy relies on
constructive interference of concurrently transmitted packets, which
requires transmissions of neighboring nodes to be aligned within
0.5µs [FZTS11]. To observe and validate the interaction between
different nodes in such a network, a distributed tracing mechanism
must be minimally invasive and deliver the recorded trace of each
individual node tightly time-synchronized with all other concurrent
traces.

2. Control-flow tracing of programs allows for efficient debugging and
to find potential failure causes [SEZ10]. In this case, every branch
instruction in a program needs to be traced. The resulting enormous
volume of tracing points necessitates an efficient and minimally
intrusive trace recording system.

Existing testbed approaches are either too intrusive (e.g., using printf
over a serial port), or not general enough to meet the diversity of available
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node platforms (in system debugging [SK13],[THBR11]). More crucially,
none of the available testbeds—including FlockLab, as described in
Chapter 2—is able to align traces with the required accuracy and cope
with high peak event rates.

Contributions. To overcome the limitations of current testbeds, we
introduce FlockDaq, a new distributed data acquisition system that is
capable of tracing mote application behavior at a high time resolution
in a minimally invasive manner, tightly synchronized throughout all
nodes in the testbed. The basis of our new system is the FlockLab
testbed architecture, which provides a distributed network of observer
platforms that are used to stimulate and monitor the attached devices
under test, the targets. We build on the idea of the existing GPIO
tracing and actuation services, and extend their capabilities with respect
to sampling resolution, peak sampling rate, and time alignment of traces by
several orders of magnitude. By including short GPIO instructions into
node applications, the program behavior can be traced in a minimally
invasive manner. The design of the new data acquisition system consists
of a field-programmable gate array (FPGA) and a CC430 SoC with RF core.
The FPGA chip handles the timing sensitive data acquisition part, while
the SoC is running a wireless time synchronization protocol to keep the
system time of the FPGA chip on each observer synchronized. A testing
environment to observe node interaction on a detailed level requires
synchronization accuracy that rules out the commonly used network
time protocol NTP [MMBK10]. For local networks, the precision time
protocol PTP [ptp08] is a more accurate alternative, while GPS receivers
provide accurate synchronization on a global scale. PTP requires special
hardware support within the network infrastructure, while GPS receivers
only provide accurate synchronization in places with good satellite
reception. As we want to support both, indoor locations with possibly
insufficient GPS satellite reception as well as outdoor locations with
limited infrastructure support, we identify time synchronization using
a low-power wireless multi-hop network, e.g., as described in Chapter 3,
to be a viable solution. We integrate a synchronization algorithm based
on Glossy [FZTS11] into FlockDaq’s data acquisition system, and show
that the synchronization performance can be considerably improved by
applying a jitter reduction filter.

Challenges. Depending on the node application, tracing an execution
path with many conditional branches within a short time window requires
an efficient data handling mechanism that can manage high peak data
rates. To faithfully capture the interaction between different nodes in
the network, measurements need to be accurately time-synchronized.
The required combination of high peak sampling rate and accurate
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time synchronization makes designing such a data acquisition system
a challenging task.

Findings. Our system is designed to capture GPIO events with a time
resolution of 0.1µs. According to the evaluation in Section 4.5, our
prototype sustains a peak event rate of 108 events/s, while the maximal
average event rate the system can handle is 2.85×105 events/s. Expressed
in numbers of the TelosB node platform, this event rate allows to
continuously trace a program of which one third of the instructions change
GPIO states.1 Typical low-power applications exhibit even less events to
trace due to energy saving strategies that put the CPU to a sleep mode.
Measurements in a 31-node network assisted by GPS precision timing
show that FlockDaq aligns concurrently recorded traces within 1µs with
an empirical probability of 99.9 %.

In the following, we discuss related work in Section 4.1 and derive
the requirements for a fine-grained, distributed trace recording system
in Section 4.2. In Section 4.3, we give an overview of the system design
and discuss the data acquisition system and the time synchronization
mechanism in detail. We explain implementation specific details in
Section 4.4, evaluate key properties of FlockDaq in Section 4.5, and
conclude the chapter in Section 4.6.

4.1 Related Work
Related to this chapter are hardware and software solutions that allow to
trace embedded system behavior, both on a single entity and at network
scale. In addition, we discuss time synchronization protocols for low-
power wireless embedded systems and time synchronization using a
1-pulse-per-second (PPS) signal.

Tracing system behavior can be realized either on the target device
itself, or using external hardware. Software solutions instrument program
code at branch instructions and use efficient encoding to log control flow
traces to flash memory [SEZ10]. Another instrumentation approach is
pursued by Tardis [TSBE15], which rather logs non-deterministic program
inputs as a trace for later replaying using a simulator. While software
solutions are easily applicable and can provide very accurate information
about the state of a node, the required resources on the target for
processing and storing the traces render such an approach unsuitable
to trace time sensitive behavior. Indeed, experiments with Tardis reveal
that the CPU duty cycle of standard node applications can almost double
when tracing is enabled [TSBE15].

1Assuming a clock speed of 4 MHz.
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Additional hardware can offload data processing from the target to
an external observer platform, providing an out-of-band communication
channel in addition. Two different data extraction methods are commonly
applied in this context: On-chip debug interfaces or simple GPIO pins
for binary state information. Aveksha [THBR11] uses a debug board
extension to trace events of interest on a single target using the on-chip
debug module of the MSP430 microcontroller. A low-cost and networked
solution is provided by Minerva [SK13]. Tracing using on-chip debug
interfaces is non-intrusive and expressive, but not easily portable between
different microcontroller architectures. Monitoring GPIO pins is a more
generic approach, at the expense of slightly higher intrusiveness caused
by short GPIO instructions. GPIO pins can be traced at relatively high
speeds, as shown in an FPGA-based logic analyzer design that is able
to sample 8 GPIO pins on a single embedded system at a rate of 2 ×
108 events/s [PPTDS10]. GPIO tracing in a distributed fashion is also a
key element of FlockLab. Different to FlockDaq, the aforementioned
single node monitoring solutions don’t provide a consistent global view
of a network. Available networked solutions are only conditionally suited
for fine-grained distributed trace recordings due to their limited tracing
rates and time synchronization accuracy, e.g., FlockLab traces exhibit a
maximal pairwise timing error of 255µs and contain events at a maximal
rate of 3.5 kHz for lossless traces. FlockDaq is a distributed tracing
solution that overcomes these limitations.

FlockDaq implements a digital loop control algorithm to lock the
FPGA-internal system clock to a PPS signal. Similar controllers have been
used in the past, e.g., to reduce the jitter of a GPS PPS signal [GZF+07].

As further detailed in Section 4.2, measurements recorded with
FlockDaq have to be time-synchronized within 1µs, which we achieve
by using a multi-hop time synchronization protocol. A popular
time synchronization algorithm is employed by the flooding time
synchronization protocol FTSP [MKSL04]. However, the achieved
maximal synchronization error of less than 14µs in a 6-hop network
does not meet our requirements. Schmid et al. improve on the achieved
accuracy of FTSP by introducing a high resolution clock [SDS10].
The Time-of-flight aware time synchronization protocol (TATS), as
described in Chapter 3, has a maximal error of 0.54µs over 22 hops.
Glossy, a flooding architecture for wireless sensor networks that exploits
constructive interference for fast network flooding, implicitly provides
time synchronization [FZTS11]. On a TelosB, the reported average error
over 8 hops is as low as 0.4µs, with a standard deviation of 4.8µs.
In FlockDaq, we port Glossy to a node platform that has two distinct
properties that improve time synchronization: (i) as in [SDS10], a high
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Table 4.1: Maximal event rates of different target platforms.

Node Platform
CPU clock Cycles per Peak event rate
frequency pin change ( events/s)

TelosB 4 MHz 5 0.8 × 106

Tinynode 184 12 MHz 5 2.4 × 106

IRIS 8 MHz 2 1.6 × 106

Opal 96 MHz 5 19.2 × 106

resolution system clock, and (ii) a radio chip with automatic RX/TX
transceiver mode switching. Additionally to the baseline Glossy, we
improve on the time synchronization variance by adding a jitter reduction
filter. Although TATS provides better synchronization accuracy than
Glossy, we decided in favor of Glossy due to its reliable and robust
flooding architecture based on constructive interference.

4.2 Enabling Fine-Grained Tracing
In this section, we sketch the idea of tracing system behavior using GPIO
pins as the monitoring interface, and we derive the requirements needed
to actually enable fine-grained tracing of system behavior of low-power
wireless sensor networks. For a more systematic approach to control flow
tracing using GPIO pins, the reader is referred to Chapter 5.

We specify the system behavior of interest as the control path taken
during a program execution on a set of nodes, annotated with time
information. This information can be used in several ways to analyze
code execution. Examples are (i) the quantification of code coverage for
test applications, (ii) empirical determination of bounds for execution
times of certain program parts, or (iii) the verification of system behavior
against a given specification using exhaustive testing.

To get execution traces of programs, we instrument the program
code using short witness instructions to emit pin state changes (events)
at branches in the program flow. As these instructions are very short,
we assume that these additional instructions only minimally affect the
system behavior. We then reconstruct the taken program flow from the
emitted sequence of pin level changes. This is feasible if the emitted GPIO
trace is ordered by time and unambiguously mappable to a sequence of
program executions. Ensuring unambiguous mapping by means of a
limited number of pins possibly requires to encode individual witnesses
using a sequence of pin changes.
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What are the requirements for a trace recording system? The rate of
the emitted GPIO level changes is limited by the maximal pin change rate
of a target, which in turn depends on the target’s MCU clock speed and
the number of instructions needed to change a pin state as summarized in
Table 4.1. This rate might be reached if programs have several conditional
branches in a row, or if witnesses in the program code are encoded
using sequences of pin changes. On the other hand, low-power wireless
embedded systems are usually duty-cycled to save energy. There is no
code execution during sleep states, and therefore the expected average
tracing rate can be significantly lower than the peak event rate. These
observations lead to the first requirement:

Requirement 1 A trace recorder needs to sustain for short periods of time
a peak sampling rate that is able to capture the maximal pin level
change rate of a target.

The time resolution of a trace should be sufficiently high to allow
meaningful execution time measurements, thus our second requirement
is:

Requirement 2 The trace of a single target must be ordered by time and
exhibit a sub-microsecond time resolution.

To observe interactions between several nodes in a network, and to
properly order these interactions relative to each other, time annotations
within a trace must allow to sufficiently align it with traces of neighboring
nodes. For instance, to measure and properly adjust timing properties
like wake-up guard times of low-power MAC protocols, an alignment
error in the range of the smallest controllable time quantity on a node
would be preferable. Behavior is typically controlled by timers running
from 32 kHz oscillators or a faster main system clock, which allows
control at a resolution down to microseconds. This is also reflected in
the timer architecture of TinyOS, which foresees time resolutions down
to one microsecond [STG07]. We therefore phrase the last requirement as
follows:

Requirement 3 The time synchronization error between observers of
neighboring nodes should be in the microsecond range.

Next, we describe the architecture of FlockDaq, and we explain how we
address the given requirements.



4.3. Architecture 77

UART
FPGA (Spartan-6 LX9)

SRAM
1 MB

Gumstix

U
SB

Target

ADC SPI

tracing pins

actuation 
pins

SP
I

combine synchronized time

SoC with RF core (CC430)
1-PPS

LAN

U
SB

PO
W

ER
G

PI
O

SPI

Figure 4.1: Overview of a single FlockDaq observer.

4.3 Architecture

4.3.1 Overview
Figure 4.1 provides an overview on the system architecture of FlockDaq.
The newly designed system fits into the existing FlockLab architecture
and replaces the existing data acquisition part, which is originally running
entirely on a Gumstix embedded computer.

The Gumstix features a 624 MHz Marvell XScale PXA270 micropro-
cessor that runs OpenEmbedded Linux and is equipped with 128 MB
SDRAM, 32 MB flash memory and an 8 GB SD card. All observers in
FlockDaq are connected over Ethernet or Wi-Fi (outdoor) to a backend
infrastructure.

We trace a target in FlockDaq by means of two different tracing
interfaces, GPIO lines and an ADC, the former for digital state
information, the later for power measurements. The GPIO interface is
used in two directions, either controlled by the target or by the observer.
The state of these interfaces are traced by the FlockDaq board. Traces are
annotated with a timestamp and forwarded to the Gumstix computer.
We handle all time critical tasks on the FlockDaq board, while test
management and communication tasks are allocated to the Gumstix
computer.

The FlockDaq data acquisition architecture consists of a Spartan-6
FPGA chip, a static random-access memory (SRAM) and a CC430 SoC
that combines an MSP430 microcontroller and a CC1101 radio transceiver.
Functionally, the system has to process three different types of data
streams: (i) GPIO actuation commands to control 3 GPIO pins, (ii) GPIO
tracing on 5 pins and (iii) power profiling data. In total, 9 individual
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streams need to be processed in parallel and with low time jitter. For this
task, we employ an FPGA chip, which allows us to map the processing of
each stream type to a dedicated hardware module. This design decision
greatly facilitates deterministic, low jitter processing. In contrast to this
paradigm, many existing testbed architectures, including FlockLab, rely
on sequential processing on a single processor.

We tackle the high peak sampling rate requirement by employing
a hierarchical memory structure. Fast on-chip FIFO queues within the
FPGA handle short bandwidth spikes, while SRAM memory is used
to buffer larger amounts of sampled data, before we finally write the
acquired traces to the serial peripheral interface (SPI) bus for further
storage on an SD card on the Gumstix.

To put the measured information into a global time context, we need to
keep the time on each observer synchronized with all the other observers.
For this purpose, the internal time of the FPGA is disciplined by applying
a PPS signal. The edge of such a pulse indicates the start of a new second.
Typically, GPS receivers provide this kind of pulse for synchronization
purposes. However, relying on GPS timing restricts the range of use
to locations with good satellite reception, which rules out most indoor
locations. To distribute a time pulse to all observers in the testbed,
our design relies on a wireless time synchronization protocol based on
Glossy [FZTS11], running on the SoC of the FlockDaq board.

Next, we describe in Section 4.3.2 the clock control algorithm that
keeps the internal FPGA-time locked to a PPS signal. Section 4.3.3 details
the FPGA-design of our data acquisition system, Section 4.3.4 explains
the configuration interface, and Section 4.3.5 describes how we accurately
synchronize time on all observers in the testbed to a common reference.

4.3.2 Disciplined System Clock
In the following, we discuss time and clock related details of the FPGA
design. The FPGA chip runs at a clock speed of 100 MHz. At the same
time, this is also the maximally achievable sampling rate of GPIO states.
To facilitate digital control, we derive a system time counter, running at a
nominal frequency of 10 MHz, that is, a clock period of 100 ns. The speed
of the system is adjustable by varying the number of FPGA clock cycles
per system time clock period.

To keep the system time in line with the external reference PPS
signal, we employ a clock control algorithm that combines an open-loop
controller with a feedback control loop, as illustrated in Figure 4.2. The
open-loop controller determines the actual local clock rate by averaging
the number of FPGA clock cycles within N PPS periods, where N = 8 in
our design. We denote the difference between this measured clock rate
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Figure 4.2: The clock control algorithm is a combination of an open-loop
controller and a feedback control loop. The speed of the system time clock
is controlled by a variable divider.

and the nominal clock rate as er(t). The feedback control loop implements
a P-controller, which corrects the offset of the system time relative to the
external PPS signal. The offset eo(t) is measured using the offset detector
in Figure 4.2. The sum of er(t) and eo(t), expressed in system clock cycles,
is given as input to a variable clock divider that generates the 2 MHz
system time clock based on the 100 MHz FPGA system clock. The clock
divider samples the system clock down by a variable factor β ∈ {9, 10, 11}.
The factor is applied in a way, such that the total error is corrected evenly
spread over the period of one second.

We evaluate this design in Section 4.5.2 and show that our controller
keeps the internal system clock tightly synchronized to the PPS signal.

4.3.3 Data Acquisition

The data acquisition part of the FPGA-design captures the data generated
by the target, that is, state changes of the target’s GPIO lines and the
power dissipation of the target, measured by the ADC. Each captured
element has to be annotated with a precise timestamp and forwarded to
the Gumstix computer.

The two data streams that need to be handled have different properties.
GPIO state changes, which are triggered by single instructions on the
target platform, occur at irregular time intervals and possibly exhibit
high peak rates, e.g., an Opal node could potentially emit 19.2 × 106 state
changes per second. Power measurements on the other hand follow
a strict sampling interval and occupy less bandwidth, in our case up to
56 ksps. Our design takes these differences into consideration by applying
different internal data representations. To maximize throughput, each
acquired data element should occupy as little memory as possible. Space
can be saved by not including the complete timestamp into each data



80 Chapter 4. Fine-Grained Tracing of Time Sensitive Behavior in Wireless Sensor Networks

31
MSB LSB

030 1

header 3 bits pin levels 8 bitstimestamp (lower part) 21 bits

header 3 bits pin levels 8 bits000

header 3+3 bits 00000

header 3+3 bits 000000000

header 3+3 bits 00ADC sample 24 bits

(a)

(b)

(c)

(d)

(e)

bit

timestamp (upper part) 17 bits

timestamp (lower part) 21 bits

timestamp (upper part) 17 bits

Figure 4.3: Data format of GPIO tracing and power profiling packets. All
packets have a width of 32 bits and include a header of 3 bits. Marker packets (b)
and (d) contain the upper 17 bits of the timestamp.

SRAM
1 MB

FIFO
4 kB

SD card
(SPI)

108 packets/s 6.25 × 106 packets/s 2.85 × 105 packets/s

GPIO

power FIFO
4 kB

Figure 4.4: Data flow and memory structure of the data acquisition system. The
SRAM serves as buffer for the SPI bus. The two data streams are merged when
writing to the SRAM.

element, but rather stripping the most significant bits from the time value.
As depicted in Figure 4.3, we introduce marker elements (b) and (d) into
the data stream to mark the change of the significant bits in the stream.
The complete time can be reconstructed in a later step, e.g., on a back-end
server. For power profiling samples, the knowledge of the sampling rate
even eliminates the need for storing the lower part of the timestamp, i.e.,
the essential data consists of an ADC sample and a header, as in (e) in
Figure 4.3. Packet format (c) is needed to indicate the start and end of a
power profiling trace, which can happen at arbitrary time instants. While
our approach generates a low-rate base stream of metadata, it also greatly
reduces the data volume for event bursts and power profiling.

The memory structure matches the input data stream (i.e., GPIO events
and the power profiling), to the output, in our case an SPI bus running
at a clock frequency of 12 MHz. As illustrated in Figure 4.4, the output
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has a significantly lower peak bandwidth than the input. Therefore we
resort to a hierarchical memory structure that provides both, high short
term bandwidth on the input and enough buffer space to shape the data
stream to match the slower output bandwidth. Small and fast FIFO
queues can handle new data packets with every clock cycle, while the
access time to the SRAM amounts to 16 cycles, i.e., a maximal packet rate
of 6.25 × 106 packets/s.

The two input streams are merged before writing to the SRAM chip.
To avoid starvation, power profiling data is prioritized because there is
a tight and not saturating upper bound to the maximal data rate of this
stream, which is less than 1 % of the SRAM memory bus bandwidth.

We empirically evaluate the throughput of the data acquisition with
the help of an event generator in Section 4.5.1.

4.3.4 Configuration and Test Management
The FlockDaq board can be configured over a UART interface, which is
connected to the USB port of the Gumstix using a USB-to-serial converter.
The choice of a dedicated configuration interface (in addition to the SPI
bus) facilitates the software implementation on the Gumstix, as data
acquisition and configuration can be handled independently. To configure
the FPGA, commands are provided to start or stop a test, to set a mask
for target pins to be traced, and to control power profiling. During a
test, commands can be sent to set or clear 3 actuation pins on the target.
These commands are kept in a FIFO queue on the FPGA and processed
at the specified time instant. In order to ensure proper actuation timing,
an actuation command has to be sent at least 70µs in advance.

4.3.5 Time Synchronization for Distributed PPS
As described in Section 4.3.2, the internal system time on the FPGA is
steered by applying an external PPS signal. In FlockDaq, we leverage
the fact that observers are placed within communication range of low-
power wireless transceivers. Therefore we can employ a wireless mesh
network built of such transceiver nodes to generate a synchronized PPS
signal on all observers. In FlockDaq, we use the CC1101 transceiver of
the CC430 SoC for that purpose. A PPS signal of a single GPS receiver
serves as reference for the initiator node in the network. The remaining
nodes synchronize to the initiator by means of a time synchronization
protocol.2

2Potential in-band interference with target nodes can be avoided by black-listing the
frequency band/channel of the time synchronization protocol.
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Glossy [FZTS11] is a flooding architecture for wireless sensor networks
that exploits constructive interference for fast network flooding and
implicit time synchronization. On a TelosB node it achieves an average
time synchronization error below one microsecond and is therefore
suitable for our purpose. In Glossy, every node estimates the start time
of a flood, based on timestamps made from several packets within the
flood. This estimate serves as a reference time. Due to redundant use of
links and retransmissions, Glossy achieves a high reliability.

Figure 4.5: Generation of a synchronized PPS signal. An external GPS pulse
triggers the start of a flood at the initiator. The PPS pulse is then emitted on
all the nodes in the network based on the calculated reference time Tref . This
process is repeated every second.

Time synchronization in FlockDaq is illustrated in Figure 4.5. The
initiator starts a flood with every GPS pulse, i.e., there is flood happening
every second. We configure the GPS receiver to emit the pulse slightly
before the start of a new second in order to align the node generated pulses
with the start of a second.

Due to different influences like measurement uncertainties or different
propagation paths, the calculated reference time is affected by jitter. To
reduce this jitter, we apply a heuristic that exploits the fact that the local
clock, running from a quartz oscillator, is relatively stable during shorter
periods of time. The intuition is to combine every new reference time Tref ,i

with the measurement T̂ref ,i−1 from the previous flood and weight them
according to some smoothing factor α:

T̂ref ,i = αTref ,i + (1 − α)(T̂ref ,i−1 + T̄) (4.1)

T̄ is the average interval between the last recent M reference times.
We evaluate the performance of the distributed synchronization pulse

in Section 4.5.2 and quantify the impact of our heuristic.
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4.4 Implementation
The hardware implementation of a FlockDaq board is shown in
Figure 4.6. It fits between a FlockLab board and a Gumstix and therefore
extends an existing FlockLab observer in a modular fashion.

Figure 4.6: The FlockDaq board fits between the FlockLab board and the
Gumstix. Visible on the lower right part is the CC430 with a chip antenna. The
FPGA and the SRAM chip are on the bottom layer.

We implement the data acquisition part on an FPGA of the Xilinx
Spartan-6 series. The design fits into a Spartan-6 LX9, which is second
smallest member of that family, featuring 120 user I/Os and 9152 logic
cells. The network time synchronization protocol runs on a Texas
Instrument CC430F5137 SoC, featuring 32 kB of program memory and
4 kB of RAM. The chip integrates a sub-1 GHz radio with configurable
bit rate and radio modulation. A 26 MHz quartz oscillator provides the
basis of a stable 13 MHz system and timer clock. A 4-port USB-to-serial
converter connects the debug and programming ports of the FPGA and
the CC430 with the Gumstix computer.

On the CC430, we run Glossy on top of the Contiki OS [con]. As
suggested by [FZTS11], we exploit the automatic RX/TX-transceiver mode
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switch of the CC430 for accurate timing of concurrent transmissions in
Glossy. Packets are sent using 250 kbps GFSK radio modulation in the
868 MHz frequency band.

4.5 Evaluation
In a first part of the evaluation, we focus on a single observer node
of FlockDaq. We measure peak and average throughput of the data
acquisition system and assess the performance of the PPS-tracking
algorithm on the FPGA. Next, we quantify the time synchronization
error of the distributed time pulse for a setup of 31 observers in an
office environment, using GPS receivers as ground truth. By running
experiments with and without our jitter reduction algorithm, we show
the beneficial impact of the algorithm. Finally, we assess the overall
timing accuracy of FlockDaq by using the wirelessly distributed time
pulse as input to the PPS port of the FPGA.

4.5.1 Throughput
In this section, we quantify the throughput of the data acquisition system
and compare it to the requirements given in Section 4.2.

As described in Section 4.3.3, the internal data path on the FPGA
consists of several stages with different bandwidths. Here, we
characterize the two maximal event rates that lead to a saturation of
the first and second stage shown in Figure 4.4, that is, the FIFO queues
and the SRAM. We empirically measure the number of events that can be
processed without loss at event rates of 108 events/s and 6.25×106 events/s
respectively. For this purpose, we connect an event generator to the
tracing inputs of the FPGA and let the pin levels change at a constant
rate. To detect the first lost packet, we compare received packets at the
Gumstix with the generated events.

The results of this experiment are summarized in Table 4.2. The FIFO
queue, which can store up to 1024 event packets, is saturated after 1070
events at a constant event rate of 108 events/s. While filling the FIFO,
data packets are continuously removed and written to the SRAM. For the
second stage, the SRAM, we generate events at a rate of 6.25×106 events/s.
270,000 data packets can be stored until the first packet is dropped. The
SRAM is full within 40 ms. The maximal average data rate that the data
acquisition system can handle is determined by the SPI bus, which is the
slowest interface in the data path.

With a continuous throughput of 285,000 packets per second,
FlockDaq is able to trace programs with 1.48 % tracing instructions on
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all target platforms in FlockLab (see Table 4.1). The peak processing
throughput of 108 events/s is high enough to meet the peak event rates of
all available target platforms.

Table 4.2: Measured throughput burst sizes and maximum continuous rate.

Cycles between two events Max. event burst size

1 (10 ns) 1070
16 (160 ns) 270000

350 (350 ns) continuous

4.5.2 Timing
In this section, we first assess the performance of the clock control
algorithm on the FPGA. Then, we proceed to the evaluation of the
distributed PPS signal in a network of 31 observers and finally, we
quantify the overall system performance of FlockDaq in terms of time
synchronization error between observers. In the experiments, we use
one or several u-blox LEA-6T GPS receivers that provide an accurate PPS
signal (RMS of 30 ns) [u-b14], either as a reference signal for the root node,
or as ground truth.

Timing on a Single Observer. As described in Section 4.3.2, the
implemented clock control algorithm on the FPGA seeks to correct the
offset between the internal and the external PPS signal. The external
signal is provided by a GPS receiver. To evaluate the performance of the
algorithm, we measure the time difference between those two signals in
system ticks (i.e., 10 ns) on a single FlockDaq observer for a period of
5.5 hours.

The cumulative distribution function over all measurements is shown
in Figure 4.7. In total, 19,713 offset measurements are made, with a 99th
percentile of 40 ns, which corresponds to 4 FPGA clock ticks. Therefore,
we conclude that our control algorithm keeps the system time on the
FPGA within tight bounds if a proper external PPS signal is applied.

Network-Wide Time Synchronization. Next, we assess the accuracy
of the distributed time pulse in a network setting of 31 nodes. This
section focuses solely on the implementation on the CC430 SoC. The
experiment is carried out on Olimex’s commercially available MSP430-
CCRF development board. In total, we distribute 31 nodes as shown
on the floor plan in Figure 4.8. 4 nodes are located outdoors while the
remaining 27 are placed indoors in an office environment. We select
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Figure 4.7: Cumulative distribution function of the absolute offset error between
the internal and external PPS signal. The clock tracking algorithm keeps the offset
error within ±40 ns for 99 % of the time.

Table 4.3: Standard deviation and range of the error, measured in clock ticks
(13 MHz), for all nodes, without and with jitter reduction heuristic.

Node Glossy Glossy with jitter reduction Hop distance

1 4.05, [-25,82] 1.88, [-6,14] 4
2 2.15, [-11,17] 2.01, [-7,8] 2
3 1.94, [-7,7] 1.71, [-8,8] 1
4 3.25, [-23,23] 1.82, [-6,9] 2
5 3.62, [-22,32] 2.02, [-8,9] 4

a central node next to a window as initiator to keep hop distances short
and to ensure a good satellite signal for the reference GPS receiver. On the
nodes, we run two different versions of Glossy: a baseline implementation
without jitter reduction, and a version with jitter reduction, as described
in Section 4.3.5. We set the smoothing factor α to 0.1.

To assess the synchronization error, we equip 5 nodes with additional
GPS receivers. On these nodes, the GPS PPS signal serves as ground
truth. On every node, we locally measure for every Glossy flood the
offset between the calculated reference time and the edge of the externally
applied PPS signal. We then compare all offsets relative to the initiator
node to get the synchronization error. To ensure a broad coverage of
environmental conditions, such as closed office doors, working people
and temperature variations, we combine measurements originating from
various daytimes and weekdays into a total measurement duration of
6 hours. The results, summarized in Table 4.3, show that we are able
to keep the standard deviation of the synchronization error below 5
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Figure 4.8: Layout of the network during evaluation of time synchronization.

clock ticks (385 ns) in the baseline implementation. Nodes that have a
higher hop distance to the initiator exhibit a larger error. The outdoor
node 3 has mostly a direct connection to the initiator and therefore the
smallest error. The experimental data also shows a clear benefit of the jitter
reduction heuristic. The maximal error as well as the standard deviation
is considerably lower when jitter reduction is enabled. This effect is more
prominent for nodes that are farther away from the initiator node. The
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Figure 4.9: Distribution of synchronization error on node 4. The error
distribution for the baseline implementation (top) is significantly broader than
for the jitter reduced version (bottom).

error distributions for both implementations are exemplary illustrated for
node 4 in Figure 4.9.

Based on our results, we conclude that our wireless PPS distribution
infrastructure is well suited to synchronize observers in FlockDaq with
sub-microsecond timing error.

Overall Timing Accuracy of FlockDaq. In the last experiment, we
combine both the FPGA-design and the distributed time pulse to
accurately trace GPIO events. The observers are placed in the same
layout as in the previous experiment. Again, we equip the root observer
and 5 other observers with a GPS receiver. The CC430 SoC on the root
observer uses the PPS signal of the GPS as reference and distributes the
pulse to all other observers using Glossy with jitter reduction. On all
the GPS-equipped observers, we connect the PPS signal of the GPS to
one of the tracing inputs of the FlockDaq board. Then, we configure the
data acquisition system to trace this pin for a duration of 1 hour. The
data acquisition on the FPGA annotates every state change on the input
pin using a globally synchronized timestamp. The difference between
timestamps of different observers directly reflects the synchronization
error. To evaluate the synchronization accuracy, we calculate for every
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Figure 4.10: Absolute time synchronization error of FlockDaq. The histogram
shows the maximal error of 5 out of 31 observers, relative to the root observer.

pulse the maximal absolute error relative to the root observer. Figure 4.10
shows a histogram of the error. 99.9 % of the errors are smaller or equal
to 1µs; the maximal error is 1.5µs.

The reported error reflects the synchronization error between nodes
on the edge of the network and the central root node. As the
synchronization error in Glossy depends on hop distances [FZTS11], we
expect synchronization between neighboring nodes to be even better.
Overall, FlockDaq provides distributed event tracing services with
tightly synchronized time information.

4.6 Summary
We have presented FlockDaq, a data acquisition system that allows to
trace time sensitive system behavior of low-power wireless embedded
systems in a fine-grained manner. By extending the FlockLab
architecture, as described in Chapter 2, with an accelerated data
acquisition system based on an FPGA chip, FlockDaq is able to capture
state changes at the maximal rate emitted by any of the currently attached
target platforms. FlockDaq synchronizes traced data using a highly
accurate wireless time synchronization protocol, thus enabling accurate
monitoring of network interaction between all target nodes of the testbed,
down to microsecond granularity.





5
Testbed Assisted Control Flow

Tracing for Wireless Embedded
Systems

While there have been many successful deployments of wireless
embedded systems over the last ten years, building them is still a
difficult task. There are several reasons for this: (i) the distributed
nature and unreliable communication channels of wireless embedded
systems makes it difficult to build precise models. (ii) Nodes do have
a scarce energy budget, since batteries are heavy and expensive, and
long periods of unattended lifetime are a prerequisite. Keeping costs
and energy requirements low leads to hardware platforms that offer just
enough memory and compute power for the task at hand [HNL08].
Due to the limited resources, systems regularly operate on the limits
of the available computing, energy and communication capabilities.
Therefore, the probability of misbehavior in terms of functional and
non-functional properties is high. Besides careful design approaches,
it appears that extensive testing and debugging is a major part of a
successful design strategy [Woe10, OW10]. At the same time, methods to
increase observability and controllability of executed programs have to
cope with very little resources.

Methods applied for debugging software on a single node range
from simple LED observations, over printf statements to in-system
debuggers. Testbed infrastructure extends the observability of program
execution to an entire network. All these debugging methods can give
insight into particular parts of the running program, but lack the ability to
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Table 5.1: Recent node platforms. The Cortex-M ETM module allows to extract
program flow traces.

Name Year Architecture HW tracing

OpenMote [VTWP15] 2015 Cortex-M3 -
panStamp NRG 2 [pan] 2015 MSP430 -
WandStem [TLF16] 2016 Cortex-M3 ETM
OpenMote+ [TVW16] 2016 Cortex-M4 ETM
Storm [AFC16] 2016 Cortex-M4 -

accurately trace the entire control flow of a program. As such, a program
has to be (re-)instrumented every time for a specific goal. This is even true
for in-system debuggers, since debugging interface bandwidths limit the
extractable runtime information [SK13, THBR11].

The use of program flow tracing is not limited to debugging and
failure diagnosis, but it is also applicable to program optimization or
to collect software metrics like coverage [TH02, PY99]. In the area of
general purpose computing, software-only methods exist to completely
trace program executions [Lar99]. However, these methods have shown
to be prohibitive when applied to wireless embedded systems [SEZ10].
Therefore, related approaches only trace a subset of the program, or
instrument at a higher abstraction level, e.g., function calls [LST15]. Some
microcontrollers include dedicated program flow tracing hardware inside
the chip. The embedded trace macrocell (ETM) in selected ARM chips
allows to extract a data stream of executed instructions. However, on-chip
hardware debugging functionality comes at an additional cost in terms
of die size and pin count [Fur00]. The majority of recent node platforms,
exemplified in Table 5.1, does not support hardware assisted tracing.
In the real-time domain, approaches exist to measure execution times
for worst case execution time analysis by tracing GPIO lines [BMB10].
These solutions typically target more powerful processors, e.g., MIPS or
PowerPC.

Contributions and road-map. In this chapter, we propose a novel
hardware/software program flow tracing method that can be applied
to trace the full program execution on instruction level in a pre-
deployment testbed environment. Similar as [BMB10], our approach
relies on an external monitoring device capable of observing GPIO
state changes, e.g., a logic analyzer. FlockLab (with FlockDaq from
Chapter 4) and testbeds with similar monitoring capabilities for GPIO
states [BVJ+10, HSL10, PBMS14] allow to apply our approach to a large
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number of nodes. In contrast to architecture specific hardware debugging
facilities, our approach only requires some spare GPIO pins, which makes
it applicable to virtually any node platform.

Inserting program statements for the purpose of tracing adds runtime
overhead, i.e., additional CPU cycles. This overhead influences
the program behavior and should therefore be minimal. We use
information about execution time to reduce the runtime overhead of
existing instrumentation approaches substantially. Timing information
is extracted from the executable by means of an elaborate static analysis.
We present an algorithm that reduces the number of recorded events
while still being able to uniquely determine the executed program path.

In summary, this chapter makes the following contributions:

1. We design a method to trace program flow down to the instruction
level using GPIO pin recording.

2. In Section 5.2, we present a new algorithm to reduce the number of
emitted GPIO changes for tracing by exploiting time information.

3. In Section 5.3, we apply this algorithm to build a tool for MSP430
based platforms. It performs a static analysis of the program binary,
adds instrumentation code and reconstructs traces from recorded
GPIO events.

We experimentally show the influence of our new approach on different
TinyOS and ContikiOS applications in a testbed of 31 nodes. The
evaluation in Section 5.4 shows that our method adds an average runtime
overhead of 19 %. The use of time information reduces the runtime
overhead by up to 38.3 %. In addition, we find that instrumentation
has no measurable influence on the reliability of Glossy [FZTS11], a
timing sensitive flooding architecture that relies on constructive radio
interference. Finally, in Section 5.5, we exemplify the usefulness of control
flow tracing in two case studies.

5.1 Related Work

Tracing Program Execution. The problem of efficiently tracing and
profiling program executions has been studied for several decades in
the area of general purpose computing. One aspect of this problem is the
question of where to best put witnesses (instrumentation code) in order to
faithfully reconstruct the program flow [BL94]. Succeeding work found
an efficient encoding of consecutive witnesses in program paths [BL96]
and in whole programs [Lar99]. We build on findings in [BL94] and
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extend these methods to make use of time information available when
tracing embedded systems with an external observer. Since we can rely on
external processing, our focus is to reduce the impact on the target system
rather than to efficiently encode and compress traces. The aforementioned
techniques cannot be directly applied to wireless embedded systems
because of the scarce resources available on these devices.

Tracing program flow by monitoring GPIO lines has been done in
the area of real-time systems [BMB10, WEE+08]. In particular, the
pWCET tool instruments source code and traces program flow using
this method [BCP03]. However, the aim of these approaches is to measure
the execution time of a program. In contrast, our method is based on
a timing model of the processor and uses execution time as a means to
substantially reduce the induced tracing overhead.

Wireless embedded systems. Software solutions for tracing wireless
embedded systems instrument program code with logging instructions
and store the generated trace in flash memory or transmit it over radio
or serial communication interfaces. In [SEZ10], instrumentation code is
inserted at branch instructions and an efficient encoding is used to log
control flow traces to flash memory. Similarly, in [WC13] the authors
instrument each basic block of the program and use time information to
compress the generated trace. In contrast to [WC13], our solution avoids
putting witnesses on every single basic block, and we can also handle
nested loops where the exact number of iterations is unknown at compile
time.

Another instrumentation approach is pursued by Tardis [TSBE15],
which rather logs non-deterministic program inputs. These inputs
are then fed to a simulator when replaying the program execution.
A combination of control flow and data tracing is employed by
LibReplay [LST15]. By logging function call arguments, program
execution at function level is logged for replay.

While software solutions can provide very accurate information about
the state of a node, the resources required for processing and storing
the traces render such an approach unsuitable to trace time sensitive
behavior. Indeed, experiments with Tardis reveal that the CPU duty
cycle of standard node applications can almost double when tracing
is enabled [TSBE15]. In addition, software instrumentation potentially
produces data streams that easily exceed the data produced by the
application itself, rendering instrumentation of the whole program
prohibitive if the trace needs to be stored on the node itself.

Hardware Assisted Tracing. Additional hardware offloads data
processing from the node to an external observer platform, providing an
out-of-band communication channel. Aveksha [THBR11] uses a debug
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Figure 5.1: Overview of the tracing process.

board extension to trace events of interest on a single target node using
the on-chip debug module of the MSP430 microcontroller. A low-cost
and networked solution is provided by Minerva [SK13]. On-chip debug
modules typically provide functions handy for interactive debugging
(watch points, break points, reading and writing state information).
Tracing the program flow by other means than polling the program
counter is usually not possible. Reconstruction of the entire program
flow might be possible if the polling interval is short enough. Recent
processors include a special hardware tracing module to directly output
trace information of the running program [ARM11, Int13]. However,
typical sensor node platforms include lower end microcontrollers that
do not include such features. Moreover, hardware debugging features
are highly architecture dependent and therefore limited to specific node
platforms.

Compared to existing hardware based tracing solutions, our approach
is more portable and generally applicable since it only requires a few spare
GPIO pins of a microcontroller instead of an architecture specific debug
module or tracing module.

5.2 Control Flow Tracing
An overview of our approach to control flow tracing is given in Figure 5.1.
We first statically instrument a program: the program binary is analyzed
and witnesses are inserted at suitable locations. A witness is emitted
whenever the control flow of the program passes its location. The
instrumented binary is then loaded onto a set of real nodes. When the
code is executed, we record the emitted witnesses. By combining the trace
of witnesses with the extracted program structure, a trace of the program
itself is reconstructed. In our case, witnesses are encoded into GPIO state
changes and recorded using an external monitoring device.
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Such an instrumentation has to fulfill the following requirements: (i)
the emitted witness stream must be unambiguously mappable to the
original program execution, and (ii) the runtime overhead due to added
instructions must be kept to a minimum in order to preserve the original
behavior of the program.

In the following, we first introduce in Section 5.2.1 the witness
placement algorithm by Ball and Larus, which serves as baseline. Then,
in Section 5.2.2, we improve the baseline instrumentation approach by
making use of timestamps taken by the recording device. Finally, in
Section 5.2.3 we show how we efficiently encode witnesses using a limited
number of GPIO pins.

5.2.1 Ball and Larus
The algorithm by Ball and Larus [BL94] efficiently places witnesses onto
edges in a given control flow graph G = (V,E,W). Every procedure (e.g.,
function, interrupt handler) in a program is represented by a separate
control flow graph. Basic blocks (groups of uninterrupted sequences
of instructions) are associated with vertices v ∈ V, and directed edges
e ∈ E are transitions between basic blocks. Edges have annotated weights
w ∈ W, representing the expected number of times each transition is
taken during the execution of the program. Weights w can be obtained
by profiling or by using a heuristic approach.

The algorithm optimizes the number of witnesses met during program
execution, i.e., minimizing the total weight of all instrumented edges.
Since finding the minimal-cost solution is NP complete [BL94], Ball and
Larus propose to use a heuristic to find a good solution: first, a maximal
spanning tree on G is built. Then, witnesses are put on all edges not in the
spanning tree. This procedure guarantees that there is only one possible
witness-free path between any two witnesses.

To follow the program flow in between different control flow graphs,
blocking witnesses are introduced. Blocking witnesses are placed in the
control flow graph on edges preceding call sites or exits of functions.

5.2.2 Exploiting Time Information
Logic analyzers or testbeds with GPIO tracing abilities do not only capture
the states of the I/O pins, but also the time of the event, i.e., when a
state changed. Figure 5.2 shows two excerpts of a control flow graph
where we can leverage this knowledge to further reduce the overhead
of instrumentation. On the left, we can measure the execution time
between the two witnesses (black circles) to infer the number of loop
iterations. This renders the crossed out witness superfluous. Similarly, in
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Figure 5.2: By measuring the execution time, the control flow between the two
witnesses (black circles) can be determined. This is possible e.g., for a simple
loop (left) or for a graph with different execution times for each branch (right).
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Figure 5.3: Excerpt of a CPU clock speed measurement on an MSP430. The
clock frequency varies over time, in this example up to 30 kHz (0.7 %).

the example on the right, if the execution times for the sequence B−C−E
is different from B −D − E, we can again infer the program flow from the
time interval between the two remaining witnesses.

Both time measurements and actual execution time might be affected
by uncertainties. Time measurements have a minimal time resolution,
while execution times are affected by the stability of the processor’s clock.
Figure 5.3 shows a measurement of the CPU’s main clock on a TelosB node
while duty-cycling the radio transceiver. The resulting variation in power
dissipation leads to changes in the supply voltage, and in consequence
alters the speed of program execution. Uncertainties might also arise
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from an inaccurate computation model, e.g., when neglecting effects of
caches. Based on these observations, we conclude that time uncertainties
need to be well incorporated in a method that infers execution flow based
on time measurements.

5.2.2.1 Problem Definition and Modeling

Program model. To describe the problem more formally, we extend the
given control flow graph to G = (V,E,W,T,B). As before, G is a directed
graph, and every procedure of the program is represented by a single
instance of G. Vertices v ∈ V represent basic blocks and edges e ∈ E
transitions between them. Weights w(e) ∈ W are the expected number of
times a transition is taken at runtime.

In addition, execution times of basic blocks are annotated to vertices as
costs t(v) ∈ T, and every execution of the procedure corresponds to a path
in G, i.e. a sequence of vertices and edges. To take uncertainties in the
execution times into account, T actually provides execution time intervals.
The execution time t(v) of the basic block associated to v is in the interval
t(v) ∈ T(v) = [l(v),u(v)]. With each vertex v, there is also associated a
bound b(v) ∈ B which bounds the number of times the program flow may
pass the corresponding basic block, possibly infinity if there is no bound
known. In other words, any (feasible) path has b(v) or fewer occurrences
of vertex v in its sequence.

We add two special vertices to G, an ENTRY vertex that has an edge
eentry to the entry of the procedure, and an EXIT vertex that has incoming
edges eexit,i from every returning vertex. These elements are added for
the sake of modeling and do not materialize in any real instrumentation
code. A witness set Ewitt ⊆ E contains all edges that can be observed
during execution. Paths are sequences of edges and vertices in G. For
the witnesses ei, e j ∈ Ewitt, we denote the set of witness-free paths leading
from ei to e j as path?i→ j, i.e., all paths that can reach the edge e j when
starting at ei without passing another edge of the witness set.

Problem definition. Our goal is to find a set of edges e ∈ Ewitt ⊆ E that
minimizes the expected runtime overhead C(Ewitt), i.e., the total weight
of the edges in the set

C(Ewitt) =
∑

e∈Ewitt

w(e). (5.1)

To ensure that we can safely reconstruct the program path taken, it is
mandatory that all the witness-free paths between any pair of witnesses
and ENTRY and EXIT have distinguishable execution times. Therefore,
we have {eentry, eexit} ⊆ Ewitt, and for every pair of ei, e j ∈ Ewitt and for every
pair of disjoint witness-free paths p, q ∈ path?i→ j between ei and e j it must
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Figure 5.4: Example program with a while loop (left) and resulting annotated
graph (right). Edge weights are omitted.

hold that

max

∑
v∈p

l(v),
∑
v∈q

l(v)

 −min

∑
v∈p

u(v),
∑
v∈q

u(v)

 > δ. (5.2)

This condition ensures that the total execution time of two different
paths between witnesses differs by more than the measurement’s time
resolution δ. In other words, in an admissible witness set there are no two
disjoint witness-free paths between any pair of witnesses whose execution
times cannot be distinguished.

5.2.2.2 Approach

The problem has the same objective as the baseline approach in
Section 5.2.1, namely to minimize the number of times a witness is
encountered during runtime. However, the conditions to meet are more
relaxed. We do not require to have only one single witness-free path
between two witnesses. We even allow cycles in the path, as long
as the resulting paths do not overlap in execution time. While this
might help to reduce the runtime cost of instrumentation, it makes the
problem computationally more difficult to solve because program loops
and possibly overlapping cycles in the graph lead to an exponentially
growing number of paths between two witnesses. In the example shown
in Figure 5.4, there are two possible paths that can be taken within one
loop iteration, leading to 2n different possible paths of n iterations.

Because of these difficulties, we aim at finding a good heuristic rather
than an optimal solution. The goal of the heuristic is to reduce the
complexity of the problem while still being able to reduce the sum of the
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Algorithm 1 Instrumentation
Input: G(V,E,W,T,B): Control Flow Graph, Ein: Initial feasible witness set
Output: Eout: Reduced witness set

1: Eout ← Ein

2: sort descending Eout according to W(Eout)
3: for all e ∈ Eout do
4: if isAdmissible(G, Eout \ e) then
5: Eout ← Eout \ e
6: end if
7: end for

edge weights in the witness set. In the following, we apply two strategies
for complexity reduction: (i) we consider only a subset of all edges in G to
be eligible to bear witnesses, and (ii) we find a graph property that helps
to quickly discern when paths between two witnesses are unlikely to be
distinguishable.

5.2.2.3 Heuristic Overview

An overview on the heuristic is given in Algorithm 1. The key idea is to
initially start with a feasible witness set Ein ∈ E. Then, we successively
try to remove every witness in the set, starting from the one with the
largest weight w(e). A witness can be removed if the remaining witness
set does still fulfill (5.2). This is verified with the function isAdmissible in
Algorithm 1. Since we only remove edges from the set, the total weight
of edges in the set can only decrease. The total weight of Ein is therefore
at the same time a safe upper bound on the resulting cost of the heuristic.
We select Ein to be the edges determined by the baseline approach without
time information.

This approach has some favorable properties: (i) it guarantees that
the resulting solution is at least as good as the baseline solution, i.e.,
C(Eout) ≤ C(Ein), (ii) it only needs to perform |Ein| admission tests, which
significantly reduces the search space, and (iii) for every admission test,
only the subgraph that is affected by the removed witness has to be
assessed, since we already start with a feasible witness set.

To see why only |Ein| tests are necessary, let us consider the example
in Figure 5.5. Suppose that we first try to remove e1 from the witness
set. If we cannot remove this witness, it means that there must be at least
two paths connecting two other witnesses through e1 with overlapping
execution times. Let us call these other witnesses a and b, i.e., the
overlapping paths start at a and end at b. e1 cannot be removed as long
as those witnesses exist. Suppose a is removed in a consecutive step of
Algorithm 1 and e1 revisited. All witness-free paths previously leading to



5.2. Control Flow Tracing 101

p

a

b

e1

Figure 5.5: Possible initial witness set {a, b, e1}. Dashed lines represent witness-
free paths. Neither removing a nor b can make e1 removable, if e1 cannot be
removed with a and b.

er

ein
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Figure 5.6: Subgraph of the control flow graph that is examined by the admission
test when trying to remove the witness on er.

a reach now to e1. If we remove now e1, a path p that had led to a is now
extended with all possible paths leading from a to b. Since we know that
at least two paths from a to b overlap in time, two of the resulting paths
must overlap as well, and therefore we must not remove e1. A similar
argument can be made for when removing b. In summary, the admission
test has to be done only once for each witness; a single iteration over all
witnesses in the initial set Ein suffices.

5.2.2.4 Test for Non-Overlapping Paths in a Subgraph

Let us now focus on the admission test, which is performed by function
isAdmissible in Algorithm 1. The purpose of this test is to check whether
the remaining set of witnesses still fulfills the condition (5.2) on G.

Since we start with a feasible witness set, the test only needs to operate
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on the subgraph SG affected by the witness er to be removed, i.e., including
all vertices and edges that lay on a witness-free path between witnesses
that can reach er, or that can be reached from er, as illustrated in Figure 5.6.
In this example, the dashed paths need to be examined, other parts of the
graph are not affected by er and are therefore omitted in the figure. As
the uniqueness needs to be shown for each affected witness pair, we first
reduce (for convenience) the subgraph SG. To this end, we choose one
pair of witness edges ein, eout and remove all edges and nodes that are not
reachable from ein and cannot reach eout, i.e., we keep only the bold dashed
paths in Figure 5.6.

For each choice of ein, eout, all possible witness-free paths must be
distinguishable in execution times for a feasible solution. For paths that
do not contain any program loops, checking (5.2) is straightforward:
the upper and lower range of a path can be calculated by summing
up the costs of all vertices in the path. However, if a path contains
loops, the number of different possible execution times to assess grows
exponentially, as discussed in Section 5.2.2.2.

Our approach to mitigate this effect is as follows: we derive a necessary
condition that needs to be fulfilled for unique executions times of paths
containing loops. Graph structures that result from removing a witness
and that do not fulfill this condition can be quickly rejected for admission.

Reasons for Non-unique Paths. As a prerequisite for the later discussion,
we distinguish two reasons for non-unique paths:

• Two paths have exactly the same number of occurrences of each
vertex, just in a different order. As a result, the accumulated
execution times on each path are equal and therefore, the two paths
cannot be distinguished. We say that two paths with the same
number of occurrences of each vertex are equivalent.

• Two paths have different numbers of occurrences of each vertex, but
the difference in (5.2) is not larger than δ.

In the following, we derive a condition that is necessary to exclude the
existence of equivalent paths.

Equivalent Paths. The (reduced) control flow graph SG can first be
decomposed into strongly connected components, i.e., into maximal
subgraphs where there is a path in each direction between each pair of
vertices of the graph. This is exemplified in Figure 5.7 (a). If each strongly
connected component is contracted to a single vertex, the resulting graph
is a directed acyclic graph (see Figure 5.7 (b)). In other words, the program
flow follows the acyclic graph (never returns to previous subgraphs) but
may do loops within each strongly connected component.
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Figure 5.7: Example graph with one strongly connected component. Contracting
the strongly connected component leads to a directed acyclic graph (b). The
component can be replaced by an acyclic subgraph, leading to new vertices with
execution times consisting of an additive part t0 and a multiplicative part tc (c).

The program path through the acyclic graph is unique in the number
of occurrences of each vertex. Therefore, the only non-uniqueness can
come from one of the strongly connected components.

Let us suppose that a strongly connected component contains a vertex
v with at least two outgoing edges (v, i) and (v, j) where b(i) ≥ 1 and
b( j) ≥ 1 is satisfied and with b(v) > 1. As defined in Section 5.2.2.1, b(v) is
the upper bound on the number of times v can be executed.

Then it may be possible that v is visited twice in a program path. The
first time, the program path follows edge (v, i) and the second time it
follows edge (v, j). Now, there may exist another program path where the
order of visit is reversed, i.e. at first (v, j) and then (v, i). This can be seen
as follows: The considered subgraph is a strongly connected component.
Therefore, there exists a path from every vertex to every other vertex and
therefore, there exists paths that connected i as well as j back to vertex v.

The reverse is true as well: if there does not exists such a vertex v in
any strongly connected component, then there are no equivalent paths.
This can be shown as follows: if there exist two equivalent paths, then
there is a first vertex after which the two paths are different, but vertices
are visited equally often. Let us call this vertex v and the two succeeding
vertices i and j. As both edges can be taken, we have b(i) ≥ 1 and b( j) ≥ 1.
Clearly, the node v needs to be visited at least twice as the both vertices
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i and j are part of both paths (they need to be visited equally often).
Therefore, b(v) > 1 is necessary.

In summary, if a strongly connected component contains a branch v,
then under relatively general conditions (b(i) ≥ 1, b( j) ≥ 1, b(v) > 1) we can
hardly exclude the existence of equivalent paths. In other words, a safe
and not too restrictive assumption is that strongly connected components
of the program graph should contain a single cycle only, without any
internal branches. We can now apply this knowledge in our heuristic to
early reject the removal of a witness. Strongly connected components in
a graph can be found in linear time [Dij97].

Path Differences. Now we can address the problem of comparing path
lengths in SG according to (5.2). As discussed in the previous section, we
dismiss all subgraphs that contain strongly connected components with
branches, i.e., the remaining subgraph contains only strongly connected
component with single loops. For execution time calculation, we again
use the decomposition of the reduced control flow graph into strongly
connected components and the contraction of each component into a
single vertex.

In terms of accumulated execution times, we have now a new control
flow graph, e.g., as shown in Figure 5.7 (c), with the following properties:

• The new control flow graph has (as before) initial and final edges ein

and eout.

• Each strongly connected component (SCC) is replaced by an acyclic
subgraph with as many input and output edges as the product of
the number of original inputs and outputs to the SCC. The acyclic
subgraph has no internal edges. The vertex cost between one pair of
input and output edges has two parts: The additive part t0(v) equals
the sum of vertex costs (execution times) of the original program if
the program path does not contain a cycle; the multiplicative part
tc(v) equals the sum of execution times of a complete cycle execution.
In other words, we have

t(v) = t0(v) + n(v) · tc(v)

The factor n(v) determines the number of complete cycle executions.
This number can be bounded from the corresponding bounds of the
original control flow graph.

• These acyclic subgraphs are connected by the rest of the control flow
graph, i.e. all vertices that do not belong to a SCC. The vertex costs
correspond to the original execution times of the control flow graph.



5.2. Control Flow Tracing 105

In summary, we now have an acyclic control flow graph G =

(V,E,W,T0,Tc,B) where each vertex has a cost of the form t(v) = t0(v) +

n(v) · tc(v) where n(v) ≤ b(v).
Now, testing (5.2) can be done as follows: the acyclic control flow

graph is traversed in topological order. During the traversal, sets of
intervals are maintained and updated. At join nodes, two sets are
joined and if two intervals overlap, paths cannot be distinguished and
the traversal can stop. If a set passes a vertex v, then we replace the set by
a new one that contains for each interval I in the original set the intervals
I + t0(v) + n(v) · tc(v) for all n(v) ≤ b(v). If an added interval overlaps
with an existing one in the new set, the traversal stops as paths cannot be
distinguished anymore.

Finally, we test whether the intervals in the resulting set (at eout) are
separated by at least δ, i.e., the distance between the upper bound of any
interval and the lower bound of the subsequent interval is at least δ. If
no paths are overlapping in execution time for any pair of ein, eout in SG,
removing that particular witness from the initial witness set is admissible.
We show in Section 5.4.1 that the off-line computational complexity of the
admission test is sufficiently small for realistic programs.

5.2.3 Encoding of Witnesses
In order to instrument a program, we have to define an encoding that
maps witness identifiers to GPIO state changes. We assume to have N
pins that we can observe. The number of witnesses |I| that can occur is
|E| − |V| + 1 in the case of Ball and Larus, i.e., there is a witness on every
edge in the control flow graph G but on those that are part of the spanning
tree. In the case where 2N > |I| each witness can be binary encoded with at
most one state change per pin. Depending on the processor architecture,
this can be managed by a single instruction if all pins belong to the same
port on the microcontroller, e.g., using XOR <IDValue>, <GPIO port>.
If there are more witnesses, we need an encoding that can represent
witnesses using sequences of GPIO state changes with a minimal amount
of CPU cycles. We employ two strategies to achieve this goal: (i) reuse
witness identifiers, and (ii) encode identifiers that are used more often
using cheaper codes.

Reusing Witness Identifiers. Witnesses in different control flow graphs
can have the same identifiers, since the blocking witnesses allow us
to unambiguously determine transitions between control flow graphs.
Within a control flow graph, for every witness, every set of reachable
witnesses must have unique identifiers. This problem can be modeled
as finding a proper vertex coloring in an undirected graph where each



106 Chapter 5. Testbed Assisted Control Flow Tracing for Wireless Embedded Systems

witness is a vertex. For every set of reachable witnesses, we add edges
between all pairs of witnesses in the set. Finding a minimal number of
unique identifiers is equal to finding a minimal number of colors for the
vertex coloring problem.

Identifier Encoding. For the remainder, we assume a hardware platform
that supports to set or change the state of all monitored pins at once. One
state change is the smallest unit in terms of cost, and allows to represent
2N different codes. Given a set of identifiers m ∈ M and an expected
occurrence probability p(m), our goal is to find an encoding C(m) that
minimizes the total cost R =

∑
m p(m) · len(C(m)). To minimize this cost,

we use k-ary Huffman coding [Rom92] with k = 2N.

Nested Witnesses due to Interrupts. Witnesses might be encoded
using more than one single GPIO state change. When an interrupt
occurs, witnesses emitted within that interrupt handler might separate
an ongoing witness in the interrupted program and therefore alter
the observed GPIO code of that witness. To avoid such ambiguities,
we instrument every start of an interrupt handler with a globally
unique GPIO code. Whenever a unique code is observed during trace
reconstruction, the parts of the trace belonging to an interrupt can be
safely separated from other parts.

5.3 Implementation
In this section, we present a tool that implements the heuristic algorithm
described previously for MSP430 based platforms, such as the TelosB
node.

The MSP430 series is a family of low-power microcontrollers, featuring
a 16-bit RISC CPU [Tex06]. GPIO pins are organized in ports of 8
bits, which can be accessed by means of memory mapped I/O registers.
The main clock of the CPU is sourced either by an external quartz
oscillator or by an internal digitally controlled oscillator (DCO) with
RC-type characteristic. The MSP430 architecture has no caches and no
branch speculation, which makes execution timing deterministic. Each
instruction takes a fixed number of CPU cycles to complete, depending
on the addressing mode of the instruction. Sleep states disable one or
several peripherals and clocks to save energy. Any sleep state disables
the CPU clock.

We implement instrumentation and replay function in a Python based
tool, which we also make available for download1. Replay is the process

1https://github.com/rolim/msp430-tracing

https://github.com/rolim/msp430-tracing
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of reconstructing the program execution based on the recorded events. In
the following, we describe the two functionalities in more detail, and we
discuss selected design decisions.

5.3.1 Binary Instrumentation
The instrumentation process takes a program binary as input and adds the
necessary instrumentation code. The instrumentation part works on the
level of machine code instructions because our approach needs accurate
information about execution timing. Instrumenting programs in high
level programming languages is not an option, since the exact realization
and timing highly depend on the compiler and the optimizations
performed during compilation.

There are several steps involved in program instrumentation: (i) the
program structure is analyzed and a control flow graph for each function
or procedure is extracted. (ii) We then apply our heuristic algorithm to
select edges that need to be instrumented with a witness. (iii) Instructions
that change GPIO states are inserted into the program.

Program flow analysis. This step extracts the control flow graph for
every function or procedure in the program. Each instruction of the
executable is parsed and grouped into basic blocks, i.e., instructions that
form a continuous program flow. The continuous flow is interrupted by
(conditional) branch or call instructions. To connect basic blocks in the
graph, all possible successors for such instructions need to be known.
For jump instructions or conditional branches this is straightforward
because the target address is contained in the instruction itself. More
complicated are indirect branches, which often result from C-switch
statements. Indirect branch instructions operate on addresses stored
in registers, and therefore the calculation of the address needs to be
understood for a general solution. However, we find that a template
based approach works well if targeting only one specific compiler. Such
a template is a set of rules that is applied to instructions preceding the
indirect branch instruction to find the base address and the size of the
jump table involved.

Interrupts and sleep states. Interrupts and sleep states need special
treatment when tracing program execution since they influence the
program flow. In low-power applications, it is not uncommon for
microcontrollers to spend most of the time in a sleep state to preserve
power. To properly trace the program execution, we have to keep track of
the power state of the processor. Sleep states are exited by interrupts. On
the other hand, interrupts might also occur while the processor is active.
On the MSP430, the current low-power mode is configured by flags of
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the status register. Before an interrupt handler is executed, the status
register is pushed onto the stack. Thus, to track the low-power states of
the processor, we insert additional witnesses at places where the program
might enter or exit a low-power mode, i.e., at the start of an interrupt
handler, or at instructions that modify the low-power mode flags of the
status register. In addition, a witness at the beginning of an interrupt
handler also encodes the last sleep state as stored in the status register on
the stack.

Instrumentation code. Instructions that represent a witness should be
cheap, both in terms of execution time and size. On the other hand, they
must be correctly decodable, irrespective of the program flow and the
current state of the GPIO pins. We considered two different possibilities
to fulfill these requirements: (i) Every witness translates into a single
exclusive or operation on the identifier and the current port state. (ii)
Every witness consists of two instructions, one that resets the state of
the GPIO port, and one that sets the value to the actual identifier of the
witness. The first option requires to restore the status register of the
CPU in case a succeeding instruction is influenced by a status flag (zero,
negative, ...) because the exclusive or affects the status register. The second
option has no functional impact on other instructions. We decided to use
the first option, since it has lower overhead, and since we encountered
the need for restoring the status register only very rarely.

Effects of instrumentation. Inserting additional instructions into
an existing program might change addresses of existing instructions.
Therefore, instructions relating to such addresses (e.g., function calls,
branches, ...) need to be adapted. Some instructions need to be replaced
by others, which is possibly the case for relative jump instructions. On
the MSP430, these instructions can perform jumps to addresses that are
located within 512 bytes of the jump instruction. Added instrumentation
code might now lead to jumps that exceed this limit, and therefore require
to replace a relative jump with an absolute one (which takes more cycles
to execute). Changes in the program alter the execution timing of the
program, and therefore also change the conditions that did hold during
the placement of the witnesses.

We resolve this issue by iterating the instrumentation process as long
as there are no more changes needed. In every iteration, we update the
control flow graphs to reflect the altered timing behavior. We then re-run
the witness placement heuristic on the updated control flow graphs. Now,
this could lead to an oscillation or even an infinite loop, e.g., if placing
an instruction makes and ambiguous path distinct again. To prevent this
from happening, we only allow each iteration to add additional witnesses
but not remove old ones.
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5.3.2 Replay
During replay, we translate the recorded GPIO events to program
addresses. A GPIO event is a tuple of time, pin number and pin state.
First, we group the events that have the same time. Then we lookup the
resulting witness identifier, which is encoded as described in Section 5.2.3.
During replay, we keep track of the current program location. By
following the path to the next recorded witness in the control flow graph,
we can gradually reconstruct the control flow during execution. In case
there are multiple possible paths between the current location and the
next witness, we choose the path that has an execution time closest to the
measured execution time. Our heuristic ensures that this is sufficient to
remove path ambiguities.

5.4 Evaluation
We evaluate the impact of our tracing method on five different
applications. All experiments run on 31 TelosB nodes on FlockLab.
We assess the impact of GPIO tracing with three increasing levels of
information: (i) witness ID only, (ii) with timestamps of witnesses, and
(iii) including upper bounds of loops. For every setting, we investigate
the impact on program size and runtime overhead. Our experiments
reveal the following key findings:

• Instrumentation with knowledge of upper bounds adds the lowest
static memory overhead to the program binary, on average 31 %
(6.8 kB). Compared to the witness-only case, upper bounds can
reduce the number of non-blocking witnesses by 67 %.

• The runtime overhead in terms of CPU cycles to trace the entire
program flow is between 14 % and 21 % (19 % average) using upper
bounds. Compared to the baseline approach, we see reductions
between 13.5 % and 38.3 %.

• Programs performed similarly with and without instrumentation.
Glossy, which relies on exact timing of actions in order to generate
constructive radio interference within the network, achieved at least
99.978 % data yield with any of the three instrumentation types.

5.4.1 Experimental Setup
To show the feasibility and the potential of GPIO tracing, we selected five
example applications that are optimized for different target scenarios.
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Table 5.2: Binary size and number of program elements for applications used
in the evaluation.

Application Operating Size
Functions

Basic
Instructions

name system (bytes) blocks

Blink TinyOS 2564 19 259 875
MHO TinyOS 24522 175 2728 8329
MHO LPL TinyOS 26128 188 2967 8848
Dozer TinyOS 33798 203 3347 11090
Glossy ContikiOS 16128 125 1556 5395

Apart from the TinyOS Blink application, all candidates form a multi-
hop network. Multihop Oscilloscope (MHO), available from the TinyOS
repository, is a general purpose data gathering application. It samples a
sensor value every second and reports these values every five seconds to
a base station. We choose to run this application with and without the
low-power listening MAC protocol (LPL). In the LPL configuration, we
set the wakeup interval to 512 ms. Dozer [BvRW07] is optimized for very
low duty cycles and low data rates, generating a data packet on each node
every 30 seconds. Finally, we include Glossy [FZTS11], which provides a
fast and energy efficient flooding architecture. We use a flooding period of
2 seconds. This selection of example applications also covers two popular
sensor network operating systems, namely TinyOS and ContikiOS. To
illustrate the complexity level of each program, we list the program size
and number of basic elements (functions, basic blocks and instructions)
of each binary compiled for the TelosB platform in Table 5.2.

We instrument each application with three different levels of
information to assess the benefits of additional information with respect
to memory overhead and runtime overhead. First, we rely only on the
recorded witness identifiers. Since this approach does not use any time
information, there must be only one possible program path between
two consecutive witnesses. This approach is the most expensive in
terms of overhead. Then we make use of witness timestamps. As
explained in Section 5.2.2, by taking execution times into account, we
can remove witnesses from the previous approach, as long as paths
between consecutive witnesses have distinguishable path lengths. Based
on empirical measurements, we assume a time inaccuracy of 1 %. We
assume to have no information about loop upper bounds (i.e., the upper
bound is infinity), and thus this approach cannot remove witnesses within
loops. The two instrumentation methods so far do not require any specific
runtime information about the program, and can therefore be applied
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Table 5.3: Number of witnesses used in instrumentation, broken down in
blocking and non-blocking witnesses for each application.

Blocking witnesses Non-blocking witnesses

Application
w/o time time

time &
w/o time time

time &
name bounds bounds

Blink 70 70 70 76 39 35
MHO 916 916 916 409 162 145
MHO LPL 1022 1022 1022 412 156 138
Dozer 1113 1113 1113 475 222 214
Glossy 390 390 390 438 258 184

without any further information about runtime execution. To further
reduce the number of witnesses and therefore the runtime overhead of
our tracing method, we add information about upper bounds of loops.
For our experiments, we use a measurement based approach do get upper
bounds. More specifically, we profile each application and count the
maximal number of iterations of each loop. We then add a margin of
20 % and use this value as upper bound. In the following, we refer
to these three different variants as w/o time, time and time & bounds. The
instrumentation process for any of the 15 binaries took less than 2 minutes
each on a standard PC. As instrumentation adds witnesses at beginning
of interrupt handlers (see Section 5.3.1), we adapt the time compensation
code of Glossy in one of the handlers.

5.4.2 Static Overhead

The number of added witnesses for each instrumented application is
shown in Table 5.3. A key figure is the number of non-blocking witnesses
that remain to be instrumented. As described in Section 5.2, blocking
witnesses are required to retrace the program flow between functions.
Since we need this property in any of the three instrumentation variants,
the timing aware approaches can only remove non-blocking witnesses.
Figure 5.8 shows that time analysis cuts the number of non-blocking
witnesses in half. Using loop upper bounds further reduces the number
of witnesses. In the case of Multihop Oscilloscope LPL, we see a total
reduction in non-blocking witnesses of 67 %.

The static overhead in terms of program memory is of practical
importance, since program memory is a scarce resource in wireless
embedded systems. In Figure 5.9, we compare the size of the
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Figure 5.8: Number of non-blocking witnesses in each instrumented binary (last
three columns of Table 5.3).
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Figure 5.9: Program memory utilization for the original program and
instrumented variants. No additional RAM is needed.

instrumented binary to the original one. We find that the memory
overhead ranges from 23 % to 49 %. As expected, having timestamps
and upper bounds each reduces the size of the instrumented binary. The
most efficient variant (time & bounds) adds a memory overhead of at most
38 % for all the investigated examples. While this is not a negligible
amount of memory, it still allows us to fully instrument programs that
use up to 72 % of their total available flash memory, e.g., 34.7 kB on a
TelosB node. Our tracing method does not require additional RAM.
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Table 5.4: Reliability and radio duty cycle of Glossy.

Instrumentation type Reliability Radio duty-cycle

Unmodified 99.996 % 0.57 %
w/o time 99.986 % 0.60 %
Time 99.996 % 0.59 %
Time & bounds 99.978 % 0.59 %

5.4.3 Runtime Overhead

We use FlockLab’s GPIO tracing service as described in Chapter 4 to
record the states of the GPIOs during execution. FlockLab allows to trace
up to 5 GPIO pins on every node. We let every combination of application
and instrumentation type run for 30 minutes on 31 TelosB nodes. Then,
we replay all the traces and count the number of CPU cycles spent on
emitting witnesses and the CPU cycles used for original instructions.

The runtime overhead is shown in Figure 5.10. The average overhead
per experiment ranges from 14 % to 28 %. Similarly as for the static
overhead, we see that the instrumentation method using loop upper
bounds adds the lowest overhead (14 % to 21 %). The advantages of the
upper bound approach are more pronounced because removing witnesses
in a loop has a bigger impact on runtime overhead than on memory
overhead. We also find that the runtime overhead (avg. 19 %) is smaller
than the program memory overhead (avg. 31 %) would suggest. This is
mainly due to instrumentation instructions on the MSP430 being larger
than the average, but execution wise around average. Comparing w/o
time to time & bounds, we see reductions between 13.5 % and 38.3 %.

Since Glossy requires tight synchronization between concurrent
transmitters in order to achieve constructive interference [FZTS11], we
verified the performance of all three Glossy runs by comparing the
performance metrics reliability and radio duty-cycle to the unmodified
program. As shown in Table 5.4, all three test runs exhibit a high reliability
of at least 99.978 % and low radio duty-cycle. In addition, there are only
slight variations between tests.

These experiments show that full control flow tracing in a testbed is
feasible and adds a relatively low runtime overhead. Moreover, it is also
suitable for tracing time sensitive applications.
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Figure 5.10: Runtime overhead caused by added instructions. Error bars indicate
minimum and maximum.

5.5 Case Study
In the following, we give two examples that show how program traces can
be leveraged to analyze program behavior in wireless embedded systems.
We extract and analyze code coverage, and we use traces to inspect timing
behavior.

5.5.1 Code Coverage
In this case study, we examine code coverage statistics that can be directly
extracted from execution traces. Code coverage describes the amount
of code that has been executed during runtime. It is used to measure
the amount of program code that is covered by a set of tests. Test suites
generally aim at maximizing their code coverage [PY99]. We calculate the
code coverage as the percentage of distinct executed basic blocks during
a program run.

In a distributed system, code coverage might differ between parts of
the system, depending on the task set allocated on each node. Nodes
with similar code coverage might take on similar roles in a network, e.g.,
acting as sink or leaf node, or relaying messages. Examining the diversity
of code coverage might help to understand these systems better, and to
tailor test cases to specific scenarios.

In the following, we analyze the traces obtained in Section 5.4 and
calculate the overall code coverage and the distance of code coverage
between nodes. We define the distance D between two sets of covered
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Table 5.5: Code coverage of example applications.

Application name Code coverage

Blink 66 %
Multihop Oscilloscope 65 %
Multihop Oscilloscope LPL 67 %
Dozer 62 %
Glossy 65 %

basic blocks Γi,Γ j as the Hamming distance between the sets, i.e.,

D(Γi,Γ j) =
∣∣∣Γi ∪ Γ j

∣∣∣ − ∣∣∣Γi ∩ Γ j

∣∣∣ .
Overall, we find that the test runs cover 62 % to 67 % of all basic blocks

in the program. Specific numbers are given in Table 5.5. Interestingly,
even a simple program like Blink does only cover two third of the entire
program. Most of the uncovered parts of Blink are related to interrupt
handlers (Timer A) that are never used during program execution, but
still included in the binary. Pointers to uncovered program parts can
help the developer to eliminate unused code in order to save on scarce
program memory.

To analyze the variability in code coverage across the network, we
calculate two coverage metrics from the traces: the average distance
between sink node and the rest of the network, and the average pairwise
distance between all nodes but the sink node. These metrics are shown in
Table 5.5.1. We find that the sink node executes clearly a different set of
basic blocks than the rest of the network. For Blink, all nodes have exactly
the same code coverage, as would be expected, since the program runs
independently on every single node. In the case of multi-hop applications,
there seem to be two distinct cases that differ to each other by the amount
of variation between the non-sink nodes. The applications running on top
of topology based network protocols (MHO, MHO LPL, Dozer) exhibit
larger variations than the network flooding based approach (Glossy).
In the latter case, coverage differs only within 24 basic blocks among
all non-sink nodes. This can be explained as follows: in topology based
approaches, the executed code paths depend on the node’s position in the
topology, e.g., compared to a node close to the sink, a leaf node does not
need to forward any messages. In Glossy, all nodes participate similarly
in every flood, irrespective of their position in the network.

Control flow tracing allows to extract useful aggregated information
from program executions. Code coverage can be used to reason about
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Figure 5.11: Average pairwise distance of code coverage between nodes in the
experiment. Error bars indicate minimum and maximum.

program behavior in a network, or to find potentially unnecessary code,
thus helping to reduce program size.

5.5.2 Inspecting Time Behavior

Knowing the time behavior of program tasks in embedded systems
is important because erroneous or unwanted timing can degrade
performance (e.g., higher energy usage, or lower throughput). Runtime
traces can give pointers to problematic parts of a program.

In this section, we analyze the timing within a part of the boot
sequence on a TelosB node. During our experiments for the evaluation
of this chapter we realized that boot time is highly variable among nodes
when running ContikiOS. We observed differences of several seconds.
Inspection of traces show that most of the time is spent in the calibration
routine of the digitally controlled oscillator (DCO). This oscillator has to
be configured by software to run at the desired target frequency, 4 MHz
in our case. The actual frequency of the DCO can be measured using the
low frequency crystal oscillator on the TelosB as reference.

Figure 5.12 shows the actual DCO frequency (extracted from traces)
during the calibration process on TinyOS and ContikiOS. The calibration
process is very differently executed: TinyOS uses a binary search,
achieving calibration within tens of milliseconds, while ContikiOS
performs a linear sweep (steps are caused by overlapping frequency
ranges within the sweep). An excerpt of the calibration routine is
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Figure 5.12: CPU speed profile at boot time for two different clock calibration
algorithms.

provided in Listing 5.12. Apart from the clear difference in time needed to
reach the target frequency, the calibration routine of ContikiOS exhibits a
suspicious tail after reaching the target frequency. This tail turns out to be
the main source of boot time variability among the nodes. By inspecting
the traces, we find that this period of almost constant frequency is caused
by the calibration routine oscillating around the target frequency. As
can be seen in Listing 5.1, line 103, the calibration ends if the measured
number of clock cycles exactly matches DELTA, which is the number of
DCO cycles during one reference clock cycle at the target frequency. Due
to the granularity of frequency control, it might take a long time until this
condition is met, even though the actual frequency cannot be tuned closer
to the target frequency. To remove this random behavior, we suggest to
add a test for oscillation, or to replace the calibration routine with a similar
approach as in TinyOS.

This example shows that the increased observability provided by
control flow traces can greatly facilitate the analysis of embedded
systems. Time behavior can be analyzed in detail without tailoring an
instrumentation strategy to a specific goal, e.g., using counter registers
and printf statements.

2https://github.com/contiki-os/contiki, October 7, 2016

https://github.com/contiki-os/contiki
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Listing 5.1: Initial DCO calibration in ContikiOS.

95 while(1) {
96
97 while((CCTL2 & CCIFG) != CCIFG);
98 CCTL2 &= ~CCIFG;

99 compare = CCR2;

100 compare = compare - oldcapture;

101 oldcapture = CCR2;

102
103 if(DELTA == compare) {
104 break;
105 } else if(DELTA < compare) {
106 DCOCTL --;

107 if(DCOCTL == 0xFF) {
108 BCSCTL1 --;

109 }

110 } else {
111 DCOCTL++;

112 if(DCOCTL == 0x00) {
113 BCSCTL1++;

114 }

115
116 }

117 }

5.6 Summary
We have presented a novel testbed based method that allows to
completely trace the program flow of wireless embedded systems. By
inserting instructions that encode witnesses of the program flow using
GPIO state changes, the execution of a program can be observed down to
instruction level. To this end, we designed a new algorithm that uses time
information to reduce runtime overhead of instrumentation substantially,
while still being able to uniquely determine the executed program path.
Our experimental evaluation showed that our approach has an average
runtime overhead of 19%. Compared to an approach without time
analysis, using time information reduces the runtime overhead by up
to 38.3%. This makes our approach also suitable to trace timing sensitive
applications.

By enabling program tracing on a wide range of wireless embedded
systems, we provide a tool that can serve as the starting point for new
debugging methods, automated program verification or optimization.



6
Passive, Privacy-preserving

Counting of Smartphones via
ZigBee Interference

So far, we introduced a testbed architecture in Chapter 2, we covered
the time synchronization aspect of distributed measurements (Chapter 3,
Chapter 4) and developed a method to effectively trace the control flow
in a testbed (Chapter 5). In this chapter, we make use of these building
blocks and apply them in a project that aims at estimating the size of a
crowd by analyzing interference generated by smartphones.

Smartphones are an integral part of our daily lives, and will be even
more so in the future. Ericsson forecasts 5.6 billion smartphones around
the world in 2019, accounting for 60 % of all mobile subscriptions [Eri14].
This proliferation is intriguing as it opens up the possibility to exploit
smartphones for collecting statistically significant amounts of data about
the way people behave and interact [BEM+13b]. In addition, nowadays
almost every smartphone has Wi-Fi built in. Due to ever-increasing
mobile data traffic [Eri14], users activate Wi-Fi on their smartphones to
get fast and cheap connectivity to a Wi-Fi network whenever possible.
To discover these offloading opportunities, smartphones actively scan
for Wi-Fi access points (APs) by periodically sending out probe request
frames, or probes for short.

Motivation. We seek to leverage the high proliferation of Wi-Fi enabled
smartphones to determine their numbers in real-time based on the probes
they emit. Given the high penetration of smartphones across the general
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population, such counts are of great value in numerous applications. For
example, they can be used to estimate the density of a crowd, which is an
important feature in crowd management [HBJW05] to prevent disasters
like the 2010 Love Parade stampede that killed 18 people [The10]; in
retail, they provide insights into customer engagement and help improve
in-store sales [Cis14]; and in a city, information about the number of
pedestrians, cyclists, and motorists using particular road segments at any
given time enables an intelligent transport system where traffic lights
adapt to reduce travel times [The15].

Prior to the advent of the smartphone, video surveillance and
image processing have been used to estimate the number of people in
an area [HTWM04]. These solutions, however, need special-purpose
powered equipment and impact privacy. Today, an alternative solution
is to encourage people to run an application on their smartphones that
periodically sends the GPS location to a server [WFMK+12]. While here
users can opt out at any time, this approach is invasive in that it alters the
smartphone software, and works only outdoors where GPS reception is
possible.

A non-invasive approach (i.e., without modifying the smartphone)
is to use existing Wi-Fi APs or to deploy dedicated Wi-Fi monitors to
estimate people count by sniffing the unique MAC addresses of their
smartphones, which are contained in clear text in every probe [Cis14,
ME12]. From a privacy perspective, this is even worse than video
surveillance because the owner, which can be unequivocally identified
from the MAC address, has no means to notice that she is being tracked.
Thus, lawyers, authorities, and the population take a skeptical position
despite the use of anonymization techniques such as MAC address hashing.
This could be witnessed, for example, by a public outcry and eventual
ban of such a system in the City of London [The13], and unclear
current law preventing the deployment of a smart traffic system in
Copenhagen [The15].

Contribution. To address these issues, we introduce DevCnt, a
system providing real-time estimates on the number of Wi-Fi enabled
smartphones within an area in a non-invasive manner. DevCnt preserves
by design the privacy of smartphone users, thus overcoming the concerns
associated with prior approaches and fostering the rapid deployment of
innovative applications.

To this end, DevCnt takes advantage of cross-technology interference
in the 2.4 GHz band. As described in Section 6.1, the IEEE 802.11 standard
prescribes that an active scan should involve sending a probe on each Wi-Fi
channel. Since each Wi-Fi channel overlaps with at least one ZigBee
channel, a ZigBee device can perceive a probe transmission as a short
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increase in the received signal energy. DevCnt uses one or multiple
battery-powered ZigBee devices to flexibly cover large areas. Every
device periodically reports the number of active Wi-Fi scans it has seen
to a sink. Based on the received scan counts, DevCnt estimates at the
sink the number of Wi-Fi enabled smartphones within the range of each
ZigBee device.1

DevCnt works both indoors and outdoors, and provides a new
estimate every few seconds. DevCnt is non-invasive and fully passive
in that it neither modifies the software running on the smartphones, nor
does it externally affect the smartphones’ operation (as done in [ME12]).
Because it is technically impossible for a ZigBee receiver to demodulate
Wi-Fi frames, DevCnt cannot track individual smartphones nor identify
their owners. Finally, by using low-power wireless battery-powered
devices, DevCnt reduces costs and increases flexibility during system
installation, maintenance, and removal compared with previous solutions
that use video surveillance or Wi-Fi monitors.

Achieving these favorable properties while providing accurate
smartphone counts is challenging for at least three reasons:

• Amplitude and time resolution of received signal strength (RSSI)
information on a ZigBee receiver is coarse-grained. DevCnt
must therefore cope with inaccuracies when characterizing Wi-Fi
transmissions by their length and signal strength, which are the
only features DevCnt is left with to detect scans on a device that
cannot demodulate Wi-Fi.

• DevCnt cannot differentiate between individual smartphones
because it cannot not see their (unique) MAC addresses, probes from
different smartphones may have the same length, and RSSI is a poor
classifier due to mobility and multipath fading. While this preserves
privacy, it also makes counting Wi-Fi enabled smartphones a
difficult task.

• Sending all RSSI samples to a central sink for processing is
prohibitive due to the limited bandwidth. Thus, as detailed in
Section 6.2, DevCntperforms most of the required processing on the
ZigBee devices. This, in turn, implies that each ZigBee device needs
to multiplex its single microcontroller unit (MCU) between three
tasks: (i) reading RSSI samples, (ii) processing samples to detect
and count scans, and (iii) sending scan counts to the sink. DevCnt
must temporally decouple (i) and (ii) from (iii) synchronously on all

1Since this chapter deals primarily with the physical and media access layers of IEEE
802.15.4 and IEEE 802.11, we do not discern between these standards and the respective
industrial alliances ZigBee and Wi-Fi.
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devices to avoid distorting the smartphone count estimations due
to self-interference, while simultaneously reducing the time needed
for (iii) to have more time available for (i).

As discussed in Secs. 6.3 and 6.4, we tackle these challenges by
designing novel signal processing, feature extraction, and classification
algorithms. Given that these algorithms need to execute in real-time
on devices with severely limited memory and compute power, our
algorithms strike a balance between feasibility and optimality. The key
insight we use to count smartphones without being able to distinguish
them is that the active Wi-Fi scanning rate of a sizable population of
smartphones follows a specific and typically narrow distribution. To
enable temporal decoupling and fast all-to-one data collection, we use
Glossy [FZTS11] to accurately time-synchronize the ZigBee devices and
Chaos [LFZ13] as efficient communication support.

To demonstrate the feasibility of our design, we implement a DevCnt
prototype on the TelosB [PSC05] platform. We describe how we use
FlockLab in the development process in Section 6.5. In Section 6.6, we
evaluate DevCnt in controlled experiments with up to 31 smartphones
from 4 different vendors running iOS or Android, and during a real-world
test run in a large lecture hall with more than 100 students. Our results
show the following:

• DevCnt accurately detects more than 99 % of Wi-Fi scans despite
realistic interference from Bluetooth, ZigBee, and Wi-Fi traffic, the
latter including TCP and UDP streams.

• DevCnt detects scans with an accuracy above 90 % even on ZigBee
devices that are 50 m away from the phone.

• In a controlled experiment where the precise ground truth
is available, DevCnt estimates the number of Wi-Fi enabled
smartphones with accuracies of up to 91 %.

• In a real-world test run where the ground truth is extremely
difficult to obtain, DevCnt’s processing pipeline sustains signals
from hundreds of Wi-Fi transmitters, thus providing meaningful
smartphone counts that match the expectations.

Section 6.7 discusses trade-offs and limitations of DevCnt, Section 6.8
reviews related work, and Section 6.9 concludes the chapter.
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Figure 6.1: IEEE 802.11b/g (Wi-Fi) and IEEE 802.15.4 (ZigBee) channels in the
2.4 GHz industrial, scientific and medical (ISM) band.
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Figure 6.2: High-level view of DevCnt. A multi-hop low-power wireless network
of ZigBee devices continuously samples the received signal strength (RSSI), and uses
a novel signal processing pipeline to detect and count active Wi-Fi scans performed by
smartphones. Based on the scan counts periodically reported by the ZigBee devices,
DevCnt estimates on a base station the number of Wi-Fi enabled smartphones within
the reception range of each ZigBee device.

6.1 Background and Terminology

DevCnt takes advantage of cross-technology interference between Wi-Fi
and ZigBee in the 2.4 GHz band. IEEE 802.11 defines in total 14 channels,
as shown in Figure 6.1. Each channel is 22 MHz wide and the center
frequencies range from 2.412 to 2.484 GHz. Channel 14 is forbidden in
most parts of the world, and channels 12 and 13 are typically not used
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in North America due to FCC regulations. IEEE 802.15.4 defines in total
16 channels with a bandwidth of 2 MHz each and center frequencies
between 2.405 and 2.480 GHz. Thus, ZigBee and Wi-Fi can interfere when
operating in overlapping channels.

While often regarded as a major impediment to the performance
of ZigBee networks [LPLT10], DevCnt takes advantage of this kind of
interference. It uses received signal strength (RSSI) information available
on commodity ZigBee devices to detect an interfering Wi-Fi transmission
from a short-lived increase in the RSSI. According to the IEEE 802.15.4
standard, the RSSI value is an average over the last 8 symbol periods
(128µs), and is typically updated on a per symbol basis, that is,
every 16µs. Furthermore, many ZigBee radios allow to adjust their
operating frequency with a certain granularity (e.g., 1 MHz on the CC2420
radio [Tex14]). As explained in Section 6.5, we use this feature in DevCnt
to best align the operating frequency of the ZigBee devices with the center
frequency of a Wi-Fi channel.

The majority of Wi-Fi networks operates in infrastructure mode, where
access points (APs) manage all communications. A client, such as a laptop
or a smartphone, needs to associate with an AP before it can use any
network services. The IEEE 802.11 standard defines, among other things,
a process called active scanning, whereby a client sends probe request
frames (probes) to discover an AP. The standard prescribes that an active
scan should involve broadcasting a probe on each channel, awaiting
and processing possible responses from APs in between. Nevertheless,
no further detailed specification of active scanning is provided in the
IEEE 802.11 standard. As a result, different Wi-Fi drivers implement
active scanning slightly differently. For example, we noticed that many
drivers send multiple probes (mostly two) on each channel, as opposed to
just one probe. Smartphones perform active scanning periodically every
few tens of seconds [FMT+06], depending on the operating system and
the current operating mode (e.g., whether the smartphone is actively used
or in standby mode).

Although there is also a passive scanning process foreseen in the
IEEE 802.11 standard, where clients passively listen for beacon frames
from APs, mobile devices mostly rely on active scanning because it is
faster. Typically, APs announce their presence by sending a beacon
frame every 102.4 ms. A client must listen for at least that period on
every channel to finish a passive scan, whereas probe requests are usually
handled within a much shorter time. In the remainder of this chapter, we
use the term scan to refer to active scans.

An IEEE 802.11b/g frame is preceded by a preamble that is at least
96µs long. This is above the 16µs symbol period of IEEE 802.15.4, so
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Figure 6.3: Illustration of how the activities of RSSI sampling, processing, and
communication evolve over time in DevCnt. To avoid negative self-interference
effects, RSSI sampling and processing are temporally decoupled from communication.
The reporting interval determines the timeliness of smartphone counting in DevCnt,
which is on the order of a few seconds.

Wi-Fi frames are, in principle, detectable from the RSSI samples of a
ZigBee radio. After the preamble, a Wi-Fi probe contains in unencrypted
form the client’s MAC address, the broadcast address or the SSID of a
known Wi-Fi network of up to 32 bytes, the data rates supported by the
client, and other (e.g., vendor-specific) information.

6.2 DevCnt Overview

We present DevCnt, the first system that provides real-time estimates on
the number of Wi-Fi enabled smartphones in an area in a fully passive
and non-invasive manner without revealing the identity or movement
profile of smartphone users.

DevCnt counts the number of Wi-Fi enabled smartphones based on the
probes they send while actively scanning for nearby Wi-Fi APs. Instead of
directly eavesdropping on probes using a Wi-Fi capable receiver, DevCnt
detects probes indirectly via their interference patterns at a ZigBee receiver.
Since ZigBee radios cannot demodulate Wi-Fi probes, DevCnt does not
see the unique MAC addresses contained therein and hence is unable
to identify individual phones. As a result, DevCnt preserves by design
the privacy of the smartphone users, which sharply differentiates DevCnt
from prior art [Cis14, HTWM04, ME12]. Moreover, DevCnt is fully passive
and non-invasive: It does not influence a smartphone’s normal operation,
for example, by soliciting more probe transmissions [ME12], nor does it
require modifications to the smartphones themselves, such as installing
and running a dedicated application [WFMK+12].
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Figure 6.2 provides a high-level view of DevCnt, while Figure 6.3
illustrates how the different activities in DevCnt evolve over time.
DevCnt uses a multi-hop low-power wireless network of battery-
powered ZigBee devices (nodes) deployed across the area of interest; a
sink node is connected to a base station. Each node continuously samples
the received signal energy by retrieving RSSI from the radio. Based on
these RSSI samples, a node detects and counts the number of scans over
a sequence of overlapping detection windows, as illustrated in Figure 6.3,
using the four-stage signal processing pipeline shown in Figure 6.2. All
nodes transmit the number of scans they detect within a regular periodic
reporting interval to the sink. On the base station, DevCnt uses all scan
counts received over a certain counting window (see Figure 6.3) to estimate
the number of Wi-Fi enabled smartphones within the reception range of
each node.

To avoid interference between ZigBee devices, which could adversely
affect the smartphone count estimations, DevCnt decouples RSSI
sampling and processing from communication over time. Temporal
decoupling requires the devices be time-synchronized, which we achieve
by letting the sink perform a Glossy network flood [FZTS11] at the
beginning of every communication phase illustrated in Figure 6.3. In fact,
the communication phases should be as short as possible to maximize the
time the radio is available for RSSI sampling. We thus leverage Chaos
as efficient communication support [LFZ13]. Chaos enables DevCnt to
collect small amounts of data, such as a 1-byte scan count, from 100
nodes within less than 100 milliseconds [LFZ13], thus increasing the time
available for RSSI sampling. Section 6.6 shows that DevCnt computes
new estimates every few seconds based on up-to-date scan counts
collected from ZigBee devices, enabling real-time crowd monitoring and
analysis.

By designing and implementing a DevCnt prototype, we demonstrate
that it is indeed possible to perform almost the entire processing
online on resource-constrained devices. This includes in particular non-
trivial signal processing, clustering, feature extraction, classification,
and filtering algorithms to detect and count scans (see Figure 6.2),
which has been considered too computationally demanding and hence
impossible [ZXX+13].

Next, Section 6.3 details our approach to estimating the number of
Wi-Fi enabled smartphones, and Section 6.4 describes how we detect and
count active Wi-Fi scans on ZigBee devices.
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6.3 Estimating Smartphone Counts
Counting smartphones without being able to identify them is difficult.
Indeed, DevCnt cannot identify smartphones by their MAC addresses,
since a ZigBee device cannot demodulate Wi-Fi frames. Identification
through RSSI is extremely noisy due to mobility and environment
dynamics [ME12]. Another option could be to use some form of
fingerprinting to passively identify a smartphone based on device-
and/or driver-specific variations in active scanning [FMT+06, LCTL00].
Unfortunately, such variations (e.g., in the scanning rate) can be extremely
small, especially across smartphones from the same vendor running
identical Wi-Fi drivers and operating systems, requiring observation
periods of an hour or more [LCTL00]. Moreover, these techniques assume
that consecutive scans of the same device can be grouped together by
matching packet contents— however, DevCnt cannot access the contents
of Wi-Fi packets.

From the discussion above, it is clear that the only viable option we are
left with is to estimate the number of Wi-Fi enabled smartphones based on
statistical information about their active scanning behavior. As discussed
in Section 6.1, smartphones perform active Wi-Fi scans with a certain
periodicity to quickly discover a nearby AP. Nevertheless, the interval
between scans is not fixed and depends on several factors, including the
smartphone vendor and model, the Wi-Fi driver, the operating system, the
applications that are currently running, and whether the smartphone is
in active or in standby mode. So a natural questions that arises is whether
statistical information about the frequency of active scans is indeed useful
to accurately estimate the number of Wi-Fi enabled smartphones.

To answer this question, we analyze five different publicly available
datasets collected by researchers from the Sapienza University of Rome,
Italy [BEM+13a]. The datasets contain significant traces of Wi-Fi probes
recorded with a commodity Wi-Fi card in monitor mode in diverse
scenarios: at international events (Vatican1 and Vatican2), in a big mall
(TheMall), at the central train station (TrainStation), and at one of the
main entrances of Sapienza (University) [BEM+13b]. In addition, we
analyze one dataset recorded by us in a (Lecture) hall. The traces range
from a few hours to several weeks in length, containing between a few
thousand and several million probes. They also differ as to whether the
smartphones were likely mobile (University) or static (Lecture), whether
the users were likely using their phone (TheMall, TrainStation) or just
carrying it in standby mode in their pockets (University), and so on.

Figure 6.4 plots for each dataset the empirical probability distribution
of the number of active scans per smartphone over an interval of 3
minutes. We see that despite the diversity of scenarios, all distributions
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Figure 6.4: Empirical probability distribution of scan counts within a 3-minute
time window for different real-world datasets containing massive Wi-Fi traces.

have a very similar shape and a mean of around 3 scans per device. Based
on the scenario, we notice slight differences between the means. In the
University trace, for example, smartphones are only for a short time in
the vicinity of the Wi-Fi sniffer located at an entrance, and also likely
in standby mode as they are carried in bags or pockets. As a result,
the average number of scans seen from a device is a bit smaller (2.70).
By contrast, in the TrainStation and TheMall traces, the smartphones are
more static and actively used (e.g., while waiting for a train, taking a
break, etc.), so the average number of scans per device is a bit higher
(3.29–3.85).

These observations are encouraging in that the average number of
active scans per device over some counting window is fairly stable despite
several influencing factors. This raises the hope that we can use this
figure to accurately estimate the number of Wi-Fi enabled smartphones,
especially if the expected mobility and usage of smartphones are known,
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Figure 6.5: Fraction of devices that can be seen within a certain interval in the
University Wi-Fi dataset. The empirical cumulative distribution function is shown for
minimal, average and maximal scan rate of devices.

which is a valid assumption in the applications we target. Experiments
in Section 6.6.2 show that DevCnt can estimate smartphone counts with
an accuracy of up to 91 %. Key to this performance is (i) the ability to
accurately detect active scans on a ZigBee device, as described in the
following section, and (ii) an appropriate size of the counting window, as
discussed next.

Size of counting window. The counting window (see Figure 6.3) should
be rather large to likely contain one or more active scans from a significant
fraction of smartphones to provide accurate estimates, whereas it should
be rather short to provide timely estimates. To study this trade-off, we
use the University trace and plot in Figure 6.5 the fraction of devices that
are covered with different counting window sizes. We assume a device
to be out of range, once there is no activity for more than 15 minutes. As
scan intervals are not necessarily constant, we display curves for minimal,
average and maximal scan intervals of devices in the dataset. To capture
scans of a larger fraction of smartphones, we have to choose a larger
counting window. For example, using a counting window of 3 minutes,
and considering average scan rates, the counting window is large enough
to contain scans of 94 % of the smartphones. The size of the counting
window can be adjusted to match the accuracy and real-time requirements
of the application.
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6.4 Detecting and Counting Active Wi-Fi Scans
As mentioned in the previous section, DevCnt relies on accurate scan
counts to facilitate meaningful estimates on the number of Wi-Fi enabled
smartphones in a given area. To this end, DevCnt processes RSSI samples
in real-time on the nodes using a novel four-stage pipeline, as shown in
Figure 6.2.

In a first step, DevCnt extracts interesting portions from a trace of RSSI
samples, that is, short-lived periods of elevated signal strength, further
referred to as signals.

Next, DevCnt takes advantage of pertinent features of the active
scanning function, including the periodicity with which probes are sent
during an active scan. Specifically, DevCnt (i) groups all signals observed
over a fixed-length detection window together, and (ii) clusters the signals
inside each group based on their length. The reasoning behind (ii) is
that probes sent by a smartphone during an active scan have the same
length; clustering ensures that signals that likely originate from the same
smartphone are also considered together.

Afterward, DevCnt checks whether a detection window contains
signals from an active scan or not. To do so, it first computes a set of
features for each cluster in that window. Then, it uses these features
to classify each cluster as either "contains a scan" (Y) or "contains no
scan" (N). If a detection window contains at least one (Y) cluster, DevCnt
considers that detection window as containing an active scan.

At the end of every reporting interval (see Figure 6.3), a node sums up
the number of detection windows with an active scan seen in the current
interval, and transmits this scan count (via Chaos) to the sink, which
forwards it to the base station.

In the remainder of this section, we take a closer look at each of the
four processing steps above. Experimental results in Section 6.6 show
that due to our techniques DevCnt detects and counts active scans with
an accuracy above 99 % despite realistic interference from other wireless
technologies.

6.4.1 Signal Extraction
A trace of RSSI samples is not very useful by itself. Rather, DevCntmust
first identify and extract parts of an RSSI trace that may (or may not)
belong to a probe transmission. For this reason, DevCnt needs to find
on the fly the beginning and end of periods with elevated RSSI readings
(signals), which is however a non-trivial task.

Figure 6.6 shows an example RSSI trace with three signals. As
mentioned before, RSSI is an average over the last 8 symbol periods
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Figure 6.6: Example of three original signals and the corresponding trace of
RSSI samples. The RSSI values are an average over the last 8 symbol periods. Thus, a
naïve threshold-based approach cannot reliably discern close signals.

(128µs), which leads to an inherent smoothing effect. Therefore, as
visible for signal A , it takes 8 samples until the RSSI readings match
the amplitude of the original signal. This complicates determining the
beginning of a signal. Moreover, if the gap between two signals is less
than 128µs, such as between signals B and C , the RSSI values remain
above the noise floor because they account for parts of either signal. Thus,
a naïve threshold-based approach, which could be realized using the clear
channel assessment (CCA) capability of a ZigBee radio, cannot reliably
discern close signals.

Our solution to these problems is based on the observation that once
a signal is present, the RSSI will plateau after some time and eventually
start to fall again. Specifically, we abstract this trend as a sequence of
states: rising → steady → falling. A node dynamically determines the
current state by looking at the differences between RSSI samples. Based
on this idea, we devise the state machine shown in Figure 6.7 to accurately
identify the beginning and the end of signals.

The state machine operates on a sequence s1, s2, . . . , sn of RSSI samples.
The processing starts when the CCA pin set by the radio indicates an
RSSI level above some threshold. Upon taking a transition, we read the
next RSSI sample si. We remain in state rising as long as si is greater
than the average of the two previous samples. Otherwise, we advance
to an auxiliary state first, which serves to initialize two variables needed
to determine the end of the signal: m, a moving average of the RSSI
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Figure 6.7: State machine implemented by a DevCnt device to determine the
beginning and the end of a signal based on a trace of RSSI samples.

samples and rdrop, the drop rate. We set the drop rate dynamically, because
strong signals cause a larger drop in the (averaged) RSSI values than weak
signals. For example, in Figure 6.6 the drop rate of B is higher than the
drop rates of A and C . We set the drop rate rdrop to one eighth of the
difference between the RSSI at the beginning of a plateau and the noise
floor n. Once the original signal disappears, the RSSI will linearly drop
by rdrop every symbol period due to the averaging. Based on both m and
rdrop, we decide whether to stay in state steady or to move to state falling.
The processing stops when the RSSI values fall below the noise floor.

In this way, we precisely identify on the fly the beginning and end
of signals. To save memory and computational resources, we use this
information to already filter out signals too short or too long to be a
probe. Based on the University data set, which contains more than 7
million probes recorded over a period of 10 weeks, we plot in Figure 6.8
the cumulative distribution function (CDF) of probe air times. We find
that 99.5 % of probes are between 0.5 ms and 4 ms long. Thus, a DevCnt
node only stores the average RSSI as well as the start and end times of
signals that fall into this range.

6.4.2 Signal Clustering

An individual signal alone does not provide enough information to decide
whether it is from a probe or not. Instead, we should look for relations
among multiple signals in order to make this decision. To see why this is
a sensible approach, we chart in Figure 6.9 a RSSI trace recorded with a
TelosB during an active scan of a smartphone. Each signal corresponds to
a probe, and signals with a similar amplitude correspond to probes that
are sent on the same channel. We clearly notice, for example, a periodic
pattern, which is however only apparent when looking at the entire group
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Figure 6.8: CDF of probe lengths of over 7 million probes in the University trace.
More than 99 % of probes have a length between 0.5 ms and 4 ms.

of signals.
Ideally, such group formation distinguishes between signals from an

active scan and other signals. As mentioned in Section 6.1 and visible from
Figure 6.9, probes that belong to the same active scan have the same length
and quickly follow each other. We exploit these properties by (i) grouping
signals observed within a short detection window, and (ii) clustering the
signals inside each group based on their length.

Size of detection window. The detection window should be large enough
to contain sufficient signals from the same scan, but short enough so that
it likely contains no signals from different scans. We find a good detection
window size based on a 2-hour trace captured with a Wi-Fi receiver in
a student lab. Due to the overlap of adjacent Wi-Fi channels, a ZigBee
device often sees probes from 3 adjacent channels, as in Figure 6.9. In our
trace, we find that in more than 99 % of the cases a scan across 3 adjacent
channels takes less than 290 ms. We found very similar numbers also in
other traces. Thus, we use detection windows that are 2 × 290 = 580 ms
wide, and let them overlap by half of this size, as shown in Figure 6.3. This
is because if we were to use contiguous detection windows, we would
miss scans that cross detection window boundaries.

Clustering signals by length. To cluster the signals in a group, we first
sort them by length. Then, we form clusters of signals so that signals in
different clusters differ by more than a certain threshold. According to
Nyquist’s Theorem a sampling rate of 1/16µs (i.e., the inverse of the IEEE
802.15.4 symbol period) allows to sample changes in the received signal
strength at half of this rate. Thus, signal lengths that differ by less than 2
symbol periods (32µs) are indistinguishable. To compensate for possible
errors due to the averaging performed by a ZigBee radio, we add a slack
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Figure 6.9: RSSI trace recorded with a TelosB during an active Wi-Fi scan
of a nearby smartphone. Probes sent on adjacent channels exhibit a characteristic
periodicity and difference in signal strength (level span) across channels.

Table 6.1: Explored signal features for signal cluster classification

Feature Targeted aspect

Number of signals Only consider clusters that contain
a certain number of signals.

Number of different signal levels Exploits variability introduced by
sending frames in different chan-
nels.

Maximal difference of signal levels Exploits variability introduced by
sending frames in different chan-
nels.

Autocorrelation of RSSI trace Periodicity of frames in a scan.
Distance to template scan “Shape” of a scan pattern.

of 2 symbol periods and use an inter-cluster separation of 64µs in signal
length.

6.4.3 Feature Extraction
Next, DevCntmust decide whether a given cluster contains signals from
a scan (Y) or not (N). To enable such classification, we require a set of
features that (i) are expressive to reliably distinguish between (Y) and
(N) clusters, and (ii) can be quickly computed on resource-constrained
devices.

We explored various features (as listed in Table 6.1) and combinations
thereof, and eventually settled on two features that could distinguish
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clusters well in an offline classification setup. The first feature is based
on the autocorrelation, and allows us to check for the presence of repeating
patterns across the signals in a cluster. For example, when applied to the
signals in Figure 6.9, this feature, fp, can clearly identify a periodicity. The
periodic pattern results because scans are a repeated sequence of probes
sent in every channel. To distinguish between beacon frames sent by APs
and active scans, we exclude the typical beacon frame period of 102.4 ms
from our feature by only considering lags in the range [15, 95] ms.

The second feature, called level span, exploits that probes sent on
adjacent Wi-Fi channels during a scan result in different signal levels
at a ZigBee radio. As shown in Figure 6.9, we define the level span, fl,
as the difference between the highest and the lowest amplitude across
all signals in a cluster to check for this kind of pattern. By applying a
threshold on the product of both features, we can accurately distinguish
between (Y) and (N) clusters, as shown in Figure 6.10 for data from an
experiment with several interferers (see Section 6.6.1.1).

While the level span feature fl can be quickly computed even on
a resource-constrained platform, this does not hold for the periodicity
feature fp based on the autocorrelation, as also acknowledged by prior
work [ZXX+13]. We explain in the following how we tackle this
challenging problem in DevCnt.

6.4.3.1 Sum of Autocorrelations

The periodicity feature fp only cares about when signals in a cluster
occur, and not about their amplitude. We thus represent a cluster as
a discrete-time binary time series {xi}

w
1 , where xi is 1 if and only if at time

instant i a signal is present, and w is the size of a detection window. The
autocorrelation ρ at lag τ is defined as

ρ(τ) =

w∑
i=τ+1

xixi−τ. (6.1)

Checking whether a cluster exhibits a periodic pattern with a period in
the interval [a, b] entails computing the autocorrelation ρ(τ) using (6.1) for
each lag τ ∈ {a, a + 1, . . . , b}. This, however, leads to prohibitive processing
times on a resource-constrained platform.

The key insight we use to overcome this problem is that there is instead
a way to efficiently compute the sum fp of autocorrelations ρ(τ) over all
lags τ in the interval [a, b]

fp =

b∑
τ=a

ρ(τ). (6.2)
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Figure 6.10: Illustration of classifying signal clusters into those containing an
active scan (Y) and those containing no active scan (N), based on data from a
real-world experiment with multiple interference sources. By applying a threshold
on the product of the sum of autocorrelations feature fp and the level span feature fl,
DevCnt accurately classifies almost all clusters.

Intuitively, using the sum makes sense, because higher individual
autocorrelations indicating periodicity result in a higher sum. While
the inverse of this argument is not always true, empirical evidence from
our real-world experiments shows that this approach is highly effective.

To efficiently compute the sum of autocorrelations feature fp, we note
that (6.2) can be transformed into

fp =

w−a∑
j=1

min(w, j+b)∑
k= j−a

x jxk. (6.3)

Crucially, (6.3) no longer iterates over individual lags τ: it essentially
sums across the area that is bounded by a and b. Nevertheless, rather than
summing up numerous "useless" 0’s across the entire area, it is sufficient
to only consider subareas containing 1’s. The beginning and end of these
subareas are precisely the xi that mark the beginning and end of a period
in which signals are present in a cluster. These observations materialize in
an efficient algorithm for computing the sum of autocorrelations feature
fp. To this end, we define l as the increasingly ordered set of indexes
of value changes in the binary vector X, that is, l := {i|xi , xi+1}. In the
following, we use the notation ls to refer to the element in l at position s.
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Figure 6.11: Sum of autocorrelations for an example binary vector X. The
boxes represent all the x jxk that are added up in (6.3). Black boxes are the elements
that contribute to the sum. The area of adjacent black boxes can be calculated without
iterating over every element therein.

Note that changes in X from 0 to 1 correspond to odd positions in l, while
changes from 1 to 0 are at even positions.

Illustrative Example. We motivate our algorithm with the help of the
example illustrated in Figure 6.11. Here, X contains four signals, which
results in a set l of size 8, as shown on the vertical and the horizontal
axes. The elements to be summed up, x jxk, are laid out in a 2-dimensional
bitmap. Dark boxes indicate elements that contribute to the sum, that is,
where both xk and x j are 1. The limits of the covered area are determined
by [a, b], the interval of the considered lags of the autocorrelation.

To compute the feature fp, we add up the areas of (partial) black
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rectangles formed by one or more adjacent black boxes. The area of the
completely black rectangle A is the product of its length and width, that
is, Area( A ) = (l6 − l5)(l4 − l3). The area of partially black rectangles, such
as B , can also be calculated without iterating over every element by
considering the offset o of the diagonal through the rectangle.

For our purpose, converting X into the set of value change indexes
l reduces both space requirements and computational complexity: A
detection window of 580 ms sampled with a resolution of 16µs results in a
binary vector X of 36250 bits (8.53 kB). According to our experiments, the
number of signals in a detection window is rather small, and therefore
the set l is significantly smaller than |X|. The reduced input size also
reduces the complexity of the algorithm as we do not need to iterate over
all samples in X, but only over the elements in l.

Algorithm and Pseudocode. Algorithm 2 calculates fp. It iterates over
both dimensions j and k using l, and sums up the rectangles delimited
by the corners (lk, l j)(lk+1, l j+1). An odd position in l indicates the start of a
signal, and an even position indicates the end of a signal. Thus, for every
iteration, the index variables j and k are incremented by 2 to select the
next rectangle. We distinguish three cases: (i) a fully contained rectangle
(line 7), (ii) a rectangle partially outside on the lower end of k (line 11),
and (iii) a rectangle partially outside the upper end of k (line 15). For
(i) the number of elements is the product of the width and the height.
For (ii) and (iii), the function PartialRectangle() shown in Algorithm 3
additionally uses the offset o to calculate the number of elements that fall
into this partial rectangle. In each iteration, the contribution of the current
rectangle is added to the final result fp.

6.4.4 Classification
At the end of a detection window, each DevCnt node computes the
two features above for each individual cluster and feeds them into a
classification algorithm. If one or more clusters in a detection window
are classified as containing signals from an active scan (Y), the node
considers the whole detection window as containing a scan. As a result,
it increments its local scan count, which it sends every reporting interval
to the sink and then resets to zero.

Because fast processing is key in DevCnt, we opt for a computationally
cheap decision tree classifier [DHS01]. For the same reason, instead
of considering the two features separately, we use a threshold on their
product for classification. We found this approach to be slightly more
efficient in most of our tests without sacrificing classification accuracy.
Therefore, the classification works on a decision tree with one branch
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Algorithm 2 Compute the Sum of Autocorrelations Feature
Input: l: indexes of level changes, a b: limits for lag
Output: fp: sum of autocorrelation between a and b

1: fp ← 0
2: j← 1
3: while j < |l| do
4: k← 1
5: while k < |l| do
6: if lk ≥ l j+1 + a − 1 and lk+1 ≤ l j + b + 1 then
7: fp ← fp + (lk+1 − lk)(l j+1 − l j)
8: else
9: if lk < l j+1 + a − 1 and lk+1 > l j + a then

10: o← lk − l j − a + 1
11: fp ← fp + PartialRectangle(lk+1 − lk, l j+1 − l j, o)
12: else
13: if lk > l j+1 + b and lk+1 > l j + b + 1 then
14: o← l j+1 − lk+1 + b + 1
15: fp ← fp + PartialRectangle(lk+1 − lk, l j+1 − l j, o)
16: end if
17: end if
18: end if
19: k← k + 2
20: end while
21: j← j + 2
22: end while

Algorithm 3 PartialRectangle(o, w1, w2)
Input: w1,w2: width and height of area, o: offset of diagonal
Output: A: number of elements contained in area

1: if o > 0 then
2: A0 ← w1o
3: d1 ← w1 − 1
4: else
5: A0 ← 0
6: d1 ← w1 + o − 1
7: end if
8: d2 ← max(1,w1 − (w2 − o))
9: A← A0 + (d1 + d2)(d1 − d2 + 1)/2

(i.e., one single if -statement) and incurs little runtime overhead. We use
the fitctree function available in MATLAB to determine a threshold
on the product of the two features, using a training set collected in a
controlled experiment with several smartphones from different vendors
and different interference sources, described in Section 6.6.1.1.
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6.5 Implementation

With the help of the FlockLab testbed, we have implemented a DevCnt
prototype on top of the Contiki operating system [DGV04]. Our prototype
targets the TelosB platform, which features an 8 MHz MSP430 MCU,
an IEEE 802.15.4-compliant 250 kbps low-power CC2420 radio, 10 kB of
RAM, and 48 kB of program memory [PSC05]. The operating frequency of
the radio can be programmed in steps of 1 MHz. We exploit this feature to
tune the radio’s operating frequency to the center frequency of a specific
Wi-Fi channel.

Our DevCnt prototype uses a 580 ms detection window. Nodes report
their scan counts with a reporting interval of 5 s, and the smartphone count
estimations are based on a 3-minute counting window. At the end of each
reporting interval, we allocate 122.5 ms for letting the sink first initiate
a Glossy flood [FZTS11] to keep the nodes time-synchronized, and then
collect a 1-byte scan count from each node using Chaos [LFZ13].

6.5.1 FlockLab During the Development Process

In the following, we describe how we make use of FlockLab services
and other tools in order to support the development process of DevCnt.
We do not provide a strict methodology on how to involve FlockLab
in the development process, but rather give some insights based on
examples. More example use cases of FlockLab are provided in Chapter 2,
Section 2.4.

The DevCnt implementation can be divided into three tasks: (i)
Implementation and verification the probe detection algorithm on a
resource constrained device, (ii) integration and adaptation of Glossy and
Chaos into a data collection service that suits the needs of DevCnt, and
(iii) the combination of the probe detection part with the data collection
into a working application.

Probe detection algorithm. Probe detection includes the processing
chain described in Section 6.4. For design and implementation of this
chain, we first record RSSI sample traces on a single node for later offline
analysis. Based on these sample traces, we design the signal extraction
step, and extract possible features to explore different machine learning
algorithms. The chain is then implemented on the node. Crucial aspects
of the implementation are the timing of the real-time signal extraction
(see Section 6.4.1) and the overhead of the feature computation and probe
classification (see Section 6.4.3). In this task, FlockLab is used to verify a
stable implementation under different interference patterns by exposing
the prototype to an uncontrolled environment, such as an office building.
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Orchestration of Glossy and Chaos. For the communication part of
DevCnt, we start off with two working base implementations for each of
the two flooding primitives Glossy and Chaos. In DevCnt, we combine
both primitives to synchronize the network and to collect smartphone
counts. One implementation difficulty stems from scheduling each flood
consistently on all nodes. We have to deal with timer overflows, find
good values for parameters like the number of retransmissions in a flood,
or the duration of a flood.

For testing, we run the implementation in three different setups: (i) on
a few nodes on the desk, (ii) on the Cooja simulator [ODE+06], and (iii)
on FlockLab. Testing on the desk provides a quick feasibility check of an
implementation. In such a setup, data gathered from a serial port, a logic
analyzer or an in-circuit debugger is used to inspect a test run. A simulator
provides a good insight into the behavior of an application in a larger and
arbitrary network topology. In later stages of the development process, a
real multi-hop environment as in FlockLab is used to make sure that the
program is exposed to effects not accounted for in simulation (variations
in clock speeds, multi-path fading of radio signals, dynamic environment,
undocumented hardware features, hardware variations) nor on a small
network on a desk (larger network, several hops, different node densities).

To debug scheduling issues, we find that FlockLab’s GPIO tracing
service is particularly useful. Due to the tight time synchronization of
measurement data in FlockLab (see Chapter 3 and Chapter 4), actions
on different nodes can be accurately related to each other. We use
Flooja [Büc14], a plugin to Cooja, to visualize and inspect measured data
on FlockLab (GPIO traces, power, and serial communication).

Verification of communication combined with probe detection. Once
we have both, probe detection and communication implemented, we
can start combining the two parts. Essential for reliable execution of
DevCnt is the isolation of communication and probe detection, since a
node uses the same radio transceiver both for communication and as
sensor to count probes. Therefore, we need to make sure that mode
switches between communication and sensing work properly and timely,
i.e., communication must reliably stop at the end of the communication
interval, and probe detection must not extend signal acquisition into the
communication phase.

For this last step towards the DevCnt application, we mainly use
TelosB nodes on a desk or in the testbed. To verify that communication
and sensing do not overlap, we use again GPIO tracing in FlockLab.
To assess the overhead of our probe detection processing chain, we
accumulate intervals of active CPU time on every node, and print out
the overhead after every reporting interval. Timing and CPU overhead
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can also be inspected by employing control flow tracing in FlockLab, as
presented in Chapter 5.

Summary. Based on our experience, the FlockLab testbed infrastructure
greatly enhances the development process of software for wireless
embedded systems in various aspects by providing the necessary services
and tools to inspect and observe different modalities on the actual
hardware.

6.6 Evaluation

This section evaluates DevCnt in controlled experiments and a real-world
trial. We start by investigating in Section 6.6.1 the accuracy with which
DevCnt detects active Wi-Fi scans, with and without interference and
depending on the distance between the smartphones and a ZigBee device.
In Section 6.6.2, we assess the accuracy of DevCnt’s smartphone count
estimations for different numbers of Wi-Fi enabled smartphones. Finally,
in Section 6.6.3, we report on DevCnt’s performance during a short-term
deployment in a large lecture hall.

6.6.1 Active Scan Detection Rate
We first evaluate the accuracy of scan detections, which is a key
prerequisite to obtain accurate smartphone counts.

Setup. To avoid any bias in the measurements due to uncontrolled
interference sources, we conduct these experiments in an environment
where we verified with a spectrum analyzer that there is no interference in
the 2.4 GHz ISM band. In particular, we conduct the indoor experiments
in Section 6.6.1.1 and Section 6.6.1.2 in an underground garage, and the
outdoor experiment in Section 6.6.1.2 in an open field.

We use six different smartphones that run three different versions of
Android and iOS 7, as listed in Table 6.2. On Android phones, we install
a dedicated application that triggers active Wi-Fi scans with a period of
20 s. Because a similar application is not available for iOS, we manually
trigger active Wi-Fi scans on these two phones by retrieving the list of
available APs.

We use one TelosB node connected to a laptop. The node reads out
the RSSI register of the CC2420 radio at the IEEE 802.15.4 symbol rate
of 62.5 kHz and logs them over the serial port. To obtain ground truth,
we put the Wi-Fi card on the laptop in monitor mode and use Wireshark
to log every observed Wi-Fi frame. Both the ZigBee radio and the Wi-Fi
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Table 6.2: Smartphones and operating systems used in the experiments of
Section 6.6.1.

Model Operating system

Samsung Galaxy Nexus Android 4.2.1
Samsung Galaxy S II Android 4.1.2
Samsung Galaxy S3 Mini Android 4.1.2
HTC Desire Android 2.3.7
iPhone 4 iOS 7
iPhone 5 iOS 7

radio are tuned to an operating frequency of 2.422 GHz, corresponding to
IEEE 802.11 channel 7.

Methodology and metric. We evaluate the performance of DevCnt’s
signal processing pipeline (see Figure 6.2) in terms of scan detection rate,
that is, the number of active Wi-Fi scans correctly detected by DevCnt
from ZigBee RSSI traces over the number of active Wi-Fi scans in the
Wireshark logs.

6.6.1.1 Impact of Interference

We first look at the robustness of the active scan detection rate against
several typical interference sources in the 2.4 GHz band.

Setting. We consider five different interference settings in distinct 10-
minute runs: (i) no interference, (ii) Wi-Fi TCP traffic, (iii) Wi-Fi UDP
streaming, (iv) Bluetooth, and (v) ZigBee. We place the TelosB at a distance
of 10 m from the smartphones. The interferers are 14 m and 10 m away
from the TelosB and the smartphones, respectively.

For Wi-Fi settings (ii) and (iii), we associate a second laptop to an AP
that also operates on channel 7. We generate TCP traffic by repeatedly
accessing a web page with an HTTP client on this laptop. After each
access, the HTTP client waits for a random interval between 1 and 5 s
before it requests the next web page. We use Iperf to generate a UDP
stream with a bit rate of 400 kbps, which is the rate of a typical Internet
video stream.2 We play music over a Bluetooth headset in setting (iv). In
setting (v), we let another TelosB node transmit 30-byte packets with a
random interval in [0.5, 1.5] s.

For every interference setting, we extract from the RSSI trace all
sequences of the size of a detection window (580 ms) that contain a

2https://support.google.com/youtube/answer/2853702
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Table 6.3: Scan detection performance with and without interference from
various interference sources.

Interference setting Scan detection rate (avg, std)

No interference (100.0 %, 0.0 %)
Wi-Fi TCP traffic (99.3 %, 1.3 %)
Wi-Fi UDP stream (99.5 %, 0.9 %)
Bluetooth headset (99.3 %, 1.7 %)
ZigBee device (99.8 %, 0.6 %)

scan and label those sequences as class "contains a scan" (Y). To get a
representative set of sequences that "contain no scan" (N), we extract the
same number of sequences from random positions in the trace without a
scan. For each sequence, we calculate the two features fp and fl used by
our classifier (see Section 6.4.3). To assess the classification performance,
we use 10-fold cross validation, each fold containing features from all five
interference settings with similar frequency. In total, we evaluate 2784
sequences out of which 50 % contain an active Wi-Fi scan.

Results. Table 6.3 lists the scan detection rates achieved by DevCnt
in the five interference settings. We see that DevCnt achieves an
average accuracy above 99 % across the board. This shows that DevCnt
reliably detects active scans despite interference from various common
interference sources.

Despite this impressive accuracy, we note that Wi-Fi interference
hardly presents a significant problem for DevCnt in a real deployment,
because channel assignment in Wi-Fi production networks mostly focuses
on a few non-overlapping channels [AJSS05]. Since probes are sent on
each Wi-Fi channel during an active scan, tuning DevCnt to the center
frequency of an unused Wi-Fi channel is therefore a viable option to
reduce, or completely remove, the influence of Wi-Fi interference.

For the remaining experiments, we use the traces from this interference
experiment to train our classifier, that is, to obtain the threshold on the
product of the two features fp and fl.

6.6.1.2 Impact of Distance

Next, we study how the scan detection rate is affected by the distance
between the smartphones and the DevCnt node.

Setting. We place the smartphones at different distances from the TelosB
node. Outdoors, we check distances between 10 and 120 m; indoors, we
are only able to go from 10 m up to 50 m due to the limited size of the



6.6. Evaluation 145

10 20 30 40 50 60 70 80 90 100 110 120
0

50

100

range [m]

d
e

te
c
ti
o

n
 r

a
te

 [
%

]

 

 

indoor

outdoor

Figure 6.12: Average and standard deviation of scan detection rate in DevCnt
across six smartphones placed at different distances from a ZigBee device,
measured both indoors and outdoors. DevCnt can reliably detect active Wi-Fi
scans from a smartphone that is approximately 50 m away.

underground garage. We place a second laptop running Wireshark next
to the smartphones to capture all probes they emit, that is, the ground
truth. We perform a 10-minute run at each distance.

Results. Figure 6.12 shows the average scan detection rate across all
six smartphones as a function of their distance to the TelosB; error bars
indicate the standard deviation. We see that the average scan detection
rate is above 90 % up to a distance of 50 m, and shows very little variations
between the different smartphones. The performance drop at 35 m in the
indoor experiment is presumably due to multipath fading caused by the
geometry of the underground garage. Beyond 50 m, the scan detection
rate decreases steadily to 36 % at a distance of 120 m. We also note that
the scan detection rate varies more between phones at larger distances:
some smartphones have a larger Wi-Fi transmission range than others.

To further explain these results, we plot in Figure 6.13 the scan
detection range against the received signal strength. We see a pronounced
drop for signals below -85 dBm. This suggests that the scan detection rate
largely depends on the signal levels.

In summary, we learn from these experiments that a single DevCnt
node is sufficient to reliably detect active scans from smartphones that
roam about, for example, a large store. To cover areas that extent
beyond 50 m, however, more DevCnt nodes should be deployed to obtain
accurate estimates.
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Figure 6.13: Average scan detection rate against received signal strength. Active
Wi-Fi scans with a received signal strength above -85 dBm are detected with a very high
probability that is close to 100 %.

6.6.2 Accuracy of Smartphone Count Estimations
In this experiment, we evaluate the accuracy of DevCnt’s real-time
smartphone count estimations.

Setting. We use again the underground garage to avoid any bias in our
measurements due to uncontrolled interference. We place a TelosB node
running DevCnt in the middle of a 20× 20 m area, and let it listen on Wi-Fi
channel 6 to detect active scans. The node reports its scan counts every 5
seconds to a base station, where DevCnt estimates the number of Wi-Fi
enabled smartphones in the area. A laptop running Wireshark captures
ground truth. In addition, we install one AP operating on channel 8 to
mimic a realistic setup.

We use in total 31 smartphones, which run either iOS or Android.
Including the smartphones from the previous experiments, there are 9
different models from 4 different vendors, representing a good mix of
currently available smartphones. During the experiment, we change the
number of smartphones inside the garage. Starting from 0, we add 10
phones after 15 min, another 10 after 30 min, and the remaining 11 after
45 min. Then, after 60 min, we start to actively use 10 of the 31 phones,
unlocking the screen, scrolling through menus, or playing music. After 75
min, we stop using the phones. Finally, after 90 min, we start to remove
phones: first a batch of 15 phones, and 15 min later the remaining 16
phones.

Meanwhile, DevCnt estimates the number of Wi-Fi enabled smart-
phones every 5 seconds, based on the scan counts reported by the TelosB
node. To this end, we use three different average scan rates for a 3-
minute counting window: 2.70, 3.48, and 4.26. These correspond to the
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Figure 6.14: Estimated and real number of Wi-Fi enabled devices as smartphones
are being added and removed over time. DevCnt provides accurate smartphone
count estimates, achieving an average accuracy of up to 91 %.

lowest and highest average scan rates observed in the datasets shown in
Figure 6.4 (3.48 is the average of 2.70 and 4.26). We compute the accuracy
of the smartphone count estimations by comparing DevCnt’s estimates
against ground truth obtained from the Wireshark logs when applying
the same 3-minute counting window.

Results. Figure 6.14 plots DevCnt’s estimates and ground truth over time.
We first note that the number of smartphones that are physically present
inside the garage is roughly double the number of smartphones in the
ground truth. We attribute this to the fact that several phones performed
very few active scans in the experiment, with intervals much larger than
the 3-minute counting window we use. In fact, 9 smartphones did issue
less than 3 active scans during the whole experiment, predominately
such with an Android version of 2.3.7 or lower. We could not expect this
behavior based on our analysis of large real-world datasets in Section 6.3,
as there is no information available on silent smartphones.

Nevertheless, we observe from Figure 6.14 that DevCnt’s estimates
closely match ground truth as smartphones are being added and removed.
When considering the average estimate, DevCnt achieves an accuracy
of 68.9 % throughout the entire 2-h experiment, which corresponds to
an average absolute error of 3.0 smartphones. As mentioned earlier,
we expect DevCnt’s estimates to be more accurate when the number of
smartphones is higher. Our results confirm this expectation: Considering
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the interval between 45 min and 75 min in which all 31 smartphones are
present, and by taking into account the different activity patterns, DevCnt
achieves an average accuracy of 87.3 % (1.8 average absolute error) while
all phones are in stand-by mode, and an average accuracy of 90.5 % (1.65
average absolute error) while 10 of the smartphones are active.

As one would expect, DevCnt is less accurate than a Wi-Fi-based
solution (such as [Cis14]), simply because it has less information at
its disposal. In return, DevCnt preserves by design the privacy of
smartphone users, which is a strong asset when it comes to acceptance
by law and the population [The13, The15]. Nevertheless, an accuracy
of 70–90 % is sufficient for many applications we target, and comparable
to what has been reported in the literature, for example, when counting
smartphones using audio tones [KVC12] or when fingerprinting a Wi-Fi
driver [FMT+06]. We thus conclude that DevCnt provides accurate
estimates on the number of Wi-Fi enabled smartphones if the mobility and
usage profile of smartphones is known, which is a reasonable assumption
in many applications [Cis14, HBJW05, The15].

Finally, we also logged performance counters throughout this
experiment to study the processing overhead on the TelosB node. We
find that the TelosB node was processing for only 1.7 % of the time.
This shows that our novel signal processing pipeline is amenable
to an efficient implementation even on severely resource-constrained
embedded devices.

6.6.3 Real-world Test Run
In a final real-world trial, we deploy DevCnt in a lecture hall to show
the applicability of the system in an uncontrolled environment. Such an
environment presents a significant challenge for DevCnt because of two
reasons. First, in a larger room with many people carrying smartphones
there are many more signals to process on the nodes and hence processing
time might be high and reach the limits of the system. Second, the system
is exposed to interference originating from different surrounding devices
that might emit patterns that have not been considered in the training
step of the classifier.

Setting. We install a multi-hop wireless network consisting of three
DevCnt nodes, a relay node, and a sink. We place two nodes inside the
lecture hall, in the front and in the rear area; we put the third node outside
at one of the two main entrances. The lecture hall has a size of 20 by 25 m.
We observe APs on channels 1, 6, and 11. To minimize the interference
from the APs, we let all DevCnt nodes listen on Wi-Fi channel 8.

We let the system run from 11 AM to 1 PM, so we observe a morning
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Figure 6.15: Estimated number of smartphones in a real world trial.

break, half a lecture, and a lunch break. At 11:30 AM we count by hand 111
students inside the lecture hall. While we also set up two laptops running
Wireshark, we note that in this real-world setting it is impossible to reliably
determine the ground truth. This is due to vastly different reception ranges
of Wi-Fi and ZigBee radios: While a Wi-Fi receiver may be able to hear a
probe from a weak sender (e.g., located in another room), probes from this
sender on adjacent channels are often too weak to be heard by a ZigBee
node at the same distance.

Results. Figure 6.15 shows the estimated smartphone counts over time
for the 3 DevCnt nodes. Although we lack ground truth, we see
that DevCnt’s estimates throughout the deployment closely match our
expectations and visual on-site observations. For instance, during the
initial break at about 11:05 AM there is a drop in the estimated smartphone
counts, because a few students leave the lecture hall. The peaks at the
beginning and at the end of the lecture are due to students using their
phones more intensively, which leads to smartphones performing more
active scans. Furthermore, as expected, DevCnt’s estimates remain fairly
stable during the lecture, and afterward drop to numbers close to zero as
almost all students leave for lunch. Looking at the node at the entrance,
we see that it generally sees fewer smartphones, yet the periods where
students enter or leave the hall before and after the lecture are clearly
visible.

We further note that both nodes inside the lecture hall see about the
same number of smartphones. This is in accordance with the findings in
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Section 6.6.1.2: Since one DevCnt node can reliably detect devices within
a radius of 50 m, a single node would have been sufficient to cover the
entire lecture hall.

These results show that DevCnt can sustain signals from hundreds
of Wi-Fi transmitters, as evident from our Wireshark logs, and delivers
meaningful estimates in a real-world trial that resembles, for example, a
retail or indoor concert setting.

6.7 Discussion
DevCnt estimates in real-time the number of Wi-Fi enabled smartphones
within a given area. By detecting active Wi-Fi scans from RSSI traces,
DevCnt obtains these counts in a fully-passive, non-invasive, and
privacy-preserving manner.

Any system relying on externally observable properties for counting
misses those smartphones that do not disclose these properties,
and DevCnt is no exception. As such, like other solutions from
academia [ME12] and industry [Cis14], DevCnt can only see phones that
have Wi-Fi enabled and may count Wi-Fi transmitters other than phones.
However, in the environments we target including open streets, shops,
and train stations, the fraction of laptops and tablets is typically rather
smaller.

DevCnt supports deployments across large areas through multi-hop
communications. In those scenarios, multiple ZigBee devices may detect
and then count the same smartphone. A practical approach to ameliorate
this over-counting problem would be to carefully select the locations of
the ZigBee devices so as to reduce areas of overlapping reception ranges.
Another possibility would be to exploit the fact that DevCnt devices are
time-synchronized, so an active scan that is detected by different devices
at the same time likely originates from the same smartphone and could
be accounted for only once. We intend to explore this idea in our future
work.

DevCnt preserves the privacy of smartphone users as it cannot
identify individual phones. While this is arguably a desirable property,
it leaves DevCnt with no other option than to estimate the smartphone
counts based on statistical information about the average active scan rate.
DevCnt provides accurate estimates whenever the observed population
of smartphones behaves according to the expectations, for example, in
terms of their degree of mobility and how frequently the smartphones
are being used. If phones behave sharply differently, however, DevCnt’s
estimates may become less accurate. Nevertheless, we found in our tests



6.8. Related work 151

that phases of unusual behavior typically last for only a limited amount
of time as visible, for example, in Figure 6.15 right after the break. In that
sense, DevCnt is similar to participatory sensing approaches [WFMK+12],
where the available GPS data fluctuate because smartphone users have
full control over the application and are free to opt out at any time.

The flexibility of battery-powered nodes is not for free: To capture as
many active scans as possible, all DevCnt nodes need to have their radio
continuously turned on. In this case, a node powered by two AA batteries
would last for a week, which is fine for short deployments (e.g., during
a concert). One way to save energy would be to turn off the radio for
extended periods of time when there is low Wi-Fi activity, such as during
the night or outside of a shop’s opening hours. We leave such energy
considerations for future work.

Overall, DevCnt represents a new point in a multi-dimensional
design space, trading some fidelity of the smartphone counts for full
privacy of the smartphone users. Corresponding to this promising
design point is a large number of application scenarios, ranging from
crowd management [HBJW05] through public transport and event
planning [CT10] to customer and visitor surveys [Cis14], where DevCnt
could be highly beneficial.

6.8 Related work
Our work on DevCnt is related to prior efforts on leveraging the
proliferation of smartphones for crowd counting and exploiting the
interference between Wi-Fi and ZigBee.

Leveraging smartphones for crowd counting. Existing solutions employ
different observable properties of a smartphone to count the number of
people in an area or estimate the density of crowds. Such properties
include audio tones [KVC12], GPS coordinates [WFMK+12], Bluetooth
scans [WLBT14], and Wi-Fi probes [Cis14, ME12]. Conceptually, we can
classify these solutions along three dimensions: privacy, invasiveness,
and passiveness.

Both research [ME12] and commercial [Cis14] systems exist that
directly eavesdrop on Wi-Fi probes, using existing APs and/or dedicated
Wi-Fi monitors. Being able to demodulate and decode Wi-Fi frames,
these systems can easily identify and track individual smartphones based
on the unique MAC addresses embedded in each probe. Although
anonymization techniques such as MAC address hashing are apparently
used [Cis14], these systems may still be exploited (e.g., by an attacker) to
compromise the privacy of the smartphone users, who possess no means
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to “see” that they are being observed. Turning off Wi-Fi is therefore the
only practical solution to guard against such impairment, but this may
impact user experience [BEM+13b].

Another class of approaches requires to modify the smartphone itself,
for example, by installing and running a dedicated application. The
system presented in [KVC12] uses the built-in microphones to count
smartphones by letting them exchange bit patterns encoded in audio
tones. Others estimate crowd densities based on GPS data [WFMK+12]
or the number of discovered devices by Bluetooth scans [WLBT14].
These approaches are invasive and rely on the voluntary and enduring
cooperation of users to produce meaningful estimates. Finally, [ME12]
shows that it is possible to solicit more probe transmissions from
unmodified smartphones to improve tracking performance.

Unlike these prior works, DevCnt takes a fully-passive, non-invasive,
and privacy-preserving counting approach. This approach relies on
DevCnt taking advantage of interference between ZigBee and Wi-Fi,
similar to other systems that are however designed for different purposes,
as discussed next.

Exploiting interference between ZigBee and Wi-Fi. SoNIC classifies
interference in the 2.4 GHz band into "Wi-Fi," "microwave," or "Bluetooth"
based on RSSI information available on a ZigBee device [HRV+13].
SpeckSense and ZiFi exploit interference from Wi-Fi beacon frames, which
are easier to detect than active scans because they exhibit a more rigid
periodicity. SpeckSense processes RSSI information on a TelosB device in
order to avoid Wi-Fi interference [IHV15]. ZiFi uses a built-in or external
ZigBee radio to help a smartphone or laptop discover Wi-Fi APs in a
more energy-efficient manner [ZXX+10]. Different from DevCnt, ZiFi
benefits from ample resources of the host device compared to the limited
memory and compute power of a low-power ZigBee mote. WizNet uses
interference from probes, beacons, and other Wi-Fi traffic to monitor the
spatio-temporal performance variations of Wi-Fi installations [ZXX+13].
Similar to DevCnt, WizNet uses, among other techniques, the discrete
autocorrelation to identify probes from RSSI samples. However, unlike
DevCnt, WizNet sends compressed RSSI traces to a more capable sink
for computing the autocorrelation offline. DevCnt shows that active scan
detection can indeed be performed online on mote-class devices, thereby
reducing communication energy costs and bandwidth requirements by
sending only the minimum amount of data to the sink.
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6.9 Summary
We have presented DevCnt, the first system that supports real-time
counting of unmodified Wi-Fi enabled smartphones while preserving
the privacy of the smartphone owners. Using novel signal processing
algorithms that execute on a multi-hop network of ZigBee devices,
DevCnt detects and counts active Wi-Fi scans performed by smartphones
based on characteristic patterns in RSSI traces. Combining these counts
with statistical information about the average active scanning rate,
DevCnt faithfully estimates the number of Wi-Fi enabled smartphones.
DevCnt trades some fidelity in the smartphone count estimations for
improved privacy. Results from controlled and real-world experiments
show that DevCnt provides estimates with an accuracy of up to 91 %.
We thus maintain that DevCnt is a viable and promising solution for
low-cost, real-time crowd counting in a broad spectrum of innovative
applications.





7
Conclusions and Outlook

Wireless embedded systems have been around since more than a decade
now. Ever since, people have been intrigued by the idea of cheap,
long lasting, self-managing and self-healing networks of wireless sensor
nodes, performing unattended sensing and actuation tasks. However,
building such systems is difficult because of resource constraints (energy,
processing, and memory), unreliable communication, or the distributed
character of such systems.

To facilitate the development process of wireless embedded systems,
testbed installations provide means to program and collect data from a
network of sensor nodes. At the same time, testing and validating these
systems on testbeds is notoriously impacted by limited observability and
controllability. Initially, access to nodes in testbeds had been by serial port
only, limiting debugging to inefficient printing of strings. Estimates of
energy consumption, important to assess the energy efficiency, were done
in software, or had been supported by low resolution measurements.

7.1 Contributions
To fill these gaps, we have made the following five main contributions in
this thesis.

FlockLab. We designed, implemented and deployed a new testbed that
extends the state of current testbed architectures by means for multi-
modal measurement and control abilities. FlockLab can control and
trace digital GPIO lines of a target, therefore enabling low-overhead
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monitoring of devices under test. At the same time, services such as high
resolution power profiling, serial logging, or target voltage control enrich
the observability and controllability during a test run. These features,
together with a wide range of different supported target platforms and
public access using a web interface, have made FlockLab popular in the
research community. A high utilization of the testbed reflects the need
for a multi-modal testing infrastructure.

Time synchronization. Given the need for accurately synchronized
measurements in a testbed, we investigated limits of current clock
synchronization protocols for wireless embedded systems. As a
result, we presented TATS, a new synchronization protocol that
combines propagation delay compensation and fast flooding to efficiently
synchronize even large networks with tens of hops within sub-
microsecond accuracy. We showed in testbed experiments that
TATS outperforms two state-of-the-art time synchronization protocols
(Glossy [FZTS11] and PulseSync [LSW14]) by up to 6.8×. In consequence,
we proclaim that using a wireless multi-hop network to synchronize
measurements in a distributed system is a viable alternative to wired
(Ethernet) or GPS solutions.

FlockDaq. To provision for extended tracing of GPIO events, and to
incorporate better time synchronization into the testbed, we designed
and implemented FlockDaq. This data acquisition system, based on an
FPGA paired with a wireless SoC, is capable of capturing GPIO events and
power samples at the maximal rate of currently attached target nodes. In
addition, all recorded data is annotated with a 1µs accurate time stamp.
We achieve this by employing a hierarchical memory architecture and a
wireless multi-hop time synchronization protocol.

Control flow tracing. To help developers instrument their code, we
introduced a systematic approach that can automatically place tracing
statements into a given program. Based on the extracted control flow of a
program and execution time information, our new algorithm determines
where to put tracing statements (witnesses) to faithfully determine the
executed program path by processing the recorded witness IDs and
time. By incorporating time information, we can substantially reduce
the runtime overhead induced by the instrumentation. We showed the
feasibility and usefulness of our approach by implementing the algorithm
in a tool for MSP430 based platforms and showing the runtime overhead
for various applications in FlockLab.

DevCnt. Finally, we demonstrated the benefits of a multi-modal testbed
during the development process in the case of DevCnt. DevCnt tries to
count the number of smartphones based on probe scans that are detected
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on a ZigBee receiver. Since these receivers cannot decode Wi-Fi frames,
the privacy of smartphones users is preserved. We developed signal
processing methods to extract probe scans from RSSI readings and used
machine learning techniques to distinguish probe scans from other traffic
or interference.

7.2 Possible Future Directions
The contributions in this thesis significantly advance the possibilities to
observe and control wireless embedded systems in a testbed. Besides
further improvements in terms of observability, we envision also possible
future research directions that are based on data gathered using testbeds.

Other modalities. An interesting path to explore is to augment a
testbed by adding other measurement modalities. In particular, capturing
activities in the wireless channel during an experiment could help to
better put test results into context. Interference from non-decodable radio
technologies can be made visible, and as such e.g. explain packet losses. A
software defined radio or a spectrum analyzer could capture the baseband
signal of overlapping transmissions, providing means to characterize the
capture effect or asses the possibility of constructive interference. Besides
enabling such measurements in a testbed, we see also the challenge to
process and record such data in an efficient way.

Analyzing large data sets. Related to the increasing possibilities in
observing embedded systems in a testbed is the problem of making use
of that data. While log files containing strings might be quickly examined
and processed using simple scripts, GPIO traces or control flow traces
of several nodes in a network quickly grow to data volumes that require
more processing power and methods to effectively extract the information
of interest. Possible avenues to explore are:

1. For quick inspection, tools that facilitate browsing of different kinds
of traces are required. An example of such a tool is Flooja [Büc14],
which visualizes different measurements acquired in FlockLab.
Taking this approach further, we envision a tool to browse control
flow traces captured on several nodes in a network.

2. The use of data mining techniques to automatically search for
interesting patterns in testbed data seems to be a promising idea.
Interesting patterns might be those that are very different to others,
so called discords [KLF05]. Such techniques could assist a developer
by pointing to rare and possible false behavior.
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Applications for probe detection using ZigBee radios. Although not at
the core of this thesis, we find that the interaction of different wireless
technologies bears interesting research questions. Here, we pitch the idea
of using a ZigBee receiver as wake-up radio for Wi-Fi access points. Due
to the fact that ZigBee receivers are more energy efficient, they could be
used to only turn on an access point if there is an actual client actively
probing. This idea goes into a similar direction as wake-up radios for
wireless sensor networks [SBBT15].
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