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Abstract

Air pollution can have devastating effects on human health and the
environment and is one of the most challenging environmental burdens
we face as a modern society. Monitoring air quality has therefore become
more and more important in recent years.

Ongoing monitoring efforts are usually conducted by sparsely
distributed and fixed sites equipped with expensive high-end sensing
infrastructure. Advances in sensor technology have made it possible to
extend these efforts by deploying low-cost air pollution sensors in large-
scale deployments that allow data collection with high spatio-temporal
resolution. Unfortunately, low-cost air pollution sensors suffer from
various limitations and, consequently, the collected data quality is limited
and often not fit for meaningful applications.

In this thesis we tackle the different limitations by air pollution sensor
calibration. We investigate multiple limiting factors of current sensor
technologies and develop calibration strategies that can be applied at
various stages of a deployment. The main contributions of this thesis are:
• We propose a new method to perform in-field pre-deployment

testing of low-cost air quality sensors. The procedure is able to
(i) conclude about the usability of a sensor in a given environment,
(ii) identify fundamental cross-sensitivities and (iii) assemble and
calibrate a sensor array, which provides accurate measurements
with long-term stability.
• We provide a novel algorithm for collaborative multi-hop cali-

bration of sensor arrays in a mobile deployment. Our approach
provides a re-calibration framework and tackles cross-sensitivities,
meteorological dependencies and signal drift of sensor arrays
during their deployment. We theoretically and empirically show
that our algorithm is minimizing error accumulation over multiple
hops and outperforms related techniques.
• We are the first to uncover and counteract interference from human

gas emissions on low-cost metal oxide sensor arrays in wearable and
personal air pollution measurement devices. We design a wearable
platform that is able to counteract human interference by utilizing
non-linear neural network calibration and semi-supervised learning
for effortless calibration model updates during deployment.
• We study uncertainty metrics and integrate them into different

calibration models. We show that different calibration approaches
improve their performance by applying heuristic filtering based on
confidence information when trained on noisy data.
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Zusammenfassung

Luftverschmutzung kann verheerende Auswirkungen auf die menschli-
che Gesundheit und die Umwelt haben und ist eine der herausfordernd-
sten Umweltbelastungen, die unsere moderne Gesellschaft beschäftigt.
Die Überwachung der Luftqualität wurde in den letzten Jahren deshalb
immer wichtiger.

Laufende Überwachungsmassnahmen werden üblicherweise mit
wenigen und festen Standorten, die mit teuren High-End Sensoren
ausgerüstet sind, ausgeführt. Fortschritte in der Sensortechnologie boten
die Möglichkeit diese Bemühungen mit grossangelegten Installationen
von kostengünstigen Luftverschmutzungssensoren, die das Sammeln
von Daten mit hoher räumlicher und zeitlicher Auflösung ermöglichen,
auszudehnen. Leider leiden kostengünstige Luftverschmutzungssenso-
ren unter verschiedenen Einschränkungen, welche dazu führen, dass
die erfasste Datenqualität oft unzureichend und nicht für sinnvolle
Anwendungen geeignet ist.

In dieser Arbeit bewältigen wir die unterschiedlichen Einschrän-
kungen durch Kalibrierung von Luftverschmutzungssensoren. Wir
untersuchen mehrere limitierende Faktoren von aktuellen Sensortech-
nologien und entwickeln Kalibrierungsstrategien, die zu verschiedenen
Zeitpunkten während eines Sensoreinsatzes angewendet werden können.
Die Hauptbeiträge dieser Arbeit lauten wie folgt:

• Wir erstellen eine neue Methode zum Testen von kostengünstigen
Luftqualitätssensoren bevor deren Installation und unmittelbar im
Einsatzgebiet. Das Verfahren erlaubt (i) Schlussfolgerung bezüglich
der Verwendbarkeit eines Sensors in einer gegebenen Umgebung zu
ziehen, (ii) grundlegende Quersensitivitäten zu identifizieren und
(iii) das Erstellen und Kalibrieren von Sensor-Arrays, die genaue
Messungen mit langfristiger Stabilität liefern.
• Wir entwickeln einen neuartigen Algorithmus zur kollaborativen

Multi-Hop Kalibrierung von Sensor-Arrays in mobilen Anwendun-
gen. Unsere Methode bietet ein Modell für Neukalibrierung und
bekämpft Querempfindlichkeiten, meteorologische Abhängigkei-
ten und Signaldrift von Sensor-Arrays während ihres Einsatzes.
Wir zeigen theoretisch und empirisch, dass unser Verfahren die
Fehlerakkumulation über mehrere Hops minimiert und verwandte
Methoden leistungsmässig übertrifft.
• Wir sind die Ersten, die Interferenzen zwischen menschlich

verursachten Gasemissionen und kostengünstigen Metaloxid-Gas-
Sensor-Arrays in Wearables und persönlichen Luftverschmutzungs-
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messgeräten identifizieren und entgegenwirken. Wir entwickeln
dazu eine Wearable-Platform, die die Interferenz mit Hilfe von Ka-
librierung anhand nicht-linearen Neuralen Netzwerken bekämpft
und durch teil-überwachtes Lernen mühelose Anpassungen des
Kalibrierungsmodells während der Installation ermöglicht.
• Wir untersuchen Messunsicherheit-Metriken und integrieren diese

in verschiedene Kalibrierungsmodelle. Wir zeigen, dass unter-
schiedliche Kalibrierungsansätze ihre Performanz durch Verwen-
dung von heuristischen Filtermethoden, die die Messunsicherheit-
Werte verwenden, verbessern, falls sie mit fehlerbehafteten Daten
trainiert werden.
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1
Introduction

Air pollution is one of the biggest environmental challenges we face in our
modern society. It unquestionably affects the quality of all our lives and
public health. According to a study by the World Health Organization
(WHO) ”only one person in ten lives in a city that complies with the WHO
Air quality guidelines” [WHO16]. Pollutants such as particulate matter
(PM), ozone (O3), carbon monoxide (CO) or nitrogen dioxide (NO2) are
known to cause respiratory illnesses or cardiovascular diseases. As a
result, approximately 3 million people die each year caused by poor air
quality. Due to its continuous increase the WHO declared air pollution as
a ”public health emergency” [WHO16]. Heavily polluted air also leads to
environmental problems such as acid rain, stratospheric ozone depletion
and global climate change. Monitoring air pollution is thus of growing
importance to increase public awareness and involvement in human
health and sustainable urban environments [TC09].

Traditionally, air pollutants are monitored by fixed sites with expen-
sive high-end sensing infrastructure run by governmental authorities.
These monitoring sites are usually distributed sparsely and only suffice
to estimate the average pollution affecting large populations. However,
air pollution is known to be a complex phenomenon with sophisticated
spatial and short-term variations [Mon01]. For instance, in major streets,
the pollutant concentrations may vary within tens of meters and over
time within minutes [DAS+05]. Therefore, it is desirable to increase the
spatio-temporal resolution of available air pollution information for the
public to assess their personal health risks and take precaution measures.

A driving factor that enables these increased monitoring efforts is
the availability of low-cost portable air pollution sensors. These sensors
are usually small, consume low power, cost roughly between 1$ and
1′000$ and are able to measure the concentrations of all the major air
pollutants. Compared to bulky high-end solutions (≥ 10′000$), low-
cost sensors are particularly convenient for large-scale static and mobile
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deployments [RKP+17, JSBT+15, SGK+17, BS17]. By now, low-cost air
pollution sensors have been successfully integrated into various long-
term deployments to provide fine-grained air pollution information for
quantitative studies and public services [YLM+15].

Unfortunately, the data provided by these deployments is often
lacking sufficient accuracy [FB17a, YLM+15]. Many researchers
report about serious inaccuracies when comparing the low-cost sensor
measurements to reliable and accurate measurements of conventional
monitoring sites [CDS+17, JHW+16]. The reason for this unsatisfying
performance can be linked to various limitations of state-of-the-art low-
cost sensors, such as low signal-to-noise ratios or interference from
environmental factors [SGV+17, SGV+15].

In order to improve the data quality of existing and future air quality
monitoring deployments, active research efforts are devoted to counteract
these limitations with appropriate sensor calibration. By calibrating a low-
cost sensor its measurements are transformed in a way that the calibrated
measurements are able to closely agree with reference measurements from
a high-end device. Sensor calibration is indispensable both before and
after the deployments of low-cost air pollution sensors. Pre-deployment
calibration is crucial to identify the primary error sources, select and
train calibration models for low-cost sensors to properly function in the
target deployment. Periodic post-deployment calibration is necessary to
maintain consistency among distributed sensors and ensure data quality
of long-term deployments.

Although calibration for air pollution sensors dates back to decades
ago [SWLL91, Jan92], it has attracted increasing research interest because
(i) newly available air pollution sensors push the boundaries in terms of
power consumption and portability while neglecting sensing accuracy;
and (ii) air pollution sensors are deployed in new scenarios such as in
crowdsourced urban sensing [Tho16] and personal sensing [TDMP16].

1.1 Air Pollution Sensors

Fast advances in technology and strong commercialization efforts are
main drivers for an increasing number of low-cost sensors available
nowadays [PXM+14]. Compared to high-end monitoring systems low-
cost sensors typically require significantly less power and smaller
packaging. Although these properties make low-cost sensors favourable
for various large-scale monitoring applications, a diverse list of limitations
hinders them to achieve a similar level of data quality as more
sophisticated sensors. This section summarizes the most common sensing
technologies of modern low-cost air pollution sensors.

As highlighted in [RKP+17, YLM+15], common low-cost sensors can
roughly be divided in two groups defined by their target pollutant, i.e.,
particulate matter (Section 1.1.1) and gases (Section 1.1.2).
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1.1.1 Particulate Matter Sensors

Particulate matter (PM) describes a mixture of solid and fluid particles,
which are typically classified by their size in diameter. PM10 describes
the mass concentration of particles with a diameter smaller than 10µm,
PM2.5 smaller than 2.5µm. Ultrafine particles (UFP) are nano-particles
with diameters usually below 0.1µm. These particles are known to
cause serious effects on environment and human health and, thus,
monitoring their concentration, size distribution and composition is of
high importance [TC09].

Low-cost PM sensors are almost exclusively based on optical sensing
principles. The most prominent principle is based on light scattering,
where air is pumped into a small chamber. Inside the chamber a light
source, either an LED or a low-power laser, is illuminating the air.
Depending on the number of particles in the air mixture, the light is
scattered with different intensity, which can be measured by a photodiode.
Certain low-cost PM sensors apply more sophisticated optical principles
to also differentiate sizes of particles.

1.1.2 Gas Sensors

The most relevant gaseous pollutants in outdoor air with serious negative
effects on human beings, animals and the environment are sulphur
dioxide (SO2), oxides of nitrogen (NO, NO2, NOx = NO + NO2), carbon
monoxide (CO) and ozone (O3) [TC09]. In indoor air mainly carbon
dioxide (CO2), volatile organic compounds (VOC) and in some cases
also carbon monoxide (CO) are known to be possibly present in harmful
concentrations [Jon99].

The majority of commercially available low-cost gas sensors is
therefore targeting to measure the concentration of one of these gases.
With the exception of CO2, which is either directly measured with
light scattering sensors [PXM+14] or approximated by the presence of
VOCs [HHU+10], the most popular sensing principles are based on
electrochemical or metal oxide layer reactions.

Electrochemical sensors. An electrochemical cell sensor (EC) consists in
its simplest form of two electrodes, a working electrode and a counter
electrode. Gases are either oxidized or reduced at the working electrode,
which results in electronic charges generated. The generated potential
difference at the two electrodes allows a current flow. This current is
usually linearly proportional to the gas concentration. More advanced
electrochemical sensors incorporate one or two additional electrodes to
improve stability and sensitivity [MPS+13, WYZ+10].

Metal oxide sensors. Metal oxide sensors (MOX) use a sensing layer,
where gases are either absorbed or desorbed. This reaction causes a
change in conductivity of the material. In order to increase sensitivity the
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sensing layer needs to be heated to temperatures of at least 250◦C. State-of-
the-art metal oxide sensors are capable of measuring all the major gaseous
pollutants [FCAB10].

1.1.3 Black-Box Approach

Based on the above sensing principles, manufacturers produce low-cost
sensors and offer different features. Some sensors solely output an analog
signal while others offer on-device signal processing, e.g., digitization of
the analog signals or internal calibration. In the remainder of this thesis
we do not differentiate between these different features. We regard a
low-cost air pollution sensor as a black box with a signal output. The
sensor is applied out-of-the-box and its output is used for comparison
and calibration with references. This is the general approach done in the
studies related to this thesis.

1.2 Error Sources

One of the most essential questions regarding the aforementioned low-
cost sensors is how their measurements perform in comparison to high-
quality references. An ideal sensor fully agrees with its corresponding
reference sensor, i.e., exhibits a perfect linear relationship, as illustrated
in Figure 1.1a. Unfortunately, the main reason why low-cost sensors have
not yet been established as a trust-worthy air pollution monitoring fashion
is their generally poor measurement accuracy [JHW+16, CDS+17, SGV+15,
SGV+17]. In an exhaustive test report Jiao et al. [JHW+16] perform a
black box testing approach for multiple sensors. Out of 38 tested sensors
only 17 correlate well to their corresponding reference sensors. Through
extensive sensor testing schemes and signal analysis researchers were
able to detect multiple different error sources of state-of-the-art low-cost
sensors. As a result, most low-cost sensors significantly deviate from an
ideal sensor (Figure 1.1).

In the following we present the most prominent error sources, also
summarized in Figure 1.2, that affect low-cost air pollution sensors. Note
that we do not include error sources that have not yet been thoroughly
tackled by calibration methods, such as slow response time or sensor
mobility effects [AMM16a, AMM16b].

1.2.1 Dynamic boundaries

Dynamic boundaries define the range of a pollutant concentration in
which a sensor is sensitive to. Especially the lower boundary, the limit
of detection (LOD) [SG+11], is important. Below this boundary the
noise of a sensor signal starts to dominate and it becomes impossible
to differentiate between concentration levels. Low-cost sensors often
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(a) (b)

(c) (d)

Figure 1.1: Comparison of measurements (arbitrary unit) from a reference sensor (x-
axis) versus measurements of different low-cost sensors (y-axis). Figure 1.1a illustrates
the response of a perfect low-cost sensor, Figure 1.1b of a low-cost sensor affected by high
noise at low concentration due to imperfect dynamic boundaries, Figure 1.1c of a low-cost
sensor suffering from systematically overestimated measurements and Figure 1.1d of a
sensor with a non-linear response. The ideal response is a perfectly linear relationship
between the low-cost and reference sensor.

have a LOD that is close to the range of interest or even surpasses it,
however, this also depends on the application. As a result, measurements
at low pollution concentration are subject to high noise. An example
of a low-cost sensor affected by high noise at low concentration due
to imperfect dynamic boundaries is depicted in Figure 1.1b. Especially
PM [RKP+17] and electrochemical sensors [HIVF+18] are known to be
significantly affected by low signal-to-noise ratios at low concentrations.
It is important that calibration procedures are applied with respect to
these dynamic boundaries.

1.2.2 Systematic errors

Systematic errors are of non-random nature and typically either charac-
terized by a constant offset over the whole range of concentrations or an
under- or overestimation of the concentration in certain ranges [CDS+17,
SGV+15, SGV+17]. An example of a sensor response with a constant offset
is illustrated in Figure 1.1c. They can often be attributed to imperfect
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Figure 1.2: Overview of typical low-cost error sources and their corresponding
calibration approaches indicated by gray lines.

calibration parameters and are generally not related to the sensing
principle. Popular examples where systematic errors pose a challenge
are factory calibrated sensors, as elaborated in detail in Section 1.4.

1.2.3 Non-linear response

Due to the nature of certain low-cost sensing techniques non-linear
relationships between a sensor’s and a reference’s response are
unavoidable. Sensor manufacturers often already linearise the sensor
response, e.g., by internal signal processing, or provide information
about typical non-linear behaviour in the datasheet. However, additional
factors such as environmental conditions are known to cause non-linear
behaviour as well [PSMJ16]. Figure 1.1d shows an example of a non-linear
sensor response. A linear relationship is in general favourable because it
allows the use of simple calibration models.

1.2.4 Signal drift

Low-cost sensors generally cannot maintain a stable measurement
performance over a long time period [KESN+18, MMH17, KSL+18]. This
usually happens due to ageing (causing gain drift) and impurity effects
(causing offset or baseline drift), and leads to a slow drift of a sensor’s
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sensitivity. Signal drift is one of the most common error sources and
seriously impedes long-term deployments with low-cost sensors.

1.2.5 Environmental dependencies

Changing environmental conditions can cause problems that almost
any low-cost sensor is facing. Various laboratory reports show that
certain physical ambient properties, especially temperature and humidity
conditions, can have a serious effect on a sensor’s response. For
instance, increasing humidity is notably decreasing the sensitivity of
metal oxide [WYZ+10], electrochemical [PSL+17] and particulate matter
sensors [WLJ+15]. As a result, low-cost sensors usually perform
significantly worse in field deployments than in a laboratory setup.
Further, environmental dependencies can also be responsible for non-
linear responses, e.g., for electrochemical sensors [PSMJ16].

1.2.6 Low selectivity

Typical metal oxide and electrochemical sensors suffer from low
selectivity. This means they are not exclusively sensitive to their intended
target gas but are also cross-sensitive to, sometimes various, interfering
substances in the air [LCL+12]. Especially in complex outdoor air
these cross-sensitivities impose a fundamental challenge for low-cost gas
sensors. Particulate matter sensors are usually not affected by cross-
sensitivities because they are designed to detect a composition of different
particles. However, in some cases where low-cost particulate matter
sensors are either used to detect particles from certain sources like car
exhaust or to distinguish different particle sizes, cross-sensitivities are
also considered as a fundamental error source [RKP+17]. Compared to
environmental dependencies, the low selectivity problem is caused by
purely chemical interferences and requires more sophisticated calibration
efforts.

1.3 Sensor Deployments and Calibration Opportunities

A commonly used solution to reduce the errors of low-cost air pollution
sensors is calibration. A typical sensor calibration pipeline is shown in
Figure 1.3. The general goal of sensor calibration is to find a calibration
model that transforms the raw measurements of a low-cost sensor into a
calibrated form. Determining a calibration model is typically done in a
way that the measurements of the low-cost sensor are mapped to those
of an accurate reference sensor with respect to some optimization goal,
e.g., minimizing the calibration error. Sensor calibration is performed
both before and after the deployment of air pollution sensors to deal with
different error sources (see Figure 1.2).
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Figure 1.3: Typical sensor calibration pipeline. A sensor is sensing a phenomenon
of interest, e.g., a pollution concentration, and produces a sensor signal. We treat
the sensor as a black-box and apply a calibration model on the raw sensor signal to
produce calibrated measurements. The calibrated measurement ideally describes the
true property of the target phenomena, e.g., the true pollution concentration.

1.3.1 Pre-Deployment Calibration

The aim of pre-deployment calibration is to try to identify all possible error
sources of a sensor in an observed and/or controlled environment before
deploying the sensor in the field. Pre-deployment calibration usually
assumes continuous availability of a high-quality reference sensor. One
or multiple error sources listed in Figure 1.2 can be detected by comparing
the low-cost sensor to the reference sensor. These error sources are then
tackled by developing a suited calibration model (Section 1.4).

1.3.2 Post-Deployment Calibration

Post-deployment calibration is used for counteracting error sources that
impede a consistent performance of a calibration model over time or
in the actual deployment environment. These error sources are either
heavily deployment-dependent, such as harsh environmental conditions,
or due to signal drift, which commonly occurs in long-term deployments.
During post-deployment calibration, large numbers of sensors with
irregular access to reference measurements need to be calibrated.
This is achieved by applying the calibration models extracted from
pre-deployment calibration to different network re-calibration strategies
(Section 1.5).

In Section 1.4 and Section 1.5 we outline the existing calibration
approaches, which are found in literature and used in low-cost air
pollution sensor deployments.

1.4 Calibration Models

Calibration models are applied in both pre-deployment and post-
deployment calibration. We start with the basic and fundamental model,
i.e., offset and gain calibration, in Section 1.4.1. Building on this basic
model, Section 1.4.2 presents a first extension that corrects for temperature
and humidity effects. Finally, Section 1.4.3 summarizes an additional



1.4. Calibration Models 9

extension of the previous two models by also considering potential
interference from other pollutants.

A calibration model takes the raw measurements of a low-cost
sensor and transforms them to calibrated measurements, leveraging
prior knowledge, e.g., datasheets, or additional information, e.g.,
measurements from auxiliary sensors. Various mathematical methods
can be applied and calibration models may vary for different types of
sensors. Calibration parameters can be derived through measurements
either in a laboratory setup (controlled environment) or in the field next
to reference monitoring sites (observed environment).

1.4.1 Offset and Gain Calibration

Offset and gain calibration tackles calibration errors due to dynamic
boundaries and systematic errors and removes potential non-linear
responses. It is one of the most essential calibration models that maps the
raw sensing measurements to a target pollutant concentration.

Principles. Offset and gain calibration fits a calibration curve, either
a linear or a non-linear one, to model relationships between raw sensor
readings and pollutant concentrations. The calibration curve is defined by
an offset term, i.e., the sensor’s response to complete absence of the target
pollutant, and a gain term that characterizes the sensor’s response to
increasing pollutant concentrations. Optimal offset and gain parameters
capture the behaviour of a sensor within its sensitivity range, i.e., the
dynamic boundaries, and remove systematic errors attributed to poorly
fitted calibration parameters.

Methods. The most popular methods to calculate offset and gain terms
are ordinary least squares for a linear calibration line and non-linear curve
fitting, for instance with an exponential [ANSY15] or power law [DKC+15]
gain term. Offset and gain calibration can be performed in both lab and
field setups.

Laboratory tests. One way to acquire a calibration curve is to expose a
sensor to various target pollutant concentrations in a controlled laboratory
setup. Austin et al. [ANSY15] expose a low-cost PM sensor to different
aerosol air mixtures in an air-tight enclosure. The gathered measurements
are used to calculate a calibration curve defined by an offset and an
exponential gain term. Castell et al. [CDS+17] follow a similar approach
and calibrate different electrochemical sensors by exposing them to
five different gas mixing ratios. Their sensors show high correlation
(R2
≥ 0.92) and, thus, a simple linear calibration based on ordinary least

squares was used to adapt the offset and gain terms. Similar laboratory
calibration can be found in additional works [CLL+14, BL11]. For certain
commercially available low-cost sensors an initial laboratory calibration
is already performed in the factory. Manufacturers usually follow similar
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Figure 1.4: Governmental monitoring station located in a suburban area in Switzerland.

approaches as found in the literature and either provide the sensor’s
response over a range of target pollutant concentrations [Alp13b] or in
the form of a calibration curve recorded in a laboratory setup [SGX08].

Field tests. Various recent works propose to directly calibrate their
sensors in an environment that is similar to the final deployment. The
most prominent way is installing the sensors under test next to high-end
sensors. For instance, Dacunto et al. [DKC+15] jointly deploy a low-
cost PM2.5 sensor with a high-end device in different indoor locations.
In outdoor deployments the most prominent approach is to install the
sensors under test directly next to governmental monitoring stations
that often feature a variety of accurate pollution sensors. For instance,
Figure 1.4 shows a monitoring station of the governmental air quality
monitoring network NABEL [Nyf01] in Switzerland. Spinelle et al.
[SGV+15, SGV+17] deploy 17 different low-cost gas sensors next to
high-quality sensors of a air quality monitoring station in a semi-rural
area. Carotta et al. [CMC+01] deploy different MOX sensors next to
a monitoring station located at a high-traffic road and next to one in a
low-traffic intensive area. The highly accurate measurements from these
monitoring stations are used to train and evaluate the calibration of the
low-cost sensors.

Discussion. While laboratory setups are faster than field tests, many
researchers [MPH15, CDS+17, CMC+01, PXM+14] recommend field tests
for offset and gain calibration. In a laboratory setup, the environmental
conditions during exposure are typically held constant, e.g., at room
temperature and moderate relative humidity. Further, the chamber is
usually filled with clean air mixed with the target pollutant concentration,
i.e., without possible interference from other pollutants. In contrast,
field tests allow the sensors to be exposed to situations with realistic
environmental conditions, e.g., changing meteorological parameters or
interfering gases. Because the sensors are exposed to realistic pollution
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concentrations the parameters can be optimized to capture the behaviour
of the sensor within expected concentration ranges, i.e., with respect to
the dynamic boundaries. For instance, Castell et al. [CDS+17] calculate an
offset of their calibration curve around 1 ppb (parts-per-billion = 10−7%)
in a laboratory calibration and around 166 ppb in a field calibration for a
CO sensor. By re-calibrating the CO sensor, i.e., adapting its offset term in
the field, they finally reduce the measurement error from 181 ppb by over
a factor of 2 to 87 ppb. Zimmermann et al. [ZPK+18] show similar results
with four different sensors. Offset and gain calibration models calculated
in a laboratory perform poorly in an outdoor deployment and are not in
line with re-calibrated models.

As explained in Section 1.1.2, errors of air pollution sensors can be
environment-dependent. In-field offset and gain calibration implicitly
mitigates the impact of these errors. However, environmental conditions
are complex and subject to short- and long-term changes. As a result,
simple offset and gain calibration achieves significantly worse results in
field than in laboratory tests. For instance, Castell et al. [CDS+17] observe
a drop of R2 = 0.99 to 0.3 of a NO2 sensor when moving from laboratory
to field tests. To explicitly account for these environmental conditions
information about temperature, relative humidity and interfering gases
as well as advanced calibration models are needed, as we will describe in
Section 1.4.2 and Section 1.4.3.

1.4.2 Temperature and Humidity Correction

Temperature and humidity correction augments air pollution measure-
ments with concurrently measured temperature and humidity readings
to calibrate the low-cost air pollution sensor.

Principles. The motivation of temperature and humidity correction stems
from the influence of different temperature or relative humidity settings
on sensors observed in laboratory tests. Pang et al. [PSL+17] observe a
relative drop in sensitivity of roughly 20% for electrochemical sensors
when the relative humidity is increased from 15% to 85%. A similar
observation is made by Wang et al. [WYZ+10] for a metal oxide sensor. The
sensor almost completely loses its sensitivity when changing from dry air
to an extreme relative humidity of 95%. Wang et al. [WLJ+15] demonstrate
that increasing humidity can lead to an overestimation of the particle
number of typical low-cost light scattering sensors. Similar sensitivity
losses are also experienced under changing ambient temperature as
summarized by Rai et al. [RKP+17]. These results make it evident that
changing environmental conditions such as temperature and humidity
need to be incorporated in the calibration process in order to improve
the overall measurement accuracy of virtually any low-cost air pollution
sensors.
Methods. Temperature and humidity correction is ubiquitous due to
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the availability of cheap and small but precise low-cost temperature and
humidity sensors. Most works include these additional measurements
in their calibration methods, and extend the single-variant mathematical
models in offset and gain calibration (Section 1.4.1) to the corresponding
multi-variant models.

A simple approach found in most of the investigations is to find the
linear combination of raw air pollution, temperature and humidity sensor
measurements that best captures the target reference concentration. The
results in [HPSS14, PXM+14, JHW+16, SWN17, MZK+17, EK12, HIVF+18]
all use multiple least-squares to calculate this combination and show
beneficial results for any type of low-cost sensor. Different approaches
apply more complex methods to model the impact of temperature
and humidity. Masson et al. [MPH15] derive a detailed model that
captures the physical effect of ambient temperature on their MOX
sensor. Popoola et al. [PSMJ16] develop a temperature baseline correction
algorithm for electrochemical sensors. They observe notable differences
in temperature sensitivity for carbon monoxide (CO) and nitrogen oxide
(NO) sensors. While the CO sensor showed a linear relationship to
its reference, the NO sensor exhibits a strong exponential relationship.
Therefore, they model the reaction to temperature with a linear line fit for
the CO sensor and an exponential curve fit for the NO sensor, which is
used to correct the corresponding sensor signal. They are able to show a
significant improvement for the NO sensor by improving the correlation
from R2 = 0.02 to R2 = 0.78. Tsujita et al. [TYIM05] and Sohn et al.
[SAZP08] similarly model the relationship of MOX sensors to humidity
and temperature with exponential terms and compensate for them by
fitting a calibration curve.

Discussion. The extensive list of different sensors that significantly
improve their accuracy after temperature and humidity correction
underlines the severity of the problem. Temperature and humidity
correction needs to be performed for any air pollution sensor regardless
of its underlying sensing principles. In rare cases, the impact of ambient
conditions can be precisely modelled using chemical process theory.
This approach, however, requires deep knowledge of the underlying
sensing principle, e.g., physical properties of the metal oxide sensing
layer. Therefore, simpler data driven methods dominate the different
calibration methods. Due to the popularity of the problem, recent low-
cost sensors, especially fully digital sensor solutions, already integrate an
internal temperature and humidity correction [SGX08, Aer16]. However,
the various field calibration works emphasize the benefit of directly
compensating for temperature and humidity dependencies. Thus, it
becomes evident that static correction schemes by manufacturers or
laboratory calibration may be replaced by in-field calibration for optimal
performance.
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1.4.3 Sensor Array Calibration

Sensor array calibration is a generic extension of temperature and
humidity correction that tackles another environment-dependent factor,
interfering gases.

Principles. As described in Section 1.4.1, laboratory tests are usually
performed by exposing a sensor to clean air that is mixed with the target
pollutant. In most real-world deployments the air mixture is composed
of multiple different components [MPS+13]. For instance, multiple
pollutants appear concurrently at diverse concentrations in outdoor and
common indoor air. These complex air mixtures particularly pose a
substantial challenge for gaseous pollutant sensors. Instead of being
selective to one single pollutant, low-cost sensors are typically sensitive
to multiple pollutants at the same time with different intensities [LCL+12,
WYZ+10]. This low-selectivity problem is also referred to as cross-
sensitivity and, broadly put, equivalent to the temperature and humidity
dependency, i.e., different factors in the environment are influencing a
sensors response. Thus, the basic concept is the same as the temperature
and humidity correction but often requires more complex methods.

By concurrently measuring all the cross-sensitivities it is possible to
compensate for all interfering pollutants. This approach requires a sensor
array, i.e., multiple different jointly deployed low-cost sensors. One
option to create a sensor array is to install multiple sensors in a box
to ensure common air sampling. Note that the majority of sensor arrays
also include temperature and humidity sensors and, thus, in this case
sensor array calibration is also performing a temperature and humidity
correction.

Methods. Popular sensor array calibration methods can be divided in
multiple least-squares and neural networks. For certain cross-sensitivity
problems a multiple least-squares regression can be successfully used for
calibration. One of the most popular examples is the cross-sensitivity of
NOx electrochemical sensors on O3 concentrations [SGV+15], and vice-
versa [PSL+17]. Pang et al. [PSL+17] are compensating for potential
influences of ambient NO and NO2 concentrations on the signal of
an O3 electrochemical sensor. The NO and NO2 concentrations are,
however, measured by a high-end sensing device. The effect of the
two cross-sensitivities follows a linear behaviour and, thus, a linear
multiple least-squares calibration can be successfully applied. Another
investigation [FB17b] follows a similar approach, but compensates for
the cross-sensitivity to O3 of a NO2 electrochemical sensor. The O3

measurements are measured by another low-cost oxide sensor.
In more complex cases, linear calibration models do generally

not perform well [SGV+15, SGV+17] and, therefore, different authors
investigate the feasibility of non-linear calibration models, mostly based
on neural networks or related machine learning methods. Spinelle et al.
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[SGV+15, SGV+17] show for a wide range of low-cost gas sensors
an overall better performance of neural- network-based sensor array
calibration compared to multiple least-squares and particularly to an
offset and gain calibration based on ordinary least squares. For multiple
O3 and NO2 sensors the coefficient of determination R2 is improved
from values below 0.3 to at least 0.85 and 0.55, respectively, using
neural networks instead of linear models. They also show that for some
sensors, in particular metal oxide CO and electrochemical NO sensors,
the cross-sensitivity limitation appears to be too severe and could not be
solved by calibration with reasonable performance. Similar results are
reported by De Vito et al. [DMP+08, DPMF09, DES+18], Esposito et al.
[EDS+16, EDS+17, EDS+18], Lewis et al. [LLE+16], Barakeh et al. [BBR+17]
and Zimmermann et al. [ZPK+18]. Different types of machine learning
techniques, with the majority being neural networks, are able to resolve
cross-sensitivities of commercial low-cost sensors with the help of sensor
array calibration.

Discussion. Compared to the other two calibration models, sensor array
calibration is not a necessity for all sensors. The necessity of sensor array
calibration mainly depends on the sensitivity profiles of low-cost sensors
and the target pollutant. For instance, O3 can in general be accurately
measured with a single low-cost sensor due to the aggressive nature
of ozone, which in return simplifies the development of selective sensing
principles. Other pollutants, for instance NOx, are affected by the presence
of aggressive interference factors and complicate the design of selective
sensors. These two interacting factors pose a substantial challenge in
choosing the optimal sensor array composition, i.e., what low-cost sensors
are required to accurately measure the target pollutant. Therefore, various
works [DPMF09, ZPK+18, CWL+17] present a thorough analysis on which
sensor array composition achieves the best performance in terms of
measurement accuracy, precision and stability. Such an analysis requires
concurrent data of multiple different low-cost sensors that need to be
tested on their feasibility in different sensor arrays. In some cases, the
available low-cost sensors may not suffice for a successful array due to
unresolved cross-sensitivities [SGV+17]. Thus, finding the optimal sensor
array to tackle all cross-sensitivities remains an open problem. Further,
similar to the two previous models authors agree that pre-deployment
sensor array calibration needs to be performed in the field. The complex
composition of pollutants in outdoor air requires the sensors under test
to be exposed in their target deployment for a successful calibration.

1.4.4 Comparisons of Calibration Models

In summary, the most essential calibration model that is necessary
for all types of sensors is a simple offset and gain calibration, i.e.,
mapping the raw sensor measurements to a pollutant concentration.
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Popular mathematical methods are linear regression or simple curve
fitting possibly incorporating a non-linear gain term. Due to the severity
of the environmental dependency problem extending the basic model
with a temperature and humidity correction becomes indispensable in
order to significantly improve the measurement accuracy of any low-
cost sensor. The correction can easily be done by concurrently measuring
environmental parameters and including them in multi-variable methods,
such as multiple least-squares or non-linear curve fitting. Finally,
additional environmental influences from interfering gases can be
eliminated by incorporating sensor array calibration techniques. Cross-
sensitivities are mostly problematic for electrochemical and metal oxide
sensors and heavily deployment-dependent. Sensor array calibration
requires concurrent measurements from different low-cost sensors and
often sophisticated machine learning methods to capture the complex
relationship between multiple cross-sensitive sensors and the target
pollutant concentration. Overall sensor array calibration has been shown
to produce most accurate data. Spinelle et al. [SGV+15, SGV+17] evaluate
the performance of the three different calibration steps with different gas
sensors. For instance, the NO concentration measured by a calibrated
sensor array achieves 15 and 41 times lower measurement errors
compared to a single NO sensor with and without temperature correction,
respectively. Similar results are shown by Zimmermann et al. [ZPK+18].
Their sensor array calibration based on both linear and non-linear
methods achieves an almost one order of magnitude lower error than
a simple laboratory offset and gain calibration for four different types of
sensors.

The number of additional sensors and the amount of measurements
needed to learn the model parameters increase with the complexity of
calibration models. Compared to the other two calibration models, sensor
array calibration also requires more training samples, i.e., covering a large
range of different outdoor situations and, thus, is more time-consuming
and complex to perform. De Vito et al. [DMP+08] show a clear positive
trend of accuracy and precision with increasing training data. Finally,
they achieve a stable calibration with training data collected over 100 days.
These long training efforts are, however, justified in order to achieve high
data accuracy during long-term deployments possibly spanning multiple
years.

Note that a prerequisite to apply calibration models is the access to a
highly accurate reference. A reference is usually available in lab or field
tests before actual deployment of air pollution sensors. However, the
sensors after deployment may have irregular access to a reference, which
requires additional calibration strategies, as we will discuss in the next
section.
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1.5 Network Calibration

Low-cost sensors are usually deployed in either a static or mobile
sensor network for long-term air pollution monitoring. Even after
pre-deployment calibration, these sensors need periodic re-calibration
due to sensor drift over time and changes in the target environment.
Some works report a significant drift after already one month of
deployment [MMH17]. Thus, re-calibrating sensors appears to be an
absolute necessity in any long-term deployment.

An important commonality of post-deployment calibration is the lack
of reference sensors to verify and potentially re-calibrate low-cost sensors.
This section summarizes existing network re-calibration methods, which
calibrate a network of sensors with irregular or even no access to a
highly accurate reference. We group the existing literature into three
fundamental network calibration approaches, i.e., blind (Section 1.5.1),
collaborative (Section 1.5.2) and transfer (Section 1.5.3) calibration, based
on their assumptions or usage of virtual references. Note that calibration
in sensor networks is a general problem and, thus, some of the presented
methods can also be directly applied or adapted to other types of sensor
network applications consisting of temperature and relative humidity
sensors [WYL+16], microphones [SITN17] or barometers [YGTL14].

1.5.1 Blind Calibration

The concept of blind calibration [BN07] or macro calibration, is originally
designed for general sensor networks and has also been applied to
temperature and relative humidity sensor networks [BN07, WYL+16]. The
idea is to achieve a high similarity between measurements of all sensors
in a network. A key assumption is that neighbouring sensors measure
almost identical values, or are at least correlated. This assumption
is often not true for air pollution monitoring deployments. First, air
pollution is known to be a highly complex system with large spatio-
temporal gradients. Second, typical inter-device differences of low-cost
air pollution sensors hinder equal measurements even in a dense small-
scale network. As a result measurements of air pollution sensors in a
large-scale deployment are in general neither identical nor necessarily
correlated. A more practical assumption is to exploit situations in space
and time where we can safely assume that all sensors within the given
deployment measure the same pollution concentrations.

Tsujita et al. [TYIM05] installed a low-cost NO2 sensor in the city
of Tokyo, Japan. They recognize that the major error source of their
sensor appears to be a baseline drift of the calibration parameters over
time. Because they continuously install their sensor at different locations
where no accurate governmental stations are deployed, they propose
an auto-calibration method. The sensor can be calibrated to reference
stations that are not necessarily in their spatial vicinity when one can
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Figure 1.5: Blind calibration scenario with rurally located sensors S1, S2, rural reference
R1, urban sensors S3, S4 and urban reference R2. Sensors that are located in similar areas
(rural or urban) are calibrated to references in similar areas during times when it is safe
to assume that all sensor measurements are identical.

safely assume that the NO2 concentration is almost identical at any point
in the deployment region. To check these circumstances they use NO2

measurements from four different monitoring stations and re-calibrate
the offset term of their low-cost sensor as soon as all four stations report
a NO2 concentration below 10 ppb. A similar method is also applied
by Pieri et al. [PM16]. A slightly adapted approach is presented by
Moltchanov et al. [MLE+15]. Instead of assessing the possibility of a
uniform concentration with reference measurements, they use specific
time periods. In order to calibrate low-cost O3 sensors they assume
that the O3 concentration is uniform during night time (01:00-04:00
AM), when local emissions of precursors, e.g., NO2 traffic emissions,
are negligible. During these time periods they calibrate six O3 sensors
to the reference measurements of one monitoring station. Because O3

usually reaches concentrations close to zero during night, this approach
again only allows for an offset re-calibration. Finally, Mueller et al.
[MMH17] also divide their low-cost sensors in two groups, i.e., sensors
that measure traffic-related pollution variations deployed in inner city
areas and background pollution sensors in outer city areas. This scenario
is also illustrated in Figure 1.5. They assume that at inner city locations O3

and NO2 concentrations are usually uniform during night and at outer
city locations during the afternoon. Individual sensors installed in the
inner city are then calibrated to a remote monitoring station in the inner
city during night-time and correspondingly for sensors located in the
outer parts of the city in the afternoon.
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Figure 1.6: Collaborative multi-hop calibration scenario exploiting sensor rendezvous
(RV) between static reference R1 and mobile sensors M{1,2,3,4}. Whenever sensor M1 is
in the vicinity of the reference R1 the low-cost sensor can be calibrated. In return, the
freshly calibrated M1 is calibrating M2 during rendezvous, and so forth.

1.5.2 Collaborative Calibration

Collaborative calibration extends blind calibration by creating virtual
references where two mobile sensors meet in space and time such that
they should measure the same physical phenomena. The basic idea of
collaborative calibration is to exploit situations where two or more mobile
sensors meet in space and time, i.e., referred to as sensor rendezvous. The
notion of sensor rendezvous can also be found in other sensor network
problems, such as energy efficient data collection [XWXJ08] or sensor fault
detection [SHWT14]. Further, collaborative calibration exploiting sensor
rendezvous is also used in other sensor networks, e.g., crowdsensing
applications using microphones [SITN17] or barometers [YGTL14].

Sensor rendezvous can be utilized as references for calibrating mobile
air pollution sensors. Sensors in a rendezvous are assumed to sense
the same physical air and the range of a rendezvous can be empirically
determined. For instance, Xiang et al. [XBP+12] define a distance of at
most 2 m between two sensors to constitute a rendezvous in an indoor
air pollution monitoring deployment. Saukh et al. [SHT15] show that
a distance of 50 m in urban outdoor deployments is a reasonable upper
limit. Whenever a mobile low-cost sensor is in a sensor rendezvous with a
highly accurate sensor, e.g., from a governmental monitoring site, the low-
cost sensor can use the reference measurement for calibration [SHT15].

Arfire et al. [AMM15] apply a non-linear temperature correction for
mobile electrochemical sensors in a collaborative fashion with a reference
sensor. Hasenfratz et al. [HST12] present three different calibration
methods based on weighted least squares that also incorporate the age
of measurement at the time of the calibration parameter calculations.
The methods in [HST12] are also applied by Budde et al. [BEMRB13] to
calibrate PM sensors in a participatory sensing scenario. These methods
assume that a sensor is in rendezvous with one or more reference sensors
multiple times under different conditions so that the sensor can collect a
calibration dataset with high variance for calibration.

Unfortunately, not all sensors are necessarily in rendezvous with
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Figure 1.7: Transfer calibration scenario between a reference sensor R1 and sensors
S{1,2,3,4}. In a first step, sensors S{2,3,4} are standardized to a master sensor S1 in order
to achieve high similarity of raw measurements. In a second step, a calibration model
acquired by the master S1 with reference R1 is transferred to all other sensors S{2,3,4}.

reference sensors frequently enough. As a consequence, some sensors in
the network cannot be re-calibrated. Therefore, some works additionally
exploit rendezvous between a freshly calibrated and an uncalibrated low-
cost sensor. In this case, a sensor that has been freshly calibrated is used
to calibrate an uncalibrated one, e.g., a sensor that has no rendezvous
with references. In return, the second freshly calibrated sensor can also
be used to calibrate others, and so on. Calibration is therefore performed
in a chain-like fashion and, thus, this concept is also known as multi-
hop calibration. A typical multi-hop calibration chain is illustrated in
Figure 1.6. Although multi-hop calibration allows to calibrate more
sensors compared to calibration exclusively with references, it also poses
multiple challenges. The most severe challenge is error accumulation
over multiple hops, first reported by Hasenfratz et al. [HST12] and in
detail evaluated by Saukh et al. [SHT15] and Kizel et al. [KESN+18].
Due to the nature of least-squares-based calibration models at every
hop of the calibration chain calibration errors are accumulated. To
counteract this error accumulation, Saukh et al. [SHT15] propose to use
an alternative method, i.e., the geometric mean regression. It is not
suffering from error accumulation, theoretically and practically proven,
and is successfully used for offset and gain calibration of a real-world
air pollution network. Additional challenges of multi-hop calibration
are tackled in [FRD17, MBS+18]. Fu et al. [FRD17] study the effect of
reference sensor placement on the performance of multi-hop calibration
and present an algorithm to optimally design a practical deployment of
static reference and mobile low-cost sensors. A privacy-reserving multi-
hop calibration scheme for participatory and crowd sensing deployments
is introduced by Markert et al. [MBS+18].
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1.5.3 Transfer Calibration

The third group of network calibration methods is known as transfer
calibration. It has its origins mainly in industrial deployments using
electronic noses (e-noses), i.e., metal oxide sensor arrays for hazardous
odour detection. Although the related work mainly focuses on e-nose
calibration, transfer calibration can be applied to any sensor model.
E-noses are typically calibrated by neural networks to detect multiple
different odours or gases with one calibration model. Training such a
neural network requires a lot of effort mainly due to training sample
collection and model optimization. Metal oxide sensor arrays do typically
not produce identical responses compared to similar arrays, even coming
from the same production batch [ZTK+11], i.e., there are significant
inter-device differences for e-noses. Therefore, each e-nose needs to
be calibrated independently and mass production becomes an almost
impossible task. Transfer calibration tackles this problem by applying
a two-step calibration process. Assuming multiple e-noses, one e-
nose acts as a master sensor. In a first step, all non-master e-noses
standardize their raw sensor array signals individually to the raw ones
of the master. This step is usually performed by linear regression
methods, such as robust regression [DKJ+14], ridge regression [YZ16],
direct standardization [FFGG+16] or weighted least squares [ZTK+11],
and counteracts the inter-device differences. In a second step, the master
node calibrates its response to the target gas or odour concentrations,
e.g., by training a neural network calibration model [ZTK+11, DKJ+14].
This model is now transferred to all non-master nodes, as illustrated
in Figure 1.7. Other popular methods used in the second step are
support vector machines regression [YZ16, FFGG+16] or classification-
based methods to classify the presence of a certain gas using support
vector machines [YZ16, FFGG+16] or logistic regression [YZ16]. Some
works also combine the two steps using a global training framework,
such as auto encoders by Zhang et al. [ZGY17] or a mixture of multi-task
and transfer learning by Yan et al. [YZ15]. Bruins et al. [BGvdS+13] show
that the standardization in the first step can also be performed by applying
an elaborate heating temperature control of the MOX sensor array.

Since transfer learning only requires one complex calibration process
for the master sensor array, it is clearly able to minimize calibration efforts
in large-scale deployments. Unfortunately, transfer learning approaches
have mainly been evaluated in lab setups and not yet intensively in real-
world deployments. One of the few transfer calibration adaptations
using a real-world large-scale PM sensor deployment is presented by
Cheng et al. [CLL+14]. In a first laboratory calibration step the PM
sensors are standardized to a master sensor using second degree curve
fitting. In the second step a neural network is used to perform a
temperature and humidity correction. The neural network is constantly
updated throughout the deployment. Overall they achieve an increase
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in approximately 8% measurement accuracy compared to uncalibrated
situations.

1.5.4 Comparisons of Network Re-Calibration Strategies

The three network calibration approaches all rely on different assump-
tions and fundamental design choices and, thus, also have different
advantages. The least complex method based on blind calibration
exploits time periods and locations of reference and low-cost sensors
for calibration to assure that all sensors generate identical measurements.
While this approach can be applied to almost any type of sensor in almost
any deployment, the opportunities for calibration are generally sparse
and, hence, only offset and gain calibration can be successfully performed.

In order to increase the opportunities for calibration, collaborative
calibration exploits meeting points or rendezvous between sensors.
Consequently, collaborative calibration can only be applied to mobile
sensor deployments. Depending on the mobility of the sensors it might
not be possible to calibrate all sensors within the network, e.g., a sensor
with no rendezvous can not be calibrated. So far it is unclear how
collaborative calibration scales with the network size. This is not a
substantial problem for the other two methods.

Finally, transfer calibration uses a two-step approach by first
standardizing all deployed sensors to a master sensor and then
transferring calibration parameters acquired by the master to all sensors.
Transfer calibration has no restrictions on the possible calibration models
or the mobility of sensor, with the exception of the static master sensor
next to a reference. However, transfer calibration assumes that all
sensors in the network (i) drift in an equal way as the master node
and (ii) are equally affected by environmental conditions. These two
assumptions are in general not true in typical air quality monitoring
networks [ZTK+11]. Therefore, up to now transfer calibration has not
achieved satisfactory performance. Further, there is only little experience
in real-world deployments.

Overall, all the methods have been proven to be successful in coun-
teracting decreasing accuracy in their specific long-term deployments.
In general the average measurement accuracy is increased after re-
calibrating a sensor network and, thus, the existing results point out
the necessity of re-calibration. However, the different strengths and
weaknesses of the three methods present the need for an universal
network calibration method. Currently, there is no one-size-fits-all
network calibration solution available. Recent research efforts investigate
the possibility of a generally applicable network calibration method, e.g.,
by combining different aspects from the three methods. Some theoretical
investigations already provide mixtures of different models. For instance,
Dorffer et al. [DPDR15, DPDR16a, DPDR16b] combine the two ideas of
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blind and collaborative network calibration to increase the possibilities
for sensor re-calibration. A key benefit of enhancing and mixing different
network calibration aspects will thus help to assure that all sensors in a
network can be calibrated.

1.6 Thesis Outline and Contributions
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Figure 1.8: Overview of the error sources, the types of calibration models and the stage
of the deployment discussed in each chapter of this thesis.

This thesis presents novel calibration techniques and aims to push the
boundaries towards accurate measurements from low-cost air pollution
sensors. As summarized in Chapter 1, low-cost air pollution sensor
deployments are becoming more and more popular, however the collected
data is not yet of sufficient quality for beneficial applications. Different
error sources impact low-cost sensors and lead to a substantial body of
related work discussing different calibration techniques counteracting the
errors. We extend these related works and propose novel methodologies
and techniques by tackling the different error sources presented in
Section 1.2 and designing tailored calibration models, which can be
applied at different stages of a low-cost air quality sensor deployment.
The overview of this thesis and the specific topics are displayed in
Figure 1.8. Specifically, we present a pre-deployment testing method
to model sensor cross-sensitivities and to augment optimal sensor arrays
(Chapter 2), design a collaborative multi-hop calibration algorithm for
sensor arrays (Chapter 3), uncover and tackle non-linear error sources by
human emissions in wearable use-cases (Chapter 4) and devise a scheme
to estimate uncertainties of calibrated measurements, which is used to
further improve collaborative calibration (Chapter 5).
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In the following, we present the main contributions of each individual
chapter.

Chapter 2: Pre-Deployment Testing, Augmentation and Calibration
of Cross-Sensitive Sensors. In this chapter we tackle the error sources
low selectivity and environmental dependency and show the importance of
performing in-field and pre-deployment testing of low-cost air pollution
sensors. As shown in Section 1.4.3, cross-sensitivities and environmental
dependency are two major limiting factors of low-cost air pollution
sensors. Existing works successfully show how different calibration
models can be used to calibrate sensor arrays and eventually improve
measurement accuracy. However, in order to counteract these error
sources one needs to build an appropriate sensor array. Unfortunately,
information on which cross-sensitivities and to what extent they are
affecting a given sensor is often missing or is not relevant for the target
deployment.

• We design a novel approach to perform in-field and pre-deployment
testing of low-cost air quality sensors. The approach is able
to uncover substantial cross-sensitivities and conclude about the
usability of a sensor for the target deployment. We use the gained
information to construct a sensor array that counteracts substantial
cross-sensitivities and environmental dependencies by calibration
using linear multiple least-squares.

• We demonstrate the feasibility of our approach and the importance
of sensor arrays to resolve cross-sensitivities on real-world low-cost
sensor data. We are able to uncover different sensitivity profiles
of the sensors under test and improve the data quality of our
constructed sensor arrays.

Chapter 3: Multi-Hop Calibration for Mobile Sensor Arrays. This
chapter investigates an additional error source, drift, or in general,
changing sensor behaviour over time. As summarized in Section 1.5,
there exist different methodologies that are able to frequently re-calibrate
sensors during their deployment. Unfortunately, they all have different
strengths and weaknesses. While collaborative multi-hop calibration has
been proven to be able to calibrate large numbers of mobile sensors in a
deployment, the state-of-the-art calibration model designed for multi-hop
calibration only allows a simple offset and gain calibration.

• We design the first algorithm for collaborative multi-hop calibration
in a mobile sensor array deployment. Our method is able
to counteract cross-sensitivities, environmental dependencies and
signal drift while minimizing error accumulation over multiple
hops.
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• Using different datasets we show that our method outperforms
various other calibration models and is able to calibrate substantially
more sensors compared to one-hop calibration.

Chapter 4: Enabling Personal Air Pollution Monitoring on Wearables.
This chapter focuses on personal air pollution monitoring using
wearables. We integrate a sensor array into a personal air quality monitor
to quantify the immediate exposure to air pollution of a user. This special
use case of air pollution sensor arrays is causing another error source:
non-linear response.

• We show that natural human gas emissions can impact low-cost
metal oxide sensors when equipped in wearables. We investigate
this human interference and its effect on the sensors and highlight
a non-linear response.

• We build a wearable prototype featuring a pre- and post-deployment
calibration model facilitating non-linear neural networks and semi-
supervised learning. Our approach allows to tackle the human
interference and to recover accurate ambient air pollution values
while reducing training and updating efforts of the calibration
model before and during deployment.

Chapter 5: Enhancing Sensor Calibration with Uncertainty Estimates.
In the last chapter we present a way to determine how confident we can
be in calibrated measurements from any calibration model. A calibration
is never error-free, especially error sources like dynamic boundaries or
systematic errors can introduce large inaccuracies. Creating a notion on
how severe these inaccuracies are, i.e., how certain we can be about a
measurements accuracy, is thus of great interest.

• We develop a scheme that is able to estimate two major uncertainties
sources, aleatoric and epistemic, for any calibration model.

• We integrate the uncertainties into multi-hop calibration by
developing an uncertainty-based data filtering at each hop in
the network. Finally, we are able to improve the measurement
accuracy of a real-world multi-hop calibration setup by selecting
measurements for calibration based on our uncertainty metrics.



2
Pre-Deployment Testing, Augmentation

and Calibration of Cross-Sensitive
Sensors

Over the past few years, many low-cost air pollution sensors have been
integrated into measurement platforms for air quality monitoring. In
Section 1.2, we list various different limitations and error sources that pose
a significant challenge on using these sensors in real-world applications.
In this chapter, we specifically focus on the following three limitations:
concentrations of dangerous pollutants in ambient air often lie at the
boundaries of a sensor’s dynamic range, environmental conditions affect
the sensor signal and the sensors are cross-sensitive to multiple pollutants.
As highlighted by different authors, see Section 1.4.1 for a short summary,
these error sources are responsible that typical low-cost sensors do not
perform well when they are deployed in the field without any post-
processing, e.g., calibration, of their signal. Unfortunately, datasheet
information on these effects is often scarce or may not cover deployment
conditions. Consequently, the sensors need to undergo extensive pre-
deployment testing to examine their feasibility for a given application
and to find the optimal measurement setup, i.e., a sensor array, that
allows accurate data collection. By creating an optimized sensor array we
are able to apply the two important calibration models, temperature and
humidity correction and sensor array calibration presented in Section 1.4.2
and Section 1.4.3 and, consequently, counteract the error sources. This
procedure enables accurate measurements of low-cost air pollution
sensors and provides an important basis for effective post-deployment
calibration methods in long-term deployments, which we will discuss in
Chapter 3.

In this chapter, we propose a novel method to conduct in-field testing
of low-cost sensors. The proposed algorithm is based on multiple least-
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squares and leverages the variation of urban air pollution to quantify
the amount of explained and unexplained sensor signals. We verify
(i) whether a sensor is feasible for air quality monitoring in a given
environment, (ii) model sensor cross-sensitivities to interfering gases and
environmental effects and (iii) use the acquired information to compute
an optimized array and its calibration parameters for stable and accurate
sensor measurements over long-time periods. Finally, we apply our
testing approach on 5 off-the-shelf low-cost sensors and 12 reference
signals using over 9 million measurements collected in an urban area.
We propose an optimized sensor array and show—compared to a simple
offset and gain calibration using ordinary least-squares—an up to 45%
lower calibration error with better long-time stability of the calibration
parameters.

2.1 Introduction

Breakthroughs in sensor technology made a new generation of small,
cheap and portable air quality sensors available on the market. As
summarized in detail in Section 1.1, they are usually based on optical
sensing principles1, electrochemical cells2 or semiconductor technolo-
gies3, which allow a compact and inexpensive design. Researchers
and start-ups frequently integrate these sensors in their measurement
platforms to monitor air pollution. Over the past years, numerous
research projects, e.g., CommonSense [AHM+09], MESSAGE [MPS+13],
OpenSense [HSW+14], and public initiatives, such as, Air Quality
Egg [Wic18] and Data Canvas [Dat14], were launched to explore
opportunities of these new technologies and raise awareness in the society.
A comprehensive list of successfully realized projects can be found
in [YLM+15, Tho16]. However, results of laboratory tests and comparison
against precise analytical instruments often report insufficient sensor
accuracy, sensor drift and low correlation with reference measurements
when trying to measure pollutant concentrations in ambient air [JHW+16,
PXM+14, EPC12].

In this chapter, we present a novel method to quantify the real-world
usability of a low-cost sensor for monitoring urban air pollutants by
splitting the sensor’s measurements into explained, unexplained and
noise components. We show that many low-cost sensors can be used
to monitor air quality, if deployed as part of a sensor array and jointly
calibrated in combination with other low-cost sensors of the sensor array.
Furthermore, we can provide a more stable calibration accuracy for a
sensor array compared to a simple offset and gain calibration and, hence,
need to calibrate the sensors less often.

1e.g., Shinyei PPD42NS Particle Sensor [ANSY15]
2e.g., Alphasense CO-B4 [Alp13a]
3e.g., MICS-OZ-47 O3 Module [SGX13]
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Challenges. Using low-cost sensors to monitor pollutants in ambient air
is challenging due to various error sources, see Section 1.2 for a detailed
list of reasons that may lead to the degradation of a sensor’s measurement
quality. In this chapter, we focus on the following limiting error sources:

1. Measured concentrations are low and often lie at a sensor’s
sensitivity boundaries, especially at the lower boundary (limit of
detection—LOD) of the dynamic range, because many sensors are
primarily designed to sense higher pollution concentrations, e.g., in
the automotive industry [PPS+99].

2. Environmental conditions—typically temperature and humidity—
impact the speed of chemical reactions and, thus, the sensor output.

3. Low-cost air quality sensors often suffer from low selectivity and
their response is affected by a wide range of substances in the air,
referred to as cross-sensitivities.

These three challenges are the most prominent error-sources of
state-of-the-art low-cost air quality sensors. Unfortunately, datasheet
information on a sensor’s specific sensitivity profile is often scarce.
Sensor producers may list suggested operating temperature ranges or
measured cross-sensitivities per interfering pollutant based on laboratory
experiments. These laboratory experiments are typically conducted in a
certain fixed setting [Alp13a] and do not reflect the final deployment
environment of the sensor. More often manufacturers provide no
quantitative sensitivity evaluation at all [Dov, Shi10, Amp19]. For
instance, Austin et al. [ARG06] test different electrochemical sensor
and uncover 17 different cross-sensitivities. Unfortunately, these cross-
sensitivities are not specified or described in a conclusive way in
the datasheets of the tested sensors. Consequently, considering only
information from datasheets can limit the sensor performance during
deployment. Another example is presented by Eugster and Kling [EK12].
They use a methane (CH4) sensor for rural air monitoring in Alaska and
derive a temperature and humidity correction model from information
in the datasheet. Due to sparse testing at only three different humidity
levels, the appliance of their model is limited to situations with a relative
humidity larger than 40%.

Unless the sensors undergo extensive pre-deployment testing, using
such sensors to monitor air quality is difficult. Outdoor air composition
is complex and can exhibit notable variations over time, both daily
and seasonally. Sensor testing and calibration in a laboratory requires
exposing a sensor to a wide range of artificially created but feasible
gas mixtures. This is labour intensive, requires complicated setup, e.g.,
environmental chambers and gas mixtures, and assumes a thorough
knowledge of the air composition in the target environment and cross-
sensitivities of the sensor [PSL+17, CLL+14]. In contrast, testing and
calibrating sensors in-field leverages existing high-quality measurement



28 Chapter 2. Pre-Deployment Testing, Augmentation and Calibration

stations deployed outdoors and, thus, the results are more relevant for an
outdoor deployment and no complex setup is needed [CDS+17, ZPK+18].

Contributions and road-map. In this chapter, we test and calibrate
low-cost sensors in the field by conducting parallel measurements at a
high-quality reference station. By analysing obtained data, we can (i)
verify whether air pollution monitoring with a given sensor in a given
environment is feasible, (ii) characterize sensor cross-sensitivities and
construct the sensor array, which can optimally monitor the specific
pollutant, and (iii) compute calibration parameters for the sensors in the
system. The contributions of this chapter are organized as follows:

• After introducing our assumptions and models in Section 2.3 and
summarizing sensor calibration using multiple least-squares [VG08]
in Section 2.4, Section 2.5 describes our sensor testing methodology
to uncover sensor cross-sensitivities. Given measurements of
different reference sensors, we design an indicator that allows
quantifying the amounts of captured and uncaptured cross-
sensitivities and sensor noise.

• Section 2.6 reports the results of the proposed testing methodology
on real data. We use several low-cost sensors available on the market
and previously used by other researchers [PXM+14, EPC12] to show
that our approach allows to conclude on the feasibility of using a
sensor in a given setting. We give positive and negative examples of
sensors used for air quality monitoring in current and past projects.
Furthermore, we leverage the approach to test and calibrate our
urban air quality measurement system [LFS+12] equipped with low-
cost cross-sensitive sensors.

2.2 Related Work

This section summarizes existing work on sensor selectivity, testing and
calibration.

2.2.1 Testing Cross-Sensitive Sensors
As discussed in detail in Section 1.4.1, sensors are traditionally tested
in a fully controlled environment in a laboratory [ARG06, CDS+17,
Mor07, MSVA99, VDR+10]. This type of testing allows for (i) fast
sensor characterization (ii) for a given interval of interest and (iii)
in a controlled environment, e.g., fixed temperature and humidity
and no interfering pollutants [LMM14, STP08]. However, different
researchers [MPH15, CDS+17, CMC+01, PXM+14, JHW+16] motivate the
need of testing the feasibility of a specific sensor in a given scenario. A
laboratory setup is not reflecting the typical deployment environment of
the sensor and, consequently, the sensors perform poorly once they are
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deployed and need immediate re-calibration [CDS+17, JHW+16]. We
need to uncover the sensor’s sensitivity, environmental dependency
and operating range and test whether these match the application
requirements. Consequently, latest works on air quality monitoring
favour in-field sensor testing against reference sensors over laboratory
tests [SGV+14, PXM+14]. In-field sensor testing allows sensor evaluation
at a wide range of varying environmental conditions and pollutant
concentrations under deployment conditions. Therefore, various results
on large-scale in-field tests [SGV+14, JHW+16, PXM+14] have been
described and typically report identical results: Only a fraction of all the
different sensors shows high correlation to their corresponding references.
However, while most investigations already perform a temperature and
humidity correction, a deeper evaluation of the potential reasons, e.g.,
cross-sensitivities, is often missing.

This chapter advocates in-field sensor evaluation at reference stations
located directly at or close to the deployment site, which assures
similar environmental conditions and air composition during testing and
deployment of a sensor. We use multiple least-squares (MLS) to decide
on sensor qualification for the environment of interest. Further, we draw
conclusions about the unexplained part of the sensor measurements by
leveraging frequency characteristics of atmospheric phenomena.

2.2.2 Calibrating Cross-Sensitive Sensors

Low-cost sensors usually suffer from substantial deviation when
compared to highly accurate references. Sensors need to be calibrated
to minimize this deviation. Under the assumption that there is a
linear relationship between sensor and reference measurements a widely
used approach is to apply univariate linear regression techniques,
such as ordinary least-squares (OLS) [HST12]. These techniques,
however, only perform well if the low-cost sensor is highly selective
to the target gas. If the sensor is affected by cross-sensitivities to
interfering gases or depends on meteorological conditions, a multi-
variable model should be used instead [Bro03]. These models, however,
require collocated measurements of additional sensors—often referred
to as sensor array—to compensate for sensor cross-sensitivities. As
highlighted in Section 1.4.3, popular approaches to calibrate a sensor array
to reference measurements can be classified into multiple linear regression
techniques, such as multiple least-squares (MLS) [PSL+17, KBP06, Mor08,
ZW09, PXM+14, VG08, LDC18], and artificial neural networks (ANN)
based techniques [DPMF09, EDS+16, SGV+15, BBR+17]. While ANNs
can be powerful to resolve complex cross-sensitivities, linear calibration
methods like MLS are usually less prone to overfitting and in general
easier to train and interpret. Due to the typically linear or polynomial
response of low-cost air pollution sensors to references, we utilize MLS
for testing and calibration in this chapter.
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Figure 2.1: Relationship between different sets introduced in this chapter.

2.3 Assumptions and Models

This section introduces the basic terminology and discusses assumptions
and models used throughout this chapter.

2.3.1 Observable Universe

Let Φ be a set of all sensors one can possibly build. Let R ⊂ Φ be a set
of available sensors that accurately measure some phenomena of interest.
That is, a sensor r ∈ R accurately measures a single phenomenon, e.g.,
ambient temperature. The sensors in R can be used as reference sensors to
test the quality of other sensors, such as low-cost sensors, measuring the
same phenomena.

A time-ordered sequence of discrete measurements m = {m(t j)} taken
by a sensor at times t j for j ∈ {1, 2, ...,n} within a time interval [t1, tn] is
referred to as a trace. We consider a measurement as a point measurement,
that is, it has no duration. The application scenario of a sensor limits the
number of possible traces of that sensor, e.g., an air quality sensor reports
different measurements in an automotive industry application than in
monitoring outdoor air quality. Consider some fixed scenario of interest,
let Ω and U ⊂ Ω be sets of corresponding traces produced by the sensors
Φ and R ⊂ Φ, respectively. Ω can be understood as the entire universe of
all sensor traces and U as the observable universe determined by a set of
references R, see Figure 2.1.

2.3.2 Low-cost Sensors

Let S ⊂ Φ be a set of low-cost sensors under test. We assume no
prior knowledge about the sensors. In order to explain a trace of a
low-cost sensor y, we relate it to the traces of reference sensors in the
observable universe U, i.e., we represent my = {my(t j)} as a function of
traces in U and an unexplained—or residual—trace in Ω \U. If my is solely
representable as an unexplained trace in Ω \ U, there is no possibility to
explain measurements of sensor y with references in the given scenario. If
a trace mx ∈ Ω of a sensor x ∈ S can be completely explained with a single
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Figure 2.2: Scenarios to quantify the amount of the observable universe U captured by
measurements Bz.

reference trace mr in U, one can compare the readings of sensor x ∈ S to
the response of a corresponding reference sensor r ∈ R and calibrate it if
needed.

2.3.3 Cross-sensitivity

Low-cost sensors show in general a close to linear or polynomial response to
reference traces[CDS+17, DKC+15], but typically suffer from offsets and
drifts that result in a substantial deviation of their trace from a reference
trace. In order to minimize this deviation, the trace mx of a sensor x needs
to be calibrated to a reference trace mr. Calibration is usually performed
by representing the calibrated sensor trace m̂x as a function cal of the raw
trace, i.e., m̂x = cal(mx). An optimal calibration function cal minimizes
some norm of the difference between the calibrated sensor trace m̂x and
the reference sensor trace mr.

An interesting sensor testing and calibration challenge arises if the
trace of sensor z ∈ S is a function of multiple traces Bz ⊂ Ω, also known as
sensor cross-sensitivities. In this case, calibrating a cross-sensitive sensor
z to a reference r requires to describe the calibrated trace as a function of
multiple traces, i.e., m̂z = cal(mz,ms1 ,ms2 , ...) given multiple sensors si ∈ Φ
such that some norm of the difference between m̂z and mr is minimized.
Given an observable universe U formed by some reference sensors R
and a cross-sensitive sensor z, we distinguish three types of relationships
between U and Bz as illustrated in Figure 2.2:

Inclusion: Bz ⊆ U. The set of available reference sensors R can measure
all cross-sensitivities of sensor z. Hence, the sensor response can be fully
explained by the set of available references R, see also sensor x in Figure 2.1.
Moreover, R can be used to calibrate the trace of sensor z to any trace in
Bz as is detailed later. In this case, we can unambiguously conclude on
sensor quality and perform best-possible sensor calibration.

Exclusion: Bz ∩ U = ∅. There is no relation between the sensor response
and the observable universe U. In this case, the sensor response can not
be explained by means of reference sensors R ∈ Ω and hence also not
calibrated, see sensor y in Figure 2.1.
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Intersection: Bz ∩ U , Bz. The most common case is that only a part of
Bz can be explained by U, see sensor z in Figure 2.1. We refer to Bz ∩U
as to the explained part of z’s response and to Bz \U as to its unexplained
part. The usability of sensor z in a given scenario depends on whether
the explained part of the trace dominates its unexplained part.

Low-cost gas sensors are often cross-sensitive, because their small
sensing surface area and low power consumption requirements limit the
selectivity [THMA03]. Moreover, environmental parameters, such as am-
bient temperature and humidity, influence chemical reactions [KBBS07]
or falsify optical sensing techniques [JLT+18] and, thus, often affect the
sensor response. We assume that a measurement of a cross-sensitive
sensor is an additive combination of different, possibly non-linear effects
describing the impact of different phenomena, e.g., interfering gases or
meteorological effects [Bro03].

2.3.4 Sensor Array
Ignoring sensor cross-sensitivity or environmental parameters leads to
poor sensor calibration. Cross-sensitive sensors are usually augmented
with collocated sensors to a set of sensors M ⊆ Φ, called sensor array.
Sensor arrays are used to compensate for cross-sensitivities. A cross-
sensitive sensor z can be perfectly calibrated to a reference sensor r using
a multiple regression method, given low-cost sensors in M that cover
all phenomena in Bz. These multiple regression methods can find the
function of pre-processed and aggregated measurements from sensors
in M that minimizes its deviation from a reference r. However, the
knowledge of Bz is often incomplete or unknown due to scarce datasheet
information obtained through basic tests conducted in the laboratory, or
there is no information at all. Even if Bz is known (it might consist of
multiple relevant phenomena [ARG06]), the quality of sensor tests and
calibration of sensor z is limited by the set of available reference sensors
R. In this chapter, we give answers to the following questions: (i) Given
a cross-sensitive sensor z and references R, how can we identify cross-
sensitivities Bz ∩ U of sensor z? (ii) How should z be augmented to a
sensor array M when using it in a measurement system to improve the
measurement quality? (iii) If sensor z is sensitive to phenomena not
covered by U i.e., Bz ∩ U , Bz, can z still be reasonably calibrated and
used in a given scenario? Since the list of cross-sensitivities is typically
long, Bz∩U , Bz presents a common case when dealing with gas sensors.

2.3.5 Test Deployment Conditions
Testing a cross-sensitive sensor z in a laboratory requires simulating
common deployment conditions and varying concentrations of every
substance in Bz. This is expensive, time and labour-intensive if the list
of sensor cross-sensitivities is long. For instance, the datasheet of the
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Alphasense NO2-B4 Nitrogen Dioxide 4-Electrode (2013) sensor [Alp13a]
lists 11 possible cross-sensitivities, whereof at least three can have a
considerable impact on the sensor response depending on the scenario.
In contrast, in-field sensor calibration with parallel measurements with
reference sensors R is an alternative and gives the advantage that sensor
packaging and deployment conditions are similar to those of the target
deployment and environment. The latter is crucial when testing and
calibrating low-cost sensors, which often measure at their sensitivity
boundaries. In this chapter, we assume that the data collected for sensor
testing and calibration is gathered under similar conditions as in the target
deployment.

2.4 Sensor Calibration

Sensor calibration is necessary to establish and maintain high sensor data
quality. Since the sensor response can be affected by multiple factors, a
large body of work tackles the task to compensate for these factors. This
section recapitulates sensor calibration based on least-squares [VG08].
Further, we discuss an application example for a cross-sensitive gas
sensor.

2.4.1 Ordinary Least-Squares
Regression analysis is often used to calibrate sensor measurements
according to a reference trace [CDS+17, HST12, BN07], i.e., to conduct
a simple offset and gain calibration (see Section 1.4.1). The common
approach is to calibrate a raw sensor measurement m(t) at time t to a
given reference sample mr(t) such that

mr(t) = b0 + b1 ·m(t) + ε(t), (2.1)

where b0 and b1 are calibration parameters describing offset and gain
of a calibration line, and ε is a regression error component. Ordinary
Least Squares (OLS) [RTSH08b] regression is typically used to compute
estimates of the calibration parameters b̂0 and b̂1 such that the error ε is
minimized according to the L2 = ||ε||2 norm. A raw sensor measurement
m(t) can then be converted to its calibrated version m̂(t) as follows

m̂(t) = b̂0 + b̂1 ·m(t). (2.2)

2.4.2 Multiple Least-Squares
The measurements of cross-sensitive sensors are aggregated measure-
ments of multiple phenomena. Consequently, the measurements correlate
poorly to measurements of a single reference, i.e., measurements of
a single phenomenon. Using the one-dimensional regression model
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described above to calibrate cross-sensitive sensors consequently also
leads to poor calibration accuracy. The standard solution—also known as
multiple regression [RTSH08a, VG08]—is to include additional regressors
ml ∈M, l ∈ {1, 2, ..., k} into the model. The goal of multiple regression is to
find coefficients bi with i ∈ {0, 1, ..., k} of the linear combination of different
sensor measurements and compositions thereof ml(t), which best fits a
reference measurement mr(t) as follows

mr(t) = b0 + b1 ·m1(t) + ... + bk ·mk(t) + ε(t) (2.3)

and accordingly in matrix form

mr = M · b + ε, (2.4)

where mr ∈ Rn×1, M ∈ Rn×(k+1), b ∈ R(k+1)×1, ε ∈ Rn×1 and n is the
number of samples at times t j with j ∈ {1, 2, ...,n}. The estimates of the
regression parameters b̂ ∈ R(k+1)×1 are calculated by multiple least-squares
(MLS) [VG08] and the raw sensor traces M are calibrated by applying

m̂ = M · b̂. (2.5)

2.4.3 Calibration Quality
In the following we list three important metrics to assess the quality of
our calibration approaches used in this chapter but also in the remainder
of this thesis.

Root-Mean-Square-Error (RMSE). The goal of least-squares based
regressions is to minimize some norm of the regression error ε with

ε = m̂ −mr. (2.6)

Ordinary and multiple least-squares both minimize the L2 = ||ε||2
norm [RTSH08a]. The main metric we use is the root-mean-square
error (RMSE) between mr and m̂ to evaluate the calibration accuracy of
calibrated trace m̂ and its corresponding reference trace mr. RMSE is a
standard metric [SHT15, BN07, CBKL10, CLL+14] to quantify calibration
quality and is computed as follows

RMSE(m̂,mr) =

1
n

n∑
j=1

(m̂(t j) −mr(t j))2


1
2

= RMS(ε) =
(1
n
||ε||22

) 1
2

. (2.7)

Standardized RMSE. In order to assess if our calibrated air quality
measurements are of sufficient quality for a given application we also
adopt a standardized version of the RMSE [TPP12] defined as

RMSEσ =

(
1
n

∑n
j=1(m̂(t j) −mr(t j))2

) 1
2

σ ·
(

1
n

∑n
j=1 m2

r (t j)
) 1

2

=
RMSE
σ · RMSr

, (2.8)
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where RMSr is the root-mean-square value of the ground-truth trace
mr and σ is defined as a relative uncertainty measure for a specific
pollutant. For instance, according to the air quality directive by the
European Parliament [PEA08], σ = 0.15 is required for O3, CO and
NO2 measurements. The RMSEσ acts as a statistical parameter to assess
the quality of the measurement. If RMSEσ ≤ 1 the measurements
fulfil the air quality directive and can be used for accurate air quality
measurements. In the case where 1 < RMSEσ ≤ 2 the measurement
quality is not in line with the air quality directive but might still be used
for certain applications. For instance, the data quality allows indicative
measurements, i.e., assessing the air quality in terms of pollution levels or
an air quality index (AQI) [Val14]. The quality of the measurements is not
sufficient for any application if RMSEσ > 2. The investigations in [TPP12]
point out several flaws of the RMSEσ, e.g., it is not concentration level-
dependent, and suggest that RMSEσ < 2 indicate measurements with
adequate quality.

Goodness of fit. Finally, another important metric we apply is the
coefficient of determination R2

∈ [0, 1], given by

R2 =


∑n

j=1

(
mr(t j) − µr

) (
m(t j) − µm̂

)
(∑n

j=1

(
mr(t j) − µr

)) 1
2
(∑n

j=1

(
m(t j) − µm̂

)) 1
2


2

, (2.9)

where µr and µm̂ are the mean values of the reference trace mr and
the calibrated measurement trace m̂, respectively. The R2 value is a
widely used metric to asses the amount of variance in the calibrated
measurements that can be explained by the calibration model [RTSH08a].
Values close to 1 indicate a well-fitted calibration model, values close to
0 indicate that there is no correlation between the calibrated and ground-
truth measurements.

2.4.4 Application Example: NO2 Sensor

When calibrating a cross-sensitive sensor, a simple offset and gain
calibration by OLS is usually not suited. For instance, when calibrating
a nitrogen dioxide (Alphasense NO2-B4 Nitrogen Dioxide 4-Electrode (2013))
sensor from AlphaSense [Alp13a], we use OLS to calculate the calibration
parameters based on a training trace of two weeks gathered in February
2014. As reference we use NO2 measurements from a static, high-quality
NABEL reference station (see Figure 1.4 and Figure 2.3) in an urban area
in Duebendorf, Switzerland, where our sensors are installed on the roof
of the station to ensure collocated measurements.

The outcome of the calibration for a test dataset of two weeks
during March 2014 is presented in Figure 2.4, which shows the
calibrated measurements and the corresponding NO2 reference over time.
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Figure 2.3: Sensor box (Figure 2.3a) deployment at the NABEL measurement station
and the hardware (Figure 2.3b) used to collect measurements.

Figure 2.4: Ordinary least-squares (OLS) calibrated m = NO∗2 measurements and mr =

NO2 reference measurements over time. The calibrated measurements do not correlate
to the reference.

The calibrated measurements remain nearly constant over the whole
calibration period. Due to sensor cross-sensitivities there is no correlation
between uncalibrated sensor measurements and the reference, in fact the
R2 value equals 0.003. As a result the slope of the calibration gain (i.e.,
b̂1) component has a strong bias towards zero and the overall RMSE of
the calibration is 12.4 ppb, while the average true NO2 concentration is
21.5 ppb during this period. The calibrated measurements are clearly
not of sufficient quality to make any conclusions about the actual NO2

concentration, which is also reflected in a high value of the standardized
error RMSEσ = 3.4.

In order to improve the calibration quality, we apply MLS on
measurements from multiple sensors M, measuring phenomena to which
our sensor to be calibrated is cross-sensitive to. However, the calibration
quality heavily depends on the choice of the sensors in M. We choose
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Figure 2.5: Multiple least-squares (MLS) calibration with different sensor arrays M and
mr = NO2 reference measurements over time. The calibration quality heavily depends
on the choice of sensor traces in M.

a sensor array consisting of M1 = {NO∗2,H
∗,T∗}, where NO∗2, H∗ and

T∗ are low-cost nitrogen dioxide, humidity and temperature sensors.
This means, we perform a temperature and humidity correction, see
Section 1.4.2, for our electrochemical sensors [PSMJ16] using a sensor
array M1. In the remainder of this chapter, we denote all low-cost
sensors that need calibration with an asterisk (∗). Figure 2.5 shows the
calibration outcome of MLS during the same two weeks in March. The
calibrated measurements still correlate poorly to the reference and have
a notable RMSE of 12.8 ppb. The reason for the poor performance is the
cross-sensitivity of the NO2 sensor to ozone (O3), as we will show in
Section 2.6.1.

The calibrated measurements when a collocated O3 sensor is added
to M1, i.e., we construct a new array M2 = {NO∗2,O

∗

3,H
∗,T∗}, is shown

in Figure 2.5. The calibration quality is improved significantly. There is
a clear correlation between calibrated measurements and reference with
R2 = 0.88 and an almost 3 times smaller RMSE of 4.6 ppb. Finally, a
RMSEσ = 1.2 indicates that the measurements can be used to determine
the current air quality level. We conclude that MLS is able to calibrate
a cross-sensitive sensor when augmented with appropriate sensors to
a sensor array M. However, due to scarce or no information about
cross-sensitivities, the set of sensors in M and their respective impact
on the measurements of the cross-sensitive sensor to be calibrated is often
unknown.

2.4.5 Discussion

The example of the low-cost NO2 sensor in Section 2.4.4 emphasizes the
need of a pre-deployment testing methodology. The calibration accuracy
of a cross-sensitive sensor z is limited without the thorough knowledge
of the phenomena Bz to which the sensor is sensitive. If a sensor trace is
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Figure 2.6: Sensor testing methodology.

an additive combination of multiple phenomena, it correlates poorly to a
single reference trace. In order to calibrate the sensor measurements to
a reference, the phenomenon of interest needs to be segregated from the
measurements. This is only possible, if all remaining phenomena in the
measurements can be compensated for. A sensor may not be sensitive
to the same extent on the individual phenomena and it is possible—
depending on the scenario—that some cross-sensitivities have minor
impact on the sensor behaviour. It is therefore important to identify
which phenomena need to be measured and their individual impact on
the sensor trace under application-related circumstances.

The sensitivity list of a cross-sensitive sensor allows to augment it
with additional sensors to a sensor array M. Having measurements from
sensors in array M, which measures all phenomena in Bz, it is possible
to accurately calibrate the measurements using multiple least-squares to
the corresponding reference trace, as described in Section 2.4.2. The fit
of the linear combination in (2.3) can then be seen as the segregation
of the part in a cross-sensitive sensor trace mz ∈ M that is induced by
the phenomenon of interest by compensating for the other measured
phenomena and fitting it to a reference.

2.5 Testing Methodology

Datasheet information on sensors’ cross-sensitivities and their depen-
dency on meteorological parameters is often scarce. Even though some
sensors undergo laboratory testing and calibration, these test settings
typically only cover a few points in the sensing range. Given the
usually long list of sensor cross-sensitivities, extensive tests and sensor
calibration is highly time-consuming and is, therefore, hardly possible.
To solve the problem, we propose a novel method that uncovers sensor
dependencies under deployment-related conditions. We ignore any prior
knowledge about the sensor, i.e., do not rely on any information given
in the datasheet, and treat the sensor as a black-box, see also Figure 1.3.
We choose the observable universe U as a set of all relevant phenomena
for a given application. Our testing methodology consists of three steps
depicted in Figure 2.6:

Standardization. All input traces are converted to a standardized
representation with zero mean and unit variance in order to get
scale-invariant sensor traces and thereby scale-invariant cross-sensitivity
factors.
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Inverse calibration. Multiple least-squares is used to regress the
standardized measurements from the phenomena in the observable
universe U on the measurements of low-cost sensor z. The resulting
regression parameters are used to generate insights about the composition
of the sensor measurements, i.e., they identify cross-sensitivities of the
sensor.

Error decomposition. The regression error εT of the inverse calibration
step is used as an indicator for missing phenomena in U and substantial
sensor noise of z. We distinguish the latter on the frequency characteristics
of typical atmospheric phenomena and, therefore, decompose the error
by applying a low-pass filter.
We explain the three steps in more detail below.

2.5.1 Standardization

The measurements we use for testing can be any pollutant concentration,
temperature or relative humidity and, thus, all these measurements have
different scales and units. In order to get scale-invariant results, all
variables need to be standardized, i.e., they need to be centred and have
unit variance. We denote in the remainder of this chapter the standardized
form of a trace m ∈ Rn×1 as m̃ =

m−µm

σm
, where µm and σm are mean and

standard deviation of m, respectively.

2.5.2 Inverse Calibration

The primary goal of the testing procedure is to uncover the explained
part Bz ∩ U of a low-cost sensor z ∈ S, i.e., expose the phenomena Bz the
sensor is sensitive to (see Figure 2.1). This is achieved by decomposing the
sensor measurements into single phenomena of the observable universe
U. In contrast to calibration, where usually multiple sensors are regressed
on a reference, we reverse the process. Hence, similar to (2.4) and given
collocated measurements z ∈ Rn×1 of sensor z and references traces U ∈
Rn×|U| of multiple reference sensors in U, the standardized regression
equation is

z̃ = Ũ · b + εT. (2.10)

This means, we describe the measurements of sensor z as a linear
combination of different references given in U with parameters b and some
residual error term εT, as described in Section 2.3. The estimation b̂ of the
true regression parameters b calculated by MLS (see Section 2.4.2) will
give insights about the extent of any cross-sensitivities or dependency on
meteorological effects of sensor z. We calculate the regression estimation
of the inverse calibration to determine how well we can describe the trace
of sensor z as a combination of the different references in U , i.e.,

û = Ũ · b̂. (2.11)



40 Chapter 2. Pre-Deployment Testing, Augmentation and Calibration

Figure 2.7: Frequency spectrum of O3 reference measurements with a peak at frequency
1

24 h .

In Section 2.5.3 we show how we decompose the error component εT =
z̃− û of our testing procedure into two separate parts to uncover the cross-
sensitivities of sensor z. With this knowledge it is possible to determine,
whether additional sensors need to augment z forming a sensor array to
accurately measure the target phenomenon. For instance, whether we
need temperature and humidity values to compensate for meteorological
dependencies.

2.5.3 Error Decomposition

It is possible that a sensor measures a phenomenon not captured by the
observable universe U. In this case, we are not able to explain a certain
part of the sensor trace with U, limiting the benefit of using the sensor in
the given application. Hence, it is important to determine the fraction of
the explained and unexplained parts of z given U.

The unexplained part of z depends on the performance of the inverse
calibration, defined as regression error εT, i.e., the root-mean-square error

εT = RMSE(z̃, û), (2.12)

where û = Ũ · b̂ is the regression estimation solved by MLS in (2.11). The
larger the RMSE of εT, the larger is the unexplained part of the sensor
measurements.

The contribution of the unexplained part is often two-fold, (i)
the sensor is impacted by chemical or physical phenomena, such as
interfering gases or meteorological effects, which cannot be explained
with the current universe U, and (ii) the measurements suffer from sensor
noise.

In order to distinguish between these two causes, we exploit
that the underlying phenomena and noise differ in their frequency
representations. Sensor noise is often a high-frequent signal, whereas
phenomena like pollution concentrations or ambient temperature show
distinct low-frequent variation patterns. For instance, the concentrations
of primary air pollutants usually reach their maxima during the day
and drop in the night [RP04], which is based on the increased activity
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of pollutant sources such as traffic or industrial plants during daytime.
We exploit this daily periodicity by using it as indicator for any possible
missing phenomena in U, indicated by a substantial low-frequent part
(e.g., with frequency ≥ 1

24 h ) in the error εT induced by the missing
phenomenon. For instance, Figure 2.7 shows the frequency spectrum
of O3 reference measurements recorded during April 2014. We observe
substantial frequency components at frequencies larger or equal than 1

24 h .
Consequently, the unexplained part of any sensor that is sensitive to O3

will contain a notable low-frequent part, if O3 is not included in universe U
during the inverse calibration step. We use a low-pass filter to decompose
εT, see (2.12) and Figure 2.6, in a low-frequency part εP, which represents
uncaptured periodic phenomena. Similarly we use a high-pass filter to
create a high-frequent part εN, which we treat as the noise component
of the sensor. We apply two 3rd order Butterworth filters [Str04] and for
simplicity use 1

24 h as cut-off frequency.
To quantify the impact of each error component, we compute the

root-mean-square of the different error components, see also (2.7). The
low-frequent component

RMS(εP) ∈ [0, 1] (2.13)

serves as a measure for uncaptured phenomena in our model. High
RMS(εP) indicates that it is likely that the sensor is cross-sensitive to a
phenomenon not included in U but still related to a relevant phenomenon.
By contrast, large values of the high-frequent component

RMS(εN) ∈ [0, 1] (2.14)

is attributed to high sensor noise. Finally, the amount that can be
explained with references in U is measured with

RMS(û) ∈ [0, 1] . (2.15)

Depending on the decomposed errors, we can draw conclusions about
the feasibility of deploying the sensor under test in a given environment.
Assuming a sensor z can be fully explained with reference variables in U
and is not affected by noise, i.e., Bz ∩ U = Bz, the regression estimation
equals to the sensor measurements, i.e., û = z̃. Consequently, both
RMS(εP) and RMS(εN) are zero and RMS(û) corresponds to the standard
deviation of z̃, i.e., equals one. We can expect values close to zero and one,
respectively, for any good low-cost sensor given an adequate observable
universe.

2.5.4 Sensor Signature
The determined error components RMS(εP) and RMS(εN), which we
calculate by decomposing the testing error εT (see (2.12)) in Section 2.5.3,
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and the explained part RMS(û), see (2.11) in Section 2.5.2, of a sensor z
with a given observable universe U describe a sensor signature. Based on
the sensor signature it is possible to determine the sensor array that can
be used for compensating cross-sensitivities. If the testing methodology
for sensor z is conducted multiple times with different compositions
of universe U, the universe U that optimizes the sensor signature, i.e.,
minimizes RMS(εP) and RMS(εN) and maximizes RMS(û), best describes
the set of phenomena Bz the sensor under test is sensitive to. If h ∈ Bz is
a phenomenon of interest, then the necessary sensor array M to measure
h is created by augmenting sensor z with low-cost sensors that measure
phenomena Bz \ h.

2.6 Experimental Evaluation

In this section, we apply our testing methodology to different types
of low-cost sensors. In Section 2.6.1 we test three sensors, which
have different sensitivity profiles, i.e., have different cross-sensitivities
with different magnitudes. We analyse their cross-sensitivities and
meteorological dependencies and show how collocated measurements of
multiple sensors in a sensor array can be used to accurately calibrate the
measurements to reference gases in Section 2.6.2. Further, we investigate
the stability of the calibration accuracy over time in Section 2.6.3. Finally,
in Section 2.6.4, we present results from two sensors, which are not
suitable for air quality monitoring in our setting. For these sensors we
were not able to explain the sensor measurements with reference variables
to an adequate extent.

2.6.1 Sensor Testing

Setup. Our goal is to use low-cost sensors for monitoring major
pollutants, namely O3, CO and NO2, in an urban environment. To
achieve this goal, we build a measurement system consisting of multiple
low-cost sensors. In order to find the optimal sensor array that ensures
accurate measurements, we apply the testing methodology presented in
Section 2.5. We deploy three sensors at a station of the Swiss National Air
Pollution Monitoring Network (NABEL) in Duebendorf, Switzerland,
depicted in Figure 2.3. The sensors are an electrochemical-based NO2

sensor4, a metal oxide-based O3 sensor5 and an electrochemical-based CO
sensor6. They are placed inside a box, see Figure 2.3b, which is mounted
on the roof of the station next to the air inlets of the highly accurate devices.

4Alphasense NO2-B4 Nitrogen Dioxide 4-Electrode (2013) [Alp13a]
5SGX Sensortech (formerly e2v) MiCS-OZ-47 Ozone Sensing Head with Smart Transmitter

PCB O3 [SGX13]
6Alphasense CO-B4 Carbon Monoxide 4-Electrode (2014) [Alp13a]
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(a) NO2 sensor (b) O3 sensor (c) CO sensor

Figure 2.8: Average root-mean-square value of the periodic (low-frequent) part εP, noise
(high-frequent) part εN of the regression error and the regression estimation û for three
low-cost sensors. The x-axis shows the evaluation for different observable universes U.

Therewith we ensure collocated measurements of low-cost sensors and
reference devices.

The following evaluations are based on over 9 million measurement
samples gathered during 15 months from January 2014 to March 2015.
We use all sensing modalities, i.e., 10 different pollutant concentrations,
measured by the official air quality measurement station as reference
variables to build our observable universe. Further, we use temperature
and humidity reference measurements to gain insights about the
meteorological dependencies of the low-cost sensors. Because low-
cost sensors usually do not show a completely linear dependency to
phenomena, the samples of all references in U have additionally been
included in quadratic and cubic form in the regression (2.10).

Testing procedure. In order to show the feasibility of our testing
methodology, we start with an observable universe U, which consists only
of the reference corresponding to each sensor. For example, the universe
U = {NO2} is used to initially perform the testing methodology for the
low-cost sensor z = {NO∗2}. The universe is then gradually extended with
further references and the testing methodology repeated to highlight the
impact of adding references to universe U.

Results. Figure 2.8a shows the evolution of RMS(εP) (see (2.13)), RMS(εN)
(see (2.14)) and RMS(û) (see (2.15)) for the NO∗2 low-cost sensor, where
each set of bars corresponds to a different U. The values are calculated in
steps of two weeks over the whole measurement period and the height
of the bars and the whiskers indicate the average and standard deviation,
respectively, over all tests.
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Figure 2.9: Low-frequent error component εP for different observable universes U and
z = {NO∗2} over time. Including O3 in U lowers the amplitude of εP, which highlights
the sensor’s cross-sensitivity to O3.

We make the following observations:

• The results for the initial U = {NO2} show a remarkably larger
periodic error RMS(εP) and noise component RMS(εN) than the
explained part RMS(û). This finding points out that the sensor
is to a large extent cross-sensitive to some phenomena beyond NO2

and is affected by noise.

• The second set of bars shows the results when humidity and
temperature measurements including their squared and cubed
versions are added to U = {NO2,H,T}. Although we observe an
increase of the explained part of the sensor measurements, the
unexplained low-frequency estimate RMS(εP) remains dominant.
Though the sensor is influenced by meteorological effects, it still is
sensitive to other phenomena, which are not included in U yet.

• Extending the observable universe U = {NO2,H,T,O3} with
the O3 modality decreases the unexplained part of the sensor
measurements by roughly 35% and confirms the sensor’s strong
cross-sensitivity to O3. This result is reflected in Figure 2.9, where we
observe a smaller amplitude of εP compared to the initial universe
U = {NO2}.

• We fail to improve the sensor performance with the addition of
CO reference samples to the universe U = {NO2,H,T,O3,CO} and,
thus, conclude that our NO∗2 sensor is not impacted by a change of
CO concentration in the ambient air. Finally, we were not able to
find any notable changes of the test results by adding the remaining
references.

In contrast to the cross-sensitive NO∗2 sensor, the results of the O∗3
(Figure 2.8b) and CO∗ sensor (Figure 2.8c) are different. Both sensors
are highly sensitive to their target gases and, hence, the initial U suffices
already to explain sensor measurements to a great extent. In fact, only



2.6. Experimental Evaluation 45

including temperature and humidity references in the regression lessens
the unexplained part of the error. Introducing additional references does
not improve the outcome of the testing procedure, because both sensors
are not cross-sensitive to any of the tested interfering gases.

The above findings show that the NO∗2 sensor can be used to monitor
air quality in our setting only if the measurement system additionally
acquires collocated O3 measurements to compensate for the sensor’s
cross-sensitivity to O3. Moreover, all gas sensors (O∗3, NO∗2 and CO∗)
depend on meteorological conditions and, thus, should be augmented
with temperature and relative humidity sensors to achieve accurate
calibration.

2.6.2 Sensor Array Calibration

Our novel testing methodology allows revealing cross-sensitivities and
their extent for every sensor under test. These results immediately
suggest the necessary measurement system augmentation to segregate
mutual dependencies between cross-sensitive sensors. In the next step,
the measurement system can be calibrated using MLS to measure the
desired phenomena. Therefore, we used the acquired sensor signatures
and construct three different sensor arrays, that can be calibrated to the
three corresponding pollutant reference concentrations.

Setup. We augment an array MNO2 = {NO∗2,O
∗

3,H
∗,T∗}, which is calibrated

to the NO2 reference, and MO3 = {O∗3,H
∗,T∗} and MCO = {CO∗,H∗,T∗},

which are calibrated to O3 and CO reference measurements, respectively.
In this section, we investigate the calibration accuracy of these sensor
arrays and compare the performance of the multiple least-squares (MLS,
see Section 2.4.2) and ordinary least-squares (OLS, see Section 2.4.1)
approaches. The measurements from the sensors as well as the quadratic
form of the O∗3 sensor in the corresponding sensor arrays are calibrated
to O3, CO and NO2 references provided by the high quality sensors
using MLS7. For the OLS approach we use the sensor measurements
corresponding to the reference, i.e., the O∗3 sensor measurements are
calibrated to the O3 reference using OLS. The calibration parameters
have been repeatedly trained with data over four weeks and used to
calibrate the consecutive four weeks. The average RMSE for the OLS
and MLS calibration over the whole deployment period of 15 months is
summarized in Table 2.1.

Results. As already seen in Section 2.4.4, MLS manages to achieve
accurate calibration of the cross-sensitive NO∗2 sensor and outperforms
the OLS approach by up to 45% in terms of calibration error. Note that the
measurements still have a relatively high normalized error RMSEσ > 2,
which is due to the overall low concentration of NO2 with a median of only

7In contrast to the sensor testing, we do not standardize the variables for calibration.
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13 ppb. Nevertheless, the improvement of the R2 value from 0.03 to 0.67
in average shows that the MLS calibration is able to capture significantly
more variability of the actual NO2 concentration than the basic OLS
calibration. Further, the sensor array calibration to O3 and CO references
is beneficial as well. Although both sensors have no significant cross-
sensitivities to interfering gases, MLS compensates for the meteorological
influences resulting in a lower calibration error compared to OLS.

These results emphasize the necessity of uncovering the sensitivity
profiles of low-cost sensors by our pre-testing methodology and then
augmenting the measurement system with appropriate sensors.

2.6.3 Calibration Stability

Various works, which use an univariate calibration approach such as
OLS [CDS+17, SGV+15, SGV+17] or calibration techniques based on
artificial neural networks (ANN) [ESV+18, DES+18] emphasize that low-
cost sensors need frequent re-calibration. Some works already notice a
need for re-calibration within four weeks [MMH17, CDS+17]. We show
that if our measurement system is augmented with appropriate sensors
and then calibrated with MLS, it needs less-frequent re-calibration than
reported above.

Setup. We compare the calibration error of MLS and OLS with different
re-calibration frequencies over a period of 12 months for the same three
sensor arrays as in Section 2.6.2. We calculate the regression parameters
for both techniques using a training dataset of four weeks. The resulting
parameters are then used to calibrate and evaluate a testing dataset
between the end of the current training dataset and the end of the
consecutive one. The individual training intervals are uniformly spread
over a period of 12 months, i.e., a calibration frequency of four re-
calculates the calibration parameters every three months. The procedure
is performed 26 times for each re-calibration frequency setting, where
each time the start of the initial training dataset is increased by one week
starting at January 10th 2014.

Results. Figure 2.10 shows the average RMSE for the MLS and OLS
calibration to NO2, O3 and CO references. We observe a decreasing error
with an increasing calibration frequency for all three references and both
techniques. As shown before, OLS is not suited to calibrate the cross-
sensitive NO∗2 sensor and consequently MLS clearly outperforms OLS for
all calibration frequency settings in Figure 2.10a. Of more interest are
the results of the sensor array calibration to O3 and CO references. In
Figure 2.10b we observe that using a sensor array and MLS to calibrate to
the O3 references between three and four times a year performs better than
using OLS on a monthly basis. A similar trend is shown in Figure 2.10c,
where the CO sensor array always performs better than the simple OLS
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Figure 2.10: Average RMSE over 12 months with different calibration frequencies of
multiple least-squares and ordinary least-squares. Calibrating a sensor array with
multiple least-squares needs less frequent re-calibration than ordinary least-squares.
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Figure 2.11: Average root-mean-square value of the periodic (low-frequent) part εP,
noise (high-frequent) part εN of the regression error and the regression estimation û
for two unqualified low-cost sensors. The x-axis shows the evaluation for different
observable universes U.

calibration. Calibrating the array every six to eight weeks using MLS
achieves a lower error than using OLS every four weeks.

In conclusion, we can see that calibrating our sensor array with
multiple least-squares needs less frequent re-calibration to achieve the
same performance when compared to the state-of-the art ordinary least-
squares based calibration.

2.6.4 Unqualified Sensors

Low-cost sensors available on the market may fail under certain
application conditions. Fig. 2.11 shows test results for two sensors that
can not be used to monitor air quality in our setting. The TP-401A Indoor
air quality gas sensor [Dov] from Shenzhen Dovelet Sensors Technology
is a metal oxide sensor, which is—according to its datasheet—sensitive
to a long list of pollutants, including carbon monoxide, even at low
concentrations. Unfortunately, no information about the extent of each
sensitivity is provided. The Particle Sensor Model PPD42NS [Shi10] from
Shinyei measures the concentration of particle matter, i.e., dust particles
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with diameter larger than 1µm (PM1).
In Figure 2.11a, we observe for both sensors and each observable

universe that the error components dominate and the explained part
RMS(û) does not exceed values above 0.6. Besides temperature and
humidity references we used all pollutants measured by the static
measurement station to construct the universe for testing the TP-401A
sensor. We observe that the sensor is sensitive to meteorological
influences but not to any pollutants, which are helpful to explain
sensor measurements. We suspect that reasons for the negative result
might be the sensor’s low accuracy and its design for higher pollution
concentration.

On the contrary, even though the measurements of the PPD42NS
sensor can be partly explained with PM1, temperature and humidity,
it has still a remarkable periodic error component with a RMS(εP) ≈ 0.65
as shown in Figure 2.11b. The result indicates that the sensor is impacted
by a phenomenon that we failed to identify. The sensor may be useful
to measure PM1 if one can find and compensate for that phenomenon in
question.

2.7 Summary

Nowadays, low-cost air quality sensors are integrated in an increasing
number of measurement platforms for air quality monitoring. Calibrating
these sensors to reference measurements is however challenging. They
typically suffer from cross-sensitivities, poor stability and sensor noise.
Information about all the limiting effects is often not provided by the
manufacturers. Even if the information is given in a datasheet, it is
often scarce and reflects sensor performance under laboratory conditions.
Neglecting sensor cross-sensitivities and deployment settings usually
results in poor sensor performance, frequent calibration necessity and
calibration failures. This arises the need for pre-deployment sensor testing
under application conditions.

In this chapter, we present an in-field sensor testing methodology
for low-cost and possibly cross-sensitive sensors. Our novel algorithm
is based on multiple least-squares and uses collocated measurements of
low-cost sensors and various reference sensors to quantify the amount
of captured and uncaptured cross-sensitivities, and substantial sensor
noise. With the obtained testing results we are able (i) to conclude
about the usability of a given sensor under test in the given setting, (ii)
identify fundamental cross-sensitivities and compute the sensor array,
which can optimally measure a specific pollutant and (iii) compute
calibration parameters that provide accurate measurements with long-
term stability. We extensively evaluate our algorithm with various
low-cost sensors using a dataset of 9 million sensor measurements and
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show the improved accuracy and long-term parameter stability when
calibrating an augmented sensor array to reference measurements. We
believe the proposed algorithm can be an essential step in the design of
measurement platforms with low-cost cross-sensitive sensors.



3
Multi-Hop Calibration for

Mobile Sensor Arrays

Urban air pollution monitoring with mobile, portable, low-cost sensors
has attracted increasing research interest for their wide spatial coverage
and affordable expenses to the general public. However, low-cost air
quality sensors not only suffer from cross-sensitivities and dependency
on meteorological effects, as we discuss in Chapter 2, but also from drift
over time, an additional error source (see Section 1.2) we tackle in this
chapter. Therefore, frequent calibration of measurements from low-cost
sensors is indispensable to guarantee data accuracy and consistency to
be fit for quantitative studies on air pollution. In Chapter 2, we present
a pre-deployment testing and calibration approach, which is performed
on sensor arrays that have continuous access to reference measurements.
However, constant access to references can usually not be guaranteed in
real-world deployments and, therefore, frequent re-calibration becomes
a challenging task. In this chapter, we propose sensor array network
calibration (SCAN), a multi-hop calibration technique for low-cost sensors
in mobile deployments. SCAN is a collaborative calibration framework to
counteract drift effects, see Section 1.5.2, and applicable to sensor arrays
to compensate for cross-sensitivities and dependencies on meteorological
influences. SCAN minimizes error accumulation over multiple hops of
sensor arrays, which is unattainable with existing multi-hop calibration
techniques. We formulate SCAN as a novel constrained least-squares
regression, provide a closed-form expression of its regression parameters
and theoretically prove that SCAN is free from regression dilution even in
presence of measurement noise. In-depth simulations demonstrate that
SCAN outperforms various calibration techniques. Evaluations on two
real-world low-cost air pollution sensor datasets comprising 66 million
samples collected over three years show that SCAN yields 16% to 60%
lower error than state-of-the-art calibration techniques.



52 Chapter 3. Multi-Hop Calibration for Mobile Sensor Arrays

3.1 Introduction

The availability of portable and low-cost air quality sensors has made
them promising not only for qualitative air pollution monitoring to
raise public awareness, but also for quantitative analysis to facilitate
public policies, infrastructure control and health studies. Installed
on vehicles [LFS+12, SHT15, AMM16b, SGG+13] or in wearable
devices [ZLYX15, TDMP16, BKB15, BEMRB13, KPG10], these sensor
nodes travel citywide and their users, both professional and amateur,
upload air quality measurements with time and location stamps. If
collected in long-term deployments, these air quality measurements
can provide valuable insights on personal air pollution exposure and
validation of high-resolution air pollution models.

To fully unlock the potential of the big urban air quality data collected
by mobile, low-cost sensors, it is essential to calibrate the measurements
to obtain a consistent dataset. However, the quality of measurements
from low-cost air quality sensors are affected by multiple factors and
can vary dramatically across sensors and over time. In Chapter 2, we
investigate the following three potential error sources. (i) Low-cost air
quality sensors suffer from low selectivity, i.e., they are cross-sensitive to
various substances in the air. (ii) Changing environmental conditions,
such as temperature and humidity, impact the sensor output. (iii) Many
air quality sensors operate at their sensitivity boundaries when measuring
pollution in ambient air, which leads to high noise in sensed data. In this
chapter, we investigate a fourth important limiting factor of low-cost air
quality sensors: (iv) Sensor sensitivity degrades over time due to sensor
ageing effects.

In Chapter 2, we show that a powerful solution to compensate for the
dependencies of (i) and (ii) is to augment a measurement system with
additional sensors to form a sensor array. A sensor array consists of co-
located sensors that measure, in addition to the target air pollutants, a set
of correlated pollutants and environmental parameters e.g., temperature.
In Section 2.6, we demonstrate the feasibility of resolving cross-sensitive
dependencies of low-cost air quality sensors by jointly calibrating a set of
measurements collected by sensor arrays. In fact, an increasing number
of customized [ZLYX15, TDMP16, SGV+15] and commercial [SGX08]
air quality sensing nodes is integrated with multiple correlated sensors
and report measurements of pollutants and environmental parameters
simultaneously.

Challenges. Adopting sensor arrays alone is insufficient to ensure
consistent data quality of the measurements. As we show in Section 2.6.2,
the less frequent sensor arrays are calibrated, the more inaccurate the
data becomes. Especially in long-term deployments spanning over
multiple months or even years frequent re-calibration is an important
task to maintain consistent data quality. Due to noise effects, see (iii),
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and sensitivity drift, see (iv), measurements of sensor arrays need to
be re-calibrated to the accurate, static governmental-run air monitoring
stations, which are sparsely deployed in cities. However, sensors
may have infrequent or no access to the static stations, making it
unreliable or infeasible to calibrate all sensors to the static references.
As we have summarized in Section 1.5.2 in order to improve the
opportunities for calibration, some studies [MLCOS08, HST12, SHT15]
propose to calibrate noisy sensors during deployment by exploiting
rendezvous [SHWT14]. During a rendezvous two sensors are in each
other’s spatial and temporal vicinity and thus sense the same phenomena
and should have similar outputs. Rendezvous-based calibration allows
newly calibrated sensors to recursively calibrate other sensors, known
as multi-hop calibration. By constructing a calibration path starting from
a static station and performing calibration for each pair of sensors that
frequently meet, calibration can reliably propagate through all sensor
arrays within a large-scale deployment. Compared to calibration solely
based on rendezvous between mobile nodes and reference stations multi-
hop calibration is proven to frequently calibrate a significantly larger
number of nodes [SHT15, MBS+16, YGTL14]. Thus, multi-hop calibration
is a powerful tool for maintaining high data quality in large scale
deployments over long time periods.

However, it is non-trivial to apply multi-hop calibration on sensor
arrays. Multi-hop calibration is only effective and guarantees data
consistency if the calibration error at each hop does not accumulate.
Otherwise a newly calibrated sensor array after multiple hops will still
be too noisy as a reference to calibrate its successor sensor array. State-
of-the-art multi-hop calibration schemes [HST12] based on ordinary least-
squares regression (OLS) suffer from error-accumulation over multiple hops
due to regression dilution [Woo41]. The results in [SHT15] propose
to use geometric mean regression (GMR) to minimize multi-hop error-
accumulation. The scheme is efficient with single sensor calibration
but inapplicable to sensor array calibration. Although there are several
generalizations of GMR to higher dimensions [DY97, Tof02], they all
perform poorly when calibrating sensor arrays over multiple hops, as
shown in Sec. 3.5. Existing sensor array calibration schemes leverage
multiple least-squares (MLS), see Chapter 2, or artificial neural networks
(ANN) [SGV+15], but are primarily designed for one-hop calibration, i.e.,
calibration with highly accurate references.

Contributions and road-map. In this chapter, we propose sensor array
network calibration (SCAN), a low-error multi-hop calibration scheme for
sensor arrays. We formulate multi-hop sensor array calibration as a
novel constrained least-squares regression, and come up with a closed-form
solution that minimizes error accumulation over multiple hops for multi-
dimensional calibrations. We theoretically prove that SCAN minimizes
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error accumulation with practical array composition and measurement
settings. Experiments with a one-year measurement comprising 10
million samples from a 11-hop metal oxide gas sensor array chain show
that SCAN yields up to 38% lower error than multiple least-squares
(MLS) and geometric mean regression (GMR). Evaluations on a public
air pollution dataset [LFS+12] of 56 million samples collected over two
years demonstrate the benefits of multi-hop calibration over one-hop
calibration. Additionally, we show that SCAN outperforms MLS by
60%, which is a significant improvement in enabling low-cost sensors
for quantitative analysis such as validation of air pollution models
and personal exposure studies. The contributions of this chapter are
summarized as follows:

• To the best of our knowledge, we are the first to theoretically
tackle the error accumulation problem of multi-hop sensor array
calibration. While we primarily target low-cost gas sensors, SCAN
is a generic multi-hop multi-dimensional calibration scheme and
is widely applicable to various heterogeneous, correlated sensors
working in an ad-hoc manner.

• We formulate the problem of multi-hop sensor array calibration
as a novel constrained least-squares regression and propose a
closed-form solution that minimizes error accumulation. We prove
that SCAN works with practical settings such as non-zero mean
measurements and non-squared sensor array composition.

• We evaluate SCAN on two real-world low-cost air pollution sensor
datasets consisting of 10 and 56 million samples, respectively,
collected over three years. Experiments show that SCAN achieves
16% to 60% lower error than state-of-the-art calibration techniques,
which significantly improves the quality of measurements for
qualitative studies such as validation of high-resolution air pollution
models and personal air pollution exposure.

In the rest of this chapter, we summarize related work in Section 3.2,
formulate SCAN in Section 3.4.2 and come up with a closed-form solution
in Section 3.4.3. We conduct extensive simulations and real-world
experiments to evaluate the performance of SCAN in Section 3.5 and
summarize the chapter in Section 3.6.

3.2 Related Work

Exploiting rendezvous between sensors in a mobile network is a popular
approach for sensor calibration [SHT15, SHWT14, HST12, YGTL14,
MBS+16]. Saukh et al. [SHWT14] introduce the concept of sensor
rendezvous and its potential for applications such as sensor fault detection
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and calibration. In a further work [SHT15] they present multi-hop
calibration based on a rendezvous path. They show that ordinary least-
squares (OLS) suffers from error accumulation when applied to multi-
hop calibration and propose the use of the geometric mean regression
(GMR). GMR does not suffer from error accumulation and, thus, improves
network-wide data accuracy. However, GMR can only be applied to
single sensors by performing a simple offset and gain calibration (see
Section 1.4.1) and, hence, can not compensate for limiting effects of
common low-cost sensors, such as low selectivity. Our proposed method
can be applied to sensor arrays while also minimizing error accumulation
and, thus, improves data accuracy of low-cost sensor deployments even
more.

Ye et al. [YGTL14] present a multi-hop calibration approach for a
large network of mobile barometric sensors embedded into commercial
smartphones. The work shows two major challenges; (i) common
low-cost barometric sensors show a considerable cross-sensitivity to
temperature and wind regimes and (ii) errors accumulate along
rendezvous paths. In order to reduce error accumulation over multiple
hops they propose an approach that finds paths with minimal length
and calibrates all sensors in the network. They show that this is a NP-
complete problem and propose a heuristic solution. We are convinced that
our SCAN approach can (i) compensate for the barometric sensors cross-
sensitivities when augmented to an appropriate sensor array and (ii) does
not require to find short rendezvous paths for improved measurement
quality.

Markert et al. [MBS+16] present a privacy-protecting multi-hop
calibration which enables its appliance for participatory environmental
sensing. They demonstrate the benefits of multi-hop over one-hop
calibration while protecting the location privacy of participating users.

3.3 Assumptions and Models

This section recapitulates the basic assumptions on sensor arrays and
defines the models for multi-hop sensor array calibration.

3.3.1 Sensor Array Calibration

We refer to a trace as a time-ordered sequence of n discrete and
instantaneous measurements yi = (yi j) ∈ Rn taken by sensor si at times t j

and spatial locations l j for j ∈ {1, 2, . . . ,n} within a time interval [t1, tn]. A
trace measured by a low-cost gas sensor is usually inaccurate due to (i) low
selectivity, i.e., low-cost sensors are cross-sensitive to multiple substances
in the air, and (ii) the response of low-cost gas sensors is affected by
meteorological conditions. To compensate for these dependencies, low-
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cost sensors are usually augmented by a set of heterogeneous sensors to
form a sensor array (for instance see Figure 2.3b). Specifically, instead of
measuring the target phenomenon using one low-cost sensor, an array
A = [s1, s2, . . . , sk] of sensors s1, . . . , sk is employed to simultaneously
measure k phenomena. Prominent examples are gas sensors based
on electrochemical cells designed to measure nitrogen dioxide (NO2)
concentrations, whose sensitivities are generally affected by ambient
temperature and interfering gases, such as ozone (O3) [SGV+15]. We show
in detail that we are able to notably improve the accuracy of an NO2 sensor
by concurrently acquiring ambient temperature, relative humidity and O3

measurements to compensate for the sensor’s dependency in Section 2.4.4.
Calibrating a sensor array consisting of these multiple low-cost sensors
to a NO2 reference improves the overall measurement accuracy by up
to 45% compared to simple offset and gain calibration using only the
NO2 low-cost sensor as presented in detail in Section 2.6.2. Similar cross-
sensitivities are in fact a well-known limitation for the majority of state-of-
the-art low-cost environmental sensors [JHW+16, SGV+15, EK12, BKW07].

We now formulate the basic model for sensor array calibration. We
distinguish between reference arrays, which consist of precise and selective
sensors, i.e., they accurately measure their target phenomenon, and
mobile low-cost sensor arrays, which suffer from mutual dependencies
and drifts stated above. Let Y = (yi j) ∈ Rk×n be a matrix describing traces
of k possibly correlated phenomena, such as pollutant concentrations
and ambient temperature, where yi j describes the j-th measurement of
phenomenon y taken by a reference sensor si at the given time instance
t j and location l j. Denote X = (xi j) ∈ Rk×n as the uncalibrated traces of
a mobile low-cost sensor array A taken at the same time instances and
locations. We assume that the uncalibrated trace xi = (xi j) ∈ Rn of a
single cross-sensitive sensor is a linear combination of different effects
describing the impact of different phenomena and sensor noise, see also
Section 2.3. Further, we assume that all sensors si for i ∈ {1, 2, . . . , k} of an
array A are sampled at the same time instance and at the same location,
i.e., a sensor array forms one physical unit. Then, the uncalibrated traces
of a low-cost sensor array can be defined as

X = B−1 (Y + N1) , (3.1)

where N1 ∈ Rk×n are k noise components (zero mean and uncorrelated to
phenomena Y) and B−1

∈ Rk×k is an unknown matrix capturing the linear
combination of phenomena and their magnitude for each individual
sensor in the array, see Figure 3.1.

The aim of sensor array calibration is to find a calibration matrix B
such that the calibrated measurements

Y = BX = B
(
B−1(Y + N1)

)
+ C (3.2)
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Uncalibrated 
Sensor Array
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Calibrated 
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Figure 3.1: Basic sensor array calibration model. The traces Ŷ of an already calibrated
sensor array can be used as reference to calibrate the traces X of an uncalibrated
sensor array. If the calibrated sensor array is a reference array it measures the physical
phenomena with perfect accuracy, i.e., we assume the measurement noise N2 = 0k×n.

minimize the calibration error, defined as a distance to the phenomena
traces Y in some metric. Matrix C ∈ Rk×n describes a constant additive
offset. For simplicity of presentation we assume C = 0k×n and all the
rows in X and Y have zero mean. We relax this assumption and present
the calibration including a non-zero constant matrix C in Section 3.4.4.
Further, we assume for a general low-cost sensor array that B is non-
singular.

3.3.2 Multi-hop Sensor Array Calibration

Highly accurate reference arrays are often static and limited in a real-
world deployment and not all mobile sensor arrays have access to these
reference arrays. To calibrate measurements of all sensor arrays, a
practical strategy is to use calibrated sensor arrays as virtual references
to calibrate another mobile sensor array. The rationale is that when two
mobile sensor arrays are close in space and time, known as rendezvous,
they are exposed to the same physical processes, and thus provide an
opportunity for calibration. Such a rendezvous based calibration scheme
can propagate along multiple hops and ultimately can cover all the
deployed mobile sensor arrays.

One-hop calibration. Initially, we calibrate a mobile low-cost sensor array
to a high quality reference array, which measures physical phenomena
Y with perfect accuracy. Hence, we calibrate a sensor array A(h=0) using
its traces X(0) = B−1

(0)(Y + N1) by estimating the optimal B(0). We refer to
the calibration between reference and low-cost array as one-hop calibration
with h = 0.

Multi-hop calibration. In the next hop, h = 1, given some rendezvous
between an already calibrated array A(0) and an uncalibrated array A(1), we
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...

Figure 3.2: In a first hop h = 0, an uncalibrated array A(0) is calibrated with traces from
an accurate reference array R. In all consecutive hops h > 0 an uncalibrated array A(q) is
calibrated with traces from an already calibrated array A(q−1).

take A(0) as a virtual reference. We use its measurement X(0) at the current
rendezvous to determine a set of calibrated measurements Y(0) = B(0)X(0)

with B(0) from the one-hop calibration. The measured values X(1) of array
A(1) at the current rendezvous can now be calibrated with the calibrated
measurements Ŷ(1) = Y(0) from array A(0), see Figure 3.1. As illustrated
in Figure 3.2, this concept can be applied to consecutive hops h > 1
resulting in a rendezvous path. We refer to calibration of sensor arrays along
rendezvous paths with max (h) > 0 as multi-hop calibration. Specifically, at
hop h = q with q > 0, we calibrate the sensor array traces as Y(q) = B(q)X(q),
where B(q) is obtained by the raw traces X(q) and virtual reference traces
Ŷ(q) = Y(q−1) measured by a calibrated sensor array A(q−1).

Thus, given uncalibrated measurements X(q) from array A(q) and
calibrated measurements Ŷ(q) = Y(q−1) from array A(q−1) we intend to
calculate calibration parameters B(q) such that∥∥∥Y(q−1) − B(q)X(q)

∥∥∥ , (3.3)

where some norm ‖ · ‖ is minimized.

Discussion. (i) Our multi-hop sensor array calibration scheme is
performed along a static, pre-defined rendezvous path. For example, the
path can be determined by first selecting the mobile sensor array that
most frequently meets the static reference array as the first hop, i.e. the
mobile sensor array with the most rendezvous with a reference station,
and recursively selecting the most frequently met array as the next hop. It
is possible that a sensor array A meets a sensor array B frequently and the
reference array R infrequently. In this case, we omit all the rendezvous
between A and R. Determining the optimal rendezvous paths is out of
the scope of this chapter. We present multi-hop calibration based on a
calibration graph with multiple parents per node in Chapter 5 and refer
interested readers to [SHT15] for calibration parent selection strategies
and [FRD17] on reference placement schemes to ensure network-wide
calibrability. (ii) Our calibration scheme mainly serves as an important
data cleaning technique to guarantee data accuracy and consistency in
big air quality data collected by mobile sensor arrays. We assume the
dataset has been pre-processed to filter incomplete samples due to, e.g.,
GPS failures as in [SHWT14].
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3.4 SCAN: Multi-hop Calibration for Sensor Arrays

In this section, we present in detail our novel multi-hop calibration
method. In Section 3.4.1, we show that state-of-the-art multiple least-
squares (MLS) is not suitable for multi-hop sensor array calibration due
to its error accumulation over multiple hops. We tackle this problem by
modifying MLS in order to make it suitable for multi-hop calibration.
We formulate our sensor array network calibration (SCAN) solution as a
new constrained least-squares regression in Section 3.4.2 and present a
closed-form solution in Section 3.4.3.

3.4.1 Limitations of Multiple Least-Squares
Multiple least-squares (MLS) minimizes the squared calibration error in
each individual hop h = q, that is the deviation of virtual references
Ŷ(q) = Y(q−1) taken by array A(q−1) and calibrated signals Y(q) = B(q)X(q)

taken by array A(q). For simplicity of presentation we set X = X(q), B = B(q)

and Ŷ = Ŷ(q) = Y(q−1) in all the following sections. Hence, the minimization
problem looks as follows [BR14]

min
B

tr
((

Ŷ − B X
) (

Ŷ − B X
)T

)
(3.4)

where tr is the trace operator [BR14]. The solution to (3.4) [RTSH08a] is
given by

B = ŶX
T
(
X X

T
)−1

. (3.5)

Since the traces of a virtual reference array are usually imperfect, i.e.,

Ŷ = Y + N2, (3.6)

where N2 are k noise components related to the sensor readings of the
virtual reference sensor, e.g., due to calibration error, a major challenge
in multi-hop calibration is error accumulation over the rendezvous
path [SHT15]. We apply MLS to multi-hop sensor array calibration at
hop h = q with q > 0, where N1 denotes the noise when reading the
sensors of the array A(q) that needs to be calibrated, i.e., X = B−1(Y + N1).
The calibration matrix B calculated by MLS becomes

B = (Y + N2) (Y + N1)T B−TBT
[
(Y+N1) (Y+N1)T

]−1
B

=
[
YYT + YNT

1 + N2YT + N2NT
1

] [
YYT + YNT

1 + N1YT + N1NT
1

]−1
B. (3.7)

Because we assume independent noise and no correlation between noise
and phenomena, it holds that YNT

1 = N1YT = N2YT = N2NT
1 = 0k×k and

finally

B =
[
YYT

] [
YYT + N1NT

1

]−1
B. (3.8)
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From (3.8) we see that MLS underestimates B under the presence of noise
N1 with N1NT

1 , 0k×k, better known as regression dilution or bias towards
zero [FT00]. This effect grows with increasing sensor noise variance N1NT

1 .
Thus, calibration parameters B estimated by MLS depend on sensor noise.
The bias towards zero of the parameters of a calibrated array affects the
uncalibrated array of the consecutive hop. As a result calibration error
is accumulated over the whole rendezvous path, as we will show in the
simulations and real-world experiments in Section 3.5.

3.4.2 Sensor Array Network Calibration

To reduce error accumulation in multi-hop sensor array calibration, we
propose a solution formulated as a constrained least-squares regression
referred to as sensor array network calibration (SCAN). As far as we are
aware of, this is the first formulation of the multi-hop sensor array
calibration problem as a novel constrained least-squares regression with
a closed-form solution.

We first define the symmetric matrices ŶŶT = YYT + N2NT
2 and X X

T
=

B−1(YYT + N1NT
1 )B−T. For the following results, suppose X X

T
and Ŷ ŶT

are non-singular. The SCAN regression problem can be formulated as
follows:

minimize
B

tr
((

Ŷ − B X)(Ŷ − B X
)T

)
subject to B X X

T
B

T
= ŶŶT

(3.9)

(3.10)

Thus, SCAN minimizes the least-squares error (3.9) with the constraint
on the regression parameters stated in (3.10). As we will show later, (3.10)
reduces the bias towards zero and eliminates it under certain realistic
assumptions. To the best of our knowledge, we are the first to formulate
this constraint regression problem.

3.4.3 Closed-form Solution to SCAN

Degrees of freedom. Let X = UXDXVT
X be the singular value composition

of the matrix X ∈ Rk×n, where UX ∈ Rk×k and VX ∈ Rn×k are orthogonal
matrices and DX ∈ Rk×k is a diagonal matrix holding the singular values
of X on the diagonal. Similarly, let Ŷ = UYDYVT

Y be the singular value
decomposition of Ŷ ∈ Rk×n. The constraint in (3.10) can be formulated as
the following equivalent equation

B X X
T
B

T
= ŶŶT

BUXDXVT
XVXDT

XUT
XB

T
= UYDYVT

YVYDT
YUT

Y

BUXD2
XUT

XB
T

= UYD2
YUT

Y
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D−1
Y UT

YBUXDXDXUT
XB

T
UYD−1

Y = I

⇔ F = D−1
Y UT

YBUXDX ∧ FFT = I, (3.11)

where F ∈ Rk×k is an orthogonal matrix. We can re-formulate the
constraint (3.10) to

B = UYDYFD−1
X UT

X, (3.12)

where the orthogonal matrix F defines the degrees of freedom of the
calibration matrix B.

Minimizing least-squares error. We now present a method to determine
F that minimizes the least-squares error (3.9). Recall the minimization
problem (3.9), we observe

min
B

tr
((

Ŷ−B X
) (

Ŷ−B X
)T

)
=min

B
tr

(
ŶŶT +B X X

T
B

T
−B XŶT

− (B XŶT)T
)

=max
B

tr
(
B XŶT

)
. (3.13)

Thus, we simplify the original minimization problem to a maximization
problem stated in (3.13). Recall constraint (3.12) on B, it follows

max
B

tr
(
B XŶT

)
= max

F
tr(UYDYFD−1

X UT
XUXDXVT

XVYDYUT
Y)

= max
F

tr
(
UYDYFVT

XVYDYUT
Y

)
= max

F
tr

(
FVT

XVYD2
Y

)
. (3.14)

We define Q = VT
XVYD2

Y ∈ R
k×k and its singular value decomposition

Q = UQDQVT
Q and followingly

max
F

tr
(
FVT

XVYD2
Y

)
= max

F
(FQ) = max

F

(
FUQDQVT

Q

)
. (3.15)

The solution for F that maximizes (3.15) and (3.14), respectively, is given
by

F = VQUT
Q. (3.16)

From (3.12) and (3.16) it follows that

B = UYDYVQUT
QD−1

X UT
X (3.17)

minimizes the least-squares error (3.9) under the constraint (3.10).

Proof. The proof for the solution to (3.14) is similar to the orthogonal
Procrustes problem [Sch66] as well as a consequence of the Courant-Fischer
theorem [BR14]. It holds

tr(FQ) = tr
(
FUQDQVT

Q

)
= tr

([
FUQD

1
2
Q

] [
VQD

1
2
Q

]T
)

=
〈
FUQD

1
2
Q,VQD

1
2
Q

〉
,

(3.18)
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where 〈·, ·〉 is the inner product [BR14]. According to the Cauchy-Schwarz
theorem [BR14] it follows〈

FUQD
1
2
Q,VQD

1
2
Q

〉
≤

∥∥∥∥FUQD
1
2
Q

∥∥∥∥
2

∥∥∥∥VQD
1
2
Q

∥∥∥∥
2
, (3.19)

where the equality holds if F = VQUT
Q and thus maximizes tr(FQ), i.e.,

tr(FQ) =
〈
FUQD

1
2
Q,VQD

1
2
Q

〉
=

〈
VQD

1
2
Q,VQD

1
2
Q

〉
=

∥∥∥∥D
1
2
Q

∥∥∥∥
2

∥∥∥∥D
1
2
Q

∥∥∥∥
2

= tr(DQ). (3.20)

Thus, F = VQUT
Q is an orthonormal transformation that maximizes

tr(B XŶT) and consequently minimizes the least-squares error (3.9) under
constraint (3.10). �

3.4.4 Discussions

Existence. There always exists a solution to the SCAN regression. The
closed-form expression of the regression parameters B stated in (3.17)
involves the singular value decomposition of X ∈ Rk×n, Ŷ ∈ Rk×n and
Q ∈ Rk×k. Because there always exists a singular value decomposition for
any general real matrix [BR14], there also exists a regression parameter
matrix B ∈ Rk×k according to (3.17).

Relationship to GMR. For the two-dimensional calibration problem
where we calibrate a single sensor on a single reference sensor to perform
an offset and gain calibration, i.e., k = 1, the constraint (3.10) of SCAN

reduces to B = ±

√
YY

T

XX
T . This is in fact the solution for the regression gain

parameter according to GMR [Woo41].

No bias towards zero property. We now show that the calibration matrix
obtained from our SCAN regression is free from regression dilution even
in presence of noise in the measurements. Let B a solution that minimizes
the least-squares error (3.9) and satisfies constraint (3.10), then it follows
by (3.1) and (3.6)

BB−1
(
YYT + N1NT

1

)
B−TB

T
= YYT + N2NT

2 . (3.21)

In the case where the variance of the noise of the two sensor arrays are
equal and N1 and N2 are uncorrelated, we assume

N1NT
1 = N2NT

2 = NNT = λI, (3.22)
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where λ
n ∈ R describes the variance of noise components in N and I ∈ Rk×k

is the unit matrix. Further, let YYT + NNT = UD2UT be the eigenvalue
decomposition of the symmetric matrix YYT + NNT = YYT + λI and
accordingly it holds YYT = U(D2

− λI)UT. Hence, (3.21) simplifies to

BB−1
(
YYT + NNT

)
B−TB

T
= YYT + NNT

BB−1(UD2UT)B−TB
T

= UD2UT

(D−1UTBB−1UD)(D−1UTBB−1UD)T = I

⇔ G = D−1UTBB−1UD ∧ GGT = I, (3.23)

where G is an orthogonal matrix. Recall the maximization problem stated
in (3.13), it follows

max
B

tr
(
B XŶT

)
= max

B
tr

(
B B−1(Y + N1)(YT + NT

2 )
)

= max
B

tr
(
B B−1YYT

)
= max

G
tr

(
UDGD−1UTYYT

)
= max

G
tr

(
UDGD−1UTU(D2

− λI)UT
)

= max
G

tr
(
G

(
D2
− λI

))
, (3.24)

where due to the diagonal form of (D2
− λI) and (3.23) the maximum is

achieved if G = I [Sch66]. In this case the calculated regression parameters
B = B. That means, even if NNT , 0k×k, SCAN estimates the true
underlying calibration parameters B. Hence, the calibration parameters B
calculated by SCAN are not affected by regression dilution, whereas MLS
underestimates the calibration parameters due to its bias towards zero.

In a real-world deployment we cannot assume that (3.22) ideally
holds. In this case B does depend on a relation between N1N1 and
N2N2 as stated in (3.21). In Section 3.5 we discuss this assumption in
detail and experimentally show that SCAN reduces error accumulation
over multiple hops and outperforms various state-of-the-art calibration
techniques.

Relaxing the zero-mean variable assumption. Both Ŷ and X contain
in general rows with a non-zero mean. In this case, the calibration also
needs to compensate for an offset term C, see (3.2). This is done similarly
to MLS [BR14] and basic GMR [Woo41]. Let Ỹ = Ŷ + mean(Ŷ) and
X̃ = X + mean(X) be non-zero mean representations of Ŷ and X, where
mean(Ŷ) ∈ Rk×n and mean(X) ∈ Rk×n are mean values of each row in Ŷ
and X, respectively. It follows

Ỹ = BX̃ + C
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Ŷ + mean(Ŷ) = B
(
X + mean(X)

)
+ C. (3.25)

Let C = mean(Ŷ) − Bmean(X), then (3.25) equals to the calibrated
measurements by SCAN with zero-mean variables. The calibrated
measurements are calculated as Y = BX + mean(Ŷ) − B · mean(X).
Accordingly we can reformulate the constraint (3.10) using non zero-
mean variables and the calculated offset to(
Ŷ+mean(Ŷ)

)(
Ŷ+mean(Ŷ)

)T
=
(
B
(
X+mean(X)

)
+C

)(
B
(
X+mean(X)

)
+C

)T

⇔ ŶŶT+mean(Ŷ)·mean(Ŷ)T =BXX
T
B

T
+mean(Ŷ)·mean(Ŷ)T, (3.26)

which is equal to constraint (3.10) of our SCAN regression with zero-mean
variables. Thus, the offset calculation does not affect the no bias towards
zero property, i.e., error accumulation.

Relaxing the squared calibration matrix assumption. So far we assumed
that a sensor array consisting of k different sensors is always calibrated
to an array with k sensors as well. In some situations this setup is not
suitable. For instance, although a sensor of an array is cross-sensitive to a
certain phenomenon it might not be possible to calibrate the array to said
phenomenon due to the lack of highly accurate reference measurements.
Therefore, a calibration of k sensors to l references with 1 ≤ l < k is in
certain cases required.

Let Ỹ = S(Y + N2) be l phenomena measured by a calibrated sensor
array. S ∈ Rl×k is a matrix with Si j = 1 if phenomenon j ∈ {1, . . . , k} equals
the phenomenon i ∈ {1, . . . , l} measured by the calibrated array and all
other elements equal 0. Further, it holds SST = I. Let B̃ ∈ Rl×k be the
calibration matrix of an uncalibrated sensor array to the l phenomena.
Accordingly the constraint (3.10) on B̃ looks as follows

B̃B−1(YYT + N1NT
1 )B−TB̃T = S(YYT + N2NT

2 )ST. (3.27)

In a similar way to (3.21), we define the matrix

G̃ = D−1UTSTB̃B−1UD, (3.28)

with G̃G̃T = I. We can use the same result in (3.24), i.e.,

max
B̃

tr
(
B̃XỸT

)
= max

G̃
tr

(
G̃

(
D2
− λI

))
, (3.29)

and see that again the maximum is achieved with G̃ = I and, hence, it
follows from (3.28) that we find the true calibration parameters B̃ = SB.
Hence, the no bias towards zero property is preserved.

In the case of non-equal noise variances, the constraints of the
calibration with l and k phenomena differ. Unlike MLS, SCAN calculates
different calibration parameters depending on the number of phenomena
in Ŷ, which is elaborated in more detail in Section 3.5.
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3.5 Experimental Evaluation

This section presents the evaluations of SCAN on both simulated and
real-world datasets.

3.5.1 Simulation

We first show through simulations the advantages of SCAN over multiple
least-squares (MLS, see Section 3.4.1), which motivates our multi-hop
sensor array calibration scheme, as well as performance comparison
with the state-of-the-art calibration schemes. We then investigate the
robustness of SCAN with various impacting factors.

Setup. We artificially generate 20 different reference sensor arrays
Y(h) ∈ Rk×n

∼ N(lnY(h); 0, γ) representing n ground-truth measurements
of k different phenomena with standard deviation γ ∈ [0.2, 0.45]. The
log-normal distribution models typical air pollution and meteorological
measurements in an urban area [SZW+04, Kah73]. These reference arrays
serve as basis for a rendezvous path consisting of 20 noisy sensor arrays.
In all experiments the number of physical phenomena k is set to 4. The
measurements of each array at hop h with h ∈ {0, 1, . . . , 19} are defined by
X(h) = B−1

(h)(Y(h) + N1), where B(h) is a general matrix with randomly chosen
entries Bi j ∈ [0.2, 2] and N1 ∈ Rk×n

∼ N(0, σ2) describes sensor noise. These
sensor arrays are in line with our findings in Section 3.5.2 and Section 3.5.3,
where we use real-world sensors that exhibit similar cross-sensitivity
intensities, as well as with existing literature [SGV+15, JHW+16, SHT15].
In the first hop h = 0 the low cost sensor array is calibrated with the
reference array. In all consecutive hops the measurement of the previously
calibrated array Ŷ(h) = B(h−1)

(
B−1

(h−1)(Y(h) + N1)
)

are used as reference
array. We use 500 samples for training the calibration parameters
and 500 samples for evaluation. The 500 samples for evaluating the
performance of an array are also used to train the calibration parameters
of the consecutive sensor array. Each experiment is run 100 times
with re-sampled reference measurements and ground-truth calibration
parameters B(h).

Evaluation metrics. We calculate the difference between the calculated
calibration parameters B and the ground-truth B using the Froebinus
norm, defined as

∥∥∥B − B
∥∥∥

F
=

(
tr

((
B − B

) (
B − B

)T
)) 1

2

. (3.30)

Additionally, we investigate the root-mean-square value of the calibration
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Figure 3.3: Difference between estimated B and ground-truth calibration parameters B
for different sensor noise variance λ.

error (RMSE) of the calibrated sensor array to one phenomena y4 ∈ Y, i.e.,

RMSE =

1
n

n∑
j=1

(
y4 j − y4 j

)2


1
2

. (3.31)

Overall performance. In this set of experiments, we first verify the
correctness of our theoretical findings by comparing with MLS, and
then compare SCAN with various state-of-the-art multi-hop calibration
schemes.

True calibration matrix estimation. As theoretically shown in
Section 3.4.4, SCAN is able to calculate the true underlying calibration
parameters B = B if the virtual reference and uncalibrated array suffer
from noise with equal variance, i.e., N1NT

1 = N2NT
2 = λI. We first

investigate this finding and simulate the assumption for an arbitrary
hop in the rendezvous path by enforcing Ŷ(h)ŶT

(h) = Y(h)YT
(h) + λI and

X(h)X
T
(h) = B−1

(h)(Y(h)YT
(h) + λI)B−T

(h) . Figure 3.3 reflects our theoretical findings
in Section 3.4.4. We observe that SCAN is able to calculate the true B up to
machine precision independent of λ. Further, we observe the estimation
by MLS is dependent on λ , 0.

Error accumulation. Figure 3.4 shows the results of the calibration at each
hop when the standard deviation σ of the noise for all sensor arrays is
randomly chosen from [0.05, 0.2]. Due to the small number of samples, the
noise components are in general correlated, i.e., N1NT

1 has a general form
with dominating diagonal elements, which relates to real-world sensor
arrays as we will show later in Section 3.5.2. In Figure 3.4a we observe
that our SCAN approach clearly outperforms MLS with respect to how
accurate the underlying B(h) is estimated in each hop. This finding is
reflected in the calibration error over multiple hops in Figure 3.4b, where
SCAN achieves a reduced error accumulation over 20 hops compared to
MLS. In fact, already after 5 hops MLS shows a 49% higher average error
than SCAN. Although SCAN outperforms MLS, we also observe an error
accumulation for SCAN over 20 hops. Relative to the first hop the error
increased by less than 22% at the last hop. The reasons are the different
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Figure 3.4: SCAN calculates calibration parameters B that deviate over all hops to a
less extent from the ground-truth B compared to MLS, depicted in Figure 3.4a. Hence,
SCAN calibrates in Figure 3.4b all sensor arrays of a 20-hop calibration path with clearly
reduced error accumulation.

Method h = 0 h = 5 h = 19
SCAN 0.12 ± 0.04 0.12 + ±0.04 0.14 + ±0.04
MLS 0.11 ± 0.04 0.21 ± 0.05 0.34 ± 0.07
GMR 0.4 ± 0.06 0.54 ± 0.18 0.54 ± 0.15
TLS 0.14 ± 0.07 0.62 ± 0.3 4.2 ± 2.7

ANN 0.19 ± 0.3 > 100 > 100
Draper 0.13 ± 0.05 0.24 + ±0.05 0.34 + ±0.07
Tofallis 0.14 ± 0.06 0.25 + ±0.06 0.35 + ±0.07

Table 3.1: Calibration error of different techniques for one- and multi-hop calibration.

sensor noise variances σ2 of each individual sensor, i.e., assumption (3.22)
is not satisfied, and the different measurement ranges the sensor samples
of each array lie in. The impact of these two reasons is elaborated in detail
in the following section.

Comparison with other techniques. Table 3.1 summarizes the calibration
error for seven different techniques, namely our sensor array network
calibration regression (SCAN), 2-dimensional geometric mean regression
(GMR [SHT15]), multiple least-squares (MLS, see Chapter 2), total least-
squares (TLS [GL80]), artificial neural networks (ANN [SGV+15]) and
two different generalizations of the basic geometric mean regression to
multiple dimension by Draper et al. [DY97] and Tofallis [Tof02]. The
comparison in Table 3.1 is based on 100 runs with a 20-hop rendezvous
path and σ ∈ [0.05, 0.2].

As previously shown SCAN clearly outperforms MLS over multiple
hops due to the reduction of error accumulation. For one-hop calibration
MLS is more accurate. The 2-dimensional GMR calibration is not able to
compensate for cross-sensitivities. Thus, the calibration error on all hops
is severely larger compared to the other multi-dimensional regression
techniques. TLS is a multi-dimensional error-in-variables regression, i.e.,
it assumes that both X and Y are affected by errors, which relates to our
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(a) (b)

Figure 3.5: Calibration error over seven hops (Figure 3.5a) and total error accumulation
(Figure 3.5b) after each hop relative to h = 0 when the sensor signals are affected by low
(σ ∈ [0.05, 0.2]) and high noise (σ ∈ [0.2, 0.3]).

multi-hop calibration problem. However as experimentally shown, TLS
is also suffering from an error accumulation that is even more severe
compared to MLS over multiple hops. ANNs have been widely used
for sensor array calibration due to their ability of modelling complex
and possibly non-linear relationships between sensor and reference
measurements. In our setup we use a simple network with 1 hidden layer
and 10 neurons [DE92]. We show that already after 5 hops the accuracy
of the calibration exceeds all other techniques. This can be traced back to
the fact that neural networks tend to overfit and are usually a prominent
choice for compensating for non-linear cross-sensitivities. Finally, we
compare SCAN to two different generalizations of the geometric mean
regression to multiple dimensions introduced by Draper et al. [DY97] and
Tofallis [Tof02]. From our results we observe that both generalizations
suffer from considerable error accumulation over multiple hops and, thus,
are not suited for multi-hop sensor array calibration. Overall, we conclude
that our SCAN approach outperforms all other tested techniques for
multi-hop calibration and MLS is the best choice for one-hop calibration.

Robustness. In the following set of experiments, we investigate the
impact of various factors that may violate the assumptions of our
theoretical analysis to assess the robustness of SCAN.

Impact of noise variance. The amount of sensor noise has an important
effect on the multi-hop calibration performance. Figure 3.5a shows the
comparison between different intervals for σ, i.e., σ ∈ [0.05, 0.2] (bold
lines) and σ ∈ [0.2, 0.3] (dashed lines). For both SCAN and MLS the
average error over all hops is increased with increasing variance in sensor
noise. As shown before, SCAN reduces the error accumulation compared
to MLS. In fact, the accumulated error over 7 hops is below 13% with
SCAN as shown in Figure 3.5b. When calibrating with MLS the amount of
noise affects the error accumulation per hop. After h = 5 the accumulated
error per hop decreases and the calibration error stabilizes with MLS
under high sensor noise. This is because the calculated calibration
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Figure 3.6: Impact on calibration parameter estimation (Figure 3.6a) and error
(Figure 3.6b) of increased sensor noise on a single sensor array at hop h = 4. SCAN
is able to accurately calculate calibration parameters independent of the sensor noise of
its parent.

parameters B already strongly deviate from the ground-truth due to the
bias towards zero of B with MLS, as theoretically proven in (3.8). With
lower noise MLS achieves a lower average error compared to SCAN and
MLS under higher noise conditions, but accumulated over 95% error over
7 hops.

Impact of increased noise. So far we affected all sensors with noise
whose variance lied in a narrow interval. In a real-world deployment
this assumption may not hold. Noise of individual arrays might be
significantly higher compared to others, especially in networks with
heterogeneous nodes. In Figure 3.6 the standard deviation of the noise of
all sensors in the uncalibrated array at hop h = 4 is set to σ = 0.3 and the
one of its neighbours h = 3 and h = 5 to σ = 0.12. Despite the increased
calibration error of the array at hop h = 4, arrays at hops h = [5, 19] are not
notably affected when calibrating with SCAN. In contrast the increased
noise at h = 4 has a strong impact on the parameter estimation by MLS
and, hence, sensor arrays at hops h = [5, 19] suffer from a high calibration
error. This result shows that the calibration parameter estimation of a
child sensor array by SCAN depends on the child sensor array noise but
barely on the noise of its parent.

Impact of variable measurement range. In the previous experiments
we always assumed that the measurements of all sensor arrays along the
rendezvous path include samples over the whole range of the underlying
phenomena, i.e., the interval defined by the smallest and highest absolute
value of the phenomena measurements. For instance, the ambient
temperature in a deployment ranges from 5 ◦C to 30 ◦C, then so far we
assumed that all arrays along a rendezvous path contain temperature
samples within the whole range. This assumption is difficult to enforce
in a real-world deployment. Physical phenomena typically show large
variance depending on time and location. Therefore, capturing samples
over the whole range of all target phenomena is a difficult task without
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(a) (b)

Figure 3.7: A lower measurement range between arrays at h = 4 introduces an increased
calibration error in Figure 3.7a for both SCAN and MLS in all hops h > 3. In Figure 3.7b
an increased measurement range only affects sensor array at hop h = 3 without effect on
the subsequent sensor arrays.

enforcing rendezvous between sensor arrays.
In Figure 3.7 we show the effect of a rendezvous between array at

hop h = 3 and h = 4 with a different measurement range compared to
all other sensor arrays in the path. We decrease the range by a factor of
3 in Figure 3.7a and observe that both SCAN and MLS are affected. The
lower measurement range introduces an increase of the calibration error
for sensor array at h = 4 and all its subsequent arrays. The reason for
this effect is that the calibration parameter estimation for all sensor arrays
with hop h > 4 is only valid for the smaller range of array at h = 4 and,
thus, the array can only be used to calibrate subsequent arrays with equal
measurement range. In Figure 3.7b we increase the measurement range
of the rendezvous between arrays at h = 3 and h = 4 by a factor of 3. This
only affects the sensor array at h = 3 but not the ones at hops h = [4, 19].
The sensor array at h = 3 is not able to estimate parameters for its whole
range, only for the smaller range of its parent array. This does not affect
sensor arrays at hops h = [4, 19] because their measurement range is equal
to the one at hop h = 2.

We conclude that it is important to use calibration data including
a large measurement range of equal size for all sensor arrays in a
rendezvous path. In a real-world deployment the density of the network
and, hence, the number of rendezvous between nodes, can therefore
have an impact on the accuracy of the calibration. In Chapter 5
we also extend our SCAN method with uncertainty metrics for the
calibrated measurements. This approach helps to filter samples which
are potentially error-prone and tackles the variable range effect.

Impact of number of reference signals. Unlike MLS, SCAN calculates
different calibration parameters of an array to a certain reference
depending on the number of other references in the regression setup. As
shown in Section 3.4.3 this does however not violate the no bias towards
zero property under the assumption of equal sensor noise of parent and
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Figure 3.8: Calibration error of our SCAN method with different numbers l of reference
signals. The effects on the error accumulation are negligible.

child array. We now show that even if this assumption does not hold, the
impact on the calibration error with different number of reference signals
is negligible. We investigate the calibration error to phenomena y4 ∈ Y
with different number of reference signals l ∈ {1, 2, 3, 4}. That means, if
l = 1 each sensor array is only calibrated to y4. Accordingly, if l = 2 the
array is calibrated to two phenomena

[
y3; y4

]
, and so forth. The standard

deviation of the noise is set to σ ∈ [0.2, 0.3] for all sensor arrays. Figure 3.8
shows the calibration error y4 ∈ Y over multiple hops for different l. We
observe, that the number of references does not have a notable impact on
the error. The differences only become clear after multiple hops, where
SCAN with l = 4 achieves the lowest average error. In fact, at h = 19 the
calibration errors for all l values differ by less than 3% .

Summary. Through extensive simulations, we demonstrate that our
SCAN scheme outperforms the state-of-the-arts in multi-hop calibration
for sensor arrays. SCAN still accumulates mild errors in presence of
numerous practical factors including noise variance, noise dependency,
variable measurement range, etc., but still significantly outperforms MLS,
which becomes unusable in these situations. We further extend SCAN
by calculating different uncertainty metrics for each calibrated samples
in Chapter 5. This uncertainty information is used to further reduce
the calibration error at each hop due the different unavoidable practical
factors investigated in this section.

In the next two sections, we evaluate the performance of SCAN on
two real-world air quality datasets, showing both the advantages of our
novel SCAN scheme and the lessons learned in calibrating large-scale air
quality measurements collected by low-cost mobile sensor arrays. We
mainly compare our SCAN scheme with MLS, which we show is the best
choice for one-hop sensor array calibration, and GMR, the state-of-the-art
for multi-hop sensor calibration.



72 Chapter 3. Multi-Hop Calibration for Mobile Sensor Arrays

3.5.2 Metal Oxide Sensor Array

In this set of experiments, we evaluate the performance of SCAN on
measurements collected by low-cost metal oxide based gas sensors. The
sensor is a prototype featuring an array of sensing layers, whereof each
individual layer in the array exhibits a different sensitivity to certain
environmental gases. The sensitivity of these layers can be controlled
by setting the temperature of the sensing layer to a specific value, which
is a common technique for metal oxide based sensors [BKW07]. Due to
its small size and low power consumption, the sensor is suitable for a
large variety of Internet-of-Things, wearable devices and crowdsensing
applications.
Setup. We deploy the low-cost metal oxide based gas sensors next to
the static and highly accurate air monitoring station in Duebendorf,
Switzerland (see Figure 2.3) to monitor the ambient ozone (O3)
concentration. We heat the sensing layers of the gas sensors to different
temperatures to simulate heterogeneous sensor nodes with different noise
levels. Further, we deploy a temperature sensor [Sen16] for ambient
temperature measurements. The sensors are sampled in an interval
of 30 sec. As sensor array we use measurements from two of the gas
sensor layers and from the temperature sensor, i.e., k = 3. We collect
measurements from July 2015 to July 2016.
Rendezvous path. We construct a rendezvous path of h = 11 hops because
there were at most eleven sensor arrays measuring at the same time. Each
calibration is trained on 200 samples within a time frame of at most two
weeks. The calibration is tested on 200 different samples within the
consecutive two weeks. The whole evaluation over one year of data
is executed 500 times with a randomly re-sampled calibration path for
every execution. For the calibration in the first hop to measurements of
the reference station we use MLS instead of our SCAN method. As shown
in Table 3.1 and also confirmed by evaluating the dataset, MLS performs
better for one-hop calibration and, thus, the overall multi-hop calibration
achieves better accuracy.
Ground-truth. For training the calibration parameters of the array at the
initial hop and evaluating the calibration of all arrays in the path we use
highly accurate ozone and temperature measurements from the station
as reference.
Performance. We compare the multi-hop sensor array calibration
performance of our SCAN approach to MLS. 2-Dimensional GMR is
used to compare sensor array and simple sensor calibration by solely
calibrating the measurements from a single sensing layer in the array that
exhibits the highest sensitivity to ozone. Again, we use three different
metrics (see Section 2.4.3), i.e., the RMSE (2.7), its normalized form
RMSEσ (2.8) and the R2 (2.9) value, to benchmark the performance of
the calibration.
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Figure 3.9: (a) Sensor array calibration error over multiple hops when calibrated to
ambient ozone (O3) concentration. SCAN clearly outperforms MLS and GMR. (b)
Covariance matrix of sensor noise after sensor calibration to O3 and temperature.

Error accumulation. The average RMSE over the whole time period
for each calibrated array per hop is depicted in Figure 3.9a. The
results highlight the two major advantages of our SCAN sensor array
calibration method; (i) SCAN reduces error accumulation over multiple
hops compared to MLS and (ii) improves the overall calibration accuracy
compared to the simple offset and gain calibration based on GMR. Over
eleven hops MLS increases the average calibration error from 3.5 ppb to
5.85 ppb which is equal to a relative increase of over 60% error. SCAN
considerably reduces this error accumulation to a relative increase of
30%. Compared to the simple sensor calibration with GMR, sensor
array calibration based on SCAN improves the calibration error by up
to 1.36 ppb O3 concentration. Over all hops SCAN achieves a 16% to 38%
smaller error than GMR and an up to 23% smaller error than MLS. Due
to the large error accumulation of MLS the normalized RMSEσ increases
from 1.17 to 1.87, while it stayed between 1.17 and 1.54 for SCAN and 1.61
and 1.72 for GMR. The R2 value stayed constant around 0.8 for GMR, and
reduced slightly from 0.93 to 0.87 for both MLS and SCAN. Overall these
results indicate accurate ozone measurements, however SCAN achieves
the best performance in all aspects and is able to provide the most accurate
measurements in a large-scale deployment with long calibration paths.

Investigation on noise characteristics. As shown in Section 3.4.4, our
SCAN approach is able to completely remove the bias towards zero of
its regression parameters if the noise components of the sensor array
are uncorrelated, see assumption (3.22). We therefore investigate if this
assumption holds for our sensor arrays. Because N1 is not directly
measurable without the knowledge of the true calibration matrix B, we
calculate the covariance matrix N2NT

2 of the calibration error N2 from
the one-hop sensor array calibration using MLS, i.e., the best possible
calibration for each array. The reference traces for ozone and temperature
have different units and ranges. Thus, we scale them to assure that the
noise components of the low-cost sensor arrays have equal impact, i.e.,
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Figure 3.10: (a) Measurement box mounted on top of a streetcar. (b) Locations of sensor
measurements and rendezvous between two or more sensor arrays.

equal variance. Figure 3.9b shows the average covariance matrix for all
eleven sensor arrays. We observe that the two noise components, i.e.,
the calibration error of ozone O3 and temperature T, are not completely
uncorrelated. However, the diagonal elements dominate the off-diagonal
elements, i.e., the N2NT

2 matrix resembles a diagonal matrix. This result
relates to our assumptions on the noise components in Section 3.2 and
Section 3.5.1. In conclusion, our SCAN approach considerably improves
the calibration accuracy even if the noise components are correlated, i.e.,
(3.22) is not satisfied.

3.5.3 Mobile Air Pollution Sensor Network

In this set of experiments, we evaluate the performance of SCAN on
a large dataset from a real-world mobile air pollution sensor network
deployment [LFS+12]. We first demonstrate the benefits of using multi-
hop calibration over one-hop calibration in a real-world deployment.
Further, we show that our sensor array network calibration outperforms
MLS and GMR for arrays of sensors with low selectivity.

Setup. The dataset was collected by air quality measurement boxes
mounted on top of ten streetcars of the public transport network in the
city of Zurich, Switzerland, depicted in Figure 3.10a. Each measurement
box includes an MICS-OZ47 ozone (O3) [SGX08], an Alphasense CO-
B4 carbon monoxide (CO) [Alp15] and a Sensirion SHTC1 temperature
sensor [Sen16]. These sensors have been previously tested by the method
presented in Chapter 2. The sampling interval of the sensor array is set
to 30 sec. Each box is equipped with a GPS receiver to record location
and time of each measurement. All the sampled data is transferred to a
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global database via GSM. We filter incomplete samples due to network
connection or sensor failures and only focus on calibrating errors induced
by sensor dependencies as mentioned in Section 3.1. In Section 2.6
we uncover a substantial dependency on ambient temperature of both
the deployed low-cost O3 and CO sensor. Therefore, we augment the
gas sensors with the temperature sensor to an array and calibrate the
concurrent measurements to the corresponding high-quality reference
signals.

Rendezvous path. As shown in Figure 3.10b, the streetcars meet
occasionally at different times and locations. We exploit these rendezvous
between streetcars to construct rendezvous paths. In the initial hop of a
rendezvous path one sensor array is calibrated with measurements from
the governmental station. In all following hops an already calibrated
sensor array calibrates an uncalibrated one using measurements at
rendezvous between two streetcars. We define a rendezvous between
two sensor arrays as within a time interval of 5 min and spatial closeness
of 50 m, which has been validated through extensive testing in [SHT15].
Each rendezvous path consists of at least 200 samples per sensor array
pair within a time window of at most four weeks. The average length of
all rendezvous paths is 3 hops.

Ground-truth. As reference signals we use O3, CO and temperature
measurements from two static monitoring stations within the deployment
area. We use data from both stations to train the calibration of any initial
hop. This assures that we use sufficient measurements, i.e., at least 200
samples, for one-hop calibration and removes potential error sources,
such as variable measurement range as described in Section 3.5.1. Each
calibration is calculated on a training dataset within four weeks. The
performance of each sensor array calibration is evaluated on a dataset
from the consecutive four weeks. These two datasets do not overlap
in time. The location of these two monitoring stations is depicted in
Figure 3.10b. The streetcars operate daily on various routes in the city
and, thus, achieve a high spatial and temporal measurement coverage,
illustrated in Figure 3.10b.

Performance. To benchmark the multi-hop calibration performance we
compare a particular array at the last hop of a rendezvous path and its
baseline calibration. The baseline calibration is obtained by calibrating
the array to reference measurements from the governmental stations
using MLS, i.e., the best possible calibration for the array in question.
This approach removes effects on the overall measurements accuracy of
each array that cannot be compensated by calibration, such as mobility
influences [AMM16b, AMM16a].

Overall, we use roughly 2.2 · 105 rendezvous between seven of the
ten streetcars and over 550 different rendezvous paths out of 56 million
sensor samples recorded from March 2014 to March 2016 for evaluation.
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Max.
calibrated

arrays

Avg.
calibrated

arrays
One-hop 3 32.7%
Multi-hop 7 94.3%

Table 3.2: Number of calibrated arrays with one-hop and multi-hop calibration

(a) (b)

Figure 3.11: Calibration error of sensor arrays compared to baseline depending on the
number of hops in the rendezvous path. SCAN achieves best results for both target
pollutants, ozone (O3: Figure 3.11a) and carbon monoxide (CO: Figure 3.11b).

One-hop versus multi-hop calibration. This evaluation aims to show
the necessity of multi-hop calibration when calibrating datasets collected
by a mobile sensor network. Depending on the availability of reference
stations one-hop calibration is able to calibrate only a fraction of all the
sensor arrays in the network. In the streetcar deployment there are two
highly accurate reference stations that can be used to calibrate sensor
arrays on streetcars that pass by these two stations. All the remaining
sensors can be calibrated using multi-hop calibration. Table 3.2 shows
that at most three out of seven arrays can be calibrated with one-hop
calibration whereas it is possible to calibrate all arrays with multi-hop
calibration. Over the two years the multi-hop approach calibrates in
average over 94% of all arrays every month which is an improvement
by a factor of 2.88 compared to one-hop calibration. This result clearly
shows the benefit of using multi-hop calibration over one-hop calibration.
Reasons for not calibrating 100% of all sensors are the irregular schedules
and routes of the streetcars over two years or missing sensor data. As a
consequence certain streetcars did not meet other streetcars often enough
for a successful calibration on a monthly basis. An interesting possibility
for future work is to dynamically optimize the rendezvous path selection
to ensure accurate and network-wide calibration. We expect that in a
more dense network the rate of calibrated sensors is even higher.

Sensor array versus simple sensor calibration. This evaluation aims to
validate the effectiveness of our SCAN scheme on large-scale real-world
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mobile sensor networks. Figure 3.11 shows the difference in calibration
error compared to the baseline depending on the number of hops in
the rendezvous path for ozone (O3, Figure 3.11a) and carbon monoxide
(CO, Figure 3.11b). We show again the two important contributions of our
proposed SCAN approach. SCAN achieves the lowest error accumulation
over multiple hops and sensor array calibration improves the overall
accuracy compared to the simple sensor calibration based on GMR for
both target pollutants. Overall SCAN achieves an up to 42% lower
calibration error than GMR and up to 60% compared to MLS over 5
hops, which can dramatically benefit further quantitative analysis such
as validation on air pollution models and health studies.

In conclusion, multi-hop calibration considerably increases the
number of calibrated sensor arrays in the deployment. Additionally, our
proposed SCAN method improves the calibration accuracy, especially
when compared to the simple sensor calibration based on GMR.

Discussions. While evaluations on the mobile sensor network
deployment show that our SCAN scheme outperforms the state-of-the-
arts, we also observe that the benefits are not as distinct as in the
simulations and the metal oxide sensor arrays. Here we discuss multiple
issues to further clarify the applicability of SCAN.

• SCAN works in practice even if the assumptions on noise may
not hold. As shown in section Section 3.5.2, noise from real-world
sensors can correlate but exhibit typically low cross-correlation,
therefore SCAN still works and notably outperforms MLS.

• SCAN shows more notable benefits for long rendezvous paths.
The current deployment consists only of seven nodes with 5 hops at
most. SCAN reduces calibration errors by 42% to 60% after 5 hops,
and we expect more notable gain in minimizing error accumulation
over multiple hops for larger networks with many low-cost sensor
arrays.

• SCAN is mainly designed to tackle cross-sensitivities in multi-
hop calibration. There are possibly additional error sources in a
mobile sensor deployment, such as network faults and mobility.
For instance, recent studies [AMM16b] tackle the impact of slow
sensor dynamics in a mobile deployment. SCAN can be combined
with these schemes to further reduce errors in sensor measurements.
In Chapter 5 we present a way to tackle other error sources that
are investigated in Section 3.5.1, i.e., high sensor noise and variable
measurement ranges, by enhancing SCAN with uncertainty metrics.
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3.6 Summary

Monitoring air pollution with mobile wireless sensor networks has
received increasing research interest in recent years. Low-cost, portable
air quality sensors on the market introduced the opportunity for large
scale deployments with high spatial coverage. However, maintaining
high-quality measurements from low-cost air pollution sensors is
challenging. Low-cost air pollution sensors not only drift over time, but
are also cross-sensitive to interfering gases and depend on meteorological
conditions. Therefore, calibrating the air quality measurements is vital if
the dataset is used for quantitative analysis such as air pollution modelling
and health studies. In Chapter 2, we explore constructing sensor arrays
to compensate for cross-sensitivities and meteorological dependencies,
yet existing multi-hop calibration techniques lead to dramatic error
accumulation when applied to sensor arrays, making multi-hop sensor
array calibration an open question.

In this chapter, we propose sensor array network calibration (SCAN), a
novel constrained multi-dimensional linear regression technique, that (i)
calibrates sensor arrays and (ii) reduces error accumulation over multiple
hops. We theoretically prove that SCAN is free from regression dilution,
the root cause of error accumulation, even in presence of measurement
noise. Extensive evaluations on two datasets of 56 million samples
collected over three years demonstrate the benefits of SCAN over the
state-of-the-art calibration techniques. SCAN compensates for all major
limiting factors to maintain high-quality measurements from low-cost
air pollution sensors, thus improving reliability of large-scale air quality
datasets. We envision SCAN as a general calibration technique for not
only air pollution monitoring, but also a range of mobile sensor network
applications with dependent sensors, especially in participatory and
crowdsourcing sensing.



4
Enabling Personal Air Pollution

Monitoring on Wearables

Accurate, portable and personal air pollution sensing devices enable
quantification of individual exposure to air pollution, personalized health
advice and assistance applications. Wearables are promising (e.g., on
wristbands, attached to belts or backpacks) to integrate commercial off-
the-shelf gas sensors for personal air pollution sensing. Yet previous
research lacks comprehensive investigations on the accuracies of air
pollution sensing on wearables. In this chapter, we propose W-Air,
an accurate personal multi-pollutant monitoring platform for wearables,
which we prototype on a wristband with two low-cost metal oxide
gas sensors. Through an extensive measurement study we discover
an additional limiting factor of low-cost air quality sensors when used
in wearables: human-generated emissions. These emissions pose a
substantial challenge for our system by causing non-linear interference,
another error source presented in Section 1.2. We observe that the linear
regression methods presented in Chapter 2 and Chapter 3 are not able
to successfully counteract this interference. Thus, we tackle the non-
linear response of our low-cost sensors by applying a neural network
with complex modelling capabilities. As summarized in Section 1.2,
neural networks are powerful tools to resolve complex and non-linear
cross-sensitivities of sensor arrays. In particular, W-Air adopts a
sensor array calibration scheme to recover high-fidelity ambient pollutant
concentrations from the human interference and leverages a tailored
neural network with shared hidden layers to boost calibration parameter
training with fewer measurements. W-Air also utilizes semi-supervised
regression to facilitate post-deployment calibration model updating with
little user intervention. Evaluations demonstrate that W-Air reports
accurate measurements both with and without human interference and
is able to automatically learn and adapt to new environments.
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4.1 Introduction

Air pollution affects human health, productivity and comfort. A
prominent problem is caused by ambient ozone (O3), which contributes
to respiratory symptoms when people engage in outdoor exercises and
activities [Lip89]. Continuous ozone monitoring is not only important
due to its toxicity but also due to its strong impact on various other major
pollutants such as nitrogen oxides (NOx) [FPPJ99]. Similarly, popular
pollutants in indoor environments such as carbon dioxide (CO2) and
volatile organic compounds (VOC) may cause discomfort, headache or
the sick building syndrome [Jon99, RSC97]. Thus, providing air pollution
information to individuals enables them to understand and improve the
air quality of their living environments.

There is a growing demand to increase the spatio-temporal resolution
of air pollution monitoring. Governmental institutions deploy expensive
high-end air pollution sensors in a few stations across a city, like
the one in Figure 1.4. The measurements only suffice to estimate
the average pollution exposure experienced by the majority of the
population for urban planning and policy making. In recent years low-
cost sensors have been deployed by researchers and agencies in static
stations [ZLH13] or on mobile vehicles [HSW+14] to build air pollution
maps for citizens [HSW+15]. However, these maps have in general
low accuracy and low spatio-temporal resolution and, therefore, can be
misleading when assessing personal exposure for quantitative studies
and applications. Pollutants in indoor environments are known to cause
various health related problems similar to outdoor air pollution [Jon99]
and, thus, monitoring indoor air quality with high resolution is of
equal importance. However, similar to outdoor environments, expensive
sensors are typically equipped at only a few locations in large buildings
and are not able to provide high spatio-temporal resolution data [KSB+16].
Due to the complex heterogeneity of air pollutants [Mon01] and the
diverse moving patterns of individuals [JLT+11], personal air pollution
sampling is therefore necessary for meaningful personal exposure
analysis [OKR+00, PXM+14].

Motivation. Personal air pollution monitoring for quantitative health and
well-being applications requires accurate, convenient, quasi-continuous
collection of heterogeneous data. For instance, researchers record both
individual micro-environment (e.g., temperature, wind speed, noise,
air pollution) and psychological states (e.g., skin temperature, heart
rate) via a set of wearable sensors to investigate the impact of urban
environments on citizen’s health and quality of life [Eur17, SD17,
NKSdD15]. Simultaneous sensing of biological and environmental data
enables personalized advice and assistance applications that promote a
healthier lifestyle and improved health-care prevention.

To design air pollution sensing devices for the above studies and
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applications, we primarily focus on integrating low-cost gas sensors into
wrist-worn devices. (i) Many users wear wristbands or smart-watches
most of the day, providing long-term closeness to the body and exposure
to the ambient air. (ii) Biological parameters are commonly measured by
wearables such as wristbands [Eur17, SD17]. Integrating environmental
sensors into wearables can improve the compactness and usability of the
infrastructure for environment-related physiological applications.

Challenges. Despite various portable air pollution sensing de-
vices [BEMRB13, DAK+09, JLT+11, OB15, ZLYX15], there is a void in
air pollution sensing on wearables. Due to their small size, metal oxide
(MOX) sensors have been widely adopted to measure a wide spectrum of
important air pollutants [KCS14] on portable devices [NVZ+12, PXM+14].
However, similar to other low-cost gas sensors, MOX sensors suffer from
low selectivity, i.e., they are cross-sensitive to various substances in the air,
i.e., the most common error source we tackle throughout this thesis. Since
human beings can emit multiple gases through natural skin oils [WW10],
cosmetics [Wes16], textiles [RLC14] or respiration [FP99], these gases may
interfere with the measurements of the ambient atmospheric pollutants
when the sensors are placed close to the human body (e.g., on wristbands,
attached to belts or backpacks). As a result, MOX sensors equipped in
wearables are not only cross-sensitive to the natural ambient pollutants,
which we intend to monitor, but also to human-generated substances,
which distort the measurements. Hence, it is crucial to investigate and
filter the human interference to acquire accurate measurements of ambient
air pollution.

In this chapter, we design and implement W-Air, the first-of-its-kind
personal air pollutant monitoring platform for wearables with low-cost gas
sensors. As a proof-of-concept, we focus on monitoring concentrations of
ambient O3 and CO2, two important outdoor and indoor gas pollutants.
We aim to answer the following questions.

• Does the wearable setting introduce new challenges for accurate air
pollution sensing? Through measurement studies, we observe that
the measurements of low-cost MOX gas sensors significantly deviate
from the ground truth when there is close human presence. This
effect introduces another error source (see Section 1.2): non-linear
response. A linear calibration model, which we use in Chapter 2
and Chapter 3, yields measurement errors that make it impossible
to draw any conclusions about the actual O3 and CO2 concentration
when there is human interference. We also note that such human
interference is not restricted to the wrist-worn setting. Attaching
the gas sensors to other popular wearable settings, such as belts or
backpacks, still yield notable interference from human emissions.

• How to enable accurate air pollution monitoring on wearables? A
key finding is that the human interference can be characterized
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by increasing VOC and H2 concentrations as well as increasing
temperature and humidity conditions. Different MOX gas sensors
react differently to these interfering concentrations due to their
individual specific cross-sensitivities. Therefore, we design a
neural network based calibration framework by jointly considering
measurements from two different low-cost MOX sensors to
eliminate the non-linear interference of emissions caused by human
beings. Since W-Air is expected to provide ambient O3 and CO2

concentration measurements accurately both with and without
human interference, large amounts of measurements in both cases
are needed for training the calibration parameters. To improve the
usability of W-Air, we apply a neural network architecture with
shared layers and a semi-supervised regression technique to boost
the training process with fewer samples and little user intervention
compared to traditional neural network architectures.

Contributions and road-map. The main contributions of this chapter are
summarized as follows:

• We discover and characterize the human interference on the
measurements of low-cost MOX sensors, a crucial yet largely
overlooked issue to obtain accurate ambient gas measurements on
wearables (e.g., wrist-worn, attached to a belt or a backpack). This
human interference is causing another error source affecting the
sensors, which we tackle in this chapter: non-linear response.

• We propose an effective sensor array calibration scheme to
recover ambient outdoor O3 and indoor CO2 concentrations
from low-cost gas sensor readings during human interference
situations. Our calibration method is based on a neural network
that uses measurements from two different MOX gas sensors
and a temperature sensor to accurately estimate O3 and CO2

concentrations. We further utilize a shared layer architecture
to bootstrap the supervised training process of our neural
network with fewer samples compared to typical neural network
architectures. Additionally, we apply semi-supervised regression
for parameter updating with little human intervention. W-Air sets
a new standard for portable air pollution monitoring with easy
maintenance.

• We prototype the above design using COTS MOX gas sensors
integrated on a wristband platform. To the best of our knowledge,
W-Air is the first working air pollutant monitoring platform using
COTS gas sensors for wristbands and smart-watches. Evaluations
show that W-Air is able to measure ambient O3 and CO2

concentrations with an error of around 4.3 ppb (parts-per-billion
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= 10−7%) and 64 ppm (parts-per-million = 10−4%), respectively.
Overall, W-Air achieves a data quality that is sufficient for personal
air pollution monitoring [TPP12, PEA08].

In the rest of this chapter, we first review relevant literature
(Section 4.2), present a measurement study (Section 4.3) and an
exploratory calibration (Section 4.4) on the human interference. Then
we elaborate on the design (Section 4.5) and evaluation (Section 4.6) of
W-Air. We discuss limitations and future work in Section 4.7 and finally
conclude this work in Section 4.8.

4.2 Related Work

W-Air is proposed to meet the need for applications in crowdsourced
environment sensing and personal environmental sensing. The design of
W-Air is built upon previous research on portable air pollution sensing
devices and non-linear sensor array calibration methods. We review the closely
relevant works as follows.

4.2.1 Crowdsourced Environmental Sensing

Mobile crowdsourcing, or participatory sensing, has been widely adopted
for environmental sensing. In crowdsourced environmental sensing,
unprofessional users take measurements of the environment ”in the
form of an open call” [How06] with their smartphones or other portable
devices to cover a large spatio-temporal range. For example, Ear-
Phone [RCK+10] is an end-to-end crowdsourced noise sensing and
mapping system that builds an urban noise map by measuring noise from
smartphones. It leverages compressive sensing to construct accurate noise
maps from the sparse and random crowdsourced noise measurements.
Overeem et al. [ORL+13] design techniques to infer ambient temperature
from crowdsourced smartphone battery temperature and air temperature
reported by meteorological stations. Combined with location and time
information, they achieve an average estimation accuracy of 1.45◦C.
Atmos [NVL15, NVL17] is a crowdsourced weather data application that
not only automatically samples smartphone sensors (GPS, temperature,
light, pressure), but also allows manual input for current and future
weather condition estimation. The Atmos application shows an average
accuracy of less than 2.7◦C for ambient temperature estimation using
such a hybrid (automatic sensing and manual user input) crowdsourcing
approach.

Crowdsourced air pollution sensing is also of growing research
interest because static air pollution monitoring stations are sparsely
deployed in cities and limited in spatial resolution [HSW+14]. Compared
with other environmental data, air pollution (e.g., gases and dust)
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can hardly be measured by smartphone sensors. Hence, the first
step for crowdsourced air pollution sensing is to design portable and
accurate sensing devices suitable for crowdsourced users, which partially
motivates our work.

4.2.2 Personal Environmental Sensing
Due to the complex spatial heterogeneity of pollutants [Mon01], personal
environmental sensing is important for quantitative studies such as per-
sonal exposure assessment. For example, Oglesby et al. [OKR+00] report
that personal air pollution sampling is necessary for short-term analysis
of personal ultrafine particle exposure. In many personal environmental
sensing applications, the sensing device needs to measure both biological
responses and environmental data. Nakayoshi et al. [NKSdD15]
investigate outdoor thermal physiology by deploying wearable sensors
to record individual microclimate (temperature, humidity, wind speed
and radiation) and psychological states (skin temperature, heart rate).
Project ESUM [SD17] studies the impact of urban morphology on citizen’s
social potential (e.g., perception). Environmental conditions (e.g.,
noise, temperature, illumination, air pollution) and skin conductance
responses are recorded when participants walk around the city. Project
CONVERGENCE [Eur17] integrates low-power environmental sensors
and biological sensors on wearables for new generations of human-
machine interfaces and health-care and lifestyle applications.

In these personal environmental sensing studies and applications,
participants have to carry a set of sensors to collect environmental
and biological data. The complexity and bulkiness of the sensing
infrastructure may discourage user engagement and even induce bias for
physiological studies. Note that biological or physiological parameters
are commonly measured by wearables such as wristbands [SD17].
Therefore, our work explores environmental sensing on wearables
to improve the compactness and usability of the sensing devices
for environment-related physiological studies and personalized health
advice and assistance applications.

4.2.3 Portable Air Pollution Sensing Devices
The need for crowdsourced and personal air pollution monitoring
has fostered various portable air pollution sensing devices [BEMRB13,
DAK+09, JLT+11, NVZ+12, OB15, PXM+14, TDMP16, ZLYX15]. Table 4.1
summarizes the target pollutants, sensor technologies, device usage,
scenarios and applications of existing portable air pollution sensing
devices. As summarized in Section 1.1, mainstream COTS air pollution
sensor technologies include metal oxide (MOX), electrochemical or optical
approaches, where MOX sensors are the most popular for their small
sizes [KCS14]. MOX sensors are primarily used for monitoring gaseous
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pollutants such as CO, NO2, O3 and VOCs [DAK+09, NVZ+12, PXM+14],
while optical sensors are preferable for dust monitoring (e.g., PM2.5, where
PM stands for particulate matter, and PM2.5 means fine particles with a
diameter of 2.5 micrometers or less) [BEMRB13, ZLYX15]. Sensing devices
with MOX sensors vary in size depending on mechanical designs and
functionalities, while platforms integrated with COTS electrochemical or
optical sensors can only be handheld or attached to backpacks limited by
the form factor of the sensors.

Some works focus on platform integration and qualitative validation.
Common Sense [DAK+09] and CitiSense [NVZ+12] design sensor nodes
with wireless connection and interfaces for crowdsourced gas pollutant
monitoring. AirSense [ZLYX15] integrates dust sensors for personal PM2.5

monitoring and conduct feasibility studies in various contexts. Other
works investigate the reliability and accuracy of sensors and emphasize
more on quantitative evaluation. Oletic et al. [OB15] conduct outdoor
field tests for gas pollutant sensing. MyPart [TDMP16] is a wrist-worn
PM10 sensing device that works both indoors and outdoors with validated
accuracy.

The closest to our work is [PXM+14], where the authors measure a
set of gas pollutants (CO, CO2, NO2, O3) using low-cost MOX and NDIR
sensors, calibrate and validate the sensor readings in both indoor and
outdoor scenarios. W-Air is also an accurate, multi-gas sensing device
that works both indoors and outdoors. However, W-Air primarily focuses
on a wrist-worn setting and identifies the human interference problem.
We demonstrate that the human interference problem is generic for other
sensor placement (e.g., attached to a belt or backpack), and propose
effective calibration schemes to filter such interference. W-Air can also
deal with insufficient and imbalanced data, which is important for sensor
deployments in the wild, yet largely overlooked in previous studies.

4.2.4 Non-Linear Calibration of Gas Sensors

In Chapter 2 and Chapter 3 we present linear methods for sensor array
calibration, e.g., multiple least-squares (MLS) and our SCAN method.
We show that these linear methods are able to provide accurate data of
both static and mobile low-cost sensor arrays. However, in situations
where the cross-sensitivities and relationships between the sensors in an
array are complex and exhibit non-linear behaviour, the linear regression
methods fail to provide accurate calibrated measurements. Different
works tackle this challenge by applying non-linear regression methods.
The most prominent approach is to train a neural network that finds
complex relationships between all the sensors in the array and a reference
sensor [DMP+08, DPMF09, EDS+16, EDS+17, SGV+15, SGV+17, BBR+17].
Multiple investigations show that neural networks, typically in the
form of multilayer perceptrons [SGV+15, SGV+17], are able to generate
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more accurate measurements of complex sensor arrays than linear
regression methods [SGV+15, SGV+17]. However, there are multiple
downsides when using neural networks or similar machine learning
methods in general. Typically, neural networks require abundant training
samples [DMP+08], they are prone to overfitting [TLL95], which may
lead to poor generalization of the calibration function, and require
multiple parameters (e.g., learning rate, number of neurons etc.) to be
optimized [GD98]. W-Air also features a neural network to allow accurate
calibrated measurements even under the presence of human interference.
We tackle the high data amount requirements and overfitting problem by
using a flat but tailored network structure coupled with semi-supervised
learning as described in detail in Section 4.5.

4.3 Measurement Study

In Chapter 2, we show that despite laboratory and in-field calibration
from manufacturers, it is still indispensable to conduct pre-deployment
testing and calibration of low-cost gas sensors in the target environment
of the final deployment. Many existing portable air pollution monitoring
devices aim to measure coarse-grained air quality indices, and their
measurements are not validated by highly accurate gas sensors [DAK+09,
JLT+11, NVZ+12]. Other works either perform data validation in
chambers [BEMRB13] or directly adopt calibration parameters from
manufacturers [OB15]. MyPart [TDMP16] conducts in-field validation for
customized dust sensors. In [PXM+14], the authors report low correlation
of O3 measurements between the metal oxide (MOX) gas sensors and the
ground-truth, yet without in-depth investigations.

In this section, we show through field studies the human interference
on the measurements of COTS MOX sensors. Such human interference
imposes enormous errors when using compact gas sensors to monitor
ambient atmospheric pollutants. We mainly focus our measurements
study on O3 for outdoor environments and CO2 for indoor environments
due to (i) their importance for air quality assessments and (ii) the
availability of promising low-cost sensor technology.

4.3.1 Measurement Settings

We deploy different sensors, depicted in Figure 4.1, in different indoor
and outdoor settings.

Locations. Outdoors we deploy the sensors on the roof of our academic
building in the city-centre and on a balcony in a residential area. Indoors
the sensors are deployed either in an office environment, a living-room
or a bed-room.
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Low-cost sensors. The sensors are two low-cost MOX sensors, namely
a MICS-OZ-47 O3 sensor [SGX13] (also used in Section 2.6.1 and
Section 3.5.3) and a CCS811 VOC sensor [ams17]. The two sensors
are connected to the Thunderboard Sense [Sil17], a compact multi-sensor
development platform, that acts as a wearable device. Note that the MICS-
OZ-47 O3 sensor is only providing raw and uncalibrated analog-digital-
converter (ADC) values and the CCS811 sensor already calibrated VOC
concentration values within [0,1187] ppb. Additionally, we use the Si7021
temperature and relative humidity sensor to monitor environmental
conditions.

Ground-truth. As ground-truth reference devices we use a SM-50 O3

measurement unit [Aer16] in outdoor environments and a Telaire 6713 CO2

measurement unit [Amp17] in indoor environments. The SM-50 sensor
provides highly accurate ozone measurements within [0,150] ppb, i.e.,
typical ambient outdoor concentrations. The Telaire 6713 measures typical
indoor CO2 concentrations within [400,5000] ppm with high accuracy.
Although it is conceivable to also integrate the Telaire 6713 into wearables
due to its form factor, its power consumption of 125 mW is almost 10
times higher than the one of a MOX sensor.

Approach. We use the readings from the VOC sensor to approximate the
CO2 concentration because the CCS811 sensor is not directly measuring
CO2. This is a widely used approach of available low-cost MOX
sensors [RHB18, HHU+10]. Furthermore, CO2 is mainly used to assess
indoor air quality [Jon99]. The sensors on the wristband are sampled at
2 Hz, the O3 reference sensor every 1 min and the CO2 reference every
5 sec. Additionally we smooth the wristband sensor readings over a
sliding window of 3 sec. We power all the sensors and collect their
measurements using a laptop to ensure long-term measurements.

We use the measurements from the MOX sensors to reveal a major
problem of state-of-the-art MOX gas sensors: human beings act as
a source of interference due to emissions from the skin, clothes or
respiration [Wes16]. These emissions can be detected by state-of-the-art
MOX sensors and, therefore, interfere with the assessment of the ambient
air quality. Related work has shown that the emissions are detectable up
to 1 m away of a human being [GS01] and, thus, potentially affect typical
wearable air quality monitors. Therefore, during the measurements
with human interference a user is wearing the device, depicted as SH in
Figure 4.1, while staying between 1.5 m and 2 m away from the reference
sensors. We consider three popular ways of utilization of wearable air
quality monitors, namely (i) a wrist-band [TDMP16], (ii) attached to a
belt [FMT+99] and (iii) attached to a backpack [BEMRB13, JLT+11], as
shown in Figure 4.2. Further, we place a second wearable device (SN) next
to the reference sensor to highlight that the human interference problem
is in particular severe when the sensors are close to a human being.
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S RSensors Reference Person

R

SH SN

1.5m~2m

Figure 4.1: Settings of measurement studies: sensors used for the measurement study
(left); deployment of the MOX sensors and the reference (right).

(a) (b) (c)

Figure 4.2: Different usages of W-Air: (a) worn as wrist-band, (b) attached to a belt and
(c) a backpack

4.3.2 Data Collection

We collected data consisting of approximately 100 hours each in indoor
and outdoor environments distributed over 21 days between April and
October, 2017. The measurements were conducted at different times
during the day, e.g., morning, midday, afternoon, evening and night,
and in various weather conditions, e.g., heavy and light rain, cloudy,
sunny and windy. We collected both measurements with and without
human presence. During human presence situations a user is wearing the
wearable device in one of the three different usages shown in Figure 4.2
and sitting or standing next to the corresponding reference device as
indicated in Figure 4.1. The user is mainly reading or working with a
laptop in both environments. We investigate the impact of additional
human activities in Section 4.7.1. The episodes of measurements with
human presence last between 15 and 120 minutes and account for a
total of approximately 20 hours for each environment. During situations
without human presence the sensors are placed next to each other without
any human being present in the close-by vicinity. We only use O3

reference measurements outdoors due to usually very low and short-
lived concentrations indoors [Jon99]. In fact, our O3 reference sensor
always reports 0 ppb when used indoors. The CO2 references are only
used indoors because CO2 is not considered as a major air pollutant with
direct and immediate effect on human beings in outdoor settings [Val14].
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4.3.3 Observations
This subsection presents the key observations through measurements,
which motivate the design of W-Air.

There is a clear impact on the measurements of the two MOX sensors
caused by human interference, see Figure 4.3. Figure 4.3a, Figure 4.3b and
Figure 4.3c show the measurements of the two MOX sensors outdoors
when W-Air is used in three different settings, i.e., as a wrist band,
attached to a belt and to a backpack, respectively. The same impact is
shown when the sensors are placed indoors in Figure 4.3d, Figure 4.3e
and Figure 4.3f. For both environments and all three W-Air usages
we observe the same behaviour of the measurements. In the absence
of humans, the O3 measurements (raw and uncalibrated ADC values
within [0, 1]) and the VOC measurements (within [0, 1187] ppb) of all the
sensors vary moderately. This result is expected because the ground-
truth O3 (Figure 4.3a: 30 ppb, Figure 4.3b: 25 ppb, Figure 4.3c: 25 ppb)
and CO2 (Figure 4.3d: 700 ppm, Figure 4.3e: 675ppm, Figure 4.3f: 700ppm)
remain constant within the short time periods. As soon as one person is
equipping W-Air the readings of both MOX sensors (O3 and VOC sensor
SH) close to the user immediately increase. In fact, in all cases the O3

values increase between 15% and 40% relative to the situation without any
human presence. Note an increasing raw value is indicating a decreasing
O3 concentration [WYZ+10]. The VOC values show peaks over 600 ppb
outdoors and over 200 ppb indoors. Yet the usual VOC concentration
measured during non human presence situations is below 100 ppb.

One explanation on such abnormal ambient O3 and VOC measure-
ments may be different human-generated emissions:

• Human skin emissions: Human skin can emanate different
VOCs, both from natural skin oils or from ingredients in
cosmetic products [GWL+08, Wes16]. These emissions can
further be magnified by their reaction with ambient O3 [WW10].
Previous research [GWL+08] has identified the depletion of ozone
while increasing certain organic components in simulated office
environments due to the chemical reactions with skin oils.

• Textile emissions: The different skins oils and cosmetics are usually
also found in clothing [RLC14, Wes16], which constitute as a
substantial VOC source. Again O3 can also react with textiles and
increases the VOC concentration while being decreased.

• Human breath emissions: Exhaled breath of human beings contains
various different VOCs [FP99, Wes16] and hydrogen (H2) [TSE80]. In
indoor environments these emissions can have an important impact
on the overall air quality.

As a result during situations with human presence our two sensors
generally indicate an (i) increased VOC concentration and a (ii) decreased
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O3 concentration. The O3 sensor is not only measuring the decreasing O3

concentration in outdoor environments, but also the increasing VOC and
H2 concentrations indoors where background ozone is usually very low.
This is due to the typical cross-sensitivity of MOX sensors. Although the
O3 sensor is designed to be most sensitive to O3 it is also sensitive to VOCs
and H2. Vice-versa the same behaviour holds for the VOC sensor. This
cross-sensitivity during human presence situations poses a substantial
challenge to capture accurate air quality measurements.

Finally, another possible interfering factor is the increased temperature
and humidity levels when the sensors are placed close to a human body.
Due to the general dependency of MOX sensors on these factors, the
sensors can be additionally influenced. We expect this effect to play a
notable role when the user is performing different activities like running
or biking, which we elaborate more in Section 4.7.

The two MOX sensors approximately 2 m away are not affected and
remain in the reasonable range, indicating no notable human interference.
This is because the convective boundary layer of a standing person in
quiet ambient air is within 1m in diameter [GS01]. Human emissions
from more than 1m away can be ignored.

We conclude that state-of-the-art MOX sensors are prone to human
interference due to their typical cross-sensitivities to VOCs [WYZ+10] and
H2 [RHB18] when used in typical wearable devices. In Section 4.7.1 we
also discuss the impact of additional factors on this human interference,
such as different human activities or weather situations.

4.4 Exploratory Calibration of Human Interference

Human interference severely downgrades the accuracy of MOX gas
sensors. Therefore, we investigate in this section how we can tackle
the human interference problem by exploratory sensor calibration. As
shown in Chapter 2 and Chapter 3 as well as by a large body of
existing research [SGV+15, KBP06, HST12] the calibration of MOX-based
air quality sensors is able to provide accurate and stable measurements
during situations without human presence. Based on the measurements
presented in Section 4.3.1 we investigate in this section the effectiveness
of calibration methods during human presence situations.

4.4.1 Methods

Most of the state-of-the-art calibration methods are either based on
linear models, e.g., Multiple Linear Regression (MLS, Chapter 2) or our
SCAN method (Chapter 3), or non-linear models, such as Artificial Neural
Networks (ANN) [SGV+15]. In general linear calibration models are
preferred over non-linear ones due to (i) less vulnerability to overfitting,
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(ii) lower computational complexity and (iii) reduced training dataset
requirements. Non-linear models on the other hand are more suited for
complex calibration problems and can in general, if trained successfully,
achieve higher data quality. Therefore, we investigate the performance of
MLS and ANNs when applied to our collected data. The ANN is based on
a multilayer perceptron using two hidden layers with 100 and 10 neurons,
respectively.

In order to assess the performance of the models we use different
metrics that we already used throughout this thesis, see Section 2.4.3,
and are also widely used in assessing the performance of air quality
measurements [SGV+15, TPP12].

Root-mean-square-error (RMSE). The RMSE [TPP12] value, which we
introduce in Chapter 2: (2.7), is a standard metric to assess the calibration
error and is defined as follows

RMSE =

1
n

n∑
i=1

(m̂i −mi)2


1
2

, (4.1)

where m̂i are calibrated sensor measurements and mi ground-truth
measurements over a window of i = 1, ...,n samples.

Standardized RMSE (RMSEσ). We use a standardized RMSE [TPP12],
see also Chapter 2: (2.8), to evaluate if the measurements from our W-Air
platform suffice for certain applications. The metrics is defined as

RMSEσ =

(
1
n

∑n
i=1(m̂i −mi)2

) 1
2

σ ·
(

1
n

∑n
i=1(mi)2

) 1
2

=
RMSE
σ · RMSr

, (4.2)

where RMSr is the root-mean-square value of the reference concentration,
i.e., O3 or CO2 in our case, and σ is defined as a relative uncertainty
measure for a specific pollutant. The European Parliament [PEA08]
defines σ = 0.15 for O3 measurements. To the best of our knowledge there
is no σdefined for CO2, for simplicity we assume it is also σ = 0.15. RMSEσ
values below 1 indicate accurate measurements fit for any applications
and 1 < RMSEσ ≤ 2 indicates data quality that suffices for indicative
measurements. Finally, if RMSEσ > 2 the data quality is not sufficient for
any application.

Coefficient of determination R2. The R2
∈ [0, 1] value, which is defined

in Chapter 2: (2.9), indicates a well-fitted calibration model if the metric
is close to 1 and a poorly fitted model for values close to 0.

Prediction confidence. A perfect calibration model is able to estimate the
exact ground-truth measurements, i.e., mi = m̂i. In reality this is rarely
the case and the relationship between ground-truth and estimation can be
formulated as mi = β0 +b1 · m̂i, where b0 = 0 and b1 = 1 for a perfect model.
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Target Method Inputs RMSE RMSEσ R2 b0 ± c95% b1 ± c95%

O3 Linear {O3, T} 7.4 ppb 1.5 0.78 0 ± 2.2 1 ± 0.08
CO2 Linear {VOC, T} 81 ppm 0.55 0.88 0 ± 13 1 ± 0.01

Table 4.2: Calibration results for the two target pollutants applied to a linear calibration
model (multiple least-squares) with different inputs when sensors are not affected by
human interference.

An intercept b0 far from 0 indicates that predictions are systematically too
low or too high and a slope b1 far from 1 indicates overfitting [SVC+10].
We calculate b0 and b1 as well as a 95% confidence intervals c95% by fitting
a simple least squares regression on the calibration prediction and the
ground-truth measurements. The confidence intervals c95% are calculated
by bootstrapping the parameters with 105 iterations and using the 2.5
and 97.5 percentiles as interval bounds [ET94]. This approach provides a
statistical confidence on the model predictions.

Cross-validation. Finally, all the results are based on a 10-fold cross-
validation on 2000 samples from our dataset described in Section 4.3.1.
As input features we use different combinations of the two MOX sensor
readings (O3 and VOC) and the temperature measurements (T).

4.4.2 Observation

We first obtain a baseline calibration using only data from situa-
tions without any human presence. Such a baseline calibration is
sometimes provided by the manufacturer for integrated circuit sensor
solutions [SGX08]. Table 4.2 summarizes the average metrics over
all 10 folds when we use the linear MLS calibration technique in
both environments. Outdoors we predict the O3 concentration using
the O3 MOX and temperature sensor and indoors we predict the
CO2 concentration using the VOC MOX and temperature sensor. We
observe that already a linear model achieves accurate results in both
environments. The RMSEσ of approximately 1.5 for the O3 calibration
indicates that the measurements can be used for indicative air quality
results. Recent studies also show that the quality of low-cost O3

sensor measurements can be improved to fulfil the air quality directive
using more complex calibration models [SGV+15]. The CO2 calibration
performs even better with a RMSEσ of 0.55. This overall outcome is
expected, since similar results are described in Chapter 2 but have also
been report in related work, see Section 1.4.3.

In a next step we investigate the calibration during human presence
situations. The coherent changes in the measurements of co-located O3

and VOC sensors when there is human interference lead us to explore
joint calibration of O3 and VOC measurements. Since we aim to perform
calibration on resource-constrained wearable and mobile devices, a
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(a) Linear—Outdoors (b) Non-linear—Outdoors

(c) Linear—Indoors (d) Non-Linear—Indoors

Figure 4.4: Exploratory sensor calibration during human interference using O3, VOC
and temperature sensor readings with: (a) linear calibration (MLS, Section 2.4.2)
outdoors; (b) non-linear calibration (artificial neural network [SGV+15]) outdoors; (c)
linear calibration indoors; (d) non-linear calibration indoors.

natural question arises which sensor measurements we use as inputs and
what model complexity, e.g., linear versus non-linear, is necessary.

Table 4.3 presents the result of the calibration when using data during
human presence situations. We compare the non-linear ANN calibration
to the linear MLS one with different inputs. We observe that the linear
model for both indoor and outdoor environments performs notably worse
than during situations without human interference. The RMSEσ is in all
cases above 1 and therefore not satisfying the data quality goals. Further,
the R2 values are in all cases below 0.5, indicating a poorly fitted model.
This result is reflected in the scatter plots in Figure 4.4a and Figure 4.4c
where we plot the predictions of the testing dataset of the 10th fold against
the corresponding ground-truth. The X-axis and the Y-axis denote the
calibrated and the ground-truth measurements, respectively. The fitted
model exhibits poor confidence, i.e., the regression line defined by b0±c95%

and b1 ± c95%. This result changes if we use a non-linear ANN calibration
model. All metrics drastically improve and perform best when we use all
three sensor measurements as inputs. The RMSEσ is below 1 and, thus,
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Wristband

NN-based Calibration (Sec 5.2)

Model Training (Sec 5.2) Model Updating (Sec 5.3)

Smartphone

Cloud

O3 Sensor VOC Sensor Temperature

Figure 4.5: Work flow of W-Air. A sensor array consisting of a low-cost O3,
VOC and temperature sensor is utilized to calibrate O3 and CO2 (estimated by VOC
readings) concentrations. Calibration is based on neural networks and performed on
a smartphone. The cloud server performs calibration parameter training and updating
for different individuals to provide personalized calibration parameters and adapt to
new environments.

implying sufficient data quality. In Figure 4.4b and Figure 4.4d we also
observe the improvement of the prediction confidence. The fitted model
is close to the perfect fit with a significantly higher confidence compared
to the linear model.

We conclude, that a non-linear neural network is able to compensate
for the human interference and recover the true O3 and CO2 concentra-
tions with low error and high confidence.

Summary. Emissions of human beings impose non-linear interference on
ambient O3 and VOC concentrations. The non-linearity might come from
the fact that low-cost MOX sensors are optimized to work linearly within
a limited concentration range. Sensors designed and calibrated for lightly
polluted areas may suffer severe non-linearity in the high concentration
range (due to human interference). At minimal, a non-linear calibration
scheme that combines raw O3 measurements, VOC measurements and
environmental factors is indispensable to accurately calibrate the O3

readings outdoors and CO2 readings indoors. Despite previous work
on non-linear calibration [DPMF09, SGV+15] for static sensor arrays, an
effective and efficient sensor array calibration for wearables is missing,
which motivates the design of W-Air.

4.5 System Design

This section first presents the overview of W-Air and then elaborates
on the calibration scheme with a focus on the techniques to improve the
usability. Finally, we present the implementation of W-Air in Section 4.5.4.
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4.5.1 Overview

As illustrated in Figure 4.5, W-Air consists of (i) a wristband featuring
a temperature and two COTS air pollutant sensors; (ii) a smartphone;
and (iii) a cloud server. Users wear W-Air on wristbands, attach it to
belts or to backpacks to measure raw O3 and VOC concentrations as
well as environmental factors such as temperature. They also carry
smartphones, which calibrate the raw measurements to eliminate the
human interference and other environmental factors to output accurate
ambient O3 concentration (outdoor) and CO2 concentration (indoor). The
cloud server communicates with W-Air clients and is responsible for
calibration model training and updating.

There are two major functional components in W-Air: (i) neural
network based calibration, and (ii) calibration training and updating. The
core technique to filter the human interference and environmental factors
(e.g., temperature) is the neural network (NN) based calibration scheme
(Section 4.5.2). We explicitly distinguish the cases with and without the
human interference for more effective calibration and design two separate
neural networks for outdoor O3 calibration and indoor CO2 concentration
calibration, respectively. For easy maintenance and usage, we apply a NN
architecture with shared hidden layers for model training (Section 4.5.2)
with fewer samples than traditional NN architectures and utilize semi-
supervised updating (Section 4.5.3) to adjust model parameters with little
human intervention.

W-Air stores two neural network models to calibrate O3 and CO2,
respectively, but only runs one to output accurate O3 concentration
outdoors and CO2 concentration indoors. This is because O3 is one of
the major air pollutant outdoors and the O3 concentration is expected
to be zero indoors [WWS+00]. Conversely, CO2 is an important
indicator for indoor air quality [SFM99]. To detect whether a W-
Air user is indoor or outdoor, any indoor/outdoor detection scheme
applies [RKSM14, ZZL+12].

For brevity, the rest of this section mainly focuses on O3 calibration.
Model structure, training and updating for CO2 calibration all follow the
same principle and only differ in specific parameters.

4.5.2 Calibration Methods

As depicted in Section 4.3.3, a non-linear model e.g., a neural network
(NN) that inputs O3, VOC and temperature measurements is sufficient
for accurate compensation of human interference. However, we argue
that a naive neural network is challenging to apply for the following
reasons. (i) A complete calibration scheme should operate both with
and without human interference. (ii) An easy-to-use calibration scheme
should involve little training effort. (iii) The calibration performance with
and without human interference should be relatively accurate despite
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Figure 4.6: Architectures of neural networks (NNs) for O3 calibration: (a) a single NN;
(b) two independent NNs; (c) two NNs with shared hidden layers. Here HI is short for
human interference.

imbalanced training dataset sizes for the two cases. In the following, we
assume the labels of the two cases (with or without human interference)
are known a priori, and discuss the potential for automatic detection of
human interference in Section 4.7.2.

There are three candidate NN architectures for calibration. Figure 4.6
illustrates the architectures for O3 calibration. The same architectures also
apply for CO2 calibration. An intuitive proposal is to adopt a unified NN
that calibrates O3 measurements for both cases, with human interference
and without human interference (Figure 4.6(a)). However, a unified,
fully-connected NN model is vulnerable to imbalanced training data.

Imbalanced training data are common in practice because most sensor
manufacturers only perform generic calibration in laboratories. That is,
the sensors are calibrated without human interference. We highlight
in Chapter 2 that field calibration is necessary before the sensors can
achieve the claimed accuracies. However, end users are reluctant to collect
sufficient measurements for field calibration (with human interference in
our context). In this case, W-Air needs to train calibration parameters
with limited samples with human interference.

Since the O3 measurements behave differently with and without
human interference, the calibration parameters for the two cases also
differ notably. With an extremely imbalanced training dataset, a
unified NN model tends to train the calibration parameters for human
interference largely on the samples collected without human interference.
Alternatively, we can create two independent NNs for the cases with
human interference and without human interference and train each
NN separately (Figure 4.6(b)). Nevertheless, this scheme may involve
substantial training data for the two cases since the samples for human
interference are of no help to train the NN for the case without human
interference. Note that the calibration models for human interference
and without human interference may share certain common features.
Hence, a more efficient architecture is to allow shared hidden layers
for the two cases (Figure 4.6(c)). By enabling data sharing between the
two cases, samples for human interference will contribute to extracting
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the common features useful for calibration when there is no human
interference. Consequently, the amount of training data necessary to
train the calibration models for both cases will decrease. We evaluate the
efficiency of the three NN architectures in detail in Section 4.6.2.

By default, we assign two hidden layers for architecture (a) and (b)
with 100 neurons in the first layer and 10 neurons in the second layer.
Architecture (c) is composed of 1 shared layer with 100 neurons and two
additional separate layers with 10 neurons each. The cost functions of all
architectures are to minimize the mean-squared-error (MSE) between the
calibrated and ground-truth O3 readings. We observed through extensive
testing that these architecture setups achieve accurate and robust output
values. Especially less than 10 neurons in the second layer has a negative
effect on the calibration error. Also, we chose a relatively flat architecture
because it is easier to train and less prone to overfitting than architectures
with more hidden layers and neurons.

4.5.3 Parameter Updating

It is essential to train the NNs on abundant and diverse data covering
different environments for accurate calibration. The optimal calibration
parameters may differ for different environmental conditions (e.g., sunny
versus rainy weather). Additionally, the optimal calibration parameters
for each user can also differ because the living environments of users
may notably differ. Therefore, it is important to tune the NNs to adapt
to the actual target environments. Given sufficient labeled measurements
from the target environments, the calibration parameters can be trivially
updated by adding the newly labeled measurements and retraining the
NNs. Here a labeled measurement refers to a tuple of VOC, O3 and
temperature together with the true O3 value (i.e., the label). However, it is
cumbersome, if not impossible for users to label the new O3 measurements
collected from his/her own living environments for W-Air to learn and
update the calibration parameters. This is because the calibration is a
regression problem, and users need to carry a highly reliable reference O3

sensor to label the ground-truth O3 concentration, which is impractical in
our application scenarios.

To allow W-Air to adapt to new environments, we harness the
paradigm of semi-supervised learning, where unlabeled (without ground-
truth) data are used to improve the accuracy of learning models [ZG09].
In W-Air, we apply COREG [ZL07], a co-training style semi-supervised
regression framework to update the calibration models with unlabeled
gas measurements. Co-training operates by running two regressors
iteratively [ZG09]. The two regressors assign pseudo-labels to each
unlabeled sample, and the pseudo-label with higher confidence is used to
retrain and improve the performances of both regressors. COREG [ZL07]
utilizes two k Nearest Neighbour (kNN [Das91]) regressors for co-training.
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Figure 4.7: An illustration of the COREG work flow for O3 calibration in W-Air.

The effectiveness of the co-training is fulfilled by using different distance
metrics and the number of nearest neighbours (i.e., k) for the two kNNs.
After assigning the unlabeled samples using the kNNs, any regressor
can be constructed based on the extended (containing both labeled and
pseudo-labeled samples) training set to improve regression accuracy.

Figure 4.7 illustrates the work flow of COREG in the context of W-Air.
Initially, two kNNs (kNN1 and kNN2) are trained using the labeled sets
L1 and L2, respectively. In each iteration, an unlabeled sample (<VOC,
O3, T>) is assigned a pseudo-label (calibrated O3) by kNN1 (kNN2), and
the most confident pseudo-labeled sample (calculated based on MSE, see
[ZL07] for details) is moved to L2 (L1) to retrain kNN2 (kNN1). The outputs
of COREG are two extended training sets L1 and L2, where two NNs are
constructed. A new testing sample will be calibrated by the two NNs,
and the final calibration result is the average of the outputs of the two
NNs. Note that the co-training framework is applied for W-Air to adapt
to different environments and is performed for both human interference
and without human interference.

4.5.4 Implementation

This subsection describes the implementation of W-Air.

Hardware. We integrate two mainstream COTS MOX sensors, a MICS-
OZ-47 and a CCS811, into a Thunderboard Sense development platform
(see Figure 4.2). Note that W-Air serves as a proof-of-concept for
demonstrating and eliminating the human interference problem. More
compact mechanical designs are out of the scope of this thesis. Further,
we use the on-board Si7210 temperature and relative humidity sensors.
By default, the MOX gas sensors and the temperature sensor sample at
2 Hz when turned on. The Thunderboard Sense provides a GATT-Server
data architecture to provide raw sensor measurements via Bluetooth LE.
We use a Motorola Nexus 6 smartphone featuring a 2.7 GHz quad-core
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Environment Human Interference Baseline NN-based

Outdoor (O3) Without 10 ppb (2.0) 4.3 ppb (0.86)
With 16.8 ppb (3.7) 4.3 ppb (0.94)

Indoor (CO2) Without 177 ppm (1.5) 64 ppm (0.57)
With 325 ppm (2.3) 38 ppm (0.29)

Table 4.4: Overall calibration errors denoted as RMSE (RMSEσ) of a linear baseline
calibration using MLS (Section 2.4.2) and our NN-based approach.

CPU, 3 GB of RAM and a 3220 mAh battery, running Android 7.0 OS
for calibration. The smartphone communicates with the wristband via
Bluetooth. A Lenovo Thinkpad T440p featuring a 2.5 GHz octa-core CPU,
16 GB RAM and running Ubuntu 16.04 serves as the cloud server for
calibration model training and updating.

Software. We apply an indoor/outdoor inference scheme similar
to [ZZL+12] to trigger the corresponding neural network for outdoor O3

calibration and indoor CO2 calibration. We implement the indoor/outdoor
inference and the calibration scheme in python. The neural networks are
implemented using Tensorflow, an open-source machine learning library
by Google [Goo17]. We train the indoor/outdoor classifier and the
calibration model on the cloud server. The final classifiers and calibration
networks are exported and integrated into an Android application.
Tensorflow facilitates updating of the neural networks after the initial
application installation. Thus, re-training can be done on the cloud
server and seamlessly exchanged in the application of a user without
recompilation.

4.6 Evaluation

In this section, we thoroughly evaluate the overall calibration perfor-
mance of our NN-based approach (Section 4.6.1), the benefits of using a
NN structure with a shared layer (Section 4.6.2) and the effectiveness of
semi-supervised model updating (Section 4.6.3).

4.6.1 Overall Calibration Performance

We first show the overall performance of our NN-based calibration and
its advantage over a naive baseline, i.e., a typical calibration performed
during pre-deployment tests presented in Chapter 2 or provided by
sensor manufacturers [SGX08]. The dataset is based on the measurements
described in Section 4.3.1, i.e., we calibrate the W-Air measurements to the
ground-truth measurements provided by the two reference sensors. The
RMSE and its standardized version RMSEσ as described in Section 4.4.1
are used to assess the performance of the calibration. As a baseline
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we construct a linear model using MLS (see (2.3) in Section 2.4.2) that
calibrates the raw O3 (VOC) sensor and temperature measurements to
the actual ground-truth O3 (CO2) concentration when there is no human
interference. This baseline is first trained on 103 samples when there is
no human presence. Finally, the baseline is tested on 104 samples each
for both cases, i.e., with and without human interference, and the errors
shown in Table 4.4. The testing dataset includes measurements from
various locations and times as described in Section 4.3. The baseline
performs well for measurements without human interference with an
error that is acceptable for indicative measurements. Note that we achieve
a slightly higher error for the calibrated O3 measurements of the same
sensor type than in Section 2.6. This is mostly due to the long testing
period of half a year without any frequent recalibration and a different
mechanical design, i.e., there is no constant airflow guaranteed like in the
measurement setup in Figure 2.3a.

During situations with human interference the error is notably higher
and the RMSEσ is larger than 2 for both CO2 and O3. Thus, these calibrated
measurements are not usable for any conclusions about the actual air
pollution. When applying our non-linear NN-based calibration (shared
layer architecture trained with 1000 samples for each case) we achieve
the best performance for both cases and both pollutants with a RMSE
of 4.3 ppb for O3 measurements and 64 ppm for CO2 measurements. In
addition, we achieve a RMSEσ < 1 for both pollutants.

In conclusion, our NN-based approach is able to infer the true ambient
O3 and CO2 concentration during situations with and without human
interference with an accuracy that is sufficient for personal air pollution
monitoring.

4.6.2 Effectiveness of the NN Architecture

Settings. In this section, we evaluate the effectiveness of our NN-
based calibration. We make again use of the measurements described in
Section 4.3.1. The following results are based on a 10-fold cross-validation
and evaluated on the RMSEσ. We evaluate the calibration accuracy of
the three NN architectures (see Section 4.5.2) using both balanced and
imbalanced training sets in sequel.

Calibration performance using balanced training sets. We first
investigate the calibration performance if we have the equal amount of
training samples (balanced training sets) for both cases, i.e., case 1 with
human interference and case 2 without. Figure 4.8a and Figure 4.8c
depicts the calibration performance averaged for human interference
and without human interference using balanced training sets for O3

outdoors and CO2 indoors, respectively. As expected with more training
samples, the calibration errors for all the three NN architectures gradually
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(a) Balanced—Outdoor (b) Imbalanced—Outdoor

(c) Balanced—Indoor (d) Imbalanced—Indoor

Figure 4.8: Average calibration errors denoted as RMSEσ for both human interference
and without human interference using (a) increasing amounts of balanced training
samples and (b) imbalanced training sets in an outdoor environment. The same
evaluation for indoor environments is presented in (c) and (d), respectively.

decreases. We observe that two independent NNs perform in average
better than a single unified NN when trained with few samples, indicating
the necessity to distinguish the two cases. By allowing data sharing
between the two cases, i.e., using a NN with a shared layer, the calibration
error can be additionally decreased. W-Air achieves an up to 10 % lower
error for both O3 and for CO2 than the two independent NNs using the
same amount of training data. For training datasets with more than 500
samples both structures perform equally. Thus, our NN approach with a
shared layer is particularly helpful when available training data is limited.

Calibration performance using imbalanced training sets. Due to the
diversity in user lifestyles, users are likely to collect different proportions
of measurements with and without human interference. Note that we
do not assume users always wear W-Air to take measurements. Users
may utilize W-Air as a static air pollution sensor when not wearing it.
Hence, it is crucial that W-Air still works both with and without human
interference, even when trained by imbalanced data.

Figure 4.8b and Figure 4.8d plot the average calibration errors using
a fixed 1000 training samples with varying numbers of measurements
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(a) Case 1: With Interference—Outdoor (b) Case 2: W/o Interference—Outdoor

(c) Case 1: With Interference—Indoor (d) Case 2: W/o Interference—Indoor

Figure 4.9: Calibration errors with (a) human interference and (b) without human
interference using imbalanced training sets for outdoor O3 measurements. The same
evaluation for indoor CO2 measurements is presented in (c) and (d), respectively.

with human interference for outdoors and indoors, respectively. We
choose a total of 1000 samples for training because roughly 500 samples
are needed to successfully train a well-performing NN for one case (see
Figure 4.8a and Figure 4.8c). The results show that the shared layer
architecture always yields lower calibration errors, up to 8% outdoors
and 12% indoors. This finding highlights the benefit of using a shared
layer. We can exploit training samples from one case to train the other
case due to common features modelled within the shared layer.

Figure 4.9 further depicts the calibration errors using imbalanced
training sets for the two cases separately. We again observe that the shared
layer architecture is usually most efficient when using small amounts of
training data. With larger amounts of training data the three different
NN architectures perform similarly. An interesting observation is the
almost identical performance of the shared layer and the independent
NN architecture for case 2 indoors. Already a few samples suffice to
provide accurate data with an RMSEσ < 0.5. This is due to the strong
correlation between the VOC measurements and the ground-truth CO2

concentration during non-human interference situations.

Robustness to different users. The effect of human interference depends
on the amount of VOC a user emits. Thus, we investigate the calibration
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O3 outdoors CO2 indoors
User 1 6 ppb (0.83) 28.8 ppm (0.29)
User 2 4.5 ppb (0.81) 115 ppm (1.5)
User 3 14.3 ppb (3.8) 32 ppm (0.37)
User 4 12 ppb (2.85) 40 ppm (0.47)
User 5 7.3 ppb (1.86) 38 ppm (0.41)

Table 4.5: Calibration errors denoted as RMSE (RMSEσ) for different users.

accuracy of different users. Five different users, 4 male (user 1 to 4)
and 1 female, additionally recorded between 10 and 15 min of data each
outdoors and indoors. The users are wearing W-Air on their wrist while
standing or sitting close to a reference sensor as illustrated in Figure 4.1.
We train a calibration NN with the measurements from Section 4.3
recorded by user 1 with 1000 samples for each case and finally test on
all the data from the four remaining users. Table 4.5 summarizes the
resulting errors for each user. For outdoor measurements we observe
notable differences between the users. Especially the measurements of
user 3 and 4 suffer from a substantial error that makes it impossible to
draw reliable conclusions about their personal exposure to air pollution.
A similar behaviour we observe indoors for user 2. While all other users
achieve accurate results, the results of user 2 suffer from a substantial error
that is almost three times higher than the one of the other users. The reason
for this behaviour are notable differences of the measurements between
the different users. This indicates that the human interference can
differ between multiple users. We believe that the individual calibration
accuracy can be improved by performing per-person training for each
user.

4.6.3 Effectiveness of Semi-supervised Updating

Settings. The two NNs (i.e., NN1 and NN2 in Figure 4.7) are based
on the shared layer architecture with 100 and 10 neurons each in the
hidden layers as used before. For each environment, i.e., indoor and
outdoor, we use separate NNs. In order to evaluate the performance of
the semi-supervised updating on adapting to new situations, we split
our dataset into 12 different distinct situations. Outdoors we distinguish
eight different situations based on time and weather conditions because
these two factors are the main influences that affect the ambient O3

concentration. For the remaining 4 indoor situations we distinguish
between different air quality levels based on the CO2 concentration.
Table 4.6 summarizes the different conditions for the twelve situations
(a) to (l). We apply a leave-one-out validation with these situations
by performing supervised learning on seven outdoor situations. Semi-
supervised learning and testing is performed on the remaining situation
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(a) (b)

(c) (d)

Figure 4.10: Semi-supervised learning performance for situations (a) to (l) for case 1
with human interference outdoors (Figure 4.10a) and indoors (Figure 4.10b) and case 2
without human interference outdoors (Figure 4.10c) and indoors (Figure 4.10d).

for all eight possible combinations for the outdoor situations. In an
equal way, we apply the leave-one-out validation with the four indoor
situations, but added 10% of data from the left-out situation to the training
data. This approach shows that the COREG algorithm is able to improve
a model that is trained on a dataset with lack of data for certain ground-
truth data ranges.

We compare the performance of our semi-supervised learning to a
baseline approach, i.e., the testing error using only the supervised model.
Further, we compute a lower bound for the error by adding the unlabeled
data to the training set including the true labels. We use 750 samples
for each case, with and without human interference, as labeled data for
training, and a pool of 500 unlabeled samples for the semi-supervised
COREG algorithm. The error is tested on 300 different samples of testing
data. The evaluation is finally performed on 10 different pools of labeled
and unlabeled data.

Performance. Semi-supervised learning is able to improve the calibration
error in all but one situation. Figure 4.10a and Figure 4.10c shows
the RMSEσ for the eight outdoor situations for case 1, with human
interference, and case 2, without human interference, respectively. The
same results are shown in Figure 4.10b and Figure 4.10d for the four
indoor situations. The improvement is between 0.5% and 51% and
in average about 19.6% and 18.4% for case 1 and case 2, respectively,
as summarized in Table 4.6. Only in situation (e) the semi-supervised
updating resulted in a degradation of the accuracy of 7.5% for the case
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with human interference. The reason might be that this situation is too
different from the other situations in terms of measurements. The COREG
algorithm was in fact able to label only 25 unlabeled samples, which is
notably below the average of 69 unlabeled samples. Further, we see that
for certain situations the lower error bound is significantly lower than the
error of the semi-supervised approach. Especially in outdoor situations
we observe the need to adapt our calibration model to new situations. For
indoor measurements we observe smaller improvements than for outdoor
measurements, in particular for case 2 without human interference. This
is due to an already relatively well performing calibration model before
the semi-supervised updating, i.e., the difference of the baseline and the
lower bound are notably smaller compared to the outdoor situations.

It is in general challenging to adapt a model to an unfamiliar situation.
Especially in outdoor situations the model can be further improved. Thus,
it will be important to also exploit supervised calibration methods, e.g., by
exploiting opportunistic calibration with other devices [SHT15] or static
reference sensors [HSST12, HST12], which we already present in detail
in Chapter 3. One future direction is the improvement of our neural
network based calibration approach to be fit for collaborative and multi-
hop calibration scenarios, e.g., by also considering error accumulation like
our linear SCAN method (see Section 3.4). In Chapter 5 we present a first
direction by including different uncertainty metrics into the collaborative
calibration process. We believe that a combination of semi-supervised
and supervised calibration methods, such as the three different network
calibration approaches presented in Section 1.5, will improve the overall
accuracy of W-Air.

4.7 Discussions and Future Works

This section discusses the limitations and future improvements of W-Air.

4.7.1 Impact of User Context

Environmental conditions. Environmental conditions have not only
an effect on the air pollution but also on the intensity of the human
interference. Especially for different weather conditions in outdoor
environments we observed different human interference behaviours. For
instance, our W-Air device measured an average VOC concentration of
130 ppb during human interference situations in July and only 35 ppb in
October. While the average ground-truth O3 concentration during both
months barely differed with 44 ppb in July and 42 ppb in October, the
weather conditions showed notable differences. The temperature was
around 28◦C in July without any rain and 18◦C in October with multiple
rain periods.
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Figure 4.11: VOC (in ppb) and O3 (raw ADC values) MOX sensor measurements of
W-Air attached to a backpack of a user standing and walking indoors. As soon as the
user starts to walk we observe an increase of the VOC sensor signal and a decrease of
the O3 sensor signal, indicating an increased intensity of the interference problem.

This dependency of the human interference on environmental
conditions poses a substantial challenge for our W-Air system. We need
to train the calibration model with data from various environmental
conditions in order to provide accurate measurements during these
conditions. This is possible by exploiting semi-supervised updating as
we show in Section 4.6.3. To further improve the measurement accuracy
it will also be important to incorporate supervised techniques such as
opportunistic calibration, like the multi-hop calibration presented in
Chapter 3 or network calibration strategies, see Section 1.5.

Activities. The current activity of a user is known to be an interfering
factor for high data quality in wearable sensing [LZW+17, HSST12]. In
order to exclude those influences in our evaluation we only considered
situations with the user either sitting, standing or doing office-work.
Other daily activities, such as walking, running or exercising can in
fact have an additional impact on the sensor readings, i.e., an increased
intensity of the human interference problem. In Figure 4.11 we investigate
the impact of walking on the sensor data. We observe that as soon as the
user starts to walk the VOC sensor measurements increase and the O3

sensor measurements decrease. As we show in the measurement study
in Section 4.3, this is the typical behaviour of the human interference
problem. The impact of walking diminishes again as soon as the user
stops walking around 2:30 min. The reason for this behaviour might be
the consequence of the increased air flow over the sensing layer and,
thus, the two gas sensors react differently. We also observe this behaviour
when using W-Air in the wrist and belt setting, as well as in outdoor
environments.

Consequently, not only the VOC emissions of a user but also its
different activities, especially mobility [HSST12], can interfere with the
sensor readings. In a first step of possible future work it will be
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important to thoroughly study the impact of human activities on the
air quality measurements of our W-Air system. In a second step it is
equally important to adapt and expand our sensor calibration by also
incorporating different human activities.

4.7.2 Automatic Detection of Human Interference

The distinctive characteristics of the human interference (Section 4.3.3)
lead us to distinguish between the cases with and without human
interference. In this work, we assume the knowledge of whether
there is human interference is known in advance. Autonomous human
interference detection is feasible by leveraging additional sensors of the
wearable device. We can use accelerometers to detect movements or a
switch that closes a circuit when one clips on the wristband.

Some pioneer studies have integrated proximity sensors into
watchbands for wrist gesture input [GYI16], which can also be applied
to detect whether a wristband or a smart-watch is worn by the user.
Autonomous human interference detection will further reduce the
overhead for users to label new measurements to update the calibration
parameters.

4.7.3 System Performance

Energy and delay are two crucial factors for practical wearable systems.
The most energy-hungry components of W-Air are the two MOX based
gas sensors. We measure an average current draw of 50 mA when turning
both gas sensors on. Continuously powering the gas sensors will drain
a standard 250 mAh coin cell battery within 5 hours and, thus, would
limit usability to a great extent. One future direction to improve the
energy efficiency of W-Air is to duty-cycle the gas sensors in undesired
situations. For instance, the average current draw of the VOC sensor
integrated in W-Air drops to 0.7 mA with a duty-cycle of 60 s. However,
long duty-cycles also cause slower response time and lower sensitivity of
the sensor [ams17].

In terms of delay, the most computational and time intensive task of
W-Air is the NN-based calibration. The majority of the delay is induced
by the feature extraction, namely a 3 sec smoothing window for the sensor
measurements. Running the neural network to output the final calibrated
concentrations takes negligible time (around 5 ms). However, there is a
delay of around one minute when first turning on the gas sensors before
they work in a stable state. During this warm-up time W-Air is not
providing accurate measurements. In a duty-cycling scenario the trade-
off between energy efficiency and warm-up delay needs to be carefully
evaluated. We also envision the one-shot delay due to the warm-up time
of the gas sensors will be notably reduced by the rapid development of
sensor technologies.
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4.8 Summary

In this chapter, we propose W-Air, an accurate personal multi-pollutant
monitoring platform for wearable devices. We identify the human
interference problem when integrating low-cost MOX gas sensors into
wearable platforms such as wrist-worn, attached to belts or backpacks,
which is largely overlooked in previous research. We propose a
partitioned neural network based sensor array calibration scheme to
eliminate the non-linear human interference on ambient outdoor O3

measurements and indoor CO2 measurements. The architecture of the
calibration model is carefully devised to reduce training efforts and
facilitate parameter updating with little human intervene. We prototype
W-Air on a wristband with low-cost COTS gas sensors. Evaluations show
that W-Air is able to yield accurate ambient O3 and CO2 measurements
whether there is human interference. It can also learn from unlabeled
measurements and adapt to unfamiliar circumstances by exploiting semi-
supervised learning.

Future directions include (i) more thorough investigations how
user context and activities affect the human interference problem, (ii)
combining W-Air with state-of-the-art health and fitness trackers to
explore correlations between air pollution and well-being of a user and
(iii) large-scale deployments for extensive user-studies.



5
Enhancing Sensor Calibration with

Uncertainty Estimates

Throughout this thesis we presented different calibration models, for
instance based on linear regression in Chapter 2 and Chapter 3 or non-
linear neural networks in Chapter 4. All these models have been proven
to be powerful tools to improve the overall data quality of low-cost air
pollution sensors. However, the performance of these models is in general
not perfect. In fact, various different error sources can affect a calibration
model and, therefore, its output is always subject to some uncertainty,
i.e., the amount of trust we can have in the accuracy of the measurement.
Therefore, in a first part of this chapter we investigate typical uncertainties
of calibration models. In particular, we analyse the impact of different
data-induced uncertainties on calibration errors and devise a scheme to
estimate these uncertainties of calibrated model outputs.

In a second part, we integrate these uncertainties into the multi-hop
calibration approach presented in Chapter 3 by proposing an uncertainty-
based metric for data filtering at each hop. By filtering samples with
high uncertainty, we can build an improved dataset for calibration and
minimize the impact of different error sources, in particular dynamic
boundaries and systematic errors (see Section 1.2), that accumulate over
multiple hops. We evaluate the effectiveness of our method in a real-
world ozone sensor deployment. Experimental results show that our
method works with both linear and non-linear calibration models and
reduces calibration errors in multi-hop setups by up to 25% compared
with existing techniques.
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5.1 Introduction

In this thesis, we describe multiple calibration models with different
characteristics and use-cases. Chapter 2 presents a pre-deployment
testing approach of low-cost air pollution sensors based on linear
multiple least-squares to resolve cross-sensitivities and meteorological
dependency. In Chapter 3 we develop SCAN, a linear regression
model, which can be applied in a multi-hop calibration setup during the
deployment of a sensor network to tackle sensor drift over time. Finally,
in Chapter 4 a non-linear neural network is used to resolve complex
cross-sensitivities of low-cost sensors equipped in wearables and a semi-
supervised learning algorithm allows the update of the neural network
during deployment without any user involvement. All these models are
used to minimize the impact of different error sources, see Section 1.2
and Figure 1.8, which are either induced by certain sensor technology
limitations, e.g., dependency on meteorological effects, or are application-
dependent, e.g., cross-sensitivities to human generated emissions. In
this chapter, we focus on error effects, which are introduced by the way
these calibration models are trained. For instance, the distribution of
the training samples may introduce high errors in concentration regions
where only few training samples are available, i.e., dynamic boundaries
(see Section 1.2). Inadequate calibration model capabilities, e.g., using a
linear model to resolve non-linear cross-sensitivities like in Section 4.4,
may lead to systematic errors of the calibrated measurements.

Challenges. Especially during post-deployment calibration, whose goal
is to ensure data consistency of the sensor measurements by periodic re-
calibration, these additional error sources may impose new challenges.
In Chapter 3, we describe multi-hop calibration, an effective concept to
calibrate low-cost sensors in a mobile deployment with limited references
[XBP+12, SHT15, FRD17, LDC18]. While multi-hop calibration allows to
calibrate substantially more sensors in a mobile deployment, it usually
encounters severe error accumulation [SHT15] over multiple hops, see
also Section 3.4.1. For multi-hop calibration to function, measurements
of the virtual reference need to be as accurate as possible at every hop
in order not to affect later calibration procedures. However, both the
data and the model for calibration are not perfectly accurate in practice.
Hence, calibration at each hop is never error-free. Consequently, the error
of multi-hop calibration tends to accumulate over hops if not explicitly
controlled. In Chapter 3 we mitigate this error accumulation by designing
SCAN, a novel calibration model. However, SCAN and other multi-hop
calibration methods like the geometric mean regression (GMR) [SHT15],
have certain short-comings.

• They only apply to linear calibration models. In some cases non-
linear models are necessary to generate accurate measurements,
such as for the wearable use-case of our W-Air system in Chapter 4
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or to calibrate other important air pollutants such as particulate
matters [FRD17, LDC18, CLL+14].

• They rely on certain assumptions concerning the sensor noise that
can be reduced over multiple hops. As we show in Section 3.5.1,
SCAN can also suffer from error accumulation due to other effects
and error sources, for instance different dynamic boundaries or
systematic errors (see Section 1.2) of the sensors in the calibration
path.

Contributions and road-map. In this chapter, we first investigate how
effects such as high sensor noise, unequal training sample distributions
and inadequate calibration models can lead to calibration errors, which
can not be minimized by SCAN or similar methods. Next, we present
a scheme to estimate the impact of these error sources by uncertainty
metrics. Finally, we propose to reduce error accumulation in multi-hop
calibration by also considering these uncertainties during the calibration
process. Rather than designing error-resilient calibration models like
SCAN in Chapter 3, we quantify the data-induced uncertainties and
conduct explicit data filtering at each hop such that only reliable data
are utilized for later calibration. To enable data filtering in multi-hop
calibration, two problems need to be solved. (i) What uncertainties are
introduced by sensor data into calibration and how to estimate them
during data processing in the calibration pipeline? (ii) How to define a
unified metric to quantify the uncertainties for data filtering at each hop?

We address the above problems and make the following contributions.

• We design a scheme to estimate two types of uncertainties: epistemic
and aleatoric, which contribute to data-induced errors in sensor
calibration. Our approach is agnostic to the underlying calibration
models (linear or non-linear) and can be plugged into the standard
calibration procedure. To the best of our knowledge, this is the first
work to augment sensor calibration with uncertainty estimates.

• We comprehensively analyse the impact of different uncertainties
on potential calibration errors and propose an uncertainty-based
metric for data filtering in multi-hop calibration.

• We evaluate our method in real-world ozone (O3) sensor deploy-
ments. Our results show that we are able to reduce the calibration
error in a multi-hop setup by up to 25% when using uncertainty-
based data filtering compared to traditional calibration.

In the rest of this chapter, we review related work in Section 5.2, explain
calibration uncertainties in Section 5.3, introduce methods to estimate
them in Section 5.4 and propose a data filtering metric in Section 5.5.
We conduct simulations in Section 5.6 and real-world evaluations in
Section 5.7 and finally summarize the chapter in Section 5.8.
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5.2 Related Work

This chapter is related to research on multi-hop calibration, which
we present in detail in Chapter 3 and Section 1.5.2, and measuring
uncertainty, which is summarized below.

Uncertainty metrics. Quantifying the expected performance of statistical
models, for instance by estimating major uncertainty sources, is an
important problem. Various works [KD09, KG17, PR97] differentiate
between different uncertainties, the two most important ones being
epistemic and aleatoric.

Epistemic uncertainty characterizes the knowledge of a model based
on the data it has been trained on, i.e., missing knowledge may lead
to ignorant predictions. The most prominent method to estimate
epistemic uncertainty is ensemble learning, where multiple models
are trained to learn the same underlying function but on a different
view of the dataset. These different views are often created by using
bootstrapping [ET94] or bagging [Bre96] and have been applied in general
modelling frameworks [Par13], neural networks [OBPVR16] or Bayesian
learning [KG17].

Aleatoric uncertainty, which captures the noise inherent in the
measurements, can be modelled by auxiliary models [NW95] that learn
the relationship between the input of a model and its corresponding
expected error. Recent methods, especially tailored for complex
machine learning methods, model the output as a probabilistic
predictive distribution. Examples of such methods are Bayesian neural
networks [GG16] or deep ensemble learners [LPB17, YZS+18].

Our work is inspired by all these works. In particular, we combine the
concepts presented in [NW95, ET94, OBPVR16] into one concise model
and apply it in the context of sensor calibration, which is presented in
detail in Section 5.4.

5.3 Uncertainties in Sensor Calibration

In this section, we quickly recapitulate the basis of sensor calibration and
then explain two types of uncertainties in the context of air pollution
sensor calibration.

The general goal of sensor calibration is to find a calibration function cal
(i.e., calibration model) that transforms some raw sensor measurements
M into a calibrated form m̂ = cal(M). An optimal calibration model
minimizes some norm between the calibrated measurements m̂ and some
reference or ground-truth measurements mr. We use a real-world example
of a low-cost ozone (O3) sensor, MICS-OZ-47 [SGX13], which has been
deployed next to a highly accurate governmental monitoring station,
see Figure 1.4. We use the sensor array calibration method presented
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(a)

(b)

Figure 5.1: Calibration results of an ozone sensor. Figure 5.1a shows the calibrated
measurements versus the actual ozone concentrations. These samples are also used to
train the calibration model. The distribution across the ozone range is highlighted by
the blue area. The black solid line indicates the ideal response, i.e., the case when the
calibrated measurements are identical to the actual ozone concentration. Figure 5.1b
shows the behaviour of the epistemic, see equation (5.2), and aleatoric uncertainty, see
equation (5.3), as well as the sensor measurement error defined as the absolute difference
between calibrated and actual ozone measurements.

in Chapter 2 to calibrate the sensor. Specifically, the ozone sensor is
augmented with a temperature and humidity sensor (i.e., a sensor array)
and multiple least-squares is applied to find a function cal that calibrates
n measurements X ∈ Rn×3 of the three sensors to the ozone reference
mr ∈ Rn×1. The three sensors were placed inside a ventilated box, see
Figure 2.3, and deployed next to the governmentally maintained ozone
sensor in a suburban area in Switzerland [LFS+12] during 2 weeks in May,
2014.

We are interested in the distributions of the calibration errors across
the sensing range (the bars in Figure 5.1b). We observe for the calibrated
sensor, the calibration errors vary at different sensor readings. The
calibration error increases where the measurements to train the calibration
model are limited or have high variation. For example, at low ozone
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concentrations below 10 ppb the training measurements are scarce. As
a result the calibration model is overestimating the ozone concentration.
Similarly, at concentrations above 45 ppb the measurements exhibit higher
variance than at lower concentrations and, hence, the sensor error is
also growing. The consistent overestimation and lower precision in
certain concentration ranges can be described as systematic errors and
limited dynamic boundaries of the sensor, two error sources described in
Section 1.2. We aim to explain the non-uniform calibration errors across
the sensing range of a sensor using uncertainties.

Epistemic uncertainty. This uncertainty captures the general ignorance of
our calibration model and is typically caused by lack of knowledge, for
instance by missing data or insufficient modelling power [KD09, KG17].
It is in general difficult, if not impossible, to generate confident calibrated
measurements in ranges where the calibration model is trained on little
or no data at all. This is in particular true for complex models, such as
non-linear methods, when they have to excessively extra- or interpolate.
The same holds when a model, which lacks appropriate capabilities to
capture a complex calibration function, is applied, e.g., when a linear
model is used to learn a non-linear function. However, epistemic
uncertainty can typically be reduced by collecting and adding more data
into the calibration process or applying more appropriate models with
adequate capabilities for the problem. Epistemic uncertainty can point
out potentially inaccurate sensor readings. In Figure 5.1a, we can observe
that most of the samples for training the calibration model are distributed
between [20,40] ppb. Outside this range fewer samples have been used
to train the calibration model. Consequently, from 20 ppb to 0 ppb and
above 40 ppb, both the calibration error and the epistemic uncertainty
begin to grow, as shown in Figure 5.1b. Note that above 40 ppb the
epistemic uncertainty is equally high as for measurements below 20 ppb,
however the sensor error is notably smaller. This additional error at
low concentrations is due to a constant overestimation, which may be
caused by missing modelling power. Note that there is in general no
direct causation between sensor error and epistemic uncertainty. It is
for instance still possible for a calibration model to learn an accurate
calibration function even with lower amounts of samples. We defer the
method to estimate the epistemic uncertainty to Section 5.4.

Aleatoric uncertainty. This uncertainty captures the natural noise, i.e.,
measurement error, in low-cost sensor measurements [NW95, KD09,
KG17]. In Figure 5.1a we can observe the scatter of the measurements
is larger for higher concentrations. Especially between [45,50] ppb we
can observe various outliers, which are at least 10 ppb from the ideal
response. Potential reasons for this effect may be that the linear model is
not capable to capture the underlying calibration function of the sensor
or the uncalibrated measurements exhibit a generally higher noise in
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this high concentration region. As indicated in Figure 5.1b, the aleatoric
uncertainty increases in regions where the deviation of the measurements
is increasing as well. Similarly to the epistemic uncertainty, note that high
variance of measurements in the training data does not necessarily imply
high measurement error. A calibration model may still be able to perfectly
capture the ideal underlying function between sensor and reference
measurements, e.g., if the noise is following a Gaussian distribution.
Further, we can also observe an increased aleatoric uncertainty at lower
concentrations. As we have discussed before, the calibration model
is not able to perfectly capture the underlying function due to either
missing data or modelling power and, thus, the aleatoric uncertainty also
captures these high inaccuracies below 20 ppb. In Section 5.4, we lay out
a method to learn the relationship between the sensor measurements and
the aleatoric uncertainty.

Summary. Not all outputs of a calibrated sensor have the same
accuracy due to the distributions of the raw sensor measurements to
train the calibration model. This motivates us to associate auxiliary
uncertainties to each output of a calibrated sensor to indicate the potential
errors. We identify two types of uncertainties: epistemic and aleatoric.
The former characterizes the uncertainty in output ranges where the
measurements for training the calibration model are sparse or the model
is lacking sufficient modelling capabilities, while the latter represents
the uncertainty in output ranges where the calibrated measurements
exhibit large inaccuracies. These two types of uncertainties provide extra
information about the reliability of the outputs of a calibrated sensor
at different sensing ranges, which helps to filter unreliable outputs for
further use (multi-hop calibration in our case). In the next two sections,
we design methods to estimate the two types of uncertainties, investigate
their relationship and integrate them into multi-hop sensor calibration for
better accuracy.

5.4 Estimating Uncertainties

This section describes our scheme that can be plugged into any calibration
model to output calibrated sensor measurements and the corresponding
uncertainties.

5.4.1 General Overview

Given a dataset (M,mr), where M ∈ Rn×k are the uncalibrated sensor
measurements that consist of k input feature vectors, i.e., a sensor array
consisting of k sensors such as the one in Section 5.3, and mr ∈ Rn×1 is the
reference sensor measurements, our scheme works in two phases.
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Phase 1:
Epistemic Uncertainty

Phase 2:
Aleatoric Uncertainty

M

y

M

x 

UE UA UEA

Figure 5.2: General overview of our model, which is divided into two separate phases.
In phase 1 sensor calibration is performed and epistemic uncertainty UE information is
retrieved. Phase 2 predicts the aleatoric uncertainty UA as well as the corresponding
epistemic uncertainty UEA of this process.

1. An ensemble of calibration models is trained to output, for an un-
calibrated measurement mi ∈ M ∈ R1×k, a calibrated measurement
m̂i = cal(mi) ∈ R1×1 and a corresponding epistemic uncertainty
UE(m̂i) ∈ R1×1. Any calibration model that performs a regression
task can be applied to find cal. We use bootstrapping [ET94] to train
our ensemble, i.e., we artificially generate different training datasets
to create diverse models in our ensemble.

2. A neural network ensemble is trained to learn the relationship
between uncalibrated sensor measurements M and calibration
errors ε = (m̂ − mr)2

∈ Rn×1 to quantify the aleatoric uncertainty
UA(m̂), also known as local error bars [NW95], for each calibrated
measurement m̂i ∈ m̂ of the sensor. This approach helps us to
quantify the variance of our measurements around the ground-
truth, i.e., the calibration error as a function of the inputs f (M) = ε.
Since the estimation of the aleatoric uncertainty is also subject
to some potential error sources, we also estimate the epistemic
uncertainty UEA(m̂i) ∈ R1×1 of the aleatoric uncertainty estimation.

Figure 5.2 illustrates the overall procedure of our scheme. We explain the
two phases in detail below.

5.4.2 Estimating Epistemic Uncertainty

In the first phase we train multiple calibration models to output
the calibrated sensor measurements, which then are used to generate
epistemic uncertainty. To achieve this goal, we apply an ensemble of
sensor calibration models via bootstrapping [ET94]. In particular, given
the dataset (M,mr), p different calibration models are trained. This is done
via the following process:

1. Generate p bootstrapped datasets, each consisting of (M,mr). This
is achieved by the standard bootstrapping methodology, where
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each pair of bootstrapped samples (Mi,mr,i) is randomly sampled
with replacement from the input datasets (M,mr). As a result, p
different datasets with the same cardinality as the input dataset
are artificially generated. According to the .632 bootstrapping
rule [ET94], approximately 63.2% unique samples form one newly
bootstrapped input dataset.

2. Train p calibration models using the p generated datasets. A typical
calibration model minimizes the mean squared error 1

n

∑n
i=1(m̂( j)

i −

mr,i)2, where ŷ( j) is the output the j-th ( j ∈ {1, 2..., p}) model of the
ensemble for a given mi ∈ X and mr,i is the i-th sample of the
bootstrapped reference measurements mr.

As a result, we get p different model outputs. Therefore, for a given
mi ∈ M the final output is the mean over all p ensemble model outputs,
i.e.,

m̂i =
1
p

p∑
j=1

m̂( j)
i (5.1)

Finally, the epistemic uncertainty is calculated by the standard deviation
over all the p model outputs, i.e.,

UE(m̂i) =

1
p

p∑
j=1

(m̂( j)
i − m̂i)2


1
2

. (5.2)

Since we use the mean over all outputs as final calibrated measurement,
the epistemic uncertainty UE(m̂i) gives a notion of how much confidence
we can have in this mean m̂i. The higher the disagreement of the p
calibration models, the higher the epistemic uncertainty UE, the less
confidence we have in our calibrated measurement. If we add more
knowledge, e.g., in the form of data, to the calibration model we might
be able to reduce this disagreement and consequently the epistemic
uncertainty, see also Section 5.3.

5.4.3 Estimating Aleatoric Uncertainty

In the second phase the goal is the estimation of the aleatoric uncertainty
inherent in the output of our ensemble of calibration models in phase
1. This is achieved by a second ensemble of models, which individually
learn the relationship between the input vectors M and the calibration
error (m̂i − mr,i)2. The calibration error measures the distance of our
calibrated measurements to the ground-truth values and, therefore, the
aleatoric uncertainty, see Section 5.3. Similarly to phase 1, this task could
be performed by any type of regression technique. However in order
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to facilitate powerful modelling capabilities of non-linear functions we
solely use non-linear neural networks. The following procedure performs
the estimation of the aleatoric uncertainty.

1. Generate q new bootstrapped datasets (M,mr), which are not
identical to the ones as in phase 1.

2. For each dataset and each sample mi ∈ M calculate the squared
calibration error εi = (m̂i − mr,i)2, where m̂i is the calibrated
measurement from (5.1).

3. Train q models that approximate the function f with f (M) = ε.

In order to reduce the training efforts, we apply an optimized neural
network ensemble structure [OBPVR16]. Instead of q individual neural
networks, one neural network with q outputs and a shared hidden
structure is used. During each training run, the outputs are individually
trained using the bootstrapped datasets and the hidden structure is
updated in every training step for every output. The optimization
functions for each output are also applying a L2-regularization [WRH91]
to assure smooth uncertainty estimations and to avoid over-fitting.
Finally, to assure positive outputs (due to ε ≥ 0), each output uses the
soft-plus activation function, i.e., so f tplus(x) = log(1 + ex).

Similar to the ensemble in phase 1, the final output, in this case the
estimated aleatoric uncertainty UA for a given mi ∈M is the mean over all
q ensemble model outputs, i.e.,

UA(m̂i) = ε̂i =
1
q

q∑
j=1

ε̂( j)
i , (5.3)

where ε̂( j)
i is the j-th ( j ∈

{
1, 2, ..., q

}
) output of the neural network.

Finally, we also estimate the epistemic uncertainty of the aleatoric
uncertainty estimation, given by,

UEA(m̂i) =

1
q

q∑
j=1

(ε̂( j)
i − ε̂i)2


1
2

. (5.4)

This process allows us to model the calibration error, or the variance of
our calibrated measurements, as a function of the input and consequently
of a single calibrated measurement. Similarly to UE, which we calculate in
phase 1, the epistemic uncertainty UEA serves as a measure of confidence
in our aleatoric uncertainty estimation.
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Figure 5.3: Four different uncertainty situations regarding epistemic UE/UEA versus
aleatoric UA. From left ro right, situation 1) low—low, 2) high—low, 3) low—high, 4)
high—high.

5.5 Integrating Uncertainties in Calibration

In this section, we first interpret different situations we may experience
when applying our scheme and then propose a data filtering metric for
sensor calibration.

5.5.1 Interpretation: Epistemic versus Aleatoric
Before explaining different situations, we first discuss the relationship
between the two epistemic uncertainties UE and UEA. Both UE and UEA

capture the epistemic behaviour of the two ensembles we use. However,
UE captures the uncertainty we have in our calibration model and UEA in
our calibration error estimation. Basically, both metrics decrease as the
number of samples, i.e., the knowledge we feed into our model, increases,
because the ensembles converge to a common output. For simplicity and
due to the same basic interpretation we treat UE and UEA as similar in
the following description of the different situations but differentiate them
during data filtering (Section 5.5.2).

• Situation 1: Low UE/UEA—Low UA. In a situation where we have
low epistemic and low aleatoric uncertainty at the same time we
have high confidence in our calibrated measurement. This ideal
case is shown in situation 1 in Figure 5.3. The low epistemic
uncertainty UE and UEA suggests that all the individual models
in the two ensembles agree on their outputs and, thus, have been
trained with a sufficient amount of data. A low aleatoric uncertainty
UA at the same time, also points out that the calibration error of the
measurements during training is low.

• Situation 2: High UE/UEA—Low UA. The next situation, see also
situation 2 in Figure 5.3, appears when we have only a few samples,
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therefore higher epistemic uncertainty, but these are not affected by
large noise, thus low UA. Although the low aleatoric uncertainty
points out that the calibration model is able to approximate an
accurate calibration function, there is only little proof. In order
to gain more confidence the calibration model should be trained
with more samples and re-evaluated, especially if the model has to
extra or interpolate large areas of the input space given by X.

• Situation 3: Low UE/UEA—High UA. In the third situation the
calibrated measurements show a large variation and, thus, also
lead to a large calibration error. This situation may appear if
the uncalibrated input measurements are affected by noise or the
calibration model is not able to find an optimal calibration function,
for instance due to missing features or insufficient complexity of the
model.

• Situation 4: High UE/UEA—High UA. This is the most undesirable
situation (situation 4 in Figure 5.3). It occurs if the calibration model
has been trained on only a few measurements and the corresponding
outputs are far from the true measurements. In this situation
we have no confidence in our calibration model due to missing
knowledge and a potentially poorly calibrated model due to the
observation of high calibration errors during training.

Summary. All situations except the ideal case with overall low
uncertainty point out potential problems with the calibration model. In
particular, we face the potential of inaccurate calibrated measurements.
In order to further process the calibrated measurements for calibration
in subsequent hops we need to pinpoint confident measurements by
exploiting our uncertainty estimates. We show how to integrate these
uncertainties into multi-hop sensor calibration below.

5.5.2 Uncertainty Based Data Filtering

Multi-hop calibration. The idea of multi-hop calibration, which we
describe in Section 3.3.2, is to exploit rendezvous between sensors,
i.e., situations when two or more sensors meet in time and space.
During rendezvous, sensors are exposed to the same environment and
sense the same phenomena, thus, creating a calibration opportunity.
Whenever a low-cost sensor is in rendezvous with a reference sensor it
can use the reference measurement for calibration. To further increase
calibration opportunities, multi-hop calibration also exploits freshly
calibrated sensors. That is, a freshly calibrated sensor is providing its
calibrated measurements as a virtual reference to an uncalibrated sensor.
This process can be repeated until all sensors are calibrated, forming
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Figure 5.4: Example of a calibration graph consisting of one reference and 11 low-
cost sensors. A reference sensor R is calibrating three low cost sensors S{1,2,3} in a first
hop. These freshly calibrated sensors then provide their calibrated measurements as
references to calibrate two additional sensors S{4,5}. This procedure is continued until all
11 sensors are calibrated.

a calibration graph over multiple hops. An example is illustrated in
Figure 5.4. Note that instead of forming a calibration path, where each
sensor is calibrated by one parent sensor we adopt a graph structure in
this chapter. That is, each sensor can be calibrated by more than one
parent sensor, which all can exhibit different measurement uncertainties.

Heuristic filtering. Given a single uncalibrated sensor, which has
been in rendezvous with one or multiple freshly calibrated sensors,
we can collect a dataset (M, m̂,UE(m̂),UEA(m̂),UA(m̂)) with uncalibrated
sensor measurements M, virtual references m̂ and the corresponding
uncertainties UE(m̂),UEA(m̂) and UA(m̂) for each sample. Because the
calibrated measurements may not be identical with the ground-truth
measurements, we need to make sure that we remove potentially
inaccurate samples before we perform the calibration for the uncalibrated
sensor. In order to do this, we apply a simple heuristic to filter samples
with general high uncertainty. In particular, we treat a calibrated sample
m̂i as a confident sample if the following rule applies:

(
UE(m̂i) ≤ pE

)
∧

(
UA(m̂i) ≤ pA

)
∧

(
UEA(m̂i) ≤ pEA

)
, (5.5)

where p{E,A,EA} are thresholds. We set these thresholds by percentiles
over all the available values for each uncertainty metric of the dataset,
e.g., pE is set to the 90-th percentile of all UE(m̂) in the dataset. We will
investigate the effect of this threshold in Section 5.7. As we have seen in
Section 5.5.1, any situation with a high uncertainty metric is highlighting
a potentially inaccurate calibrated measurement. The heuristic given in
(5.5) is therefore removing any measurement that exhibits at least one of
the three uncertainties with a too large value according to the defined
threshold.
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5.6 Simulations

In this section, we conduct simulations to validate the effectiveness of our
method to estimate the uncertainties.

5.6.1 Setup

We evaluate our scheme using artificial data samples (x, y(x)), which are
generated as follows:

x ∼ U(0, 2π)
y(x) ∼ µ(x) + N(0, σ(x))

µ(x) = sin
(
5 ·

x
2

)
· sin

(
3 ·

x
2

)
σ(x) =

3
20

+
1
4
· sin (4 · x) + 2 · cos

(6
5
· x

)
The dataset is sampled 2000 times and the samples, where x ∈

[
π
2 ,

3·π
2

]
, are

used to train our models in phase 1 of the scheme. Because the underlying
function µ(x) is non-linear, we use an ensemble of non-linear neural
networks to approximate the function. The neural network uses the
same optimized structure as the one to predict the aleatoric uncertainty,
i.e., one shared hidden structure and p outputs. Specifically, we apply for
each of the two networks one shared hidden layer with 16 neurons with
tanh-activation functions and p = q = 20 ensemble outputs.

5.6.2 Result

Figure 5.5 shows the simulation results. First of all, in Figure 5.5a we
observe that within the training area, the approximated function ŷ(x) fits
the true function µ(x). Outside the training area the approximation is
not fitting at all. This result is not surprising because the model has
to extrapolate. Accordingly, the epistemic uncertainties UE and UEA

(see Figure 5.5b) capture this behaviour. Within the training area the
uncertainty is small and grows outside the training area. Further, we
also observe a difference between the two uncertainties UE and UEA.
As mentioned in Section 5.4, both capture the same behaviour, but use,
however, different underlying models in the respective ensembles and,
consequently, output different epistemic uncertainty values.

Secondly, the samples used for training follow an input-dependent
normal distribution. Especially at the borders of the training area
the variation is significantly higher than in the centre. The aleatoric
uncertainty UA is highlighting this effect, see Figure 5.5b. It follows in
fact the variance of the noise distribution σ(x). This result is expected,
because the optimization function of the aleatoric estimator is set to
exactly estimate this variance, see (5.3).
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(a)

(b)

Figure 5.5: Performance on artificial data. Figure 5.5a shows that our model is able
to perform typical regression tasks. In Figure 5.5b we see the typical behaviour of the
epistemic uncertainty, which starts to grow outside the training area, and that we are
able to estimate the noise variance in form of the aleatoric uncertainty.

Overall, we can conclude that our scheme is able to i) perform typical
regression tasks while also estimating ii) epistemic (UE and UEA) and iii)
aleatoric (UA) uncertainty.

5.7 Evaluations

In this section, we apply our scheme and evaluate its performance on
real-world sensor data.

5.7.1 Setup

Dataset. The dataset consists of measurements from 11 different
low-cost metal oxide ozone sensor prototypes, which are also used
for evaluation in Section 3.5.2. Each sensor is also paired with a
temperature sensor, which is used to tackle the gas sensors dependencies
on environmental conditions. Similar to the setup in Section 3.5.2 we
use measurements from two sensing layers per device coupled with
temperature measurements. The sensors are placed next to the same
governmental ozone sensor as the one described in Section 5.3 and
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shown in Figure 1.4 that serves as reference. We placed all sensors in
the same ventilated box and collected with a sampling interval of 10 min
approximately 4000 samples of each sensor during the month of October,
2014.

Test setup. We artificially build a multi-hop calibration setup where a
subset of the sensors is calibrated by the reference sensor, which in return
are used to calibrate another subset of sensors, and so on until all sensors
are calibrated. We use five different calibration graph structures, for
example the one in Figure 5.4, with varying number of parent nodes, i.e.,
references, (1 to 4) and number of hops (1 to 5). Each pair of sensor nodes
collects 200 samples, i.e., we assume they are 200 times in rendezvous. To
simulate a setup with diverse sensors, in particular diverse uncertainties,
we randomly choose different measurement distributions, for instance
see Figure 5.1a, for each sensor by varying their overall range of collected
measurements during rendezvous. Each sensor covers between [25, 60]%
of the total ozone range during the measurement period. The effective
measurement ranges are randomly sampled in every experiment. The
performance of each calibrated sensor is evaluated on 200 separate testing
samples and evaluated by using the normalized RMSEσ, see Section 2.4.3:
(2.8). Overall, we perform 200 experiments with different graph setups,
arrangement of the sensors in the graph and measurement distributions
in each experiment.

Data filtering. In order to show the impact of our data filtering, we
investigate the effect of different filter thresholds p{E,A,EA}, see (5.5). As
described in Section 5.5.2, the thresholds are defined by the percentile
values of each individual uncertainty of a calibration dataset. We use
6 different levels at {100, 90, 80, 70, 60, 50}%, where 100% leads to no
measurements filtered. For simplicity we use the same percentage-level
for all three uncertainties.

Calibration models. We apply our scheme on three different calibration
models, our linear SCAN model presented Chapter 3, non-linear
regression trees [LDC18] and non-linear neural networks [LDC18,
CLL+14], similar to the one used in Chapter 4. Our linear SCAN regression
model is specifically developed to reduce error accumulation in multi-
hop calibration, see also Section 3.4. Regression trees [LDC18] and neural
networks [LDC18, CLL+14] have mainly been used in one-hop calibration,
i.e., calibration to perfect references, and allow the modelling of more
complex calibration functions like in Chapter 4. Although these methods
might suffer from additional error accumulation over multiple hops,
their complex modelling capabilities can be helpful to calibrate graphs
with small overall number of hops. Similar to Section 5.6, the neural
network that learns the aleatoric uncertainty uses one hidden layer with
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Figure 5.6: Calibration error of SCAN over multiple hops at different threshold
percentile values. The higher the number of hops, the more important it is to reduce the
impact of potentially inaccurate measurements.

1 2 3 4 5
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Figure 5.7: Lowest calibration error over multiple hops of the three methods SCAN,
Regression Trees (RT) and neural networks (NN) over all threshold values. SCAN clearly
outperforms the two other methods with an up to 69% lower error.

16 neurons with tanh-activation functions and 20 ensemble members. The
same network structure is also applied when we use neural networks to
perform the calibration in phase 1.

5.7.2 Results

Error over multiple hops. Figure 5.6 shows the average calibration error
of the sensors when calibrated at different hops in the graph. The different
bars correspond to different percentile levels of the data filtering. We
can observe that data filtering is able to reduce the calibration error.
Especially at hops 3 to 5, using only samples with high confidence
performs notably better than using all samples for calibration. While
the relative improvement in terms of calibration error compared to no
data filtering at hops 1 and 2 is at most 5%, it is in average 11% at hop
3 and 25% at hop 4 and 5. We also observe that the best performing
percentile level is 70% at hops 3 and larger. Using lower percentiles
results in a loss of accuracy, because too many measurements have been
removed. In future work, it will be important to enhance our scheme
with capabilities to find the optimal thresholds. Note that the two other
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(a) SCAN

(b) Regression Trees

(c) Neural Networks

Figure 5.8: Calibration error at different threshold levels for different number of parent
nodes. Filtering samples with high uncertainty becomes more important with more
parents for all three methods.

calibration models, regression trees and neural networks, do not perform
equally well compared to SCAN. This can be observed in Figure 5.7,
where we show the lowest calibration error of all threshold values at
each individual hop for the three methods. SCAN achieves an up to 69%
lower error than regression trees and 63% than neural networks. The
data filtering is decreasing the error in average only by 3% for regression
trees and neural networks. The error accumulation over multiple hops
has in fact a big impact on the overall accuracy and begins to dominate
at later hops. This is mainly because the methods are not developed for
multi-hop calibration with large number of hops. However, they can be
powerful in setups with small hop numbers, which is presented in the
following.
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Error versus number of parents. Figure 5.8 shows the average calibration
error of our sensors at different filtering thresholds with different number
of hops. We use a graph structure where these sensors are all 2 hops away
from the reference, meaning they are calibrated by 1 to 4 parents that
have been calibrated by the reference. For all three calibration models,
SCAN in Figure 5.8a, regression trees in Figure 5.8b and neural networks
in Figure 5.8c we can observe a similar trend. The more parents are used
to calibrate a sensor, the more effective is our uncertainty based data
filtering. This result is expected due to the fact that more parents with
different uncertainties at different concentrations can potentially induce
high levels of noise in the calibration dataset. By only keeping the most
confident samples from the different parents we are able to generate an
improved dataset that reduces the calibration error. In fact, we are able
to achieve the lowest calibration error for all three calibration models by
using 4 parents for calibration in combination with our data filtering.

5.8 Summary

Uncertainty in sensor calibration is an omnipresent phenomenon. In
this chapter, we present a scheme to estimate two major uncertainties
in typical regression tasks, epistemic and aleatoric uncertainty. The
former is related to the ignorance of a calibration model and grows if
we do not present the model with sufficient data samples or use a model
that is not powerful enough to find the underlying calibration function.
The latter describes the calibration error as a function of the calibrated
measurements. Our scheme works on any calibration model and exploits
bootstrapped ensembles to generate estimates of the two uncertainties.
We apply our approach to improve the calibration of low-cost ozone
sensors in a multi-hop setup from Chapter 3, an important practice
to maintain high data quality over time. By estimating uncertainties
of our sensor measurements and using this gained information in an
uncertainty-based data filtering, we are able to reduce the calibration error
in the multi-hop setup by up to 25% compared to existing approaches.
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6
Conclusion and Outlook

Air pollution monitoring has gained increasing interest from various
research institutions, governmental authorities and the private sector in
the last few years. With the growing availability of various low-cost air
pollution sensors there is a strong trend to extend the current monitoring
efforts, which are conducted by fixed and expensive installations, with
distributed and affordable sensor deployments. These large-scale sensor
networks are able to provide air pollution data with high spatio-temporal
resolution, which can be further used for applications like fine-grained
concentration modelling, city planning or investigations of health effects
on citizens.

Unfortunately, common low-cost air pollution sensors suffer from
multiple limitations. Different aspects, both due to technology principles
and external influences like environmental conditions, can affect a
sensor’s performance. As a result, the collected data is often affected
by substantial inaccuracies when compared to high-end devices.

The aim of this thesis is to counteract the limiting factors and
improve the overall data quality of low-cost air quality sensors by
performing dedicated sensor calibration. We develop different strategies
to transform raw sensor measurements into a calibrated form that
describes a concentration of interest as accurate as possible. We focus on
various deployment scenarios and provide tailored calibration models to
uncover and remove important error sources in low-cost sensor signals.
By performing appropriate sensor calibration both before and during
a deployment we are able to gather air pollution information with the
accuracy fit for future applications.

In the remainder of this chapter we present the main contributions of
this thesis and layout possible future research directions.
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6.1 Contributions

Pre-Deployment Testing (Chapter 2). Information about cross-
sensitivities or dependencies on environmental effects of low-cost sensors
is often only sparsely described in datasheets, yet both can have serious
effects on the data quality. In order to uncover and counteract these
effects we propose an in-field pre-deployment testing approach. Our
approach allows to (i) judge a sensor on its feasibility for air pollution
monitoring in a given environment (ii) uncover major cross-sensitivities
and dependency on environmental conditions and (iii) propose an
optimized measurement setup in the form of a sensor-array for stable
and accurate measurements.

Multi-hop Sensor Array Calibration (Chapter 3). Low-cost sensors
tend to drift over time and, thus, need to be frequently re-calibrated to
maintain consistent data quality during their deployment. We design
SCAN, a novel collaborative post-deployment algorithm for mobile
deployments. SCAN is based on multi-hop calibration and can be applied
to sensor arrays to compensate for cross-sensitivities and dependencies on
environmental conditions. To the best of our knowledge, we are the first
to formulate SCAN as constrained least-squares regression, which can be
applied to calibrate sensor arrays during their deployment while being
free of regression dilution and, thus, minimizing error accumulation over
multiple hops.

Sensor Arrays On Wearables (Chapter 4). We design a wearable
platform for personal air pollution monitoring using low-cost metal
oxide sensors. Through an extensive measurement study we uncover
substantial interference from human gas emissions, e.g., from natural
skin oils or respiration, on the air pollution sensors. We counteract this
interference by utilizing non-linear neural network calibration. In order
to reduce training efforts we build a tailored neural network with shared
hidden layers and apply a semi-supervised learning technique to allow
post-deployment model updates with little user involvement. Our final
design is able to collect accurate air pollution measurements even under
the presence of human interference.

Uncertainty in Calibration (Chapter 5). Finally, we investigate two
uncertainty types, epistemic and aleatoric, which are common in sensor
calibration models. We first develop a scheme to estimate these
uncertainties for each calibrated measurement of a model by utilizing
bootstrapped ensembles. In a second part, we integrate the uncertainty
metrics into multi-hop calibration and design a heuristic data filtering to
remove potentially faulty measurements at each hop and, consequently,
improve network wide calibration accuracy.
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6.2 Possible Future Directions

Automated Sensor Degradation Detection. The data quality degradation
of sensors over time is a severe problem that can prevent successful
long-term data collection. In this thesis, we tackle it by frequently
re-calibrating sensors during their deployment. However, it might
not always be possible to perform frequent re-calibration, e.g., the
sensor is not in rendezvous with any other sensors or there is in
general a lack of accurate and reliable references. In this case, an
automated technique, which estimates a sensor’s degradation and
evaluates its current expected accuracy, can pinpoint measurements with
low quality for post-processing purposes and inform about the need
for a, potentially manual, re-calibration. Possible directions include
the appliance of statistical methods that detect anomalies by comparing
measurement distributions over time or the appliance of spatio-temporal
prediction models that capture the expected signal range of sensors in the
deployment.

Optimal Calibration Path Selection. In this thesis, we applied multi-hop
calibration to relatively small sensor networks with at most 11 sensors.
With the increasing availability and popularity of low-cost sensors for
air pollution monitoring, large-scale deployments with hundreds of
distributed sensors pose additional calibration challenges. Especially,
how multi-hop calibration scales for large-scale deployments is an open
question. We conducted some initial tests using a public dataset of GPS
traces from 537 taxis in San Francisco, USA [PSDG09] and discovered
that each taxi is in average with 180 other taxis in rendezvous over the
course of 30 days. If each taxi acts as a mobile air pollution sensor
array, an interesting challenge is how to optimally choose calibration
pairs and consequently calibration graphs to achieve the best calibration
performance over the whole network. Potential solutions involve the
application of uncertainty metrics presented in Chapter 5 in combination
with graph theory concepts such as shortest path algorithms.

A Universal Network Calibration Method. In Section 1.5 we present
a review of three different network calibration approaches, i.e., blind
(Section 1.5.1), collaborative (Section 1.5.2) and transfer (Section 1.5.3)
calibration. All these concepts and the specific methods within have
their different strengths and weaknesses, as summarized in Section 1.5.4.
The existing low-cost air pollution sensor network deployments all have
different characteristics, e.g., mobility of the sensor nodes, and calibration
requirements, e.g., non-linear calibration models. Unfortunately, a
universal and deployment-independent network calibration approach
is currently missing. One possibility is a combination of the three
approaches by developing a scheme that exploits individual aspects.
Offering different calibration opportunities to all the participating nodes is
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an important task, especially in deployments with heterogeneous sensors
nodes, e.g., mobile and static, like in crowdsensing applications.

Exploiting Air Pollution Maps for Sensor Calibration. Creating air
pollution maps of urban areas with high spatio-temporal resolution is a
thriving research area. These maps offer estimations of current and past
pollutant concentrations based on, for instance, sophisticated chemical
process models or data-driven approaches. A possible future direction
is the utilization of air pollution maps for low-cost sensor calibration.
However, air pollution maps are often not able to provide measurements
with equal accuracy over the whole area and time-horizon of interest.
Therefore, a future challenge is the detection of locations and times
where one can trust the air pollution map to be accurate and, hence, the
measurements can be used to calibrate low-cost sensors. This could be
achieved by applying a data-driven air pollution model coupled with
uncertainty metrics, like the neural network structure we present in
Chapter 5.

Self-Calibrating Sensor Nodes. Sensor calibration performed in
laboratory setups, where the sensor under test is exposed to fixed
target pollutant concentrations, is a popular approach that allows quick
recordings of the sensor’s response. In the last few years different
low-cost gas concentration generators1 have become available on the
market. These devices are for instance based on hydrogen cells or
ozone-generating ionization modules, have small form factors and allow
controlled gas generation with little effort. By integrating these gas
generators into air pollution sensor nodes it is possible to reconstruct
a laboratory setup and, thus, to perform re-calibration or drift-detection
in a controlled manner during deployment. Important aspects that need
to be addressed in a potential future work are the accuracy, precision and
reliability of the gas generation by these low-cost devices.

1E.g. Varta Hydrogen Generator Cells or Murata Electronics Ionissimo Ionizer Modules
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