
 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 74

ALEXANDER MAKSYAGIN

Modeling Multimedia Workloads for
Embedded System Design

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

A dissertation submitted to the
Swiss Federal Institute of Technology (ETH) Zürich
for the degree of Doctor of Sciences

Diss. ETH No. 16285

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Petru Eles, co-examiner
Examination date: October 13, 2005

Diss. ETH No. 16285

Modeling Multimedia Workloads for
Embedded System Design

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZÜRICH

for the degree of

Doctor of Sciences

presented by

ALEXANDER MAKSYAGIN

Dipl. Radio-Eng. MTUCI, Russia

born 15.03.1973
citizen of Russia

accepted on the recommendation of

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Petru Eles, co-examiner

2005

Abstract

To design a successful computer system, designers need to know characteristics
of the computational workload that this system is supposed to process. This
knowledge forms the necessary basis for optimizations of the system. In order
to use this knowledge in the design process, designers need to characterize the
workload using a formal workload model. This model represents an abstraction
of the concrete workload and serves as an input to a number of critical design
tasks, such as system performance analysis. The quality of the workload model
largely determines the quality of the design decisions madebased on it.

Coming up with a proper workload model represents a difficult problem in
many computer system design contexts. One such context, addressed in this the-
sis, is system-level design of embedded computers whose main functionality in-
volves real-time processing of media streams (e.g. streamsof audio-video data).
Of late, there is a growing demand for such computers becausethey are increas-
ingly being embedded into many electronic products, especially those found in
consumer electronics domain, e.g., digital TVs, audio and video players, digital
video cameras, advanced set-top boxes, multimedia-enabled mobile phones and
a myriad of other electronic devices supporting multimediaapplications. To meet
high performance requirements and stringent constraints pertaining to cost, size
and energy consumption, these embedded computers tend to have complex, het-
erogeneous multiprocessor architectures. This architectural complexity, coupled
with the ever-growing complexity of the multimedia applications themselves, re-
sults in a very complex workload behavior and by that poses many challenges to
the workload modeling.

In this thesis, we argue that the variability of various parameters of the multi-
media workloads is the key property to be captured in a workload model for the
embedded systems design. We show that conventional workload models fail to
accurately characterize the dynamic nature of the multimedia workloads and, as
a result, return overly pessimistic estimations of system performance (especially,
if worst-case performance bounds are of interest). As a solution, we propose a
novel workload model capable of accurately capturing the workload’s dynamic
nature. We demonstrate the advantages of the proposed workload model over
conventional ways to characterize the workload and developa number of system-
level design methods which use this model. These methods include system-level
performance analysis, automatic identification of representative workload sce-

iv Abstract

narios for system simulation, design and optimization of resource management
policies and a run-time processor rate adaptation strategyfor energy-efficient
processing of media streams on heterogeneous multiprocessor embedded archi-
tectures with stringent memory constraints. We demonstrate the utility of our
workload model and evaluate it through a number of case studies involving com-
parisons to detailed simulation models.

Zusammenfassung

Um ein erfolgreiches Computersystem zu entwerfen, müssen die Entwickler die
Rechenanforderungen für das System kennen. Daher ist es notwendig diese
Anforderungen mittels eines formalen Auslastungsmodellszu charakterisieren.
Dieses Modell repr̈asentiert eine Abstraktion der konkreten Rechenauslastung
und dient beim Entwurf als Eingabe für verschiedene kritische Entwurfsaufgaben.
Die Qualiẗat des Auslastungsmodells wirkt sich hierbei direkt auf dieQualiẗat der
hierauf basierenden Entwurfsentscheidungen aus.

Oftmals ist es schwierig, ein geeignetes Modell für die Auslastung von Com-
putersystemen in verschiedenen Einsatzgebieten zu finden.Ein solches Gebiet,
mit welchem sich auch diese Arbeit befasst, ist der Systementwurf von einge-
betteten Computern, deren Hauptfunktion die Echtzeit-Verarbeitung von Media-
Datenstr̈omen beinhaltet (z.B. Datenströme von Audio- und Video-Daten). In
letzter Zeit ist die Nachfrage nach solchen Computern stark gewachsen, da
sie zunehmend in den meisten elektronischen Produkten verwendet werden.
Besonders im Unterhaltungselektroniksbereich finden sich viele Beispiele wie
digitale Fernseher, Audio- und Video-Recorder, digitale Videokameras, Digi-
talempf̈anger, Multimedia-Mobiltelefone und andere elektronische Ger̈ate, die
Multimedia-Anwendungen unterstützen. Um die hohen Ansprüche an die Leis-
tung eines solchen Systems zu erfüllen, gleichzeitig aber die Budgets bezüglich
Kosten, Gr̈osse und Energieverbrauch nicht zu sprengen, werden diese einge-
betteten Computer als komplexe, heterogene Multiprozessorsysteme entwor-
fen. Die sẗandig wachsende Komplexität dieser Systeme und der darauf aus-
geführten Multimedia-Anwendungen führen zu einem sehr komplexen Verhalten
der Rechenauslastung, das die Modellierung erschwert.

In dieser Arbeit zeigen wir, dass die Variabilität verschiedener Kenngrössen
von der Multimedia-Rechenauslastung die Haupteigenschaftist, die ein geeig-
netes Auslastungsmodell umfassen sollte. Wir zeigen weiterhin, dass herk̈omm-
liche Auslastungsmodelle diese dynamischen Eigenschaften der Rechenauslas-
tung nicht genau modellieren und demzufolge zu pessimistische Abscḧatzungen
der Systemleistung liefern, besonders dann, wenn die Extremwerte der Leistung
von Interesse sind. Als L̈osung schlagen wir ein neuartiges Auslastungsmodell
vor, welches die dynamischen Eigenschaften der Rechenauslastung gut charak-
terisieren kann. Wir zeigen die Vorteile des vorgeschlagenen Modells gegen̈uber
herk̈ommlichen Auslastungsmodellen, und entwickeln einige Systementwurfs-

vi Zusammenfassung

methoden, welche auf diesem Modell beruhen. Diese Methodenumfassen die
Leistunganalyse auf Systemebene, die automatische Identifizierung der charak-
teristischen Rechenauslastung für die System-Simulation, den Entwurf und die
Optimierung der Strategien zum Management der Systemressourcen, und ein
Verfahren f̈ur die Anpassung der Prozessortaktfrequenz zur Laufzeit für eine
energieeffiziente Verarbeitung von Media-Datenströmen auf heterogenen einge-
betteten Multiprozessorsystemen mit Speicherplatzeinschränkungen. Wir zeigen
den Nutzen unseres Auslastungsmodells und evaluieren es durch eine Reihe von
Fallstudien, unterstützt durch detaillierte Simulationen.

vii

I would like to thank

• Prof. Dr. Lothar Thiele for advising my research work and providing an excellent
research environment,

• Prof. Dr. Petru Eles, for his willingness to be the co-examiner of my thesis,

• Prof. Dr. Samarjit Chakraborty for a very fruitful research cooperation,

• Dr. Jens Benndorf and Alexander Zhvania for their great encouragement and sup-
port, and

• my family for their love and understanding.

viii

ix

To my wife, Natalia, and
to my daughter, Ekaterina.

x

Contents

1 Introduction 1
1.1 Embedded Computers for Media Processing 2

1.1.1 Multiprocessor systems-on-chips 3
1.1.2 System-level view of media processing 5

1.2 System-Level Design Issues 5
1.2.1 Issues in design of multimedia MpSoCs 7

1.3 The Workload Modeling Problem 8
1.4 Thesis Contributions . 11
1.5 Thesis Overview . 12

2 System-Level Performance Analysis 13
2.1 Introduction . 14

2.1.1 Requirements . 14
2.1.2 Input specification . 14
2.1.3 Existing approaches to performance analysis 16

2.2 Modular Performance Analysis 17
2.2.1 Basic idea . 17
2.2.2 Real-Time Calculus . 19

3 Modeling Variable Workload 23
3.1 Related Work . 25
3.2 Variability Characterization Curves 28

3.2.1 Definitions . 28
3.2.2 Properties . 30
3.2.3 Discussion . 31

3.3 Variability Characterization Curves for Modeling
Multimedia Workload . 32
3.3.1 Execution model . 33
3.3.2 Definitions of multimedia VCC types 34

3.4 Workload Transformations . 37
3.4.1 The workload transformation operation 38
3.4.2 Workload transformations for multimedia VCCs 39
3.4.3 Extended Modular Performance Analysis Framework . . 42

xii Contents

3.5 Obtaining Variability Characterization Curves 47
3.5.1 Objectives and limitations 47
3.5.2 Obtaining VCCs from traces 49
3.5.3 Obtaining VCCs from constraints 50
3.5.4 Obtaining VCCs from formal system specifications . . . 52

3.6 Experimental Evaluation . 53
3.6.1 Processor clock rate optimization under buffer constraint 55
3.6.2 Processor clock rate optimization under delay constraint 64

3.7 Summary . 70

4 Workload Design 71
4.1 Introduction . 72
4.2 Related Work . 74
4.3 Overview . 75
4.4 Workload Characterization . 76
4.5 Workload Classification . 79

4.5.1 Dissimilarity based on a single VCC type 79
4.5.2 Dissimilarity based on several VCC types 80
4.5.3 Clustering . 80

4.6 Empirical Validation . 81
4.7 Summary . 86

5 Designing Stream Scheduling Policies 87
5.1 Stream Scheduling under Buffer Constraints 89

5.1.1 Set-top box application scenario 89
5.1.2 The stream scheduling problem 90

5.2 Related work . 93
5.3 Design Framework . 95
5.4 Applying Modular Performance Analysis 96

5.4.1 Problem formulation 96
5.4.2 Computing the required buffer space 99
5.4.3 Illustrative case study 101

5.5 Checking Feasibility of Stream Schedulers106
5.5.1 Problem formulation 107
5.5.2 Service bounds . 108
5.5.3 Feasibility check . 111
5.5.4 Case study: Evaluating TDMA schedulers 112

5.6 Summary . 119

6 Energy-Efficient Stream Processing 121
6.1 Introduction . 122
6.2 Related Work . 124
6.3 Motivating example . 128

Contents xiii

6.4 Adaptive Run-Time Scheduling with VCCs 131
6.4.1 Workload and service characterization 132
6.4.2 Safe service rate . 133
6.4.3 Adapting processor speed at run time 134
6.4.4 Accounting for variable execution demand 136
6.4.5 Using dynamic VCCs 137
6.4.6 Notes on implementation 139

6.5 Experimental Results . 141
6.5.1 Experimental setup . 141
6.5.2 Qualitative examination 142
6.5.3 Quantitative comparison 143
6.5.4 Energy savings vs. implementation overhead 145

6.6 Summary . 146

7 Conclusions 147

A Simulation Framework 149
A.1 Instruction set simulator . 150
A.2 System simulator . 151

Bibliography 153

xiv Contents

1
Introduction

Design of virtually any computer system starts from definingthe system’s in-
tended range ofapplications. Subsequently, designers try to architect the com-
puter system such that it supports its target applications in a most efficient and
economical way. The designers optimize the system architecture based on such
criteria as system’s cost, size, performance and energy consumption. In this
process, knowing the characteristics of theworkloadwhich the target applica-
tions will impose on the architecture is essential for arriving at an optimal archi-
tectural solution.

Those workload characteristics that are important in a given design context
can be captured in aworkload model. Using such a model is an established prac-
tice in computer system design and performance evaluation.A workload model
serves to formally characterize the workload and on the basis of this characteriza-
tion to distinguish between different workload scenarios.Such a characterization
represents an important input to the system architecture design and optimization
process. Further, a workload model is indispensable duringdesign of various
resource management policies and run-time adaptation strategies for the archi-
tecture. Typically, it is also an integral part of aperformance modelused for
performance analysis. How good (e.g. accurate, reliable and efficiently analyz-
able) a workload model is largely determines the quality of the design solutions
and the accuracy of the performance estimations based on it.In many computer
design contexts, finding an appropriate workload model represents a difficult
problem.

In this thesis, we address the problem of modelingmultimedia workloads
for system-level design of embedded systems whose functionality involves real-
time processing of media streams, e.g., streams containingaudio and video data.

2 Chapter 1. Introduction

Driven by application requirements and fuelled by technological advances, the
architectures of such embedded systems are increasingly being designed to con-
tain a composition of diverse parallel processing elementsintegrated on a single
chip. Suchheterogeneous multiprocessor system-on-chip(MpSoC) architectures
have a potential to provide high performance and flexibilityin a cost- and energy-
efficient manner. However, in many cases, this potential is difficult to realize as
there is still a lack of methods and tools that could streamline the design process
of MpSoC architectures while producing high-quality results. This problem to
a large extent stems from the inability of the models traditionally used for the
system-level design to accurately capture important characteristics of the multi-
media workloads imposed on the MpSoC architectures as a result of processing
media streams.

This chapter first introduces the workload modeling problemarising in the
system-level design context of heterogeneous multiprocessor embedded comput-
ers for media processing, such as multimedia MpSoCs. After that, it summarizes
contributions and gives an outline of this thesis.

1.1 Embedded Computers for Media Processing
The number of various consumer electronics products supporting multimedia ap-
plications rapidly grows. Digital TVs, DVD players, digital video cameras, ad-
vanced set-top boxes, media adapters, game consoles and multimedia-enabled
cell phones are just a few examples of such products. The vastmajority of
these products have special-purpose computers embedded inthem. The work-
loads imposed on theseembedded computersare dominated by applications in-
volving digital processing of media streams, such as audio,video, graphics, as
well as other kinds of streaming data (e.g. web or voice-over-IP traffic). A
typical multimedia application includes receiving data streams from the envi-
ronment (e.g. from a microphone or a broadband communication network),
processing these streams using various algorithms — mainlyfalling into four
categories: compression-decompression algorithms, digital signal processing,
content analysis and network packet processing [38, 173] — and sending the
processed streams back to the environment (e.g. to display devices).

Embedded systems like those just described have to process media streams
under stringent timing constraints determined by the environment. For example,
a digital video camera has to process video frames at the ratewith which they
arrive at its input. Furthermore, strict delay and jitter constraints may be asso-
ciated with the processing of each individual frame. If these timing constraints
are not met, the quality of the processed video stream may seriously degrade.
Therefore, during design of suchreal-time embedded systems, ensuringtempo-
ral correctnessof their behavior is equally important as ensuring its functional
correctness.

1.1. Embedded Computers for Media Processing 3

The need to execute complex media processing algorithms under tight tim-
ing constraints implies that the embedded computers have tobe designed to
sustainhigh computational loads. On the other hand, to be suitable for the
deployment in the consumer electronics products, these embedded computers
must be aggressively optimized to havelow energy consumption and cost. In
addition, continuous evolution of multimedia standards and emergence of new
media formats, coupled with ever increasing complexity of multimedia applica-
tions, motivateflexiblearchitectures. This combination of requirements calls for
application-specific,heterogeneous architecturescontaining multiple computa-
tional components with different degrees of programmability, ranging from fully
programmable processors to dedicated function blocks.

1.1.1 Multiprocessor systems-on-chips

Rapid advances of the integrated circuit technology make it possible to design
and implement embedded systems asmultiprocessor systems-on-chips(MpSoCs)
[172]. According to the MpSoC paradigm, multiple coarse-grain components of
an embedded architecture (e.g. multiple processors, busses, memories, periph-
eral devices, etc.) are integrated on a single chip. This enables creation of flex-
ible heterogeneous architectures that can satisfy high performance requirements
of the multimedia applications in a cost- and energy-efficient way. Hence, in-
creasingly, embedded computers for media processing are being implemented as
MpSoCs.

There are many examples of multimedia MpSoCs available from the indus-
try and academy [38, 62, 63, 151, 155]. Most of them follow thedesign pattern
shown in Fig. 1: A typical multimedia MpSoC contains a numberof software
programmable processors (CPUs, DSPs, media processors, etc.), weakly pro-
grammable co-processors, fixed-function hardware modules, and peripheral de-
vices (e.g. video and audio I/O blocks). These coarse-graincomputational com-
ponents are interconnected by an on-chip communication network which may
encompass various types of busses, bridges, direct memory access (DMA) con-
trollers, distributed memories, and other communication components. Following
the emergingnetwork-on-chip(NoC) paradigm [31, 79], the on-chip communi-
cation infrastructure may resemble a large-scale computernetwork, involving
such concepts as routers, switches, protocols, communication queues, etc.

The on-chip communication network may have a complex architecture con-
sisting of several subnetworks interconnected by bridges,as shown in Fig. 1. A
subnetwork (low-level network) combines intensively communicating computa-
tional components into a tight cluster (subsystem). In thisway, the local commu-
nication traffic between the components within a subsystem is isolated from the
system-wide data exchange taking place via a high-level on-chip network. Be-
sides supporting the system-wide communication, this high-level network pro-
vides an arbitrated access to a relatively large amount of inexpensiveoff-chip

4 Chapter 1. Introduction

Fig. 1: A multimedia MpSoC template architecture.

1.2. System-Level Design Issues 5

memory. This memory is primarily devoted for storing global data structures as
well as large data sets (e.g. full video frames) not fitting into smallerembedded
memorieslocated on the chip. The on-chip memory is typically more expensive
but faster than the off-chip memory. Distributed around thearchitecture, the em-
bedded memories store frequently accessed program code anddata structures.
They are also used to implement performance-critical data exchange between
the on-chip computational components. To communicate certain data types, the
components may need to bypass the bridges interconnecting different subnet-
works. For this, the components may be connected to more thanone subnetwork
or directly to each other, thereby resulting in an irregularapplication-specific
communication architecture.

1.1.2 System-level view of media processing

At the system level, a multimedia application executing on aheterogeneous mul-
tiprocessor architecture, such as a multimedia MpSoC, can beviewed as a set
of tasks (or processes) concurrently running on different execution resources of
the architecture. These tasks communicate with each other solely throughuni-
directional data streams[134, 135]. Each stream is sent from a producer task to
the corresponding consumer task through a first-in-first-out (FIFO) buffer. The
buffer allows forasynchronous communicationbetween the tasks, thereby lead-
ing to reduced communication overheads and increased utilization of the execu-
tion resources [95]. Within the architecture, the buffers are allocated in shared
memories or instantiated as dedicated hardware FIFO memoryblocks.

1.2 System-Level Design Issues
Although the integrated circuit technology provides greatopportunities for man-
ufacturing increasingly complex MpSoCs, optimally designing such systems un-
der high time-to-market pressures becomes more and more difficult. The grow-
ing complexity of MpSoCs poses many challenges to their system-level design.
Currently, there is a lack of methods and tools that could helpsystem designers
to effectively tackle this complexity. A comprehensive discussion of the system-
level design issues can be found elsewhere [72]. This section concentrates only
on few of them relevant to the workload modeling problem addressed in this the-
sis.

The goal of embedded system designers is to construct system’s architec-
ture out of a set of hardware and software components. Due to alarge number
of such components and their heterogeneity, integrating them into a consistent
working whole (such as an MpSoC) represents an excessive design effort. Well-
defined (and standardized) component interfaces and protocols can significantly

6 Chapter 1. Introduction

reduce this effort [72]. Although they may easy the task of building a function-
ally correct system, they cannot help inverifying whether the resulting system
architecture meets performance requirements of the targetapplications.

Platform-based designfurther reduces the system design complexity by pro-
viding a generic, domain-specific template architecture that only needs to be
customized for the target application range. Examples of such platforms in
the multimedia domain include OMAP from Texas Instruments [53], Nomadik
from STMicroelectronics [6] and Nexperia [38] from Philips. The platform
customization involves tuning various parameters of the template architecture,
such as bus widths, memory sizes, cache configurations, clock rates of proces-
sor cores,etc.; selecting and configuring resource management policies; and,
possibly, adding to the basic architecture some application-specific components
(e.g. co-processors), with the aim of obtaining an architecture that represents a
desirable tradeoff between performance, energy consumption and cost.

Already for systems of moderate complexity, the resulting design space formed
by all possible platform configurations may be huge and highly irregular. To effi-
ciently explore this space, system architects must be able to quickly evaluate the
performance of candidate architectures. The performance evaluation has to pre-
dict with a sufficient accuracy such characteristics of the prospective system as
throughput, memory requirements, utilization of execution resources, process-
ing delays,etc. It should also help system designers to identify performance
bottlenecks within the system.

Nowadays the mainstream in system-level performance evaluation of com-
plex real-time embedded systems relies on simulation. Although simulation
may return very accurate performance estimations, its coverage is limited only
to those workload instances that have been simulated. Hence, achieving a good
coverage necessitates multiple simulation runs using carefully chosenrepresen-
tative workload scenarios. In addition, accurate simulators oftentimes exhibit
high running times making them poorly suitable for a fast design space explo-
ration cycle.

Irrespective of how many and which workload scenarios have been simu-
lated, the simulation can never achieve, in a reasonable time, the full coverage
required for theperformance verification. Because of this, it may not be used, for
example, to verify whether an embedded system satisfies the imposed on it tim-
ing constraints in all possible workload scenarios. Such a verification is possible
using formal analytic approaches that performworst-case performance analysis,
i.e. return worst-case performance bounds.

The worst-case performance analysis uses aperformance modelwhich repre-
sents an abstraction encompassing all system’s states and behaviors and all pos-
sible workload scenarios. The performance analysis can therefore provide the
full coverage needed for the performance verification. Moreover, it is typically
faster than the simulation. However, due to the complexity of both the analyzed
architectures and their workloads, it is extremely difficult to find proper sys-

1.2. System-Level Design Issues 7

tem abstractions that would lead to accurate (i.e. tight) worst-case performance
bounds. This explains why in many design contexts, embeddedsystem engineers
prefer to use simulation for the performance evaluation, inspite of its drawbacks.

1.2.1 Issues in design of multimedia MpSoCs

The performance evaluation issues discussed so far arise invarious system-level
design contexts and are not pertinent exclusively to the domain of multimedia
MpSoCs. The discussion in this subsection concentrates on the design issues
that are more specific to this domain.

Users expect from the media devices a high-quality and stable delivery of a
multimedia content, and these expectations are growing fast. A central concern
in the design of multimedia MpSoCs is therefore to ensure a specified quality of
service(QoS) to the processed media streams. If a device has committed to pro-
vide a certain QoS level, it has to guarantee this level underany circumstances.
This requirement is especially difficult to fulfill because many multimedia appli-
cations imposehighly variable and unpredictable workloadson the underlying
architectures [14, 57, 142, 165]. The designers of multimedia MpSoCs therefore
face a challenging problem of designing architectures capable of providing a
predictable performanceunder uncertain workload conditions and stringent cost
and energy constraints.

The quality of media streams processed on an MpSoC depends ontwo fac-
tors:

• First, as mentioned in Section 1.1, a violation of thetiming constraintsassociated
with the stream processing may seriously impair the qualityof media streams.

• Second, the quality may also degrade if the FIFO buffers between the application
tasks executing on the MpSoC experienceoverflows or underflows. This leads
to the concept ofbuffer constraints: An overflow (underflow) buffer constraint
requires that the corresponding buffer never overflows (underflows).

Hence, the QoS guarantees are specified in terms of the timingand buffer con-
straints.

To provide the QoS guarantees under uncertain workload conditions, the re-
sources of an embedded architecture for media processing have to be dimen-
sioned for theworst-case workload. However, since the worst-case workload
occurs rarely, the resources may remain underutilized mostof the time. A way
to improve the utilization is to share the resources among several independent
concurrent applications (or application tasks). Such a sharing has to respect the
QoS guarantees associated with the processed media streams. This necessitates
deployment of sophisticatedresource management policies. These policies must
be able to satisfy timing and buffer constraints associatedwith several concur-
rent streams imposing varying resource demands on the shared communication
and computational components of the architecture. Whereas the current practice

8 Chapter 1. Introduction

relies on computationally expensive dynamic schemes [135,137], the goal is to
design low-overhead resource management policies.

A major design effort is directed towards making embedded systems energy-
efficient. This issue is crucial in the design of battery-operated multimedia de-
vices, such as portable media players or cell phones. Achieving the energy effi-
ciency requires multimedia MpSoCs to be adaptable to changing workload con-
ditions. For this, the architectures provide various energy-saving mechanisms,
e.g., support a variety of power modes. Intelligentrun-time adaptation strate-
giesare needed to control these mechanisms. For instance, to reduce the energy
dissipated on an MpSoC component, the operating frequency and voltage of this
component can be dynamically adjusted in response to workload fluctuations ex-
perienced by it. Such a run-time energy management must be performed without
jeopardizing the QoS guarantees associated with the media streams processed by
this component. This implies that the run-time adaptation strategies must be able
to handle the worst-case workload, which may occur sporadically.

1.3 The Workload Modeling Problem
Effectively addressing the system-level design issues outlined in the preceding
section requires a proper workload model:

• The selection of representative workload for an effective simulation-based per-
formance evaluation necessitates a comparison of different workload scenarios.
For the comparison, the workload scenarios have to be characterized based on a
model which captures interesting for the performance evaluation workload prop-
erties. For example, if designers intend to determine by thesimulation the re-
quired FIFO buffer sizes, they may want to identify a diverseset of workload
scenarios which produce maximum backlogs in different FIFObuffers of the
architecture. Thus, the model they use for the workload characterization may
include such a property as burstiness of the communication patterns between
application tasks.

• A workload model also forms the basis of any analytic performance model. It is
therefore responsible for tightness of the worst-case bounds returned by the per-
formance analysis. Tighter bounds imply less pessimism in the resource dimen-
sioning, thereby leading to lower system cost and energy consumption. Hence,
having a workload model which provides a pessimistic butaccurateworkload
characterization is essential in this context. Additionally, a successful workload
model should allow for an efficient analysis.

• Finally, a workload model is necessary in design of the resource management
policies and the energy-saving run-time adaptation strategies. These techniques
have to be aware of the workload dynamics. This implies that these dynamics

1.3. The Workload Modeling Problem 9

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

macroblock index [×104]

ex
ec

ut
io

n
re

qu
ire

m
en

t
[p

ro
ce

ss
or

 c
yc

le
s

×
10

4]

(b)

Fig. 2: Motivating example: A processor executing an MPEG-2 decoder application (a); and a
trace of execution requirements imposed on the processor by this application(b). The
plot shows the number of processor cycles required to decode a sequence of macroblocks
within an MPEG-2 video stream.

must be reflected in the workload model. As for the worst-caseperformance
analysis, such a model should describe the workload with a sufficient accuracy,
and, at the same time, if hard QoS guarantees are required, ithas to represent a
wort-case characterization.

Clearly, to be effective in the above roles, a workload model should pro-
vide a proper abstraction of the actual workload. However, due to the complex,
highly variable nature of many multimedia workloads, coming up with such an
abstraction represents a difficult problem. Existing system-level design meth-
ods and tools rely on workload models which are unable to accurately capture
the workload variability. As a consequence, they may produce unsatisfactory
results. Worst-case performance analysis methods are a salient manifestation of
this fact: Overly pessimistic bounds that they return sometimes are not useful at
all for an economical design.

Fig. 2 shows a simple example illustrating the above concern: The proces-
sor depicted in Fig. 2(a) executes an MPEG-2 decoding algorithm on a video
stream arriving from a network. The complex, highly variable nature of the

10 Chapter 1. Introduction

workload imposed by the video stream on this processor is apparent from the
plot in Fig. 2(b), which shows a trace of processor cycles required to decode a
sequence of macroblocks1 within the video stream.

While analyzing the performance of a system such as the one shown in Fig. 2,
the existing methods typically assume thateachmacroblock in the stream re-
quires for its processing the largest possible number of cycles, i.e. imposes on
the processor theworst-case execution demand(WCED). Such an assumption
would be necessary, for example, toguaranteethat the buffer at the input of the
processor in Fig. 2(a) never overflows. However, this assumption would be too
pessimistic and therefore may lead to unnecessary costly designs: The ratio of
the worst-case to the average load on a processor due to a multimedia application
can easily be as high as a factor of 10 [134]. In this case, the assumption that
eachmacroblock in the video stream requests from the processor the WCED
represents a very inaccurate workload abstraction. Hence,a better abstraction
capable of capturing the workload variability and thereby resulting in more ac-
curate performance estimates is needed.

Fig. 2 demonstrates only one aspect of the workload variability. In real-
ity, a typical multimedia task can be characterized by the variability of several
parameters. For example, in the scenario shown in Fig. 2, thearrivals of the me-
dia stream from the network may be characterized by bursts which depend on
the network congestion levels. Another source of the variability may be a non-
constant rate with which the MPEG-2 decoding task consumes the data from the
input buffer. Similarly, a task may produce the data at its output at a variable
rate. In addition, a combination of a particular application with a given hardware
architecture may result in many other sources of the variability. For instance, ad-
vanced microarchitectural features, such as caches and branch prediction, may
result in variable task execution times, etc.

Finally, at the system level, a composition of multiple tasks, executing con-
currently on distributed resources of an MpSoC and each characterized by vari-
ability of several parameters, results in complex non-functional interactions and
interdependencies between the architectural components [133]. Accurately esti-
mating performance of such a composition represents a challenging task. Even
more challenging task is toverify that the composition meets certain performance
requirements or to decide which resource management policies and run-time
adaptation strategies should be used to orchestrate it. This gives rise to the fol-
lowing research question:

What kind of workload model (and the associated with it analysis methods) can
help to effectively address these system-level design problems?

1An MPEG-2 video stream encodes a sequence of video frames. Every frame in the sequence
is composed out ofmacroblocks, with each macroblock representing a certain16 × 16 block of
pixels within the frame [118].

1.4. Thesis Contributions 11

1.4 Thesis Contributions
In this thesis, we propose a new model for characterization of multimedia work-
loads in the system-level design of heterogeneous multiprocessor embedded com-
puters. This workload model allows to effectively address many of the design
issues described in the preceding sections. In particular,this thesis makes the
following main contributions:

• We introduce the concept ofVariability Characterization Curves(VCCs) as a
means to characterize entire classes of increasing functions or sequences based
on their worst-case and best-case variability. We then define several VCC types
for the multimedia workload characterization (collectively referred to asmulti-
media VCCs).

• We extend the modeling capabilities of theModular Performance Analysisframe-
work [159, 160] and its mathematical foundation, theReal-Time Calculus[24,
121, 157, 158], with the multimedia VCCs. Towards this, we introduce the con-
cept ofworkload transformations, which enable anaccurate and efficientperfor-
mance analysis of heterogeneous multiprocessor embedded systems under vari-
able multimedia workloads. The extended analysis framework can return signif-
icantly tighter performance bounds than those achievable without the workload
transformations.

• We formulate the problem ofscheduling bursty media streams under strict buffer
constraintsand propose methods to address this problem. In particular,we
presenta framework for design of resource management policiesfor multimedia
MpSoCs. The framework provides methods to quickly evaluate the quality and
check the feasibility of various resource management policies to be deployed
in an MpSoC. It fully relies on the VCC-based characterization of the media
streams.

• We show how the VCC-based workload model can be used forenergy-efficient
media stream processing. Towards this, we develop a run-time processor rate
adaptation strategy which can be used in conjunction with the dynamic voltage
scaling to achieve considerable energy savings while processing bursty multime-
dia workloads under strict buffer constraints. In comparison to other methods
addressing similar problems, our scheme handles multimedia workloads char-
acterized by both, the data-dependent variability in the execution time of mul-
timedia tasks and the burstiness in the on-chip traffic arising out of multimedia
processing, and at the same time it provides hard QoS guarantees.

• We introduce the problem ofselecting representative workloadfor system-level
performance evaluation of MpSoCs and propose a solution to this problem for
the case of multimedia workloads. Our method employs VCCs for the work-
load characterization and supportsautomatic identification of the representative
workload.

12 Chapter 1. Introduction

• Finally, we demonstrate the utility and experimentally assess the quality of the
VCC-based workload model through several case studies involving realistic ap-
plication scenarios. In the experiments, we compare our model with the existing
analytic approaches and with a detailed (transaction-level) system simulator.

1.5 Thesis Overview
• The main purpose of Chapter 2 is to introduce the MPA frameworkwhose mod-

eling capabilities we extend in Chapter 3.

• Chapter 3 introduces the concepts of VCCs and workload transformations, de-
fines the multimedia VCC types and proposes several workload transforma-
tions based on them. This chapter also discusses possible ways to obtain VCCs
and presents results of an experimental evaluation of the VCC-based workload
model.

• In Chapter 4, we address the problem of selecting representative workload for
system-level performance evaluation of MpSoCs. We show how the VCC-based
workload characterization model can be used for quantitative comparison and
classification of media streams and present results of an empirical validation of
the proposed method.

• Chapter 5 introduces the problem of stream scheduling under buffer constraints
and presents the framework for design of resource management policies for mul-
timedia MpSoCs. It focuses mainly on the methods for quick feasibility tests of
stream schedulers and estimation of buffer memory requirements resulting from
deploying these schedulers on the processing elements of anMpSoC.

• Chapter 6 presents the VCC-based run-time processor rate adaptation technique
for energy-efficient media stream processing under buffer constraints.

• Finally, Chapter 7 summarizes main results of this work.

2
System-Level Performance Analysis

System-level performance analysis plays a key role in the design of complex em-
bedded systems. It is used early in the design cycle to estimate characteristics
of the prospective embedded system and based on this estimation make critical
design decisions. The quality of these decisions thereforelargely depends on the
quality of the estimates obtained from the performance analysis. This explains
why a significant research effort is being invested in devising efficient perfor-
mance analysis methods capable of producing accurate and reliable estimates of
the system performance.

This chapter introduces the problem of system-level performance analysis
of heterogeneous multiprocessor embedded systems. It briefly outlines existing
approaches to solving this problem and treats in detail one of them — the Mod-
ular Performance Analysis (MPA) framework based on the Real-Time Calculus
(RTC). This framework provides powerful abstractions and mathematical sup-
port for a compositional performance analysis of distributed embedded systems.
However, the basic abstractions it offers are not sufficientfor an accurate per-
formance modeling of heterogeneous multiprocessor embedded computers for
media processing. We will address this problem in the next chapter by extending
the modeling capabilities of the MPA framework.

14 Chapter 2. System-Level Performance Analysis

2.1 Introduction

2.1.1 Requirements

Early in the design cycle, embedded system designers face the problem of eval-
uating many candidate hardware-software architectures with respect to various
performance indexes. These indexes may include system’s throughput, response
times, end-to-end delays, resource utilization, memory requirements, etc. In
most cases, building a prototype for each design alternative to directly measure
these performance characteristics is infeasible because of high implementation
costs and stringent time-to-market constraints. On the other hand, due to the
increasing complexity of modern embedded systems, back-of-the-envelope esti-
mations cannot be used without taking the risk of being totally incorrect. Hence,
the only option left for the designers is to carry out the performance analysis
based on some kind of aperformance modelof the system. This can be a simu-
lator or a mathematical model. In any case, it should return sufficiently accurate
estimates of the system performance. Furthermore, to allowfor a fast design
space exploration, the performance model should also be efficiently analyzable
and easily constructible. The latter property is especially important for support-
ing automated design space exploration.

Designing embedded systems that must satisfy real-time constraints faces ad-
ditional challenges associated with the need toverify timing correctness of their
behavior. For instance, it might be necessary to verify whether the time elapsed
between two specified events within the systemeverexceeds a given value. Such
a verification can only be accomplished using a formal systemmodel support-
ing worst-case analysis, which implies a complete coverageof all possible states
of the system and of its environment. Neither system’s prototype nor its simu-
lator can be employed for the performance verification purposes as (due to the
high system complexity) it is hardly possible to check all system states within a
reasonable time frame.

2.1.2 Input specification

A starting point for the system-level performance analysisis a specification
which typically describes the following aspects of an embedded system:

• Application task structure
The application task structure is typically modeled by atask graph(or a set of
task graphs) that captures a partitioning of the target application into individ-
ual tasks, and models data and control dependencies betweenthem. Interactions
between the tasks in a task graph may be governed by a specificmodel of com-
putation. For example, multimedia applications are often modeled using the for-
malism ofKahn Process Networks[70, 134, 135], which assumes that the tasks
communicate via FIFO channels.

2.1. Introduction 15

• Task assignment to processing elements
The application tasks performing data transformations areassigned for execution
to computational resourcessuch as CPUs, DSPs and co-processors, while the
tasks responsible for data transfers are assigned tocommunication resourcessuch
as busses, DMA controllers, bridges, etc. Throughout this thesis we refer to
both resource types asprocessing elements(PEs) because in principle for the
performance analysis it is irrelevant whether an architectural resource executes
computation or communication tasks.

• Resource management policies
As a result of the task assignment, multiple tasks may be mapped on to one PE.
In this case, a scheduling (or arbitration) policy is deployed to manage tasks’
access to this PE. In general, several different schedulingand arbitration policies
may be deployed within the architecture.

• Storage resource allocation
Data arrays manipulated by the tasks, for example, the buffers implementing the
FIFO communication channels, are assigned to the off- and on-chip memories.

• Characteristics of processing elements
For the performance analysis we need to specify capabilities of processing el-
ements. Therefore, such parameters as clock rates of processors and effective
communication bandwidths of busses typically form a part ofthe input specifi-
cation.

• Task properties
These include a variety of relevant to the performance analysis task characteris-
tics, for example, the number of processor cycles needed to complete a task on a
given PE and the size of data items to be exchanged between thetasks.

• Characteristics of the environment
The input specification should also capture characteristics of the event streams to
be processed by the embedded system. These characteristicsmay include timing
properties of the event streams (e.g. their arrival rates) as well as their possible
contents, for example, different event types that may appear in a given event flow.

Ex. 1: Fig. 3 shows a mapping of an example application onto a hypothetical architec-
ture. The application is specified by two task graphs describing the processing
of two independent event flows. The nodes in a task graph correspond to the
application tasks, while the edges model the data dependencies between these
tasks.T1 andT4 are communication tasks mapped on to a bus, which is shared
between these tasks.T1, T3, andT5 are computational tasks.T1 is assigned
for execution to a DSP, whereasT3 andT5 share a CPU.

16 Chapter 2. System-Level Performance Analysis

Fig. 3: An example application-to-architecture mapping.

2.1.3 Existing approaches to performance analysis

Based on the kind of specification described in the previous subsection, design-
ers need to build a performance model of the system. They can do this in several
ways. For example, they could construct a system simulator [15], use a trace-
based performance evaluation technique [83, 125], create astochastic model of
the system [93] or employ a worst-case performance analysismethod. Their
choice depends on the analysis goals (and on the available expertise and tools).
A comparative overview of various approaches to the performance analysis of
embedded systems can be found elsewhere (see, e.g. [159]). In this chapter, we
concentrate on techniques suitable for theperformance verification, i.e. on the
worst-case performance analysis methods. Furthermore, here we limit the dis-
cussion only to those methods that can be applied to distributed (multiprocessor)
embedded systems having heterogeneous hardware-softwarearchitectures. By
theheterogeneitywe mean not only the diversity of processing elements making
up the architecture but also the variety of scheduling and arbitration policies that
might be deployed on those processing elements.

The need to ensure the timing correctness ofdistributed real-time embed-
ded systems has led to the development of methods that can analyze worst-case
end-to-end response times of entire task chains mapped ontomultiple processor
nodes communicating via a shared bus. Such methods have beentermedholis-
tic scheduling analysisbecause they tightly integrate the schedulability analysis
of individual processing elements (i.e. processors and communication channels)
into an overall piece of analysis [163]. The first holistic method proposed in
Tindell et al. [163] addressed systems with fixed priority scheduling policy de-
ployed on processor nodes communicating via a bus using a time division multi-
ple access (TDMA) protocol. Later many extensions and generalizations of this
method appeared in the literature (see, e.g. [48, 128, 130] and references therein).

2.2. Modular Performance Analysis 17

These methods can be very effective in modeling complex timing relations (e.g.
phasing) between the tasks. However, they are often attributed a lack of scalabil-
ity and modularity [68, 159], which are needed for modeling large heterogeneous
systems (perhaps, with hundreds of nodes) and for quick modifications of these
performance models during a design space exploration cycle. In other words,
these techniques might need to be redesigned for each new system configura-
tion.

The above problem has been partially addressed in Ernstet al. [68, 133].
Their approach advocates acompositional performance analysismethodology
which uses propagation of abstract event streams between various scheduling
analysis techniques locally applied to the processing elements (components).
The basic idea is to reuse existing (standard) scheduling techniques for the lo-
cal analysis. This entails using standard event models (e.g. sporadic, periodic,
periodic with jitter, periodic with bursts) and adapting them between the com-
ponents which use incompatible event models. These adaptations as well as the
standard event models themselves may be overly pessimistic, leading to a loss in
accuracy. Furthermore, since the method heavily relies on the existing schedul-
ing analysis techniques, supporting any new (not yet existing) scheduling policy
necessitates devising an analysis for it; i.e. essentiallythe method suffers from
the same problem as the holistic scheduling analysis discussed above.

In the next section, we describe the MPA framework [159, 160], which tries
to overcome the drawbacks of other scheduling analysis methods by following a
completely different approach to the performance analysis, which does not rely
neither on the standard event models nor on the traditional scheduling analysis
methods, while offering a high degree of generality and modularity.

2.2 Modular Performance Analysis

2.2.1 Basic idea

In essence, any performance analysis involves two basic concepts — theservice
requestedby an application (task) and theservice offeredby the architecture to
this application (task). Temporal interactions between the requested and the of-
fered service determine performance characteristics of the system. The ultimate
goal of any performance analysis method is therefore to properly capture these
interactions. In this subsection, we describe how this is achieved in the MPA
framework.

The basic idea behind the MPA framework is to model the interactions be-
tween the requested and the offered service using the concept of scheduling net-
work. In a scheduling network, the requested and the offered service are modeled
by event and resource streams. These streams flow through the network nodes,

18 Chapter 2. System-Level Performance Analysis

Fig. 4: A scheduling network modeling the application-to-architecture mapping shownin Fig. 3.

calledperformance components, that model the interactions between the streams.
Fig. 4 shows an example scheduling network corresponding tothe application-
to-architecture mapping discussed in Ex. 1. Solid and dashed arrows correspond
to the event and resource streams, respectively.

An elementaryperformance component receives one event and one resource
stream as its input (see Fig. 4). The input event stream abstracts arrivals of a
certain request type, while the input resource stream models availability of a
given resource for processing of this request type. Abstractly seen, the input
event stream triggers the performance component, which in response proceeds
by consuming resources provided by the input resource stream. This represents
execution of a task on a PE.

An elementary performance component typically also produces one event
and one resource stream as its output. An event within the output event stream
signifies a completed processing of a corresponding input event. The output re-
source stream represents theremaining service, i.e. the service which has not
been consumed by the performance component. This remainingservice can then
be used to process another event stream, i.e. it may serve as an input to an-
other performance component. Likewise, the output event stream may represent
requests for another resource, i.e. it also may serve as an input to a different
performance component. In this way, a scheduling network representing a per-
formance model of the entire system (with a multitude of event streams and
processing resources) can be constructed out of multiple independent perfor-
mance components.

Besides the elementary performance components, a scheduling network may

2.2. Modular Performance Analysis 19

contain other types of nodes:

• Resource modulesmodel processing capabilities of PEs within the architecture.
A resource module produces a stream corresponding to theunloadedresource
that it models. In Fig. 4, resource modules are marked with dashed boxes. They
represent the bus, DSP and CPU resources from Ex. 1.

• Input modules inject into the scheduling network event streams generatedby
the system’s environment. In Fig. 4, these areIn1 andIn2 modules.

• Scheduling modulesdistribute resource streams between different performance
components in accordance with a given resource management policy. A schedul-
ing module receives and produces only resource streams (originated by the same
resource). Using scheduling modules we can model differentscheduling and ar-
bitration policies deployed on the PEs of the architecture.In Fig. 4, for example,
we haveshare andsum scheduling modules.

• Hierarchical modules are complex performance components containing sub-
networks of other components.

For the performance analysis, in addition to thestructuralperformance view
of the system provided by the scheduling network, we need also to characterize
behaviorof the event and resource streams, and of the associated performance
components. That is we need to characterize timing properties of the streams
and determine how these properties change when the streams pass through the
performance components in the scheduling network. This canbe done in many
different ways. For example, we could simply simulate the scheduling network
using appropriate event traces. However, our objective is amethod which can be
used for the worst-case performance analysis. To achieve this objective, we can
rely on the mathematical foundation provided by the Real-Time Calculus, which
is briefly introduced in the next section.

2.2.2 Real-Time Calculus

The Real-Time Calculus [24, 121, 157, 158] provides powerful abstractions of
the event and resource streams and uses these abstractions to mathematically
model the behavior of an elementary performance component.This basic model
can then be used for a component-wise evaluation of a whole scheduling net-
work. In addition, the Real-Time Calculus allows to compute various perfor-
mance indexes of the system, such as upper bounds on the delayand backlog
experienced by the events while being processed in the system.

Characterization of event and resource streams
Timing properties of event and resource streams are captured usingarrival and
service curves.

20 Chapter 2. System-Level Performance Analysis

Fig. 5: Modeling periodic event streams with jitter using arrival curves.

An event stream is abstracted by a pair of arrival curves,ᾱu(∆) andᾱl(∆),
which give respectively upper and lower bounds on the numberof events seen in
the event stream within any time interval of length∆.

A resource stream is modeled by a pair of service curves,β̄u(∆) andβ̄l(∆),
which give respectively upper and lower bounds on the resource amount (e.g.
number of processor cycles) offered within any time interval of length∆.

The arrival and service curves can accurately describe streams with arbitrary
complex timing behavior. On the other hand, a single pair of upper and lower
curves can capture an entire class of streams with similar timing properties. For
example, many standard event models (e.g. sporadic, periodic, periodic with
jitter, periodic with bursts) can be represented by the arrival curves [24]. Fig. 5
illustrates this fact by showing how the arrival curves model a class of periodic
event streams with jitter.

Scheduling network evaluation
The performance analysis using the MPA approach entails a scheduling network
evaluation. The evaluation can be accomplished component-wise, by propagat-
ing the event and resource streams through the network. Doing this requires a
model describing how the timing properties of the event and resource streams get
changed as a result of passing through the performance components. Since event
and resource streams are abstracted by the arrival and service curves, we need
a mathematical model describing how an elementary performance component
transforms the shapes of these curves. Such a model, provided by the Real-Time
Calculus, is given by the following set of equations [24]:

ᾱu
O = [(ᾱu

I ⊗ β̄u
I)⊘ β̄l

I] ∧ β̄u
I (2.1)

ᾱl
O = [(ᾱl

I ⊘ β̄u
I)⊗ β̄l

I] ∧ β̄l
I (2.2)

β̄u
O = (β̄u

I − ᾱl
I)⊘ 0 (2.3)

β̄l
O = (β̄l

I − ᾱu
I)⊗ 0 (2.4)

ᾱu
I , ᾱl

I , β̄
u
I and β̄l

I denote the arrival and the service curves characterizing the
event and the resource streams at the input of an elementary performance com-
ponent, respectively.̄αu

O, ᾱl
O, β̄u

O andβ̄l
O provide the corresponding characteri-

2.2. Modular Performance Analysis 21

zation of the streams at the output of the component. The model assumes that
the events belonging to the same stream are processed in their arrival order and
that they are stored in a FIFO buffer while waiting to be served.

Equations (2.1)–(2.4) use(max,+)- and(min,+)-algebra operators defined
as follows [10].

(f ⊗ g)(t) = inf
0≤u≤t

{f(t− u) + g(u)} (2.5)

(f ⊗ g)(t) = sup
0≤u≤t

{f(t− u) + g(u)} (2.6)

(f ⊘ g)(t) = sup
u≥0

{f(t+ u) − g(u)} (2.7)

(f ⊘ g)(t) = inf
u≥0

{f(t+ u) − g(u)} (2.8)

(2.5) and (2.6) denote(min,+) and (max,+) convolutions, respectively, and
(2.7) and (2.8) are corresponding deconvolutions.f(t) and g(t) denote non-
decreasing functions.

Modeling scheduling polices
In comparison to other performance analysis methods, the MPA framework mod-
els the service offered to an event streamexplicitly, using the concept of re-
source streams [159]. This approach has a number of advantages: First, it allows
to model arbitrary complex resource availability patternswhich may be expe-
rienced by individual event streams (or tasks) as a result ofapplying a certain
scheduling or arbitration policy. Second, it supports the modularity of the per-
formance analysis. Third, using the concept of resource streams it is easier to
model hierarchical scheduling schemes and various resource reservation mecha-
nisms.

A variety of scheduling and arbitration policies can be modeled by a proper
calculation (or definition) of the service curves within a scheduling network. For
example, a fixed priority scheduling can be modeled by directly connecting the
output resource stream (i.e. the remaining service) of a higher priority com-
ponent to the resource input of the next (in terms of priority) component. For
example, in the scheduling network in Fig. 4, tasksT3 andT5 are scheduled on
the CPU resource using the fixed priority scheme.T3 has the highest priority.

To model proportional share schemes and their derivatives,we need to in-
troduce into the scheduling network the corresponding scheduling modules that
distribute the resource streams according to specified shares, and after that col-
lect the remaining service. Fig. 4 depicts an example of suchan arrangement for
tasksT2 andT4.

22 Chapter 2. System-Level Performance Analysis

Fig. 6: Computing upper bounds on the delay,D, and the backlog,B.

Calculating upper bounds on delay and backlog
Given an upper arrival curvēαu and a lower service curvēβl at the input of an
elementary performance component, we can compute upper bounds on the delay
and on the backlog experienced by the event stream as a resultof passing through
this component [85]:

delay ≤ sup
∆∈R≥0

{

inf{τ ≥ 0 : ᾱu(∆) ≤ β̄l(∆ + τ)}
}

(2.9)

backlog ≤ sup
∆∈R≥0

{ᾱu(∆) − β̄l(∆)} (2.10)

Fig. 6 illustrates these formulas.
In a similar way, we can find upper bounds on the total delay andon the total

backlog which an event stream may suffer as a result of passing through a chain
of performance components. How this can be done is describedin [85, 159].
This allows to estimate such performance indexes of an embedded system as the
worst-case end-to-end delay and memory requirements.

3
Modeling Variable Workload

This chapter introduces two central to this thesis concepts:

• Variability Characterization Curves (VCCs); and

• Workload Transformations.

VCCs allow to capture variability of different workload characteristics. In
this chapter, we define several VCC types for modeling multimedia workloads
in the system-level design context of MpSoC architectures and describe various
ways to obtain VCCs.

Tightly coupled with the concept of VCCs are the workload transformations.
They extend the modeling capabilities of the RTC-based Modular Performance
Analysis (MPA) framework introduced in the previous chapter. This extension
potentially leads to considerably tighter analytic performance bounds than those
obtained using traditional workload models. This chapter provides a discus-
sion on how the workload transformations can be optimally placed in an RTC
scheduling network.

Towards the end of this chapter we present the results of an experimental
study comparing the proposed VCC-based workload model with a conventional
model. We also assess the quality of the VCC-based model using asystem sim-
ulator. As a basis for the experimental study we consider twodesign problems
from the area of media processors and show how they can be solved using the
VCC-based model. We thereby demonstrate first applications ofVCCs in the
system-level design context of multimedia MpSoC architectures. Other applica-
tions of VCCs in this context will be presented in the followingchapters.

24 Chapter 3. Modeling Variable Workload

Contributions of this chapter

• We introduce the concept of Variability Characterization Curves—a general model
for compact representation of whole classes of increasing functions or sequences
based on their worst-case and best-case variability.

• We propose and define VCC types for workload modeling of multimedia appli-
cations mapped onto multiprocessor heterogeneous architectures.

• We extend the existing RTC-based MPA framework with workloadtransforma-
tion operations which enable system-level performance analysis of heteroge-
neous multiprocessor architectures under workloads characterized by variability
of several parameters, such as task’s execution demands andI/O rates. We show
how such workload transformations can be optimally used in the analysis.

• Through experiments we evaluate the VCC-based workload model. We quantify
the gain from using this model by comparing it to a traditional task model widely
used in the literature. We also demonstrate utility and assess the accuracy of the
VCC-based model using measurements obtained from a detailed system simula-
tor. This experimental study gives important insights on the nature of MPEG-2
video workloads and their characterization with VCCs.

Organization of this chapter

• Section 3.1 gives an overview of the related work

• Section 3.2 introduces the concept of VCCs and develops the necessary theoret-
ical background.

• Section 3.3 reviews key properties of multimedia workloadsand on this basis
defines VCC types for multimedia workload modeling (multimedia VCCs).

• Section 3.4 introduces the concept of workload transformations and proposes
several such transformations based on the multimedia VCCs defined in Sec-
tion 3.3. Furthermore, this section discusses optimal placement of workload
transformations in a RTC scheduling network.

• Section 3.5 elaborates on the ways to obtain VCCs.

• Section 3.6 presents results of the experimental evaluation of the VCC-based
model.

• Finally, Section 3.7 concludes the chapter.

3.1. Related Work 25

3.1 Related Work

This section outlines the existing approaches to model the workload for real-time
scheduling and performance analysis of embedded systems.

Many results in the classical real-time scheduling theory [41, 150] are based
on the task model introduced in [100] by Liu and Layland. In this model, tasks
are characterized by tuples(Ci, Ti), whereCi is execution time of taskτi and
Ti is the period with whichτi arrives into the system; tasks are assumed to be
independent and have deadlines equal to their periods. Subsequent research work
mainly aimed at relaxing the assumptions about strict periodicity of task arrivals
and deadlines. For instance, [97] considers tasks with arbitrary deadlines, less
than their periods, whereas in the model of [92] the deadlines are greater than
the task periods. The model in [96] allows periodic tasks to arrive with fixed
offsets in time. In [162] tasks can have arbitrary deadlines, release jitter and
bursty arrivals. Sporadic tasks are often modeled by constraining their minimum
inter-arrival time [101].

To provide hard real-time guarantees workload models used in the classical
real-time scheduling theory assume that every task instance requires WCET to
complete. This assumption, although safe, is too pessimistic for a large class
of applications characterized by high execution time variability; it may lead to
poor processor utilization and, as a consequence, to designs with unreasonably
high cost or power consumption or both. Different approaches addressing this
problem have been reported in the literature [140]. In the sequel we focus the
discussion on those approaches that further generalize theworkload model.

One important direction in modeling tasks characterized byvariable execu-
tion demands and irregular arrivals is to usestochastic models. For example,
task models in [7, 71, 109, 161] specify task execution demands using probabil-
ity distributions and assume periodic arrivals. Methods in[7, 161] handle sets of
independent tasks, while [71, 109] consider task sets with precedence relations.
Real-Time Queuing Theory, first introduced in [93], uses stochastic character-
ization for inter-arrival times, execution demands and deadlines, and relies on
queuing theoretic methods for performance evaluation. These and other stochas-
tic workload models can result in tighter analytic bounds and hence in more
economical designs, but at the expense of some (usually controlled) fraction of
missed deadlines. Because of this their application area is limited to soft real-
timesystems only.

Another line of research work aims at reducing the pessimismof the clas-
sical real-time task models by developing more expressive “deterministic” task
models suitable for the analysis ofhard real-timesystems. Mok and Chen [117]
proposes amultiframe task model. As its basis this model has the classical pe-
riodic task model of Liu and Layland [100]; however, it permits tasks whose
WCETs may vary from one instance to another. Such a task can be represented
by a set of subtasks, each characterized by its own WCET. The subtasks in the

26 Chapter 3. Modeling Variable Workload

set are cyclically triggered in a predetermined order and with a time separation
equal to the period of the task they represent. In [13] this multiframe model has
been extended to allow for the time separation between subtask activations to be
also variable (i.e. to cycle through a fixed pattern).

Baruah [11, 12] presents arecurring real-time task model(RRT)—a further
generalization of the multiframe models. In the RRT model, a task is modeled
by a set of subtasks arranged in a directed acyclic graph representing the con-
ditional, non-deterministic behavior of the task. Each subtask is characterized
by its WCET, a relative deadline and a minimum triggering separation from its
direct predecessors. The whole task graph is triggered sporadically with a spec-
ified minimum time separation between the triggering of the last subtask in the
graph and the triggering of the next task instance. Another workload model, also
using conditional directed acyclic graphs to model tasks, is reported by Pop et
al. in [127]. Instead of associating a deadline toeachsubtask in a task graph,
the model in [127] associates a single deadline with the whole graph. Further-
more, it exposes the parallelism within a task for mapping ona multiprocessor
architecture.

In comparison to classical task models, the RRT model offers agreat flexi-
bility in modeling variability of the execution demand and irregular inter-arrival
times. This flexibility is, however, limited torecurring patterns. If workload
bursts (characterized by periods with dense arrivals of tasks or increased execu-
tion demand or both) occur relatively seldom, then avoidingoverly pessimistic
results under the RRT model necessitates to consider very large task graphs,
leading to inefficiency of the analysis. In other words, designers have to trade
off the accuracy of the analysis for the analysis time, whichfor the RRT model
increases exponentially with the problem size [12].

Inspired by traffic characterization models in the domain ofcommunication
networks [85], an alternative workload model generalizingmany previous re-
sults, including the RRT model, has been proposed by Thiele etal. [121, 158].
The workload imposed by a task on a processor or a communication resource is
abstracted by anarrival curvegiving the maximum amount ofresourceswhich
can be requested by the task within any time interval of a given length. In ad-
dition, this model also captures the variability of the service offered to a task:
a service curvegives the minimum amount of resources offered to a given task
on a resource within any time interval of a given length. The resulting work-
load model can be efficiently analyzed using the mathematical framework of
Real-Time Calculus(RTC) [158], having its roots in the min-max algebra [10].
As the RRT model, the arrival curves allow to capture arbitrary complex pat-
terns of inter-arrival times and execution demands; however, in contrast to the
RRT model, an accurate characterization of both short-term and long-term be-
havior of the workload is achieved in a relatively compact form. Furthermore,
the complexity of the analysis in general is not dependent onthe accuracy of
the workload model, and efficient approximations can be doneif needed [156].

3.1. Related Work 27

Another important feature of the workload model presented in [121, 158] is that
unlike previous lines of work this model explicitly characterizes the service vari-
ability, thereby allowing to effectively abstract arbitrary complex scheduling and
arbitration policies deployed on communication and computational resources, as
well as such architectural features as caches, pipelines, write buffers, protocols
etc. Continuing this line of work, Chakraborty and Thiele [26]proposed a new
task model for streaming applications combining the concept of arrival curves
with the RRT model, which may help to reduce the size of task graphs of the
RRT model while modeling complex event streams.

Most of the approaches discussed so far are not concerned with modelling
tasks whichasynchronouslyinteract while processing event streams; meaning
that these approaches assume that a task producing an event (or a stream object)
is never activated again before the dependent task consumesthis event (and fin-
ishes its processing). Hence, these approaches are not interested in the properties
of output event streams (activating the consumer tasks) andin variations of input
and output rates of tasks (i.e. in the number of events consumed or produced by
a task per activation). However, these properties of the workload become impor-
tant in context of distributed execution platforms for stream processing applica-
tions. In this context different event streams may interacton shared resources,
leading toscheduling anomalies: when a best-case load on one architectural
component may cause a worst-case load scenario for another component [133].
In this situation it becomes important to capture in the model not only worst-case
but also best-case behavior of the workload.

The importance of modeling both the worst-case and the best-case workload
behavior in design context of embedded systems has been recognized in such
modeling frameworks as SPI (System Property Intervals) [171, 182, 183]. In
contrast to the research work on real-time scheduling mentioned above, the SPI
framework has a different focus: its prime goal is modeling of heterogeneous em-
bedded systems for theirglobal performance analysis, design space exploration,
optimization and synthesis. The SPI model represents a system as a network of
communicating processes which allows (besides other communication modes)
the asynchronous communication via unidirectional FIFO channels. In the SPI
model each process is characterized by a set ofbehavioral intervalscapturing
worst-case and best-case values of various process properties such as execution
time and the number of tokens consumed from input and produced to output
channels. The SPI framework allows for refinement of this workload model
through the concept ofprocess modes. Following this concept, each process is
associated with a set of modes, each of which is characterized by its own set
of the behavioral intervals. When the model is evaluated (e.g. executed), the
process may change its modes depending on, for example, input values.

Through the concepts of behavioral intervals and process modes the SPI
framework can model the workload with a high accuracy. However, this re-
quires anexplicitspecification of conditions upon which the modes are changed,

28 Chapter 3. Modeling Variable Workload

and therefore significantly complicates the workload modeling process and may
preclude an efficient analyzability of the model. In fact, the SPI model offers a
flexible tradeoff between the accuracy of the workload modeland the modeling
overhead: depending on the scenario a designer may decide how many different
modes to associate with a process. In the simplest case, a process may have only
one mode, as it is the case, for example, in [67] where the input (output) rate of
a process is specified with a single behavioral interval. This approach, however,
results in overly pessimistic bounds and does not accurately capture the long-
term behavior of the workload, which is important, for instance, in multimedia
applications.

Another framework for analysis of system properties proposed in [23, 24,
157] is based on RTC developed in [121, 158]. In comparison tothe model used
in [121, 158], the workload model in [23, 24, 157] has a concept of lower and
upperarrival and service curves which capture the best- and worst-case behavior
of the workload. In addition, [23, 24, 157] enhance the analytical framework in
[121, 158] with mechanisms to determine properties of the output event streams.
These developments pave the way to amodular approach to the performance
analysis [159, 160]. However, the workload model in [23, 24,157] can model
only tasks that consume and produce only one event per activation. Furthermore,
for computing the output event streams it becomes necessaryto convert the ar-
rival curves expressed in terms of event-based units into equivalents expressed
in resource-based units and backwards. Since this conversion is performed by
scaling the curves with a constant factor corresponding to WCED for process-
ing of one event, the execution time variability is not accounted for, resulting in
overly pessimistic analytic bounds for workloads with large variations in execu-
tion demand of tasks. These limitations of the framework have been addressed
in [113, 115]. The results of [113, 115] are included in this chapter. Further
refinements of this workload model can be found in [166, 168, 169].

3.2 Variability Characterization Curves

This section defines Variability Characterization Curves (VCCs) in a generic
way, i.e. without regard to any concrete system property that they character-
ize. It also states some properties which are common to all VCCsand which will
be useful in the course of this thesis.

3.2.1 Definitions

Let A denote a set of increasing functionsAi, i = 1, 2, . . . andT denote the
domain of these functions, such thatAi : T → R≥0. T can be either the
set of nonnegative real numbers (T = R≥0) or the set of nonnegative inte-

3.2. Variability Characterization Curves 29

gers (T = Z≥0).1 In the latter case, the functions inA represent sequences, i.e.
Ai = 〈Ai(0), Ai(1), . . .〉. Formally, a functionf is increasingif f(x1) ≤ f(x2)
for anyx1 < x2. In contrast,f is strictly increasingif f(x1) < f(x2) whenever
x1 < x2. Using this notation we define VCCs as follows.

Def. 1: (Upper VCC) An upper VCC for the set of increasing functionsA is an increas-
ing functionVu

A satisfying the condition

Ai(t+ s) − Ai(t) ≤ Vu
A(s) ∀t, s ∈ T, ∀Ai ∈ A and Vu

A(0) = 0

Def. 2: (Lower VCC) A lower VCC for the set of increasing functionsA is an increasing
functionV l

A satisfying the condition

Ai(t+ s) − Ai(t) ≥ V l
A(s) ∀t, s ∈ T, ∀Ai ∈ A and V l

A(0) = 0

In caseT = R≥0 we adopt the convention that any upper VCC is a left-
continuous function and any lower VCC is a right-continuous function. Note
that functionsAi are not required to conform to this convention. They can be
either left-continuous or right-continuous without restriction.

In caseT = Z≥0 the corresponding VCC is a sequence. If necessary a VCC
which is a sequence can be converted into an equivalent VCC defined onR≥0.
The conversion can be done by a continuation inT which respects the above
convention about continuity of VCCs. More specifically, letVu

AZ≥0

andV l
AZ≥0

denote upper and lower VCCs defined onZ≥0. They can be converted into their
continuous equivalentsVu

AR≥0

andV l
AR≥0

as follows

Vu
AR≥0

(s) = Vu
AZ≥0

(⌈s/τ⌉) (3.1)

V l
AR≥0

(s) = V l
AZ≥0

(⌊s/τ⌋) (3.2)

whereτ denotes the desired spacing between samples ofVu
AZ≥0

(or V l
AZ≥0

) in

R≥0.
A conversion in the opposite direction, i.e.VAZ≥0

→ VAR≥0

, is also possible:

Vu
AZ≥0

(k) = Vu
AR≥0

(kτ) k ∈ Z≥0 (3.3)

V l
AZ≥0

(k) = V l
AR≥0

(kτ) k ∈ Z≥0 (3.4)

Remark on notation: To simplify the notation, in some contexts we will skip
subscriptA in Vu

A and inV l
A if it is irrelevant which function set is characterized

by the VCCs, i.e. we will simply writeVu andV l instead ofVu
A andV l

A.

1Throughout this thesis, whenever we useT without specifying whetherT = R≥0 or T =
Z≥0 we mean that both cases are possible, i.e.T is a placeholder forR≥0 andZ≥0.

30 Chapter 3. Modeling Variable Workload

From Defs. 1 and 2 it follows that a VCC is a mapping fromT to R≥0. Of-
ten, however, while modeling systems with VCCs, there is a needfor the inverse
transformation. Such a transformation could be possible via inverse functions
of VCCs. Unfortunately, since VCCs in general are not strictly increasing func-
tions, they are not invertible in the conventional sense, i.e. for a given VCC there
may not exist a functionV−1 such thatV−1(V(t)) = t for all t. Therefore, we
need to introduce a notion ofpseudo-inverse functions.

Def. 3: (Pseudo-inverse of Upper VCC)The pseudo-inverse of an upper VCCVu is the
function

Vu−1

(v) = sup{t : Vu(t) ≤ v; t ∈ T} (3.5)

Def. 4: (Pseudo-inverse of Lower VCC)The pseudo-inverse of a lower VCCV l is the
function

V l−1

(v) = inf{t : V l(t) ≥ v; t ∈ T} (3.6)

3.2.2 Properties

Several useful properties of VCCs follow from the definitions given in Sec-
tion 3.2.1.

Prop. 1: (Pseudo-inversion of Upper VCC)For any upper VCCVu and its pseudo-
inverseVu−1

the following always holds

Vu(t) ≤ v ⇔ Vu−1

(v) ≥ t (3.7)

Prop. 2: (Pseudo-inversion of Lower VCC)For any lower VCCV l and its pseudo-
inverseV l−1

the following always holds

V l(t) ≥ v ⇔ V l−1

(v) ≤ t (3.8)

Prop. 3: (Duality of Upper VCC) If Vu
A is an upper VCC for a set of functionsA, then

Vu−1

A′ is a lower VCC for the set of functionsA′, where

A′ = {A′ : A′(v) = sup{t : A(t) ≤ v; t ∈ T};A ∈ A}

Prop. 4: (Duality of Lower VCC) If V l
A is a lower VCC for a set of functionsA, then

V l−1

A′ is an upper VCC for the set of functionsA′, where

A′ = {A′ : A′(v) = inf{t : A(t) ≥ v; t ∈ T};A ∈ A}

Prop. 5: (Lower and Upper VCCs for the Same Set)If Vu andV l are upper and lower
VCCs, respectively, characterizing the same set of functionsA then the following
relation always holds:

Vu(t) ≥ V l(t) ∀t ∈ T (3.9)

3.2. Variability Characterization Curves 31

Proof.

Prop. 1 Define subsetSv = {t : Vu(t) ≤ v} ⊆ T. Note that by Def. 3
Vu−1

(v) = supSv. Suppose thatVu(t) ≤ v, thent ∈ Sv. This implies that
t ≤ supSv, that ist ≤ Vu−1

(v). Thus, it follows thatVu(t) ≤ v ⇒ Vu−1

(v) ≥ t.
Now suppose thatVu−1

(v) ≥ t, this is equivalent to saying thatsupSv ≥ t.
This implies thatt ∈ Sv, i.e. t satisfiesVu(t) ≤ v. Thus, we have shown that
Vu−1

(v) ≥ t⇒ Vu(t) ≤ v. This proves (3.7).
Prop. 2 Define subset̃Sv = {t : V l(t) ≥ v} ⊆ T. Note that by Def. 4

V l−1

(v) = inf S̃v. Suppose thatV l(t) ≥ v. This implies thatt ∈ S̃v. Hence,t ≥
inf S̃v which is equivalent tot ≥ V l−1

(v). ThusV l(t) ≥ v ⇒ V l−1

(v) ≤ t. Now
suppose thatV l−1

(v) ≤ t. Thent ≥ inf S̃v, which implies thatt ∈ S̃v. It follows
that t satisfiesV l(t) ≥ v. Thus, we have shown thatV l−1

(v) ≤ t ⇒ V l(t) ≥ v.
This proves (3.8).

�

Two important relations directly follow from Prop. 1 and Prop. 2. Namely,
by lettingVu(t) = v in Prop. 1 we get

Vu−1

(Vu(t)) ≥ t (3.10)

Similarly, Prop. 2 implies that

V l−1

(V l(t)) ≤ t (3.11)

If Vu
A andV l

A characterize the same function setA, from Props. 3–5 we can
conclude that

V l−1

A (t) ≥ Vu−1

A (t) ∀t ∈ T (3.12)

Furthermore, if we combine (3.10) and (3.11) with (3.12) we obtain

V l−1

A (Vu
A(t)) ≥ t ∀t ∈ T (3.13)

Vu−1

A (V l
A(t)) ≤ t ∀t ∈ T (3.14)

Remark on notation: Sometimes we will denote a pair of a lower and an upper
VCCs characterizing the same function setA by tupleVA = (V l

A,Vu
A).

3.2.3 Discussion

SupposeA is a set of increasing functions andVA is a VCC corresponding to it,
then we say thatVA characterizesA. More precisely,VA bounds the variability
of functions inA. In particular, an upper VCC represents an upper bound on
the maximum change in function value that can occur on any interval of a given
length for any function inA. Correspondingly, a lower VCC is a lower bound
on the minimum change in function value that can occur on any interval of a

32 Chapter 3. Modeling Variable Workload

given length. Thus, VCCs characterizeworst- and best-case variabilityof the
functions or sequences.

Le Boudec and Thiran [85] presents the concept ofarrival and service curves
used for characterization of traffic and nodes (e.g. routers) in communication net-
works. These arrival and service curves respectively characterize timing prop-
erties of data flows and the service offered to these flows on the network nodes
(service flows). Such arrival and service curves represent concrete VCC types.
In other words, in this thesis we generalize the concept of arrival and service
curves to characterize any other properties of abstract sequences, and not only
the timing of the data and service flows. However, the theory developed in [85]
is applicable to a large extent to the generic VCCs defined in this section. More
basic theory which may also be useful for system analysis with VCCs can be
found in [10]. For this reason, we limited the discussion in this section to those
theoretical concepts that are either new or differ in some way from those de-
scribed in [10, 85]. This means that in the course of this thesis we may rely on
some mathematical background which is not covered in this section but can be
found in [10, 85].

Finally, before defining concrete VCC types for modeling of multimedia
workloads (which we will do in the next section), we would like to point out
an important property of any VCC, irrespective of its particular type: A single
VCC can serve as a compactabstractionof a wholeclassof sequences or func-
tions with similar worst-case or best-case variability. Therefore, VCCs represent
an attractive means for capturing various aspects of systembehavior in the de-
sign context of heterogeneous embedded systems where such abstractions are
needed to tame the complexity of the design problems.

3.3 Variability Characterization Curves for Modeling
Multimedia Workload

While the previous section presents the VCC concept in a generic way, this sec-
tion introduces several concrete VCC types which enable effective modeling of
multimedia workloads [113, 115]. These VCC types are useful in system-level
design of embedded systems whose functionality involves distributed real-time
processing of digital media streams. Later in this thesis, we demonstrate several
applications of these VCC types to the performance evaluation and scheduling
of multimedia MpSoC architectures, which represent such embedded systems.

In workload modeling there are two generally conflicting goals [12]:

• First, a workload model should be as general as possible suchthat it could accu-
rately capture all relevant properties of the workload.

3.3. Variability Characterization Curves for Modeling Multimedia Workload 33

Fig. 7: Example task graph of a multimedia application.

• Second, the model should be efficiently analyzable to be useful in the design
process.

The former concern is addressed in this section. To address the latter concern, we
rely on already existing theoretical framework of Real-TimeCalculus [120, 157,
158], which has been shown to be efficient in system-level performance analysis
of network processors [23, 25]. In Section 3.4, using the VCC types introduced
in this section, we extend the RTC framework with the conceptof workload
transformations, which are simple operations, having no significant impact on
the efficiency of the whole analytical framework.

3.3.1 Execution model

In Section 2.2.1, we have mentioned that performance characteristics of a system
are determined by the temporal interactions between therequested serviceand
the correspondingoffered service(i.e. between event and resource streams in
the terminology of the MPA framework). The temporal characteristics of the
requested and offered service and their interactions are tightly coupled with the
execution modelused to implement an application on the architecture. Hence,
to understand the properties of multimedia workloads that might influence these
temporal characteristics, we first need to define the execution model we assume
for the multimedia applications mapped on to the multiprocessor architectures.

A multimedia application is partitioned into a number of concurrent (com-
putation and communication) tasks which are assigned for execution to differ-
ent PEs of the target execution platform. As mentioned in Chapters 1 and 2,
we assume that the application tasks communicate solely viaunidirectional data
streams, which we can see as FIFO channels. A multimedia taskmay read and
write data from (to) several such channels. To illustrate this, Fig. 7 shows a task
graph of a hypothetical multimedia application.

34 Chapter 3. Modeling Variable Workload

We refer to the elementary data unit that a particular task can read from (write
to) a particular channel asstream object. A stream object might be a bit belong-
ing to a compressed bitstream representing a coded video clip, or a macroblock,
or a video frame, or an audio sample — depending on where in thetask graph
the corresponding stream exists.

A task becomes active whenever there is a predetermined amount of stream
objects available in the incoming channels. There may be some activation rules
associated with the task [181]. These rules define specific conditions on the in-
coming channels upon which this task is activated (e.g. availability of a specified
number of stream objects inall or only insomeincoming channels).

Whenever the task is activated it requests from the PE on whichit executes a
certain amount of processor cycles. The task also consumes from the incoming
channels a number of stream objects. We assume that this number equals to
the amount of stream objects that were necessary to trigger the task. While
executing (i.e. consuming the processor cycles) the task may write data into
outgoing channels. We assume non-blocking writing.

Finally, a sequence of task activations can be abstractly seen as arequest
stream; and the availability of the PE for processing this stream can be seen as a
resource stream.

3.3.2 Definitions of multimedia VCC types

The key workload characteristics to be captured in the workload model are those
characteristics that affect the timing properties of the request and resource streams
and their interactions. In this subsection, we pinpoint these key characteristics
and define VCC types to characterize them. Some of the VCC types that will
be introduced below are indicated in Fig. 8, which shows an abstract view of a
multimedia task.

Event-based arrival curves
The timing of task’s requests for service is influenced by thetiming of arrivals of
stream objects into the incoming channels of this task. These arrivals depend on
the tasks writing into these incoming channels (or on the system’s environment,
if the stream is received from outside of the system). Each arrival into a channel
can be modeled as an event. Hence, a sequence of arrivals intoa given channel
can be represented as an event stream. Similar to the characterization model
described in Section 2.2.2, we model the timing properties of such event streams
with VCCs calledevent-based arrival curves[85, 158].

Def. 5: (Event-Based Arrival Curves ᾱ = (ᾱl, ᾱu)) A lower event-based arrival curve
ᾱl and an upper event-based arrival curveᾱu are VCCs characterizing timing
properties of a given event stream.ᾱl(∆) bounds from below and̄αu(∆) from
above the number of events that can occur in the stream within any time interval
of length∆.

3.3. Variability Characterization Curves for Modeling Multimedia Workload 35

Fig. 8: Overview: VCCs for modeling multimedia workloads.

Consumption curves
Another factor influencing the timing of task’s requests forservice is the amount
of stream objects that must be available in a given incoming channel for activa-
tion of the task. This amount may vary from activation to activation, e.g. due to
data-dependent behavior of the task. Successive activations of the task result in
a sequence of numbers representing the amounts of stream objects consumed by
the task from the given incoming channel at each activation.As an abstraction
of such sequences we use VCCs calledconsumption curves[115].

Def. 6: (Consumption Curvesκ = (κl, κu)) A lower consumption curveκl and an
upper consumption curveκu are VCCs characterizing the relation between task’s
activations and the number of stream objects consumed by thetask from a given
input channel.κl(k) bounds from below andκu(k) from above the number of
task activations needed to consumek consecutive stream objects from the input
channel.

Besides the amount of stream objects that must be present in each individual
channel to activate the task, the activation rules may impose some conditions
on the set of incoming channels as a whole. The implications of such rules can
also be reflected in the consumption curves. Alternatively,such rules can be
accounted for at the higher modeling level, i.e. in the performance model itself.
[68] reports some work in this direction.

36 Chapter 3. Modeling Variable Workload

Execution demand curves
The amount of execution resources requested by a task at eachactivation may
vary depending, for example, on the task’s current state andthe values of processed
stream objects, or on such architectural features as caches, branch predictors and
pipelines. A sequence of task activations results in a sequence of execution de-
mands imposed by the task on the PE. For modeling such sequences we use
execution demand curves[113, 115].

Def. 7: (Execution Demand Curvesγ = (γl, γu)) A lower execution demand curve
γl and an upper execution demand curveγu are VCCs characterizing execution
demand of a given task.γu(k) bounds from above andγl(k) from below the
amount of resource units (such as processor cycles) needed to complete anyk
consecutive task executions.

Production curves
The timing properties of event streams generated by a task atits outputs depend
on the amount of stream objects produced by the task into the outgoing channels
at each activation. Again, from activation to activation this amount may vary. To
characterize this aspect of task’s activation sequences, we employ VCCs called
production curves[115].

Def. 8: (Production Curves π = (πl, πu)) A lower production curveπl and an upper
production curveπu are VCCs characterizing the relation between task’s execu-
tions and the number of stream objects produced by the task into a given output
channel.πl(k) bounds from below andπu(k) from above the number of stream
objects produced by the task into the output channel as a result of k consecutive
executions of this task.

Resource-based service curves
An important factor largely influencing the performance characteristics is avail-
ability of execution resources for a given task over the time. Several tasks
mapped onto a single PE may compete for the execution resource of this PE.
A scheduling or arbitration policy then determines in whichorder these tasks are
to be executed on the PE. As a consequence, the supply of resources to the tasks
is not anymore uniformly distributed in time. This variability of the PE’s process-
ing capacity as seen by an individual task is characterized using resource-based
service curves[113, 115].

Def. 9: (Resource-Based Service Curvesβ = (βl, βu)) A lower resource-based service
curveβl and an upper resource-based service curveβu are VCCs characterizing
the service offered to a given task on a given execution resource. βl(∆) bounds
from below the number of resource units (such as processor cycles) that are
guaranteedto be provided to the task within any time interval of length∆. βu(∆)

3.4. Workload Transformations 37

bounds from above the number of resource units thatcanbe provided to the task
within any time interval of length∆.

Type rate curves
In some cases, for the performance analysis it is useful to distinguish within an
event stream (or any other sequence) different event types.For instance, this
might be useful in case if different event types impose different execution de-
mands on a PE. The different event types may follow in variouspatterns within
the stream. For the characterization of these patterns we employ so calledtype
rate curves[166].

Def. 10: (Type Rate Curvesϑ = (ϑl, ϑu)) A lower type rate curveϑl and an upper type
rate curveϑu are VCCs characterizing the containment of a given event type in a
given event stream.ϑl(k) bounds from below andϑu(k) from above the number
of events of the given type in any subsequence ofk consecutive events within the
event stream.

Event-based service curves and resource-based arrival curves
In contrast to the resource-based service curves, the event-based service curves
express the availability of a PE for a given task in terms of the task executionsin-
stead of processor cycles. Similarly, in contrast to the event-based arrival curves,
the resource-based arrival curves express the amount ofresources(e.g. processor
cycles) requested by a task.

Def. 11: (Event-Based Service Curves̄β = (β̄l, β̄u)) A lower event-based service curve
β̄l and an upper event-based service curveβ̄u are VCCs characterizing the ser-
vice offered to a given task on a given execution resource.β̄l(∆) bounds from
below the number of task executions that areguaranteedto be completed within
any time interval of length∆. β̄u(∆) bounds from above the number of task
executions thatcanbe completed within any time interval of length∆.

Def. 12: (Resource-Based Arrival Curvesα = (αl, αu)) A lower resource-based arrival
curveαl(∆) and an upper resource-based arrival curveαu(∆) are VCCs char-
acterizing the service requested by a given task from a givenexecution resource.
αl(∆) bounds from below andαu(∆) from above the number ofresource units
(such as processor cycles) that may be requested by the task within any time
interval of length∆.

3.4 Workload Transformations
Being able to analytically compute different performance figures of a system re-
quires both the requested and the offered service being expressed in common

38 Chapter 3. Modeling Variable Workload

units. This can be achieved through a mapping of one service representation to
another. In simple cases, such a mapping can be done in a straightforward way
via scaling with a constant factor [24]. In more complex cases, where the work-
load variability cannot be neglected, this approach does not work well: it often
results in overly pessimistic performance bounds. In this thesis, we propose a
more sophisticated mapping mechanism which we callworkload transforma-
tions. It is based on the concept of VCCs. In contrast to the scaling with a
constant factor, workload transformations in general are non-linear operations.
This non-linearity stems from the need to properly account for the workload
variability while performing the mapping between different workload and ser-
vice representations. As a result, the tightness of the bounds returned by the
performance analysis can be improved.

In this section, we define workload transformations and formulate general
rules for applying them. We then discuss workload transformations which are
useful for performance analysis of media processors. They involve the VCC
types defined in Section 3.3. Toward the end of this section, we show how the
modeling capabilities of the existing MPA framework can be enhanced through
the use of the workload transformations.

3.4.1 The workload transformation operation

Def. 13: (Workload Transformation) A workload transformation is an operationVy(Vx(t)),
whereVy andVx are VCCs of different types, withVy having as its domain the
codomain ofVx andt ∈ T. We say thatVy transformsVx.

For convenience, we introduce the workload transformationoperator⊙which
we define as

(f ⊙ g)(t) = f(g(t)) (3.15)

The operator⊙ has the highest precedence level and is applied from right toleft,
i.e.

(f ⊙ g ⊙ h)(t) = f(g(h(t))) (3.16)

Conservative workload transformations
Not all workload transformations are suitable for worst case analysis. Such
analysis has to guarantee correctness of computed upper andlower bounds. There-
fore, onlyconservativeworkload transformations are allowed in it. This means
that a workload transformation of a lower bound has to resultin a valid lower
bound. Similarly, a workload transformation of an upper bound has to return a
valid upper bound. This can be achieved if the workload transformations satisfy
either of the two following rules:

• An upper VCC can only be transformed with anotherupperVCC.

• A lower VCC can only be transformed with anotherlowerVCC.

3.4. Workload Transformations 39

f ⊙ g g =

Vu V l Vu−1 V l−1

Vu
√ √

f = V l
√ √

Vu−1 √ √

V l−1 √ √

Tab. 1: Conservative workload transformations (marked with
√

).

Tab. 1 lists all possible workload transformations which satisfy the above rules.2

3.4.2 Workload transformations for multimedia VCCs

This subsection describes a set of conservative workload transformations which
are defined on the multimedia VCC types proposed in Section 3.3. These trans-
formations are needed to extend the existing RTC-based performance analysis
framework introduced in Chapter 2. They significantly improve the modeling ca-
pabilities of the framework and thereby enable an accurate performance analysis
of distributed execution platforms under multimedia workloads characterized by
the variability of several parameters. This subsection explains the role of each in-
dividual transformation within the RTC-based performance analysis framework.

Suppose that different properties of the system whose performance we wish
to analyze are specified using a subset of VCCs which were definedin Sec-
tion 3.3. For the performance analysis, we need to build a performance model
out of these VCCs. The first step in constructing such a model is to quantify the
requested and the offered service in some common units. The choice of units
depends on particular goals of the analysis and on the input specification. As
we will see later in this chapter (in Section 3.4.3), within asingle performance
model we may need to carry out some computations using resource-based units
and other computations using event-based units. Hence, a variety of workload
transformations may be required during constructing a performance model. In
what follows, we list and explain different sorts of workload transformations
which can be useful in the performance analysis.

Input stream arrivals −→ task activations
This workload transformation maps the arrival process of a stream to the activa-
tion process of the task which processes this stream. The timing of the activation
process depends on the timing of the stream arrivals. This isbecause, according

2To correctly interpret Tab. 1, recall Props. 3 and 4 shown in Section 3.2, stating that the
pseudo-inverse of an upper VCC is a lower VCC, and the pseudo-inverse of a lower VCC is an
upper VCC.

40 Chapter 3. Modeling Variable Workload

to our model of computation, a task is activated only if the number of stream
objects present at its input is larger or equal to the amount of stream objects that
the task will consume during its next execution. The stream’s arrival process is
specified by event-based arrival curves(ᾱl

I , ᾱ
u
I). The goal of the workload trans-

formation is to obtain arrival curves(ᾱl
ta, ᾱ

u
ta)(∆) that represent upper and lower

bounds on the number of tasks activations which may occur in any time interval
∆. The workload transformation can be performed using consumption curves
(κl, κu) as follows.

ᾱu
ta(∆) = (κu ⊙ ᾱu

I)(∆) (3.17)

ᾱl
ta(∆) = (κl ⊙ ᾱl

I)(∆) (3.18)

Task activations−→ execution demand
This workload transformation maps the activation process of a task to the exe-
cution demand imposed by this task on the resource on which itexecutes. The
amount of the imposed execution demand, measured in resource-based units per
time interval, depends on the timing of the task activationsand on the execu-
tion demand imposed by each individual activation. The goalof this workload
transformation is to obtain arrival curves(αl

I , α
u
I)(∆) which represent upper and

lower bounds on the number of resource units that can be requested by the task
within any time interval∆. Suppose that the timing of task activations is given
by arrival curves(ᾱl

ta, ᾱ
u
ta) as defined by (3.17) and (3.18). Then using execution

demand curves(γl, γu) we can transform(ᾱl
ta, ᾱ

u
ta) into (αl

I , α
u
I) as follows.

αu
I (∆) = (γu ⊙ ᾱu

ta)(∆) (3.19)

αl
I(∆) = (γl ⊙ ᾱl

ta)(∆) (3.20)

Input stream arrivals −→ execution demand
Combining (3.17) with (3.19) and (3.18) with (3.20) gives a mapping of stream
arrivals expressed in number of stream objects (i.e. in event-based quantities) per
time interval on to the execution demand which is imposed by this stream on the
execution resource. The execution demand is then expressedin resource-based
quantities per time interval.

αu
I (∆) = (γu ⊙ κu ⊙ ᾱu

I)(∆) (3.21)

αl
I(∆) = (γl ⊙ κl ⊙ ᾱl

I)(∆) (3.22)

The resulting resource-based arrival curves(αl
I , α

u
I) can be combined in RTC

computations with resource-based service curves(βl, βu). Note that if a task
always consumes only one stream object per one execution, i.e. if κu(k) =
κl(k) = k, then (3.21) and (3.22) can be reduced to

αu
I (∆) = (γu ⊙ ᾱu

I)(∆) (3.23)

αl
I(∆) = (γl ⊙ ᾱl

I)(∆) (3.24)

3.4. Workload Transformations 41

Consumed resources−→ task executions
Suppose we know resource-based arrival curves(αl

O, α
u
O)(∆) which represent

the upper and lower bounds on the amount of resource units that a task may con-
sume within any time interval∆. The goal of this workload transformation is to
convert these arrival curves into arrival curves(αl

te, α
u
te) that represent the upper

and lower bounds on the number of task executions that could be performed for
the given amount of resources modeled by(αl

O, α
u
O)(∆). This workload trans-

formation can be performed through pseudo-inverses of the execution demand
curves as follows.

ᾱu
te(∆) = (γl−1 ⊙ αu

O)(∆) (3.25)

ᾱl
te(∆) = (γu−1 ⊙ αl

O)(∆) (3.26)

Task executions−→ output stream arrivals
This workload transformation maps the execution process ofa task to the arrival
process of a stream produced by this task. The timing of the stream arrivals
depends on the timing of task executions (since the task can produce stream
objects only as a result of its execution). In addition, the amount of produced
stream objects may vary from execution to execution. The goal of this workload
transformation is to obtain event-based arrival curves of the stream at the output
of the task, i.e.(ᾱl

O, ᾱ
u
O). Let (ᾱl

te, ᾱ
u
te)(∆) denote arrival curves that represent

upper and lower bounds on the number of the task executions that can occur in
any time interval∆. Then, using production curves(πl, πu), we can perform the
required workload transformation as follows.

ᾱu
O(∆) = (πu ⊙ ᾱu

te)(∆) (3.27)

ᾱl
O(∆) = (πl ⊙ ᾱl

te)(∆) (3.28)

Consumed resources−→ output stream arrivals
Combining (3.25) with (3.27) and (3.26) with (3.28) gives a mapping of the
amount of resources consumed by a task per time interval to the number of
stream objects produced by this task per time interval. Thisworkload trans-
formation is performed as follows.

ᾱu
O(∆) = (πu ⊙ γl−1 ⊙ αu

O)(∆) (3.29)

ᾱl
O(∆) = (πl ⊙ γu−1 ⊙ αl

O)(∆) (3.30)

Note that if a task always produces only one stream object perone execution, i.e.
if πu(k) = πl(k) = k, then (3.29) and (3.30) can be reduced to

ᾱu
O(∆) = (γl−1 ⊙ αu

O)(∆) (3.31)

ᾱl
O(∆) = (γu−1 ⊙ αl

O)(∆) (3.32)

42 Chapter 3. Modeling Variable Workload

Offered resources−→ task executions
The goal of this workload transformation is to map the amountof resources
which a task is offered per time interval to the number of executions that this
task can perform per time interval if it uses the offered amount of resources.
The offered amount of resources is modeled by resource-based service curves
(βl, βu). The number of executions which can be performed for the offered
number of resources per time interval is modeled by event-based service curves
(β̄l, β̄u). The workload transformation can be achieved using pseudo-inverses of
the execution demand curves as follows.

β̄u(∆) = (γl−1 ⊙ βu)(∆) (3.33)

β̄l(∆) = (γu−1 ⊙ βl)(∆) (3.34)

Task executions−→ offered resources
The goal of this workload transformation is to map the service expressed in num-
ber of task executions (i.e. in event-based quantities) which can be performed per
time interval on to the amount of resources which are necessary per time interval
in order to offer this service. The number of task executionsofferedper time
interval is modeled by event-based service curves(β̄l, β̄u), and the amount of
resource units offered per time interval is modeled by resource-based service
curves(βl, βu). The workload transformation is performed via execution de-
mand curves(γl, γu) as follows.

βu(∆) = (γu ⊙ β̄u)(∆) (3.35)

βl(∆) = (γl ⊙ β̄l)(∆) (3.36)

3.4.3 Extended Modular Performance Analysis Framework

This subsection explains how the MPA framework described inSection 2.2 can
be extended with the workload transformations introduced in the previous sub-
section.

The workload transformations can be applied at different points within a
scheduling network. Since the transformations must be conservative, each trans-
formation is typically associated with some loss of accuracy of the bounds.
Hence, as a rule of thumb, the total number of workload transformations within
a scheduling network should be minimized. There is, however, a more specific
guideline for the optimal placement of the workload transformations within a
scheduling network. We elaborate on it now.

If we use Real-Time Calculus to analyze a scheduling network then all event
and resource flows in the network are modeled with arrival andservice curves. In
general, we are free to choose whether an arrival (service) curve existing between
any two performance components is expressed in event-basedor resource-based

3.4. Workload Transformations 43

T1 T2

T3

e
1

e
2

PE1 PE2

Fig. 9: Scheduling network used in Ex. 2.

units. Both representations are possible. We can use this freedom of choosing the
representation for minimization of the total number of workload transformations.
Ex. 2 illustrates situations in which the workload transformations are needed and
in which they can be avoided.

Ex. 2: Consider a scheduling network shown in Fig. 9 It consists of three performance
components that correspond to three tasksT1, T2 andT3. T1 andT2 process
event flowe1 with T1 being the first in the processing chain.T3 processes event
flow e2. T1 andT3 are mapped to processing elementPE1, andT2 is mapped
to PE2. Execution demand curvesγT1, γT2 andγT3 model the execution demand
imposed bye1 ande2 onPE1 andPE2. Assume that all tasks per one execution
consume and produce only one stream object (i.e. consumption and production
curves can be omitted from the analysis). In this setup, consider the following
cases:

1. Suppose that atT1’s input e1 is specified by an event based arrival curve and
PE1’s resource flow is specified by a resource based service curve. Clearly, in
this case in order to analyzeT1 a workload transformation is unavoidable. Ei-
ther the arrival curve ofe1 has to be transformed into its resource-based equiv-
alent or the service curve ofPE1 must be transformed into an event-based rep-
resentation.

2. Consider theeventstream at theoutputof T1. Its arrival curve can be expressed
either in resource-based or in event-based units, depending on the way it was
obtained during analysis ofT1. Assume that this is a resource-based arrival
curve. Only ifγT1 = γT2 and PE1 and PE2 provide the same amount of re-
sources per time unit, no transformation is needed on the resource-based arrival
curve existing betweenT1 andT2.

3. Consider theresourcestream at theoutputof T1. Its service curve also can be
expressed either in resource-based or in event-based units, depending on the way

44 Chapter 3. Modeling Variable Workload

Performance
Component

incoming
event streams

outgoing
event streams

outgoing
resource streams

incoming
resource streams

Fig. 10: High-level view of a performance component with the RTC interface. All incoming and
outgoing event streams are modeled byevent-basedarrival curves, while all incoming
and outgoing resource streams are modeled byresource-basedservice curves.

it was obtained during analysis ofT1. Assume that this is an event-based service
curve. Only ifγT1 = γT3, no transformation is needed on the event-based service
curve existing betweenT1 andT3.

In Ex. 2, in cases 2) and 3) we were able to avoid some workload trans-
formations. This was only possible under special conditions. Unfortunately, in
practice embedded systems can rarely satisfy such conditions because typically
their architectures are heterogeneous and execution demands imposed on these
architectures by tasks and event streams are divergent. This implies that typically
in an RTC scheduling network all event streams between performance compo-
nents will be modeled byevent-based arrival curvesand all resource streams
will be modeled byresource-based service curves. Fig. 10 shows a high-level
view of a performance component that has the corresponding RTC interface.

Having defined the interface of a typical performance component in an RTC
scheduling network, we can now look inside the component to figure out how
the interface can be optimally implemented. The optimal implementation is one
that results in the least loss in accuracy of arrival and service curves at the output
of the component after its evaluation.

Fig. 11 shows three possible implementations of an RTC performance com-
ponent which involves workload transformations. The implementation in Fig. 11(a)
performs all RTC computations on resource-based curves. For this, the input
event-based arrival curves̄αu

I andᾱl
I are first converted into the corresponding

resource-based arrival curvesαu
I andαl

I using (3.21) and (3.22). Then the RTC
computations are carried out. After computing the output resource-based arrival

3.4. Workload Transformations 45

(a) Double transformation of arrival curves.

(b) Double transformation of service curves.

(c) Optimal implementation.

Fig. 11: Three possible ways to implement workload transformations within an elementaryRTC
performance component.

46 Chapter 3. Modeling Variable Workload

curvesαu
O andαl

O, we need to transform them back to their event-based rep-
resentations (̄αu

O andᾱl
O) for exposing them on the component’s interface. We

accomplish this with (3.29) and (3.30). Thus, in the scheme in Fig. 11(a) we
apply the workload transformations twice to the event flow.

The implementation in Fig. 11(b) performs all RTC computations on event-
based curves. This necessitates to apply the workload transformations twice to
the resource flow, i.e. to the service curves. (The required workload transforma-
tions are performed using (3.33)–(3.36) as indicated in Fig. 11(b).)

Both implementations, the one depicted in Fig. 11(a) and the one depicted
in Fig. 11(b), have a common problem—a loss of accuracy caused by thedou-
ble workload transformationapplied to the arrival (or service) curves through
execution demand curvesγu andγl.

To understand the problem, consider the workload transformations described
by (3.21) and (3.29). For the sake of simplicity, assume thatκu(k) = k and
πu(p) = p and that there is no backlogged events at the component’s input. Sup-
pose that on some interval∆ all ᾱu

I (∆) events arrive at the component’s input
and that they all impose the worst-case execution demand of(γu ⊙ ᾱu

I)(∆) re-
source units. Now, assume that all the arrived events get completely processed
in the same interval∆. This means that there were at least(γu ⊙ ᾱu

I)(∆) re-
source units available in∆ for processing the events. This also means that
αu

O(∆) ≥ (γu ⊙ ᾱu
I)(∆). If instead ofαu

O(∆) we plug(γu ⊙ ᾱu
I)(∆) into (3.29)

in order to find how many events can be produced at most within∆ at the compo-
nent’s output for(γu ⊙ ᾱu

I)(∆) resource units, we obtain(γl−1 ⊙ γu ⊙ ᾱu
I)(∆).

From the general property of VCCs (3.13) it directly follows that

(γl−1 ⊙ γu ⊙ ᾱu
I)(∆) ≥ ᾱu

I (∆) (3.37)

γu andγl of any event stream withvariable execution demand never coincide
and thus the inequality (3.37) is typically strict. Furthermore, the higher the
variability of the execution demand the larger the difference between left and
right sides of (3.37) can be (since, for somek, γu(k) can be considerably larger
thanγl(k)). This results in an overly pessimistic workload conversion.

Inequality (3.37) leads us to the understanding of the basicproblem with
the double workload transformations. It can be summarized as follows. The
resource-based arrival curves carry almost no informationabout timing of event
arrivals in the corresponding event stream. As a result, an attempt to recover
this information under safe assumptions ends up at overly pessimistic bounds.
Similarly, the event-based service curves carry almost no information about the
amount of offered resource units. Hence, recovering this information under safe
assumptions also results in overly pessimistic bounds. Therefore, the double
workload transformations must be avoided.

An implementation of the performance component which is free of any dou-
ble workload transformations is shown in Fig. 11(c). This implementation is

3.5. Obtaining Variability Characterization Curves 47

optimal in a sense that it minimizes the inaccuracy introduced into the resulting
bounds as a result of workload transformations.

Summary
In this subsection, we addressed the problem of extending the existing MPA
framework with workload transformations. We showed that inorder to avoid
a considerable loss of accuracy while introducing the workload transformations
into an RTC scheduling network, the following two principles have to be fol-
lowed:

• the total number of workload transformations in a network should be minimized;

• the double workload transformations should be avoided.

Based on these principles we developed a mathematical model of an RTC per-
formance component which can be used in the extended MPA framework. The
model represents the main result of this subsection. It is captured by the follow-
ing set of equations:

ᾱu
O = πu ⊙ ([(κu ⊙ ᾱu

I ⊗ γl−1 ⊙ βu
I)⊘ γu−1 ⊙ βl

I] ∧ γl−1 ⊙ βu
I) (3.38)

ᾱl
O = πl ⊙ ([(κl ⊙ ᾱl

I ⊘ γl−1 ⊙ βu
I)⊗ γu−1 ⊙ βl

I] ∧ γu−1 ⊙ βl
I) (3.39)

βu
O = (βu

I − γl ⊙ κl ⊙ ᾱl
I)⊘ 0 (3.40)

βl
O = (βl

I − γu ⊙ κu ⊙ ᾱu
I)⊗ 0 (3.41)

3.5 Obtaining Variability Characterization Curves
The quality of results delivered by performance evaluationand scheduling meth-
ods using VCCs largely depends on the quality of VCCs supplied to them as an
input for the analysis. The quality of the VCCs, in turn, depends on the way
in which they have been obtained. This section discusses relevant issues and
outlines several approaches to obtaining VCCs.

3.5.1 Objectives and limitations

Recall from Section 3.2 that a VCC is essentially an upper or a lower boundon
the worst-case or, respectively, best-case variability offunctions belonging to a
given set. Hence, any considerations that can be made about worst-case bounds
in general are also applicable to VCCs. Nevertheless, to provide a framework for
a discussion of different ways for obtaining VCCs, in this subsection we revisit
some of the relevant general issues by putting them in the VCC context.

At least two objectives have to be pursued while obtaining a VCC:

48 Chapter 3. Modeling Variable Workload

• Guarantee: A VCC has to guarantee that itfully captures the worst-case (or
best-case) variability of a given function set, i.e. it has to be a proper bound.
This guarantee is a necessary condition for obtaining reliable results from any
analysis based on the given VCC.

• Tightness: A VCC has to be as tight as possible. The tightness of the VCC can
influence the accuracy of the analytical results. The tighter the VCC the more
accurate variability characterization it provides and, hence, the more accurate
analytical results can be achieved through its use.

In order to see the whole range of possibilities for obtaining VCCs we have
to make a clear distinction between a given set of increasingfunctions to be char-
acterized by a VCC (refer to Defs. 1 and 2) and the information based on which
the VCC characterizing this set is constructed. We refer to such information as
the source information. In the simplest case the source information represents
the function set itself. The corresponding VCC can then be derived directly from
this set. In other cases the function set might not be explicitly available or it
may be incomplete, however, some knowledge about it still can be at our dis-
posal. This knowledge, which can serve as the source information in such cases,
may be in the form of assumptions, formal specifications, various bounds and
parameter estimates pertaining to the system at hand or to its environment or to
both. Sections 3.5.2, 3.5.3 and 3.5.4 provide some concreteexamples of possible
forms of the source information.

Having drawn the distinction between the function set to be characterized
and the source information based on which a VCC is constructed, we make the
following assertions.

• The guarantee, which a VCC is required to provide, depends on the particular
modeling and analysis goals. These goals, therefore, determine the function set
to be characterized by the VCC.

• Whether or not a VCC provides the required guarantee depends onhow guaran-
teed (i.e. reliable and sufficient) is the source information based on which the
VCC has been constructed and does not depend on a particular method used to
construct it.3

• The tightness of a VCC depends on the accuracy of the source information as
well as on the method which has been used for constructing theVCC.

In summary, we identify the following principle limitations in achieving the
objectives set forth in the beginning of this subsection. The guarantee provided

3If the source information is reliable and sufficient for providing the required guarantee but
nevertheless the resulting VCC does not provide this guarantee, then the method is wrong (e.g.
contains some faults). We exclude such cases from the consideration by assuming that any
method for obtaining VCCs is correct.

3.5. Obtaining Variability Characterization Curves 49

by a VCC is limited by the reliability and sufficiency of its source information,
whereas the tightness of the VCC is limited by the accuracy of both the source
information and the method by which the VCC has been obtained.

3.5.2 Obtaining VCCs from traces

As Section 3.5.1 mentions, one of the possible ways to obtaina VCC is to con-
struct it directly from the function set which this VCC has to characterize (i.e. in
this case the source information for the VCC is the function set itself). Obviously,
being able to obtain a guaranteed VCC in this way requires all the functions in
the set to be precisely defined. Furthermore, by constructing a VCC directly
from the function set we can obtain the tightest possible VCC for this set. Such
tightest upper and lower VCCscan be computed as defined below.

Def. 14: (Tightest Upper VCC) The tightest upper VCCVu
A
∗ for a given set of increasing

functionsA is computed as

Vu
A
∗(s) = sup

∀Ai∈A, ∀t∈T

{Ai(t+ s) − Ai(t)} ∀s ∈ T (3.42)

Def. 15: (Tightest Lower VCC) The tightest lower VCCV l
A
∗

for a given set of increasing
functionsA is computed as

V l
A

∗
(s) = inf

∀Ai∈A, ∀t∈T

{Ai(t+ s) − Ai(t)} ∀s ∈ T (3.43)

Showing thatVu
A
∗ computed with (3.42) is thetightestupper VCC forA is

straightforward: any other functionV , such thatV (s) < Vu
A
∗(s) for somes, is

not an upper VCC forA by Def. 1. By following a similar reasoning,V l
A
∗

com-
puted with (3.43) can be shown to be the tightest lower VCC.

In practice, the increasing functionsAi(t) from which a VCC is constructed
can be computed fromtraces. A trace is a sequence of events which have oc-
curred as a result of a system execution at a given point in thesystem or its
environment (e.g. at a specified input or output or processing element). Let
vj ∈ R≥0 andtj ∈ T denote, respectively, the value and the occurrence time of
jth event recorded in a trace. Then the increasing functionA corresponding to
this trace can be computed as follows.

A(t) =
∑

j: tj≤t

vj and A(0) = 0

Traces are collected by measuring the parameters of interest in a real system
or its simulator. The event valuesvj can represent different parameters of the
system’s behavior. For example, they can indicate arrivalsof events at an input
of the system, or they can be execution times of a task which are recorded into

50 Chapter 3. Modeling Variable Workload

the trace each time the task finishes its execution, etc. The occurrence timetj
does not need to be an absolute time. It can also be a sequence number of an
event in the trace.

Note that in order to obtain the VCCs it is not necessary to first convert
the traces into the increasing functions. The VCCs can be constructed directly
from the traces. For this purpose, the traces are analyzed bysliding along them
windows of different sizes. The window size corresponds to the argument value
for which a VCC is computed. The value of upper (lower) VCC for a given
argument value is then the maximum (the minimum) sum of tracevaluesvj that
fall into a window of the corresponding size.

Discussion
Although VCCs obtained from traces can accurately capture worst-case and best-
case variability in the event streams, they have a restricted applicability. In partic-
ular, such VCCs cannot be used for the timing analysis of hard real-time systems.
The hard real-time analysis has to fully cover all possible system states and in-
teractions with the environment. Hence, if such an analysisuses VCCs that have
been obtained from a set of traces, then this set must containall possible traces.
For most of the realistic systems, however, generating the exhaustive set of traces
is infeasible.

Despite their limitation mentioned above, the VCCs obtained from traces
have a wide range of applications in the analysis and design of soft real-time
systems. For this class of systems the full coverage of the analysis is not so
essential as for the hard real-time systems. Some rare or exceptional system
behaviors can be omitted from the consideration especiallyin the context of a
system-level design space exploration. Therefore, a set oftraces representing
typical cases may be sufficient for obtaining a VCC for analysis of soft real-time
systems.

Since most of the multimedia systems belong to the class of soft real-time
systems, in this thesis for experimental case studies we useVCCs that have been
obtained from traces. Appendix A gives details on the simulation framework
used to collect the traces and obtain from them the VCCs.

3.5.3 Obtaining VCCs from constraints

Sometimes no complete information is available about functionsAi belonging to
a given setA to be characterized by VCCs. The set of functionsA might not be
explicitly defined or it might be defined only partially. For instance, exact values
of functionsAi may not be known because of some uncertainty in parameters
of a modeled system or its environment. In such situations the tightest upper
and lower VCCs cannot be obtained using (3.42) and (3.43). ThenVCCs can be
constructed based on some other kind of source information than the function set
itself. This subsection and Section 3.5.4 are devoted to a discussion of such ap-

3.5. Obtaining Variability Characterization Curves 51

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

time interval, ∆ [sec]

[e
ve

nt
s

×
10

4]

Fig. 12: An upper arrival curve for an event stream at the output of a PE which can at maximum
process 10000 events in any interval of 10 sec.

proches. More specifically, this subsection illustrates how VCCs can be obtained
from various kinds of constraints and assumptions about thesystem and its en-
vironment, while Section 3.5.4 gives an example of how VCCs canbe obtained
from formal system specifications.

Before a design of an embedded system is started, there is almost always
a certain amount of pre-specified information about characteristics of the future
system and its environment. In the design process this information becomes more
and more refined. Such information may include various timing requirements
and constraints, estimated or available from data sheets performance figures and
other characteristics that pertain to the system, its individual components and
tasks, its target execution platform and the environment. For example, if the
embedded system is to process a media stream, the stream’s parameters such as
the arrival rate and the maximum jitter can be known and fixed quite early in the
design cycle.

The various information available at the design time about the system and its
environment can be used to reason about the worst-case (or best-case) variability
of certain system characteristics. I.e. based on this information the VCCs can
be defined for some, not necessarily all, argument values. For the rest of the
argument values the VCCs can be approximated by making some worst-case
assumptions.

For example, suppose that the only knowledge we have about a PE is that
at maximum it can process 10000 events within any interval of10 sec. Using
only this constraint we can already construct a proper upperarrival curve for the
processed event stream at the output of this PE, as it is shownin Fig. 12.

52 Chapter 3. Modeling Variable Workload

Fig. 13: MPEG-2 encoding system considered in Ex. 3.

3.5.4 Obtaining VCCs from formal system specifications

In some cases VCCs can be obtained from system specifications using formal
methods, as opposed to somewhat ad hoc approaches illustrated in Section 3.5.3.
This subsection exemplifies one such formal method for obtaining execution de-
mand curves. This method is based on the formalism of finite state machines
(FSM), which is used to specify system functionality and properties of event
streams. A theoretical background and other relevant details and ramifications
of this method can be found in [166, 168].

Ex. 3: Consider an MPEG-2 encoding system shown in Fig. 13. Uncompressed video
frames captured by a video camera arrive at the input of a media processor.
The media processor compresses them using an MPEG-2 encoding algorithm
and sends the compressed bitstream, for instance, to a network. We assume that
the MPEG-2 algorithm is entirely implemented on one processing element (PE)
within the media processor. Our goal is to construct an upper execution demand
curve for the workload imposed by the MPEG-2 encoder task on the PE.

In order to formally specify the system we need to know some details about
the behavior of the MPEG-2 encoder. They are presented below.

The MPEG-2 compression scheme exploits three frame types toencode video
information. These are I-, P- and B-frames. Before the compression, a pre-
processing stage indicated in Fig. 13 asVideo Inputassigns to each input video
frame one of these types. After that, depending on the frame type the encoder ex-
ecutes different subtasks to compress the frame, as shown in Fig. 14. As a result,
different frame types will impose different execution demands on the processing
element, as specified in Tab. 2.

The MPEG-2 standard [118] does not specify any particular implementation
of the encoder algorithm. System designers, therefore, canchoose between many
different implementation options. In particular, the standard does not specify
specific frame patterns that can be used by the encoder to compress a video
sequence. Advanced encoders use several predefined patterns and can arbitrary
switch between them based on the characteristics of the input video sequence.
Likewise our encoder can generate three commonly used patterns: IPB, IPBB
and IPBBPBB. Furthermore, if a scene change has been detected in the input

3.6. Experimental Evaluation 53

C ME
f

ME
b

QMC DCT VLC IQ IDCT ADD

I

P

B

ME
b,f:

MC

DCT

Q

: Motion Estimation (backwards/forwards)

: Motion Compensation

: Discrete Cosine Transform

: Quantization

VLC

IQ

IDCT

ADD

: Variable-length Coding

: Inverse Quantization

: Inverse DCT

: Addition

Fig. 14: Task graph of the MPEG-2 encoder algorithm indicating processing pathsfor different
video frame types.

Frame Worst-case execution
type time [cycles]

I 2 · 106

P 8 · 106

B 20 · 106

Tab. 2: Execution demand of the MPEG-2 encoder for each frame type.

video stream, the encoder can interrupt the currently generated pattern at any
place and start generation of a new pattern. This behavior, however, is subject to
a constraint: whenever a scene change has been detected and a new pattern has
been started, at least three consecutive frames must be encodedwithout pattern
interruption. An FSM describing the frame pattern generation behavior is shown
in Fig. 15.

Given the specification in the form of FSM in Fig. 15 and using the worst-
case execution demands of different frame types from Tab. 2,we can derive an
upper execution demand curveγu

MPEG-2encfor the MPEG-2 encoder task. For this
we annotate all transitions of the FSM with the worst-case execution demands
of the corresponding frame types. As a result of this annotation we obtain a
weighted directed graphGMPEG-2enc. The value ofγu

MPEG-2enc(e) then is the weight
of the maximum-weight path of lengthe in GMPEG-2enc[168]. Fig. 16 shows the
resulting execution demand curve.

3.6 Experimental Evaluation
This section presents results of an experimental evaluation of the VCC-based
workload model [113, 167]. The VCC-based model is compared to atraditional
task model widely used for scheduling and performance analysis of real-time
embedded systems. Performance figures obtained from VCC-based analysis are

54 Chapter 3. Modeling Variable Workload

Fig. 15: FSM specifying frame patterns generated by the MPEG-2 encoder.

0 5 10 15 20
0

50

100

150

200

250

300

[video frames]

[c
yc

le
s

×
10

6]

Fig. 16: Upper execution demand curveγu
MPEG-2encfor the MPEG-2 encoder task obtained from

FSM in Fig. 15 using worst-case execution demands given in Tab. 2.

also compared to measurements collected from a system simulator. The experi-
mental results show that the VCC-based model returns considerably tighter per-
formance bounds than those computed using the traditional task model. Fur-
thermore, the comparison of these bounds with the simulation measurements
indicates that they provide useful estimates of system properties and therefore
can serve as a sound basis for making design decisions.

For the evaluation of the VCC-based model, we apply it to two optimization
problems that may arise in the design context of multimedia MpSoC architec-
tures. Both problems concern clock rate minimization of a PE processing media
streams. Having the processor clock speed optimized is important in many de-
sign scenarios, as even a modest reduction in the clock rate may lead to consid-
erable savings in the system cost and energy consumption.

The design scenarios which we consider in this experimentalstudy a rela-
tively simple. This simplicity facilitates the comparisonof the VCC-based model
to a traditional workload model. That is, to achieve a fair comparison, we se-

3.6. Experimental Evaluation 55

Fig. 17: MPEG-2 video decoder design scenario: The MPEG-2 decoder algorithm is mapped
onto two PEs of an MpSoC platform.PE1 executes VLD and IQ functions, whilePE2

executes IDCT and MC functions of the decoding algorithm. The goal is to determine
minimum clock rate ofPE2 ensuring that the FIFO buffer at thePE2’s input,B2, never
overflows.

lected the optimization problems such that they can be solved by using either of
the models. Applications of VCCs to more complex scheduling and performance
analysis problems are demonstrated later in this thesis, inChapter 5.

The traditional workload model to which we compare the VCC-based model
in this experimental study characterizes execution demandof a task by a single
value—its WCED. As an alternative to this characterization wepropose the ex-
ecution demand curves. To clearly see the gain from using only this VCC type,
we characterize other properties of the tasks, such as timing of arrivals, in both
models in the same way. In this sense, our “traditional” model corresponds to
that proposed in [24, 25].

Section 3.6.1 addresses the processor rate minimization problem under a
buffer constraint, while Section 3.6.2 addresses the processor rate minimization
problem under adelay constraint. In the former case, for calculations of the
minimum processor rate we use VCCs obtained from traces. In thelatter case,
the calculations are performed on analytically obtained VCCs. In both cases, the
evaluation criteria is the tightness of the computed lower bound on the processor
rate.

3.6.1 Processor clock rate optimization under buffer constraint

Design scenario
Fig. 17 shows a mapping of an MPEG-2 video decoding application onto an
MpSoC platform consisting of two PEs,PE1 andPE2. One part of the MPEG-2
decoding algorithm, including VLD and IQ functions, is implemented onPE1,
while the rest of the algorithm, i.e. IDCT and MC functions, isimplemented on
PE2. Given this mapping, the video decoding occurs on themacroblock level
and proceeds as follows. First, an MPEG-2 bitstream arrivesthrough a network-
ing interface at the input ofPE1. After applying to it VLD and IQ functions,
the video stream emerges at thePE1’s output as a sequence ofpartially decoded

56 Chapter 3. Modeling Variable Workload

macroblocks. Each such partially decoded macroblock represents a data struc-
ture containing decompressed IDCT coefficients and, if applicable, motion vec-
tors. PE1 writes this stream of partially decoded macroblocks into FIFO buffer
B2. PE2 reads fromB2 one macroblock at a time and completes its decoding
by processing it with IDCT and, if necessary, MC functions. After that,PE2
writes the fully decoded macroblock into bufferBv which is read by a video out-
put interface. Finally, after some additional post-processing in the video output
interface, the resulting video signal appears at the systemoutput for rendering
on a display device.

The design goal in the scenario described above is to determine an optimal
clock rate ofPE2. Suppose that one of the criterion for the selection of the clock
rate is to ensure that bufferB2 at PE2’s input never overflows. That is, we are
interested in finding alower boundon the clock rate ofPE2 ensuring thatB2

never overflows. For simplicity, we assume that both PEs in Fig. 17 execute
no tasks other than the tasks performing the MPEG-2 video decoding functions.
This assumption means that processing capacity ofPE1 andPE2 is fully devoted
to execution of the MPEG-2 decoding tasks.

Intuitively, avoiding infinite growth of the backlog atPE2’s input necessitates
PE2 to run at a rate which is high enough to fully process in along termthe
workload imposed on it by the video stream. This condition isnecessary but
not sufficient for preventing overflows ofB2. For this condition to be sufficient,
bufferB2 has to be large enough to completely absorb transient overloads ofPE2
due to workload bursts. However, in this design scenario, weassume that the size
of B2 is insufficient to completely absorb such transient overloads. This means
that to avoid overflows ofB2 the clock rate ofPE2 may need to be substantially
higher than the rate determined by the long-term average workload imposed on
this PE. In other words,B2 imposes a constraint on the minimum clock rate
at whichPE2 is allowed to run. In this situation, we say that there is abuffer
constrainton the clock rate of the PE. Again, for simplicity, we will assume that
in Fig. 17 no buffers are constrained besidesB2.

Modeling workload with VCCs
The minimum clock rate at whichPE2 in Fig. 17 has to run in order to guarantee
that bufferB2 at its input never overflows depends on how bursty is the workload
imposed onPE2. For a given size ofB2, the higher the workload variability is,
the higher the clock rate must be. Hence, for the analysis we need somehow to
capture this workload variability onPE2. For this we employ VCCs.

Workload variability onPE2 originates from two sources: (i) execution time
of VLD and IQ functions onPE1 is highly variable resulting in bursty arrivals
into bufferB2; and (ii) execution time of IDCT and MC functions onPE2 itself
is also variable. To characterize the burstiness of the stream at thePE1’s output,
we use upper event-based arrival curveᾱu, while for the characterization of the

3.6. Experimental Evaluation 57

execution demand of IDCT and MC functions onPE2 we employ upper execu-
tion demand curveγu. Furthermore, since at each execution the task performing
IDCT and MC functions always consumes fromB2 exactly one macroblock, its
consumption curvesκl(k) = κu(k) = k.

Lower bound on processor rate under buffer constraint
Let L denote the size of bufferB2 measured in number of stream objects (i.e.
macroblocks). The upper bound on the backlog experienced bya stream at the
input of a processing element can be computed using (2.10). Based on (2.10) we
can formulate a constraint which requires that this upper bound never exceedsL:

L ≥ (ᾱu − β̄l)(∆) ∀∆ ≥ 0

Using this constraint, we can easily compute the required lowerevent-basedser-
vice curveβ̄l which ensures no buffer overflows for the stream constrainedby
ᾱu. However, instead of̄βl we are interested in finding the requiredresource-
basedservice curveβl which is expressed in number of processor cycles per
time unit. Fromβl we will be able to compute the requiredclock rate. Thus, we
need to reformulate the above constraint forβl. We can do this using workload
transformations viaγu in two ways:

(i) βl(∆) ≥ γu ⊙ ((ᾱu(∆) − L) ∨ 0); and

(ii) βl(∆) ≥ ((γu ⊙ ᾱu)(∆) − γl(L)) ∨ 0.

The latter constraint is more intuitive and more conservative than the former and
hence there may be a temptation to consider it as the only correct one. We show
that the former constraint also leads to a correct bound onβl and therefore, to
achieve a tighter bound onβl, the former constrained has to be used. Since this
basic result will be used in other parts of the thesis we formulate it as a theorem:

Thm. 1: (Buffer-constrained service)The backlog in front of a processing element caused
by an event stream characterized by upper event-based arrival curveᾱu and up-
per execution demand curveγu never exceedsL events if the lower resource-
based service curveβl offered to the event stream on this processing element
satisfies

βl(∆) ≥ γu ⊙ ((ᾱu(∆) − L) ∨ 0) ∀∆ ≥ 0 (3.44)

under the assumption that the consumption curvesκl(k) = κu(k) = k ∀k ≥ 0.

Proof. We have to show that ifβl satisfies (3.44) thenL represents a valid upper
bound for the maximum backlog. For this, it is sufficient to show thatL is larger
or equal to the known upper bound on the backlog determined by(2.10) [85], i.e.
we need to show that

L ≥ (ᾱu − β̄l)(∆) ∀∆ ≥ 0 (3.45)

58 Chapter 3. Modeling Variable Workload

Using Prop. 1 of upper VCCs, we can rewrite (3.44) as follows

(γu−1 ⊙ βl)(∆) ≥ (ᾱu(∆) − L) ∨ 0 ∀∆ ≥ 0 (3.46)

Assume that̄αu(∆) − L > 0, then (3.46) takes the form

L ≥ (ᾱu − γu−1 ⊙ βl)(∆) ∀∆ ≥ 0 : ᾱu(∆) − L > 0

From (3.34) we know that̄βl(∆) = (γu−1 ⊙ βl)(∆), and hence we get:

L ≥ (ᾱu − β̄l)(∆) ∀∆ ≥ 0 : ᾱu(∆) − L > 0

Now, if we assume that̄αu(∆) − L ≤ 0, then (3.46) takes the form

(γu−1 ⊙ βl)(∆) ≥ 0 ∀∆ ≥ 0 : ᾱu(∆) − L ≤ 0

i.e.

β̄l(∆) ≥ 0 ∀∆ ≥ 0 : ᾱu(∆) − L ≤ 0

The same hods true for (3.45) ifᾱu(∆) − L ≤ 0.

Thus we have shown that in both cases, whenᾱu(∆) − L > 0 and when
ᾱu(∆) − L ≤ 0, (3.44) implies (3.45), i.e.L represents a valid upper bound
for the maximum backlog.�

Since the full processing capacity ofPE2 is devoted to the video decod-
ing task, the shape of the lower resource-based service curve is determined by
βl(∆) = f · ∆, wheref denotes the clock rate ofPE2. Hence, to find the lower
bound on the clock rate ofPE2, we can rewrite (3.44) as follows

f ≥ γu ⊙ ((ᾱu(∆) − L) ∨ 0)

∆
∀∆ > 0

Finally, we obtain

fmin = sup
∀∆>0

{

γu ⊙ ((ᾱu(∆) − L) ∨ 0)

∆

}

(3.47)

(3.47) gives the analytical lower bound on the clock rate ofPE2 which guar-
antees that the buffer constraintL is satisfied.

3.6. Experimental Evaluation 59

(a) Event-based arrival curvēαu (b) Execution demand curveγu

Fig. 18: Workload characterization onPE2. Thin lines correspond to VCCs of individual video
sequences. Solid thick lines show VCCs representing the whole set of video sequences.
The dashed line onγu plot (b) represents the execution demand curve corresponding to
the traditional task characterization with only one value—task’s WCED.

Obtaining ᾱu and γu from traces
We conducted experiments with a set of 14 different MPEG-2 video sequences
encoded with the following parameters: 9.78 Mbit/s constant bit rate (CBR),
main profile at main level (MP@ML), frame rate of 25 fps, and resolution of
720 × 576 pixels. By simulating decoding of these sequences on the Sim-
pleScalar instruction set simulator (ISS) [8], we collected execution demand
traces for tasks mapped ontoPE1 andPE2 in Fig. 17. From these traces, us-
ing the analysis technique described in Section 3.5.2, for each video sequence in
the set we obtained event-based arrival curveᾱu

i and execution demand curveγu
i ,

i = 1, 2, . . . 14. These VCCs are shown with thin lines on the plots in Fig. 18.
From all VCCsᾱu

i andγu
i obtained for individual video sequences, we calcu-

lated event-based arrival curvēαu
Σ and execution demand curveγu

Σ representing
thewholeset of video sequences:

ᾱu
Σ(∆) = max

∀i
{ᾱu

i (∆)}

γu
Σ(k) = max

∀i
{γu

i (k)}
The resultinḡαu

Σ andγu
Σ are indicated in Fig. 18 with solid thick lines.

Comparison to traditional task characterization model
Two workload models can be compared based on the tightness ofthe lower bound
on the processor ratefmin computed using these models for a given buffer con-
straintL.

As a basis for the comparison, we took a widely used task modelin which
task’s execution demand is characterized by only one value —its WCED4 [100].

4In the literature, WCED is more often referred to as WCET.

60 Chapter 3. Modeling Variable Workload

Unlike execution demand curves, this model does not exploitany knowledge of
task execution sequences to characterize the task execution demand. Instead,
it considers only individual task instances, assuming thatevery such instance
imposes WCED on the processor. As for modeling arrivals of a task, this task
model specifies either the period with which the task arrivesinto the system or
the minimum time interval between its two consecutive arrivals (the minimum
inter-arrival time).

We were interested in quantifying the gain resulting from using only one
VCC type—the execution demand curve. For this we computed thelower bound
on the processor rate by evaluating (3.47) for the VCC-based model and for the
traditional task model. For the VCC-based model, we directly used in (3.47)̄αu

Σ

andγu
Σ obtained above. For the traditional task model, we evaluated (3.47) as

follows:

• Instead of using the minimum inter-arrival time (or the period) for the charac-
terization of the arrivals of the macroblock stream at the input of bufferB2 in
Fig. 17, we used less pessimistic characterization with themeasured̄αu

Σ. (In this
respect, we did not fully respect the the traditional workload model.)

• For the characterization of the execution demand imposed bythe video decoding
task onPE2, we used WCED of this task measured over all video sequences. We
note that such WCED equals toγu

Σ(1) determined above. Hence, the execution
demand curve corresponding to the traditional characterization is a straight line
with the slopeγu

Σ(1), i.e. γu
WCED(k) = k · γu

Σ(1), k = 0, 1, 2, Consequently,
we usedγu

WCED for the evaluation of (3.47). Fig. 18(b) showsγu
WCED with a

dashed line.

Note that the existing RTC MPA framework reported in [24, 25]uses exactly this
model (withγu

WCED in place ofγu).

Fig. 19(a) shows the lower bound on the clock rate ofPE2 versus the length
of bufferB2 computed using (3.47) for the VCC-based model (solid line) and
for the traditional workload model (dashed line). By inspecting the plots in
Fig. 19(a) we can make the following observations:

1. With increasing sizeL of bufferB2 the minimum clock rate at whichPE2 can
run without causing buffer overflows decreases. Both workload models expose
this trend.

2. The clock rate bound calculated using VCC-based model is significantly tighter
than that calculated using the traditional workload model with a single WCED
value.

Fig. 19(b) shows how much exactly we can gain by using the VCC-based model
in place of the traditional model. For small buffer sizes (L < 2000) the gain is

3.6. Experimental Evaluation 61

(a) Lower bound on the clock rate ofPE2 (b) The gain from using the execution de-
mand curve

Fig. 19: Experimental results. On the left plot, the solid line corresponds to the lower bound
on the clock rate ofPE2 calculated using execution demand curveγu

Σ; the dashed line
corresponds to the bound calculated using the traditional task characterization with a
single WCED value.

about 30–40%, while for larger buffer sizes the gain may be aslarge as 50%. This
means that the VCC-based workload model may result in up to two times less
pessimistic estimations of system parameters than the traditional model, leading
to considerable savings in system cost and power consumption.

Comparison to simulation
To estimate the degree of pessimism incurred by the VCC-based model, we sim-
ulated the video decoding system shown in Fig. 17 with the clock rate ofPE2
set to the values calculated using (3.47). More specifically, using (3.47) we com-
putedfmin for a given buffer constraintL and then simulated a transaction-level
model5 of the system shown in Fig. 17 with the clock rate ofPE2 set tofmin.
For each simulated video sequence, we measured maximum backlog in buffer
B2 and compared this measured number to the given buffer constraint L. The
closer the measured maximum backlog to the given buffer constraintL was, the
less pessimism the VCC-based workload model incurred.

For investigation of the pessimism incurred by the VCC-based model, we
conducted a number of experiments with different values ofᾱu andγu plugged
into (3.47). For the experiments, we used the same set of 14 MPEG-2 video
sequences as described in the preceding paragraphs of this subsection. Following
is a summary of the conducted simulation experiments.

• First, we experimented with VCCs̄αu
Σ andγu

Σ characterizing thewholeset of
video sequences (as defined above). That is, in (3.47) we usedᾱu = ᾱu

Σ and
γu = γu

Σ. Fig. 20 shows the maximum backlog registered in bufferB2 while de-

5Appendix A gives details about the simulation environment.

62 Chapter 3. Modeling Variable Workload

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

no
rm

al
iz

ed
 m

ax
. b

ac
kl

og

video sequence #

Buffer size:

250

500

1000

3000

Fig. 20: Normalized maximum backlogs registered in bufferB2 in Fig. 17 when the clock rate of
PE2 was set to the values obtained from the VCC-based model characterizing thewhole
set of the MPEG-2 video sequences.

coding different video sequences in the set. The maximum backlog shown in
Fig. 20 is normalized to buffer constraintL (”buffer size”) for which the corre-
spondingfmin was computed. The bar plot in Fig. 20 shows that for all but one
video sequence (#1) the maximum backlog inB2 was less than half of buffer size
L. For video sequence #1 and buffer sizesL = {250, 1000, 3000}, the maximum
backlog was about half ofL. However, for buffer sizeL = 500, video sequence
#1 causedB2 to be filled up to 80%. Although for the rest of video sequencesthe
computed bound on the clock rate is seemingly pessimistic, given the fact that we
performed worst-case analysis by abstracting thewholeset of video sequences
with only one pair of VCCs,̄αu

Σ andγu
Σ, we can conclude that the pessimism

incurred by the VCC-based model is relatively low. The simulation results pre-
sented in Fig. 20 indicate that sequence #1, probably, imposes a highly bursty
workload onPE2, and represents for the system the most ”adverse” (in terms
of the imposed workload) video sequence among all other sequences in the set.
VCCs could accurately capture this worst-case.

• To estimate how pessimistic a VCC abstraction of asinglevideo sequence can
be, we conducted a series of experiments in which for computation of the lower
bound on the clock rate ofPE2, we plugged into (3.47) VCCs characterizing
individual video sequences. That is, in (3.47) we usedᾱu = ᾱu

i andγu = γu
i ,

wherei = 1, 2, . . . , 14. Thus, for a given buffer sizeL we computed values of
fmin for each video sequence in the set and simulated decoding of each video
sequence with the corresponding to it value offmin. The resulting normalized
maximum backlogs registered in bufferB2 are depicted in Fig. 21. The simula-
tion results in Fig. 21 show that for all video sequences and all buffer sizesL the
maximum backlogs inB2 were larger than 50%. Moreover, in Fig. 21 we can
see that in many configurations the buffer was almost full. This indicates that

3.6. Experimental Evaluation 63

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 m

ax
. b

ac
kl

og

video sequence #

Buffer size:

250

500

1000

3000

Fig. 21: Normalized maximum backlogs registered in bufferB2 in Fig. 17 when the clock rate
of PE2 was set to the values obtained from the VCC-based model characterizing each
MPEG-2 video sequence individually.

VCCs obtained for individual traces (in our case video sequences) can provide
highly accurate abstractions for these traces. This suggests that instead of time
consuming simulations, system-level performance evaluation could be carried
out analytically using these VCC-based abstractions withouta considerable loss
of accuracy of the resulting performance numbers. Althoughin this case VCC-
based model would not be able to guarantee coverage of the worst case, at least it
could speedup the performance evaluation process, provided that the VCC-based
analytical model can be efficiently evaluated. In fact, other comparative studies
[25, 115] have demonstrated that the VCC-based models can be few orders of
magnitude faster than the corresponding system-level simulators.

• Finally, based on the experimental results obtained above,we hypothesized that
VCCs could provide a relatively accurate characterization for groupsof traces
(video sequences) withsimilar properties. To check this hypothesis, we con-
ducted simulations with a subset of the video sequences usedin the experiments
above. We formed this subset by inspecting VCCsᾱu

i andγu
i of individual video

sequences (shown with thin lines in Fig. 18). Such ”outliers” as, for example,
video sequence #1, which mainly determined shapes ofᾱu

Σ andγu
Σ (shown in

Fig. 18 with thick lines), were not included into the subset.As a result, the sub-
set included video sequences whose VCCs had similar shapes— sequences #4
through #14. For this subset we then calculated VCCsᾱu

Σ∗ andγu
Σ∗ by following

the same procedure as we used above for the calculation ofᾱu
Σ andγu

Σ. Using
(3.47), we computedfmin for different values of buffer sizeL and withᾱu = ᾱu

Σ∗

andγu = γu
Σ∗, and performed corresponding system simulations. The resulting

normalized maximum backlogs registered in bufferB2 are shown in Fig. 22. In
this figure, we can see that for most configurations bufferB2 was occupied ap-
proximately for 50–90%. This is an indicator that VCCs can provide an accurate

64 Chapter 3. Modeling Variable Workload

4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

no
rm

al
iz

ed
 m

ax
. b

ac
kl

og

video sequence #

Buffer size:

250

500

1000

3000

Fig. 22: Normalized maximum backlogs registered in bufferB2 in Fig. 17 when the clock rate of
PE2 was set to the values obtained from the VCC-based model characterizing asubset
of the MPEG-2 video sequences with similar VCC shapes.

abstraction for groups of traces (video sequences) with similar properties. Hence,
if the emphasis of a performance analysis is on the accuracy of the results rather
than on the speed with which these results are obtained, instead of individually
characterizing every trace with VCCs (as described in the preceding paragraph),
without significant loss in the accuracy we could use VCCs to characterize dis-
tinctive groups (orclasses) of traces with similar workload properties. This idea
is further developed in Chapter 4 of this thesis.

3.6.2 Processor clock rate optimization under delay constraint

Design scenario
Fig. 23 shows a system-level view of a networked multimedia device imple-
mented on a media processor. The processor receives at its inputs real-time audio
and video streams, compresses and sends them to a network. The compression
is performed by tasks running on a PE within the media processor. Audio and
video frames periodically arrive into FIFO buffersBa andBv at the PE’s input.
The PE reads from a buffer one frame at a time and processes it by executing
the corresponding compression task: Audio frames get processed by an MP3 en-
coding task, while the video stream get processed by an MPEG-2 encoding task.
After this processing, the compressed audio and video streams are sent to the
FIFO buffers at the PE’s output.

The video and audio streams must be processed in real time. Since the audio
stream has lower priority than the video stream, audio frames may experience a
processing delay which depends on interference from the video encoding task.
To ensure quality of the audio stream, we impose a constrainton the delay. We
require the delay to be not larger than some value.

Our design problem is to determine a lower bound on the clock rate of the

3.6. Experimental Evaluation 65

Fig. 23: Design scenario of a networked multimedia embedded system. The PE concurrently
executes two tasks: one for MPEG-2 encoding of a video stream and the other for MP3
encoding of an audio stream. The MPEG-2 task has a higher priority than theMP3
task. The goal is to determine the minimum clock rate of the PE which satisfies a delay
constraint associated with the audio stream.

PE which guarantees that thedelay constraintfor the audio stream is satisfied.
First, we analytically derive the lower bound on the clock rate, and after that,

we explain how it can be computed in a practical setting.

Lower bound on processor rate under delay constraint
Let D denote the delay constraint that we wish to satisfy for the audio stream.
From Section 2.2.2 we know that the upper bound on the delay can be computed
using (2.9). Hence, we require that this bound is smaller than our delay constraint
D, i.e.

D ≥ sup
∆∈R≥0

{

inf
{

τ ≥ 0 : ᾱu
a(∆) ≤ β̄l

a(∆ + τ)
}}

(3.48)

where ᾱu
a and β̄l

a denote event-based arrival and service curves of the audio
stream, which haveZ≥0 as their codomain. (We consider only integer quanti-
ties of stream objects.)

Let e ∈ Z>0 denote a number of stream objects. Then the delay constraint
(3.48) can be expressed via pseudo-inverse functions of thearrival and service
curves

β̄l−1

a (e) ≤ D + ᾱu−1

a (e− 1), ∀e ∈ Z>0 (3.49)

Using Def. 4 we can restate (3.49) as follows

β̄l
a(D + ᾱu−1

a (e− 1)) ≥ e, ∀e ∈ Z>0 (3.50)

The constraint (3.50) is expressed in terms of event-based quantities. It says
that in order to satisfy the delay constraintD for the audio stream, we have to
ensure that at leaste audio frames are completely processed within any time in-
terval of lengthD+ ᾱu−1

(e−1). Since we are interested in finding the minimum

66 Chapter 3. Modeling Variable Workload

rate of the PE expressed in terms ofclock cycles, we have to apply a workload
transformation to (3.50). This will give us a constraint on the amount of clock
cycles required to satisfy (3.50). For the workload transformation we employ the
execution demand curves of the audio task(γl

a, γ
u
a). Under pessimistic assump-

tions we get

(γl
a ⊙ β̄l

a)(D + ᾱu−1

a (e− 1)) ≥ γu
a ⊙ e, ∀e ∈ Z>0

and using (3.36) we obtain

βl
a(D + ᾱu−1

a (e− 1)) ≥ γu
a (e), ∀e ∈ Z>0 (3.51)

The left hand side of (3.51) denotes the required resource-based service curve for
the audio stream, while the right-hand side denotes the upper bound on the num-
ber of processor cycles that may be required to completely process any number
e of consecutive audio frames.

From the problem definition we know that the video encoding task has a
higher priority than the audio task. Hence, the video streamcan acquire the full
processor capacity, while the audio stream can get only the service which has
been left after the processing of the video stream. To find theremaining service
for the audio stream, we can use (2.4) as follows.

βl
a(τ) = sup

∀∆∈[0,τ]

{

βl
v(∆) − αu

v(∆)
}

∨ 0 (3.52)

whereβl
v andαu

v denote the resource-based service and arrival curves of the
video stream.

Using (3.52) and by noting that the service curve corresponding to the full
processor capacity is determined asf · ∆, wheref denotes the processor clock
rate, we can restate constraint (3.51) as follows.

sup
∀∆∈[0,D+ᾱu−1

a (e−1)]

{f · ∆ − αu
v(∆)} ≥ γu

a (e), ∀e ∈ Z>0 (3.53)

To satisfy (3.53) for a given value ofe, it is sufficient to selectf large enough
such that there exists∆′ ∈ [0, D + ᾱu−1

a (e− 1)] for which

f(e) · ∆′ ≥ αu
v(∆

′) + γu
a (e)

holds true. Since we are looking for the lower bound on the clock rate we require
that

f(e) ≥ inf
∀∆∈[0,D+ᾱu−1

a (e−1)]

{

αu
v(∆) + γu

a (e)

∆

}

, ∀e ∈ Z>0 (3.54)

To ensure that for anye ∈ Z>0 the above constraint is satisfied, we take the
maximum value of all possible values off(e).

fmin = sup
∀e∈Z>0

{

inf
∀∆∈[0,D+ᾱu−1

a (e−1)]

{

αu
v(∆) + γu

a (e)

∆

}

}

(3.55)

3.6. Experimental Evaluation 67

or, equivalently, if we use (3.23) we obtain

fmin = sup
∀e∈Z>0

{

inf
∀∆∈[0,D+ᾱu−1

a (e−1)]

{

(γu
v ⊙ ᾱu

v)(∆) + γu
a (e)

∆

}

}

(3.56)

(3.56) gives the analytical lower bound on the PE’s clock rate which guaran-
tees that the delay constraintD for the audio stream is satisfied.

Computing the lower bound
To see the gain from the application of VCC-based workload model, we compute
the lower bound on the clock rate for two different cases. In one case, we use
upper execution demand curveγu

v that accounts for the per-frame variability of
the execution demand of the MPEG-2 encoding task. Such a curve is analytically
obtained in [167] fromtype rate curves(which represent another VCC type). In
the other case, we use a conventional worst-case analysis approach: we getγu

v

under the pessimistic assumption that all frames within thevideo stream require
the same, largest possible, number of cycles for their processing. I.e. we model
the MPEG-2 encoding task by a single value—its worst-case execution demand.
Other VCCs involved in the computation of the lower bound are identical in both
cases.

As mentioned above,γu
v which captures the execution demand variability of

the MPEG-2 encoding task can be computed from the type rate curves. How this
can be accomplished is out of scope of this thesis. The corresponding method
is described in detail in [167]. For the purpose of this experimental study, we
useγu

v which was computed in [167] from a formal specification of theMPEG-2
encoding task. The formal specification was identical to onedescribed in Ex. 3
(including the values of the worst-case execution times fordifferent video frame
types given in Tab. 2). Fig. 24 showsγu

v obtained in [167] that we use in this
experimental study for the calculation of the lower bound onthe processor clock
rate.

For comparison, in Fig. 24 we also plotγu
v computedwithoutusing the type

rate curves. In this case, the upper execution demand curve of the encoding task
is determined as

γu
v (e) = e · max{wcedI , wcedP , wcedB}

wherewcedI , wcedP andwcedB denote worst-case execution demands for the
I-, P- and B-frame types, respectively. The values of the worst-case execution
demands used in this experimental study are given in Tab. 2.

Besides the upper execution demand curve of the video encoding taskγu
v ,

calculating the lower bound on the processor clock rate alsorequires knowing
upper event-based arrival curves of the video streamᾱu

v and of the audio stream
ᾱu

a as well as upper execution demand curve of the audio MP3 taskγu
a .

68 Chapter 3. Modeling Variable Workload

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[video frames]

[c
yc

le
s

×
10

9]

Fig. 24: Upper execution demand curves of the video encoding task which were used in the
experimental study. The solid line corresponds to the execution demand curve obtained
in [167] from the type rate curves. It captures the per-frame executiondemand variability
of the video encoding task. The dashed line corresponds to the executiondemand curve
which does not capture this variability.

We obtainγu
a under a pessimistic assumption that all audio frames, in the

worst case, require the same amount of cycleswceda to be processed, i.e.

γu
a (e) = e · wceda

According to our problem statement, the video and audio frames arrive at
constant rates into the input FIFO buffers. Letrv andra denote the video and
audio input frame rates, respectively. Then, the corresponding arrival curves can
be determined as̄αu

v(∆) = ⌈rv∆⌉ andᾱu
a(∆) = ⌈ra∆⌉. Note that in general the

shapes of the arrival curves may be more complex.
Finally, using (3.56) we can compute the lower bound on thePE’s clock

rate which guarantees that the audio delay constraintD is satisfied. Note that in
theory (3.56) has to be evaluated up toe→ ∞. This is to ensure that the value
of the clock rate is high enough to sustain the overall average load imposed by
the streams onPE. However, computing up toe→ ∞ is impractical. We can
overcome this problem by trading off the accuracy of the computation to the
computational time. We can evaluate (3.56) up to any given number of stream
objectsemax, but we have to put an additional constraint on the clock rate:

fmin ≥ γu
v ⊙ ᾱu

v(ᾱ
u−1

a (emax)) + γu
a (emax)

ᾱu−1

a (emax)
(3.57)

With (3.57) we simply require that, on some time interval of lengthᾱu−1

a (emax),
the PE must provide the amount of service needed to fully process all video and

3.6. Experimental Evaluation 69

Parameter Value

Audio stream
ra 44100/1152 fps
wceda 5 · 106 cycles
Video stream
rv 25 fps

Tab. 3: System parameters used in the experimental study of the design scenario shown in
Fig. 23. The worst-case execution demand of the MPEG-2 encoding task for different
video frame types is given in Tab. 2

(a) Lower bound on the clock rate ofPE vs.
audio delay constraint.

(b) The gain resulted from using the VCC-
based workload model.

Fig. 25: Experimental results. On the left plot, the solid line corresponds to the clock rate bound
computed with VCCs which capture the execution demand variability of the video en-
coding task; the dashed line corresponds to the bound computed using the traditional
task characterization model.

audio frames that may arrive within that interval. Ifemax is too small, then the
constraint (3.57) may be very pessimistic but the evaluation time of (3.56) can be
short. Ifemax is large enough, then the right-hand side of (3.57) approaches the
average case from above but the evaluation time may correspondingly increase.

Experimental results and discussion
Using equation (3.56) in conjunction with the constraint (3.57) we computed the
lower bound on the PE’s clock rate for the system parameters specified in Tab. 3
and for a range of values of the delay constraintD. Fig. 25(a) shows the results
of the computations for the case when the execution demand variability of the
MPEG-2 encoding task is captured byγu

v and for the case when it is not captured
by γu

v . The latter case represents the traditional task characterization model in
which the execution demand of a task is modeled by a single value.

70 Chapter 3. Modeling Variable Workload

In Fig. 25(b), we plot the gain resulted from the usage of the VCC-based
workload model. For different values of the audio delay constraint, the plot
shows the percentage by which the lower bound on the clock rate computed us-
ing γu

v that captures the execution demand variability of the videotask is smaller
than the corresponding bound computed usingγu

v that does not capture this vari-
ability (i.e. which was obtained under the assumption that all video frames have
the same execution requirement in the worst case). By inspecting the plot in
Fig. 25(b), we can see that for large values of the delay constraint we can gain up
to 20% of savings in the clock rate by capturing the workload variability using
VCCs.

3.7 Summary
In this chapter, we presented two central to this thesis concepts —Variability
Characterization CurvesandWorkload Transformations. We discussed different
ways to obtaining VCCs and defined several VCC types for modelingmulti-
media workloads. We also proposed and justified the optimal placement of the
workload transformations in an MPA scheduling network. Finally, we presented
results of an experimental evaluation of the VCC-based workload model. Our
experiments showed that the VCC-based model results in significantly tighter
analytic bounds than a traditional model. The simulation study suggested that
these bounds represent useful estimates of system properties and therefore can
serve as a sound basis for making design decisions. In this simulation study
we also investigated the effect of grouping the traces for obtaining VCCs on the
tightness of the analytic bounds. We came to the conclusion that in certain de-
sign contexts it might be of advantage to distinguish between different workload
classes.

In the rest of this thesis, we demonstrate the utility of the VCC-based work-
load model and of the workload transformations in differentdesign contexts of
multimedia MpSoC architectures. In particular, in the nextchapter we further ex-
plore the idea of distinguishing between different workload classes: we employ
VCCs for automatic exploration of theworkloaddesign space.

4
Workload Design

Chapter 3 introduced the concept of Variability Characterization Curves (VCCs)
and demonstrated how they can capture different propertiesof multimedia work-
loads. This chapter shows how VCCs can help to address an emerging and chal-
lenging problem ofworkload designfor system-level performance evaluation of
multimedia MpSoC architectures.

“Workload design” refers to a process of selecting representative workload
for performance evaluation and comparison of computer architectures [39]. It
is a well recognized problem in the domain of microprocessordesign. In this
domain, different program characteristics that influence the selection of a rep-
resentative workload include microarchitecture-centricproperties such as cache
miss rates, instruction mix and accuracy of branch prediction. However, work-
load properties that are pertinent to the context of system-level design of multi-
processor SoC architectures are very different. To date theproblem of workload
design, in this specific context, has not been sufficiently addressed. This chap-
ter presents results appeared in [114], which suggests how this problem can be
approached in the specific case of media processor design. This chapter has the
following structure:

• Section 4.1 introduces and motivates the problem of workload design for system-
level performance evaluation of multiprocessor SoC platform architectures.

• Section 4.2 summarizes relevant research work.

• Section 4.3 outlines the proposed approach.

• Section 4.4 proposes VCCs as a basis for workload characterization necessary
for quantitative comparison and classification of media streams.

72 Chapter 4. Workload Design

• Section 4.5 describes how various media streams can be classified based on
VCCs characterizing them.

• Section 4.6 presents results of an empirical validation of the proposed workload
classification method.

• Finally, Section 4.7 concludes this chapter.

4.1 Introduction
A typical design process of a complex embedded system such asa multimedia
MpSoC platform involves a thorough exploration of the available design space.
Starting from some template architecture — the platform, system designers it-
eratively evolve this platform with the goal to arrive at an architecture which
would be optimal for the target application range. Searching for the optimal ar-
chitecture necessitates evaluating and comparing to each other many alternative
platform configurations. Traditionally, performance evaluation of architectures
heavily relies on simulations. For system designers to be sure in representa-
tiveness of performance numbers obtained from such simulations, ideally, each
candidate architecture needs to be simulated for a large anddiverse set of possi-
ble inputs (or application scenarios). However, in most cases this is impractical.
This is because simulating a single design point may be prohibitively expensive
in terms of the simulation time. For example, simulation of only a few minutes
of video, for a video decoding application, may take tens of hours [165]. This
significantly limits the number of different inputs for which simulations can be
performed within an allotted design time. Therefore, from the large set of pos-
sible inputs, the system designers have to choose a small subset which would
be representative1 of the workload that the system would experience in reality.
Simulations can then be restricted to this subset only.

Obtaining a representative input set is, of course, not a newconcern—workload
design and other relevant problems, such as workload characterization, bench-
mark construction, synthetic workload generation, etc., are well recognized prob-
lems in different areas of computer performance evaluation. However, issues
involved in solving these problems are almost always domain-specific. This is
because they depend on the nature of applications and architectures, and on the
abstraction level at which systems are evaluated. For example, the main issues

1Many sources in the literature refer to “representative workload” as the workload (e.g. a col-
lection of traces) which represents arealisticgeneral case, and is not biased towards a particular
architecture, environment, etc. This term is often used in conjunction with asynthetic workload,
to indicate that the synthetic workload closely resembles the real workload. In context of this
thesis, we use the term “representative workload” in a slightly different way. By “representative
workload” we mean a workload which was selected from a largercollection of real workloads,
such that it best represents (covers) all important classes of the workload within this collection.

4.1. Introduction 73

in the domain of microprocessor design are microarchitecture-centric, where a
designer is mostly concerned with program characteristicslike instruction mix,
data and instruction cache miss rates and branch predictionaccuracy. On the
other hand, the concerns in the case of system-level design of SoC platform ar-
chitectures are very different and these are not suitably reflected in a benchmark
suite designed for microarchitecture evaluation.

In this chapter, we attempt to address this issue of workloaddesign in the
specific context of system-level design of SoC platform architectures for multi-
media processing (i.e. media processors). Although simulation-oriented design
and evaluation are widespread in the domain of system-levelSoC design, to the
best of our knowledge the issue of methodically selecting representative inputs
for architecture evaluation has not received any attentionso far. Most of the work
reported in the Embedded Systems literature, on novel system models or simu-
lation schemes, shirk off this problem and leave the responsibility of choosing a
representative input or stimuli to the architecture on system designers (see, for
example, [83]).

There are many reasons why this problem is interesting in thespecific case
of multimedia processing on multiprocessor SoC platforms.First, media streams
may impose very complex and diverse workloads on such platforms. Many
multimedia applications exhibit a large degree of data-dependent variability that
complicates the problem of choosing a representative inputset. Second, in con-
trast to general-purpose architectures, MpSoC platforms,which are optimized
for stream processing, have heterogeneous distributed architectures. This fact
further complicates the problem. Third, multimedia processing is in general
computationally intensive, requiring for performance evaluation to simulate a
relatively large number of events. This makes selection of the representative
workload for design of media processors an important problem.

Arbitrarily selecting inputs to form the “representative”input set is certainly
not a good idea. The goal of “representative” workload design should be to se-
lect inputs such that they cover, as much as possible, the whole space of possible
workloads, including those that representcorner casesfor the target architecture.
Such corner cases are represented by inputs which impose worst- and best-case
loads on different parts of the architecture. Determining what constitutes a “cor-
ner case” is, however, not a trivial undertaking due to the complex nature of
most multimedia workloads. Attempts towards using somequalitative(i.e. sub-
jective) technique to judge the properties of media streamsbased on their content
(for example, by simply viewing video clips to be processed by the architecture
and classifying them based on experience or intuition) might easily fail. Hence,
a quantitative methodology is necessary, using which it should be possible to
objectively assess and compare the properties of differentmedia streams. Based
on such a comparison, a smallrepresentativesubset can then be chosen from a
large collection of samples.

We propose a methodology to classify media streams which canbe used to

74 Chapter 4. Workload Design

identify a small representative set meant for architectureevaluation. Towards
this, we first hypothesize that key characteristics of mediastreams that influence
the performance of an MpSoC platform architecture, are related to their “vari-
ability”. This variability stem from the fact that execution time requirements of
multimedia tasks and the amount of data consumed (produced)by these tasks
at their inputs (outputs) depend on the properties of particular audio/video sam-
ples being processed. Now, given a collection of media streams, we classify
two streams from this collection assimilar if both of them exhibit the same kind
of variability with respect to the execution time requirements and the task in-
put/output rates, as mentioned above. Therefore, given a set of video streams
which aresimilar, it would be sufficient to simulate an architecture with only
one video stream from this set, as all the other streams wouldimpose similar
load on the architecture. To quantitatively characterize the variability associated
with a stream, with respect to a given architecture, we use the concept of VCCs,
introduced in Chapter 3. As an illustration of our methodology, throughout this
chapter we use a case study of an MPEG-2 decoder system whose system-level
architecture, including the mapping of MPEG-2 tasks onto it, is shown in Fig. 17
and described in Section 3.6.1.

We would like to point out here that the kinds of variabilities that should be
considered in a media stream for an effective classificationwould depend on the
platform architecture and the application at hand. This is mainly due to the fact
that SoC architectures are often highly specialized for a narrow application spec-
trum. For this reason, defining a set of workload attributes which would result in
an effective stream classification inanydesign scenario is difficult, if not impos-
sible. Also, we note that defining a common benchmark for multimedia MpSoC
platforms is out of scope of this chapter. The contribution of this chapter is to
point out that the properties of media streams which should be considered for
representative workload identification in the context of performance evaluation
of multimedia MpSoC platforms can be expressed in the form ofVCCs, and to
propose the corresponding stream classification method.

Finally, we note that, in a system-level design framework, the selection of
the representative workload can be carried out outside of the time-critical design
space exploration loop (namely, prior to the exploration) and does not require
time-consuming system simulations. Furthermore, the workload characteriza-
tion and classification procedures presented in this chapter can be fully auto-
mated, reducing to minimum designers’ participation in theworkload selection
process.

4.2 Related Work
The construction of representative workloads for performance evaluation of com-
puter systems has always been an area of active research since early 70s (see

4.3. Overview 75

[148] and references therein). Since then the termworkload has been widely
understood as a mix of programs (or jobs, or applications) for which the perfor-
mance of a computer system was evaluated. Domain-specific collections of such
programs, calledbenchmarks, have been designed and widely used as a stan-
dard means to evaluate and compare computer architectures.Examples of these,
in the multimedia domain, are MediaBench [86] and the Berkeleymultimedia
workload [146]. Design of such representative workloads was mainly concen-
trated on proper selection of theprogramsto be included in the workload. The
selection of corresponding input data sets was limited to the definition of their
size (e.g. sampling rate, resolution etc.) The dependency of program behavior
on the values of the input data sets did not receive enough consideration in the
process of forming such representative workloads.

Recently Eeckhout et al. [39] have shown that theworkload design space
may be very complex and therefore should be systematically explored during
the construction of representative workloads. Their workload design space con-
sists ofprogram-input pairsthat capture both, the variety of programs as well
as various input data sets to those programs. They use techniques such as prin-
ciple component analysis and cluster analysis to efficiently explore the space of
possible workloads and select representative program-input pairs from it.

The problem of reducing simulation time has been addressed using trace
sampling techniques(see [82] and references therein). The goal of such tech-
niques is to identify representative fragments in the program execution and sim-
ulate only those fragments, thereby eliminating the need for simulating the en-
tire program. Trace sampling techniques heavily rely on thecharacterization and
classification of the workload imposed on the architecture by the different frag-
ments in the program execution trace. However, it should be noted that all the
above mentioned research efforts were primarily targeted towards characteriza-
tion and composition of representative workloads in the domain of microproces-
sor design.

4.3 Overview
We assume that system designers have at their disposal a large collection of me-
dia streams that fully represents streams which the designed system may have
to process in reality. Then, forming a representative workload from this large
collection involves several steps:

1. Identifying key workload properties: The first step in the workload design is
to decide which workload properties are important for the given design context.
Based on these properties the workload classification will becarried out. In
the case of performance evaluation, we have to select those properties that have
largest influence on the performance of the architecture.

76 Chapter 4. Workload Design

2. Characterizing media streams:The next step is to characterize each stream in
the collection. It is accomplished by measuring the properties upon which the
workload classification will be performed. We refer to this step, together with
the preceding step, asworkload characterization.

3. Defining the dissimilarity metric: Based on the workload characterization, we
need to define how the dissimilarity between two workloads (media streams)
will be measured. That is, we need to define ametric that would represent the
dissimilarity between a pair of media streams as a value. After all media streams
in the collection have been characterized (i.e. their relevant properties have been
measured), we compute this metric for each pair of streams inthe collection.

4. Classifying media streams: Having computed the pairwise dissimilarity be-
tween the streams in the collection, we can identify groups of streams that may
impose similar workload on the architecture. Such a group would consists of
streams that have similar properties. From these groups, wecan then select rep-
resentatives. They will form the representative workload for our architecture.
We refer to this step and the preceding step asworkload classification.

The next two sections describe particular considerations that we made while re-
alizing the above steps.

4.4 Workload Characterization
Workload characterization should be based onkey propertiesthat are important
in a particular design context. These are properties that have a strong impact on
the performance of the architecture being designed. For instance, in microar-
chitectural design such properties would be instruction mix, branch prediction
accuracy and cache miss rates [39]. As mentioned in Section 4.1, our hypothesis
is thaton the system levelthe performance of multimedia MpSoC architectures
is largely influenced by various kinds ofdata-dependent variabilityassociated
with the processing of media streams. This hypothesis restson the observation
that such variability is the major source of the burstiness of on-chip traffic in such
multimedia MpSoC platforms [165]. The burstiness of the on-chip traffic neces-
sitates insertion of additional buffers between architectural entities processing
the media streams, and deployment of sophisticated scheduling policies across
the platform. Both of these inevitably translate into increased design costs and
power consumption [57].

Individual media streams withidentical parameters, such as bit rate, frame
rate and resolution, may impose significantlydifferent workload on the archi-
tecture; in particular, the streams may exhibit different kinds of the variability.
This phenomenon can be explained by the fact that, although these streams have
identical parameters, they contain diverse multimedia information and may have

4.4. Workload Characterization 77

different structure (e.g., in MPEG video streams, different frame types may be
arranged in various patterns). For MPEG-2 video streams, this fact is supported
by our experiments reported in Section 4.6. [57] demonstrates the variability
in streams of several other multimedia formats. Therefore,in the system-level
design context of multimedia MpSoC architectures, it is certainly meaningful to
characterize and classify multimedia workloads with respect to their variability
properties.

In a typical MpSoC architecture, consisting of a heterogeneous collection of
interconnected PEs, often there are several sources of variability that depends
on properties of the processed media streams. Consider, as anexample, the
MPEG-2 decoding system shown in Fig. 17 in Chapter 3. The system consists
of two programmable processors,PE1 andPE2, and input and output interfaces.
PE1 executes a task performing VLD and IQ functions, whereasPE2 executes
a task performing IDCT and MC functions of the MPEG-2 decodingalgorithm.
For brevity, we will refer to these tasks as VLD and IDCT, respectively. In
Fig. 17, stream objects belonging to the input stream emerging from the network
interface are single bits. Stream objects sent fromPE1 to PE2 are partially
decoded macroblocks, whereas stream objects entering the video interface are
fully processed macroblocks. What are the sources of variability associated with
media streams processed on such an MpSoC platform?

• First, arrival patterns of media streams at the input of the system may have a
bursty nature, i.e. stream objects may arrive at the system’s input in highly irreg-
ular intervals. A typical example of this is a multimedia device receiving streams
from a congested network.

• Second, each activation of a task may consume and produce a variable number
of stream objects from the associated streams. For example,each activation of
VLD in Fig. 17 consumes a variable number of bits from the network interface,
although it always produces one macroblock at its output.

• Third, the execution demand of a task may vary from activation to activation due
to data-dependent program flow. Both the tasks in our running example of the
MPEG-2 decoder—VLD and IDCT—possess this property.

• Finally, stream objects belonging to the same stream may require different amounts
of memory to store them in communication channels between PEs. Again, in the
example architecture in Fig. 17, we note that the partially decoded macroblocks
stored in bufferB2, depending on their type, may or may not include motion
vectors.

All these types of variability must be carefully consideredand characterized dur-
ing the workload design process. In this chapter, we will be concerned with the
variability of the execution demand and the consumption andproduction rates of
tasks. As mentioned before, depending on the architecture and the application

78 Chapter 4. Workload Design

at hand, it might be meaningful to consider other types of variabilities as well.2

However, we show that the two variability types we consider here already lead
to meaningful results.

We propose to use VCCs introduced in Section 3.2 as a model for the work-
load characterization that can capture different kinds of variability in media
streams. To each streami in a stream collection, we associate a set of tuples
Si = {(V l

P ,Vu
P)}, whereV l

P andVu
P denote lower and upper VCCs characteriz-

ing variability of propertyP in streami. For anyP, V l
P andVu

P must represent
thetightest upper and lower VCCs, as defined by Defs. 14 and 15. To obtain such
tightestV l

P andVu
P , we use (3.42) and (3.43) under the condition that thefunction

setfor which the VCCs are calculated contains only one function—the function
which corresponds to propertyP of the stream being characterized. Thus, the
resulting VCCs,V l

P andVu
P , representtightestbounds on the worst- and best-

case variability of propertyP in a singlestream. The set of all such VCCs,Si,
represents a complete characterization of streami. As a result, in form ofSi, we
have an accurate, compact and easy-to-obtain abstraction of streami.

In Section 3.3, we defined some VCC types useful for multimediaworkload
characterization. Out of them, for the workload design in this chapter, we use the
execution demand curves and the consumption and productioncurves, denoted
by tuples(γl, γu), (κl, κu), and(πl, πu), respectively. Each task in a multimedia
stream-processing application is characterized by these VCC types.

We note that(γl, γu) depends on the PE type on which the corresponding ap-
plication task is to be executed. For example, if a PE has an application specific
instruction set which may significantly alter the executiondemand of tasks, then
this will be reflected in(γl, γu). In contrast,(κl, κu) and(πl, πu) are not depen-
dent on the architecture, but on the dataflow properties within the application.
Hence, the assumption here is that, prior to the workload characterization, we
need to know the partitioning of the application into tasks and the mapping of
those tasks onto PE types. We believe that this assumption isnot too restrictive.
Similar assumptions are common in the Embedded Systems design community,
where applications are modeled by task graphs in which the (worst-case) exe-
cution demands of tasks are known. In fact, thesameassumption is made in a
number of trace-based performance evaluation techniques recently reported in
the literature [74, 75, 83, 116]. These trace-based performance evaluation tech-
niques rely on pre-collected execution traces of tasks on PEs of the MpSoC plat-
form being evaluated. Our method can be useful especially inthis context, by
providing such techniques with the representative set of traces.

2It might be also necessary to account for correlations existing between different variability
types. However, this question goes beyond the scope of this chapter.

4.5. Workload Classification 79

4.5 Workload Classification

In the previous section, we described how media streams can be quantitatively
characterized to enable their comparison and classification. In this section, we
explainhowsuch a comparison and classification can be accomplished based on
this characterization.

We propose to classify streams based on theshapesof the VCCs associated
with them. If two streams are characterized by VCCs having similar shapes,
then their behavior, in the worst/best-case, will also be similar. Each stream
might be associated with several VCC types, characterizing different aspects of
variability within the stream. Therefore, if two streams have similarly shaped
VCCs of respective types, then these streams will impose similar workload on the
architecture (in the worst- and best-case). For example, the maximum backlogs
that such streams will create in the buffers of the architecture as a result of their
processing will almost be the same.

4.5.1 Dissimilarity based on a single VCC type

Let us first define a metric that would allow to compare two streams based on
only one VCC type. This metric should be a measure ofdissimilarity between
shapes of two VCCs of the same type.

In general, any measure of dissimilarity between two objects depends on the
specific problem at hand [45]. Each property, based on which two objects are to
be compared, is associated with a variable. That is, if therearen properties upon
which two objects have to be compared, then there will ben variables describing
each object. Any valuation of these variables constitutes arepresentation of an
object. The dissimilarity between two objects is then foundby computing some
metric defined over thesen variables. In our case, a VCC, which is defined for a
set of pointsk = 1, 2, .., n, can be seen as an object described byn variables.

Intuitively, to see how dissimilar the shapes of two VCCs are, we need to
compare their values for each of the pointsk = 1, 2, .., n. By noting that all
n variables represent a VCC along essentiallyseparabledimensions, we can
quantitatively measure the dissimilarity between two VCCs using the City Block
metric [45]. We decided to use this metric as a measure of dissimilarity, because,
in comparison to other known metrics (e.g. Euclidean Distance), it is more “sen-
sitive” to differences in each of the dimensions (variables). I.e., in our case, the
metric is more “sensitive” to the differences in the shapes of two VCCs. A for-
mal definition of the dissimilarity between two VCCs based on the City Block
metric is given below.

Let Vr
i (k), k = 1, 2, .., n, denote a VCC of typer associated with stream

i. The measure of the pairwise dissimilarity between two streamsi andj, with

80 Chapter 4. Workload Design

respect to VCCVr, is then defined as

drij =
n

∑

k=1

ωr(k) |Vr
i (k) − Vr

j (k)| (4.1)

whereωr(k) = 1/k are weights that are necessary to normalize the differences
|Vr

i (k) − Vr
j (k)| with respect to the lengthk of the analysis interval. The longer

the analysis intervalk is, the lesscritical the difference in the values of the two
VCCs becomes. For example, suppose that we want to compare upper execution
demand curves of two streams. Assume from the execution demand curves we
know that any two consecutive stream objects (i.e.k = 2) in the first stream
may cause a maximum execution demand of 100 units, while for the second
stream this value is 150. Suppose that we also know that any 10consecutive
stream objects (k = 10) in the first stream may cause a maximum execution
demand of 1000 units, and it is 1150 units for the second stream. Although the
absolute difference between the curves fork = 2 is smaller than that fork = 10,
the difference in the execution demand computedper stream objectfor k = 2
is larger than fork = 10 (|100−150|

2
> |1000−1150|

10
). For k = 10 the absolute

difference isdistributedover a larger number of stream objects than in the case
of k = 2, and therefore this difference becomes less critical. The weightsωr

allow to correctly compare the streams for largek, e.g. to properly account for
long-term average execution demands.

4.5.2 Dissimilarity based on several VCC types

Media streams may be characterized by more than one VCC type. How can the
dissimilarity between the streams be quantified then?

First, we propose to compute the dissimilarities between VCCsof identical
types as defined by (4.1). Then, the computed “single-type” dissimilarities can
be combined in a variety of ways. One possibility is to simplysum up all of
them. Our experiments showed that this simple approach works relatively good.
Hence, we define the pairwise dissimilarity between two streamsi andj with
respect to VCCs of typesr ∈ R as [114]

dij =
∑

∀r∈R

drij (4.2)

An improved version of (4.2) sums upnormalizeddissimilarities drij

max∀i,j drij
, i.e.

dij =
∑

∀r∈R

drij

max∀i,j drij

(4.3)

4.5.3 Clustering

Finally, toclassifystreams using the dissimilarity measures described above,we
employ a conventional hierarchical clustering algorithm which uses thecomplete

4.6. Empirical Validation 81

linkagealgorithm [45] to compute distances between clusters. The choice of the
complete linkage algorithm was motivated by the need to keepthe clusters as
dense as possible.

4.6 Empirical Validation

To see how the workload classification method described in previous sections
performs on real data samples, we conducted a number of experiments with
MPEG-2 video streams. MPEG-2 streams represented an interesting target for
our experiments because they have a complex nature and a richset of character-
istics [78].

Workload design scenario
Consider the following design scenario. Suppose our goal is to study the im-
pact of different MPEG-2 streams on the MpSoC platform shownin Fig. 17 in
Chapter 3. At our disposal we have a large library of video clips that our archi-
tecture should be able to support. However, due to design time constraints we
cannot afford to simulate the platform architecture for each clip in the library.
Furthermore, since simulation of an entire clip takes a prohibitively long time,
we are constrained to simulating onlyshort fragmentsextracted fromselected
video clips in the library.

We assume that any video clip in the library contains only onescene. In
a visual sense, a scene is “a portion of the movie without sudden changes in
view, but with some panning and zooming” [78]. Distinguishing between differ-
ent scenes is necessary, because even within a single MPEG-2stream different
scenes might have substantially different characteristics. For example, character-
istics of MPEG-2 streams (such as bit rate) maysignificantlyvary at a large time
scale, i.e. across different scenes, while at a short time scale (i.e. within a scene)
the variations are more moderate [78, 84]. Since VCCs represent worst/best-case
bounds, if different scenes are not treated separately while deriving their VCCs,
then details about variability in some scenes may be “overshadowed” by other
scenes. Finally, we note that in practice it is always possible to split a long movie
into a series of individual scenes (see [78] for the relevantreferences).

For our experiments, we used a library of MPEG-2 video clips summarized in
Tab. 4. Each clip in the library is an 8 Mbps constant-bit-rate stream, containing
one scene with resolution704×576 pixels and frame rate 25 fps. We believe that
the variety of scenes represented in this library is sufficient for the demonstration
of our workload design method.

To select representative streams, for performance evaluation of the platform
architecture shown in Fig. 17, we classified the streams in the library based on (i)
the variability in the execution demand, and (ii) the variability in the production

82 Chapter 4. Workload Design

video file name video file name
1 100b080.m2v 7 pulb 080.m2v
2 bbc3080.m2v 8 susi080.m2v
3 cact080.m2v 9 tens080.m2v
4 flwr 080.m2v 10 time 080.m2v
5 mobl 080.m2v 11 v700 080.m2v
6 mulb 080.m2v

Source: ftp.tek.com/tv/test/streams/Element/MPEG-Video/

Tab. 4: MPEG-2 video clips used in the experiments

and consumption rates of the MPEG-2 tasks to be executed on the PEs of the
platform. VLD task can be characterized by both variabilitytypes. Its execution
demand varies and, per execution, it consumes a variable number of bits from
its input. Hence, we characterized VLD task using executiondemand curves
(γl

V LD, γ
u
V LD) and consumption curves(κl

V LD, κ
u
V LD). In contrast, IDCT task

was characterized by execution demand curves(γl
IDCT , γ

u
IDCT) only. This is

because its execution demand can vary, but the consumption and production rates
remain constant.

Experimental setup
Our simulation environment consisted of the SimpleScalar instruction set sim-
ulator [8], a system simulator and an MPEG-2 decoder program[119]. The
MPEG-2 decoder program was used as an executable for both simulators and as
a means to obtain traces of bit allocation to macroblocks. The system simulator
served for validation of our workload design method. It consisted of a SystemC
[153] transaction-level model of the architecture in Fig. 17. This model was
based on the simulation environment described in Appendix A.

The SimpleScalar simulator served for modelingPE1 andPE2 of the plat-
form architecture in Fig. 17. It was used to obtain traces of execution times
for VLD and IDCT tasks. Both tasks worked at the macroblock granularity. In
our experimental setup, the SimpleScalar simulator was used insim-profile
configuration and with the PISA instruction set [8]. Although this configura-
tion does not model advanced microarchitectural features of a processor, such
as caches, branch predictors, etc., it requires less time tosimulate, and therefore
was a suitable choice for our purposes. This choice was also justified by the fact
that advanced features in the microarchitecture of generalpurpose processors do
not significantly impact the variability of multimedia workloads [57].

VCCs,(γl
V LD, γ

u
V LD), (κl

V LD, κ
u
V LD) and(γl

IDCT , γ
u
IDCT), were obtained from

the execution traces using the trace analysis method described in Section 3.5.2.
We set the maximum analysis interval to 12 video frames. Thiscorresponded
to the most frequently occurring length of group of pictures(GOP) [118] in the

4.6. Empirical Validation 83

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

12

14

16
x 10

7

macroblocks

cy
cl

es

γu

γl

 γu

 γl

video 5

video 5

video 10

Fig. 26: (γl
V LD, γu

V LD) for different fragments of video 5 and video 10

MPEG-2 bitstreams. Obtaining the VCCs relied only on the instruction set sim-
ulation and a simple trace-analysis algorithm, both of which can be orders of
magnitude faster compared to a full system simulation

Results and discussion
Our first step was to compute the maximum dissimilarity between VCCs ob-
tained from different fragments of thesamescene (i.e. clip). The goal was to
check whether this dissimilarity would be sufficiently small to allow for using
a randomlyselected short fragment as a representative of the whole video clip.
If the dissimilarity were too large, then randomly selecting fragments from the
clips would not be a good strategy, and we would need to look for other ap-
proaches for selecting fragments from the clips. For example, all fragments of
a scene could be classified first using the method presented inthis chapter, and
thenseveralfragments with diverse charcateristics could be chosen to represent
that scene.

From each clip in the library, we extracted 10 unique fragments of the same
length (30 frames) and measured their VCCs. Fig. 26 shows measurement re-
sults for(γl

V LD, γ
u
V LD) for two video clips—video 5andvideo 10from Table 4.

Video 5contains a natural full-motion scene, whereasvideo 10is a video test pat-
tern with a small running timer on a still background. By inspecting the plots in
Figure 26, we can see that the dissimilarity between fragments ofvideo 5is larger
than the dissimilarity between fragments ofvideo 10. This can be explained by
a higher degree of motion present in the scene ofvideo 5. Nevertheless, we can
see that the curves for different fragments ofvideo 5exhibit a similar behavior.
For other videos in the library, we observed same trends.

Using (4.1), for each VCC type and each video clip in the library, we com-

84 Chapter 4. Workload Design

VCC max.dissim video VCC max.dissim video
γu

V LD 57151356 4 γl
IDCT 37220944 3

γl
V LD 23548299 4 κu

V LD 2146073 4
γu

IDCT 22903156 9 κl
V LD 752238 4

Tab. 5: Maximum dissimilarities between fragments of the same clip for each VCC type.

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

12

14

16
x 10

7

macroblocks

cy
cl

es

group 1
group 2
group 3
group 4

Fig. 27: Classification based onγu
V LD only

puted pairwise dissimilarities between fragments of the same clip. Tab. 5 sum-
marizes results of this experiment. It shows themaximumdissimilarities for each
VCC type over the whole set of video clips. From this table, we can conclude that
video 4probably contains a very complex and changing scene, because for al-
most all VCC types its fragments exhibit larger dissimilarity between each other
than the fragments of other clips.

Based on the above results, for the classification of video clips in the library,
we decided to randomly pick one fragment from each clip and then perform the
classification based only on these selected fragments.

For the purpose of illustration, we first performed the classification based on
only oneVCC type,γu

V LD. The results of theγu
V LD-based classification into four

groups are presented in Fig. 27. As we can see in the figure, ourmethod could
correctly identify groups of curves having similar shapes.This indicates that
the measure of dissimilarity defined by (4.1) and the chosen clustering algorithm
lead to a meaningful classification.

Fig. 28 shows adendrogramof the hierarchical cluster tree obtained as a
result of the classification based on all six VCC types and by using (4.2). In
this dendrogram, we can clearly distinguish between two major groups of clips:

4.6. Empirical Validation 85

0 0.5 1 1.5 2 2.5 3

x 10
9

 1
 7
 6
10
11
 2
 9
 5
 3
 8
 4

linkage distance

vi
de

os

motion videos

still videos

Fig. 28: Cluster tree

video B2 Bv video B2 Bv

1 8282 9433 4 4443 8732
2 5128 9027 7 8390 9593
3 7953 8867 9 3018 9272

Tab. 6: Measured maximum buffer backlogs

still and motion videos.3 This kind of a coarse-grained division into two groups
would have been possible to obtain just by viewing the videoson the screen.
However, a more refined classification would be difficult to achieve using such
a subjective technique. For example, before performing theexperiments, by
simply viewing the clips we could not predict thatvideo 4would have such
different properties in comparison to the other motion videos. However, we can
easily see this in the dendrogram: all other motion videos exceptvideo 4, form a
tight cluster with the maximum linkage distance almost three times smaller than
the maximum linkage distance whenvideo 4is included into the cluster.

Finally, to see how the results of the stream classification correlate with the
actual impact of the streams on the architecture, we performed simulations of the
system in Fig. 17. We simulated the decoding of severalfull-lengthvideo clips
from the library. As a measure of the architectural impact wedecided to use
maximum backlogs occurring in buffersB2 andBv in Fig. 17. The backlog in
bufferB1 at thePE1’s input was not taken into account because of its relatively
small size.

Tab. 6 summarizes results of the system simulations. Our buffer measure-
ments show that, for example,video 1andvideo 7produce very similar maxi-
mum backlogs in both buffers. The maximum backlogs producedby video 9and
video 2are less similar than the backlogs produced byvideo 1andvideo 7. For

3Sincevideo 10is mostly still, it was assigned to the group of still videos by our method.

86 Chapter 4. Workload Design

video 9andvideo 2, the differences in the backlogs inB2 andBv are 2110 and
245 macroblocks, respectively. We can also see thatvideo 9is more similar to
video 2than tovideo 3. The maximum backlogs forvideo 3andvideo 9differ
in 4935 and 405 macroblocks forB2 andBv, respectively. Hence, we can con-
clude that the simulation results exhibit the same tendencyas that shown by the
classification in Fig. 28.

4.7 Summary
In this chapter, we presented an approach for workload design in the specific
context of system-level performance evaluation of multimedia MpSoC architec-
tures. The two main contributions of this chapter were: (i) establishing the utility
of VCCs as a model for multimedia workload characterization, and (ii) a work-
load classification method based on VCCs which allows to identify groups of
media streams that impose similar workload on a platform architecture. System
designers can use this classification method for constructing small representative
workload sets for performance evaluation of MpSoC platforms for multimedia
processing. We presented experimental results that validate and show usefulness
of this approach. However, there is a considerable scope forfurther research in
this direction. For example, a more systematic study needs to be done to identify
“variability types” beyond the ones considered in this chapter.

5
Designing Stream Scheduling Policies

In Chapter 4, we demonstrated one possible application of Variability Characteri-
zation Curves: we proposed a method to automate the selectionof representative
workload for performance evaluation of the multimedia MpSoC architectures.
In this chapter, we demonstrate another application of VCCs. The focus of this
chapter is on design ofplatform management policiesfor such MpSoC architec-
tures.

A platform management policy specifies how the computational and commu-
nication resources of an execution platform should be shared among application
tasks, i.e. it defines the scheduling and arbitration1 policies implemented on
these resources. These policies are the knobs which designers can use to tune up
the system such that a desired tradeoff is achieved between system’s cost, perfor-
mance and power consumption. That is why a proper selection and optimization
of platform management policies play an important role in the system-level de-
sign of multimedia MpSoC platforms.

There is a large body of research work on real-time scheduling, covering
a broad spectrum of applications—from control-dominated to signal process-
ing systems. However, the scheduling problems arising in the domain of me-
dia processing execution platforms (such as multimedia MpSoC architectures)
involve a number of specific issues that are not effectively addressed by the ex-
isting scheduling methods: Due to the streaming nature of multimedia applica-
tions, the scheduling of processing elements in a multimedia MpSoC architecture
more resembles scheduling of packet flows in a communicationnetwork than the
traditional real-time task scheduling. Many existing real-time task scheduling

1Hereafter, we use the termsschedulingandarbitration interchangeably.

88 Chapter 5. Designing Stream Scheduling Policies

techniques aredeadline-driven; in contrast, streaming multimedia applications
havequality of service requirementswhich do not directly translate into task
deadlines. Additionally, multimedia workloads are highlydynamic and variable,
making it difficult to identify optimal scheduling strategies. As a result, platform
management policies for multimedia MpSoC architectures often have very large
and irregular design spaces.

All these factors call for new approaches to designing schedulers for mul-
timedia MpSoC architectures. We explore this direction in this chapter. The
VCC-based workload model and the extended Modular Performance Analysis
framework developed in Chapter 3 serve in this chapter as a basis for an efficient
framework for design space exploration of the platform management policies. In
this framework we mainly concentrate on fast and accurate performance evalua-
tion methods and on schedulability tests which can effectively speedup and guide
the design space exploration process. To demonstrate the utility of the frame-
work, we describe two case studies involving Time-DivisionMultiplex Access
(TDMA) scheduling policy.

Contributions of this chapter

• We formulate the problem of scheduling media streams under strict QoS con-
straints imposed by available buffer space. This problem ismotivated by the
tight on-chip memory constraints associated with the current multimedia MpSoC
architectures.

• We propose a framework for fast system-level design space exploration and op-
timization of platform management policies for the media processing execution
platforms, such as multimedia MpSoC architectures. The framework features a
combination of an initial one-time simulation of individual architectural compo-
nents to obtain relevant workload characteristics, and a subsequent fastanalytic
performance evaluation, iteratively performed in the time-critical design space
exploration loop.

• Based on the extended Modular Performance Analysis framework, we propose
a method for computation of the buffer space requirements under different plat-
form management policies. In comparison to the previously published methods
addressing similar problems, the main novelty of our methodis in its ability to
account for specific QoS requirements associated with processing media streams
on buffer-constrained architectures. In addition, in thismethod we demonstrate
how the VCC types defined in Section 3.3 can be used for themodular per-
formance analysisof distributed heterogeneous architectures. By applying our
method to a case study of an MpSoC architecture, we demonstrate the complex-
ity of the design space of the seemingly simple, widely used TDMA scheduling
policy.

5.1. Stream Scheduling under Buffer Constraints 89

• We propose a method for a fast feasibility test ofstream schedulingpolicies
under given QoS requirements. Towards this, we introduce the concept ofservice
boundsand show how they can be computed and used for the feasibilitytest.
Through a detailed case study, we demonstrate how the service bounds can guide
the optimization of stream scheduling policies.

Organization of this chapter

• Section 5.1 introduces the problem of stream scheduling on buffer-constrained
architectures through a motivating example of aset-top boxapplication scenario.
This scenario will be used in the course of this chapter for the case studies.

• Section 5.2 outlines the related work.

• Section 5.3 presents the framework for design space exploration and optimiza-
tion of platform management policies for the media processing execution plat-
forms.

• Section 5.4 addresses the problem of estimating buffer memory requirements
resulting from deploying different scheduling policies onprocessing elements of
an MpSoC architecture.

• Section 5.5 introduces the concept ofservice boundsused for quick feasibility
tests of stream schedulers for the buffer-constrained architectures.

• Section 5.6 concludes the chapter.

5.1 Stream Scheduling under Buffer Constraints
This section introduces the stream scheduling problem arising on the system
level in multimedia MpSoC architectures. We first describe aset-top boxappli-
cation scenario; and then, using this scenario as an example, we introduce the
scheduling problem and point out its specifics.

5.1.1 Set-top box application scenario

Fig. 29 shows a simple system-level model of a set-top box device implement-
ing an audio-video decoder. Audio and video streams enter the device, which
includes two PEs:PE1 andPE2. The MPEG-2 video decoding algorithm is par-
titioned into two tasks—one mapped ontoPE1, the other ontoPE2. The MP3
audio decoder includes a single task, mapped ontoPE2. On-chip buffersB1,B2,
andB3 store the partially processed streams, whereasBv andBa, so calledplay-
out buffers, store the fully decoded streams. These buffers are read by the video

90 Chapter 5. Designing Stream Scheduling Policies

Fig. 29: System model of aset-top boxdevice, processing an audio and a video stream.

and audio output devices through corresponding interfaces. Besides processing
media streams,PE1 andPE2 can execute other tasks. For example, in Fig. 29,
PE1 executes a task responsible for interaction with the set-top box’s user. This
task handles control commands initiated through a user interface (UI).

In the setup described above, the MPEG-2 video decoding proceeds in the
following way. A compressed video stream arrives through the network interface
into PE1’s input buffer,B1. PE1 reads the stream from this buffer and performs
on it thevariable length decoding(VLD) and inverse quantization(IQ) functions
[118]. As a result of this processing, the video data appearsat PE1’s output as
a stream of partially decodedmacroblocks. PE1 writes this stream into buffer
B2. PE2 reads this buffer and completes the video decoding by computing the
inverse discrete cosine transform(IDCT) and, if necessary, performing themo-
tion compensation(MC) for each macroblock in the stream.PE2 writes the fully
decoded stream into playout bufferBv, which isperiodically read by the video
output port. The output port finalizes the video processing and sends the video
to a display device.

5.1.2 The stream scheduling problem

Different streams entering a PE (for example,PE2 in Fig. 29) could be associated
with different input rates. The respective output devices (such asVideo OUTand
Audio OUTin Fig. 29) could also consume the outgoing processed streams at dif-
ferent predetermined rates. Additionally, the processingrequirements associated
with the streams can vary widely. To satisfy the real-time constraints imposed by
such I/O rates, it is necessary to suitably schedule the multiple streams entering
a PE. Furthermore, to preserve the quality of the processed streams, any schedul-
ing policy on a PE belonging to a setup similar to that in Fig. 29 must typically
satisfy the following constraints: None of the buffers should overflow, and the
playout buffers read by the real-time output devices shouldnever underflow.

5.1. Stream Scheduling under Buffer Constraints 91

The output devices read the playout buffers at specified rates, depending on
the required output quality. Therefore, the constraint on such a buffers under-
flow is to ensure that this required output quality is guaranteed. Guaranteeing
that none of the buffers overflows is needed because, in many cases, using block-
ing writes to prevent the overflows is infeasible. Efficiently implementing such
blocking mechanisms requires either a multithreaded processor architecture or
substantial run-time operating-system support for context switching, and neces-
sitates platform-wide flow-control mechanisms [134, 151] which might be diffi-
cult to implement in a distributed architecture.

The motivation for thisbuffer-centricdesign of schedulers is that buffers are
available only at a very high premium because of their large on-chip area re-
quirements [165]. On the other hand, the off-chip memory quickly becomes a
bottleneck in high bandwidth applications such as multimedia; and its bandwidth
cannot be easily increased due to a number of technology constraints (e.g. a lim-
ited number of I/O pins in a chip) [52]. Hence, the buffers play a central role in
the design of any scheduling or MpSoC platform management policy.

Specifics of the scheduling problem
The scheduling problem just described has a number of characteristics that make
it notably different from other real-time scheduling problems. These character-
istics are summarized below.

• Implicit deadlines: The real-time scheduling traditionally relies on the notion of
(hard and soft)deadlines: each task instance has anexplicit deadline. This way,
the deadlines specify thereal-time constraintsto be satisfied by the scheduler.
In contrast to this, in the stream scheduling problem the real-time constraints are
not naturally expressed through the deadlines. The main goal of a stream sched-
uler is to satisfy theQoS requirementsassociated with the processed streams.
Hence, the real-time constraints are determined by these QoS requirements. The
QoS requirements may, for example, include the required throughput, end-to-
end processing delay2 and the underflow/overflow buffer constraints. In general,
these QoS requirements do notdirectly translate into the deadlines.

In fact, the deadlines are not considered at all in the proposed method since we
are not interested in individual task instances meeting their deadlines but in the
whole stream satisfying given QoS constraints. Although the deadlines are not
specified in the scheduling problem addressed in this chapter, thereal-time con-
straintsstill exist and if needed can behard. Finally, we note that due to the high
variability of several workload characteristics and due tothe buffering involved
into the stream processing, it would be difficult to translate the QoS requirements
into the deadlines for each task instance without introducing a significant amount
of pessimism and runtime overhead.

2The delay through the whole stream processing chain.

92 Chapter 5. Designing Stream Scheduling Policies

• “Too much service is as bad as too little service”:The goal of the conventional
real-time scheduling is to improve task response times. Therefore, the more
service a task gets, the better it is (provided that schedulability of other tasks is
not jeopardized). In contrast, in scheduling tasks processing streams under the
buffer constraints, providing too much service to a task maybe as dangerous as
providing too little service. A higher service rate offeredto a task increases the
burstiness of the stream at the task’s output, and thereforemay cause overflows of
downstream buffers. Hence, in stream scheduling we are seeking for abalanced
service.

• Asynchronous communication style:The majority of task models used in real-
time scheduling assume that the tasks having data dependencies communicate
synchronously3: a next instance of a producer task is not allowed to start execu-
tion before the output from the previous instance has been read by the consumer
task. (The communication channel in this case represents a channel with de-
structive write, i.e. aregister.) The underlying computation model of a stream
processing application is different. In this model, tasks communicateasynchro-
nouslythrough the buffered channels. This communication style relaxes the tim-
ing coupling between dependent tasks, thereby creating a larger decision (or de-
sign) space for a scheduler.

• Workload variability: As discussed in Section 3.1, there are not many task
models (and therefore scheduling techniques) that can effectively and efficiently
handle the variable workloads. On the other hand, the major complication in
scheduling of streaming multimedia applications on distributed execution plat-
forms stems from the high workload variability, which leadsto bursty and com-
plex communication traffic between the multimedia tasks.

The communication traffic on an MpSoC platform, such as the one shown in
Fig. 29, tends to be highly complex and bursty for three main reasons [165].
First, the execution time of many media processing tasks highly depends on the
properties of the particular audio-video sample being processed [14, 57, 134].
Second, the quantity of the I/O data consumed and produced bya task can also
vary widely. An example of this is the VLD task in Fig. 29. Third, the input
media streams already tend to be highly bursty when they enter a processing
device. For example, in Fig. 29, the arrival pattern of the input streams entering
the set-top box would depend on the networks congestion levels. In addition to
these effects, the burstiness in the streams arrival pattern could increase as they
pass from one PE to the next, depending on these PEs’ congestion levels and
scheduling policies [133].

3See the discussion in Section 3.1.

5.2. Related work 93

5.2 Related work
In real-time scheduling, the QoS requirements of tasks are typically specified
with deadlines (which are explicit and fixed for a given task). Thus, many exist-
ing scheduling methods proposed in this area are “deadline-driven” [41, 150].4

However, there is a class of real-time tasks which rather require a guaranteed
rate of progress(average throughput) than the satisfaction of the fixed deadlines
[140]. Tasks that process continuous media streams fall into this category. There
are scheduling techniques that can guarantee the required average throughput to
such tasks in presence of other tasks by effectivelyreservinga portion of the
processor bandwidth for execution of these tasks. Examplesof such techniques
include various kinds of aperiodic taskservers[1, 22, 94, 147, 152] and therate-
based executionmodel [65]. Scheduling techniques based on the bandwidth
reservation principle are also used to guarantee QoS to packet flows in commu-
nication networks (see e.g. [179]). The same principle can also be applied to
schedule streams on an MpSoC execution platform. The scheduling techniques
mentioned above may serve as a basis for designing platform management poli-
cies for the media processors. However, their direct application in this domain is
limited because most of them are concerned with scheduling of a single PE (e.g.
a processor or a communication link) without considering system-level issues
such as the restricted buffer space.

There is a large body of research on scheduling of directed acyclic task graphs
on multiprocessor architectures [40, 76, 80]. A task graph specifies precedence
relations between tasks. These relations model data dependencies between the
tasks. An application is typically modeled by asetof independent task graphs;
each task graph is associated with a deadline and an activation period. This
set is then scheduled on heterogeneous architectures [98, 132]. Several hard-
ware/software co-synthesis frameworks use this model [32,33, 35]. The method
in [32] schedules task graphs with periodic and aperiodic activations. To guar-
antee QoS to aperiodic task graphs it employs resource reservations. [127] pro-
poses an algorithm to schedule task graphs which model both data and control
dependencies. Only a few approaches in this category consider memory con-
straints while scheduling the tasks [108, 131, 154].

All scheduling methods just mentioned assumesingle-rate data dependen-
ciesbetween tasks, i.e. the execution rate of any consumer task exactly matches
the execution rate of the corresponding producer task. Thistask model is too
restrictive for a large class of multimedia applications inwhich tasks havemulti-
rate data dependencies[67]. A more adequate task model for multimedia appli-
cations relies on the concept of dataflow process networks [89], which permits
the multi-rate data dependencies as well as cycles in the task graph. Scheduling
of dataflow process networks on multiprocessor architectures received a lot of
attention in the digital signal processing (DSP) domain [50, 88, 149]. The basic

4Some of these methods have been mentioned in Section 3.1.

94 Chapter 5. Designing Stream Scheduling Policies

model used to represent DSP applications, called Synchronous Dataflow (SDF),
assumes tasks with constant I/O rates [88]. A generalization of this model, the
cyclo-static dataflow[19], allows for the I/O rates to cyclically change. Schedul-
ing of the dataflow graphs is mainly concerned with minimization of data and
program memory needed to execute a graph [18]. Although different tasks may
execute at different rates, all these rates are tightly related to each other and fixed.

The existing dataflow scheduling algorithms focus on scheduling of only one
graph, ignoring the fact that several independent graphs, each having its own QoS
requirements, may need to be concurrently executed on the target architecture.
Combining these algorithms with the results known from real-time scheduling
(e.g. with the bandwidth reservation techniques discussedabove) may help to
address this problem. An interesting approach going in thisdirection is presented
in [43] where the rate-based execution model [65] based onearliest deadline first
policy is used to schedule an SDF graph on a single processor architecture. For
this setup, [65] provides an analysis of buffer requirements and the latency.

A number ofsystem-level performance analysisframeworks have been pro-
posed in the literature for evaluation and optimization of platform management
policies. [71] proposes a framework for evaluation of run-time schedulers in
embedded multimedia systems. Given a system architecture,a set of periodic
task graphs with execution times characterized by probability distributions, and
a scheduling policy implemented on PEs of the architecture,for each task graph
the framework in [71] computes a probability distribution of the processing de-
lay. The framework in [129] performs a system-level schedulability analysis of
distributed real-time systems which rely on the time-triggered protocol (TTP)
[76] as the communication infrastructure. Along with the schedulability tests,
[129] reports techniques to optimize the parameters of the TTP-based commu-
nication infrastructure and select suitable message passing strategies for it. The
work in [51] uses evolutionary multi-objective optimization techniques and the
SymTA/S performance evaluation framework [68, 133] to find suitable period
and time slot lengths of the TDMA scheduling policy. [25, 156] address the
problem of performance evaluation and design space exploration of network
processors. Similar to the framework presented in this chapter, the approach
in [25, 156] relies on the Real-Time Calculus [121, 158]. It estimates various
performance metrics, such as required buffer sizes and packet delays, resulting
from implementing different scheduling policies on PEs of anetwork processor.
However, unlike the framework presented in this chapter, the work in [25, 156]
does not account for the buffer constraints (especially those related to theplay-
out buffers) and the variability of the task I/O rates, which are naturalfor me-
dia stream processing on distributed execution platforms,such as multimedia
MpSoC architectures.

Finally, we note that designing schedulers for on-chip PEs involves signif-
icantly different constraints from those for scheduling and buffer management
of multimedia applications in operating systems and communication networks

5.3. Design Framework 95

(a) (b)

Fig. 30: Evaluating multiple scheduling policies (or their associated parameters): (a) Traditional
design cycle, purely based on simulation, (b) Proposed design cycle, which resorts to
simulation only once and subsequent iterations are based on the analytical framework.

(see [91] and the references therein). In the latter domain,the scheduling over-
head is often negligible in comparison to the execution times of the tasks. This
allows for complicated, online scheduling algorithms. However, in our resource-
constrained setup, implementing such algorithms might be infeasible: Often,
on-chip PEs have only lightweight or even no operating system support. Fur-
thermore, in the communication networks domain, buffer-use restrictions are not
as acute, and its possible to recover from data loss due to buffer overflows. How-
ever, such mechanisms are too complicated for an on-chip setup.

5.3 Design Framework
In this section, we present an overview of our framework for design space ex-
ploration and optimization of platform management policies [111, 112]. Most of
the state of the art in this area rely on simulation-orientedtechniques to evalu-
ate a platform management policy (see e.g. [126]), and follow the design cycle
in Fig. 30(a). Our technique follows the design cycle in Fig.30(b); we resort
to simulationonly once, to derive certain system bounds. Subsequently, in our
framework the evaluation of scheduling policies and their parameters (such as
suitable weights for a TDMA scheduler) relies solely on analytical methods.
Hence, when the parameter space associated with designing ascheduler is rela-
tively large, our framework can be a few orders of magnitude faster than purely
simulation-based approaches.

As shown in Fig. 30(b), in our framework we distinguish two phases: analysis
and exploration. During the analysis phase a simulation of individual architec-

96 Chapter 5. Designing Stream Scheduling Policies

tural components is performed. For example, execution of application tasks is
simulated on an instruction set simulator, and traces of task execution times and
other relevant task characteristics are collected. Using analysis techniques de-
scribed in Section 3.5, these traces are then abstracted by aset of VCCs. We refer
to this step asworkload characterization. After the workload characterization,
the obtained VCCs are used either for the analytical estimation of the memory
requirements associated with a platform management policy(Section 5.4) or for
the computation of the service bounds (Section 5.5) that arethen used for fast fea-
sibility tests of stream schedulers. In both cases, the evaluation of schedulers is
performed analytically in the exploration phase. In this way, the time-consuming
system-level simulation is pushed out of the design space exploration loop.

This basic scheme of using an initial simulation to generatetraces is not new
and is also followed in [125, 126]. However, simulation-oriented methods such
as [99, 125, 126, 184] then rely on a symbolic simulation of these traces (see also
[74, 75, 83] for work on performance analysis of bus-based SoC communication
architectures), whereas we rely on purely analytical methods which are specific
to multimedia processing.

5.4 Applying Modular Performance Analysis
This section shows how the MPA framework introduced in Section 2.2 and then
extended with multimedia-specific workload transformations in Section 3.4 can
be used for designing scheduling policies for a multimedia MpSoC execution
platform. In particular, we describe how the buffer memory requirements re-
sulting from deploying different scheduling policies on processing elements of
an MpSoC architecture can be analytically estimated using this extended MPA
framework. For illustration of the method, we use the set-top box application
scenario described in Section 5.1.1 and depicted in Fig. 29.Towards the end of
this section, we use this application scenario as a case study in which the per-
formance of the Time Division Multiple Access (TDMA) scheduling policy is
evaluated. The results of this case study indicate that in a multiprocessor envi-
ronment even a simple scheduling policy such as TDMA may havea large and
irregular design space. The extended MPA framework can helpsystem designers
to quickly discover these irregularities and make informeddesign decisions.

5.4.1 Problem formulation

As already mentioned above, the burstiness of processed event streams largely
determines the buffer requirements in a typical MpSoC architecture. It stems
from several factors. Some of the factors are application specific, while the oth-
ers are platform specific. The application specific factors are related to data-
dependent variability of stream parameters, such as variability of the execution

5.4. Applying Modular Performance Analysis 97

Fig. 31: A chain of performance components induced in a scheduling network by a media stream.

demand. The burstiness caused by the platform specific factors is associated
with contention of event streams on shared communication and computational
resources (PEs) of the architecture. The scheduling and arbitration policies used
to manage the access to these resources influence the degree of the burstiness in-
duced in the event streams and, therefore, largely determine the amount of buffer
space required to process these streams at a certain QoS level.

Scheduling policies can be designed such that the buffer space requirements
are minimized. However, in many cases, besides the minimization of the buffer
space, there are also other design criteria. These criteriaare often in conflict
with the buffer space minimization goal. For example, minimizing the buffer
requirements necessitates scheduling streams at a finer granularity. However,
this may increase scheduling overhead and, therefore, result in wasting precious
system resources (e.g. energy). While designing schedulingstrategies for media
processors, system designers are often concerned with identifying such trade-
offs. In many cases, these tradeoffs are difficult to identify since they represent
complex relationships between the application at hand and different system pa-
rameters, including those pertaining to the resource sharing policies. Identifying
these tradeoffs, therefore, necessitates evaluation of many alternative points in
the design space. One of the major problems in this context ishow to quickly
evaluate a large number of the design points. The method proposed in this sec-
tion employs the MPA framework to address this problem.

In order to use the MPA framework, we need to formulate our problem as a
scheduling network. Such a scheduling network represents a performance model
of a given application-to-architecture mapping. It specifies how event streams
flow between different PEs of the architecture and how these PEs are shared be-
tween those streams. The scheduling network, therefore, consists of performance
components interconnected through resource and event flows(see Section 2.2 for
details). Concrete instances of event and resource flows are abstracted by arrival
and service curves,̄α = (ᾱl, ᾱu) andβ = (βl, βu). Additionally, in the MPA
framework with multimedia extensions, performance components are character-
ized by consumption, production and execution demand curves, i.e. each com-
ponent is associated with VCCsκ = (κl, κu), π = (πl, πu), andγ = (γl, γu).

Consider a chain of performance componentsC1 → C2 → . . . → Ci →

98 Chapter 5. Designing Stream Scheduling Policies

. . . → Cn−1 → Cn induced in a scheduling network by a media stream, as
shown in Fig. 31. This chain models a sequence of tasks mappedonto different
PEs of the architecture, which process the media stream in a pipelined fashion.
In Fig. 31, performance componentCi (i = 1, 2, . . .) has as its input event-based
arrival curveᾱi. This curve is transformed byCi into event-based arrival curve
ᾱi+1. ᾱi+1, appearing atCi’s output, serves as an input to the next performance
component in the chain,Ci+1. The way in whichCi transformsᾱi into ᾱi+1

depends on the workload variability atCi, specified by VCCs(κi, πi, γi), and on
the scheduling policy implemented on the PE with whichCi is associated. The
scheduling policy determines the amount of resources (e.g.processor cycles)
received byCi from the PE in any given time interval. This amount is modeled
by resource-based service curveβi. In other words,βi characterizes the service
offered to the media stream on the PE.

At the input of each performance component, there is an implicit buffer (not
shown in Fig. 31). As explained above, to maintain the quality of the processed
media stream at an acceptable level, we require that none of the buffers in the
processing chain ever overflows. Furthermore, there may be some performance
components in the processing chain whose input has to be continuous. This
means that they cannot tolerate waiting on the empty input buffer for new events
to arrive. Whenever such a component reads from the buffer, the data must
be available for it. We refer to such buffers asplayout buffers. Typically, a
playout buffer is associated with the last performance component in a processing
chain. This is because the last component often represents an output interface in
a multimedia MpSoC architecture, e.g. a video or audio output, at which event
streams have to satisfy strict real-time constraints imposed by external devices
(such as digital-to-analog converters). Again, to ensure an acceptable quality of
the processed stream, we require that any playout buffer neither overflows nor
underflows.

Assume that, in Fig. 31,Cn represents the performance component that needs
to have at its input a playout buffer. To model the timing withwhichCn reads its
playout buffer, we useevent-basedservice curves̄βl

n andβ̄u
n. β̄l

n(∆) andβ̄u
n(∆)

specify, respectively, the minimum and the maximum number of events (stream
objects) thatCn reads from the playout buffer within any time interval of length
∆.

Given a processing chain such as one shown in Fig. 31, our goalis to compute
the maximal backlog which may occur in each of the buffers in this processing
chain as a result of applying a given scheduling policy. After finding the maximal
backlog in each of the buffers, we will be able to compute the maximum memory
requirements associated with this scheduling policy.

5.4. Applying Modular Performance Analysis 99

5.4.2 Computing the required buffer space

Upper bound on the backlog in a ”regular” buffer
Consider a performance componentCi which has at its input a buffer that must
never overflow, but is allowed to underflow. (We refer to such abuffer as a
”regular” buffer as opposed to a playout buffer that is allowed neither to overflow
nor to underflow.) To compute the upper bound on the backlog inthe buffer at
the input ofCi, we use results of the Real-Time Calculus [157] presented in
Section 2.2.2. Namely, we rewrite (2.10) such that it includes new multimedia
workload transformations developed in Section 3.4. We obtain

bi = sup
∆∈R≥0

{ᾱu
i (∆) − (κu−1

i ⊙ γu−1

i ⊙ βl
i)(∆)} (5.1)

wherebi is the upper bound on the backlog in the input buffer ofCi. In (5.1),
βl

i, κ
u
i andγu

i are known from the problem specification. In contrast,ᾱu
i is, in

general, unknown. Normally, we know onlȳαu
1 , which characterizes the event

stream at the input of the whole processing chain (i.e. at theinput of the first
performance componentC1). Starting fromᾱu

1 , the value of̄αu
i can be iteratively

computed using (3.38) as follows

ᾱu
i+1 = πu

i ⊙([((κu
i ⊙ᾱu

i)⊗ (γl−1

i ⊙βu
i))⊘ (γu−1

i ⊙βl
i)]∧(γl−1

i ⊙βu
i)) i = 1, 2, . . .

Using the above formula in conjunction with (5.1), the upperbounds on the
backlogs in all ”regular” buffers of the processing chain can be calculated.

Upper bound on the backlog in a playout buffer
For performance components that have playout buffers at their inputs, the com-
putation of the upper bound on the backlog is in principle thesame as for com-
ponents with ”regular” buffers, however, it involves an additional step.

As stated above, a playout buffer must neither overflow nor underflow. En-
suring satisfaction of the underflow condition necessitates introducing aplayout
delay. This is a time period at the start of the operation of the whole processing
chain during which the performance component associated with a playout buffer
does not read this buffer. This playout delay is necessary toproduce aninitial
backlogin the playout buffer. The initial backlog must be sufficientto ensure
that even in the case when the processed stream experiences the worst-case de-
lay (e.g. due to processing by upstream components) the playout buffer never
gets completely empty. Hence, to compute the upper bound on the backlog in a
playout buffer, we first need to compute the initial backlog in this buffer. Towards
this we propose the following theorem.

Thm. 2: (Initial backlog in playout buffer) The initial backlog,b0, ensuring that the
associated playout buffer never underflows is given by

b0 = sup
∆∈R≥0

{β̄u(∆) − ᾱl(∆)} (5.2)

100 Chapter 5. Designing Stream Scheduling Policies

whereᾱl denotes the lower event-based arrival curve of the stream at the input
of the playout buffer, and̄βu denotes the upper event-based service curve offered
to the stream by the performance component reading the playout buffer.

Proof. Letx(t) denote the total number of events that have arrived in the playout
buffer within time interval[0, t]. Similarly, let y(t) denote the total number of
events that have been read out of the playout buffer within time interval[0, t].
Assume thatx(0) = y(0) = 0. From the definitions of the arrival and service
curves, we havex(t + s) − x(t) ≥ ᾱl(s) andy(t + s) − y(t) ≤ β̄u(s) for all
s, t ∈ R≥0 [85]. The playout buffer never underflows ifx(t) > y(t) for all
t ∈ R>0.

Now, consider somet up to which the conditionx(t) > y(t) holds. To ensure
that this condition also holds for somet′ = t+ s the following relation has to be
satisfied

x(t) + ᾱl(s) ≥ y(t) + β̄u(s) ∀t, s ∈ R>0

Here, ᾱl (s) is the minimum number of events that may arrive in the interval
[t, t + s], whereas̄βu (s) is the maximum number of events that can be read out
of the playout buffer in the same interval. Letb(t) = x(t) − y(t) denote the
backlog in the buffer at timet. Then we have

b(t) ≥ β̄u(s) − ᾱl(s) ∀t, s ∈ R>0

By putting t = 0 in the above condition, we obtain a constraint for the initial
backlogb(0) ≥ β̄u(s) − ᾱl(s) for all s ∈ R>0. This is equivalent to requiring
thatb(0) ≥ b0, whereb0 = sups∈R≥0

{β̄u(s) − ᾱl(s)}
�

Whenever even-based service curveβ̄u
i is specified, we can directly use (5.2)

to compute initial backlogb0i in the playout buffer ofCi. Otherwise, we need to
apply corresponding workload transformations to resource-based service curve
βu

i . After applying these transformations, (5.2) takes the following form.

b0i = sup
∆∈R≥0

{(κl−1

i ⊙ γl−1

i ⊙ βu
i)(∆) − ᾱl

i(∆)} (5.3)

In (5.3), ᾱl
i can be computed in a similar way asᾱu

i , as explained above, but
using (3.39):

ᾱl
i+1 = πl

i ⊙ ([(κl
i ⊙ ᾱl

i ⊘ γl−1

i ⊙ βu
i)⊗ γu−1

i ⊙ βl
i] ∧ γu−1

i ⊙ βl
i)

The computation of the above formula starts fromᾱl
1 (which is known from the

problem specification) and iteratively proceeds up to the required indexi.
Taking into account the required initial backlogb0i , the upper bound on the

backlog in the playout buffer at the input of the performancecomponentCi can
be calculated as

b∗i = b0i + bi (5.4)

wherebi is determined by (5.1).

5.4. Applying Modular Performance Analysis 101

Maximum memory requirements
Having computed the upper bounds on the backlogs in the buffers within a stream
processing chain, we can calculate the maximum memory requirement associ-
ated with this chain. For this, letSi denote the maximum size of a stream object
in the input buffer of performance componentCi. Then the maximum memory
requirement,M, of the whole processing chain can be computed as follows.

M =
n

∑

i=1

bi × Si +
∑

∀i∈P

b0i × Si (5.5)

whereP = {i : Ci has at its input a playout buffer}.

5.4.3 Illustrative case study

This subsection presents results of a case study published in [115], where the
concepts of the modular performance analysis and the new VCC types developed
in the previous sections of the thesis are applied to evaluate performance of the
TDMA scheduling policy in a multiprocessor environment. This multiproces-
sor environment is represented by the system architecture shown in Fig. 29. In
this architecture, the TDMA scheduling policy is used for scheduling processing
elementsPE1 andPE2, with each PE having its own TDMA scheduler.

There are three main reasons for choosing TDMA for this case study. First,
it is simple enough to implement in a SoC setup, and it has low scheduling over-
head, therefore it is widely used for scheduling on-chip PEsand communication
resources [44, 76, 129]. Second, since TDMA is fully predictable in terms of the
worst-case delay and bandwidth provided to individual event flows, it is espe-
cially suitable for scheduling media streaming applications associated with real-
time guarantees. Third, TDMA is also relatively easy to characterize in terms of
service curves; hence, it provides a simple illustration ofthe theoretical concepts
presented above. However, it may be noted here that our evaluation framework
is not restricted to analyzing only TDMA schedulers. Systemdesigners can use
it to analyze any static- or dynamic-priority scheduling algorithm, including pre-
emptive and nonpreemptive versions. These include scheduling policies such
as fixed-priority, weighted round-robin, and earliest-deadline first. In fact, our
framework can evaluate any scheduling policy that is characterizable using ser-
vice curves. Moreover, it can evaluate a platform in which different scheduling
policies are used on the different PEs [24].

For this case study, we consider the set-top box applicationscenario de-
scribed in Section 5.1.1 and also shown in Fig. 29. In this scenario, each PE
processes two independent concurrent event flows.PE1 performs partial decod-
ing of the MPEG-2 video stream (by applying to it VLD and IQ functions) and
handles control events (e.g. user’s commands).PE2 finalizes the decoding of
the MPEG-2 stream (with IDCT and MC functions) and decodes an MP3 audio
stream. The TDMA schedulers, therefore, regulate sharing of PE1 andPE2 by

102 Chapter 5. Designing Stream Scheduling Policies

Fig. 32: Scheduling network of the set-top box system shown in Fig. 29 using TDMA scheduling
policy onPE1 andPE2.

these event flows. The scheduling network modeling this set-top box application
scenario is shown in Fig. 32. As an example, the processing chain induced by
the video stream in the scheduling network in Fig. 32 is indicated with a grey
background area.

Let the TDMA schedulers onPE1 andPE2 have periods equal top1 andp2,
respectively. The smaller the lengths of the periods are, smaller the buffer re-
quirements for processing the streams will be, but at the cost of higher schedul-
ing overheads. The goal is to analytically compute atradeoff curveshowing
how the on-chip buffer requirements change with different periods of the TDMA
schedulers. For the demonstration of the method, in this case study, we restrict
ourselves to computing such a tradeoff curve for the video stream only. The de-
pendency of buffer requirements on the TDMA periods for the audio stream can
be calculated in a similar way.

We now characterize a TDMA scheduler in terms of the service it provides to
any particular stream when that scheduler is scheduling multiple streams. Con-
sider two streams,x andy, scheduled on a PE by a TDMA scheduler with period
p. Assume that no other streams are processed by the PE. The weights associ-
ated with streamsx andy arewx andwy, wherewx + wy ≤ 1. The scheduler
divides time into periods of lengthp. Within any period, the scheduler allocates
wxp consecutive units of the PEs time to streamx, andwyp consecutive units
to streamy. If a stream cannot exhaust the processor share allocated toit, the
unused processor cycles are wasted.

Assumingp is infinitesimally small, we can neglect the effects of a finite
sampling of the processor cycles. Then, we can calculate theservice offered to
the two streams in terms of processor cycles as follows. Iff is the number of
processor cycles available from the PE per unit time (that is, f is the PEs clock

5.4. Applying Modular Performance Analysis 103

Fig. 33: Example resource-based service curves. Here,βl
TDMA andβu

TDMA are the lower and the
upper resource-based service curves characterizing service offered to one of the streams
being scheduled on a PE using the TDMA scheduler. The scheduler’s period, p, is set to
the equivalent of2.5 × 106 processor cycles, and the clock rate of the PE is 390 MHz.
The on interval indicates the time over which the PE processes the stream within any
period. The value ofβl

TDMA is initially 0, corresponding to the maximum time the PE is
unavailable to the stream.

rate), resource-based service curveβl(∆) = βu(∆) = f∆ constitutes the total
service offered by the processor. Then the service curve forstreamx is βl

x(∆) =
βu

x(∆) = wxf∆; the service curve for streamy is βl
y(∆) = βu

y (∆) = wyf∆.
Therefore, the lower and upper service curves for both streams coincide and are
straight lines with slopeswxf andwyf , respectively.

Whenp has a finite value, the resource-based service curves take the form of
a staircase function, and the lower and upper curves no longer coincide. Fig. 33
gives an example of such a service curve. Here,p is set to a time interval over
which the PE offers a total of2.5 × 106 cycles. Note that periodp does not
determine the amount of service (i.e. number of processor cycles) provided to
the scheduled streams in a long term. It does influence only short term variations
of the service. The long term service provided to a stream is fully determined
by PE’s clock ratef and the TDMA weightw assigned to this stream, i.e. by
valuewf . While designing a TDMA scheduler, it is important to choose this
value such that,in a long term, the stream would receive not less service than it
requires, otherwise, a buffer overflow is bound to happen at some point in time.

To fully specify the problem, besides characterizing the TDMA schedulers,
we also need to characterize the video tasks executing on both PEs, the timing
properties of the video stream at thePE1’s input and the video interface which
reads the fully decoded video stream from the playout bufferBv at thePE2’s
output.

104 Chapter 5. Designing Stream Scheduling Policies

(a) Consumption curves (b) Pseudo-inverse execution demand curves

Fig. 34: Characterization of the video decoding task executed onPE1.

For a constant bit rate input video stream, which we use here as an example,
event-based arrival curves̄αl

video in(∆) = ᾱu
video in(∆) = rc∆ (the lower and upper

arrival curves coincide), whererc denotes the bit rate of the compressed video
stream at thePE1’s input. In this case study, we consider video sequences with
rc = 4 · 106 bits/sec.

The video output interface periodically reads decoded macroblocks from
playout bufferBv at a constant ratermb. Hence, the event-based service curves
characterizing this reading processβ̄l

video out(∆) = β̄u
video out(∆) = rmb∆. Rate

rmb is determined by the frame rate and the resolution of the decoded video clip.
In our setup,rmb = 39600 macroblocks/sec.

The video decoding tasks executing onPE1 andPE2 are characterized by
VCCs (κ1, π1, γ1) and (κ2, π2, γ2), respectively. The VCCs(πl

1, π
u
1), (πl

2, π
u
2)

and(κl
1, κ

u
1) are straight lines with slopes which correspond to the constant-rate

production (consumption) of one stream object per task activation. In contrast
to this, κl

1 andκu
1 have complex shapes since, per one activation of the task

performing VLD and IQ functions,PE1 consumes a variable number of bits
from its input bufferB1. Similarly, (γl

1, γ
u
1) and(γl

2, γ
u
2) have complex shapes,

because both the MPEG-2 decoding tasks running onPE1 andPE2 have variable
execution demands. As an example, Fig. 34 shows(κl

1, κ
u
1) and pseudo-inverse

of (γl
1, γ

u
1), corresponding to an MPEG-2 video sequence which we used in our

experiments.

The VCCs(κl
1, κ

u
1), (γl

1, γ
u
1) and(γl

2, γ
u
2) were obtained by analyzing traces

generated from the initial simulation step described in Section 5.3. In this case
study, this step comprised of simulating the execution ofPE1 andPE2 for a rep-
resentative MPEG-2 video clip using the SimpleScalar instruction set simulator
[8]. To derive the VCCs, the traces collected from the SimpleScalar simulation
were analyzed using the technique described in Section 3.5.2. Here, we once

5.4. Applying Modular Performance Analysis 105

0.5
3

5.5
8

10.5

0.5

3

5.5

8

10.5
4

4.2

4.4

4.6

4.8

5

p
2
 [number of cyles × 107]p

1
 [number of cyles × 107]

bu
ffe

r
sp

ac
e

[n
um

be
r

of
 b

its
 ×

 1
07]

Fig. 35: The surface showing the dependency of memory requirements on the values of the peri-
odsp1 andp2 of the TDMA schedulers.

again point out that although obtaining the VCCs requires the simulation of the
MPEG-2 decoder tasks, we need to do it only once, using a representative video
clip (or a set of clips). Once this specification is obtained,multiple instances of
the platform architecture (with different configurations)can be analyzed using
only analytical means. Furthermore, we can avoid a time-consuming simulation
of the whole multiprocessor system—rather, we simulate anabstract modelof
the platform for which we need to employ only an instruction set simulator.

Having characterized the TDMA schedulers and the workload properties of
the video decoding chain, we can compute the maximum buffer space required
for processing the video stream in the architecture shown inFig. 29 as described
in [115].

We are interested in studying how the amount of buffer space required for
processing any MPEG-2 video stream depends on the granularity of the TDMA
schedulers implemented onPE1 andPE2. Hence, a design point is determined
by a pair of TDMA periods(p1, p2). For each pair(p1, p2) we iteratively compute
the maximum backlogs in the FIFO buffers and scale the obtained values by the
maximum size (in bits) of the stream objects associated withthe buffers. The
results of this computation for the representative MPEG-2 video sequence are
shown in Fig. 35.

By inspecting the 3D surface shown in Fig. 35 we can see the expected trend:
decreasing the values of the TDMA periodsp1 andp2, in general, leads to a re-
duction in the memory needed to implement the buffers. However, we also can
see that this reduction is not uniform across the entire range of the period values.

106 Chapter 5. Designing Stream Scheduling Policies

Even for a simple scheduling discipline like TDMA, there arelarge irregulari-
ties in the design space. This makes it virtually impossibleto come up with an
appropriate tradeoff, based only on a designer’s experience on how the mem-
ory requirements typically change with small changes in theparameters of the
schedulers. Since on-chip buffers have large area requirements, such an infor-
mation about the design space is, however, essential for determining optimal
platform management policies. Using our framework it is therefore possible to
discover the irregularities in the design space, and from itarrive at an appropri-
ate tradeoff—in this case between scheduling overheads andbuffer requirements.
This capability of the framework can be attributed to the underlying concept of
VCCs which can be used to precisely represent the different types of variabilities
associated with multimedia processing on multiprocessor SoC platforms.

Finally, we note that evaluating a single design point(p1, p2) by simulating
an abstract transaction-level model of the platform architecture in SystemC [153]
(using the system simulator described in Appendix A) for a2 sec long video clip
required almost an hour of simulation time. This simulationtime was around
100 times longer than the time needed for evaluating a designpoint with our
analytical framework implemented using a combination of Mathematica5 and
Matlab6 models. (We believe that an efficient C/C++ implementation would be
at least 5-10 times faster than our current prototype implementation of the an-
alytical framework.) Considering the time involved in simulating even a single
design point for a relatively short video clip, it is almost infeasible to obtain a
design surfacesuch as the one shown in Fig. 35 in a reasonable time using purely
simulation-based techniques. In contrast, using the proposed analytical frame-
work system designers can learn about the structure of the entire design space in
tens of minutes.

5.5 Checking Feasibility of Stream Schedulers

In this section, we introduce the concept ofservice bounds[102, 103, 111]. The
service bounds allow to quickly verify whether in principlethere exists a schedul-
ing policy that can satisfy QoS requirements of a stream (such as the delay and
buffer constraints), and to check feasibility of a given scheduler against these
requirements. Furthermore, they can direct the design space exploration process
by providing the information by how much a given scheduler does not (or does)
satisfy a given set of QoS requirements.

In this section, we limit the presentation to the service bounds obtained from
the buffer constraints; however, the principles presentedin this section can be
applied to derive the service bounds also for the delay constraints.

5http://www.wolfram.com
6http://www.mathworks.com

5.5. Checking Feasibility of Stream Schedulers 107

Fig. 36: An abstract view of a PE which processesn streams.

5.5.1 Problem formulation

For the sake of generality, we consider any media stream to include a potentially
infinite sequence of stream objects. A stream object could bea macroblock,
a video frame, an audio sample, or a network packet, depending on the part
of the architecture where the stream exists. For example, inFig. 29, stream
objects are network packets when the relevant stream is thatentering the network
interface. In contrast, the stream objects are partially processed macroblocks
when the relevant stream is that written into bufferB2.

Fig. 36 shows an abstract view of a PE that processesn streams. Functions
xi(t), i = 1, 2, . . . , n, specify the streams entering this PE. These functions de-
note the total number of stream objects that arrive at the input buffers in Fig. 36
over time interval[0, t]. li denotes the number of stream objects that the input
buffer, for streami, can store (i.e.li is the size of the input buffer). In Fig. 36,
the PE writes the processed streams into playout buffers which are then read
by real-time output devices.Li denotes the playout buffer size for streami.
Functionyi(t) specifies the processed output stream entering the playout buffer.
Like xi(t), this function denotes the number of stream objects exitingthe PE
over time interval[0, t]. The real-time output device associated with streami
consumes stream objects from the playout buffer at a rate specified by function
Ri(t), which denotes the number of stream objects consumed duringtime inter-
val [0, t]. We note that, for alli = 1, 2, . . . , n, xi(t), yi(t), Ri(t) are increasing
functions7 of t.

βi is a tuple(βl
i, β

u
i), whereβl

i andβu
i are lower and upperresource-based

service curves characterizing the service offered by the PEto streami. The shape
of βi is completely determined by the scheduling policy implemented on the PE

7Refer to Section 3.2.1 for the meaning of ”increasing function”.

108 Chapter 5. Designing Stream Scheduling Policies

to schedule the different streams and possibly other tasks processed on this PE.
We require the PE to process the streams under the followingbuffer con-

straints.

1. The PE’s input buffers must never overflow.

2. The playout buffers, at the PE’s output, must neither overflow nor underflow.

Our evaluation framework can solve the following two problems:

• For the PE in Fig. 36, given functionsxi(t) andRi(t), and buffer sizesli andLi

for streami, the first problem is to compute functionsσ̄l
i andσ̄u

i , which we refer
to asservice bounds. The service bounds have to guarantee that if the actual
service provided to the stream satisfies them, then none of the buffers overflow
and the playout buffer never underflows.

• Once we have obtained the service bounds for each stream being processed by
the PE, the second problem is to check whether a given scheduler (specified by
the set of resource-based service curvesβ1, β2, . . . , βn) is feasible. The given
scheduler is feasible if it satisfies the above buffer constraints for all the streams.
If the scheduler is feasible, a designer can then further evaluate it by considering
other factors, such as scheduling overhead and implementation complexities.

5.5.2 Service bounds

In this subsection, we describe how to compute upper and lower service bounds
that have to be satisfied for each input stream if the buffer constraints associated
with the stream are to be satisfied.

Assume streami receives servicēβi from the PE in Fig. 36.β̄i is a tuple
(β̄l

i, β̄
u
i), whereβ̄l

i and β̄u
i are the lower and upperevent-basedservice curves

characterizing the service provided by the PE to streami. Two factors determine
β̄i:

• the execution time of the stream objects belonging to streami, and

• the scheduling policy implemented on the PE.8

Note the distinction between event-based service curvesβ̄i, which are unknown
in our setup, and resource-based service curvesβi, which are fully determined by
a given scheduling policy. In this subsection, we will deal only with event-based
service curves.

8Although there may be other factors influencing the service provided to a stream on the PE,
such as the number of consumed and produced stream objects per task execution, for simplicity
we do not consider them here. In particular, we assume in thissection that a task processing
a stream consumes and produces only one stream object per oneexecution. Our framework,
however, is not restricted to this special case.

5.5. Checking Feasibility of Stream Schedulers 109

Now, consider the streamsi = 1, 2, . . . , n in Fig. 36. For simplification,
we drop identifieri. We express the playout buffer underflow constraint for the
stream as

y(t) ≥ R(t), ∀t ≥ 0 (5.6)

Similarly, we express the constraint on the playout buffer overflow as

y(t) ≤ R(t) + L, ∀t ≥ 0 (5.7)

Finally, we express the constraint on the overflow of the input buffer associated
with the stream as

y(t) ≥ x(t) − l, ∀t ≥ 0 (5.8)

Combining (5.6) and (5.8), we obtain constraint

y(t) ≥ R(t) ∨ (x(t) − l), ∀t ≥ 0 (5.9)

If lower event-based service curvēβl represents the minimum service that
the PE guarantees to the stream, then ([85])

y(t) ≥ (β̄l ⊗x)(t), ∀t ≥ 0 (5.10)

Hence, the minimum value ofy(t) at any timet is (β̄l ⊗x)(t). Then, substituting
for y(t) in the constraint (5.9), we obtain

(β̄l ⊗x)(t) ≥ R(t) ∨ (x(t) − l), ∀t ≥ 0

Since for any increasing functionsf ,g andh, g⊗h ≥ f if and only if h ≥ f ⊘ g
[85], we can further reformulate the above constraint as

β̄l(∆) ≥ ((R ∨ (x− l))⊘x)(∆), ∀∆ ≥ 0

or, equivalently, if we expend the min-plus deconvolution operator, we have

β̄l(∆) ≥ sup
∆≥0

{(R(t+ ∆) ∨ (x(t+ ∆) − l)) − x(t)}, ∀∆ ≥ 0

Finally, after rearranging the above inequality we obtain

β̄l(∆) ≥ (R⊘x ∨ (x⊘x− l))(∆), ∀∆ ≥ 0 (5.11)

If the upper event-based service curveβ̄u represents the maximum service
that the stream can receive from the PE, then ([85])

y(t) ≤ (β̄u ⊗x)(t), ∀t ≥ 0

holds. Therefore, using(β̄u ⊗x)(t) as the maximum value ofy(t), we can refor-
mulate the constraint on the playout buffer overflow, (5.7),as

(β̄u ⊗x)(t) ≤ R(t) + L, ∀t ≥ 0

110 Chapter 5. Designing Stream Scheduling Policies

or equivalently,
β̄u(∆) < (R⊘x)(∆) + L, ∀∆ ≥ 0 (5.12)

Inequalities (5.11) and (5.12) give lower and upper bounds on the values of
β̄l and β̄u that satisfy the buffer constraints associated with the stream. These
bounds represent the service bounds,σ̄l andσ̄u, which we were aiming to find in
this subsection. Hence, for streami, we have

σ̄l
i(∆) = (Ri ⊘xi ∨ (xi ⊘xi − li))(∆) (5.13)

σ̄u
i (∆) = (Ri ⊘xi)(∆) + Li (5.14)

Thus, any feasible scheduler implemented on the PE must satisfy

β̄l
i(∆) ≥ σ̄l

i(∆), ∀∆ ≥ 0 (5.15)

β̄u
i (∆) < σ̄u

i (∆), ∀∆ ≥ 0 (5.16)

for all i = 1, 2, . . . , n.

Computing service bounds for class of streams
Service bounds̄σl

i and σ̄u
i , obtained above, are only for a concrete instance of

streami, which is specified by cumulative arrival functionxi(t). Hence, they
can guarantee satisfaction of the buffer constraints only for this specific instance.
However, we would like to derive the service bounds for a wholeclass of streams
that can appear at inputi of the PE. We assume that this class is specified by
event-based arrival curves̄αl

xi
andᾱu

xi
, i.e. for anyxi(t)

ᾱl
xi

(∆) ≤ xi(t+ ∆) − xi(t) ≤ ᾱu
xi

(∆), ∀∆, t ≥ 0

always holds. Furthermore, for the specification of the real-time output device
reading processed streami from the playout buffer, instead of using cumulative
functionRi(t), we use event-based service curvesβ̄l

Ri
and β̄u

Ri
. β̄l

Ri
(∆) and

β̄u
Ri

(∆) return minimum and, respectively, maximum number of stream objects
that the output device can read from the playout buffer within any time interval
of length∆.

Consider the lower service bound determined by (5.13). First, we note that
self-deconvolution(xi ⊘xi)(∆) ≤ ᾱu(∆). Second, sinceRi(t) ≤ β̄u

Ri
(t) and

xi(t) ≥ ᾱl
xi

(t), we have

(Ri ⊘xi)(∆) ≤ (β̄u
Ri

⊘ ᾱl
xi

)(∆), ∀∆ ≥ 0

Hence, we can reformulate (5.13) as follows.

σ̄l
i(∆) = (β̄u

Ri
⊘ ᾱl

xi
∨ (ᾱu

xi
− li))(∆) (5.17)

Now consider the upper service bound determined by (5.14). Because of
Ri(t) ≥ β̄l

Ri
(t) andxi(t) ≤ ᾱu

xi
(t), the following inequality holds

(Ri ⊘xi)(∆) ≥ (β̄l
Ri

⊘ ᾱu
xi

)(∆), ∀∆ ≥ 0

5.5. Checking Feasibility of Stream Schedulers 111

Thus, we can replace (5.14) with

σ̄u
i (∆) = (β̄l

Ri
⊘ ᾱu

xi
)(∆) + Li (5.18)

5.5.3 Feasibility check

Now we come to the second problem. Given a scheduler to be implemented on a
PE, does the resulting service offered to each media stream processed on this PE
match the service that the stream requires?

At this point, we would like to note that before even considering a particular
scheduler the service bounds can already tell us whether at all there exists a
scheduler which can satisfy the buffer constraints for a given set of streams. If
the following conditions evaluate to true for all streams inthe set (i.e. for alli),
thenin principle there exists a feasible scheduler:

σ̄l
i(∆) ≤ σ̄u

i (∆), ∀∆ ≥ 0, i = 1, 2, . . . , n (5.19)

(5.19) will be false in case the buffer constraints are conflicting. Hence, only after
verifying (5.19) it makes sense to proceed with feasibilitychecks of particular
schedulers.

The service required by a stream is what we obtained in the previous subsec-
tion as the service bounds. However, we computed this requirement in terms of
the number of stream objects to be processed within any giventime interval. The
service that a scheduler provides to a stream, on the other hand, is naturally ex-
pressed in resource-based units, e.g. in terms of the numberof processor cycles.
Hence, we need a way to express this service in terms of the number of stream
objects. Because of the variability in the execution requirements of different
stream objects belonging to a stream, this is difficult. We address this problem
by characterizing the variability using the execution demand curves defined in
Def. 7.

Let γl
i andγu

i denote the lower and upper execution demand curves char-
acterizing the task which processes streami on the PE in Fig. 36. As stated
in the problem definition, the service that a scheduler offers to streami on the
PE is specified by resource-based service curvesβi = (βl

i, β
u
i). I.e.,βl

i(∆) and
βu

i (∆) denote the minimum and maximum number of processor cycles available
to streami within any time interval of length∆. Then, for the scheduler to be
feasible for streami,

(γu−1

i ⊙ βl
i)(∆) ≥ σ̄l

i(∆), ∀∆ ≥ 0 (5.20)

(γl−1

i ⊙ βu
i)(∆) < σ̄u

i (∆), ∀∆ ≥ 0 (5.21)

These inequalities should hold for all the streams processed by the PE that con-
tains the scheduler.

112 Chapter 5. Designing Stream Scheduling Policies

5.5.4 Case study: Evaluating TDMA schedulers

We used our framework to evaluate different schedulers onPE2 of the set-top
box in Fig. 29. Again, for simplicity, we restrict ourselvesto TDMA schedulers.

In Fig. 29,PE2 executes tasks for both the video and the audio streams and,
therefore, represents a shared resource in the platform architecture. Identifying
an appropriate scheduler forPE2 is thus an issue that the system designer must
address. To avoid degradation of the sound and picture quality, such a scheduler
must ensure that no audio or video samples are lost due to an overflow of any
of the buffers and that playout buffers never underflow. Sucha scheduler might
be difficult to identify because of the high variability in the execution time of
the different tasks running onPE2 and the burstiness of the two streams that it
processes.

BecausePE2 processes only two streams, any TDMA-based scheduler is
completely specified by weightsw1 andw2 and periodp. Determiningw1 andw2

is relatively straightforward. The long-term average rateat whichPE2 processes
either of the two streams must exactly equal the corresponding output devices
long-term average consumption rate for that stream. Eithera buffer overflow
or underflow is bound to occur at some point if these long-termrates do not
match. Designers should therefore choose weightsw1 andw2 to match these
rates. However, there can be short-term mismatches in the processing and con-
sumption rates because of the burstiness of the streams and the variability in their
execution requirements fromPE2. The tolerable amount of mismatch depends
on the sizes of the internal and playout buffers associated with each stream, and
periodp.

Finding an appropriate value ofp is not straightforward. There is generally
a set of such values satisfying all buffer constraints. However, given any value
of p, our framework can determine whether the resulting scheduler is feasible.
After determining a set of feasible values ofp, the system designer can use other
evaluation criteria, such as incurred scheduling overheador power consumption,
to narrow that set.

System and workload specification
The system configuration for the platform architecture in Fig. 29 is as follows.
Each PE is a reduced-instruction set computing (RISC) core.PE1 has application-
specific extensions for MPEG-2 processing and runs at a clockrate of 200 MHz.
PE2 has application-specific extensions for video-processingfunctions and runs
at a clock rate of 390 MHz.

Fig. 37 shows an abstract view of processing elementPE2 in the system
model of the set-top box in Fig. 29. The two input buffers withsizeslv andla, in
Fig. 37, correspond to buffersB2 andB3 in Fig. 29. The two playout buffers of
sizesLv andLa correspond to buffersBv andBa. Tab. 7 gives the corresponding
buffer sizes.

5.5. Checking Feasibility of Stream Schedulers 113

Fig. 37: An abstract view ofPE2 in the set-top box application scenario in Fig. 29.

Buffer Notation Size

B2 lv 4000 macroblocks
Bv Lv 3200 macroblocks
B3 la 4 frames
Ba La 4 frames

Tab. 7: Buffer sizes for the platform architecture in Fig. 29.

Stream Parameter Specification
MPEG-2 video† constant bit rate 8 Mbps

frame rate 25 fps
picture resolution 704×576
clip duration 15 sec

MP3 audio constant bit rate 256 kbps
sampling frequency 44.1 kHz
clip duration 15 sec

† susi 080.m2v, available at
ftp.tek.com/tv/test/streams/Element/MPEG-Video/625/

Tab. 8: Specification of the two media streams processed by the platform architecturein Fig. 29.

Tab. 8 gives the parameters related to the two streams given in Fig. 29. The
streams correspond to an MPEG-2 video and an MP3 audio clip. These represent
typical clips that the set-top box in Fig. 29 must process.

In Fig. 37, cumulative arrival functionsxv(t) andxa(t) specify the video and
the audio streams at thePE2’s input, whereasRv(t) andRa(t) specify the video
and the audio output devices reading the playout buffers. Weobtained thexv(t)
function in Fig. 37 by measuring the execution times of the VLD and IQ tasks
for each macroblock in the video sequence and by accounting for

• the constant arrival rate of the compressed bitstream at thePE1’s input in Fig. 29;

114 Chapter 5. Designing Stream Scheduling Policies

Fig. 38: Specification of the video stream: functionsxv(t) andRv(t) from Fig. 37.

and

• the number of bits per macroblock, which is variable becauseof the VLD task.

Further, in our setup,PE1 executed only the task performing the VLD and IQ
functions. I.e., the full processing capacity ofPE1 was devoted exclusively to
this task, and no scheduler, therefore, was employed to schedulePE1.

Fig. 38 shows the resulting function,xv(t). Similarly, functionRv(t), shown
in Fig. 38, specifies the consumption of the video stream by video output device.
The value of this function is0 for the first 0.34 seconds, corresponding to a
playout delay. After this delay, the function increases with a constant slope,
representing a periodic consumption pattern of39.600 macroblocks per second.
(One macroblock corresponds to a16 × 16 pixel block in a frame; thus, one
frame with resolution704 × 576 pixels contains1.584 macroblocks. Therefore,
25 frames per second result in39.600 macroblocks per second.)

The execution demand curves shown in Fig. 39 capture the total execution
requirements of the task performing the IDCT and MC functionsonPE2. Rather
than using a constant value, we use the execution demand curves to capture the
variation in the total execution requirements of this task.To obtain these curves,
we first collected a trace of execution times for the task and then analyzed this
trace with the method described in Section 3.5.2.

Functionsxv(t) andRv(t), combined with the execution demand curves,
completely specify the video stream. We obtain the specification of the audio
stream similarly. Once such a specification of the streams isavailable, designers
can use our framework to evaluate any scheduler using the process in Fig. 30 and
without resorting to further simulations.

Evaluating TDMA schedulers with different periods
Given functionsxv, xa, Rv, andRa for the representative video and audio clips,
Fig. 40 shows the service bounds,σ̄l and σ̄u, for the video and audio streams.

5.5. Checking Feasibility of Stream Schedulers 115

Fig. 39: Pseudo-inverse execution demand curves(γu−1

v , γl−1

v) capturing the execution require-
ments for the video task running onPE2 in Fig. 29.

These service bounds represent the number of stream objectsthat PE2 must
process within any time interval of a given length. The figurealso shows the
offered event-basedservice curvesγu−1

v ⊙ βl
v and γl−1

v ⊙ βu
v , γu−1

a ⊙ βl
a and

γl−1

a ⊙βu
a . These service curves represent the number of stream objects thatPE2

will process using a TDMA scheduler with a period of2.5 × 106 processor cy-
cles. TDMA weightswv andwa, associated with the two streams, are0.109 and
0.891.9 (Fig. 33 shows the corresponding resource-based service curvesβl

v and
βu

v for the video stream. In Fig. 33,βl
TDMA = βl

v andβu
TDMA = βu

v .)
Fig. 40 illustrates conditions (5.20) and (5.21). However,a better graphical

representation of these conditions is to plot them as differences̄σu−γl−1⊙βu and
γu−1 ⊙ βl − σ̄l. If any of these differences takes a negative value, then thecorre-
sponding scheduler parameters are potentially infeasible. We refer to such plots
asdifference plots. Fig. 41(a) shows the difference plots corresponding to the
configuration in Fig. 40. By inspecting the difference plots in Fig. 41(a), we can
see that for the TDMA scheduler with period2.5× 106 processor cycles the fea-
sibility conditions are satisfied. By comparing the difference plots in Fig. 41(a)
with the difference plots in Fig. 41(b), which were obtainedfor a scheduler with
period7 × 106 processor cycles, we can conclude that the larger the scheduler’s
period is, the higher chances for buffer underflows and overflows are. In fact, in
Fig. 41(b) we can see that the scheduler with period7 × 106 processor cycles is
potentially infeasible—either a buffer overflow or an underflow may occur while
processing the video stream.

9Although in our setupwv + wa = 1, in general, the sum of the two weights does not need
to be strictly equal to one. It is only necessary thatwv + wa ≤ 1. If wv + wa < 1, then some
portion of the PE’s bandwidth will be allocated neither to the video nor to the audio stream. This
portion can then be used to execute some other tasks, or it can(has to) be simply wasted.

116 Chapter 5. Designing Stream Scheduling Policies

Fig. 40: Service requirements specified by service boundsσ̄ and the actually provided service
specified by curveγ−1 ⊙ β for the video (top) and audio (bottom) streams. The up-
per and lower curves corresponding toγ−1 ⊙ β lie completely between the upper and
lower service bounds,̄σ. This implies that the service provided to a stream matches its
requirements; hence, the scheduler satisfies all the buffer constraints.For an infeasible
scheduler, the resulting upper and lower curves ofγ−1 ⊙ β would not completely lie
between the upper and lower curves ofσ̄.

5.5. Checking Feasibility of Stream Schedulers 117

(a) Difference plots for the TDMA scheduler with period2.5 · 106 cycles.

(b) Difference plots for the TDMA scheduler with period7 · 106 cycles.

Fig. 41: Difference plots for the video stream (left column) and for the audio stream (right col-
umn) obtained for TDMA schedulers with different periods.

118 Chapter 5. Designing Stream Scheduling Policies

Scheduler parameters Buffer backlog
Period, Video Audio Schedulability test measured in simulation
(cycles) weight weight B2 Bv B3 Ba

0.109 0.891 Passed 3610 2437 2 2
1 × 106 0.115 0.885 Failed 2844 3299∗ 2 2

0.106 0.894 Failed 4812∗ 1979 2 3
0.109 0.891 Passed 3736 2559 2 2

2.5 × 106 0.115 0.885 Failed 2966 3402∗ 2 2
0.106 0.894 Failed 4899∗ 2110∗∗ 2 3
0.109 0.891 Failed 4040∗ 2540 2 2

7 × 106 0.115 0.885 Failed 3292 3300∗ 2 2
0.106 0.894 Failed 5144∗ 2023∗∗ 2 3

∗ Buffer overflow
∗∗ Buffer underflow

Tab. 9: Results obtained with our framework compared to simulation results, for different con-
figurations of a TDMA scheduler implemented onPE2 of the architecture shown in
Fig. 29. Buffer backlog is measured in number of macroblocks for video,and in number
of frames for audio.

Validating the analytical framework
To validate our framework, we evaluated several different TDMA-based sched-
ulers, having different values ofwv, wa, andp. Tab. 9 summarizes the results.
For each scheduler configuration, the table shows

• whether our framework evaluated the scheduler as feasible or infeasible, and

• the corresponding simulation results that measure the maximum and minimum
buffer fill levels (from which we can identify buffer overflows and underflows).

To obtain these simulation results, we used a transaction-level model of the ar-
chitecture described in Appendix A. The models of processors PE1 andPE2
are from a customized version of the SimpleScalar instruction set simulator
[8]; we used the simulator’ssim-profile configuration. The PEs use the
portable instruction set architecture (PISA) with application-specific extensions
for MPEG-2 decoding and video processing. In the table, the buffer backlogs
are in number of macroblocks for the video stream, and numberof frames for
the audio stream. From Tab. 9, it is apparent that designing an appropriate
scheduler can greatly influence buffer space requirements.If the design space
is relatively large, especially for scheduling multiple PEs, resorting to purely
simulation-based techniques is no longer feasible. Our framework can provide
systematic guidance in such cases.

5.6. Summary 119

5.6 Summary
In this chapter, we proposed a framework for design space exploration and opti-
mization of platform management policies for multimedia MpSoC architectures.
This framework relies on the VCC-based workload model and usesthe extended
MPA framework developed in Chapter 3. It features a combination of simu-
lation and analytical performance evaluation phases. The simulation phase is
performed only once, before the design space exploration loop is started. The
outcome of this phase is a set of VCCs capturing relevant workload character-
istics. These VCCs are then used within the time-critical exploration loop for
fast analytic performance evaluation and optimization of platform management
policies. The performance evaluation and optimization of the platform manage-
ment policies rely on two techniques: The first technique computes upper bound
on the buffer memory requirements associated with a given platform manage-
ment policy, while the second technique allows for fast schedulability checks
for a given PE within the architecture. Both techniques account for the QoS re-
quirements associated with processing media streams on buffer-constrained mul-
tiprocessor architectures. The utility of the framework was demonstrated in this
chapter through the case studies of a set-top box application scenario involving
the TDMA scheduling policy.

120 Chapter 5. Designing Stream Scheduling Policies

6
Energy-Efficient Stream Processing

Chapters 4 and 5 demonstrated applications of VCCs in system-level design of
media processors. Unlike these applications, where VCCs wereused in anoff-
line setting, this chapter demonstrates anonline application of VCCs. “Online
application” means that VCCs are used in a multimedia embeddedsystem while
it is operating, i.e. at run time. Based on the run-time information about the
workload, certain system parameters can be dynamically adapted such that to
optimally suit current user needs and to improve the qualityof service offered
by the system to its users. Reducing energy consumption of embedded systems
through online adaptations to the varying workload is one important incarnation
of this basic idea. In this chapter, we explore this direction — we show how
VCCs can be used to perform such adaptations to achieve energy savings in
media processors. Although this chapter has a clear focus onthe energy-aware
adaptations, the main concept behind the presented approach can be applied in a
broader context of adaptive stream scheduling for real-time embedded systems.

The focus of this chapter is on a scheme for dynamic voltage scaling (DVS)
for processing media streams on architectures with restricted buffer sizes. The
main advantage of this scheme is its ability to providehard QoS guarantees
while still achieving considerable energy savings. VCCs are central to the whole
method. They allow to handle multimedia workloads characterized by both,
the data-dependent variability in the execution time of multimedia tasks and the
burstiness in the on-chip traffic arising out of multimedia processing. The main
novelty of the scheme lies in a online DVS strategy which usesfor the adap-
tationsdynamic VCCs, i.e. VCCs that are computed at run time based on the
“conventional”static VCCsand the workload history. The DVS scheme is fully
scalable and has a bounded application-independent run-time overhead.

122 Chapter 6. Energy-Efficient Stream Processing

This chapter has the following structure:

• Section 6.1 introduces our DVS technique, outlining main differences to similar
approaches.

• Section 6.2 gives an overview of existing DVS techniques.

• Using a motivating example, Section 6.3 describes the problem addressed by our
method.

• Section 6.4 describes the method.

• Section 6.5 presents results of an experimental evaluationof the proposed DVS
technique, including a comparison with a similar method.

• Finally, some concluding remarks come at the end of this chapter, in Section 6.6.

6.1 Introduction
Multimedia applications constitute a significant portion of the workload running
on battery-powered devices such as PDAs, mobile phones and portable audio-
video players [36, 77]. A major challenge faced by the designers of such devices
is the need for minimizing energy consumption and at the sametime handling
computationally expensive multimedia workloads and providing QoS guaran-
tees. The bursty and highly irregular nature of such a workload, coupled with
stringent memory and cost constraints associated with portable devices makes
this problem even more difficult.

One important research direction aimed at solving this problem relies on dy-
namically changing the processor’s clock frequency and voltage in response to
a time-varying workload [27]. This technique, called Dynamic Voltage Scaling
(DVS), rests on the fact that reducing the supply voltage of CMOS circuits results
in approximately quadratic reduction in dynamic energy dissipation. Although
this energy reduction does not come for free (a lower supply voltage leads to
increased gate delays), DVS is known to be more effective than another energy
saving technique, called Dynamic Power Management (DPM) [16]. In contrast
to DVS, DPM simply puts a processor into a low power state whenthe proces-
sor is idle. With the availability of variable-voltage processors [3, 58, 60, 164],
research on DVS scheduling techniques has gained a lot of momentum.

Govil et al. [46] proposed to look at different DVS scheduling techniques
from two perspectives: the way how those techniquespredict the workload and
how theysmoothit. In order to make a decision at which speed to run the proces-
sor during next interval of time, a DVS scheduler first has to make some as-
sumptions about the workload on this interval. Making such assumptions can
be regarded as predicting the future workload. On the other hand, workload

6.1. Introduction 123

smoothing refers to apolicy followed by the DVS scheduler while deciding the
processor speed. The concrete decision is based on the assumptions about the fu-
ture workload, while the policy is typically determined by the performance goals
and constraints associated with the application(s) executed on the processor.

One promising approach forsmoothing outthe workload is to employ buffers.
This technique usually achieves considerable energy savings, but at the expense
of increased processing delay. Nevertheless, it is especially useful in a large class
of multimedia applications, which can tolerate such delays.

Recently, a number of DVS techniques has appeared in the literature which
use buffers for smoothing out the workload [49, 59, 104, 106,144, 174]. These
techniques can be broadly classified into three groups basedon the way how they
perform theworkload prediction. [49, 144] predict the future workload based on
stochastic models. [106, 174] employ feedback control loops to track workload
changes and extrapolate the future workload. [59, 104] relyon off-line worst-
case characterization of tasks and statically use this characterization at run-time
for making conservative scheduling decisions (i.e. essentially they do not use
prediction as such, but assume at any time that the worst case workload will
happen).

Although it has been shown that the above lines of work lead toconsiderable
energy savings, all of them still suffer from a number drawbacks. The schemes
based on stochastic prediction models and feedback controlloops are power-
ful in handling workloads which are characterized by both, the data-dependent
variability in the execution time of multimedia tasks and the burstiness in the on-
chip traffic arising out of multimedia processing. However,usually it is difficult
to provide hard QoS guarantees with such schemes. On the other hand, schemes
that rely on worst-case characterization of the workload can provide hard QoS
guarantees. However, they account only for the task execution time variability,
assuming that real-time tasks arrive strictly periodically.

In this chapter, we present a DVS scheduling technique whichaddresses the
above mentioned shortcomings of the previous approaches. It takes into account
both, the burstiness in a stream and the data-dependent variability in the exe-
cution time of a task. On the other hand, our scheme offers a guaranteed QoS
along with energy savings that are comparable with those obtained by previous
approaches. Furthermore, one of the main assumptions made by many exist-
ing DVS schemes has been the availability of large buffers. However, in reality,
many portable devices have severe cost and memory constraints. We address
this issue by targeting our DVS scheme specifically towardsbuffer-constrained
architectures.

Our scheme relies on an off-line analysis to determineboundson the variabil-
ity of the workload associated with aclassof media streams. These bounds are
represented by VCCs introduced in Chapter 3. At run-time, by using a bounded
amount of history of the actually incurred workload, the VCCs obtained from the
off-line analysis are revised. Such revised VCCs, which we refer to asdynamic

124 Chapter 6. Energy-Efficient Stream Processing

VCCs, are then used to adjust the processor’s voltage and clock frequency. These
dynamic VCCs can be much tighter than their respectivestatic VCCs, i.e. those
VCCs obtained from the off-line analysis. At the same time, thedynamic VCCs
are “safe” in terms of guaranteeing QoS constraints.

The main results of this chapter are:

• A strategy for online processor rate adaptations for energy-efficient processing
of media streams on buffer-constrained architectures.

• A formalization of this strategy as an algorithm which employs dynamic VCCs
to provide hard QoS guarantees to the processed media streams.

• An efficient algorithm for run-time computation of dynamic VCCs from static
VCCs using the workload history.

• An experimental evaluation of the resulting DVS scheme, including its compar-
ison to another up-to-date DVS scheme [174] and an estimation of the run-time
overhead.

Although we present our VCC-based DVS scheme in the context of asim-
ple setup, where DVS is implemented on a single processor running a multime-
dia task, it can also be applied to more involved architectures such as on-chip
networks [17, 31, 79, 144] and multiple clock domain processors [64, 123, 138,
174].

6.2 Related Work
Although dynamic voltage scaling emerged almost a decade ago (see, e.g. [21,
46, 122, 170]), it still remains a very active research area (e.g [5, 59, 81, 144]).
Early explorations of this technique were primarily directed towards non-real-
time computing systems [46, 124, 170]. Later on, DVS schemeshave been devel-
oped for real-time systems, including off-line and on-linescheduling algorithms
for a single processor [55, 61, 87, 177], multiple processors [69, 107, 176, 180]
and heterogeneous distributed platform architectures [4,47, 136]. Some DVS
schemes were designed for hard real-time applications [69,90, 139, 142], while
others targeted soft real-time applications [56, 178]. Yetanother class of DVS
techniques were specifically devised for systems processing media streams [29,
30, 59, 106, 143]. With constantly shrinking technology feature sizes, there is
a growing concern about rapid increase in leakage power dissipation of CMOS
circuits [2, 20], which cannot be reduced by scaling the supply voltage. Conse-
quently, new research directions, reconsidering DVS techniques and combining
them, for example, with adaptive body-biasing [73, 110], recently has started to
appear in the literature [5, 66, 175].

6.2. Related Work 125

As mentioned before, it is useful to view different DVS schemes from two
perspectives: how they predict the workload and which policy they use to smooth
it [46]. These characteristics are tightly related to the energy-performance trade-
offs made in the system. For instance, tasks in non-real-time systems do not
have stringent timing constraints, therefore the prime concern of DVS schemes
developed for this kind of systems is to maintain someaveragelevel of perfor-
mance (e.g. average task response times) while maximizing the energy savings
[42, 46, 124, 145, 170]. Since these DVS schemes do not need toprovide hard
performance guarantees, they allow for some inaccuracy in the workload pre-
dictions. Hence, these schemes rely on different sorts of statistics for predict-
ing the workload. [46, 124, 170] propose and experimentallyevaluate various
DVS schemes which calculate how busy the processor was during a number of
past intervals and then apply various techniques, such as a weighted average, to
predict the future workload from these calculations. [145]extends the work in
[46, 124, 170] by introducing a concept ofworkload history filteringand propos-
ing several prediction strategies based on this concept. [42] further improves the
above workload prediction mechanisms by taking into consideration activities
of individual tasks. The majority of the DVS schemes just described employ
relatively simple smoothing policies, such as setting the processor speed high
enough to complete the predicted work before next adaptation point in time [46].

In hard real-time systems, guaranteeing that tasks complete within their dead-
lines is of prime concern [22]. Consequently, DVS schemes forhard real-time
systems employ notably different mechanisms than those used in non-real-time
systems. In particular, since hard performance guaranteeshave to be provided,
such DVS schemes cannot rely on statistics to predict the future workload. In
fact, they perform a kind of degenerate form of prediction—at any time these
DVS schemes assume that theworst-caseworkload will happen. Hence, they
fully rely on worst-case characterization of tasks. As in traditional real-time
scheduling [100], most of the DVS techniques designed for hard real-time sys-
tems characterize tasks by their worst-case execution time(WCET) andexplicitly
defined arrival times and deadlines. Since such a characterization is inherently
static, the only mechanism which these DVS schemes can use at run time to save
the energy is the workload smoothing.

The main challenge in hard real-time scheduling of variable-voltage proces-
sors is to smooth the workload as much as possible but still toguarantee that
all tasks complete within their deadlines. The workload smoothing is equivalent
to increasing the processor utilization by minimizing theworst-case slack time
(WST) and theworkload-variation slack time(VST) [90]. The worst-case slack
time is the time during which the processor is idle even if alltasks run at their
WCET. It is inherent to many real-time schedules. The workload-variation slack
time is the idle time which occurs as a result of tasks not always running at their
WCET. Different DVS techniques for hard real-time systems differ in the way
how they exploit these two kinds of slack time and what assumptions they make

126 Chapter 6. Energy-Efficient Stream Processing

about the task set.
A number of DVS techniques produce static off-line schedules [54, 61, 81,

177]. They can handle real-time tasks with arbitrary arrival times and dead-
lines under the assumption that the relative timing betweenarrivals and dead-
lines within the task set is fixed. For highly variable workloads, energy savings
achieved by these off-line techniques may be very modest. This is mainly due to
the fact that they can exploit only WST [90].

OnlineDVS scheduling algorithms have a potential to exploit both kinds of
slack time, WST and VST [9, 55, 87, 90, 139, 141, 142]. DVS techniques pub-
lished in [55, 142] perform processor rate adaptations onlyat task boundaries.
They always assume that a task will run at its WCET. As a result, these tech-
niques can utilize only a limited amount of VST. Both techniques assume peri-
odic task sets. The scheduler in [55] also accepts sporadic requests on a best-
effort basis. [87] reports an on-line DVS scheduler based onthe earliest deadline
first (EDF) policy [100]. Unlike [55, 142], the scheduler in [87] can handle tasks
with arbitrary arrivals. Whenever a task is rescheduled after its preemption, the
DVS scheduler in [87] recomputes the processor speed setting for this task using
task’s remaining worst-case execution time. Hence, if there are a lot of preemp-
tions in the system, the processor speed may be recomputed several times for a
given task instance, leading to better utilization of VST. However, a large number
of preemptions also means that the scheduling overhead incurred by this scheme
may be considerable.

Another line of work represents so calledintra-taskDVS techniques [9, 90,
139, 141]. Within each task, they insert points at which the processor speed will
be adjusted at run time. During task execution, the processor speed is adjusted
depending on the currently active execution path within thetask. This allows
intra-task DVS techniques to relatively fully exploit bothWST and VST. Al-
though these techniques may suffer from high scheduling overheads (especially
if tasks are of a small granularity and arrive at high rates),they represent an
interesting trend towards a more detailed characterization of real-time tasks.

In the DVS techniques outlined above, better smoothing of real-time work-
loads (i.e. minimization of WST and VST) comes at a cost of morefrequent
processor speed adaptations. For highly variable and computationally intensive
multimedia workloads, such methods might not be a first choice.

An alternative approach to workload smoothing is to usebuffering [28, 49,
59, 104–106, 144, 174]. With buffers the frequency of processor speed adapta-
tions can be significantly reduced. Certainly, buffering does not come for free.
It requires additional memory and increases processing delays. Nevertheless,
buffers are natural in processing media streams [134]. Theyplay a central role in
stream-oriented models of computation [70, 89]. Furthermore, many multimedia
applications can tolerate buffering delays [59]. For such applications it may be
more important to maintain a constant rate of stream objectsat input or output of
a PE than to satisfy some explicit deadlines. However, as we discussed in Chap-

6.2. Related Work 127

ter 5, buffer overflows and underflows may be of concern for this processing
style.

One of the first DVS schemes employing buffers has appeared in[49]. A
FIFO buffer is placed at the input of a PE whose clock rate and voltage are to
be regulated. The DVS scheme computes a moving average of theexecution
demand to estimate the minimum sufficient processing rate for the samples cur-
rently in the buffer. This technique assumes that exact execution demands of
individual samples are knowna priori, i.e. before they have been processed.
Only under this critical assumption and for periodic arrivals, the DVS scheme in
[49] can guarantee absence of buffer over- and underflows. Based on the same
assumptions, [28] improves the rate estimation algorithm of [49] by extending it
to the case when the selection of operating frequency/voltage levels is limited to
a set of discrete values.

[104] proposes to insert buffers between tasks processing avideo stream in
a pipelined fashion on a single PE. The buffers serve to maintain a constant out-
put rate while allowing energy savings on a processor that has only few fixed
frequency levels. In addition, inserting the buffers improves response times
for sporadic tasks executed on the same processor. [104] constructs frequency-
assignment graphs capturing relevant information such as buffer states, and then
develops efficient graph-walking algorithms to to find optimal frequency/voltage
settings at run time. It assumes that all frames to be processed are available at
the start of the operation (e.g. stored in memory or on a hard disk) and that the
tasks have constant execution demands.

[59] shows that hard real-time DVS techniques not employingbuffers cannot
fully utilize VST and therefore there is a potential to achieve higher energy sav-
ings. To fully exploit both kinds of slack time, WST and VST, [59] proposes to
use buffers to delay the processing such that whenever the processor has com-
pleted execution of one task instance, italwaysfinds next task instance waiting
in a buffer. Hence, if a preceding task instance has finished earlier than its WCET
resulting in a slack time, then the next task instance is ableto fully utilize this
slack time while running at a lower clock rate. To guarantee that the buffers
never overflow and underflow, [59] has to assume that tasks arrivals are purely
periodic.

In order to give the performance guarantees, DVS techniquesin [28, 49, 59,
104] have to assume either periodic arrivals or, even worse,a completea priori
knowledge of the workload. These assumptions rarely hold inpractice. Other
buffer-based DVS schemes published in [105, 106, 144, 174] are free from these
assumptions, however, as we will see, they fail to provide hard performance
guarantees.

[144] presents a buffer-based combined DVS-DPM scheme which fully relies
on stochastic workload characterization: stream arrivalsand execution demands
are characterized by probability distributions. These distributions are obtained
by fitting statistics collected through extensive stochastic simulations to standard

128 Chapter 6. Energy-Efficient Stream Processing

Fig. 42: MPEG-2 decoder implemented on two PEs. Supply voltage and clock rate ofPE2 can be
controlled (DVS).x(t) ande(k) are cumulative arrival and execution demand functions.

probability distributions. At run time the workload history is collected and used
to detect, on the basis of these distributions, changes in the workload intensity.
The processor rate is then adjusted accordingly. Clearly, due to its use of sto-
chastic models the method in [144] can provide only probabilistic guarantees. It
also depends on the accuracy with which real workload is approximated using
standard probability distributions.

DVS schemes presented in [105, 106, 144, 174] use different flavors of a PID
(Proportional-Integral-Derivative) controller [37] to regulate the processor rate.
The processor with the buffer at its input (or output) represents the controlled
plant. Typically, the buffer occupancy level serves as a feedback signal to the
controller. The main difficulty in these techniques is non-linearity of the con-
trolled plant. Because of this non-linearity, it becomes extremely difficult to
formally proof the properties of a control algorithm and analytically find op-
timal settings for its parameters (such as controller gains). Furthermore, pro-
viding hard performance guarantees (e.g. with respect to the buffer and delay
constraints) under highly bursty workloads requires an overshoot-free controller
with a short reaction time. However, such a controller is difficult to design be-
cause the requirements to have a short response time and to completely avoid
overshoots are conflicting.

6.3 Motivating example

As a motivating example consider the system shown in Fig. 42.(A similar sys-
tem has been already considered in Chapter 3 in Fig. 17 and in Chapter 4.) This
system performs decoding of MPEG-2 video streams. It includes two process-
ing elementsPE1 andPE2. They can be embedded processor cores specialized
for specific tasks such as video processing or any other kind of processing ele-
ments. A compressed video stream first entersPE1, which executes a part of the
MPEG-2 decoding algorithm. The task running onPE1 performs VLD and IQ
functions. After processing onPE1, the video stream enters bufferB at PE2’s

6.3. Motivating example 129

input. At this place in the system the stream exists as a sequence of partially
decodedmacroblocks. PE2 consumes fromB one macroblock at a time and
applies to it IDCT and MC functions. Finally, the fully decoded video stream
emerges atPE2’s output.

Our objective is to minimize the energy consumed byPE2 without deteriorat-
ing the quality of the processed video stream. The stream’s quality is preserved
if bufferB at thePE2’s input never overflows and if the processing delay, experi-
enced by the stream onPE2, does not exceed some specified value. Our ultimate
goal is to design apredictable system. This means that we want to ensure that the
system satisfies the above mentioned QoS requirements underall possible load
scenarios and not only in the average case.

We assume thatPE2 supports DVS, i.e. its clock rate and supply voltage can
be changed at run time.1 Such changes can be controlled by the software onPE2
or by some other hardware or software entity, external toPE2. We refer to time
instants at which the processor speed is altered asadaptation points.

We assume that the adaptation points are fixed in time. For obtaining en-
ergy savings while providing the QoS guarantees, such an assumption is less
favorable than the assumption that we can adapt the processor’s clock rate at any
time. Our method though can handle both cases. In any case, the spacing of
the adaptation points in time in our method is completely decoupled from the
execution state and granularity of tasks onPE2. This means that the adaptations
are not restricted to occur at task boundaries, and their frequency, in general, is
independent of the rate at which the video stream arrives at thePE2’s input.

A DVS scheduler can reduce the energy dissipated onPE2 by exploiting the
variability of the workload imposed on this PE. This variability comes from two
sources. First, the execution time of the task running onPE2 is variable. Second,
the data-dependent variability of the execution time of thetask running onPE1
causes the stream of macroblocks at thePE2’s input to bebursty.

One traditional way of reducing the energy dissipated onPE2 would be to
fully average out the workload imposed on it using bufferB. If buffer B is suf-
ficiently large, it can completely absorb the workload fluctuations. This allows
PE2 to run at a lowconstantclock rate which is just sufficient to sustain the
long-term average arrival rate of the stream. In this mode, one can ensure thatB
never gets empty (as a playout buffer). In this case, no cycles are wasted even
during low-load periods, i.e. the available slack isfully exploited. This strategy
would yield the most energy savings onPE2. However, such a strategy is of-
ten unaffordable since it requires large buffers for processing bursty multimedia
workloads like MPEG streams. As an example, our experimentsshowed that the
complete averaging of the workload imposed by DVD-quality videos onPE2 in
Fig. 42 required in the worst case the buffer space of at least8100 macroblocks
(or about 3.7 MByte). Such a large buffer would be too expensive to imple-

1Throughout this chapter whenever we say that the processor’s rate is changed we assume
that to reduce energy its supply voltage is changed accordingly.

130 Chapter 6. Energy-Efficient Stream Processing

ment in some embedded SoC architectures. Furthermore, fromthe application
perspective, the delay incurred by the video stream onPE2 as a result of such
averaging might not be tolerable. (It is about 5 full video frames in our setup
shown Fig. 42.)

In contrast, we assume that our architecture isbuffer-constrained, i.e. the
buffer space at thePE2’s input is inadequate for the complete workload aver-
aging. Hence, unless we allow buffer overflows we cannot constantly run the
processor at the average rate: a burst in the stream’s arrival pattern or in its ex-
ecution demand can easily cause an overflow. To avoid the overflows, we could
service the stream at some constantsafe ratewhich is high enough to success-
fully handle the bursts under the given buffer constraint. Clearly, such a safe rate
would be higher than the average rate, and therefore during periods with the aver-
age or low load some amount of the processor cycles would be wasted for waiting
on the empty buffer. In some cases, we could save some energy by putting the
processor into a low-power idle state whenever the buffer isempty, and then let
it run again whenever there is something to process in the buffer (i.e. use DPM).
However, in many cases the switching overhead between processor power states
is too high (in the range of milliseconds [16]) compared to the stream arrival rate
(in the range of microseconds in our setup shown in Fig. 42) thereby making this
strategy infeasible. On the other hand, a DVS strategy whichcould exploit the
slack during low-load periods would yield higher energy savings.

By now it should be clear that despite of the buffer constraintthere is a poten-
tial to save the energy by runningPE2 at a lower rate during low-load periods.
However, this potential should be realized very carefully since a burst may sud-
denly arrive and cause a buffer overflow. Hence, our goals areconflicting: on one
hand we want to stay at the average level of performance for saving the energy,
but on the other hand we have to provide QoS guarantees and, therefore, need to
be ready at any time to handle the worst case. Designing a scheduling strategy
which can meet the both goals represents a challenging problem and involves
delicate tradeoffs.

The main challenge in designing a safe DVS strategy for a system with con-
strained buffers, as the one described above, is in the fact that it is a priori un-
known how the workload will behave in an interval between twoadaptation
points. Even if we knew exactly how many stream objects in total will arrive
within the interval, this information would be insufficientto guarantee that the
buffer will not overflow. For providing such a guarantee we need to knowhow
the stream objects will arrive within the interval. For instance, they may arrive
in a dense burst, right in the beginning of the interval. If inthe previous interval
the processor has not cleared enough buffer space to accommodate this burst, an
overflow is bound to happen. Many existing DVS techniques which are capable
of providing the QoS guarantees and which employ buffers forthe energy reduc-
tion avoid this problem by assuming that the stream arrives into (or departs from)
the buffer at a constant rate [59, 104]. This assumption, however, greatly simpli-

6.4. Adaptive Run-Time Scheduling with VCCs 131

Fig. 43: Overview of the method

fies the problem and often does not hold in practice. Furthermore, by making
this assumption, the existing techniques lose the opportunity to gain additional
energy savings by exploiting the variability in the arrivalprocess of the stream.
They exploit only the slack resulted from the variability ofthe task execution
time.

6.4 Adaptive Run-Time Scheduling with VCCs
Fig. 43 shows an overview of our method. Our algorithm dynamically adapts the
clock rate of the processor to the workload variation using two mechanisms: (i)
run-time monitoring of the buffer fill level (i.e. bufferB in Fig. 42) and (ii) online
improvement of static VCCs based on the workload history. It exploits both types
of workload variability—the slack in the execution time andthe irregular arrival
patterns of the stream.

Central to our method is the concept of VCCs introduced in Chapter3. This
concept is the key to providing QoS guarantees and achievinggood average per-
formance. Using VCCs at run-time and taking into account the current backlog
in the buffer and the workload history, our algorithm makessafe, but not too pes-
simisticdecisions at the adaptation points. Such a reduced pessimism is possible
because VCCs represent a more detailed characterization of the workload than
traditional task and event models, as we have shown in Chapter3.

In this chapter, we distinguish between two types of worst-case bounds:sta-
tic VCCsanddynamic VCCs(see Fig. 43). The static VCCs are obtained at the
design time through an off-line analysis, and then used by our DVS scheduler at
run-time. In this sense, they are similar to conventional worst-case characteriza-
tion of tasks, such as the worst-case execution time and the minimum interarrival
time or period. The dynamic VCCs is a novel concept that we introduce in this

132 Chapter 6. Energy-Efficient Stream Processing

chapter. The novelty of this concept lies in the fact that these VCCs are ob-
tainedat run-time. They represent an online improvement of the static VCCs.
The dynamic VCCs are obtained using the workload history. Depending on the
workload situation, these VCCs can be much tighter than the corresponding static
VCCs. They allow our scheduler to be less pessimistic about thefuture work-
load and through this to achieve considerable energy savings. Furthermore, the
dynamic VCCs provide the same level of guarantee as that provided by the static
VCCs from which these dynamic VCCs were derived.

Following subsections give details about our method.

6.4.1 Workload and service characterization

We shall consider a stream to be composed of a potentially infinite sequence of
stream objects. Depending on the application at hand a stream object can be
an audio sample, a video (macro)block or a whole frame, etc. Astream can be
modeled by two cumulative functionsx(t) ande(k) (see Fig. 42).x(t) denotes
the total number of stream objects that arrived at the bufferB during the time in-
terval[0, t], wherease(k) denotes the total number of execution cycles requested
from the processor byk consecutive stream objects starting from the first stream
object in the sequence. Our objective is to characterize a whole classof streams
that the processor has to handle. We achieve this by using upper event-based
arrival curveᾱu and upper execution demand curveγu, defined in Section 3.3.
For any streami belonging to the class,̄αu andγu have to satisfy

xi(t+ ∆) − xi(t) ≤ ᾱu(∆) ∀t,∆ ∈ R≥0 (6.1)

ei(k + ǫ) − ei(k) ≤ γu(ǫ) ∀k, ǫ ∈ Z>0 (6.2)

Thus, tuple(ᾱu, γu) represents a particular class of streams. In practice, a class
may encompass all streams belonging to one application scenario. For instance,
all MPEG-2 video sequences with identical parameters like resolution, frame
rate, bit rate etc. can belong to one class.

Besides the workload model represented by the arrival and execution demand
curves, we need a similar abstraction for the service offered to process this work-
load. Note that the rate of a DVS processor can change over time. Hence, we
have to model these changes properly. For this we use the concept of aservice
curves. The theoretical framework presented in this chapter involves both, event-
based and resource-based lower service curves, denotedβ̄l andβl, respectively.
In the simplest case, when the processor constantly runs at aclock ratef , the
service curveβl(∆) = f · ∆. For a processor which may be switched off for
maximumδ time units and in the rest of the time runs at a constant speedf , e.g.
as in the case of DPM,βl(∆) = sup{f · (∆ − δ), 0}.

6.4. Adaptive Run-Time Scheduling with VCCs 133

6.4.2 Safe service rate

To simplify exposition of the method, we introduce the concept of safe service
rate and make the following assumption: all stream objects in a stream impose
the same execution demand on the processor. This assumptionimplies that if
the processor clock rate is constant on some time interval, then the service rate
measured in number of stream objects per time unit which the processor offers to
the stream is also constant on that interval. We will relax this assumption later,
in Section 6.4.4, by accounting for the execution demand variability.

Def. 16: (Safe service rate)Service rate is safe ifcontinuouslyservicing a stream at this
rate guarantees that the buffer at the input of the processornever overflows and
the delay constraint associated with the processed stream issatisfied.

Our goal is to determine theminimumsafe rate. For this, suppose that the
processor services a stream at aconstantrateR, whereR is measured in number
of stream objects that can be serviced per time unit. Hence, we can model the
offered service as̄βl(∆) = R · ∆. Then, from (2.10) we can find the minimum
service rateRL which ensures that the buffer of sizeL never overflows:

RL = sup
∀∆≥0

{

ᾱu(∆) − L

∆

}

(6.3)

Similarly, from (2.9) we can determine the minimum service rateRD satisfying
the delay constraintD:

RD = sup
∀∆≥0

{

ᾱu(∆)

D + ∆

}

(6.4)

Thus, the minimum safe service rateRsafe = max{RL, RD}, i.e.

Rsafe = sup
∀∆∈R≥0

{

ᾱu(∆)

D + ∆
,
ᾱu(∆) − L

∆

}

(6.5)

To guarantee satisfaction of the buffer and delay constraints,L andD, it is
sufficient (but not necessary) that the processor offers a service rate which is
not lower thanRsafe determined by (6.5). In other words,Rsafe guarantees the
constraint satisfaction in the worst case, e.g. during a burst in the stream arrival
pattern. However, the appearance of the worst case is bounded, and therefore it is
not necessary for the processor to offer to the stream a safe service rate through
all the time. Whenever the worst case does not happen, the processor could offer
a service rate which is lower than the minimum safe rate. In doing so, care must
be taken to timely react to changes in the workload by increasing the service
rate if necessary. This principle forms a basis for the dynamic processor rate
adaptations which we will consider in the next subsection.

134 Chapter 6. Energy-Efficient Stream Processing

6.4.3 Adapting processor speed at run time

To save energy, duringlow-load periodsour scheduler tries to run the processor
at a rate which matches stream’s arrival rate. The scheduleruses the buffer fill
level as an indicator of the stream’s arrival rate. At each adaptation point, the
scheduler tries to set the processor rate such that the buffer fill level is closeto
zero. Since any such rate tends to match the arrival rate and is lower than the
minimum safe rateRsafe, this strategy results in energy savings during the low-
load periods.

If a workloadburst starts arriving, the processor frequency is increased ac-
cordingly. This is done in a safe way, based on the information about the current
buffer fill level and the expected future worst-case workload. The scheduler tries
to fully exploit the available buffer space during the bursts by being as “lazy” as
possible. At each adaptation point, it sets the processor rate such that it isjust
sufficient to avoid a buffer overflow in the worst case. That is, if the worst case
did really happen, the buffer would reach its full state but would never overflow
within the adaptation interval. Since the worst case happens rarely, this “lazy”
strategy results in energy savings during the high-load periods.

Let bi denote the backlog in the buffer atith adaptation point and suppose
that theith adaptation interval is of lengthτ . Then, the above rate-adaptation
strategy can be realized if at theith adaptation point the processor rate is set to
RL,i which is computed as follows:

RL,i = sup
0<∆≤τ

{

ᾱu(∆) − L+ bi
∆

, 0

}

(6.6)

This formula is in principle the same as (6.3), but it accounts for the initial back-
log bi and is valid only for theith adaptation interval of lengthτ .

(6.6) ensures that the buffer will not overflowwithin theith adaptation inter-
val. However, it might happen that due to a burst the backlog at the end of theith
adaptation interval is close to its maximum allowed value. In this case, avoiding
buffer overflows may require the processor to run at a high rate during the next
adaptation interval. This rate might be higher than the maximum rateRmax sup-
ported by the processor. Thus, a deadlock situation may occur. To avoid such
a situation, at theith adaptation point the scheduler has also to consider what
might happen in the worst caseafter the ith adaptation interval. For this, at the
ith adaptation point it sets the processor rate such that thisrate is at least as high
asRmin,i which is computed as follows.

δi =
L− bi
Rmax

+ inf
∀∆≥τ

{

∆ − ᾱu(∆)

Rmax

}

(6.7)

Rmin,i = Rmax

τ − δi
τ

∨ 0 (6.8)

6.4. Adaptive Run-Time Scheduling with VCCs 135

Fig. 44: Calculation of the minimum service rateRmin,i for theith adaptation interval.

Fig. 44 illustrates the above formulas.Rmin,i ensures that whenever the
worst-case loadreally happens in theith interval and the buffer is (almost) full
at its end, we still can prevent the buffer from overflowing. For this, after the
ith adaptation interval, we just have to run the processor atRmax. This holds
because in the worst case the stream is guaranteed to receivea service which is
not less than the service curve

β̄l(∆) = sup
∀∆>0

{Rmin,i · ∆, Rmax · (∆ − δi)}

and
ᾱu(∆) − β̄l(∆) ≤ L− bi ∀∆ > 0

The opposite situation might also occur. If there is a lot of free space in the
buffer, (6.6) and (6.8) may return zero. In this case, one could switch off the
processor until the next adaptation point. However, this would not be an optimal
energy saving strategy. Even if the stream’s arrival rate islow during the time
when the processor is switched off, a number of stream objects will accumulate
in the buffer. This will necessitate the processor to run at ahigher rate during
the subsequent adaptation intervals thereby making this strategy not optimal for
energy savings. The optimal strategy is to run the processorat a rate exactly
matching the stream’s arrival rate. Since the exact arrivalrate is never known for
future adaptation intervals, such a strategy is difficult torealize. Hence, different
approximations have to be made. In our case, (6.6) and (6.8) returning zero may
indicate a low-load period. The lowest rate at which the stream might arrive
during that period, and therefore at which we should run the processor, is

Rl
min =

µ̄τ

τ
(6.9)

136 Chapter 6. Energy-Efficient Stream Processing

whereµ̄τ denotes the minimum number of stream objects that might arrive within
any interval of lengthτ . 2

Finally, our algorithm can be summarized as follows:

Ri = max{RL,i, Rmin,i, R
l
min, RD} (6.10)

whereRi is the rate set at theith adaptation point.

6.4.4 Accounting for variable execution demand

The above discussion was based on the assumption that all stream objects im-
pose exactly the same execution demand on the processor. Although in reality
this rarely happens, this assumption helped to illustrate the principles of the pro-
posed rate adaptation algorithm by simplifying the formulation of the service
rate constraints in the preceding subsections. However, ifwe were to apply this
assumption in practice, we would also have to assume theworst-caseexecu-
tion demand for each stream object. As our experiments showed in Section 3.6,
such an assumption may result in overly pessimistic bounds.Therefore, to avoid
this problem, our method employs the upper execution demandcurveγu, which
represents a more detailed characterization of the worst-case execution demand
imposed by a stream on the processor.

As discussed in Section 3.4, the workload transformation(γu ⊙ ᾱu)(∆) gives
an upper bound on the number of processor cycles that can be requested within
any time interval of length∆ by any stream belonging to the class characterized
by tuple(ᾱu, γu). Using this workload transformation and Thm. 1, and by fol-
lowing the same principles as were used for deriving (6.4), (6.6), and (6.8), we
can obtain constraints on the processorclockrate:

fD = sup
∀∆≥0

{

γu ⊙ ᾱu(∆)

D + ∆

}

(6.11)

fL,i = sup
0<∆≤τ

{

γu ⊙ ((ᾱu(∆) − L+ bi) ∨ 0))

∆

}

(6.12)

fmin,i = sup
∀∆≥τ

{

fmax(τ − ∆) + γu ⊙ ((ᾱu(∆) − L+ bi) ∨ 0)

τ

}

(6.13)

wherefD, fL,i andfmin,i are clock frequencies, corresponding to event-based
service ratesRD, RL,i andRmin,i derived in the previous subsection under the
assumption that all stream objects impose the same execution demand on the
processor.

2In fact,µ̄τ = ᾱl(τ), whereᾱl is the lower event-based arrival curve of the stream. To reduce
clutter, we do not introduce in this chapter any lower VCCs, although they also can be useful in
realizing an energy-conscious stream scheduling strategy.

6.4. Adaptive Run-Time Scheduling with VCCs 137

Similarly, clock rate constraintf l
min, corresponding toRl

min, can be formu-
lated as

f l
min =

µτ

τ
(6.14)

whereµτ denotes the minimum number of processor cycles that might bere-
quested by the stream withinany interval of lengthτ . 3

Finally, our clock rate adaptation algorithm can be summarized as follows.

fi = max{fL,i, fmin,i, f
l
min, fD} (6.15)

wherefi is the value of the processor clock rate set by our DVS scheduler at the
ith adaptation point.

6.4.5 Using dynamic VCCs

The algorithm described in the previous subsections usesstatic VCCs̄αu andγu.
It was derived under the assumption that at any point in time nothing is known
about the past workload. Now suppose that we keep a finite-length workload
history. By exploiting this history we can improve the energysavings without
jeopardizing the safety property of the algorithm. We use the history to revise
static VCCs̄αu andγu into their dynamic equivalents̄̂αu andγ̂u. This subsection
explains how this is exactly done.

The basic idea behind deriving the dynamic VCCs from the staticVCCs
using the knowledge about the workload’s behavior in the past is fairly simple
and can be illustrated with the following example.

Ex. 4: Suppose that the upper bound on the workload imposed by a stream on a proces-
sor within any time interval of length∆ equals toA processor cycles. Since this
bound holds at all intervals of length∆, it is a static worst-case bound. Now,
suppose that we observe the system at some point in timet. If we know that
the execution demand requested by the stream during time interval [t − ∆p, t]
(∆p < ∆) wasB processor cycles, then we can guarantee that over the next
time interval(t, t + ∆ − ∆p], the stream will not request more thanA − B cy-
cles. The valueA− B represents a dynamic worst-case bound over the interval
(t, t+ ∆ − ∆p]. At timet, the scheduler can safely use this dynamic worst-case
bound for computing the frequency at which the processor needs to be run during
the interval(t, t+ ∆ − ∆p].

In Ex. 4, we employed a static bound which provided us with theinformation
about the worst-case workload only on intervals of length∆. We used this in-
formation asa constraintto compute the dynamic worst-case bound for a future
interval of a smaller length. Note that we can derivemanysuch constraints from

3µτ = (γl ⊙ ᾱl)(τ), whereᾱl is the lower event-based arrival curve of the stream andγl is
its lower execution demand curve.

138 Chapter 6. Energy-Efficient Stream Processing

static VCCsᾱu andγu, since they capture the worst-case workload on intervals
of different lengths. At any given time instant, by taking into consideration the
past workload, we can then select from those constraints thetightestones to form
the dynamic VCCs,̄̂αu andγ̂u.

Suppose that the system is at the beginning of theith adaptation interval of
lengthτ . The upper boundXi on the number of stream objects that can arrive
within τ is

Xi(τ) = inf
0≤j≤N

{ᾱu(jθ + τ) −Hx
i (j)} (6.16)

whereHx
i is thearrival history at theith adaptation point,θ is the resolution

of the arrival history, andN is the number of constraints that the scheduler
considers for computingXi. θ can be interpreted as a sampling period with
which arrivals are monitored.

The arrival historyHx
i represents a set ofN sliding windows, with thejth

window spanning the interval[ti − jθ, ti) and returning the number of stream
objects that arrived within it. Formally,

Hx
i (j) = x(ti) − x(ti − jθ), j = 0, 1, .., N (6.17)

Note that from (6.1), (6.16) and (6.17) it follows thatXi(τ) ≤ ᾱu(τ) for all
i ∈ Z≥0 and for allτ ∈ R≥0. Hence, for the processor rate calculation, instead of
usingᾱu(τ) we can useXi(τ). Furthermore, sincēαu is an increasing function4,
Xi(τ) can be used to improvēαu not only forτ , but also for other interval lengths
that are smaller thanτ :

ˆ̄αu(i,∆) = inf
∀∆∈[0,τ]

{Xi(τ), ᾱ
u(∆)} (6.18)

(6.18) represents thedynamic arrival curveused by our scheduler at theith adap-
tation point.

By following the same principle, we can improve the executiondemand
boundγu. LetHe

i (j) denote theexecution demand historyof lengthM and res-
olutionψ. ψ is defined in terms of number of stream objects. The upper bound
Ei on the number of processor cycles that can be requested by anysequence of
k consecutive stream objects after theith adaptation point can be computed as
follows

Ei(k) = inf
0≤j≤M

{γu(jψ + k) −He
i (j)} (6.19)

He
i (j) = e(l) − e(l − jψ), j = 0, 1, ..,M (6.20)

wherel is the total number of stream objects that have been completely processed
up to theith adaptation point. As a result we get thedynamic execution demand
bound:

γ̂u(i, η) = inf
η∈[0, ˆ̄αu(i,τ)]

{Ei(η), γ
u(η)} (6.21)

4Refer to Section 3.2.1 for the precise meaning of the term ”increasing function”.

6.4. Adaptive Run-Time Scheduling with VCCs 139

ˆ̄αu andγ̂u can used in all formulas of Sections 6.4.4 and 6.4.3 in place of ᾱu and
γu, respectively.

6.4.6 Notes on implementation

The DVS algorithm described in the previous subsections canbe implemented
either in SW or in HW or using a combination of the two. For any implementa-
tion, a number of considerations has to be made. These include: (i) taking into
account voltage/frequency transition overhead; (ii) working in discrete time; (iii)
working with discrete frequency levels; (iv) determining granularity and length
of the workload history; (v) downloading the static VCCs at runtime if the ap-
plication scenario changes, etc. Some of these issues are briefly addressed in this
subsection.

Accounting for the voltage/frequency transition overhead
Switching between different voltage and frequency levels may take some time
ε. During this time the processor cannot service the stream. Hence, at theith
adaptation point the actual processing starts afterε time units. Thistime-outcan
be easily modeled by the service curves. In particular, for the computation of
fD andfL,i, instead of resource-based service curveβl(∆) = f · ∆, we have to
consider resource-based service curve

βl(∆) = sup
∀∆≥0

{f · (∆ − ε), 0}

This will correspondingly change the formulas (6.11) and (6.12) forfD andfL,i:

fD = sup
∀∆≥0

{

γu ⊙ ᾱu(∆)

D − ε+ ∆

}

fL,i = sup
∆:ε<∆≤τ

{

γu ⊙ ((ᾱu(∆) − L+ bi) ∨ 0))

∆ − ε

}

For the computation offmin,i, we have to consider that resource-based service
curveβl(∆) consists of four linear segments:

βl(∆) =















0 ∀∆ : 0 ≤ ∆ ≤ ε
f · (∆ − ε) ∀∆ : ε < ∆ ≤ τ
f · (τ − ε) ∀∆ : τ < ∆ ≤ τ + ε
fmax · (∆ − τ − ε) ∀∆ : τ + ε < ∆

Then (6.13) will change to

fmin,i = sup
∀∆≥τ+ε

{

fmax(τ + ε− ∆) + γu ⊙ ((ᾱu(∆) − L+ bi) ∨ 0)

τ − ε

}

140 Chapter 6. Energy-Efficient Stream Processing

Videos Parameters
file name # file name MP@ML
1 bbc3080.m2v 4 susi080.m2v 8 Mbps CBR
2 cact080.m2v 5 tens080.m2v 25 fps
3 mobl 080.m2v 704×576 pixel
Source:ftp.tek.com/tv/test/streams/Element/MPEG-Video/

Tab. 10: MPEG-2 video sequences used in the experiments.

We can use similar approach to devise an energy-saving strategy combining
DVS and DPM.ε would then correspond to the maximum time interval during
which the processor can be switched off. Also, note that service curves allow for
modeling other effects which might be more complex than the time-out due to
voltage/frequency transitions or idle intervals in DPM. For example, sharing of
a PE by multiple tasks can be included in the analysis. However, these issues go
beyond the scope of this thesis.

Working in discrete time
All formulas presented up to this point in this section assume computation in
continuous time, i.e. for ∆ ∈ R≥0. This, however, is impractical. Our method
can also work in the discrete time. It is sufficient to computethe clock frequency
constraints (6.11), (6.12), and (6.13), only for a few values of ∆. For this, in-
stead of usinḡαu which is defined onT = R≥0, we use its discrete equivalent,
defined onT = Z≥0. (3.3) formalizes the discretization procedure. Suppose that
ᾱu

Z≥0
(k) = ᾱu

R≥0
(∆k), ∆0 = 0 for k = 0, and∆k < ∆k+1 for all k ≥ 0, then,

to be conservative while computing the clock frequency constraints, we have to
useᾱu

Z≥0
(k + 1) in place ofᾱu

R≥0
(∆k) for all k ≥ 0. Also, note that the dis-

cretization points∆k need not be equally spaced in time, making possible better
approximations and optimization of the number of computations.

Working with discrete frequency levels
In the above discussion, we assumed that the clock frequencycan scale contin-
uously. However, some existing commercial DVS processors have only discrete
frequency/voltage operating points [3, 60, 164]. Adaptingour method to this sort
of architectures is straightforward: at each adaptation point the actual proces-
sor clock rate must be set to the smallest possible value thatis larger than the
computed clock ratefi.

6.5. Experimental Results 141

6.5 Experimental Results

6.5.1 Experimental setup

For the evaluation of our DVS technique, we conducted several experiments us-
ing a simulator of the MPEG-2 decoding system shown in Fig. 42and described
in Section 6.3. The simulator consisted of a SystemC [153] transaction-level
model in whichPE1 andPE2 were modeled using thesim-profile con-
figuration of the SimpleScalar ISS [8]. Appendix A provides details about the
simulation environment.

Tab. 10 gives the set of MPEG-2 video sequences for which we conducted
the experiments. This set includes videos imposing different workload patterns
on the architecture. For each video, we collected traces corresponding to func-
tionsxi(t) andei(k). Using trace analysis technique described in Section 3.5.2,
we obtainedtwo curves,ᾱu andγu, representing thewholeset of videos. For
illustration, Fig. 44 depicts the resultinḡαu.

In all experiments, our DVS scheduler performed frequency and voltage
adaptations with a constant periodτ . We neglected the time and energy over-
head associated with the adaptations and assumed that the frequency and voltage
of PE2 can change continuously (i.e. at very fine steps).

For the energy consumption estimation, we adopted the modelfrom [104].
According to [104], the energy

E ∝

∫ nτ

0

v2
dd · f dt =

n
∑

i=1

(vdd,i)
2fi · τ ∝

n
∑

i=1

(vdd,i)
2fi (6.22)

wherevdd,i andfi are voltage and frequency values set by the scheduler at the
ith adaptation point for theith adaptation interval, andn is the total number
of adaptation intervals (such thatnτ is the duration of the entire video clip).
(6.22) assumes that during idle periods, i.e. when the inputbuffer is empty and
no stream object is being processed, the PE stays active (e.g. checking for the
buffer status). However, during these idle periods we couldfurther reduce energy
by putting the PE into a low power state. We assume that such a low power state
corresponds to the state in which the circuit switching activity is zero, i.e. the PE
is switched off completely; hence the energy consumption

E ∝

n
∑

i=1

(vdd,i)
2fi · τ ∗i (6.23)

whereτ ∗i is the total time during which the PE isnot switched off within the
ith adaptation interval. Further, for the estimation of the normalized energy we
assumed thatfi ∝ vdd,i.

142 Chapter 6. Energy-Efficient Stream Processing

Fig. 45: Experimental results. A fragment of a frequency schedule produced by our DVS algo-
rithm (top) and the corresponding to it buffer fill level (bottom).

6.5.2 Qualitative examination

Fig. 45 shows a fragment of a frequency schedule produced by our DVS algo-
rithm and the corresponding to it buffer fill level which we observed in one of
our experiments. The figure illustrates how the two mechanisms of our method—
the run-time monitoring of the buffer fill level and the dynamic VCCs — work
together to reduce the energy consumption. Dots on the frequency schedule plot
show the adaptation points. By inspecting this plot we can make the following
observations.

• Before timet1, the load is low and the backlog is close to zero, hence, the proces-
sor runs at a low rate.

• At t1 a burst starts arriving. In response to this burst, the scheduler increases the
clock rate, but not by too much: it lets the buffer fill up to some level, and then
tries to ”balance” at this level.

• Shortly beforet2, the load abruptly increases even further and the buffer fills up
very quickly (within one adaptation interval). Therefore,at t2 to avoid a buffer
overflow the scheduler increases the processor rate significantly, but only for a
short time. In the interval fromt2 to t3, the load is still high and the processor
runs at a rate which approximately matches this load.

• At t3 the buffer becomes almost full. Despite this, att3 our DVS algorithm

6.5. Experimental Results 143

decides to run the processor at a very low rate.How can this be possible?The
answer is the effect of the dynamic VCCs. Att3 they tell the scheduler that the
burst is over and it is safe to run the processor at a low rate because the next burst
will not arrive very soon. Consequently, in the interval fromt3 to t4, PE2 runs
at relatively low rates even though the buffer is nearly fullduring that interval.

• Shortly beforet4, the scheduler again has to increasePE2’s speed. This is be-
cause att4 the dynamic VCCs tell the scheduler that a new burst might start
arriving soon and therefore a sufficient space must be cleared in the buffer to
accommodate this burst. Indeed, shortly aftert4 a new burst starts arriving and
the adaptation cycle repeats.

6.5.3 Quantitative comparison

We compared the energy savings achieved by our technique with those achieved
by the DVS scheme published in Wu et al. [174]. Wu et al. uses aPID con-
troller which tracks changes in the buffer fill level and correspondingly regulates
processor’s speed and voltage. This scheme is similar to ours in a sense that
(i) it can handle both the stream burstiness and the data-dependent variability
in the task execution demand; (ii) it is suitable for buffer-constrained architec-
tures; and (iii) it also uses fixed adaptation intervals. Furthermore, to the best of
our knowledge, at the time of writing, the scheme of Wu et al. represents one
of the advanced DVS techniques recently published. Thus, wefound it suitable
for the comparison. From a user’s perspective, the only difference between this
scheme and ours is itsunpredictabilityin terms of satisfying the specified QoS
constraints, i.e. it cannot provide hard QoS guarantees while our scheme can
do this. However, an implementation of this scheme might be associated with
smaller SW/HW and energy overheads than of our DVS scheme.

We have implemented the PID controller as described in [174]. The adap-
tation interval lengths of the PID controller and that of ourscheme were set to
the same value,τ = 4.5ms (which roughly corresponds to nine adaptations per
video frame). In our scheme, the arrival history containedN = 150 samples with
the resolutionθ = τ , whereas the execution demand history containedM = 200
samples with the resolutionψ = 1.

Fig. 46 shows the results of this comparative study. In this figure, we refer
to our scheme asdVCC and to the PID controller scheme asPID. We simulated
both these schemes in two configurations. In one configuration, if the buffer
was empty,PE2 continued to run at the rate set at the latest adaptation point
(i.e. some cycles were wasted in the idle state). In the otherconfiguration,PE2
was switched off completely for periods when there was nothing to process (i.e.
no cycles were wasted). In Fig. 46, the data corresponding tothe latter config-
uration is indicated with dashed lines and with a suffixiDPM. The switching
on and off ofPE2 was assumed to occur in zero time under the control of an
ideal (”oracle”) DPM. Although unrealistic, such a configuration is useful for

144 Chapter 6. Energy-Efficient Stream Processing

Fig. 46: Experimental results. Energy savings achieved by our DVS scheme (denoted as
dVCC anddVCC iDPM) and the PID-based DVS scheme [174] (denoted asPID and
PID iDPM).

the analysis because it indicates how well a DVS technique can exploit the slack
during low-load periods.

As a baseline for measuring the energy savings we used the energy dissipated
by PE2 constantly running at the safe ratefsafecomputed for a given buffer size
L using (3.47). We also measured energy savings obtained by the ”oracle” DPM
with instantaneous on–off switching ofPE2, running at a fixedfsafe. In Fig. 46,
the corresponding graph is shown with a dotted line and is labelled assafeiDPM.

By inspecting the plots in Fig. 46 we can make the following observations.

1. For relatively small buffer sizes (L ≃ 400 . . . 1300), both DVS schemes,dVCC
andPID, result in more than 50% energy savings. With increasing buffer size the
savings decrease. This is mainly because the energy consumption of the baseline
architecture rapidly decreases whenL grows, since a lowerfsafe is needed to
avoid buffer overflows. IfL is sufficiently large to completely average out the
workload,anyDVS scheme is likely to be not worthwhile.

2. In comparison tosafeiDPM, for L ≃ 400 . . . 1300 the energy savings of both
dVCC andPID are 10. . . 30%. This indicates that both techniques can effec-
tively exploit the slack during low-load periods. We can also see that forL > 600
dVCC fully exploits the slack (compare todVCC iDPM), whereasPID poten-
tially could perform better.

6.5. Experimental Results 145

Fig. 47: Experimental results. Energy savings vs. adaptation interval length, fordifferent buffer
sizesL.

3. ForL > 450 energy savings fromdVCC are at least as high as fromPID, while
for L < 450 PID saves 15% more energy thandVCC. This is the price for
the hard QoS guarantees provided bydVCC. If the user specifiesL as the buffer
constraint,dVCC guarantees that the maximum buffer fill level will never exceed
L. In contrast,PID cannot guarantee this. InPID the user can only specify a
target, not themaximum, buffer fill level. The PID controller will then try to
keep the backlog at this level. Bursty workloads and stringent buffer constraints
require the PID controller to quickly respond to workload changes. This leads to
(large) oscillations around the target level during adaptations, which means that
if the target level has been set improperly a buffer overflow may occur. As an
example, the left most point in thePID graph was obtained by setting the target
buffer fill level to 20 macroblocks, while the maximum backlog registered in the
buffer for this setting was about 450 macroblocks. This problem withPID might
be less acute for smoother workloads and larger buffers.

6.5.4 Energy savings vs. implementation overhead

The estimated computational requirement of our DVS algorithm, for parame-
ters (τ,N, ψ,M) set as described above, (i.e.τ = 4.5ms,N = 150, ψ = 1,
M = 200), is about 0.5 MIPS. This overhead scales linearly with the values of
these parameters. It is also relatively low in comparison tothe average workload
imposed onPE2 by a DVD-quality video stream (about 45 MIPS in our setup).

146 Chapter 6. Energy-Efficient Stream Processing

Fig. 47 shows measured tradeoff plots between the adaptation interval length
τ and the energy savings obtained by our scheme for different buffer sizesL.
In Fig. 47, we can see that smaller adaptation intervals leadto higher energy
savings. Achieving the energy reduction for smaller buffersizes comparable to
that achieved for larger buffer sizes necessitates more frequent adaptations and
therefore results in higher run-time overhead. This is again the price for the
guaranteed QoS.

6.6 Summary
In this chapter, we described a new DVS scheduling scheme specifically tar-
geted towards processing media streams on architectures with restricted buffer
sizes. In contrast to previously proposed DVS schemes, our scheme provides
hard QoS guarantees and accounts for both, the variability of the task execu-
tion demand and the burstiness of processed streams. Our experiments showed
that the scheme achieves energy savings comparable to thoseobtained by pre-
vious approaches. The advantages of our scheme can be attributed to the novel
combination of the off-line worst-case workload characterization based on VCCs
with the run-time improvement of the worst-case bounds. Theimplementation
and run-time overhead of our scheme, although modest, mightbe slightly higher
than that of previous schemes. However, this is the price that has to be paid for
predictability of the system, i.e. for its ability to provide hard QoS guarantees.

7
Conclusions

In this thesis, we have addressed the problem of workload modeling for system-
level design of heterogeneous multiprocessor embedded computers whose main
functionality involves real-time processing of media streams. The complex, vari-
able nature of the multimedia workloads imposed on these computers greatly
complicates their system-level design. The central resultof this thesis is awork-
load modelthat helps to reduce this design complexity by providing a set of sim-
ple but powerful abstractions to accurately capture the variability characteristics
of the multimedia workloads. We have formally defined this workload model,
demonstrated its advantages over existing workload characterization methods
and showed some of its applications in the system-level design of heterogeneous
multiprocessor system-on-chip (MpSoC) architectures. In particular, we would
like to point out the following main outcomes of this work:

• We have introduced the concept ofVariability Characterization Curves(VCCs)—
a generic model for the worst- and best-case variability characterization of en-
tire classes of increasing functions and sequences — and based on this concept
defined our model for the multimedia workload characterization (multimedia
VCCs).

• We have used our workload model to enhance modeling capabilities of theMod-
ular Performance Analysis[159, 160] framework based onReal-Time Calculus
[24, 121, 157, 158]. This has resulted in the definition of newmodeling con-
structs, calledworkload transformations, which have enabled an accurate and
efficient performance analysis of heterogeneous multiprocessor embedded sys-
tems under variable multimedia workloads. Our experimental results showed
that the workload transformations allow to obtain significantly tighter perfor-

148 Chapter 7. Conclusions

mance bounds than those achievable without using our workload model.

• We have demonstrated application of our workload model in design of resource
management policies for multimedia MpSoCs. Our workload model permits to
formulate and address a class of scheduling problems which has not been ad-
dressed before:stream scheduling on buffer-constrained architectures with hard
QoS guarantees. We have proposed a design framework for efficient exploration
and optimization of this class of schedulers and showed its utility using case
studies involving TDMA scheduling disciplines.

• Based on our workload model we have developed arun-time processor rate
adaptation strategywhich can be used in conjunction with the dynamic volt-
age scaling for energy-efficient media stream processing onbuffer-constrained
architectures. In comparison to other methods addressing similar problems,
our scheme can handle multimedia workloads characterized by both, the data-
dependent variability in the task execution timeand the burstiness in the on-chip
traffic arising out of multimedia processing; and at the sametime it can provide
hard QoS guarantees. An experimental evaluation showed that our scheme can
achieve considerable energy savings, comparable to those obtainable with an-
other state-of-the-art DVS scheme (which is, however, unable to provide hard
QoS guarantees).

• Finally, we have demonstrated how our workload model can be used to de-
sign representative workload scenariosfor simulation-based system-level per-
formance evaluation of multimedia MpSoCs. We have proposed amethod for
(automatic) classification of media streams based on the variability characteris-
tics of the workload they may impose on the architecture. We are not aware of
any other method addressing this important issue in the system-level design of
MpSoCs.

A
Simulation Framework

This chapter describes the simulation framework which was used in experimen-
tal case studies presented throughout this thesis.

Fig. 48 shows an overview of the simulation framework and itsrelations with
the methods developed in this thesis. Two major components of the simulation
framework are

• an instruction set simulator(ISS) and

• asystem simulator.

ISS is used to collect information about behavior of application tasks mapped for
execution on to programmable processing elements of a target MpSoC architec-
ture. This information is collected and stored in the form oftraces. These traces
are then used in two different ways. First, we can compute from them VCCs,
which are needed by the VCC-based methods presented in this thesis. Second,
the traces serve as an input to the system simulator to simulate execution of the
application on the target MpSoC architecture.

The system simulator allows to measure various performanceindexes of a
given application-to-architecture mapping (system configuration). These mea-
surements can then be compared with corresponding numbers obtained from
mathematical performance models.

The following two sections give details on ISS and the systemsimulator.

150 Appendix A. Simulation Framework

Fig. 48: Simulation framework and its relations with methods developed in this thesis.

A.1 Instruction set simulator
We used the SimpleScalar ISS [8] to model programmable processing elements
within a target MpSoC architecture. On its own, the SimpleScalar ISS does not
support simulation of heterogeneous multiprocessor architectures [8]. However,
it can be used to model with sufficient accuracy execution of individual software
tasks on a given processor type. SimpleScalar supports several instruction set
architectures and permits modeling of various microarchitectural features (e.g.
pipelines, caches, branch predictors, etc.) Furthermore,it is extensible in a sense
that users can easily customize simulation models of the processors by intro-
ducing new instruction types and by adding new or configuringalready existing
microarchitectural features.

For experimental case studies presented in this thesis, we employed thesim-
profile configuration of the SimpleScalar. This configuration assumes that exe-

A.2. System simulator 151

cution of every instruction in a program code takes exactly one processor cycle,
i.e. it does not account for possible stalls due to, for example, pipeline hazards
or cache misses. Although thesim-profileconfiguration might be too inaccurate
for the microarchitecture design, for the system level at which we considered the
MpSoC architectures, it represents an appropriate choice.

For modeling processing elements we used an instruction setsimilar to that
used in MIPS3000 processors, but without floating point support. This instruc-
tion set had application-specific extensions for video decoding, e.g. instructions
for bitstream access, IDCT computation and special block-based memory ad-
dressing modes. To collect useful information about the data-dependent behav-
ior of application tasks, we had to augment the SimpleScalarwith logging and
trace collection facilities.

A.2 System simulator
Our simulation framework allows to easily construct a simulation model of a
given application-to-architecture mapping. We refer to such a simulation model
as the system simulator. The system simulator represents atransaction-level
model [34] of the system in which implementation details of individual hard-
ware components and application tasks are abstracted away.Instead, the hard-
ware architecture is represented by a set of (coarse-grain)computation and com-
munication resources with certain processing capabilities, while the application
tasks are modeled as clients requesting these resources (i.e. generating demands
for these resources). At this level of abstraction, there isno principle difference
between computation and communication resources (or tasks).

An application is represented by a set of concurrent tasks communicating via
unidirectional FIFO channels. The execution model is the same as the one de-
scribed in Section 3.3.1 besides the fact that the FIFO channels have finite sizes
and block write operations whenever they are full. The finitechannel sizes allow
to model the buffer space constraints resulting from mapping of the application
onto the hardware architecture. A write operation into a FIFO channel is re-
garded as a transaction. A task may accomplish several such transactions during
its execution.

When a task is activated it generates a request for the resource onto which it
is mapped. In the current implementation, the amount of resources requested is
either fixed to a constant value or obtained from the traces collected using the ISS
described in the previous section. A resource is distributed to tasks in accordance
with the scheduling (or arbitration) policy implemented onthat resource. The
framework supports both preemptive and non-preemptive scheduling policies. In
principle, task switching and operating system overheads can be modeled within
the framework but were not modeled in the experiments presented in this thesis.

The implementation of the system simulator just described fully rests on the

152 Appendix A. Simulation Framework

SystemC C++ library [153] and correspondingly uses of its discrete event simu-
lation engine. We have added an abstraction level on top of the SystemC library
which allows to quickly construct a new application-to-architecture mapping or
to easily change an existing system configuration.

Bibliography

[1] L. Abeni and G. Buttazzo. Resource reservation in dynamic real-time
systems.Real-Time Systems, 27(2):123–167, 2004.

[2] A. Agarwal, C. H. Kim, S. Mukhopadhyay, and K. Roy. Leakage in nano-
scale technologies: mechanisms, impact and design considerations. In
Proceedings of the 41st Annual Conference on Design Automation (DAC),
pages 6–11, New York, NY, USA, 2004. ACM Press.

[3] Advanced Micro Devices, Inc. AMD PowerNow! technology.
http://www.amd.com, 2005.

[4] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi.
Overhead-conscious voltage selection for dynamic and leakage energy re-
duction of time-constrained systems. InDesign, Automation and Test in
Europe (DATE), page 10518, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[5] A. Andrei, M. T. Schmitz, P. Eles, Z. Peng, and B. M. A. Hashimi. Quasi-
static voltage scaling for energy minimization with time constraints. In
Design, Automation and Test in Europe (DATE), pages 514–519, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[6] A. Artieri, V. DAlto, R. Chesson, M. Hopkins, and M. C. Rossi. Nomadik
open multimedia platform for next-generation mobile devices. STMicro-
electronics Technical Article TA305,http://www.st.com, 2003.

[7] A. Atlas and A. Bestavros. Statistical rate monotonic scheduling. InPro-
ceedings of the 19th IEEE Real-Time Systems Symposium (RTSS), page
123, Washington, DC, USA, 1998. IEEE Computer Society.

[8] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for
computer system modeling.IEEE Computer, 35(2):59–67, 2002.

[9] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum,
and A. Nicolau. Profile-based dynamic voltage scheduling using program
checkpoints. InDesign, Automation and Test in Europe (DATE), page
168, Washington, DC, USA, 2002. IEEE Computer Society.

154 Bibliography

[10] F. Baccelli, G. Cohen, G. Olsder, and J.-P. Quadrat.Synchronization and
Linearity. John Wiley, Sons, New York, 1992.

[11] S. K. Baruah. A general model for recurring real-time tasks. InProceed-
ings of the IEEE Real-Time Systems Symposium (RTSS), pages 114–122,
1998.

[12] S. K. Baruah. Dynamic- and static-priority scheduling of recurring real-
time tasks.Real-Time Systems, 24(1):93–128, 2003.

[13] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok. Generalized multi-
frame tasks.Real-Time Systems, 17(1):5–22, 1999.

[14] A. C. Bavier, A. B. Montz, and L. L. Peterson. Predicting MPEG execu-
tion times. InSIGMETRICS, pages 131–140, 1998.

[15] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Pon-
cino. SystemC cosimulation and emulation of multiprocessor SoC de-
signs.IEEE Computer, 36(4):53–59, 2003.

[16] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of design techniques
for system-level dynamic power management.IEEE Transactions on VLSI
Systems, 8(3):299–316, June 2000.

[17] L. Benini and G. D. Micheli. Powering networks on chips: energy-
efficient and reliable interconnect design for SoCs. InProceedings of the
14th International Symposium on Systems Synthesis (ISSS), pages 33–38,
New York, NY, USA, 2001. ACM Press.

[18] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embed-
ded software from synchronous dataflow specifications.Journal of VLSI
Signal Processing Systems, 21(2):151–166, 1999.

[19] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete.Cyclo-static
dataflow.IEEE Transactions on Signal Processing, 44(2):397–408, 1996.

[20] S. Borkar. Design challenges of technology scaling.IEEE Micro,
19(4):23–29, 1999.

[21] T. D. Burd and R. W. Brodersen. Energy efficient CMOS microprocessor
design. InHICSS (1), pages 288–297, 1995.

[22] G. C. Buttazzo. Hard Real-time Computing Systems: Predictable
Scheduling Algorithms And Applications (Real-Time Systems Series).
Springer-Verlag Telos, 2004.

[23] S. Chakraborty.System-Level Timing Analysis and Scheduling for Embed-
ded Packet Processors. PhD thesis, ETH Zurich, Apr. 2003.

Bibliography 155

[24] S. Chakraborty, S. K̈unzli, and L. Thiele. A general framework for
analysing system properties in platform-based embedded system designs.
In Design, Automation and Test in Europe (DATE), pages 190–195, Mu-
nich, Germany, Mar. 2003. IEEE Press.

[25] S. Chakraborty, S. K̈unzli, L. Thiele, A. Herkersdorf, and P. Sagmeister.
Performance evaluation of network processor architectures: Combining
simulation with analytical estimation.Computer Networks, 41(5):641—-
665, 2003.

[26] S. Chakraborty and L. Thiele. A new task model for streaming applica-
tions and its schedulability analysis. InDesign, Automation and Test in
Europe (DATE), pages 486–491, 2005.

[27] A. P. Chandrakasan and R. W. Brodersen.Low Power Digital CMOS
Design. Kluwer Academic Publishers, 1995.

[28] L. H. Chandrasena, P. Chandrasena, and M. J. Liebelt. An energy efficient
rate selection algorithm for voltage quantized dynamic voltage scaling. In
Proceedings of the 14th International Symposium on SystemsSynthesis
(ISSS), pages 124–129, New York, NY, USA, 2001. ACM Press.

[29] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram. Frame-based dynamic
voltage and frequency scaling for a MPEG decoder. InProceedings of
the 2002 IEEE/ACM International Conference on Computer-AidedDe-
sign (ICCAD), pages 732–737, 2002.

[30] K. Choi, R. Soma, and M. Pedram. Off-chip latency-driven dynamic volt-
age and frequency scaling for an MPEG decoding. InProceedings of the
41st Annual Conference on Design Automation (DAC), pages 544–549,
2004.

[31] W. J. Dally and B. Towles. Route packets, not wires: on-chip inteconnec-
toin networks. InProceedings of the 38th Conference on Design Automa-
tion (DAC), pages 684–689, New York, NY, USA, 2001. ACM Press.

[32] B. P. Dave and N. K. Jha. CASPER: Concurrent hardware-software co-
synthesis of hard real-time aperiodic and periodic specifications of em-
bedded system architectures. InDesign, Automation and Test in Europe
(DATE), pages 118–124, 1998.

[33] B. P. Dave, G. Lakshminarayana, and N. K. Jha. COSYN: Hardware-
software co-synthesis of embedded systems. InProceedings of the 34th
Conference on Design Automation (DAC), pages 703–708, 1997.

156 Bibliography

[34] A. K. Deb, A. Jantsch, and J.Öberg. System design for dsp applications in
transaction level modeling paradigm. InProceedings of the 41st Annual
Conference on Design Automation (DAC), pages 466–471. ACM Press,
2004.

[35] R. P. Dick and N. K. Jha. MOCSYN: Multiobjective core-based single-
chip system synthesis. InDesign, Automation and Test in Europe (DATE),
pages 263–270, 1999.

[36] K. Diefendorff and P. K. Dubey. How multimedia workloads will change
processor design.Computer, 30(9):43–45, 1997.

[37] R. C. Dorf and R. H. Bishop.Modern Control Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1994.

[38] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multiprocessor SOC
for advanced set-top box and digital TV systems.IEEE Design & Test of
Computers, 18(5):21–31, 2001.

[39] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Workload de-
sign: Selecting representative program-input pairs. InProceedings of the
2002 International Conference on Parallel Architectures and Compilation
Techniques, pages 83–94. IEEE Computer Society, 2002.

[40] H. El-Rewini, H. H. Ali, and T. G. Lewis. Task scheduling in multi-
processing systems.IEEE Computer, 28(12):27–37, 1995.

[41] C. J. Fidge. Real-time schedulability tests for preemptive multitasking.
In Selected papers from the 4th Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS), pages 61–93, Norwell, MA, USA, 1998.
Kluwer Academic Publishers.

[42] K. Flautner, S. Reinhardt, and T. Mudge. Automatic performance setting
for dynamic voltage scaling.Wireless Networks, 8(5):507–520, 2002.

[43] S. Goddard and K. Jeffay. Managing latency and buffer requirements in
processing graph chains.The Computer Journal, 44(6):486–503, 2001.

[44] K. Goossens, J. Dielissen, J. van Meerbergen, P. Poplavko, A. Rădulescu,
E. Rijpkema, E. Waterlander, and P. Wielage. Guaranteeing the quality
of services in networks on chip. In A. Jantsch and H. Tenhunen, editors,
Networks on Chip, pages 61–82. Kluwer Academic Publishers, Hingham,
MA, USA, 2003.

[45] A. D. Gordon.Classification. Chapman & Hall/CRC, 1999.

Bibliography 157

[46] K. Govil, E. Chan, and H. Wasserman. Comparing algorithmsfor dynamic
speed-setting of a low-power CPU. InProceedings of the 1st Annual In-
tern. Conf. on Mobile Computing and Networking, pages 13–25. ACM
Press, 1995.

[47] F. Gruian and K. Kuchcinski. LEneS: task scheduling forlow-energy
systems using variable supply voltage processors. InProceedings of the
2001 Conference on Asia South Pacific Design Automation (ASP-DAC),
pages 449–455, 2001.

[48] J. C. P. Gutíerrez and M. G. Harbour. Offset-based response time analysis
of distributed systems scheduled under EDF. InProceedings of the 15th
Euromicro Conference on Real-Time Systems (ECRTS), pages 3–12, 2003.

[49] V. Gutnik and A. P. Chandrakasan. Embedded power supply for low-
power DSP.IEEE Transactions on VLSI Systems, 5(4):425–435, 1997.

[50] S. Ha and E. A. Lee. Compile-time scheduling of dynamic constructs in
dataflow program graphs.IEEE Transactions on Computers, 46(7):768–
778, 1997.

[51] A. Hamann and R. Ernst. TDMA time slot and turn optimization with
evolutionary search techniques. InDesign, Automation and Test in Europe
(DATE), pages 312–317, Washington, DC, USA, 2005. IEEE Computer
Society.

[52] F. Harmsze, A. H. Timmer, and J. L. van Meerbergen. Memory arbitration
and cache management in stream-based systems. InDesign, Automation
and Test in Europe (DATE), pages 257–262, 2000.

[53] J. Helmig. Developing core software technologies for TI’s OMAP plat-
form. Texas Instruments,http://www.ti.com, 2002.

[54] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power
optimization of variable voltage core-based systems. InProceedings of
the 35th Annual Conference on Design Automation (DAC), pages 176–
181, New York, NY, USA, 1998. ACM Press.

[55] I. Hong, M. Potkonjak, and M. B. Srivastava. On-line scheduling of
hard real-time tasks on variable voltage processor. InProceedings of
the 1998 IEEE/ACM International Conference on Computer-AidedDe-
sign (ICCAD), pages 653–656, New York, NY, USA, 1998. ACM Press.

[56] S. Hua, G. Qu, and S. S. Bhattacharyya. Energy reduction techniques for
multimedia applications with tolerance to deadline misses. In Proceed-
ings of the 40th Conference on Design Automation (DAC), pages 131–136,
New York, NY, USA, 2003. ACM Press.

158 Bibliography

[57] C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srinivasan.
Variability in the execution of multimedia applications and implications
for architecture. InProceedings of the 28th Annual International Sympo-
sium on Computer Architecture, pages 254–265. ACM Press, 2001.

[58] IBM PowerPC.http://www.chips.ibm.com/products/powerpc/,
2005.

[59] C. Im, S. Ha, and H. Kim. Dynamic voltage scheduling with buffers in
low-power multimedia applications.Transactions on Embedded Comput-
ing Systems, 3(4):686–705, 2004.

[60] Intel Corporation, Enhanced Intel SpeedStep technology.
http://www.intel.com, 2005.

[61] T. Ishihara and H. Yasuura. Voltage scheduling problemfor dynamically
variable voltage processors. InProceedings of the 1998 International
Symposium on Low Power Electronics and Design (ISLPED), pages 197–
202, New York, NY, USA, 1998. ACM Press.

[62] S. Ishiwata, T. Yamakage, Y. Tsuboi, T. Shimazawa, T. Kitazawa,
S. Michinaka, K. Yahagi, H. Takeda, A. Oue, T. Kodama, N. Matsumoto,
T. Kamei, M. Saito, T. Miyamori, G. Ootomo, and M. Matsui. A single-
chip MPEG-2 codec based on customizable media embedded processor.
IEEE Journal of Solid-State Circuits, 38(3):530–540, 2003.

[63] H. Iwasaki, J. Naganuma, K. Nitta, K. Nakamura, T. Yoshitome,
M. Ogura, Y. Nakajima, Y. Tashiro, T. Onishi, M. Ikeda, and M.Endo.
Single-chip MPEG-2 422P@HL CODEC LSI with multi-chip configura-
tion for large scale processing beyond HDTV level. InDesign, Automation
and Test in Europe (DATE), pages 20002–20007, 2003.

[64] A. Iyer and D. Marculescu. Power and performance evaluation of globally
asynchronous locally synchronous processors. InProceedings of the 29th
Annual International Symposium on Computer Architecture (ISCA), pages
158–168, Washington, DC, USA, 2002. IEEE Computer Society.

[65] K. Jeffay and S. Goddard. A theory of rate-based execution. In Pro-
ceedings of the 20th IEEE Real-Time Systems Symposium (RTSS), pages
304–314, 1999.

[66] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic volt-
age scaling for real-time embedded systems. InProceedings of the 41st
Annual Conference on Design Automation (DAC), pages 275–280, New
York, NY, USA, 2004. ACM Press.

Bibliography 159

[67] M. Jersak and R. Ernst. Enabling scheduling analysis of heterogeneous
systems with multi-rate data dependencies and rate intervals. In Proceed-
ings of the 40th conference on Design automation (DAC), pages 454–459,
New York, NY, USA, 2003. ACM Press.

[68] M. Jersak, K. Richter, and R. Ernst. Performance analysisfor complex
embedded applications.International Journal of Embedded Systems, Spe-
cial Issue on Codesign for SoC, 2004.

[69] N. K. Jha. Low power system scheduling and synthesis. InProceedings
of the 2001 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD), pages 259–263, Piscataway, NJ, USA, 2001. IEEE Press.

[70] G. Kahn. The semantics of simple language for parallel programming. In
IFIP Congress, pages 471–475, 1974.

[71] A. Kalavade and P. Mogh́e. A tool for performance estimation of net-
worked embedded end-systems. InProceedings of the 35th Conference
on Design Automation Conference (DAC), pages 257–262. ACM/IEEE,
June 1998.

[72] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-
Vincentelli. System-level design: Orthogonalization of concerns and
platform-based design.IEEE Transactions on Computer-Aided Design,
19(12), 2000.

[73] C. Kim and K. Roy. Dynamic Vth scaling scheme for active leakage power
reduction. InDesign, Automation and Test in Europe (DATE), page 163,
Washington, DC, USA, 2002. IEEE Computer Society.

[74] S. Kim, C. Im, and S. Ha. Schedule-aware performance estimation of
communication architecture for efficient design space exploration. InPro-
ceedings of the 1st IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), pages
195–200, New York, NY, USA, 2003. ACM Press.

[75] S. Kim, C. Im, and S. Ha. Efficient exploration of on-chip bus architec-
tures and memory allocation. InProceedings of the 2nd IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pages 248–253, New York, NY, USA, 2004.
ACM Press.

[76] H. Kopetz.Real-time Systems: Design Principles for Distributed Embed-
ded Applications. Boston Kluwer Academic Publishers, 1997.

[77] C. E. Kozyrakis and D. A. Patterson. A new direction for computer archi-
tecture research.Computer, 31(11):24–32, 1998.

160 Bibliography

[78] M. Krunz and S. K. Tripathi. On the characterization of VBR MPEG
streams.SIGMETRICS Perform. Eval. Rev., 25(1):192–202, 1997.

[79] S. Kumar. On packet switched networks for on-chip communication. In
A. Jantsch and H. Tenhunen, editors,Networks on Chip, pages 85–106.
Kluwer Academic Publishers, Hingham, MA, USA, 2003.

[80] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocat-
ing directed task graphs to multiprocessors.ACM Computing Surveys,
31(4):406–471, 1999.

[81] W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for dy-
namically variable voltage processors.Transactions on Embedded Com-
puting Systems, 4(1):211–230, 2005.

[82] T. Lafage and A. Seznec. Choosing representative slicesof program exe-
cution for microarchitecture simulations: a preliminary application to the
data stream. InWorkload characterization of emerging computer applica-
tions, pages 145–163. Kluwer Academic Publishers, 2001.

[83] K. Lahiri, A. Raghunathan, and S. Dey. System level performance analy-
sis for designing on-chip communication architectures.IEEE Trans-
actions on Computer Aided-Design of Integrated Circuits and Systems,
20(6):768–783, 2001.

[84] A. A. Lazar, G. Pacifici, and D. E. Pendarakis. Modeling video sources
for real-time scheduling.Multimedia Systems, 1(6):253–266, 1994.

[85] J.-Y. Le Boudec and P. Thiran.Network calculus: a theory of deterministic
queuing systems for the Internet. Springer-Verlag New York, Inc., 2001.

[86] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: a tool
for evaluating and synthesizing multimedia and communicatons systems.
In Proceedings of the 30th annual ACM/IEEE International Symposium
on Microarchitecture, pages 330–335. IEEE Computer Society, 1997.

[87] C.-H. Lee and K. G. Shin. On-line dynamic voltage scalingfor hard
real-time systems using the EDF algorithm. InProceedings of the 25th
IEEE International Real-Time Systems Symposium (RTSS), pages 319–
327, Washington, DC, USA, 2004. IEEE Computer Society.

[88] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing.IEEE Transactions on
Computers, 36(1):24–35, 1987.

Bibliography 161

[89] E. A. Lee and T. M. Parks. Dataflow process networks. InReadings in
hardware/software co-design, pages 59–85. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[90] S. Lee and T. Sakurai. Run-time voltage hopping for low-power real-time
systems. InProceedings of the 37th Conference on Design Automation
(DAC), pages 806–809. ACM Press, 2000.

[91] S. H. Lee, K.-Y. Whang, Y.-S. Moon, and I.-Y. Song. Dynamic buffer
allocation in video-on-demand systems. InProceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, pages 343–
354. ACM Press, 2001.

[92] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbi-
trary deadlines. InProceedings of the 11th Real-Time Systems Symposium
(RTSS), pages 201–213. IEEE, 1990.

[93] J. P. Lehoczky. Real-time queueing theory. InProceedings of the 17th
IEEE Real-Time Systems Symposium (RTSS), page 186, Washington, DC,
USA, 1996. IEEE Computer Society.

[94] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic respon-
siveness in hard real-time environments. InIEEE Real-Time Systems Sym-
posium, pages 261–270, 1987.

[95] S. Leibson and J. Kim. Configurable processors: A new era in chip design.
IEEE Computer, 38(7):51–59, 2005.

[96] J. Y.-T. Leung and M. L. Merrill. A note on preemptive scheduling of
periodic, real-time tasks.Information Processing Letters, 11(3):115–118,
1980.

[97] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks.Performance Evaluation,
2(4):237–250, 1982.

[98] Y. Li and W. Wolf. A task-level hierarchical memory model for system
synthesis of multiprocessors. InProceedings of the 34th Conference on
Design Automation (DAC), pages 153–156, 1997.

[99] P. Lieverse, T. Stefanov, P. van der Wolf, and E. F. Deprettere. System
level design with Spade: an M-JPEG case study. In2001 International
Conference on Computer-Aided Design (ICCAD), pages 31–38, 2001.

[100] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment.Journal of the ACM, 20(1):46–61, 1973.

162 Bibliography

[101] J. W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2000.

[102] Y. Liu, A. Maxiaguine, S. Chakraborty, and W. T. Ooi. Processor fre-
quency selection for SoC platforms for multimedia applications. InPro-
ceedings of the 25th IEEE International Real-Time Systems Symposium
(RTSS), pages 336–345, Lisbon, Portugal, Dec. 2004. IEEE Computer
Society.

[103] Y. Liu, A. Maxiaguine, S. Chakraborty, and W. T. Ooi. Processor fre-
quency selection in energy-aware SoC platform design for multimedia ap-
plication. Technical Report TRC8/04, National University of Singapore,
Nov. 2004.

[104] Y.-H. Lu, L. Benini, and G. D. Micheli. Dynamic frequency scaling with
buffer insertion for mixed workloads.IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 21(11):1284–1305, No-
vember 2002.

[105] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron. Control-
theoretic dynamic frequency and voltage scaling for multimedia work-
loads. InProceedings of the 2002 International Conference on Compil-
ers, Architecture, and Synthesis for Embedded Systems (CASES), pages
156–163, New York, NY, USA, 2002. ACM Press.

[106] Z. Lu, J. Lach, M. Stan, and K. Skadron. Reducing multimedia decode
power using feedback control. InProceedings of the 21st International
Conference on Computer Design (ICCD), page 489. IEEE Computer So-
ciety, 2003.

[107] J. Luo and N. K. Jha. Power-conscious joint schedulingof periodic
task graphs and aperiodic tasks in distributed real-time embedded sys-
tems. InProceedings of the 2000 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 357–364, Piscataway, NJ, USA,
2000. IEEE Press.

[108] J. Madsen and P. Bjørn-Jørgensen. Embedded system synthesis under
memory constraints. InProceedings of the 7th International Workshop on
Hardware/Software Codesign (CODES), pages 188–192, 1999.

[109] S. Manolache, P. Eles, and Z. Peng. Schedulability analysis of applica-
tions with stochastic task execution times.Transactions on Embedded
Computing Systems, 3(4):706–735, 2004.

Bibliography 163

[110] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic
voltage scaling and adaptive body biasing for lower power microproces-
sors under dynamic workloads. InProceedings of the 2002 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), pages 721–
725, New York, NY, USA, 2002. ACM Press.

[111] A. Maxiaguine, S. Chakraborty, S. Künzli, and L. Thiele. Evaluating
schedulers for multimedia processing on buffer-constrained SoC plat-
forms. IEEE Design & Test, 21(5):368–377, Sept. 2004.

[112] A. Maxiaguine, S. K̈unzli, S. Chakraborty, and L. Thiele. Rate analysis for
streaming applications with on-chip buffer constraints. In Proceedings of
the Asia South Pacific Design Automation Conference (ASP-DAC), pages
131–136, Yokohama, Japan, Jan. 2004.

[113] A. Maxiaguine, S. K̈unzli, and L. Thiele. Workload characterization
model for tasks with variable execution demand. InDesign, Automation
and Test in Europe (DATE), pages 1040–1045, Paris, France, Feb. 2004.
IEEE Computer Society.

[114] A. Maxiaguine, Y. Liu, S. Chakraborty, and W. T. Ooi. Identifying ”rep-
resentative” workloads in designing MpSoC platforms for media process-
ing. In Proceedings of the 2nd Workshop on Embedded Systems for Real-
Time Multimedia (ESTImedia), pages 41–46. IEEE, 2004.

[115] A. Maxiaguine, Y. Zhu, S. Chakraborty, and W.-F. Wong. Tuning SoC
platforms for multimedia processing: identifying limits and tradeoffs.
In Proceedings of the 2nd IEEE/ACM/IFIP International Conference
on Hardware/software Codesign and System Synthesis (CODES+ISSS),
pages 128–133. ACM Press, 2004.

[116] T. Meyerowitz, C. Pinello, and A. Sangiovanni-Vincentelli. A tool for de-
scribing and evaluating hierarchical real-time bus scheduling policies. In
Proceedings of the 40th Conference on Design Automation (DAC), pages
312–317, New York, NY, USA, 2003. ACM Press.

[117] A. K. Mok and D. Chen. A multiframe model for real-time tasks. IEEE
Transactions on Software Engineering, 23(10):635–645, 1997.

[118] International Standard Organization, ”InformationTechnology – Generic
Coding of Moving Pictures and Associated Audio Information –Part 2:
Video,” ISO/IEC 13818-2.

[119] MPEG Software Simulation Group.http://www.mpeg.org, 2005.

[120] M. Naedele.On the Modeling and Evaluation of Real-Time Systems. PhD
thesis, ETH Zurich, Mar. 2000.

164 Bibliography

[121] M. Naedele, L. Thiele, and M. Eisenring. Characterising variable task
releases and processor capacities. InProceedings of the 14th IFAC World
Congress 1999, Beijing, July 1999.

[122] L. S. Nielsen and C. Niessen. Low-power operation usingself-timed cir-
cuits and adaptive scaling of the supply voltage.IEEE Transactions on
VLSI Systems, 2(4):391–397, 1994.

[123] J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski, L. W. J. IV,
D. Franklin, V. Akella, and F. T. Chong. Synchroscalar: A multiple clock
domain, power-aware, tile-based embedded processor. InProceedings
of the 31st Annual International Symposium on Computer Architecture
(ISCA), page 150, Washington, DC, USA, 2004. IEEE Computer Society.

[124] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of
dynamic voltage scaling algorithms. InProceedings of the 1998 Interna-
tional Symposium on Low Power Electronics and Design (ISLPED), pages
76–81, New York, NY, USA, 1998. ACM Press.

[125] A. D. Pimentel, L. O. Hertzberger, P. Lieverse, P. van der Wolf, and E. F.
Deprettere. Exploring embedded-systems architectures with Artemis.
IEEE Computer, 34(11):57–63, 2001.

[126] A. D. Pimentel, S. Polstra, F. Terpstra, A. W. van Halderen, J. E. Coffland,
and L. O. Hertzberger. Towards efficient design space exploration of het-
erogeneous embedded media systems. InEmbedded Processor Design
Challenges, pages 57–73, 2002.

[127] P. Pop, P. Eles, and Z. Peng. Performance estimation for embedded sys-
tems with data and control dependencies. InProceedings of the 8th In-
ternational Workshop on Hardware/Software Co-Design (CODES), pages
62–66, 2000.

[128] P. Pop, P. Eles, and Z. Peng. Schedulability analysis and optimization for
the synthesis of multi-cluster distributed embedded systems. InDesign,
Automation and Test in Europe (DATE), pages 10184–10189, 2003.

[129] P. Pop, P. Eles, and Z. Peng. Schedulability-driven communication synthe-
sis for time triggered embedded systems.Real-Time Systems, 26(3):297–
325, 2004.

[130] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of
mixed time/event-triggered distributed embedded systems. In Proceed-
ings of the 10th International Symposium on Hardware/Software Code-
sign (CODES), pages 187–192, 2002.

Bibliography 165

[131] S. Prakash and A. C. Parker. Synthesis of application-specific multi-
processor systems including memory components.Journal of VLSI Signal
Processing Systems, 8(2):97–116, 1994.

[132] K. Ramamritham. Allocation and scheduling of precedence-related pe-
riodic tasks. IEEE Transactions on Parallel and Distributed Systems,
6(4):412–420, 1995.

[133] K. Richter, M. Jersak, and R. Ernst. A formal approach to MpSoC perfor-
mance verification.IEEE Computer, 36(4), 2003.

[134] M. J. Rutten, J. T. J. van Eijndhoven, E. G. T. Jaspers, P.van der Wolf,
E.-J. D. Pol, O. P. Gangwal, and A. Timmer. A heterogeneous multi-
processor architecture for flexible media processing.IEEE Design & Test
of Computers, 19(4):39–50, 2002.

[135] M. J. Rutten, J. T. J. van Eijndhoven, and E.-J. D. Pol. Robust media
processing in a flexible and cost-effective network of multi-tasking co-
processors. InProceedings of the 14th Euromicro Conference on Real-
Time Systems (ECRTS), page 223, Washington, DC, USA, 2002. IEEE
Computer Society.

[136] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles.System-Level Design Tech-
niques for Energy-Efficient Embedded Systems. Kluwer Academic Pub-
lishers, Boston, 2004.

[137] K. Sekar, K. Lahiri, and S. Dey. Dynamic platform management for con-
figurable platform-based system-on-chips. InProceedings of the Interna-
tional Conference on Computer Aided Design (ICCAD), pages 641–649,
2003.

[138] G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magklis,S. Dwarkadas,
and M. L. Scott. Dynamic frequency and voltage control for a multi-
ple clock domain microarchitecture. InProceedings of the 35th Annual
ACM/IEEE International Symposium on Microarchitecture (MICRO 35),
pages 356–367, Los Alamitos, CA, USA, 2002. IEEE Computer Society
Press.

[139] J. Seo, T. Kim, and K.-S. Chung. Profile-based optimal intra-task voltage
scheduling for hard real-time applications. InProceedings of the 41st An-
nual Conference on Design Automation (DAC), pages 87–92, New York,
NY, USA, 2004. ACM Press.

[140] L. Sha, T. F. Abdelzaher, K.-E.̊Arzén, A. Cervin, T. P. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok. Real time
scheduling theory: A historical perspective.Real-Time Systems, 28(2-
3):101–155, 2004.

166 Bibliography

[141] D. Shin, J. Kim, and S. Lee. Low-energy intra-task voltage scheduling
using static timing analysis. InProceedings of the 38th Conference on
Design Automation (DAC), pages 438–443, New York, NY, USA, 2001.
ACM Press.

[142] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard
real-time systems. InProceedings of the 36th ACM/IEEE Conference on
Design Automation (DAC), pages 134–139. ACM Press, 1999.

[143] T. Simunic, L. Benini, A. Acquaviva, P. W. Glynn, and G. D. Micheli.
Dynamic voltage scaling and power management for portable systems. In
Proceedings of the 38th Conference on Design Automation (DAC), pages
524–529, 2001.

[144] T. Simunic, S. P. Boyd, and P. Glynn. Managing power consumption in
networks on chips.IEEE Transactions on VLSI Systems, 12(1):96–107,
2004.

[145] A. Sinha and A. P. Chandrakasan. Dynamic voltage scheduling using
adaptive filtering of workload traces. InProceedings of the 14th Interna-
tional Conference on VLSI Design (VLSID), page 221, Washington, DC,
USA, 2001. IEEE Computer Society.

[146] N. T. Slingerland and A. J. Smith. Design and characterization of the
Berkeley multimedia workload.Multimedia Systems, 8(4):315–327, 2002.

[147] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task scheduling for hard
real-time systems.Real-Time Systems, 1(1):27–60, 1989.

[148] K. Sreenivasan and A. J. Kleinman. On the constructionof a represen-
tative synthetic workload.Communications of the ACM, 17(3):127–133,
1974.

[149] S. Sriram and S. S. Bhattacharyya.Embedded Multiprocessors: Schedul-
ing and Synchronization. Marcel Dekker, Inc., New York, NY, USA, 2000.

[150] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C. Buttazzo. Implications
of classical scheduling results for real-time systems.IEEE Computer,
28(6):16–25, 1995.

[151] M. T. J. Strik, A. H. Timmer, J. L. van Meerbergen, and G.-J. van
Rootselaar. Heterogeneous multiprocessor for the management of real-
time video and graphics streams.IEEE Journal of Solid-State Circuits,
35(11):1722–1731, 2000.

Bibliography 167

[152] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server al-
gorithm for enhanced aperiodic responsiveness in hard real-time environ-
ments.IEEE Transactions on Computers, 44(1):73–91, 1995.

[153] Open SystemC Initiative.http://www.systemc.org, 2002.

[154] R. Szymanek and K. Kuchcinski. A constructive algorithm for memory-
aware task assignment and scheduling. InProceedings of the 9th Interna-
tional Symposium on Hardware/Software Codesign (CODES), pages 147–
152, 2001.

[155] D. Talla, C.-Y. Hung, R. Talluri, F. Brill, D. Smith, D. Brier, B. Xiong, and
D. Huynh. Anatomy of a portable digital mediaprocessor.IEEE Micro,
24(2):32–39, 2004.

[156] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A framework for eval-
uating design tradeoffs in packet processing architectures. InProceedings
of the 39th Design Automation Conference (DAC), pages 880–885, New
Orleans LA, USA, June 2002. ACM Press.

[157] L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, andJ. Greutert. Em-
bedded software in network processors - models and algorithms. InPro-
ceedings of the 1st International Workshop on Embedded Software (EM-
SOFT), pages 416–434, London, UK, 2001. Springer-Verlag.

[158] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. InInternational Symposium on Cir-
cuits and Systems (ISCAS), volume 4, pages 101–104, Geneva, Switzer-
land, Mar. 2000.

[159] L. Thiele and E. Wandeler. Performance analysis of embedded systems.
In The Embedded Systems Handbook. CRC Press, 2004.

[160] L. Thiele, E. Wandeler, and S. Chakraborty. A stream-oriented component
model for performance analysis of multiprocessor DSPs.IEEE Signal
Processing Magazine, special Issue on Hardware/Software Co-design for
DSP, 22(3):38—-46, May 2005.

[161] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J. W.-S.
Liu. Probabilistic performance guarantee for real-time tasks with varying
computation times. InProceedings of the IEEE Real-Time Technology
and Applications Symposium (RTAS), pages 164 – 173. IEEE Computer
Society, 1995.

[162] K. Tindell, A. Burns, and A. J. Wellings. An extendible approach for an-
alyzing fixed priority hard real-time tasks.Real-Time Systems, 6(2):133–
151, 1994.

168 Bibliography

[163] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
hard real-time systems.Microprocessing & Microprogramming, 40(2-
3):117–134, 1994.

[164] Transmeta Corporation, LongRun technology.
http://www.transmeta.com, 2005.

[165] G. Varatkar and R. Marculescu. On-chip traffic modelingand synthesis for
MPEG-2 video applications.IEEE Transactions on VLSI Systems, 12(1),
January 2004.

[166] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative characterization
of event streams in analysis of hard real-time applications. In Proceedings
of the 10th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 450–459, Toronto, Canada, May 2004.

[167] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative characterization
of event streams in analysis of hard real-time applications. Journal of
Real-time Systems, page to appear, Mar. 2005.

[168] E. Wandeler and L. Thiele. Abstracting functionalityfor modular perfor-
mance analysis of hard real-time systems. InProceedings of the Asia and
South Pacific Desing Automation Conference (ASP-DAC), pages 697—-
702, Shanghai, P.R. China, Jan. 2005.

[169] E. Wandeler and L. Thiele. Characterizing workload correlations in multi
processor hard real-time systems. InProceedings of the 11th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
San Francisco, USA, Mar. 2005.

[170] M. Weiser, B. Welch, A. J. Demers, and S. Shenker. Scheduling for re-
duced CPU energy. InOSDI, pages 13–23, 1994.

[171] F. Wolf. Behavioral Intervals in Embedded Software: Timing and Power
Analysis of Embedded Real-Time Software Processes. Kluwer Academic
Publishers, 2002.

[172] W. Wolf. The future of multiprocessor systems-on-chips. In Proceed-
ings of the 41th Conference on Design Automation (DAC), pages 681–685,
2004.

[173] W. Wolf. Multimedia applications of multiprocessor systems-on-chips. In
Design, Automation and Test in Europe (DATE), pages 86–89, 2005.

[174] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal online meth-
ods for voltage/frequency control in multiple clock domainmicroproces-
sors. InProceedings of ASPLOS-XI, pages 248–259, New York, NY, USA,
2004. ACM Press.

Bibliography 169

[175] L. Yan, J. Luo, and N. K. Jha. Combined dynamic voltage scaling and
adaptive body biasing for heterogeneous distributed real-time embedded
systems. InProceedings of the 2003 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), page 30, Washington, DC, USA,
2003. IEEE Computer Society.

[176] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo. An approximation algorithm for
energy-efficient scheduling on a chip multiprocessor. InDesign, Automa-
tion and Test in Europe (DATE), pages 468–473, Washington, DC, USA,
2005. IEEE Computer Society.

[177] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU
energy. InProceedings of the 36th Annual Symposium on Foundations of
Computer Science (FOCS), page 374, Washington, DC, USA, 1995. IEEE
Computer Society.

[178] W. Yuan and K. Nahrstedt. Integration of dynamic voltage scaling and
soft real-time scheduling for open mobile systems. InProceedings of the
12th International Workshop on Network and Operating SystemsSupport
for Digital Audio and Video (NOSSDAV), pages 105–114, New York, NY,
USA, 2002. ACM Press.

[179] H. Zhang. Service disciplines for guaranteed performance service in
packet-switching networks.Proceedings of the IEEE, 83(10):1374–1396,
1995.

[180] D. Zhu, R. Melhem, and B. Childers. Scheduling with dynamic volt-
age/speed adjustment using slack reclamation in multi-processor real-time
systems. InProceedings of the 22nd IEEE Real-Time Systems Symposium
(RTSS), page 84, Washington, DC, USA, 2001. IEEE Computer Society.

[181] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele. Combining
multiple models of computation for scheduling and allocation. In Pro-
ceedings of the 6th International Workshop on Hardware/software Code-
sign (CODES/CASHE), pages 9–13, Washington, DC, USA, 1998. IEEE
Computer Society.

[182] D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. Thiele. Represen-
tation of process mode correlation for scheduling. InProceedings of the
International Conference on Computer Aided Design (ICCAD), pages 54–
61, 1998.

[183] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich. SPI – A
system model for heterogeneously specified embedded systems. IEEE
Transactions on VLSI Systems, 10(4):397 – 389, August 2002.

170 Bibliography

[184] V. D. Zivkovic, E. A. de Kock, P. van der Wolf, and E. F. Deprettere. Fast
and accurate multiprocessor architecture exploration with symbolic pro-
grams. InDesign, Automation and Test in Europe (DATE), pages 10656–
10661, 2003.

