r" Institut fur Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 74

ALEXANDER MAKSYAGIN

Modeling Multimedia Workloads for
Embedded System Design

m Eidgenossische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

A dissertation submitted to the
Swiss Federal Institute of Technology (ETH)izZch
for the degree of Doctor of Sciences

Diss. ETH No. 16285
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Petru Eles, co-examiner
Examination date: October 13, 2005

Diss. ETH No. 16285

Modeling Multimedia Workloads for
Embedded System Design

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH

for the degree of

Doctor of Sciences

presented by

ALEXANDER MAKSYAGIN
Dipl. Radio-Eng. MTUCI, Russia

born 15.03.1973
citizen of Russia

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Petru Eles, co-examiner

2005

Abstract

To design a successful computer system, designers needwodtraracteristics
of the computational workload that this system is supposegrocess. This
knowledge forms the necessary basis for optimizations @stfstem. In order
to use this knowledge in the design process, designers pedthtacterize the
workload using a formal workload model. This model représam abstraction
of the concrete workload and serves as an input to a numbetticht design

tasks, such as system performance analysis. The qualibeofidrkload model
largely determines the quality of the design decisions niaded on it.

Coming up with a proper workload model represents a diffictdbfem in
many computer system design contexts. One such contexessddi in this the-
sis, is system-level design of embedded computers whosefonastionality in-
volves real-time processing of media streams (e.g. stredsusdio-video data).
Of late, there is a growing demand for such computers bedhageare increas-
ingly being embedded into many electronic products, egfigdhose found in
consumer electronics domain, e.g., digital TVs, audio addwplayers, digital
video cameras, advanced set-top boxes, multimedia-ehaidbile phones and
a myriad of other electronic devices supporting multimegtiplications. To meet
high performance requirements and stringent constraersiping to cost, size
and energy consumption, these embedded computers tendetadwaplex, het-
erogeneous multiprocessor architectures. This archi@atomplexity, coupled
with the ever-growing complexity of the multimedia appticas themselves, re-
sults in a very complex workload behavior and by that posesyrohallenges to
the workload modeling.

In this thesis, we argue that the variability of various paeters of the multi-
media workloads is the key property to be captured in a waxkimodel for the
embedded systems design. We show that conventional waorkiealels fail to
accurately characterize the dynamic nature of the multan@drkloads and, as
a result, return overly pessimistic estimations of systeniggmance (especially,
if worst-case performance bounds are of interest). As aisoluwe propose a
novel workload model capable of accurately capturing thekiead’s dynamic
nature. We demonstrate the advantages of the proposedoadrkiodel over
conventional ways to characterize the workload and dewetwmber of system-
level design methods which use this model. These methotislmsystem-level
performance analysis, automatic identification of repnestese workload sce-

Abstract

narios for system simulation, design and optimization gbtgce management
policies and a run-time processor rate adaptation streftaggnergy-efficient
processing of media streams on heterogeneous multiparoesgedded archi-
tectures with stringent memory constraints. We demorestiag utility of our
workload model and evaluate it through a number of caseesunvolving com-
parisons to detailed simulation models.

Zusammenfassung

Um ein erfolgreiches Computersystem zu entwerfeiissen die Entwickler die
Rechenanforderungeriirf das System kennen. Daher ist es notwendig diese
Anforderungen mittels eines formalen Auslastungsmodeilsharakterisieren.
Dieses Modell refsentiert eine Abstraktion der konkreten Rechenauslastung
und dient beim Entwurf als Eingabérfverschiedene kritische Entwurfsaufgaben.
Die Qualitt des Auslastungsmodells wirkt sich hierbei direkt auiQiimlitat der
hierauf basierenden Entwurfsentscheidungen aus.

Oftmals ist es schwierig, ein geeignetes Modetldie Auslastung von Com-
putersystemen in verschiedenen Einsatzgebieten zu firitlarsolches Gebiet,
mit welchem sich auch diese Arbeit befasst, ist der Systeémehvon einge-
betteten Computern, deren Hauptfunktion die Echtzeit=itung von Media-
Datenstomen beinhaltet (z.B. Datensine von Audio- und Video-Daten). In
letzter Zeit ist die Nachfrage nach solchen Computern stafkaghsen, da
sie zunehmend in den meisten elektronischen Produktenewelet werden.
Besonders im Unterhaltungselektroniksbereich finden siele \Beispiele wie
digitale Fernseher, Audio- und Video-Recorder, digitaldedkameras, Digi-
talempfinger, Multimedia-Mobiltelefone und andere elektroness@eate, die
Multimedia-Anwendungen unteigzen. Um die hohen Anspche an die Leis-
tung eines solchen Systems zuldign, gleichzeitig aber die Budgets liggich
Kosten, Gbsse und Energieverbrauch nicht zu sprengen, werden digge- e
betteten Computer als komplexe, heterogene Multiprozegsmme entwor-
fen. Die séndig wachsende Komplegit dieser Systeme und der darauf aus-
gefuhrten Multimedia-Anwendungeifiliren zu einem sehr komplexen Verhalten
der Rechenauslastung, das die Modellierung erschwert.

In dieser Arbeit zeigen wir, dass die Varialilitverschiedener Kennggsen
von der Multimedia-Rechenauslastung die Haupteigensdtafiie ein geeig-
netes Auslastungsmodell umfassen sollte. Wir zeigen witedass heramm-
liche Auslastungsmodelle diese dynamischen Eigenschd#ie Rechenauslas-
tung nicht genau modellieren und demzufolge zu pessiroistig\bscltzungen
der Systemleistung liefern, besonders dann, wenn die fExtegte der Leistung
von Interesse sind. Als@sung schlagen wir ein neuartiges Auslastungsmodell
vor, welches die dynamischen Eigenschaften der Rechesawsipgut charak-
terisieren kann. Wir zeigen die Vorteile des vorgeschlagdviodells gegeimber
herkdommlichen Auslastungsmodellen, und entwickeln einiget&gentwurfs-

Vi

Zusammenfassung

methoden, welche auf diesem Modell beruhen. Diese Methaddassen die
Leistunganalyse auf Systemebene, die automatische fideting der charak-
teristischen Rechenauslasturg die System-Simulation, den Entwurf und die
Optimierung der Strategien zum Management der Systemressg und ein
Verfahren fir die Anpassung der Prozessortaktfrequenz zur Laufieieihe
energieeffiziente Verarbeitung von Media-Dateiisten auf heterogenen einge-
betteten Multiprozessorsystemen mit Speicherplatzeras&kungen. Wir zeigen
den Nutzen unseres Auslastungsmodells und evaluiererrels €ime Reihe von
Fallstudien, untergtzt durch detaillierte Simulationen.

Vi

| would like to thank

Prof. Dr. Lothar Thiele for advising my research work andqlong an excellent
research environment,

Prof. Dr. Petru Eles, for his willingness to be the co-examof my thesis,
Prof. Dr. Samarjit Chakraborty for a very fruitful researcoperation,

Dr. Jens Benndorf and Alexander Zhvania for their great eragmment and sup-
port, and

my family for their love and understanding.

viii

To my wife, Natalia, and
to my daughter, Ekaterina.

Contents

1 Introduction 1
1.1 Embedded Computers for Media Processing 2
1.1.1 Multiprocessor systems-on-chips. 3
1.1.2 System-level view of media processing 5
1.2 System-Level Designlssues 5
1.2.1 Issues in design of multimedia MpSoCs 7
1.3 The Workload Modeling Problem 8
1.4 Thesis Contributions 11
1.5 ThesisOverview 12
2 System-Level Performance Analysis 13
2.1 Introduction 14
211 Requirements 14
2.1.2 Inputspecification 14
2.1.3 Existing approaches to performance analysis 6 1
2.2 Modular Performance Analysis 17
221 Basicidea. 17
222 Real-TimeCalculus. 19
3 Modeling Variable Workload 23
3.1 RelatedWork 25
3.2 Variability CharacterizationCurves 8 2
3.2.1 Definitions 28
3.22 Properties 30
3.2.3 DISCUSSION 31
3.3 Variability Characterization Curves for Modeling
MultimediaWorkload 32
3.3.1 Executionmodel 33
3.3.2 Definitions of multimedia VCCtypes 34
3.4 Workload Transformations 37
3.4.1 The workload transformation operation 38
3.4.2 Workload transformations for multimediaVCCs 39

3.4.3 Extended Modular Performance Analysis Framework . 2 4

Xii

Contents

3.5 Obtaining Variability Characterization Curves 47
3.5.1 Objectives and limitations 47
3.5.2 Obtaining VCCsfromtraces 49
3.5.3 Obtaining VCCs from constraints 50
3.5.4 Obtaining VCCs from formal system specifications . . . 52

3.6 Experimental Evaluation 53

3.6.1 Processor clock rate optimization under buffer cangt 55
3.6.2 Processor clock rate optimization under delay camdtr 64

3.7 Summary ... e e 70
Workload Design 71
4.1 Introduction 72
42 RelatedWork 74
4.3 OVeIVIEW o 75
4.4 Workload Characterization 76
4.5 Workload Classification 79
4.5.1 Dissimilarity based on a single VCCtype 79
4.5.2 Dissimilarity based on several VCCtypes 80
453 Clustering. 80
4.6 Empirical Validation 81
47 SUMMAry o e e e e e e 86
Designing Stream Scheduling Policies 87
5.1 Stream Scheduling under Buffer Constraints 9 8
5.1.1 Set-top box applicationscenario 89
5.1.2 The stream scheduling problem 90
5.2 Relatedwork 93
5.3 DesignFramework 95
5.4 Applying Modular Performance Analysis 96
5.4.1 Problemformulation 96
5.4.2 Computing the required bufferspace 99
5.4.3 lllustrativecasestudy 101
5.5 Checking Feasibility of Stream Schedulers 106
5.5.1 Problemformulation 107
55.2 Servicebounds 108
5.5.3 Feasibilitycheck 111
5.5.4 Case study: Evaluating TDMA schedulers 112
5.6 Summary 119
Energy-Efficient Stream Processing 121
6.1 Introduction 122
6.2 RelatedWork 124

6.3 Motivatingexample 0o 128

Contents

Xiii

6.4 Adaptive Run-Time Scheduling withVCCs
6.4.1 Workload and service characterization
6.4.2 Safeservicerate
6.4.3 Adapting processor speed atruntime
6.4.4 Accounting for variable execution demand . . .
6.4.5 UsingdynamicVCCs
6.4.6 Notes onimplementation

6.5 ExperimentalResults
6.5.1 Experimentalsetup
6.5.2 Qualitative examination
6.5.3 Quantitative comparison

6.5.4 Energy savings vs. implementation overhead

6.6 Summary

7 Conclusions

A Simulation Framework

A.1 Instruction set simulator
A.2 Systemsimulator

Bibliography

Xiv Contents

Introduction

Design of virtually any computer system starts from definting system'’s in-
tended range adipplications Subsequently, designers try to architect the com-
puter system such that it supports its target applicatiores most efficient and
economical way. The designers optimize the system art¢hiebased on such
criteria as system’s cost, size, performance and energguooption. In this
process, knowing the characteristics of therkload which the target applica-
tions will impose on the architecture is essential for angvat an optimal archi-
tectural solution.

Those workload characteristics that are important in argokesign context
can be captured inworkload modelUsing such a model is an established prac-
tice in computer system design and performance evaluafiamorkload model
serves to formally characterize the workload and on theslzdshis characteriza-
tion to distinguish between different workload scenartgch a characterization
represents an important input to the system architectugigial@nd optimization
process. Further, a workload model is indispensable dutesign of various
resource management policies and run-time adaptatiotegiea for the archi-
tecture. Typically, it is also an integral part ofpgrformance modelsed for
performance analysis. How good (e.g. accurate, relialdecéficiently analyz-
able) a workload model is largely determines the qualityhefdesign solutions
and the accuracy of the performance estimations based lonntany computer
design contexts, finding an appropriate workload modelesgmts a difficult
problem.

In this thesis, we address the problem of modelngltimedia workloads
for system-level design of embedded systems whose furattipimvolves real-
time processing of media streams, e.g., streams contaanigigpp and video data.

Chapter 1. Introduction

1.1

Driven by application requirements and fuelled by techgwlal advances, the
architectures of such embedded systems are increasingly éesigned to con-
tain a composition of diverse parallel processing elemiet¢grated on a single
chip. Suchheterogeneous multiprocessor system-on-(MipSoC) architectures
have a potential to provide high performance and flexibilitg cost- and energy-
efficient manner. However, in many cases, this potentialfi€alt to realize as
there is still a lack of methods and tools that could streaeihe design process
of MpSoC architectures while producing high-quality résulThis problem to
a large extent stems from the inability of the models tradaily used for the
system-level design to accurately capture important cianatics of the multi-
media workloads imposed on the MpSoC architectures as 4 cégurocessing
media streams.

This chapter first introduces the workload modeling probkemsing in the
system-level design context of heterogeneous multipemresnbedded comput-
ers for media processing, such as multimedia MpSoCs. Afédyittsummarizes
contributions and gives an outline of this thesis.

Embedded Computers for Media Processing

The number of various consumer electronics products stipgonultimedia ap-
plications rapidly grows. Digital TVs, DVD players, digiteideo cameras, ad-
vanced set-top boxes, media adapters, game consoles aticheciig-enabled
cell phones are just a few examples of such products. Themagirity of
these products have special-purpose computers embeddeehmn The work-
loads imposed on thesanbedded computease dominated by applications in-
volving digital processing of media streams, such as auwdit®o, graphics, as
well as other kinds of streaming data (e.g. web or voice-tReraffic). A
typical multimedia application includes receiving dateeams from the envi-
ronment (e.g. from a microphone or a broadband communicateiwork),
processing these streams using various algorithms — méatiigg into four
categories: compression-decompression algorithmstadligignal processing,
content analysis and network packet processing [38, 173]nd-sending the
processed streams back to the environment (e.g. to displageas).

Embedded systems like those just described have to procsdia streams
under stringent timing constraints determined by the emvirent. For example,
a digital video camera has to process video frames at themiitevhich they
arrive at its input. Furthermore, strict delay and jittenstaints may be asso-
ciated with the processing of each individual frame. If thé@ming constraints
are not met, the quality of the processed video stream mayuséy degrade.
Therefore, during design of suckal-time embedded systenemsuringtempo-
ral correctnessof their behavior is equally important as ensuring its fiorel
correctness.

1.1. Embedded Computers for Media Processing 3

The need to execute complex media processing algorithmer dight tim-
ing constraints implies that the embedded computers havee tdesigned to
sustainhigh computational loads On the other hand, to be suitable for the
deployment in the consumer electronics products, thesesédda computers
must be aggressively optimized to hdesv energy consumption and codn
addition, continuous evolution of multimedia standardd amergence of new
media formats, coupled with ever increasing complexity aftrmedia applica-
tions, motivatdlexiblearchitectures. This combination of requirements calls for
application-specificheterogeneous architecturesntaining multiple computa-
tional components with different degrees of programmigbilanging from fully
programmable processors to dedicated function blocks.

1.1.1 Multiprocessor systems-on-chips

Rapid advances of the integrated circuit technology makessible to design
and implement embedded systemsamstiprocessor systems-on-chipgpSoCs)
[172]. According to the MpSoC paradigm, multiple coarsatgicomponents of
an embedded architecture (e.g. multiple processors, Sussanories, periph-
eral devices, etc.) are integrated on a single chip. Thiblesareation of flex-
ible heterogeneous architectures that can satisfy higonoeance requirements
of the multimedia applications in a cost- and energy-efficisay. Hence, in-
creasingly, embedded computers for media processing arg ineplemented as
MpSoCs.

There are many examples of multimedia MpSoCs available fr@mrtdus-
try and academy [38, 62,63, 151, 155]. Most of them follow dlesign pattern
shown in Fig. 1: A typical multimedia MpSoC contains a numbgsoftware
programmable processors (CPUs, DSPs, media processajswetakly pro-
grammable co-processors, fixed-function hardware mogdates peripheral de-
vices (e.g. video and audio I/O blocks). These coarse-g@imputational com-
ponents are interconnected by an on-chip communicatiomnanktwhich may
encompass various types of busses, bridges, direct merooceg®(DMA) con-
trollers, distributed memories, and other communicatmmgonents. Following
the emerginghetwork-on-chigNoC) paradigm [31, 79], the on-chip communi-
cation infrastructure may resemble a large-scale commégvork, involving
such concepts as routers, switches, protocols, commionagiieues, etc.

The on-chip communication network may have a complex achite con-
sisting of several subnetworks interconnected by bridgeshown in Fig. 1. A
subnetwork (low-level network) combines intensively coumicating computa-
tional components into a tight cluster (subsystem). Inwrag, the local commu-
nication traffic between the components within a subsysgeisolated from the
system-wide data exchange taking place via a high-levelhym-network. Be-
sides supporting the system-wide communication, this-fegal network pro-
vides an arbitrated access to a relatively large amount exfp@nsiveoff-chip

Chapter 1. Introduction

Fig. 1:

CPU Co-proc.

)

Co-proc.
B

I/0

C High-level communication network)<}:

Subsystem 1 Subsystem 2

To high-level network

fi

Subsystem N

Off-chip
memory

J

Bridge CPU Co—p1>roc. . Co—ﬁroc.
(Low-level communication network
Embedded
memory /O1| = * " |1/Om

IC Instruction cache
DC Data cache

A multimedia MpSoC template architecture.

1.2. System-Level Design Issues 5

1.1.2

1.2

memory This memory is primarily devoted for storing global datastures as
well as large data sets (e.g. full video frames) not fittintg smallerembedded
memoriedocated on the chip. The on-chip memory is typically moreemgive
but faster than the off-chip memory. Distributed aroundatahitecture, the em-
bedded memories store frequently accessed program codeasadtructures.
They are also used to implement performance-critical dathange between
the on-chip computational components. To communicataicediata types, the
components may need to bypass the bridges interconnedtfegedt subnet-
works. For this, the components may be connected to moreoti@subnetwork
or directly to each other, thereby resulting in an irregupplication-specific
communication architecture.

System-level view of media processing

At the system level, a multimedia application executing tveterogeneous mul-
tiprocessor architecture, such as a multimedia MpSoC, canemeed as a set

of tasks (or processes) concurrently running on differeatation resources of
the architecture. These tasks communicate with each othely shroughuni-
directional data streamfl34, 135]. Each stream is sent from a producer task to
the corresponding consumer task through a first-in-firsttBlFO) buffer. The
buffer allows forasynchronous communicatitwetween the tasks, thereby lead-
ing to reduced communication overheads and increasedatiin of the execu-
tion resources [95]. Within the architecture, the buffaws @located in shared
memories or instantiated as dedicated hardware FIFO mebhocis.

System-Level Design Issues

Although the integrated circuit technology provides ggatortunities for man-
ufacturing increasingly complex MpSoCs, optimally desigysuch systems un-
der high time-to-market pressures becomes more and mdieutlif The grow-
ing complexity of MpSoCs poses many challenges to their sy$twel design.
Currently, there is a lack of methods and tools that could bgspem designers
to effectively tackle this complexity. A comprehensiveatission of the system-
level design issues can be found elsewhere [72]. This sectincentrates only
on few of them relevant to the workload modeling problem added in this the-
sis.

The goal of embedded system designers is to construct sgsteahitec-
ture out of a set of hardware and software components. Duda@e number
of such components and their heterogeneity, integratiegitinto a consistent
working whole (such as an MpSoC) represents an excessivgndeféort. Well-
defined (and standardized) component interfaces and istoan significantly

Chapter 1. Introduction

reduce this effort [72]. Although they may easy the task ofdmg a function-
ally correct system, they cannot helpvarifying whether the resulting system
architecture meets performance requirements of the tapygications.

Platform-based desigiurther reduces the system design complexity by pro-
viding a generic, domain-specific template architectued thnly needs to be
customized for the target application range. Examples oh qulatforms in
the multimedia domain include OMAP from Texas Instrumebt$],[Nomadik
from STMicroelectronics [6] and Nexperia [38] from PhilipsThe platform
customization involves tuning various parameters of timeplate architecture,
such as bus widths, memory sizes, cache configurations cdes of proces-
sor coresgetc; selecting and configuring resource management policies,; a
possibly, adding to the basic architecture some applicagpecific components
(e.g. co-processors), with the aim of obtaining an archirecthat represents a
desirable tradeoff between performance, energy consamatid cost.

Already for systems of moderate complexity, the resultiegign space formed
by all possible platform configurations may be huge and kighégular. To effi-
ciently explore this space, system architects must be algjaitkly evaluate the
performance of candidate architectures. The performavedeation has to pre-
dict with a sufficient accuracy such characteristics of ttaspective system as
throughput, memory requirements, utilization of exeautiesources, process-
ing delays,etc. It should also help system designers to identify perforreanc
bottlenecks within the system.

Nowadays the mainstream in system-level performance atiaiuof com-
plex real-time embedded systems relies on simulation. odigihh simulation
may return very accurate performance estimations, itsrageeis limited only
to those workload instances that have been simulated. Haob&ving a good
coverage necessitates multiple simulation runs usingudrehosenrepresen-
tative workload scenariosIn addition, accurate simulators oftentimes exhibit
high running times making them poorly suitable for a fastiglespace explo-
ration cycle.

Irrespective of how many and which workload scenarios haenbsimu-
lated, the simulation can never achieve, in a reasonabks tine full coverage
required for thgoerformance verificationBecause of this, it may not be used, for
example, to verify whether an embedded system satisfiesribpesied on it tim-
ing constraints in all possible workload scenarios. Sucérdigation is possible
using formal analytic approaches that perfamorst-case performance analysis
I.e. return worst-case performance bounds.

The worst-case performance analysis usgsréormance modevhich repre-
sents an abstraction encompassing all system’s statessaagiors and all pos-
sible workload scenarios. The performance analysis carfthre provide the
full coverage needed for the performance verification. Muoee, it is typically
faster than the simulation. However, due to the complexityath the analyzed
architectures and their workloads, it is extremely difficial find proper sys-

1.2. System-Level Design Issues 7

tem abstractions that would lead to accurate (i.e. tightswoase performance
bounds. This explains why in many design contexts, embeslgidm engineers
prefer to use simulation for the performance evaluatiospite of its drawbacks.

1.2.1 Issues in design of multimedia MpSoCs

The performance evaluation issues discussed so far ansgious system-level
design contexts and are not pertinent exclusively to theadiorof multimedia
MpSoCs. The discussion in this subsection concentrateseoddhign issues
that are more specific to this domain.

Users expect from the media devices a high-quality andesi@ddlivery of a
multimedia content, and these expectations are growirtg Aasentral concern
in the design of multimedia MpSoCs is therefore to ensure aifspequality of
service(QoS) to the processed media streams. If a device has caadrtotpro-
vide a certain QoS level, it has to guarantee this level uadgrcircumstances.
This requirement is especially difficult to fulfill becausamy multimedia appli-
cations imposdighly variable and unpredictable workloads the underlying
architectures [14, 57, 142, 165]. The designers of multim&pSoCs therefore
face a challenging problem of designing architectures laapaf providing a
predictable performancender uncertain workload conditions and stringent cost
and energy constraints.

The quality of media streams processed on an MpSoC depensigodac-
tors:

e First, as mentioned in Section 1.1, a violation oftin@ng constraintassociated
with the stream processing may seriously impair the quafitpedia streams.

e Second, the quality may also degrade if the FIFO buffers éetvthe application
tasks executing on the MpSoC experienserflows or underflowsThis leads
to the concept obuffer constraints An overflow (underflow) buffer constraint
requires that the corresponding buffer never overflows uifalvs).

Hence, the QoS guarantees are specified in terms of the tamddpuffer con-
straints.

To provide the QoS guarantees under uncertain workloadittomns| the re-
sources of an embedded architecture for media processwgythabe dimen-
sioned for theworst-case workload However, since the worst-case workload
occurs rarely, the resources may remain underutilized wid$ie time. A way
to improve the utilization is to share the resources amorgraéindependent
concurrent applications (or application tasks). Such aistpdnas to respect the
QoS guarantees associated with the processed media stréEaimsecessitates
deployment of sophisticatedsource management policieBhese policies must
be able to satisfy timing and buffer constraints associatiéll several concur-
rent streams imposing varying resource demands on thecsbanemunication
and computational components of the architecture. Wheheasurrent practice

Chapter 1. Introduction

1.3

relies on computationally expensive dynamic schemes [I3H, the goal is to
design low-overhead resource management policies.

A major design effort is directed towards making embeddatesys energy-
efficient. This issue is crucial in the design of battery+aped multimedia de-
vices, such as portable media players or cell phones. Aclyekie energy effi-
ciency requires multimedia MpSoCs to be adaptable to chgngarkload con-
ditions. For this, the architectures provide various epa@ving mechanisms,
e.g., support a variety of power modes. Intelligeim-time adaptation strate-
giesare needed to control these mechanisms. For instance,uoca e energy
dissipated on an MpSoC component, the operating frequarntyatage of this
component can be dynamically adjusted in response to wemiklactuations ex-
perienced by it. Such a run-time energy management mustrfmmed without
jeopardizing the QoS guarantees associated with the mieeéss processed by
this component. This implies that the run-time adaptaticategies must be able
to handle the worst-case workload, which may occur spoadlgic

The Workload Modeling Problem

Effectively addressing the system-level design issuelnedtin the preceding
section requires a proper workload model:

The selection of representative workload for an effectiveutation-based per-
formance evaluation necessitates a comparison of diffeverkload scenarios.
For the comparison, the workload scenarios have to be dieazer based on a
model which captures interesting for the performance eelo workload prop-
erties. For example, if designers intend to determine bystimeilation the re-
quired FIFO buffer sizes, they may want to identify a divessé of workload
scenarios which produce maximum backlogs in different Fhit@ers of the
architecture. Thus, the model they use for the workloadasttarization may
include such a property as burstiness of the communicatttenqms between
application tasks.

A workload model also forms the basis of any analytic perfmmoe model. It is
therefore responsible for tightness of the worst-case ®uveturned by the per-
formance analysis. Tighter bounds imply less pessimisrhanrésource dimen-
sioning, thereby leading to lower system cost and energguwoption. Hence,
having a workload model which provides a pessimistic dxturateworkload
characterization is essential in this context. Additibnal successful workload
model should allow for an efficient analysis.

Finally, a workload model is necessary in design of the resomanagement
policies and the energy-saving run-time adaptation gir@se These techniques
have to be aware of the workload dynamics. This implies these dynamics

1.3. The Workload Modeling Problem 9

Fig. 2:

Processor
Buffer
> :[]] » | (MPEG-2) | —
decoder
compressed decoded
video stream video

(@)

[¢]

execution requirement
[processor cycles x 104]
N N

0 1 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

macroblock index [><1O4]

(b)

Motivating example: A processor executing an MPEG-2 decoder applicé&t)oand a
trace of execution requirements imposed on the processor by this applifi@tionhe

plot shows the number of processor cycles required to decode aneecpfanacroblocks
within an MPEG-2 video stream.

must be reflected in the workload model. As for the worst-qaessdormance
analysis, such a model should describe the workload witHfecigmt accuracy,

and, at the same time, if hard QoS guarantees are requiteas ib represent a
wort-case characterization.

Clearly, to be effective in the above roles, a workload modelutd pro-
vide a proper abstraction of the actual workload. Howewvee, i the complex,
highly variable nature of many multimedia workloads, cognup with such an
abstraction represents a difficult problem. Existing systevel design meth-
ods and tools rely on workload models which are unable torately capture
the workload variability. As a consequence, they may preduagsatisfactory
results. Worst-case performance analysis methods aréeatsalanifestation of
this fact: Overly pessimistic bounds that they return samet are not useful at
all for an economical design.

Fig. 2 shows a simple example illustrating the above concéhe proces-
sor depicted in Fig. 2(a) executes an MPEG-2 decoding dfgoron a video
stream arriving from a network. The complex, highly varablature of the

10

Chapter 1. Introduction

workload imposed by the video stream on this processor israpp from the
plot in Fig. 2(b), which shows a trace of processor cyclesiiredq to decode a
sequence of macroblocksithin the video stream.

While analyzing the performance of a system such as the omenshd-ig. 2,
the existing methods typically assume tleaichmacroblock in the stream re-
quires for its processing the largest possible number desyc.e. imposes on
the processor theorst-case execution dema@d/CED). Such an assumption
would be necessary, for example goaranteghat the buffer at the input of the
processor in Fig. 2(a) never overflows. However, this assiompvould be too
pessimistic and therefore may lead to unnecessary costigrie The ratio of
the worst-case to the average load on a processor due toieneith application
can easily be as high as a factor of 10 [134]. In this case, $eamaption that
eachmacroblock in the video stream requests from the processoWWCED
represents a very inaccurate workload abstraction. Henmbetter abstraction
capable of capturing the workload variability and theregsulting in more ac-
curate performance estimates is needed.

Fig. 2 demonstrates only one aspect of the workload vaityabiln real-
ity, a typical multimedia task can be characterized by théabadlity of several
parameters. For example, in the scenario shown in Fig. Artivals of the me-
dia stream from the network may be characterized by burstshadepend on
the network congestion levels. Another source of the vditialnay be a non-
constant rate with which the MPEG-2 decoding task consuheeddta from the
input buffer. Similarly, a task may produce the data at itgpatiat a variable
rate. In addition, a combination of a particular applicatiath a given hardware
architecture may result in many other sources of the vditiatfror instance, ad-
vanced microarchitectural features, such as caches andhmediction, may
result in variable task execution times, etc.

Finally, at the system level, a composition of multiple ®séxecuting con-
currently on distributed resources of an MpSoC and eaclactenized by vari-
ability of several parameters, results in complex non-fien@l interactions and
interdependencies between the architectural componE3®3. [Accurately esti-
mating performance of such a composition represents aectgaig task. Even
more challenging task is teerify that the composition meets certain performance
requirements or to decide which resource management @elamd run-time
adaptation strategies should be used to orchestrate . gives rise to the fol-
lowing research question:

What kind of workload model (and the associated with it analggethods) can
help to effectively address these system-level desighepns?

1An MPEG-2 video stream encodes a sequence of video framesy Eame in the sequence
is composed out afhacroblockswith each macroblock representing a certeinx 16 block of
pixels within the frame [118].

1.4. Thesis Contributions 11

1.4

Thesis Contributions

In this thesis, we propose a new model for characterizationutimedia work-
loads in the system-level design of heterogeneous muttgssor embedded com-
puters. This workload model allows to effectively addresmynof the design
iIssues described in the preceding sections. In particthierthesis makes the
following main contributions:

We introduce the concept Mariability Characterization Curve$VCCs) as a
means to characterize entire classes of increasing fursctio sequences based
on their worst-case and best-case variability. We then eefaveral VCC types
for the multimedia workload characterization (colleclyvesferred to asnulti-
media VCC}x

We extend the modeling capabilities of thiedular Performance Analysfseame-
work [159, 160] and its mathematical foundation, fReal-Time Calculu$24,
121,157, 158], with the multimedia VCCs. Towards this, weddtrce the con-
cept ofworkload transformationswvhich enable aaccurate and efficiergerfor-
mance analysis of heterogeneous multiprocessor embegsienirs under vari-
able multimedia workloads. The extended analysis framkwan return signif-
icantly tighter performance bounds than those achievalileowt the workload
transformations.

We formulate the problem aficheduling bursty media streams under strict buffer
constraintsand propose methods to address this problem. In particwiar,
present framework for design of resource management polii@esultimedia
MpSoCs. The framework provides methods to quickly evaluaequality and
check the feasibility of various resource management jeslito be deployed
in an MpSoC. It fully relies on the VCC-based characterizatibthe media
streams.

We show how the VCC-based workload model can be usedriergy-efficient
media stream processingrowards this, we develop a run-time processor rate
adaptation strategy which can be used in conjunction wighdynamic voltage
scaling to achieve considerable energy savings while geaeg bursty multime-
dia workloads under strict buffer constraints. In compariso other methods
addressing similar problems, our scheme handles multemedrkloads char-
acterized by both, the data-dependent variability in thecakon time of mul-
timedia tasks and the burstiness in the on-chip trafficragisiut of multimedia
processing, and at the same time it provides hard QoS geasant

We introduce the problem afelecting representative worklod&or system-level
performance evaluation of MpSoCs and propose a solutioniggtioblem for
the case of multimedia workloads. Our method employs VCCshentork-
load characterization and suppoaistomatic identification of the representative
workload

12

Chapter 1. Introduction

1.5

Finally, we demonstrate the utility and experimentallyeassthe quality of the
VCC-based workload model through several case studies imgphealistic ap-

plication scenarios. In the experiments, we compare ouremeith the existing

analytic approaches and with a detailed (transactiondlsystem simulator.

Thesis Overview

The main purpose of Chapter 2 is to introduce the MPA framewdrase mod-
eling capabilities we extend in Chapter 3.

Chapter 3 introduces the concepts of VCCs and workload transttns, de-
fines the multimedia VCC types and proposes several worklcatsforma-
tions based on them. This chapter also discusses possiptetavabtain VCCs
and presents results of an experimental evaluation of the W&sed workload
model.

In Chapter 4, we address the problem of selecting representatdrkload for
system-level performance evaluation of MpSoCs. We show heWw/CC-based
workload characterization model can be used for quan&atomparison and
classification of media streams and present results of airieaipralidation of
the proposed method.

Chapter 5 introduces the problem of stream scheduling undéerltonstraints
and presents the framework for design of resource manadgolkeries for mul-
timedia MpSoCs. It focuses mainly on the methods for quickifahty tests of
stream schedulers and estimation of buffer memory req@nesiresulting from
deploying these schedulers on the processing elements\dp&nC.

Chapter 6 presents the VCC-based run-time processor rateatidagéechnique
for energy-efficient media stream processing under butiestraints.

Finally, Chapter 7 summarizes main results of this work.

System-Level Performance Analysis

System-level performance analysis plays a key role in teggdeof complex em-
bedded systems. It is used early in the design cycle to etstioteracteristics
of the prospective embedded system and based on this a@stimadke critical
design decisions. The quality of these decisions therddogely depends on the
guality of the estimates obtained from the performanceyaisl This explains
why a significant research effort is being invested in degfficient perfor-
mance analysis methods capable of producing accurate baldleeestimates of
the system performance.

This chapter introduces the problem of system-level peréorce analysis
of heterogeneous multiprocessor embedded systems. fliyloiglines existing
approaches to solving this problem and treats in detail étieeon — the Mod-
ular Performance Analysis (MPA) framework based on the Reak Calculus
(RTC). This framework provides powerful abstractions andh@aatical sup-
port for a compositional performance analysis of distelolémbedded systems.
However, the basic abstractions it offers are not sufficientan accurate per-
formance modeling of heterogeneous multiprocessor engdaeddmputers for
media processing. We will address this problem in the nexptdr by extending
the modeling capabilities of the MPA framework.

14

Chapter 2. System-Level Performance Analysis

2.1

211

21.2

Introduction

Requirements

Early in the design cycle, embedded system designers fagardiblem of eval-
uating many candidate hardware-software architecturtés mspect to various
performance indexes. These indexes may include systernisghput, response
times, end-to-end delays, resource utilization, memoguirements, etc. In
most cases, building a prototype for each design altemédivdirectly measure
these performance characteristics is infeasible becdusiglo implementation
costs and stringent time-to-market constraints. On therdiland, due to the
increasing complexity of modern embedded systems, batkesénvelope esti-
mations cannot be used without taking the risk of being ptatorrect. Hence,
the only option left for the designers is to carry out the parfance analysis
based on some kind ofgerformance modedf the system. This can be a simu-
lator or a mathematical model. In any case, it should retufincgently accurate
estimates of the system performance. Furthermore, to dbbova fast design
space exploration, the performance model should also hmegifiy analyzable
and easily constructible. The latter property is especiaiportant for support-
ing automated design space exploration.

Designing embedded systems that must satisfy real-timeti@nts faces ad-
ditional challenges associated with the needenfy timing correctness of their
behavior. For instance, it might be necessary to verify ivbiethe time elapsed
between two specified events within the syswmarexceeds a given value. Such
a verification can only be accomplished using a formal systesdel support-
ing worst-case analysis, which implies a complete coveohgél possible states
of the system and of its environment. Neither system’s pypt nor its simu-
lator can be employed for the performance verification psegaas (due to the
high system complexity) it is hardly possible to check aliteyn states within a
reasonable time frame.

Input specification

A starting point for the system-level performance analysig specification
which typically describes the following aspects of an enuseblsystem:

Application task structure

The application task structure is typically modeled btask graph(or a set of
task graphs) that captures a partitioning of the targetiegn into individ-
ual tasks, and models data and control dependencies betineran Interactions
between the tasks in a task graph may be governed by a speoiiel of com-
putation For example, multimedia applications are often modeleugikhe for-
malism ofKahn Process NetworK30, 134, 135], which assumes that the tasks
communicate via FIFO channels.

2.1. Introduction 15

e Task assignment to processing elements
The application tasks performing data transformationsasgned for execution
to computational resourcesuch as CPUs, DSPs and co-processors, while the
tasks responsible for data transfers are assigneshtonunication resourcesich
as busses, DMA controllers, bridges, etc. Throughout tnesis we refer to
both resource types gsocessing elemen{$Es) because in principle for the
performance analysis it is irrelevant whether an archit@ttresource executes
computation or communication tasks.

e Resource management policies
As a result of the task assignment, multiple tasks may be sthpp to one PE.
In this case, a scheduling (or arbitration) policy is depbyo manage tasks’
access to this PE. In general, several different schedahuigarbitration policies
may be deployed within the architecture.

e Storage resource allocation
Data arrays manipulated by the tasks, for example, the tsuffgolementing the
FIFO communication channels, are assigned to the off- archgmnmemories.

e Characteristics of processing elements
For the performance analysis we need to specify capabilifgrocessing el-
ements. Therefore, such parameters as clock rates of paysesnd effective
communication bandwidths of busses typically form a pathefinput specifi-
cation.

e Task properties
These include a variety of relevant to the performance aisatgsk characteris-
tics, for example, the number of processor cycles needeshiplete a task on a
given PE and the size of data items to be exchanged betweasitse

e Characteristics of the environment
The input specification should also capture charactesisfithe event streams to
be processed by the embedded system. These charactenatiésclude timing
properties of the event streams (e.g. their arrival ratesyell as their possible
contents, for example, different event types that may appeegiven event flow.

Ex.1: Fig. 3 shows a mapping of an example application onto a hypictdearchitec-
ture. The application is specified by two task graphs desugilthe processing
of two independent event flows. The nodes in a task graph comdsjp the
application tasks, while the edges model the data depeneehatween these
tasks.7'1 andT4 are communication tasks mapped on to a bus, which is shared
between these task§1, 7'3, and 7’5 are computational tasksi'1 is assigned
for execution to a DSP, whereds andT'5 share a CPU.

16 Chapter 2. System-Level Performance Analysis
DSP CPU
Out1
4 ou |
In1 T1
= ~F oue
Out2
BUS
G9)
Memory In2
Fig. 3: An example application-to-architecture mapping.
2.1.3 Existing approaches to performance analysis

Based on the kind of specification described in the previobsesttion, design-
ers need to build a performance model of the system. Theya#mniglin several
ways. For example, they could construct a system simuldf); use a trace-
based performance evaluation technique [83, 125], crestechastic model of
the system [93] or employ a worst-case performance anatgsihod. Their
choice depends on the analysis goals (and on the availap&tese and tools).
A comparative overview of various approaches to the perémee analysis of
embedded systems can be found elsewhere (see, e.g. [I58})s chapter, we
concentrate on techniques suitable for geeformance verificationi.e. on the
worst-case performance analysis methods. Furthermore,viee limit the dis-
cussion only to those methods that can be applied to distahimultiprocessor)
embedded systems having heterogeneous hardware-so#fivednieectures. By
the heterogeneityve mean not only the diversity of processing elements making
up the architecture but also the variety of scheduling ahdration policies that
might be deployed on those processing elements.

The need to ensure the timing correctnesslisfributed real-time embed-
ded systems has led to the development of methods that chrzamarst-case
end-to-end response times of entire task chains mappedraritiple processor
nodes communicating via a shared bus. Such methods havedyeerdholis-
tic scheduling analysibecause they tightly integrate the schedulability analysi
of individual processing elements (i.e. processors anchwamnication channels)
into an overall piece of analysis [163]. The first holistictheed proposed in
Tindell et al. [163] addressed systems with fixed priority schedulinggyotie-
ployed on processor nodes communicating via a bus usingeedivision multi-
ple access (TDMA) protocol. Later many extensions and geizations of this
method appeared in the literature (see, e.g. [48, 128, 1®Djeferences therein).

2.2. Modular Performance Analysis 17

These methods can be very effective in modeling complexggmelations (e.g.
phasing) between the tasks. However, they are often attdkalack of scalabil-
ity and modularity [68, 159], which are needed for modeliagé heterogeneous
systems (perhaps, with hundreds of nodes) and for quickfioations of these
performance models during a design space exploration .cynl®ther words,
these techniques might need to be redesigned for each néanmsgsnfigura-
tion.

The above problem has been partially addressed in Etnak [68, 133].
Their approach advocatescampositional performance analysisethodology
which uses propagation of abstract event streams betwe@usacheduling
analysis techniques locally applied to the processing ehs(components).
The basic idea is to reuse existing (standard) schedulctgnigues for the lo-
cal analysis. This entails using standard event models gngradic, periodic,
periodic with jitter, periodic with bursts) and adaptingetth between the com-
ponents which use incompatible event models. These adapgats well as the
standard event models themselves may be overly pessintesting to a loss in
accuracy. Furthermore, since the method heavily relieherxisting schedul-
ing analysis techniques, supporting any new (not yet eg¥scheduling policy
necessitates devising an analysis for it; i.e. essentiadymethod suffers from
the same problem as the holistic scheduling analysis disdugbove.

In the next section, we describe the MPA framework [159, 16@jich tries
to overcome the drawbacks of other scheduling analysisadsthy following a
completely different approach to the performance analygisch does not rely
neither on the standard event models nor on the traditiarreduling analysis
methods, while offering a high degree of generality and nexty.

2.2 Modular Performance Analysis

2.2.1 Basic idea

In essence, any performance analysis involves two basimepis— theservice
requestedy an application (task) and trservice offeredy the architecture to
this application (task). Temporal interactions betweenrgquested and the of-
fered service determine performance characteristicseo$yistem. The ultimate
goal of any performance analysis method is therefore togrtpgapture these
interactions. In this subsection, we describe how this [Eexed in the MPA
framework.

The basic idea behind the MPA framework is to model the ictevas be-
tween the requested and the offered service using the coocegheduling net-
work. In a scheduling network, the requested and the offeredcsssve modeled
by event and resource streamshese streams flow through the network nodes,

18 Chapter 2. System-Level Performance Analysis
input
i DSP ! i BUS ! i CPU ! resource
R CHRR R S stream
i * Y i i input output
' share ! ! event =3 —>» event
: —d ' stream stream
Y Y i i output
In1 » T1 > T2 |-— resource
. ! ! - stream
A Voo P ' an elementary
i et i performance
A : \ 4 component
In2 i T4 —t—>{ T5|—> Out2
vy T
sum :
Fig. 4: A scheduling network modeling the application-to-architecture mapping shmokaig. 3.

calledperformance componentbat model the interactions between the streams.
Fig. 4 shows an example scheduling network corresponditiget@pplication-
to-architecture mapping discussed in Ex. 1. Solid and dhahews correspond

to the event and resource streams, respectively.

An elementaryperformance component receives one event and one resource
stream as its input (see Fig. 4). The input event streamaaitstarrivals of a
certain request type, while the input resource stream rsoa@ilability of a
given resource for processing of this request type. Abyraeen, the input
event stream triggers the performance component, whicespanse proceeds
by consuming resources provided by the input resourcerstr&ais represents
execution of a task on a PE.

An elementary performance component typically also predumne event
and one resource stream as its output. An event within theubetvent stream
signifies a completed processing of a corresponding inperitev he output re-
source stream represents tleenaining servicei.e. the service which has not
been consumed by the performance component. This remaaimge can then
be used to process another event stream, i.e. it may serve iaput to an-
other performance component. Likewise, the output eveeast may represent
requests for another resource, i.e. it also may serve aspan o a different
performance component. In this way, a scheduling netwqukesenting a per-
formance model of the entire system (with a multitude of é\vsreams and
processing resources) can be constructed out of multiglependent perfor-
mance components.

Besides the elementary performance components, a schgdeliwork may

2.2. Modular Performance Analysis 19

222

contain other types of nodes:

Resource modulesnodel processing capabilities of PEs within the architectu
A resource module produces a stream corresponding tartleadedresource
that it models. In Fig. 4, resource modules are marked wisiheld boxes. They
represent the bus, DSP and CPU resources from Ex. 1.

Input modules inject into the scheduling network event streams generayed
the system’s environment. In Fig. 4, these ané¢ and/»n2 modules.

Scheduling moduledlistribute resource streams between different performanc
components in accordance with a given resource managemmiey A schedul-

ing module receives and produces only resource streangsn@ied by the same
resource). Using scheduling modules we can model diffesgméduling and ar-
bitration policies deployed on the PEs of the architectlréig. 4, for example,
we haveshare andsum scheduling modules.

Hierarchical modules are complex performance components containing sub-
networks of other components.

For the performance analysis, in addition to seeicturalperformance view
of the system provided by the scheduling network, we neeattalsharacterize
behaviorof the event and resource streams, and of the associatexparfce
components. That is we need to characterize timing pragzedi the streams
and determine how these properties change when the stresaghpough the
performance components in the scheduling network. Thibeatone in many
different ways. For example, we could simply simulate thieesituling network
using appropriate event traces. However, our objectivamgthod which can be
used for the worst-case performance analysis. To achieveliective, we can
rely on the mathematical foundation provided by the Realel@alculus, which
Is briefly introduced in the next section.

Real-Time Calculus

The Real-Time Calculus [24,121,157,158] provides powerhdti@ctions of
the event and resource streams and uses these abstraotioraghiematically
model the behavior of an elementary performance compoiiérg.basic model
can then be used for a component-wise evaluation of a whaledsting net-
work. In addition, the Real-Time Calculus allows to computéots perfor-
mance indexes of the system, such as upper bounds on theataldyacklog
experienced by the events while being processed in thersyste

Characterization of event and resource streams
Timing properties of event and resource streams are capusiagarrival and
service curves

20 Chapter 2. System-Level Performance Analysis
‘2 1 du(A)
#* 41 P]
o' (A
jitter, j period, p i> 31 ° » “e
21 | p |
f t) I
time 0 pippt 2p 3p 4p A
Fig. 5: Modeling periodic event streams with jitter using arrival curves.

An event stream is abstracted by a pair of arrival curg&$A) anda'(A),
which give respectively upper and lower bounds on the nurobevents seen in
the event stream within any time interval of length

A resource stream is modeled by a pair of service cue&)) ands!(A),
which give respectively upper and lower bounds on the resoamount (e.g.
number of processor cycles) offered within any time inteofdength A.

The arrival and service curves can accurately describaragavith arbitrary
complex timing behavior. On the other hand, a single pairpyen and lower
curves can capture an entire class of streams with simitang properties. For
example, many standard event models (e.g. sporadic, jperiperiodic with
jitter, periodic with bursts) can be represented by thevargurves [24]. Fig. 5
illustrates this fact by showing how the arrival curves malelass of periodic
event streams with jitter.

Scheduling network evaluation

The performance analysis using the MPA approach entailkedsding network
evaluation. The evaluation can be accomplished componiset-by propagat-
ing the event and resource streams through the network.glhbis requires a
model describing how the timing properties of the event @sdurce streams get
changed as a result of passing through the performance canis Since event
and resource streams are abstracted by the arrival andsewives, we need
a mathematical model describing how an elementary perfocen@omponent
transforms the shapes of these curves. Such a model, pddwydide Real-Time
Calculus, is given by the following set of equations [24]:

ay = [(af®B}) DB A B} (2.1)
ap = (@8BS (2.2)
8y = (Bf —a})ao (2.3)
Bo = (Br—af)®o (2.4)

ay, ab, 3¢ and 3. denote the arrival and the service curves characterizieg th
event and the resource streams at the input of an elemereefigrpance com-
ponent, respectivelyay, al,, 34 and /3, provide the corresponding characteri-

2.2. Modular Performance Analysis 21

zation of the streams at the output of the component. The hasdemes that
the events belonging to the same stream are processedri@tieal order and
that they are stored in a FIFO buffer while waiting to be sdrve

Equations (2.1)—(2.4) ugenax, +)- and(min, +)-algebra operators defined
as follows [10].

(feg)(t) = Oiggfﬁ{f@—U)Jrg(U)} (2.5)
(f®g)(t) = Oi%gt{f(t—UHQ(U)} (2.6)
(foglt) = igzg{f(HU)—g(U)} (2.7)
(faog(t) = igg{f(tJrU)—g(U)} (2.8)

(2.5) and (2.6) denotémin, +) and (max, +) convolutions, respectively, and
(2.7) and (2.8) are corresponding deconvolutiorf§t) and g(¢) denote non-
decreasing functions.

Modeling scheduling polices

In comparison to other performance analysis methods, thefkéiPnework mod-
els the service offered to an event strearplicitly, using the concept of re-
source streams [159]. This approach has a number of ademtgst, it allows
to model arbitrary complex resource availability pattewigch may be expe-
rienced by individual event streams (or tasks) as a resuppfying a certain
scheduling or arbitration policy. Second, it supports thedaarity of the per-
formance analysis. Third, using the concept of resour@asts it is easier to
model hierarchical scheduling schemes and various resoeservation mecha-
nisms.

A variety of scheduling and arbitration policies can be nieddy a proper
calculation (or definition) of the service curves within asduling network. For
example, a fixed priority scheduling can be modeled by dyexinnecting the
output resource stream (i.e. the remaining service) of adrigriority com-
ponent to the resource input of the next (in terms of pripriymponent. For
example, in the scheduling network in Fig. 4, tagksand7'5 are scheduled on
the CPU resource using the fixed priority scheffig.has the highest priority.

To model proportional share schemes and their derivativespeed to in-
troduce into the scheduling network the correspondingdiey modules that
distribute the resource streams according to specifiegeshand after that col-
lect the remaining service. Fig. 4 depicts an example of amclwrrangement for
tasks72 and7T'4.

22 Chapter 2. System-Level Performance Analysis
[22]
s 1 a"(A)
o _
41 :--- HI(A)
ST = » taa
2t B oo
1 p===t
Y 1 >
0 A
Fig. 6: Computing upper bounds on the deldy, and the backlogB

Calculating upper bounds on delay and backlog

Given an upper arrival curve® and a lower service curve’ at the input of an
elementary performance component, we can compute uppadbaun the delay
and on the backlog experienced by the event stream as asépaksing through

this component [85]:

delay < sup {inf{r >0 :a“(A) < g (A+71)}} (2.9)
A€R5g

backlog < sup {a“(A) — 3'(A)} (2.10)
A€R>,

Fig. 6 illustrates these formulas.

In a similar way, we can find upper bounds on the total delaycamithe total
backlog which an event stream may suffer as a result of pgsisinugh a chain
of performance components. How this can be done is descihibf&b, 159].
This allows to estimate such performance indexes of an eddukslystem as the
worst-case end-to-end delay and memory requirements.

Modeling Variable Workload

This chapter introduces two central to this thesis concepts
Variability Characterization Curves (VCCsand
Workload Transformations

VCCs allow to capture variability of different workload cheteristics. In
this chapter, we define several VCC types for modeling mutfim&vorkloads
in the system-level design context of MpSoC architecturesdescribe various
ways to obtain VCCs.

Tightly coupled with the concept of VCCs are the workload tfarmations.
They extend the modeling capabilities of the RTC-based Mardaérformance
Analysis (MPA) framework introduced in the previous chapfehis extension
potentially leads to considerably tighter analytic pemiance bounds than those
obtained using traditional workload models. This chaptevigles a discus-
sion on how the workload transformations can be optimalacet in an RTC
scheduling network.

Towards the end of this chapter we present the results of periexental
study comparing the proposed VCC-based workload model witihaemntional
model. We also assess the quality of the VCC-based model usiystem sim-
ulator. As a basis for the experimental study we considerdeggn problems
from the area of media processors and show how they can bedsosig the
VCC-based model. We thereby demonstrate first application&Gds in the
system-level design context of multimedia MpSoC architexg. Other applica-
tions of VCCs in this context will be presented in the followictgapters.

24

Chapter 3. Modeling Variable Workload

Contributions of this chapter

We introduce the concept of Variability Characterization¥@sr—a general model
for compact representation of whole classes of increasingtions or sequences
based on their worst-case and best-case variability.

We propose and define VCC types for workload modeling of matiia appli-
cations mapped onto multiprocessor heterogeneous asthvis.

We extend the existing RTC-based MPA framework with worklbadsforma-
tion operations which enable system-level performancdyaisaof heteroge-
neous multiprocessor architectures under workloads cteiaed by variability
of several parameters, such as task’s execution demand&arates. We show
how such workload transformations can be optimally usetderainalysis.

Through experiments we evaluate the VCC-based workload madéeguantify
the gain from using this model by comparing it to a traditidaak model widely
used in the literature. We also demonstrate utility andssstee accuracy of the
VCC-based model using measurements obtained from a detgdezhs simula-
tor. This experimental study gives important insights omnlature of MPEG-2
video workloads and their characterization with VCCs.

Organization of this chapter

Section 3.1 gives an overview of the related work

Section 3.2 introduces the concept of VCCs and develops thessay theoret-
ical background.

Section 3.3 reviews key properties of multimedia workloadd on this basis
defines VCC types for multimedia workload modeling (multinaedCCs).

Section 3.4 introduces the concept of workload transfaonatand proposes
several such transformations based on the multimedia VCCgedefn Sec-
tion 3.3. Furthermore, this section discusses optimalgnteant of workload
transformations in a RTC scheduling network.

Section 3.5 elaborates on the ways to obtain VCCs.

Section 3.6 presents results of the experimental evaluatiche VCC-based
model.

Finally, Section 3.7 concludes the chapter.

3.1. Related Work 25

3.1

Related Work

This section outlines the existing approaches to model thr&load for real-time
scheduling and performance analysis of embedded systems.

Many results in the classical real-time scheduling thedfy 150] are based
on the task model introduced in [100] by Liu and Layland. lis tmodel, tasks
are characterized by tuplé€’;, T;), whereC; is execution time of task; and
T; is the period with whichr; arrives into the system; tasks are assumed to be
independent and have deadlines equal to their periodse§ubst research work
mainly aimed at relaxing the assumptions about strict plegity of task arrivals
and deadlines. For instance, [97] considers tasks witlirarpideadlines, less
than their periods, whereas in the model of [92] the deasdlare greater than
the task periods. The model in [96] allows periodic tasksrtiva with fixed
offsets in time. In [162] tasks can have arbitrary deadlimekease jitter and
bursty arrivals. Sporadic tasks are often modeled by caimstig their minimum
inter-arrival time [101].

To provide hard real-time guarantees workload models uséaki classical
real-time scheduling theory assume that every task insteequires WCET to
complete. This assumption, although safe, is too pessaritt a large class
of applications characterized by high execution time \aliig; it may lead to
poor processor utilization and, as a consequence, to degigin unreasonably
high cost or power consumption or both. Different approadddressing this
problem have been reported in the literature [140]. In tlpuskwe focus the
discussion on those approaches that further generalizedahéoad model.

One important direction in modeling tasks characterizeddrjable execu-
tion demands and irregular arrivals is to wechastic modelsFor example,
task models in [7, 71, 109, 161] specify task execution detearsing probabil-
ity distributions and assume periodic arrivals. Methods'ii61] handle sets of
independent tasks, while [71, 109] consider task sets wihgaence relations.
Real-Time Queuing Thearyirst introduced in [93], uses stochastic character-
ization for inter-arrival times, execution demands anddiieas, and relies on
gueuing theoretic methods for performance evaluationsé&la@d other stochas-
tic workload models can result in tighter analytic boundd &ence in more
economical designs, but at the expense of some (usuallyotiext) fraction of
missed deadlines. Because of this their application aramited to soft real-
timesystems only.

Another line of research work aims at reducing the pessinuéthe clas-
sical real-time task models by developing more expressieterministic” task
models suitable for the analysislodird real-timesystems. Mok and Chen [117]
proposes anultiframe task modelAs its basis this model has the classical pe-
riodic task model of Liu and Layland [100]; however, it petsniasks whose
WCETs may vary from one instance to another. Such a task carpbesented
by a set of subtasks, each characterized by its own WCET. Thasksbin the

26

Chapter 3. Modeling Variable Workload

set are cyclically triggered in a predetermined order artt witime separation
equal to the period of the task they represent. In [13] thiirmme model has
been extended to allow for the time separation between skibtivations to be
also variable (i.e. to cycle through a fixed pattern).

Baruah [11, 12] presentsracurring real-time task modéRRT)—a further
generalization of the multiframe models. In the RRT modehsktis modeled
by a set of subtasks arranged in a directed acyclic graplesepting the con-
ditional, non-deterministic behavior of the task. Eachtask is characterized
by its WCET, a relative deadline and a minimum triggering sefan from its
direct predecessors. The whole task graph is triggereddmaily with a spec-
ified minimum time separation between the triggering of et kubtask in the
graph and the triggering of the next task instance. Anotlweklwad model, also
using conditional directed acyclic graphs to model taskseported by Pop et
al. in [127]. Instead of associating a deadlinesachsubtask in a task graph,
the model in [127] associates a single deadline with the /igohph. Further-
more, it exposes the parallelism within a task for mappinganultiprocessor
architecture.

In comparison to classical task models, the RRT model offeneat flexi-
bility in modeling variability of the execution demand amcegular inter-arrival
times. This flexibility is, however, limited toecurring patterns. If workload
bursts (characterized by periods with dense arrivals éitas increased execu-
tion demand or both) occur relatively seldom, then avoidingrly pessimistic
results under the RRT model necessitates to consider veyg task graphs,
leading to inefficiency of the analysis. In other words, desrs have to trade
off the accuracy of the analysis for the analysis time, whiaithe RRT model
increases exponentially with the problem size [12].

Inspired by traffic characterization models in the domaica@hmunication
networks [85], an alternative workload model generalizmgny previous re-
sults, including the RRT model, has been proposed by Thiedk ¢121, 158].
The workload imposed by a task on a processor or a commuoncggsource is
abstracted by aarrival curve giving the maximum amount aesourcesvhich
can be requested by the task within any time interval of argleagth. In ad-
dition, this model also captures the variability of the sesvoffered to a task:
a service curvaives the minimum amount of resources offered to a given task
on a resource within any time interval of a given length. Tésulting work-
load model can be efficiently analyzed using the mathenidtiamework of
Real-Time Calculu¢RTC) [158], having its roots in the min-max algebra [10].
As the RRT model, the arrival curves allow to capture arbjtt@mplex pat-
terns of inter-arrival times and execution demands; howemecontrast to the
RRT model, an accurate characterization of both short-terthl@eng-term be-
havior of the workload is achieved in a relatively compactfo Furthermore,
the complexity of the analysis in general is not dependenthenaccuracy of
the workload model, and efficient approximations can be dbneeded [156].

3.1. Related Work 27

Another important feature of the workload model presemed 21, 158] is that
unlike previous lines of work this model explicitly charecdrzes the service vari-
ability, thereby allowing to effectively abstract arbityacomplex scheduling and
arbitration policies deployed on communication and comapomal resources, as
well as such architectural features as caches, pipeliné® buffers, protocols
etc. Continuing this line of work, Chakraborty and Thiele [p8pposed a new
task model for streaming applications combining the conoém@rrival curves
with the RRT model, which may help to reduce the size of taskligaf the
RRT model while modeling complex event streams.

Most of the approaches discussed so far are not concernednaitlelling
tasks whichasynchronouslynteract while processing event streams; meaning
that these approaches assume that a task producing an @vardt(eam object)
is never activated again before the dependent task conghmes/ent (and fin-
ishes its processing). Hence, these approaches are rresiieie in the properties
of output event streams (activating the consumer tasksiraratiations of input
and output rates of tasks (i.e. in the number of events coedumproduced by
a task per activation). However, these properties of thé&kwad become impor-
tant in context of distributed execution platforms for atreprocessing applica-
tions. In this context different event streams may intecacshared resources,
leading toscheduling anomalieswhen a best-case load on one architectural
component may cause a worst-case load scenario for anathgronent [133].

In this situation it becomes important to capture in the nhadeonly worst-case
but also best-case behavior of the workload.

The importance of modeling both the worst-case and thedsesst-workload
behavior in design context of embedded systems has beegnieed in such
modeling frameworks as SPI (System Property Intervals) [182,183]. In
contrast to the research work on real-time scheduling roeeti above, the SPI
framework has a different focus: its prime goal is modelihigeterogeneous em-
bedded systems for thagtobal performance analysis, design space exploration,
optimization and synthesis. The SPI model represents ammya$ a network of
communicating processes which allows (besides other conuamion modes)
the asynchronous communication via unidirectional FIF@nctels. In the SPI
model each process is characterized by a sétebfvioral intervalscapturing
worst-case and best-case values of various process pegpguth as execution
time and the number of tokens consumed from input and praiteceutput
channels. The SPI framework allows for refinement of thiskie@d model
through the concept girocess modesFollowing this concept, each process is
associated with a set of modes, each of which is charactebydts own set
of the behavioral intervals. When the model is evaluated (exgcuted), the
process may change its modes depending on, for examplé viajpes.

Through the concepts of behavioral intervals and processemthe SPI
framework can model the workload with a high accuracy. Hawethis re-
quires arexplicit specification of conditions upon which the modes are changed

28

Chapter 3. Modeling Variable Workload

3.2

3.2.1

and therefore significantly complicates the workload mimdgbrocess and may
preclude an efficient analyzability of the model. In face ®PI model offers a
flexible tradeoff between the accuracy of the workload meahel the modeling
overhead: depending on the scenario a designer may decidmhboy different
modes to associate with a process. In the simplest casegegsrmay have only
one mode, as it is the case, for example, in [67] where thet ifquiput) rate of
a process is specified with a single behavioral intervals Bpiproach, however,
results in overly pessimistic bounds and does not accyratgture the long-
term behavior of the workload, which is important, for inste, in multimedia
applications.

Another framework for analysis of system properties pregosm [23, 24,
157] is based on RTC developed in [121, 158]. In comparisdhdanodel used
in [121, 158], the workload model in [23, 24, 157] has a conagdower and
upperarrival and service curves which capture the best- and veaist behavior
of the workload. In addition, [23, 24, 157] enhance the atizdy framework in
[121, 158] with mechanisms to determine properties of thipuitevent streams.
These developments pave the way tenadular approach to the performance
analysis [159, 160]. However, the workload model in [23,25F] can model
only tasks that consume and produce only one event per aativé&urthermore,
for computing the output event streams it becomes necessaognvert the ar-
rival curves expressed in terms of event-based units intvalgnts expressed
in resource-based units and backwards. Since this conwveisiperformed by
scaling the curves with a constant factor corresponding to W& process-
ing of one event, the execution time variability is not aatted for, resulting in
overly pessimistic analytic bounds for workloads with Ekgriations in execu-
tion demand of tasks. These limitations of the frameworkehasen addressed
in [113,115]. The results of [113,115] are included in thiepter. Further
refinements of this workload model can be found in [166, 168].1

Variability Characterization Curves

This section defines Variability Characterization Curves (VICiGsa generic
way, i.e. without regard to any concrete system property ey character-
ize. It also states some properties which are common to all \&@@svhich will
be useful in the course of this thesis.

Definitions

Let A denote a set of increasing functiods, ¢ = 1,2,... andT denote the
domain of these functions, such that : T — R-,. T can be either the
set of nonnegative real number$ (= R-) or the set of nonnegative inte-

3.2. Variability Characterization Curves 29

gers [T = Zxo).! In the latter case, the functions it represent sequences, i.e.
A; = (A;(0), A;(1),...). Formally, a functionf is increasingif f(z1) < f(x2)
for anyz; < xs. In contrast,f is strictly increasingf f(z1) < f(z2) whenever
x1 < xo. Using this notation we define VCCs as follows.

Def. 1: (Upper VCC) An upper VCC for the set of increasing functiofss an increas-
ing functionV; satisfying the condition

At +8) — Ai(t) < Vi(s) VhseT, YA, € A and V4(0) =0

Def. 2: (Lower VCC) Alower VCC for the set of increasing functiadss an increasing
function)!, satisfying the condition

At +s) — Ai(t) > Vi(s) Vt,s €T, VA, € A and V4(0)=0

In caseT = R, we adopt the convention that any upper VCC is a left-
continuous function and any lower VCC is a right-continuousction. Note
that functionsA; are not required to conform to this convention. They can be
either left-continuous or right-continuous without reston.

In caseT = Z, the corresponding VCC is a sequence. If necessary a VCC
which is a sequence can be converted into an equivalent VC@edefinR .

The conversion can be done by a continuatiorTimhich respects the above
convention about continuity of VCCs. More specifically, 11?‘:jjtz>0 and Vf%o

denote upper and lower VCCs defined#®g,. They can be converted into their
continuous equivalentgy andVihR> as follows
>0 >0

Vi, () = Vi, ([s/7]) 3.1)
Vi, (8) = Vi, (Ls/7]) (3.2)
wherer denotes the desired spacing between samplégjtgo (or Vi%o) in
RZO' - -
A conversion in the opposite direction, i.)éﬂZ>0 — Viag_ is also possible:
ij>0(k) = VjR>0(l<;7) ke Zs (3.3)
Vi, (k) = Vi (k1) k€ Zx (3.4)

Remark on notation: To simplify the notation, in some contexts we will skip
subscript4 in V% and in))!, if it is irrelevant which function set is characterized
by the VCCs, i.e. we will simply writ&’* and)” instead ofv% and)),.

Throughout this thesis, whenever we UBevithout specifying whethef' = R or T =
Z>o we mean that both cases are possible/Tli.&s a placeholder foR >, andZx.

30

Chapter 3. Modeling Variable Workload

Def. 3:

Def. 4:

3.2.2

Prop. 1:

Prop. 2:

Prop. 3:

Prop. 4:

Prop. 5:

From Defs. 1 and 2 it follows that a VCC is a mapping fr@ho R~,. Of-
ten, however, while modeling systems with VCCs, there is a faetie inverse
transformation. Such a transformation could be possitdeinierse functions
of VCCs. Unfortunately, since VCCs in general are not strictreéasing func-
tions, they are not invertible in the conventional sensge far a given VCC there
may not exist a functio~! such thatv—*(V(t)) = ¢ for all ¢. Therefore, we
need to introduce a notion pseudo-inverse functions

(Pseudo-inverse of Upper VCC)he pseudo-inverse of an upper VECis the
function
V¢ (0) = sup{t : V*(t) < vit € T} (3.5)

(Pseudo-inverse of Lower VCC)The pseudo-inverse of a lower VQCis the
function
VU (v) = inf{t : V(t) > vit € T} (3.6)

Properties

Several useful properties of VCCs follow from the definitiongeg in Sec-
tion 3.2.1.

(Pseudo-inversion of Upper VCC)For any upper VCCV" and its pseudo-
inverseV* ' the following always holds

Vi) <o eV (v) >t (3.7)

(Pseudo-inversion of Lower VCC)For any lower VCCV' and its pseudo-
inverseV’ ' the following always holds

Vi) >ve V' (v) <t (3.8)

(Duality of Upper VCC) If VY is an upper VCC for a set of functioo$, then
V*;V_l is a lower VCC for the set of functiond’, where

A ={A": A(v) =sup{t: A(t) <v;t € T} A e A}

(Duality of Lower VCC) If V!, is a lower VCC for a set of functiond, then
ij is an upper VCC for the set of functions, where

A'={A": A(v)=inf{t: A(t) >v;t € T}; A e A}

(Lower and Upper VCCs for the Same Set)f V* and V' are upper and lower
VCCs, respectively, characterizing the same set of functibtiien the following
relation always holds:

Vut) > Vi(t) vteT (3.9)

3.2. Variability Characterization Curves 31

Proof.

Prop. 1 Define subset, = {t : V*(t) < v} C T. Note that by Def. 3
Ve ' (v) = supS,. Suppose thav*(t) < v, thent € S,. This implies that
t <supS,, thatist < V* ' (v). Thus, it follows thab*(t) < v = V* ' (v) > t.
Now suppose thaV“fl(v) > t, this is equivalent to saying thatp S, > t.
This implies thatt € S,, i.e. t satisfiesV"(¢) < v. Thus, we have shown that
Ve (v) >t = V*(t) < v. This proves (3.7).

Prop. 2 Define subsef, = {t : V!(t) > v} C T. Note that by Def. 4
VI (v) = inf S,. Suppose thav!(t) > v. This implies that € S,. Hence} >
inf S, which is equivalent to > V' ' (v). ThusV!(t) > v = V' ' (v) < t. Now
suppose thav’ ' (v) < t. Thent > inf S,, which implies that € S,. It follows
thatt satisfiesV!(t) > v. Thus, we have shown th& ' (v) < t = Vi(t) > v.
This proves (3.8).

U

Two important relations directly follow from Prop. 1 and Br@. Namely,
by lettingV*(t) = v in Prop. 1 we get

Ve (VL) >t (3.10)
Similarly, Prop. 2 implies that
V) <t (3.11)

If V4 andV, characterize the same function sktfrom Props. 3-5 we can
conclude that
Vi ()2 Vi) WteT (3.12)

Furthermore, if we combine (3.10) and (3.11) with (3.12) veéam
Vi (Vi) >
Vi (Vu() <

Remark on notation: Sometimes we will denote a pair of a lower and an upper
VCCs characterizing the same function geby tupleV, = (V, V4).

t VteT (3.13)
t VteT (3.14)

3.2.3 Discussion

Supposea is a set of increasing functions am is a VCC corresponding to it,
then we say thaV , characterizes4. More precisely)’ 4 bounds the variability

of functions inA. In particular, an upper VCC represents an upper bound on
the maximum change in function value that can occur on amyvat of a given
length for any function ind. Correspondingly, a lower VCC is a lower bound
on the minimum change in function value that can occur on atgrval of a

32

Chapter 3. Modeling Variable Workload

3.3

given length. Thus, VCCs characteria@rst- and best-case variabilityf the
functions or sequences.

Le Boudec and Thiran [85] presents the conceptraf/al and service curves
used for characterization of traffic and nodes (e.g. ropile®mMmunication net-
works. These arrival and service curves respectively ciewize timing prop-
erties of data flows and the service offered to these flows emétwork nodes
(service flows Such arrival and service curves represent concrete VCE&styp
In other words, in this thesis we generalize the concept iwfaerand service
curves to characterize any other properties of abstractesegs, and not only
the timing of the data and service flows. However, the theemetbped in [85]
is applicable to a large extent to the generic VCCs defined ssiction. More
basic theory which may also be useful for system analysis WAECs can be
found in [10]. For this reason, we limited the discussionhis section to those
theoretical concepts that are either new or differ in somg fsmam those de-
scribed in [10, 85]. This means that in the course of thisigws may rely on
some mathematical background which is not covered in tliBaebut can be
found in [10, 85].

Finally, before defining concrete VCC types for modeling ofltmedia
workloads (which we will do in the next section), we woulddiko point out
an important property of any VCC, irrespective of its pari@culype: A single
VCC can serve as a compaistractionof a wholeclassof sequences or func-
tions with similar worst-case or best-case variabilityefidfore, VCCs represent
an attractive means for capturing various aspects of sybtravior in the de-
sign context of heterogeneous embedded systems where Bsithciions are
needed to tame the complexity of the design problems.

Variability Characterization Curves for Modeling
Multimedia Workload

While the previous section presents the VCC concept in a genaxy, this sec-
tion introduces several concrete VCC types which enablew@feemodeling of
multimedia workloads [113,115]. These VCC types are us&fglystem-level
design of embedded systems whose functionality involvesiduted real-time
processing of digital media streams. Later in this thesesdemonstrate several
applications of these VCC types to the performance evaluatia scheduling
of multimedia MpSoC architectures, which represent sucheslded systems.

In workload modeling there are two generally conflictinglgda?2]:

First, a workload model should be as general as possiblethatit could accu-
rately capture all relevant properties of the workload.

3.3. Variability Characterization Curves for Modeling Muoiedia Workload 33

3 2
=
2 g

Fig. 7: Example task graph of a multimedia application.

e Second, the model should be efficiently analyzable to beuugefthe design
process.

The former concern is addressed in this section. To addredatter concern, we
rely on already existing theoretical framework of Real-Ti@adculus [120, 157,
158], which has been shown to be efficient in system-levdbpmiance analysis
of network processors [23, 25]. In Section 3.4, using the V@es introduced
in this section, we extend the RTC framework with the conadpivorkload
transformations which are simple operations, having no significant imparct o
the efficiency of the whole analytical framework.

3.31 Execution model

In Section 2.2.1, we have mentioned that performance ctearsiics of a system
are determined by the temporal interactions betweenefeested servicand

the correspondingffered servicdi.e. between event and resource streams in
the terminology of the MPA framework). The temporal chagaistics of the
requested and offered service and their interactions ginéyticoupled with the
execution modalised to implement an application on the architecture. Hence
to understand the properties of multimedia workloads thghimnfluence these
temporal characteristics, we first need to define the exatuatiodel we assume
for the multimedia applications mapped on to the multipssce architectures.

A multimedia application is partitioned into a number of carrent (com-
putation and communication) tasks which are assigned fecigion to differ-
ent PEs of the target execution platform. As mentioned in @rad and 2,
we assume that the application tasks communicate solelyniiarectional data
streams, which we can see as FIFO channels. A multimediantagkread and
write data from (to) several such channels. To illustraig thig. 7 shows a task
graph of a hypothetical multimedia application.

34 Chapter 3. Modeling Variable Workload

We refer to the elementary data unit that a particular taskead from (write
to) a particular channel agream objectA stream object might be a bit belong-
ing to a compressed bitstream representing a coded videacla macroblock,
or a video frame, or an audio sample — depending on where itaikegraph
the corresponding stream exists.

A task becomes active whenever there is a predeterminedrarabstream
objects available in the incoming channels. There may beesmstivation rules
associated with the task [181]. These rules define specifiditons on the in-
coming channels upon which this task is activated (e.glabidity of a specified
number of stream objects all or only in someincoming channels).

Whenever the task is activated it requests from the PE on whexecutes a
certain amount of processor cycles. The task also consummstfie incoming
channels a number of stream objects. We assume that thisemwgbals to
the amount of stream objects that were necessary to triggetask. While
executing (i.e. consuming the processor cycles) the taskwmiie data into
outgoing channels. We assume non-blocking writing.

Finally, a sequence of task activations can be abstracdy ss arequest
stream and the availability of the PE for processing this streamlzaseen as a
resource stream

3.3.2 Definitions of multimedia VCC types

The key workload characteristics to be captured in the veaidkimodel are those
characteristics that affect the timing properties of tlgpiest and resource streams
and their interactions. In this subsection, we pinpoinséhkey characteristics
and define VCC types to characterize them. Some of the VCC tyaesnill

be introduced below are indicated in Fig. 8, which shows astrabt view of a
multimedia task.

Event-based arrival curves

The timing of task’s requests for service is influenced bytithéng of arrivals of
stream objects into the incoming channels of this task. @laesvals depend on
the tasks writing into these incoming channels (or on théesy's environment,
if the stream is received from outside of the system). EaidWehinto a channel
can be modeled as an event. Hence, a sequence of arrivats giten channel
can be represented as an event stream. Similar to the ob@zatbn model
described in Section 2.2.2, we model the timing propertiesioh event streams
with VCCs calledevent-based arrival curvg85, 158].

Def. 5: (Event-Based Arrival Curvesa = (&', a*)) A lower event-based arrival curve
a' and an upper event-based arrival cura¢ are VCCs characterizing timing
properties of a given event streamt!(A) bounds from below and®(A) from
above the number of events that can occur in the stream withyriime interval
of lengthA.

3.3. Variability Characterization Curves for Modeling Muoiedia Workload 35

arrival curves

B I service curves
a=(a',a")

8= (8,8

resources

—> outgoing event

incoming event 1l ’

streams — > streams
".1) / 5
production curves
consumption curves | (z!,)

o = (k! KY) k

execution demand
. curves

v =0\

Fig. 8: Overview: VCCs for modeling multimedia workloads.

Consumption curves

Another factor influencing the timing of task’s requestsdervice is the amount
of stream objects that must be available in a given incomivenoel for activa-
tion of the task. This amount may vary from activation to\ation, e.g. due to
data-dependent behavior of the task. Successive actigabibthe task result in
a sequence of numbers representing the amounts of streastobpnsumed by
the task from the given incoming channel at each activatAsan abstraction
of such sequences we use VCCs cattedsumption curved 15].

Def. 6: (Consumption Curvesk = (x!,x*)) A lower consumption curve' and an
upper consumption curve' are VCCs characterizing the relation between task’s
activations and the number of stream objects consumed kpskdrom a given
input channel.x!(k) bounds from below and“(k) from above the number of
task activations needed to consumeonsecutive stream objects from the input
channel.

Besides the amount of stream objects that must be presernthnredividual
channel to activate the task, the activation rules may imEmne conditions
on the set of incoming channels as a whole. The implicatidrssich rules can
also be reflected in the consumption curves. Alternativelizh rules can be
accounted for at the higher modeling level, i.e. in the penBnce model itself.
[68] reports some work in this direction.

36 Chapter 3. Modeling Variable Workload

Execution demand curves

The amount of execution resources requested by a task ataetication may
vary depending, for example, on the task’s current statefandgalues of processed
stream objects, or on such architectural features as camtagsh predictors and
pipelines. A sequence of task activations results in a sempuef execution de-
mands imposed by the task on the PE. For modeling such sezpi@ne use
execution demand curvgkl 3, 115].

Def. 7. (Execution Demand Curvesy = (4!,7%*)) A lower execution demand curve
~ and an upper execution demand curveare VCCs characterizing execution
demand of a given tasky“(k) bounds from above angl(k) from below the
amount of resource units (such as processor cycles) needeantplete any:
consecutive task executions.

Production curves

The timing properties of event streams generated by a taskaitputs depend
on the amount of stream objects produced by the task intoutgomg channels
at each activation. Again, from activation to activatiorstimount may vary. To
characterize this aspect of task’s activation sequencegmploy VCCs called
production curve$l15].

Def. 8: (Production Curves © = (r!, %)) A lower production curver’ and an upper
production curver* are VCCs characterizing the relation between task’s execu-
tions and the number of stream objects produced by the téaslaigiven output
channel.7!(k) bounds from below and(k) from above the number of stream
objects produced by the task into the output channel as dtresk consecutive
executions of this task.

Resource-based service curves

An important factor largely influencing the performancerelcteristics is avail-
ability of execution resources for a given task over the tinfgeveral tasks
mapped onto a single PE may compete for the execution resadrthis PE.
A scheduling or arbitration policy then determines in whictler these tasks are
to be executed on the PE. As a consequence, the supply ofcesda the tasks
is not anymore uniformly distributed in time. This variatyilof the PE’s process-
ing capacity as seen by an individual task is characterisatjuesource-based
service curve§l13,115].

Def. 9: (Resource-Based Service Curves$ = (!, %)) A lower resource-based service
curves' and an upper resource-based service cys¥ere VCCs characterizing
the service offered to a given task on a given execution resod'(A) bounds
from below the number of resource units (such as processdegythat are
guaranteetb be provided to the task within any time interval of lengths“(A)

3.4. Workload Transformations 37

Def. 10:

Def. 11:

Def. 12:

3.4

bounds from above the number of resource units thatbe provided to the task
within any time interval of lengti.

Type rate curves

In some cases, for the performance analysis it is usefulstinguish within an
event stream (or any other sequence) different event types.instance, this
might be useful in case if different event types impose difé execution de-
mands on a PE. The different event types may follow in varpatserns within
the stream. For the characterization of these patterns vpdogreo calledype

rate curveqd166].

(Type Rate Curvesy = (¢, 9*)) A lower type rate curve’ and an upper type
rate curvey* are VCCs characterizing the containment of a given event type |
given event stream? (k) bounds from below and* (k) from above the number
of events of the given type in any subsequenéecohsecutive events within the
event stream.

Event-based service curves and resource-based arrival curg

In contrast to the resource-based service curves, the-based service curves
express the availability of a PE for a given task in terms etéisk executions-
stead of processor cycles. Similarly, in contrast to theebased arrival curves,
the resource-based arrival curves express the amowrd@ircege.g. processor
cycles) requested by a task.

(Event-Based Service Curveg = (3!, 3*)) A lower event-based service curve
(' and an upper event-based service cutVeare VCCs characterizing the ser-
vice offered to a given task on a given execution resouséed) bounds from
below the number of task executions that guaranteedo be completed within
any time interval of length\. 3“(A) bounds from above the number of task
executions thatanbe completed within any time interval of lengih

(Resource-Based Arrival Curvesy = (a!, a*)) A lower resource-based arrival
curvea!(A) and an upper resource-based arrival curw&(A) are VCCs char-

acterizing the service requested by a given task from a gixenution resource.
o!(A) bounds from below and“(A) from above the number a&source units
(such as processor cycles) that may be requested by the t#sik wny time

interval of lengthA.

Workload Transformations

Being able to analytically compute different performancerés of a system re-
quires both the requested and the offered service beinggsg@d in common

38 Chapter 3. Modeling Variable Workload

units. This can be achieved through a mapping of one sergmesentation to
another. In simple cases, such a mapping can be done in ghstoaward way
via scaling with a constant factor [24]. In more complex caséhere the work-
load variability cannot be neglected, this approach doésvodk well: it often
results in overly pessimistic performance bounds. In thésis, we propose a
more sophisticated mapping mechanism which we waltkload transforma-
tions It is based on the concept of VCCs. In contrast to the scaling i
constant factor, workload transformations in general amIlmear operations.
This non-linearity stems from the need to properly accoonttfie workload
variability while performing the mapping between differevorkload and ser-
vice representations. As a result, the tightness of the doueturned by the
performance analysis can be improved.

In this section, we define workload transformations and tdate general
rules for applying them. We then discuss workload transédions which are
useful for performance analysis of media processors. Theghie the VCC
types defined in Section 3.3. Toward the end of this sectieskow how the
modeling capabilities of the existing MPA framework can pdanced through
the use of the workload transformations.

3.4.1 The workload transformation operation

Def. 13: (Workload Transformation) A workload transformation is an operatiof) (V,(t)),
where), and), are VCCs of different types, wit}}, having as its domain the
codomain o, andt € T. We say thaV, transforms),..

For convenience, we introduce the workload transformatmerator® which

we define as
(f©9)t) = flg@)) (3.15)
The operator® has the highest precedence level and is applied from rigéttto
le.
(f © g ©h)(t) = flg(h(t))) (3.16)

Conservative workload transformations

Not all workload transformations are suitable for worstecasalysis. Such
analysis has to guarantee correctness of computed uppkvegrcbounds. There-
fore, onlyconservativevorkload transformations are allowed in it. This means
that a workload transformation of a lower bound has to rasuét valid lower
bound. Similarly, a workload transformation of an upper mbias to return a
valid upper bound. This can be achieved if the workload fangations satisfy
either of the two following rules:

e An upper VCC can only be transformed with anotbpperVCC.

e Alower VCC can only be transformed with anothawver VCC.

3.4. Workload Transformations 39

Tab. 1:

3.4.2

f©Oyg 9=
R VIR VIR Vi
Ve vi

f= Vll vV

v vV
AR v

Conservative workload transformations (marked wjth

Tab. 1 lists all possible workload transformations whictis§athe above rules.

Workload transformations for multimedia VCCs

This subsection describes a set of conservative workl@afiormations which
are defined on the multimedia VCC types proposed in SectianTh8se trans-
formations are needed to extend the existing RTC-basedrpaafece analysis
framework introduced in Chapter 2. They significantly impgrdiwe modeling ca-
pabilities of the framework and thereby enable an accurt®pnance analysis
of distributed execution platforms under multimedia wodds characterized by
the variability of several parameters. This subsectioregnp the role of each in-
dividual transformation within the RTC-based performancalygsis framework.

Suppose that different properties of the system whose qpeéiace we wish
to analyze are specified using a subset of VCCs which were deiin&eéc-
tion 3.3. For the performance analysis, we need to build Bopeance model
out of these VCCs. The first step in constructing such a modelgsiantify the
requested and the offered service in some common units. Adieecof units
depends on particular goals of the analysis and on the imgmdification. As
we will see later in this chapter (in Section 3.4.3), withisiagle performance
model we may need to carry out some computations using resdased units
and other computations using event-based units. Henceajetywaf workload
transformations may be required during constructing agoerdnce model. In
what follows, we list and explain different sorts of worktb&ransformations
which can be useful in the performance analysis.

Input stream arrivals — task activations

This workload transformation maps the arrival process dfeas to the activa-
tion process of the task which processes this stream. Thegiofithe activation
process depends on the timing of the stream arrivals. Thiedause, according

2To correctly interpret Tab. 1, recall Props. 3 and 4 shownenti®n 3.2, stating that the
pseudo-inverse of an upper VCC is a lower VCC, and the psewdose of a lower VCC is an
upper VCC.

40 Chapter 3. Modeling Variable Workload

to our model of computation, a task is activated only if thenber of stream
objects present at its input is larger or equal to the amolustteam objects that
the task will consume during its next execution. The streaamrival process is
specified by event-based arrival curye$, a%). The goal of the workload trans-
formation is to obtain arrival curvegl,, a*)(A) that represent upper and lower
bounds on the number of tasks activations which may occunyrtiene interval
A. The workload transformation can be performed using copsiam curves
(k', k%) as follows.

ap(A) = (k" ©af)(A) (3.17)
a,(A) = (s oap(l) (3.18)

Task activations — execution demand

This workload transformation maps the activation procdss task to the exe-
cution demand imposed by this task on the resource on whekeitutes. The
amount of the imposed execution demand, measured in resbased units per
time interval, depends on the timing of the task activatiand on the execu-
tion demand imposed by each individual activation. The gddhis workload
transformation is to obtain arrival curvés}, a%)(A) which represent upper and
lower bounds on the number of resource units that can be segfiby the task
within any time intervalA. Suppose that the timing of task activations is given
by arrival curvegal,, a*) as defined by (3.17) and (3.18). Then using execution
demand curve$y!, y*) we can transfornfal,, @) into (o, a¥) as follows.

aj(A) = (" ©ag)(4) (3.19)
0 (A) = (v ©@a,)(4) (3.20)

Input stream arrivals — execution demand

Combining (3.17) with (3.19) and (3.18) with (3.20) gives appiag of stream

arrivals expressed in number of stream objects (i.e. intdvased quantities) per
time interval on to the execution demand which is imposecdis/dtream on the
execution resource. The execution demand is then expré@ssesiource-based
guantities per time interval.

aj(A) = (Y or"oar)(A) (3.21)

(A = (Yoread)A) (3.22)
The resulting resource-based arrival curye$, %) can be combined in RTC
computations with resource-based service cu(@sﬁ“). Note that if a task

always consumes only one stream object per one execut@n,fix(k) =
k!(k) = k, then (3.21) and (3.22) can be reduced to

aj(A) = (Y oap)(d) (3.23)
al(A) = (Y oap(d) (3.24)

3.4. Workload Transformations 41

Consumed resources— task executions

Suppose we know resource-based arrival cufves a%)(A) which represent
the upper and lower bounds on the amount of resource untta tagk may con-
sume within any time intervah. The goal of this workload transformation is to
convert these arrival curves into arrival curye$, , o) that represent the upper
and lower bounds on the number of task executions that caufpkelformed for
the given amount of resources modeled(by;, o)(A). This workload trans-
formation can be performed through pseudo-inverses ofsteeution demand
curves as follows.

aL(A) = (7 @ab)(d) (3.25)
al(A) = (v ©ab)(A) (3.26)

Task executions— output stream arrivals

This workload transformation maps the execution processta$k to the arrival
process of a stream produced by this task. The timing of tteast arrivals
depends on the timing of task executions (since the task oaslupe stream
objects only as a result of its execution). In addition, theoant of produced
stream objects may vary from execution to execution. Théafdais workload
transformation is to obtain event-based arrival curvesefstream at the output
of the task, i.e(a},,a¥). Let (al,,a%)(A) denote arrival curves that represent
upper and lower bounds on the number of the task executias#m occur in
any time intervalA. Then, using production curvés', 7*), we can perform the
required workload transformation as follows.

ay(d) = (toaL)(d) (3.27)
ah(d) = (roal)A) (3.28)

Consumed resources— output stream arrivals

Combining (3.25) with (3.27) and (3.26) with (3.28) gives appiag of the
amount of resources consumed by a task per time intervaleémtimber of
stream objects produced by this task per time interval. Wuaskload trans-
formation is performed as follows.

as(A) = (o4 ©ab)(A) (3.29)
ab(A) = (oy" o)) (3.30)

Note that if a task always produces only one stream objectipeexecution, i.e.
if 74(k) = 7'(k) = k, then (3.29) and (3.30) can be reduced to

ap(A) = (vf@oaz)m) (3.31)

ah(A) = (7" @ab)(A) (3.32)

42

Chapter 3. Modeling Variable Workload

3.4.3

Offered resources— task executions

The goal of this workload transformation is to map the amafntesources
which a task is offered per time interval to the number of exiens that this

task can perform per time interval if it uses the offered amaf resources.
The offered amount of resources is modeled by resourcedbss®ice curves
(8, 8%). The number of executions which can be performed for theredfe
number of resources per time interval is modeled by evesg¢dbaervice curves
(B, 3*). The workload transformation can be achieved using pséudwses of

the execution demand curves as follows.

YA = (e8I (3.33)
A = (v @A) (3.34)

Task executions— offered resources

The goal of this workload transformation is to map the serexxpressed in num-
ber of task executions (i.e. in event-based quantitiesgmban be performed per
time interval on to the amount of resources which are necgpsa time interval

in order to offer this service. The number of task executioffisred per time
interval is modeled by event-based service curfvés;3*), and the amount of
resource units offered per time interval is modeled by ressbased service
curves(g!, 3*). The workload transformation is performed via execution de
mand curvegy’, v*) as follows.

BUA) = (o B)(A) (3.35)
B(A) = (Y es)a) (3.36)

Extended Modular Performance Analysis Framework

This subsection explains how the MPA framework describeSdantion 2.2 can
be extended with the workload transformations introducethé previous sub-
section.

The workload transformations can be applied at differenhtgowithin a
scheduling network. Since the transformations must beerwatve, each trans-
formation is typically associated with some loss of accyrat the bounds.
Hence, as a rule of thumb, the total number of workload t@nsations within
a scheduling network should be minimized. There is, howevenore specific
guideline for the optimal placement of the workload transfations within a
scheduling network. We elaborate on it now.

If we use Real-Time Calculus to analyze a scheduling netwank &l event
and resource flows in the network are modeled with arrivalssamdice curves. In
general, we are free to choose whether an arrival (serviceg@xisting between
any two performance components is expressed in event-loasedource-based

3.4. Workload Transformations 43

Fig. 9:

Ex. 2:

PE1 PE2
Y
e, —»T] p———>|T2 >
E YT1 i Y12
e, —3| T3>
; Y13

Scheduling network used in EX. 2.

units. Both representations are possible. We can use tkeddne of choosing the
representation for minimization of the total number of wodd transformations.
Ex. 2 illustrates situations in which the workload transfations are needed and
in which they can be avoided.

Consider a scheduling network shown in Fig. 9 It consists oftiperformance
components that correspond to three ta$ks T2 and T3. T1 and T2 process
event flone; with T'1 being the first in the processing chaifi3 processes event
flowey. T1 and T3 are mapped to processing elemétl, and T2 is mapped

to PE2. Execution demand curves., v1- and~rs; model the execution demand
imposed by, ande; on PE1 and PE2. Assume that all tasks per one execution
consume and produce only one stream object (i.e. consumaitio production
curves can be omitted from the analysis). In this setup,idenshe following
cases:

Suppose that ar'l’s input e; is specified by an event based arrival curve and
PE1’s resource flow is specified by a resource based service c@learly, in
this case in order to analyZ€1 a workload transformation is unavoidable. Ei-
ther the arrival curve ot; has to be transformed into its resource-based equiv-
alent or the service curve &¢fE1 must be transformed into an event-based rep-
resentation.

Consider theventstream at theutputof T'1. Its arrival curve can be expressed
either in resource-based or in event-based units, depgndmthe way it was
obtained during analysis of'l. Assume that this is a resource-based arrival
curve. Only ifyr; = vpo and PE1 and PE2 provide the same amount of re-
sources per time unit, no transformation is needed on theureg-based arrival
curve existing betwe€nl and T2.

Consider theesourcestream at theoutputof T'1. Its service curve also can be
expressed either in resource-based or in event-based dejending on the way

44 Chapter 3. Modeling Variable Workload

incoming
resource streams

!
B Br,

===
<~
D

incoming —uw -1 =—» Performance [-u - outgoing
Oy, Xy, H H OéO . Oéo.
event streams Iy : Component i —0; event streams
R —_—

==
<~
<---1

l
506, Bo,

outgoing
resource streams

Fig. 10: High-level view of a performance component with the RTC interface. Abbiming and
outgoing event streams are modeleddwent-basedrrival curves, while all incoming
and outgoing resource streams are modeleskbgyurce-basedervice curves.

it was obtained during analysis @fl. Assume that this is an event-based service
curve. Only ifyr; = 73, No transformation is needed on the event-based service
curve existing betweén1l andT3.

In Ex. 2, in cases 2) and 3) we were able to avoid some worklcatst
formations. This was only possible under special conditiddnfortunately, in
practice embedded systems can rarely satisfy such comslitiecause typically
their architectures are heterogeneous and execution disnm@aposed on these
architectures by tasks and event streams are divergerstinpiies that typically
in an RTC scheduling network all event streams between padoce compo-
nents will be modeled bgvent-based arrival curvesnd all resource streams
will be modeled byresource-based service curvelSig. 10 shows a high-level
view of a performance component that has the correspondii@jiRerface.

Having defined the interface of a typical performance conepom an RTC
scheduling network, we can now look inside the componentgiard out how
the interface can be optimally implemented. The optimallem@ntation is one
that results in the least loss in accuracy of arrival andiserurves at the output
of the component after its evaluation.

Fig. 11 shows three possible implementations of an RTC pmdoce com-
ponent which involves workload transformations. The impatation in Fig. 11(a)
performs all RTC computations on resource-based curves.thig) the input
event-based arrival curves anda!, are first converted into the corresponding
resource-based arrival curve$ anda!} using (3.21) and (3.22). Then the RTC
computations are carried out. After computing the outpsibuece-based arrival

3.4. Workload Transformations 45

B It
aj u nws gl -1 L a5
—t x| o [l Bol A oy o | 7 s
A A
. A4 A4 .
@ , N 1= Auy o al ! ot o
! Y K “/l » (00818 A B > v ' » 0
LA 4 l v
(87 — af)®0 (87 — ap)20
EA gs”

(a) Double transformation of arrival curves.

51 br
—~U
ay U N —u RuN\ A2l au N u &g
K » [(@n®07)06] A B I
v 7y x v
y o
A 4 Y
a; X | =730\ o3l A 7l ap
! I * [(a,@87)®61] A B » 7l >
A 4 A 4 ¢ v
’Yl ,\/u
o B
(b) Double transformation of service curves.
5 By
=~ U
ar u N ~u Ru\= 2l au N u 06'5
> K " (26706 A B > 1t >
A A
»| ,yu i ,\’/l’l P
A 4 A4
&3 _1 = Auy oAl al 5610
> K * [(a:,087)@587] A B » gl —
A4
o > Al
* A * Y
(B — af)&0 (Bf — af)20
IO v By

(c) Optimal implementation.

Fig. 11: Three possible ways to implement workload transformations within an elemdRi&y
performance component.

46

Chapter 3. Modeling Variable Workload

curvesad, andal,, we need to transform them back to their event-based rep-
resentationsq? andal,) for exposing them on the component’s interface. We
accomplish this with (3.29) and (3.30). Thus, in the schemEig. 11(a) we
apply the workload transformations twice to the event flow.

The implementation in Fig. 11(b) performs all RTC computas on event-
based curves. This necessitates to apply the workloadfdramations twice to
the resource flow, i.e. to the service curves. (The requiratkivad transforma-
tions are performed using (3.33)—(3.36) as indicated in Figb).)

Both implementations, the one depicted in Fig. 11(a) and treedepicted
in Fig. 11(b), have a common problem—a loss of accuracy chbgehedou-
ble workload transformatiompplied to the arrival (or service) curves through
execution demand curved and~'.

To understand the problem, consider the workload transttoms described
by (3.21) and (3.29). For the sake of simplicity, assume tf&k) = & and
7" (p) = p and that there is no backlogged events at the componentis iBpp-
pose that on some interval all &} (A) events arrive at the component’s input
and that they all impose the worst-case execution demaiigab a}/)(A) re-
source units. Now, assume that all the arrived events gepletely processed
in the same interval\. This means that there were at leést © ay)(A) re-
source units available i\ for processing the events. This also means that
ap(A) > (v* @ af)(A). If instead ofag, (A) we plug(v* @ af)(A) into (3.29)
in order to find how many events can be produced at most witrahthe compo-
nent’s output for(v* ® a¥)(A) resource units, we obtain' ' ©~v* © a¥)(A).
From the general property of VCCs (3.13) it directly followsith

(Y eyt ean)(Aa) > ai(A) (3.37)

~* and~! of any event stream witkiariable execution demand never coincide
and thus the inequality (3.37) is typically strict. Furtmere, the higher the
variability of the execution demand the larger the diffeemetween left and
right sides of (3.37) can be (since, for some)*(k) can be considerably larger
than~!(k)). This results in an overly pessimistic workload convatsio

Inequality (3.37) leads us to the understanding of the bablem with
the double workload transformations. It can be summarizetbbows. The
resource-based arrival curves carry almost no informattmwout timing of event
arrivals in the corresponding event stream. As a result,temat to recover
this information under safe assumptions ends up at ovedgipestic bounds.
Similarly, the event-based service curves carry almoshf@wmation about the
amount of offered resource units. Hence, recovering tlicgrmation under safe
assumptions also results in overly pessimistic bounds.reftwe, the double
workload transformations must be avoided.

An implementation of the performance component which is tkany dou-
ble workload transformations is shown in Fig. 11(c). Thigpiementation is

3.5. Obtaining Variability Characterization Curves 47

3.5

3.5.1

optimal in a sense that it minimizes the inaccuracy intreduinto the resulting
bounds as a result of workload transformations.

Summary

In this subsection, we addressed the problem of extendiagexisting MPA

framework with workload transformations. We showed thabider to avoid

a considerable loss of accuracy while introducing the woma#ltransformations
into an RTC scheduling network, the following two principleave to be fol-
lowed:

the total number of workload transformations in a networdwstl be minimized;
the double workload transformations should be avoided.

Based on these principles we developed a mathematical mbdel RTC per-
formance component which can be used in the extended MPAetkank. The
model represents the main result of this subsection. Itptucad by the follow-
ing set of equations:

ap = ™o((roafey” @@)é T oBAYT @B (3.38)
ap = 7o ((x ®0q®7 LOBN ey @B A" O8] (3.39)
= - oeroa)oo (3.40)
gy = (B—y" oK ©ay)®0 (3.41)

Obtaining Variability Characterization Curves

The quality of results delivered by performance evaluasiod scheduling meth-
ods using VCCs largely depends on the quality of VCCs suppliekdeimtas an

input for the analysis. The quality of the VCCs, in turn, degend the way

in which they have been obtained. This section discussesamt issues and
outlines several approaches to obtaining VCCs.

Objectives and limitations

Recall from Section 3.2 that a VCC is essentially an upper owaidboundon
the worst-case or, respectively, best-case variabilitiup€tions belonging to a
given set. Hence, any considerations that can be made aloosit-@ase bounds
in general are also applicable to VCCs. Nevertheless, to geaviramework for
a discussion of different ways for obtaining VCCs, in this dh®n we revisit
some of the relevant general issues by putting them in the \2@&t.

At least two objectives have to be pursued while obtainingc&y

48

Chapter 3. Modeling Variable Workload

Guarantee: A VCC has to guarantee thatfuillly captures the worst-case (or
best-case) variability of a given function set, i.e. it hase a proper bound.
This guarantee is a necessary condition for obtainingbiglieesults from any
analysis based on the given VCC.

Tightness: A VCC has to be as tight as possible. The tightness of the VCC can
influence the accuracy of the analytical results. The tigtite VCC the more
accurate variability characterization it provides andndes the more accurate
analytical results can be achieved through its use.

In order to see the whole range of possibilities for obtaggCCs we have
to make a clear distinction between a given set of incredsimgfions to be char-
acterized by a VCC (refer to Defs. 1 and 2) and the informatesel on which
the VCC characterizing this set is constructed. We refer th soformation as
the source information In the simplest case the source information represents
the function set itself. The corresponding VCC can then beegdirectly from
this set. In other cases the function set might not be exigliavailable or it
may be incomplete, however, some knowledge about it stillloa at our dis-
posal. This knowledge, which can serve as the source intfoymen such cases,
may be in the form of assumptions, formal specificationsiowsr bounds and
parameter estimates pertaining to the system at hand @& ¢émvironment or to
both. Sections 3.5.2, 3.5.3 and 3.5.4 provide some conexataples of possible
forms of the source information.

Having drawn the distinction between the function set to haracterized
and the source information based on which a VCC is construetednake the
following assertions.

The guarantee, which a VCC is required to provide, depends@mparticular
modeling and analysis goals. These goals, therefore,mdeterthe function set
to be characterized by the VCC.

Whether or not a VCC provides the required guarantee depenldgvoguaran-
teed (i.e. reliable and sufficient) is the source informatiased on which the
VCC has been constructed and does not depend on a particulaoangsed to
construct it}

The tightness of a VCC depends on the accuracy of the sourcamation as
well as on the method which has been used for constructing @

In summary, we identify the following principle limitatisnin achieving the
objectives set forth in the beginning of this subsectione §harantee provided

3|f the source information is reliable and sufficient for pidiag the required guarantee but
nevertheless the resulting VCC does not provide this gteeathen the method is wrong (e.g.
contains some faults). We exclude such cases from the @rasioh by assuming that any
method for obtaining VCCs is correct.

3.5. Obtaining Variability Characterization Curves 49

3.5.2

Def. 14:

Def. 15:

by a VCC is limited by the reliability and sufficiency of its soe information,
whereas the tightness of the VCC is limited by the accuracyotf the source
information and the method by which the VCC has been obtained.

Obtaining VCCs from traces

As Section 3.5.1 mentions, one of the possible ways to olt&M&C is to con-
struct it directly from the function set which this VCC has t@mcacterize (i.e. in
this case the source information for the VCC is the functiditself). Obviously,

being able to obtain a guaranteed VCC in this way requiresalfunctions in
the set to be precisely defined. Furthermore, by constiycivCC directly

from the function set we can obtain the tightest possible VQ@GHis set. Such
tightest upper and lower VCQ=n be computed as defined below.

(Tightest Upper VCC) The tightest upper VCRY" for a given set of increasing
functionsA is computed as

Vii(s)= sup {Ai(t+s)— Ai(t)} VseT (3.42)
VA, EA, VteT

(Tightest Lower VCC) The tightest lower VC®Y" for a given set of increasing
functionsA is computed as
Vi (s) = VAiEIE,thG’H‘{AZ(t +s5)—Ai(t)} VseT (3.43)
Showing thatV{* computed with (3.42) is theghtestupper VCC forA is
straightforward: any other functiovi, such that’(s) < V%*(s) for somes, is

not an upper VCC ford by Def. 1. By following a similar reasoning},” com-
puted with (3.43) can be shown to be the tightest lower VCC.

In practice, the increasing function(¢) from which a VCC is constructed
can be computed frortraces A trace is a sequence of events which have oc-
curred as a result of a system execution at a given point irsyseem or its
environment (e.g. at a specified input or output or procgssiement). Let
v; € R>p andt; € T denote, respectively, the value and the occurrence time of
jth event recorded in a trace. Then the increasing funcfimorresponding to
this trace can be computed as follows.

Alty= > v, and A(0)=0

Jiti<t

Traces are collected by measuring the parameters of ihiarageal system
or its simulator. The event values can represent different parameters of the
system’s behavior. For example, they can indicate arrvbés/ents at an input
of the system, or they can be execution times of a task whielearorded into

50

Chapter 3. Modeling Variable Workload

3.5.3

the trace each time the task finishes its execution, etc. €berence time;
does not need to be an absolute time. It can also be a sequemi@nof an
event in the trace.

Note that in order to obtain the VCCs it is not necessary to fiostvert
the traces into the increasing functions. The VCCs can be mmtst directly
from the traces. For this purpose, the traces are analyzstidayg along them
windows of different sizes. The window size correspond$igoargument value
for which a VCC is computed. The value of upper (lower) VCC forieeg
argument value is then the maximum (the minimum) sum of tvad@esv; that
fall into a window of the corresponding size.

Discussion

Although VCCs obtained from traces can accurately capturstwiase and best-
case variability in the event streams, they have a restiragd@licability. In partic-
ular, such VCCs cannot be used for the timing analysis of haletirme systems.
The hard real-time analysis has to fully cover all possilylgtem states and in-
teractions with the environment. Hence, if such an analyses VCCs that have
been obtained from a set of traces, then this set must coaltgiossible traces.
For most of the realistic systems, however, generatingthausstive set of traces
Is infeasible.

Despite their limitation mentioned above, the VCCs obtainednftraces
have a wide range of applications in the analysis and dedigofb real-time
systems. For this class of systems the full coverage of tlaéysis is not so
essential as for the hard real-time systems. Some rare epganal system
behaviors can be omitted from the consideration espedialtile context of a
system-level design space exploration. Therefore, a sghoés representing
typical cases may be sufficient for obtaining a VCC for analg$isoft real-time
systems.

Since most of the multimedia systems belong to the classfofeal-time
systems, in this thesis for experimental case studies wg¢ Q€& that have been
obtained from traces. Appendix A gives details on the sitmaframework
used to collect the traces and obtain from them the VCCs.

Obtaining VCCs from constraints

Sometimes no complete information is available about fonst4; belonging to

a given setA to be characterized by VCCs. The set of functichmight not be
explicitly defined or it might be defined only partially. Fosstance, exact values

of functions A; may not be known because of some uncertainty in parameters
of a modeled system or its environment. In such situatiosstitihtest upper
and lower VCCs cannot be obtained using (3.42) and (3.43). Vi&Ds can be
constructed based on some other kind of source informdtemthe function set
itself. This subsection and Section 3.5.4 are devoted ts@udsion of such ap-

3.5. Obtaining Variability Characterization Curves 51

10

[events x 104]
[6;]

0 20 40 60 80 100
time interval, A [sec]

Fig. 12: An upper arrival curve for an event stream at the output of a PEhwdao at maximum
process 10000 events in any interval of 10 sec.

proches. More specifically, this subsection illustrates K& Cs can be obtained
from various kinds of constraints and assumptions abousystem and its en-
vironment, while Section 3.5.4 gives an example of how VCCshmanbtained

from formal system specifications.

Before a design of an embedded system is started, there istaéiveays
a certain amount of pre-specified information about charestics of the future
system and its environment. In the design process thisirdton becomes more
and more refined. Such information may include various tmequirements
and constraints, estimated or available from data sheéisrpence figures and
other characteristics that pertain to the system, its iddad components and
tasks, its target execution platform and the environmerdr eéxample, if the
embedded system is to process a media stream, the streaarsqtars such as
the arrival rate and the maximum jitter can be known and fixatecgarly in the
design cycle.

The various information available at the design time abloaistystem and its
environment can be used to reason about the worst-casestecdie) variability
of certain system characteristics. l.e. based on thisnmétion the VCCs can
be defined for some, not necessarily all, argument values.theorest of the
argument values the VCCs can be approximated by making sonmst-vase
assumptions.

For example, suppose that the only knowledge we have aboktia tat
at maximum it can process 10000 events within any intervdlGogec. Using
only this constraint we can already construct a proper uppesl curve for the
processed event stream at the output of this PE, as it is simokig. 12.

52

Chapter 3. Modeling Variable Workload

Fig. 13:

3.54

Ex. 3:

un_compressed |PBBPBBIPB... compressed
video frames bitstream

; PE
Video .
Input > MPEG-2 —_—>| /10 |—F—»
encoder

MPEG-2 encoding system considered in Ex. 3.

v

Obtaining VCCs from formal system specifications

In some cases VCCs can be obtained from system specificatiorg fosmal
methods, as opposed to somewhat ad hoc approaches ikdstneégection 3.5.3.
This subsection exemplifies one such formal method for nlrigiexecution de-
mand curves. This method is based on the formalism of finéte shachines
(FSM), which is used to specify system functionality andpanmdies of event
streams. A theoretical background and other relevantldetad ramifications
of this method can be found in [166, 168].

Consider an MPEG-2 encoding system shown in Fig. 13. Uncosgreadeo
frames captured by a video camera arrive at the input of a engabcessor.
The media processor compresses them using an MPEG-2 egcalgiorithm
and sends the compressed bitstream, for instance, to a rietWMa assume that
the MPEG-2 algorithm is entirely implemented on one proogsslement (PE)
within the media processor. Our goal is to construct an uppecetion demand
curve for the workload imposed by the MPEG-2 encoder task @R Eh

In order to formally specify the system we need to know sonagisiabout
the behavior of the MPEG-2 encoder. They are presented below

The MPEG-2 compression scheme exploits three frame typestale video
information. These are I-, P- and B-frames. Before the cesgion, a pre-
processing stage indicated in Fig. 13 ¥&leo Inputassigns to each input video
frame one of these types. After that, depending on the frapestihe encoder ex-
ecutes different subtasks to compress the frame, as shovign itdE- As a result,
different frame types will impose different execution destsaon the processing
element, as specified in Tab. 2.

The MPEG-2 standard [118] does not specify any particulgplementation
of the encoder algorithm. System designers, thereforecloaose between many
different implementation options. In particular, the sfand does not specify
specific frame patterns that can be used by the encoder toressya video
sequence. Advanced encoders use several predefined patetcan arbitrary
switch between them based on the characteristics of the ingeb\sequence.
Likewise our encoder can generate three commonly used pattéPB, IPBB
and IPBBPBB. Furthermore, if a scene change has been ddtéctine input

3.6. Experimental Evaluation 53

Fig. 14:

Tab. 2:

3.6

ME, ;. :Motion Estimation (backwards/forwards) VLC : Variable-length Coding
MC : Motion Compensation 1Q : Inverse Quantization
DCT : Discrete Cosine Transform IDCT :Inverse DCT

Q : Quantization ADD : Addition

Task graph of the MPEG-2 encoder algorithm indicating processing patlisfferent
video frame types.

Frame| Worst-case execution
type time [cycles]

I 2-10°

P 8- 10°

B 20 - 10°

Execution demand of the MPEG-2 encoder for each frame type.

video stream, the encoder can interrupt the currently gatesl pattern at any
place and start generation of a new pattern. This behavimwyédwver, is subject to
a constraint: whenever a scene change has been detected avd pattern has
been started, at least three consecutive frames must beledwaithout pattern
interruption. An FSM describing the frame pattern genematbehavior is shown
in Fig. 15.

Given the specification in the form of FSM in Fig. 15 and usimg Wworst-
case execution demands of different frame types from Tate 2an derive an
upper execution demand Curypec._sencfor the MPEG-2 encoder task. For this
we annotate all transitions of the FSM with the worst-case ex@tulemands
of the corresponding frame types. As a result of this animtatve obtain a
weighted directed grap&'mpec-2ene The value ofpes.end €) then is the weight
of the maximum-weight path of lengthn Gypec.2enc[168]. Fig. 16 shows the
resulting execution demand curve.

Experimental Evaluation

This section presents results of an experimental evalaticdhe VCC-based
workload model [113,167]. The VCC-based model is compareditaditional

task model widely used for scheduling and performance argbyf real-time
embedded systems. Performance figures obtained from VCC-basdysis are

54 Chapter 3. Modeling Variable Workload

Fig. 15: FSM specifying frame patterns generated by the MPEG-2 encoder.

300

250+

2001

150

[cycles x 106]

100}

50

0 5 10 15 20
[video frames]

Fig. 16: Upper execution demand Curv§pec.oencfor the MPEG-2 encoder task obtained from
FSM in Fig. 15 using worst-case execution demands given in Tab. 2.

also compared to measurements collected from a systematonul he experi-

mental results show that the VCC-based model returns comasilyetighter per-

formance bounds than those computed using the traditiasél model. Fur-

thermore, the comparison of these bounds with the simulatieasurements
indicates that they provide useful estimates of systemeptigs and therefore
can serve as a sound basis for making design decisions.

For the evaluation of the VCC-based model, we apply it to twinogation
problems that may arise in the design context of multimed@EShC architec-
tures. Both problems concern clock rate minimization of a REE@ssing media
streams. Having the processor clock speed optimized isriiapoin many de-
sign scenarios, as even a modest reduction in the clock r@ydead to consid-
erable savings in the system cost and energy consumption.

The design scenarios which we consider in this experimesttaly a rela-
tively simple. This simplicity facilitates the comparisofthe VCC-based model
to a traditional workload model. That is, to achieve a faimparison, we se-

3.6. Experimental Evaluation 55

compressed
video

B, PE1
Net
TE
Q

Video
ouT

v

Fig. 17: MPEG-2 video decoder design scenario: The MPEG-2 decoder algoistimapped

3.6.1

onto two PEs of an MpSoC platfornPE1 executes VLD and IQ functions, whilRE2
executes IDCT and MC functions of the decoding algorithm. The goal istermdee
minimum clock rate oPE2 ensuring that the FIFO buffer at thid2's input, Bo, never
overflows.

lected the optimization problems such that they can be ddiyeusing either of
the models. Applications of VCCs to more complex schedulirg@erformance
analysis problems are demonstrated later in this thes@hapter 5.

The traditional workload model to which we compare the VCCebanodel
in this experimental study characterizes execution denshmadtask by a single
value—its WCED. As an alternative to this characterizationpnapose the ex-
ecution demand curves. To clearly see the gain from usingtbrg VCC type,
we characterize other properties of the tasks, such asgiofiarrivals, in both
models in the same way. In this sense, our “traditional” nhaderesponds to
that proposed in [24, 25].

Section 3.6.1 addresses the processor rate minimizatimipigmn under a
buffer constraintwhile Section 3.6.2 addresses the processor rate mirtionza
problem under alelay constraint In the former case, for calculations of the
minimum processor rate we use VCCs obtained from traces. Ilattez case,
the calculations are performed on analytically obtained V.G&both cases, the
evaluation criteria is the tightness of the computed loveartal on the processor
rate.

Processor clock rate optimization under buffer consaint

Design scenario

Fig. 17 shows a mapping of an MPEG-2 video decoding applinadnto an
MpSoC platform consisting of two PEBE1 andPE2. One part of the MPEG-2
decoding algorithm, including VLD and 1Q functions, is irepiented orPEl,
while the rest of the algorithm, i.e. IDCT and MC functionsingplemented on
PE2. Given this mapping, the video decoding occurs onrtiaeroblock level
and proceeds as follows. First, an MPEG-2 bitstream artivesigh a network-
ing interface at the input dPE1. After applying to it VLD and IQ functions,
the video stream emerges at tAE1’s output as a sequence drtially decoded

56

Chapter 3. Modeling Variable Workload

macroblocks. Each such partially decoded macroblock sepits a data struc-
ture containing decompressed IDCT coefficients and, if apple, motion vec-
tors. PE1 writes this stream of partially decoded macroblocks inte@ buffer

Bs;. PE2 reads fromB; one macroblock at a time and completes its decoding
by processing it with IDCT and, if necessary, MC functions.teiAfthat, PE2
writes the fully decoded macroblock into buftBy, which is read by a video out-
put interface. Finally, after some additional post-preoes in the video output
interface, the resulting video signal appears at the sysiaiput for rendering

on a display device.

The design goal in the scenario described above is to deteram optimal
clock rate ofPE2. Suppose that one of the criterion for the selection of tbelcl
rate is to ensure that buffés, at PE2’s input never overflows. That is, we are
interested in finding dower boundon the clock rate oPE2 ensuring thatB,
never overflows. For simplicity, we assume that both PEs ¢n E¥ execute
no tasks other than the tasks performing the MPEG-2 videodieg functions.
This assumption means that processing capaciififandPE2 is fully devoted
to execution of the MPEG-2 decoding tasks.

Intuitively, avoiding infinite growth of the backlog &f2’s input necessitates
PE2 to run at a rate which is high enough to fully process iloag termthe
workload imposed on it by the video stream. This conditiomaesessary but
not sufficient for preventing overflows @f,. For this condition to be sufficient,
buffer B, has to be large enough to completely absorb transient @aslofPE2
due to workload bursts. However, in this design scenari@sgeme that the size
of B, is insufficient to completely absorb such transient ovet$odl his means
that to avoid overflows oB; the clock rate oPE2 may need to be substantially
higher than the rate determined by the long-term averagkleam imposed on
this PE. In other wordsp, imposes a constraint on the minimum clock rate
at whichPE2 is allowed to run. In this situation, we say that there isuffer
constrainton the clock rate of the PE. Again, for simplicity, we will agse that
in Fig. 17 no buffers are constrained besidgs

Modeling workload with VCCs

The minimum clock rate at whicRE2 in Fig. 17 has to run in order to guarantee
that bufferB, at its input never overflows depends on how bursty is the veaukl
imposed orPE2. For a given size of3,, the higher the workload variability is,
the higher the clock rate must be. Hence, for the analysiseed somehow to
capture this workload variability oRE2. For this we employ VCCs.

Workload variability onPE2 originates from two sources: (i) execution time
of VLD and IQ functions onPEl is highly variable resulting in bursty arrivals
into buffer By; and (ii) execution time of IDCT and MC functions &2 itself
is also variable. To characterize the burstiness of tharsti@ thePE1’s output,
we use upper event-based arrival cuive while for the characterization of the

3.6. Experimental Evaluation 57

Thm. 1:

execution demand of IDCT and MC functions BR2 we employ upper execu-
tion demand curve". Furthermore, since at each execution the task performing
IDCT and MC functions always consumes frdsg exactly one macroblock, its
consumption curves! (k) = k%(k) = k.

Lower bound on processor rate under buffer constraint

Let L denote the size of buffeB, measured in number of stream objects (i.e.
macroblocks). The upper bound on the backlog experienceddtseam at the
input of a processing element can be computed using (2.18edan (2.10) we
can formulate a constraint which requires that this uppendmever exceeds:

L>(a"—3Y%A) YA>0

Using this constraint, we can easily compute the requiregtevent-baseder-
vice curve3' which ensures no buffer overflows for the stream constrabyed
a“. However, instead of' we are interested in finding the requiregsource-
basedservice curve? which is expressed in number of processor cycles per
time unit. Froms! we will be able to compute the requiretbckrate. Thus, we
need to reformulate the above constraintsor We can do this using workload
transformations vig* in two ways:

(i) B (A) > ~v*© ((a*(A) — L) v 0); and
(i) '(A) > (7" @ a*)(A) —~4(L)) V0.

The latter constraint is more intuitive and more consevedtian the former and
hence there may be a temptation to consider it as the onlgaarne. We show
that the former constraint also leads to a correct boun@'cand therefore, to
achieve a tighter bound g#f, the former constrained has to be used. Since this
basic result will be used in other parts of the thesis we fdateut as a theorem:

(Buffer-constrained service)The backlog in front of a processing element caused
by an event stream characterized by upper event-basedhoivvea™ and up-
per execution demand curv¢ never exceedg events if the lower resource-
based service curvg' offered to the event stream on this processing element
satisfies

B(A) >~ ((@“(A) - L)v0) YA>0 (3.44)

under the assumption that the consumption cur/@s) = (k) =k Vk > 0.

Proof. We have to show that j# satisfies (3.44) theh represents a valid upper
bound for the maximum backlog. For this, it is sufficient towstthat L is larger
or equal to the known upper bound on the backlog determingd.tQ) [85], i.e.
we need to show that

L>(a"—3Y%A) YA>0 (3.45)

Chapter 3. Modeling Variable Workload

Using Prop. 1 of upper VCCs, we can rewrite (3.44) as follows
(v @B (A) > (@"(A) = L) VO VA >0 (3.46)
Assume thatv*(A) — L > 0, then (3.46) takes the form
L>(@"—~""og)A) VA>0: a“(A)—L>0
From (3.34) we know that'(A) = (v* " ® 8)(A), and hence we get:
L>(@a"—p3Y%A) YA>0: a“(A)—L>0
Now, if we assume that“(A) — L < 0, then (3.46) takes the form

(P OA)A) =0 YAZ0: a"(A) —L<0

BHA)>0 YA>0: a“(A)—L<0

The same hods true for (3.45)df'(A) — L < 0.

Thus we have shown that in both cases, wiaéfA) — L > 0 and when
a*(A) — L <0, (3.44) implies (3.45), i.e.L represents a valid upper bound
for the maximum backlog[]

Since the full processing capacity 8f£2 is devoted to the video decod-
ing task, the shape of the lower resource-based service esidetermined by
B'(A) = f- A, wheref denotes the clock rate ®fE2. Hence, to find the lower
bound on the clock rate dfE2, we can rewrite (3.44) as follows

"o (@A) = L)V 0)

A
A VA >0

f=

Finally, we obtain

e ((@“(A) = L) Vo)
{ X } (3.47)

fmin = sup
VA>0

(3.47) gives the analytical lower bound on the clock rate B2 which guar-
antees that the buffer constraihis satisfied.

3.6. Experimental Evaluation 59

20 ‘ 35
-
181 al -
161 e
o 14r 28 e
X q2p o | ot
2 % 2 T
g 10 L 3 s :
5 < 15f e =
g 8 = é 7 //é
IS ’ // 1
£ 6f 1 //
e =
4+ / 4 05l ° ///4/
2t # 4 L2 -
‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 : ; ;
% 005 01 015 02 025 03 035 04 0 05 1 W 2
A [seconds] [macroblocks x 107]
(a) Event-based arrival curve* (b) Execution demand curvg’

Fig. 18: Workload characterization dAE2. Thin lines correspond to VCCs of individual video
sequences. Solid thick lines show VCCs representing the whole set of sédgiences.
The dashed line on“ plot (b) represents the execution demand curve corresponding to
the traditional task characterization with only one value—task’s WCED.

Obtaining a* and ~* from traces
We conducted experiments with a set of 14 different MPEGe2w@isequences
encoded with the following parameters: 9.78 Mbit/s constanrate (CBR),
main profile at main level (MP@ML), frame rate of 25 fps, andalation of
720 x 576 pixels. By simulating decoding of these sequences on the Sim-
pleScalar instruction set simulator (ISS) [8], we colleicexecution demand
traces for tasks mapped onitd1 andPE2 in Fig. 17. From these traces, us-
ing the analysis technique described in Section 3.5.2,doh&ideo sequence in
the set we obtained event-based arrival caryand execution demand curyg,
i=1,2,...14. These VCCs are shown with thin lines on the plots in Fig. 18.
From all VCCsa}* and~;* obtained for individual video sequences, we calcu-
lated event-based arrival curag, and execution demand curyé representing
thewholeset of video sequences:

a4(8) = max{at(A))

75 (k) = max{;'(k)}
The resultingyy, and~s: are indicated in Fig. 18 with solid thick lines.

Comparison to traditional task characterization model
Two workload models can be compared based on the tightnéss loiver bound
on the processor ratg,;, computed using these models for a given buffer con-
straintL.

As a basis for the comparison, we took a widely used task miadehich
task’s execution demand is characterized by only one valiits WCED* [100].

4In the literature, WCED is more often referred to as WCET.

60

Chapter 3. Modeling Variable Workload

Unlike execution demand curves, this model does not exatoitknowledge of

task execution sequences to characterize the task exeaémand. Instead,
it considers only individual task instances, assuming #vatry such instance
imposes WCED on the processor. As for modeling arrivals of la tass task

model specifies either the period with which the task arrinés the system or
the minimum time interval between its two consecutive ataythe minimum

inter-arrival time).

We were interested in quantifying the gain resulting fronmgsonly one
VCC type—the execution demand curve. For this we computebbiter bound
on the processor rate by evaluating (3.47) for the VCC-baseatehand for the
traditional task model. For the VCC-based model, we directoun (3.47¢,
and~¢ obtained above. For the traditional task model, we evatLig83e47) as
follows:

Instead of using the minimum inter-arrival time (or the pédjifor the charac-
terization of the arrivals of the macroblock stream at thmutrof buffer B; in
Fig. 17, we used less pessimistic characterization witmeasuredy.. (In this
respect, we did not fully respect the the traditional woakianodel.)

For the characterization of the execution demand imposékéiyideo decoding
task onPE2, we used WCED of this task measured over all video sequences. We
note that such WCED equals 4¢(1) determined above. Hence, the execution
demand curve corresponding to the traditional charaetoiz is a straight line
with the slopeyi(1), i.e. vy opp(k) =k -75%(1), k = 0,1,2,.... Consequently,
we usedhii ~p for the evaluation of (3.47). Fig. 18(b) show§, .., with a
dashed line.

Note that the existing RTC MPA framework reported in [24, @5¢s exactly this
model (with~ii, - p In place ofy").

Fig. 19(a) shows the lower bound on the clock rat®BR versus the length
of buffer B, computed using (3.47) for the VCC-based model (solid line) and
for the traditional workload model (dashed line). By inspegtthe plots in
Fig. 19(a) we can make the following observations:

. With increasing sizé of buffer B, the minimum clock rate at whicRE2 can

run without causing buffer overflows decreases. Both workio@dels expose
this trend.

. The clock rate bound calculated using VCC-based model mgfisigntly tighter

than that calculated using the traditional workload modigh\a single WCED
value.

Fig. 19(b) shows how much exactly we can gain by using the VC&&danodel
in place of the traditional model. For small buffer sizés< 2000) the gain is

3.6. Experimental Evaluation 61

2000 : : : : 55

\
18001 1

A 501
1600+ * 1

N
[s)
=]

1200

1000

clock rate [MHz]

®
=]
=]

[}
=]
]

35-

IS
o
]

200 30
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

buffer length [macroblocks] buffer length [macroblocks]

(a) Lower bound on the clock rate Bf£2 (b) The gain from using the execution de-
mand curve

Fig. 19: Experimental results. On the left plot, the solid line corresponds to the lowerdoo
on the clock rate oPE2 calculated using execution demand cum¥e the dashed line

corresponds to the bound calculated using the traditional task charatiterizvith a
single WCED value.

about 30—-40%, while for larger buffer sizes the gain may barge as 50%. This
means that the VCC-based workload model may result in up toitwestless
pessimistic estimations of system parameters than thititraal model, leading
to considerable savings in system cost and power consumptio

Comparison to simulation

To estimate the degree of pessimism incurred by the VCC-baeddlpwe sim-
ulated the video decoding system shown in Fig. 17 with thelkcltate of PE2
set to the values calculated using (3.47). More specificadiyng (3.47) we com-
putedf,.;, for a given buffer constraint and then simulated a transaction-level
modeP of the system shown in Fig. 17 with the clock rateRIf2 set to ;...
For each simulated video sequence, we measured maximurfofaokbuffer
B, and compared this measured number to the given buffer eomistr. The
closer the measured maximum backlog to the given buffertcains L was, the
less pessimism the VCC-based workload model incurred.

For investigation of the pessimism incurred by the VCC-basedeah we
conducted a number of experiments with different values“odnd~" plugged
into (3.47). For the experiments, we used the same set of 1BEGQAP video
sequences as described in the preceding paragraphs aflisescsion. Following
is a summary of the conducted simulation experiments.

e First, we experimented with VCGs{. and~s characterizing thavhole set of
video sequences (as defined above). That is, in (3.47) we afseday. and
v* = ~s. Fig. 20 shows the maximum backlog registered in buffemwhile de-

SAppendix A gives details about the simulation environment.

62 Chapter 3. Modeling Variable Workload

08 T T T T T T T T T T T T T
Buffer size:
I 250
I 500
"] 1000
04} 1 13000

0.2 ,

normalized max. backlog

i1 2 3 4 5 6 7 8 9 10 11 12 13 14
video sequence #

Fig. 20: Normalized maximum backlogs registered in buff&rin Fig. 17 when the clock rate of
PE2 was set to the values obtained from the VCC-based model characterieiwdke
set of the MPEG-2 video sequences.

coding different video sequences in the set. The maximurklbgshown in
Fig. 20 is normalized to buffer constraiht("buffer size”) for which the corre-
spondingf,.;, was computed. The bar plot in Fig. 20 shows that for all but one
video sequence (#1) the maximum backlodsinwas less than half of buffer size
L. For video sequence #1 and buffer sizes {250, 1000, 3000}, the maximum
backlog was about half af. However, for buffer sizd. = 500, video sequence
#1 caused3, to be filled up to 80%. Although for the rest of video sequeribes
computed bound on the clock rate is seemingly pessimistienghe fact that we
performed worst-case analysis by abstractingwhele set of video sequences
with only one pair of VCCsat. and~s, we can conclude that the pessimism
incurred by the VCC-based model is relatively low. The simatatesults pre-
sented in Fig. 20 indicate that sequence #1, probably, iegashighly bursty
workload onPE2, and represents for the system the most "adverse” (in terms
of the imposed workload) video sequence among all otheresems in the set.
VCCs could accurately capture this worst-case.

e To estimate how pessimistic a VCC abstraction airaglevideo sequence can
be, we conducted a series of experiments in which for contiputaf the lower
bound on the clock rate d?PE2, we plugged into (3.47) VCCs characterizing
individual video sequences. That is, in (3.47) we ugéd= o} and~"* = 7%,
wherei = 1,2,...,14. Thus, for a given buffer sizé& we computed values of
fmin for each video sequence in the set and simulated decodingcbf\edeo
sequence with the corresponding to it valuefgf,,. The resulting normalized
maximum backlogs registered in buffBs are depicted in Fig. 21. The simula-
tion results in Fig. 21 show that for all video sequences diifaliéer sizesL the
maximum backlogs imB, were larger than 50%. Moreover, in Fig. 21 we can
see that in many configurations the buffer was almost fullis Tindicates that

3.6. Experimental Evaluation 63

[any

Buffer size:

1 I 250
I 500
4 [1000
[13000

N o o
IS =) o)

normalized max. backlog
o
o

o

2 3 4 5 6 7 8 9 10 11 12 13 14
video sequence #

Fig. 21: Normalized maximum backlogs registered in buffer in Fig. 17 when the clock rate
of PE2 was set to the values obtained from the VCC-based model characterizing ea
MPEG-2 video sequence individually.

VCCs obtained for individual traces (in our case video segegncan provide
highly accurate abstractions for these traces. This stgtjest instead of time
consuming simulations, system-level performance eviaunatould be carried
out analytically using these VCC-based abstractions withaansiderable loss
of accuracy of the resulting performance numbers. Althaaghis case VCC-
based model would not be able to guarantee coverage of ttst @ase, at least it
could speedup the performance evaluation process, pbthdé¢the VCC-based
analytical model can be efficiently evaluated. In fact, ottmmparative studies
[25, 115] have demonstrated that the VCC-based models camberfiers of
magnitude faster than the corresponding system-levellators.

¢ Finally, based on the experimental results obtained alvogdyypothesized that
VCCs could provide a relatively accurate characterizatiorgfoupsof traces
(video sequences) witkimilar properties. To check this hypothesis, we con-
ducted simulations with a subset of the video sequencesinsled experiments
above. We formed this subset by inspecting V& sind~}* of individual video
sequences (shown with thin lines in Fig. 18). Such "outliaxs for example,
video sequence #1, which mainly determined shapesio&nd~s: (shown in
Fig. 18 with thick lines), were not included into the subg&t.a result, the sub-
set included video sequences whose VCCs had similar shapeguerses #4
through #14. For this subset we then calculated VG@Esand~s. by following
the same procedure as we used above for the calculatiofi ahd~:. Using
(3.47), we computed,,;,, for different values of buffer sizé and witha* = at.
and+" = ~4., and performed corresponding system simulations. Théetimgu
normalized maximum backlogs registered in buffgrare shown in Fig. 22. In
this figure, we can see that for most configurations buffgrvas occupied ap-
proximately for 50—90%. This is an indicator that VCCs can e\an accurate

64

Chapter 3. Modeling Variable Workload

[any

Buffer size:

I 250
I 500
"] 1000
[13000

o o o
N (2] [e0]
T T T
1 1 1

normalized max. backlog
o
o
T
1

4 5 6 7 8 9 10 11 12 13 14
video sequence #

o

Fig. 22: Normalized maximum backlogs registered in buff&rin Fig. 17 when the clock rate of

3.6.2

PE2 was set to the values obtained from the VCC-based model characterigirzset
of the MPEG-2 video sequences with similar VCC shapes.

abstraction for groups of traces (video sequences) withesiproperties. Hence,

if the emphasis of a performance analysis is on the accurfdbe sesults rather
than on the speed with which these results are obtaine@aadsif individually
characterizing every trace with VCCs (as described in theggliag paragraph),
without significant loss in the accuracy we could use VCCs toatdtarize dis-
tinctive groups (orclassey of traces with similar workload properties. This idea
is further developed in Chapter 4 of this thesis.

Processor clock rate optimization under delay consaint

Design scenario

Fig. 23 shows a system-level view of a networked multimedigiack imple-
mented on a media processor. The processor receives gduts ireal-time audio
and video streams, compresses and sends them to a netwarkoiitpression
is performed by tasks running on a PE within the media praressudio and
video frames periodically arrive into FIFO buffeis, and B, at the PE’s input.
The PE reads from a buffer one frame at a time and processgsitdzuting
the corresponding compression task: Audio frames get pseckby an MP3 en-
coding task, while the video stream get processed by an MPE:oding task.
After this processing, the compressed audio and videorsgeae sent to the
FIFO buffers at the PE’s output.

The video and audio streams must be processed in real timee Sie audio
stream has lower priority than the video stream, audio feamay experience a
processing delay which depends on interference from theovahcoding task.
To ensure quality of the audio stream, we impose a constoaitiie delay. We
require the delay to be not larger than some value.

Our design problem is to determine a lower bound on the clatk of the

3.6. Experimental Evaluation 65

Fig. 23:

PE fCLK?
BV
Video MPEG-2
L — -1 E@) -1
Net
10 _’
=] N e
== Audio MP3
L) S — (k| —T il
1

Design scenario of a networked multimedia embedded system. The PE @mburr
executes two tasks: one for MPEG-2 encoding of a video stream anthiéyefor MP3
encoding of an audio stream. The MPEG-2 task has a higher priority thai®3e
task. The goal is to determine the minimum clock rate of the PE which satisfiesya dela
constraint associated with the audio stream.

PE which guarantees that tdelay constrainfor the audio stream is satisfied.
First, we analytically derive the lower bound on the clodierand after that,
we explain how it can be computed in a practical setting.

Lower bound on processor rate under delay constraint
Let D denote the delay constraint that we wish to satisfy for thdicaatream.
From Section 2.2.2 we know that the upper bound on the delape@omputed
using (2.9). Hence, we require that this bound is smaller tha delay constraint
D,i.e.
D> sup {inf{r>0:a%A) <. (A+7)}} (3.48)
A€R>q

wherea® and 3. denote event-based arrival and service curves of the audio
stream, which havé&., as their codomain. (We consider only integer quanti-
ties of stream objects.)

Lete € Z-, denote a number of stream objects. Then the delay constraint
(3.48) can be expressed via pseudo-inverse functions dartheal and service
curves

B e) < D+a" (e—1), Ve€ Zsg (3.49)
Using Def. 4 we can restate (3.49) as follows
BiD+ay (e—1))>e, Ve€ s (3.50)

The constraint (3.50) is expressed in terms of event-bagadtijes. It says
that in order to satisfy the delay constraintfor the audio stream, we have to
ensure that at leastaudio frames are completely processed within any time in-
terval of lengthD +a* ' (e—1). Since we are interested in finding the minimum

66

Chapter 3. Modeling Variable Workload

rate of the PE expressed in termsotdck cycleswe have to apply a workload
transformation to (3.50). This will give us a constraint die amount of clock
cycles required to satisfy (3.50). For the workload transition we employ the
execution demand curves of the audio tagk v*). Under pessimistic assump-
tions we get

(@ B)(D+ay (e—1)) > i e, Ve€Zsg
and using (3.36) we obtain
Bu(D+ay (e —1)) 2 7ile), Ve € Zso (3.51)

The left hand side of (3.51) denotes the required resouase¢bservice curve for
the audio stream, while the right-hand side denotes therdyped on the num-
ber of processor cycles that may be required to completelggas any number
e of consecutive audio frames.

From the problem definition we know that the video encodirsk thas a
higher priority than the audio task. Hence, the video streamacquire the full
processor capacity, while the audio stream can get onlyehgce which has
been left after the processing of the video stream. To findeh®ining service
for the audio stream, we can use (2.4) as follows.

Ba(r) = sup {B,(A) —ay(A)} VO (3.52)
VA€[0,7]
where 8/ and o denote the resource-based service and arrival curves of the
video stream.

Using (3.52) and by noting that the service curve correspantb the full
processor capacity is determinedfasA, wheref denotes the processor clock
rate, we can restate constraint (3.51) as follows.

sup {f-A—aj(A)} 295(e), Ve€Zug (3.53)
VA€E[0,D+ar ! (e—1)]

To satisfy (3.53) for a given value ef it is sufficient to select large enough
such that there exist&’ € [0, D + a* ' (e — 1)] for which

fle)- A= ay(A) + 74 (e)

holds true. Since we are looking for the lower bound on thelctate we require
that

fle) > inf {O‘“(A) 74 (¢) } . Ve € Zug (3.54)
VA€[0,D+ay ! (e—1)] A

To ensure that for any € Z-, the above constraint is satisfied, we take the
maximum value of all possible values ffe).

u A u
fmin = sup { inf {O‘“()+ ale) }} (3.55)
Ve€Z>o VAe[O,D—i-&g*l (e=1)] A

3.6. Experimental Evaluation 67

or, equivalently, if we use (3.23) we obtain

. Sup{ o {(VEQO#)(AHW;”(@)}} (3.56)

Ve€Zso | VA€[0,D+ar ! (e—1)] A

(3.56) gives the analytical lower bound on the PE’s clock wlhich guaran-
tees that the delay constraibtfor the audio stream is satisfied.

Computing the lower bound

To see the gain from the application of VCC-based workload meadecompute
the lower bound on the clock rate for two different cases. ria case, we use
upper execution demand cury¢ that accounts for the per-frame variability of
the execution demand of the MPEG-2 encoding task. Such a cuanalytically
obtained in [167] frontype rate curvegwhich represent another VCC type). In
the other case, we use a conventional worst-case analysisaah: we gety
under the pessimistic assumption that all frames within/tleo stream require
the same, largest possible, number of cycles for their gng. 1.e. we model
the MPEG-2 encoding task by a single value—its worst-casetwgion demand.
Other VCCs involved in the computation of the lower bound aeafatal in both
cases.

As mentioned abovey’ which captures the execution demand variability of
the MPEG-2 encoding task can be computed from the type ratesuHow this
can be accomplished is out of scope of this thesis. The quneng method
is described in detail in [167]. For the purpose of this expental study, we
usev* which was computed in [167] from a formal specification of MeEG-2
encoding task. The formal specification was identical to @escribed in Ex. 3
(including the values of the worst-case execution timesliiberent video frame
types given in Tab. 2). Fig. 24 showg obtained in [167] that we use in this
experimental study for the calculation of the lower boundh@processor clock
rate.

For comparison, in Fig. 24 we also plgt computedwithoutusing the type
rate curves. In this case, the upper execution demand ctithe encoding task
is determined as

va(e) = e - max{wcedr, weedp, weedp }

wherewced;, weedp andwcedy denote worst-case execution demands for the
I-, P- and B-frame types, respectively. The values of the tnmaise execution
demands used in this experimental study are given in Tab. 2.

Besides the upper execution demand curve of the video ergdalsk~,,,
calculating the lower bound on the processor clock rate r@gaires knowing
upper event-based arrival curves of the video stregrand of the audio stream
a! as well as upper execution demand curve of the audio MP3yfask

68

Chapter 3. Modeling Variable Workload

0.7

[cycles x 109]
°© o o o o
N w N ol [}
AY
\
AY
\
\
\
AY
AY

o
[N
.

\\

0 5 10 15 20 25 30
[video frames]

Fig. 24: Upper execution demand curves of the video encoding task which werkinghe

experimental study. The solid line corresponds to the execution demavel @hained
in [167] from the type rate curves. It captures the per-frame execdéorand variability
of the video encoding task. The dashed line corresponds to the exedatitand curve
which does not capture this variability.

We obtainy} under a pessimistic assumption that all audio frames, in the
worst case, require the same amount of cyelesi, to be processed, i.e.

va(e) = e - weed,

According to our problem statement, the video and audio ésaarrive at
constant rates into the input FIFO buffers. kgtandr, denote the video and
audio input frame rates, respectively. Then, the corredipgrarrival curves can
be determined asi(A) = [r,A] anda’(A) = [r,A]. Note that in general the
shapes of the arrival curves may be more complex.

Finally, using (3.56) we can compute the lower bound onRligs clock
rate which guarantees that the audio delay constraiist satisfied. Note that in
theory (3.56) has to be evaluated upete» co. This is to ensure that the value
of the clock rate is high enough to sustain the overall avetagd imposed by
the streams of?E. However, computing up te — oo is impractical. We can
overcome this problem by trading off the accuracy of the catapon to the
computational time. We can evaluate (3.56) up to any givanber of stream
objectse, ..., but we have to put an additional constraint on the clock rate

Y © ay(@ " (emar)) + Vo (€mas)

in >
fmzn - 0_5371 (emaz)

(3.57)

With (3.57) we simply require that, on some time intervalefdgtha® ' (emq.),
the PE must provide the amount of service needed to fullyge®all video and

3.6. Experimental Evaluation 69

Tab. 3:

Fig. 25:

| Parametet Value |
Audio stream
Tq 44100/1152 fps
weed, 5-10° cycles
Video stream
To \ 25 fps

System parameters used in the experimental study of the design scerawio ish
Fig. 23. The worst-case execution demand of the MPEG-2 encodingdeaskiferent
video frame types is given in Tab. 2

25
121
20
1k

0.8r

0.6

clock rate [GHZz]

0.4r

0.2

0

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

audio delay constraint [sec] audio delay cbnstraint [sec]
(a) Lower bound on the clock rate B vs. (b) The gain resulted from using the VCC-
audio delay constraint. based workload model.

Experimental results. On the left plot, the solid line corresponds to the ciekound
computed with VCCs which capture the execution demand variability of the video e
coding task; the dashed line corresponds to the bound computed usingdhirial
task characterization model.

audio frames that may arrive within that interval.e)f,.. is too small, then the
constraint (3.57) may be very pessimistic but the evaluaatioe of (3.56) can be
short. Ife,,.. is large enough, then the right-hand side of (3.57) appreatie
average case from above but the evaluation time may comdspyly increase.

Experimental results and discussion

Using equation (3.56) in conjunction with the constraind{@ we computed the
lower bound on the PE’s clock rate for the system paramepersifeed in Tab. 3
and for a range of values of the delay constrdmtFig. 25(a) shows the results
of the computations for the case when the execution demanmabudy of the
MPEG-2 encoding task is capturedfyyand for the case when it is not captured
by . The latter case represents the traditional task charzatien model in
which the execution demand of a task is modeled by a singlesval

70

Chapter 3. Modeling Variable Workload

3.7

In Fig. 25(b), we plot the gain resulted from the usage of tl@&Cvbased
workload model. For different values of the audio delay ¢a@ist, the plot
shows the percentage by which the lower bound on the cloekcanputed us-
ing v that captures the execution demand variability of the vids& is smaller
than the corresponding bound computed usifighat does not capture this vari-
ability (i.e. which was obtained under the assumption tHatideo frames have
the same execution requirement in the worst case). By insgettte plot in
Fig. 25(b), we can see that for large values of the delay canstve can gain up
to 20% of savings in the clock rate by capturing the workloadability using
VCCs.

Summary

In this chapter, we presented two central to this thesis eqisc— Variability
Characterization CurveandWorkload Transformationd/Ve discussed different
ways to obtaining VCCs and defined several VCC types for modefingi-
media workloads. We also proposed and justified the optitaaienent of the
workload transformations in an MPA scheduling network.afi we presented
results of an experimental evaluation of the VCC-based warkimodel. Our
experiments showed that the VCC-based model results in signify tighter
analytic bounds than a traditional model. The simulatiardgtsuggested that
these bounds represent useful estimates of system pegpartd therefore can
serve as a sound basis for making design decisions. In timiglation study
we also investigated the effect of grouping the traces femiolng VCCs on the
tightness of the analytic bounds. We came to the conclusianim certain de-
sign contexts it might be of advantage to distinguish bebhnterent workload
classes.

In the rest of this thesis, we demonstrate the utility of tli&C/based work-
load model and of the workload transformations in differéesign contexts of
multimedia MpSoC architectures. In particular, in the redpter we further ex-
plore the idea of distinguishing between different workladasses: we employ
VCCs for automatic exploration of theorkloaddesign space.

Workload Design

Chapter 3 introduced the concept of Variability CharactéionaCurves (VCCs)
and demonstrated how they can capture different propertiesltimedia work-
loads. This chapter shows how VCCs can help to address an emeag chal-
lenging problem ofvorkload desigrior system-level performance evaluation of
multimedia MpSoC architectures.

“Workload design” refers to a process of selecting repregse workload
for performance evaluation and comparison of computerit@atares [39]. It
is a well recognized problem in the domain of microprocesksign. In this
domain, different program characteristics that influeree gelection of a rep-
resentative workload include microarchitecture-cerrigperties such as cache
miss rates, instruction mix and accuracy of branch preafictHowever, work-
load properties that are pertinent to the context of sydeamldesign of multi-
processor SoC architectures are very different. To datpribtldem of workload
design, in this specific context, has not been sufficientyressed. This chap-
ter presents results appeared in [114], which suggests hisvptoblem can be
approached in the specific case of media processor designchidpter has the
following structure:

Section 4.1 introduces and motivates the problem of wotkéesign for system-
level performance evaluation of multiprocessor SoC pitatfarchitectures.

Section 4.2 summarizes relevant research work.
Section 4.3 outlines the proposed approach.

Section 4.4 proposes VCCs as a basis for workload charadtenzsecessary
for quantitative comparison and classification of mediaastrs.

72

Chapter 4. Workload Design

4.1

Section 4.5 describes how various media streams can bdfielddsased on
VCCs characterizing them.

Section 4.6 presents results of an empirical validatiomefroposed workload
classification method.

Finally, Section 4.7 concludes this chapter.

Introduction

A typical design process of a complex embedded system suahmadtimedia
MpSoC platform involves a thorough exploration of the aafalié design space.
Starting from some template architecture — the platfornsteay designers it-
eratively evolve this platform with the goal to arrive at aichatecture which
would be optimal for the target application range. Seagiiom the optimal ar-
chitecture necessitates evaluating and comparing to é¢aeh imany alternative
platform configurations. Traditionally, performance exalon of architectures
heavily relies on simulations. For system designers to lbe surepresenta-
tiveness of performance numbers obtained from such sirantideally, each
candidate architecture needs to be simulated for a largeigatse set of possi-
ble inputs (or application scenarios). However, in mosesdhis is impractical.
This is because simulating a single design point may be pitoraly expensive
in terms of the simulation time. For example, simulation nlyca few minutes
of video, for a video decoding application, may take tensaairk [165]. This
significantly limits the number of different inputs for whisimulations can be
performed within an allotted design time. Therefore, frdra large set of pos-
sible inputs, the system designers have to choose a smaktsulnich would
be representative of the workload that the system would experience in reality.
Simulations can then be restricted to this subset only.

Obtaining a representative input set is, of course, not acoewern—workload
design and other relevant problems, such as workload deaization, bench-
mark construction, synthetic workload generation, ete.yeell recognized prob-
lems in different areas of computer performance evaluatidowever, issues
involved in solving these problems are almost always dorsparcific. This is
because they depend on the nature of applications andexstthits, and on the
abstraction level at which systems are evaluated. For ebeartie main issues

IMany sources in the literature refer to “representativekioad” as the workload (e.g. a col-
lection of traces) which representsealistic general case, and is not biased towards a particular
architecture, environment, etc. This term is often usedirjunction with asynthetic workload
to indicate that the synthetic workload closely resemitheséal workload. In context of this
thesis, we use the term “representative workload” in a giigtifferent way. By “representative
workload” we mean a workload which was selected from a lacgdection of real workloads,
such that it best representoyerg all important classes of the workload within this collecti

4.1. Introduction 73

in the domain of microprocessor design are microarchiteetentric, where a
designer is mostly concerned with program characteriskesnstruction mix,
data and instruction cache miss rates and branch prediatioaracy. On the
other hand, the concerns in the case of system-level de§i§a® platform ar-
chitectures are very different and these are not suitaffilgated in a benchmark
suite designed for microarchitecture evaluation.

In this chapter, we attempt to address this issue of workttegign in the
specific context of system-level design of SoC platform ieckures for multi-
media processing (i.e. media processors). Although stioul®riented design
and evaluation are widespread in the domain of system-#v€l design, to the
best of our knowledge the issue of methodically selectipgagentative inputs
for architecture evaluation has not received any attersticiar. Most of the work
reported in the Embedded Systems literature, on novelsystedels or simu-
lation schemes, shirk off this problem and leave the redpiityg of choosing a
representative input or stimuli to the architecture onaystlesigners (see, for
example, [83]).

There are many reasons why this problem is interesting irspleeific case
of multimedia processing on multiprocessor SoC platforanst, media streams
may impose very complex and diverse workloads on such plafo Many
multimedia applications exhibit a large degree of dataedéent variability that
complicates the problem of choosing a representative isgitSecond, in con-
trast to general-purpose architectures, MpSoC platfommsch are optimized
for stream processing, have heterogeneous distributdttectures. This fact
further complicates the problem. Third, multimedia prebteg is in general
computationally intensive, requiring for performancelaaéion to simulate a
relatively large number of events. This makes selectiorhefrepresentative
workload for design of media processors an important proble

Arbitrarily selecting inputs to form the “representativaput set is certainly
not a good idea. The goal of “representative” workload desigould be to se-
lect inputs such that they cover, as much as possible, thievgpace of possible
workloads, including those that represeatner cases$or the target architecture.
Such corner cases are represented by inputs which imposg-\&ad best-case
loads on different parts of the architecture. Determinifng@tconstitutes a “cor-
ner case” is, however, not a trivial undertaking due to theglex nature of
most multimedia workloads. Attempts towards using squalitative(i.e. sub-
jective) technique to judge the properties of media strdaased on their content
(for example, by simply viewing video clips to be processgdHhe architecture
and classifying them based on experience or intuition) tegisily fail. Hence,
a guantitative methodology is necessary, using which itukhbe possible to
objectively assess and compare the properties of diffenexdia streams. Based
on such a comparison, a smedpresentativesubset can then be chosen from a
large collection of samples.

We propose a methodology to classify media streams whictbearsed to

74

Chapter 4. Workload Design

4.2

identify a small representative set meant for architecauaduation. Towards
this, we first hypothesize that key characteristics of mettams that influence
the performance of an MpSoC platform architecture, ardedlto their “vari-
ability”. This variability stem from the fact that executitime requirements of
multimedia tasks and the amount of data consumed (produmethese tasks
at their inputs (outputs) depend on the properties of pdaricaudio/video sam-
ples being processed. Now, given a collection of media stseave classify
two streams from this collection agmilar if both of them exhibit the same kind
of variability with respect to the execution time requirerteeand the task in-
put/output rates, as mentioned above. Therefore, given af sedeo streams
which aresimilar, it would be sufficient to simulate an architecture with only
one video stream from this set, as all the other streams woyddse similar
load on the architecture. To quantitatively charactetimeviariability associated
with a stream, with respect to a given architecture, we usedmcept of VCCs,
introduced in Chapter 3. As an illustration of our methodg|dgroughout this
chapter we use a case study of an MPEG-2 decoder system wistemdevel
architecture, including the mapping of MPEG-2 tasks ontis shown in Fig. 17
and described in Section 3.6.1.

We would like to point out here that the kinds of variabiliithat should be
considered in a media stream for an effective classificationld depend on the
platform architecture and the application at hand. Thisashy due to the fact
that SoC architectures are often highly specialized foreomaapplication spec-
trum. For this reason, defining a set of workload attributegtvwould result in
an effective stream classificationamydesign scenario is difficult, if not impos-
sible. Also, we note that defining a common benchmark for imeltia MpSoC
platforms is out of scope of this chapter. The contributibthes chapter is to
point out that the properties of media streams which shoalddnsidered for
representative workload identification in the context affpenance evaluation
of multimedia MpSoC platforms can be expressed in the ford@Cs, and to
propose the corresponding stream classification method.

Finally, we note that, in a system-level design framewolle, $election of
the representative workload can be carried out outsideeditte-critical design
space exploration loop (namely, prior to the exploratiom) does not require
time-consuming system simulations. Furthermore, the lwark characteriza-
tion and classification procedures presented in this chajate be fully auto-
mated, reducing to minimum designers’ participation inwkload selection
process.

Related Work

The construction of representative workloads for perforoeeevaluation of com-
puter systems has always been an area of active researehesirlg 70s (see

4.3. Overview 75

4.3

[148] and references therein). Since then the teronkload has been widely
understood as a mix of programs (or jobs, or applicationsivfach the perfor-
mance of a computer system was evaluated. Domain-spedigcttons of such
programs, calledbenchmarkshave been designed and widely used as a stan-
dard means to evaluate and compare computer architecikxasiples of these,
in the multimedia domain, are MediaBench [86] and the Berketejtimedia
workload [146]. Design of such representative workloads weainly concen-
trated on proper selection of tipeogramsto be included in the workload. The
selection of corresponding input data sets was limited éodefinition of their
size (e.g. sampling rate, resolution etc.) The dependehpyogram behavior
on the values of the input data sets did not receive enougsidEnation in the
process of forming such representative workloads.

Recently Eeckhout et al. [39] have shown that Warkload design space
may be very complex and therefore should be systematicapijoeed during
the construction of representative workloads. Their waalll design space con-
sists ofprogram-input pairsthat capture both, the variety of programs as well
as various input data sets to those programs. They use geemsuch as prin-
ciple component analysis and cluster analysis to effigreskplore the space of
possible workloads and select representative prograunt-jmgars from it.

The problem of reducing simulation time has been addressed) trace
sampling techniquetsee [82] and references therein). The goal of such tech-
nigues is to identify representative fragments in the paogexecution and sim-
ulate only those fragments, thereby eliminating the needifaulating the en-
tire program. Trace sampling techniques heavily rely orcttaacterization and
classification of the workload imposed on the architectyrénle different frag-
ments in the program execution trace. However, it shoulddiechthat all the
above mentioned research efforts were primarily targete@itds characteriza-
tion and composition of representative workloads in the @iorf microproces-
sor design.

Overview

We assume that system designers have at their disposakeclaligction of me-
dia streams that fully represents streams which the degigpgtem may have
to process in reality. Then, forming a representative womél from this large
collection involves several steps:

. ldentifying key workload properties: The first step in the workload design is

to decide which workload properties are important for theegidesign context.
Based on these properties the workload classification wiltdreied out. In
the case of performance evaluation, we have to select thopenies that have
largest influence on the performance of the architecture.

76

Chapter 4. Workload Design

4.4

. Characterizing media streams:The next step is to characterize each stream in

the collection. It is accomplished by measuring the propemipon which the
workload classification will be performed. We refer to thisgs together with
the preceding step, agorkload characterization

. Defining the dissimilarity metric: Based on the workload characterization, we

need to define how the dissimilarity between two workloadsdia streams)
will be measured. That is, we need to definmetric that would represent the
dissimilarity between a pair of media streams as a valuesr/sit media streams
in the collection have been characterized (i.e. their seleproperties have been
measured), we compute this metric for each pair of streartieicollection.

. Classifying media streams: Having computed the pairwise dissimilarity be-

tween the streams in the collection, we can identify grodpgreams that may
impose similar workload on the architecture. Such a grouplaveonsists of

streams that have similar properties. From these groupsawé¢hen select rep-
resentatives. They will form the representative workloaddur architecture.

We refer to this step and the preceding stepvaskload classification

The next two sections describe particular consideratioaswe made while re-
alizing the above steps.

Workload Characterization

Workload characterization should be basedken propertieghat are important
in a particular design context. These are properties that Aatrong impact on
the performance of the architecture being designed. Fdéanas, in microar-
chitectural design such properties would be instructior, maranch prediction
accuracy and cache miss rates [39]. As mentioned in Sectigodr hypothesis
is thaton the system levéhe performance of multimedia MpSoC architectures
is largely influenced by various kinds dhata-dependent variabilitassociated
with the processing of media streams. This hypothesis o#sthe observation
that such variability is the major source of the burstindssiechip traffic in such
multimedia MpSoC platforms [165]. The burstiness of thecbip traffic neces-
sitates insertion of additional buffers between architesdtentities processing
the media streams, and deployment of sophisticated sahgdublicies across
the platform. Both of these inevitably translate into inseshdesign costs and
power consumption [57].

Individual media streams witldentical parameters, such as bit rate, frame
rate and resolution, may impose significardifferent workload on the archi-
tecture; in particular, the streams may exhibit differeinidk of the variability.
This phenomenon can be explained by the fact that, althchegetstreams have
identical parameters, they contain diverse multimediarmgation and may have

4.4. Workload Characterization 77

different structure (e.g., in MPEG video streams, difféfeame types may be
arranged in various patterns). For MPEG-2 video streanssfdhbt is supported
by our experiments reported in Section 4.6. [57] demoresdréte variability
in streams of several other multimedia formats. Thereforéhe system-level
design context of multimedia MpSoC architectures, it isaialy meaningful to

characterize and classify multimedia workloads with respe their variability

properties.

In a typical MpSoC architecture, consisting of a heterogeseollection of
interconnected PEs, often there are several sources @iy that depends
on properties of the processed media streams. Consider, esaamle, the
MPEG-2 decoding system shown in Fig. 17 in Chapter 3. The systisists
of two programmable processofd;1 andPE2, and input and output interfaces.
PE1 executes a task performing VLD and IQ functions, whereBEg executes
a task performing IDCT and MC functions of the MPEG-2 decodifgprithm.
For brevity, we will refer to these tasks as VLD and IDCT, ragpely. In
Fig. 17, stream objects belonging to the input stream emegifgom the network
interface are single bits. Stream objects sent fieRl to PE2 are partially
decoded macroblocks, whereas stream objects enteringdbe interface are
fully processed macroblocks. What are the sources of véitighssociated with
media streams processed on such an MpSoC platform?

First, arrival patterns of media streams at the input of fstesn may have a
bursty nature, i.e. stream objects may arrive at the systeput in highly irreg-
ular intervals. A typical example of this is a multimedia a&wreceiving streams
from a congested network.

Second, each activation of a task may consume and produagabhleanumber
of stream objects from the associated streams. For exarsgotl, activation of
VLD in Fig. 17 consumes a variable number of bits from the meknnterface,
although it always produces one macroblock at its output.

Third, the execution demand of a task may vary from activetiboactivation due
to data-dependent program flow. Both the tasks in our runniagnele of the
MPEG-2 decoder—VLD and IDCT—possess this property.

Finally, stream objects belonging to the same stream mayreedifferent amounts
of memory to store them in communication channels between Rgain, in the
example architecture in Fig. 17, we note that the partiafigatied macroblocks
stored in bufferB,, depending on their type, may or may not include motion
vectors.

All these types of variability must be carefully consideesd| characterized dur-
ing the workload design process. In this chapter, we will tvecerned with the
variability of the execution demand and the consumption@onduction rates of
tasks. As mentioned before, depending on the architechaelee application

78

Chapter 4. Workload Design

at hand, it might be meaningful to consider other types oftmilities as well
However, we show that the two variability types we considenehalready lead
to meaningful results.

We propose to use VCCs introduced in Section 3.2 as a modeldavaink-
load characterization that can capture different kinds aability in media
streams. To each streainin a stream collection, we associate a set of tuples
Si = {(V5, V%) }, whereV,, andV% denote lower and upper VCCs characteriz-
ing variability of propertyP in streami. For anyP, Vi, andV% must represent
thetightest upper and lower VCCas defined by Defs. 14 and 15. To obtain such
tightestVl, andV%, we use (3.42) and (3.43) under the condition thaftinetion
setfor which the VCCs are calculated contains only one functidme-function
which corresponds to proper® of the stream being characterized. Thus, the
resulting VCCsV% and V%, representightestbounds on the worst- and best-
case variability of property in asinglestream. The set of all such VCGCS,,
represents a complete characterization of streaks a result, in form of5;, we
have an accurate, compact and easy-to-obtain abstraétsbrean.

In Section 3.3, we defined some VCC types useful for multimaaigkload
characterization. Out of them, for the workload design ia tihapter, we use the
execution demand curves and the consumption and produziives, denoted
by tuples(+y!,7%), (k!, k%), and(r!, 7*), respectively. Each task in a multimedia
stream-processing application is characterized by th€Xe types.

We note thaty!, v*) depends on the PE type on which the corresponding ap-
plication task is to be executed. For example, if a PE has plicagion specific
instruction set which may significantly alter the executi@mand of tasks, then
this will be reflected inv,v*). In contrast,x!, xk*) and(x!, 7*) are not depen-
dent on the architecture, but on the dataflow propertiesinvitie application.
Hence, the assumption here is that, prior to the workloadaci@rization, we
need to know the partitioning of the application into taskd ¢he mapping of
those tasks onto PE types. We believe that this assumptiost i®o restrictive.
Similar assumptions are common in the Embedded Systemgndesmmunity,
where applications are modeled by task graphs in which tloesfrcase) exe-
cution demands of tasks are known. In fact, saeneassumption is made in a
number of trace-based performance evaluation techniggesntly reported in
the literature [74, 75, 83,116]. These trace-based pedoom evaluation tech-
niques rely on pre-collected execution traces of tasks and?Ehe MpSoC plat-
form being evaluated. Our method can be useful especialllgigncontext, by
providing such technigues with the representative setces.

2]t might be also necessary to account for correlations iexjstetween different variability
types. However, this question goes beyond the scope oftihjster.

4.5. Workload Classification 79

4.5

45.1

Workload Classification

In the previous section, we described how media streams eajubntitatively
characterized to enable their comparison and classifitatio this section, we
explainhowsuch a comparison and classification can be accomplished loas
this characterization.

We propose to classify streams based onstipef the VCCs associated
with them. If two streams are characterized by VCCs havinglamshapes,
then their behavior, in the worst/best-case, will also Imeilar. Each stream
might be associated with several VCC types, characteriziifgreint aspects of
variability within the stream. Therefore, if two streams/@aimilarly shaped
VCCs of respective types, then these streams will imposeaimidrkload on the
architecture (in the worst- and best-case). For exampdemigiximum backlogs
that such streams will create in the buffers of the architecas a result of their
processing will almost be the same.

Dissimilarity based on a single VCC type

Let us first define a metric that would allow to compare twoastie based on
only one VCC type. This metric should be a measuréis§imilarity between
shapes of two VCCs of the same type.

In general, any measure of dissimilarity between two obkjdepends on the
specific problem at hand [45]. Each property, based on whvohobjects are to
be compared, is associated with a variable. That is, if thexe properties upon
which two objects have to be compared, then there wilt bariables describing
each object. Any valuation of these variables constitutespeesentation of an
object. The dissimilarity between two objects is then fobgadcomputing some
metric defined over thesevariables. In our case, a VCC, which is defined for a
set of pointsk = 1, 2, .., n, can be seen as an object described ariables.

Intuitively, to see how dissimilar the shapes of two VCCs are,need to
compare their values for each of the poigts= 1,2,..,n. By noting that all
n variables represent a VCC along essentialyparabledimensions, we can
guantitatively measure the dissimilarity between two VCGsgithe City Block
metric [45]. We decided to use this metric as a measure ahaiissity, because,
in comparison to other known metrics (e.g. Euclidean Distgnt is more “sen-
sitive” to differences in each of the dimensions (variaplé®., in our case, the
metric is more “sensitive” to the differences in the shapesvo VCCs. A for-
mal definition of the dissimilarity between two VCCs based an @ity Block
metric is given below.

Let VI(k), k = 1,2,..,n, denote a VCC of type associated with stream
i. The measure of the pairwise dissimilarity between twoast® andj, with

80 Chapter 4. Workload Design

respect to VCQ/", is then defined as
T"Lj Zwr yvr V;(k>’ (41)

wherew, (k) = 1/k are weights that are necessary to normalize the differences
Vi (k) — V; (k)| with respect to the length of the analysis interval. The longer
the analysis intervat is, the les<ritical the difference in the values of the two
VCCs becomes. For example, suppose that we want to compareaxgoeition
demand curves of two streams. Assume from the executionmkicwaves we
know that any two consecutive stream objects (ke= 2) in the first stream
may cause a maximum execution demand of 100 units, whileh®rsecond
stream this value is 150. Suppose that we also know that argod€ecutive
stream objectsi(= 10) in the first stream may cause a maximum execution
demand of 1000 units, and it is 1150 units for the secondrstre€though the
absolute difference between the curveskfet 2 is smaller than that fok = 10,

the difference in the execution demand compyted stream objecfor & = 2

is larger than fork = 10 (1510~ HOOIS0L - Eor = 10 the absolute
difference isdistributedover a larger number of stream objects than in the case
of £ = 2, and therefore this difference becomes less critical. Thgisw,
allow to correctly compare the streams for lafgee.g. to properly account for
long-term average execution demands.

4.5.2 Dissimilarity based on several VCC types

Media streams may be characterized by more than one VCC type.cén the
dissimilarity between the streams be quantified then?

First, we propose to compute the dissimilarities between V@iGdentical
types as defined by (4.1). Then, the computed “single-typesimhilarities can
be combined in a variety of ways. One possibility is to simglyn up all of
them. Our experiments showed that this simple approachswetétively good.
Hence, we define the pairwise dissimilarity between twoastriei and j with
respect to VCCs of typese R as [114]

dij = Z dyij 4.2)
vVrerR
An improved version of (4.2) sums mpnrmallzeddlssmllarltles%, i.e.
dri'
dy=Y @.3)

vreR aXvi dyij
45.3 Clustering

Finally, to classifystreams using the dissimilarity measures described alb@ve,
employ a conventional hierarchical clustering algorithhich uses theomplete

4.6. Empirical Validation 81

4.6

linkagealgorithm [45] to compute distances between clusters. Tio&ce of the
complete linkage algorithm was motivated by the need to kbepclusters as
dense as possible.

Empirical Validation

To see how the workload classification method described enipus sections
performs on real data samples, we conducted a number ofimgregs with

MPEG-2 video streams. MPEG-2 streams represented anstiteye¢arget for
our experiments because they have a complex nature and setioficharacter-
istics [78].

Workload design scenario

Consider the following design scenario. Suppose our goa s&udy the im-
pact of different MPEG-2 streams on the MpSoC platform showfig. 17 in
Chapter 3. At our disposal we have a large library of videosdipat our archi-
tecture should be able to support. However, due to desiga ¢iomstraints we
cannot afford to simulate the platform architecture forhealip in the library.
Furthermore, since simulation of an entire clip takes a iiotely long time,
we are constrained to simulating orgfort fragmentsxtracted fronselected
video clips in the library.

We assume that any video clip in the library contains only soene In
a visual sense, a scene ia portion of the movie without sudden changes
view, but with some panning and zooniifigg8]. Distinguishing between differ-
ent scenes is necessary, because even within a single MPAE@a2n different
scenes might have substantially different charactesiskor example, character-
istics of MPEG-2 streams (such as bit rate) rsagnificantlyvary at a large time
scale, i.e. across different scenes, while at a short timle ¢ce. within a scene)
the variations are more moderate [78, 84]. Since VCCs represent/best-case
bounds, if different scenes are not treated separatelyewleitiving their VCCs,
then details about variability in some scenes may be “oweelsived” by other
scenes. Finally, we note that in practice it is always péssdsplit a long movie
into a series of individual scenes (see [78] for the relevefgrences).

For our experiments, we used a library of MPEG-2 video clipamarized in
Tab. 4. Each clip in the library is an 8 Mbps constant-biestream, containing
one scene with resoluticit4 x 576 pixels and frame rate 25 fps. We believe that
the variety of scenes represented in this library is sufiidier the demonstration
of our workload design method.

To select representative streams, for performance evatuat the platform
architecture shown in Fig. 17, we classified the streamsatilthary based on (i)
the variability in the execution demand, and (ii) the vaitigbin the production

n

82 Chapter 4. Workload Design

video file name video file name
1 100h080.m2v 7 pulb_080.m2v
2 bbc3080.m2v 8 susL080.m2v
3 cact080.m2v 9 tens080.m2v
4 flwr_080.m2v 10 time_080.m2v
5 mobl.080.m2v| 11 v700.080.m2v
6 mulb_080.m2v

Source ftp.tek.com tv/test/streans/El enent/ MPEG Vi deo/

Tab. 4: MPEG-2 video clips used in the experiments

and consumption rates of the MPEG-2 tasks to be executedeoRER of the
platform. VLD task can be characterized by both variabiiyes. Its execution
demand varies and, per execution, it consumes a variabl®ewai bits from

its input. Hence, we characterized VLD task using executiemand curves
(Y 1.p» Ve p) @and consumption curves:!,; ,, k%,). In contrast, IDCT task
was characterized by execution demand curvg$., 7¢pcr) Only. This is

because its execution demand can vary, but the consumpiibpraduction rates
remain constant.

Experimental setup
Our simulation environment consisted of the SimpleScatstruiction set sim-
ulator [8], a system simulator and an MPEG-2 decoder prodieifl]. The
MPEG-2 decoder program was used as an executable for batitesors and as
a means to obtain traces of bit allocation to macroblock® System simulator
served for validation of our workload design method. It ¢stesl of a SystemC
[153] transaction-level model of the architecture in Fig. 1IThis model was
based on the simulation environment described in Appendix A

The SimpleScalar simulator served for modelinigl andPE2 of the plat-
form architecture in Fig. 17. It was used to obtain tracesxafcation times
for VLD and IDCT tasks. Both tasks worked at the macroblock glanity. In
our experimental setup, the SimpleScalar simulator wasg s m profi |l e
configuration and with the PISA instruction set [8]. Althduthis configura-
tion does not model advanced microarchitectural featufesrocessor, such
as caches, branch predictors, etc., it requires less tirsientalate, and therefore
was a suitable choice for our purposes. This choice was adsifi¢d by the fact
that advanced features in the microarchitecture of geperglose processors do
not significantly impact the variability of multimedia wddads [57].

VCCs, (Vi Lp: WLp)s (KyLps K¥pp) @and(YVrper: Viper), were obtained from
the execution traces using the trace analysis method tesdn Section 3.5.2.
We set the maximum analysis interval to 12 video frames. €brsesponded
to the most frequently occurring length of group of pictu@©P) [118] in the

4.6. Empirical Validation 83

161 video 5
14+
12¢

10t

cycles
[e¢]

video 10

0 0.5 1 15 2
macroblocks X 10

Fig. 26: (7}, p, 1%, p) for different fragments of video 5 and video 10

MPEG-2 bitstreams. Obtaining the VCCs relied only on the utdion set sim-
ulation and a simple trace-analysis algorithm, both of Wwhsan be orders of
magnitude faster compared to a full system simulation

Results and discussion

Our first step was to compute the maximum dissimilarity betw®CCs ob-
tained from different fragments of treamescene (i.e. clip). The goal was to
check whether this dissimilarity would be sufficiently shtal allow for using
arandomlyselected short fragment as a representative of the whom\atip.
If the dissimilarity were too large, then randomly selegtiragments from the
clips would not be a good strategy, and we would need to loolofoer ap-
proaches for selecting fragments from the clips. For examgdl fragments of
a scene could be classified first using the method presentédsinhapter, and
thenseveralfragments with diverse charcateristics could be choseapresent
that scene.

From each clip in the library, we extracted 10 unique fragtmenthe same
length (30 frames) and measured their VCCs. Fig. 26 shows merasut re-
sults for(+},; , v, p) for two video clips—video 5andvideo 10from Table 4.
Video 5contains a natural full-motion scene, where@®o 10is a video test pat-
tern with a small running timer on a still background. By insjrgg the plots in
Figure 26, we can see that the dissimilarity between fragsr@video 5is larger
than the dissimilarity between fragmentsuwideo 10 This can be explained by
a higher degree of motion present in the scenedéo 5 Nevertheless, we can
see that the curves for different fragments/mfeo 5exhibit a similar behavior.
For other videos in the library, we observed same trends.

Using (4.1), for each VCC type and each video clip in the lijarare com-

84 Chapter 4. Workload Design

VCC | max.dissim| video || VCC | max.dissim| video
Yero 57151356/ 4 Yepor | 37220944 3
Yrp 23548299 4 K% 1D 2146073| 4
Yiper | 22903156| 9 kYo 752238| 4

Tab. 5: Maximum dissimilarities between fragments of the same clip for each VCC type.

7
16210

— group 1
group 2 -

--- group 3 [

- - group 4 ‘

14F

12r

10 s

cycles
(o]

0 0.5 1 1.5 2
macroblocks x 10°

Fig. 27: Classification based o, ; , only

puted pairwise dissimilarities between fragments of threesalip. Tab. 5 sum-
marizes results of this experiment. It shows @ximundissimilarities for each
VCC type over the whole set of video clips. From this table, @ @onclude that
video 4probably contains a very complex and changing scene, bedausl-
most all VCC types its fragments exhibit larger dissimilabetween each other
than the fragments of other clips.

Based on the above results, for the classification of vidgxs @fi the library,
we decided to randomly pick one fragment from each clip aed therform the
classification based only on these selected fragments.

For the purpose of illustration, we first performed the afasgtion based on
only oneVCC type,vi:, ,. The results of they, ,-based classification into four
groups are presented in Fig. 27. As we can see in the figurametitod could
correctly identify groups of curves having similar shapdsis indicates that
the measure of dissimilarity defined by (4.1) and the chokestaring algorithm
lead to a meaningful classification.

Fig. 28 shows alendrogramof the hierarchical cluster tree obtained as a

result of the classification based on all six VCC types and hbiyguét.2). In
this dendrogram, we can clearly distinguish between twangoups of clips:

4.6. Empirical Validation 85

motion videos

videos
=
P ~NOORN®OOUWOWD

still videos

0.5 1 15 2 2.5 3
linkage distance X 109

o

Fig. 28: Cluster tree

Tab. 6:

video| B, B, || video| B, B,
1 8282 | 9433 4 4443 | 8732
2 5128 | 9027 7 8390| 9593
3 7953 | 8867 9 3018 | 9272

Measured maximum buffer backlogs

still and motion videos. This kind of a coarse-grained division into two groups
would have been possible to obtain just by viewing the videwshe screen.
However, a more refined classification would be difficult thiage using such
a subjective technique. For example, before performingetigeriments, by
simply viewing the clips we could not predict thaeideo 4would have such
different properties in comparison to the other motion eleHowever, we can
easily see this in the dendrogram: all other motion videagptvideo 4 form a
tight cluster with the maximum linkage distance almostehimes smaller than
the maximum linkage distance wheiteo 4is included into the cluster.

Finally, to see how the results of the stream classificatmmetate with the
actual impact of the streams on the architecture, we peddmsimulations of the
system in Fig. 17. We simulated the decoding of seviellklengthvideo clips
from the library. As a measure of the architectural impactdeeided to use
maximum backlogs occurring in buffefs, and B, in Fig. 17. The backlog in
buffer B, at thePE1’s input was not taken into account because of its relatively
small size.

Tab. 6 summarizes results of the system simulations. Odebofeasure-
ments show that, for exampleideo 1andvideo 7produce very similar maxi-
mum backlogs in both buffers. The maximum backlogs prodbgeddeo 9and
video 2are less similar than the backlogs producedrigieo 1andvideo 7 For

3Sincevideo 10is mostly still, it was assigned to the group of still videgsdur method.

86

Chapter 4. Workload Design

4.7

video 9andvideo 2 the differences in the backlogs B, and B, are 2110 and
245 macroblocks, respectively. We can also seetitkgto 9is more similar to
video 2than tovideo 3 The maximum backlogs farideo 3andvideo 9differ

in 4935 and 405 macroblocks fé#, and B,, respectively. Hence, we can con-
clude that the simulation results exhibit the same tendesdpat shown by the
classification in Fig. 28.

Summary

In this chapter, we presented an approach for workload desighe specific
context of system-level performance evaluation of muldraévipSoC architec-
tures. The two main contributions of this chapter were: gtablishing the utility
of VCCs as a model for multimedia workload characterizatior @) a work-
load classification method based on VCCs which allows to iflegtioups of
media streams that impose similar workload on a platforritecture. System
designers can use this classification method for constigistnall representative
workload sets for performance evaluation of MpSoC plat®for multimedia
processing. We presented experimental results that valadal show usefulness
of this approach. However, there is a considerable scopkiftirer research in
this direction. For example, a more systematic study nesels tlone to identify
“variability types” beyond the ones considered in this deap

Designing Stream Scheduling Policies

In Chapter 4, we demonstrated one possible application cdbiity Characteri-

zation Curves: we proposed a method to automate the selettiepresentative
workload for performance evaluation of the multimedia M@Sarchitectures.
In this chapter, we demonstrate another application of VC® fdcus of this

chapter is on design gilatform management policiésr such MpSoC architec-
tures.

A platform management policy specifies how the computatiand commu-
nication resources of an execution platform should be shamong application
tasks, i.e. it defines the scheduling and arbitrdtipalicies implemented on
these resources. These policies are the knobs which desicareuse to tune up
the system such that a desired tradeoff is achieved betwstanss cost, perfor-
mance and power consumption. That is why a proper seleatidrptimization
of platform management policies play an important role m $lgstem-level de-
sign of multimedia MpSoC platforms.

There is a large body of research work on real-time scheglutiovering
a broad spectrum of applications—from control-domina®dsignal process-
ing systems. However, the scheduling problems arising endibmain of me-
dia processing execution platforms (such as multimedia d@p&rchitectures)
involve a number of specific issues that are not effectivdlyrassed by the ex-
isting scheduling methods: Due to the streaming nature dfimmedia applica-
tions, the scheduling of processing elements in a multimbiSoC architecture
more resembles scheduling of packet flows in a communicagbmork than the
traditional real-time task scheduling. Many existing ftale task scheduling

'Hereafter, we use the terrashedulingandarbitration interchangeably.

88

Chapter 5. Designing Stream Scheduling Policies

techniques areeadline-drivenin contrast, streaming multimedia applications
have quality of service requirementshich do not directly translate into task
deadlines. Additionally, multimedia workloads are highiynamic and variable,
making it difficult to identify optimal scheduling strategi. As a result, platform
management policies for multimedia MpSoC architecturésndfave very large
and irregular design spaces.

All these factors call for new approaches to designing saleesl for mul-
timedia MpSoC architectures. We explore this directionhis thapter. The
VCC-based workload model and the extended Modular PerforenAnalysis
framework developed in Chapter 3 serve in this chapter asia foasn efficient
framework for design space exploration of the platform ngamaent policies. In
this framework we mainly concentrate on fast and accurateqmeance evalua-
tion methods and on schedulability tests which can effeltigpeedup and guide
the design space exploration process. To demonstrate itiye oft the frame-
work, we describe two case studies involving Time-DivisMultiplex Access
(TDMA) scheduling policy.

Contributions of this chapter

We formulate the problem of scheduling media streams undiet 0S con-
straints imposed by available buffer space. This problemasivated by the
tight on-chip memory constraints associated with the cumeultimedia MpSoC
architectures.

We propose a framework for fast system-level design spgolemtion and op-
timization of platform management policies for the mediagassing execution
platforms, such as multimedia MpSoC architectures. Thadmmork features a
combination of an initial one-time simulation of individwachitectural compo-
nents to obtain relevant workload characteristics, andbaesguent fasanalytic
performance evaluation, iteratively performed in the tiongéical design space
exploration loop.

Based on the extended Modular Performance Analysis frankewa@ propose

a method for computation of the buffer space requirementeudifferent plat-
form management policies. In comparison to the previoualyliphed methods
addressing similar problems, the main novelty of our metisad its ability to
account for specific QoS requirements associated with psireg media streams
on buffer-constrained architectures. In addition, in thisthod we demonstrate
how the VCC types defined in Section 3.3 can be used fomtbdular per-
formance analysisf distributed heterogeneous architectures. By applying ou
method to a case study of an MpSoC architecture, we demtamgteacomplex-
ity of the design space of the seemingly simple, widely useMA scheduling

policy.

5.1. Stream Scheduling under Buffer Constraints 89

5.1

5.1.1

We propose a method for a fast feasibility teststieam schedulingpolicies
under given QoS requirements. Towards this, we introdueedhcept oservice
boundsand show how they can be computed and used for the feasitabty
Through a detailed case study, we demonstrate how the sdrimds can guide
the optimization of stream scheduling policies.

Organization of this chapter

Section 5.1 introduces the problem of stream schedulingufierbconstrained
architectures through a motivating example se&top boxapplication scenario.
This scenario will be used in the course of this chapter fercdse studies.

Section 5.2 outlines the related work.

Section 5.3 presents the framework for design space exjorand optimiza-
tion of platform management policies for the media processixecution plat-
forms.

Section 5.4 addresses the problem of estimating buffer meneguirements
resulting from deploying different scheduling policiesgmocessing elements of
an MpSoC architecture.

Section 5.5 introduces the conceptsafrvice boundsised for quick feasibility
tests of stream schedulers for the buffer-constrainedtaatbres.

Section 5.6 concludes the chapter.

Stream Scheduling under Buffer Constraints

This section introduces the stream scheduling probleningrisn the system
level in multimedia MpSoC architectures. We first descrilsetatop boxappli-
cation scenario; and then, using this scenario as an examplentroduce the
scheduling problem and point out its specifics.

Set-top box application scenario

Fig. 29 shows a simple system-level model of a set-top boicdemplement-
ing an audio-video decoder. Audio and video streams engddvice, which
includes two PEsPE1 andPE2. The MPEG-2 video decoding algorithm is par-
titioned into two tasks—one mapped o1, the other ontdE2. The MP3
audio decoder includes a single task, mapped Bihi. On-chip buffersB,, B,
and Bs store the partially processed streams, wherfgaand B,,, so calledblay-
out buffers store the fully decoded streams. These buffers are reduebyideo

90

Chapter 5. Designing Stream Scheduling Policies

Fig. 29:

5.1.2

compressed sched. sched.
video policy? policy?
PE1 PE2
B1 B2 Bv
VLD IDCT Video
T\ (8) D () D 85| |

control | #7777 S
— 'l\;gt - > Ultask |
L /

B, B,
> S| [wP3 Audio | __|
T——| () T |+

=
(¢}

compressed
audio

System model of aet-top boxdevice, processing an audio and a video stream.

and audio output devices through corresponding interfaBesides processing
media stream$E1 andPE2 can execute other tasks. For example, in Fig. 29,
PE1 executes a task responsible for interaction with the gebtx’s user. This
task handles control commands initiated through a userfae (Ul).

In the setup described above, the MPEG-2 video decodingepdscin the
following way. A compressed video stream arrives throughnigtwork interface
into PE1’s input buffer,B,. PE1 reads the stream from this buffer and performs
on it thevariable length decodinf/LD) andinverse quantizatiofQ) functions
[118]. As a result of this processing, the video data appaidr$il’s output as
a stream of partially decodadacroblocks PE1 writes this stream into buffer
Bs. PE2 reads this buffer and completes the video decoding by cangptiie
inverse discrete cosine transforffdCT) and, if necessary, performing tineo-
tion compensatio@C) for each macroblock in the streafE2 writes the fully
decoded stream into playout buffgr,, which isperiodicallyread by the video
output port. The output port finalizes the video processimg) sends the video
to a display device.

The stream scheduling problem

Different streams entering a PE (for exam@&.2 in Fig. 29) could be associated
with different input rates. The respective output devisesh as/ideo OUTand
Audio OUTin Fig. 29) could also consume the outgoing processed straadif-
ferent predetermined rates. Additionally, the procesesagiirements associated
with the streams can vary widely. To satisfy the real-timestmints imposed by
such I/O rates, it is necessary to suitably schedule theipreuftreams entering
a PE. Furthermore, to preserve the quality of the procedseahss, any schedul-
ing policy on a PE belonging to a setup similar to that in Fgn2ust typically
satisfy the following constraints: None of the buffers sldooverflow, and the
playout buffers read by the real-time output devices shoeiger underflow.

5.1. Stream Scheduling under Buffer Constraints 91

The output devices read the playout buffers at specified rdepending on
the required output quality. Therefore, the constraint echsa buffers under-
flow is to ensure that this required output quality is guseadt Guaranteeing
that none of the buffers overflows is needed because, in nesgscusing block-
ing writes to prevent the overflows is infeasible. Efficignthplementing such
blocking mechanisms requires either a multithreaded gsmrearchitecture or
substantial run-time operating-system support for cdreestching, and neces-
sitates platform-wide flow-control mechanisms [134, 15hjala might be diffi-
cult to implement in a distributed architecture.

The motivation for thisouffer-centricdesign of schedulers is that buffers are
available only at a very high premium because of their langelup area re-
quirements [165]. On the other hand, the off-chip memorgkjyibecomes a
bottleneck in high bandwidth applications such as multimeahd its bandwidth
cannot be easily increased due to a number of technologyreants (e.g. a lim-
ited number of 1/0 pins in a chip) [52]. Hence, the buffersypdacentral role in
the design of any scheduling or MpSoC platform managemditypo

Specifics of the scheduling problem

The scheduling problem just described has a number of desistcs that make
it notably different from other real-time scheduling preivls. These character-
istics are summarized below.

Implicit deadlines: The real-time scheduling traditionally relies on the notod
(hard and softjleadlines each task instance has explicit deadline. This way,
the deadlines specify theal-time constraintso be satisfied by the scheduler.
In contrast to this, in the stream scheduling problem thetneee constraints are
not naturally expressed through the deadlines. The maihoj@astream sched-
uler is to satisfy theQoS requirementassociated with the processed streams.
Hence, the real-time constraints are determined by theSer€@mpirements. The
QoS requirements may, for example, include the requireautiivput, end-to-
end processing deldynd the underflow/overflow buffer constraints. In general,
these QoS requirements do mhectly translate into the deadlines.

In fact, the deadlines are not considered at all in the pregasethod since we
are not interested in individual task instances meeting theadlines but in the
whole stream satisfying given QoS constraints. Althoughdbadlines are not
specified in the scheduling problem addressed in this chapezeal-time con-
straintsstill exist and if needed can ltward. Finally, we note that due to the high
variability of several workload characteristics and dué buffering involved
into the stream processing, it would be difficult to transkaie QoS requirements
into the deadlines for each task instance without intratlyiei significant amount
of pessimism and runtime overhead.

2The delay through the whole stream processing chain.

92 Chapter 5. Designing Stream Scheduling Policies

e “Too much service is as bad as too little service”The goal of the conventional
real-time scheduling is to improve task response times. refbee, the more
service a task gets, the better it is (provided that schediijaof other tasks is
not jeopardized). In contrast, in scheduling tasks proogsstreams under the
buffer constraints, providing too much service to a task imays dangerous as
providing too little service. A higher service rate offerteda task increases the
burstiness of the stream at the task’s output, and therefayecause overflows of
downstream buffers. Hence, in stream scheduling we arergpfk abalanced
service

e Asynchronous communication style:The majority of task models used in real-
time scheduling assume that the tasks having data depaadermmmunicate
synchronousl§. a next instance of a producer task is not allowed to startiexe
tion before the output from the previous instance has beshlvg the consumer
task. (The communication channel in this case representmianel with de-
structive write, i.e. aegister) The underlying computation model of a stream
processing application is different. In this model, tasBsmmunicateasynchro-
nouslythrough the buffered channels. This communication styfees the tim-
ing coupling between dependent tasks, thereby creatingerldecision (or de-
sign) space for a scheduler.

e Workload variability: As discussed in Section 3.1, there are not many task
models (and therefore scheduling techniques) that caotetty and efficiently
handle the variable workloads. On the other hand, the maomtication in
scheduling of streaming multimedia applications on disttied execution plat-
forms stems from the high workload variability, which lead$ursty and com-
plex communication traffic between the multimedia tasks.

The communication traffic on an MpSoC platform, such as the sitown in
Fig. 29, tends to be highly complex and bursty for three maasons [165].
First, the execution time of many media processing tasksiyigepends on the
properties of the particular audio-video sample being @ssed [14,57, 134].
Second, the quantity of the I/O data consumed and producedtdsk can also
vary widely. An example of this is the VLD task in Fig. 29. Tdhirthe input
media streams already tend to be highly bursty when they enfgocessing
device. For example, in Fig. 29, the arrival pattern of thuinstreams entering
the set-top box would depend on the networks congestiotslelre addition to
these effects, the burstiness in the streams arrival pattarld increase as they
pass from one PE to the next, depending on these PES’ comgéstels and
scheduling policies [133].

3See the discussion in Section 3.1.

5.2. Related work 93

5.2

Related work

In real-time scheduling, the QoS requirements of tasks ygiedlly specified
with deadlines (which are explicit and fixed for a given task)us, many exist-
ing scheduling methods proposed in this area are “deadlinen” [41, 150]*
However, there is a class of real-time tasks which rathewirecp guaranteed
rate of progresgaverage throughput) than the satisfaction of the fixed lde=sl
[140]. Tasks that process continuous media streams faltim$ category. There
are scheduling techniques that can guarantee the requeealge throughput to
such tasks in presence of other tasks by effectivedervinga portion of the
processor bandwidth for execution of these tasks. Exangblegch techniques
include various kinds of aperiodic taskrverd1, 22,94, 147, 152] and thate-
based executiomodel [65]. Scheduling techniques based on the bandwidth
reservation principle are also used to guarantee QoS taep#otvs in commu-
nication networks (see e.g. [179]). The same principle dan be applied to
schedule streams on an MpSoC execution platform. The sthgdachniques
mentioned above may serve as a basis for designing platf@nagement poli-
cies for the media processors. However, their direct agpdin in this domain is
limited because most of them are concerned with schedufiagimgle PE (e.g.

a processor or a communication link) without consideringtem-level issues
such as the restricted buffer space.

There is alarge body of research on scheduling of directgdia¢ask graphs
on multiprocessor architectures [40, 76, 80]. A task gragpdtiies precedence
relations between tasks. These relations model data depeied between the
tasks. An application is typically modeled bysatof independent task graphs;
each task graph is associated with a deadline and an astivaériod. This
set is then scheduled on heterogeneous architectures3®g, Several hard-
ware/software co-synthesis frameworks use this modeB3235]. The method
in [32] schedules task graphs with periodic and aperiodiivaions. To guar-
antee QoS to aperiodic task graphs it employs resourcevedggrs. [127] pro-
poses an algorithm to schedule task graphs which model lag¢ghahd control
dependencies. Only a few approaches in this category camsidmory con-
straints while scheduling the tasks [108, 131, 154].

All scheduling methods just mentioned assusirgle-rate data dependen-
ciesbetween tasks, i.e. the execution rate of any consumer xaskly matches
the execution rate of the corresponding producer task. fBisis model is too
restrictive for a large class of multimedia applicationsvinich tasks havenulti-
rate data dependenci¢7]. A more adequate task model for multimedia appli-
cations relies on the concept of dataflow process netwoi¥s yéhich permits
the multi-rate data dependencies as well as cycles in tkegtaph. Scheduling
of dataflow process networks on multiprocessor architestueceived a lot of
attention in the digital signal processing (DSP) domain §)149]. The basic

4Some of these methods have been mentioned in Section 3.1.

94

Chapter 5. Designing Stream Scheduling Policies

model used to represent DSP applications, called Synchsobataflow (SDF),
assumes tasks with constant I/O rates [88]. A generalizatidghis model, the
cyclo-static dataflow19], allows for the 1/O rates to cyclically change. Schedul
ing of the dataflow graphs is mainly concerned with minimaatf data and
program memory needed to execute a graph [18]. Althougkreifit tasks may
execute at different rates, all these rates are tightlyedlep each other and fixed.

The existing dataflow scheduling algorithms focus on sclieglof only one
graph, ignoring the fact that several independent grajaits) leaving its own QoS
requirements, may need to be concurrently executed on et tarchitecture.
Combining these algorithms with the results known from teak scheduling
(e.g. with the bandwidth reservation techniques discuasede) may help to
address this problem. An interesting approach going irdinéstion is presented
in [43] where the rate-based execution model [65] basesholiest deadline first
policy is used to schedule an SDF graph on a single processutexture. For
this setup, [65] provides an analysis of buffer requireraamid the latency.

A number ofsystem-level performance analyfiameworks have been pro-
posed in the literature for evaluation and optimization latform management
policies. [71] proposes a framework for evaluation of rumet schedulers in
embedded multimedia systems. Given a system architecuwet of periodic
task graphs with execution times characterized by proityablistributions, and
a scheduling policy implemented on PEs of the architectoresach task graph
the framework in [71] computes a probability distributioitloe processing de-
lay. The framework in [129] performs a system-level schabiity analysis of
distributed real-time systems which rely on the time-teiggg protocol (TTP)
[76] as the communication infrastructure. Along with théedulability tests,
[129] reports techniques to optimize the parameters of thie-hased commu-
nication infrastructure and select suitable messagemassiategies for it. The
work in [51] uses evolutionary multi-objective optimizani techniques and the
SymTA/S performance evaluation framework [68, 133] to fimdable period
and time slot lengths of the TDMA scheduling policy. [25, 13@ldress the
problem of performance evaluation and design space exmoraf network
processors. Similar to the framework presented in this telmaphe approach
in [25, 156] relies on the Real-Time Calculus [121, 158]. lireates various
performance metrics, such as required buffer sizes andcepdekays, resulting
from implementing different scheduling policies on PEs oe&work processor.
However, unlike the framework presented in this chapterwbrk in [25, 156]
does not account for the buffer constraints (especiallgehelated to thelay-
out buffer$ and the variability of the task 1/O rates, which are natdoalme-
dia stream processing on distributed execution platfolsush as multimedia
MpSoC architectures.

Finally, we note that designing schedulers for on-chip Rigslves signif-
icantly different constraints from those for schedulingl douffer management
of multimedia applications in operating systems and comoation networks

5.3. Design Framework

95

I
I
I
Choose Simulate | Clteose
scheduling individual | szl
yd policy components | yd policy
I
f L
I
Characterize) Choose
. I
Valid S;Z%%iig the workload | a ste\rﬁlflgun d? scheduling
system found? parameters (obtain VCCs) | 4 : parameters

I
I

: Analytically

Simulate Compute . » check
system service bounds | feasibility
I
I
|
Analysis I Exploration

(@) (b)

Fig. 30: Evaluating multiple scheduling policies (or their associated parameters)ta@ifidnal

5.3

design cycle, purely based on simulation, (b) Proposed design cycieh wdsorts to
simulation only once and subsequent iterations are based on the anatgticalwork.

(see [91] and the references therein). In the latter dontlaénscheduling over-
head is often negligible in comparison to the execution $ilmiethe tasks. This
allows for complicated, online scheduling algorithms. H®er, in our resource-
constrained setup, implementing such algorithms mightnibeasible: Often,

on-chip PEs have only lightweight or even no operating systepport. Fur-

thermore, in the communication networks domain, buffertestrictions are not
as acute, and its possible to recover from data loss due fer lmvierflows. How-

ever, such mechanisms are too complicated for an on-chip set

Design Framework

In this section, we present an overview of our framework fesign space ex-
ploration and optimization of platform management poBdiel1, 112]. Most of
the state of the art in this area rely on simulation-oriergsthniques to evalu-
ate a platform management policy (see e.g. [126]), andviollee design cycle
in Fig. 30(a). Our technique follows the design cycle in B(b); we resort
to simulationonly once to derive certain system bounds. Subsequently, in our
framework the evaluation of scheduling policies and thairameters (such as
suitable weights for a TDMA scheduler) relies solely on gtiehl methods.
Hence, when the parameter space associated with desigstigeduler is rela-
tively large, our framework can be a few orders of magnituadr than purely
simulation-based approaches.

As shown in Fig. 30(b), in our framework we distinguish tw@phs: analysis
and exploration. During the analysis phase a simulatiomadiidual architec-

96

Chapter 5. Designing Stream Scheduling Policies

5.4

5.4.1

tural components is performed. For example, execution plieion tasks is
simulated on an instruction set simulator, and traces &féascution times and
other relevant task characteristics are collected. Usiradyais techniques de-
scribed in Section 3.5, these traces are then abstractesdtyfVCCs. We refer
to this step asvorkload characterization After the workload characterization,
the obtained VCCs are used either for the analytical estimaticdhe memory
requirements associated with a platform management p@@iegtion 5.4) or for
the computation of the service bounds (Section 5.5) thahareused for fast fea-
sibility tests of stream schedulers. In both cases, thaiatiah of schedulers is
performed analytically in the exploration phase. In thiywe time-consuming
system-level simulation is pushed out of the design spagration loop.

This basic scheme of using an initial simulation to genetraiees is not new
and is also followed in [125, 126]. However, simulationemted methods such
as [99, 125, 126, 184] then rely on a symbolic simulation e&thtraces (see also
[74,75, 83] for work on performance analysis of bus-based &ammunication
architectures), whereas we rely on purely analytical mighwehich are specific
to multimedia processing.

Applying Modular Performance Analysis

This section shows how the MPA framework introduced in $&c#.2 and then
extended with multimedia-specific workload transformasgian Section 3.4 can
be used for designing scheduling policies for a multimedaS@C execution
platform. In particular, we describe how the buffer memaeguirements re-
sulting from deploying different scheduling policies oropessing elements of
an MpSoC architecture can be analytically estimated udirsgextended MPA
framework. For illustration of the method, we use the sptiiox application
scenario described in Section 5.1.1 and depicted in FigT@@ards the end of
this section, we use this application scenario as a casg stushich the per-
formance of the Time Division Multiple Access (TDMA) schdidig policy is
evaluated. The results of this case study indicate that imldprocessor envi-
ronment even a simple scheduling policy such as TDMA may laaleege and
irregular design space. The extended MPA framework candysligm designers
to quickly discover these irregularities and make inforrdedign decisions.

Problem formulation

As already mentioned above, the burstiness of processed sveams largely
determines the buffer requirements in a typical MpSoC &chire. It stems
from several factors. Some of the factors are applicati@tifip, while the oth-
ers are platform specific. The application specific factoesralated to data-
dependent variability of stream parameters, such as \vhtyatf the execution

5.4. Applying Modular Performance Analysis 97

B Ba Bi Bn-1 DB

_ Y _ 4 N 2 Y _ Y
aq &%) Q4 Q1 Ap

»| » Cy P —| C; P —»C,_; » O,

(Hl,ﬂl,%) (/€2,7T2772) (/iz,ﬂi,%') (anlyﬂ'nflvfynfl)

Fig. 31: A chain of performance components induced in a scheduling network bylia steeam.

demand. The burstiness caused by the platform specificr&aigassociated
with contention of event streams on shared communicatiochcamputational
resources (PESs) of the architecture. The scheduling aritzditn policies used
to manage the access to these resources influence the detireduarstiness in-
duced in the event streams and, therefore, largely detertnenamount of buffer
space required to process these streams at a certain Q&S leve

Scheduling policies can be designed such that the buffeesgauirements
are minimized. However, in many cases, besides the mintiaizaf the buffer
space, there are also other design criteria. These craegiaften in conflict
with the buffer space minimization goal. For example, miazing the buffer
requirements necessitates scheduling streams at a finaulgrigy. However,
this may increase scheduling overhead and, therefordt nesvasting precious
system resources (e.g. energy). While designing schedsiiiategies for media
processors, system designers are often concerned withfyalegm suchtrade-
offs. In many cases, these tradeoffs are difficult to identifgasithey represent
complex relationships between the application at hand #feteht system pa-
rameters, including those pertaining to the resource spgolicies. Identifying
these tradeoffs, therefore, necessitates evaluation oy raldernative points in
the design space. One of the major problems in this contéxsto quickly
evaluate a large number of the design points. The methodpeajin this sec-
tion employs the MPA framework to address this problem.

In order to use the MPA framework, we need to formulate oubjam as a
scheduling networkSuch a scheduling network represents a performance model
of a given application-to-architecture mapping. It spesifnow event streams
flow between different PEs of the architecture and how th&sedpre shared be-
tween those streams. The scheduling network, therefonsjsts of performance
components interconnected through resource and event(@ew<sSection 2.2 for
details). Concrete instances of event and resource flowdateaated by arrival
and service curvesy = (a!,a%) andg = (5, 3*). Additionally, in the MPA
framework with multimedia extensions, performance congoms are character-
ized by consumption, production and execution demand syun&e each com-
ponent is associated with VCGs= (x!, k%), 7 = (7!, %), andy = (7, v4).

Consider a chain of performance componeiis— C; — ... — C; —

98

Chapter 5. Designing Stream Scheduling Policies

.. — C,_1 — C, induced in a scheduling network by a media stream, as
shown in Fig. 31. This chain models a sequence of tasks mappedlifferent
PEs of the architecture, which process the media stream ipedined fashion.

In Fig. 31, performance componeft (: = 1,2, ...) has as its input event-based
arrival curvea;. This curve is transformed by; into event-based arrival curve
Qi1 Q4q1, appearing at’;’'s output, serves as an input to the next performance
component in the chair;,;. The way in whichC; transformsa; into ;1
depends on the workload variability @, specified by VCC$x;, 7;,7;), and on

the scheduling policy implemented on the PE with whi¢hs associated. The
scheduling policy determines the amount of resources (ergcessor cycles)
received byC; from the PE in any given time interval. This amount is modeled
by resource-based service curve In other wordsj3; characterizes the service
offered to the media stream on the PE.

At the input of each performance component, there is an ailuffer (not
shown in Fig. 31). As explained above, to maintain the qualitthe processed
media stream at an acceptable level, we require that norfeedsuffers in the
processing chain ever overflows. Furthermore, there mapime performance
components in the processing chain whose input has to bénooos. This
means that they cannot tolerate waiting on the empty inpifibior new events
to arrive. Whenever such a component reads from the bufferdéta must
be available for it. We refer to such buffers playout buffers Typically, a
playout buffer is associated with the last performance aomept in a processing
chain. This is because the last component often represeistput interface in
a multimedia MpSoC architecture, e.g. a video or audio dyuggguwhich event
streams have to satisfy strict real-time constraints iregddsy external devices
(such as digital-to-analog converters). Again, to ensaraceptable quality of
the processed stream, we require that any playout buffénereoverflows nor
underflows.

Assume that, in Fig. 31, represents the performance component that needs
to have at its input a playout buffer. To model the timing withich C,, reads its
playout buffer, we usevent-basedervice curves, and3". 4 (A) andF(A)
specify, respectively, the minimum and the maximum numbevents (stream
objects) that”,, reads from the playout buffer within any time interval of dgim
A.

Given a processing chain such as one shown in Fig. 31, ourgmatompute
the maximal backlog which may occur in each of the bufferdia processing
chain as a result of applying a given scheduling policy. Afteding the maximal
backlog in each of the buffers, we will be able to compute tlagimum memory
requirements associated with this scheduling policy.

5.4. Applying Modular Performance Analysis 99

5.4.2 Computing the required buffer space

Upper bound on the backlog in a "regular” buffer

Consider a performance componéhtwhich has at its input a buffer that must
never overflow, but is allowed to underflow. (We refer to sucbuffer as a
"regular” buffer as opposed to a playout buffer that is akkolneither to overflow
nor to underflow.) To compute the upper bound on the backldbarbuffer at

the input of C;, we use results of the Real-Time Calculus [157] presented in
Section 2.2.2. Namely, we rewrite (2.10) such that it inelsicilew multimedia
workload transformations developed in Section 3.4. Weinbta

b= sup {a}(A) — (" O ©F)(A)} (5.1)
AER>q
whereb; is the upper bound on the backlog in the input buffeCpf In (5.1),

! ki and~® are known from the problem specification. In contragt,is, in
general, unknown. Normally, we know ondy;, which characterizes the event
stream at the input of the whole processing chain (i.e. atrpet of the first
performance component). Starting froma{, the value oy} can be iteratively
computed using (3.38) as follows

oty = mo((sea) © (v 08D (F eBIAG oY) i=12,...

Using the above formula in conjunction with (5.1), the uppeunds on the
backlogs in all "regular” buffers of the processing chain t& calculated.

Upper bound on the backlog in a playout buffer

For performance components that have playout buffers atitipits, the com-
putation of the upper bound on the backlog is in principlesame as for com-
ponents with "regular” buffers, however, it involves an didehal step.

As stated above, a playout buffer must neither overflow nakedifow. En-
suring satisfaction of the underflow condition necessitateroducing glayout
delay This is a time period at the start of the operation of the whpzbcessing
chain during which the performance component associatédayplayout buffer
does not read this buffer. This playout delay is hecessapydduce annitial
backlogin the playout buffer. The initial backlog must be sufficieatensure
that even in the case when the processed stream experibecasiist-case de-
lay (e.g. due to processing by upstream components) theytlduffer never
gets completely empty. Hence, to compute the upper boundeohacklog in a
playout buffer, we first need to compute the initial backloghis buffer. Towards
this we propose the following theorem.

Thm. 2: (Initial backlog in playout buffer) The initial backlog,t’, ensuring that the
associated playout buffer never underflows is given by

b = sup {5"(A) —a'(A)} (5.2)

AGRZO

100

Chapter 5. Designing Stream Scheduling Policies

wherea! denotes the lower event-based arrival curve of the strearneairtput
of the playout buffer, an@“ denotes the upper event-based service curve offered
to the stream by the performance component reading the ptdodfer.

Proof. Letx(t) denote the total number of events that have arrived in thepta
buffer within time interval(0, ¢]. Similarly, lety(¢) denote the total number of
events that have been read out of the playout buffer withire tintervall0, ¢].
Assume that:(0) = y(0) = 0. From the definitions of the arrival and service
curves, we have(t + s) — z(t) > a'(s) andy(t + s) — y(t) < 3%(s) for all
s,t € Rsq [85]. The playout buffer never underflows if(it) > y(¢) for all

t € Roy.

Now, consider someup to which the condition(¢) > y(¢) holds. To ensure
that this condition also holds for sone= ¢ + s the following relation has to be
satisfied

2(t) +a'(s) > y(t) + 5“(s) Vi, s € Ryg
Here,a! (s) is the minimum number of events that may arrive in theriate
[t,t + s], whereas?" (s) is the maximum number of events that can be read out
of the playout buffer in the same interval. Lgt) = =(¢) — y(¢) denote the
backlog in the buffer at timé Then we have

b(t) > 3(s) —a'(s) Vi, s € Ryg

By putting? = 0 in the above condition, we obtain a constraint for the ihitia
backlogh(0) > 3%(s) — a!(s) for all s € R.,. This is equivalent to requiring
thatb(0) > b°, wherel’ = sup,cp_ {3*(s) — a'(s)}

U

Whenever even-based service cuflds specified, we can directly use (5.2)
to compute initial backlog? in the playout buffer of”;. Otherwise, we need to
apply corresponding workload transformations to resctwased service curve
B, After applying these transformations, (5.2) takes thiofahg form.

b= sup {(@ ©B1(A) - al(A)} (53)
AERZO
In (5.3), @' can be computed in a similar way a¢, as explained above, but
using (3.39):
ay =mo(koaddy op)ew ofIry o)
The computation of the above formula starts frafn(which is known from the
problem specification) and iteratively proceeds up to tlggired index:.

Taking into account the required initial backlégy the upper bound on the
backlog in the playout buffer at the input of the performaosmponent’; can
be calculated as

b =0+ b; (5.4)
whereb; is determined by (5.1).

5.4. Applying Modular Performance Analysis 101

Maximum memory requirements

Having computed the upper bounds on the backlogs in theriswffighin a stream
processing chain, we can calculate the maximum memory negent associ-
ated with this chain. For this, I&f; denote the maximum size of a stream object
in the input buffer of performance componerit Then the maximum memory
requirement,M, of the whole processing chain can be computed as follows.

M:ibixSi+Zb?xSi (5.5)

VieP

whereP = {i : C; has at its input a playout buffer

5.4.3 lllustrative case study

This subsection presents results of a case study publishgd 5], where the
concepts of the modular performance analysis and the new Y@ developed
in the previous sections of the thesis are applied to evalpetformance of the
TDMA scheduling policy in a multiprocessor environment. isTmultiproces-
sor environment is represented by the system architedansrsin Fig. 29. In
this architecture, the TDMA scheduling policy is used fdnesduling processing
elementPE1 andPE2, with each PE having its own TDMA scheduler.

There are three main reasons for choosing TDMA for this cas#ysFirst,
it is simple enough to implement in a SoC setup, and it has theduling over-
head, therefore it is widely used for scheduling on-chip &btscommunication
resources [44, 76, 129]. Second, since TDMA is fully preahte in terms of the
worst-case delay and bandwidth provided to individual eviemvs, it is espe-
cially suitable for scheduling media streaming appliaagiassociated with real-
time guarantees. Third, TDMA is also relatively easy to elcterize in terms of
service curves; hence, it provides a simple illustratiotheftheoretical concepts
presented above. However, it may be noted here that ourati@iuramework
IS not restricted to analyzing only TDMA schedulers. Systimigners can use
it to analyze any static- or dynamic-priority schedulingalithm, including pre-
emptive and nonpreemptive versions. These include scingdpblicies such
as fixed-priority, weighted round-robin, and earliestdlg® first. In fact, our
framework can evaluate any scheduling policy that is chara@able using ser-
vice curves. Moreover, it can evaluate a platform in whidfedent scheduling
policies are used on the different PEs [24].

For this case study, we consider the set-top box applicact@mario de-
scribed in Section 5.1.1 and also shown in Fig. 29. In thismade, each PE
processes two independent concurrent event fleMid. performs partial decod-
ing of the MPEG-2 video stream (by applying to it VLD and 1Q &tions) and
handles control events (e.g. user's command)2 finalizes the decoding of
the MPEG-2 stream (with IDCT and MC functions) and decodes &3 ludio
stream. The TDMA schedulers, therefore, regulate shariritfd andPE2 by

Chapter 5. Designing Stream Scheduling Policies

(/<&1,7T1771) (52,7T2,’Y2)
d . .
video-in |\, | ocT | Video
>l q 1 mMC ~1 out
X x X
i 51,TDMA i 62,TDMA 5
H H 5Video_0ut
PE1---->» TDMA PE2 ----»{ TDMA 3
i i Baudio_out
_ 4 _ 4 Y
Qlcontrol Qaudio_in

Y
>
c
=3
o

Ul task —_—P1 MP3

Fig. 32: Scheduling network of the set-top box system shown in Fig. 29 using TD&Aduling
policy onPE1 andPE2.

these event flows. The scheduling network modeling thisagebox application
scenario is shown in Fig. 32. As an example, the processiam ¢hduced by
the video stream in the scheduling network in Fig. 32 is iathd with a grey
background area.

Let the TDMA schedulers oRE1 andPE2 have periods equal t@ andp,,
respectively. The smaller the lengths of the periods arallemthe buffer re-
quirements for processing the streams will be, but at theafdsgher schedul-
ing overheads. The goal is to analytically computaaleoff curveshowing
how the on-chip buffer requirements change with differesriqus of the TDMA
schedulers. For the demonstration of the method, in this sagly, we restrict
ourselves to computing such a tradeoff curve for the videzagh only. The de-
pendency of buffer requirements on the TDMA periods for théi@a stream can
be calculated in a similar way.

We now characterize a TDMA scheduler in terms of the servipeovides to
any particular stream when that scheduler is schedulingipleistreams. Con-
sider two streams; andy, scheduled on a PE by a TDMA scheduler with period
p. Assume that no other streams are processed by the PE. Tgktsvassoci-
ated with streams andy arew, andw,, wherew, + w, < 1. The scheduler
divides time into periods of length Within any period, the scheduler allocates
w,p consecutive units of the PEs time to streamandw,p consecutive units
to streamy. If a stream cannot exhaust the processor share allocaigdhe
unused processor cycles are wasted.

Assumingp is infinitesimally small, we can neglect the effects of a énit
sampling of the processor cycles. Then, we can calculateghace offered to
the two streams in terms of processor cycles as followy. i the number of
processor cycles available from the PE per unit time (thaf is the PEs clock

5.4. Applying Modular Performance Analysis 103

157 Bioma(D)

& 1.0 / Brpmal(d)
X "

2] H

[} H .

© ii oninterval

> L

L 05f =

— period —

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
time interval, A [ms]

Fig. 33: Example resource-based service curves. Hefg,,, and 3%y, are the lower and the
upper resource-based service curves characterizing serviceatb one of the streams
being scheduled on a PE using the TDMA scheduler. The scheduleidslpg is set to
the equivalent o2.5 x 10° processor cycles, and the clock rate of the PE is 390 MHz.
The on interval indicates the time over which the PE processes the stream within any
period. The value 0By, is initially 0, corresponding to the maximum time the PE is
unavailable to the stream.

rate), resource-based service cuf/eA) = 3%(A) = fA constitutes the total
service offered by the processor. Then the service cunaifeame is 3L (A) =
Bu(A) = w, fA; the service curve for streamis 3} (A) = G4(A) = w, fA.
Therefore, the lower and upper service curves for both istsemincide and are
straight lines with slopes, f andw, f, respectively.

Whenp has a finite value, the resource-based service curves takerth of
a staircase function, and the lower and upper curves no tauyecide. Fig. 33
gives an example of such a service curve. Hgrs, set to a time interval over
which the PE offers a total af.5 x 10° cycles. Note that periog does not
determine the amount of service (i.e. number of processdesyprovided to
the scheduled streams in a long term. It does influence ooly &drm variations
of the service. The long term service provided to a strearulig fletermined
by PE’s clock ratef and the TDMA weightw assigned to this stream, i.e. by
valuewf. While designing a TDMA scheduler, it is important to choosis t
value such thain a long term the stream would receive not less service than it
requires, otherwise, a buffer overflow is bound to happeomtspoint in time.

To fully specify the problem, besides characterizing theMiADschedulers,
we also need to characterize the video tasks executing ¢nRies, the timing
properties of the video stream at tR&1’s input and the video interface which
reads the fully decoded video stream from the playout bufigat the PE2’s
output.

104 Chapter 5. Designing Stream Scheduling Policies

5 3.5
' 3 "
4 R
) *9 25
% x .
r AU
.é ’ 'k”ll _5 2 f /1
3 5
= o 1.5
3 2 3
X X
8 81
1t
0.5
1 1 L 0 L 1
% 1 2 3 4 0 5 10 15
[bits x 106] [processor cycles x 107]
(a) Consumption curves (b) Pseudo-inverse execution demand curves

Fig. 34: Characterization of the video decoding task executeBBh.

For a constant bit rate input video stream, which we use heam@&xample,
event-based arrival curves; g in(A) = @%geqin(A) = 7.A (the lower and upper
arrival curves coincide), whene denotes the bit rate of the compressed video
stream at th&E1’s input. In this case study, we consider video sequencéds wit
r. = 4 - 100 bits/sec.

The video output interface periodically reads decoded ofdocks from
playout bufferB, at a constant rate,,,. Hence, the event-based service curves
characterizing this reading process .oou(2) = Bldecould) = rmpA. Rate
rmp 1S determined by the frame rate and the resolution of thedbstweideo clip.

In our setupr,., = 39600 macroblocks/sec.

The video decoding tasks executing BR1 andPE2 are characterized by
VCCs (k1,m1,71) and (kz, ma, 7o), respectively. The VCCérl,), (nb, 74)
and(x}, k%) are straight lines with slopes which correspond to the eonstte
production (consumption) of one stream object per taskatodin. In contrast
to this, k! and k% have complex shapes since, per one activation of the task
performing VLD and IQ functionsPE1 consumes a variable number of bits
from its input bufferB;. Similarly, (4¢,~%) and(+4, %) have complex shapes,
because both the MPEG-2 decoding tasks runningiohandPE2 have variable
execution demands. As an example, Fig. 34 showsx?) and pseudo-inverse
of (74,41, corresponding to an MPEG-2 video sequence which we usedrin o
experiments.

The VCCs(x}, k%), (74,~%) and(+4,7%) were obtained by analyzing traces
generated from the initial simulation step described inti6ad.3. In this case
study, this step comprised of simulating the executioRI6f andPE2 for a rep-
resentative MPEG-2 video clip using the SimpleScalar ut$ton set simulator
[8]. To derive the VCCs, the traces collected from the SimpdésBcsimulation
were analyzed using the technique described in Sectio.3Mere, we once

5.4. Applying Modular Performance Analysis 105

4.8

4.6

4.4

4.2

buffer space [number of bits x 107]

105
10.5

5.5

0.5
p, [number of cyles x 107] 05 p, [number of cyles x 107

Fig. 35: The surface showing the dependency of memory requirements on the ehlihe peri-
odsp; andp, of the TDMA schedulers.

again point out that although obtaining the VCCs requires ithelation of the
MPEG-2 decoder tasks, we need to do it only once, using ageptative video
clip (or a set of clips). Once this specification is obtainadjtiple instances of
the platform architecture (with different configuratiorts)n be analyzed using
only analytical means. Furthermore, we can avoid a timesgonng simulation
of the whole multiprocessor system—rather, we simulatalastract modebf
the platform for which we need to employ only an instructiensmulator.

Having characterized the TDMA schedulers and the worklcagpgrties of
the video decoding chain, we can compute the maximum byfl@cesrequired
for processing the video stream in the architecture showAgn29 as described
in [115].

We are interested in studying how the amount of buffer spaqgeired for
processing any MPEG-2 video stream depends on the graguwéthe TDMA
schedulers implemented @t.1 andPE2. Hence, a design point is determined
by a pair of TDMA periodg$p;, p2). For each paitp;, p») we iteratively compute
the maximum backlogs in the FIFO buffers and scale the obdawalues by the
maximum size (in bits) of the stream objects associated thighbuffers. The
results of this computation for the representative MPEQe2w sequence are
shown in Fig. 35.

By inspecting the 3D surface shown in Fig. 35 we can see theceegb&rend:
decreasing the values of the TDMA periggdsandps, in general, leads to a re-
duction in the memory needed to implement the buffers. Heweve also can
see that this reduction is not uniform across the entiregafighe period values.

106

Chapter 5. Designing Stream Scheduling Policies

5.5

Even for a simple scheduling discipline like TDMA, there &aege irregulari-
ties in the design space. This makes it virtually impossibleome up with an
appropriate tradeoff, based only on a designer’s expegi@mchow the mem-
ory requirements typically change with small changes inghemeters of the
schedulers. Since on-chip buffers have large area reqeimmsuch an infor-
mation about the design space is, however, essential ferrdeting optimal
platform management policies. Using our framework it ig¢h@re possible to
discover the irregularities in the design space, and froanrive at an appropri-
ate tradeoff—in this case between scheduling overheadsidfed requirements.
This capability of the framework can be attributed to theamdng concept of
VCCs which can be used to precisely represent the differeestgpvariabilities
associated with multimedia processing on multiprocess@ @atforms.

Finally, we note that evaluating a single design pdnt p,) by simulating
an abstract transaction-level model of the platform aechitre in SystemC [153]
(using the system simulator described in Appendix A) farsec long video clip
required almost an hour of simulation time. This simulatione was around
100 times longer than the time needed for evaluating a dgsegnt with our
analytical framework implemented using a combination oftiéanatica and
Matlal® models. (We believe that an efficient C/C++ implementation ld/de
at least 5-10 times faster than our current prototype implaation of the an-
alytical framework.) Considering the time involved in sirmatihg even a single
design point for a relatively short video clip, it is almostaasible to obtain a
design surfaceuch as the one shown in Fig. 35 in a reasonable time usintypure
simulation-based techniques. In contrast, using the meganalytical frame-
work system designers can learn about the structure of tire elesign space in
tens of minutes.

Checking Feasibility of Stream Schedulers

In this section, we introduce the conceptsefvice boundgl02, 103,111]. The
service bounds allow to quickly verify whether in principhere exists a schedul-
ing policy that can satisfy QoS requirements of a streamh(siscthe delay and
buffer constraints), and to check feasibility of a givenesbiler against these
requirements. Furthermore, they can direct the desigrespguoration process
by providing the information by how much a given schedulezsinot (or does)
satisfy a given set of QoS requirements.

In this section, we limit the presentation to the servicerfosuobtained from
the buffer constraints; however, the principles presemidtiis section can be
applied to derive the service bounds also for the delay cainss.

Shtt p: // www. wol fram com
Shtt p: // www. mat hwor ks. com

5.5. Checking Feasibility of Stream Schedulers 107

Fig. 36: An abstract view of a PE which processestreams.

5.5.1

Problem formulation

For the sake of generality, we consider any media streancttode a potentially
infinite sequence of stream objects. A stream object could beacroblock,
a video frame, an audio sample, or a network packet, depgratinthe part
of the architecture where the stream exists. For exampl&ijgn29, stream
objects are network packets when the relevant stream istit@ting the network
interface. In contrast, the stream objects are partialbc@ssed macroblocks
when the relevant stream is that written into buff&r

Fig. 36 shows an abstract view of a PE that processsiseams. Functions
z;(t), i = 1,2,...,n, specify the streams entering this PE. These functions de-
note the total number of stream objects that arrive at thetibpffers in Fig. 36
over time intervall0, ¢]. [; denotes the number of stream objects that the input
buffer, for stream, can store (i.el; is the size of the input buffer). In Fig. 36,
the PE writes the processed streams into playout buffershaduie then read
by real-time output devices.; denotes the playout buffer size for stream
Functiony;(t) specifies the processed output stream entering the playéfat.b
Like z;(t), this function denotes the number of stream objects exitiegPE
over time intervall0,¢]. The real-time output device associated with stréam
consumes stream objects from the playout buffer at a rat@figueby function
R;(t), which denotes the number of stream objects consumed diimegnter-
val [0,¢]. We note that, forali = 1,2,...,n, z;(t), y:(t), R;(t) are increasing
functiond of ¢.

B is a tuple(3, 3*), wheres! and 3¢ are lower and uppeesource-based
service curves characterizing the service offered by theoRBEeam. The shape
of 3; is completely determined by the scheduling policy impletadron the PE

"Refer to Section 3.2.1 for the meaning of "increasing fuocti

108 Chapter 5. Designing Stream Scheduling Policies

to schedule the different streams and possibly other taskepsed on this PE.
We require the PE to process the streams under the follobirfigr con-
straints

1. The PE’s input buffers must never overflow.
2. The playout buffers, at the PE’s output, must neitherftss@mor underflow.
Our evaluation framework can solve the following two probe

e For the PE in Fig. 36, given functions(¢) and R;(t), and buffer size$ and L,
for streami, the first problem is to compute functioasanda, which we refer
to asservice bounds The service bounds have to guarantee that if the actual
service provided to the stream satisfies them, then noneedsufiers overflow
and the playout buffer never underflows.

e Once we have obtained the service bounds for each stream peinessed by
the PE, the second problem is to check whether a given sare@plecified by
the set of resource-based service curgess, ..., 3,) is feasible The given
scheduler is feasible if it satisfies the above buffer camnsts for all the streams.
If the scheduler is feasible, a designer can then furthduatait by considering
other factors, such as scheduling overhead and implen@mtaimplexities.

5.5.2 Service bounds

In this subsection, we describe how to compute upper and Iser@ice bounds
that have to be satisfied for each input stream if the buffastraints associated
with the stream are to be satisfied.

Assume stream receives services; from the PE in Fig. 36.3; is a tuple
(B, B), wheres! and 3" are the lower and uppevent-basedervice curves
characterizing the service provided by the PE to stréafwo factors determine

By
¢ the execution time of the stream objects belonging to strigamd
e the scheduling policy implemented on the PE.

Note the distinction between event-based service cusyeshich are unknown
in our setup, and resource-based service cusyashich are fully determined by
a given scheduling policy. In this subsection, we will de@lowith event-based
service curves.

8Although there may be other factors influencing the serviosided to a stream on the PE,
such as the number of consumed and produced stream objetésexecution, for simplicity
we do not consider them here. In particular, we assume ins#ition that a task processing
a stream consumes and produces only one stream object pexeoation. Our framework,
however, is not restricted to this special case.

5.5. Checking Feasibility of Stream Schedulers 109

Now, consider the streamis= 1,2,...,n in Fig. 36. For simplification,
we drop identifieri. We express the playout buffer underflow constraint for the
stream as

y(t) > R(t), Vt>0 (5.6)

Similarly, we express the constraint on the playout bufferfiow as
y(t) < R(t)+ L, Vt>0 (5.7)

Finally, we express the constraint on the overflow of the ifjuifer associated
with the stream as
y(t) =z z(t) =1, vt =0 (5.8)

Combining (5.6) and (5.8), we obtain constraint
y(t) > RV (x(t) — 1), Vt>0 (5.9)

If lower event-based service cury? represents the minimum service that
the PE guarantees to the stream, then ([85])

y(t) = (B'@a)t), vt=0 (5.10)

Hence, the minimum value gf(t) at any timef is (3' ® x)(t). Then, substituting
for y(t) in the constraint (5.9), we obtain

(B'@x)(t) > R(Et)V (z(t) = 1), VEt=>0

Since for any increasing functiorfsg andh, g@ h > fifandonlyifh > f o g
[85], we can further reformulate the above constraint as

B(A) = (RV (z = 1) Da)(A), YA>0
or, equivalently, if we expend the min-plus deconvolutigetor, we have

F'(A) = sup{(R(t + D) V (x(t + A) = 1)) —z(t)}, YA >0

A>0
Finally, after rearranging the above inequality we obtain
B(A)> (RozV (zoz—1))(A), VA>0 (5.11)

If the upper event-based service cum¥éerepresents the maximum service
that the stream can receive from the PE, then ([85])

y(t) < (B"@a)(t), Vt>0

holds. Therefore, using?* ® x)(t) as the maximum value of(t), we can refor-
mulate the constraint on the playout buffer overflow, (5a8),

(B @a)(t) < Rt)+ L, Vt>0

110 Chapter 5. Designing Stream Scheduling Policies

or equivalently,
BYUA) < (ROz)(A)+ L, VYA>0 (5.12)
Inequalities (5.11) and (5.12) give lower and upper boundthe values of
[t and 3* that satisfy the buffer constraints associated with theastr. These
bounds represent the service bouridsanda*, which we were aiming to find in
this subsection. Hence, for streanwe have

7i(A) = (RiDx V(2 0x —1))(A) (5.13)
o' (A) = (Riox)(A)+ L (5.14)
Thus, any feasible scheduler implemented on the PE musfysati
BiA) = ai(A), VA>0 (5.15)
Gi(A) < G/ (D), VAZ>0 (5.16)

foralli =1,2,...,n.

Computing service bounds for class of streams

Service bounds! anda¥, obtained above, are only for a concrete instance of
streami, which is specified by cumulative arrival functian(¢). Hence, they
can guarantee satisfaction of the buffer constraints anlyhis specific instance.
However, we would like to derive the service bounds for a wletdss of streams
that can appear at inputof the PE. We assume that this class is specified by
event-based arrival curve§ anda® , i.e. for anyz;(t)

al (A) Szt + A) —a(t) < av (A), VA E>0

T

always holds. Furthermore, for the specification of the-tiead¢ output device
reading processed strearfrom the playout buffer, instead of using cumulative
function R;(t), we use event-based service curys and 3y . 5% (A) and
B}%i (A) return minimum and, respectively, maximum number of siredjects
that the output device can read from the playout buffer witimy time interval
of lengthA.

Consider the lower service bound determined by (5.13). ,Rirstnote that
self-deconvolution(z; @ z;)(A) < a“(A). Second, sincér;(t) < 3% (t) and
z;(t) > al (t), we have

(RiDz:)(A) < (B, Da;,)(A), YA>0
Hence, we can reformulate (5.13) as follows.
Gi(A) = (Br, D a,, v (ag, —1)(A) (5.17)

Now consider the upper service bound determined by (5.14raie of
R;(t) > B (t) andz;(t) < a (t), the following inequality holds

(Ri@ai)(A) = (Br, @ag,)(A), VA0

5.5. Checking Feasibility of Stream Schedulers 111

5.5.3

Thus, we can replace (5.14) with

G A) = (B, @ a) (A) + L (5.18)

Feasibility check

Now we come to the second problem. Given a scheduler to bem®ited on a
PE, does the resulting service offered to each media streacegsed on this PE
match the service that the stream requires?

At this point, we would like to note that before even consilgia particular
scheduler the service bounds can already tell us whethdt titege exists a
scheduler which can satisfy the buffer constraints for &igiset of streams. If
the following conditions evaluate to true for all streamsha set (i.e. for alf),
thenin principle there exists a feasible scheduler:

GHA) <G (A), YA>0,i=1,2,...,n (5.19)
(5.19) will be false in case the buffer constraints are cotirfig. Hence, only after
verifying (5.19) it makes sense to proceed with feasibitiyecks of particular
schedulers.

The service required by a stream is what we obtained in theque subsec-
tion as the service bounds. However, we computed this rexaint in terms of
the number of stream objects to be processed within any giveninterval. The
service that a scheduler provides to a stream, on the otinek, lanaturally ex-
pressed in resource-based units, e.g. in terms of the nuphpeocessor cycles.
Hence, we need a way to express this service in terms of théewai stream
objects. Because of the variability in the execution regquerts of different
stream objects belonging to a stream, this is difficult. Weresis this problem
by characterizing the variability using the execution dadchaurves defined in
Def. 7.

Let v/ and~* denote the lower and upper execution demand curves char-
acterizing the task which processes streaan the PE in Fig. 36. As stated
in the problem definition, the service that a scheduler sfterstream on the
PE is specified by resource-based service cufyes (3, 34). l.e.,3(A) and
B#(A) denote the minimum and maximum number of processor cyckatable
to stream: within any time interval of length\. Then, for the scheduler to be
feasible for stream,

(W @BHA) > FHA), YA>0 (5.20)

7

(i esA) < HA), VA>0 (5.21)

These inequalities should hold for all the streams prockkgehe PE that con-
tains the scheduler.

112 Chapter 5. Designing Stream Scheduling Policies

5.5.4 Case study: Evaluating TDMA schedulers

We used our framework to evaluate different scheduler®B2 of the set-top
box in Fig. 29. Again, for simplicity, we restrict ourselviesTDMA schedulers.

In Fig. 29,PE2 executes tasks for both the video and the audio streams and,
therefore, represents a shared resource in the platformitecture. Identifying
an appropriate scheduler fBt2 is thus an issue that the system designer must
address. To avoid degradation of the sound and picturetguslich a scheduler
must ensure that no audio or video samples are lost due toaafiawv of any
of the buffers and that playout buffers never underflow. Saisbheduler might
be difficult to identify because of the high variability inetfexecution time of
the different tasks running oRE2 and the burstiness of the two streams that it
processes.

BecausePE2 processes only two streams, any TDMA-based scheduler is
completely specified by weights, andw, and periog. Determiningw; andw,
is relatively straightforward. The long-term average aiterhichPE2 processes
either of the two streams must exactly equal the correspgnolitput devices
long-term average consumption rate for that stream. E#hleuffer overflow
or underflow is bound to occur at some point if these long-testes do not
match. Designers should therefore choose weightand w; to match these
rates. However, there can be short-term mismatches in teegsing and con-
sumption rates because of the burstiness of the streambeaudrtability in their
execution requirements froiE2. The tolerable amount of mismatch depends
on the sizes of the internal and playout buffers associatddesch stream, and
periodp.

Finding an appropriate value pfis not straightforward. There is generally
a set of such values satisfying all buffer constraints. H@wegiven any value
of p, our framework can determine whether the resulting scleedsilfeasible.
After determining a set of feasible valuesypthe system designer can use other
evaluation criteria, such as incurred scheduling overloeg@dwer consumption,
to narrow that set.

System and workload specification

The system configuration for the platform architecture ig. 29 is as follows.
Each PE is areduced-instruction set computing (RISC) ddlfé.has application-
specific extensions for MPEG-2 processing and runs at a ciielof 200 MHz.
PE2 has application-specific extensions for video-procesgingtions and runs
at a clock rate of 390 MHz.

Fig. 37 shows an abstract view of processing elenid in the system
model of the set-top box in Fig. 29. The two input buffers vaikes/, and/,, in
Fig. 37, correspond to buffe8, and B; in Fig. 29. The two playout buffers of
sizesL, and, correspond to buffer8, andB,. Tab. 7 gives the corresponding
buffer sizes.

5.5. Checking Feasibility of Stream Schedulers

113

\/
Z’U L?)
2,(t) —>:[|]—> R,(t)

lq
24 (t) ———> “

Fig. 37: An abstract view oPE2 in the set-top box application scenario in Fig. 29.

ﬂPEZ

TDMA L
a

@ T 2.0

| Buffer | Notation | Size

|

By

4000 macroblocks
3200 macroblocks
4 frames
4 frames

Tab. 7: Buffer sizes for the platform architecture in Fig. 29.

Stream Parameter Specification

MPEG-2 vided | constant bit rate 8 Mbps
frame rate 25 fps
picture resolution | 704x576
clip duration 15 sec

MP3 audio constant bit rate 256 kbps
sampling frequency 44.1 kHz
clip duration 15 sec

T susi .080. n2v, available at
ftp.tek.comtv/test/streans/El ement/ MPEG Vi deo/ 625/

Tab. 8: Specification of the two media streams processed by the platform architeckige 29.

Tab. 8 gives the parameters related to the two streams giveigi 29. The
streams correspond to an MPEG-2 video and an MP3 audio dipsdrepresent
typical clips that the set-top box in Fig. 29 must process.

In Fig. 37, cumulative arrival functions,(t) andz,(t¢) specify the video and
the audio streams at thid2’s input, whereasz, (¢) and R, (t) specify the video
and the audio output devices reading the playout buffersobteined ther,(¢)
function in Fig. 37 by measuring the execution times of theDvand IQ tasks
for each macroblock in the video sequence and by accourdmg f

¢ the constant arrival rate of the compressed bitstream &tlthés input in Fig. 29;

114 Chapter 5. Designing Stream Scheduling Policies

70

— 60 //
‘9 50 ZL'q,(t)
X 40 R,(t)
O L v
o
3 30 /

10 //

0

0 0.5 1 1.5 2
time [s]

Fig. 38: Specification of the video stream: functiong(t) and R, (¢) from Fig. 37.

and
e the number of bits per macroblock, which is variable becadisiee VLD task.

Further, in our setupPE1 executed only the task performing the VLD and 1Q
functions. l.e., the full processing capacityl®k1l was devoted exclusively to
this task, and no scheduler, therefore, was employed tals@RE].

Fig. 38 shows the resulting function, (¢). Similarly, functionR,(¢), shown
in Fig. 38, specifies the consumption of the video stream gwbutput device.
The value of this function i$ for the first0.34 seconds, corresponding to a
playout delay. After this delay, the function increaseshvat constant slope,
representing a periodic consumption patterd®600 macroblocks per second.
(One macroblock corresponds tolé x 16 pixel block in a frame; thus, one
frame with resolutiory04 x 576 pixels containd .584 macroblocks. Therefore,
25 frames per second result39.600 macroblocks per second.)

The execution demand curves shown in Fig. 39 capture theex¢gution
requirements of the task performing the IDCT and MC functiomBE2. Rather
than using a constant value, we use the execution demanesciacapture the
variation in the total execution requirements of this ta&kobtain these curves,
we first collected a trace of execution times for the task &et analyzed this
trace with the method described in Section 3.5.2.

Functionsz,(t) and R,(t), combined with the execution demand curves,
completely specify the video stream. We obtain the spetidicaof the audio
stream similarly. Once such a specification of the strearagagable, designers
can use our framework to evaluate any scheduler using tleegson Fig. 30 and
without resorting to further simulations.

Evaluating TDMA schedulers with different periods
Given functionsr,, z,, R,, andR, for the representative video and audio clips,
Fig. 40 shows the service boundg,anda*, for the video and audio streams.

5.5. Checking Feasibility of Stream Schedulers 115

20

171
Yo et

[macroblocks x107]
S

0 0.5 1 1.5 2
[processor cycles x10']

Fig. 39: Pseudo-inverse execution demand cur(\rggl,fyi_l) capturing the execution require-
ments for the video task running &2 in Fig. 29.

These service bounds represent the number of stream olipttBE2 must
process within any time interval of a given length. The figal®o shows the
offered event-basedservice curvesy* ' @ 4! and+y! " © g% 4 © G and
7}[1 ® [¥. These service curves represent the number of stream skjetP E2
will process using a TDMA scheduler with a period2df x 10° processor cy-
cles. TDMA weightsw, andw,, associated with the two streams, are)9 and
0.891.° (Fig. 33 shows the corresponding resource-based servivesstf and
B for the video stream. In Fig. 33,4 = 3 and By p4 = BL)

Fig. 40 illustrates conditions (5.20) and (5.21). Howewebetter graphical
representation of these conditions is to plot them as diffees“—~' ' © 5" and
' @ Bt — . If any of these differences takes a negative value, thendive-
sponding scheduler parameters are potentially infeasidéerefer to such plots
asdifference plots Fig. 41(a) shows the difference plots corresponding to the
configuration in Fig. 40. By inspecting the difference plai$-ig. 41(a), we can
see that for the TDMA scheduler with periad x 10° processor cycles the fea-
sibility conditions are satisfied. By comparing the diffezemplots in Fig. 41(a)
with the difference plots in Fig. 41(b), which were obtairieda scheduler with
period7 x 10° processor cycles, we can conclude that the larger the skehisdu
period is, the higher chances for buffer underflows and awssflare. In fact, in
Fig. 41(b) we can see that the scheduler with pefiod10° processor cycles is
potentially infeasible—either a buffer overflow or an urftiev may occur while
processing the video stream.

9Although in our setupy, + w, = 1, in general, the sum of the two weights does not need
to be strictly equal to one. It is only necessary that+ w, < 1. If w, + w, < 1, then some

portion of the PE’s bandwidth will be allocated neither te thideo nor to the audio stream. This
portion can then be used to execute some other tasks, or (haarto) be simply wasted.

116 Chapter 5. Designing Stream Scheduling Policies

40

w
o

[macroblocks x10°]
S

-
o

40

30

20

[audio frames]

10

0 0.2 0.4 0.6 0.8 1
time [s]

Fig. 40: Service requirements specified by service boundsd the actually provided service
specified by curvey~! ® g for the video (top) and audio (bottom) streams. The up-
per and lower curves correspondingito! ® 3 lie completely between the upper and
lower service bounds;. This implies that the service provided to a stream matches its
requirements; hence, the scheduler satisfies all the buffer constrfaartan infeasible
scheduler, the resulting upper and lower curvesof ® /3 would not completely lie
between the upper and lower curvessof

5.5. Checking Feasibility of Stream Schedulers

117

[macroblocks x10°]

[macroblocks x10°]

[macroblocks x10%

[macroblocks x10%

0.5

o

0.5

(a8 =

0 8()

v

(OB —a)()

[audio frames]

[audio frames]

35 |

(Gr =~ ©B(A)

25

(74

g -a)0)

0.5

1
A[s]

15 2

(a) Difference plots for the TDMA scheduler with peridd - 106 cycles.

0 0.5 1 1.5 2
Als]
(@ =7 @A)
]
HM“HMW“Mnuwu“u.mm”.‘“nu.mgmn..wm.m”m
T
0 0.5 1 15 2
i “‘u‘w AFATCAEREEAFARARCRHAAA
|
WN (o —al)A) -
0 0.5 1 1.5 2
Als]

[audio frames]

[audio frames]

(64—l @ BU)(A)

35 \
3

‘V

25 \ Tty .

| \ / .

2

0

0 0.5 1 15 2
15 "
125 M

R an

N

0.25

0

0

0.5

As]

(b) Difference plots for the TDMA scheduler with peri@d 10°¢ cycles.

Fig. 41: Difference plots for the video stream (left column) and for the audio strgayht col-
umn) obtained for TDMA schedulers with different periods.

118 Chapter 5. Designing Stream Scheduling Policies

Scheduler parameters Buffer backlog
Period, | Video | Audio | Schedulability test measured in simulation
(cycles) | weight | weight B, | B, |Bs|B,

0.109 | 0.891 Passed 3610 | 2437 | 2 | 2
1 x 106 0.115 | 0.885 Failed 2844 | 3299* | 2 2
0.106 | 0.894 Failed 4812* | 1979 | 2 | 3
0.109 | 0.891 Passed 3736 | 2559 | 2 | 2
2.5 x 10° | 0.115 | 0.885 Failed 2966 | 3402* | 2 | 2
0.106 | 0.894 Failed 4899* | 2110 | 2 | 3
0.109 | 0.891 Failed 4040* | 2540 | 2 | 2
7x10° | 0.115| 0.885 Failed 3292 | 3300* | 2 | 2
0.106 | 0.894 Failed 5144* | 2023 | 2 | 3

* Buffer overflow
** Buffer underflow

Tab. 9: Results obtained with our framework compared to simulation results, for eliffeon-
figurations of a TDMA scheduler implemented &2 of the architecture shown in
Fig. 29. Buffer backlog is measured in number of macroblocks for vided,in number
of frames for audio.

Validating the analytical framework

To validate our framework, we evaluated several differdDMR-based sched-
ulers, having different values af,, w,, andp. Tab. 9 summarizes the results.
For each scheduler configuration, the table shows

e whether our framework evaluated the scheduler as feasilitdaasible, and

e the corresponding simulation results that measure thermaxiand minimum
buffer fill levels (from which we can identify buffer overfl@sand underflows).

To obtain these simulation results, we used a transaatiegi-model of the ar-
chitecture described in Appendix A. The models of procesBd1 and PE2
are from a customized version of the SimpleScalar instoactet simulator
[8]; we used the simulator'si m pr of i | e configuration. The PEs use the
portable instruction set architecture (PISA) with apgima-specific extensions
for MPEG-2 decoding and video processing. In the table, tifeebbacklogs
are in number of macroblocks for the video stream, and nurob&ames for
the audio stream. From Tab. 9, it is apparent that designm@pgropriate
scheduler can greatly influence buffer space requiremehtbe design space
is relatively large, especially for scheduling multiple Eesorting to purely
simulation-based techniques is no longer feasible. Ounédraork can provide
systematic guidance in such cases.

5.6. Summary 119

5.6

Summary

In this chapter, we proposed a framework for design spacleeton and opti-
mization of platform management policies for multimediaS3&& architectures.
This framework relies on the VCC-based workload model and tisesxtended
MPA framework developed in Chapter 3. It features a combmmatf simu-
lation and analytical performance evaluation phases. Trealation phase is
performed only once, before the design space exploratiop i® started. The
outcome of this phase is a set of VCCs capturing relevant wadktharacter-
istics. These VCCs are then used within the time-critical @gtlon loop for
fast analytic performance evaluation and optimizationlaffprm management
policies. The performance evaluation and optimizatiorhefgilatform manage-
ment policies rely on two techniques: The first technique at@s upper bound
on the buffer memory requirements associated with a givatigshh manage-
ment policy, while the second technique allows for fast dciteility checks
for a given PE within the architecture. Both techniques antéar the QoS re-
guirements associated with processing media streams terdoohstrained mul-
tiprocessor architectures. The utility of the frameworlswig@monstrated in this
chapter through the case studies of a set-top box applicatenario involving
the TDMA scheduling policy.

120 Chapter 5. Designing Stream Scheduling Policies

Energy-Efficient Stream Processing

Chapters 4 and 5 demonstrated applications of VCCs in systezhdesign of

media processors. Unlike these applications, where VCCs ugsé in aroff-

line setting, this chapter demonstratesantine application of VCCs. “Online
application” means that VCCs are used in a multimedia embeslgitdm while

it is operating, i.e. at run time. Based on the run-time infation about the
workload, certain system parameters can be dynamicallptadasuch that to
optimally suit current user needs and to improve the qualitgervice offered
by the system to its users. Reducing energy consumption oéedaa systems
through online adaptations to the varying workload is onedrtant incarnation
of this basic idea. In this chapter, we explore this direttie we show how
VCCs can be used to perform such adaptations to achieve enar@gs in

media processors. Although this chapter has a clear foctiseoenergy-aware
adaptations, the main concept behind the presented apypcaade applied in a
broader context of adaptive stream scheduling for read-tennbedded systems.

The focus of this chapter is on a scheme for dynamic voltagkngc(DVS)
for processing media streams on architectures with réstriouffer sizes. The
main advantage of this scheme is its ability to provigded QoS guarantees
while still achieving considerable energy savings. VCCs ardral to the whole
method. They allow to handle multimedia workloads charamte by both,
the data-dependent variability in the execution time oftimeédia tasks and the
burstiness in the on-chip traffic arising out of multimedragessing. The main
novelty of the scheme lies in a online DVS strategy which udseshe adap-
tationsdynamic VCCsi.e. VCCs that are computed at run time based on the
“conventional”static VCCsand the workload history. The DVS scheme is fully
scalable and has a bounded application-independentmenetverhead.

122 Chapter 6. Energy-Efficient Stream Processing
This chapter has the following structure:
Section 6.1 introduces our DVS technique, outlining maffedences to similar
approaches.
Section 6.2 gives an overview of existing DVS techniques.
Using a motivating example, Section 6.3 describes the prolalddressed by our
method.
Section 6.4 describes the method.
Section 6.5 presents results of an experimental evaluafitimee proposed DVS
technique, including a comparison with a similar method.
Finally, some concluding remarks come at the end of thistenaip Section 6.6.
6.1 Introduction

Multimedia applications constitute a significant portidrite workload running
on battery-powered devices such as PDAs, mobile phones @tabjpe audio-
video players [36, 77]. A major challenge faced by the desigof such devices
is the need for minimizing energy consumption and at the s@ame handling
computationally expensive multimedia workloads and pimg QoS guaran-
tees. The bursty and highly irregular nature of such a wakla@oupled with
stringent memory and cost constraints associated witraplertdevices makes
this problem even more difficult.

One important research direction aimed at solving this lerabrelies on dy-
namically changing the processor’s clock frequency anthgel in response to
a time-varying workload [27]. This technique, called Dynanoltage Scaling
(DVS), rests on the fact that reducing the supply voltage of@3\ircuits results
in approximately quadratic reduction in dynamic energigiation. Although
this energy reduction does not come for free (a lower suppliage leads to
increased gate delays), DVS is known to be more effective #mther energy
saving technique, called Dynamic Power Management (DPI) [lh contrast
to DVS, DPM simply puts a processor into a low power state wherproces-
sor is idle. With the availability of variable-voltage pessors [3, 58, 60, 164],
research on DVS scheduling techniques has gained a lot ofemiim.

Govil et al. [46] proposed to look at different DVS schedglitrechniques
from two perspectives: the way how those techniqureslict the workload and

how theysmootht. In order to make a decision at which speed to run the proces

sor during next interval of time, a DVS scheduler first has @kensome as-
sumptions about the workload on this interval. Making sussuanptions can
be regarded as predicting the future workload. On the othedhworkload

6.1. Introduction 123

smoothing refers to policy followed by the DVS scheduler while deciding the
processor speed. The concrete decision is based on themgmsrabout the fu-
ture workload, while the policy is typically determined Inetperformance goals
and constraints associated with the application(s) ereloon the processor.

One promising approach femoothing outhe workload is to employ buffers.
This technique usually achieves considerable energy gswbut at the expense
of increased processing delay. Nevertheless, it is edpyegs®ful in a large class
of multimedia applications, which can tolerate such delays

Recently, a number of DVS techniques has appeared in thatliterwhich
use buffers for smoothing out the workload [49, 59, 104, 1@4, 174]. These
techniques can be broadly classified into three groups lmaste: way how they
perform theworkload prediction [49, 144] predict the future workload based on
stochastic models. [106, 174] employ feedback control $aoptrack workload
changes and extrapolate the future workload. [59, 104] salpff-line worst-
case characterization of tasks and statically use thisactexization at run-time
for making conservative scheduling decisions (i.e. essgnthey do not use
predictionas such, but assume at any time that the worst case workldad wi
happen).

Although it has been shown that the above lines of work leabtsiderable
energy savings, all of them still suffer from a number dragksa The schemes
based on stochastic prediction models and feedback cdotyps are power-
ful in handling workloads which are characterized by bofie data-dependent
variability in the execution time of multimedia tasks and turstiness in the on-
chip traffic arising out of multimedia processing. Howeweyally it is difficult
to provide hard QoS guarantees with such schemes. On thehathd, schemes
that rely on worst-case characterization of the workload mavide hard QoS
guarantees. However, they account only for the task exattitne variability,
assuming that real-time tasks arrive strictly periodicall

In this chapter, we present a DVS scheduling technique wénilchiesses the
above mentioned shortcomings of the previous approactiedkels into account
both, the burstiness in a stream and the data-dependeabigyiin the exe-
cution time of a task. On the other hand, our scheme offersasagieed QoS
along with energy savings that are comparable with thosairdd by previous
approaches. Furthermore, one of the main assumptions nmyadeby exist-
ing DVS schemes has been the availability of large buffemwvéver, in reality,
many portable devices have severe cost and memory constralive address
this issue by targeting our DVS scheme specifically towdwder-constrained
architectures

Our scheme relies on an off-line analysis to deterrbmendson the variabil-
ity of the workload associated withcassof media streams. These bounds are
represented by VCCs introduced in Chapter 3. At run-time, bygugibounded
amount of history of the actually incurred workload, the VC®G&med from the
off-line analysis are revised. Such revised VCCs, which werref asdynamic

124

Chapter 6. Energy-Efficient Stream Processing

6.2

VCCs are then used to adjust the processor’s voltage and clegkéncy. These
dynamic VCCs can be much tighter than their respedtatic VCCsi.e. those
VCCs obtained from the off-line analysis. At the same time dyyx@amic VCCs
are “safe” in terms of guaranteeing QoS constraints.

The main results of this chapter are:

A strategy for online processor rate adaptations for eneffigient processing
of media streams on buffer-constrained architectures.

A formalization of this strategy as an algorithm which enyglalynamic VCCs
to provide hard QoS guarantees to the processed media stream

An efficient algorithm for run-time computation of dynamicCZs from static
VCCs using the workload history.

An experimental evaluation of the resulting DVS schemduiiag its compar-
ison to another up-to-date DVS scheme [174] and an estimafithe run-time
overhead.

Although we present our VCC-based DVS scheme in the contexisoha
ple setup, where DVS is implemented on a single processaigra multime-
dia task, it can also be applied to more involved architestiguch as on-chip
networks [17, 31, 79, 144] and multiple clock domain prooes$64, 123, 138,
174].

Related Work

Although dynamic voltage scaling emerged almost a decaddssg, e.g. [21,
46,122,170]), it still remains a very active research aeeg [5, 59, 81, 144]).
Early explorations of this technique were primarily diettowards non-real-
time computing systems [46, 124, 170]. Later on, DVS schdraes been devel-
oped for real-time systems, including off-line and on-lgeheduling algorithms
for a single processor [55,61,87,177], multiple proces$68, 107,176, 180]
and heterogeneous distributed platform architecture$74,36]. Some DVS
schemes were designed for hard real-time application®©{59,39, 142], while
others targeted soft real-time applications [56, 178]. af@bther class of DVS
techniques were specifically devised for systems proogssetia streams [29,
30,59, 106, 143]. With constantly shrinking technologytéea sizes, there is
a growing concern about rapid increase in leakage poweipdigsn of CMOS

circuits [2, 20], which cannot be reduced by scaling the suppltage. Conse-
guently, new research directions, reconsidering DVS tieglas and combining
them, for example, with adaptive body-biasing [73, 110¢ergly has started to
appear in the literature [5, 66, 175].

6.2. Related Work 125

As mentioned before, it is useful to view different DVS sclesnfrom two
perspectives: how they predict the workload and which gdhey use to smooth
it [46]. These characteristics are tightly related to thergp-performance trade-
offs made in the system. For instance, tasks in non-rea-ggstems do not
have stringent timing constraints, therefore the primeceom of DVS schemes
developed for this kind of systems is to maintain scaweragelevel of perfor-
mance (e.g. average task response times) while maximiagngrergy savings
[42,46,124,145,170]. Since these DVS schemes do not nepvale hard
performance guarantees, they allow for some inaccuraclg@nmorkload pre-
dictions. Hence, these schemes rely on different sortsatissts for predict-
ing the workload. [46,124,170] propose and experimentaligluate various
DVS schemes which calculate how busy the processor wasglammumber of
past intervals and then apply various techniques, such asghted average, to
predict the future workload from these calculations. [1df%iends the work in
[46, 124, 170] by introducing a conceptwbrkload history filteringand propos-
ing several prediction strategies based on this conceplfi4dther improves the
above workload prediction mechanisms by taking into carsition activities
of individual tasks. The majority of the DVS schemes justatiéed employ
relatively simple smoothing policies, such as setting thec@ssor speed high
enough to complete the predicted work before next adaptatit in time [46].

In hard real-time systems, guaranteeing that tasks coewi#tin their dead-
lines is of prime concern [22]. Consequently, DVS scheme$&od real-time
systems employ notably different mechanisms than thosa ins@on-real-time
systems. In particular, since hard performance guarahi@esto be provided,
such DVS schemes cannot rely on statistics to predict theduorkload. In
fact, they perform a kind of degenerate form of predictiorn-ay time these
DVS schemes assume that twerst-caseworkload will happen. Hence, they
fully rely on worst-case characterization of tasks. As iditional real-time
scheduling [100], most of the DVS techniques designed fod heal-time sys-
tems characterize tasks by their worst-case executionYWW@&ET) andexplicitly
defined arrival times and deadlines. Since such a charzatien is inherently
statig the only mechanism which these DVS schemes can use at radigave
the energy is the workload smoothing.

The main challenge in hard real-time scheduling of varialokage proces-
sors is to smooth the workload as much as possible but stgutrantee that
all tasks complete within their deadlines. The workload sthimg is equivalent
to increasing the processor utilization by minimizing therst-case slack time
(WST) and thewvorkload-variation slack tim¢VST) [90]. The worst-case slack
time is the time during which the processor is idle even iftadks run at their
WCET. Itis inherent to many real-time schedules. The workleadation slack
time is the idle time which occurs as a result of tasks not ydwanning at their
WCET. Different DVS techniques for hard real-time systemgediin the way
how they exploit these two kinds of slack time and what assiomp they make

126

Chapter 6. Energy-Efficient Stream Processing

about the task set.

A number of DVS techniques produce static off-line schesl(#, 61, 81,
177]. They can handle real-time tasks with arbitrary atrtirmes and dead-
lines under the assumption that the relative timing betwarenals and dead-
lines within the task set is fixed. For highly variable workdis, energy savings
achieved by these off-line techniques may be very modess.i3Imainly due to
the fact that they can exploit only WST [90].

Online DVS scheduling algorithms have a potential to exploit batidk of
slack time, WST and VST [9, 55, 87,90,139,141,142]. DVS teapms pub-
lished in [55, 142] perform processor rate adaptations ahliask boundaries.
They always assume that a task will run at its WCET. As a reddisd tech-
nigues can utilize only a limited amount of VST. Both techmig@assume peri-
odic task sets. The scheduler in [55] also accepts sporadigests on a best-
effort basis. [87] reports an on-line DVS scheduler basettherarliest deadline
first (EDF) policy [100]. Unlike [55, 142], the scheduler B7] can handle tasks
with arbitrary arrivals. Whenever a task is rescheduled #fkgoreemption, the
DVS scheduler in [87] recomputes the processor speedgéttithis task using
task’s remaining worst-case execution time. Hence, ifdlaee a lot of preemp-
tions in the system, the processor speed may be recompwekeémes for a
given task instance, leading to better utilization of VSowéver, a large number
of preemptions also means that the scheduling overhead@tthy this scheme
may be considerable.

Another line of work represents so calledra-taskDVS techniques [9, 90,
139, 141]. Within each task, they insert points at which tfaepssor speed will
be adjusted at run time. During task execution, the procesgsed is adjusted
depending on the currently active execution path withintdsk. This allows
intra-task DVS techniques to relatively fully exploit bo#ST and VST. Al-
though these techniques may suffer from high schedulingheaesls (especially
if tasks are of a small granularity and arrive at high ratés@y represent an
interesting trend towards a more detailed characterizatioeal-time tasks.

In the DVS techniques outlined above, better smoothing aftime work-
loads (i.e. minimization of WST and VST) comes at a cost of nfogquent
processor speed adaptations. For highly variable and catipually intensive
multimedia workloads, such methods might not be a first @oic

An alternative approach to workload smoothing is to ba#fering[28, 49,
59, 104-106, 144, 174]. With buffers the frequency of precespeed adapta-
tions can be significantly reduced. Certainly, bufferingsloet come for free.
It requires additional memory and increases processingydel Nevertheless,
buffers are natural in processing media streams [134]. Plagya central role in
stream-oriented models of computation [70, 89]. Furtheeynmany multimedia
applications can tolerate buffering delays [59]. For sugpliaations it may be
more important to maintain a constant rate of stream obgdigut or output of
a PE than to satisfy some explicit deadlines. However, asiseeisised in Chap-

6.2. Related Work 127

ter 5, buffer overflows and underflows may be of concern fos grocessing
style.

One of the first DVS schemes employing buffers has appear@din A
FIFO buffer is placed at the input of a PE whose clock rate anithge are to
be regulated. The DVS scheme computes a moving average eféoaition
demand to estimate the minimum sufficient processing ratthésamples cur-
rently in the buffer. This technique assumes that exactug@t demands of
individual samples are knowa priori, i.e. before they have been processed.
Only under this critical assumption and for periodic angyshe DVS scheme in
[49] can guarantee absence of buffer over- and underflowsedBais the same
assumptions, [28] improves the rate estimation algorithfd® by extending it
to the case when the selection of operating frequencyfelivels is limited to
a set of discrete values.

[104] proposes to insert buffers between tasks processuigea stream in
a pipelined fashion on a single PE. The buffers serve to miairst constant out-
put rate while allowing energy savings on a processor thatdmly few fixed
frequency levels. In addition, inserting the buffers im@® response times
for sporadic tasks executed on the same processor. [104jroots frequency-
assignment graphs capturing relevant information suchuffisrtstates, and then
develops efficient graph-walking algorithms to to find o@lftequency/voltage
settings at run time. It assumes that all frames to be predese available at
the start of the operation (e.g. stored in memory or on a histd dnd that the
tasks have constant execution demands.

[59] shows that hard real-time DVS techniques not employuifers cannot
fully utilize VST and therefore there is a potential to ackidigher energy sav-
ings. To fully exploit both kinds of slack time, WST and VST9]9roposes to
use buffers to delay the processing such that whenever tduegsor has com-
pleted execution of one task instanceglivaysfinds next task instance waiting
in a buffer. Hence, if a preceding task instance has finisadaethan its WCET
resulting in a slack time, then the next task instance is tbfally utilize this
slack time while running at a lower clock rate. To guarantes the buffers
never overflow and underflow, [59] has to assume that taskekrare purely
periodic.

In order to give the performance guarantees, DVS techniopufs, 49, 59,
104] have to assume either periodic arrivals or, even warsempletea priori
knowledge of the workload. These assumptions rarely holgractice. Other
buffer-based DVS schemes published in [105, 106, 144, Irédfree from these
assumptions, however, as we will see, they fail to providel herformance
guarantees.

[144] presents a buffer-based combined DVS-DPM schemehwhily relies
on stochastic workload characterization: stream arri@atsexecution demands
are characterized by probability distributions. Thesérithstions are obtained
by fitting statistics collected through extensive stodasinulations to standard

128 Chapter 6. Energy-Efficient Stream Processing

compressed
video

PE1 B
Net
—[6 I —T—
1Q \

z(t)

Video
ouT

v

Fig. 42: MPEG-2 decoder implemented on two PEs. Supply voltage and clock rAte2odéan be
controlled (DVS)(t) ande(k) are cumulative arrival and execution demand functions.

probability distributions. At run time the workload hisyas collected and used
to detect, on the basis of these distributions, changesinvtirkload intensity.

The processor rate is then adjusted accordingly. Clearly,tduts use of sto-
chastic models the method in [144] can provide only prolstimlguarantees. It
also depends on the accuracy with which real workload isa@mated using

standard probability distributions.

DVS schemes presented in [105, 106, 144, 174] use differ@rarl of a PID
(Proportional-Integral-Derivative) controller [37] tegulate the processor rate.
The processor with the buffer at its input (or output) repres the controlled
plant. Typically, the buffer occupancy level serves as alieek signal to the
controller. The main difficulty in these techniques is noedrity of the con-
trolled plant. Because of this non-linearity, it becomesaxely difficult to
formally proof the properties of a control algorithm and Igtieally find op-
timal settings for its parameters (such as controller gaifarthermore, pro-
viding hard performance guarantees (e.g. with respectedttifer and delay
constraints) under highly bursty workloads requires ansh@ot-free controller
with a short reaction time. However, such a controller i§iclift to design be-
cause the requirements to have a short response time andnfetely avoid
overshoots are conflicting.

6.3 Motivating example

As a motivating example consider the system shown in Fig(AZ&imilar sys-

tem has been already considered in Chapter 3 in Fig. 17 and ipt€h&) This
system performs decoding of MPEG-2 video streams. It iresuslvo process-

ing elementPE1 andPE2. They can be embedded processor cores specialized
for specific tasks such as video processing or any other Kipdozessing ele-
ments. A compressed video stream first enkd$, which executes a part of the
MPEG-2 decoding algorithm. The task runningl®R1 performs VLD and 1Q
functions. After processing oRE1, the video stream enters bufférat PE2’s

6.3. Motivating example 129

input. At this place in the system the stream exists as a segquef partially
decodedmacroblocks PE2 consumes fromB one macroblock at a time and
applies to it IDCT and MC functions. Finally, the fully decableideo stream
emerges aPE2’s output.

Our objective is to minimize the energy consumedth2 without deteriorat-
ing the quality of the processed video stream. The streauvasty is preserved
if buffer B at thePE2’s input never overflows and if the processing delay, experi-
enced by the stream dtE2, does not exceed some specified value. Our ultimate
goal is to design aredictable systenThis means that we want to ensure that the
system satisfies the above mentioned QoS requirements algeassible load
scenarios and not only in the average case.

We assume thatE2 supports DVS, i.e. its clock rate and supply voltage can
be changed at run timeSuch changes can be controlled by the softwarBen
or by some other hardware or software entity, extern&lia. We refer to time
instants at which the processor speed is alteretiaptation points

We assume that the adaptation points are fixed in time. Fa@iroby en-
ergy savings while providing the QoS guarantees, such amgs®n is less
favorable than the assumption that we can adapt the pratestkek rate at any
time. Our method though can handle both cases. In any caseptting of
the adaptation points in time in our method is completelyodgeted from the
execution state and granularity of taskskif2. This means that the adaptations
are not restricted to occur at task boundaries, and thejuéecy, in general, is
independent of the rate at which the video stream arrivesedt£2’s input.

A DVS scheduler can reduce the energy dissipateHIof by exploiting the
variability of the workload imposed on this PE. This varlapicomes from two
sources. First, the execution time of the task runningBA is variable. Second,
the data-dependent variability of the execution time oftdsk running orPE1
causes the stream of macroblocks atii2’s input to bebursty.

One traditional way of reducing the energy dissipated®@2 would be to
fully average out the workload imposed on it using bufferIf buffer B is suf-
ficiently large, it can completely absorb the workload flations. This allows
PE2 to run at a lowconstantclock rate which is just sufficient to sustain the
long-term average arrival rate of the stream. In this mode,ean ensure thdt
never gets empty (as a playout buffer). In this case, no syale wasted even
during low-load periods, i.e. the available slackuBly exploited. This strategy
would yield the most energy savings ®i2. However, such a strategy is of-
ten unaffordable since it requires large buffers for precesbursty multimedia
workloads like MPEG streams. As an example, our experinmsrag/ed that the
complete averaging of the workload imposed by DVD-qualityees onPE2 in
Fig. 42 required in the worst case the buffer space of at BE3® macroblocks
(or about 3.7 MByte). Such a large buffer would be too expensivimple-

Throughout this chapter whenever we say that the processaie is changed we assume
that to reduce energy its supply voltage is changed acagigdin

130 Chapter 6. Energy-Efficient Stream Processing

ment in some embedded SoC architectures. Furthermore,tfrerapplication
perspective, the delay incurred by the video streanPBf as a result of such
averaging might not be tolerable. (It is about 5 full videanfres in our setup
shown Fig. 42.)

In contrast, we assume that our architecturbuffer-constrainedi.e. the
buffer space at th€E2’s input is inadequate for the complete workload aver-
aging. Hence, unless we allow buffer overflows we cannot teortly run the
processor at the average rate: a burst in the stream’slgsatt@rn or in its ex-
ecution demand can easily cause an overflow. To avoid thélawsy we could
service the stream at some constsatfie ratewhich is high enough to success-
fully handle the bursts under the given buffer constraineadly, such a safe rate
would be higher than the average rate, and therefore dueinggs with the aver-
age or low load some amount of the processor cycles would bted/éor waiting
on the empty buffer. In some cases, we could save some engngytting the
processor into a low-power idle state whenever the buffemgpty, and then let
it run again whenever there is something to process in therbfife. use DPM).
However, in many cases the switching overhead between $socpower states
Is too high (in the range of milliseconds [16]) compared @dtkream arrival rate
(in the range of microseconds in our setup shown in Fig. 42ty making this
strategy infeasible. On the other hand, a DVS strategy wtaehd exploit the
slack during low-load periods would yield higher energyisgs.

By now it should be clear that despite of the buffer constridete is a poten-
tial to save the energy by runnifgf2 at a lower rate during low-load periods.
However, this potential should be realized very carefulige a burst may sud-
denly arrive and cause a buffer overflow. Hence, our goalsar#icting: on one
hand we want to stay at the average level of performance fang#he energy,
but on the other hand we have to provide QoS guarantees amdfdre, need to
be ready at any time to handle the worst case. Designing asithg strategy
which can meet the both goals represents a challenginggobhd involves
delicate tradeoffs.

The main challenge in designing a safe DVS strategy for a&systith con-
strained buffers, as the one described above, is in thelatittis a priori un-
known how the workload will behave in an interval between tadaptation
points. Even if we knew exactly how many stream objects ialtofll arrive
within the interval, this information would be insufficiett guarantee that the
buffer will not overflow. For providing such a guarantee weaéo knowhow
the stream objects will arrive within the interval. For @ste, they may arrive
in a dense burst, right in the beginning of the interval. Ifhe previous interval
the processor has not cleared enough buffer space to acateertbis burst, an
overflow is bound to happen. Many existing DVS technique<iviaire capable
of providing the QoS guarantees and which employ bufferthi®energy reduc-
tion avoid this problem by assuming that the stream arrivies(or departs from)
the buffer at a constant rate [59, 104]. This assumption gvew greatly simpli-

6.4. Adaptive Run-Time Scheduling with VCCs 131

. static dynamic
off-line — | vccs |—»| Vvces
analysis au ,yu AU ;yu
workload history H" HY

)

current
adaptation
point

Fig. 43: Overview of the method

fies the problem and often does not hold in practice. Furtbezmby making
this assumption, the existing techniques lose the oppityttsngain additional
energy savings by exploiting the variability in the arripabcess of the stream.
They exploit only the slack resulted from the variability tbe task execution
time.

6.4 Adaptive Run-Time Scheduling with VCCs

Fig. 43 shows an overview of our method. Our algorithm dyrmathy adapts the
clock rate of the processor to the workload variation usiwg mechanisms: (i)
run-time monitoring of the buffer fill level (i.e. buffes in Fig. 42) and (ii) online
improvement of static VCCs based on the workload history. ptais both types
of workload variability—the slack in the execution time ahé irregular arrival
patterns of the stream.

Central to our method is the concept of VCCs introduced in Ch&pt&his
concept is the key to providing QoS guarantees and achigwod average per-
formance. Using VCCs at run-time and taking into account thieeati backlog
in the buffer and the workload history, our algorithm makate, but not too pes-
simisticdecisions at the adaptation points. Such a reduced pessis\gossible
because VCCs represent a more detailed characterizatioe @fdtkload than
traditional task and event models, as we have shown in Chapter

In this chapter, we distinguish between two types of woestechoundssta-
tic VCCsanddynamic VCCgsee Fig. 43). The static VCCs are obtained at the
design time through an off-line analysis, and then used bYDM$S scheduler at
run-time. In this sense, they are similar to conventionaistvoase characteriza-
tion of tasks, such as the worst-case execution time anditiienom interarrival
time or period. The dynamic VCCs is a novel concept that we dhice in this

132 Chapter 6. Energy-Efficient Stream Processing

chapter. The novelty of this concept lies in the fact thaséh®CCs are ob-
tainedat run-time They represent an online improvement of the static VCCs.
The dynamic VCCs are obtained using the workload history. Deipg on the
workload situation, these VCCs can be much tighter than thegponding static
VCCs. They allow our scheduler to be less pessimistic aboufutiuee work-
load and through this to achieve considerable energy savifgrthermore, the
dynamic VCCs provide the same level of guarantee as that adviy the static
VCCs from which these dynamic VCCs were derived.

Following subsections give details about our method.

6.4.1 Workload and service characterization

We shall consider a stream to be composed of a potentiallyitefsequence of
stream objects Depending on the application at hand a stream object can be
an audio sample, a video (macro)block or a whole frame, etstrédam can be
modeled by two cumulative functionst) ande(k) (see Fig. 42)x(t) denotes

the total number of stream objects that arrived at the biffduring the time in-
terval[0, t], whereag(k) denotes the total number of execution cycles requested
from the processor by consecutive stream objects starting from the first stream
object in the sequence. Our objective is to characterize@endassof streams
that the processor has to handle. We achieve this by usingrgyent-based
arrival curvea" and upper execution demand cun/ defined in Section 3.3.
For any stream belonging to the class* and+" have to satisfy

ei(k +€) —ei(k)

a“(A) ¥t A € Ry (6.1)

<
< A%(e) Vk,e€ Zso (6.2)

Thus, tuple(a*, %) represents a particular class of streams. In practicesa cla
may encompass all streams belonging to one applicatioragceffror instance,
all MPEG-2 video sequences with identical parameters ldsolution, frame
rate, bit rate etc. can belong to one class.

Besides the workload model represented by the arrival arcliéra demand
curves, we need a similar abstraction for the service adfey@rocess this work-
load. Note that the rate of a DVS processor can change over tittence, we
have to model these changes properly. For this we use thepbataservice
curves The theoretical framework presented in this chapter ire®both, event-
based and resource-based lower service curves, deflogedl 3/, respectively.

In the simplest case, when the processor constantly runglath rate f, the
service curve3 (A) = f - A. For a processor which may be switched off for
maximumg time units and in the rest of the time runs at a constant speed).

as in the case of DPM#'(A) = sup{f - (A —§),0}.

6.4. Adaptive Run-Time Scheduling with VCCs 133

6.4.2

Def. 16:

Safe service rate

To simplify exposition of the method, we introduce the cqtaef safe service
rate and make the following assumption: all stream objects irreast impose
the same execution demand on the processor. This assunpitias that if
the processor clock rate is constant on some time intetvah the service rate
measured in number of stream objects per time unit whichrthegssor offers to
the stream is also constant on that interval. We will relag #ssumption later,
in Section 6.4.4, by accounting for the execution demanivdity.

(Safe service rate)Service rate is safe ifontinuouslyservicing a stream at this
rate guarantees that the buffer at the input of the processwver overflows and
the delay constraint associated with the processed streaatiisfied.

Our goal is to determine theinimumsafe rate. For this, suppose that the
processor services a stream apbastantate R, whereR is measured in number
of stream objects that can be serviced per time unit. Heneeg;am model the
offered service ag'(A) = R - A. Then, from (2.10) we can find the minimum
service rate?;, which ensures that the buffer of sizenever overflows:

Ry = sup {w} (6.3)

YA>0 A

Similarly, from (2.9) we can determine the minimum serviae R, satisfying
the delay constrainb:

a'(A)
Rp = 6.4
= a5 ea) 4
Thus, the minimum safe service ratgare= max{R., Rp}, i.e.
a“(A) a*(A)—L
g 3 6.5
Resate V§g£>O{D+A, A (6.5)

To guarantee satisfaction of the buffer and delay condtainand D, it is
sufficient (but not necessary) that the processor offersndaceerate which is
not lower thanRs.e determined by (6.5). In other word&s,r guarantees the
constraint satisfaction in the worst case, e.g. during athnrthe stream arrival
pattern. However, the appearance of the worst case is bduade therefore itis
not necessary for the processor to offer to the stream a safees rate through
all the time. Whenever the worst case does not happen, thegzaccould offer
a service rate which is lower than the minimum safe rate. Inglso, care must
be taken to timely react to changes in the workload by inangathe service
rate if necessary. This principle forms a basis for the dyingmmocessor rate
adaptations which we will consider in the next subsection.

134

Chapter 6. Energy-Efficient Stream Processing

6.4.3

Adapting processor speed at run time

To save energy, durinipw-load periodsour scheduler tries to run the processor
at a rate which matches stream’s arrival rate. The schedaks the buffer fill
level as an indicator of the stream’s arrival rate. At eachpsation point, the
scheduler tries to set the processor rate such that ther liliffevel is closeto
zero. Since any such rate tends to match the arrival ratesaloaver than the
minimum safe rateRqas this strategy results in energy savings during the low-
load periods.

If a workloadburst starts arriving, the processor frequency is increased ac-
cordingly. This is done in a safe way, based on the informeadioout the current
buffer fill level and the expected future worst-case worllloBhe scheduler tries
to fully exploit the available buffer space during the bursts by dpam“lazy” as
possible. At each adaptation point, it sets the processerstech that it igust
sufficient to avoid a buffer overflow in the worst case. Thatfithe worst case
did really happen, the buffer would reach its full state bould never overflow
within the adaptation interval. Since the worst case happarely, this “lazy”
strategy results in energy savings during the high-loatbgsr

Let b; denote the backlog in the buffer &h adaptation point and suppose
that theith adaptation interval is of length. Then, the above rate-adaptation
strategy can be realized if at thih adaptation point the processor rate is set to
Ry, ; which is computed as follows:

Rp ;= sup {d () _L—H)i,()} (6.6)

0<ALT A

This formula is in principle the same as (6.3), but it accedat the initial back-
log b; and is valid only for theth adaptation interval of length

(6.6) ensures that the buffer will not overflawthin the ith adaptation inter-
val. However, it might happen that due to a burst the backitigeaend of theth
adaptation interval is close to its maximum allowed valuethis case, avoiding
buffer overflows may require the processor to run at a high dating the next
adaptation interval. This rate might be higher than the marn rateR,,,,.. sup-
ported by the processor. Thus, a deadlock situation mayrodeuavoid such
a situation, at théth adaptation point the scheduler has also to consider what
might happen in the worst caséter the ith adaptation interval. For this, at the
ith adaptation point it sets the processor rate such thatatass at least as high
as R, Which is computed as follows.

L—0b . a*(A)
0; = + inf {A— 7 } (6.7)

Rma:r VAZT

Rmin,i - Rmam— V O (68)
T

6.4. Adaptive Run-Time Scheduling with VCCs 135

151

-
o
T

stream objects [x103]
Y

a1
T

-1

- 4 ::/ Rmaz : (A - 6L)

50 100 150 200 250 300
A [ms]

-

ga=

Fig. 44: Calculation of the minimum service rafg,,;,, ; for theith adaptation interval.

Fig. 44 illustrates the above formulask,,;,; ensures that whenever the
worst-case loadeally happens in théth interval and the buffer is (almost) full
at its end, we still can prevent the buffer from overflowingor Ehis, after the
ith adaptation interval, we just have to run the processart,at.. This holds
because in the worst case the stream is guaranteed to rece@rgice which is
not less than the service curve

BZ(A) = sup {Rmin,i : A, Rmaa: : (A - 52)}
VA>0
and
a“(A) - B (A)<L—b YA>0

The opposite situation might also occur. If there is a lotregfspace in the
buffer, (6.6) and (6.8) may return zero. In this case, onddcewitch off the
processor until the next adaptation point. However, thisldv@ot be an optimal
energy saving strategy. Even if the stream’s arrival ralevisduring the time
when the processor is switched off, a number of stream abyeiditaccumulate
in the buffer. This will necessitate the processor to run higaer rate during
the subsequent adaptation intervals thereby making ttaitegly not optimal for
energy savings. The optimal strategy is to run the procesisarrate exactly
matching the stream’s arrival rate. Since the exact arratalis never known for
future adaptation intervals, such a strategy is difficutet@ize. Hence, different
approximations have to be made. In our case, (6.6) and @&ning zero may
indicate a low-load period. The lowest rate at which theastremight arrive
during that period, and therefore at which we should run toegssor, is

min

e (6.9)
T

136

Chapter 6. Energy-Efficient Stream Processing

6.4.4

whereji, denotes the minimum number of stream objects that mighveanithin
anyinterval of lengthr. 2
Finally, our algorithm can be summarized as follows:

R; = max{ Ry ;, Rini, B, Rp} (6.10)

whereR; is the rate set at thah adaptation point.

Accounting for variable execution demand

The above discussion was based on the assumption thateslhswbjects im-
pose exactly the same execution demand on the processbough in reality
this rarely happens, this assumption helped to illustfaeptinciples of the pro-
posed rate adaptation algorithm by simplifying the forntiola of the service
rate constraints in the preceding subsections. Howeves iivere to apply this
assumption in practice, we would also have to assumentirst-caseexecu-
tion demand for each stream object. As our experiments sthhaw8ection 3.6,
such an assumption may result in overly pessimistic bouhldstefore, to avoid
this problem, our method employs the upper execution deraane~*, which
represents a more detailed characterization of the wast-execution demand
imposed by a stream on the processor.

As discussed in Section 3.4, the workload transformgté@ne a*)(A) gives
an upper bound on the number of processor cycles that cargbested within
any time interval of length\ by any stream belonging to the class characterized
by tuple (a*,~*). Using this workload transformation and Thm. 1, and by fol-
lowing the same principles as were used for deriving (68LB)(and (6.8), we
can obtain constraints on the processlockrate:

B 7" ©a"(A)
o= s { e (6.1
o w {,yu ® ((@“(A)A— L+b;)Vv0)) } 6.12)

VA>T T

Fming = sup {fmw A) +97 0 (@A) = L +B) V0) } 613)

where fp, f1; and f,..,; are clock frequencies, corresponding to event-based
service rated?p, R, and R,,;,; derived in the previous subsection under the
assumption that all stream objects impose the same exealgimand on the
processor.

2Infact, i, = a'(7), whered! is the lower event-based arrival curve of the stream. Togedu
clutter, we do not introduce in this chapter any lower VCOhaugh they also can be useful in
realizing an energy-conscious stream scheduling strategy

6.4. Adaptive Run-Time Scheduling with VCCs 137

corresponding td?’ . | can be formu-

min?

Similarly, clock rate constraing!,
lated as

in?

in = = (6.14)
T

where ., denotes the minimum number of processor cycles that mighebe

quested by the stream withamyinterval of lengthr. 3

Finally, our clock rate adaptation algorithm can be sumpeatias follows.

fi= maX{fL,i;fmm,i,fylnmafD} (6.15)

wheref; is the value of the processor clock rate set by our DVS scleeditithe
ith adaptation point.

6.4.5 Using dynamic VCCs

The algorithm described in the previous subsections sisgis VCCsy* andy".
It was derived under the assumption that at any point in tiotaing is known
about the past workload. Now suppose that we keep a finitgHemorkload
history. By exploiting this history we can improve the enesgyings without
jeopardizing the safety property of the algorithm. We usehistory to revise
static VCCsy* and~* into their dynamic equivalents® and4“. This subsection
explains how this is exactly done.

The basic idea behind deriving the dynamic VCCs from the sdMGECs
using the knowledge about the workload’s behavior in the gafirly simple
and can be illustrated with the following example.

Ex. 4: Suppose that the upper bound on the workload imposed by arstrea proces-
sor within any time interval of lengthh equals toA processor cycles. Since this
bound holds at all intervals of length, it is a static worst-case bound. Now,
suppose that we observe the system at some point inttinfewe know that
the execution demand requested by the stream during tireevaift — A, ¢]
(A, < A) was B processor cycles, then we can guarantee that over the next
time interval(t,t + A — A,], the stream will not request more thah— B cy-
cles. The valuel — B represents a dynamic worst-case bound over the interval
(t,t + A —A,]. Attimet, the scheduler can safely use this dynamic worst-case
bound for computing the frequency at which the processorsiedae run during
the interval(t, t + A — A,].

In Ex. 4, we employed a static bound which provided us withitifi@mation
about the worst-case workload only on intervals of lenfythWe used this in-
formation asa constraintto compute the dynamic worst-case bound for a future
interval of a smaller length. Note that we can dermvanysuch constraints from

3, = (v ® a')(r), wherea! is the lower event-based arrival curve of the stream-drid
its lower execution demand curve.

138

Chapter 6. Energy-Efficient Stream Processing

static VCCsa"* and~", since they capture the worst-case workload on intervals
of different lengths. At any given time instant, by takingarctonsideration the
past workload, we can then select from those constraintigihiestones to form

the dynamic VCCsy* and4*.

Suppose that the system is at the beginning ofithedaptation interval of
length7. The upper boundt; on the number of stream objects that can arrive
within 7 is

(r) = inf {a"(j0+)~ H(j)} (6.16)

where H? is thearrival history at theith adaptation pointd is the resolution
of the arrival history and IV is the number of constraints that the scheduler
considers for computingt;. ¢ can be interpreted as a sampling period with
which arrivals are monitored.

The arrival historyH? represents a set df sliding windows, with thejth
window spanning the intervat; — j6,¢;) and returning the number of stream
objects that arrived within it. Formally,

Note that from (6.1), (6.16) and (6.17) it follows th&it(7) < a*(r) for all
i € Z>o and for allr € R>,. Hence, for the processor rate calculation, instead of
usinga®(r) we can uset;(7). Furthermore, sinca* is an increasing functidn
AX; (1) can be used to imprové' not only forr, but also for other interval lengths
that are smaller than:

a'(i,A) = VAIQ[{’)’T]{XZ(T),Q (A)} (6.18)
(6.18) represents tldynamic arrival curveused by our scheduler at titla adap-
tation point.

By following the same principle, we can improve the executtamand
boundy". Let Hf(j) denote theexecution demand histoof length A/ and res-
olution . v is defined in terms of number of stream objects. The upperdoun
&; on the number of processor cycles that can be requested bgeagugnce of
k consecutive stream objects after tiie adaptation point can be computed as
follows

E(k) = inf {9+ k) - HE() (6.19)
HeG) = e(l)—e(l—j), j=0,1,..M (6.20)

wherel is the total number of stream objects that have been conhpfetecessed
up to theith adaptation point. As a result we get thgnamic execution demand
bound

'(,m) = inf {&n),v"(n)} (6.21)

n€(0,a (i)

4Refer to Section 3.2.1 for the precise meaning of the termr&asing function”.

6.4. Adaptive Run-Time Scheduling with VCCs 139

6.4.6

a* and4* can used in all formulas of Sections 6.4.4 and 6.4.3 in plac& @and
~*, respectively.

Notes on implementation

The DVS algorithm described in the previous subsectionsbeamplemented
either in SW or in HW or using a combination of the two. For amplementa-
tion, a number of considerations has to be made. These #ic(jdaking into
account voltage/frequency transition overhead; (ii) viogkn discrete time; (iii)
working with discrete frequency levels; (iv) determiningugularity and length
of the workload history; (v) downloading the static VCCs at tume if the ap-
plication scenario changes, etc. Some of these issuesiefly hddressed in this
subsection.

Accounting for the voltage/frequency transition overhead

Switching between different voltage and frequency leveds take some time
e. During this time the processor cannot service the streaancel at théth
adaptation point the actual processing starts aftene units. Thigime-outcan
be easily modeled by the service curves. In particular, Herdomputation of
fp andf;, instead of resource-based service cut@\) = f - A, we have to
consider resource-based service curve

B'(A) = sup {f - (A ~¢),0}

VA>0
This will correspondingly change the formulas (6.11) and 2§ for fp and f, ;:
fp = sup {—VU & @“(A) }

YA>0 D—€+A

Are<A<r A—c¢

P {7" O ((@*(A) = L+b;) v 0))}

For the computation of,,.;,;, we have to consider that resource-based service
curve3(A) consists of four linear segments:

0 VA:0<A<¢e
Iiay) [(A—=¢) VA:e<A<T
B(A) = f-(r—¢) VA:7T<A<71+¢

fmaz'(A_T—€) VA:74+e< A
Then (6.13) will change to

{fm(r+g —A)+ 7940 (@A) — L +b;) \/O)}

T —¢&

fmin,i = Ssup
VA>T+e

140

Chapter 6.

Energy-Efficient Stream Processing

Videos Parameters
file name # file name MP@ML
1| bbc3080.m2v| 4 | susi080.m2v| 8 Mbps CBR
2 | cact080.m2v | 5| tens080.m2v 25 fps
3 | moblL.080.m2v 704x576 pixel
Sourceift p.tek.conltv/test/streans/El enent/ MPEG Vi deo/

Tab. 10: MPEG-2 video sequences used in the experiments.

We can use similar approach to devise an energy-savinggyrabmbining
DVS and DPM.e would then correspond to the maximum time interval during
which the processor can be switched off. Also, note thatisecurves allow for
modeling other effects which might be more complex than iime-tout due to
voltage/frequency transitions or idle intervals in DPMr E@ample, sharing of
a PE by multiple tasks can be included in the analysis. Howévese issues go
beyond the scope of this thesis.

Working in discrete time

All formulas presented up to this point in this section asswomputation in
continuous timei.e. for A € Rx,. This, however, is impractical. Our method
can also work in the discrete time. It is sufficient to comphteclock frequency
constraints (6.11), (6.12), and (6.13), only for a few valo¢A. For this, in-
stead of usingv* which is defined orT = R, we use its discrete equivalent,
defined orll' = Z,. (3.3) formalizes the discretization procedure. Supplbae t
ag_ (k) = ag_ (Ar), Ag = 0for k = 0, andA, < Ay, forall & > 0, then,
to be conservative while computing the clock frequency traimgs, we have to
useay_ (k + 1) in place ofay_ (Ax) for all k > 0. Also, note that the dis-
cretization points\; need not be equally spaced in time, making possible better
approximations and optimization of the number of compatei

Working with discrete frequency levels

In the above discussion, we assumed that the clock frequeartgcale contin-
uously. However, some existing commercial DVS processavse lonly discrete
frequency/voltage operating points [3, 60, 164]. Adaptangmethod to this sort
of architectures is straightforward: at each adaptatiantgbe actual proces-
sor clock rate must be set to the smallest possible valueghatger than the
computed clock rat¢;.

6.5. Experimental Results 141

6.5 Experimental Results

6.5.1 Experimental setup

For the evaluation of our DVS technique, we conducted séegperiments us-
ing a simulator of the MPEG-2 decoding system shown in Ficad® described
in Section 6.3. The simulator consisted of a SystemC [158jdaction-level
model in whichPE1 and PE2 were modeled using thei mt profil e con-
figuration of the SimpleScalar ISS [8]. Appendix A providesails about the
simulation environment.

Tab. 10 gives the set of MPEG-2 video sequences for which wewzied
the experiments. This set includes videos imposing diffeveorkload patterns
on the architecture. For each video, we collected traceggponding to func-
tionsxz;(t) ande;(k). Using trace analysis technique described in Section 3.5.2
we obtainedwo curves,a™ and~", representing thevhole set of videos. For
illustration, Fig. 44 depicts the resulting'.

In all experiments, our DVS scheduler performed frequenuy eoltage
adaptations with a constant period We neglected the time and energy over-
head associated with the adaptations and assumed thagduefrcy and voltage
of PE2 can change continuously (i.e. at very fine steps).

For the energy consumption estimation, we adopted the nfomial [104].
According to [104], the energy

n

FE « /O”T chld - fdt = Z (Udd,i)2fi ST Z (Udd,i)zfi (6.22)
=1

i=1

wherev,,,; and f; are voltage and frequency values set by the scheduler at the
ith adaptation point for théth adaptation interval, and is the total number

of adaptation intervals (such that is the duration of the entire video clip).
(6.22) assumes that during idle periods, i.e. when the ihpfier is empty and

no stream object is being processed, the PE stays activedeegking for the
buffer status). However, during these idle periods we cbulther reduce energy

by putting the PE into a low power state. We assume that sumlv power state
corresponds to the state in which the circuit switchingvétgtis zero, i.e. the PE

is switched off completely; hence the energy consumption

E Z (vaas)*fi - 77 (6.23)
i—1

wherer; is the total time during which the PE ot switched off within the
ith adaptation interval. Further, for the estimation of tieenmalized energy we
assumed thaf; oc v4;.

142 Chapter 6. Energy-Efficient Stream Processing

0.8

06f : A : .
i i VY -

norm. backlog

0.2 : : : 1

0.8

0.6

norm. clock rate

0.4

0.2

14.42 14.44 14.46 14.48

time [sec]

14.38 14.4

Fig. 45: Experimental results. A fragment of a frequency schedule produgedibDVS algo-
rithm (top) and the corresponding to it buffer fill level (bottom).

6.5.2 Qualitative examination

Fig. 45 shows a fragment of a frequency schedule producedibipdS algo-
rithm and the corresponding to it buffer fill level which wesaloved in one of
our experiments. The figure illustrates how the two mecmasisf our method—
the run-time monitoring of the buffer fill level and the dynaivCCs — work
together to reduce the energy consumption. Dots on thedreyyuschedule plot
show the adaptation points. By inspecting this plot we canarik following
observations.

e Before timety, the load is low and the backlog is close to zero, hence, theegr
sor runs at a low rate.

e At ¢; a burst starts arriving. In response to this burst, the sdeethcreases the
clock rate, but not by too much: it lets the buffer fill up to setavel, and then
tries to "balance” at this level.

e Shortly beforels, the load abruptly increases even further and the bufferdjl
very quickly (within one adaptation interval). Therefoe¢t, to avoid a buffer
overflow the scheduler increases the processor rate segymifyc but only for a
short time. In the interval from, to ¢3, the load is still high and the processor
runs at a rate which approximately matches this load.

e At t3 the buffer becomes almost full. Despite this,tatour DVS algorithm

6.5. Experimental Results 143

6.5.3

decides to run the processor at a very low réddew can this be possiblePhe
answer is the effect of the dynamic VCCs. iAtthey tell the scheduler that the
burst is over and it is safe to run the processor at a low ratause the next burst
will not arrive very soon. Consequently, in the interval frogio ¢4, PE2 runs
at relatively low rates even though the buffer is nearly fluting that interval.

Shortly beforet,, the scheduler again has to incre@d&2’s speed. This is be-
cause at, the dynamic VCCs tell the scheduler that a new burst might start
arriving soon and therefore a sufficient space must be dear¢he buffer to
accommodate this burst. Indeed, shortly aftea new burst starts arriving and
the adaptation cycle repeats.

Quantitative comparison

We compared the energy savings achieved by our technighahuase achieved
by the DVS scheme published in Wu et al. [174]. Wu et al. usB$acon-
troller which tracks changes in the buffer fill level and correspoglyi regulates
processor’s speed and voltage. This scheme is similar ® iouat sense that
(i) it can handle both the stream burstiness and the datandiemt variability
in the task execution demand; (ii) it is suitable for buféenstrained architec-
tures; and (iii) it also uses fixed adaptation intervals tiff@nmore, to the best of
our knowledge, at the time of writing, the scheme of Wu et apresents one
of the advanced DVS techniques recently published. Thudpurd it suitable
for the comparison. From a user’s perspective, the onlguifice between this
scheme and ours is itmpredictabilityin terms of satisfying the specified QoS
constraints, i.e. it cannot provide hard QoS guaranteetewir scheme can
do this. However, an implementation of this scheme mightdsmeiated with
smaller SW/HW and energy overheads than of our DVS scheme.

We have implemented the PID controller as described in [1 T4 adap-
tation interval lengths of the PID controller and that of gaheme were set to
the same value; = 4.5ms (which roughly corresponds to nine adaptations per
video frame). In our scheme, the arrival history containee: 150 samples with
the resolutiord = 7, whereas the execution demand history contaillee: 200
samples with the resolution = 1.

Fig. 46 shows the results of this comparative study. In tigisré, we refer
to our scheme agVCC and to the PID controller scheme AfD. We simulated
both these schemes in two configurations. In one configuraiiche buffer
was empty,PE2 continued to run at the rate set at the latest adaptatiort poin
(i.e. some cycles were wasted in the idle state). In the abefiguration PE2
was switched off completely for periods when there was mgtho process (i.e.
no cycles were wasted). In Fig. 46, the data correspondinigetéatter config-
uration is indicated with dashed lines and with a suffPM. The switching
on and off of PE2 was assumed to occur in zero time under the control of an
ideal ("oracle”) DPM. Although unrealistic, such a configtion is useful for

144 Chapter 6. Energy-Efficient Stream Processing

Energy savings: Comparison

90 ;
—0— dVCC
gol - © - dVCC_iDPM ||
% —&6— PID
(<] " = & - PID_iDPM

—. 70t . S R safe_iDPM
§ ‘e @ g 8 A
n
2 60t
=
©
7]
3 50f
5]
C
(0]

401

30t

20

500 1000 1500 2000
buffer size [macroblocks]

Fig. 46: Experimental results. Energy savings achieved by our DVS schemetédems
dVCC anddVCC.iIDPM) and the PID-based DVS scheme [174] (denoteé 3 and
PID_iDPM).

the analysis because it indicates how well a DVS techniqoesgploit the slack
during low-load periods.

As a baseline for measuring the energy savings we used thgyatissipated
by PE2 constantly running at the safe rafgs computed for a given buffer size
L using (3.47). We also measured energy savings obtaineceiiptacle” DPM
with instantaneous on—off switching B2, running at a fixedfsaze In Fig. 46,
the corresponding graph is shown with a dotted line and elietb assafeiDPM.

By inspecting the plots in Fig. 46 we can make the followingasisations.

1. For relatively small buffer sized.(~ 400 . ..1300), both DVS schemeg/VCC
andPID, result in more than 50% energy savings. With increasintgbsize the
savings decrease. This is mainly because the energy cotisaropthe baseline
architecture rapidly decreases whergrows, since a lowelfsar IS needed to
avoid buffer overflows. IfL is sufficiently large to completely average out the
workload,anyDVS scheme is likely to be not worthwhile.

2. In comparison teafeiDPM, for L ~ 400...1300 the energy savings of both
dVCC and PID are 10...30%. This indicates that both techniques can-effec
tively exploit the slack during low-load periods. We caroadse that for, > 600
dVCC fully exploits the slack (compare W@VCC.iDPM), whereasPID poten-
tially could perform better.

6.5. Experimental Results 145

Energy savings vs. adaptation interval length
100 T T .

il
*\\

%

energy savings [%]
—
/
—i

70F

L=1000;
601
501

4 L 4
0 L=600

L=500
L=400 |
L=300

301

201

10

2000 4000 6000 8000 10000
adaptation inteval [us]

Fig. 47: Experimental results. Energy savings vs. adaptation interval lengttifferent buffer

6.5.4

sizesL.

. ForL > 450 energy savings frodVVCC are at least as high as froRID, while

for L < 450 PID saves 15% more energy thatVCC. This is the price for
the hard QoS guarantees providedd)CC. If the user specifieg as the buffer
constraintdVCC guarantees that the maximum buffer fill level will never eecte
L. In contrast,PID cannot guarantee this. IID the user can only specify a
target not themaximum buffer fill level. The PID controller will then try to
keep the backlog at this level. Bursty workloads and strihfaffer constraints
require the PID controller to quickly respond to workloa@woges. This leads to
(large) oscillations around the target level during adéma, which means that
if the target level has been set improperly a buffer overflomyraccur. As an
example, the left most point in the/D graph was obtained by setting the target
buffer fill level to 20 macroblocks, while the maximum baakiegistered in the
buffer for this setting was about 450 macroblocks. This f@wiwith PID might
be less acute for smoother workloads and larger buffers.

Energy savings vs. implementation overhead

The estimated computational requirement of our DVS alfgorjtfor parame-
ters(r, N,v¢, M) set as described above, (i.e.= 4.5ms, N = 150, ¢ = 1,
M = 200), is about 0.5 MIPS. This overhead scales linearly with thieies of
these parameters. It is also relatively low in comparisahecaverage workload
imposed orPE2 by a DVD-quality video stream (about 45 MIPS in our setup).

146

Chapter 6. Energy-Efficient Stream Processing

6.6

Fig. 47 shows measured tradeoff plots between the adapiatierval length
7 and the energy savings obtained by our scheme for diffengiférsizesL.
In Fig. 47, we can see that smaller adaptation intervals teddgher energy
savings. Achieving the energy reduction for smaller busiees comparable to
that achieved for larger buffer sizes necessitates moguiéret adaptations and
therefore results in higher run-time overhead. This israglae price for the
guaranteed QoS.

Summary

In this chapter, we described a new DVS scheduling schemgfispdly tar-
geted towards processing media streams on architectutiesestricted buffer
sizes. In contrast to previously proposed DVS schemes, chense provides
hard QoS guarantees and accounts for both, the variabflitheotask execu-
tion demand and the burstiness of processed streams. Oeniregnts showed
that the scheme achieves energy savings comparable todbtaaed by pre-
vious approaches. The advantages of our scheme can betetriio the novel
combination of the off-line worst-case workload charaetgion based on VCCs
with the run-time improvement of the worst-case bounds. ift@ementation
and run-time overhead of our scheme, although modest, roegslightly higher
than that of previous schemes. However, this is the pricehsto be paid for
predictability of the system, i.e. for its ability to prowdhard QoS guarantees.

Conclusions

In this thesis, we have addressed the problem of workloacetmagfor system-
level design of heterogeneous multiprocessor embeddegutens whose main
functionality involves real-time processing of media atres. The complex, vari-
able nature of the multimedia workloads imposed on thesepatens greatly
complicates their system-level design. The central redutiis thesis is avork-
load modethat helps to reduce this design complexity by providingtapseim-
ple but powerful abstractions to accurately capture theakdity characteristics
of the multimedia workloads. We have formally defined thiskl@ad model,
demonstrated its advantages over existing workload cteization methods
and showed some of its applications in the system-leveydesfiheterogeneous
multiprocessor system-on-chip (MpSoC) architectures.alntigular, we would
like to point out the following main outcomes of this work:

We have introduced the concepiariability Characterization Curve@/CCs)—

a generic model for the worst- and best-case variabilityattarization of en-
tire classes of increasing functions and sequences — ardl lmasthis concept
defined our model for the multimedia workload characteiora{multimedia

VCCs.

We have used our workload model to enhance modeling capeditif theMod-
ular Performance Analysifl59, 160] framework based dreal-Time Calculus
[24,121,157,158]. This has resulted in the definition of maadeling con-
structs, calledvorkload transformationswhich have enabled an accurate and
efficient performance analysis of heterogeneous multgssar embedded sys-
tems under variable multimedia workloads. Our experinmemsults showed
that the workload transformations allow to obtain signifittya tighter perfor-

148

Chapter 7. Conclusions

mance bounds than those achievable without using our waxlkioodel.

We have demonstrated application of our workload model sigieof resource
management policies for multimedia MpSoCs. Our workload ehpermits to
formulate and address a class of scheduling problems wlasmbt been ad-
dressed beforestream scheduling on buffer-constrained architectureb Ward
QoS guaranteedNe have proposed a design framework for efficient explonati
and optimization of this class of schedulers and showedtilisywusing case
studies involving TDMA scheduling disciplines.

Based on our workload model we have developedimtime processor rate
adaptation strategyvhich can be used in conjunction with the dynamic volt-
age scaling for energy-efficient media stream processingudfier-constrained
architectures. In comparison to other methods addressmigas problems,
our scheme can handle multimedia workloads characterigdubth, the data-
dependent variability in the task execution tiared the burstiness in the on-chip
traffic arising out of multimedia processing; and at the séime it can provide
hard QoS guarantees. An experimental evaluation showéadnacheme can
achieve considerable energy savings, comparable to tHuseable with an-
other state-of-the-art DVS scheme (which is, however, lenabprovide hard
QoS guarantees).

Finally, we have demonstrated how our workload model can dsxl uo de-
sign representative workload scenaridsr simulation-based system-level per-
formance evaluation of multimedia MpSoCs. We have proposexthod for
(automatic) classification of media streams based on thability characteris-
tics of the workload they may impose on the architecture. Yeenat aware of
any other method addressing this important issue in thesystvel design of
MpSoCs.

Simulation Framework

This chapter describes the simulation framework which vezsiun experimen-
tal case studies presented throughout this thesis.

Fig. 48 shows an overview of the simulation framework andetations with
the methods developed in this thesis. Two major compondriteecsimulation
framework are

aninstruction set simulato(ISS) and
asystem simulator

ISS is used to collect information about behavior of appitcatasks mapped for
execution on to programmable processing elements of attishg8oC architec-
ture. This information is collected and stored in the forntrates These traces
are then used in two different ways. First, we can compute fileem VCCs,
which are needed by the VCC-based methods presented in this.ti8econd,
the traces serve as an input to the system simulator to dienea@cution of the
application on the target MpSoC architecture.

The system simulator allows to measure various performardexes of a
given application-to-architecture mapping (system caméigjon). These mea-
surements can then be compared with corresponding numb&sed from
mathematical performance models.

The following two sections give details on ISS and the systenulator.

150

Appendix A. Simulation Framework

—@
—>O—E—E—
Application

@

Instruction Set Simulator

Performance
Analysis and
Scheduling
(Ch. 3 and 5)

A

System Simulator
<:] Workload
=y Design (Ch.4
\ [/ —
- ~ L Energy-Efficient
) <:j Stream Processing
(Ch.6)

[' d perf
Simulation Framework measured perfomance

Fig. 48: Simulation framework and its relations with methods developed in this thesis.

Al

Instruction set simulator

We used the SimpleScalar ISS [8] to model programmable psing elements
within a target MpSoC architecture. On its own, the Simp&&clSS does not
support simulation of heterogeneous multiprocessor tectires [8]. However,
it can be used to model with sufficient accuracy executiomaiidual software
tasks on a given processor type. SimpleScalar supportsasénstruction set
architectures and permits modeling of various microaechitral features (e.g.
pipelines, caches, branch predictors, etc.) Furthernitassextensible in a sense
that users can easily customize simulation models of thegssors by intro-
ducing new instruction types and by adding new or configuailngady existing
microarchitectural features.
For experimental case studies presented in this thesisnpéoged thesim-

profile configuration of the SimpleScalar. This configuration asssithat exe-

A.2. System simulator 151

A.2

cution of every instruction in a program code takes exaatly processor cycle,
l.e. it does not account for possible stalls due to, for eXamppeline hazards
or cache misses. Although tlsem-profileconfiguration might be too inaccurate
for the microarchitecture design, for the system level attviwe considered the
MpSoC architectures, it represents an appropriate choice.

For modeling processing elements we used an instructiosiredar to that
used in MIPS3000 processors, but without floating point supprhis instruc-
tion set had application-specific extensions for video dewp e.g. instructions
for bitstream access, IDCT computation and special blodettanemory ad-
dressing modes. To collect useful information about tha-dapendent behav-
lor of application tasks, we had to augment the SimpleSaeaildr logging and
trace collection facilities.

System simulator

Our simulation framework allows to easily construct a siatiolh model of a
given application-to-architecture mapping. We refer tohsa simulation model
as the system simulator. The system simulator represetremsaction-level
model[34] of the system in which implementation details of indwal hard-
ware components and application tasks are abstracted damstgad, the hard-
ware architecture is represented by a set of (coarse-gramjputation and com-
munication resources with certain processing capalsitvhile the application
tasks are modeled as clients requesting these resoueggnerating demands
for these resources). At this level of abstraction, thereigrinciple difference
between computation and communication resources (or)tasks

An application is represented by a set of concurrent tasksmaanicating via
unidirectional FIFO channels. The execution model is theesas the one de-
scribed in Section 3.3.1 besides the fact that the FIFO aarnave finite sizes
and block write operations whenever they are full. The fioitannel sizes allow
to model the buffer space constraints resulting from mappirthe application
onto the hardware architecture. A write operation into ad-ighannel is re-
garded as a transaction. A task may accomplish several mrtdattions during
its execution.

When a task is activated it generates a request for the ressonto which it
is mapped. In the current implementation, the amount ofuress requested is
either fixed to a constant value or obtained from the tracksated using the ISS
described in the previous section. A resource is distribtd¢asks in accordance
with the scheduling (or arbitration) policy implemented that resource. The
framework supports both preemptive and non-preemptivediding policies. In
principle, task switching and operating system overhead$e modeled within
the framework but were not modeled in the experiments pteden this thesis.

The implementation of the system simulator just descrilodgl fests on the

152 Appendix A. Simulation Framework

SystemC C++ library [153] and correspondingly uses of itsréite event simu-
lation engine. We have added an abstraction level on topeoSttstemC library
which allows to quickly construct a new application-totatecture mapping or
to easily change an existing system configuration.

Bibliography

[1] L. Abeni and G. Buttazzo. Resource reservation in dynaraa-time
systemsReal-Time System27(2):123-167, 2004.

[2] A. Agarwal, C. H. Kim, S. Mukhopadhyay, and K. Roy. Leakageano-
scale technologies: mechanisms, impact and design coasates. In
Proceedings of the 41st Annual Conference on Design Autom@dAC)
pages 6—-11, New York, NY, USA, 2004. ACM Press.

[3] Advanced Micro Devices, Inc. AMD PowerNow! technology.
http://ww. and. com 2005.

[4] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashim
Overhead-conscious voltage selection for dynamic andgalknergy re-
duction of time-constrained systems. Design, Automation and Test in
Europe (DATE) page 10518, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[5] A. Andrei, M. T. Schmitz, P. Eles, Z. Peng, and B. M. A. Hashi Quasi-
static voltage scaling for energy minimization with timenstraints. In
Design, Automation and Test in Europe (DATRages 514-519, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[6] A. Artieri, V. DAIto, R. Chesson, M. Hopkins, and M. C. RossioMadik
open multimedia platform for next-generation mobile degicSTMicro-
electronics Technical Article TA30%it t p: / / www. st . com 2003.

[7] A. Atlas and A. Bestavros. Statistical rate monotonicestiiling. InPro-
ceedings of the 19th IEEE Real-Time Systems Symposium)(REg8
123, Washington, DC, USA, 1998. IEEE Computer Society.

[8] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An asftructure for
computer system modelindEEE Computer35(2):59-67, 2002.

[9] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Vallaum,
and A. Nicolau. Profile-based dynamic voltage schedulimggugrogram
checkpoints. InDesign, Automation and Test in Europe (DATRage
168, Washington, DC, USA, 2002. IEEE Computer Society.

154

Bibliography

[10] F. Baccelli, G. Cohen, G. Olsder, and J.-P. Quadsgmnchronization and
Linearity. John Wiley, Sons, New York, 1992.

[11] S. K. Baruah. A general model for recurring real-timek&asdn Proceed-
ings of the IEEE Real-Time Systems Symposium (Rp&§s 114-122,
1998.

[12] S. K. Baruah. Dynamic- and static-priority schedulirfgecurring real-
time tasks.Real-Time System24(1):93-128, 2003.

[13] S. K. Baruah, D. Chen, S. Gorinsky, and A. K. Mok. Genegdimulti-
frame tasksReal-Time System$7(1):5-22, 1999.

[14] A. C. Bavier, A. B. Montz, and L. L. Peterson. Predicting MPExecu-
tion times. INSIGMETRICSpages 131-140, 1998.

[15] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and Mo
cino. SystemC cosimulation and emulation of multiprocessoC de-
signs.|IEEE Computer36(4):53-59, 2003.

[16] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of desigechniques
for system-level dynamic power managemeBEE Transactions on VLSI
Systems3(3):299-316, June 2000.

[17] L. Benini and G. D. Micheli. Powering networks on chipsneegy-
efficient and reliable interconnect design for SoCsPtaceedings of the
14th International Symposium on Systems Synthesis (I8&&)s 33-38,
New York, NY, USA, 2001. ACM Press.

[18] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesiembed-
ded software from synchronous dataflow specificatialwairnal of VLSI
Signal Processing Systen®(2):151-166, 1999.

[19] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstra€igclo-static
dataflow.|[EEE Transactions on Signal Processjdig(2):397-408, 1996.

[20] S. Borkar. Design challenges of technology scalingEEE Micro,
19(4):23-29, 1999.

[21] T. D. Burd and R. W. Brodersen. Energy efficient CMOS micropssor
design. INHICSS (1) pages 288-297, 1995.

[22] G. C. Buttazzo. Hard Real-time Computing Systems: Predictable
Scheduling Algorithms And Applications (Real-Time Syst&uaries)
Springer-Verlag Telos, 2004.

[23] S. ChakrabortySystem-Level Timing Analysis and Scheduling for Embed-
ded Packet Processor®hD thesis, ETH Zurich, Apr. 2003.

Bibliography 155

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

S. Chakraborty, S. #nzli, and L. Thiele. A general framework for
analysing system properties in platform-based embeddadrsydesigns.
In Design, Automation and Test in Europe (DATRages 190-195, Mu-
nich, Germany, Mar. 2003. IEEE Press.

S. Chakraborty, S. #nzli, L. Thiele, A. Herkersdorf, and P. Sagmeister.
Performance evaluation of network processor architestu@ombining
simulation with analytical estimatiorComputer Network41(5):641—-
665, 2003.

S. Chakraborty and L. Thiele. A new task model for streagrapplica-
tions and its schedulability analysis. Design, Automation and Test in
Europe (DATE)pages 486-491, 2005.

A. P. Chandrakasan and R. W. Broderselow Power Digital CMOS
Design Kluwer Academic Publishers, 1995.

L. H. Chandrasena, P. Chandrasena, and M. J. Liebelt. Arggrfficient
rate selection algorithm for voltage quantized dynamitag# scaling. In
Proceedings of the 14th International Symposium on SysE&mthesis
(ISSS)pages 124-129, New York, NY, USA, 2001. ACM Press.

K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram. Frame-bagyadithic
voltage and frequency scaling for a MPEG decoder.Piloceedings of
the 2002 IEEE/ACM International Conference on Computer-AiDed
sign (ICCAD) pages 732—-737, 2002.

K. Choi, R. Soma, and M. Pedram. Off-chip latency-drivgnamic volt-
age and frequency scaling for an MPEG decodingProceedings of the
41st Annual Conference on Design Automation (DAt2ges 544-549,
2004.

W. J. Dally and B. Towles. Route packets, not wires: orp¢hieconnec-
toin networks. InProceedings of the 38th Conference on Design Automa-
tion (DAC), pages 684-689, New York, NY, USA, 2001. ACM Press.

B. P. Dave and N. K. Jha. CASPER: Concurrent hardware-softaa-
synthesis of hard real-time aperiodic and periodic spetitios of em-
bedded system architectures. Design, Automation and Test in Europe
(DATE), pages 118-124, 1998.

B. P. Dave, G. Lakshminarayana, and N. K. Jha. COSYN: Hardw
software co-synthesis of embedded systemsPrbteedings of the 34th
Conference on Design Automation (DA@ages 703—708, 1997.

156 Bibliography

[34] A. K. Deb, A. Jantsch, and Qberg. System design for dsp applications in
transaction level modeling paradigm. Pmoceedings of the 41st Annual
Conference on Design Automation (DA@pges 466—471. ACM Press,
2004.

[35] R. P. Dick and N. K. Jha. MOCSYN: Multiobjective core-bdsgngle-
chip system synthesis. Design, Automation and Test in Europe (DATE)
pages 263—-270, 1999.

[36] K. Diefendorff and P. K. Dubey. How multimedia workloadill change
processor desigrComputey 30(9):43-45, 1997.

[37] R. C. Dorf and R. H. BishopModern Control System#ddison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1994.

[38] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multipssoe SOC
for advanced set-top box and digital TV systetSEE Design & Test of
Computers18(5):21-31, 2001.

[39] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Ridad de-
sign: Selecting representative program-input pairdrrceedings of the
2002 International Conference on Parallel Architecturesl@ompilation
Techniquespages 83-94. IEEE Computer Society, 2002.

[40] H. EI-Rewini, H. H. Ali, and T. G. Lewis. Task scheduling multi-
processing system$EEE Computer28(12):27-37, 1995.

[41] C. J. Fidge. Real-time schedulability tests for preewgpthultitasking.
In Selected papers from the 4th Workshop on Parallel and Disted
Real-Time Systems (WPDRTRages 61-93, Norwell, MA, USA, 1998.
Kluwer Academic Publishers.

[42] K. Flautner, S. Reinhardt, and T. Mudge. Automatic perfance setting
for dynamic voltage scalingVireless Networks3(5):507-520, 2002.

[43] S. Goddard and K. Jeffay. Managing latency and buffgqurements in
processing graph chain§he Computer Journa#4(6):486-503, 2001.

[44] K. Goossens, J. Dielissen, J. van Meerbergen, P. Piopld Radulescu,
E. Rijpkema, E. Waterlander, and P. Wielage. Guaranteeiagjtiality
of services in networks on chip. In A. Jantsch and H. Tenhuaditors,
Networks on Chippages 61-82. Kluwer Academic Publishers, Hingham,
MA, USA, 2003.

[45] A. D. Gordon.Classification Chapman & Hall/CRC, 1999.

Bibliography 157

[46] K. Govil, E. Chan, and H. Wasserman. Comparing algoritfandynamic
speed-setting of a low-power CPU. Rroceedings of the 1st Annual In-
tern. Conf. on Mobile Computing and Networkjrgpges 13-25. ACM
Press, 1995.

[47] F. Gruian and K. Kuchcinski. LEneS: task scheduling lfmw-energy
systems using variable supply voltage processor®rimeedings of the
2001 Conference on Asia South Pacific Design Automation (3/SP),
pages 449-455, 2001.

[48] J. C. P. Gutrrez and M. G. Harbour. Offset-based response time asalysi
of distributed systems scheduled under EDFPtaceedings of the 15th
Euromicro Conference on Real-Time Systems (ECRESgs 3—-12, 2003.

[49] V. Gutnik and A. P. Chandrakasan. Embedded power supglyofv-
power DSP.IEEE Transactions on VLSI Systerb$4):425-435, 1997.

[50] S. Ha and E. A. Lee. Compile-time scheduling of dynamiostaucts in
dataflow program graphsEEE Transactions on Compute®6(7):768—
778,1997.

[51] A. Hamann and R. Ernst. TDMA time slot and turn optimipatiwith
evolutionary search techniques.Design, Automation and Test in Europe
(DATE), pages 312-317, Washington, DC, USA, 2005. IEEE Computer
Society.

[52] F. Harmsze, A. H. Timmer, and J. L. van Meerbergen. Mgnaobitration
and cache management in stream-based systeni3edign, Automation
and Test in Europe (DATEpages 257262, 2000.

[53] J. Helmig. Developing core software technologies ftis DMAP plat-
form. Texas Instrument$it t p: / / www. ti . com 2002.

[54] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivasa. Power
optimization of variable voltage core-based systemsPrrceedings of
the 35th Annual Conference on Design Automation (DAf@pes 176—
181, New York, NY, USA, 1998. ACM Press.

[55] I. Hong, M. Potkonjak, and M. B. Srivastava. On-line sthkéng of
hard real-time tasks on variable voltage processor.Proceedings of
the 1998 IEEE/ACM International Conference on Computer-AiDed
sign (ICCAD) pages 653—656, New York, NY, USA, 1998. ACM Press.

[56] S. Hua, G. Qu, and S. S. Bhattacharyya. Energy reduaticdmiques for
multimedia applications with tolerance to deadline missksProceed-
ings of the 40th Conference on Design Automation (DAGYes 131-136,
New York, NY, USA, 2003. ACM Press.

158

Bibliography

[57] C. J. Hughes, P. Kaul, S. V. Adve, R. Jain, C. Park, and J.v&san.
Variability in the execution of multimedia applicationscaimplications
for architecture. IrProceedings of the 28th Annual International Sympo-
sium on Computer Architecturpages 254-265. ACM Press, 2001.

[58] IBM PowerPChtt p://wwv. chi ps.ibm com product s/ power pc/,
2005.

[59] C. Im, S. Ha, and H. Kim. Dynamic voltage scheduling witkffbrs in
low-power multimedia applicationgransactions on Embedded Comput-
ing Systems3(4):686—705, 2004.

[60] Intel Corporation, Enhanced Intel SpeedStep technplog
http://ww. intel.com2005.

[61] T. Ishihara and H. Yasuura. Voltage scheduling probferndynamically
variable voltage processors. Rroceedings of the 1998 International
Symposium on Low Power Electronics and Design (ISLRgBges 197—
202, New York, NY, USA, 1998. ACM Press.

[62] S. Ishiwata, T. Yamakage, Y. Tsuboi, T. Shimazawa, Ttakawa,
S. Michinaka, K. Yahagi, H. Takeda, A. Oue, T. Kodama, N. Matsto,
T. Kamei, M. Saito, T. Miyamori, G. Ootomo, and M. Matsui. Agle-
chip MPEG-2 codec based on customizable media embeddedssiac
IEEE Journal of Solid-State Circuit88(3):530-540, 2003.

[63] H. Iwasaki, J. Naganuma, K. Nitta, K. Nakamura, T. Ydsie,
M. Ogura, Y. Nakajima, Y. Tashiro, T. Onishi, M. lkeda, and Ehdo.
Single-chip MPEG-2 422P@HL CODEC LSI with multi-chip configu
tion for large scale processing beyond HDTV levelDi@sign, Automation
and Test in Europe (DATEpages 20002—20007, 2003.

[64] A.lyerand D. Marculescu. Power and performance eveaidoaf globally
asynchronous locally synchronous processor®rateedings of the 29th
Annual International Symposium on Computer Architectus€@) pages
158-168, Washington, DC, USA, 2002. IEEE Computer Society.

[65] K. Jeffay and S. Goddard. A theory of rate-based exeautiln Pro-
ceedings of the 20th IEEE Real-Time Systems Symposium)(Rag§&s
304-314, 1999.

[66] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dgneanit-
age scaling for real-time embedded systemsProceedings of the 41st
Annual Conference on Design Automation (DAgages 275-280, New
York, NY, USA, 2004. ACM Press.

Bibliography 159

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

M. Jersak and R. Ernst. Enabling scheduling analysisetédogeneous
systems with multi-rate data dependencies and rate inserveProceed-
ings of the 40th conference on Design automation (DA&Yyes 454—-459,
New York, NY, USA, 2003. ACM Press.

M. Jersak, K. Richter, and R. Ernst. Performance analgsisomplex
embedded applicationmternational Journal of Embedded Systems, Spe-
cial Issue on Codesign for Sp2004.

N. K. Jha. Low power system scheduling and synthesifroteedings
of the 2001 IEEE/ACM International Conference on Computeedide-
sign (ICCAD) pages 259-263, Piscataway, NJ, USA, 2001. IEEE Press.

G. Kahn. The semantics of simple language for paraiegpmmming. In
IFIP Congresspages 471-475, 1974.

A. Kalavade and P. Mogh A tool for performance estimation of net-
worked embedded end-systems. Aroceedings of the 35th Conference
on Design Automation Conference (DA@pges 257-262. ACM/IEEE,

June 1998.

K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Samgnni-
Vincentelli. System-level design: Orthogonalization @ncerns and
platform-based designlEEE Transactions on Computer-Aided Design
19(12), 2000.

C. Kim and K. Roy. Dynamic Vth scaling scheme for activekizge power
reduction. InDesign, Automation and Test in Europe (DATR3ge 163,
Washington, DC, USA, 2002. IEEE Computer Society.

S. Kim, C. Im, and S. Ha. Schedule-aware performancenasion of
communication architecture for efficient design spaceaspion. InPro-
ceedings of the 1st IEEE/ACM/IFIP International ConferenceHard-
ware/Software Codesign and System Synthesis (CODES+I8&§)s
195-200, New York, NY, USA, 2003. ACM Press.

S. Kim, C. Im, and S. Ha. Efficient exploration of on-chipsbarchitec-
tures and memory allocation. Proceedings of the 2nd IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign arstefy
Synthesis (CODES+ISS$)ages 248-253, New York, NY, USA, 2004.
ACM Press.

H. Kopetz.Real-time Systems: Design Principles for Distributed Ethbe
ded ApplicationsBoston Kluwer Academic Publishers, 1997.

C. E. Kozyrakis and D. A. Patterson. A new direction fomgauter archi-
tecture researchComputey 31(11):24-32, 1998.

160

Bibliography

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

M. Krunz and S. K. Tripathi. On the characterization 0B MPEG
streams SIGMETRICS Perform. Eval. Re25(1):192—-202, 1997.

S. Kumar. On packet switched networks for on-chip comication. In
A. Jantsch and H. Tenhunen, editoNetworks on Chippages 85-106.
Kluwer Academic Publishers, Hingham, MA, USA, 2003.

Y.-K. Kwok and I. Ahmad. Static scheduling algorithmear fallocat-
ing directed task graphs to multiprocessoSCM Computing Surveys
31(4):406-471, 1999.

W.-C. Kwon and T. Kim. Optimal voltage allocation tecfoes for dy-
namically variable voltage processoff:ansactions on Embedded Com-
puting System<(1):211-230, 2005.

T. Lafage and A. Seznec. Choosing representative shtpsogram exe-
cution for microarchitecture simulations: a preliminappécation to the
data stream. IVorkload characterization of emerging computer applica-
tions pages 145-163. Kluwer Academic Publishers, 2001.

K. Lahiri, A. Raghunathan, and S. Dey. System level penfance analy-
sis for designing on-chip communication architecturekEEE Trans-
actions on Computer Aided-Design of Integrated Circuits agst&ns
20(6):768-783, 2001.

A. A. Lazar, G. Pacifici, and D. E. Pendarakis. Modelingeo sources
for real-time schedulingMultimedia System4.(6):253—-266, 1994.

J.-Y. Le Boudec and P. Thirahletwork calculus: a theory of deterministic
gueuing systems for the Intern&pringer-Verlag New York, Inc., 2001.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBena tool
for evaluating and synthesizing multimedia and commupitsisystems.
In Proceedings of the 30th annual ACM/IEEE International Sysiypuo
on Microarchitecture pages 330-335. IEEE Computer Society, 1997.

C.-H. Lee and K. G. Shin. On-line dynamic voltage scalfog hard
real-time systems using the EDF algorithm. Rroceedings of the 25th
IEEE International Real-Time Systems Symposium (RT#8es 319—
327, Washington, DC, USA, 2004. IEEE Computer Society.

E. A. Lee and D. G. Messerschmitt. Static schedulingywsfciironous
data flow programs for digital signal processingEE Transactions on
Computers36(1):24-35, 1987.

Bibliography 161

[89] E. A. Lee and T. M. Parks. Dataflow process networksRé&adings in
hardware/software co-desigpages 59-85. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[90] S. Lee and T. Sakurai. Run-time voltage hopping for lawpr real-time
systems. InProceedings of the 37th Conference on Design Automation
(DAC), pages 806—809. ACM Press, 2000.

[91] S. H. Lee, K.-Y. Whang, Y.-S. Moon, and I.-Y. Song. Dynanbuffer
allocation in video-on-demand systems.Hroceedings of the 2001 ACM
SIGMOD International Conference on Management of Datges 343—
354. ACM Press, 2001.

[92] J. P. Lehoczky. Fixed priority scheduling of periodask sets with arbi-
trary deadlines. IfProceedings of the 11th Real-Time Systems Symposium
(RTSS)pages 201-213. IEEE, 1990.

[93] J. P. Lehoczky. Real-time queueing theory. Aroceedings of the 17th
IEEE Real-Time Systems Symposium (RT&$e 186, Washington, DC,
USA, 1996. IEEE Computer Society.

[94] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhancedaglic respon-
siveness in hard real-time environmentslBEE Real-Time Systems Sym-
posium pages 261-270, 1987.

[95] S. Leibson and J. Kim. Configurable processors: A newrechiip design.
IEEE Computer38(7):51-59, 2005.

[96] J. Y.-T. Leung and M. L. Merrill. A note on preemptive sctuling of
periodic, real-time taskdnformation Processing Letterd1(3):115-118,
1980.

[97] J. Y.-T. Leung and J. Whitehead. @ On the complexity of fixed
priority scheduling of periodic, real-time taskiBerformance Evaluatign
2(4):237-250, 1982.

[98] Y. Li and W. Wolf. A task-level hierarchical memory mdder system
synthesis of multiprocessors. Rroceedings of the 34th Conference on
Design Automation (DACpages 153-156, 1997.

[99] P. Lieverse, T. Stefanov, P. van der Wolf, and E. F. Depre. System
level design with Spade: an M-JPEG case study2001 International
Conference on Computer-Aided Design (ICCARgges 31-38, 2001.

[100] C.L.LiuandJ.W. Layland. Scheduling algorithms forltiprogramming
in a hard-real-time environmeniournal of the ACM20(1):46—-61, 1973.

162

Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

J. W. S. W. Liu. Real-Time SystemsPrentice Hall PTR, Upper Saddle
River, NJ, USA, 2000.

Y. Liu, A. Maxiaguine, S. Chakraborty, and W. T. Ooi. Pessor fre-
qguency selection for SoC platforms for multimedia applwad. InPro-
ceedings of the 25th IEEE International Real-Time Systeyngp8sium
(RTSS) pages 336—345, Lisbon, Portugal, Dec. 2004. IEEE Computer
Society.

Y. Liu, A. Maxiaguine, S. Chakraborty, and W. T. Ooi. Pegsor fre-
guency selection in energy-aware SoC platform design fdtimedia ap-
plication. Technical Report TRC8/04, National University afigapore,
Nov. 2004.

Y.-H. Lu, L. Benini, and G. D. Micheli. Dynamic frequepnscaling with
buffer insertion for mixed workloadslEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systef1g11):1284—-1305, No-
vember 2002.

Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Sked Control-
theoretic dynamic frequency and voltage scaling for mudtim work-
loads. InProceedings of the 2002 International Conference on Compil-
ers, Architecture, and Synthesis for Embedded Systems @®A%ifes
156-163, New York, NY, USA, 2002. ACM Press.

Z. Lu, J. Lach, M. Stan, and K. Skadron. Reducing multrmelecode
power using feedback control. Froceedings of the 21st International
Conference on Computer Design (ICCPage 489. IEEE Computer So-
ciety, 2003.

J. Luo and N. K. Jha. Power-conscious joint schedubhgeriodic
task graphs and aperiodic tasks in distributed real-timbesided sys-
tems. InProceedings of the 2000 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD)ages 357—-364, Piscataway, NJ, USA,
2000. IEEE Press.

J. Madsen and P. Bjgrn-Jgrgensen. Embedded systemmesisaunder
memory constraints. IRroceedings of the 7th International Workshop on
Hardware/Software Codesign (CODE$ages 188-192, 1999.

S. Manolache, P. Eles, and Z. Peng. Schedulabilityyaisaof applica-
tions with stochastic task execution time3ransactions on Embedded
Computing System8(4):706—735, 2004.

Bibliography 163

[110] S. M. Matrtin, K. Flautner, T. Mudge, and D. Blaauw. Congardynamic
voltage scaling and adaptive body biasing for lower powesragroces-
sors under dynamic workloads. Rtoceedings of the 2002 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAlapes 721—
725, New York, NY, USA, 2002. ACM Press.

[111] A. Maxiaguine, S. Chakraborty, S.UKzli, and L. Thiele. Evaluating
schedulers for multimedia processing on buffer-conseé@isoC plat-
forms. IEEE Design & Test21(5):368-377, Sept. 2004.

[112] A. Maxiaguine, S. Kinzli, S. Chakraborty, and L. Thiele. Rate analysis for
streaming applications with on-chip buffer constraintsPtoceedings of
the Asia South Pacific Design Automation Conference (ASP-D#Qes
131-136, Yokohama, Japan, Jan. 2004.

[113] A. Maxiaguine, S. Kinzli, and L. Thiele. Workload characterization
model for tasks with variable execution demand.Di@sign, Automation
and Test in Europe (DATEpages 1040-1045, Paris, France, Feb. 2004.
IEEE Computer Society.

[114] A. Maxiaguine, Y. Liu, S. Chakraborty, and W. T. Ooi. tdiying "rep-
resentative” workloads in designing MpSoC platforms fodngrocess-
ing. In Proceedings of the 2nd Workshop on Embedded Systems fer Real
Time Multimedia (ESTImediapages 41-46. IEEE, 2004.

[115] A. Maxiaguine, Y. Zhu, S. Chakraborty, and W.-F. Wongunihg SoC
platforms for multimedia processing: identifying limitsich tradeoffs.
In Proceedings of the 2nd IEEE/ACM/IFIP International Conferen
on Hardware/software Codesign and System Synthesis (CODESKISS
pages 128-133. ACM Press, 2004.

[116] T. Meyerowitz, C. Pinello, and A. Sangiovanni-Vincelfit A tool for de-
scribing and evaluating hierarchical real-time bus schegyolicies. In
Proceedings of the 40th Conference on Design Automation (D#dges
312-317, New York, NY, USA, 2003. ACM Press.

[117] A. K. Mok and D. Chen. A multiframe model for real-timesta. IEEE
Transactions on Software Engineerjri@g(10):635-645, 1997.

[118] International Standard Organization, "Informatibachnology — Generic
Coding of Moving Pictures and Associated Audio InformatioRast 2:
Video,” ISO/IEC 13818-2.

[119] MPEG Software Simulation Groupt t p: / / www. npeg. or g, 2005.

[120] M. NaedeleOn the Modeling and Evaluation of Real-Time Systetd
thesis, ETH Zurich, Mar. 2000.

164

Bibliography

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

M. Naedele, L. Thiele, and M. Eisenring. Charactegsuariable task
releases and processor capacitiesProceedings of the 14th IFAC World
Congress 199®Beijing, July 1999.

L. S. Nielsen and C. Niessen. Low-power operation uselftimed cir-
cuits and adaptive scaling of the supply voltadEEE Transactions on
VLSI System<(4):391-397, 1994.

J. Oliver, R. Rao, P. Sultana, J. Crandall, E. CzernikowskW. J. 1V,

D. Franklin, V. Akella, and F. T. Chong. Synchroscalar: A npké clock
domain, power-aware, tile-based embedded processoPrdoeedings

of the 31st Annual International Symposium on Computer fachire
(ISCA) page 150, Washington, DC, USA, 2004. IEEE Computer Society.

T. Pering, T. Burd, and R. Brodersen. The simulation araduation of
dynamic voltage scaling algorithms. Rroceedings of the 1998 Interna-
tional Symposium on Low Power Electronics and Design (ISLPE&pes
76-81, New York, NY, USA, 1998. ACM Press.

A. D. Pimentel, L. O. Hertzberger, P. Lieverse, P. van\d/olf, and E. F.
Deprettere. Exploring embedded-systems architecturés Aitemis.
IEEE Computer34(11):57-63, 2001.

A. D. Pimentel, S. Polstra, F. Terpstra, A. W. van Hadohe J. E. Coffland,
and L. O. Hertzberger. Towards efficient design space eaptor of het-
erogeneous embedded media systemsErtbedded Processor Design
Challengespages 57-73, 2002.

P. Pop, P. Eles, and Z. Peng. Performance estimatioanibedded sys-
tems with data and control dependencies.Ptoceedings of the 8th In-
ternational Workshop on Hardware/Software Co-Design (CODR&)es
62-66, 2000.

P. Pop, P. Eles, and Z. Peng. Schedulability analysisoptimization for
the synthesis of multi-cluster distributed embedded systeln Design,
Automation and Test in Europe (DATPRages 10184-10189, 2003.

P. Pop, P. Eles, and Z. Peng. Schedulability-drivenmoanication synthe-
sis for time triggered embedded systerReal-Time System26(3):297—
325, 2004.

T. Pop, P. Eles, and Z. Peng. Holistic scheduling andlysis of
mixed time/event-triggered distributed embedded systemsProceed-
ings of the 10th International Symposium on Hardware/So#waode-
sign (CODES)pages 187-192, 2002.

Bibliography 165

[131] S. Prakash and A. C. Parker. Synthesis of applicati@ciic multi-
processor systems including memory componelasrnal of VLSI Signal
Processing System8(2):97-116, 1994.

[132] K. Ramamritham. Allocation and scheduling of precexderelated pe-
riodic tasks. IEEE Transactions on Parallel and Distributed Systems
6(4):412-420, 1995.

[133] K. Richter, M. Jersak, and R. Ernst. A formal approach {g3dC perfor-
mance verificationlEEE Computer36(4), 2003.

[134] M. J. Rutten, J. T. J. van Eijndhoven, E. G. T. Jaspersai®.der Wolf,
E.-J. D. Pol, O. P. Gangwal, and A. Timmer. A heterogeneouli-mu
processor architecture for flexible media processi&E Design & Test
of Computers19(4):39-50, 2002.

[135] M. J. Rutten, J. T. J. van Eijndhoven, and E.-J. D. Pol. iBblmedia
processing in a flexible and cost-effective network of mitatking co-
processors. IfProceedings of the 14th Euromicro Conference on Real-
Time Systems (ECRT$)age 223, Washington, DC, USA, 2002. IEEE
Computer Society.

[136] M. T. Schmitz, B. M. Al-Hashimi, and P. EleSystem-Level Design Tech-
niques for Energy-Efficient Embedded Systekisiwer Academic Pub-
lishers, Boston, 2004.

[137] K. Sekar, K. Lahiri, and S. Dey. Dynamic platform maaagent for con-
figurable platform-based system-on-chipsPhoceedings of the Interna-
tional Conference on Computer Aided Design (ICCARgges 641-649,
2003.

[138] G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magi8isDwarkadas,
and M. L. Scott. Dynamic frequency and voltage control for altm
ple clock domain microarchitecture. RProceedings of the 35th Annual
ACM/IEEE International Symposium on Microarchitecture (VRO 35)
pages 356-367, Los Alamitos, CA, USA, 2002. IEEE Computeredpci
Press.

[139] J. Seo, T. Kim, and K.-S. Chung. Profile-based optimahhtask voltage
scheduling for hard real-time applications.Rroceedings of the 41st An-
nual Conference on Design Automation (DAGages 87-92, New York,
NY, USA, 2004. ACM Press.

[140] L. Sha, T. F. Abdelzaher, K.-Rrzen, A. Cervin, T. P. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok. Real time
scheduling theory: A historical perspectivé&real-Time System28(2-
3):101-155, 2004.

166

Bibliography

[141] D. Shin, J. Kim, and S. Lee. Low-energy intra-task agk scheduling
using static timing analysis. IRroceedings of the 38th Conference on
Design Automation (DAC)ages 438-443, New York, NY, USA, 2001.
ACM Press.

[142] Y. Shin and K. Choi. Power conscious fixed priority sahedy for hard
real-time systems. IRroceedings of the 36th ACM/IEEE Conference on
Design Automation (DACpages 134-139. ACM Press, 1999.

[143] T. Simunic, L. Benini, A. Acquaviva, P. W. Glynn, and G. Blicheli.
Dynamic voltage scaling and power management for portatsiesis. In
Proceedings of the 38th Conference on Design Automation (Dgdgjes
524-529, 2001.

[144] T. Simunic, S. P. Boyd, and P. Glynn. Managing power oomgion in
networks on chips.IEEE Transactions on VLSI System2(1):96-107,
2004.

[145] A. Sinha and A. P. Chandrakasan. Dynamic voltage sdimgdusing
adaptive filtering of workload traces. FProceedings of the 14th Interna-
tional Conference on VLSI Design (VLS|page 221, Washington, DC,
USA, 2001. IEEE Computer Society.

[146] N. T. Slingerland and A. J. Smith. Design and charaza¢ion of the
Berkeley multimedia workloadMultimedia System$(4):315-327, 2002.

[147] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic tasledciting for hard
real-time systemsReal-Time System$(1):27-60, 1989.

[148] K. Sreenivasan and A. J. Kleinman. On the constructiba represen-
tative synthetic workloadCommunications of the ACM7(3):127-133,
1974.

[149] S. Sriram and S. S. Bhattacharyyambedded Multiprocessors: Schedul-
ing and SynchronizatioMarcel Dekker, Inc., New York, NY, USA, 2000.

[150] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C. Buttaziroplications
of classical scheduling results for real-time systemiBEE Computer
28(6):16—25, 1995.

[151] M. T. J. Strik, A. H. Timmer, J. L. van Meerbergen, and-J5.van
Rootselaar. Heterogeneous multiprocessor for the managesheeal-
time video and graphics stream&EEE Journal of Solid-State Circuits
35(11):1722-1731, 2000.

Bibliography 167

[152]

[153]
[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

J. K. Strosnider, J. P. Lehoczky, and L. Sha. The dalderserver al-
gorithm for enhanced aperiodic responsiveness in haretirealenviron-
ments.IEEE Transactions on Computes4(1):73-91, 1995.

Open SystemC Initiativéht t p: / / www. syst ent. or g, 2002.

R. Szymanek and K. Kuchcinski. A constructive algartfor memory-
aware task assignment and schedulingPioceedings of the 9th Interna-
tional Symposium on Hardware/Software Codesign (CODER)es 147—
152, 2001.

D. Talla, C.-Y. Hung, R. Talluri, F. Brill, D. Smith, D. BrieB. Xiong, and
D. Huynh. Anatomy of a portable digital mediaprocess&EE Micro,
24(2):32—-39, 2004.

L. Thiele, S. Chakraborty, M. Gries, and Sizli. A framework for eval-
uating design tradeoffs in packet processing architesturd’roceedings
of the 39th Design Automation Conference (DAG3ges 880-885, New
Orleans LA, USA, June 2002. ACM Press.

L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, ahdreutert. Em-
bedded software in network processors - models and algusithn Pro-

ceedings of the 1st International Workshop on Embeddeav&eft(EM-

SOFT) pages 416-434, London, UK, 2001. Springer-Verlag.

L. Thiele, S. Chakraborty, and M. Naedele. Real-timecuals for
scheduling hard real-time systems. liriernational Symposium on Cir-
cuits and Systems (ISCASblume 4, pages 101-104, Geneva, Switzer-
land, Mar. 2000.

L. Thiele and E. Wandeler. Performance analysis ofeadied systems.
In The Embedded Systems Handbd@RC Press, 2004.

L. Thiele, E. Wandeler, and S. Chakraborty. A streamfied component
model for performance analysis of multiprocessor DSHSEE Signal
Processing Magazine, special Issue on Hardware/Softwaree3ayd for
DSP, 22(3):38—-46, May 2005.

T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-Qi,\&hd J. W.-S.
Liu. Probabilistic performance guarantee for real-timsk$awith varying
computation times. IiProceedings of the IEEE Real-Time Technology
and Applications Symposium (RTABages 164 — 173. IEEE Computer
Society, 1995.

K. Tindell, A. Burns, and A. J. Wellings. An extendiblp@oach for an-
alyzing fixed priority hard real-time task&eal-Time System6(2):133—
151, 1994.

168

Bibliography

[163] K. Tindell and J. Clark. Holistic schedulability analy for distributed
hard real-time systemsMicroprocessing & Microprogramming40(2-
3):117-134, 1994.

[164] Transmeta Corporation, LongRun technology.
http://ww.transmet a. com 2005.

[165] G. Varatkar and R. Marculescu. On-chip traffic modelng synthesis for
MPEG-2 video applicationdEEE Transactions on VLSI Syster2(1),
January 2004.

[166] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitatcharacterization
of event streams in analysis of hard real-time applicatiomBroceedings
of the 10th IEEE Real-Time and Embedded Technology andaapipins
Symposium (RTA)ages 450-459, Toronto, Canada, May 2004.

[167] E. Wandeler, A. Maxiaguine, and L. Thiele. Quantitatcharacterization
of event streams in analysis of hard real-time applicatiodsurnal of
Real-time Systempage to appear, Mar. 2005.

[168] E. Wandeler and L. Thiele. Abstracting functionality modular perfor-
mance analysis of hard real-time systemsPtaceedings of the Asia and
South Pacific Desing Automation Conference (ASP-DAGYyes 697—-
702, Shanghai, P.R. China, Jan. 2005.

[169] E. Wandeler and L. Thiele. Characterizing workloadelations in multi
processor hard real-time systems.Pimceedings of the 11th IEEE Real-
Time and Embedded Technology and Applications SymposidiS)R
San Francisco, USA, Mar. 2005.

[170] M. Weiser, B. Welch, A. J. Demers, and S. Shenker. Sdivegltor re-
duced CPU energy. 1©SD|, pages 13—-23, 1994.

[171] F. Wolf. Behavioral Intervals in Embedded Software: Timing and Power
Analysis of Embedded Real-Time Software Procedskesver Academic
Publishers, 2002.

[172] W. Wolf. The future of multiprocessor systems-ongshi In Proceed-
ings of the 41th Conference on Design Automation (DAGges 681-685,
2004.

[173] W. Wolf. Multimedia applications of multiprocessorstems-on-chips. In
Design, Automation and Test in Europe (DATEages 86—89, 2005.

[174] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formalimaimeth-
ods for voltage/frequency control in multiple clock domaicroproces-
sors. InProceedings of ASPLOS-Xlages 248-259, New York, NY, USA,
2004. ACM Press.

Bibliography 169

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

L. Yan, J. Luo, and N. K. Jha. Combined dynamic voltagalisg and
adaptive body biasing for heterogeneous distributedtreed-embedded
systems. IProceedings of the 2003 IEEE/ACM International Conference
on Computer-Aided Design (ICCADpage 30, Washington, DC, USA,
2003. IEEE Computer Society.

C.-Y. Yang, J.-J. Chen, and T.-W. Kuo. An approximatidgoathm for
energy-efficient scheduling on a chip multiprocessoDésign, Automa-
tion and Test in Europe (DATEpages 468-473, Washington, DC, USA,
2005. IEEE Computer Society.

F. Yao, A. Demers, and S. Shenker. A scheduling modekduced CPU
energy. InProceedings of the 36th Annual Symposium on Foundations of
Computer Science (FOC$)age 374, Washington, DC, USA, 1995. IEEE
Computer Society.

W. Yuan and K. Nahrstedt. Integration of dynamic vgéascaling and
soft real-time scheduling for open mobile systemsPtaceedings of the
12th International Workshop on Network and Operating Systeapport
for Digital Audio and Video (NOSSDAWages 105-114, New York, NY,
USA, 2002. ACM Press.

H. Zhang. Service disciplines for guaranteed pertoroe service in
packet-switching network$2roceedings of the IEEB3(10):1374-1396,
1995.

D. Zhu, R. Melhem, and B. Childers. Scheduling with dynawolt-
age/speed adjustment using slack reclamation in multgssor real-time
systems. IiProceedings of the 22nd IEEE Real-Time Systems Symposium
(RTSS)page 84, Washington, DC, USA, 2001. IEEE Computer Society.

D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. TdieCombining
multiple models of computation for scheduling and allomati In Pro-
ceedings of the 6th International Workshop on Hardware/sari Code-
sign (CODES/CASHEpages 9—-13, Washington, DC, USA, 1998. IEEE
Computer Society.

D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. TéieRepresen-
tation of process mode correlation for scheduling.Phoceedings of the
International Conference on Computer Aided Design (ICCARpes 54—
61, 1998.

D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J.chei SPI — A
system model for heterogeneously specified embedded systd#EE
Transactions on VLSI Systemi®(4):397 — 389, August 2002.

170 Bibliography

[184] V. D. Zivkovic, E. A. de Kock, P. van der Wolf, and E. F. prettere. Fast
and accurate multiprocessor architecture exploratioh symbolic pro-
grams. InDesign, Automation and Test in Europe (DATRages 10656—
10661, 2003.

