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Abstract

In this thesis, we make a case for the use of guaranteed intervals for time syn-
chronization in mobile ad-hoc networks. In particular, we look at wireless sensor
networks (WSNs), a specific class of mobile ad-hoc networks. WSNs are envi-
sioned to comprise a large number of small, inexpensive devices that operate on
a very constrained energy budget.

Time synchronization is an important service in WSNs. Approaches devel-
oped in the distributed-systems field typically cannot be applied directly because
of the limiting characteristics of WSNs: (a) There is no guarantee of stable con-
nectivity between nodes. (b) Energy is a very scarce resource. Communication,
which is needed to achieve and maintain synchronization, is expensive in terms
of energy and hence has to be kept short. (c) Communication bandwidth is lim-
ited. (d) There is no a-priori configuration or infrastructure. In particular, there
are few or even no reference clocks available.

In this thesis, we make a number of contributions to the state of the art in the
field of time synchronization for mobile ad-hoc networks. Our main claim is that
interval-based time synchronization is particularly suited for these networks.
Specifically, our contributions are the following:

We present a new system model for the analysis of interval-based time syn-
chronization in mobile ad-hoc networks. We justify why our abstractions are
well chosen for this class of networks.

Using our system model, we derive worst-case bounds on the quality of
interval-based synchronization and show the worst-case-optimality of a very
simple algorithm.

The simple, worst-case-optimal algorithm is not optimal in the average case.
We present three algorithms that are also worst-case-optimal but achieve better
synchronization quality in the average case. We show that two of the algorithms
achieve optimal synchronization, albeit at the cost of high memory and commu-
nication overhead. We describe how limiting the amount of data that is stored
and communicated affects the synchronization quality.

We show that interval-based synchronization does not need particular com-
munication patterns such as trees or clustered hierarchies. Hence, interval-based
synchronization is resilient to mobility; our simulation results show that mobil-
ity actually improves it.

Finally, we derive a lower bound on the error of gradient clock synchroniza-
tion in our system model.



Zusammenfassung

Der Kern dieser Arbeit ist die These, dass intervallbasierte Zeitsynchronisation
besonders geeignet für mobile Ad-hoc-Netze ist. Im Besonderen betrachten wir
drahtlose Sensornetze, eine spezifische Klasse mobiler Ad-hoc-Netze. Es wird
allgemein angenommen, dass drahtlose Sensornetze aus einer Vielzahl kleiner,
kostengünstiger Netzknoten mit sehr knappen Energieressourcen bestehen.

Zeitsynchronisation ist ein wichtiger Dienst in drahtlosen Sensornetzen. An-
sätze aus dem Gebiet der verteilten Systeme können wegen der Einschränkun-
gen drahtloser Sensornetze nicht direkt angewendet werden: (a) Es gibt keine
Garantie für stabile Verbindungen zwischen Knoten. (b) Energie ist sehr knapp.
Kommunikation, welche zur Erlangung und Aufrechterhaltung von Synchroni-
sation nötig ist, ist energieintensiv und muss daher von kurzer Dauer sein. (c)
Die Kommunikationsbandbreite ist beschränkt. (d) A-priori-Konfiguration der
Netzknoten ist nicht möglich, und Infrastruktur ist nicht verfügbar. Insbesonde-
re gibt es nur wenige oder gar keine Referenzuhren.

Diese Arbeit leistet einen Beitrag zum Stand der Forschung bezüglich Zeit-
synchronisation in mobilen Ad-hoc-Netzen. Die zentrale Behauptung ist, dass
intervallbasierte Synchronisation besonders geeignet für solche Netze ist. Die
Beiträge dieser Arbeit im Detail:

Wir präsentieren ein neues Systemmodell für die Analyse intervallbasierter
Zeitsynchronisation in mobilen Ad-hoc-Netzen. Wir begründen, weshalb unsere
Abstraktionen für diese Klasse von Netzen gut gewählt sind.

Unter Verwendung unseres Modells leiten wir Schranken für die Qualität
der intervallbasierten Synchronisation im ungünstigsten Fall her und zeigen,
dass ein sehr einfacher Algorithmus optimal im ungünstigsten Fall ist.

Dieser einfache Algorithmus ist im durchschnittlichen Fall nicht optimal.
Wir stellen drei Algorithmen vor, welche auch optimal im ungünstigsten Fall
sind, und darüber hinaus bessere Synchronisation im durchschnittlichen Fall
bieten. Wir zeigen die allgemeine Optimalität von zwei der drei Algorithmen,
welche allerdings mit hohem Speicher- und Kommunikationsaufwand erkauft
werden muss. Wir beschreiben die Auswirkungen einer Beschränkung der ge-
speicherten und kommunizierten Datenmenge auf die Synchronisationsqualität.

Wir zeigen, dass intervallbasierte Synchronisation nicht auf besondere Kom-
munikationsmuster wie Bäume oder gebündelte Hierarchien angewiesen ist.
Daher ist sie Knotenmobilität gegenüber unempfindlich; unsere Simulationen
zeigen, dass sie davon sogar profitiert.

Zuletzt leiten wir eine untere Schranke für den Fehler der sogenannten Gra-
dientensynchronisation in unserem Systemmodell her.
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1
Introduction

Time synchronization has been extensively studied in computer science, more
specifically in the area of distributed systems. In this thesis, we make a case
for the use of guaranteed intervals for time synchronization in mobile ad-hoc
networks.

In this chapter, we first present time synchronization as an abstract problem,
describe its peculiarities when implemented in a specific class of mobile ad-hoc
networks, namely wireless sensor networks, and briefly characterize interval-
based time synchronization. We then give an overview of the contributions and
of the structure of this thesis.

1.1 Time synchronization for mobile ad-hoc networks

The time-synchronization problem

In everyday life, time synchronization is typically perceived as the following
problem: A person—let us call her Alice—wants her watch to always show the
legal time as precisely as possible. To achieve this, Alice obtains the legal time
from an appropriate source, a so-called reference clock, and adjusts her watch
to show the same time. The synchronization thus obtained does not last forever:
Alice’s imperfect watch does not measure time intervals with perfect accuracy,
and hence its time will deviate more and more from the legal time as the time
elapsed since the adjustment becomes larger. Alice therefore periodically syn-
chronizes her watch with the reference clock. This illustrates that synchroniza-
tion is an ongoing process; the higher the required accuracy of an imperfect
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clock’s time information, the more often the clock has to be synchronized to a
reference clock.

In a more abstract sense, time synchronization means that various entities
agree on the size of time intervals and possibly also on offsets on a common
time scale; this makes time-coordinated actions possible. The entities use the
means at their disposal, most notably imperfect clocks, to achieve synchroniza-
tion. To emphasize the fact that it actually is the time information that is adjusted
and communicated, we say “time synchronization” instead of “clock synchro-
nization”.

If all entities share the same resources for measuring time, synchronization
is provided implicitly. For instance, two persons that have equal access to a
common clock will clearly agree as to what the displayed time is. When entities
do not share the time-measuring resources, time synchronization can only be
achieved by communication. For example, assume that two persons, Alice and
Bob, each only have access to a personal, local clock and to a communication
channel between each other. Time synchronization can then be achieved for in-
stance by Alice sending the reading of her clock to Bob, and Bob subsequently
adjusting his clock to show the same time. Alternatively, Bob could leave his
clock as it is and merely record the offset beween his and Alice’s clock. As Al-
ice’s and Bob’s clocks will typically exhibit different drifts, i.e. deviations from
the ideal rate, periodical synchronization is necessary to keep the synchroniza-
tion error (in this example: the difference between Alice’s local time and what
Bob believes is Alice’s local time) within given limits.

A problem that does not emerge in everyday life but is very significant in
distributed computer systems is that of the message-delay uncertainty. Suppose
that the communication channel between Alice and a reference clock exhibits a
delay that varies between 1 and 2 minutes. This means that when Alice receives
a message with the timetsendwhen the reference clock sent the message, she can
only deduce that the current legal time must be in the intervaltsend+[1 min, 2
min]. Note that if Alice had a perfect (i.e. non-drifting) clock, she could measure
the delay of the message. Likewise, if she knew the delay of the message, she
could synchronize her clock perfectly. In the real world, clocks are imperfect
and message delays are unknown.

Time synchronization in wireless sensor networks

Mobile ad-hoc networks are a fairly recent research area. While “mobile” refers
to the fact that the network nodes can move, “ad hoc” means that these networks
do not rely on existing infrastructure, but use whatever resources are available at
the moment. Current cellular telephone networks that employ fixed base stations
are therefore (partly) mobile, but not ad hoc. Portable computers with wireless
networking capability according to the IEEE 802.11 standard can operate both
in access-point mode (where they will open a connection only to infrastructure
devices, namely to access points) or in ad-hoc mode (where they will connect
to any other IEEE 802.11 device).
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Wireless sensor networks (WSNs) are a specific class of mobile ad-hoc net-
works. They are envisioned to comprise a large number of small, inexpensive
devices that operate on a very constrained energy budget. Sensors incorporated
into these so-called sensor nodes collect data from their environment and trans-
mit it through the ad-hoc network. Possible applications of WSNs include envi-
ronmental monitoring, building technology, logistics, search-and-rescue opera-
tions, and battlefield use.

Time synchronization is an important service in sensor networks. For in-
stance, the fusion of distributed sensor data typically requires information about
the chronology of the sensor observations [Röm01]. In addition, the energy con-
sumption of the sensor nodes can be reduced by synchronous power-on and
shutdown of the radios of sender and receiver [CJBM01, IEE99, WESW98].

There has been a lot of research on time synchronization in the distributed-
systems field [Mil]. Many of the existing results cannot be applied to sensor
networks, since these networks have limiting characteristics [ER02]:

• Robustness:There is no guarantee of stable connectivity between nodes.
This is due to the use of radio links, which are inherently less stable than
cable connections, to sensor nodes being more likely to stop functioning
because of depleted batteries or physical damage, and to the mobility of
sensor nodes.

• Energy efficiency:Unlike traditional distributed systems, sensor nodes
typically are powered by batteries or solar cells. This means that energy is
a very scarce resource. Communication, which is needed to achieve and
maintain synchronization, is expensive in terms of energy and hence has
to be kept short.

• Communication bandwidth:Not only the duration, but also the bandwidth
of communication is limited. This may at first seem no burden on time
synchronization, as typical synchronization algorithms need to exchange
only small amounts of data. But the limited bandwidth can result in tem-
porary unavailability of the communication channel and hence in large
message-delay uncertainties which hinder synchronization.

• Ad-hoc deployment:The clock-synchronization service must not rely on
any a-priori configuration or infrastructure. In particular, there are few or
even no reference clocks available.

For these reasons, well-known algorithms such as NTP [Mil91] are not ap-
plicable in wireless sensor networks. Various algorithms tailored specifically to
these networks have been proposed recently; we give a comprehensive overview
in Chapter 2.
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1.2 Contributions

In this thesis, we make a number of contributions to the state of the art in the
field of time synchronization for mobile ad-hoc networks. Our main claim is that
interval-based time synchronization is particularly suited for these networks.
We will now briefly characterize interval-based synchronization and then give a
detailed overview of our contributions.

Interval-based time synchronization

We are used to time information being given as a single value indicating a point
in time. The time that Alice reads on her watch is an estimate that has a cer-
tain error with respect to the legal time. Interval-based synchronization pro-
vides guaranteed bounds on points in time. It was first proposed—in the context
of traditional distributed systems—in [MO83] and was extensively studied in
[SS97]. Time information is represented using an interval[T l ,Tu] defined by
guaranteed lower and upper boundsT l andTu on the real time1. We call the
size∆T = Tu−T l of the interval theuncertainty. The goal of an interval-based
synchronization algorithm is to maintain guaranteed lower and upper boundsT l

andTu while keeping the uncertainty as small as possible.
If Alice’s watch was interval-based, it could show a lower boundT l and an

upper boundTu such that the current legal timet is always guaranteed to lie
within the two:T l ≤ t ≤ Tu. It may seem that the elimination of the error with
respect to the legal time comes at the cost of the introduction of uncertainty,
and that not much truly changes. However, we will show in this thesis that time
intervals provide various advantages over single-value estimates.

Detailed contributions

New system model
We present a new system model for the analysis of interval-based time synchro-
nization in mobile ad-hoc networks. We justify why our abstractions are well
chosen for this class of networks.

Worst-case bounds
Using our system model, we derive worst-case bounds on the quality of interval-
based synchronization, namely lower bounds on the synchronization error for
a given communication pattern. We show that a very simple algorithm from
[MO83] is worst-case-optimal.

Optimal and efficient interval-based synchronization
The simple, worst-case-optimal algorithm from [MO83] is not optimal in the
average case. We present three algorithms that are also worst-case-optimal but
achieve better synchronization quality in the average case. We show that two
of the algorithms achieve optimal synchronization, albeit at the cost of high

1In this thesis, the terms legal time, real time, and physical time are interchangeable.
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memory and communication overhead. We describe how limiting the amount of
data that is stored and communicated affects the synchronization quality.

Mobility
We show that interval-based synchronization does not need particular commu-
nication patterns such as trees or clustered hierarchies. This makes the interval-
based approach resilient to node mobility, as there are no broken topologies
that have to be repaired. Our simulation results suggest that mobility actually
improves interval-based synchronization by increasing the rate of information
dissemination through the network.

Gradient clock synchronization in wireless sensor networks
Gradient clock synchronization was introduced in [FL04] and can briefly be
characterized as synchronization that maintains the gradient property. This prop-
erty requires the difference between any two network nodes’ clocks to be upper-
bounded by a non-decreasing function of their distance. This means that every
node has to be synchronized better to nearby nodes than to faraway nodes. The
system model in [FL04] differs considerably from our system model. We show
that a similar lower bound for the synchronization error as in [FL04] exists also
in our system model.

1.3 Overview
This thesis is structured as follows: In Chapter 2, we give an overview of the
principles and the state of the art of synchronization in wireless sensor networks.
These principles apply also to mobile ad-hoc networks in general. In Chapter 3,
we present our results regarding interval-based synchronization. Gradient clock
synchronization in wireless sensor networks is addressed in Chapter 4.
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2
Time Synchronization
in Wireless Sensor Networks

2.1 Introduction

In this chapter, we give an overview of the principles and of the state of the art
of time synchronization in wireless sensor networks. Our aim is both to give a
comprehensive picture of the various existing approaches and to illustrate that
there are many degrees of freedom in the design, implementation, and evalua-
tion of synchronization algorithms.

In Section 2.2, we discuss applications of synchronized time in sensor net-
works, present the particular challenges that sensor networks pose, and discuss
why traditional synchronization approaches fail to meet these challenges. Sec-
tion 2.3 presents models of sensor nodes, of hardware clocks, and of commu-
nication. Section 2.4 gives an overview of the various classes of synchroniza-
tion. In Section 2.5, we present common synchronization techniques. Section
2.6 examines current synchronization algorithms. Section 2.7 presents common
techniques for evaluating synchronization algorithms and selected evaluation
results.

This chapter is based on [RBM05].

2.2 Applications of Time and Challenges in WSNs

Sensor networks are used to monitor real-world phenomena. For such monitor-
ing applications, physical time often plays a crucial role. We will discuss these
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applications of time in Section 2.2.1. Providing synchronized physical time is
a complex task due to various challenging characteristics of sensor networks.
In Section 2.2.2, we present these challenges and discuss why synchronization
algorithms for traditional distributed systems often do not meet them.

2.2.1 The need for synchronized time

(a)

(b)

(c)

Fig. 1: Applications of physical time: (a) interaction of an external observer with the sensor
network, (b) interaction among sensor nodes, and (c) interaction of the sensor network
with the real world.

Physical time plays a crucial role for many sensor-network applications.
While many traditional applications of time also apply to sensor networks, we
will focus here on areas specific to sensor networks. Figure 1 illustrates a rough
classification of applications of physical time: (a) at the interface between the
sensor network and an external observer, (b) among the nodes of the sensor
network, and (c) at the interface between the sensor network and the observed
physical world. In the following paragraphs, we will discuss applications of
time in these three domains. Note that some applications are hard to assign to a
single domain. In such cases, we picked the most appropriate domain.

Sensor network – observer
In many applications, a sensor network interfaces to an external observer for
tasking, reporting results, and management. This observer may be a human op-
erator or an autonomous computing system. Tasking a sensor network often
involves the specification of time windows of interest such as “only during the
night”. As a sensor network reports observation results to an external observer,
temporal properties of observed physical phenomena may be important. For
example, the times of occurrence of physical events are often crucial for the ob-
server to associate event reports with the originating physical events. Physical
time is also necessary for determining properties such as speed or acceleration.

Sensor network – real world
In sensor networks, many sensor nodes may observe a single physical phe-
nomenon. One of the key functions of a sensor network is hence the assembly of
a number of distributed observations into a single, coherent estimate of the orig-
inal phenomenon; this process is known as data fusion. For example, if sensors
can only detect the proximity of an object, then higher-level information (such
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as speed, size, or shape) can be obtained by correlating data from multiple sen-
sor nodes. Time is a crucial ingredient for data fusion: For instance, the speed
of a mobile object can be estimated by the quotient of the spatial and temporal
distances between two consecutive sightings of the object by different nodes.

Since many instances of a physical phenomenon can occur within a short
time, one of the tasks of a sensor network is the separation of sensor samples,
i.e. the partitioning of sensor samples into groups that each represent a single
physical phenomenon. Temporal relationships (e.g., distance in time) between
sensor samples are a key element for separation.

Temporal coordination among sensor nodes may also be necessary to en-
sure correctness and consistency of distributed measurements [GRWE04]. For
example, if the sampling rate of sensors is low compared to the frequency of an
observed phenomenon, it may be necessary to ensure that sensor readout occurs
concurrently at all sensor nodes to avoid false observation results.

It is anticipated that large-scale, complex actuation functions will be im-
plemented by coordinated use of many simple actuator nodes. This requires
temporal coordination.

Within the sensor network
Time is also a valuable tool for intra-network coordination among different sen-
sor nodes. Many applications of time known from traditional distributed systems
also apply to wireless sensor networks. [Lis91] points out a number of applica-
tions of time in distributed systems such as concurrency control (e.g., atomicity,
mutual exclusion), security (e.g., authentication), data consistency (e.g., cache
consistency, consistency of replicated data), and communication protocols (e.g.,
at-most-once message delivery).

One particularly important example of concurrency control is the use of
time-division multiplexing in wireless communication, where multiple access
to the shared communication medium is achieved by assigning time slots to the
communicating nodes. This requires the participating sensor nodes to share a
common view of time.

A number of approaches try to improve energy efficiency by frequently
switching nodes or components thereof into power-saving sleep modes (e.g.,
[YHE02]). To nonetheless ensure seamless operation of the sensor network,
temporal coordination of the sleep periods among sensor nodes is required.

Another important service for sensor-network applications is temporal mes-
sage ordering (e.g., [Röm03]). Many data-fusion algorithms have to process
sensor readings ordered by the time of occurrence (e.g., the approach for speed
estimation sketched above). However, the highly variable message delays in
sensor networks imply that messages from distributed sensor nodes may often
not arrive at a receiver in the order in which they were sent. Reordering mes-
sages according to the time of sensor readout requires temporal coordination
among sensor nodes.

Methods for localization of sensor nodes based on the measurement of time
of flight or difference of arrival time of certain signals also require synchronized
time (e.g., [GBEE02]).
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2.2.2 Revisiting time synchronization for sensor networks

Time synchronization is a research area with a very long history. Over time,
numerous algorithms have been proposed and have been in large-scale use. The
Network Time Protocol (NTP) [Mil91] is perhaps one of the most advanced and
time-tested systems. However, several characteristics of sensor networks often
preclude the use of existing synchronization techniques in this domain.

In the following, we discuss sensor-network challenges that impact the de-
sign of time-synchronization approaches. Using NTP as an example, we will
outline why traditional approaches often do not meet the requirements of sensor
networks (see also [ER02]). Note that some of the illustrated shortcomings of
NTP are relatively easy to fix, while others are not. To provide the necessary
background, we will first give an overview of NTP.

NTP was designed for large-scale networks with a rather static topology
(such as the Internet). Nodes are synchronized to a global reference time that
is injected into the network at many places via a set of master nodes (so-called
“stratum 1” servers). These master nodes are synchronized out of band, for ex-
ample via the Global Positioning System (GPS) (which provides global time
with a precision significantly below 1 µs). Nodes participating in NTP form a
hierarchy: leaf nodes are called clients, inner nodes are called stratumL servers,
whereL is the level of the node in the hierarchy. The parents of each node must
be specified during the configuration of the node. Nodes frequently exchange
synchronization messages with their parents and use the obtained information
to adjust their clocks by regularly incrementing them.

Energy and other resources
Sensor-network applications often require sensor nodes to be small and cheap.
This has a number of important implications. First of all, the amount of energy
that can be stored in or scavenged by small devices is typically very limited due
to the low energy density of available and foreseeable technology. To ensure
longevity despite a limited energy budget, both hardware and software have to
be designed with energy efficiency as a dominating goal. Also the computing,
storage, and communication capabilities of a single sensor node are rather lim-
ited due to size and energy constraints.

These constraints may preclude the use of GPS or other technologies for out-
of-band synchronization of NTP master nodes. NTP is also not optimized for
energy efficiency, simply because this is not an issue in infrastructure-based dis-
tributed systems. Energy overhead in NTP results from several sources. Firstly,
the service provided by NTP typically cannot be dynamically adapted to the
varying needs of an application. Hence, nodes employing NTP are continuously
synchronized with maximum precision, although only subsets of nodes might
occasionally need synchronized time with less-than-maximum precision.

Secondly, NTP uses the processor and the network in ways that would lead
to significant energy overhead in sensor networks. For example, NTP main-
tains a synchronized system clock by regularly adding small increments to the
system-clock counter. This precludes the processor from being switched to a
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power-saving idle mode. In addition, NTP servers must be prepared to receive
synchronization requests at any point in time. However, constantly listening is
an energy-wise costly operation in sensor networks; many sensor-network pro-
tocols therefore switch off the radio whenever possible.

Network dynamics
Due to their deployment in the physical environment, sensor networks are sub-
ject to a high degree of network dynamics. Sensor nodes can be mobile, die
due to depleted batteries or due to environmental influences, and new sensor
nodes may be added at any point in time. This results in relatively frequent and
unpredictable changes in the network topology and possibly even in (tempo-
rary) network partitions. Mobile nodes can transport messages across partition
boundaries by storing a received message and forwarding it as soon as a new
partition is entered. The end-to-end delay of such message paths is very unsta-
ble and hard to predict.

The operation of NTP is independent of the underlying physical network
topology. In the NTP overlay hierarchy, a master and a client can be separated
by many hops in the physical network, even though they are neighbors in the
overlay hierarchy. Due to the above-mentioned effects, multi-hop paths may be
very unstable and unpredictable in a sensor network. NTP, however, depends on
the ability to accurately estimate the delay characteristics of network links.

NTP implicitly assumes that network nodes that shall be synchronized are a
priori connected by the network. However, this assumption may not hold in dy-
namic sensor networks with mobile nodes. Consider for example an application
where mobile sensor nodes with sporadic network connectivity time-stamp sen-
sor readings and deliver these records to an observer as they pass by a base sta-
tion (e.g., [JOW+02]). The base station may then want to compare time stamps
generated by different sensor nodes in order to evaluate the collected data. How-
ever, in the above scenario, there might not be a network connection between the
various originators of the time-stamped messages at any point in time. Hence,
NTP cannot be applied in such settings.

Infrastructure
In many applications, sensor networks have to be deployed in remote, unex-
ploited, or hostile regions. Sensor networks therefore often cannot rely on so-
phisticated hardware infrastructure. For example, under dense foliage or inside
buildings, GPS cannot be used since there is no free line of sight to the GPS
satellites.

In order to improve the precision and availability of synchronization in
large networks, NTP injects the reference time at many points into the net-
work. Hence, any node in the network is likely to find a source of reference
time within a distance of only a few hops. Note that shorter paths tend to be
more reliable and more predictable, since they include fewer sources of error
and unpredictability.

However, such an approach requires an external infrastructure of reference-
time sources which have to be synchronized with some out-of-band mechanism.
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Where this is not feasible, NTP would have to operate with a single master node
which uses its local time as the reference time. In large sensor networks, the av-
erage path length from a node to this single master is large, leading to reduced
precision. This is particularly problematic when collocated sensor nodes require
very precise mutual synchronization, for example to cooperate in observing a
nearby physical event. With a single master node, the collocated nodes may end
up using different synchronization paths, which results in different synchroniza-
tion errors (i.e., time offsets) with respect to the master node and hence in poor
mutual synchronization.

Configuration
After initial deployment, it is often infeasible to physically access the sensor
nodes for hardware or software maintenance. The large number of nodes also
precludes manual configuration of individual nodes. While traditional networks
such as the Internet do also consist of a large number of nodes, there is an
accordingly large number of network administrators, each taking care of a man-
ageable number of computers. With sensor networks, however, half a dozen of
human operators may be responsible for thousands of sensor nodes.

NTP requires the specification of one or more potential synchronization
masters for each node. This is an appropriate solution for networks with a rather
static topology, where configurations remain valid for extended periods of time.
In sensor networks, however, network dynamics necessitate a frequent adapta-
tion of configuration parameters.

2.3 System Model

In the sections ahead, we will analyze various synchronization approaches. We
will now specify the system model that we use as the foundation of our analysis.
First, we describe how we model clocks. We then specify the characteristics of
communication between nodes in a sensor network.

All our modeling is done in terms of discrete time and events. An event can
represent communication between nodes, a sensor measurement, the injection
of time information at a node, etc. We denote the real time at which eventa
occurs asta, and the local time of nodeNi at that time ashi

a. Note that our
model does not explicitly contain node mobility or network dynamics; these
aspects are included implicitly by the absence or existence of corresponding
communication events.

2.3.1 Clock models
Digital clocks measure time intervals. They typically consist of a counterh
(which we will also refer to as “the (local) clock”) that counts time steps of
an ideally fixed length; we denote the reading of the counter at real timet as
h(t). The counter is incremented by an oscillator with a rate (or frequency)f .
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The ratef at timet is given as the first derivative ofh(t): f (t) = dh(t)/dt. An
ideal clock would have rate 1 at all times, but the rate of a real clock fluctuates
over time due to changes in supply voltage, temperature, etc. If the fluctuation
were allowed to be arbitrary, the clock’s reading would obviously give no in-
formation at all. Fortunately, it is limited by known bounds. Different types of
bounds on the rate fluctuation lead to different clock models:

Constant-rate model
The rate is assumed to be constant. This is reasonable if the required precision
is small compared to the rate fluctuation, i.e. if the error introduced by ignoring
the rate fluctuation is negligible.

Bounded-drift model
The deviation of the rate from the ideal rate 1 is assumed to be bounded. We
call this deviation the clock’sdrift ρ(t) = f (t)−1 = dh(t)/dt−1, and denote
the corresponding bound witĥρ:

−ρ̂ ≤ ρ(t)≤ ρ̂ ∀t . (2.1)

A reasonable additional assumption isρ(t) >−1 for all timest. This means
that a clock can never stop (ρ(t) =−1) or run backward (ρ(t) <−1).

If two eventsa, b with ta < tb occur at a nodeNi whose clock’s driftρi is
bounded according to (2.1), then nodeNi can compute lower and upper bounds
∆l

i [a,b], ∆u
i [a,b] on the real-time difference∆[a,b] := tb− ta as:

∆l
i [a,b] :=

hi(tb)−hi(ta)
1+ ρ̂

∆u
i [a,b] :=

hi(tb)−hi(ta)
1− ρ̂

. (2.2)

This model is typically reasonable, since bounds on the oscillator’s rate
are given by the hardware manufacturer. Sensor nodes usually contain non-
expensive oscillators, and thus we haveρ̂ ∈ [10 ppm,100 ppm]1. Note that in
this model, the drift can jump arbitrarily within the bounds specified in (2.1).
The next model limits the variation of the drift.

Bounded-drift-variation model
The variationϑ(t) = dρ(t)/dt of the clock drift is assumed to be bounded:

−ϑ̂ ≤ ϑ(t)≤ ϑ̂ ∀t . (2.3)

This assumption is reasonable if the drift is influenced only by gradually
changing conditions such as temperature or battery voltage. Using (2.3), a node
can estimate its current drift and compute bounds on its drift for future times. We
refer to this asdrift compensation. Note that drift compensation is sometimes
defined as the adjustment of bounds according to (2.2), e.g. in [SS97].

Of course, combined models are also possible: we can assume both (2.1)
and (2.3).

1The abbreviation “ppm” stands for “parts per million”, i.e. 10−6. A clock with a drift of
100 ppm drifts 100 s in 1000000 s, or 100 µs in 1 s.
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2.3.2 Software clocks
A synchronization algorithm can either directly modify the local clockh, or
alternatively construct a software clockc. A software clock is a function taking
a local clock valueh(t) as input and transforming it to the timec(h(t)). This time
is the final result of synchronization, and we therefore call it the synchronized
time. For example,c(h(t)) = t0+h(t)−h(t0) is a software clock that starts with
the correct real timet0 and then runs with the same speed as the local clockh.
In general, we require that a software clock is a piecewise continuous2, strictly
monotonically increasing function.

2.3.3 Communication models
Communication is needed to achieve and maintain synchronization. We now
identify different communication parameters that affect synchronization.

Unicast vs. multicast
If a message is sent by one network node and is received by at most one other
network node, we call this unicast or point-to-point communication. Multicast
communication occurs when a message is sent by one network node and is re-
ceived by an arbitrary number of other network nodes. The case where all nodes
within transmission range are recipients is called broadcast. Wireless sensor net-
works typically use simple broadcast radios, such that a sensor node’s transmis-
sion is overheard by all nodes within its transmission range.

Symmetrical vs. asymmetrical links
If nodeA can receive messages sent by nodeB if and only if nodeB can receive
messages sent by nodeA, we say that the link between these two nodes is sym-
metrical. Otherwise, it is asymmetrical. An example for an asymmetrical link is
the link between a base station with high transmit power and a mobile device
with low transmit power: Beyond a certain distance between the two, only com-
munication in direction from the base station to the mobile device is possible.
Wireless sensor networks are typically envisioned to consist of a large number
of small sensor nodes, and a small number of more powerful (regarding energy,
memory, processing power, and transmit power) nodes. The links between these
two types of nodes would be asymmetrical.

Implicit vs. explicit synchronization
When comparing clock-synchronization approaches, it is important to distin-
guish whether synchronization information can be sent only with the messages
that the sensor-network application transmits (“piggyback”), or whether addi-
tional communication (i.e., messages sent only for the sake of synchronization)
is allowed. There is a trade-off between the amount of additional communi-
cation and the achievable synchronization quality. Additional communication
incurs additional energy consumption and can reduce the bandwidth available
for application data. Piggybacked time information does typically not reduce
bandwidth significantly, since there are no additional message headers to be

2A function is piecewise continuous if it is continuous on all but a finite number of points.
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transmitted or transmission slots to be occupied, and since the time information
is small in size.

Delay uncertainty
As far as synchronization is concerned, the goal of communication is to con-
vey time information. The delay of the messages sent between nodes has to be
taken into account when extracting this time information; we will explore this
in Section 2.5.1. The message delay consists of

• the send time, lasting from when the application issues the send command
to when the node starts trying to send; it is caused by kernel processing,
context switches, and system calls, and hence varies with the system load,

• the (medium) access time, lasting from when the node is ready to send to
when it starts the transmission; this is the time that is spent waiting for
access to the wireless channel, and hence varies with the network load,

• the propagation time, which is the time it takes for the radio signal to
travel from the sender to the receiver; it is constant for any pair of nodes
with constant distance, and is negligible compared to the other delay com-
ponents in wireless sensor networks (since distances are small and radio
signals travel very fast), and

• the receive time, lasting from the reception of the signal to the arrival of
the data at the application; the same factors causing the send time apply.

The send and receive time (and especially the uncertainty about them) can be
reduced by implementing the time-stamping of outgoing and incoming mes-
sages at a very low level, for instance in the MAC layer. Radios employing syn-
chronous techniques such as frequency hopping or time-division multiplexing
could in principle provide implicit synchronization with small delay uncertain-
ties at the physical layer, but commonly access to this layer is not assumed in
the design of synchronization algorithms.

Overall, message-delay uncertainties in typical wireless sensor networks are
rather large compared to those in wired networks. This is due to the lower link
reliability and bandwidth (see Section 2.2.2).

2.4 Classes of Synchronization
Synchronization is commonly understood as “making clocks show the same
time”, but there are actually many different types of synchronization. In the
following, we will give an overview of the various choices available for syn-
chronization. When choosing the synchronization approach for a given sensor-
network application, the maxim is to fulfill the application’s requirements with
the smallest possible effort in terms of computation, memory, and especially
energy.
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2.4.1 Internal vs. external
The synchronization of all clocks in the network to a time supplied from outside
the network is usually referred to asexternalsynchronization. NTP performs
external synchronization, as do sensor nodes synchronizing their clocks to a
master node. Note that it makes no difference whether the source of the common
system time is also a node in the network or not. External synchronization to the
physical time is needed for the correct measurement of physical quantities.

Internal synchronization is the synchronization of all clocks in the net-
work, without a predetermined master time. The only goal here is consistency
among the network nodes. External synchronization requires consistency within
the networkand with respect to the externally provided system time. Internal
synchronization is necessary and sufficient for time-division multiplexing in
wireless communication, where multiple access to the shared communication
medium is achieved by assigning time slots to the communicating nodes.

In everyday life, we are mostly faced with external synchronization, namely
with keeping watches and clocks in computers, cell phones, PDAs, cars, mi-
crowave ovens, etc. synchronized to the legal time. Groups of persons that want
to collaborate in a synchronized manner only need internal synchronization of
their clocks.

2.4.2 Continuous vs. on-demand
The lifetime of synchronization is the period of time during which synchro-
nization is required to hold. If time synchronization iscontinuous, the network
nodes strive to maintain synchronization (of a given quality) at all times. For
some sensor-network applications,on-demandsynchronization can be as good
as continuous synchronization in terms of achieving the required synchroniza-
tion quality, but much more efficient. During the (possibly long) periods of time
between events of interest, no synchronization is needed, and communication
and hence energy consumption can be kept at a minimum. As the time inter-
vals between successive events become shorter, a break-even point is reached
where continuous and on-demand synchronization perform equally well. There
are two kinds of on-demand synchronization:

Event-triggeredon-demand synchronization is based on the idea that in or-
der to time-stamp a sensor event, a sensor node needs a synchronized clock only
immediately after the event has occurred. It can then compute the time-stamp
for the moment in the recent past when the event occurred. Post-facto synchro-
nization [EGE02] is an example of event-triggered synchronization.

Time-triggeredon-demand synchronization is what we use if we are inter-
ested in obtaining sensor data from multiple sensor nodes for a specific time.
This means that there is no event that triggers the sensor nodes, but the nodes
have to take a sample at precisely the right time. This can be achieved viaimme-
diatesynchronization (where sensor nodes receive the order to immediately take
a sample and time-stamp it) oranticipatedsynchronization (where the order is
to take the sample at some future time, thetarget time). Anticipated synchro-
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nization is necessary if rapid and simultaneous transmission of the order to all
involved sensor nodes cannot be guaranteed. This is especially the case if sensor
nodes are more than one hop away from the node giving the order.

Note that for successful anticipated synchronization, it suffices to maintain
a synchronization quality which guarantees that the target time is not missed.
This means that the required synchronization quality grows as the real time
approaches the target time. There is no need to synchronize with maximum
quality right from the beginning.

Analogously to the event-triggered post-facto synchronization, we might re-
fer to time-triggered synchronization as pre-facto synchronization.

N3
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N2

N1

a) b)

space

time

N3 N5N4N2N1
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Fig. 2: Scope and lifetime define where and when synchronization is required. (a) shows the
topology of some network, (b) illustrates scope and lifetime of the synchronization:
Only nodesN2, N3 andN4 need synchronization.

2.4.3 All nodes vs. subsets
Thescopeof synchronization defines which nodes in the network are required
to be synchronized. Depending on the application, the scope comprises all or
only a subset of the nodes. Event-triggered synchronization can be limited to
the collocated subset of nodes which observe the event in question.

2.4.4 Rate synchronization vs. offset synchronization
Rate synchronization means that nodes measure identical time-interval lengths.
In a scenario where sensor nodes measure the time between the appearance
and disappearance of an object, rate synchronization is sufficient and necessary
for comparing the duration of the object’s presence within the sensor range of
different nodes, but not for ordering the observations chronologically.

Offset synchronization means that nodes measure identical points in time,
i.e. at some timet, the software clocks of all nodes in the scope showt. Offset
synchronization is needed for combining time stamps from different nodes.

The difference between rate and offset synchronization is illustrated in Fig-
ure 3. NodeN2 can compute the bird’s speed all by itself by dividing the distance
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between the bird’s positions at eventsa andb by the corresponding local-time
difference. For this, the node’s clock must be rate-synchronized to the real-time
rate 1. Alternatively, data from nodesN2 andN3 can be combined to compute
the bird’s speed, e.g. by using eventsb and c. The nodes’ clocks have to be
offset-synchronized for this.

c
N3

N2 N1

a

b

Fig. 3: At eventsa, b, andc, nodesN2 and N3 measure the position of the bird and time-
stamp this data with their current local time. Rate or offset synchronization is needed
depending on how the data from the three events is to be combined.

2.4.5 Timescale transformation vs. clock synchronization
Time synchronization can be achieved in two fundamentally different ways. We
can synchronize clocks, i.e. make all clocks display the same time at any given
moment. To achieve this, we have to perform rate and offset synchronization (or
continuous offset synchronization, which however is costly in terms of energy
and bandwidth and requires reliable communication links). The other approach
is to transform timescales, i.e. to transform local times of one node into local
times of another node.

Both approaches are equal in the sense that if we have either perfect clock
synchronization or perfect timescale transformation, the distributed sensor data
can be combined as if it had been collected by a single node. The approaches
differ in that clock synchronization requires either communication across the
whole network (for internal synchronization) or some degree of global coordi-
nation (for external synchronization). This calls for communication over mul-
tiple hops (which however tends to degrade synchronization quality), or well-
distributed infrastructure which for instance guarantees that every sensor node
is only a few hops away from a node equipped with a GPS receiver. Timescale
transformation does not have these drawbacks, but may instead incur additional
computation and memory overhead.

We illustrate the difference between clock synchronization and timescale
transformation using the example shown in Figure 3. If the clocks of nodes
N1, . . . ,N3 are synchronized, nodeN1 can directly combine the sensor data from
nodesN2 andN3, since the time stamps refer to the same timescale. If the clocks
are not synchronized, a timescale transformation on the received time stamps is
necessary. The final result is identical to that of using synchronized clocks.
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2.4.6 Time instants vs. time intervals
Time information can be given by specifying time instants (e.g., “t = 5”) or time
intervals (“t ∈ [4.5,5.5]”). In both cases, the time information can be refined by
adding a statement about its quality. For instance, the time information may be
guaranteed to be correct with a certain probability, or even probability distribu-
tions for the time can be given. A measure for the quality of the time information
can then be defined; we will speak of its inverse, thetime uncertainty.

In sensor networks, using guaranteed time intervals can be very attractive.
Interestingly, this approach has not received much attention, although it has a
number of advantages over using time instants, as we will see in Chapter 3.

2.5 Synchronization Techniques
In this section, building blocks and fundamental mechanisms of time synchro-
nization algorithms are presented. The section is organized by increasing com-
plexity: In Section 2.5.1, various approaches for obtaining a single reading of
the clock of a remote node are presented. In Section 2.5.2, techniques for main-
taining synchronization are discussed. In Sections 2.5.3 and 2.5.4, we show how
multiple samples can improve synchronization between two nodes. Finally, var-
ious approaches to organize the synchronization process in larger networks are
discussed in Section 2.5.5.

2.5.1 Taking one sample
Assume the simple scenario shown in Figure 4 (a), with two nodesNi andNj that
can exchange messages. Synchronization of these nodes means that the nodes
establish some relationship between their local clockshi andh j .

Unidirectional synchronization
The conceptionally simplest solution is illustrated in Figure 4 (b). NodeNi sends
a message containing a local time stamphi

a to nodeNj , where it is received at
local timeh j

b. NodeNj cannot determine the delayd of the message. It only
knows that the local clock of nodeNi showedhi

a before its own local clock
showsh j

b. Thus, its local time when the message was sent wash j
a < h j

b, and node
Ni ’s local time when the message is received ishi

b > hi
a. Time synchronization

consists of estimating eitherhi
b or h j

a.
If a-priori bounds on the message delayd are known, i.e. ifdmin≤ d≤ dmax,

then the estimations

h j
a≈ h j

b−1/2(dmin +dmax) hi
b≈ hi

a +1/2(dmin +dmax)

minimize the synchronization error in the worst case. Alternatively,h j
b−dmax

andh j
b−dmin are lower and upper bounds onh j

a (andhi
a + dmin andhi

a + dmax

are bounds onhi
b).
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Fig. 4: Uni- and bidirectional synchronization.a) NodeNj determines the offset of its local
clock relative to that of nodeNi using uni- (b) or bidirectional (c,d) communication. In
contrast to scheme c, scheme d allows both nodes to measure a round-trip time.

Round-trip synchronization
A slightly more complex solution is illustrated in Figure 4 (c): NodeNj sends
a query message to nodeNi , asking for the time stamphi

b. NodeNj measures

the round-trip timeD = h j
c− h j

a, i.e. the length of the time interval between
sending the request and receiving the reply. Without a-priori knowledge, node
Nj now knows that the delayd of the received time stamp is bounded by 0 and
D. If a-priori boundsdmin, dmax with dmin ≤ d ≤ dmax on the message delayd
are known, then nodeNj knows thatd is bounded by max(D−dmax,dmin) and
min(dmax,D−dmin).

The estimationh j
b ≈ h j

c−D/2 minimizes the worst-case synchronization

error;h j
c−(D−dmin) andh j

c−dmin are lower and upper bounds onh j
b. Similarly,

an estimation and bounds forhi
c can be determined.

In comparison to the unidirectional approach, round-trip synchronization
has the advantage of providing an upper bound on the synchronization error.
The mechanism known asprobabilistic time synchronization [Cri89] uses this
to decrease the synchronization error as follows: After receiving the reply mes-
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sage,Nj checks whether the worst-case synchronization errorD/2−dmin is be-
low a specified threshold. If it is not,Nj sends a new request message toNi . This
procedure is repeated until the reception of a pair of request and reply messages
that achieves the required synchronization error. The smaller the threshold, the
more messages have to be exchanged on average.

The main disadvantage of round-trip synchronization is that the amount of
messages increases linearly with the number of nodes that communicate with
Ni , while in the unidirectional case, a single broadcast message sent byNi can
serve an arbitrary number of nodes. A combination of the advantages of both
approaches is known aseavesdroppingor anonymous synchronizationand was
first described in [DRSW95]. The basic idea is the following: NodeNj sends a
broadcast message toNi and some additional nodeNk; Ni replies with a broad-
cast message toNj andNk. NodeNk assumes that the second message was pro-
duced after it had received the first message, thus nodeNk can do round-trip
synchronization with the two local receive time stamps and the send time stamp
from Ni without ever producing any messages itself.

In Figure 4 (d), two modifications of round-trip synchronization are illus-
trated. Firstly, it is not necessary thatNi replies immediately to query messages.
NodeNi can instead measure the durationDi between receiving the query mes-
sage and sending the reply, and nodeNj can then account for this duration in
its calculations. Secondly, the message exchange shown in Figure 4 (c) is asym-
metrical, i.e. onlyNj can do round-trip synchronization. Therefore, at least one
additional message fromNj to Ni is required forNi to be able to estimate or
bound remote time stamps.

Reference broadcasting
A third approach is shown in Figure 5. In addition to nodesNi andNj , a so-
calledbeaconnodeNk is involved. The beacon sends a broadcast message to
the other nodes. The delaysd (to Ni) andd′ (to Nj ) are almost equal.Ni then
sends the time stamphi

a to Nj . NodeNj measures the length of the time interval
D = h j

b− h j
a′ between the arrivals of the two messages and can then estimate

hi
b≈ hi

a +D.

This approach was first proposed in [HS91] under the namea-posteriori
agreement. It became more widely known in the sensor-network community
asreference-broadcastsynchronization (RBS) [EGE02]. Its main advantage is
that a broadcast message is received almost concurrently (even though its delay
is largely variable), and thus the synchronization error typically is smaller than
with unidirectional or round-trip synchronization.

The reference-broadcast technique can be used in many variations. For ex-
ample, Figure 5 (c) shows a solution presented in [DH04] for the case that nodes
Ni andNj , while being able to receive messages fromNk, cannot communicate
directly with each other.Nj replies toNk, which then can estimate its own local
time hk

a′ and send this information in another broadcast message toNi andNj .
In [EGE02], yet another version is described: All nodes report their time stamps
to a single node, which then broadcasts all information.
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Fig. 5: Reference-broadcast synchronization.NodeNi determines the offset of its local clock
relative to that of nodeNj with the help of nodeNk. In (c), a variant of reference-
broadcast synchronization is shown that can be used ifNi andNj cannot communicate
directly with each other (dashed link in (a)).

The disadvantage of the reference-broadcast approach is that physical broad-
casts and a beacon node are required. In large networks, this leads to clusters of
nodes that are within broadcast range of each other. The maintenance of clusters
and the synchronization between them creates additional overhead.

2.5.2 Synchronization in rounds

Typically, two local clocks do not run at exactly the same speed. Therefore their
synchronization has to be refreshed periodically; the length of a synchroniza-
tion round is determined by the maximal permissible synchronization error and
by the relative drift between the two clocks. Let the length of a round beτround.
Assume a round consists of a first period with lengthτsample, where one or more
samples are taken according to one of the methods described in Section 2.5.1,
and a second period where the nodes do nothing. Let us assume that an applica-
tion allows for a total error ofEtotal, the maximum error after taking the samples
is Esample, and the maximal drift rate iŝρ. Then the length of a roundτround has
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to satisfy

τround≤
Etotal−Esample

ρ̂
.

The above relation implies that rounds can be longer ifEsampleandρ̂ are small.
For example, algorithms that use the round-trip technique can boundEsample
according to the measured round-trip time and thus can dynamically increase
τround if the round-trip time was small. Other algorithms compensate for the
drift of the local clock and therefore can compute a smaller effectiveρ̂, which
also allows to increaseτround.

In some applications,Etotal is smaller than what can be guaranteed by tak-
ing a single sample. In such a case, multiple samples can be taken to achieve
Esample< Etotal. Taking multiple samples increasesτsample. At the limit, τsample≈
τround; in this case, synchronization in rounds becomes a continuous process.

2.5.3 Combining multiple time estimates
We now discuss techniques for combining multiple estimates of the local time
of a remote node. Figure 6 (a) illustrates the situation: Every circle stands for a
single estimate of nodeN j ’s local timeh j

a at some eventa, which occurs atNi ’s
local timehi

a.

hihi

h jh j

a) b)

Fig. 6: Multiple samples improve on the synchronization error.(a) Every circle represents a
sample, i.e. a local timehi of nodeNi and an estimated local timeh j of nodeNj . In-
terpolation techniques can be used to reduce the synchronization error: The solid line
results from a linear regression on the samples, the dashed line is the result of a phase-
locked loop (PLL). (b) The same idea can be used for lower (5) and upper (4) bounds
on the local time ofNj . Also here, interpolation can considerably reduce the synchro-
nization error (i.e., the uncertainty in this case). The solid lines are determined by the
convex-hull approach, the dashed lines according to [SV03].

Linear regression
The most widely used technique is linear regression, where a linear relation
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h j = α + β · hi is postulated and the coefficientsα and β are determined by
minimizing the square of the difference between the fittedh j ’s and the actual
samples. This technique has a single parameter, i.e. the number of samples that
are accounted for when computing the coefficients. A large number of samples
can improve the regression quality, but requires a large amount of memory.

The coefficientβ can be interpreted as an estimation ofh j ’s drift relative
to hi . Linear regression thus implicitly compensates for clock drift. If the drift
is variable, the postulated linear relationship betweenh j and hi does not de-
scribe reality very well. In such a situation, the number of samples accounted
for should be small.

The linear regression can be computed online, i.e. incrementally whenever
a sample is taken. An efficient implementation can be found in [PTVF92]. A
disadvantage of the linear-regression technique is that it weighs data points by
the square of their error against the fitted line. Outliers thus have a particularly
strong influence on the resulting coefficientsα andβ .

Phase-locked loops
Another method for processing a continuous sequence of samples is based on
the principle of phase-locked loops (PLLs) [Gar79]. The PLL controls the slope
of the interpolation using a proportional-integral (PI) controller. The output of
a PI controller is the sum of a component that is proportional to the input and
a component that is proportional to the integral of the input. The input of the
controller is the difference between the actual sample and the interpolated value.
If the interpolation is smaller than the sample, its slope is increased, otherwise it
is decreased. The main advantage of the PLL-based approach is that it requires
far less memory than the linear-regression technique (in essence only the current
state of the integrator sum). The main disadvantage is that PLLs require a long
convergence time to achieve a stable rate [Nor00]. The NTP algorithm uses a
PLL [Mil95].

Local selection
In [BT02], the local selection algorithm was introduced. It assumes unidirec-
tional communication of time stamps from a synchronization master to a client.
The client updates its synchronized time to the time contained in the time stamp
if and only if the received time is larger than the client’s current synchronized
time. Up to here, the algorithm is identical to the one presented in [Lam78]. The
distinguishing characteristic of the local selection algorithm is that the client up-
dates its synchronized time assuming that its local clock is running at maximum
speed. Thus, the client’s synchronized time can never be larger than the master’s
reference time.

The algorithm compensates for the effect of large message delays: the time
stamp of a message with a large delay is implicitly ignored, as the client’s syn-
chronized time will already have grown beyond the time contained in the time
stamp. The maximal synchronization error is directly limited by the maximal
message delay and the period between consecutive time stamps.
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2.5.4 Combining multiple time intervals
The techniques of Section 2.5.1 can also be used to derive lower and upper
bounds on the local time of a remote node. Figure 6 (b) shows a sequence of
lower and upper bounds on the local timesh j of a remote nodeNj on the y-
axis and the corresponding local timeshi of a nodeNi on the x-axis. In the
previous section, the samples formed a single cloud and the interpolation was a
line “through the middle of this cloud”. Here, we have two clouds: one formed
by the lower-bound samples, the other by the upper-bound samples.

The convex-hull technique [Ber00, ZLX02] interpolates the two clouds sep-
arately. One curve is drawn above all lower bounds, a second curve below all
upper bounds. While linear-regression and PLL techniques tend towards the
average of the individual samples, the convex-hull technique ignores average
values and accounts for the samples with minimal or maximal error. This can
result in improved robustness: While the current average message delay can be
very unstable, the minimal delay remains stable, though it may occur rarely.

In [SV03], it is proposed to interpolate lower- and upper-bound samples by
a single line as follows: First the steepest and flattest lines that do not violate
any lower or upper bound are determined. The slopes of these lines represent
bounds on the drift of clockh j relative tohi . The average of these two extremal
solutions is used as the final interpolation; for a more detailed description, see
page 39.

2.5.5 Synchronization of multiple nodes
Sensor networks most often have a much more complicated topology than the
simple examples shown in Figures 4 and 5, and not all sensor nodes can com-
municate with each other directly. Thus, multi-hop synchronization is required,
which adds an additional layer of complexity. Clearly, this could be avoided
by using an overlay network which provides virtual single-hop communica-
tion from every sensor node to a single master node. But as we have seen in
Section 2.5.1, the synchronization error directly depends on the message delay,
which is very difficult to control on a logical link composed of many physical
hops. Therefore, well-performing synchronization schemes have to deal with
the multi-hop problem explicitly.

Figure 7 illustrates various approaches to multi-hop synchronization. We
now describe these four schemes and use them as examples to discuss the main
problems of multi-hop synchronization.

Out-of-band synchronization
The conceptionally simplest solution is to avoid the problem: A large number
of master nodes is distributed in the network such that every node has a direct
connection to at least one of these masters (e.g., [VRC97]). The master nodes
are synchronized among each other using some out-of-band mechanism. GPS is
well suited to this purpose as it provides time information with sub-microsecond
accuracy. However, GPS receivers are still relatively costly, consume a consid-
erable amount of energy, and require a free line of sight to a number of satellites.
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a) b) c) d)

Fig. 7: Organizing synchronization in multi-hop networks.a) Single-hop with three master
nodes that are synchronized out of band (e.g., using GPS). b) Single-hop synchroniza-
tion in overlapping clusters with two gateway nodes that translate time stamps. c) Tree
hierarchy with a single master node at the root. d) Unstructured.

Clustering
The authors of the RBS algorithm propose to partition the network into clusters
[EGE02]. All nodes within a cluster can broadcast messages to all other mem-
bers of the cluster and thus the reference-broadcast technique can be used to
synchronize the cluster internally. Some nodes are members of several clusters
and participate independently in all corresponding synchronization procedures.
These nodes act as gateways by translating time stamps from one cluster to the
other. There is a trade-off in choosing the size of the clusters. On the one hand,
a small number of large clusters reduces the number of translations and thus re-
duces the synchronization error. On the other hand, energy consumption grows
quickly with increasing transmission range; this makes choosing many small
clusters attractive. This trade-off has been examined in [MR03].

Tree construction
The most common solution to the multi-hop synchronization problem is to
construct a synchronization tree with a single master at the root and to apply
single-hop synchronization along the tree edges (e.g., [GKS03, SV03, vGR03,
MKSL04]). Various well-known algorithms can be used to construct such a tree
[vGR03]. As the error grows with the hop distance to the root, a tree with mini-
mum depth is preferable. On the other hand, a small depth implies that the root
has to serve many clients, and thus consumes far more energy than the other
nodes.

Tree construction faces two main problems. Firstly, in sensor networks, the
network topology may be dynamic: nodes may be mobile and repeatedly join or
leave the network. The multi-hop synchronization algorithms have to explicitly
deal with such events. In particular, if the root node fails, a new root has to
be elected [MKSL04]. Secondly, two nodes that are physically close may have
a large hop distance in the synchronization tree. In consequence, the quality of
synchronization between these nodes is not as good as if they would synchronize
directly with each other, and the fused data regarding an event observed by both
nodes will be of lower quality.

Unstructured
As illustrated in the tree-construction approach, the multi-hop synchronization
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problem can be seen as the problem of determining the links and directions
over which time information is disseminated. In contrast to tree-construction
approaches, unstructured approaches do not first explicitly solve this problem
and then perform pairwise synchronization. Instead, time information is ex-
changed between any pair (or group) of nodes that communicate. Whereas in
the tree-construction approach every pairwise synchronization is asymmetrical
(i.e., between a local master and a client), in the unstructured approach it is
symmetrical (i.e., between two equal peers). In Chapter 3, we present such an
approach for interval-based synchronization: Two nodes combine their bounds
on real time by selecting the larger lower bound and the smaller upper bound. A
similar approach for single-value estimates isasynchronous diffusionproposed
in [LR04]. Here, nodes that communicate adjust their synchronized clocks to
the average of their synchronized times. Both approaches are completely local;
as they do not maintain any global configuration, node mobility does not cause
particular problems. In contrast, clustering and tree-construction schemes re-
quire the global configuration to be updated whenever nodes move or fail, or
when new nodes are added to the system.

As algorithms that follow the unstructured approach do not attempt to com-
municate with a particular node (e.g., the parent node in a tree), some of these
algorithms piggyback time stamps on messages that are sent for some other, not
synchronization-related reason (e.g., [Röm01, BMT04]). It could be argued that
these algorithms have virtually no communication overhead, as no messages are
generated exclusively for time synchronization.

2.6 Case Studies

In the following, we discuss a number of concrete synchronization algorithms,
ordered by publication date. Our goal is to give an overview of the approaches
with reference to the techniques and classes discussed earlier in this chapter,
rather than to discuss all the details. In addition, we will give some experimental
results for each algorithm. Table 1 summarizes the underlying assumptions and
classifies the approaches according to the criteria discussed in Section 2.4.

Time-Stamp Synchronization (TSS)
TSS [Röm01] provides internal synchronization on demand. Node clocks run
unsynchronized, i.e. time stamps are valid only in the node that generated them.
However, when a time stamp is sent to another node as part of a message, the
time stamp is transformed to the timescale of the receiver. For messages sent
over multiple hops, the transformation is performed for each hop.

Time-stamp transformation is achieved by determining the age of each time
stamp from its creation to its arrival at a node. On a multi-hop path, the age is
updated at each hop. The time stamp can then be transformed to the receiver’s
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RBS TPSN TS/MS LTS TSS IBS TSync FTSP TDP AD
Classes

Internal vs.External I E I E I E E I I I
Continuous vs.On-demand O C C O O C C C C C
All nodes vs.Subsets S A S A/S S A A A A A
Rate vs.Offset RO O RO O O O O RO O O
Transform vs.Clock sync. T C – C T C C C C C
Instants vs. Intervals S S TS S T T S S S S

Assumptions
Broadcast X X X X X X
Bidirectional communication X X X X X X X
Constant rate X
Bounded drift X X X
Multichannel X
MAC access X X

Tab. 1: Synchronization classes and assumptions of time-synchronization protocols.

local timescale by subtracting the age from the time of arrival. The age of a time
stamp consists of two components: (1) the total amount of time the time stamp
resides in nodes on the path, and (2) the total amount of time needed to transfer
the time stamp from node to node. The first component is measured using the
local, unsynchronized clocks. The second component can be bounded using the
round-trip times of the messages and their acknowledgments.

For the round-trip measurement, the technique depicted in Figure 4 (d) on
page 30 is used, where the sender isNi and the receiver isNj . Messaged2 is
a data message containing the time stamp, messaged′2 is an acknowledgment.
Using the previous message exchange (d1, d′1), the receiver can useD j −Di

as an upper bound on the delay of messaged2. If a minimum delay is known,
it can be used as a lower bound; otherwise, 0 is used. The storage time and
the above bounds on transmission delay can be used to determine lower and
upper bounds on the time-stamp age. Additionally,ρ̂ is used to transform time
intervals between node clocks as in (2.2) on page 23.

With this approach, synchronization information is piggybacked on existing
(acknowledged) messages. There are no additional synchronization messages,
except when two nodes exchange a message for the first time. In this case, an
additional initialization message must be sent and acknowledged in order to
enable round-trip measurement. An acknowledgment is not needed if the sender
can overhear the receiver forwarding the message over the next hop, which is
typically the case in broadcast networks.

Measurements in a wired network witĥρ = 1 ppm showed that the average
uncertainty of the time-stamp interval is about 200 µs for adjacent nodes. It
increases by an additional 200 µs for each additional hop, and by about 2.5 µs
per age second.

Reference-Broadcast Synchronization (RBS)

RBS [EGE02] provides synchronization for a whole network. The basic syn-
chronization primitive is a reference broadcast to a set of client nodes in the
one-hop neighborhood of a beacon node as illustrated in Figure 5 (b) on page
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32. The beacon broadcasts synchronization pulses; the clients exchange their
respective reception times and use linear regression to compute relative offsets
and rate differences to each other. Using offset and rate difference, each client
can transform a local clock reading to the local timescale of any other client.

To extend this scheme to multi-hop networks, the network is clustered such
that all nodes in a cluster can be synchronized by a single beacon node. Gate-
way nodes are members of two or more clusters and independently participate in
the reference-broadcast procedures of all their clusters. By knowing offsets and
rate differences to nodes in all adjacent clusters, gateway nodes can transform
time stamps from one cluster to another. Time synchronization across multi-
ple hops is then provided as follows: Nodes time-stamp sensor data using their
local clocks. Whenever time stamps are exchanged among nodes, they are trans-
formed to the receiver’s local time using offset and rate difference.

Experiments have shown that adjacent Berkeley Motes [HC02] can be syn-
chronized with an average error of 11 µs by using 30 broadcasts. Over multiple
hops, the average error grows with

√
n, wheren is the number of hops.

Tiny-Sync and Mini-Sync (TS/MS)

Tiny-Sync and Mini-Sync [SV03] are methods for pairwise synchronization of
sensor nodes. Both Tiny-Sync and Mini-Sync use multiple round-trip measure-
ments and a line-fitting technique to obtain the offset and rate difference of
the two nodes. A constant-rate model (see page 23) is assumed. To obtain data
points for line fitting, multiple round-trip synchronizations are performed as de-
picted in Figure 4 (c) on page 30, where the client isNj and the reference is
Ni . Each round-trip measurement results in a data point(hi

b, [h
j
a,h

j
c]). Then, the

line-fitting technique depicted in Figure 6 (b) on page 33 is used to calculate
two lines with minimum and maximum slope. Slope and axis intercept of these
two lines then give bounds for the relative offset and rate difference of the two
nodes. The line with average slope and intercept of the two lines is then used as
the offset and rate difference between the two nodes.

Note that each of the two lines is unambiguously defined by two (a priori
unknown) data points. The same results would be obtained if the remaining
data points could be eliminated. Since the computational and memory overhead
depends on the number of data points, it is a good idea to remove as many
data points as possible before the line fitting. Tiny-Sync and Mini-Sync only
differ in this elimination step. Essentially, Tiny-Sync uses a heuristic to keep
only two data points for each of the two lines. However, the selected points may
not be the optimal ones. Mini-Sync uses a more complex approach to eliminate
exactly those points that do not change the solution. Hence, Tiny-Sync achieves
a slightly suboptimal solution with minimal overhead, and Mini-Sync gives an
optimal solution with increased overhead.

Measurements on an IEEE 802.11b network with 5000 data points resulted
in an offset bound of 945 µs (3230 µs) and a rate bound of 0.27 ppm (1.1 ppm)
for adjacent nodes (nodes five hops away).



40 Chapter 2. Time Synchronization in Wireless Sensor Networks

Lightweight Time Synchronization (LTS)

LTS [vGR03] provides a specified precision with little overhead, rather than
striving for maximum precision. Two algorithms are proposed: one that operates
on demand only for nodes that need synchronization, and one that proactively
synchronizes all nodes. Both algorithms assume the existence of one or more
master nodes that are synchronized out of band to a reference time.

The proactive algorithm first constructs spanning trees (with the masters at
the roots) by flooding the network. In a second phase, each node synchronizes
with its parent in the tree by means of round-trip synchronization. The synchro-
nization frequency is calculated from the requested precision, from the depth of
the spanning tree, and from the drift boundρ̂.

In the on-demand version, a node that needs synchronization sends a re-
quest to one of the masters using some (not further specified) routing algorithm.
Then, along the reverse path of the request message, nodes synchronize us-
ing round-trip measurements. The synchronization frequency is calculated as in
the proactive version described above. In order to reduce synchronization over-
head, each node may ask its neighbors for pending requests. If there are any
such requests, the node synchronizes with the neighbor, rather than executing a
multi-hop synchronization with a reference node.

The overhead of the algorithms was examined in simulations with 500 nodes
uniformly placed in a 120 m× 120 m area, a target precision of 0.5 s, and a du-
ration of 10 h. The centralized algorithm performed an average of 36 pairwise
synchronizations per node. The distributed algorithm executed 4–5 synchro-
nizations on average per node if 65 % of all nodes request synchronization.

Timing-Sync Protocol for Sensor Networks (TPSN)

TPSN [GKS03] provides synchronization for a whole network. First, a node
is elected as a synchronization master, and a spanning tree with the master at
the root is constructed by flooding the network. In a second phase, each node
performs round-trip synchronization with its parent in the tree; this synchroniza-
tion is done in rounds and initiated by the root broadcasting a synchronization-
request message to its children. Each child then performs a round-trip mea-
surement to synchronize with the root. Nodes further down in the tree overhear
the messages of their parents and start synchronization after their parents have
synchronized. To minimize message-delay uncertainties, time-stamping for the
round-trip synchronization is done in the MAC layer. In case of node failures
and topology changes, master election and tree construction must be repeated.

Measurements showed that two adjacent Berkeley Motes can be synchro-
nized with an average error of 16.9 µs, which is a worse figure than the 11 µs
given for RBS in [EGE02]. However, the authors of [GKS03] claim that a re-
implementation of RBS on their hardware resulted in an average error of 29.1
µs between adjacent nodes, effectively claiming that TPSN is about twice as
precise as RBS.
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TSync

TSync [DH04] provides two protocols for external synchronization: the Hierar-
chy Referencing Time Synchronization Protocol (HRTS) for proactive synchro-
nization of the whole network, and the Individual-Based Time Request Protocol
(ITR) for on-demand synchronization of individual nodes. Both protocols use
an independent radio channel for synchronization messages in order to avoid
inaccuracies due to variable delays introduced by packet collisions. In addition,
one or more master nodes with access to a reference time are assumed to exist.

HRTS constructs a spanning tree with the master at the root. The master
uses the reference broadcasting technique illustrated in Figure 5 (c) on page 32
to synchronize its children, and each child node then repeats the procedure for
its subtree.

Measurements in a network of MANTIS sensor nodes showed a mean syn-
chronization error of 21.2 µs (29.5 µs) for two adjacent nodes (nodes three hops
away). For comparison, RBS was also implemented, giving an average error of
20.3 µs (28.9 µs).

Interval-Based Synchronization (IBS)

In [BMT04, MBT04], interval-based synchronization was proposed as particu-
larly suited for sensor networks. This is also the main idea of this thesis and will
be discussed in detail in Chapter 3.

The use of guaranteed bounds was first proposed in [MO83] for a bounded-
drift model (see page 23). The network nodes perform external synchronization
by maintaining a lower and upper bound on the current time. During communi-
cation between two nodes, the bounds are exchanged and combined by choos-
ing the larger lower and the smaller upper bound. This amounts to intersecting
the time intervals defined by each pair of bounds. Between communications,
each node advances its bounds according to the elapsed time and the known
drift bounds. An analysis of the best achievable synchronization was provided
in [PSR94]. In [AHR96], different delay models were examined, while clocks
were assumed to be perfect. In [SS97], the model was refined by including
bounded drift variation and fault-tolerance.

Flooding Time-Synchronization Protocol (FTSP)

FTSP [MKSL04] can be used to synchronize a whole network. Each node is
assigned a unique ID; the node with the lowest ID is elected as a leader that
serves as a source of reference time. If this node fails, then the remaining node
with the lowest ID is elected as the new leader. The leader periodically floods
the network with a synchronization message that contains the leader’s current
time. Nodes which have not received this message yet record the contained time
stamp and the time of arrival, and broadcast the message to their neighbors after
updating the time stamp. Each node collects eight(time stamp, time of arrival)
pairs and uses linear regression on these eight data points to estimate offset and
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rate difference to the leader. Time-stamping is performed in the MAC layer to
minimize the delay uncertainty.

Measurements were performed in an 8-by-8 grid of Berkeley Motes, where
each Mote has a radio link to its eight closest neighbors. With this setup, the net-
work synchronized in 10 min to an average (maximum) synchronization error
of 11.7 µs (38 µs), giving an average error of 1.7 µs per hop.

Asynchronous Diffusion (AD)

AD [LR04] provides internal synchronization of a whole network. The algo-
rithm is very simple: each node periodically sends a broadcast message to its
neighbors, which reply with a message containing their current time. The re-
ceiver averages the received time stamps and broadcasts the average to the
neighbors, which adopt this value as their new time. This sequence of opera-
tions is assumed to be atomic, i.e. the averaging operations of the nodes must
be properly sequenced.

Simulations with a random network of 200 static nodes showed that the
synchronization error decreases exponentially with the number of rounds.

Time Diffusion Synchronization Protocol (TDP)

TDP [SA05] provides internal or external synchronization of a whole network.
Initially, a set of leader nodes is elected. For external synchronization, these
nodes must have access to a global time. This is not required for internal syn-
chronization, where leaders are initially unsynchronized.

Leader nodes then broadcast a request message containing their current
time, and each node that receives this message replies. Using round-trip mea-
surements, each leader node calculates and broadcasts the average message de-
lay and standard deviation. Non-leader nodes record these data for all leaders
they are receiving messages from. Then, they turn themselves into so-called dif-
fused leaders and repeat the procedure. The average delays and standard devia-
tions are summed up along the path from the leaders. The diffusion procedure
stops at a given number of hops from the leaders.

For each leaderl that a node has received data from, the node also pos-
sesses the timehl at the initial leader, the accumulated message delay∆l , and
the accumulated standard deviationβl . The node computes a clock estimate as
∑l ωl (hl +∆l ), where the weightsωl are inversely proportional to the standard
deviationβl . After all nodes have updated their clocks, new masters are elected
and the procedure is repeated until all clocks have converged to a common time.

In a simulation with 200 static nodes with IEEE 802.11 radios and a delay
of 5 s between consecutive synchronization rounds, the deviation of time across
the network dropped to 0.6 s after about 200 s.
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2.7 Evaluation Strategies
Evaluating the precision of time synchronization in wireless sensor networks is
not a trivial task. For example, the authors of the RBS algorithm report 11 µs
precision on the Berkeley Motes platform [EGE02], while the authors of the
TPSN algorithm report 29 µs for RBS on the same platform, concluding that
TPSN is better, as it achieves 17 µs [GKS03].

In this section, we discuss different evaluation strategies that have been ap-
plied to time-synchronization algorithms for wireless sensor networks. There
are various aspects of the performance achieved by an algorithm that can be
evaluated, for example the energy consumption or the message and memory
overhead. The discussion in this section concentrates on various alternatives for
the evaluation of theprecisionof time-synchronization algorithms.

2.7.1 What is precision?
Figure 2 (b) on page 27 illustrates the scope and lifetime of synchronization in
a sensor network. The scope defines which nodes have to be synchronized and
the lifetime defines at which time these nodes have to be synchronized. Thus,
it is natural to evaluate the precision in the shaded area of Figure 2 (b). The
precision is a metric that is closely related to the synchronization error. While
the precision is a single scalar value for a whole network, the synchronization
error is a function of time for a single node. In the following, we discuss several
alternatives to map such functions to a single scalar precision valueP.

Combining the synchronization errors of many nodes
At some timet within the lifetime of a sensor network, every nodeNi within
the scope has a synchronized timeci(hi(t)). In the case of internal synchroniza-
tion, theinstantaneous precision p(t) is often defined as the maximal difference
between any two synchronized times, i.e.

p(t) = max
i, j

{
ci(hi(t))−c j(h j(t))

}
.

Some authors (e.g., [SA05]) use the standard deviation among allci(hi(t)) as a
measure for the instantaneous precision at timet.

In the case of external synchronization, the instantaneous precision is more
often defined as the maximal synchronization error, i.e.

p(t) = max
i

{
ci(hi(t))− t

}
.

This variant of precision is sometimes calledaccuracy. Alternatively, the preci-
sion can be defined as the average synchronization error within the scope or the
maximal synchronization error among a given percentage of the nodes in the
scope with the smallest synchronization error.

Note that obviously the common definitions of precision and accuracy de-
scribed above clash with the usual meaning of these words. It would be more
correct to speak of imprecision and inaccuracy.
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Steady state and convergence time
The instantaneous precisionp(t) obviously varies during the synchronization
lifetime. The final precision metricP can be defined as the maximum ofp(t)
for all t in the lifetime. Alternatively, the average ofp(t) can be used.

The precisionP improves in proportion to the time the synchronization pro-
cess is active, and at some point, the improvement stops. Usually, the precision
P is evaluated after this point, i.e. the lifetime of synchronization starts after the
synchronization process, and the precisionP describes the steady state.

Some authors consider theconvergence time, which is the length of the in-
terval from the start of the synchronization process to the point in time where
the precisionP stops improving or reaches a specific value. If the lifetime is
defined, the convergence time indicates when the synchronization process has
to be started such that the desired precisionP is achieved before the start of the
lifetime and is maintained until the end of the lifetime.

2.7.2 Goals of performance evaluation

There can be different reasons why the performance of an algorithm has to be
evaluated, all leading to different solutions.

The actual performance of a given synchronization algorithm strongly de-
pends on the properties of the target platform. It is difficult to identify and model
all the influencing factors explicitly. A realistic estimation of the achievable
precision is thus best obtained by measurements on the actual target platform,
rather than by simulation of a simplified target platform.

Sometimes, realistic estimation of the performance is less important than
fairness and repeatability of the evaluation. This is the case if several competing
algorithms have to be compared; it is important that differences in the perfor-
mance are due to differences in the algorithm and not due to different conditions
(e.g., message delays, clock drifts). Here, simulation based on recorded or gen-
erated traces is more appropriate than direct measurements.

If the goal of analyzing a particular synchronization algorithm is to give
worst-case guarantees on its performance, neither measurements nor simulation
based on recorded traces can be used, since both strategies only evaluate a finite
number of instances. Instead, the worst-case has to be identified and the worst-
case performance has to be determined analytically.

2.7.3 Measurements

Measurement techniques
Three fundamentally different measurement strategies, which are illustrated in
Figure 8, have been used in recent publications.

Consider Figure 8 (a). Every sensor node executes two synchronization pro-
cedures, synchronizing two different clocks. The first procedure is the actual
synchronization algorithm under test, using only the means of the platform on
which it is executed. The second procedure is another algorithm which achieves
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Fig. 8: Precision-measurement techniques.a) Every node is synchronized out of band and mea-
sures its own precision. b) Every node generates events, the evaluation is centralized. c)
The master node and a client node are virtual nodes on the same hardware device.

a far better precision than the first; this is made possible by additional resources
that are not offered by the target platform, but which are introduced for the
measurements. For instance, a GPS receiver for every sensor node can provide
these resources. Alternatively, cable connections can be used as an out-of-band
mechanism with very low delay variability to provide a reference time (e.g.,
[MFNT00, EGE02, BT02, MFT05]). In [MKSL04], a single-hop RBS scheme
is used to measure the precision achieved by the FTSP multi-hop algorithm.
This approach has the advantage that every node can evaluate and log its own
precision and these values can be collected at the end of the experiment (or even
online), providing complete information.

An alternative is shown in Figure 8 (b). All sensor nodes generate some
directly observable event, for example a rising edge on an I/O pin, when their
synchronized time reaches a particular valueX. An external analyzer device
then records the time interval between the instance when a node’s synchronized
time isX and the instance when the real time isX. Such a procedure was used
for example in [GKS03]. Its advantage is that the precision of the measurement
is not limited by the resolution of the nodes’ clocks or by the performance of a
second synchronization procedure.

As illustrated in Figure 8 (c), [Röm01] proposes to measure the precision
achieved byoneclient node as follows: A client node synchronizes over several
hops to a master node. Master and client nodes are virtual nodes emulated on
a single physical node, the intermediate nodes are all separate physical nodes.
As the master and the client share a single hardware clock, the precision of the
client can easily be evaluated.

Systems and topologies
All three approaches do not scale well; hence, measurements have been done
only in small networks so far. The largest experiment is described in [MKSL04],
where an 8-by-8 grid of Mica2 Motes is evaluated. In [GKS03], a chain of
6 Mica Motes is used, [DH04] evaluates 5 MANTIS Nymph nodes, [Röm01]
evaluates a chain of 7 standard PCs with 100 Mbit/s Ethernet, and [EGE02] eval-
uates IPAQ nodes communicating via IEEE 802.11b WLAN and Mica Motes.
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It is an open question how to measure the synchronization error of hundreds
of nodes. Current evaluations of large networks are based on simulation.

Results
We will now give some measurement results from recent publications. Our in-
tention is to give an idea about the order of magnitude of the achievable pre-
cision and to illustrate that although all results are about precision, they are
difficult to compare.

In [MKSL04], the convergence time of the FTSP algorithm in an 8-by-8 grid
is reported to be 10 min. A maximal error of 38 µs and an average error (over
all nodes) of 12 µs is reported. For the TPSN algorithm, [GKS03] reports a
maximal error of 45 µs for one hop and 74 µs for five hops. Average errors (over
time) are 17 µs for one hop and 38 µs for five hops. The authors provide also the
percentage of the time when the synchronization error was below the average
error (> 60 %). In [EGE02], the authors of RBS present the distribution of the
synchronization error (over time) for one hop and the mean, median, 95 %, and
99 % values over 300 trials for one to four hops.

Some authors evaluate the distribution of the synchronization quality in the
system. At some timet, either the synchronized timesci(hi(t)) of all nodesi
[SA05], or alternatively the corresponding synchronization errorsei(t) [GKS03,
DH04], are shown in a histogram.

2.7.4 Simulation

Performance evaluation through simulation has the advantage that the resulting
precision or accuracy of all nodes does not have to be measured but is directly
accessible. Thus, much larger systems can be evaluated.

Systems and topologies
In [SA05], systems with 200 nodes are evaluated, in [LR04] and [vGR03] up to
500 nodes, always randomly placed in a square area. The transmission range of
the nodes is 10 m in a square with edge length 80 m [SA05] or 120 m [vGR03];
in [LR04], various transmission ranges from 0.4 m to 1 m are used in a square
with edge length 10 m. In [BMT04], the range is varied between 0.1 and 0.5
times the width of the square area. In [SV03], a chain of 5 nodes is simulated.

Message delays
For simulation, a number of assumptions about the behavior of the system have
to be made. In [SV03], measured delay traces from an IEEE 802.11 wireless
LAN are used, [SA05] and [vGR03] generate delay traces according to a nor-
mal distribution. In [SA05], an additional offset is added which increases when
the medium is saturated, i.e. when more than 75 % of the channel capacity is
used. The authors of [BMT04] assume zero message delay, arguing that the
synchronization errors induced by delay uncertainty and drift can be studied
separately. We will explore this in Chapter 3.

Clock drift
In [SA05] and [BMT04], every node is assigned a randomly chosen, constant
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drift rate between−100 ppm and+100 ppm. In [vGR03], all nodes have a drift
rate of 50 ppm.

Results
The main concern of [vGR03] is to compare centralized and distributed versions
of the LTS algorithm in terms of required messages and achieved synchroniza-
tion error. The average error (over all nodes) is evaluated as a function of the
hop distance to the master node.

In [SV03], the synchronization and the drift-compensation error achieved
by the TS/MS algorithms are evaluated as a function of time. A node one hop
away from the master has an error of 1 ms after 83 min. A node with five hops
distance achieves 3 ms.

In [BMT04], the average synchronization error over time and over all nodes
is evaluated as a function of the number of messages exchanged between the
nodes. Also the impact of the transmission range and of the number of master
nodes is analyzed.

[LR04] mainly looks at how quickly a network synchronizes using the AD
algorithm. The number of rounds is evaluated as a function of the transmis-
sion range and of the number of nodes in the system. It is also shown that the
synchronization error decreases exponentially with the number of rounds.

The speed of convergence is also evaluated in [SA05], here for the TDP and
TPSN algorithms; the standard deviation of the nodes’ synchronization error is
shown as a function of time. It is argued that node mobility makes convergence
slower. In addition, histograms and three-dimensional plots of the distribution
of the synchronization error after convergence are presented.

2.7.5 Challenges of a benchmark
So far, we have presented how synchronization algorithms are evaluated in cur-
rent literature. We have seen that results of different authors are quite incom-
parable due to widely differing goals, assumptions, and techniques. On the one
hand, there is not yet a common understanding about the requirements on syn-
chronization in sensor networks. On the other hand, there is also disagreement
about available resources and platforms.

A benchmark for comparing the various algorithms on common grounds has
not yet been presented. It is difficult to devise a benchmark that can be used with
a large number of algorithms: Ideally, the comparison of algorithms is based on
simulation using system traces. Such traces should contain the system and com-
munication model (How many nodes are there? How many of them are reference
nodes? Which node communicates with which other node at which time?), and
they should characterize the “adversary” of synchronization, namely all mes-
sage delays and the drift rates of the nodes. But this would require to determine
all communications before executing the algorithms. This is not possible for
most of the algorithms, since they actively generate messages, depending on
previous events. Furthermore, some algorithms require broadcast communica-
tion, while others do not.
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2.8 Summary
In this chapter, we discussed various aspects of time synchronization in sen-
sor networks. We outlined the applications of physical time and discussed why
existing synchronization algorithms from the distributed-systems area typically
cannot be used in wireless sensor networks. We also presented common classes
of and techniques for synchronization, reviewed various time-synchronization
algorithms proposed specifically for wireless sensor networks, and discussed
evaluation strategies.

The case studies of time-synchronization algorithms and the discussion of
evaluation techniques illustrated the very real problem of evaluating and com-
paring synchronization algorithms. Note that these difficulties do also apply to
calibration and many other distributed algorithms. One of the challenges for fu-
ture research is hence the development of methods and tools for the evaluation
of time synchronization and calibration in large-scale sensor networks.

Current application-oriented projects (e.g., [JOW+02]) indicate that many
simplifying assumptions about sensor networks (e.g., immobile nodes, fixed
network topology) may not hold in practice. Hence, future work might have
to revisit existing approaches for time synchronization under updated assump-
tions.



3
Interval-Based Synchronization

3.1 Introduction
The main idea of this thesis is to propose the use of time intervals given by
guaranteed bounds as a particularly suited approach for time synchronization in
wireless sensor networks. We believe that in such networks, guaranteed bounds
offer distinct advantages over time estimates:

• Time-stamping single sensor-data items with guaranteed bounds allows
to obtain guaranteed bounds from sensor-data fusion, such as guaranteed
bounds on the speed of an object.

• Nodes are provided with a deterministic quality measure for their time
information. In hard-real-time applications, a node can detect that its time
uncertainty has grown excessively large and take appropriate action, such
as request new time information or enter a fail-safe state.

• The concerted action (sensing, actuating, or communicating) of several
nodes at a predetermined real time always succeeds: each node can mini-
mize its uptime (and hence maximize its energy savings) while guarantee-
ing its activity at the predetermined real time. Time-division multiplexing
may benefit from guaranteed bounds, e.g. via reduced guard times be-
tween successive time slots.

• The combination of intervals by intersection is unambiguous and optimal,
while the reasonable combination of time estimates requires additional
information about the quality of the estimates. As a consequence, interval-
based synchronization naturally solves the problem of choosing reference
nodes in large networks.
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In Section 3.2, we present a new system model for the analysis of interval-
based time synchronization in mobile ad-hoc networks. We justify why our ab-
stractions are well chosen for this class of networks. Using our system model,
we first consider external synchronization and derive worst-case bounds on the
quality of interval-based synchronization in Section 3.3. More specifically, we
provide lower bounds on the synchronization error for an arbitrary communica-
tion pattern. We show that a very simple algorithm from [MO83] is worst-case-
optimal. However, this algorithm is not optimal in the average case. In Section
3.4, we present an algorithm that is also worst-case-optimal but achieves better
synchronization quality in the average case than the algorithm from [MO83].

We shift our attention to internal synchronization in Section 3.5. We use our
model to analyze and improve an algorithm from [Röm01], and then present
an algorithm that achieves optimal internal synchronization, albeit at the cost
of high memory and communication overhead, in Section 3.6. We present an
analogous algorithm for external synchronization in Section 3.7 and describe
how limiting the amount of data that is stored and communicated affects the
running time and the synchronization quality.

In Section 3.8, we show that interval-based synchronization does not need
particular communication patterns such as trees or clustered hierarchies. This
makes the interval-based approach resilient to node mobility, as there are no
broken topologies that have to be repaired. Our simulation results suggest that
mobility actually improves interval-based synchronization by increasing the rate
of information dissemination through the network.

This chapter is partly based on [BMT04, MBT04, MBT05].

3.2 New Model for Time Synchronization

We propose a model for time synchronization in mobile ad-hoc networks; it
allows us to identify the worst and the best case in terms of achievable time
uncertainty and to analyze and improve existing synchronization algorithms.
We will first make the case for our model’s key element: the elimination of
message delays. We then specify our event-based network model.

3.2.1 Zero-delay model

We now introduce and justify the key idea of our model, the elimination of
message delays.

Delay uncertainty vs. drift
Clock-synchronization algorithms face two problems: The information a node
has about the local time of another node degrades over time due to clock drift
(the two clocks “drift apart”; this is illustrated in Figures 9 and 10), and its im-
provement through communication is hindered by message-delay uncertainty.
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h j

tta tb

ρ j = −ρ̂ j

ρ j = +ρ̂ j

Fig. 9: Graphical representation of the knowledge of nodeNi about the local timeh j of node
Nj as a function of real timet. The shaded area is the region in whichh j can lie. The
two nodes communicate at eventsa andb.
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ρ j = +ρ̂ j

h j − t

ρ j = −ρ̂ j

Fig. 10: Here,h j − t is plotted againstt; additionally, the information about past values ofh j

thatNi gathers at eventb is shown as a lighter-shaded area.

These effects of delay uncertainty and drift are independent and can hence be
studied separately.

We claim that in mobile ad-hoc networks, the influence of the clock drift
typically dominates over that of the message delays. The reason for this is that
communication is infrequent.

Infrequent, application-driven communication
Most of the work on time synchronization in ad-hoc networks has concentrated
on the delay uncertainty. Recently proposed algorithms reduce it to a few mi-
croseconds (e.g., [BT02, EGE02, HC02, MFNT00]) and then achieve good syn-
chronization by continued and frequent communication, which keeps the impact
of clock drift negligible. But frequent and reliable communication is not always
possible in mobile ad-hoc networks where energy is scarce and nodes may fail
or be temporarily out of reach.

As the frequency of communication decreases, the uncertainty due to clock
drift increases, while the uncertainty due to message delays remains constant. A
numerical example: If the delay uncertainty is 1 µs and the clock drift’s absolute
value is bounded by 100 ppm, then after 5 ms, the drift’s contribution to the
uncertainty equals that of the delay. After one hour, it is 720000 times larger.
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Even for “optimistic” values of 1 ms (uncertainty) and 10 ppm (drift), drift and
uncertainty have equal impact after 50 s.

Moreover, due to the scarcity of energy, the synchronization service should
only use the communication that takes place anyway for achieving the overall
goal of the network: the time information is sent piggyback with the application
data [PSR94, AHR96]. Therefore, the communication pattern is typically not
known to the synchronization algorithm. Examples of such networks are sensor
networks in which environmental data is collected on a regular basis but com-
municated only sporadically, e.g. when time-critical data is recorded, when a
master node explicitly requests the data, or when the solar cells of the node are
providing sufficient energy for communication.

Zero-delay model
We argued that the drift’s impact on the time uncertainty is dominant in typ-
ical mobile ad-hoc networks. It hence has to be taken into account explicitly,
while neglecting the delay uncertainty becomes more and more acceptable as
the communication frequency decreases. Apart from this, time-stamping on rel-
atively simple devices such as sensor nodes can be done at a low level (e.g. in
the MAC layer), which leads to small uncertainties. Some algorithms reduce the
uncertainty to a few microseconds, e.g. by using packet streams1 (where a few
packets will attain the minimal delay) [BT02] or reference broadcasts (which
arrive almost simultaneously at different receivers) [EGE02].

We therefore assume delay uncertainties to be negligible, and eliminate the
delays themselves from our analysis, assuming communication to occur in zero
time. Note that our model can obviously be extended to take delays and delay
uncertainties into account; delay uncertainty and drift are orthogonal issues, and
our model concentrates on the issue that is dominant in mobile ad-hoc networks.

3.2.2 Event-based network model
We assume that the network consists of a large number ofsensor nodeswhich
have a drifting local clock, and a considerably smaller number ofanchor nodes
that have access to time information of constant uncertainty2. We refer to nodes
that are within each other’s transmission range asneighbors.

To model the interaction of the nodes in the network, we define three types
of events: source, communication, and destination events.

Def. 1: (Source event)Any sensor node may receive bounds on the current real time
by communicating with a neighboring anchor node. We model this as a source
event s which occurs at the sensor node at real time ts and provides an uncer-
tainty of∆Ts about the current real time.

Def. 2: (Communication event)Any two neighboring sensor nodes may exchange their
time bounds by communicating with each other. We model this as a communica-

1Sending many packets per communication is no contradiction to infrequent communication.
2E.g. via GPS where the uncertainty is smaller than 1 µs.
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tion event c which occurs at both nodes at real time tc. The nodes simultaneously
acquire mutual knowledge about their time bounds.

This is a high-level abstraction. In reality, every communication takes a cer-
tain time, and may consist of a whole sequence of messages. In Section 3.4.4,
we give quantitative evidence that this abstraction is well justified in infrequent-
communication scenarios.

Def. 3: (Destination event)A destination event d is an artificial event introduced for
analysis purposes. A destination event can be defined for an arbitrary sensor
node in the system and with an arbitrary real time td. In the analysis, we are
then interested in the time bounds of that node at time td.

The destination event is the time at which the node at which the event oc-
curs reads its synchronized time, e.g. to time-stamp sensor data that was just
acquired. Its name is due to the fact that the time information flows from the
source event to the destination event, undergoing transformation on its way.
This will become clearer in Section 3.3.2.

Def. 4: (Scenario)We call the set of all events in a system, the real times at which they
occur, and the time uncertainties associated with source events ascenario.

A scenario describes a particular synchronization problem. For a given sce-
nario, the local times of events and the bounds obtained at source events can
still be chosen. If we fix these parameters, we obtain atrace:

Def. 5: (Trace) We call the combination of a scenario, corresponding local times for
all events, and the lower and upper time bounds3 for the source events atrace.

Def. 6: (Admissible trace)We call a traceadmissibleif it satisfies the constraints on
clock drifts as defined in (2.1) and the real times of source events are contained
in the associated time bounds.

3.3 External Synchronization
In this section, we use the model presented in Section 3.2 to identify the worst
and the best case in terms of achievable time uncertainty, and to show the worst-
case optimality of the algorithm IM from [MO83]. We then propose an im-
proved algorithm which also is worst-case-optimal but yields better results in
the average case. We show that this improvement is achieved by exploiting the
typical drift diversity of the nodes’ clocks. Simulation results show that the im-
provement is substantial for various sensor-network scenarios.

3The scenario contains the time uncertainty∆T = Tu−T l , but not the boundsTu andT l .
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In the following, we examine local, online algorithms which compute an
interval in which the currentreal timeis contained, i.e. algorithms that perform
external synchronization. The interval is represented by a lower and an upper
bound on real time. The goal of each network node is to minimize the size of
this interval, i.e. the time uncertainty.

3.3.1 Worst-case analysis of the algorithm IM from [MO83]

In [MO83], an upper bound on the time uncertainty provided by the algorithm
IM is given for completely connected networks with periodic communication.
We extend this result to scenarios where connectedness and periodic communi-
cation are not guaranteed, thus making it applicable to mobile ad-hoc networks.
We additionally show that the algorithm IM is worst-case-optimal by giving a
lower bound on the uncertainty.

The algorithm IM from [MO83] is given below as Algorithm 1. During a
communication event, nodes executing the algorithm exchange their current
time bounds and intersect the intervals given by their own and by the received
bounds. Specifically, each node calls the proceduregenerateMessageto obtain
the time information to be incorporated in the outgoing message, and callspro-
cessMessageto evaluate the time information received.

Algorithm 1 Algorithm IM from [MO83]
procedure initialize [in: - / out: - ]

(T l
M ,Tu

M)← (−∞,∞) // most recent bounds
hM ← 0 // local time when bounds were obtained

procedureupdateBounds[in: (T l
old,T

u
old),∆h / out: (T l ,Tu)]

(T l ,Tu)←
(
T l

old +∆h/(1+ ρ̂),Tu
old +∆h/(1− ρ̂)

)
procedurecurrentBounds[in: h / out: (T l ,Tu)]

(T l ,Tu)← updateBounds
(
(T l

M ,Tu
M),h−hM

)
procedure intersect[in: (T l

A,Tu
A ),(T l

B,Tu
B ) / out: (T l ,Tu)]

(T l ,Tu)←
(
max(T l

A,T l
B),min(Tu

A ,Tu
B )

)
proceduregenerateMessage[in: h / out: (T l

c ,Tu
c )] // at local timeh

(T l
c ,Tu

c )← currentBounds(h)

procedureprocessMessage[in: (T l
c ,Tu

c ),h / out: - ] // at local timeh

(T l
M ,Tu

M)← intersect
(
(T l

c ,Tu
c ),currentBounds(h)

)
hM ← h
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3.3.2 Path-based analysis
For a given scenario and a destination eventd in this scenario, our goal is to
compute the worst-case uncertainty∆Td = Tu

d −T l
d provided by the algorithm

IM. By the worst case we mean the most unfavourable, admissible trace for a
given scenario. In the following, we consider the simple example shown in the
event chart in Figure 11.
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Fig. 11: The event chart on the left shows the times of all events and the involved nodes. The
timing graph for destination eventd3 is shown on the right: Its vertices correspond
to the circles that represent the events of the event chart, and its edges represent the
information flow through the local states of the nodes.

Def. 7: (View) For a given scenario and a real time t, theview Vi(t) of node Ni is
defined as all the information that node Ni could have obtained until time t. If
knowledge about an event e is contained in Vi(t), we write e∈Vi(t).

Def. 8: (Timing graph) Let an event chart be given. For a destination event d in the
event chart, the correspondingtiming graphis obtained as follows:

1. For each non-communication event e∈ Vi(td), a vertex e is created. For
each communication event c∈ Vi(td) which occurs at nodes Ni and Nj ,
two vertices ci , cj are created.

2. A directed edge(a,b) from a to b is created in the following cases:

(i) The vertices a and b are derived from two different events a, b which
both happened at the same network node N such that a precedes b
and there is no other event between the two. The weight of such an
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edge(a,b) represents the increase of uncertainty between the events
a and b. It has the value(

1
1− ρ̂

− 1
1+ ρ̂

)
(hb−ha) .

(ii) The vertices a and b are derived from the same communication
event. The weight of such an edge is 0.

Only the events which can have a causal effect on the given destination event
d are contained in the timing graph; these are exactly the eventse∈Vi(td). The
edges in the timing graph correspond to the transformation of the local-state
information within a single network node between events, or to the information
exchange at communication events. Note that for verticesa, b derived from the
same communication event, the timing graph contains both edges(a,b) and
(b,a). A path in the graph describes a causal dependency between the states of
two network nodes. We call such a path acommunication path. We will now see
that the algorithm IM provides the uncertainty at a given destination event by
computing a shortest path from some source event to the destination event.

Thm. 9: (Upper bound for the algorithm IM) Let a network of nodes with bounded-
drift clocks be given, and let these nodes employ Algorithm 1. For any destina-
tion event d occurring at time td, let S be the set of all source events in the
corresponding timing graph. Then the time uncertainty∆Td can be bounded by

∆Td ≤min
s∈S

{
∆Ts+(td− ts)

(
2ρ̂

1− ρ̂

)}
.

Proof: We use a variant of the algorithm IM defined in Algorithm 1: we let
intersectreturn(T l

A,Tu
A ) if Tu

A −T l
A < Tu

B −T l
B, and(T l

B,Tu
B ) otherwise. This al-

gorithm clearly yields equal or larger values for the uncertainty∆Td than the
algorithm IM. Therefore, an upper bound on its uncertainty is also an upper
bound on the uncertainty of the algorithm IM. This variant is identical to the
algorithm MM from [MO83].

We now assign to each vertex of the timing graph the uncertainty∆T =
Tu

M −T l
M after the local-state update. The result of the modified algorithm IM

can be interpreted as a shortest-path calculation on the timing graph (the original
algorithm IM may use different paths for the lower and the upper bound). The
uncertainty∆Td is bounded from above by the initial uncertainty∆Ts at a source
events plus the length of a shortest path froms to d.

We now compute this length. From the clock model, we know that for any
two eventsa andb, the inequalityhb−ha≤ (tb− ta)(1+ ρ̂) holds. Calculating
the path length in the timing graph gives

∆Td ≤ ∆Ts+
(

1
1− ρ̂

− 1
1+ ρ̂

)
(td− ts)(1+ ρ̂) .

Some algebraic transformations yield the desired expression.
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3.3.3 Worst-case optimality
We now show that the algorithm IM is worst-case-optimal. We first give a uni-
versal lower bound on the uncertainty for a given communication scenario and
destination event. This lower bound is equal to the upper bound from Theo-
rem 9, hence the algorithm IM is worst-case-optimal. This was not shown in
[MO83]. Our analysis naturally identifies the worst and best case for a given
scenario.

Thm. 10:(Lower bound) Let a communication scenario in a network of nodes with
bounded-drift clocks and a destination event d be given. LetS be the set of
all source events in the corresponding timing graph, and for all s∈S , let ∆Ts

be the uncertainty of source event s. Then there exists an admissible trace such
that for any correct, deterministic and local clock-synchronization algorithm,
the time uncertainty∆Td for the destination event d is bounded by

∆Td ≥min
s∈S

{
∆Ts+(td− ts)

(
2ρ̂

1− ρ̂

)}
. (3.1)

Proof: For simplicity, let us first assume that the time uncertainties at all source
events are of size 0, i.e.∆Ts = 0 for all s∈S . In this case, the minimum in (3.1)
is attained by maximizingts, i.e. by choosing the latest source events∈S .

Proof for ∆Ts = 0, s∈S .
We derive the admissible trace by letting all clocks run with maximum speed.
We now construct a second trace which is indistinguishable from the first, i.e. all
views are identical in both traces. The real time at which the destination eventd
occurs is different in the two traces. The uncertainty of any correct, deterministic
algorithm at eventd has therefore to be at least as large as the time difference
of eventd in the two traces. This is illustrated in Figure 12: On the left, we have
the trace whereρ = +ρ̂ at all times. On the right, we have the constructed trace,
in which from timetš = ts1 on, all clocks run with minimal speed. Up to timetš,
both traces are identical.

For the two traces to be indistinguishable, all events must occur at the same
local times, while thereal times differ after timetš. Note how the time intervals
after timetš are stretched in the event chart on the right with respect to the chart
on the left. Any evente with te > tš in the left-hand trace has to occur at such a
time t̄e in the right-hand trace that the local-clock time differences are identical
in both traces. In the following, we will usehš to denote a local clock’s reading
at timetš. Fromhe−hš = (te− tš)(1+ ρ̂) = (t̄e− tš)(1− ρ̂), we obtain

t̄e = tš+(te− tš) ·
1+ ρ̂

1− ρ̂

and hence

t̄e− te = (te− tš) ·
1+ ρ̂

1− ρ̂
− (te− tš) = (te− tš)

(
2ρ̂

1− ρ̂

)
,

which fore= d proves the claim for∆Ts = 0.
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Fig. 12: Two indistinguishable traces. On the left,ρ = +ρ̂ at all times. After timetš, the clocks
in the constructed trace on the right run with minimal speed. As can be seen, the event
š is the latest source event from which there is a path tod. As the two traces are indis-
tinguishable from each other, the time uncertainty at eventd has to be at least̄td− td.

Proof for ∆Ts≥ 0, s∈S .
The proof is essentially the same as the one for∆Ts = 0, s∈S ; we only identify
the differences in the following. To completely specify the traces, we have to
give the bounds at source events. For a source events with uncertainty∆Ts, we
setT l

s = ts andTu
s = ts+∆Ts. Now, the event ˇs for which the minimum in (3.1) is

attained is not necessarily the latest source event. We have to ensure that for all
source eventsswith ts≥ tš, the timet̄s at which eventsoccurs in the constructed
trace lies within the time bounds of events, i.e. thatT l

s ≤ t̄s≤ Tu
s . To achieve

this, we set̄ts = ∆Tš+ tš+ (ts− tš)
1+ρ̂

1−ρ̂
. Note that in the constructed trace we

therefore also havētš = Tu
š , and for any evente that occurs at timete≥ tš in the

original trace, we obtain

t̄e− te = ∆Tš+(te− tš)
(

2ρ̂

1− ρ̂

)
,

which fore= d proves the claim for∆Ts≥ 0.

Cor. 11: The lower bound in Theorem 10 is tight.

Cor. 12: The algorithm IM is worst-case-optimal.

Corollary 11 is a direct consequence of Theorem 9: The algorithm IM is
guaranteed to achieve a time uncertainty which is not greater than the lower
bound given in Theorem 10. Corollary 12 follows directly from Theorems 9
and 10 and Corollary 11.
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Worst-case and best-case traces.
The proofs of Theorem 10 and Corollary 11 illustrate that the worst-case trace
for a given scenario is the one where all clocks run with maximum speed. Analo-
gously, the best case occurs when the drift difference of any two communicating
nodes is maximal.4 Then the intersection of the two time intervals at communi-
cation events is minimal.

3.4 Improved External Synchronization

In this section, we present and analyze an improved version of the algorithm
IM, the Back-Path Interval Synchronization Algorithm (BP-ISA). The BP-ISA
is worst-case-optimal like the algorithm IM, but achieves better results on non-
worst-case traces.

3.4.1 Computing back paths
The BP-ISA is given below as Algorithm 2. The improvement to the algorithm
IM consists in the following: For each neighbor, a node stores the time bounds of
the last communication event with this neighbor. Whenever a node can improve
its current bounds through communication, it tries to use them to also improve
its stored bounds. At communication events, the nodes exchange their current
bounds and the bounds of the previous encounter (if there has been one). Each
node then uses both bounds to improve all bounds in its view.

The use of previous bounds introduces additional paths in the timing graph,
as we will now explain. We showed that the algorithm IM computes shortest
paths in the timing graph corresponding to a scenario. We now extend the tim-
ing graph by adding an edge(b,a) for each two verticesa andb that are derived
from two different events which both happened at the same network nodeN
such thata precedesb and there is no other event between the two. In the tim-
ing graph in Figure 11, each edge directed downwards is complemented by an
inverse edge. The new edges may result in new and possibly shorter paths from
a source event to a destination event. By considering these paths, the BP-ISA
can achieve better time uncertainties than the algorithm IM.

3.4.2 Comparison of the algorithms
The BP-ISA has additional state information: The arraysT l

M [N], Tu
M [N], and

hM [N] store the bounds on real time and the local time for the last communica-
tion event with every neighbor node.

The procedureupdateBoundscan also compute bounds for past events, i.e.
for a negative∆h. Note the change of the sign in the terms∆h/(1± ρ̂): While

4Clearly, this can occur only for very specific communication patterns. In Figure 11, not all
three possible pairs of communicating nodes can have the maximal drift difference 2ρ̂.



60 Chapter 3. Interval-Based Synchronization

Algorithm 2 BP-ISA
procedure initialize [in: - / out: -] // N = maximum number of neighbor nodes

for ∀i ∈ {1, . . . ,N} do
(T l

M [i],Tu
M [i])← (−∞,∞) // most recent bounds from node with indexi

hM [i]← 0 // local time when bounds were obtained
end for
nM ← 1 // nM = index of last node encountered

procedureupdateBounds[in: (T l
old,T

u
old),∆h / out: (T l ,Tu)]

if ∆h≥ 0 then
(T l ,Tu)←

(
T l

old +∆h/(1+ ρ̂),Tu
old +∆h/(1− ρ̂)

)
else

(T l ,Tu)←
(
T l

old +∆h/(1− ρ̂),Tu
old +∆h/(1+ ρ̂)

)
end if

procedurecurrentBounds[in: h / out: (T l ,Tu)]
(T l ,Tu)← updateBounds

(
(T l

M [nM ],Tu
M [nM ]),h−hM [nM ]

)
procedure intersect[in: (T l

A,Tu
A ),(T l

B,Tu
B ) / out: (T l ,Tu)]

(T l ,Tu)←
(
max(T l

A,T l
B),min(Tu

A ,Tu
B )

)
procedureupdateMemory[in: (T l ,Tu),h / out: -]

for ∀i ∈ {1, . . . ,N} do
(T l

new,T
u
new)← updateBounds

(
(T l ,Tu),hM [i]−h

)
(T l

M [i],Tu
M [i])← intersect

(
(T l

M [i],Tu
M [i]),(T l

new,T
u
new)

)
end for

proceduregenerateMessage[in: h,n / out: (T l
c ,Tu

c ),(T l
p,T

u
p )]

// to noden at local timeh(
(T l

c ,Tu
c ),(T l

p,T
u
p )

)
←

(
currentBounds(h) ,(T l

M [n],Tu
M [n])

)
procedureprocessMessage[in: (T l

c ,Tu
c ),(T l

p,T
u
p ),h,n / out: -]

// from noden at local timeh

updateMemory
(
(T l

p,T
u
p ),hM [n]

)
(T l

M [n],Tu
M [n])← intersect

(
(T l

c ,Tu
c ),currentBounds(h)

)
hM [n]← h
nM ← n
updateMemory(currentBounds(h),h)
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for instance the lower bound is increased at minimal speed (assuming maximal
drift +ρ̂) to guarantee validity in the future, it is decreased at maximal speed
(assuming minimal drift−ρ̂) in order to guarantee validity in the past.

The procedurecurrentBoundscomputes bounds based on the stored bounds
for the most recent communication event, which occurred with the remote node
with indexnM .

The proceduregenerateMessageprepares two sets of bounds: This node’s
current bounds(T l

c ,Tu
c ) and the bounds(T l

p,T
u
p ) for the previous communica-

tion event with the remote node identified by the indexn.
The procedureprocessMessagehas additional parameters:T l

p andTu
p repre-

sent the time bounds the remote node has in memory for the last communication
event with this node. The valuen is used to identify the remote node and to ac-
cess the stored values(T l

M [n],Tu
M [n]) andhM [n].

Example
To explain how the BP-ISA works, we use the simple scenario shown in the
upper left corner of Figure 13 on page 63:

Two nodesN1 andN2 communicate at eventsa andc. NodeN1 has an addi-
tional communicationb with a third node that is not shown. At eventa, nodes
N1 andN2 exchange their current and previous bounds. Assume that they have
never communicated before and therefore the previous bounds are uninitialized
(−∞,∞). Therefore the first call toupdateMemoryin processMessagehas no
effect on the stored bounds. The nodes combine the received current bounds
with their own current bounds and store the result in(T l

M [2],Tu
M [2]) onN1 and in

(T l
M [1],Tu

M [1]) onN2. The algorithm IM does exactly the same (using(T l
M ,Tu

M)).
At eventb, nodeN1 communicates with the third node. We assume thatN1

can improve its current bounds by using the remote node’s current bounds. The
final call toupdateMemorythus may improve the stored bounds(T l

M [2],Tu
M [2])

for the communication eventa with nodeN2. Such an improvement constitutes
the computation of the first part (fromb to a) of the back path displayed in
Figure 13 as a dashed arrow.

At eventc, N1 andN2 exchange their current and previous bounds for event
a. While the previous bounds ofN2 have not been modified since eventa, those
of N1 have been improved. When nodeN2 thus callsupdateMemoryand then
currentBounds, the remaining part of the back path is computed.

Computation and memory requirements
The BP-ISA is more complex than the algorithm IM. The computational cost of
the BP-ISA per communication event is approximately(2N+1) times the cost
of the algorithm IM, whereN is the number of neighbors a node communicates
with. The memory required by the BP-ISA isN times that of the algorithm IM.

3.4.3 Performance analysis
We show that the BP-ISA performs at least as well as the algorithm IM and is
thus also worst-case-optimal. By means of a simple scenario, we illustrate how
and when the BP-ISA can provide better synchronization than the algorithm IM.
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Lem. 13:The BP-ISA always provides equal or better time bounds than the algorithm IM.

Proof: We remove the calls toupdateMemoryfrom the procedureprocessMes-
sageof the BP-ISA. Now,T l

M [nM ] takes the role ofT l
M in the algorithm IM,

Tu
M [nM ] that ofTu

M andhM [nM ] that ofhM . It is clear that this modified BP-ISA
is equivalent to the algorithm IM.

We now only have to show that the call toupdateMemorycannot degrade
bounds. This procedure modifies the stored bounds only by intersection of the
corresponding intervals. It is clear that this never degrades bounds.

Cor. 14: The BP-ISA is worst-case-optimal.

Improvement over the algorithm IM
The amount of improvement of the BP-ISA is illustrated in Figure 13. It depends
on many parameters: the nodes’ driftsρ1 andρ2, the position of eventb, and the
uncertainty achieved atb in comparison to the uncertainty∆T at a. These four
parameters are explored in the five graphs in Figure 13.

In the upper right corner, eventb occurs immediately aftera (x≈ 0), and it
provides zero uncertainty (y = 0). In this case, the improvement of the BP-ISA
is 100 % if the nodes’ drift difference is maximal. The improvement is 0 % if
the drift rates are equal.

The graphs in the center row of Figure 13 explore the effect of the position of
eventb. The average improvement decreases with increasing distance between
a andb. The maximal improvement is still 100 % for maximal drift difference.

The graphs in the bottom row of Figure 13 explore the effect of the time un-
certainty achieved atb. With increasing uncertainty, the maximal improvement
decreases, e.g. aty = 0.5, the BP-ISA can achieve 34 % less uncertainty than
the algorithm IM if the drift difference is maximal.

We can thus only conclude that depending on the scenario and the drift rates,
the improvement of the BP-ISA varies between 0 % and 100 %. In the next sec-
tion, we examine theaverageimprovement for realistic sensor-network scenar-
ios through simulation.

3.4.4 Simulation
In this section, we describe the scenarios that we simulated and the performance
measures used to evaluate the synchronization algorithms. We examine the ab-
solute performance of the algorithm IM and of the BP-ISA in these scenarios
and quantify the relative improvement of the BP-ISA. The simulations were
done using custom C++ programs.

Scenarios and measures
We simulated sensor-network scenarios for a simulation time of 500 h, i.e. al-
most 21 days. The network contained 100 nodes that were distributed uniformly
at random in a square area with edge length 10000. Their local clocks had a con-
stant drift rate between−100 ppm and+100 ppm. The numberNA of anchor
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Fig. 13: Improvement of the BP-ISA in the simple scenario depicted in the upper left corner.In
all figures, the drift rates of both nodes are varied between−ρ̂ andρ̂. Each graph shows
one combination of the parametersx andy. The parameterx determines the position of
eventb, the parametery determines the time uncertainty achieved in this event. The
figure in the upper right corner shows that the BP-ISA can achieve 100 % improvement
if eventb provides uncertainty zero and occurs immediately after eventa. In the center-
row graphs, the position of eventb is varied, while the bottom-row graphs compare
varying uncertainties for the time information provided by this event.
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nodes was either 5,10 or 20 (out of the total 100 nodes). Two nodes could com-
municate if they were within each other’s transmission range. All nodes had
the same transmission range; it was varied between 0.1 and 0.5 times the width
of the area in which the nodes were placed. Sensor nodes communicated with
other sensor nodes at a variable average frequency offC ∈ [1/h,20/h].5 Anchor
nodes communicated with sensor nodes at a much smaller average frequency
fA ∈ [0.002/h,2/h].

The performance measure we used was the time uncertainty; we evaluated
it after every communication event. Then we took the average over all commu-
nication events, but excluded those events after which the nodes had an infinite
time uncertainty, i.e. the events from which there existed no path to a source
event in the corresponding timing graph. We thus produced the average time
uncertainties for the algorithm IM and for the BP-ISA, as shown in Figure 14.
From these values, we computed the improvement of the BP-ISA. Figures 15
through 18 give these results as percentages and in milliseconds. For every data
point, at least 50 traces were evaluated.

Absolute performance
Figure 14 displays the time uncertainty achieved by the two algorithms. As ex-
pected, the uncertainty decreases when communication becomes more frequent.
Increasing the communication among sensor nodes decreases the uncertainty to
a constant level, while increasing the anchor communication frequencyfA leads
to arbitrarily small uncertainties.

Figure 14 shows that for all parameters used in this study, the uncertainty
remains in the order of milliseconds. As shown e.g. in [BT02, EGE02, HC02,
MFNT00], the delay-induced uncertainty can be reduced to a few microsec-
onds. Therefore our assumption that the delay-induced uncertainty is negligible
in comparison to the drift-induced uncertainty is correct in ad-hoc, infrequent-
communication networks.

Relative improvement of the BP-ISA
Figures 15 and 16 display the improvement of the BP-ISA for varying trans-
mission ranges. The relative improvement increases significantly up to a ra-
tio between transmission-range and area-width of about 0.15 and then remains
roughly constant. Figure 19 explains why: With a small transmission range,
sensor nodes are divided into two categories:

1. Nodes that have no communication path to an anchor node. Such nodes
have an infinite uncertainty and are not included in the average measure.

2. Nodes that have a communication path to an anchor node and thus have
a finite uncertainty. Such nodes are typically very few hops away from an
anchor node. Their uncertainty therefore is small and the BP-ISA cannot
improve much. Also for large transmission ranges, all sensor nodes are
very few hops away from an anchor node.

5For fC = 10/h, 5000 communication events occurred at uniformly random times.
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Fig. 14: Time uncertainty achieved by the algorithm IM and the BP-ISA.Top: For varying fre-
quencies of communication among sensor nodes. Bottom: For varying frequencies of
communication with anchor nodes. The time uncertainty decreases when the sensor
nodes communicate more frequently. The effect of the communications with anchor
nodes is much stronger.
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The largest improvement of the BP-ISA is obtained when many nodes have
a path to an anchor, and the average hop distance is large. This is the case for a
transmission-range/area-width ratio of about 0.15, which is the range at which
almost all nodes are connected.

Figures 17 and 18 display the improvement as a function of sensor and an-
chor communication frequencies. The improvement of the BP-ISA increases
when the sensor nodes communicate more frequently among each other. The
improvement decreases if the sensor nodes communicate often with the anchor
nodes. It also decreases with increasing number of anchor nodes.

Remarks
The simulation results show that the BP-ISA provides substantial improvements
over the algorithm IM, and that these improvements are large in comparison to
the delay-induced time uncertainty. The amount of the improvement strongly
depends on the scenario: It can be several tens of percents if the sensor nodes
communicate relatively often among each other, but only rarely with anchor
nodes. The BP-ISA has the greatest advantage over the algorithm IM in net-
works where the average hop distance to anchor nodes is large. For a given
node density, this is the case at those relatively small transmission ranges that
lead to just barely connected networks.

Note that the time uncertainty of interval-based algorithms is not directly
comparable to the time error of algorithms that compute time estimates. In the
average case, the error of an estimate computed as the average of the lower
and the upper bound will be much lower than theguaranteeduncertainty. Also,
the microsecond-range errors reported for instance in [BT02, EGE02, HC02,
MFNT00] are achieved in networks with frequent communication.
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Fig. 15: Improvement of the BP-ISA for varying transmission ranges and communication fre-
quenciesfC. The solid lines in this figure and in Figure 16 represent the same data.
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nodes. The solid lines in this figure and in Figure 15 represent the same data.



68 Chapter 3. Interval-Based Synchronization

0 5 10 15 20
10

20

30

40

50

Im
pr

ov
em

en
t[

%
]

0 5 10 15 20
100

200

300

400

500

Im
pr

ov
em

en
t[

m
s]

fC [1/h]

5 anchors
10 anchors
20 anchors

Fig. 17: Improvement of the BP-ISA for varying communication frequencies. With increasing
number of communications among the sensor nodes, the improvement grows.

0 0.5 1 1.5 2
0

20

40

60

Im
pr

ov
em

en
t[

%
]

0 0.5 1 1.5 2
0

100

200

300

400

500

Im
pr

ov
em

en
t[

m
s]

fA [1/h]

5 anchors
10 anchors
20 anchors

Fig. 18: Improvement of the BP-ISA for varying communication frequencies. With increasing
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Fig. 19: Impact of the transmission range.Anchor nodes are shown as squares, sensor nodes
as circles. Top: A small transmission range leads to many partitions in the network.
Center: At a transmission range of 0.15 times the width of the area, almost all nodes
are connected. As shown in Figures 15 and 16, the (absolute) improvement of the BP-
ISA is particularly high for such transmission ranges. Bottom: At higher transmission
ranges, most nodes can communicate with an anchor node.



70 Chapter 3. Interval-Based Synchronization

3.5 Internal Synchronization
In this section, we analyze an algorithm for internal synchronization in sensor
networks that was proposed in [Röm01]. Our path-based analysis suggests an
immediate improvement to the algorithm. While needing less computation and
no more communication or memory than the original algorithm, our new al-
gorithm always yields equal or better results and thus outperforms the original
algorithm.

We first formally define the system model and state the problem we want to
solve. We then revisit the algorithm from [Röm01], propose an improvement,
and show that our improved algorithm outperforms the original algorithm. We
quantify the improvement and identify the factors its size depends on.

3.5.1 System model
We use the system model from Section 3.2 with some modifications:

Communication model
We adopt the model used in [Röm01] to make our results directly comparable.
Namely, we assume a communication event to consist of a single message with
a non-zero message delay. Afterwards, we return to the zero-delay model, where
a single communication event can contain multiple messages.

Sensor events
A sensor node may receive sensor data from outside the network. We model this
as asensor event swhich occurs at the sensor node at real timets.

Clock drift
For timesta, tb with ta 6= tb, we define the average drift of nodeNi in [ta, tb] as

ρ̄i(ta, tb) =
hi(tb)−hi(ta)

tb− ta
.

Furthermore, each nodeNi has its own drift bound̂ρi .

3.5.2 Problem statement
We now turn to the problem of internal synchronization: Given a trace with
an event occurring at nodeNj at local timeh j(t), we are interested in tight
boundsH l

i (t), Hu
i (t) on the local timehi(t) of another nodeNi at timet, such

thatH l
i (t)≤ hi(t)≤ Hu

i (t).
In the context of a sensor network, this situation arises, e.g., when a sensor

events is observed at timets by nodeNj , and another nodeNi wants to obtain
bounds onhi(ts). In the example in Figure 20, the sensor nodesN2 andN3 sense
a vehicle at local timesh2(t1) andh3(t2).6 If nodeN1 can compute bounds on
h1(t1) andh1(t2) which show thatt1 < t2 (i.e. Hu

i (t1) < H l
i (t2)), it can conclude

that the vehicle entered the sensing area ofN2 first and then that ofN3.

6For simplicity, we assume that a sensor event is only generated at the first sensing of the
vehicle, i.e. at the moment where the vehicle enters the sensing area.
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Fig. 20: To perform correct sensor-data fusion, nodeN1 has to be able to relate the observations
of nodesN2 andN3 in time.
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Fig. 21: Message exchange between a sender and a receiver in the algorithm from [Röm01].

3.5.3 The algorithm from [Röm01]

In [Röm01], synchronization is achieved as follows: At some time after the oc-
currence of a sensor eventsat nodeNj , this node sends bounds on the local time
h j(ts) at which the event occurred to nodeNi . NodeNi receives these bounds and
transforms them into bounds on the local timehi(ts) its own clock was showing
at timets. We will now see in detail how this transformation is done.

The message exchange between a sender and a receiver node is depicted in
Figure 21. At timet3, the sender nodeNj observes a sensor event and stores its
local timeh j(t3). At time t4, nodeNj sendsh j(t3), the local timeh j(t2) at which
the last acknowledgment ACK1 was received, and the current local timeh j(t4)
to the receiver nodeNi in a single message M2. This message is received byNi

at local timehi(t5). NodeNi can now compute bounds onhi(t3) by subtracting
from hi(t5) the maximal and minimal local time that can have elapsed in the
real-time interval[t3, t5]. For the lower bound, this yields

H l
i (t3) = hi(t5)−

(
h j(t4)−h j(t3)

) 1+ ρ̂i

1− ρ̂ j

−
((

hi(t5)−hi(t1)
)
−

(
h j(t4)−h j(t2)

) 1− ρ̂i

1+ ρ̂ j

)
. (3.2)
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The expression on the second line of (3.2) is an upper bound on the local-time
differencehi(t5)−hi(t4), i.e. on the delay of M2 expressed in local time ofNi .
For the upper bound, we have

Hu
i (t3) = hi(t5)−

(
h j(t4)−h j(t3)

) 1− ρ̂i

1+ ρ̂ j
. (3.3)

3.5.4 Improvement to the algorithm from [Röm01]

Equation (3.2) can be simplified algebraically to

H l
i (t3) = hi(t1)+

(
h j(t4)−h j(t2)

) 1− ρ̂i

1+ ρ̂ j
−

(
h j(t4)−h j(t3)

) 1+ ρ̂i

1− ρ̂ j
.

This equation shows that the lower bound is actually computed by first advanc-
ing the local timehi(t1) by the minimum local time (of nodeNi) that passes in
the real-time interval[t1, t4] (note thatt2− t1 = 0 is assumed, i.e. the delay of
ACK1 is assumed to be zero), and then subtracting the maximum local time that
passes in the interval[t3, t4]. Informally speaking, we start att1, walk pastt2 and
t3 to t4 and then back tot3. Our improvement is straightforward: We compute the
lower boundH l

i (t3) by advancinghi(t1) by the minimum local time that passes
in the real-time interval[t1, t3], i.e.

H l
i (t3) = hi(t1)+

(
h j(t3)−h j(t2)

) 1− ρ̂i

1+ ρ̂ j
. (3.4)

We do not change the way the upper boundHu
i (t3) is computed, since it is

already computed optimally in the original algorithm.

3.5.5 Comparison of the two algorithms

The difference in uncertainty of the two algorithms is

∆U =
(
h j(t4)−h j(t3)

)(
1+ ρ̂i

1− ρ̂ j
− 1− ρ̂i

1+ ρ̂ j

)
=

(
h j(t4)−h j(t3)

) 2(ρ̂i + ρ̂ j)
1− (ρ̂ j)2 .

The improvement over the original algorithm grows withh j(t4)− h j(t3) and
with the maximal driftsρ̂i , ρ̂ j . Since our algorithm provides an equal or better
uncertainty with less computation and otherwise equal resources, it is strictly
superior to the algorithm from [Röm01].
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3.6 Optimal Internal Synchronization
Our improved algorithm from Section 3.5.4 does not provide optimal bounds in
all cases. In the following, we examine how optimal bounds can always be ob-
tained, albeit at the cost of additional computation, communication, and mem-
ory. To this end, we return to the zero-delay model which allows us to combine
a message exchange between two nodes into a single, atomic communication
event. This is shown in Figure 22, where during each of the communication
eventsa andb, each node sends and receives one message (we do not count
acknowledgments as messages here).

In Section 3.6.1, we propose an algorithm which makes use of all the data
available for a given communication pattern. It thus provides optimal bounds,
as we show in Section 3.6.2.

s

Ni N j

ta

ts

b tb

a

Fig. 22: Two nodesNi , Nj communicate at eventsa andb. A sensor events occurs at nodeNj .

3.6.1 An optimal algorithm
Before presenting the algorithm, we identify the general principle by which
bounds on local times are computed from bounds on real-time intervals.

General approach
Consider the scenario in Figure 22: To obtain bounds onhi(ts), we can compute
bounds on the differencets− ta (either directly fromh j(ts)−h j(ta) or usingts−
ta = tb−ta−(tb−ts)) and then multiply them with 1− ρ̂i and 1+ ρ̂i , respectively.
This results in bounds onhi(ts)−hi(ta) which we add tohi(ta) to obtain bounds
on hi(ts). We can analogously compute another set of bounds onhi(ts) from
tb− ts, and finally choose the best bounds.

In a more complex scenario, such as the one in Figure 23, there may be
various bounds∆l , ∆u on the time differences that we use to compute bounds
H l

i (ts), Hu
i (ts) on the local timehi(ts). The bounds∆l , ∆u can be illustrated by

paths in the event chart as shown in Figure 23.

Paths in the event chart
In the scenario depicted in Figure 23, we can compute bounds onhi(ts) simply
by using the short paths–b. However, we then do not use any information from
the eventsc andd. In the ideal case of maximum drift diversity between nodes
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N jNk Ni
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tc
c

tb

ts

td

b

d

Fig. 23: Three nodesNi , Nj , Nk with communication eventsb, . . . ,d. A sensor events occurs at
nodeNj . The communication eventsc andd may help to find better bounds onhi(ts).
The dotted lines indicate the real-time intervals on which bounds are computed using
the paths shown by the corresponding solid lines.

Ni and Nk (i.e. ρi = ±ρ̂i and ρk = ∓ρ̂k), the uncertainty abouthi(ts) can be
reduced with this additional information, becauseρ̄i(tc, td) is known, and hence
also ρ̄i(ts, tb). This knowledge is implicitly taken into account if we compute
for instance the lower boundH l

i (ts) ashi(tc)+∆l [c,s](1− ρ̂i), where we derive
∆l [c,s] along the long paths–b–d–c.

Optimal algorithm
The principle of the optimal algorithm consists in computing the bounds on
hi(ts) using all possible paths in the event chart which start at events on node
Nj and arrive at some event on nodeNi . This approach is elegant in that all
improvements due to drift diversity are “automatically” taken into account by
traversing all possible paths and choosing the best, i.e. the one that provides the
best bound. The quality of a path or of a path segment depends on how close the
assumed drift on it is to the actual drift. If the two are equal, we call the path or
path segmenttight. If a bound onhi(ts) results from a tight path, then the bound
is clearly equal tohi(ts).

The optimal algorithm is given below as Algorithm 3. It obviously requires
a lot of communication, memory, and computation. We present it as the theo-
retical reference for the maximum synchronization quality that can be achieved.
We now show the algorithm’s optimality.

3.6.2 Optimality of Algorithm 3

We now show that in our model, no correct, deterministic algorithm can obtain
better bounds than those given by Algorithm 3.
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Algorithm 3 Optimal internal synchronization by evaluation of all paths
Let a communication scenario betweenn network nodesN1, . . . ,Nn be given.
Assume that during communication events, the two nodes involved exchange
their complete views. Then for any events that occurs at timets at nodeNj and
not at nodeNi , nodeNi can compute tight boundsH l

i (ts), Hu
i (ts) on the local

timehi(ts) from its maximal (i.e. latest) view as follows:

1. For any evente at nodeNi , Ni computes bounds∆l
i [e,s], ∆u

i [e,s] on ts− te
by traversing all paths betweensandeand choosing the best among all the
resulting bounds. We illustrate this in Figure 24 for∆l [c,s] and∆u[d,s].

2. Bounds onhi(ts) are computed from the bounds obtained in Step 1: For
every evente, we obtain bounds according to (we use[x]+ as an abbrevi-
ation for max{x,0})

H l
i (ts)≥ hi(te)+

[
∆l

i [e,s] · (1− ρ̂i)
]+
−

[
−∆l

i [e,s] · (1+ ρ̂i)
]+

Hu
i (ts)≤ hi(te)+ [∆u

i [e,s] · (1+ ρ̂i)]
+− [−∆u

i [e,s] · (1− ρ̂i)]
+ .

In each of the two expressions above, only one of the maximization opera-
tions can yield a value strictly greater than zero (if we make the reasonable
assumption that̂ρi < 1), depending on whethereprecedes or succeedss.

3. The final boundsH l
i (ts), Hu

i (ts) onhi(ts) are given as the maximum of all
lower and the minimum of all upper bounds obtained in Step 2.
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Fig. 24: Illustration of paths in the event chart. Four different paths for computing a lower bound
H l

i (ts) on hi(ts) are shown. The corresponding formulas are given in Figure 25. Since
a cycle in a path cannot improve the bound computed from it, the optimal path for the
lower bound has to be one of the paths shown; the same holds for the upper bound.

1 : ∆l [c,s]≥ h j(ts)−h j(ta)
1+ ρ̂ j

+
hk(ta)−hk(tc)

1+ ρ̂k

2 : ∆l [c,s]≥−h j(tb)−h j(ts)
1− ρ̂ j

+
hk(tb)−hk(tc)

1+ ρ̂k

3 : ∆u[d,s]≤ h j(ts)−h j(ta)
1+ ρ̂ j

− hk(td)−hk(ta)
1− ρ̂k

4 : ∆u[d,s]≤−h j(tb)−h j(ts)
1+ ρ̂ j

− hk(td)−hk(tb)
1+ ρ̂k

Fig. 25: Formulas for the bounds in Figure 24.

Thm. 15:(Optimality of Algorithm 3) Let a trace T , a sensor event s occurring at node
Nj , and another node Ni be given. Then no correct deterministic algorithm exists
that provides better bounds on hi(ts) than Algorithm 3.

Proof: We prove Theorem 15 by contradiction: Assume that given the maximal
(i.e. latest) views of all nodes resulting from traceT, subsumed in a total view
V, an algorithmA provides the boundŝH l

i (ts) andĤu
i (ts) which are correct in

T, i.e.Ĥ l
i (ts)≤ hi(ts)≤ Ĥu

i (ts). Further assume that algorithmA provides better
bounds than Algorithm 3, i.e. either̂H l

i (ts) > H l
i (ts) or Ĥu

i (ts) < Hu
i (ts), where

H l
i (ts),H

u
i (ts) are the bounds computed by Algorithm 3.

As we will show in Lemma 16 below, it is always possible to construct an
admissible traceT ′ with view V (i.e. T ′ is indistinguishable fromT) in which
hi(ts) = H l

i (ts). Thus, Algorithm 3 provides a tight lower bound. Equally, it
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is always possible to construct an admissible traceT ′′ with view V in which
hi(ts) = Hu

i (ts). Thus, Algorithm 3 provides a tight upper bound.
Therefore, algorithmA is not correct for either the traceT ′ (sincehi(ts) =

H l
i (ts) < Ĥ l

i (ts)) or the traceT ′′ (sincehi(ts) = Hu
i (ts) > Ĥu

i (ts)). This contradicts
our initial assumption.

Construction of indistinguishable traces
In the proof of Theorem 15, we required that for a given traceT, it is possible to
construct an admissible and indistinguishable traceT ′ in which hi(ts) = H l

i (ts).
The traceT ′ is constructed by making the path leading to the lower boundH l

i (ts)
tight; this is achieved by adjusting the drift rates along this path and shifting the
real times of the events limiting the path segments. For an evente occurring
at timete in traceT, we writet ′e for the time at whiche occurs inT ′. Shifting
the real time of a communication event always affects two nodes and might
conceivably lead to a violation of (2.1). We will now show that this cannot
happen.

Lem. 16:Let an admissible trace T with view V and a sensor event s occurring at time
ts at node Nj be given. For any event e occurring at node Ni , let ∆l [e,s] be the
lower bound on ts− te computed by Algorithm 3. Then an admissible trace T′

with view V′ can be constructed such that V′ = V and the lower bound∆l [e,s]
is equal to t′s− t ′e in T ′.

Proof: If ∆l [e,s] = ts− te in traceT, we setT ′ = T and are done. If∆l [e,s] <
ts−te, let pbestbe the best path which is used by Algorithm 3 to compute∆l [e,s].
If there is no other path froms to e, then all path segments alongpbest can be
made tight without influencing other paths, and we are done.

If there is at least one other path, we have a cycle and another path might be
influenced by the tightening ofpbest. Let event j (for join) be an event on the
best pathpbest at which another pathpother joins. Let eventf (for fork) be the
latest event onpbestbefore j which is also onpother. In Figure 27, we might for
instance havee= j = a, f = s, pbest= s–a, andpother= s–d–c–a.

Let ∆l
bestand∆l

other be the lower bounds defined bypbestandpother, respec-
tively. Sincepbest is the best path, we have

∆l
best[ j, f ]≥ ∆l

other[ j, f ] . (3.5)

In the traceT ′, the best path shall be tight, i.e.∆l
best[ j, f ] = ∆[ j, f ] = t ′f − t ′j .

We set the times at which eventsf and j occur inT ′ to t ′f = t f and

t ′j = t f −∆l
best[ j, f ]≥ t f − (t f − t j) = t j . (3.6)

To show thatT ′ is admissible, we have to show that∆l
other[ j, f ] is a valid

lower bound ont f − t ′j in T ′, even thought ′j ≥ t j . This follows from (3.5) and

(3.6): t f − t ′j = ∆l
best[ j, f ]≥ ∆l

other[ j, f ].
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Fig. 26: There are no cycles in the event chart. It is therefore straightforward that all path seg-
ments can be made tight.
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Fig. 27: Several paths form cycles; therefore it is not a priori clear whether clock drifts and event
times can always be modified such thatH l

i (ts) = hi(ts).

Cor. 17: We can achieve Hli (ts) = hi(ts) in trace T′. According to Lemma 16, the best
path from s to some event e on node Ni can be made tight. Analogously, we can
also setρi =±ρ̂i between events s and e, thus achieving Hl

i (ts) = hi(ts).

We will now illustrate Theorem 15 with two examples. In Figure 26, there is
only one path; no matter how large and complex the portion of the event chart to
the left of eventc at nodeNi is, we can shifttc arbitrarily as long as there is only
one path froms to Ni . This also applies tob andtb here. Thus,H l

i (ts) = hi(ts)
can always be achieved.

In Figure 27, there is more than one path froms to Ni . The best path used by
Algorithm 3 forms at least one cycle with some other path. Thus, the real times
of the events along the best path cannot be shifted arbitrarily. In the following,
we argue that they can always be shifted enough to make the best path tight. Let
us assume that the lower bound onhi(ts) provided by Algorithm 3 isH l

i (ts) =
hi(ta)+ ∆l [a,s](1− ρ̂i), and that the paths–a from which ∆l [a,s] is derived is
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not tight, i.e.∆l [a,s] < ts− ta. To obtain the traceT ′, we therefore increaseta
until ∆l [a,s] = ts− ta. To keeph j(ta)− h j(tc) constant, we need to decrease
ρ̄ j(tc, ta), increasetc, or both. Suppose that̄ρ j(tc, ta) = −ρ̂ j and hence cannot
be decreased. We hence have to increasetc. To keephk(td)− hk(tc) constant,
we need to increasēρk(tc, td), increasetd, or both. Suppose that̄ρk(tc, td) =
+ρ̂k and hence cannot be increased. We hence have to increasetd. To keep
h j(td)− h j(ts) constant, we need to decreaseρ̄ j(ts, td) (we cannot modifyts).
Suppose that̄ρ j(ts, td) = −ρ̂ j and hence cannot be decreased. Now, it would
seem that we cannot constructT ′ with H l

i (ts) = hi(ts). Actually, we already
haveT ′: We assumed

ρ̄ j(tc, ta) =−ρ̂ j ρ̄k(tc, td) = +ρ̂k ρ̄ j(ts, td) =−ρ̂ j .

These assumptions provide us with a tight paths–d–c–a and thus a tight bound

∆l [a,s] =−h j(td)−h j(ts)
1− ρ̂ j

+
h j(td)−h j(tc)

1+ ρ̂ j
− h j(ta)−h j(tc)

1− ρ̂ j

= ts− ta .

Obviously, the paths–a cannot be made tight if there already is another tight
paths–d–c–a. Our initial assumption thats–a is the best path used by Algorithm
3 was therefore wrong.

3.7 Optimal and Efficient External Synchronization

In this section, we will first present an optimal algorithm for external synchro-
nization. The algorithm operates analogously to the one for internal synchro-
nization presented in Section 3.6: Complete views are stored, communicated,
and used for the computation of best bounds. We then quantify the complexity
of the algorithm by presenting simulation results for its running time. Finally,
we investigate how limiting the size of the views affects running time and syn-
chronization quality.

3.7.1 The optimal algorithm
The variant of Algorithm 3 for external synchronization is given below as Al-
gorithm 4. As in the algorithm IM and the BP-ISA, bounds on the real timetd
at which a destination eventd occurs are obtained by using all source events in
the view. As the similarity between Algorithms 3 and 4 illustrates, external and
internal synchronization both share the computation of bounds on the length of
real-time intervals. In external synchronization, these bounds are used to appro-
priately advance bounds on the system time, while in internal synchronization
bounds on other nodes’ local times are advanced.
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Algorithm 4 Optimal external synchronization by evaluation of all paths
Let a communication scenario betweenn network nodesN1, . . . ,Nn be given.
Assume that during communication events, the two nodes involved exchange
their complete views. Then for any eventd that occurs at timetd at nodeNi ,
nodeNi can compute tight boundsT l (td), Tu(td) on the real timetd from its
maximal (i.e. latest) view as follows:

1. For any source events in nodeNi ’s view, Ni computes bounds∆l
i [s,d],

∆u
i [s,d] on td− ts by traversing all paths betweensandd and choosing the

best among all the resulting bounds.

2. Bounds ontd are now computed according to (we use[x]+ as an abbrevi-
ation for max{x,0})

T l (td) = T l (ts)+
[
∆l

i [s,d]
]+
−

[
−∆l

i [s,d]
]+

Tu(td) = Tu(ts)+ [∆u
i [s,d]]+− [−∆u

i [s,d]]+ .

In each of the two expressions above, only one of the maximization oper-
ations can yield a value strictly greater than zero, depending on whethers
precedes or succeedsd.

We simulated Algorithm 4 with parameters as in Section 3.4.4 to make the
results comparable: during a simulation time of 500 h, 100 nodes distributed
uniformly at random in a square area with edge length 10000 communicate with
each other. We fixed the number of anchor nodes (out of the total 100 nodes) at
10, and the transmission range at 1500. As we discussed in Section 3.4.4, this
is the range where all nodes are just barely connected and the advantage of the
BP-ISA over the algorithm IM is the largest. The anchor nodes communicated
with non-anchor nodes at an average frequencyfA of 0.02/h.

The running time of the simulation for a varying number of communication
events between non-anchor nodes is shown in Figures 28 and 29. Both figures
represent the same data; the logarithmic y-axis in Figure 29 exposes the high
variability of the running time for small numbers of communication events.
This variability is due to the fact that the communication events were gener-
ated at random, and for a small number of events the connectivity and hence the
structure of the event chart greatly depends on the choice of events.

We assume the running time of the simulation to be proportional to the aver-
age running time of the algorithm on the individual nodes. Note that we do not
modify the number of nodes, but only the number of communication events and
hence the number of paths used in the computation. Hence, the proportionality
factor between the running times of the total simulation and of the algorithm on
an individual node is constant.
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Fig. 28: Total running time of the simulation of the optimal algorithm in seconds for a varying
number of communication events between non-anchor nodes.
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Fig. 29: The data are the same as in Figure 28; the logarithmic y-axis exposes the high variability
of the running time for small numbers of communication events.
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3.7.2 Running time with limited view size
The running time of the optimal algorithm is prohibitive in all but the most prim-
itive scenarios; we therefore investigate the effect of limiting the size of nodes’
views and thus the number of paths that are used by the algorithm. Both the
running time and the synchronization quality should decrease with decreasing
view size; there is a trade-off between computation and storage capacity used
and the achievable synchronization quality.

We now present simulation results for the running time of the algorithm
with limited view size. More precisely, each node stores only a limited number
of events per node. As an example, assume that in a network with 100 nodes the
view size is limited to 10 events per node. This means that any node will store at
most 10 of its own events and 10 events for each other node in the network, i.e.
at most 1000 events. Figures 30 through 35 show the simulation running time
as a function of the view size for different numbers of communication events.

Figure 30 shows that for 10 communication events per node, storing more
than 20 events per node does not lead to a further increase in running time. With
10 communications initiated by each node, on average a node participates in 20
communications, and there are only 20 events per node to be stored.

For 20 communication events (Figure 31), the curve flattens at 40 stored
events per node, as we can conclude by observing that the running time for 40
stored events equals the one for unlimited view size.

Figures 32 through 35 illustrate how after an initial fast growth the running
time increases linearly with the view size. This is exactly the behavior of the
leftmost portions of the curves in Figures 30 and 31 (x∈ [0,10]).

For 1000 communication events per node, the simulation with unlimited
view size could not be performed.

3.7.3 Time uncertainty with limited view size
We now present results for the time uncertainty achieved with limited view size.
Figure 36 shows the percentage by which the uncertainty achieved by the op-
timal algorithm is smaller than that achieved by the algorithm IM. The ideal
view size (beyond which additional stored events do not further reduce the un-
certainty) increases with increasing number of communications per node. In a
scenario with very little communication (50 events per node), the improvement
is comparatively small and reaches its maximal value already at a view size of
approximately 6 events per node. When communication is more frequent (1000
events per node), we observe a relatively fast increase in the improvement up to
a view size of approximately 13 events per node.

The reason why there is a finite ideal view size is that the time information
gathered from old events is superceded by time information from newer events.

Before the improvement reaches its maximal value, there is a trade-off be-
tween computation and memory used and the achievable synchronization qual-
ity. As the view size increases, the running time of the algorithm increases con-
siderably, while the improvement in synchronization quality is moderate.
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Fig. 30: Total running time of the simulation of the optimal algorithm in seconds for a varying
number of events per node in the view. The number of communication events per node
was 10, the running time with unlimited view size was 2.92 s.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

S
im

ul
at

io
n

ru
nn

in
g

tim
e

in
se

co
nd

s

Events in view per node (0 = algorithm IM, 1 = BP-ISA)

Fig. 31: Total running time of the simulation of the optimal algorithm in seconds for a varying
number of events per node in the view. The number of communication events per node
was 20, the running time with unlimited view size was 20.53 s.
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Fig. 32: Total running time of the simulation of the optimal algorithm in seconds for a varying
number of events per node in the view. The number of communication events per node
was 50, the running time with unlimited view size was 277.82 s.
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Fig. 33: Total running time of the simulation of the optimal algorithm in seconds for a varying
number of events per node in the view. The number of communication events per node
was 100, the running time with unlimited view size was 1648.37 s.
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Fig. 34: Total running time of the simulation of the optimal algorithm in seconds for a varying
number of events per node in the view. The number of communication events per node
was 500, the running time with unlimited view size was 199897.60 s.
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Fig. 35: Total running time of the simulation of the optimal algorithm in seconds for a varying
number of events per node in the view. The number of communication events per node
was 1000, the simulation with unlimited view size was not performed.
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Fig. 36: Percentage improvement of the optimal algorithm for a varying number of events per
node in the view. The number of communication events per node was 50, 100, 500, and
1000. For 1000 events, the simulation with unlimited view size was not performed.

3.8 Node Mobility

In the following, we show that node mobility puts no burden on interval-based
synchronization, but actually helps it. Examples of mobility comprise nodes
attached to animals or humans or nodes transported by wind or water from one
location to another. Recent work has addressed the special characteristics of
synchronization in mobile ad-hoc networks [Röm01, SY04]. To our knowledge,
the impact of mobility on synchronization has not yet been considered.

Many synchronization algorithms tailored to mobile ad-hoc networks have
been proposed recently; most of them use time estimates. Since it is not a priori
clear how two time estimates should be combined, these algorithms require a
hierarchical structure in the network and prioritize the estimate of the higher-
ranking node. Since time intervals defined by guaranteed bounds can be com-
bined optimally and unambiguously by intersection, the interval-based approach
does not require hierarchical structures.

We extend the results from previous sections in this chapter by showing that
interval-based synchronization is not only resilient to node mobility, but actu-
ally even benefits from it in the average case. We will argue that this is not
the case for time-estimate-based synchronization approaches that employ hier-
archical structures such as clusters [EGE02] or trees [GKS03, SV03, vGR03],
since mobility makes these structures prohibitively expensive to maintain. With
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interval-based synchronization, nodes can use arbitrary communication part-
ners, and therefore no such overhead exists. Our simulations show that random
communication is a viable and competitive alternative to tree-based approaches.

We look at mobility in the context of external synchronization, using the
system model and the algorithms from Section 3.3. We first discuss the various
possible communication patterns in ad-hoc networks in Sections 3.8.1 and 3.8.2,
showing that random communications are not only a good compromise, but may
be the only feasible choice in scenarios with mobile nodes. In Section 3.8.3, we
examine the effect of node mobility on interval-based synchronization, which
our simulations show to be beneficial.

3.8.1 Communication patterns
To achieve synchronization, time information has to be propagated through the
network. A communication pattern determines which nodes communicate at
which time. Time information can be embedded in the messages sent by the
application of the network or it can be transmitted in dedicated synchroniza-
tion messages. In this section, we compare different communication patterns in
a network with a single anchor node. There are two very different modes of
operation:

• The network can be organized in a tree topology with the anchor node at
the root. Each parent node synchronizes with all its children. We refer to
this as the tree-based mode.

• Each node in the network synchronizes with a random node within its
transmission range. We refer to this as the random-communications mode.

The tree-based mode is used by many recently proposed synchronization
algorithms for ad-hoc networks, e.g. [GKS03, SV03, vGR03, KM04]. Various
methods of distributed tree construction were discussed in [vGR03]. All these
methods are expensive in terms of communication overhead, which increases
when the nodes in the network become mobile and the tree has to be rebuilt
frequently. In contrast, the random-communications mode does not suffer from
this kind of overhead at all, since it does not use any topology information.

In this section, we compare the tree-based and the random-communications
modes of interval-based synchronization in terms of the maximal uncertainty
in the network. In addition, we compare the distribution of the frequency of
communication among the nodes in the network. A high frequency of commu-
nication implies a high energy consumption and therefore a short node lifetime.
To maximize network lifetime, it is desirable to have an equally distributed and
small number of communications. In this section, we will show the following:

• In a breadth-first tree, the maximal uncertainty is small, but the frequency
of communication is distributed very unevenly among the nodes.
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• In a depth-first tree, the frequency of communication is distributed more
evenly than in the breadth-first tree, but the maximal uncertainty is much
larger.

• For a fixed total number of communications in the network, the random-
communications mode achieves an only slightly larger maximal uncer-
tainty than the breadth-first tree, while communications are distributed as
evenly as in the depth-first tree.

• For a fixed maximal number of communications per node, i.e. a fixed min-
imal node lifetime, the random-communications mode achieves a strictly
smaller uncertainty than either tree-based mode.

Specialized lower bounds
We now show how the uncertainty in the tree-based mode can be compared to
the one achieved with random communications. To this end, we derive specific
lower bounds on the uncertainty from (3.1) on page 57.

Lower bound in a tree
Let a tree with an anchor node at the root be given, and letfC be the frequency of
communications per node. If every parent node communicates with all its child
nodes at least every 1/ fC, then for all children of the anchor node, the real-time
difference(t− ts) between any timet and the timets of the latest communica-
tion with the anchor node before timet is at most 1/ fC. For an arbitrary node,
the differencet − ts is at most(hop distance to root)/ fC. Thus, the worst-case
uncertainty∆T is bounded by

∆T ≥ (maximal hop distance to root)
fC

· 2ρ̂

1− ρ̂
. (3.7)

We see that the maximal uncertainty grows with the maximal hop distance
to the root. Thus, a depth-first tree yields a large maximal uncertainty.

Lower bound for random communications
We determine the maximal real-time difference(t − ts) and thus the maximal
uncertainty for random communications by simulation. In analogy to (3.7), we
define apseudo hop distanceto the root node as

(pseudo hop distance to root) = fC ·max
t
{t− ts} .

Communication frequency per node
In both the tree-based and the random-communications mode, we assume that
every non-anchor node initiates a communication with some node within its
transmission range with a frequency offC. Thus, in a time interval of size∆t,
fC ·∆t communications take place per node, each involving two nodes.

In a star topology, i.e. in the ideal breadth-first tree, all child nodes initiate a
communication with the root node once in an interval of length 1/ fC. The root
node hence communicatesn times (wheren is the number of child nodes) within
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each interval of length 1/ fC. As a consequence, the root node consumesn times
more energy than the child nodes.7 In a chain, i.e., in the ideal depth-first tree,
the root and the last node communicate once per 1/ fC, and all other nodes com-
municate twice per 1/ fC. Thus, the energy consumption is distributed almost
evenly among all nodes. In a general tree, the maximal number of communica-
tions per 1/ fC is equal to the maximal node degree.

In the random-communications mode, the maximal number of communi-
cations per node and time unit is determined using simulation. The commu-
nications are distributed quite uniformly among the nodes due to the random
selection of communication partners. Apseudo node degreecan be determined
by simulation by counting the maximal number of communications in which
any node is engaged in an interval of length 1/ fC.

3.8.2 Simulation with static nodes

We will now describe the simulations of networks with static nodes we per-
formed to compare tree-based and random communication.

Setup
We placed 100 nodes randomly in a square with edge length 100. An anchor
node was placed in the center of the square. For a transmission range between
10 and 80, breadth-first and depth-first trees were constructed. Figure 37 shows
these trees for transmission ranges 15, 25, and 35.

In these trees, the maximal hop distance of any node to the root and the
maximal degree of any node were determined. Using the same node locations,
we simulated the random-communications mode during a real-time interval
of 100/ fC. From the obtained traces, we computed pseudo node degrees and
pseudo hop distances. The maximal and minimal results from 50 runs of this
experiment are shown in Figures 38 and 39.

Results
First, consider the maximal degree of any node in the network, shown in Figure
38. For the depth-first tree, the maximal degree is fairly low (≤ 4) and remains
approximately constant for all transmission ranges. For the breadth-first tree,
the maximal degree is small for a small transmission range and then quickly
increases. At a range of 50·

√
2≈ 71 (x = 0.71), the root node can reach every

node, and its degree is maximal, while all other nodes have degree 1.
Now, consider the maximal hop distance to the root node, shown in Figure

39. At a transmission range of 10 (x= 0.1), there are nodes that cannot commu-
nicate with any other node, the maximal distance is therefore not shown. This
occurs up to and including a transmission range of 25. For the breadth-first tree,
the maximal hop distance is fairly small (≤ 4 for a transmission range of at least
30). For the depth-first tree, the maximal hop distance is considerably larger and
increases quickly (≥ 83 for a transmission range of at least 30).

7Note that in our model, communication is point-to-point. If broadcast is possible, the root
node needs to communicate only once per 1/ fC.
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Fig. 37: 100 randomly placed nodes (depicted as circles), organized in a breadth-first tree (left
column) and in a depth-first tree (middle column). The root (depicted as a square) is
always in the center of the area. The right column shows the complete graph for a given
transmission range.

In the random-communications mode, the communications are distributed
as evenly among the nodes as in the depth-first tree, i.e. far better than in the
breadth-first-tree. The maximal hop distance (and thus the worst-case uncer-
tainty) of the random-communications mode is much better than that of the
depth-first tree, but approximately 5 times worse than that of the breadth-first
tree (≤ 20 for a transmission range of at least 30).

Exemplary values for maximal uncertainty∆T and maximal communica-
tions per node for a transmission range of 0.3 times the area width and two
different drift boundsρ̂ are given in Table 2 on page 93. The uncertainties∆T
scale withρ̂ and 1/ fC, and there exist trade-offs between the three approaches.

Each row in Table 2 compares the different modes for a giventotal number
of communicationsin the network. Figure 40 shows the maximal uncertainty for
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Fig. 38: Maximal node degree in breadth-first and depth-first trees constructed in networks
of 100 randomly placed nodes as a function of the nodes’ transmission range. The
figure also shows pseudo node degrees determined from simulating the random-
communications mode. The upward and downward triangles represent the maximal and
minimal values from all simulation runs.

a givenmaximalnumber of communicationsper node, which is analogous to a
given minimal lifetime of each node. Here, the random-communications mode
achieves strictly better results than the tree-based modes.

Discussion
In this section, we have considered networks without node mobility and shown
that in comparison to the tree-based mode, the random-communications mode
offers a very good compromise between a small maximal uncertainty and fair
distribution of communications among the nodes. For a given maximal commu-
nication frequency per node, it achieves a strictly smaller maximal uncertainty
than the breadth-first and depth-first tree-based modes.

While the random-communications mode does not have any overhead at
startup, the topology construction required in the tree-based modes is expensive.
The authors of [vGR03] state that the communication overhead of breadth-first
tree construction can be reduced to 10·n·m1/2, wheren is the number of nodes
andm the number of edges in the network. The communication overhead of a
distributed depth-first tree-construction algorithm is specified as 4·m in 4·n−2
rounds. In our simulations of the networks described above, the number of nodes
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Fig. 39: Maximal hop distance to the root in breadth-first and depth-first trees constructed in
networks of 100 randomly placed nodes as a function of the nodes’ transmission range.
The figure also shows pseudo hop distances determined from simulating the random-
communications mode. The upward and downward triangles represent the maximal and
minimal values from all simulation runs. The missing upward triangles on the left for
transmission ranges below 30 (x = 0.3) are due to nodes not connected to the root.

is 100 and the average number of edges, assuming a transmission range of 30,
is approximately 1100. Thus, the number of communications necessary for tree
construction is approximately 13270 for breadth-first and 4400 for depth-first
trees. This overhead becomes completely unbearable when the tree has to be
reconstructed frequently due to node mobility.

3.8.3 Simulation with mobile nodes
We will now describe the scenarios with mobile nodes that we simulated and
the performance measures we used to evaluate the results. To make our results
comparable to those from Section 3.3, we chose similar parameters and merely
added node mobility. The simulations were done using custom C++ programs.

Model and measures
We simulated sensor-network scenarios for a simulation time of 500 h, i.e. al-
most 21 days. The network contained 100 nodes that were distributed uniformly
at random in a square area with edge length 10000. Their local clocks had a con-
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fC Breadth-first tree Depth-first tree Random comm.
∆T cpn ∆T cpn ∆T cpn

Transmission range/area width= 0.3, ρ̂ = 100 ppm
1/h 2.8 s 38/h 69.1 s 4/h 14.4 s 3/h
1/min 48 ms 38/min 1.2 s 4/min 240 ms 3/min
1/s 800 µs 38/s 19 ms 4/s 4 ms 3/s

Transmission range/area width= 0.3, ρ̂ = 1 ppm
1/h 28 ms 38/h 691 ms 4/h 144 ms 3/h
1/min 480 µs 38/min 12 ms 4/min 2.4 ms 3/min
1/s 8 µs 38/s 190 µs 4/s 40 µs 3/s

Tab. 2: Maximal uncertainty∆T and maximal communication frequency for a transmission
range of 0.3 ·area width and two different constantsρ̂. The uncertainty∆T scales with
ρ̂ and 1/ fC. The acronym “cpn” indicates “communications per node”.
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Fig. 40: For an equal maximal communication frequency per node, the random-communications
mode achieves a strictly smaller maximal uncertainty than the breadth-first and depth-
first tree-based modes.
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stant drift rate between−100 ppm and+100 ppm. A numberNA ∈ {5,10,20}
of the 100 nodes were anchor nodes. In each run, all nodes had the same trans-
mission range; between runs, it was varied between 0.1 and 0.5 times the width
of the simulation area. Sensor nodes communicated with other sensor nodes at
an average frequency offC = 2/h. Anchor nodes communicated with sensor
nodes at a smaller average frequencyfA = 0.02/h.

In our mobility model, both anchor and non-anchor nodes can move accord-
ing to a model similar to the random-waypoint model [JM96]: We first specify
the numberl ≥ 1 of locations per node. For each node, we choose uniformly at
randoml −1 real timest1, . . . , tl−1 within the simulation time frame andl loca-
tionsL0, . . . ,Ll−1. We sett0 := 0. At real timeti , the node is at locationLi . For
any two consecutive locationsi andi +1, the node moves with constant speed
on a direct line from locationi to locationi +1. There is no pause at locations.

The number of locations can be given separately for anchor and non-anchor
nodes. We let anchor nodes have only one location and placed them on a regular
grid that maximized their coverage of the simulation area. This was motivated
by the fact that a limited number of relatively powerful, immobile anchor nodes
can be expected to be placed optimally with respect to area coverage.

The performance measure we used was the time uncertainty; we evaluated
it after every communication and took the average over all communications,
excluding infinite time uncertainties. We thus produced the average time uncer-
tainties for the algorithm IM and the BP-ISA. From these values, we computed
the improvement of the BP-ISA. Figures 41 to 43 give all these results as per-
centages and in milliseconds. For every data point, 300 runs were performed.
The standard deviations for the percentage improvements are shown in Table 3.

anchors standard deviation
transm. range 500 transm. range 1500 transm. range 2500
x = 1 x > 1 x = 1 x > 1 x = 1 x > 1

5 0.96 4.63–6.16 4.29 2.32–3.04 5.88 3.14–4.08
10 1.23 3.52–4.68 3.74 1.79–2.66 4.79 2.47–3.56
20 1.86 2.75–4.15 3.39 1.34–2.48 4.21 1.90–2.78

Tab. 3: Standard deviations for the improvement percentage of the BP-ISA over the algorithm
IM depicted in Figures 41 to 43. The values for no mobility (x = 1) differ considerably
from those for mobility (x > 1).

Discussion
We draw the following conclusions from Figures 41 to 43:

• The uncertainties become smaller when the mobility becomes larger (for
x > 1). This effect diminishes with increasing transmission range, since
the improvement in connectivity becomes smaller.

• Analogously, the uncertainties become smaller when the range increases.
This effect is larger for low mobility than for high mobility.
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• For transmission range 500, there is a sharp jump betweenx = 1 and
x = 5 in the graphs showing the uncertainty, and the uncertainty forx = 1
is much smaller than that forx = 5, suggesting that no mobility leads to
smaller uncertainty. The reason for this is that atx= 1, i.e. without mobil-
ity, most of the nodes are not connected to the anchor. Their uncertainty
thus is infinite and is not considered. The few nodes that are connected to
the anchor are only one hop away from it. Their uncertainty thus is very
small. As the transmission range grows larger, this effect diminishes.

Our simulation results suggest that mobility has a positive overall effect on
the synchronization quality, both for the algorithm IM and the BP-ISA. This
effect is due to the increase in connectivity (which for large transmission ranges
is small); there does not seem to be any negative effect such as disruption of
back paths used by the BP-ISA.

3.9 Summary
In this chapter, we presented a zero-delay model for time synchronization in
mobile ad-hoc networks and used it to identify the worst and the best case in
terms of achievable time uncertainty. We showed that the algorithm IM from
[MO83] is worst-case-optimal and proposed an improved algorithm which takes
advantage of the typical drift diversity of the nodes’ clocks. We illustrated by
simulation that in the average case, our algorithm significantly outperforms the
algorithm IM from [MO83] at a moderate increase in computation and memory
cost.

Next, we turned to internal synchronization and improved the algorithm
from [Röm01], obtaining better synchronization with less computation and no
additional communication or memory. We then presented algorithms for inter-
nal and external synchronization which use all the data that can be obtained
for a given communication pattern, at the expense of additional computation,
communication and memory. This lead us to analyze the trade-off between syn-
chronization quality and required resources.

Finally, we showed that node mobility puts no burden on interval-based syn-
chronization, but actually increases its quality. Furthermore, we argued that syn-
chronization algorithms that employ hierarchical communication structures are
bound to suffer from prohibitive overhead if nodes are mobile. We showed that
for the interval-based approach, unstructured communication offers a very good
compromise between a small maximal uncertainty and fair distribution of com-
munication among the nodes.
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Fig. 41: Simulation results for transmission range 500. The uncertainties of the two algorithms
and the improvement of the BP-ISA over the algorithm IM are shown as a function of
the number of locations each node had during the simulation time, i.e. as a function of
node mobility.
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Fig. 42: Simulation results for transmission range 1500. The uncertainties of the two algorithms
and the improvement of the BP-ISA over the algorithm IM are shown as a function of
the number of locations each node had during the simulation time, i.e. as a function of
node mobility.



98 Chapter 3. Interval-Based Synchronization

0 20 40 60 80 100 120 140 160 180 200
800

1000

1200

1400

1600

1800

2000

U
nc

er
ta

in
ty

IM
[m

s]

0 20 40 60 80 100 120 140 160 180 200
800

1000

1200

1400

1600

1800

2000

Node locations

U
nc

er
ta

in
ty

B
P

[m
s]

5 anchors
10 anchors
20 anchors

0 20 40 60 80 100 120 140 160 180 200
5

10

15

20

25

Im
pr

ov
em

en
t[

%
]

0 20 40 60 80 100 120 140 160 180 200
50

100

150

200

250

300

350

Node locations

Im
pr

ov
em

en
t[

m
s]

5 anchors
10 anchors
20 anchors

Fig. 43: Simulation results for transmission range 2500. The uncertainties of the two algorithms
and the improvement of the BP-ISA over the algorithm IM are shown as a function of
the number of locations each node had during the simulation time, i.e. as a function of
node mobility.



4
Gradient Clock Synchronization
in Wireless Sensor Networks

4.1 Introduction
Gradient clock synchronization [FL04] can be seen as a special case of internal
synchronization. The gradient property requires the difference between any two
network nodes’ clocks to be bounded from above by a non-decreasing function
of their distance. The distance between two nodes can be defined for example as
their Euclidean distance, as their hop distance in the network, or as the message-
delay uncertainty between them. For the successful completion of actions by
groups of sensor nodes, the gradient property is both necessary and sufficient.
We illustrate this with two examples:

• For energy-efficient operation, the duty cycle of a sensor node’s commu-
nication circuits has to be synchronous to that of its communication part-
ners, i.e. of the nodes in its one-hop neighborhood. These are the nodes
with the smallest distance.

• When deriving the speed of an object from two nodes’ observations, the
total error is proportional to the quotient of the synchronization error and
the Euclidean distance between the nodes. For a given maximum total
error, faraway nodes are allowed to be more loosely synchronized than
nodes that are close to each other [FL04].

In [FL04], a lower bound on the error of gradient clock synchronization was
given. The system model in which the bound was derived differs considerably
from the one we use in this thesis. In this chapter, we show that an analogous
lower bound exists also in our model.
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The rest of the chapter is organized as follows: We present an overview of
our new results and related work in Section 4.2. In Section 4.3, we provide our
system model. We then derive the lower bound for gradient clock synchroniza-
tion in this model in Section 4.4.

This chapter is based on [MT05a, MT05b].

4.2 New Results and Related Work

Synchronization is hindered by two factors: clock drift and message-delay un-
certainty. Time information is degraded by the drift of imperfect clocks (since
nodes cannot precisely measure time intervals), and it cannot be communicated
without loss due to delay uncertainties (since the age of received time infor-
mation cannot be determined accurately). Upper bounds on the drift and the
delay uncertainty allow us to derive lower bounds on the synchronization er-
ror between two network nodes. For instance, the worst-case clock difference
between two nodes with delay uncertaintyD is in Ω(D) [LL84], i.e. for any
algorithm, a scenario can be constructed where the clock difference is inΩ(D).
The central theorem of [FL04] states that in a network with maximal delay un-
certaintyD, the clock difference of two nodes with constant delay uncertainty is
in Ω( logD

log logD). This implies that the clock difference grows asD grows although
the delay uncertainty between the nodes remains constant.

In the system model of [FL04], nodes can communicate with unbounded
frequency and are equipped with hardware clocks with bounded drift. The de-
lays and drifts are unknown to the nodes and hence to any synchronization al-
gorithm. To derive a lower bound on the error, it is assumed that an adversary
can control the delays and drifts. The communication pattern, the delays, and
the nodes’ clock drifts constitute an execution trace. For a given trace, the ad-
versary constructs another trace at the end of which two given nodes have a
larger clock difference than in the original trace. This process can be repeated
sufficiently often for the lower bound to be attained. During the iterations, the
clock difference increases faster than any synchronization algorithm can reduce
it without violating the gradient property.

In this chapter, we use a different system model that we consider more ap-
propriate for wireless sensor networks. The characteristics of our model and
of the previous model are summarized in Figure 4. Clock drifts are bounded
in both models, but we assume that the communication frequency is bounded,
i.e. that there is no arbitrarily high amount of communication between nodes,
since this would lead to a prohibitive energy consumption. The synchronization
service uses only the communication that takes place anyway for achieving the
overall goal of the sensor network; the time information is sent piggyback with
the application data [PSR94, AHR96]. Therefore, the communication pattern is
typically not known to the synchronization algorithm. Examples of such sensor
networks are those in which environmental data is collected on a regular basis



4.2. New Results and Related Work 101

previous model our model
clock drift bounded bounded
communication frequency unbounded bounded
message-delay uncertainty bounded 0
message delay bounded 0

Tab. 4: Overview of the characteristics of the system model from [FL04] and of our model.

but communicated only sporadically, e.g. when time-critical data is recorded,
when a master node explicitly requests the data, or when the solar cells of the
node are providing sufficient energy for communication.

As discussed in Section 3.2, the influence of delay uncertainty and drift can
be studied separately [BMT04, MBT04], and the drift’s effect is dominant in
networks with infrequent communication. We hence assume delay uncertainties
to be negligible, and eliminate the delays themselves from our analysis, assum-
ing communication to occur in zero time.

In order to be able to derive any bounds, we obviously have to make some
quantitative assumption about the communication frequency. We assume that a
node communicates at least once everyd time units with each of its neighbors.
In practice, this could be a bound on the communication frequency determined
by the application. The adversary can modify the communication pattern by
shifting the times at which communication events occur. He can also change the
clock drifts. As there are no delays, we use the hop distance between nodes as
a distance measure instead of the delay uncertainty. Thus, the network diameter
is the maximal hop distance in the network.

We show that an analogous lower bound as in the previous model exists also
in our model. This is not obvious: In the previous model, the bound is based on
delay uncertainties, which do not exist in our model. Our bound is based on the
parameterd, which leads to an upper bound on the delay of a message in the
network. This may seem an isomorphism between the two models, where the
bound on communication frequency replaces the bound on delays. But note that
when the adversary in our model shifts the time at which a communication event
occurs, he also has to modify the clock drifts of both nodes involved in order
to make the modified trace indistinguishable from the original. In the previous
model, the adversary that modifies the delay of a message need only adjust the
clock drift of either the sending or the receiving node. This means that the ad-
versary is more powerful in the previous model. Hence there is no isomorphism
between the two models, and it is not a priori clear that a comparable bound
exists in our model.

For the clock difference|L j(t)−Li(t)| between two neighboring nodesvi ,
v j in a chain ofn nodes and maximal clock drift̂ρ, we derive the lower bound

|L j(t)−Li(t)| ≥ ρ̂d
8(1+ ρ̂)

log(n−1)

log
(

8(1+ρ̂)
ρ̂

log(n−1)
) .
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Analogously to the bound from [FL04], our bound implies that the clock differ-
ence of neighboring nodes increases with the network diameter or chain length
n−1. The bound increases with increasingd andρ̂.

4.3 System Model
In our system model, each nodevi in the network uses its hardware clock to
measure time differences and ultimately to compute its logical clockLi . Node
vi executes a local synchronization algorithm (LSA) that satisfies the following
properties:

• It is deterministic, has access to unbounded memory, and executes instan-
taneously.

• It exchanges information with some nodev j via a communication event.

• It can read the local time from the hardware clock at any time.

• It determines the logical clockLi .

• In particular, it does not have access to the real time or to the hardware
clock’s drift, and it has no influence on the occurrence of communication
events.

Def. 18: (Hardware clock) A hardware clock is a physical device, typically a counter,
modeled as a function H: R→R. We use the notation hk = H(tk) to denote the
hardware-clock reading orlocal timehk of an event k that occurs at real time
tk. The drift of a hardware clock is

ρ(t) =
dH(t)

dt
−1 .

It is constrained by−ρ̂ ≤ ρ ≤ ρ̂ for some constant̂ρ ≥ 0.

Def. 19: (Network) A network N= {vi : 0 ≤ i < n} is a set of n nodes. Every node
vi has a hardware clock Hi . Communication between two nodes is modeled as
a communication event that enables the exchange of information in zero time.
Formally, it is a tuple(vi ,v j , tk), meaning that nodes vi and vj communicate at
real time tk by event k.

Def. 20: (Scenario and trace)A scenario S=(N,{(vi ,v j , tk)}) is a communication graph
with vertices that correspond to nodes in the network N and edges(vi ,v j) with
weight1 that correspond to communication events(vi ,v j , tk). A trace T is a sce-

nario augmented with local times hi
k and hj

k of the nodes vi and vj involved in
the communication event k.
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Fig. 44: Communication-graph and event-chart representation of a trace.

A trace can be depicted as a communication graph or as an event chart, see
Figure 44.

Def. 21: (Gradient property (GP)) Let any non-decreasing function f: R+ → R+ be
given. An LSA satisfies the f -gradient property ( f -GP), if for any trace and for
all i , j ∈ {0,n−1}

|L j(t)−Li(t)| ≤ f (si j ) ,

where Li denotes the logical clock of node vi , and si j denotes the length of the
shortest path between nodes vi and vj in the communication graph according to
Definition 20.

The synchronization problem is characterized by the following properties:

• All hardware clocks start with local timeH i(0) = 0.

• Each node communicates with each of its neighbors at least everyd time
units, i.e. ifvi andv j are neighbors, then they communicate at least once
in every interval[t, t +d] for all t ≥ 0.

• All logical clocks run with a rate of at least 1/2:

Li(t +∆t)−Li(t)≥ ∆t/2 .

• The communication graph is connected.

4.4 Lower Bound
For the rest of the chapter, we assume a simple communication graph, namely
a chain ofn nodes:vi andv j are neighbors iff| j − i| = 1. We furthermore use

γ = ρ̂d
1+ρ̂

for givenρ̂ andd.
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Fig. 45: Modification of clock drifts that leads to limits on the increase of the logical clock.

In this section, we will proceed as follows: Theorem 22 and Corollary 23
show that under certain conditions, a node’s logical clock cannot change too
fast without violating the gradient property. In Theorem 24, we show that for a
given traceT, we can construct an indistinguishable traceT ′ which is shorter
thanT and at the end of which two distinct nodes have a larger clock difference
than at the end ofT. Corollary 25 uses this result to show that the error between
two nodes is also lower-bounded by a linear function of their distance. The
claim of Theorem 26 is similar to that of Theorem 24, with the addition that
the constructed trace fulfills the prerequisites of Theorem 26 and can hence be
used as input for another iteration. This leads directly to Theorem 27, where
the lower bound on the clock difference of two neighboring nodes is derived by
showing that a sufficient number of iterations can be performed.

Thm. 22:Let an LSA satisfying the f -GP be given, and let all hardware clocks have drift
ρ = 0. Let a node communicate with a neighbor at t0 and the next time at t0+d.
Then in any time interval of lengtĥρd/4 that is enclosed in[t0+d/4, t0+3d/4],
the node’s logical clock cannot change by more than2 f (1).

Proof: In the following, we consider the nodevi , its neighborvi+1, and two
traces,T andT ′. In T, all nodes have driftρ = 0. In T ′, an adversary increases
the drift of nodesv0 to vi by ρ̂ in t ∈ [t0, t0 +d/4] and decreases it by the same
amount int ∈ [t0 +3d/4, t0 +d], see Figure 45.

First, we will determine the time intervalτ according to Figure 46. It is the
interval by whichvi ’s hardware clock is shifted inT ′ with respect toT. We
denote nodevi ’s local times at timet0 + d/4 in T andT ′ ash1 andh2. Thus,
τ = h2−h1 = ρ̂d/4.

Now, we determine by how much the logical clock ofvi can increase within a
real-time interval of sizeτ. We denote the difference between the logical clocks
of vi andvi+1 in traceT at timet0 +d/4 as∆L1. If vi increases its logical clock
by ∆L betweenh1 andh2, then the difference between the logical clocks ofvi
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Fig. 46: Detailed view of the time shift in Figure 45. The clock ofvi is accelerated in traceT ′.

andvi+1 in traceT ′ at timet0 +d/4 is ∆L2 = ∆L1 +∆L. With |∆L1| ≤ f (1) and
|∆L2| ≤ f (1), we obtain|∆L| ≤ 2 f (1). The same argument holds for all intervals
of sizeτ within [t0 +d/4, t0 +3d/4].

Cor. 23: Let an LSA that satisfies the f -GP be given, and let all hardware clocks have
drift ρ = 0. Let the time difference between two communications of a node to
the same neighbor be d, and that between two arbitrary communications at least
d/2 1. Then in any time interval of lengtĥρd/4, the node’s logical clock cannot
change by more than2 f (1).

Proof: The corollary follows directly from Theorem 22. Let us suppose that
nodevi communicates withvi+1 atkd and withvi−1 atd/2+kd for k≥ 0. Then
the change of the logical clock ofvi is bounded in[d/4+kd,3d/4+kd] because
of the communication withvi+1, and in[d/4+ d/2+ kd,3d/4+ d/2+ kd] =
[3d/4+kd,d/4+(k+1)d] because of the communication withvi−1. Hence, it
is bounded at all times.

Thm. 24:Let a trace T , two nodes vi and vj , j > i, and a time interval I= [t0, t1], t1 =
t0+ 1

2( j− i)d be given. Let the time difference between two communications of a
node to the same neighbor be d, and that between two arbitrary communications
at least d/2. In addition, let us assume that all driftsρ are 0 in I and that at
time t1, we have Lj(t1)−Li(t1) = λ .

Then there exists another trace T′ that is identical to T before t0 and that at
real time t2 = t1− ( j− i) ρ̂d

2(1+ρ̂) satisfies

L j(t2)−Li(t2)≥ λ +( j− i)
ρ̂d

4(1+ ρ̂)
.

1Note that this, together with the previous condition, implies it to be exactlyd/2.
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Fig. 47: Exemplary scenario for Theorem 24. Note the triangle of fast clocks.

Proof: An exemplary scenario is depicted in Figure 47, wherej = i +4. In trace
T, all drifts ρ are 0. In traceT ′, the drifts of all nodes are 0 untilt0. For nodesv0

to vi , the drifts remain 0 throughout the whole scenario; the other nodes’ drifts
change as depicted in Figure 47, where “0” denotesρ = 0, “+” denotesρ = +ρ̂,
and “−” denotesρ =−ρ̂.

The adversary changes the speed of a hardware clock inT ′ at the same local
time at which a communication took place in traceT. Moreover, he also shifts
the real time at which the communication takes place inT ′, thus makingT ′

indistinguishable fromT. It is clear from Figure 47 that the scheme of changing
drifts is consistent with the scenario described in the theorem.

Now, we can calculate the time differenceτ = t1− t2 between the commu-
nication event at nodev j at timet1 = t0 + 1

2( j− i)d in traceT and at timet2 in
traceT ′, see Figure 48. Between timest0 andt1, ρ = 0 in T, and hence the local
time of v j advanced by∆h = t1− t0. The difference in local times between the

two events is identical inT ′. As t2− t0 = t1−t0
1+ρ̂

, we obtainτ = ( j− i) ρ̂d
2(1+ρ̂) .

Finally, we denote as∆L1 = λ the (positive) difference between the logical
clocks ofv j andvi at timet1 in T. As the speed of the logical clock is≥ 1/2, the
difference∆L between the logical clocks ofvi at t2 andt1 is ∆L≥ τ/2. Since the
reading ofv j ’s logical clock att1 in T is identical to that att2 in T ′, we obtain
∆L2 ≥ ∆L1 + τ/2, where∆L2 denotes the difference of the logical clocks att2
in T ′.

The following corollary shows that the error between two nodes is also
lower-bounded by a linear function of their distance.
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Fig. 48: Detailed view of the time shift in Figure 47. The clock ofv j is accelerated in traceT ′.

Cor. 25: For any LSA, there exists a trace such that at some real time t, two nodes vi and
v j with distance si j have a difference of their logical clocks|L j(t)−Li(t)| ≥ si j

γ

8.

Proof: Let us suppose that for somet1, L j(t1)−Li(t1) = λ . We assume|λ | <
si j

γ

8, otherwise we are done. Then according to Theorem 24, there exists an
indistinguishable trace with

L j(t2)−Li(t2)≥ λ +si j
γ

4
>−si j

γ

8
+si j

γ

4
= si j

γ

8
.

Thm. 26:Given some k≥ 0, n> nk > 0 and t0. Given a trace T with the following prop-
erties:

• The trace is defined in I= [t0, t1], where t1 = t0 + 1
2nkd.

• The driftsρ of all nodes are 0 in I.

• The time difference between two communications of a node to the same
neighbor is d, and that between two arbitrary communications is at least
d/2.

• The difference of the logical clocks between some nodes vi+nk and vi at
real time t1 is bounded by Li+nk(t1)−Li(t1)≥ knk

γ

8.

For a given nk, we define nk+1 = nkγ2

64d f(1) < nk. Then for any LSA, there is another

trace ending with a trace T′, and T′ has the following properties:

• The trace is defined in I= [t2, t3], where t2 = t1−nk
γ

2 and t3 = t2+ 1
2nk+1d.

• The driftsρ of all nodes are 0 in I.

• The time difference between two communications of a node to the same
neighbor is d, and that between two arbitrary communications is at least
d/2.
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Fig. 49: One step of the adversary’s construction: The initial traceT is first skewed and cut.
Then, another trace is appended and becomes the new “initial trace”.

• The difference of the logical clocks between some nodes vj+nk+1 and vj is
bounded by Lj+nk+1(t3)−L j(t3)≥ (k+1)nk+1

γ

8.

Proof: The stages of one step in the adversary’s construction of a new trace are
depicted in Figure 49. The initial trace satisfies the conditions of Theorem 24.
Therefore, the adversary can construct another trace that yields

Li+nk(t2)−Li(t2)≥ knk
γ

8
+nk

γ

4

as the LSA cannot be aware of the change of the trace. We havet2 = t1−nk
γ

2.
The adversary now cuts the constructed trace att2 and appends traceT ′.

This cut obviously does not change the difference in the logical clocks att2,
but the LSA may be aware of this change duringT ′. On the other hand,T ′ is
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of the form we need in order to apply Corollary 23. The length of this trace is
1
2nk+1d. According to Corollary 23, a logical clock cannot change by more than
2 f (1) in time ρ̂d/4. Of course, it also cannot change more in a smaller interval
γ/4. The logical clocks of bothvi andvi+nk can change at most by the same
amount. Therefore, their difference cannot change by more than 4f (1) in time
γ/4. As a consequence, the change in the difference of the logical clocks from
t2 to t3 is bounded by12nk+1d4 f (1)

γ/4 . In order to get a change ofnk
γ

8, we set

nk+1 =
nkγ2

64d f(1)
.

Now, we have two nodesvi andvi+nk at t3 whose logical clocks differ by at least
nk

γ

8k+ nk
γ

4 − nk
γ

8 = (k+ 1)nk
γ

8. As nk+1 < nk, we find another nodev j with
i ≤ j ≤ i +nk−nk+1 such thatL j+nk+1(t3)−L j(t3)≥ (k+1)nk+1

γ

8.

Thm. 27:Given any LSA. Then there exists a trace such that two nodes vi and vj with
j = i +1 have at some time t a difference of their local clocks

|L j(t)−Li(t)| ≥ γ

8
log(n−1)

log
(

8(1+ρ̂)
ρ̂

log(n−1)
) .

Proof: The adversary can repeat the construction from Theorem 26 untilnk = 1
or 1

2nkd = 1, whichever happens first. For the rest of the proof, we assumed≥ 2.
Initially, the adversary setsk = 0 andnk = n−1. Note that for allk, we have

nk = (n−1)
(

γ2

64d f(1)

)k

.

For nk = 1, we obtain

k =
log(n−1)

log 64d f(1)
γ2

.

At the end of the adversary’s construction, we find two neighbor nodes with
nk = 1 that have a difference in their logical clocks ofγ

8k. To determine a lower
bound on the difference between the logical clocks, we need to solve

f (1) =
γ

8
log(n−1)

log 64d f(1)
γ2

.

The solution is

f (1) =
γ

8
log(n−1)

Plog
(

8d
γ

log(n−1)
) ,

where Plog(x) is defined as the valuez with x = z·2z. For the values used here,
we always have

Plog

(
8d
γ

log(n−1)
)
≤ log

(
8d
γ

log(n−1)
)
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and hence

f (1)≥ γ

8
log(n−1)

log
(

8d
γ

log(n−1)
) .

4.5 Summary
In this chapter, we examined gradient clock synchronization in a system model
with infrequent communication and hence negligible delay uncertainties. We
argued that this model reflects typical wireless sensor networks better than the
model from [FL04]. We then derived a lower bound for the achievable synchro-
nization quality in our model and discussed its relation to known results.

Further work consists in finding suitable algorithms that attain this bound.
We believe that this is not possible with local algorithms. Moreover, the results
both from [FL04] and from this chapter could be extended from chains to arbi-
trary network topologies.



5
Conclusions

We will now summarize the contributions of this thesis and give directions for
further work.

5.1 Contributions

In this thesis, we made a number of contributions to the state of the art in the
field of time synchronization for mobile ad-hoc networks:

New system model
We presented the zero-delay model as a new system model for the analysis of
interval-based time synchronization in mobile ad-hoc networks. We justified
our model by observing that clock drift dominates the synchronization error in
networks with infrequent communication.

Worst-case bounds
Using our model, we derived worst-case bounds on the quality of interval-
based synchronization, namely lower bounds on the synchronization error for a
given communication pattern. We showed that the algorithm IM from [MO83]
is worst-case-optimal.

Optimal and efficient interval-based synchronization
The algorithm IM is not optimal in the average case. We presented three algo-
rithms, the BP-ISA and Algorithms 3 and 4. These algorithms are also worst-
case-optimal, but achieve better synchronization quality in the average case by
exploiting the time information that can be gained from the drift diversity of the
clocks in the network. We showed that Algorithms 3 and 4 achieve optimal syn-
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chronization, albeit at the cost of high memory and communication overhead.
We described how limiting the amount of data that is stored and communicated
affects the synchronization quality, concluding that the increment in synchro-
nization quality for each additional event stored in the view quickly becomes
very small. This means that it typically is not necessary to store and communi-
cate all events to obtain the best possible synchronization.

Mobility
We showed that interval-based synchronization does not need particular com-
munication patterns such as trees or clustered hierarchies. This makes the inter-
val-based approach resilient to node mobility, as there are no broken topologies
that have to be repaired. Our simulation results suggest that mobility actually
improves interval-based synchronization by increasing the rate of information
dissemination through the network.

Gradient clock synchronization in wireless sensor networks
The system model in [FL04] differs considerably from our system model. We
showed that a similar lower bound for the error of gradient clock synchroniza-
tion as in [FL04] exists also in our system model.

5.2 Future Work
A major improvement in the synchronization quality can be achieved by an
extension of the clock model: Bounds on the variation dρ(t)/dt of the drift (as
proposed in [SS97]) allow to estimate and compensate for the current drift. Back
paths can be beneficial also here.

Our simulation results can be extended by varying the parameters. The re-
sults presented in this thesis can serve as an indication of where the interesting
regions in the parameter space are. For instance, the gain from back paths seems
to be largest for those transmission ranges for which all nodes are just barely
connected. Another possible extension consists in exploring different mobility
models.

For gradient clock synchronization, further work consists in finding suitable
algorithms that attain the lower bound or alternatively a better lower bound.
Moreover, the results both from [FL04] and from this chapter could be extended
from chains to arbitrary network topologies.

Finally, an implementation of the algorithms presented in this thesis on an
actual hardware platform would allow to verify the practical benefit of interval-
based synchronization.
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