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Abstract

Global warming is a defining challenge of our time with devastating conse-
quences for local habitats. High mountain areas are particularly affected by
global warming leading to a decline of their cryosphere (glaciers, snow cover
and permafrost). In high-alpine steep bedrock, permafrost thaw decreases the
stability of mountain slopes leading to an increase of rockfalls and landslides
and thereby putting life and built infrastructure at risk.
Monitoring these environmental changes is important for natural hazard warning
and understanding the geophysical processes leading to such hazards. Moreover,
by providing evidence from large-scale, long-term measurements, environmental
monitoring helps to bolster scientific findings and can call attention to the
immediate impacts of climate change. The rise of wireless sensor networks
offers a range of possibilities for environmental monitoring enabling large-scale
deployments with high spatial-temporal resolution using many different sensor
types. The cheap and diverse sensors can be installed at hard to reach places
with little available networking or power infrastructure. However, the resulting
datasets (often heterogenous and long-term measurements) require a complex
data analysis. Moreover, networking or power failures often lead to an error-
prone data collection and a fragmented and noisy datasets. Analyzing these
datasets typically requires dedicated domain-expert knowledge which can not
be scaled to long-term monitoring datasets. Machine learning provides options
to extract information automatically but these techniques usually require a clean
dataset for training and their performance is strongly affected by differences in
the distribution of training and test data.
In this dissertation, we consequently develop tools and methods applicable to
heterogeneous, long-term, noisy datasets originating in wireless sensor network
deployments. The main contributions of the dissertation are
n A methodology to work with fragmented and noisy data from a real-world
sensor network deployment at Matterhorn, Switzerland. The methodology uses
active learning with human-in-the-loop and a heterogeneous set of sensors to
systematically filter out unwanted influences from seismic signals.
n The development and installation of an array of low-power, event-triggered
micro-seismic sensors for the purpose of rockfall early warning. In addition, a
machine-learning based human footstep classifier is designed and optimized for
computation on memory-constraint embedded devices to detect humans in the
hazard zone.
n Unsupervised and semi-supervised methods designed to bridge machine
learning technology and domain-expert knowledge by providing experts with
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automated information extraction and machine-learning algorithms with crucial
information such as information about the system context.
n foReal, a data analytics and visualization platform which allows to
combine data from different sources. It is designed for long-term and
large-scale environmental datasets and focuses on robustness against data
corruption, missing data and misconfigurations during data processing as well
as misinterpretations during experiment design and analysis. The tooling
developed enables fast and easy exchange between experts of various domains
and offers the public access to scientific data.



Zusammenfassung

Die globale Erwärmung ist eine der entscheidendsten Herausforderung unserer
Zeit mit verheerenden Folgen für lokale Lebensräume. Hochgebirgsregionen
sind besonders von der globalen Erwärmung betroffen, da die Erwärmung einem
Rückgang der Kryosphäre (Gletscher, Schneedecke und Permafrost) zur Folge
hat. Im hochalpinen, steilen Felsgestein verringert das Auftauen des Permafrosts
die Stabilität der Berghänge, was zu einer Zunahme von Steinschlägen und
Erdrutschen führt. Solche Bergstürze können verheerenden Auswirkungen auf
Siedlungen, Infrastruktur und Menschenleben haben.
Die Beobachtung dieser Umweltveränderungen durch grossflaechige
Langzeitmessungen ist wichtig, um vor der Naturgefahr zu warnen und
um das Verständnis der geophysikalischen Prozesse, welche durch Auftauen
der Permafrostböden entstehen können, zu verbessern. Außerdem können
großflächige Langzeitmessungen wissenschaftliche Erkenntnisse untermauern
und auf die unmittelbaren Auswirkungen des Klimawandels aufmerksam
machen. Der Anstieg der Nutzung von funkbasierten Sensornetzwerken
bietet eine Reihe von Möglichkeiten für die Umweltbeobachtung und
ermöglicht großflächige Einsätze mit hoher räumlicher und zeitlicher Auflösung
sowie vielen unterschiedlichen Sensortypen. Die billigen und vielfältigen
Sensoren können an schwer zugänglichen Orten mit wenig Netzwerk-
oder Energieinfrastruktur installiert werden. Die daraus resultierenden
Datensätze (oft heterogene Langzeitmessungen) erfordern jedoch eine
komplexe Datenanalyse. Außerdem führen Netzwerk- oder Stromausfälle oft
zu einer fehleranfälligen Datenerfassung und fragmentierten und verrauschten
Datensätzen. Die Analyse dieser Datensätze erfordert in der Regel Fachwissen,
das sich nicht auf langfristige Beobachtungsdatensätze skalieren lässt.
Maschinelles Lernen bietet Optionen zur automatischen Extraktion von
Informationen. Diese Techniken erfordern aber in der Regel einen sauberen
Datensatz zum Lernen und ihre Leistung wird stark durch Unterschiede in der
Zusammensetzung des Trainingsdatensatzes gegenüber Daten während der
Anwendung beeinflusst.
In dieser Dissertation entwickeln wir daher Werkzeuge und Methoden, die
auf heterogene, verrauschte Langzeitdatensätze aus drahtlosen Sensornetzen
abgestimmt sind. Die wichtigsten Beiträge der Dissertation sind:
n Eine Methodik für die Arbeit mit fragmentierten und verrauschten Daten
aus einer realen Sensornetzinstallation am Matterhorn, Schweiz. Die Methodik
verwendet aktives Lernen mit Human-in-the-Loop und einem heterogenen
Satz von Sensoren, um systematisch, unerwünschte Einflüsse aus seismischen
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Signalen herauszufiltern.
n Die Entwicklung und Installation eines Arrays von ereignisgesteuerten,
seismischen Sensoren für die Frühwarnung vor Steinschlag. Darüber hinaus wird
ein auf maschinellem Lernen basierender Klassifikator für menschliche Schritte
entwickelt um Menschen in der Gefahrenzone zu erkennen. Dieser Klassifikator
wird für die Berechnung auf eingebetteten Geräten mit begrenztem Speicher
optimiert.
n Unüberwachte und halbüberwachte Lernmethoden, die maschinelles Lernen
und das Wissen von Fachleuten verbinden. Dabei werden Experten mit au-
tomatische Informationsextraktion unterstützt und maschinelle Lernalgorithmen
mit wichtigen Informationen versorgt, wie z. B. Informationen über den
Systemkontext.
n foReal, eine Datenanalyse- und Visualisierungsplattform, die es ermöglicht
Daten aus verschiedenen Quellen zu kombinieren. Sie wurde für langfristige
und große Umweltdatensätze ausgelegt und konzentriert sich auf die Robustheit
gegenüber Datenkorruption, fehlende Daten und Fehlkonfigurationen bei der
Datenverarbeitung sowie Fehlinterpretationen während der Versuchsplanung
und -analyse. Die Plattform ermöglicht einen schnellen und einfachen
Austausch zwischen Experten aus verschiedenen Bereichen und bietet der
Öffentlichkeit einen Zugang zu wissenschaftlichen Daten.
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1
Introduction

Climate change challenges the earth and our society. Among others, global
warming accelerates the retreat of permafrost globally [PRM+, BSN+19] acting
as an accelerator for a changing world climate [MSC+19]. In addition to
global scale effects, on local scales the thawing of permafrost has immediate
consequences on our habitat. In Alpine regions, permafrost is seen as a
stabilizing element [FKHN06, GH07, KFG13] and its retreat can lead to
an increase in mass movements such as landslides and rockfalls [ACO11,
RD11, FPH+12, BC20] threatening the (densely) populated mountainous
regions [HRA+19]. Pertinent examples of mass movements are the rockfall and
consequent debris flow which occurred 2017 at Piz Cengalo (CH) [WAK+20]
or the 2021 rock and ice avalanche in Chamoli, Indian Himalaya [SJS+21],
leading to a number of fatalities and severe damage to the built environment.
The complex processes leading to such natural hazards are not thoroughly
understood. Especially, the impact of climate change as trigger for such
isolated hazardous events requires further research [SJS+21]. Nonetheless,
high-mountain slopes are sensitive to warming from climate changes and an
increase in frequency of such hazardous events is to be expected [HRA+19].
Therefore it is important to understand the variability and processes of climate
change through monitoring, modeling and forecasting, adapt to the increased
occurence of such hazardous events using protective measures and promote and
work towards mitigation efforts to reduce negative human influence on climate.
Environmental monitoring using wireless sensor networks provides opportunities
to gain novel insights useful for modeling and forecasting [HTB+08]. Moreover,
such systems can be designed to act as a protective measure in form of a hazard
warning system [GTWX11]. However, collecting and analyzing environmental
data is a labour intensive task. Developing, deploying and running an
environmental monitoring system using wireless sensor networks requires cross-
disciplinary knowledge (for example geophysical science, hardware and software
engineering, communication technology, data science). In addition, information
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and knowledge resources tend to be fragmented and isolated. Moreover,
analysis methods and interfaces are often not compatible, but the analysis of
a heterogeneous mixture of data streams requires well-aligned analytical tools
with clearly defined interfaces.
Long-term analysis requires a careful consideration of short-term effects which
consequently requires to analyze high-resolution short-term data for periods
of up to many years; performing it manually is an unrealistic task. There
are high expectations that advanced data science concepts and machine
learning methods are capable to fill this gab. They have proven to
be effective in various domains, such as image classification, audio event
detection [TGPG16, HCE+16], debris flow detection [CWW+21] and rockfall
detection [HPM+17, WHv+21]. However, when applied to long-term, real-
world data, the effectiveness of these methods is often diminished by biases in
training data [TSE+20], their requirement for careful post-processing [HPM+17]
or susceptibility towards changes in data distribution, due to for example
environmental changes, changes of sensor modalities, usage of different data
capturing devices [RSG+21]. Most importantly, these methods usually require
a clean, fully annotated dataset without label errors [NAM21].
In this dissertation, we focus on developing techniques to harness environmental
monitoring data collected for the analysis of thawing permafrost as well
as exploring technology for protective measures in form of rockfall early-
warning. We acknowledge the intricate nature of real-world data by presenting
methodologies which harmonize the interaction between experts of various
disciplines as well as machine learning algorithms and tools to develop solutions
for noisy, partially labeled and incomplete datasets.
It was of particular interest that parts of the resulting technologies may be used
to raise awareness to consequences of negative human influence on climate.
Consequently, we make data, code and publications public whenever possible.
Moreover, we present a web-based data analysis and visualization tool for
involving experts as well as the public.

1.1 Environmental monitoring strategies

Analyzing environmental data requires a careful design of the analysis system,
including experimental considerations as well as technical possibilities. These
design choices can be roughly categorized into the following four categories
which will be further explained in the upcoming sections.
Context To which application scenario should the analysis be applied? The

context is the base for design choices concerning the experimental setup
and/or the monitoring system. In Section 1.2 we will define the context
for this dissertation.

Data Basis Which data sources are required, used and how are they
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combined? The data basis may include sensors of different types,
annotations or external data providers which can be used in various
combinations which will be further discussed in Section 1.3.

Information Extraction Which techniques are applied to the data basis for
information extraction and subsequent knowledge generation? Different
types and amounts of data require different information extraction
techniques. Two techniques will be highlighted in Section 1.4.

Computing Which is the optimal compute location in terms of capacity,
throughput, latency, availability? Depending on the three aforementioned
categories there are different requirements on computing which will be
discussed in Section 1.5.

Overall, environmental monitoring can be regarded as an iterative process in
which the above mentioned categories are repeatedly evaluated and refined. One
such feedback loop is illustrated in Figure 4.5 which displays a wireless sensor
network deployed with a certain set of sensors based on expert knowledge. The
sensor data is transmitted for analysis, which is used for knowledge generation
and refinement. This knowledge can be incorporated into a new or updated
sensor deployment, yielding more relevant data for a more accurate analysis.

Figure 1.1 Iterative process of incorporating knowledge into a sensor network
deployment to gather relevant data which in turn generates new knowledge.

1.2 Context: Applications of Wireless Sensor Networks

Wireless sensor networks are typically applied in scenarios which require
sensor placement at locations which are hard to access or where networking
and power infrastructure is lacking. Several applications have emerged in
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various contexts. Wireless sensor networks were deployed for structural
monitoring such as bridges [SHW+10] and tunnels [MPC+10, SHW+10] or
railways [FGO+10]. They are frequently used for habitat monitoring [ZSLM04,
BMC+11]. Moreover, environmental monitoring applications include volcano
monitoring [WLR+06], air-quality monitoring [ASC+10] and permafrost moni-
toring [THGT07, HTB+08].
The advantages of wireless sensor networks are their independence from the
power supply infrastructure, which is also one of their weak points. The
reliance on battery power poses challenges in terms of sensor and network
availability. These challenges can be met by using energy-efficient technology
(microcontroller, memory, disk, battery), decoupling of communication and
processing [SZDF+15, BTF+19], better battery technology, optimizing trans-
mission protocols [FZTS11, FZMT12, SDFG+17] and using energy harvesting
supported by a battery [DT21] or replacing the battery [GSS+17]. However,
especially harsh environments such as steep high-alpine terrain pose an even
stronger requirement on the battery life due to cold temperatures and the
location’s inaccessibility. Moreover, the impact of data loss due to transmission
failures must be considered during experiment design which can only partially
be reduced by using advanced communication protocols [FZTS11].
In this thesis, we focus on two specific applications of wireless sensor networks
in which the above mentioned issues can be encountered, namely natural hazard
warning and environmental science. Although the context is similar there are
significant differences which affect the design choices of the data collection and
analysis system.
Natural hazard warning requires a fast reaction time and fast decision making
to avoid catastrophes. A warning system must be continuously running, have
a high reliability (networking and power) and it must be very accurate during
and before a hazard. Long-term data availability and thus a comprehensive
dataset is usually not required but can be useful for system fine-tuning and
later analysis.
Environmental science usually requires high-quality data for sound reasoning
but not an ability to react fast. The focus is on general understanding and
model building, which usually requires expert knowledge ideally supported by a
long-term and comprehensive dataset. Here, it is not always required to monitor
continuously if the time period of interest is known (short-term measurement
campaigns). However, continuous monitoring can provide insights about the
evolution of geophysical processes and can bring forward insights previously
unnoticed.
Ideally, a monitoring system is suited to fulfill the requirements of both scenarios.
One example could be a system continuously recording data which is capable
of autonomously reacting to rare events or natural hazards by triggering an
alarm and a high-resolution recording of the event. In practice such a system
is challenging to implement due to the constraints imposed by the choice of
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sensor and computing technology as well as information extraction methods.
In this dissertation, we will try to find a good tradeoff given the constraints to
develop systems applicable to one or both scenarios.

1.3 Data Basis: Matterhorn Deployment

Large parts of this dissertation are based on a long-term monitoring deployment
at the Matterhorn Hörnligrat field site located in Zermatt, Switzerland at
3500 m a.s.l. [WBF+19]. Although other data is also used in this dissertation,
such as seismic data from another deployement (Chapter 4) and acoustic data
(Chapter 3 and 4), we specifically highlight the Matterhorn deployment since it
is the focal point of this dissertation.
The Matterhorn field site was of special interest to conduct research on
permafrost in steep bedrock as a result of a rockfall in summer 2003. Uncovered
ice in the failure plain raised questions about the link between thawing
permafrost and the rockfall. Located on a ridge, accessible by a frequently used
climbing route, the location provided good preconditions to supplement previous
studies on thermal behavior of steep permafrost bedrock [GKK+04, GHH04,
NGK+07] with evidence from long-term, in situ measurements. Starting in
2007 with an initial sensor installations [THGT07, HTB+08], the deployment
subsequently grew into a multi-sensor wireless sensor network [BGH+09a]
using a heterogeneous set of sensors types, including thermal sensors,
crackmeters, a high-resolution camera [KYB09], GNSS receivers [BBF+11b],
local weather station, net total radiometer, acoustic emission sensors [GBG+12],
accelerometer and seismometer [WFM+18]. Moreover, it as been used as a
testbed and proof-of-concept for wireless communications protocols such as
Dozer [BvW07] or the event-based Low-power Wireless Bus (eLWB) [SDFG+17]
which is based on Glossy [FZTS11].
The data basis of this dissertation, is coming from a subset of the available
sensors, namely rock temperature, weather station, radiometer, camera and
seismometer. Additionally, we extend the sensor portfolio by a custom-designed,
event-triggered seismic sensor.
In this dissertation, we will work with the selected data basis in two distinct
ways.
Independent data analysis extracts information from each data type
individually. For example by using photos to detect snow cover and seismic
data to detect rockfalls.
Data fusion analysis extracts information jointly from a collection of data
types. For example a machine learning model is trained jointly with photos and
seismic data for mountaineer classification.
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1.4 Information Extraction

In the upcoming chapters we will consider multiple applications where
information extraction from the gathered signals is necessary to accomplish
a specific task. In this dissertation, the task usually involves classifying an
event which is registered by a sensor or a set of sensors. A concrete example
is to detect a rockfall with a seismic sensor while making sure that the event
registered is not wind or a mountaineer. We will discuss two options to extract
the information about a rockfall occurrence from the gathered signals, namely
by manual analysis or by algorithmic analysis. In our scenario, manual analysis
requires a certain domain knowledge, which can be contributed by domain
experts who work with the data using analytical tools and visualizations resulting
in a model of the geophysical process. Relying solely on manual analysis
is however not scalable to large datasets. Automating analysis by applying
algorithms at scale has the potential to overcome this bottleneck. However,
many algorithms cannot perform as well as a human expert. Machine learning
is suited to integrate domain knowledge via expert-labeled datasets and it is
applicable to large datasets. It has been shown in other application domains
that machine learning algorithms come close to the accuracy of humans in
classification tasks. However, these algorithms require a large training dataset
of high quality which covers the full range of the expected data, it might
introduce biases due to non-representative training sets, it is often susceptible to
slight data modifications reducing its transferability and it is limited by available
compute power.
Since a major part of this dissertation deals with the question of how to extract
information from data, we will explain two options (involving domain knowledge
or using machine learning) in more detail.

1.4.1 Domain Knowledge

Domain experts usually make use of a variety of analytical tools, experiments
and datasets to develop a model explaining the (geophysical) processes
under consideration. In the following, we will narrow our focus to one of
such analytical tools, namely information extraction using preprocessing and
visualization tools, since these tools can be used to condition the data basis
using domain knowledge. As such, it can be the point of contact when joining
machine learning and domain knowledge. Visually analyzing data is usually
performed by viewing the signal in one or multiple representations obtained
by preprocessing. For example, seismic data is usually analyzed using the
waveform, the spectrogram, and/or the power spectral density [PMH+18].
In many cases, experts can identify a characteristic rockfall signature in the
seismic signal [PMH+18], however deployment-dependent factors affect the
recognition accuracy, such as the type of seismic instruments or anthropogenic
noise source in proximity to the deployment. As a result, more information than
just one sensor can help to identify the correct source of the event triggering
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the seismometer. This information includes among others statistics, sensors of
different types, eye-witness reports and expert annotations.
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Figure 1.2 Expert-based information extraction can be categorized into analysis
based on independent data or data fusion. For independent data, each data signal
(here, Waveform and Images) is fed independently through a Frontend conditioning
the signal into a representation suitable to for visual analyis using a Plot. Finally,
the generated plots are individually analyzed by data type. For data fusion, the data
signals (here, Time-series, Waveform, Annotations) are fed through the frontend
individually and are jointly plotted. The resulting plots are analyzed by an expert.

Figure 1.2 conceptually illustrates how to extract information by visual analysis
from a set of signals. The available data is compiled based on their data
type. Each data type may require individual transformations to extract
useful information, for example spectrogram transformation, image resizing
and cropping, time series aggregation. These transformations can also include
models developed by domain experts. The data can be individually viewed
(independent data) or placed side-by-side to be viewed jointly (data fusion) for
example by viewing a segment of seismic data jointly with the timelapse image
at the same time.
Navigating through data streams of large and heterogenous datasets is
inherently complex in terms of data processing, visualization and information
extraction. Therefore, a method to manage a huge amount of data or to
reduce the amount of information to a manageable subset is favorable. In
this dissertation we will work on algorithms to preselect informative subsets
of a dataset which can be subsequently analyzed. Moreover, we present a
framework to manage multiple data sources for joint processing, visualization
and integration of algorithms into the analysis workflow, such as predictions
obtained via machine learning algorithms.



8 Chapter 1. Introduction

1.4.2 Machine Learning

Machine learning in general, and deep learning in particular, have gained a lot of
interest due to their advanced feature extraction and classification capabilities.
In contrast to manual model development using domain knowledge, machine
learning algorithms are used to automatically develop a model based on data.
The advantage of machine learning is the fact that models can be developed
even if the underlying processes to be modeled are not well understood or
domain knowledge is missing. These models can surpass human capabilities in
certain tasks. However, they usually require a large amount of annotated data
and in certain cases the lack of expert knowledge leads to erroneous models.
In this dissertation we will focus on a subset of deep learning, namely artificial
neural networks such as multilayer perceptrons (MLP) and convolutional neural
networks (CNN).

Waveform Time-Frequency
Representation

Decoder

Embedding Class Vector

B
C

A

x

x

x

x

D

... ...

Encoder

...

Frontend
Processing Unit

Figure 1.3 High level overview of the processing pipeline used throughout this
dissertation.

On a high level, the processing pipeline used in this dissertation can be
subdivided into the three parts, namely frontend, encoder and decoder as
illustrated in Figure 1.3 for the example of waveform classification. The input
data is preprocessed using one or many processing units (for example detrending
the signal, applying the short-time Fourier transform). The result is fed into
an encoder which transforms the data into an intermediate representation
(embedding) which is then further transformed into a meaningful output
(class vector) using a decoder. The encoder and decoder usually consist of
processing units with adaptable parameters (for example layers of an artificial
neural network). These parameters are optimized in an iterative, data-driven
procedure to make the output meaningful. This optimization procedure makes
the processing pipeline generically applicable to a large range of data input
types and a large range of different tasks. Figure 1.3 also illustrates that the
data-driven optimization of machine learning creates a "black box" model. In
contrast to the waveform, spectrogram or class names, the embedding produced
by the encoder is usually a high-dimensional vector or matrix which is typically
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non-intuitive and meaniningless to the human eye.
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Figure 1.4 Machine learning-based information extraction can be categorized into
optimization based on independent data or data fusion. For independent data, each
data signal (here, Waveform and Images) is fed independently through a chain
of processing units consisting of a Frontend, Encoder and Decoder. Finally, the
processing units which are trainable are optimized using a loss function (Classifier
Loss LC) and corresponding ground truth. For data fusion, the data signals (here,
Time-series, Waveform, Annotations) are fed through the chain of frontend and
encoder independently. The resulting embedding of each chain can be fed through
a decoder being optimized with target-based optimization (classification loss LC or
recreation loss LR) or fed through an encoder head EH being optimized using an
embedding loss LE .

In analogy to Figure 1.2, Figure 1.4 conceptually illustrates how machine
learning models can be optimized. The available data is compiled based on
their data type and each data item is fed through the frontend and encoder to
compute the embedding. The embedding usage depends on the use case. For
optimization based on independent data, the embeddings are independently fed
through a decoder and the combination of encoder and decoder are optimized
using a target-based optimization, such as computing a classification loss (LC)
between decoder output and annotations or optimizing to recreate the input
signal (LR). For optimization based on data fusion, we distinguish two cases,
namely target-based optimization or embedding-based optimization. These
two optimizations can be applied simultaneously or sequentially. Target-based
optimization is applied the same way as for optimization of independent data
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but may be designed to optimize all encoders simultaneously. For embedding-
based optimization the embedding is fed through an encoder head and the result
is used to compute an embedding loss which in turn updates the encoders and
encoder head.
In the upcoming chapters we will define concrete implementations of these
optimization procedures. Note that the division into components as presented
above is purely conceptual. In application, there is often no clear division.
For example in most classification tasks, encoder and decoder are optimized
end-to-end and represented by one single artificial neural network. However, in
Chapter 3 and in Chapter 4 we will use this distinction to optimize a model
architecture and develop a semi-supervised method, respectively.
In this dissertation, we will apply machine learning methods to classification
problems in environmental monitoring. We will design methods to integrate with
but not replace the prevailing analysis methods. Especially, we design methods
to clean monitoring data of unwanted influences in post-processing and during
data recording. Moreover, we introduce options to combine domain knowledge
and machine learning by using expert-based annotations and domain knowledge
about the system context. Finally, machine learning is made accessible with a
framework to process, visualize and annotate data as well as processing results.

1.5 Computing

The question where to compute is important and depends on the requirements
highlighted in the previous sections, namely on the amount of data to be
processed, what type of processing to perform and most importantly on the
context. Computation is usually limited by capacity (how much can be stored?),
throughput (how much/fast can be processed?) and latency (how long does it
take to get the first results for a query?). Especially in wireless sensor networks,
availability of a service is another significant factor (how steady is the energy
supply? How often is a sensor non-responsive?). Computation can be roughly
subdivided into edge computing (close to the sensor on an embedded device)
or cloud computing (on a server in a datacenter).
Edge computing provides fast response times (low latency) but is limited
by energy (availability), processing speed (throughput) and memory/storage
(capacity). Examples for edge computing are on-sensor data preprocessing or
more complex task such as on-device keyword spotting [ZSLC17] using machine
learning.
Cloud computing is an umbrella term for storage and applications running on
dedicated network-accessible compute hardware. Here, compute and storage
resources are virtually unlimited (high throughput and capacity). Availability is
limited mainly by the connection from server to user. Server-sided availability is
usually guaranteed by the cloud vendors (high availability). However, in contrast
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to computing on the edge, transferring data from "the edge into the cloud"
introduces an additional delay (high latency) and additional resource usage such
as communication, bandwidth and energy. Depending on the application, this
delay is non-negligible.
In this dissertation we will try to balance the tradeoff between accurate
but computationally complex deep learning models and resource limited
computation devices. On the one hand, we focus on architectural and
computational optimizations which allow a deep learning model to run on
resource-constraint edge devices. On the other hand, we are developing cloud-
based analytics tools that leverage the high availability and computing power
of the cloud to analyze long-term datasets collaboratively with multiple people.

1.6 Thesis Outline and Contributions

Environmental
Science

Natural Hazard
Warning

Context

Data
Fusion

Information
Extraction

Machine
Learning

Domain
Knowledge

Computation CloudEdge

Data Basis Independent

Figure 1.5 Conceptual structure of this dissertation. Each of the main categories
is defined by a concept pair - two conceptually opposing aspects of each category.

Summarizing the previous sections, Figure 1.5 highlights the main design criteria
for a system analyzing environmental data. Each of the previously discussed
categories (namely context, data basis, information extraction and computation)
is defined by two conceptually opposing aspects: The context is defined by
applications to natural hazard warning and/or environmental science. The data
basis can be based on independent data and/or data fusion. The information
extraction can be done using domain knowledge and/or machine learning. The
computation can be performed on the edge and/or in the cloud. In the following
we will present the contributions of each chapter and highlight the related
aspects.
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Chapter 2

In Chapter 2, we first introduce in more detail
a specific set of sensors of the wireless sensor
network deployment at Matterhorn, Switzerland and its
characteristics. Using data from this set of sensors,
we propose a methodology to systematically filter out
unwanted influences from seismic signals using a set of
heterogenous sensors and human-in-the-loop.

Chapter 3

In Chapter 3, we present an event-driven, low-power
system for the purpose of rockfall early-warning.
Additionally, the system features a method for timely,
on-device processing of a convolutional neural network.
It is deployed in the aforementioned Matterhorn field
site and its characteristics are evaluated.

Chapter 4
In Chapter 4, on the one hand we demonstrate how
machine learning can support domain-experts with semi-
supervised and unsupervised information extraction. On
the other hand, we demonstrate how experts increase
performance of machine learning classifiers by providing
crucial knowledge about the system context, collecting
such knowledge in form of a graph and utilizing the
graph in a deep representation learning framework.

Chapter 5

Finally, in Chapter 5, we present the data analytics and
visualization platform foReal which allows to combine
environmental data from different sources, enabling fast
and easy exchange between experts of various disciplines
while fulfilling the processing demands of long-term,
large-scale environmental datasets.



2
Identification of external influences in

micro-seismic recordings

In this chapter, we introduce the general setting of this thesis, namely using
seismic monitoring and wireless sensor networks for long-term monitoring of
high-alpine steep permafrost bedrock. Futhermore, we propose a methodology
to systematically filter out unwanted influences from seismic signals using a set
of heterogenous sensors and human-in-the-loop.
Passive monitoring of ground motion can be used for geophysical process
analysis and natural hazard assessment. Detecting events in micro-seismic
signals can provide responsive insights into active geophysical processes.
Novel sensor network technology and cheaper seismic sensors are facilitating
applications such as local detection of mass movements and slope instabilities
allowing for a quick deployment in hard to reach regions. However, in the
raw signals micro-seismic events are superimposed by external influences, for
example anthropogenic or natural noise sources that distort analysis results.
In order to be able to perform event-based, geophysical analysis with such
micro-seismic data records it is imperative that negative influence factors can
be systematically and efficiently identified, quantified and taken into account.
Current identification methods (manual and automatic) are subject to variable
quality, inconsistencies or human errors. Moreover, manual methods suffer from
their inability to scale to increasing data volumes, an important property when
dealing with very large data volumes as in the case of long-term monitoring.
In this chapter, we present a systematic strategy to identify a multitude of
external influence sources, characterize and quantify their impact and develop
methods for automated identification in micro-seismic signals. We apply
the strategy developed to a real-word, multi-sensor, multi-year micro-seismic
monitoring experiment performed at the Matterhorn Hörnligrat (CH). We
develop and present an approach based on convolutional neural networks for
micro-seismic data to detect external influences originating in mountaineers, a
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Figure 2.1 This chapter’s position in the context of the dissertation

major unwanted influence, with an error rate of less than 1%, 3x lower than
comparable algorithms. Moreover, we present an ensemble classifier for the
same task obtaining an error rate of 0.79% and an F1 score of 0.9383 by
jointly using time-lapse image and micro-seismic data on a annotated subset
of the monitoring data. Applying these classifiers to the whole experimental
dataset reveals that approximately 1/4 of events detected by an event detector
without such a pre-processing step are not due to seismic activity but due to
anthropogenic influences and that time periods with mountaineer activity have
a 9x higher event rate. Due to these findings we argue that a systematic
identification of external influences using a semi-automated approach and
machine learning techniques as presented in this paper is a prerequisite for
the qualitative and quantitative analysis of long-term monitoring experiments.
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2.1 Problem Setting

Passive monitoring of elastic waves, generated by the rapid release of energy
within a material [Har03] is a non-destructive analysis technique allowing a
wide range of applications in material sciences [LCC01], engineering [GO08]
and natural hazard mitigation [MCO12] with recently increasing interest
into investigations of various processes in rock slopes [AAC+10, OCA+12].
Passive monitoring techniques may be broadly divided into three categories,
characterized by the number of stations (single vs. array), the duration of
recording (snapshot vs. monitoring) and the type of analysis (continuous vs.
event-based). On the one hand, continuous methods such as the analysis of
ambient seismic vibrations can provide information on internal structure of a
rock slope [BMMF12, GEMH15, WFB+18]. On the other hand, event-based
methods such as the detection of micro-seismic events (which are focus of
this study) can give immediate insight into active processes, such as local
irreversible (non-elastic) deformation occurring due to the mechanical loading
of rocks [GO08]. However, for the reliable detection of events irrespective of
the detection method the signal source of concern has to be distinguishable
from noise, for example background seismicity or other source types. This
discrimination is a common and major problem for analyzing micro-seismic data.
In general, event-based geoscientific investigations focus on events originating
from geophysical sources such as mechanical damage, rupture or fracture in
soil, rock and/or ice. These sources originate for example in thermal stresses,
pressure variations or earthquakes [AGG12]. However, non-geophysical sources
can trigger events as well: (i) anthropogenic influences such as helicopter or
mountaineers [ELBA17, vS11, WFM+18] and (ii) environmental influences /
disturbances, such as wind or rain [AAC+10]. One way to account for such
external influences is to manually identify their sources in the recordings [vS11].
This procedure, however, is not feasible for autonomous monitoring because
manual identification does not scale well for increasing amounts of data.
Another approach is to limit to field sites far away from possible sources of
uncontrolled (man-made) interference or to focus and limit analysis to decisively
chosen time periods known not to be influenced by for example anthropogenic
noise [OCA+12]. In practice both the temporal limitation as well as the spatial
limitation pose severe restrictions. First, research applications can benefit
from close proximity to man-made infrastructure since set up and maintenance
of monitoring infrastructure is facilitated [WLJ+06]. Second, applications in
natural hazard early warning must not be restricted to special time-periods only.
Moreover, they are specifically required to be usable close to inhabited areas
since those should be protected, although this setting increases the likelihood for
human interference on the signals recorded. As a conclusion it is a requirement
that external influences can be taken into account with an automated workflow,
including pre-processing, cleaning and analysis of micro-seismic data.
A frequently used example of an event detection mechanism is an event detector
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called STA/LTA that bases on the ratio of short-term average to long-term
average [All78]. Due to its simplicity, this event detector is commonly used
to assess seismic activity by calculating the number of triggering events per
time interval for a time period of interest [WAY+98, AGS05, SDL09]. It is
often used in the analysis of unstable slopes [CCVB18, LJB11] and is available
integrated into many commercially available digitizers and data loggers [Geo18].
With respect to unwanted signal components, STA/LTA has also been used to
detect external influence factors such as footsteps [AMK18] but due to its
inherent simplicity, it cannot reliably discriminate geophysical seismic activity
from external (unwanted) influence factors such as noise from humans, natural
sources like wind, rain or hail without manually supervising and intervening with
the detection process on a case by case basis. As a result the blind application
of STA/LTA will inevitably lead to the false estimation of relevant geophysical
processes if significant external influences, such as wind, are present [All78].
There exist several algorithmic approaches to mitigate the problem of external
influences by increasing the selectivity of event detection. Unsupervised
algorithms such as auto-correlation [BBS08, AB14, YOBB15] are either
computationally complex or do not perform well for low signal to noise
ratios. Supervised methods can find events in signals with low signal to
noise ratio. For example template matching approaches such as cross-
correlation methods [GR06] use event examples to find similar events, failing
if events differ significantly in "shape" or if the transmission medium is very
inhomogeneous [WFM+18]. The most recent supervised methods are based
on machine learning techniques [RA17, OCB18] including the use of neural
networks [KG17, PGD18, LMH+18, RMH18]. These learning approaches show
promising results with the drawback that large datasets containing ground truth
(verified events) are required to train these automated classifiers. In earthquake
research large databases of known events exist [KASK16, RMH18], but in
scenarios like slope instability analysis where effects are on a local scale and
specific to a given field site such data are inexistent. Here, inhomogeneities are
present on a very small scale and field sites differ in their specific characteristics
with respect to signal attenuation and impulse response. In order to apply such
automated learning methods to these scenarios obtaining a dataset of known
events is required for each new field site requiring substantial expert knowledge
for a very arduous, time-consuming task. The aim of this study is to use
a semi-automatic workflow to train a classifier which enables the automatic
identification of unwanted external influences in real-world micro-seismic data.
By this means, the geophysical phenomena of interest can be analyzed without
the distortions of external influences.
To address these problems, this chapter contains the following contributions.
n We propose a strategy to identify and deal with unwanted external influences
in multi-sensor, multi-year experiments.
n We compare the suitability of multiple algorithms for mountaineer detection
using a combination of micro-seismic signals and time-lapse images.
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n We propose a convolutional neural network (CNN) for source identification.
n We exemplify our strategy for the case of source identification on real-
world micro-seismic data using monitoring data in steep, fractured bedrock
permafrost.
n We further provide the real-world micro-seismic and image data as an
annotated dataset containing data from a period of two years as well as an
open source implementation of the algorithms presented.

2.2 Methodology

In this chapter we present a systematic and automated approach to identify
unwanted external influences in long-term, real-world micro-seismic datasets
and preparing this data for subsequent analysis using a domain-specific analysis
method, as illustrated in Fig. 2.2. Traditionally, the signal, consisting of
the phenomena of interest and superimposed external influences, is analyzed
directly. However, this analysis might suffer from distortion through the external
influences. By using additional sensors like weather stations, cameras or
microphones and external knowledge such as helicopter flight plans or mountain
hut occupancy it is possible to semi-automatically label events originating from
non-geophysical sources, such as helicopters, footsteps or wind without the need
of expert knowledge. Such "external" information sources can be used to train
an algorithm that is then able to identify unwanted external influence. Using
this approach multiple external influences are first classified and labeled in an
automated pre-processing step with the help of state-of-the-art machine learning
methods. Subsequent to this classification, the additional information can be
used for domain-specific analysis such as separating geophysical and unwanted
events triggered by a simple event detector (for example an STA/LTA event
detector). Alternatively, more complex approaches can be used taking into
account signal content, event-detections and classifier labels of the external
influences. However the specifics of such advanced domain-specific analysis
methods is beyond the scope of this chapter and subject to future work. A
basic example of a custom domain-specific analysis method is the estimation of
separate STA/LTA event rates for time periods when mountaineers are present
and when they are not which we use as a case study in the evaluation section
of this chapter to exemplify our method.
Figure 2.3 illustrates the overall methodology in detail. In a first step the
available data sources of a case study are assessed and cataloged. Given a case
study (Sect. 2.3) consisting of multiple sensors, one or more sensor signals are
specified as primary signals (for example the micro-seismic signals, highlighted
with a light green arrow in the figure) targeted by a subsequent domain-specific
analysis method. Additionally, secondary data (highlighted with blue arrows)
are chosen to support the classification of external influences contained in the
primary signal. Conceptually these secondary data can be of different nature,
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Figure 2.2 Real world measurement signals contain the phenomena of interest
superimposed with external influences. If directly analyzed (dashed lines) the results
are perturbed by the external influences. In contrast to this approach, in this chapter
we suggest a systematic and automated approach to first identify a multitude of
external influence sources in micro-seismic signals using a classifier. The classifier
result data can then be used to quantify unwanted signal components as well as drive
more extensive and powerful event detection and characterization methods leveraging
combinations of both the signals as well labelled and classified noise data (solid lines).

either different sensor signals, e.g. time-lapse images or weather data or auxiliary
data such as local observations or helicopter flight data. All data sources are
combined into a dataset. However, this resulting dataset is not yet annotated
as required to perform domain-specific analysis leveraging the identified and
quantified external influences.
Two key challenges need to be addressed in order to establish such an annotated
dataset by automatic classification: (i) suitable data types need to be selected
for classification since not every data type can be used to continuously classify
every external influence (for example wind sensors are not designed to capture
the sound of footsteps; flight data may note be available for each time step) and
(ii) a single (preferred) or at least a set of suitable, well-performing classifiers
have to be found for each type of external influence source. Once these
challenges have been solved a subset of the dataset is manually annotated
in order to select and train the classifier(s) in a "preparatory" phase required to
be performed only once, which includes manual data assessment (Sect. 2.4) as
well as classifier selection and training (Sect. 2.5). The trained classifier is then
used in an automated setup to annotate the whole dataset (Sect. 2.6). This
"execution" phase can be performed in a one-shot fashion (post-processing all
data in one effort) or executed regularly, for example on a daily or weekly basis
if applied to continuously retrieved real-time monitoring data. These additional
information can be used to perform a subsequent domain-specific analysis. This
study concludes with an evaluation (Sect. 2.7) and discussion (Sect. 2.8) of the
presented method.

2.3 Case Study

The data used in this chapter originate from a multi-sensor and multi-year
experiment [WFM+18] focusing on slope stability in high-alpine permafrost
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Figure 2.3 Conceptual illustration of the classification method to enable domain-specific analysis of a primary sensor signal (in our case micro-
seismic signals denoted by the light green arrow) based on annotated datasets: A subset of the dataset containing both sensor and auxiliary
data, is used to select and train a classifier that is subsequently applied to the whole dataset. By automatically and systematically annotating
the whole dataset of the primary signal of concern, advanced methods can be applied that are able to leverage both multi sensor data as well
as annotation information.
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rock walls and understanding the underlying processes. Specifically, the sensor
data is collected at the site of the 2003 rockfall event on the Matterhorn
Hörnligrat, (Zermatt, Switzerland) at 3500m a.s.l. where an ensemble of
different sensors has monitored the rockfall scar and surrounding environment
over the past ten years. Relevant for this chapter are data from a three-
component seismometer (Lennartz LE-3Dlite MkIII), images from a remote
controlled high-resolution camera (Nikon D300, 24mm fixed focus), rock
surface temperature measurements, net radiation measurements and ambient
weather conditions, specifically wind speed from a co-located local weather
station (Vaisala WXT520).
The seismometer applied in the case study presented is used to assess the
seismic activity by using an STA/LTA event detector, which means for our
application that the seismometer is chosen as the primary sensor and STA/LTA
triggering is used as the reference method. Seismic data is recorded locally using
a Nanometrics Centaur digitizer and transferred daily by means of directional
WLAN. The data is processed on-demand using STA/LTA triggering. The high-
resolution camera’s [KYB09] field of view covers the immediate surroundings
of the seismic sensor location as well as some backdrop areas further away on
the mountain ridge. Figure 2.4 shows an overview of the field site including the
location of the seismometer and an example image acquired with the camera.
The standard image size is 1424x2144 pixels captured every 4 minutes. The
Vaisala WXT520 weather data as well as the rock surface temperature are
transmitted using a custom wireless sensor network infrastructure. A new
measurement is performed on the sensors every 2 minutes and transmitted to
the base station, resulting in a sampling rate of 30 samples per hour.
Significant data gaps are prevented by using solar panels, durable batteries and
field-tested sensors but given the circumstances on such a demanding high-
alpine field site certain outages of single sensors, for example due to power
failures or during maintenance could not be prevented. Nevertheless this dataset
constitutes an extensive and close-to-complete dataset.
The recordings of the case study were affected by external influences, especially
mountaineers and wind. This reduced the set of possible analysis tools. Auxiliary
data which helps to characterize the external influences is collected in addition to
the continuous data from the sensors. In the presented case the auxiliary data
is non-continuous and consist of local observations, pre-processed STA/LTA
triggers from a previous study [WFM+18], accommodation occupancy of a
nearby hut and a non-exhaustive list of helicopter flight data from a duration
of approximately 7 weeks provided by a local helicopter company.
In following, we use this case study to exemplify our method presented in the
previous sections.
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Matterhorn

Hörnligrat
fieldsite

Seismometer

Bern

Switzerland

Figure 2.4 The field site is located on the Matterhorn Hörnligrat at 3500m a.s.l.
which is denoted with a red circle. The photograph on the right is taken by a remotely
controlled DSLR camera on the field site at 2016-08-04T12:00:11. The seismometer
of interest (white circle) is located on a rock instability which is close to a frequently
used climbing route.

2.4 Manual Data Assessment

A ground truth is often needed for state-of-the-art classifiers (such as artificial
neural networks). To establish this ground truth while reducing the amount
of manual labor only a subset of the dataset is selected and used in a manual
data assessment phase, which consists of data evaluation, classifier training and
classifier selection as depicted in Fig. 2.5. Data evaluation can be subdivided
into four parts: (i) characterization of external influences in the primary signal
(that is the relation between primary and secondary signals), (ii) annotating
the subset based on the primary and secondary signals, (iii) selecting the data
types suitable for classification and (iv) performing a first statistical evaluation
with the annotated dataset, which facilitates the selection of a classifier.
Characterization and statistical evaluation are the only steps where domain
expertise is required while it is not required for the time and labor intensive
annotation process.
The classifier selection and training phase presumes the availability of a variety of
classifiers for different input data types, for example the broad range of available
image classifiers [RDS+15]. The classifiers do not perform equally well on the
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Figure 2.5 The manual preparation phase is subdivided into data evaluation (a)
and classifier selection and training (b). First, the data subset is characterized and
annotated. This information can be used to do a statistical evaluation and select data
types which are useful for classification. Domain experts are not required for the labor
intensive task of annotation. The classifiers are selected, trained and optimized in a
feedback loop until the best set of classifiers is found.

given task with the given subset. Therefore classifiers have to be selected based
on their suitability for classification given the task and the data. A selection
of classifiers is therefore trained and tested with the annotated subset and
optimized for best performance which can for example be done by selecting the
classifier with the lowest error rate on a defined test set. The classifier selection,
training and optimization is repeated until a sufficiently good set of classifiers
has been found. This suitability is defined by the user and can for example
mean that the classifier is better than a critical error rate. These classifiers can
then be used for application in the automatic classification process.
In the following, the previously explained method will be exemplified for wind
and mountaineer detection using micro-seismic, wind and image data from a
real-world experiment. The required steps of subset creation, characterization,
annotation, statistical evaluation and the selection of the data type for
classification are explained. Before an annotated subset can be created the
collected data must be characterized for its usefulness in the annotations
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process, i.e. which data type can be used to annotate which external influence.

2.4.1 Characterization

The seismometer captures elastic waves originating from different sources.
In this study we will consider multiple non-geophysical sources, which are
mountaineers, helicopters, wind and rockfalls. Time periods where the before
mentioned sources can not be identified are considered as relevant and thus we
will include them in our analysis as a fifth source, the "unknown" source. The
mountaineer impact will be characterized on a long-term scale by correlating
with hut accommodation occupancy (see Fig. 2.11) and on a short-scale by
person identification on images. Helicopter examples are identified by using
flight data and local observations. By analyzing spectrograms one can get
an intuition what mountaineers or helicopters "look" like, which facilitates the
manual annotation process. In Fig. 2.6 different recordings from the field site are
illustrated, which have been picked by using the additional information described
at the beginning of this section. For six different examples the time domain
signal, its corresponding spectrogram and STA/LTA triggers are depicted. The
settings for the detector are the same for all the subsequent plots. It becomes
apparent in Fig. 2.6 (b)-(c) that anthropogenic noise, such as mountaineers
walking by or helicopters, are recorded by seismometers. Moreover, it becomes
apparent that it might be feasible to assess non-geophysical sources on a larger
time frame. Mountaineers for example show characteristic patterns of increasing
or decreasing loudness and helicopters have distinct spectral patterns, which
could be beneficial to classify these sources. Additionally, the images captured
on site show when a mountaineer is present (see Fig. 2.4), but due to fog, lens
flares or snow on the lens the visibility can be limited. The limited visibility
needs to be taken into account for when seismic data is to be annotated with
the help of images. Another limiting factor is the temporal resolution of one
image every 4 minutes. Mountaineers could move through the visible are in
between two images.
The wind sensor can directly be used to identify the impact on the seismic
sensor. Figure 2.7 illustrates the correlation between tremor amplitude and wind
speed. Tremor amplitude is the frequency-selective, median, absolute ground
velocity and has been calculated for the frequency range of 1-60 Hz according
to [BAW+15]. By manually analyzing the correlation between tremor amplitude
and wind speed it can be deduced that wind speeds above approximately
30 km/h have a visible influence on the tremor amplitude.
Rockfalls can best be identified by local observations since the camera captures
only a small fraction of the receptive range of the seismometers. Figure 2.6 (e)
illustrates the seismic signature of a rockfall. The number of rockfall
observations and rockfalls caught on camera are however very limited. Therefore
it is most likely that we were unable to annotate all rockfall occurrences. As a
consequence we will not consider a rockfall classifier in this study.
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(a) (b) (c)Little anthropogenic noise Mountaineers Helicopter

RockfallWind(d) (e)

Figure 2.6 Micro-seismic signals and the impact of external influences: (a) During
a period of little anthropogenic noise the seismic activity is dominant. (b) In the
spectrogram the influence of mountaineers become apparent. Shown are seismic
signatures of (c) a helicopter in close spatial proximity to the seismometer (d)
wind influences on the signal (e) a rockfall in close proximity to the seismometer.
The red dots in the signal plots indicate the timestamps of the STA/LTA triggers
from [WFM+18].

It can be seen in Fig. 2.6 (a) that during a period which is not strongly
influenced by external influences the spectrogram shows mainly energy in the
lower frequencies with occasional broadband impulses.
The red circles in the subplots in Fig. 2.6 indicate the timestamps of the
STA/LTA events for a specific geophysical analysis [WFM+18]. By varying
the threshold of the STA/LTA event trigger the number of events triggered
by mountaineers can be reduced. However, since the STA/LTA event detector
cannot discriminate between events from geophysical sources and events from
mountaineers, changing the threshold would also influence the detection of
events from geophysical sources. This fact would affect the quality of
the analysis since the STA/LTA settings are determined by the geophysical
application [CCVB18, WFM+18].
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Figure 2.7 Impact of wind (light orange) on the seismic signal. The tremor
amplitude (dark blue) is calculated according to [BAW+15]. The effect of wind wind
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Figure 2.8 Illustration of micro-seismic segmentation. Event-linked segments are
10 second segments starting on event timestamps. Image-linked segments are two
minute segments centered around an image timestamp. Consecutive segments are 2
minute segments sequentially extracted from the continuous micro-seismic signal.
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2.4.2 Annotation

The continuous micro-seismic signals are segmented for annotation and
evaluation. Figure 2.8 provides an overview of the three segmentation
types, event-linked segments, image-linked segments and consecutive segments.
Image-linked segments are extracted due the fact that a meaningful relation
between seismic information and photos is only given in close temporal proximity.
Therefore images and micro-seismic data are linked in the following way: For
each image a 2 minute micro-seismic segment is extracted from the continuous
micro-seismic signal. The micro-seismic segment’s start time is set to 1 minute
before the image timestamp. Event-linked segments are extracted based on
the STA/LTA triggers from [WFM+18]. For each trigger 10 seconds following
the timestamp of the trigger are extracted from the micro-seismic signal.
Consecutive segments are 2 minute segments sequentially extracted from the
continuous micro-seismic signal.
Only the image-linked segments are used during annotation, their label can
however be transferred to other segmentation types by assigning the image-
linked label to overlapping event-linked or consecutive segments. Image-linked
and event-linked segments are used during data evaluation and classifier training.
Consecutive segments are used for automatic classification on the complete
dataset. Here, falsely classified segments are reduced by assigning each segment
a validity range. A segment classified as mountaineer is only considered correct
if the distance to the next (or previous) mountaineer is less than 5 minutes.
This is based on an estimation of how long the mountaineers are typically in
the audible range of the seismometer.
For mountaineer classification the required label is mountaineer but additional
labels will be annotated which could be beneficial for classifier training and
statistical analysis. These labels are helicopters, rockfalls, wind, low visibility
(if the lens is partially obscured), and lens flares. The wind label applies to
segments where the wind speed is higher than 30 km/h, which is the lower
bound for noticeable wind impact as resulted from Sect. 2.4.1.
Figure 2.9 depicts the availability of image-linked segments per week during
the relevant time frame. A fraction of the data is manually labeled by the
authors, which is illustrated in Fig. 2.9. Two sets are created, a training set
containing 5579 samples from the year 2016, and a test set containing 1260
data samples from 2017. The test set has been sampled randomly to avoid
any human prejudgment. For each day in 2017 four samples have been chosen
randomly, which are then labeled and added to the test set. The training
set has been specifically sampled to include enough training data for each
category. This means for example that more mountaineers samples come from
the summer period where the climbing route is most frequently used. The
number of verified rockfalls and helicopters is non-representative and although
helicopters can be manually identified from spectrograms the significance of
these annotations is not given due the limited ground truth from the secondary
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Figure 2.9 Number of image/micro-seismic data pairs in the dataset (dark blue)
and in the annotated subset (light orange) displayed over the week number of the
year 2016 and 2017. Note the logarithmic scale on the y-axis

source. Therefore, for the rest of this study we will focus on mountaineers
for qualitative evaluation. For statistical evaluation we will however use the
manually annotated helicopter and rockfall samples to exclude them from the
analysis. The labels for all categories slightly differ for micro-seismic data and
images since the type of sources which can be registered by each sensor differ.
This means for instance that not every classifier uses all labels for training (for
example a micro-seismic classifier cannot detect a lens flare). It also means
that for the same time instance one label might apply to the image but not to
the image-linked micro-seismic segment (for example mountaineers are audible
but the image is partially obscured and the mountaineer is not visible). This
becomes relevant in Sect. 2.5.3.4 when multiple classifiers are used for ensemble
classification.

2.4.3 Data Types Selection

After the influences have been characterized the data type need to be selected
which best describe each influence. The wind sensor delivers a continuous
data stream and a direct measure of the external influence. In contrast,
mountaineers, helicopters and rockfalls cannot directly be identified. A data
type including information about these external influences needs to be selected.
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Figure 2.10 Simplified illustration of a convolutional neural network. An input
signal, for example an image or spectrogram, with a given number of channels ci

is processed by a convolutional layer LH . The output of the layer is a feature map
with ch channels. Layer LO takes the hidden feature map as input an performs a
strided convolution which results in the output feature map with reduced dimensions
and number of channels co. Global average pooling is performed per channel and
additional scaling and a final activation are applied.

Local observations, accommodation occupancy and flight data can be discarded
for the use as classifier input since the data cannot be continuously collected.
According to Sect. 2.4.1 it seems possible to identify mountaineers, helicopters
and rockfalls from micro-seismic data. Moreover, mountaineers can also be
identified from images. As a consequence, the data types selected to perform
classification are micro-seismic data, images and wind data. The micro-seismic
data used are the signals from the three components of the seismometer.

2.5 Classifier Selection and Training

The following section describes the classifier pre-selection, training, testing and
how the classifiers are used to annotate the whole data stream as illustrated
in Fig. 2.5 (b). First, a brief introduction to convolutional neural networks is
given. If the reader is unfamiliar with neural networks we recommend to read
additional literature [GBC16].

2.5.1 Convolutional Neural Networks

Convolutional neural networks have gained a lot of interest due to their advanced
feature extraction and classification capabilities. A convolutional neural network
contains multiple adoptable parameters which can be updated in an iterative
optimization procedure. This fact makes them generically applicable to a large
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range of datasets and a large range of different tasks. The convolutional neural
network consists of multiple so-called convolutional layers. A convolutional layer
transforms its input signal with ci channels into ch feature maps as illustrated
in Fig. 2.10. A hidden feature map FH,k is calculated according to

FH,k = g

 ci∑
j=1

Ij ∗ wk,j + bk


where ∗ denotes the convolution operator, g(·) is a nonlinear function, Ij is
an input channel, bk is the bias related to the feature map FH,k and wk,j is
the kernel related to the input image Ij and feature map FH,k. Kernel and
bias are trainable parameters of each layer. This principle can be applied to
subsequent convolutional layers. Additionally, a strided convolution can be used
which effectively reduces the dimension of a feature map as illustrated by L1 in
Fig. 2.10. In an all convolutional neural network [SDBR14] the feature maps
of the output convolutional layer are averaged per channel. In our case, the
number of output channels is chosen to be the number of event sources to
be detected. Subsequent scaling and a final (non-linear) activation function
are applied. If trained correctly each output represents the probability that
the input contains the respective event source. In our case, this training is
performed by calculating the binary cross-entropy between the network output
and the ground truth. The error is backpropagated through the neural network
and the parameters are updated. The training procedure is performed for all
samples in the dataset and is repeated multiple epochs.

2.5.2 Classifier Selection

Multiple classifiers are available for the previously selected data types: wind
data, images and micro-seismic data.
For wind data a simple threshold classifier can be used, which indicates wind
influences based on the wind speed. For simplicity the classifier labels time
periods with wind speed above 30 km/h as wind. For images a convolutional
neural network is selected to classify the presence of mountaineers in the image.
The image classifier architecture is selected from the large pool of available
image classifiers [RDS+15]. For micro-seismic data, three different classifiers
will be pre-selected: (i) a footstep detector based on manually selected features
(standard deviation, kurtosis and frequency band energies) using a linear support
vector machine (LSVM) similar to the detector used in [AMK18], (ii) a seismic
event classifier adopted from [PGD18] and (iii) a non-geophysical event classifier
which we call MicroseismicCNN. We reimplemented the first two algorithms
based on the information from the respective papers. The third is a major
contribution in this chapter and has been specifically designed to identify non-
geophysical sources in micro-seismic data.
The proposed convolutional neural network (CNN) to identify non-geophysical
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Layer stride output channels
Conv2D + BatchNorm + Linear 1 32
Conv2D + BatchNorm + ReLU 2 32

Dropout - 32
Conv2D + BatchNorm + ReLU 2 32

Dropout - 32
Conv2D + BatchNorm + ReLU 1 32

Conv2D + ReLU 1 32
Dropout - 32

Conv2D + ReLU 1 1
Global Average Pooling 1 1

Dropout - 1
Conv2D 1 1

Sigmoid Activation - 1

Table 2.1 Layout of the proposed non-geophysical event classifier, consisting
of multiple layers which are executed in sequential order. The convolutional
neural network consists of multiple 2D convolutional layers (Conv2D) with batch
normalization (BatchNorm) and rectified linear units (ReLU). Dropout layers are
used to minimize overfitting. The sequence of global average pooling layer, a scaling
layer and the sigmoid activation compute one value between 0 and 1 resembling the
probability of a detected mountaineer.

sources in micro-seismic signals uses a time-frequency signal representation
as input and consists of 2D convolutional layers. Each component of the
time-domain signal, sampled at 1 kHz, is first offset-compensated and then
transformed with a Short-Time Fourier Transformation (STFT). Subsequently,
the STFT output is further processed by selecting the frequency range from 2
to 250Hz and subdividing it into 64 linearly-spaced bands. This time-frequency
representation of the three seismometer components can be interpreted as 2D
signal with three channels, which is the networks input. The network consists
of multiple convolutional, batch normalization and dropout layers, as depicted
in Table 3.3. Except for the first convolutional layer, all convolutional layers are
followed by batch normalization and Rectified Linear Units (ReLU) activation.
Finally, a set of global average pooling layer, dropout, trainable scaling (in
form of a convolutional layer with kernel size 1) and sigmoid activation reduces
the features to one value representing the probability that a mountaineer is
in the micro-seismic signal. In total the network has 30,243 parameters. In
this architecture multiple measures have been taken to minimize overfitting:
the network is all-convolutional [SDBR14], batch normalization [IS15] and
dropout [SHK+14] are used and the size of the network is small compared
to recent audio classification networks [HCE+16].
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2.5.3 Training and Testing

We will evaluate the micro-seismic algorithms in two scenarios in Sect. 2.7.1.
In this section, we describe the training and test setup for the two scenarios
as well as for image and ensemble classification. In the first scenario event-
linked segments are classified. In the second scenario the classifiers on image-
linked segments are compared. The second scenario stems from the fact that
the characterization from Sect. 2.4.1 suggested that using a longer temporal
input window could lead to a better classification because it can capture more
characteristics of a mountaineer. Training is performed with the annotated
subset from Sect. 2.4 and a random 10 % of the training set are used as
validation set, which is never used during training. For the non-geophysical and
seismic event classifiers the number of epochs has been fixed to 100 and for
the image classifier to 20. After each epoch the F1 score of the validation set
is calculated and based on it the best performing network version is selected.
The F1 score is defined as

F1 score = 2 · true positive
2 · true positive + false negative + false positive

The threshold for the network’s output is determined by running a parameter
search with the validation set’s F1 score as metric. Training was performed
in batches of 32 samples with the ADAM [KB14] optimizer and cross-entropy
loss. The Keras [Cho15] framework with a TensorFlow backend [AAB+15] was
used to implement and train the network. The authors of the seismic event
classifier [PGD18] provide TensorFlow source code, but to keep the training
procedure the same it was re-implemented with the Keras framework. The
footstep detector is trained with scikit-learn [PVG+11]. Testing is performed
on the test set which is independent of the training set and has not been used
during training. The metrics error rate and F1 score are calculated.
It is common to do multiple iterations of training and testing to get the best
performing classifier instance. We perform a preliminary parameter search to
estimate the number of iterations. The estimation takes into account the
number of training types (10 different classifiers need to be trained) given the
limited processing capabilities. As a result of the search, we train and test 10
iterations and select the best classifier instance of each classifier type to evaluate
and compare their performances in Sect. 2.7.
The input of the micro-seismic classifiers must be variable to be able to perform
classification on event-linked segments and image-linked segments. Due to the
principle of convolutional layers, the CNN architectures are independent of the
input size and therefore no architectural changes have to be performed. The
footstep detector’s input features are averaged over time by design and are thus
also time-invariant.
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2.5.3.1 Event-linked Segments Experiment

Literature suggests that STA/LTA cannot distinguish geophysical sources from
non-geophysical sources [All78]. Therefore the first micro-seismic experiment
investigates if the presented algorithms can distinguish events induced by
mountaineers from other events in the signal. The event-linked segments are
used for training and evaluation. The results will be discussed in Sect. 2.7.1.

2.5.3.2 Image-linked Segments Experiment

In the second micro-seismic experiment the image-linked segments will be used.
Each classifier is trained and evaluated on the image-linked segments. The
training parameters for training the classifiers on image-linked segments are
as before but additionally data augmentation is used to minimize overfitting.
Data augmentation includes random circular shift and random cropping on the
time axis. Moreover, to account for the uneven distribution in the dataset,
it is made sure that during training the convolutional neural networks see one
example of a mountaineer every batch. The learning rate is set to 0.0001, which
was determined with a preliminary parameter search. The classifiers are then
evaluated on the image-linked segments.
To be able to compare the results of the classifiers trained on image-linked
segments to the classifiers trained on event-linked segments (Sect. 2.5.3.1), the
classifiers from Sect. 2.5.3.1 will be evaluated on the image-linked segments as
well. The metrics can be calculated with the following assumption: If any of
the event-linked segments which are overlapping with an image-linked segment
are classified as mountaineer, the image-linked segment is considered to be
classified as mountaineer as well.
The results will be discussed in Sect. 2.7.1.

2.5.3.3 Image Classification

Since convolutional neural networks are a predominant technique for image
classification, a variety of network architectures have been developed. For this
study, the MobileNet [HZC+17] architecture is used. The number of labeled
images is small in comparison to the network size (approx. 3.2M parameters)
and training the network on the Matterhorn images will lead to overfitting on
the small dataset. To reduce overfitting a MobileNet implementation which has
been pre-trained on ImageNet [DDS+09], a large-scale image dataset, will be
used. Retraining is required since ImageNet has a different application focus
than this study. The climbing route, containing the subject of interest, only
covers a tiny fraction of the image and rescaling the image to 224x224, the
input size of the MobileNet, would lead to vanishing mountaineers (compare
Fig. 2.4). However, the image size cannot be chosen arbitrarily large since a
larger input requires more memory and results in a larger runtime. To overcome
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this problem the image has been scaled to 448x672 pixels and although the
input size differs from the pretrained version network retraining still benefits
from pre-trained weights. Data augmentation is used to minimize overfitting.
For data augmentation each image is slightly zoomed in and shifted in width
and height. The network has been trained to detect 5 different categories. In
this chapter only the metrics for mountaineers are of interest for the evaluation
and the metrics for the other labels are discarded in the following. However,
all categories are relevant for a successful training of the mountaineer classifier.
These categories consist of mountaineer, low visibility (if the lens is partially
obscured), lens flare, snowy (if the seismometer is covered in snow) and bad
weather (as far as it can be deduced from the image).

2.5.3.4 Ensemble

In certain cases, a sensor cannot identify a mountaineer although there is one, for
example the seismometers cannot detect when the mountaineer is not moving
or the camera does not capture the mountaineer if the visibility is low. The
usage of multiple classifiers can be beneficial in these cases. In our case micro-
seismic and image classifier will be jointly used for mountaineer prediction.
Since micro-seismic labels and image labels are slightly different, as discussed
in Sect. 2.4.2, the ground truth labels must be combined. For a given category,
a sample is labeled true if any of micro-seismic or image labels are true (logical
disjunction). After individual prediction by each classifier the outputs of the
classifiers are combined similarly and can be compared to the ground truth.

2.5.4 Optimization

Due to potential human errors during data labeling, the training set has to
be regarded as a weakly-labeled dataset. Such datasets can lead to a worse
classifier performance. To overcome this issue a human-in-the-loop approach is
followed where a preliminary set of classifier is trained on the training set. In the
next step, each sample of the dataset is automatically classified. This procedure
produces a number of true positives, false positives and true negatives. These
samples are then manually relabeled and the labels for the dataset are updated
based on human review. The procedure is repeated multiple times. This does
however not completely avoid the possibility of falsely labeled samples in the
dataset, since the algorithm might not find all human-labeled false negatives,
but it increases the accuracy significantly. The impact of false labels on classifier
performance will be evaluated in Sect 2.7.1.
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Error Rate F1 Score
Event-linked Segments
Footstep Detector (Events) 0.1702 0.7692

Seismic Event Classifier (Events) 0.1250 0.8291
MicroseismicCNN (Events) 0.0641 0.9062
Image-linked Segments
Footstep Detector (Events) 0.0706 0.5389

Seismic Event Classifier (Events) 0.0540 0.6047
MicroseismicCNN (Events) 0.0309 0.731

Footstep Detector 0.0952 0.52
Seismic Event Classifier 0.0313 0.7383

MicroseismicCNN 0.0096 0.9167
Image Classifier 0.0088 0.9134

Ensemble 0.0079 0.9383

Table 2.2 Results of the different classifiers. The addition "(Events)" labels the
classifier versions trained on event-linked segments

2.6 Automatic Classification

In Sect. 2.7.1 it will be shown that the best set of classifiers are the ensemble of
image classifier and MicroseismicCNN. Therefore, the trained image classifiers
and MicroseismicCNN classifier are used to annotate the whole time period of
collected data to quantitatively assess the impact of mountaineers. The image
classifier and the MicroseismicCNN will be used to classify all the images and
micro-seismic data, respectively. The consecutive segments and images are
used for prediction. To avoid false positives we assume that a mountaineer
requires a certain amount of time to pass by the seismometer as illustrated
in Fig. 2.8, therefore a mountaineer annotation is only considered valid if its
minimum distance to the next (or previous) mountaineer annotation is less than
5 minutes. Subsequently, events within time periods classified as mountaineer
are removed and the event count per hour is calculated.

2.7 Evaluation

In the following the results of the different classifiers experiments described
in Sect. 2.5.3 will be presented to determine the best set of classifiers.
Furthermore, in Sect. 2.7.2 and Sect. 2.7.3 results of the automatic annotation
process (Sect. 2.6) will used to evaluate the impact of external influences on
the whole dataset.
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Figure 2.11 Event count, hut occupancy and rock temperature over time. (a) For
the years 2016/2017 and (b) for a selected period during defreezing of the rock.
The event rate from [WFM+18] is illustrated in light blue and the rate after removal
of mountaineer induced events in dark blue. The strong variations in event rate
correlate with the presence of mountaineer, hut occupancy and in (b) with the total
net radiation. The impact of mountaineers is significant after July 9th and event
detection analysis becomes unreliable.
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False Labels (%) 25 12.5 6.25 3.125 0
F1 score (mean) 0.7953 0.8633 0.8761 0.8835 0.8911
Error rate (mean) 0.0208 0.0149 0.0139 0.0129 0.0122

Table 2.3 Influence of falsely labeled data points on the test performance. Shown
are the mean values over 10 training/test iterations.

2.7.1 Classifier Evaluation

The results of the classifier experiments (Table 2.2) show that the footstep
detector is the worst at classifying mountaineers with an error rate of
0.1702 on event-linked segments and 0.0952 on image-linked segments. Both
convolutional neural networks score a lower error rate on image-linked segments
of 0.0096 (MicroseismicCNN) and 0.0313 (Seismic Event Classifier). For the
given dataset our proposed MicroseismicCNN network outperforms the seismic
event classifier, in both the event-linked segment experiment as well as the
image-linked segment experiment. The MicroseismicCNN using a longer input
window (trained on image-linked segments) is comparable to classification on
images and outperforms the classifier trained on event-linked segments. When
combining image and micro-seismic classifiers the best results can be achieved.
The number of training/test iterations that were run for each classifier has
been set to 10 through a preliminary parameter estimation. To validate our
choice we have evaluated the influences of the number of experiments for only
one classifier. The performance of the classifier is expected to depend on the
number of training/test iterations (more iterations means a better chance of
selecting the best classifier). However, the computing time is increasing linearly
with increasing number of iterations. Hence, a reasonable trade off between
the performance of the classifier and the computing time is desired to identify
the ideal number of iterations. Figure 2.12 represents the statistical distribution
of the classifier’s performance for different number of training/test iterations.
Each boxplot is based on ten independent sets of training/test iterations. While
the box indicates the interquartile range (IQR) with the median value in orange,
the whisker on the appropriate side is taken to 1.5 × IQR from the quartile
instead of the maximum or minimum if either type of outlier is present. Beyond
the whiskers, data are considered outliers and are plotted as individual points.
As can be seen in Fig. 2.12, the F1 score saturates at 9 iterations. Therefore
our choice of 10 iterations is a reasonable choice.
In Sect. 2.5.4 the possibility of falsely labeled training samples has been
discussed. As expected, our evaluation in Table 2.3 indicates that falsely labeled
samples have an influence on the classification performance since the mean
performances are worse for a high percentage of false labels.
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Figure 2.12 The statistical distribution of the classifier’s performance for different
number of training/test iterations is illustrated. Each boxplot is based on ten
independent sets of training/test iterations. The F1 score saturates after 9 iterations
and validates our choice of 10 iterations.

2.7.2 Statistical Evaluation

The annotated test set from Sect. 2.4.2 and the automatically annotated set
from Sect. 2.6 are used for a statistical evaluation involving the impact of
external influences on micro-seismic events. Only data from 2017 is chosen
since wind data is not available for the whole training set due to a malfunction
of the weather station in 2016. The experiment from [WFM+18] provides
STA/LTA event triggers 2017. Table 2.4 shows statistics for several categories,
which are 3 external influences and one category where none of the 3 external
influences are annotated (declared as "Unknown"). For each category, the total
duration of all annotated segments is given and how many events per hour are
triggered. It becomes apparent that mountaineers have the biggest impact on
the event analysis. Up to 105.9 events per hour are detected on average during
time periods with mountaineer activity, while during all other time periods the
average ranges from 9.09 to 13.12 events per hour. This finding supports
our choice to mainly focus on mountaineers in this chapter and shows that
mountaineers have a strong impact on the analysis. As a consequence, a high
activity detected by the event trigger does not correspond to a high seismic
activity, thus relying only on this kind of event detection may lead to a false
interpretation. From the automatic section in Table 2.4 it can be deduced that
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Figure 2.13 Illustration of the cumulative number of events triggered by the
STA/LTA event detector for all events, for events triggered by mountaineers and
for events triggered by unknown sources. The results presented in this chapter were
used to annotate the events. The time period during which the rock temperature in
1 m depth is above 0° C is shaded in gray.

the average number of triggered events per hour for times when the signal is
influenced by mountaineers is an approximately 9x increase in comparison to
periods without annotated external influences. The effect of wind influences
on event rate is not as clear as the influence of mountaineers. The values in
Table 2.4 indicate a decrease of events per hour during wind periods, which will
be briefly discussed in Sect. 2.8.2.
As can be seen in Fig. 2.13, events are triggered over the course of the whole
year whereas events that are annotated as coming from mountaineers occur
mainly during the summer period. The main increase in event count occurs
during the period when the rock is unfrozen which unfortunately coincides with
the period of mountaineer activity. Therefore it is important to account for the
mountaineers. However, even if the mountaineers are not considered the event
count increases significantly during the unfrozen period. The interpretation of
these results will not be part of this study but they are an interesting topic for
further research.

2.7.3 Automatic Annotation in a Real-World Scenario

The results of applying the ensemble classifier to the whole dataset is visualized
for two time periods in Fig. 2.11. The figure depicts the event count per
hour before and after removing periods of mountaineer activity, as well as
the rock temperature, the overnight stays at the Hörnlihut and the total net
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Unknown Mountaineer Wind Helicopter

Manual duration (hours) 28.87 1.9 6.6 3.73
mean number of events per hour 10.6 95.26 11.21 13.12

Automatic duration (hours) 6832.3 296.53 1364.2 -
mean number of events per hour 11.76 105.9 9.09 -

Table 2.4 Statistics of the manually and automatically annotated set of 2017 per annotation category. "Unknown" represents the category
when none of the other categories could have been identified. Given are the total duration of annotated segments per category and the mean
number of STA/LTA events per category.
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radiation. From Fig. 2.11 (a) it becomes apparent that the mountaineer activity
is mainly present during summer and autumn. An increase is also visible during
increasing hut overnight stays. During winter and spring only few mountaineers
are detected but some activity peaks remain. By manually review we were
able to discard mountaineers as cause for most of these peaks, however further
investigation is needed to explain their occurrence.
Figure 2.11 (b) focuses on the defreezing period. The zero-crossing of the
rock temperature has a significant impact on the event count variability. A
daily pattern becomes visible starting around the zero-crossing. Since few
mountaineers are detected in May these can be discarded as the main influence
for these patterns. The total net radiation however indicates an influences of
solar radiation on the event count. Further in-depth analysis is needed but this
examples shows the benefits of a domain-specific analysis, since the additional
information gives an intuition of relevant processes and their interdependencies.
After July 9th, the impact of mountaineers is significant and the event detection
analysis becomes unreliable. Different evaluation methods are required to
mitigate the influence of mountaineers during these periods.
Figure 2.14 depicts that mountaineer predictions and hut occupancy correlate
well, which indicates that the classifiers work well. The discrepancy in the first
period of each summer needs further investigation. With the annotations for the
whole timespan it can be estimated that from all events detected in [WFM+18],
approximately 25% originate in time periods with mountaineer activity and
should therefore not be regarded as originating from geophysical sources.

2.8 Discussion

2.8.1 Classification of Negative Examples

The previous section has shown that a certain degree of understanding of
the scenario and data collected is nevertheless necessary in order to achieve
a significant analysis. The effort in creating an annotated data subset, despite
being time and labor consuming, is an overhead but as we show can be
outweighed by the benefits of better analysis results. For data annotation
two distinct approaches can be followed: Annotating the phenomena of
interest (positive examples) or annotating the external influences (negative
examples). Positive examples, used in [YLW+18, RMB+14, KG17], inherently
contain a limitation as this approach requires that events as well as influencing
factors must be identified and identifiable in the signal of concern. This is
especially hard where no ground truth information except (limited) experience
by professionals is available. Therefore, the strategy presented in this chapter
to create an annotated dataset using negative examples is advisable to be used.
It offers to perform cross checks if certain patterns can be found in different
sensor/data types and in many cases the annotation process can be performed
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Figure 2.14 Correlation of mountaineer activity and hut occupancy. The
normalized number of mountaineer segments per week and the normalized number
of overnight stays at the Hörnlihut per week plotted over time.

by non-experts. Also, additional sensors allow to directly quantify possible
influence factors. The detour required by first classifying negative examples
and then analyzing the phenomena of interest offers further benefits: In cases
where the characteristics of the phenomena of interest are not known in advance
(no ground truth available) and in cases where a novel analysis method is to be
applied or when treating very-long-term monitoring datasets working only on
the primary signal of concern is hard and error margins are likely to be large. In
these cases it is important to take into account all knowledge available including
possible negative examples and it is significant to automate as much as possible
using automatic classification methods.

2.8.2 Multi-Sensor Classification

In Sect. 2.5 multiple classifiers for different sensors have been presented. The
advantages of classifying micro-seismic signals are that continuous detection is
possible and that no additional sensors are required. The classification accuracy
of the convolutional neural network and the image classifier presented are
comparable. Classification of time-lapse images however has the disadvantage
of a low time resolution proportional to the capture frequency, for example a
maximum of 15 images per hour in our example. Continuous video recording
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could close this gap at the cost of requiring a more complex image classifier,
the size of the data and more higher processing times, which are likely
infeasible. The main advantage of images is that they can be used as additional
independent sensor to augment and verify micro-seismic recordings. First,
images can be used for annotations and second they can be used in an ensemble
classifier to increase the overall accuracy. The different modalities strengthen
the overall meaningfulness and make the classifier more robust. Table 2.4 shows
that during windy segments less events are triggered than in periods that cannot
be categorized ("unknown" category). A possible explanation is that the micro-
seismic activity is superimposed by broadband noise originating in the wind.
For these time segments a variable trigger sensitivity [WDF08] or a different
event detection algorithm can improve the analysis. Better shielding the
seismometer from the wind would reduce these influences significantly but the
typical approach in seismology to embed it into the ground under a substantial
soil column is next to impossible to implement in steep bedrock and perennially
frozen ground as found on our case-study field site. Nonetheless, Table 2.4 gives
an intuition that our method performs well since the statistical distribution
of manually and automatically annotated influences sources is similar. We
therefore conclude that with our method presented it is possible to quantify the
impact of external influences on a long-term scale and across variable conditions.

2.8.3 Feature Extraction

In Sect. 2.4.1 the different characteristics of event sources have been discussed.
The characteristic features can be used to identify and classify each source type.
The convolutional neural network accomplishes the task of feature extraction
and classification simultaneously by training on an extensive annotated dataset.
An approach without the requirement of an annotated dataset would be to
manually identify the characteristics and then design a suitable algorithm to
extract the features. For example the helicopter pattern in 2.6 (c) shows distinct
energy bands indicating the presence of a fundamental frequency plus harmonics.
These features could be traced to identify, model and and possibly localize a
helicopter [ELBA17] with the advantage of a relaxed dataset requirement. The
disadvantage would be the requirement of further expertise in the broad field
of digital signal processing and modeling as well as more detailed knowledge
on each such phenomena class of interest. Also, it is likely that such an
approach would require extensive sensitivity analysis to be performed alongside
with modeling. Moreover, if the algorithm is handcrafted by using few examples
it is prone to overfitting based on these examples (see also the next subsection).
This problem of overfitting exist as well for algorithm training and can be solved
by using more examples, however, it is easier to annotate a given pattern (with
the help of additional information) than understanding its characteristics and
thus the time- and labor-consuming task of annotation can be outsourced in the
case of machine learning. Fig. 2.6 indicates that little anthropogenic noise (a)
has less broadband background noise than wind (d) and the impulses occur in a
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different frequency band. However, the signal plots show a similar pattern. To
identify wind from micro-seismic data manually one could utilize a frequency-
selective event detector although it is not clear if this pattern and frequency
range is representative for every occurrence of wind and if all non-wind events
could be excluded with such a detector. Using a dedicated wind sensor for
identification of wind periods as presented in this study overcomes these issues
with the drawback of an additional sensor which needs to be installed and
maintained and that during failure of the additional sensor no annotation can
be performed.

2.8.4 Overfitting

A big problem with machine learning methods is overfitting due to too
few data examples. Instead of learning representative characteristics the
algorithm memorizes the examples. In our work overfitting is an apparent
issue since the reference dataset is small as described in Sect. 2.4.2. As
explained in the previous sections multiple measures have been introduced to
reduce overfitting (data augmentation, few parameters, all convolutional neural
network, dropout). The test set has been specifically selected to be from a
different year to exclude that severe overfitting affects the classifier performance.
The test set includes examples from all seasons, day and night time and is
thus assumed representative for upcoming, never-seen-before data. However,
overfitting might still exist in the sense that the classifier is optimized for one
specific seismometer. Generalization to multiple seismometers still needs to be
proven since we did not test the same classifier for multiple seismometers, which
might differ in their specific location, type or frequency response. This will be
an important study for the future since it will reduce the dataset collection and
training time significantly if a new seismometer is deployed.

2.8.5 Outlook

This chapter has only focused on identifying external influences, what we have
shown to be a prerequisite for micro-seismic analysis. Future work lies in finding
and applying specific analytic methods, especially finding good parameter sets
and algorithms for each context. Additionally, the classifier could be extended
to include helicopters as well as geophysical sources such as rockfalls. A
disadvantage of the present method is the requirement of a labeled dataset.
Semi-supervised or unsupervised methods [KYDH11] as well as one- or few-shot
classification methods [FFP06] could provide an alternative to the presented
training concept without the requirement of a large annotated dataset. We
will present some of these methods in the upcoming chapters, especially in
Chapter 4.
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Figure 2.15 Data types, models and optimizations used in this chapter. Machine
learning-based information extraction from images, seismic data and time-series data
using data specific frontend (FS ,FI), convolutional neural networks (CNN), multi-
layer perceptron (MLP) and threshold classifers (TC). The models are independently
optimized with cross-entropy loss (XE) and threshold selection (TH) using a set of
labels.

In this chapter we have presented a strategy to evaluate the impact of external
influences on a micro-seismic measurement by categorizing the measurements
with the help of additional sensors and information. With this knowledge a
method to classify mountaineers has been presented. Figure 2.15 conceptually
summarizes the elements of the information extraction system used in this
chapter. We have shown how additional sensors can be beneficial to isolate
the information of interest from unwanted external influences and provide a
ground truth in a long-term monitoring setup. Moreover, we have presented
a mountaineer detector, implemented with a convolutional neural network,
which scores an error rate of only 0.96% (F1 score: 0.9167) on micro-
seismic signals and a mountaineer detector ensemble which scores an error
rate of 0.79% (F1 score: 0.9383) on images and micro-seismic data. The
classifiers outperform comparable algorithms. Their application to a real-word,
multi-sensor, multi-year micro-seismic monitoring experiment showed that time
periods with mountaineer activity have a approximately 9x higher event rate
and that approximately 25% of all detected events are due to mountaineer
interference. Finally, the findings of this chapter show that an extensive,
systematic identification of external influences is required for a quantitative and
qualitative analysis on long-term monitoring experiments. In the next chapter,
we will focus on how this knowledge can be integrated into the monitoring
system by using the mountaineer classifier on the seismic sensor device in the
context of natural hazard warning.
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In the previous chapter, we discussed how to use a combination of machine
learning, auxiliary sensors and human in the loop to identify unwanted external
influences in micro-seismic recordings. In this chapter, we focus on moving
the knowledge generation process to the edge, which means computing a
pretrained model for seismic event detection on a custom-designed, event-
triggered geophone sensor. We will proceed in two steps. First, in Section 3.1,
we focus on architectural optimizations of an existing convolutional neural
network and evaluate these optimizations on an acoustic event dataset. Then,
in Section 3.2, we modify the acoustic event classifier to work with seismic
data and train it using the dataset compiled in Chapter 2. We further optimize
the execution of the model on a single-core microcontroller and evaluate its
performance with field data generated by a deployment of an array of event-
triggered geophones.
In natural hazard warning systems fast decision making is vital to avoid
catastrophes. Advanced data processing and decision making at the edge of
a wireless sensor network promises fast response times but is limited by the
availability of energy, data transfer speed, processing and memory constraints.
In the area of distributed seismic sensing, the combination of algorithms with a
high classification rate and resource-constraint embedded systems is essential.
However, this combination has not been demonstrated for seismic event
classification. In recent years, convolutional neural networks have proven to have
a high classification accuracy for audio event detection, which is closely related
to seismic event detection. Unfortunately, these algorithms for acoustic event
detection have a high memory and computational demand and are not suited
for execution at the network edge. Additionally, the measurement hardware
is not yet optimized for our application scenario in high-alpine environments.
Off-the-shelf geophones and digitizers are usually not designed for long-term,
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low-power applications in harsh environments, making them difficult to deploy
in large quantities in our setup.
In this chapter, we present the path towards a realization of a wireless sensor
network for hazard monitoring based on an array of event-triggered single-
channel micro-seismic sensors with advanced signal processing and characteri-
zation capabilities based on a novel co-detection technique. In Section 3.2.4,
we present an ultra-low power, threshold-triggering circuit paired with on-
demand digital signal acquisition capable of extracting relevant information
exactly and efficiently at times when it matters most and consequentially not
wasting precious resources when nothing can be observed. In Section 3.2.5,
hand we utilize machine-learning-based classification implemented on low-
power, off-the-shelf microcontrollers to avoid false positive warnings and to
actively identify humans in hazard zones. The sensors’ response time and
memory requirement is substantially improved by (i) applying architectural
optimization to a convolutional neural network (Section 3.1), (ii) quantizing
it (Section 3.2.5.4) and (iii) pipelining its inference (Section 3.2.6). In this way,
convolutional neural networks that would not run unmodified on a memory
constrained device can be executed in real-time and at scale on low-power
embedded devices. A field study with our system was running on the rockfall
scarp of the Matterhorn Hörnligrat at 3500 m a.s.l. from 08/2018 until 02/2020.
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3.1 Architectural Optimizations For Event Classification

In this section we present architectural optimizations using a reference audio
event classifier based and verify them on an audio event dataset. These findings
serve as a basis for the seismic event classifier used in the upcoming section.
Many applications for sensor networks, cyber-physical system or Internet-of-
Things require a low power consumption for long-term autonomous operation.
Local preprocessing and classifying data at the edge nodes can be a solution
to reduce data transmission and therefore, to reduce energy consumption. In
addition, such an approach can avoid that enormous amounts of data need to
be communicated to and processed by a centralized data analysis infrastructure.
The detection of acoustic events is a typical example: Instead of streaming
audio through the network to perform server-side event detection, the acoustic
events of interest can be pre-detected directly at the sensing device reducing the
network’s data throughput and the response time significantly. The accurate
detection and classification of individual acoustic events from a sound-emitting
environment is of interest for many application such as surveillance [CBM07] or
environmental monitoring [GBG+12]. The low-power embedded devices used
for such systems, however, come with very stringent memory and throughput
limitations. These resource constraints impose severe limits to the complexity
of suitable event detection algorithms.
Hardware platforms for battery-operated devices have stringent power require-
ments. On such low-power devices which are limited to a few 100mW, like
the ARM Cortex M7 series, the overall on-chip storage is typically limited
to less than 2MB and the available digital signal processing performance is
limited to a few 100 millions multiply-accumulate operations per second even
on the most advanced components [NXP16, STM16]. To achieve maximum
energy efficiency while using CNNs, System-on-Chips (SoCs) with hardware
accelerators for CNN workload or more generally 2D convolutions can be
considered. Such platforms can provide speed-ups by a factor of around 100×
and an improved energy efficiency of about 40× [CB15, CGM+15]. Such system
perform optimal if the CNN comprises a simple and structured architecture.
While this concept can provide a relief on the admissible computational effort,
the strong limitations on available memory remain because any external memory
would deteriorate the device’s energy efficiency substantially.
For acoustic event detection different algorithms have been presented based
on Non-Negative Matrix Factorization [KTKS16], Hidden Markov Mod-
els [ZZL+08] or Recurrent Neural Networks [PHV16]. Like in many other
machine learning applications, CNNs have been proven to be the key for high
classification accuracy. The advantage of such an architecture for acoustic event
detection is its inherent inclusion of a temporal neighborhood since acoustic
events are strongly characterized by temporal changes. CNNs have been used
mainly for speech recognition [ArMJ+14] or music [DS14] classification tasks.
These algorithms are all computationally expensive, and come at the expense of
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having a huge number of parameters [TGPG16], resulting in computational and
memory overhead. Implementing such a network on mobile devices or sensor
nodes is difficult due to memory and computational restrictions on these devices.
Recently, a convolutional neural network (CNN)-based approach has been
proposed for acoustic event detection [TGPG16] using a network design
adapted from image classification [SZ14]. It has been shown that this
approach outperforms previous state-of-the-art approaches by a large margin.
Unfortunately, the proposed algorithm also comes at the expense of having
a huge memory requirement due to the huge number of parameters. For
image classification a way to reduce the complexity of CNN-based classification
systems has been presented [SDBR14]. Applying these complexity reduction
is used in this chapter to build a highly-accurate CNN capable of running on
embedded platforms with limited resources.
In this context, this section contains the following contributions:
n A convolutional neural network for acoustic event classification is selected as
basis for a seismic event classifier. Its architecture is optimized towards high
classification accuracy while reducing the memory requirements and number of
operations.
n The benefits of optimization are experimentally verified by comparing it to
the unmodified convolutional neural network. The experiment shows that the
overall reduction of memory requirement by a factor of 515 and a reduction of
operations by a factor of 2.1 does not affect performance.

3.1.1 Model Architecture

Most convolutional neural network architectures, by default, are not designed to
run on low-power embedded devices, thus a careful design in terms of structure
and learning algorithms must be chosen. To explain the different steps which are
necessary to detect an acoustic event, the detection system is divided into three
major components, which are illustrated in Figure 3.2. First, the raw time-
domain audio waveform is transformed by a frontend into a time-frequency
representation. Then the systems extracts features from this representation
using an encoder. In a final step the features are mapped to a class vector
using a decoder. Note that the separation into encoder and decoder is made for
the sake of explanation. Since the final network is optimized end-to-end, both
components will contribute to the audio classification task.
In the following, for each step the best option is chosen with respect to memory
and computational requirements.

Frontend

The frontend is used to transform the raw audio signal into a time-frequency
representation from which features in both, frequency- and time-domain, can
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Figure 3.2 Processing flow for the audio classifier. Figure reproduced from
Chapter 1.

be extracted. In general these transforms are based on the Short-Time
Fourier Transform (STFT), which can be efficiently implemented via the Fast
Fourier Transformation (FFT). This fact makes it favorable compared to novel
techniques [DS14], which show good results by learning filterbank coefficients
from the audio data, but have the major drawback of employing large filterbanks.
Mel-scaling, which mirrors the human auditory system, is often used [CHHV15]
as addition to the STFT in order to compensate for its linear frequency scale.
These additional processing steps may also reduce the amount of data that needs
to be processed in later stages of the processing pipeline, which is important
since the number of MAC operations of a CNN is directly related to the size of
the input field.
As a consequence, in this work a mel-spectrogram has been chosen as frontend
to satisfy the real-time constraint. It is calculated with a window size of
32ms and a hop size of 10ms using a hamming window. The number of
mel coefficients is 64. From the spectrogram multiple frames consisting of 400
vectors are extracted. These frames are input to the feature extractor, thus the
network analyzes a time span of 4 s for each frame.

Encoder

The encoder uses a CNN to learn the features of the time-frequency
representation. Most CNNs are built from very few basic building blocks:
convolution, activation and pooling layers. The concatenation of these blocks
introduces a higher depth to the network which has been shown to enhance
accuracy [SZ14]. A higher depth results in a higher number of required
operations and a higher parameter count. In this work the feature extraction
block is therefore limited to two sections consisting of two convolutional layers
each, which provides enough parameters to learn significant features but is
still moderate in parameter count. Moreover, one convolutional layer with a
higher filter size (e.g. 5x5) can be reduced with layers using 3x3 filters, which
reduces the number parameters and potentially even improves the classification
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CNN-FC CNN-C CNN-CNP
Layer type # param. # MAC Layer type # param. # MAC Layer type # param. # MAC

En
co
de
r

input 0 0 input 0 0 input 0 0
frontend 25.6 k 12.7M frontend 25.6 k 12.7M frontend 25.6 k 12.7M

conv 3, 1, 64 1.8 k 32.3M conv 3, 1, 64 640 14.8M conv 3, 1, 64 640 14.8M
conv 3, 1, 64 36.9 k 656.9M conv 3, 1, 64 36.9 k 943.7M conv 3, 2, 64 36.9 k 236.0M
max pool 1x2 0 0 max pool 2x2 0 0 - - -
conv 3, 1, 128 73.9 k 581.0M conv 3, 1, 128 73.9 k 471.9M conv 3, 1, 128 73.9 k 471.9M
conv 3, 1, 128 147.6 k 1040.5M conv 3, 1, 128 147.6 k 943.7M conv 3, 2, 128 147.6 k 236.0M
max pool 2x2 0 0 max pool 2x2 0 0 - - -

De
co
de
r

fc 1024 231.2M 231.2M conv 3, 1, 128 147.6 k 236.0M conv 3, 1, 128 147.6 k 236.0M
fc 1024 1.1M 1.1M conv 1, 1, 128 16.5 k 26.2M conv 1, 1, 128 16.5 k 26.2M
fc 28 28.7 k 28.7 k conv 1, 1, 28 3.6 k 5.7M conv 1, 1, 28 3.6 k 5.7M
- - - avg pool 0 0 avg pool 0 0

activation 0 0 activation 0 0 activation 0 0
Total: 233M 2555M Total: 452 k 2655M Total: 452 k 1239M

Table 3.1 Structure, number of parameters and number of required MAC operations for three CNNs. The first (CNN-FC) uses fully-connected
layers as decoder, the second (CNN-C) uses convolutional layers as decoder, the third (CNN-CNP) uses convolutional layers as decoder but no max
pooling layers. Convolutional layers are defined as conv filter_size, stride, number_of_filters. Fully-connected layers as fc output_dimensions.
Max pooling layers as max pool pool_size
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performance [SZ14]. In most CNNs max pooling is used to regularize the
network, but is has been shown that for small scale datasets the removal of the
max pooling layer does not affect the performance [SDBR14]. As a consequence
max pooling is removed from the network and the stride of the preceding layer
is increased by 1, which divides the required MAC operations for this layer by
four while maintaining the same network structure in principle.

Decoder

Table 3.1 illustrates the structure of a network with fully-connected dense layers
as decoder (CNN-FC) and a network using only convolutional layers as decoder
(CNN-C). For both networks the number of parameters and the number of
required MAC operations are listed. It becomes obvious that the fully-connected
layers have the biggest impact on parameter count which makes the preceding
convolutional layers almost negligible. It has been shown that a fully-connected
layer can be replaced by a 1x1 convolutional layer [LCY14], which reduces the
number of parameters, and thus the memory footprint, from 233 × 106 to
452 × 103. The reduction of parameters also further regularizes the network,
which is an advantage for training the network. As a last layer average pooling
reduces the output of the last convolutional layer to a vector, which size matches
the number of labels. The replacement of the fully-connected layers slightly
increases the number of MAC operations. However, this increase is acceptable
due to the strong memory savings and it can be levelled out by the other
previously proposed optimizations.

3.1.2 Final design

The proposed design is denoted as CNN-CNP and is illustrated in Table 3.1.
After applying each optimization step as described above the parameter count is
decreased considerably by a factor of 515 to 452 k parameters and the number of
MAC operations by a factor of 2.1 to 1239MMAC. Moreover, after optimization
the network consists only of convolutional layers. This unified architecture
beneficial for hardware implementation and for the use of convolutional hardware
accelerators.

3.1.3 Experiment

After applying these fundamental changes to the network and substantially
reducing the number of parameters and arithmetic operations, it needs to be
validated that the classification performance is maintained and kept on an
acceptable level. For this purpose the two networks (CNN-C and CNN-CNP)
have been implemented using Keras [Cho15]. These networks are compared
against the best performing implementations from [TGPG16], which are referred
to as A and B. The network A has the same structure as the CNN-FC network



54 Chapter 3. Hazard monitoring using machine learning and edge devices

Model A, [TGPG16] B, [TGPG16] CNN-C CNN-CNP
Accuracy 91.7% 92.8% - -
w/ aug
Accuracy 77.9% 80.3% 86.0% 85.1%
w/o aug
# params 233M 257M 452 k 452 k
# MACS 2543M 3533M 2655M 1239M

Table 3.2 Accuracy (with and without data augmentation), parameter count and
number of operations for the proposed networks CNN-C and CNN-CNP compared to
the top scoring implementations A and B from [TGPG16].

from Table 3.1, the B network is a more complex network with a higher depth
and bigger fully-connected layers.

3.1.4 Dataset

The dataset [TGPG16] contains various sound files collected from freely
available online sources. It consists of 28 different event types of variable length,
e.g. airplanes, violins, birds or footsteps. The total length of all 5223 audio files
is 768.4 minutes. The data is split into training and test set. The training set
contains 75% of the original data and is further subdivided into training and
validation set with a ratio of 0.25. Although the dataset is strongly biased no
data augmentation was performed in the following experiments, since the main
focus is on the comparison of the algorithm in terms of structure, resources
and classification performance, and not on the augmentation technique. Both
networks were trained by minimizing the cross-entropy loss using the gradient-
based optimizer ADAM [KB14] with mini-batches of size 128. The optimizers’
parameters were left at its default values presented in [KB14]. Testing was done
by predicting the probabilities for each class on a 4 seconds window randomly
extracted from the test set. The class with the highest probability was chosen
as the correct class and compared against the ground truth.

3.1.5 Results

The experimental results are listed in Table 3.2. The values for accuracy
of network A and B are taken from the original publication, the values for
the number of parameters and number of MACs are calculated based on the
information taken from the original publication. The first line of Table 3.2
shows the accuracy results for networks A and B with data augmentation which
are 91.7% and 92.8%, respectively. As expected, these are better than the
corresponding accuracy results without complex data augmentation which are
77.9% and 80.3%, respectively. The networks CNN-C and CNN-CNP have
an accuracy of 86% and 85.1%, respectively. Thus, without sophisticated
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data augmentation both proposed networks perform better than the reference
network A and even better than the more complex network B.
The analysis of parameter count shows that when 16 bit parameters are assumed,
the total memory consumption for the CNN-FC network’s weights is 466MB,
which is not feasible for most edge computing applications considering the fierce
power and memory constraints for distributed sensing devices. In contrast, the
weight storage for the CNN-C and CNN-CNP is approx. 904 kB. Even when
considering additional overhead by the implementation on low-power devices
such as the NXP KV5x or ST STM32F7 [NXP16, STM16], their flash memory
of up to 2MB is still sufficient to store the parameters of the presented acoustic
event detection algorithm.
Considering that the devices mentioned above have a processing capability
higher than 430MMAC/s and processing the input buffer is only required
every 4 seconds, they are able to handle the 1239MMACs of CNN-CNP in
less than 4 seconds. Thus the classification can be considered real-time. The
evaluation shows that the design specifications could be reduced considerably
without impact on performance.

3.1.6 Conclusion

In this section, an acoustic event detection algorithm was presented that
exploits the advantages of CNNs while being implementable on low-power
microcontrollers. A convolutional neural network has been optimized to be
efficiently implemented on resource-limited low-power embedded devices. It
was demonstrated that it is possible to reduce the memory requirement by a
factor of 515 and the number of operations by a factor of 2.1 without loss of
classification accuracy. Due to the flexible applicability of convolutional neural
networks it can function as basis for on-device seismic event classifier, which we
will present and further optimize in the next section.
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3.2 Event-Triggered Natural Hazard Monitoring and Clas-
sification on Edge Devices

In this section, we present a scenario where it is mandatory to perform complex
decision making on the edge of a distributed information processing system and
show based on a case-study how the approach can be embedded into a wireless
sensor network architecture and what performance can be expected. We adopt
the optimized classifier architecture of the previous section for seismic event
classification and further improve its computational performance.

3.2.1 Problem Setting

Natural disasters happen infrequently and for mitigation efforts fast reaction
times relative to these rarely occurring events are important, especially where
critical infrastructure or even human casualties are at stake [GAC05]. In alpine
regions where human habitats including settlements and infrastructure are
threatened by rockfalls and other gravity-driven slope failures, wireless sensor
networks can act as natural warning systems [IGM+12]. They have the flexibility
to be deployed in locations that are logistically difficult or dangerous to access,
for example an active rockfall scarp. Therefore it is important that these systems
run autonomously for long periods of time [GBG+12, BGH+09b]. Unfortunately,
in many cases the close proximity of warning systems to the human habitat has
negative implications as noise originating from infrastructure or anthropogenic
activities may impact the capabilities and accuracy of a warning system and
therefore must be accounted for. In this paper we demonstrate how human
noise can be classified, quantified and removed from microseismic signals using
an implementation of a convolutional neural network optimized for embedded
devices.
Traditionally, continuous, high-resolution data acquisition is used to monitor
microseismic signals emanating from structural fatigue [AGS05, OCA+12].
These methods are powerful in capturing natural hazard with respect to process
understanding as well as hazard warning. However, they suffer severely that in
periods of no or little activity continuous high-rate signal amplification and
sampling does not provide an information gain while still consuming energy.
In addition, these methods scale unfavorably due to the large amount of
data produced [WLJ+06]. Overall increasing the number of sensor nodes
leads to improved detection capability but is clearly limited by the available
transmission bandwidth if data is to be processed centrally. One way to reduce
the network utilization is to make the sensors themselves more intelligent by
shifting the knowledge generation process from the centralized backend closer
to the signal sources, e.g. [GBG+12]. A novel approach based on a coupled fibre-
bundle model exists [FOR16]. It registers precursory patterns of catastrophic
events with the help of many threshold triggered sensors and a reduced set of
explanatory variables and has recently been tested in a pre-study [FFBV18].
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Thus, a system that is optimized to calculate explanatory variables directly on
the sensor reduces the logging and transmission cost and thus allows to react
with high reactivity on the detection of catastrophic events [BBF+11a].
But such an extreme reduction in information content comes at a price: false
positives and the inability to characterize events further. While the first has
an impact on correct analysis and network performance metrics, the latter
is of importance to react adequately on the detection of a disaster. For
example if humans are present in a hazard zone they should be warned and
a search and rescue mission should be dispatched immediately. Correct and
timely information here is of utmost importance to maximize success and
avoid expensive interventions on false alarms. Under the constraints given,
on-device classification provides a mean to identify humans on-location without
the requirement to transmit all sensory data through the network.
We present two aspects: (i) a system architecture for natural hazard monitoring
using seismic sensors (geophones) that is designed for detection of precursory
rockfall patterns based on the theory of co-detection and (ii) a concept for
accurate on-sensor classification of event-based seismic signals to reduce false
positives and enhance information by identifying humans in the signal using
machine learning techniques.
We evaluate our network and system architecture in two scenarios. In the first
scenario we present an outdoor, wide-area sensing system presently deployed in
a high alpine natural hazard environment at the Matterhorn Hörnligrat field site
at 3500 m a.s.l., Zermatt, Switzerland. We demonstrate the functionality of
our system architecture and evaluate its longevity when using event-based data
acquisition. The second scenario is a laboratory experiment using an openly
available microseismic dataset [MWB+18] to demonstrate the feasibility of on-
device classification of mountaineers using convolutional neural networks within
the wireless sensor architecture. We focus on advanced methods to reduce the
memory requirements and latency of an embedded convolutional neural network
classifier.
In the following sections we claim the following contributions:
n A variant of a seismic event classifier is implemented on low-power embedded
devices using network quantization.
n A sophisticated buffering concept for pipelined inference of a convolutional
neural network to relax memory requirements and to decrease latency.
n A realization of a wireless, event-triggered single-channel microseismic sensor
system featuring low-power consumption, fast wake-up time and on-device
signal processing and characterization capabilities. The system is realized using
the Dual-Processor Platform (DPP) hardware design template [SZDF+15] and
a slightly adapted version of the open-source protocol implementation of the
event-based Low-Power Wireless Bus (eLWB) [SDFG+17].
n The system was deployed in a field study running on the rockfall scarp of the
Matterhorn Hörnligrat at 3500 m a.s.l. from 08/2018 until 02/2020.
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3.2.2 Related Work

Rockfall Detection using Seismic Sensors: Seismic precursory patterns
before rockfalls have been investigated for several field sites [SDL09, SMG+07,
AGS05]. These studies are based on microseismic measurements with a portable
data logger. Wireless sensor networks have been introduced to cover a larger
area while removing the requirement of data retrieval [WJR+05, CCVB18,
OCA+12]. They either provide the option for remote data download or transmit
short, event-triggered segments. Unlike in our study, event triggering is done in
the digital domain which means that the acquisition system is constantly on.
Acoustic Event Detection: Artificial neural networks have been applied
to acoustic event classification [TGPG16, HCE+16, CHHV15, CPH+17] which
includes among others footstep detection. Also footstep detection and person
identification using geophones has been studied before [AMK18, PWQ+15,
LMP+16], however only in experiments in a controlled environment, not on
embedded devices or using additional structural information. Artificial neural
networks have been recently applied to seismic event detection [PGF18].
Especially convolutional neural networks have achieved good accuracies
[PGD18, MWBT19b].
Artificial Neural Networks on Embedded Devices: Many studies focus on
additional accelerators [ACRB18, HYA+18, CKES17] for convolutional neural
networks. This approach requires dedicated hardware. Studies on mobile
platforms [WLW+16] and wearables [MLB+17] exist but require a more powerful
hardware architecture. A prominent work for low-power embedded devices
focuses on keyword spotting [ZSLC17] on a slightly more powerful Cortex-M7
than used in our study. A theoretic strategy for low-memory convolutional
neural networks as been proposed in [BB18] which focuses on an incremental
depth-first processing idea that resembles our approach. However, they neither
focus on sequential data nor on the implementation with a specific buffering
system.

3.2.3 System Design

Figure 3.3 illustrates the overall concept. A wireless sensor network consisting of
multiple microseismic sensor nodes is deployed in an area where rockfall occurs.
The system can be partitioned into sensor nodes that are only used as rockfall
detectors (light blue) and sensor nodes that additionally can classify footsteps
(dark blue). The two node types have different requirements which will be
briefly outlined in the following.

3.2.3.1 Rockfall Detection by Co-detection of Seismic Events

The following describes the principle of detecting precursors of rockfall
patterns [FOR16] with threshold-triggered geophone sensors. Multiple
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Figure 3.3 Conceptual illustration of a wireless sensor network for natural hazard
monitoring based on the principle of co-detection [FOR16]. Multiple seismic sensors
are deployed in a hazardous area. The sensor nodes feature the same hardware,
a microseismic sensor (geophone), processing, storage and wireless communication
subsystems and are able to detect and classify events based on threshold-triggered
input signal. If a sensor detects an event it can determine if it originates from
a human in the hazard zone or not and possibly trigger an alert. If not it only
sends the event information trough a wireless low-power network. A basestation
collects the information from all sensors for centralized data gathering and further
analysis using post-processing methods. Temporal correlation of detected events,
e.g. when multiple sensors register an event within the same time window, make
it possible to identify the precursors of large mass failures based on the theory of
co-detection [FOR16].

geophones are deployed on the rock surface as illustrated in Figure 3.3. If
rockfall stimulates a seismic event either due to fracturing/detaching or due to
impact, different sensors may register the emerging signal depending on their
location relative to the event source [WFM+18]. A high amplitude input signal
registered at a single sensor can have two causes: Either a large event occurred
at distance or a small event occurred in close proximity to the sensor. A co-
detection exists if multiple sensors register an event quasi-simultaneously, which
allows to distinguish between the two aforementioned possibilities. Furthermore,
as lab experiments have shown [FOR16], consecutive co-detections of events
can be used to identify rockfall precursors and thus facilitates natural hazard
early warning capabilities. Fundamental for this principle is the requirement
of many sensors to perform co-detection as well as to cover a large enough
area with a sensor cluster [FFBV18]. The data acquisition can be reduced to
recording the exact timestamp when the signal exceeds a certain threshold, i.e.
capturing events only. While this detection can be implemented very efficiently
in hardware using an analog comparator circuit further analysis using signal
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processing techniques require a digitizer and processing unit that is typically
put to sleep when not in use. A predictable system behaviour and a precise
time synchronization between all system components and all nodes is important
be able to put co-detected events into context and quantify the underlying
processes. A similar system based on much higher frequency acoustic emission
signals has been implemented successfully using the Dual Processor Platform
(DPP) architecture [SZDF+15] and the event-based Low-Power Wireless Bus
(eLWB) [SDFG+17]. In this work, we adopt these openly available system
components to realize an outdoor, wide-area sensing system [Pas18], evaluate
and demonstrate its applicability to perform co-detection of precursory rockfall
patterns based on low-frequency microseismic signals.

3.2.3.2 Classification with Time Distributed Processing

The co-detection concept allows to reduce false positives, e.g. caused by
anthropogenic activity like humans walking by. However, to identify whether
a human is present on-site is impossible by just using the reduced set of
information transmitted by the event-triggered sensors, i.e. the timestamps of
detected events. Since transmitting the raw sensor data of each detected event
in real-time for many sensor is infeasible due to bandwidth and energy limitations
an approach using on-device classification is advocated. Here, several challenges
need to be addressed. Multiple footstep detectors using geophones have been
proposed [AMK18, PWQ+15] but have not been shown to distinguish well
between footsteps and seismic events [MWBT19b] or require further structural
information [LMP+16]. Convolutional neural networks have shown to be good
signal processing tools for classification of acoustic [HCE+16] as well as seismic
sources [PGD18]. In contrast to other neural network types, such as MLP or
LSTM, several convolutional neural network architectures for the special case
of seismic event detection have been explored [PGD18, MWBT19b]. Thus, this
work focuses on optimizing and implementing an existing CNN-based classifier
with known good performance [MWBT19b] to perform well on embedded
devices. On the downside, convolutional neural networks have a high memory
demand, high memory access rates and a high processing demand. Typical
commercially available low-power embedded devices are equipped with two types
of memories, static random-access memory (SRAM) and flash memory. On low-
power devices the impact of memory usage on the energy efficiency is significant
and space in energy-efficient memory structures (SRAM) is limited. However,
the inference of a convolutional neural network requires a significant amount
of memory to perform the computations, specifically for storing intermediate
results and the network parameters. Non-volatile memory, such as flash memory,
is typically used to store the parameters of the neural network but the number
of read accesses to this type of memory should be minimized since the energy
consumption is typically about 6x as high as reading from SRAM [VBM18]. As
a consequence the amount of memory accesses required for loading parameters
should be reduced, for example by binarization of the network [MTK17].
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Figure 3.4 An example of a rockfall event during the testing phase of the wireless
sensor network at the Matterhorn Hörnligrat field-site [WFM+18]. Illustrated is data
from the monitoring system and two images (before and after significant rockfall)
obtained from a remotely controlled high-resolution camera. The top plot shows how
a cluster of sensors (see Figure 3.10) co-detected an event over time. The point size
indicates the maximum peak amplitude detected in each co-detection within a 0.5
second time window whereas the vertical axis denotes how many sensors triggered
within this window. Marked in pink on the right image are areas impacted by rockfall
identified by comparing the two images. The mountaineer visible in the lower left
corner of the left image is in the danger zone with a number of significant impacts
visible in immediate vicinity (pink). Local reports confirmed that no one was harmed
in this specific incident.
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However this approach comes with a drop in accuracy of about 10%. In our
work we apply incremental network quantization [ZYG+17], which does not
suffer from a reduced accuracy while reducing the network parameter’s memory
requirement.
For storing intermediate results SRAM is the most energy-efficient memory.
However, the intermediate results of state-of-the-art convolutional neural
networks do not fit into SRAM. Additionally, convolutional neural networks
suffer from a high latency because of the high number of operations required
to perform a classification.
In this work we present a novel method to pipeline the computations which
relaxes the memory requirements significantly and allows to compute a
convolutional neural network in SRAM only while providing a low latency. In
the following we call this concept time distributed processing.

3.2.4 Wireless Sensing Platform

The wireless event-triggered microseismic sensing platform presented in this
paper is depicted in Figure 3.5 and consists of one single-axis geophone
sensor, an analog triggering circuit, a digitizer circuit, an application processor,
a communication processors integrated using the BOLT state-full processor
interconnect [SZDF+15]. We are using a single-axis, omni-tilt geophone sensor
since it can be used over a large range of the inclination angles, a characteristic
usually not available on multi-axial geophone sensors that require an accurate
and level placement over the whole measurement duration. The geophone
signal is conditioned and fed to the analog triggering circuit and digitizer
circuit. The analog triggering circuit provides the application processor with
an interrupt signal if the geophone signal is higher or lower than a given
threshold. The application processor will timestamp the detected event and
then enable the digitizer system to sample the geophone signal for a pre-
defined duration. The processing system is based on the Dual Processor
Platform (DPP) partitioning and decoupling the sensing application and the
communication onto dedicated processing resources. The interconnect on DPP
is realized using BOLT [SZDF+15], an ultra-low power processor state-full
interconnect which features bi-directional, asynchronous message transfer and
predictable run-time behaviour. The communication subsystem is based on an
IEEE 802.15.4-compatible transceiver (MSP CC430) running eLWB [SDFG+17].
Further details on the design of the system architecture can be found in [Pas18]
as well as a pre-study using a wired setup in [FFBV18].

3.2.4.1 Analog Triggering Subsystem

The circuit must be capable of amplifying the geophone sensor (SM-6 14Hz
Omni-tilt Geophone, ION Geophysical Corporation) signal and comparing it to
a predefined threshold trigger. This part of the system is always active, therefore
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Figure 3.5 System diagram of the event-triggered microseismic sensing platform based on the Dual Processor Platform (DPP) architecture
template [SZDF+15, SDFG+17]. The analog triggering circuit as well as the BOLT interface is always powered whereas all other components
can make use of low-power operating modes independently.
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it is most sensitive with regards to power consumption. All other system
components can be duty-cycled but the trigger must remain powered at all
times. An evaluation of different implementation variants showed the superiority
of a fully discrete external solution (140.5, 115.2, 22.9 uA respectively) among
variants using OPAMP, DAC and comparator circuits internal to the application
processor (32-bit ARM-Cortex-M4, STM32L496VG, 80MHz core clock, 3 uA
current drain in STOP 2 mode with full RAM retention with RTC on; 1MB
flash, 320 kB continuous SRAM), a mix with external and internal components
or all-external components respectively. The final design incorporates a dual-
sided trigger with individual threshold set-points and a variable amplification
(20x and 200x) using MAX5532 12-bit DACs and MAX9019 comparators. The
input signal is biased to half the rail voltage and the upper and lower thresholds
can be selected between 0 − Vsys/2 and Vsys/2 − Vsys respectively. Although
(in theory) one single-sided trigger should be sufficient, we deliberately chose to
implement a dual-trigger system (triggering both on a rising and falling first edge
of the seismic signal) to be able to have more degrees of freedom and stronger
control over the trigger settings chosen. The overhead for the bipolar trigger
system relative to the whole systems power figures in it’s different operating
modes is negligible (see Section 3.2.7).

3.2.4.2 Digitizer Subsystem

Upon detection of a threshold crossing of the incoming sensor signal the
application processor is woken up from an external interrupt and a timestamp
of this event is stored. Subsequently the data acquisition system, a 24-bit delta-
sigma ADC with high SNR and built-in Programmable Gain Amplifier and low
noise, high-precision voltage reference (MAX11214 ADC) is powered on and
initialized. It samples the geophone signal at 1 ksps and stores data in SD
card storage until the signal remains below the trigger threshold values for a
preconfigured duration (post-trigger interval). For this purpose all successive
threshold crossings of the sensor signal (the interrupts) are monitored. After
ADC sampling has completed the ADC is switched off and all data describing the
detected event (event timestamp, positive/negative threshold trigger counts,
event duration, peak amplitude, position of peak amplitude) are assembled into
a data packet that is queued for transmission over the wireless network along
with further health and debug data packets. Using this data, rockfall detection
by means of co-detection as described earlier in section 3.2.3.1 can commence
using only very lightweight data traffic while the full waveform data is available
for further processing and event classification as presented later in section 3.2.5.

3.2.4.3 Wireless Communication System

The communication system is based on the TI CC430 system-on-chip running an
adapted version of the event-based Low-Power Wireless Bus (eLWB) [SDFG+17]
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based on Glossy. This protocol provides low-latency and energy-efficiency for
event-triggered data dissemination using interference-based flooding. Since the
protocol was specifically designed to be triggered by ultra-low power wake-up
circuits it is optimally suited for our application. We use the openly available
code1 with adaptations specific to our platform and the data to be transferred.

3.2.4.4 Application Integration

The Dual Processor Platform (DPP) philosophy using the BOLT state-full
processor interconnect [SZDF+15] builds on the paradigm of separation of
concerns, shielding different system components and run-time functionality from
each other for as much as possible. As a side effect this partitioning allows
for easy integration and adaption to new applications and/or specifications by
allowing to work on communication and application separately. Also, by using
well-defined and strongly de-coupled interfaces application re-use is facilitated.
In BOLT two queues implemented on non-volatile memory form a strictly
asynchronous interface between two processors with guaranteed maximum
access times. The obvious drawback of this strict de-coupling however is, that
all interaction between the two processors is message based and incurs different
end-to-end delays depending on queue fill and access patterns. Therefore tight
time synchronization is not readily available. For this purpose a dedicated
sync signal is routed between interrupt capable IOs of the two processors. In
this way both the decoupling of the two application contexts for sensing and
communication as well as tight time sync for accurate timestamping of the
detected events based on the network-wide high-precision time sync of eLWB
can be achieved [Pas18].
Apart from the event-triggered geophone sensing platform design and its
system integration the main contribution of this work is to demonstrate and
evaluate a blueprint method for on-board characterization and classification of
detected events using neural networks and machine learning techniques. The
key techniques and challenges encountered are discussed in the following two
sections.

3.2.5 Event Classification

The training of an event classifier for a new field site is always affected by
the cold-start problem: Little knowledge about the data is available at the
time of initial deployment but this knowledge is required to train a classifier.
Moreover, the size and diversity of the dataset is critical for training a good
classifier requiring a long time period of samples, for example sensor signals
observed over multiple seasons or in different weather conditions. To mitigate
this issue we perform a preliminary feasibility study on a dataset with similar
characteristics to our application scenario. In this way we can assess the

1https://github.com/ETHZ-TEC/LWB
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Figure 3.6 Signal processing pipeline for event classification on the experimental
platform. The processing pipeline is subdivided into data acquisition, pre-
processing, classification with a convolutional neural network (CNN) and decision
an transmission. Data sharing between tasks is realized via buffers. Whenever the
sample buffer is filled the pre-processing executes and fills one column of the spec
buffer. When W columns are filled the classification task is executed. The result of
the classification can be transmitted.

energy and storage requirements which are necessary to deploy nodes at a later
stage using on-device classification. The neural network can later be retrained
easily when an extensive dataset is acquired with the integrated system. The
processing pipeline for event classification is illustrated in Figure 3.6 and consists
of data acquisition, pre-processing, classification with a convolutional neural
network and result transmission. For evaluation purposes we use a development
board with the same micro-controller as used for the application processor on
the sensor nodes presented earlier in Section 3.2.4. The micro-controller’s
UART module allows to input data and output results with the flexibility
to feed different experimental data for development, debug and performance
assessments. In the final design the digitizer frontend with the analog-digital-
converter and the network data packet generation feeding result data over BOLT
to the communication subsystem will replace these UART modules.
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3.2.5.1 Training Dataset

The dataset used is an openly accessible microseismic dataset captured at
Matterhorn Hörnligrat [MWB+18]. One sample of the dataset consists of a two-
minute microseismic recording and a camera image. Both data types coincide
in time. The sample’s label indicates whether mountaineers are present on the
image or not. The dataset also contains additional data structures, such as a
list of event timestamps. To be able to use our system model with the dataset
two changes have to be applied to the dataset. The seismic sensor used in
the reference dataset is a three-axial seismometer (Lennartz LE-3Dlite MkIII).
Since our sensor nodes are equipped with a single-axis geophone sensor only
a single channel is available as classifier input. Thus, we only use the vertical
component of the three-axis dataset for training and testing. The characteristics
of the geophone and the seismometer [MWB+18] are comparable for the signals
of concern in this application. We apply an amplitude triggering algorithm to
the two-minute signals and retrieve 12.8 second long event segments to which
we assign the same labels as the respective two-minute segments. We set the
threshold such that the number of events per two-minute segment is similar
in quantity to the event timestamps provided by the dataset. These event
segments are then used for training and evaluation. We use the same split for
training and test set as defined in the dataset.
The processing pipeline illustrated in Figure 3.6 transforms the digitized
geophone signals into a time-frequency representation which the convolutional
neural network uses for classification. The dataset samples are acquired over
the UART interface to ensure a repeatable experimental setup and subsequently
stored in memory using efficient Direct Memory Access (DMA). The samples are
transferred via UART using a sampling frequency of 1000 samples per second
which is a comparable rate as in the sensing platform presented in Section 3.2.4.
When the sample buffer is filled an interrupt triggers the processing task. We
perform strided segmentation and segment the signal with a segment size of
N=1024 and a stride of 512 using a double buffer of size 2N .

3.2.5.2 Pre-Processing

The pre-processing on the embedded systems is equal to the processing used to
train the neural network. It is designed to be efficiently implemented using a Fast
Fourier Transform (FFT). Other techniques for audio or seismic classification
work directly on the time-domain signal [PGF18], however in that case the
convolutional neural network tends to learn a time-frequency representation
[SWS+15]. By using a FFT the efficiency of its implementation can be exploited
in contrast to implementing a filter bank with convolutional filters. The pre-
processing task takes the sample buffer as input, multiplies it with a Tukey
window (α = 0.25) and performs the FFT. The magnitude of the FFT is
squared, scaled and transformed using a filterbank. The filterbank maps the
FFT bins to 64 bins and thus reduces the data to be processed and stored in
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a later stage of the signal processing pipeline. Consecutive log compression
creates a distribution of values which is more suitable for the convolutional
neural network [CFCS17]. With an input segment size of 12.8 seconds the size
of the time-frequency representation is Time x Frequency x Channels (T x F x
C) = 24x64x1.

3.2.5.3 Convolutional Neural Network

We use a neural network for classification of mountaineers that is openly
accessible [MW18] and which has already been structurally optimized for
a reduced parameter set and few computations. It consists of multiple
convolutional layers with rectified linear unit (ReLU) activation and zero padding
to match input and output size. Moreover, dropout is used to reduce overfitting.
In contrast to [MW18] we do not use Batch Normalization layers because we
found it to have negligible impact on the test accuracy in our experiment. Our
implementation is illustrated in Table 3.3.
For evaluation of the neural network we will use error rate and the F1 score
which is defined as

F1 score = 2 · true positive
2 · true positive + false negative + false positive (3.1)

To prevent overfitting the neural network is all-convolutional [SDBR14] and
dropout [SHK+14] is used. Training is performed using Tensorflow [AAB+15]
and Keras [Cho15]. It is accomplished by using 90% of the training set to train
while a random 10% of the training set is used for validation and never used
during training. The number of epochs is set to 100. For each epoch the F1
Score is calculated on the validation set and the epoch with the best F1 score
is selected. The test accuracy is determined independently on the test set.

3.2.5.4 Implementation Challenges on Embedded Devices

To implemented the neural network on an embedded device further optimiza-
tions are required. The first problem is the storage required for the parameters
of the network. The number of parameters is 38,403 which requires 153.6 kB
of flash memory using 32-bit values. It is possible to store this amount in
flash memory but read accesses to flash should be minimized due to the
higher power consumption in comparison to reading from SRAM [VBM18]. We
therefore apply Incremental Network Quantization [ZYG+17] which quantizes
the parameters to power-of-two values in an iterative weight partition and
quantization process. Due to quantization the parameters can be stored as 8
bit integer values and the storage for the parameters of the convolutional neural
network is reduced by a factor of 4 without loss in classification accuracy.
The second problem is the size of the intermediate results. The largest
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Name Type Kernel Stride Input size
C0 Conv2D + ReLU 3x3 1 24 x 64 x 1
C1 Conv2D + ReLU 3x3 2 24 x 64 x 32
D0 Dropout - - 12 x 32 x 32
C2 Conv2D + ReLU 3x3 1 12 x 32 x 32
C3 Conv2D + ReLU 3x3 2 12 x 32 x 32
D1 Dropout - - 6 x 16 x 32
C4 Conv2D + ReLU 3x3 1 6 x 16 x 32
C5 Conv2D + ReLU 1x1 1 6 x 16 x 32
D2 Dropout - - 6 x 16 x 32
C6 Conv2D + ReLU 1x1 1 6 x 16 x 32
Af Average (Frequency) 1x16 1 6 x 16 x 1
At Average (Time) 6x1 1 6 x 1 x 1
C7 Conv2D + Sigmoid 1x1 1 1 x 1 x 1
O Output - - 1

Table 3.3 The structure of the convolutional neural network using 2D convolutional
layers (Conv2D) with Rectified Linear Units (ReLU) and dropout layers to reduce
overfitting. Number of parameters 38,403.

intermediate result of the convolutional neural network is calculated in layer
C0. To calculate layer C1 the output from layer C0 and additional space to
store the output of C1 is required. With 32-bit values the memory requirement
in our case is 245.76 kB kB which is too large to fit into the SRAM of most
micro-controller units. Of course, provisioning this amount of memory would be
possible, e.g. using external memory but due to the increase in silicon, access
times and energy footprint alternative methods need to be sought for. Since
external DRAM is not a suitable solution either we present a method which
allows to execute the convolutional neural network using only SRAM and a
reduced memory footprint in the following section.

3.2.6 Memory Footprint Reduction Approach: Time Distributed
Processing

In this section we present a method to reduce the memory footprint requirement
of the convolutional neural network. We will explain this concept with a simple
example of a 1D convolutional neural network as illustrated in Figure 3.7. The
network consists of two convolutional layers with a 3 x 1 weight kernel each
and strides of 1 and 2, respectively. For illustration purpose we ignore the non-
linearity and the bias which are usually part of a convolutional layer. Typically,
the network is calculated layer by layer. The input is convolved with the first
layer’s parameters and the first layer’s output is convolved with the seconds
layer’s parameters, which requires the intermediate outputs to be simultaneously
in memory for the time of execution.
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In contrast to this approach we will focus on calculating the output values step
by step. Illustrated in red and blue are the respective receptive fields of the
second layers’ outputs, meaning all values of the input buffer and first layer’s
output that affect the final output. We first calculate the red output, then
we calculate the blue output. This idea is similar to the depth-first approach
described in [BB18]. However, additionally we will optimize for the temporal
characteristics of our input data with a sophisticated buffering system.
When calculating the red output we already calculated one intermediate result
required for the blue output (the point where the local receptive fields in the
layer 1 output overlap). If we want to calculate the blue output we see that
we only need two values from the first layer’s output which have never been
calculated before (highlighted in bold). By following the receptive field of these
two values we find they depend on four values from the input buffer, among
which are two values which have not been used before and two which have been
used for calculating the red output. Effectively, this means that we can calculate
the output of the network by a combination of new input values, intermediate
results and buffered values.
Figure 3.8 illustrates this buffering concept for the same example. We use the
following nomenclature: pi is the number of new input values for layer Li; bi is
the number of buffered input values for layer Li; po and bo are the respective
output values. We call the array of size pi the processing window of Li and the
array of size bi the buffer of layer Li. The value si is the stride for layer Li. The
figure presents the last two time steps tn−2 and tn, which results in calculating
the blue value in Figure 3.7. Based on Figure 3.7 we set p0 = p1 = 2, po = 1
and b0 = 2,b1 = bo = 1. We now apply the convolutional layer as before but
on the reduced input window. Obviously, we can now shift the input step by
step into the buffering system and calculate the output of the convolutional
neural network. For each step we acquire two new input samples and discard
two older input samples. This makes the buffering system ideal for time series
data as is the case in our application scenario. The memory requirement in
Figure 3.8 compared to the case in Figure 3.7 is reduced by 35% and the
memory requirement for each step is constant. The following section addresses
the questions how this general concept is transferred to our application specific
convolutional neural network introduced in Section 3.2.5.3 and how the correct
size of each layers’ buffers is determined.

3.2.6.1 Buffer System Design

Closely examining the inputs of our convolutional neural network in Table 3.3
we see that it consists of 24 timesteps of a 64 value vector. The buffering
concept can be expanded to this case if we assume b0x64x1 and p0x64x1 input
buffers. Similarly it can be expanded to multiple feature maps (in our case 32)
for the intermediate buffers. Before determining the actual buffer sizes we need
to determine up to which layer the buffering concept is applicable. The last
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Figure 3.8 Illustration of the buffering concept: Each input of a layer consists of
one buffer (yellow) and one processing window (green). Shown are two timesteps
tn−2 and tn. Each timestep a new input is placed in the processing buffer of layer
L0. Subsequently, the layers perform convolutions followed by a left-shift of the
processing window by two values.

three layers of the network are average pooling operations and scaling. The
output of the time average pooling layer At is influenced by every value of the
24x64x1 network input, which means that after this layer the buffering concept
cannot be applied anymore. We can however calculate for each step one of the
6 input values to At independently and place them in a buffer. Therefore we
can consider all layers up to At for the buffer system.
The buffer system is defined by the processing window size pi and buffer size bi.
The pi values can be calculated for each layer by considering the convolutional
layers up to At.

pi =
L−1∏
l=i

sl
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Figure 3.9 Illustrates the buffering architecture for the network from Table 3.3 with
input size of 4x64x1. The input and output of the network are depicted as well as
the intermediate results of each layer. C0 to C7 are the convolutional layers. Af and
At are the average pooling layers for frequency and time, respectively.

where L is the number of convolutional layers up to At and sl is the stride of
layer Cl. Note that we ignore the dropout layers for this calculation since they
have no influence on inference.
Instead of deriving bi analytically we followed a systematic approach for each
layer. Similar to the approach in the above example we choose the correct bi

based on the layers pi, pi+1, kernel size and stride.
Finally we can construct our buffering system for the network presented in 3.3.
The result is illustrated in 3.9. As discussed before, the number of samples on
the frequency axis remains unchanged as well as the number of feature maps.
Using this technique we are able to reduce the memory requirements from
245.76 kB to 85.6 kB for our example application which constitutes a reduction
by a factor of ∼2.87 and as a result allows an efficient implementation on a
resource-limited and sufficiently low-power embedded processing device.

3.2.7 Result and Evaluation

In the following we will present our findings, evaluate our system design
and demonstrate the advantages of time distributed processing. The dataset
[MWB+18] is used to assess the performance of the mountaineer classifier.
These results are then used in combination with performance data from our
field deployment to estimate the lifetime of a sensor node equipped with the
event classifier integrated onto the platform’s embedded application processor.
We do not provide a qualitative evaluation of the rockfall detection system since
a labelled dataset including every rockfall during a substantial monitoring period
would be required but currently something like this does not exist (worldwide).

3.2.7.1 Field Site Experiments

Nine geophone nodes were deployed in steep, fractured bedrock permafrost
on the Matterhorn Hörnligrat field site [WFM+18], a site prone to frequent
rockfall hazards to evaluate the system characteristics and the suitability for co-
detection of rockfall events. The locations of the event-triggered sensor nodes
are depicted in Figure 3.10. The system is located right around a frequently
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used climbing route and continuously operating since mid-August 2018. The
data from the site is fed into a web-based data portal and openly available2.

Figure 3.10 Matterhorn Hörnligrat Field site overview: Shown are the locations
of the nine wireless geophone sensor nodes. The base station to collect data and
transmit it to a data backend is located behind the little tower visible at the upper
lefthand corner of the image. The detachment scarp visible is located above a
frequently used climbing route.

3.2.7.2 Wireless Sensing Platform Evaluation

The system characteristics of the wireless sensing platform presented in
Section 3.2.4 is evaluated in terms of responsiveness and energy efficiency.
Lab measurements (see 3.4) have shown that the 20x gain single amplification
stage requires only 29 µA@3.0 V with the 200x gain dual amplification stage
consuming 49.9 µA@3.0 V. In combination with the other components of the

2http://data.permasense.ch/
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Measurements Value [mA]
Active current CC430/eLWB 28
Sleep current CC430/eLWB 0.005
Active current for geophone
sensor, frontend and applica-
tion processor

35

Sleep current geophone 0.035

Table 3.4 Lab measurements of the power performance of the event-triggered
microseismic sensor platform at different characteristic operating modes.

trigger frontend that are continuously running the system requires a current of
35 µA@3.0 V in sleep mode when using the single stage amplification. The active
current with ADC operating and application processor running was measured
to be 35 mA.
The wake-up time based on an event trigger is important for the acquisition
of event waveform data. Since the data acquisition on the ADC is not
running continuously in order to save power, no pre-trigger samples are
available.Moreover, the delay between threshold-based triggering and the ADC
acquiring a first sample will result in data loss with respect to the event signal
acquired. We measured a wake-up time from sleep mode of the processor to the
acquisition of the first sample on the ADC of only 2.62 ms, which means that
on average we loose approximately 3 ADC samples when using a sampling rate
of 1 ksps. For most seismic data acquisition systems 1 ksps can be assumed
as being a very high sampling rate with a typical value being only 250 sps.
Therefore we conclude that using our system architecture this delay is not of
significance for the given application.
Time synchronization is a crucial design criteria for our triggered sensing
application and especially for using co-detection. Implementing this application
using the eLWB protocol based on a synchronous network operating paradigm
and Glossy flooding on the lower layer, we are able to achieve time
synchronization in realistic operating conditions across a network of tens of
nodes within 200 µs [SDFBT17].
For further evaluation of the wireless sensor platform we use data from the
first 43 days of the testing phase of our deployment. As can be seen from
the statistics presented in Table 3.5, the mean number of events per hour is
approximately 28. This value takes into account all events from all sensors and
shows that the activity in the network is rather low and low-power performance
in sleep mode is most important for this specific application. By looking at
the histogram of inter-arrival times of all events in Figure 3.11 we can see that
most events are occurring in bursts, having small inter-arrival times below 20
seconds. However, the cumulative density indicates that approximately 15%
of inter-arrival times are larger than 100 seconds and thus that there are as
well long silent periods, which is also indicated by an inter-arrival time mean of
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Statistic Value
Number of Sensors 9
Days in Field 43
Total Sensor On-Time (h) 28.227
Total Number of Events 29040
Mean Number of Events per
Hour

28.14

Mean Event Length (s) 3.5
Mean Daily Acquisition Per
Sensor (kB)

788

Mean On-Time Per Hour Per
Sensor (s)

10.941

Mean Events per Hour Per
Sensor

3.127

Sensor duty cycle (%) 0.304
Average current CC430 (mA) 0.845
Average current geophone
(mA)

0.141

Average current total (mA) 0.986
Energy per day (mAh) 23.667
Battery capacity (Ah) 13
Estimated lifetime (days) 549

Table 3.5 The first 43 days of the test phase at our field site have been used to
collect statistics about the system behaviour. These statistics in combination with
lab measurements have been used to estimate the average current of a sensor node
and its expected lifetime: ∼1.5 years using a standard D-size lithium battery (SAFT
LSH-20).

∼1044 seconds. This finding supports our choice of providing the system with
an event-triggered sensing system since we can save energy during these silent
periods.
The activity statistics can further be used to estimate the energy consumption
of our system. With an average event length of 3.5 seconds and the event
count per hour per sensor we can estimate the duty cycle of the sensor to be
0.304%. Additionally, using the measurements from the lab for sleep current
and active current we can calculate the average current of one sensor node to
be 0.986 mA. Using a battery of 13 Ah we can estimate the lifetime of one
sensor node to be 549 days.
Using the event triggered sensor around 788 kB are recorded on average every
day. Continuous sampling with one of our sensors would produce approx. 259
MB of data per day and sensor, which is an increase by a factor of ∼328.
Similarly, assuming the geophone is continuously on and the communication
processor sends packets as before, the estimated lifetime would be reduced
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Figure 3.11 The histogram (blue) shows the absolute frequency of the inter-arrival
time for 0.1 s bins indicating that a large fraction of events occur in bursts with small
inter-arrival times. The cumulative density is visualized in orange.

by ∼95% to 15 days excluding effects of higher bandwidth requirements and
network congestion that would inevitably occur when building on the same
wireless subsystem.

3.2.7.3 Time Distributed Processing Evaluation

The test results for the convolutional neural network from Section 3.2.5 are
depicted in Table 3.6. The error rate on the test set for the non-quantized
network is 0.0329 and the F1 Score 0.9693. These results are slightly worse
than the test error rate after quantization, which is 0.0240 and the F1 score is
0.9779. The effect that quantization improves the test error rate has been also
been observed by the authors of the algorithm.
To underline the benefit of time distributed processing we compare the memory
requirement and the latency of CNN inference for two scenarios: (i) inference
of a 12.8 seconds window (which is the length of the window used for network
training) and (ii) inference of an approximately 2 minute long window (the
maximum window length we can train with the given dataset).
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Non-INQ INQ
Top F1 Score 0.9693 0.9779
Top Error rate 0.0329 0.0240

Table 3.6 Results for classifiers evaluated on the test set. The classifier trained with
incremental network quantization (INQ) performs better than the classifier trained
regularly.

3.2.7.4 Latency

The convolutional neural network must process a time-frequency representation
of a specific size, in our case 24x64x1 values, to perform one classification.
The acquisition time is the time it takes to sample and pre-process the data
to generate this time-frequency representation. The inference time is the time
it takes to perform the calculation of the convolutional neural network. The
latency is the sum of the acquisition time and the inference time. Table 3.7
shows the inference time for the two different input lengths. As can be seen, the
larger the input the larger the gain of using time distributed processing since the
inference time is constant for time distributed processing. Through pipelining
the calculation of the convolutional neural network we are more responsive since
given the pre-processing details from Section 3.2.5.2 and a p0 of 4 the acquisition
time is 2.56 seconds which is longer than our inference time of 0.44 s.

3.2.7.5 Memory requirement

The memory requirement for the regular layer by layer inference is defined by the
biggest intermediate result, since we can reuse the buffers used for calculation.
For time distributed processing the memory requirement is defined by the size
of the buffers, which are not reused in our implementation. When we compare
the two input lengths from before we can see in Table 3.7 that on the one hand
we are able to reduce the memory requirement for inference to only 85.6 kB
and on the other hand we see that it is independent of the input length. This
independence on the input length is another key benefit of time distributed
processing.
We used incremental network quantization to reduce our parameters by a factor
of 4. The parameters consume 153.612 kB without network quantization and
38.403 kB with network quantization. The sum of weight size and buffer size for
intermediate results consumes together around 120 kB which fits in the 320 kB
SRAM. Consequently, the parameters can be loaded once into SRAM and the
processing can benefit from faster memory access and less energy consumption
for reading the parameters.
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w/o TDP TDP
Inference time (12.8 s window) 1.08 s 0.44 s
Inference time (119.3 s window) 9.55 s 0.44 s

Memory (12.8 s window) 245.76 kB 85.6 kB
Memory (119.3 s window) 2375.68 kB 85.6 kB

Table 3.7 Memory requirement and latency for inference of a convolutional neural
network with and without our approach of time distributed processing (TDP). Shown
are the values for two different input lengths.

3.2.7.6 Energy analysis

Measurements on our evaluation platform show that the CPU duty cycle during
inference is 10%. The measured active current is 15 mA. However, we do not
expect an increase in energy consumption when running the neural network on
the wireless geophone node since the geophone node does not use any sleep
mode during sampling. The application CPU and other components are always-
on during sampling. Therefore the major impact is the longer sampling time
of 12.8 s plus inference time of 0.44 s. Our estimation for the lifetime of the
event-triggered, mountaineer-detection node is 422 days.

3.3 Conclusion

B C

A D
XECNNFS CNN

Figure 3.12 Data types, model and optimization used in this chapter. Machine
learning-based information extraction from waveform data (seismic and audio) using
a data specific frontend (FW ) and convolutional neural networks (CNN) optimized
with cross-entropy loss (XE) using a set of labels.

In section 3.2, we have presented a wireless sensor network architecture for
the detection of rockfall events using event-triggered microseismic sensors and
a method to perform machine-learning-based classification of events on low-
power, memory-constraint devices. The system architecture has been designed
and optimized for an application in natural hazard warning system providing
additional information about human presence in a hazard zone. Our study
shows that the lifetime of the system can be significantly extended through
optimization for energy-efficiency by using analog triggering and on-device
signal characterization. The resulting lifetime is ∼37x longer than when
using continuous sampling while providing the relevant information for rockfall
detection by co-detection of seismic events. In this way we demonstrate based
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on a real system implementation that information about imminent rockfall and
potential hazard to human life including real-time warnings can be acquired in an
efficient way, with latencies of only few seconds and in scenarios of realistic scale.
Furthermore we demonstrate the performance of this system in a long-term
field experiment in a realistic setting on the Matterhorn Hörnligrat, Zermatt,
Switzerland.
Moreover, we demonstrate the feasibility of implementing a convolutional
neural network for characterization of seismic signals using the example of
footstep detection on a low-power microprocessor with a limited SRAM of only
320 kB. Starting from a complex convolutional neural network for audio event
classification we apply architectural optimizations (Section 3.1) to develop an
architecture for seismic event classification with low memory and computational
footprint (Section 3.2). By using network quantization we are able to reduce
the parameter’s memory requirement by another factor of 4. Additionally, we
present a strategy to pipeline a convolutional neural network for temporal data
such that we can significantly reduce the inference-time and the inference-
memory requirement by a factor of ∼2.87 and keep them constant independent
of the temporal size of the convolutional neural network input.
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Reto da Forno and Tonio Gsell. Matthias Meyer and Jan Beutel installed
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Da Forno and Samuel Weber. Matthias Meyer prepared the manuscript as well
as the visualizations with contributions from all co-authors.
q Paper 10.1145/3302506.3310390
/ Code https://gitlab.ethz.ch/tec/public/employees/matthias-
meyer/2019_ipsn_code/
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The following student projects are related to this chapter.
Quantized Convolutional Neural Networks for Embedded Platforms
Timo Pascal Farei-Campagna
Master’s thesis, 2018
Event-based Geophone Platform with Co-detection
Akos Pasztor
Master’s thesis, 2018

https://arxiv.org/abs/1709.09888
https://doi.org/10.1145/3302506.3310390
https://gitlab.ethz.ch/tec/public/employees/matthias-meyer/2019_ipsn_code/
https://gitlab.ethz.ch/tec/public/employees/matthias-meyer/2019_ipsn_code/
https://zenodo.org/record/1320835
https://matthiasmeyer.xyz/research/ipsn2019/


4
Enhancing domain expertise with
machine learning and vice versa

In this chapter, we study how the dataset can be made more accessible by
combining system context information and deep representation learning. The
classifers presented in the two previous chapters rely on an annotated dataset of
high quality. In many scenarios such annotations are not available. Chapter 2
introduced a method to obtain a high quality dataset but only with a significant
labor and time overhead. Such repetitive work typically needs to be done by
domain experts. Unsupervised learning and semi-supervised learning promises
to relieve the expert in these situations. In this chapter, we present two methods
how machine learning can support experts: an unsupervised method applied to
audio data (Section 4.1) and a semi-supervised applied to a deployment with
multiple seismic stations (Section 4.2). Moreover, Section 4.2 highlights the
benefits of system context information to enhance machine learning.
Identifying events from a continuously streaming signal source is of interest
for many applications including environmental monitoring. In this scenario
it can be expected that not all event classes are known and that is is not
always certain what distinguishes one class from another. Moreover, real-world
datasets collected with sensor networks often contain incomplete and uncertain
labels as well as artefacts arising from the system environment. Complete and
reliable labeling is often infeasible for large-scale and long-term sensor network
deployments due to the labor and time overhead, limited availability of experts
and missing ground truth. In addition, if the machine learning method used for
analysis is sensitive to certain features of a deployment, labeling and learning
needs to be repeated for every new deployment.
Since the Matterhorn dataset is significantly affected by errors as highlighted in
Chapter 2, we start to develop representation learning methods for unsupervised
tasks using a clean, fully annotated audio dataset. Audio data is highly related
to seismic data and the results are relevant to both data types.
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Figure 4.1 This chapter’s position in the context of the dissertation

In Section 4.1, we tackle the issue of unknown event classes with an unsupervised
feature learning method for audio data exploration. We develop a technique
which allows to extract useful information from audio data when annotations
are not available. The extracted information can subsequently be used to pre-
categorize data and facilitate labeling, clustering or classification tasks. First, we
design an audio window predictor based on a Convolutional LSTM autoencoder,
which is used to extract features in an unsupervised way. Second, a training
method is presented using a novel loss function which optimizes a machine
learning algorithm using similarities instead of annotations. The application of
the training method leads to distinct features by amplifying event similarities.
To further address the challenges of weak and partially labelled datasets, in
Section 4.2, we propose to make use of system context information to enhance
machine learning algorithms with additional knowledge. We formalize this
knowledge in an information graph and embed it in the learning process via
similarity optimization, namely contrastive learning. Based on real-world data
we show that this approach leads to an increased accuracy in case of few
and weakly labeled data. Moreover, our approach can be used to adapt to
new deployments by integrating data from the new location into the training
procedure. We find that our approach leads to an increased robustness and
transferability of the classifier to new sensor locations.
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4.1 Unsupervised Feature Learning for Audio Analysis

The advance of low-power mobile sensors leads to new applications for real-
time environmental monitoring including acoustic event detection using wireless
sensor networks [DH04]. Acoustic events can be effectively classified using
convolutional neural networks (CNN) [EFKN15], if a large labeled training
dataset is available [HCE+16]. However, for some application scenarios, for
example monitoring acoustic emissions in permafrost rock [GBG+12], the
advantages of CNNs are diminished due to the lack of ground truth. In
this scenario distinguishing between relevant events in an audio stream and
non-relevant events is non-trivial, since the domain-specific categories of these
acoustic events are not known a priori. In this section, we want to develop
techniques to explore acoustic datasets for which we do not have access to
annotations nor event classes. These techniques can be used to pre-categorize
data and subsequently facilitate labeling, clustering or classification tasks. For
such tasks it is beneficial that data can be grouped into distinct groups based
on their characteristics, which requires a notion of similarity.
Methods based on auto-correlation [BBS08, AB14, YOBB15] are designed to
find similarities in the raw data space, but they tend to not perform well for
low signal to noise ratios. Other methods, such as autoencoders [HS06], try to
extract information from data by transforming the raw data into an intermediate
representation. Such methods require a suitable feature extractor which can
be learned using data. In contrast to learning using an annotated dataset,
unsupervised feature learning provides a method to learn a feature extractor
from non-annotated datasets, which has been demonstrated for video [SMS15]
and audio [HL09] analysis. Recently, convolutional long short-term memory
(ConvLSTM) layers have proven to be effective for time series data [XCW+15]
and for unsupervised video analysis [FGL16]. ConvLSTM layers have not yet
been often used for audio analysis [ZCJ16], despite their advantages for time
series data.
In this section we explore the usefulness of ConvLSTM layers by designing an
autoencoder-based audio window predictor, which is used to learn representative
features of acoustic events. One disadvantage of such an approach is the
fact that the objective of an autoencoder is to recreate the original signal but
not to compare two signals with each other. Thus, we can not immediately
leverage information about event similarities. To circumvent this issue, we
propose a novel approach to train an autoencoder with respect to generating and
extracting distinct features. The approach is designed to diversify the features
based on inter-sample similarities and thus allowing for tighter clustering of
similar events. These two contributions are used to develop a system which
can infer distinct event features to be used for data exploration tasks such as
labeling, clustering or classification.
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4.1.1 Approach

An autoencoder can be used to extract information from a signal without
the need of a labeled dataset. The autoencoder encodes an arbitrary input
signal into a compressed intermediate representation (embedding) from which
it learns to recreate the original signal [HS06]. In our scenario the input is taken
from audio data which is transformed into a two-dimensional time-frequency
representation as is often used in audio analysis [CHHV15]. As illustrated
in Figure 4.2 (a), from this time-frequency representation three windows of
length Tf are extracted which are collectively used as input of the autoencoder.
Instead of learning to predict the same input, the autoencoder displayed in
Figure 4.2 (b), learns to to predict the next three windows. To achieve this
goal, the input windows are transformed with an encoder into an intermediate
representation (embedding), which is a matrix E ∈ RC×T ×F ×W with four
dimensions which are related to the input dimensions channel, time, frequency
and window. The embedding is then used to predict the next audio window and
to compute a similarity loss.
The audio window prediction is learned by re-transforming the embedding into a
shape similar to the input using a prediction decoder. Then, the mean squared
error loss between decoder output and the ground truth is used to update the
parameters of encoder and decoder. Simultaneously, the encoder parameters
are updated with a similarity loss. To compute the similarity loss, it is assumed
that an autoencoder using convolutional layers can be trained such that each
channel of the embedding contains information about a specific feature of
acoustic events. To reduce the amount of data, we apply average pooling to
the embedding by computing the average along all but the channel dimension.
Thus, averaging reducse the embedding matrix E to a C-dimensional vector
vf ∈ RC (feature vector). Here, we assume that also the mean of each channel
contains relevant information and defines an acoustic feature.
Since we want to optimize our embedding based on similarities, we need
a method for comparison. The Kullback-Leibler divergence can be used as
a measure how two probability distributions differ. We therefore need to
transform our feature vector into a probability distribution, which can be done
by transforming it with the softmax function into a categorical distribution
(from here on called feature distribution). Now, similarities between two audio
samples can be characterized by the statistical distance between their feature
distributions, a concept similar to [HK15]. Since training of a neural network is
typically done in batches of size N , we propose a pairwise loss function L(n,m)
based on similarities:

L(n,m) =

KL(B(n) || B(m)), if fn,m < threshold
max(0,margin−KL(B(n) || B(m))), else

(4.1)
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Figure 4.2 (a) Model input, consisting of three windows extracted from a mel-
spectrogram [Mer76] with window size Tf and stride Tf /4. The fourth window is to
be predicted by the model. (b) Model of the audio window predictor, which is trained
to predict the next window of the mel-spectrogram input. Multiple ConvLSTM layers
are used differing by number of channels (e.g. 32 c) and down-/upsampling (e.g.
2 ↓ ). Per-channel average pooling reduces the embedding to a lower dimensional
feature vector. A batch of feature vectors is used to compute a pairwise loss in an
unsupervised way. Labels are only used during evaluation in which a simple classifier,
consisting of a fully connected (FC) layer, is used to evaluate the usefulness of the
feature vectors for classifiction tasks.

fn,m = KL(B(n) || B(m))
1

N2
∑N−1

o=0
∑N−1

p=0 KL(B(o) || B(p))
(4.2)

where B(n) defines the feature distribution of the n-th element of the batch.
KL is the Kullback-Leibler divergence and the two parameters threshold and
margin can be adjusted based on the actual data. fn,m is a measure for the
similarity of two elements of the batch. Therefore thresholding fn,m means
that the loss L(n,m) penalizes events based on similarity, for similar events
the feature distribution gets more confined while dissimilar events are shifted
away from each other. We expect, that this leads to a grouping of features
based on similarity in the feature space, which is beneficial for differentiating
a pool of events when no labels are available. The overall loss per batch is∑N−1

n=0
∑N−1

m=0 L(n,m), which can be backpropagated through the network and
affects the weights of the encoder. The total loss for the encoder weights is the
sum of the autoencoder loss and the pairwise loss. The autoencoder enforces a
meaningful representation while L(n,m) amplifies similarities and dissimilarities.
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Thus, this method optimizes for inter-sample similarities in contrast to the
method from [XGF16], which optimizes for fixed cluster centers.
For the actual implementation an autoencoder is used as an audio window
predictor, which is illustrated in Figure 4.2. Data windows of length Tf = 2.56 s
are extracted from the audio waveform with a hopsize of Tf/4 and transformed
into a mel-spectrogram. The audio window predictor considers three consecutive
windows and predicts the following window. Each ConvLSTM layer uses a 3x3
filter kernel and is followed by a ReLU activation and batch normalization. The
last convolutional layer (3D convolution) applies a 3x3x1 kernel with a linear
activation function. Keras [Cho15] and Tensorflow [MAP+15] are used for the
implementation.
The training with batchsize N = 16 is done in two steps. First, only the
audio window predictor is trained by minimizing the mean squared error (MSE)
between the decoder output of the audio window predictor and the true next
window, initializing the weights of the whole system. After training the audio
window predictor for 6 epochs the system is trained for another 3 epochs by
minimizing the above mentioned pairwise loss at the encoder head output and
the MSE at the decoder output, simultaneously. In the next section a system
trained with this two-step procedure (PairLoss) will be compared against a
system trained only by minimizing the MSE at the decoder output for 9 epochs
(w/o PairLoss).

4.1.2 Evaluation

An acoustic event dataset from [TGPG16] was used for evaluation. In Figure 4.3
eight categories are listed which were chosen to have an approximate uniformly
distributed number of samples. The dataset has been partitioned into training
(75%) and test set (25%). The number of embedding channels has been set
to K = 128 to maintain an accurate prediction and to provide enough features
to explain the data.

Table 4.1 Test accuracies for classifier and clustering algorithm. Note: The
reference classifier uses supervised training for all weights, the others only for the
fully connected layer

Classifier Clustering
Reference w/o PairLoss w/ PairLoss w/o PairLoss w/ PairLoss
(90.85 %) 69.59 % 78.94 % 38.32 % 52.23 %

We will evaluate the usefulness of the feature vectors for classification and
clustering applications. Table 4.1 highlights the results for these two evaluation
scenarios.
First, it is shown that the feature vectors contain useful information by learning a



4.1. Unsupervised Feature Learning for Audio Analysis 87

Figure 4.3 t-SNE embedding [vH08] of the feature distributions for a system trained
without PairLoss (a) and with PairLoss (b). Accumulated feature distributions for all
training samples of the category guitar and helicopter for a system trained without
PairLoss (c) and with PairLoss (d).

mapping from the 128-dimensonal feature vectors to the 8 categories. A simple
linear classifier (classification decoder), consisting of only one fully connected
layer, is trained using the feature vectors as input (Figure 4.2). The classifier is
optimized by minimizing the cross-entropy loss between the classifier’s output
and the ground-truth labels. During evaluation, the weights of the ConvLSTM
encoder are fixed, meaning they are not affected by the optimization.
Table 4.1 highlights, that the system pre-trained using PairLoss outperforms
the one pre-trained without PairLoss, which can be attributed to the different
feature distributions, as illustrated in Figure 4.3 (c) and (d). The plot displays
the accumulated feature distributions for two event categories. In contrast
to standard training, it becomes apparent that PairLoss training results in two
different event categories showing distinct patterns in their accumulated feature
distribution. Therefore, only a few elements of the feature vector contain most
of the information about an acoustic event. The system does not perform as
well as the reference implementation which uses all labels to train the encoder
and the classification decoder simultaneously. Moreover, related work [TGPG16]
has demonstrated a better accuracy of 92.8% on the same dataset. However,
they are using a different architecture and supervised training with all available
labels. The evaluation in this section is meant to demonstrate the usefulness
of the features obtained by training without labels.
The second evaluation demonstrates the clustering performance of our
approach. Table 4.1 shows that using a system trained with PairLoss shows
better clustering accuracies than a system trained without. For this evaluation
k-means clustering (8 clusters) is applied to the t-SNE embedding of the
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feature distributions. The best cluster assignment is chosen using the Hungarian
algorithm [Kuh55].

4.1.3 Conclusion

In this section, we have designed an unsupervised feature extraction system
for audio data consisting of an autoencoder-based audio window predictor.
Moreover, we have introduced a novel approach to train such a system by
proposing an in-batch similarity optimization technique. We have experimentally
shown that applying the new method generates distinct features which increases
classification accuracy by 13 % and clustering accuracy by 36 %.
This section has shown that similarity optimization can be beneficial for
unsupervised information extraction. These results motivate to further explore
the possibilities of similarity optimization. In the next section we will address
the issue that real-world datasets often contain incomplete and uncertain
labels. Moreover, we tackle the problem that machine learning algorithms
are often very sensitive to certain features of a deployment which leads to
a decreased transferability of the algorithm do new deployments. We will
extend the concept of this section by introducing annotations to similarity-
based optimizations resulting in a semi-supervised learning algorithm. We build
on progress in the machine learning community and use another concept for
similarity optimization, namely contrastive learning, to make models based on
weakly-labeled, real-world seismic data more robust to changes in their data
distribution.
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4.2 Using system context information to complement
weakly labeled data

Real-world datasets originating from environmental monitoring deployments
often contain artefacts arising from the system environment and contain in-
complete and uncertain labels. One example of machine learning applications is
natural hazard monitoring for slope failure detection [HOF13, DMH+16]. Here,
high misclassification requires careful retraining and post-processing [HPM+17].
In this setting, comprehensive manual annotations are infeasible for large-
scale and long-term sensor network deployments due to the labor and time
overhead [MWBT19a]. Moreover, rare occurrences of relevant events makes
collecting a comprehensive event dataset difficult and leads to imbalanced
datasets.
Hence, the process is error-prone and requires significant domain expertise.
However, experts might not be available throughout the whole deployment
periods of the sensor network, which inevitably leads to an annotation set
containing noisy annotations limited in certainty (weak labels), time and/or
subset of sensors (few labels). In addition, as long as the learned features and
classifiers are sensitive to the detailed properties of the environment and the
sensors, labeling and learning needs to be repeated for every new installation
or classifier performance is decreased [WHv+21]. Moreover, new installations
potentially introduce new event characteristics or error sources which might
requires new label classes. Therefore, there is a close link between weakly
labeled data and classifier robustness with respect to certain environmental
variations.
Fortunately, real-world deployments provide additional sources of information
which could be beneficial for learning, such as correlation of sensor data due to
sensor proximity. However, this information cannot be easily captured by the
prevailing data/annotation pairs used for learning. Similarity learning [SKP15,
MBT17], such as contrastive learning [HFW+20, CKNH20, SGZ20] allows to
establish relations between data pairs. However, their capability to integrate
system context information is limited.
To address these challenges, we propose to transfer the concept of knowledge
graphs [HBC+21] to learning by using it for storing information about data
similarity. Moreover, we extend the prevailing data/annotation learning concept
to allow any data point to be an annotation for any other data point.
This is accomplished by utilizing the following concepts: (i) injecting all
available knowledge in form of an information graph and sampling from it,
(ii) transforming the data into a common representation and (iii) the use of
contrastive learning to train the system. We show that using these concepts
to formalize system context information and using the additional knowledge in
the learning phase leads to an increased accuracy in case of weakly labeled data
and leads to an increased robustness and transferability of the classifier to new
sensor locations.
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Our main contributions are:
n We present a method which uses system context information to counteract
the negative impact of few and weak labels by combining contrastive learning
with an information graph.
n We present a unified learning process in which annotations are encoded as
Gaussian random vectors to treat them similar to data.
n We demonstrate on a dataset gathered from two real-world deployments in
the Swiss alps, how the method can be used to train a classifier with improved
generalization performance across sensors with diverging characteristics.

4.2.1 Dataset

Illgraben deployment

In this section, we use data from a real-world deployment of seismic sensors at
Illgraben, Switzerland [WHv+21]. The sensor array consists of 8 seismometer
(ILL01-08), each having three channels, one vertical and two horizontal. The
sensors are deployed at distances of hundreds of meters up to several kilometers
away from the area of interest. We aim to distinguish seismic signals from 3
different types of events namely earthquakes, slope failures and noise signals.
The Illgraben event catalog was created by visual inspection of the vertical
channel of the continuous seismic recordings and their spectrograms by experts
for a time period between end of May and mid August 2017. The earthquake
catalogs provided by the Swiss Seismological Service (SED) and the European-
Mediterranean Seismological Center (EMSC) served as additional ground truth
for providing correct earthquake labels. The Illgraben event catalog consists
of 320 to 560 time segments per station each containing an event, summing
up to 32.5 hours of labelled seismic data recorded at a sampling frequency
of 100 Hz. Depending on the event duration, the segment duration ranges
between 0.1s up to 337s with a median duration of 26s. In addition, the dataset
contains randomly sampled, verified time segments without activity with a total
duration approximately equal to the event segment’s total duration, which is
labelled as miscellaneous (Misc). Due to the low signal-to-noise ratios (SNRs)
of seismic signals generated by smaller mass movements, the data set contains
more annotated events on stations close to the detachment area (ILL05-08).
We treat this dataset as a multi-class single-label problem: each time segment
can only be assigned one specific class. We consider the assumption to be
valid, as it is even for an expert nearly impossible to distinguish between two
overlapping signal sources.

Matterhorn deployment

In addition to the data from the Illgraben deployment, we use data from the
Matterhorn deployment presented in Section 1.3, see also [WBF+19]. More
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count mean std min 25% 50% 75% max
Total 3011 42 36 1 31 40 40 337

Events only 1315 43 53 1 12 26 53 337
Misc only 1696 41 13 40 40 40 40 224

Table 4.2 Statistics describing the event durations of the Illgraben dataset for
the subset containing only events, for the subset containing randomly sampled and
verified miscellaneous segments (Misc) and the combination of both. Given are mean,
standard deviation (std), minimum (min), 25 percentile (25%), median (50%), 75
percentile (75%) and maximum of the event duration. The unit for each column is
seconds, except for the count column which is without unit.

specifically we use data of one seismic sensor and the corresponding annotation
set which was developed in Chapter 2. The annotation set is split into two
subsets, namely into training (data from 2016) and test set (data from 2017).
In Chapter 2, the annotation set has been created by verifying events on a
co-located timelapse camera, which takes a high-resolution picture every 4
minutes. Each image is compared to a 2 minute seismic segment centered on
the timestamp of the image. Each image and 2 minute segment is annotated
jointly by visually identifying every event in each data type. Unlike the Illgraben
event catalog, the annotations are made on a per-segment basis and not on a
per-event basis. More details can be found in Section 4.2.5 and in Chapter 2.

4.2.2 Related work

Machine learning for mass movement monitoring: First attempts to
automatically classify seismic signals of mass movements using machine learning
were made by [HOF13, DMH+16, HHVH+18] using hidden Markov models
(HMMs). However, high misclassification required careful retraining and post-
processing. As an alternative [HPM+17, PHM17] used random forest [Bre01]
to automatically classify predetected seismic events. They computed more than
50 features of the detected seismic events in the time and the frequency domain
as classifier input. However, this method requires an preceding event detection
algorithm with additional parameter tuning. To eliminate this additional step
and to optimize for monitoring purposes, [WHv+21] adjusted their approach,
and classified windowed seismic data on the continuous data stream. In several
other domains deep learning models have proven superior to random forest
classifiers in terms of accuracy. Therefore, we make use of deep learning
classifiers for mass movement classification in this section.
Similarity learning: In-batch similarity optimization has been studied using
pairwise loss [HK15, MBT17] and triplet loss [SKP15]. However, these
methods could not compete with purely supervised methods for classification
problems. More recently contrastive loss [HFW+20, CKNH20] was used
for similarity optimization. The use of contrastive learning has steadily
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increased in the recent past and lead to state-of-the art results for many
datasets in computer vision [BHB19, HFL+18, TKI19, GSA+20] and in audio
analysis [SGZ20, FOM+20]. Contrastive learning is also used for out-of-
distribution detection [WBR+20, TMJS20] which makes it a suitable approach
for our application scenario of weakly annotated data. Semi-supervised [IG20]
and supervised [KTW+20] contrastive learning approaches have been presented
using labels to connect similar pairs in the batch. In this section we build
upon these concepts and introduce a generic way to implement system context
information and annotations.

4.2.3 Method

In our scenario, two major issues need to be addressed, namely (i) few and weak
labels and (ii) classifier robustness. The first issue requires an improvement and
extension of the annotation set, the latter requires that the learning method
can adapt to out-of-distribution samples.
In contrast to real-time classification, environmental monitoring usually relies
on post-processing of a long-term dataset. Therefore, an extensive dataset is
usually available for training albeit not always thoroughly annotated. In our
scenario, we can make use of non-annotated data by using general assumptions
about the specific sensor deployment, for example about sensor proximity:
The same event is captured by multiple seismometer channels and possibly
multiple stations, but with different signal signatures. These differences are
caused by groundwave propagation as well as properties of the seismometers,
for example ground coupling. Thus, we obtain "different views" of the same
event. Contrastive learning has shown to benefit from such different views.
Intuitively speaking, contrastive learning achieves an embedding of data samples
in a latent space by moving representations of different views of the same event
closer together while increasing the distances of representations of different
events.
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Figure 4.4 Various use cases of the information graph. Each graph contains nodes
which represent data of a specific type (colored dots) such as annotations (black
dots). Nodes are connected by a line if the associated data is similar. The graphs
for single-type data represent the prevailing data/annotations pairs: (a) multi-class,
single-label, or (b) multi-class, multi-label. The information graph is suitable to
additionally represent multi-label, multi-class, multi-type problems (c) as well as inter-
node dependencies (d).
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To combine contrastive learning with all available system context information,
we propose to make use of an information graph, which holds annotations as well
information about the relation between time segments, channels and stations.
More generally, our design of the information graph consists of multiple nodes,
each representing an item of the dataset. A node can represent for example
a segment of seismic data or an annotation. By introducing weighted edges
between these nodes, we can establish relations between dataset items. In
our design, an edge and its respective weight define the similarity between
the two connected nodes. Using this design, a dataset consisting of data
and its respective annotations can be reformulated as information graph. This
graph contains data nodes and annotation nodes which are connected by and
edge if a data item is annotated with a given annotation label as illustrated in
Figure 4.4 (a-c). Moreover, we can extend the concept such that a data item is
an annotation for another data item by connecting two nodes with an edge if the
data item represented by each node is similar, as highlighted in Figure 4.4 (d).
We expect that by using system context information to generate these edges we
simultaneously (i) improve our annotation set by adding additional information
to each annotated segment and (ii) we can include non-annotated, out-of-
distribution samples in the training process.
For our application, the information graph is filled by subdividing the seismic
signals into segments using a window length Tw. Each segment is represented
by a node in the information graph. An edge is introduced between segments
A and B if the segments overlap in time and A is from a different station
or different channel than segment B. To reduce the possibility of learned
shortcuts [FOM+20] no edges to segments of the same channel are added.
To make use of contrastive learning the data must be transformed into a
common space. In our approach, the information graph is used to train a
model f(·) which embeds each segment xi into a common space zi = f(xi),
with zi ∈ Rd. Similar to related work, we separate the model into an encoder
and encoder head [CKNH20]. As illustrated in Figure 4.5, a fixed number Ne of
edges is sampled from the graph for every batch during training and connected
data segments are loaded. Any duplicate segments are removed from the batch
before computing f(·), leading to a number of data segments in the batch of
N ≤ 2Ne. Each data segment is encoded by the encoder and subsequently
transformed by the encoder head into an embedding vector zi.
By sampling the edges we construct a subgraph of the information graph (called
batch graph from here on) with non-negative adjacency matrix A ∈ RN×N

≥0 .
Thus, the batch graph is a sparse subset of the total graph consisting of few
edges and their respective nodes. Unfortunately, it can occur that two nodes
can exist in the batch graph which are connected in the information graph but
not in the batch graph, since they were introduced to the batch graph through
the sampling of edges not shared by the two nodes. This issue could have a
detrimental impact on training because any nodes not directly connected should
be considered dissimilar. As a resolution, we make use of the fact that the mth
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Figure 4.5 The central entity is the information graph which combines knowledge
from domain experts, for example annotations or signal propagation behaviour, as well
as dataset-specific knowledge of each data segment, for example location, channel,
time. The combination of contrastive loss, information graph and encoder allows to
learn a suitable embedding for the classification task.

power of an adjacency matrix represents a graph in which mth order neighbors
are connected. Thus, if we compute B = ∑M

m=1 A
m, we obtain an adjacency

matrix for the batch graph in which all nodes with an direct or indirect link are
directly connected. We have found M = 2 to be sufficient in our case which
includes all second order neighbors. In this setting, we define the contrastive
loss between a pair s, t (source and target of an edge), with the adjacency
matrix B as follows:

Ls,t = −Bs,t log exp(φ(zs, zt)/τ)∑N
n=1 1[Bs,n=0] exp(φ(zs, zn)/τ)

(4.3)

where Bs,t represents the weight of the edge connecting s, t. φ(·) is a similarity
function, which in our implementation is the Cosine similarity. τ is a temperature
scaling. The indicator function 1 is evaluating to 1 iff Bs,n is zero.
The previous steps describe how to transform the seismic segments into the
embedding space to compute the loss Ls,t. Now, we need to transform the
annotation information contained in the information graph into a format which
can be integrated with the loss function. Annotations are considered in the
information graph by introducing Nc anchor nodes, where Nc equals the number
of classes. Each segment belonging to a class is connected to the anchor node
of that class by an edge. Two strategies can be employed to compute Eq. 4.3
for an edge connected to an anchor node.
The first option makes use of the fact that we previously computed B, which
represents the original graph and all second order neighbors of each node.
Consequently, all nodes sharing an edge with an annotation are also directly
connected. If we would remove the annotation nodes from the graph, all nodes
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of the same annotation would still be interconnected. Thus, the edges with an
annotation node can be skipped while computing Eq. 4.3 but representations
with the same annotation are still moved closer together, which resembles
the work by [KTW+20]. We will refer to this option as link in the following
evaluation.
The second option is to represent the annotations as vectors a ∈ Rd in
the embedding space. Then, we could treat the annotations as data when
computing the loss function. However, the annotation vectors must be carefully
chosen to avoid ambiguities. Here, we make use of the fact that any two
random high-dimensional vectors are almost orthogonal to each other with
high probability [BHK20], meaning there is almost no correlation between these
vectors. This statistical behavior can be understood such that every annotation
vector will have almost the same distance to any other annotation vector.
When we compute the loss using these vectors, the data points belonging to
different classes are trained to move away from each other. To implement these
annotations, we introduce a high-dimensional L2-normalized Gaussian random
vector a(c) ∈ Rd for class c into the batch which acts as the target zt during
computation of Eq. 4.3. The vectors are fixed at the beginning of the training.
We will refer to this option as anchor in the following evaluation.

4.2.4 Experimental evaluation

We perform evaluation on two tasks. The first task uses data from the Illgraben
deployments to detect rockfalls, earthquakes and noise. The second task is
already known from the previous chapters and deals with detecting mountaineers
from the seismic signal.

Illgraben Deployment

We evaluate the proposed approach on the Illgraben dataset by performing an
ablation study and comparing the system to a random forest classifier, which is
currently best practice for slope failure detection [WHv+21].
For the ablation study we use a classifier based on a single-channel variant of
ResNet18 [HZRS15] as encoder in combination with an multilayer perceptron
with 1 hidden layer as encoder head. During classification the encoder head
is replaced with a classification head differing only in output size. Input to
the ResNet18 is a log-compressed spectrogram of the seismic data. For more
implementation details please refer to the Section 4.2.5. The ResNet18 model
is trained with three methods, cross-entropy loss between the output of the
classification head and the ground truth (Resnet18+XE), contrastive pretraining
using the information graph (IG) and either the link (Resnet18+IG+link) or
anchor (Resnet18+IG+anchor) strategy. Subsequently, the classification head
is trained using cross-entropy loss. We compare training with system context
information (SC) and training without it.
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Figure 4.6 Each row indicates of which station the annotated training subset
was used. Each column indicates the respective score on the subset of the test
dataset for each station. (Left): Results for ResNet18+XE. (Right): Results for
ResNet18+IG+anchor.

The benefit of our approach for the weakly-labeled setting is evaluated by
using the available training annotations of all stations. The experiments are
repeated 5 times and mean and standard deviation are reported. Robustness is
evaluated by training the model variants when only a subset of the annotations
are available. While the whole training data is available to train a classifier
only the annotations for one of each of the 8 seismic stations can be used. All
reported accuracies are based on evaluation on the test set using all stations
and are reported as mean and standard deviation of all one-station evaluations.
The results presented in Table 4.3 show that the ResNet18 classifiers outperform
the random forest classifier in the weakly-labeled settings (all and all+SC). The
all column, illustrates that training using contrastive pretraining improves the
performance significantly in comparison to the random forest classifier but only
slightly in comparison to using cross-entropy loss (ResNet18+XE). However, if
we include the system context information the accuracy improves significantly
(all+SC column), demonstrating the benefit of additional sources of information
for training.
In the robustness experiments (one-station(+SC)), all classifiers show a
comparable bad performance of around 50% on average if only annotated data
of one station is used (one-station) and the evaluation is performed on the
test data of all stations. There is a significant variability in the results which
can be explained with Figure 4.6 (left) illustrating that a classifier almost only
performs well for the station it was trained on. If more non-annotated data
from other stations is available, our method takes advantage of the system
context information (SC) stored in the information graph (one-station+SC)
and the average accuracy rises to over 84%. The increase comes from a better
generalization to other sensors, as illustrated in Figure 4.6 (right). If non-
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Accuracy
all all+SC one-station one-station+SC

Random Forest 86.4 % - n.a. -
ResNet18+XE 91.3 % ± 0.5 - 50.0 % ± 15.0 -
ResNet18+IG+links 92.3 % ± 0.3 93.8 ± 0.3 44.0 % ± 15.6 84.1 % ± 2.6
ResNet18+IG+anchors 92.0 % ± 0.4 93.9 ± 0.6 47.9 % ± 16.7 85.0 % ± 1.8

Table 4.3 Classifier accuracies for different sets of available training annotations. Either all annotations (all) or only annotations for one
station are available (one-station). Additionally, the information graph (IG) is used with or without system context information (SC).

Accuracy F1-Score
XE+Annotations (Baseline) 88.5 % ± 0.9 88.9 % ± 1.0
IG+Annotations 92.1 % ± 1.0 92.8 % ± 0.9
IG+Seismic 93.8 % ± 0.3 94.5 % ± 0.3
IG+Seismic+Annotations 94.2 % ± 0.2 94.7 % ± 0.2

Table 4.4 Accuracies and F1-Score for a mountaineer classifier using the Matterhorn dataset. The baseline is trained without the information
graph using annotations and cross-entropy loss (XE). The other rows are combinations of system context information inserted into the information
graph (IG). Annotations are anchor-based annotations and Seismic connects seismic segments overlapping in time
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annotated data from other stations and system context information is available,
our method increases classifier performance on all stations, thus demonstrating
an increased robustness.

Matterhorn deployment

For the Matterhorn deployment we conduct a similar experiment in which we
compare the impact of using different system context information. In this
experiment, we compare how the different components of the information
graph affect classification performance in comparison to a baseline which does
not use the information graph for training. The general experiment setup is
similar to the one used for the Illgraben Deployment, but we use a different
dataset and limit our experiment to training with information graph and anchor
annotations. Table 4.4 highlights that using the information graph with any
system context information is better than the baseline. In the direct comparison
of baseline and the system trained with information graph and only annotations
(IG+Annotations), our approach performs better although the same amount of
information is used to train the system. This increase is most likely due to the
fact that our usage of the information graph introduces second order neighbors
and thereby directly connects similar events. These connections can be seen
as connecting "different views" of the same event type which can be exploited
by the contrastive loss. This advantage of the contrastive loss becomes more
obvious when we connect seismic segments overlapping in time (IG+Seismic)
which improves the performance significantly in comparison to the baseline.
The last experiment IG+Annotations+Seismic improves the performance again,
although only little improvement is being observed in comparison to only using
IG+Seismic.

4.2.5 Implementation Details

4.2.5.1 Details to Contrastive Learning with Information Graph

The seismic signals are subdivided into segments using a window length Tw and
a stride Th. The data subset for pre-training uses Tw = 30s, Th = 30s, the
subset for fine-tuning and the test set use Tw = 30s, Th = 15s. Each segment’s
annotation is determined using the Illgraben event catalogue, which is split into
training and test set with a ratio of approx. 70/30. Linear detrend is applied to
the seismic signal before it is transformed into a log-compressed spectrogram
with window length of 2.56 s and stride of 0.08 s. No data augmentation is
applied. As encoder we use a single-channel variant of ResNet18 [HZRS15],
without the final linear layer. The output of the encoder is a 512-dimensional
vector, which is then passed through the encoder head, consisting of a multilayer
perceptron with a hidden layer of size 512, batch normalization and ReLU non-
linearity. The encoder head’s output size is d = 128 and L2 normalized. During
fine-tuning, the same encoder head architecture (with random initialization) is
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Table 4.5 Random forest parameters

Number of trees 400
Split quality measure Gini criterion
Minimum number of samples required to be a leaf node 1
Minimum number of samples for an internal node to be split 2

used as a classification head with an output size equal to the number of classes
Nc.
In the supervised training we train encoder and classification head jointly using
cross-entropy loss. For semi-supervised training (all+SC and one-station+SC),
we train the encoder and encoder head with contrastive loss, then for fine-
tuning we replace the encoder head with a classification head and train the
classification head with cross-entropy loss while keeping the encoder weights
fixed. In every epoch we first train with contrastive loss, then fine-tune the
classification head. For optimization we use SGD with momentum 0.9 and
weight decay 10−4 and a batch size of 128. The temperature coefficient τ is
set to 0.1. We use a cosine annealing scheduler. In our experiments the edge
weights of the information graph are 1. We perform a hyperparameter search to
determine the best learning rate for each experiment individually. The individual
parameters can be found in the source code accompanying this dissertation.
To counter class-imbalance, each batch contains the same number of examples
for each class. During semi-supervised training the non-annotated data out-
weights the annotated data by a factor of approx. 4.5 in each batch. We
select our model based on a validation set which is 20% of the training set,
except for the one-station+SC experiment. Here, we select model from the last
epoch, since model selection on the one-station subset would deteriorate the
generalization effect.

4.2.5.2 Details to Random Forest Classifier

Following[PHM17] and [WHv+21] we computed a total of 55 signal charac-
teristics in the time and frequency domain, e.g., information on the signal
form and dominant frequencies. For a complete description of the chosen
features see [WHv+21]. We performed a three-fold-cross-validation grid search
to optimize classifier performance. The resulting parameters are presented in
Table 4.5.

4.2.5.3 Details to Matterhorn Annotation Set

The Matterhorn annotation set has been created by randomly sampling four
images per day depending on image availability. The image and corresponding
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2 minute seismic segment are then labeled and added to the set. Additionally,
the training set (2016) contains selected period of known event activity. The
result are two annotation sets, one for images and one for seismic data. In
this chapter, we refine the seismic annotation set by annotating events instead
of whole segments. The refined annotation set is generated by producing a
bounding box for each event contained in a given segment. The bounding box
might be confined to a subpart of the original seismic segment (for example if a
helicopter is only apparent in the first 20 seconds) or go beyond its boundaries
(if a helicopter started to appear before or after the segments start or end time,
respectively). Using this procedure we verify every annotation of the test set.
Note that due to this relabeling effort the accuracies reported in this section
are not comparable to Chapter 2 anymore.

4.3 Conclusion

In this chapter we have presented methods to enhance domain expertise with
machine learning by using unsupervised (Section 4.1) and semi-supervised
learning (Section 4.2). Moreover, we have enhanced machine learning with
domain expertise by incorporating system context information in addition to
annotations to the learning process (Section 4.2).

AVG

Embedding-based
Optimization

Target-based
Optimization

ConvLSTMFW MSEConvLSTM

PL

Figure 4.7 Data types, models and optimizations used in Section 4.1. Machine
learning-based information extraction from acoustic data using data specific frontend
(FW ), a convolutional long short-term memory neural network (ConvLSTM), a multi-
layer perceptron (MLP) and average pooling (AVG). Target-based optimization is
performed with Mean-Squared Error (MSE) Loss and embedding-based optimization
with pairwise loss (PL).

We have demonstrated that in-batch similarity optimization can be beneficial
to learn representations useful for classification and clustering. Figure 4.7
summarizes the information extraction system used in Section 4.1 in the context
of this dissertation. We have presented a system including a Convolutional
LSTM autoencoder to learn an embedding which is further optimized by an
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embedding-based optimization method, namely pairwise loss, which amplifies
inter-sample similarities. The embedding can then be used for tasks such as
labeling, clustering or classification.
In Section 4.2, we have shown how similarity optimization can be improved
by integrating annotations and system context information. As illustrated
in Figure 4.8, the general structure of the information extraction setup is
conceptually similar to Section 4.1 (Figure 4.7). However, there are significant
changes in how the loss function is computed and that an information graph is
used to embed system context information provided by domain experts.
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Figure 4.8 Data types, models and optimizations used in Section 4.2. Machine
learning-based information extraction from seismic data and annotations using data
specific frontend (FW ), a mapping from annotations to Gaussian random vectors
(MA), a convolutional neural network (CNN) and multi-layer perceptron (MLP).
Target-based optimization is performed with cross-entropy loss (XE) and embedding-
based optimization with contrastive loss (CL).

To conclude, we have presented a novel approach to learn with weakly labeled
data for the case of mass movement monitoring. By using contrastive
learning we can increase the classification accuracy compared to the reference
implementation. Moreover, the presented method unifies data and annotation
representations and thus inherently allows to integrate additional system
information into the learning process. This additional information leads to a
strong performance increase in a setting with limited annotations and diverging
sensor characteristics, demonstrating increased robustness across sensors.
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4.A Appendix

Related Publications

Unsupervised Feature Learning for Audio Analysis
Matthias Meyer, Jan Beutel and Lothar Thiele
Presented at the 5th International Conference on Learning Representations
(ICLR) 2017, Workshop Track, Toulon, France
Contributions: Matthias Meyer developed the concept and discussed it with
Jan Beutel and Lothar Thiele. Matthias Meyer developed the code, prepared
and performed the experiments and evaluated the results. Matthias Meyer
prepared the manuscript with contributions from all co-authors.
q Paper arXiv:1712.03835v1 [cs.CV]

Using system context information to complement weakly labeled data
Matthias Meyer, Michaela Wenner, Clément Hibert, Fabian Walter and Lothar
Thiele
Published as a workshop paper at the Workshop on Weakly Supervised Learning
/ ICLR 2021, online, 2021
Contributions: Matthias Meyer developed the concept and discussed it with
Lothar Thiele. Matthias Meyer developed the code for the information graph
with contrastive learning. Michaela Wenner developed the random forest
classifier with contributions from Clément Hibert. Michaela Wenner and Fabian
Walter collected and annotated the data. Matthias Meyer and Michaela Wenner
performed the experiments. Matthias Meyer prepared the manuscript as well as
the visualizations with contributions from all co-authors.
q Paper arXiv:2107.10236v1 [cs.LG]
� Project Webpage https://matthiasmeyer.xyz/system-context-
info/
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Previously, in Chapter 2, a methodology to annotate environmental data was
presented. The main gist was that access to geoscientific expert knowledge
is required to obtain reliable results but a certain amount of work can be
accomplished by non-experts. However, without proper tools it is hard
to comprehend environmental data for both experts and non-experts which
negatively impacts analysis and development of models. In this chapter, we
present a framework which is designed to bring together experts of different
domains as well as the public to analyse and annotate environmental data by
offering a comprehensive, cloud-based analysis platform. The platform can be
used for data access, processing, visualization and annotation. Additionally,
the framework is conceptually designed to allow the integration of edge
computing making it a good candidate for the scenario presented in Chapter 3.
Moreover, the platform is designed to blend in with the methods presented in
Chapter 4, namely methods to perform model optimization with a limited set
of annotations. A main contribution of Chapter 4 is the information graph,
which allows to optimize a model by using a pair of data samples instead of
requiring exact annotations. The platform presented in this chapter, features
the flexibility to compare data pairs across a multitude of data scales and types
and thus allows to find such data pairs.
Working with data from a real-world deployment requires a transparent and
controllable data flow to avoid data cascades [SKH+21]. Data cascades
are negative effects of faulty data processing during data analysis. Some
examples are noisy data/annotations [SPI08, ZSS11], sensor misconfigurations
and miscalibration [NSQ+18] or preprocessing artifacts. These effects may
accumulate and distort the effectiveness of a trained model in a real-world
context. Finding and solving all of these errors requires a diverse skillset,
typically not found in small teams performing environmental research. One
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Figure 5.1 This chapter’s position in the context of the dissertation

solution was provided in Chapter 2 which described a method for increased
robustness against errors in the knowledge generation phase by systematically
finding negative influences and integrating a human in the loop. Chapter 4
provided a solution for robustness against a shift in the data distribution by
extending the training set with unlabelled samples.
In this chapter, we additionally focus on robustness against data corruption,
missing data and misconfigurations during data processing. We also focus
on avoiding misinterpretations during experiment design and analysis. By
minimizing the effect of data cascades, we intent to improve reproducibility
and facilitate semi-supervised learning with multi-type data. Through lessons
learned from working with real-world data, a data analysis and visualization
framework as well as a learning framework for semi-supervised learning were
designed and continuously improved. We present the data analytics platform
foReal which is be applied to the different types of geoscientific data obtained
from a world unique scientific experiment in mountain permafrost conducted
over more than a decade at 3500 m a.s.l. on the Matterhorn, CH [WBF+19].
The tooling developed allows to combine context data from different sensors
and relate them to global models to anticipate the impact of climate change on
third pole (high mountain) environments with a focus on enabling fast and easy
exchange between application-domain experts and data scientists. Additionally,
the framework supports the dissemination of information to the general public
as one of many information channels for adaptation to climate change.

5.1 Introduction

A recent study [SKH+21] interviewed multiple data scientists on their
problems during real-world data-analysis projects. The study concluded that,
among others, problems "occurred because of a default assumption that
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datasets were reliable and representative, and application-domain experts
were mostly approached only when models were not working as intended
[...]. With limited application-domain expertise, [data scientist] described
how incomplete knowledge and false assumptions got incorporated into model
building." [SKH+21].
As becomes apparent from this statement, analyzing domain-specific data, such
as environmental data, demands a coordinated combination of domain expertise
(application and data domain) and technology to define a model that can be
automatically applied to long-term datasets. This expertise combination should
be conceptually incorporated into the analysis from the very beginning to avoid
mistakes and vain work. It should be expected that working with real-world data
is error-prone such as data collected with a wireless sensor network [TKW20].
A fact which is signified in Figure 5.2 showing data availability (and non-
availability) of a real-world deployment in a harsh environment [WBF+19]. In
Chapter 2, we learned that compiling an annotated dataset for machine learning
requires several iterations of labeling and label cleaning. While many annotation
frameworks are readily available [Ama, Lab], not many frameworks allow for
annotating multi-modal data [TMS+20].
To the best of our knowledge no frameworks exist for the set of data types used
throughout this dissertation. This fact makes compiling a clean, comprehensive
and representative dataset for long-terms, heterogenous monitoring deployment
especially challenging and time consuming. Moreover, human-verification of a
multi-modal dataset requires synchronized data sources [KBST12], allowing
to analyze the data of different data types on different scales and in
different representations. It is important that a visualization can be used to
introduce the human/expert into the loop via labeling and reasoning [SKH+21].
Additionally, by making the data accessible and tangible to the general
public as well as domain experts, a broader audience can support the
knowledge generation (traditional or local knowledge [Hun00, CF13], identifying
landmarks [VDOM19], providing eye-witness reports [DED+16, WJWH+18],
providing domain knowledge about geophysical phenomena, contributing data).
Finally, the gathered information can be used to train machine learning methods
to automate high-resolution, short-term analysis for the whole long-term dataset
and thereby contributing to a qualitative explanation of long-term geophysical
phenomena. Therefore, large amounts of data need to be processed requiring
suitable processing resources such as multi-machine compute clusters. The
design of the tooling should allow to minimize the impact of data cascades
during model development by giving the experts of complementing expertise
access to all aspects of data processing and data analysis by offering clear
interfaces and a transparent data flow. To avoid misconceptions it is important
that experts have access to the same data representations as used for model
development, which requires consistency between data for processing and
visualization.
Last but not least, scientific work is required to be reproducible which should be
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accounted for throughout the whole analysis process. Especially in the academic
context, the first researcher analyzing a dataset is likely not the last. Therefore,
a dataset should be regarded as an open, adaptive and evolving scientific artifact.

Figure 5.2 Data availability for the PermaSense Matterhorn deployment. The
available data (green) is disrupted by significant gaps (white) demonstrating the
error-prone nature of running wireless sensor networks in harsh environments. This
image is taken from [WBF+19].

In this chapter, the main contribution is the data analysis platform foReal which
is designed to satisfy the following requirements:
n Joint analysis of large, heterogenous datasets including weather data,
timelapse photos, seismic streams and more
n Integrated human interface and feedback options such as visualizations or
annotations
n Fast and efficient processing of large data amounts for human inspection or
batch processing, scaling from single machine to multi-machine clusters
n Consistency between data for processing and data for manual inspection
n Separation of concerns: clear interfaces and transparent data flow
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n Robust functionality when used with fragmented and erroneous datasets as
well as continuously expanding datasets (stream of measurements)
n Consistency throughout analysis iterations (reproducible science)

5.2 System Overview

The use case for our framework is the analysis of data from a wireless sensor
network. Before we can design a solution, we must understand the different
components of such a system to define the requirements and challenges in
terms of functionality and performances. As illustrated in Figure 5.3, on a high-
level we distinguish (i) the data provider (ii) the data itself and (iii) the data
user.

Transmission

Storage

Visual Analysis

Producers

Algorithmic Analysis

Data

Data userData provider

Figure 5.3 Components of a wireless sensor network deployment and analysis
system

5.2.1 Data provider

On the technological side, the data provider is responsible for producing,
transmitting and storing the data.
Producers The data is produced by sensors, which contain or are connected

to a processing device digitizing the sensor signal and optionally applying
signal filtering or other required processing steps. Certain settings of
each sensor node are usually configurable, for example sampling type,
sampling frequency, sensor calibration, detection thresholds. These can
be configured pre-deployment or at runtime. Configuration changes
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at run-time should be respected during analysis. Data integrity can
also be affected by physical changes to the actual deployment such
as replacing sensors, changing sensor locations, environmental changes,
repeated short-term deployment campaigns (e.g. multi-year campaigns
during summer season only). Additionally, data can come from sources
not directly integrated into the wireless sensor network such as weather
services, satellites or companies (see also Chapter 2). Additional data can
also come from humans annotating the data, for example by providing
eye-witness reports or labels.

Transmission The data transmission technology in a sensor network depends
on bandwidth, distance and energy. Thus, the technology can vary
between sensors depending on the use case, which has an impact on
availability and latency. On the one hand, sensor data can be stored
locally on a storage connected to the sensor and retrieved manually
from the deployment. On the other hand, the data can be transmitted
via wireless or wired technology. Typical wireless technologies include
WiFi, Bluetooth/BLE, LoRA or custom, application-specific transmission
protocols and modules. Connectivity issues are to be expected, due to the
varying reliability of the wireless channel. Error-correction on the various
layers of the transmission pipeline can prevent data loss, such as on-
device buffering and backlog handling. However, these have implications
on the latency and on the availability of data. On the server side of
the wireless channel, the cable-based transmission between data storage
and data user is a common bottleneck for large-scale data processing. In
terms of latency and throughput, data on a remote storage leads to worse
performance than data on a local disk. Additionally, fragmented files and
non-aligned data (on disk and in memory) affect processing performance.

Storage The data produced must be stored in a suitable long-term storage
which depends on the data amount, data shape and type as well as
other factors like read/write speeds. The simplest way to store the
data gathered with a sensor node, is to store data on-device and retrieve
the whole device manually or the storage medium manually. This time-
consuming process can be avoided by transferring the data produced by
wireless sensor networks directly to a dedicated server. The choice of
storage architecture depends on the data type. For example time series
data such as system information, weather data and other table-based,
structured information is usually stored in a relational database (SQL).
If data is not table-based but unstructured, such as meta-information,
a NoSQL database is a better choice. Other file types require again a
different storage architecture, such as large binary files for which databases
are an inefficient storage type. Alternativly, large binary data can be stored
on a simple filesystem, it is however more efficient to store it in an object
storage (Amazon S3, Azure Blob Storage). However, these storages can
only read/write whole (large) files at once. When only a subsets of a large
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file should be read/written, it is more performant to store them using a
chunk storage, which subdivides any large binary file into a sequence of
smaller blocks. These chunks storages are beneficial for an ever-growing
dataset due to their inherent ability to scale-out. They feature a virtually
unlimited object size, blocks can be stored across distributed machines
and blocks can be stored using object storages. However, chunk storages
come at higher I/O utilization cost.

5.2.2 Data

The data produced by a wireless sensor network tend to vary in terms of
n Data type (images, timelapse images, seismic, audio, time-series, ...)
n File format (jpg, png, miniseed, csv, zarr, ...)
n Data shape (tables, trees, graphs, cubes, text)
n Sampling type (asynchronous, continuous, event-driven)
These varieties results in an increased complexity and susceptibility to errors
since individual methods for data loading, transformation, storage and analysis
are required. Note that in this chapter the term data type does not define
programming constructs such as integer, string, float.
We distinguish between a physical data model and a logical data model. The
physical data model is the representation of data in the physical world, for
example files stored as bits on a filesystem. The logical data model is a high-level
abstraction of data for example tables, graphs, cubes. This logical data model
is useful for working with data without the need to know their representation
in the physical data model.
A dataset is a collection of data. The assignment of the term dataset to
a persistent, never changing collection of files, as often used in machine
learning research, may be good for algorithm development or benchmarking
but does not reflect our scenario. In the upcoming sections, we will develop
a different definition of a dataset in which we will define it as data sources,
optionally transformed by processing steps (for example resized timelapse
images, spectrogram of seismic data) in combination with a formalization of
the dataset extend (for example which set of images, which time periods of the
seismic stream).

5.2.3 Data user

The data user may be broadly categorized into visual analysis performed by
human/experts and algorithmic analysis carried out by computers. These two
subcategories have partially diverging requirements regarding data usage. Visual
analysis needs to account for the fact that environmental effects manifest
themselves in multiple scales and different data representations. In visual
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analysis a continuous data segment is usually accessed at once but it may consist
of several billion datapoints. Here, the bottlenecks are disk access, rendering
time, memory size of rendering products and for web-based visualization tools
also transmission capacity. In contrast, algorithmic analysis usually accesses
a data in batches, which relieves the memory requirement but disk access,
processing time and access to dedicated hardware (GPU) are major bottlenecks.
Machine learning typically requires random access to the data during its training
phase and sequential access when applying the trained model to the data. Since
the same data is loaded repeatedly during training, loading excess data should
be minimized (for example by loading low-resolution images instead of loading
high-resolution images and then resizing them).

5.2.4 Motivational Example

In this chapter, we will explain the concepts and implementations of the foReal
analysis framework using an example based on the setting of the previous
chapters, namely mass movement detection with a wireless sensor network in
high-alpine permafrost. Given is sensor data from the PermaSense Matterhorn
deployment [WBF+19]. We would like to analyze mass movements using the
spectrogram of a seismic signal while reducing the impact of rain, wind and
mountaineers using expert knowledge and machine learning.

5.3 Concepts

5.3.1 Transparent separation of concerns

In environmental monitoring, a diverse set of tasks need to be performed such as
experiment and system design, instrument development, deployment setup and
maintenance, data collection and management, algorithm development, model
definition and data analysis. These tasks require different expertise which can be
found in different domains for example hardware domain (Develop, deploy and
maintain wireless sensor network), software domain (efficient data storage, data
transfer, data management), application domain (define application scenario,
set up experiments, contribute expert knowledge, analyze data) and data
domain (find adequate data analysis methods, automate data analysis). Some
or all of these domains may be covered by one individual but usually a team is
required to accomplish an experiment.
On the software side, data generation, processing and analysis can be subdivided
into multiple components each requiring specific expertise. However, errors in
each component may have a strong negative impact on the overall analysis
and combatting these errors requires again a very specific set of expertise.
Unfortunately, certain types of errors don’t necessarily reveal themselves during
development of each component but in later stages when all components are
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combined.
To address the challenge of a multi-disciplinary data analysis project, we define
the following software requirements:
Separation of concerns Abstraction of a system into modules which are

each responsible for one specific subtask of the system. Each module can
be worked on individually which allows to distribute the work to experts.
Each module must receive and provide their data in a common, well-
defined format. Clear interfaces are necessary to join modules to a
functioning system.

Transparency Each user or developer should be able to trace errors back to
their origin in all modules of the system.

Ideally, these requirements are reflected in the analysis workflow and software
package. Figure 5.4 highlights a data flow graph for our motivational example.
Each node of the graph represents either a processing unit (light-purple) or a
human-lead step (dark-cyan). A data access unit for each respective sensor
should be designed to give access to the data and include meta information
(for example about data availability, data validity or sensor peculiarities). This
unit acts as a bridge translating raw or processed sensor data to a common
data shape used for analysis. Next, the data processing is split into well-defined
processing units, thus distinguishing functionality and implementation. Each
processing unit processes the data and returns it in the common data shape. In
the example, seismic, image and weather unit as well as annotations can be used
to train a model, which can subsequently be used to create predictions for long-
term analysis. Annotation errors can be mitigated by using the visualization
tool for relabeling the annotation set. Additionally, the visualization tool can
be used to perform analysis.
The advantage of a data flow graph described in Figure 5.4 is that it can be
implemented as a processing graph, similar to filter graphs in signal processing,
where each node transforms the incoming signal(s) and delivers them to the
next node(s) in the graph. Processing graphs are easy to understand and
use even with little technical expertise. In our framework, graph computation
is performed using dask [Dasb], a library for parallel computing. The dask
framework allows to schedule the graph’s tasks in a single thread or parallelize
the graph on one or many computers. Thus, we can adopt dask capability of
scaling out (using more machines) if our analysis task or dataset grows. Dask
is comparable to Apache Spark [Apa]. Both implement computation using
a directed acyclic graph [Dasa]. Spark is an extension of the MapReduce
paradigm [DG08] and thus lacking flexibility to more complex algorithms.
Moreover, while Spark is strong in business intelligence it is lacking good support
for scalable multi-dimensional arrays which are crucial for our application. Dask
is based on a generic task scheduling and supports more complex algorithms
and as well as multi-dimensional arrays.
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Figure 5.4 Data flow graph for our motivational example. Software components
are highlighted in light-purple, human-lead steps in dark-cyan. Data access units
bridge sensor data and processing units. By providing the output in a common data
shape, multiple units can be concatenated. The output of such concatenations can
be combined into a dataset, which can be used for visualization or for developing a
model. Finally, the human in the loop can perform analysis or relabeling. Such data
flow graphs provide an easy to understand high-level view of a software solution.

5.3.2 Declarative Data Access and Data Processing

To bridge expertise domains it is more relevant to define what is needed
(declarative), instead of how it is implemented (imperative). In the case of
our motivational example, what is needed for analysis is the time-frequency
representation of seismic data for a given time period. Ideally, how the complex
data processing leading to a spectrogram is implemented could be abstracted
away and hidden from the data user. To illustrate the complexity, generating
a spectrogram would include the development of a program to determine
which and how much waveform data is needed to produce a spectrogram
of requested size. Then, the software would need to check if the waveform
data is available, loading waveform data from disk and transforming it with an
efficient implementation of a short-time fourier transformation. It is important
to consider that the spectrogram computations uses a sliding window, thus
its output dimension is depending on the sliding window parameters (window
size and stride). If the waveform duration is not chosen according to these
parameters, the spectrogram will not have the desired dimensions.
Here, a combination of processing graph and declarative approach can be
beneficial. First, the processing graph provides a generic framework for how
a spectrogram is computed. Secondly, we could declare which time segment of
a spectrogram is requested instead of declaring which time segment of waveform
to transform into a spectrogram. A designated spectrogram unit would hide the



5.3. Concepts 113

complexity of choosing the correct waveform duration for the given spectrogram
parameterization to generate the spectrogram of requested size.

1 {
2 indexers: {
3 time: {
4 start: 2017-07-02T10:01:00,
5 stop: 2017-07-02T10:02:00},
6 frequency: {
7 start: 0,
8 stop: 20},
9 sensor: [MH36, MH38],
10 },
11 config:{
12 global:{
13 raw:False}
14 },
15 types:{
16 Seismic:{sampling_rate:100}
17 },
18 keys:{
19 spectrogram_id:{stride:1024}
20 },
21 }

Figure 5.5 Example of a request and its structure. Such a request can be defined
by the data user or be the result of a processing unit’s configuration function.
L2 indexers: Define which data segment to return
L3 indexers.time: Select a range on the time dimension
L6 indexers.frequency: Select a range on the frequency dimension
L9 indexers.sensor: Select two specific values on the sensor dimension
L11 config: Define global, type-specific or unit-specific configuration
L13 config.global: Affects every unit with this parameter
L16 config.types: Affects all units of specified type (Seismic)
L19 config.keys: Affects the unit with the specified key (spectrogram_id)

In foReal a declarative procedure is implemented with so called requests,
exemplified in Figure 5.5. A request is a metadata information which contains
parameter information for selected units in the processing graph. These
parameters can for example include, which time period to load, from which
seismic station to load the data or which preprocessing parameters to use.
Parameters declared in a request can be valid for all processing units in the
graph (global), for a processing unit type (types) or one specific instance of
a unit (keys). Moreover, it includes parameters which act on data, such as
the indexers parameter, which contains information about which subset of the
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requested data segment is relevant.
Figure 5.6 illustrates how a multi-modal data sample is computed using foReal.
In the figure, a processing graph is given which contains a path for computation
of a seismic spectrogram and one path aggregating the rain intensity of the
last hour. Most of the parameters of each processing unit are predefined during
graph design and are not explicitly mentioned in the given requests. The request
#1 is designed to extract one time segment from the processing graph. It is
propagated towards the Seismic and Weather data access units. Internally, the
Spectrogram and Rain Aggregation unit update the request with a new start
time and forward it. Additionally, the Rain Aggregation unit requests only the
rain intensity subset, given that the Weather unit provides a set of different
weather measurements (for example rain intensity, wind speed, ...).
More generally, configuring a processing graph using a request proceeds in two
phases, a configuration phase and a computation phase. In the configuration
phase, the respective request is propagated through the processing graph from
sink to source. Each unit receives the request from its successor (in direction
towards the sink). Simply put, for every unit the following question must be
answered: "What does this unit need from the previous units to fulfill the
given request?" This means each unit extracts and verifies from the request
the metadata relevant for it. It then adds, modifies or creates requirements
it needs from its predecessors. Each unit can also indicate if it requires the
updated request in the computation phase again. The updated request is then
forwarded to the next unit until all sources of the graph are reached. If nothing
is requested from previous units, all previous units (if any) can be removed
from the processing graph. In the second phase, the graph is scheduled for
computation, starting from the data access units to the sink units. Each unit
receives multiple inputs, including data from the previous unit(s) and the request
from the configuration phase.
As explained before, processing the data can be a complex, error-prone task,
especially if the data source is sensitive to errors. The declarative approach can
potentially reduce these errors because it provides a clear interface to gather
the relevant information. Using a declarative approach allows to disconnect
conceptual errors (Is a spectrogram the right choice to analyse my data?) from
implementation errors (Is enough waveform data loaded to get the spectrogram
of required size?)
We can now redefine a dataset in the context of this chapter:
Dataset A processing graph combined with a request or set of requests.
A dataset explicitly includes not only data but also processing steps increasing
its flexibility to address errors and facilitating reproducibility.
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Figure 5.6 Exemplary illustration of the configuration procedure (top) and the
corresponding requests (bottom). Each request number in the graph (#1,#2,#3)
corresponds to the respective line number in the textbox. A processing graph
containing a path for seismic spectrogram computation and one path for rain
aggregation is given. A request (#1) is propagated from the graph’s outputs towards
the data access units Seismic and Weather. Each processing unit configures itself and
updates the request before forwarding the request to the next unit. In this example the
units update the request’s start time according to their internal requirements (request
#2 and #3). Additionally, the Rain Aggregation unit requests the rain_intensity
subset of the weather sensor in its request (#3). The units Seismic and Weather
just propagate the requests (#2 and #3, respectively) through without modification
to receive them as input. Only request #1 is created by a data user, the other two
requests are ablations created by the respective processing units.

5.3.3 Data Independence

The declarative approach abstracts the physical data acquisition (vibration
registered by a sensor and digitized) into a logical data access pattern (request
signal from time t0 to time t1). Similarly, we want to abstract the physical data
model (for example a file stored in a filesystem on hard disk) into an easy to
understand logical data model (for example a table). This abstraction is usually
referred to as data independence [BNK16].
Focusing on data models is crucial in long-term monitoring projects since
data from such projects is ever evolving. Over the course of a long-term
measurement, changes in file formats or storage engines are likely. Moreover,
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changes in data types can occur when for example new sensors are installed.
The foReal framework is designed to work with specific logical data models for
data and annotations which will be described in the following.

5.3.3.1 Data Cubes

Environmental data is inherently multi-dimensional. Examples include
n time-series (1-dimension: time)
n seismic spectrograms (2-dimensions: time,frequency)
n images (3-dimensions: x, y, color)
n timelapse images (4-dimensions: time,x,y,color)
n seismic spectrograms in global context
(7-dimensions: latitude,longitude,elevation,station,channel,time,frequency)
The logical data model for these kind of data are typically multi-dimensional
arrays or so-called data cubes. In environmental monitoring, often the data
along a dimension is meaningless without additional information, such as
timestamps for the time dimension, frequency steps for the frequency dimension,
or coordinates for spatial data. Therefore, data cubes for environmental
data require the option of additional one dimensional arrays (from here on
called coordinates) describing the content along each dimensions. These so-
called labeled multi-dimensional arrays are implemented efficiently in the xarray
framework [HH17], which is used internally by foReal.
foReal’s request-driven data access is grounded in data cubes. A request in
foReal slices out a segment of a multi-dimensional data cube using coordinates
to select the requested data segment.

5.3.3.2 Annotations

We want to achieve data independence for annotations, meaning instead of
defining annotations by their representation in the physical data storage (name
of the folder containing images of respective label) we want to abstract it
into a logical data model (directive to connect data with a label). This
requirement comes from the fact, that the we need to be able to restructure
or resample the data without loosing the annotation information. For examples
if the annotations are stored as folder names (as done for certain image
datasets [DDS+09]) they are attached to the storage structure (filesystem).
When we change the storage system or just restructure the data by sorting it
differently the annotations information might be lost. Moreover, annotation
should be reusable and independent of data type. If we, for example, annotate
wind in a time-series stream, we should in principle be able to apply this
annotation to a co-located seismic sensor.
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In foReal, annotation can be connected to the respective data by using a similar
approach as used for requests in the previous section. Like a request, annotation
contain an indexers key defining the concrete slice of data to be annotated. In
addition, it contains a targets key containing the annotation. We do not put
harsh constraints on what a target is but usually it would be the class name of the
annotated event. The annotation might additionally contain more information
such as how or by whom the annotation was created or an event id to trace
and track multiple annotations of the same event, for example to annotate the
same mountaineer on multiple, consecutive timelapse images. The annotation
format is exemplified in Figure 5.7 using images and seismic data. The figure
shows graphically which segment of the image or seismic stream is annotated.
In addition, three annotations are given in JSON format.
foReal annotations can be used for two purposes. First, a given annotation can
be used to load the corresponding data segment. Second, a given data segment
can be annotated with the corresponding annotation(s).
Figure 5.8 a) depicts how an annotation can be used to load a data segment.
Since each annotation contains the same information as a request, it can be
used as-is to request the annotated data segment. Moreover, it can be used to
retrieve correlated sensor values. For example, we can use the seismic annotation
given in Figure 5.7 to request all correlated images by replacing the annotation’s
sensor field with the sensor name of the camera.
Annotating a given data segment with annotations is a common scenario, for
example when multiple mountaineers are annotated on an image and we want
to crop the image while retaining the annotations within the cropped are and
discard the annotations which are outside. This scenario is more complex
because we need to be able to find the annotations describing a data segment
of arbitrary size.
In our framework, the data segment can be defined by a request. A request can
be regarded as bounding box. For the case of a one-dimensional time series,
the "bounding box" would consist of start and end time. For the case of a
cropped image, the bounding box would consist of the cropping area (start and
end values on both, horizontal and vertical axis). In general, a request can
be regarded as a multi-dimensional axis-aligned bounding box, which means
it consist of a start and end value for each dimension of the array. Similarly,
an annotation can be seen as such a bounding box. It describes what (event,
object, ...) is inside the bounding box area.
The task is to find all annotations of the annotation set which are within
the request’s boundaries, meaning we need to find all annotation bounding
boxes that overlap with the request bounding box (illustrated in the top path
of Figure 5.8b) ). We implement the multi-dimensional overlap detection
iteratively by first checking for overlap on the first dimension between request
and annotation set. The other dimensions will only be checked for the pairs
with an overlap in the first dimension. Conceptually, the way a request slices
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1 { indexers: {
1 time: {
1 start: 2016-08-04T11:44:17,
1 stop: 2016-08-04T12:09:32},
1 sensor: [MH36, MH38]},
1 targets: {mountaineer: true }}

. . .
4 { indexers: {
4 time: [2016-08-12:04:12],
4 x: {
4 start: 95,
4 stop: 145} ,
4 y:{
4 start: 20,
4 stop: 70},
4 sensor: [MHDSLR]},
4 targets: {mountaineer: true }}
5 { indexers: {
5 time: {
5 start: 2016-05-02,
5 stop: 2016-09-15},
5 },
5 targets: {
5 clear of snow: {annotator:mountain-lodge keeper}}}

. . .

Figure 5.7 Sensor-specific label or sensor-independent annotation can be described
using the same syntax. indexers describes the actual data slice to be annotated.
target contains the annotation.
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Figure 5.8 Usage of annotations in the context of foReal. The request’s start and
end time are highlighted as the red line below the signals. In a) an annotation is
used as a request to load the corresponding seismic segment. In b) a request from
a dataset is used to load a seismic segment and all corresponding annotations. The
upper path in textbfb) demonstrates how a request (one red line), which can be
regarded as a one-dimensional "bounding box", overlaps with the annotation’s one-
dimensional "bounding boxes" (three black lines).

out an annotation segment out of an annotation set is similar to the way a
request slices a data segment out of the data cube as illustrated at the bottom
of in Figure 5.8b).

5.3.4 Processing Failures

As highlighted before, the data analysis will most probably contain errors. We
therefore incorporate this fact into the software design process and provide
safeguards against processing failures at any stage of the processing graph.
Corruptions in specific data segments should not affect the processing of other
segments. In foReal a failsafe mode is implemented which catches all errors
without disrupting the overall data process while providing options to trace back
the error to its source. It provides options to ignore errors, raise a warning or
fail upon error. Additionally, in a distributed system workers are likely to fail.
The dask framework being used by foReal allows to mitigate worker failures
while performing all computations correctly.
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5.3.5 Potential Use Cases

There are several advantages using a declarative data access model as presented
in this chapter, which are listed below.
Flexibility Selecting the required data segments from a dataset is facilitated,

since complex data loading and processing is abstracted.

Inter-dependencies If there is a dependency of a successive task on its
predecessors the declarative paradigm gives the successive task the
option to declare these dependencies. Examples are the dependency of
spectrogram input to its parameters.

Data augmentation Declarative data access can be used for controlled
randomization. Each parameter can be defined and stored on a per-
sample basis, which allows perfect replay and per-sample optimization of
data augmentation parameters.

Dynamic sample merging Deep learning for audio applications benefits
from superposition of multiple audio segments during training. For
example merging two segments of the same label create a new, unseen
segment while retaining the correct label. Declarative data access
facilitates the process because a second segment of the same label can
be explicitly requested during runtime.

Dynamic zoom Signal processing algorithms usually scale with input size,
meaning if we process an image, the runtime is dependant on the image
dimensions. In Chapter 2 we avoid large processing costs by downscaling
the images before applying an image classifier. However, small features
are indistinguishable in low-resolution images. Zooming in on details could
reveal more information but only if zooming results in a higher resolution
segment of the image. With declarative data access we could make the
resolution dependent on the zoom level - keeping the image dimension
constant while the resolution scales.

Access to expanding datasets Continuous data acquisition requires certain
computations to be run every time new data arrives. Declarative data
access avoids these time-triggered computations because when the data
is accessed the computations will be run automatically.

Relabeling During relabeling new annotations are added to the dataset or the
existing annotations of a dataset are modified. If the declarative approach
(for example requesting all annotations of a time segment) is used
in combination with the data independence paradigm (annotations are
abstract bounding boxes), the change in the annotation set is immediately
reflected in any use case of the dataset (machine learning, visualization),
which makes the different use cases consistent.
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Figure 5.9 Illustration of the foReal visualization web service and general
computing service. The visualization service runs as a web app on a dedicated
application server and can be accessed via the client’s browser. If the client selects a
data segment to be plotted, a request is generated and the respective computation
graph is configured on the application server. The configured graph is then sent
as a task to the processing server, which decides what needs to be computed and
what can be loaded from disk. The computed/loaded data is then sent back to the
application server which subsequently generates plots to be served to the client. The
application and processing server can also fulfil processing requests independent of
the visualization service, for example for machine learning applications.

The main disadvantages is the computational overhead due to the configuration
phase before each computation. This overhead becomes significant for large
graphs since the configuration needs to traverse the whole graph.

5.4 Implementation

This section describes the mayor components of the foReal framework. We
focus mainly on the components which are important for the Matterhorn
deployment. Here, data access units are the primary bridge to the deployment’s
sensors. These units are often required to fetch data from remote storages, for
example to obtain PermaSense data [Per] or accessing the Arclink service [Arc]
for seismic data. Examples of data access units implemented in foReal are
Seismic which loads seismic data from disk or webservice, Image which loads
timelapse images from disk, CSV loads and converts an arbitray comma-
separated-values file, Annotations which loads annotations from disk and
performs overlap detection.
Figure 5.9 highlights the computational setup in which a Processing Server,
Application Server, Client, Network Storage and Local Storage are used for
visualization and data processing. Note that processing server, the application
server and the storage can also be used without a dedicated user interface, for
example to for machine learning applications.
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As indicated in Figure 5.9, processing and application are conceptually
separated. In practice, the processing server is a dedicated process running on
a dedicated machine, a cluster or even on the same machine as the application.
Distributed processing as well as task scheduling is performed using the dask
framework. The dask scheduler can dynamically respond to requests from
multiple clients, for example scheduling a machine learning training run while
computing data for distinct plots of multiple concurrent visualization sessions.
Since we are dealing with larger-than-memory datasets, the main performance
bottlenecks in the system of Figure 5.9 are available resources (system memory,
disk space, GPUs) and data transfer (from/to disk or via network). Especially
the server to network storage link affects the processing performance. Moreover,
the application server to client link affects the responsiveness of the visualization
tool. In foReal , several steps are taken to address these bottlenecks, such as
caching of intermediate results or precomputing plots to minimize the data
transfer between server and client.

5.4.1 Persist

Unlike a cache which stores the data temporarily in memory, the Persister unit
stores the processed data permanently on disk in an efficient manner. The main
use cases for using a Persister are (i) if the result of a costly computation is
reused repeatedly but does not fit into memory, (ii) if access to the original
data is slow (for example if it resides on a remote storage) and faster storage
is available and (iii) if the data is only available in an inefficient format (for
example in a large CSV-file).

t

f c

1 2 3 4

tb tetc

Figure 5.10 Illustration of how chunks are stored with a Persister. The persister
is initialized with a dynamic dimension (time), dataset boundaries (tb to te) and a
chunk size (tc). The sizes of the other dimensions, (here, frequency and channel), are
automatically inferred from the preceding unit in the processing graph (Spectrogram).
Chunks are empty until accessed at least once. A chunk can be "not loaded yet" (1),
fully loaded but partially corrupted (2), fully corrupted or no data available (3) or
correctly loaded (4). Only chunks 2 and 4 consume disk space.

In foReal the Persister is implemented as a unit in the processing graph,
independent of any data type. It can be placed at an arbitrary position in
the processing chain. Therefore it is possible to persist data access units as well
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as intermediate processing representations (for example a spectrogram). The
persisters storage pattern is illustrated in Figure 5.10. Since persist works with
chunked data cubes it is independent of the actual data type. The Persister
is designed to build up the storage incrementally, therefore disk space is only
allocated for data segments which have been requested at least once. This
incremental build up can only be performed along one, predefined dimension,
the so-called dynamic dimension. All other dimensions of the multi-dimensional
data must be fix in shape and coordinates. The Persister is initialized using a
data prototype, which is obtained by calling the Persister ’s predecessors in the
processing graph with a prototype request. Based on the data prototype the
data cube structure, including shape, coordinates and chunk sizes is defined.
The meta-information about the structure is written to disk but no data is
written to disk yet. When a data segment is request from the Persister, the
Persister seeks the related chunk and if it is not available requests the required
data from its predecessors and the chunk is written to disk. If the chunk exists
it is forwarded to the next unit. The data is stored in the zarr [Zar21] file
format, which is an efficient format for multi-dimensional data. On top of using
an efficient file format, we make use of caching to store recently used chunks
in memory which may improve performance.
The advantage of the Persister with its incremental data loading is that we
often do not want to preprocess the whole dataset if we are only looking at
a fragment of the dataset. For example we mainly work with data from one
year and might sporadically need one hour of data from another year. With
the Persister we can balance the storage to processing time trade-off. We can
store the items we need frequently for fast access but we do not need to store
everything while still being able to dynamically load from other time periods
using a consistent interface.
To highlight the benefit of the Persister we have conducted benchmarks
resembling a machine learning training scenario. For the benchmark one hour
is subdivided into 120 segments of 30 second duration. For each segment the
seismic data of one of three channels is loaded, adding up to a total of 360
data samples being loaded. In one iteration all 360 data samples are randomly
loaded. All benchmarks are run for two iterations.
The benchmark is performed on a machine with CPU AMD Opteron 23xx
running at 2GHz (16 core) and 16GB RAM. The data is loaded and stored
on a local solid-state drive (SSD). The seismic data is stored in miniseed files
(one file per hour per channel) on the same disk as the persisted data. The
persister’s chunks are aligned with the miniseed files, meaning the time period
stored in a file is the same as stored in a miniseed file. The data is chosen
such that two chunks must be accessed to load one iteration. We conduct the
following 5 benchmarks:
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1. Waveform: The seismic segments are loaded from the miniseed files via
a Seismic data access unit.

2. Waveform+Persist: The Persister module is attached to the Seismic
data access unit and the segments are loaded via the Persister module.
The Persister’s chunk size is set to one hour, to make it comparable to
loading from miniseed files. In iteration 1 the Persister loads the data via
the Seismic data access unit and stores in the persist storage. In iteration
2 the Persister loads directly from the persist storage.

3. Waveform+Persist+SamplePersist: The same as (2) but a least-
recently-used cache is added, which can cache more than two chunks
in memory.

4. Waveform+Persist+SamplePersist: The same as (2) but another
Persister is added to the chain which stores each 30 second sample
individually.

5. Waveform+Persist+SamplePersist (raw): The same as (3) but the
data is loaded without coordinates (bypassing xarray).
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Figure 5.11 Data loading times and disk usage for benchmarks resembling a
machine learning scenario in which data is randomly loaded from disk. For both
iterations the results are given as mean and standard deviation (black bars) computed
over 10 experiment repetitions. The disk usage is computed after the first iteration.
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Figure 5.11 indicates that loading data using the Persister provides a huge
improvement of up to about 19x in a scenario where all coordinates must be
available (Benchmark 4). If only the raw data is required (Benchmark 5) overall
improvement with regard to the baseline is more than about 100x. The figure
also highlights the tradeoff between data loading times and disk usage. Each
additional persister increases the data that needs to be stored on disk in addition
to the original data. However, disk capacity is usually not the bottleneck in
computing system due to cheap mass storage options.

5.4.1.1 Downsampling

The ability to plot long-term datasets relies heavily on the available compute
power. Even with a low sampling rates of 100 Hz, one year of single-
channel seismic data contains more than 3 billion samples. Modern plotting
libraries [Plo21, Bok21] are able to display millions of data points, by using GPU
acceleration [Web11] or pre-computed plots [Dat21]. However, from a certain
data volume these techniques are not sufficient anymore and a data reduction
before plotting is required. Moreover, even if we leave out the performance
issues of plotting, just loading more than a billion data samples is a significant
performance factor.
When plotting many points, a phenomena called overplotting can occur,
meaning that close points or lines of the same color are indistinguishable because
they overlap. We can use this fact to our advantages when plotting long-term
dataset. On a large scale, overplotting occurs quite frequently and not all data
points are required to give the correct visual impression. Therefore, the signal
may be downsampled before plotting.
A simple method to downsample is to keep only every n-th sample (n is the
downsampling rate). However, this may lead to data artifacts which significantly
affect the accurate data representation as illustrated in Figure 5.12. Here, the
downsampled version is non-representative of most of the original data neither
in amplitude nor in frequency. In this subsection, we list two approaches which
can be used to produce faithful visualizations when datasets need to be plotted
on a large scale, namely MinMax Downsampling and Largest-Triangle-Three-
Buckets [Ste13].
Largest-Triangle-Three-Buckets (LTTB) method selects the first and last sample
of the signal and subdivides the rest of the signal into equal-sized bins (or
buckets) of length equal to the downsampling rate. For every bin every point is
ranked by computing "the area of the triangle it forms with the selected point
in the last [bin] and the average point in the next [bin]" [Ste13]. The point
with the highest rank is selected. The result of the LTTB algorithm applied to
a chirp signal is illustrated in Figure 5.13. The large-scale plot indicates that
LTTB gives a correct visual impression for low-frequency events but fails for
high frequencies. Therefore, it is most suitable for slowly changing signals, for
example rock temperature or weather data.
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Figure 5.12 Plot of a chirp (a signal with increasing frequency) in yellow and the
downsampled version obtained by using every 8th sample (black). The same signal is
plotted on a small-scale (top) and large-scale (below). Downsampling artifacts give
a false intuition of the signals amplitude as well as frequency

MinMax Downsampling subdivides the signal into equal-sized bins of length
equal to twice the downsampling rate. For each bin the minimum and maximum
samples are chosen. The result of the MinMax algorithm applied to a chirp
signal is illustrated in Figure 5.14. The large-scale plot indicates that MinMax
Downsampling gives a correct visual impression for high-frequencies but fails for
low frequencies. Therefore, it is suited for waveform data, like seismic or audio.

5.4.2 Permavis

Permavis is a web frontend using foReal as data backend. It is designed to
plot seismic data, time-lapse images, annotations and time series data from
CSV or PermaSense . Moreover, it features a tool to load, edit and export
annotation files, as well as drawing new annotations inside any plot. The
frontend can be run on a local machine or deployed as a webservice. The web
service features multi-scale, multi-modal data visualization capabilities, using
downsampling (LTTB for time-series and MinMax for seismic waveforms) and
persist to enable a responsive data exploration. Figure ?? displays a screenshot
of a joint visualization of spectrogram, waveform, rain and wind.
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Figure 5.13 Plot of a chirp (yellow) and the downsampled version (black) obtained
by using the LTTB method with downsampling rate of 8. The same signal is
plotted on a small-scale (top) and large-scale (below). The large-scale plot indicates
that LTTB gives a correct visual impression for low-frequencies but fails for high
frequencies.
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Figure 5.14 Plot of a chirp (yellow) and the downsampled version (black) obtained
by using the MinMax method with downsampling rate of 8. The same signal is
plotted on a small-scale (top) and large-scale (below). The large-scale plot indicates
that MinMax Downsampling gives a correct visual impression for high-frequencies but
fails for low frequencies.
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Figure 5.15 Joint visualization of seismic spectrogram, seismic waveform, rain and wind data of the Matterhorn deployment for a time period
of more than a year. Additionally, the annotations of an event catalog and wind data from a nearby weather station (ZER4 by SLF) are plotted.
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Figure 5.16 Joint visualization of seismic spectrogram, seismic waveform, rain and wind data of the Matterhorn deployment for a time period
of multiple days. Additionally, the annotations of an event catalog and wind data from a nearby weather station (ZER4 by SLF) are plotted.
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Figure 5.17 Joint visualization of seismic spectrogram, seismic waveform, rain and wind data of the Matterhorn deployment for a time period
of multiple minutes. Additionally, the annotations of an event catalog and wind data from a nearby weather station (ZER4) are plotted.
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5.5 Interactions

foReal is designed to minimize the time to access real-world datasets for model
development and algorithm application. Ideally, the data science community
can benefit from real-world datasets and the geoscience community from novel
algorithms. Authorities can have almost immediate access to intelligible expert
knowledge in case of emergencies supporting fast, fact-based decision making. If
data is augmented with risk assessment it can be advantageous for other parties,
for example for re-insurances and long-term policy and mitigation efforts. The
general public can be invited to interact with their environment through data
analysis and the contribution of observations (crowd-sourcing). Since they are
exposed to the same tooling experts use, they get access to in-depth knowledge
while data annotations (by experts) facilitate the understanding of natural
phenomena. For local communities affected by environmental changes it is
important that the gained insights about their habitat is fed back in an accessible
manner no matter where or by whom these insights were generated.
One goal of this dissertation is to raise awareness, provide insight and foster
interdisciplinary knowledge exchange in the focus area environmental monitoring
and climate change and highlight that public awareness and collaboration is a
key to reduce the impact of climate change. Thus, the presented toolsuite
supports dynamic interaction between data, expert knowledge and machine
learning technology.
Throughout the dissertation interaction with the public, experts, companies
and artists was sought and fostered. These interactions include presentations
at conferences, for high school and ETH alumni. Moreover, segments of seismic
data from the Matterhorn were converted to soundfiles (freely accessible [Sou]).
These soundfiles were presented at the "ZHdK Environmental Listening Session:
Unknown Soundscapes: Rivers, Soils, Rocks" and are featured in the music
project "Glacier Music II" by Anushka Chkheidze, Eto Gelashvili, Hayk Karoyi,
Lillevan, Robert Lippok.
While this chapter highlights the conceptual benefits of our framework, it’s
usefulness will only show in practice. Thus, we have suited our action to our
words by organizing a Hackathon on Permafrost in collaboration with Microsoft
Switzerland which was staged at ETH Zurich November 28-30, 2019. During
the event the participants had the chance to use a preliminary version of the
foReal framework for data access and algorithm development. 87 participants
from academia and industry registered out of which roughly 60 participated in
the three-day event. The participant list included geoscientist, data scientists
and participants with various other backgrounds. The event was structured
into introductory sessions, technology and geo-science breakout sessions and
group-work. Lorenz Meier (Geopraevent AG) gave a special industry keynote
with case studies on natural hazard monitoring projects. Experts from Swiss
Re and Microsoft supported the participants on topics of data analytics and
application building. A total of 14 final solution templates were submitted by
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individual groups spanning time-series data analysis, prediction and simulation
tools, participatory apps as well as machine-learning based anomaly detection.

5.6 Conclusion
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Figure 5.18 Data types and preprocessing used in this chapter. Expert-based
information extraction from seismic data, images, time-series data and annotations
using data specific frontends (FW ,FS ,FT ,FA) and data specific plot types. The data
is jointly analyzed by one or many experts.

In this chapter, we presented a software processing and analysis framework for
heterogenous wireless sensor network deployments. A common online analysis
platform can enable fact-based and fast-paced collaboration and encourage
spontaneous, short-term collaboration between experts of different domains
combining and complementing their strengths for a qualitative, comprehensive
analysis. Moreover, it allows to establish crucial understanding between short-
term effects and longer-term process models. While the understanding of
these effects can be established by human experts using few examples, the
application to long-term data streams must be automated through intelligent
algorithms. We have shown how we can optimize data access, computation and
visualization for large-scale datasets. The presented framework places at is core
the principle of an ever-evolving dataset with its continuous data generation,
dataset refinement and error-correction. Its focus on reproducibility makes the
data accessible, persistent and tangible for the next research project, the next
expert continuing the research cycle.
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5.A Appendix

Contributions: Matthias Meyer developed the concept and discussed it with
Jan Beutel, Lothar Thiele, Samuel Weber, Andreas Biri, Feiyu Jia, Tobias
Kuonen, Carsten Barth. Matthias Meyer developed the framework’s code with
contributions from Samuel Weber, Andreas Biri, Reto da Forno. Matthias
Meyer, Reto da Forno, Feiyu Jia and Tobias Kuonen developed the permavis
web frontend. Matthias Meyer prepared and performed the experiments and
evaluated the results with Reto Da Forno. Matthias Meyer prepared the
manuscript.
/ Code available soon
� Project Webpage https://matthiasmeyer.xyz/research/foreal/

Related Publications

The foReal framework was used for running the experiments in Section 4.2 and
its related publication.
The following student projects are related to this chapter.
Dynamic Visualization of Geophysical Data
Feiyu Jia
Semester thesis, 2019
Visual analysis and comparison of seismic events
Tobias Kuonen
Semester thesis, 2019

https://matthiasmeyer.xyz/research/foreal/
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6
Conclusions and Outlook

Addressing the impact of global warming requires thorough analysis supported
by evidence from in-situ environmental measurements. A qualitative analysis
requires foremost a good data basis. Unfortunately, the data quality originating
from environmental monitoring setups is often affected by natural uncertainties,
technological and human errors. These errors manifest themselves on multiple
stages during data acquisition and analysis. In this dissertation, we have
presented tools and techniques to harness such erroneous environmental data.
In particular, we have focused on harnessing data collected to understand
the geophysical processes leading to rockfalls in steep terrain and datasets
meant to quantify the impact of climate change on high-alpine permafrost.
Moreover, we have presented a methodology for automated analysis of long-
term, heterogeneous datasets which includes experts as well as machine learning.
In this context, we have tackled the issue of noisy, partially labeled and
fragmented datasets by using semi-supervised learning methods which integrate
system context information. Additionally, a model for detection of mountaineers
in the hazard zone was optimized for event-triggered, low-power geophones. An
array of these geophones was deployed to evaluate their usefulness as a natural
hazard warning system. Finally, a data analysis and visualization platform was
developed enabling interactions between experts of various domains and the
public.

6.1 Contributions

A methodology for working with noisy data (Chapter 2): We have
presented a methodology to evaluate the impact of external influences on micro-
seismic measurements using additional sensors and external information. Based
on data from a real-world wireless sensor network deployment at Matterhorn,
Switzerland, we have demonstrated how such information is useful to isolate
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negative external influences, excluding them from further analysis. Moreover,
we have designed a machine learning based mountaineer detector obtaining an
error rate of only 0.96% (F1 score: 0.9167) on micro-seismic signals and a
mountaineer detector ensemble obtaining an error rate of 0.79% (F1 score:
0.9383) on images and micro-seismic data. Furthermore, we have shown
that using only a simple seismic event detector for analysis may lead to false
assumptions, since time periods with mountaineer activity have a approximately
9x higher event rate and approximately 25% of all detected events are due to
mountaineer interference.
Edge computing (Chapter 3): We have demonstrated a design for an
event-driven, low-power geophone array, optimized for natural hazard warning
and detection of human presence in a hazard zone. Our study finds that using
analog triggering and on-device signal characterization can significantly extend
the expected lifetime of the system. Moreover, we developed a footstep detector
using machine learning and optimized it for on-device inference on a low-power
microprocessor with a limited SRAM of only 320 kB. We applied architectural
optimizations to reduce the memory requirement of an reference event detection
model by a factor of 515. In addition we applied network quantization to reduce
the parameter’s memory requirement by another factor of 4. Additionally, we
pipelined a convolutional neural network, reducing the inference-time and the
inference-memory and keeping them independent of the temporal size of the
networks input.
Domain expertise and machine learning (Chapter 4): Our contributions
include methods to enhance domain expertise with machine learning by using
unsupervised and semi-supervised deep representation learning. Moreover,
we have demonstrated that domain expertise can improve machine-learning-
based information extraction by incorporating system context information.
For this purpose we leveraged in-batch similarity optimization in combination
with an information graph producing representation useful for classification
and clustering. We enhanced this optimization method by unifying data
and annotation representations: annotations are represented as data in the
embedding space. In a scenario with limited annotations and diverging sensor
characteristics we demonstrated increased robustness across sensors.
Data analysis and visualization (Chapter 5): Finally, we developed and
published the data analytics and visualization platform foReal which allows to
combine data from different sources. The platform can be used to process
and analyse long-term, large-scale environmental datasets while providing
robustness against data corruption, missing data and misconfigurations during
data processing as well as misinterpretations during experiment design and
analysis. The system is designed to harmonize machine learning and expert
knowledge and the tooling enables fact-based and fast-paced collaboration
combining and complementing expert knowledge from various backgrounds.
The web-based visualization software allows to interact with the public, opening
up research results to a broad audience.
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6.2 Future Developments

Real-world applications: The tools presented in this thesis have already
been used to analyze real-world data. In general, they were designed to
be applicable to other domains involving data from wireless sensor networks.
Other application scenarios include debris flow warning [CWW+21], pollen
sensing [CMTS20] or air pollution monitoring [MZT18, CHZT20]. Especially
the foReal data analysis framework may be useful for other long-term datasets
which require an integration of machine learning and expert knowledge.
The machine learning methods presented in this dissertation may be readily
transferred to audio event detection applications requiring only parameter
changes.
Common toolset for active learning: Errors during data analysis are among
others introduced by non-unified set of analysis tools. To reduce such errors
machine learning and data verification should be tightly coupled. The foReal
framework (Chapter 5) already provides such options to some extend. As
an addition, it may be integrated with the learning framework presented in
Chapter 4 resulting in an active learning framework. Here, visualization of the
embeddings and correlating clusters of data points in the embedding space with
their representation in the original data space may help to develop an intuition
about the event characteristics.
Embedded Learning: Machine learning on embedded devices are restricted
by memory and computational power. We have demonstrated in Chapter 3 that
computing the forward pass of a convolutional neural network is feasible on an
embedded device by applying model optimization and re-using memory. This
strategy cannot be applied to on-device learning since most of the intermediate
values of the forward pass need to be kept in memory during the training phase.
Therefore, simple models are preferred for on-device training which however
limits the classification accuracy.
The method presented in Chapter 4 splits the model into a complex encoder
and simple decoder which can be trained independently. This method provides
options to tackle the issues of on-device learning. The encoder can be pre-
trained on a compute cluster using all available data (annotated and non-
annotated). Then, on the embedded device only the forward pass of the encoder
needs to be computed. The decoder can be pre-trained on the server and then be
fine-tuned on-device. Moreover, this method provides options to run a complex
decoder on the server and a simple decoder on-device - a tradeoff between
transmission cost and accuracy. The embedded devices transmits only an
intermediate representation produced by the encoder or the classification result.
The original data of specific events can be requested on-demand. Here, the
intermediate representations or the on-device classification can give an intuition
if the data of a particular segment is of interest at all (for example if only noise
was classified on device, the data does not have to be transmitted).
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