
Diss. ETH No. 26941

Threat potential assessment
of power management

related data leaks

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by
PHILIPP MIEDL

Dipl.-Ing.
Master’s programme Telematics
at Graz University of Technology

born on 23. 07. 1989
citizen of
Austria

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. David Atienza Alonso, co-examiner

2020

Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 184

Philipp Miedl

Threat potential assessment
of power management

related data leaks

A dissertation submitted to
ETH Zurich
for the degree of Doctor of Sciences

DISS. ETH NO. 26941

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. David Atienza Alonso, co-examiner

Examination date: June 26, 2020

DOI 10.3929/ethz-b-000417785

http://dx.doi.org/10.3929/ethz-b-000417785

Für Mama, Papa & Opa.

Abstract

Modern computing systems rely heavily on power manage-
ment to accomplish two main tasks: (i) efficient use of the
available energy resources, (ii) prevention of the device from
suffering damage by exceeding its physical limitation. The
power management system tries to achieve these two goals
by enacting policies that, at the same time, aim to reduce the
performance penalty experienced by the user. To achieve this,
the power management uses the system utilisation and device
characteristics, such as thermal behaviour, power dissipation
or operating frequency. Therefore, there is a link between the
execution of applications and these power management related
device characteristics.

Due to the high computing power available, devices
are increasingly shared among multiple application domains
or multiple users. For example, a smartphone might be
used for private and business applications, or multiple users
might reside on the same physical server. To guarantee the
security of confidential data in such a shared setup, data
and application-dependent information must be confined.
Confidential information must not be revealed to third parties
without the consent of the data owner. Therefore, researchers
have increased their efforts to develop security frameworks to
enforce this confinement, for example, by using virtualisation
techniques. However, data leaks based on shared resources
pose a major threat towards such a security framework. As
the behaviour of the power management system influences
all application or user domains on a device, the power
management system is regarded as a potential source for such

ii Abstract

data leaks.
While the research community has increased their focus

on side and covert channel attacks, several challenges related
to these attacks remain. For instance, executing a data leak
analysis in a reproducible, comparable and exhaustive fashion
requires substantial investments of time and engineering
resources. This is due to the nature of data leaks being
caused by the interplay of different system components, which
makes it difficult to detect, reproduce and analyse them on
different devices. Therefore, a methodology is needed to
support reproducible, comparable and expressive analysis
results and tools that help to reduce the effort needed to execute
an exhaustive data leak analysis. Furthermore, while many data
leaks have been discovered in recent years, little attention has
been given to security implications of the power management
in multicore systems.

In this thesis, we attempt to solve these challenges and
investigate the threat potential of power management related
data leaks in multicore systems. We summarise the main
contributions as follows:

• We define a novel methodology to analyse covert
channels exhaustively. This methodology helps to derive
expressive metrics for assessing the threat potential of
covert channels. Furthermore, we are the first to provide
a measurement automation toolkit which implements
the methodology. Due to its design, this toolkit allows us
to apply the methodology to a variety of target platforms.

• We outline a novel procedure to derive upper channel
capacity bounds for continuous covert channels. Further-
more, compared to previous work, we improve through-
puts of thermal covert channels in multicore systems by
applying a more sophisticated communication scheme.

iii

• We are the first to analyse the power covert channel
in current multicore systems exhaustively. In addition,
we illustrate the derivation of upper channel capacity
bounds for such discrete covert channels.

• We present a communication model and provide an
in-depth analysis of the frequency covert channel.
Moreover, we are the first to use a Recurrent Neural
Network (RNN) for symbol decoding in a frequency
covert channel setup.

• We establish a novel side channel attack based on system
temperatures to extract runtime information from
mobile devices. This side channel attack uses Neural
Network time-sequence labelling models. Furthermore,
we present a method for thermal data augmentation to
reduce the necessary measurement effort to generate a
suitable training data set.

The presented methods and findings are based on extensive
experimental evaluations. We publish the tools used in these
experiments and the acquired data along with this thesis, to
support comparability and reproducibility of our results.

iv Abstract

Kurzfassung

Moderne Rechnersysteme nutzen Energieverwaltungssysteme,
um zwei Ziele zu erreichen: (i) effiziente Verwendung der
verfügbaren Energieressourcen und (ii) Schutz des Geräts
vor Beschädigung durch Überhitzen. Die Energieverwal-
tungssysteme versuchen diese Ziele zu erreichen, indem sie
Strategien anwenden, die gleichzeitig darauf abzielen, die für
den Benutzer erkennbaren Leistungseinbußen zu minimieren.
Als Basis für die Regelungsentscheidungen von Energieverwal-
tungssystemen dienen die Auslastung des Geräts sowie Gerä-
teeigenschaften, wie zum Beispiel das Temperaturverhalten,
der Energieverbrauch oder die Betriebsfrequenz. Daher gibt
es eine Verbindung zwischen den ausführenden Programmen
eines Rechnersystems und den Geräteeigenschaften, die vom
Energieverwaltungssystem beeinflusst werden.

Aufgrund der hohen vorhanden Rechenressourcen werden
Geräte öfters gleichzeitig für verschiedene Aufgaben eingesetzt
oder von mehreren Benutzern gleichzeitig verwendet. Zum
Beispiel kann ein Mobiltelefon für private und geschäftliche
Applikationen genutzt werden, odermehrere Benutzer arbeiten
gleichzeitig auf demselben physischen Rechner. Um die
Sicherheit und Vertraulichkeit von Daten in solchen mehrfach
genutzten Systemen zu garantieren, müssen Datenzugriffs-
und Datenübertragungsbeschränkungen eingehalten werden.
Daten und applikationsabhängige Informationen dürfen nicht
ohne Zustimmung des Inhabers zu Dritten gelangen. Aus
diesemGrund wurden verstärkt Sicherheitssysteme entwickelt,
die diese Beschränkungen zum Beispiel durch den Einsatz von
Virtualisierung durchsetzen. Eine der größten Bedrohungen für

vi Kurzfassung

solche Sicherheitssysteme stellen Datenlecks durch gemeinsam
genutzte Ressourcen dar. Da das Verhalten des Energieverwal-
tungssystems eines Geräts alle darauf laufenden Applikationen
beeinflusst, kann man es als ein potentielles Sicherheitsrisiko
einstufen.

Obwohl die wissenschaftliche Gemeinschaft ein verstärktes
Augenmerk auf Attacken mittels Seitenkanälen (side channels)
oder verdeckten Kommunikationskanälen (covert channels)
gelegt hat, bleiben einige ungelöste Herausforderungen. Zum
Beispiel sind ein hoher Zeitaufwand und der Einsatz von
vielen technischen Ressourcen nötig, um ein Datenleck
auf eine reproduzierbare, vergleichbare und aussagekräftige
Art hin zu analysieren. Dies ist darauf zurückzuführen,
dass Datenlecks oft aus dem Zusammenspiel verschiedener
Systemkomponenten resultieren und daher auf verschiedenen
Geräten schwer zu detektieren, zu reproduzieren und zu
analysieren sind. Daher besteht die Notwendigkeit für eine
Methodik, welche die Ausführung von reproduzierbaren,
vergleichbaren und aussagekräftigen Studien unterstützt,
sowie für die notwendigen Werkzeuge, um den Aufwand
für solche Studien zu verringern. Ferner wurden in den
vergangenen Jahren zwar viele Datenlecks entdeckt, jedoch
wurde diesen in Verbindung mit Energieverwaltungssystemen
wenig Aufmerksamkeit geschenkt.

In dieser Dissertation versuchen wir diese Herausforde-
rungen zu lösen und untersuchen das Gefahrenpotential von
Datenlecks in Mehrkernarchitekturen, welche durch das En-
ergieverwaltungssystem verursacht werden. Die wichtigsten
wissenschaftlichen Beiträge dieser Dissertation können wie
folgt zusammengefasst werden:

• Definition einer neuartigen Methodik zur eingehenden
Analyse von verdeckten Kommunikationskanälen: Diese
hilft aussagekräftige Metriken herzuleiten, welche es

vii

erlauben, das Gefahrenpotential dieser verdeckten Kom-
munikationskanäle abzuschätzen. Außerdem präsentie-
ren wir ein Softwarepaket zur Messautomatisierung,
welches die Methodik implementiert. Durch das Design
des Softwarepakets ist es möglich, die Methodik auf eine
Vielzahl von verschiedenen Geräten anzuwenden.

• Wir zeigen eine neue Prozedur, um obere Kapazi-
tätsgrenzen für kontinuierliche verdeckte Kommuni-
kationskanäle herzuleiten. Ferner erreichen wir mit
unserem experimentellen Aufbau von Temperaturkanä-
len aufgrund der verbesserten Signalkodierung höhere
Datenübertragungsraten als frühere Publikationen.

• Wir analysieren erstmals den Leistungskanal in aktuel-
len Rechnersystemen. Zusätzlich präsentieren wir eine
Methode zur Herleitung von oberen Kapazitätsgrenzen
für diskrete verdeckte Kommunikationskanäle.

• Wir präsentieren ein Kommunikationsmodell und eine
detaillierte Analyse des Frequenzkanals. Im Übrigen
zeigen wir erstmals die Nutzung eines Rückgekoppelten
Neuronalen Netzwerks (RNN) zur Symboldekodierung
bei Datenübertragungen mittels des Frequenzkanals.

• Wir demonstrieren eine neuartige Seitenkanalattacke,
basierend auf der Temperatur eines Geräts, mit welcher
Laufzeitinformationen von Applikationen aus Mobilte-
lefonen extrahiert werden können. Diese Seitenkanalat-
tacke nutzt Modelle, basierend auf neuronalen Netzwer-
ken, zur Klassifikation von Zeitsequenzen. Außerdem
zeigen wir eine Methode zur Augmentierung von Tem-
peraturdaten, um den Messaufwand zur Bestimmung
eines geeigneten Trainingsdatensatzes zu verringern.

viii Kurzfassung

Die präsentierten Methoden und Ergebnisse basieren
auf der Auswertung von umfangreichen experimentellen
Analysen. Wir publizieren die Werkzeuge, welche wir für die
Experimente verwendet haben, sowie die generierten Daten
gemeinsam mit dieser Dissertation, um die Vergleichbarkeit
und Reproduzierbarkeit unserer Studien zu erhöhen.

Acknowledgements

With this chapter of my life coming to an end, I would like to
express my gratitude to all who have accompanied me during
the last years.

First and foremost, I would like to thank Prof. Lothar Thiele
for giving me the opportunity to work in his research group
and write my thesis under his supervision. I am very grateful
for the confidence put into my work and the high level of
freedom I could enjoy. I also want to sincerely thank Prof.
David Atienza for agreeing to review my thesis and for being
so flexible, as setting up the examination was not a straight
forward process in the time of CoVid-19 restrictions.

I want to thank Davide for guiding me during my first
steps in the research domain, Rehan for sharing an office for so
many years and bouncing ideas every once in a while, Mirko
for being my first student to supervise and working with me
for more than a year and Bruno, my last student, who was
an integral part of getting the ExOT software open sourced.
A big thank you to all the other TECies, who made this lab
such a great place to work by helping out with experiments
or giving feedback to publications and talks, spending lunch
time together, having Aperos, hiking and skiing days, going
on research retreats, helping me move and then joining the
obligatory housewarming party. I alsowould like to thank all of
my former students, who have endured me as their supervisor,
as well as the administrative staff at TIK who helped with
IT and organisational issues. Thanks to my colleagues in the
SAFURE project, for the inputs and discussions during the
project meetings and to my german and english proof-readers
Lore and Sarah, for their help polishing the thesis.

Quiero dar las gracias a Dr. Fernando Sarasa Barrio para
ayudarme poder vivir una vida sintiendo sano y con la

x Acknowledgments

posibilidad de hacer tanto deporte como quiero. Eso estuve
muy importante para mi, para tener la energía necesaria para
finalizar el doctorado.

A big thanks also to my friends, who have been such a great
support in the last years. To my Swiss circle, for welcoming
me in their lives, for the skiing days, the wine tastings, and all
the small and big get together that made life in Switzerland
so much more worthwhile! An die Österreicher, die Haie, die
BESTies, die Grazer, Wiener, Lambrechter und Oberwölzer,
dass ihr mich nicht ganz vergessen habt obwohl ich schon
länger weg bin, für all die Besuche und Treffen mit vielen
lustigen Stunden zusammen! ¡A mis amigos españoles, para
darme la bienvenida y todos las memorias buenas que hemos
creado juntos! To my international friends, for the visits in
Switzerland and welcoming me when I visited you guys!

Danke an Alex, für das aufrechterhalten des Kontakts
und die Möglickeit, dass ich mich auch hin und wieder mal
aussudern konnte.

Muchísimas gracias a Maria MC para ampliar mis hori-
zontes, confiar en mi y ayudarme a mover a Suiza para el
doctorado. ¡Sin ti nunca hubiera hecho eso!

Ein großes Danke an Manuel und Azra, die bereits in Graz
zu einer zweite Familie geworden sind, und auf die ich auch
trotz der Distanz immer noch jederzeit zählen kann! Hvala
Azra za nacrt ExOT-Logo i korice disertacija!

An meine Familie zuhause in Oberwölz (und Klagenfurt),
dass ich immer zu Besuch kommen darf, ihr mir immer helft
wenn ich etwas brauche und die schönen Stunden die wir
gemeinsam verbringen! Natürlich auch ein Dankeschön an
meine Nichten und Neffen, die immer soviel Freude verbreiten
wenn ich zu Besuch komme!

Danke an Nina, für deine große Unterstützung während
meines Doktorats! Die vielen Diskussionen beim Abendessen

xi

waren immer eine Quelle für neue Ideen und auf unseren
gemeinsamen Ausflügen konnte ich immer wieder frische
Energie sammeln!

Ein großes Dankeschön an Opa, der mir bei unseren
wöchentlichen Skype-Telefonaten all die wichtigen und un-
wichtigen Ereignisse von zuhause erzählt, damit ich auch weiß
was in der Heimat passiert. Und natürlich gilt mein größter
Dank Mama und Papa, die mich immer unterstützt haben und
mir somit alles ermöglicht haben was ich bisher in meinem
Leben erleben durfte!

This project has received funding from
the European Union’s Horizon 2020 research
and innovation programme under grant
agreement No 644080.

This work was supported by the Swiss State Secretariat
for Education, Research and Innovation (SERI) under contract
number 15.0025. The opinions expressed and arguments
employed herein do not necessarily reflect the official
views of the Swiss Government.

xii Acknowledgments

Contents

Abstract i

Kurzfassung v

Acknowledgments ix

List of Figures xvii

List of Tables xxxiii

Acronyms xxxv

1 Introduction 1
1.1 Background and related work 4
1.2 Challenges of data leak threat potential assessment 13
1.3 Aims of this thesis 15
1.4 Thesis outline and contributions 15

2 A holistic approach to data leak threat potential
assessment 21
2.1 Introduction . 23
2.2 Revisiting known data leak evaluations 25
2.3 A novel covert channel analysis methodology . . . 29
2.4 The Experiment Orchestration Toolkit (ExOT) . . . 32
2.5 Applying the data leak evaluation methodology . . 39
2.6 Summary . 56

xiv Contents

3 Analysing continuous covert channels 57
3.1 Introduction . 59
3.2 Threat model . 62
3.3 Communication channel model 64
3.4 Experimental setup 66
3.5 Capacity estimation 81
3.6 Transmission scheme and achieved rates 94
3.7 Summary . 112

4 Analysing discrete covert channels 115
4.1 Introduction . 117
4.2 Power management in Linux 119
4.3 Channel model . 121
4.4 Threat model and target setup 123
4.5 Channel implementation 125
4.6 Channel capacity bound 126
4.7 Experimental analysis 134
4.8 Summary . 146

5 Machine learning for covert channel symbol decoding147
5.1 Introduction . 149
5.2 Frequency scaling in Linux 152
5.3 Threat Model . 157
5.4 Channel capacity bound 159
5.5 Experimental setup and initial tests 163
5.6 Channel implementation 169
5.7 A Recurrent Neural Network as signal decoder . . 174
5.8 Experimental analysis 176
5.9 Mitigation Strategies 188
5.10 Summary . 189

6 Extracting runtime information via the thermal
side channel 191
6.1 Introduction . 193
6.2 Threat model . 195
6.3 Data augmentation 199
6.4 The sequence model 209
6.5 Sequence transformation and performance metrics 216

Contents xv

6.6 Target Setup . 220
6.7 Performance evaluation 226
6.8 Summary . 236

7 Concluding remarks and outlook 239
7.1 Contributions . 243
7.2 Possible future directions 247
7.3 Availability . 250

Bibliography 253

List of Publications 271

Curriculum Vitæ 273

xvi Contents

List of Figures

1.1 We present the methodology to assess the
threat potential of data leaks and the toolkit
that implements it in chapter 2. In chapter 3
and 4, we outline methods to derive capacity
bounds for covert channels and present ana-
lyses of the thermal and the power covert chan-
nel. We apply machine learning techniques in
chapters 5 and 6, proposing a robust signal
decoder to cope with system dependencies
of covert channels and introducing the novel
thermal side channel attack. 16

2.1 In chapter 2, we present a novel methodology
to improve reproducibility, comparability and
expressiveness of data leak analyses. Further-
more, we introduce the Experiment Orches-
tration Toolkit (ExOT), which implements our
methodology. 22

2.2 A data leakwhere the source emits information
via the channel, received by the sink and
forwarded to an adversary. The hidden data
transfer is either intentional (covert channel),
or unintentional (side channel). 23

xviii List of Figures

2.3 Main steps of the proposed methodology for
covert channel analysis. 29

2.4 Experimental setup using the Experiment
Orchestration Toolkit (ExOT). The driver is the
interface to the experiment environment con-
sisting of different zone(s) and the applications.
. 33

2.5 Structure of source and sink applications build
with Experiment Orchestration Toolkit (ExOT).
The application structure is based on process
networks. 35

2.6 Information flow model. Data travels from the
highest to the lowest layer, gets transferred via
the channel and travels up to the highest layer. 37

2.7 Left: Experiment Orchestration Toolkit (ExOT)
logo; Right: QR-Code linking to the Experi-
ment Orchestration Toolkit (ExOT) website . . 38

2.8 Experiment Orchestration Toolkit (ExOT)
helps to derive channel capacity bounds,
required by the proposed methodology. The
capacity bounds allow direct comparison of
different covert channels and indicate that
cache based data leaks have a high threat
potential. 42

2.9 ExOT allows the evaluation of different chan-
nels on different platforms and different scen-
arios with low overhead. Without interference,
the bit error increases similarly for all three
cache covert channels. The throughputs of
the Flush+Flush covert channel are more
deteriorated by the ffmpeg interference. In
general, higher throughputs can be achieved
on Haswell-i7. 55

List of Figures xix

3.1 In chapter 3, we show how to apply our
data leak analysis methodology on value and
time continuous covert channels. We derive
upper channel capacity bounds and present
an advanced communication scheme for the
thermal covert channel in multicore systems. 58

3.2 The source app (src) has access to restricted
data, but no network access; the sink app
(snk) has no access to the restricted data but
has network access. A compromised source
app can leak sensitive data to the sink app
through the thermal covert channel, violating
the security paradigm of application isolation
and privilege separation. 60

3.3 The sink app can establish several channels,
depending on the physical location of the
temperature sensor it reads with respect to the
location of the source app. 65

3.4 Discrete linear channel model with transfer
function 𝐻(𝑓) from the execution trace 𝑥(𝑘) to
the temperature trace 𝑦(𝑘), with additive noise
𝑞(𝑘). In our analysis, we neglect the quantiser. 65

3.5 Temperature traces for Sandy-Xeon when the
source app executes the trace in the top plot
on core 2. We identify the two core clusters (or
sockets) with cores 0-7 and 8-15. The thermal
traces do not allow us to determine which
logical cores are mapped to the same physical
core. 75

xx List of Figures

3.6 Traces from Haswell-i7, Sandy-Xeon, ARMv7-
Mobile and ARMv8-Dev when the source app
executes on core 2; the top plot shows the
active/idle execution trace of the source app,
the other plots show the temperature traces
from the four cores. The dynamic temperature
range is indicated by the tics on the y-axis for
every plot. In general, the thermal dynamics
are higher on the two Intel-based devices than
on the Arm-based ones. 77

3.7 Step response of the same-core channel on
ARMv7-Mobile; the input is 1 in the interval
[150, 750) s, 0 elsewhere. 83

3.8 Input (left) and output (right) spectra from
core 1 of Haswell-i7 for the five experimentsℰ𝑓
at the frequencies 𝑓 reported in the legend. We
use the spectra peaks to build 𝑆𝑥𝑥 and 𝑆𝑦𝑦; then,
𝑆ℎℎ = 𝑆𝑦𝑦/𝑆𝑥𝑥. The 𝑦-axis is in logarithmic
scale. 88

3.9 Power density spectra 𝑆ℎℎ for the four channels
measured on our platforms. The crosses are
measured values, and the red solid line is the
Bezier trend for 𝑆ℎℎ. The dotted grey lines are
the spectra of the noise 𝑆𝑞𝑞. Both axes are in
logarithmic scale. 89

3.10 Summary of the steps necessary to determine
upper channel capacity bounds for complex
value and time continuous covert channels. . . 91

List of Figures xxi

3.11 Upper bounds 𝐶𝑏 (top) and 𝐶𝑎 (top) on the
channel capacity 𝐶. Except for ARMv8-Dev,
the capacity degrades drastically for 𝑚-hop
channels with 𝑚 > 0, compared to same-core
channels. The constrained-input water-filling
yields tighter capacity bounds. 95

3.12 An input message (a), encoded onto the 1Hz
clock (b), gives the execution trace (c), which
leads to the temperature trace (d) on the same-
core channel of Haswell-i7. 96

3.13 Block diagram of our bit-wise decoding
scheme. 97

3.14 Error probability on decoding a 5000 bit ran-
dom message for the four channels on all plat-
forms. The x86_64 based platforms Haswell-
i7 and Sandy-Xeon perform similarly, while
the performance is notably worse on the Arm-
based platforms ARMv7-Mobile and ARMv8-
Dev. 99

3.15 Logarithmic illustration of Figure 3.14; show-
ing one channel type per plot. For the 1-
hop channels, for Haswell-i7 and Sandy-Xeon
core 1 is illustrated and for ARMv7-Mobile
core 33. 100

3.16 Direct comparison with Masti et al. [Mas+15,
Tab. 1] for the 1-hop channel. The solid lines
show the results with our scheme (see subsec-
tion 3.6.1), the dashed lines show the results
reported by Masti et al. [Mas+15] on Sandy-
Xeon and the results we obtained using their
same scheme (ON-OFF keying). Our scheme
outperforms their scheme on all platforms. . . 102

xxii List of Figures

3.17 Input and output (same-core channel on
Haswell-i7) power spectra of the evaluation
sequences at 5 bits per second (bps) and 80 bps,
compared to the ideal water-filling power
allocation. 103

3.18 The temperature of ARMv7-Mobile increases
drastically until the Dynamic ThermalManage-
ment (DTM) throttles the device. Ultimately
this leads to an Operating System (OS) freeze,
which makes it impossible to perform ex-
periments with heavy interference using the
ffmpeg application. 104

3.19 Error probability on decoding a 5000 bit ran-
dom message for the four channels on all
platforms with a concurrently running inter-
ference application. 105

3.20 Sensitivity of the error probability to using
automatic fan speed, not pinning the apps to
cores, no real-time scheduling, or the conser-
vative Linux DVFS governor. 106

3.21 Cumulative distribution functions of the trans-
ition jitter of the source app on Haswell-i7 with
or without real-time scheduling ([no]rt) and
thread pinning ([no]pin) and with different
background load. 108

3.22 Zoom in illustration of Figure 3.21. 108

3.23 Traces from cores 0 and 1 of Haswell-i7; the
source app is not pinned. The source applic-
ation is migrated from core 0 to 1 at ≈ 671 s.
. 109

3.24 Same-core vs. all-cores channel comparison
with no pinning on Haswell-i7. 109

List of Figures xxiii

4.1 In chapter 4, we apply our data leak analysis
methodology on value and time discrete covert
channels. We illustrate how to model such
covert channels and derive upper channel
capacity bounds. Moreover, we present the
novel power covert channel, which takes
advantage of power readings provided by Intel
CPUs. 116

4.2 The source application (src) has access to
restricted data, while the sink application (snk)
has access to the communication interfaces.
Although source and sink are isolated from
each other, they manage to establish a covert
channel by observing the processor power
dissipation. This compromises the security
paradigm of permission separation and applic-
ation isolation. 118

4.3 The proposed system abstraction model for a
power covert channel. 122

4.4 The power dissipation does not correlate to
increasing utilisation from 0% to 100% on a
single core. 128

4.5 When setting a fixed operating frequency,
we are able to identify how many physical
cores are active. Due to the high amount
of measurement artefacts, we apply median
filtering to the raw power trace (b) to obtain
the power trace (c). We observe a stepwise
increase of the power dissipation depending
on the number of fully utilised cores (a). . . . 129

xxiv List of Figures

4.6 By varying the operating frequency, more
power covert channel states can be exposed.
Due to the lack of knowledge on the operat-
ing frequency, the sink application can only
distinguish 20 power covert channel states, as
illustrated in the power plane to the right. . . 131

4.7 State diagram (left) and connection matrix
(right) for the fixed frequency case for Haswell-
i7 with the power covert channel states 𝑝0 to 𝑝4. 132

4.8 Determined capacity bound for the two ana-
lysed platforms. The capacity bounds indicate
that the power covert channel might pose a
high risk when the operating conditions are
favourable for the attacker, i. e., the platforms
are idle, and there is little interference. 134

4.9 The signal decoding is performed in multiple
stages. 136

4.10 Data to determine the quantisation thresholds
for Haswell-i7. The histogram and the time
trace show that the power stages are well
separated. 137

4.11 Data to determine the quantisation thresholds
for Sandy-Xeon. There is more interference in
the data, and the power levels are not clearly
separated. 138

4.12 Average error rate for three runs for each
bit rate and the corresponding trend line for
the different coding schemes for Haswell-i7
(upper plot) and Sandy-Xeon (lower plot). The
increased amount of outliers on Sandy-Xeon
indicate that the power covert channel is more
error-prone on this platform. 139

List of Figures xxv

4.13 If the operating frequency is not stable, the
data transmission is disturbed, as the frequency
scaling leads to a time-variant utilisation to
power transformation ℎ. 142

4.14 Binary encoding is more robust against in-
terference than Huffman 5 encoding, as the
symbols (a) can be distinguished without (b)
and with interference (c). 144

4.15 The power covert channel on both platforms,
Haswell-i7 (upper plot) and Sandy-Xeon (lower
plot), does not allow data transmission if the
platforms are heavily utilised. We used ffmpeg
video conversion to utilise the platforms. . . . 145

5.1 In chapter 5 we present a communication
model and evaluation of the threat potential of
the frequency covert channel on two distinct
platforms. In addition, we propose a robust
signal decoder based on a Recurrent Neural
Network (RNN). 148

5.2 The two applications source (src) and sink
(snk) are placed on different cores and are
isolated from each other. While src has access
to restricted data, snk can use the systems com-
munication interfaces. If the two applications
establish a covert communication channel to
transfer data, the restricted data is leaked to
an attacker. This covert channel compromises
the security paradigm of permission separation
and application isolation. 150

5.3 A simplified illustration of the CPU frequency
control in the Linux Kernel, depicting which
modules interact. 153

xxvi List of Figures

5.4 The state diagram of the frequency covert
channel for Haswell-i7 and the conservative
governor. Every state is defined by the tuple
(𝑓new, 𝑓set), e. g., (920, 900). 161

5.5 Example of a state diagram (left) to connection
matrix (right) conversion. 161

5.6 The plot shows the unexpected governor
behaviour due to non-periodical governor
calls, indicated by the vertical dashed lines,
and architecture-dependent available operat-
ing frequencies. At the third call (285.9ms)
the governor assumes that the core was idle
and does not update the utilisation value,
which causes a frequency upscaling while the
utilisation was below 20%. Furthermore, rather
than observing two steps from 1000MHz to
900MHz and then to 800MHz, due to limited
visibility of governor states only one frequency
scaling can be observed at the fifth governor
call (603.6ms). 167

5.7 Block diagram of the transceiver system with
signal flow indicated by solid arrows and in-
direct influences of one component on another
with dashed arrows. 169

5.8 A simplified flowchart of the source application
function force_scale() , using pseudocode with
C-like notation. The inputs are the current
frequency level threshold flg and the current
empirical frequency value ef_cur , with ef_cur

also being the output of the function. 172

List of Figures xxvii

5.9 Network architecture example of a signal
decoder based on a Recurrent Neural Network
(RNN) with Long Short-Term Memory (LSTM)
neurons using Connectionist Temporal Classi-
fication (CTC). 175

5.10 The input symbol stream (a), is converted to the
goal frequency level (b). Using this input, the
source generates the utilisation trace (c). This
utilisation causes frequency scalings visible in
the empirical frequency measurements trace
(d). By filtering and discretise the frequency
levels trace (e) is obtained, to reconstruct the
symbol stream. 177

5.11 Example of a packet decoding using Connec-
tionist Temporal Classification (CTC). Using
the empirical frequency measurements (a) as
input, the Recurrent Neural Network (RNN)
determines the symbol probabilities (b). The
Connectionist Temporal Classification (CTC)
decoder uses the probabilities to generate the
label sequence (c) and then determine the final
output symbol stream (d), equal to the input
shown in Figure 5.10. 179

5.12 Increasing packet length versus (a) through-
puts, (b) throughput degradation in relation to
baseline platforms and (c) Packet Error Rate
(PER). As we expect that increasing packet
lengths lead to growing throughputs, the
throughput plunge at 32 bit packets indicates
high channel disturbance. 185

xxviii List of Figures

6.1 In chapter 6, we present the novel thermal
side channel attack. This attack leverages
openly available thermal sensor readings on
smartphones to extract application runtime
information. 192

6.2 (a) Different applications are executed on a
mobile device depending on the user input.
(b) Thermal information provided by the Op-
erating System is collected by a third-party
application. (c) Analysis of the thermal data
to determine the application sequence. (d) The
application sequence is used to create a usage
profile or detect other applications, causing
security and privacy violations. 194

6.3 The information flow during a thermal side
channel attack. A user executes a sequence
of different applications A on the device. The
sink application monitors the resulting heat
generation from the device by reading the
respective system files F for the different
thermal zones 𝑧 ∈ Z. The sink application
outputs the thermal sequence 𝑆𝐴 (𝑡, 𝑧), which
is fed to the sequence model. This model
generates the label sequence 𝐿𝐴

′
(𝑡), holding

one application label per time-step. 𝐿𝐴
′
(𝑡) is

fed to the sequence transformer, which then
outputs the inferred application sequence A′. 196

List of Figures xxix

6.4 Overall data augmentation scheme structure.
We generate a thermal sequence and its labels
based on (i) the particular device and its
measured thermal characterisation, (ii) the set
of identifiable applications and their thermal
characterisations, and (iii) the highly-config-
urable data set configuration. Using diverse
configurations, we generate representative
training data. 201

6.5 Thermal sequence build from different thermal
profiles collected from a Sony Xperia Z5, see
Equation (6.6). (a) illustrates the thermal traces,
(b) the label sequence 𝐿A (𝑡) and (c) the applic-
ation trace A. Our data augmentation removes
temperature discontinuities at application pre-
emption points without distorting the thermal
profiles. 208

6.6 A simplified example of a one-dimensional
Convolutional-Neural-Network (CNN). Note
that the number of time steps after the 1D-
convolution 𝑡𝑐𝑜𝑛𝑣 depends on the kernel size 𝑘
and the data padding used for the convolution. 211

6.7 A Recurrent Neural Network (RNN) cell, in
simple representation (left), and unrolled over
time. 𝑖𝑡 represents the input, 𝑜𝑡 the output and
ℎ𝑡 the internal state at time 𝑡. 212

6.8 Setup during the training phase of the se-
quence model. 214

xxx List of Figures

6.9 A thermal sequence processing example taken
from the evaluation in section 6.7 using
thermal profiles collected from a Sony Xperia
Z5. shows (a) the thermal sequence 𝑆𝐴(𝑡, 𝑧) for
one of the zones, (b) the labelling sequence
𝐿𝐴

′
(𝑡), (c) the predicted application sequence

A′ and (d) the actual application sequence
A. The plot shows that the sequence model
is capable of predicting correct labels with
only a small amount of timing inaccuracy.
Yet, labelling artefacts at the application pre-
emption points at 169.66 s and 390.02 s occur.
However, the sequence transformation using a
majority voting filter and label condensing is
able to compensate for such labelling artefacts. 217

6.10 Thermal coefficients for internal (𝛽𝑧), increas-
ing (𝛽heat

𝑧) and decreasing ambient temperat-
ures. 223

6.11 The device is heated up by an active application
and we derive the thermal coefficients from the
measurements taken when the device is idle
and cools down. 224

6.12 Traces indicate a higher amount of labelling
errors on ARMv7-S5 than on ARMv8-Z5. . . . 229

6.13 Training the model without augmented data is
not possible. Models trained with augmented
data perform well, but adding a new applica-
tion cause performance degradation. 229

List of Figures xxxi

6.14 Reducing the base dataset of thermal profiles
for the data augmentation causes a slight
performance drop for ARMv8-Z5, but has a
substantial impact on the performance for
data from ARMv7-S5. This is caused by the
dependency of our data augmentation scheme
on the amount and quality of the thermal
profiles available for data generation. 230

6.15 Performance metrics for the detection of a
single application. While the per-time-step
accuracy is very high for most applications, the
relative Levenshtein distance varies between
0.1 to 0.6. This indicates that the applications
with a high relative Levenshtein distance have
a less unique thermal profile. Furthermore, the
time errors indicate that the labels are placed
with an almost perfect temporal accuracy, as
they are considerably smaller than themajority
voting filter window of 25 s. 233

6.16 The real-world traces for both smartphones,
ARMv7-S5 and ARMv8-Z5. The short temporal
snippets validate the performance metrics and
illustrate that the models are not able to
correctly label the thermal trace. 235

xxxii List of Figures

7.1 We presented a methodology for data leak
threat potential evaluation and the supporting
toolkit ExOT and how to apply it in chapter 2, 3
and 4. Based on these findings and using ExOT
future research could evaluate data leaks in
wireless sensor networks. Using the machine
learning techniques applied in chapters 5 and 6,
future research could develop a method for
automatic channel setups and evaluate energy
harvesting side channels. 242

List of Tables

2.1 Throughputs of known covert channels repor-
ted by Gruss et al. [Gru+16a]. These values
are not expressive towards the threat potential
of the analysed data leak, as they are highly
implementation and setup dependent. 27

2.2 Time for one covert channel use depending on
the cache state. 43

3.1 Thermal zones of ARMv8-Dev as reported by
Nvidia. If multiple sensors are located in one
zone, themaxmeasurement value of all sensors
is reported. 74

3.2 Dynamic temperature ranges measured on
the different platforms for the experiment of
Figure 3.6. 78

3.3 Platforms hardware specifications that influ-
ence the thermal behaviour. TDP, the Thermal
Design Power, is the average power dissipated
by the device at the base operating frequency
with all cores active. 79

4.1 Power covert channel state, or symbol, to bit-
codeword mapping for the different encoding
used in the evaluation. 135

xxxiv List of Tables

5.1 Parameters of the conservative governor and
the characteristics of the platforms Haswell-i7
and ARMv7-Mobile. 164

5.2 Packet payload, the corresponding number of
data bits per trace and the throughput on the
baseline platforms. 183

6.1 Used applications and associated labels during
the performance evaluation. 221

Acronyms

API Application Program Interface.

AWGN additive white gaussian noise.

bps bits per second.

CDF Cumulative distribution function.

CNN Convolutional-Neural-Network.

COTS Commercial Off-the-Shelf.

CTC Connectionist Temporal Classification.

DTM Dynamic Thermal Management.

DTW Dynamic Time Warping.

DVFS Dynamic Voltage and Frequency Scaling.

ExOT Experiment Orchestration Toolkit.

FFT Fast Fourier Transform.

HMM Hidden Markov Model.

IoT Internet-of-Things.

LLC Last-Level-Cache.

xxxvi Acronyms

LoRaWAN Long Range Wide Area Network.

LSTM Long Short-Term Memory.

MSR Model Specific Register.

NN Neural Network.

OS Operating System.

PER Packet Error Rate.

PWM Pulse-Width-Modulation.

RNN Recurrent Neural Network.

SNR Signal-to-Noise-Ratio.

SoC System-on-Chip.

TSC Time Stamp Counter.

VM Virtual Machine.

1
Introduction

Besides Moore’s law [Moo98], i. e., the fact that the number
of transistors in an integrated circuit doubles every two years,
microprocessor designers used to rely on another important
rule: the Dennard scaling. It was first described by Dennard
et al. [Den+74] as follows:

The power dissipation of each circuit is reduced by 𝜅2
due to the reduced voltage and current levels [...] Since
the area of a given device or circuit is also reduced by 𝜅2,
the power density remains constant. Thus, even if many
more circuits are placed on a given integrated circuit chip,
the cooling problem is essentially unchanged.

However, while Moore’s law is still valid today, the Dennard
scaling has broken down [Esm+11]. As transistors become
smaller, side effects, like leakage currents, start to dominate and
cause the power density to increase with reducing transistor
area, breaking the scaling effect defined by Dennard et al.
[Den+74]. Hence, boosting the performance ofmicroprocessors

2 Chapter 1. Introduction

by increasing the clock frequency is not possible anymore due
to thermal issues, i. e., because there are more transistors on a
smaller area, the heat generated by switching these transistors
cannot be reasonably dissipated anymore, resulting in the over-
heating of the device. Therefore, microprocessormanufacturers
have shifted towards multiprocessor architectures to achieve
higher computing throughput and given increased attention to
thermal and power management systems to allow a demand-
based use of the available thermal budget. Here, the thermal
budget describes the amount of thermal energy that can be
dissipated by the microprocessor within a certain time interval.

At the same time, the surge of battery powered mobile
systems has further fuelled the development of sophisticated
thermal and power management systems to maximise the
battery life of these mobile devices. Thus, today, almost all
computing devices take advantage of thermal and power
management systems to reduce the power consumption and
protect the device from thermal damage, while trying to
minimise the performance impact noticeable by the user.

With the increasing amount of processing power provided
to users by multicore systems, many of those systems are
currently shared to increase the utilisation of the available
computing resource. For example, a physical server might
be shared among multiple users, or a hand-held device
might be used for applications from different domains, e. g.,
private and business. However, such a shared setup can cause
security issues, as Lampson [Lam73] already illustrated when
presenting the confinement problem. Lampson stated that data
could be regarded as secure as long as the system can guarantee
that no information is passed, or leaked, to a third partywithout
consent from the data owner. Therefore, system designers rely
heavily on the security paradigm of permission separation and
application isolation to keep applications confined and provide

3

a certain level of security on shared devices where third party
users or applications are present on the same piece of silicon.

A popular technique to implement application separation
is virtualisation, such as application sandboxing or virtual
machines. While these techniques may isolate applications
on the software level, there is still a chance for breaking the
application confinement as long as the hardware is shared. For
example, data may be leaked from a confined execution domain
by observing hardware characteristics that are dependent
on the utilisation pattern of the hardware, i. e., the thermal
behaviour, the power dissipation and other aspects controlled
by the power management systems.

Detecting such power management related data leaks is
difficult, as they are often caused by the interplay of multiple
system components. In addition, the mitigation of such data
leaks is also a non-trivial task. This is due to the fact that
mitigation may either require changes to the hardware setup
or restrict the access to hardware status information, like
the current device temperature, which is vital for the power
management system. Therefore, if the security demands of the
system allow it, the more suitable solution might be to tolerate
such potential data leaks while closely monitoring them, rather
than fully mitigating them. However, a confident decision on
the threat potential of a data leak and whether it is tolerable
in a system can only be based on an extensive theoretical and
experimental analysis.

In this thesis, we outline how to conduct such an extensive
theoretical and experimental analysis of a certain class of data
leaks. We present a methodology that supports comparability,
reproducibility and expressiveness of analysis results and
introduce a software toolkit that implements this methodology.
Furthermore, we illustrate how to execute such an extensive
analysis for different power management related data leaks

4 Chapter 1. Introduction

in multicore systems and assess their threat potential using
models, capacity bounds and experimental data. Moreover, we
present a novel data leak based on thermal sensor readings,
which allows sensor readings to leak application runtime
information from current smartphones.

1.1 Background and related work1

The study of security issues related to privilege-separation
and isolation in computing systems is a well-defined area of
research. Already in 1973, Lampson [Lam73] analysed this
confinement problem and noted the possibility of exploiting
covert or side channels, i. e., observing system properties
not originally intended for communication, in order to leak
restricted data. The term covert channel is used when two
colluding applications actively share information, as opposed
to the term side channel, used when an attacker observes an
unaware systemwith the aim of inferring sensitive information,
e. g., a cryptographic key [HS14].

Covert channels can broadly be classified as storage or
timing channels. In storage channels, the sending application
directly or indirectly writes to a shared resource, which the
receiving application reads. In timing channels, the sending
application exploits the ability to influence timing properties
of the system that the receiving application can observe [US 85;
MP14]. In this thesis, we study both kinds of covert channels.
In chapter 3 and 4, we analyse storage covert channels, while
in chapter 2 and 5, we take a closer look on timing covert
channels.

Moreover, in chapter 6, we present a detailed study of a side

1This section is based on the related work presented
in [BMT16], [MT18], [Mie+18], [MKT20c], and [MAT20].

1.1. Background and related work 5

channel. In particular, we will analyse the possibility of leaking
application runtime by observing the thermal behaviour of a
device.

While the different types of data leaks are well defined,
few previous works have discussed how to classify data leaks
based on their threat potential. The U. S. Department of
Defence reported in its 1985 Orange Book [US 85] that trusted
computing environments must have “the capability to audit
the use of covert channel mechanisms with bandwidths that
may exceed a rate of one (1) bit in ten (10) seconds”. However,
such a classification using absolute measures might quickly
become outdated, and the critical capacity numbers could
look very different if such an assessment would be done
today. Moskowitz and Kang [MK94] took a different approach
when defining the small message criterion. They concluded
that bandwidth and capacity alone are insufficient metrics
to quantify the threat potential of covert channels, arguing
that if the amount of sensitive information is very small, the
capacity of the leakage channel is not an accurate measure to
define the threat potential. Consequently, the threat potential
of a data leak is always dependent on the scenario, as even
a covert channel with very low capacity poses a substantial
threat if the leakage of small amounts of highly sensitive
data can compromise the system. To support such a flexible
classification of the data leak threat potential, we present a
methodology to evaluate data leaks and determine the capacity
of various covert channels in the chapters 2, 3, 4 and 5.

1.1.1 Microarchitectural security issues
Complex processor architectures are likely to expose properties
that can be exploited to create covert or side channels to leak
information across security domains [WL06a]. In particular,
shared microarchitectural resources are a major target for this

6 Chapter 1. Introduction

purpose [FPK17].
Many data leaks that have been discovered and analysed in

recent years rely on the fact that parts of the cache hierarchy
are shared among multiple processors [Lip+16]. For example,
the well known Spectre [Koc+18] and Meltdown [Lip+18] data
leaks take advantage of the fact that, due to hyper-threading
in Intel processors, multiple logical cores share the same cache.
Similarly, Rong et al. [Ron+15] showed how to compromise
cloud systems by taking advantage of the so-called Cloud
Covert Channel based on Memory Deduplication (CCCMD).
This channel has further been improved [Mau+17; PZ17] and
specifically targeted at Intel SGX based systems [Göt+17].
Other previous work showed that by exploiting shared
caches it is possible to disclose the existence of other virtual
environments via a side channel attack [Suz+11], or that
it is possible to establish covert channels between isolated
applications [Xu 11; WXW15].

Branch predictors have also been exploited as possible
sources for data leaks in modern computing systems [EPA16;
EPA15]. In their works, the authors present how an application
can manipulate the shared branch predictor table such that it is
possible to establish a robust, noise-free, high-capacity covert
channel.

Similar to these previous works, in this thesis, we will
also take advantage of microarchitectural features to establish
data leaks. In particular, in chapter 2, we will use the example
of cache-based covert channels to illustrate our model to
analyse covert channels in detail. However, the covert channels
presented in chapters 3, 4 and 5 only take advantage of
microarchitectural features related to the power management
of the system.

Previous work has also aimed at modelling microarchi-
tectural covert channels. Hunger et al. [Hun+15] introduced

1.1. Background and related work 7

a mathematical abstraction called the bucket model, which is
capable of capturing the common characteristics of different
microarchitectural side and covert channels and deriving their
capacities. Contrary to the bucket model introduced by Hunger
et al. [Hun+15], we will base our modelling methods and
capacity derivations on well-known and generally applicable
techniques from the communication and signal processing
domain.

1.1.2 Power management related attacks
Recent work has shown that power management features can
be used to attack devices, for example, to mount a denial
of service attack by creating a hot spot on the silicon to
trigger Dynamic Thermal Management (DTM) and induce
performance throttling [Has+05]. In contrast, in this thesis,
we will only present attacks that allow us to leak data from
systems using power management related characteristics in
general-purpose hardware.

Another target for the realisation of side channels is to
tamper with the operating conditions of a chip. For example,
Hutter and Schmidt [HS14] demonstrated that a temperature
side channel able to retrieve the private key from an RSA
implementation on an AVRmicrocontroller. They decapsulated
the chip to measure the temperature directly on the surface
of the silicon substrate and operated the device at 150℃,
beyond its specified temperature range. They found that,
under these conditions, the device leaked the Hamming
weight of the processed data via the temperature side channel.
They exploited this property to retrieve the private key by
correlating the temperature, execution and power traces of the
chip for several runs. Unlike Hutter and Schmidt [HS14], in
this thesis, we will not tamper with the operating conditions
of the device to establish a data leak.

8 Chapter 1. Introduction

Similar to the covert channels we present in chapters 3, 4
and 5, other work has illustrated how to encode information
in the fan speed of a device [Bro+09a]. In contrast, rather than
using characteristics from processor peripherals, we will only
rely on measurements taken from the processor itself.

1.1.3 Data leaks based on thermal status informa-
tion

In addition to temperature-related effects, temperature itself
can serve as a medium to leak data. Islam, Ren and Wierman
[IRW17] presented a thermal side channel attack that allowed
an attacker to time power attacks on data centres more
effectively. Thermal covert channels have also been extensively
studied on FPGAs, where on-chip heat generators were
used to transfer information out of the secure zone of the
chip [MM07; Bro+09b; INK11] or over time to the next
scheduled application [TS19].

Guri et al. [Gur+15] studied an indirect variant of the
thermal covert channel to attack air-gapped systems. They
showed that communication is possible between two nearby,
air-gapped desktops by using the available temperature
sensors: the sending application runs on one desktop and
controls load; the receiving application runs on the other
desktop and observes temperature variations caused by the
heat coming from the other desktop. Work in this direction
showed that communication between the isolated components
is possible through a covert channel based on thermal readings,
similar to the covert channel we study in chapter 3.

In previous work more closely related to our research,
Masti et al. [Mas+15] presented an initial study of the
thermal covert channels on multicore processors. They showed
experiments that achieved a transmission rate of up to 1.33 bits
per second (bps) with an error rate of 11% for a covert channel

1.1. Background and related work 9

between two neighbouring cores on an Intel Xeon-based server.
Their work only looked at the covert channel from an empirical
perspective. We present a new methodology that uses both
experimental results and theoretical analysis to characterise
covert channels in chapter 2. Moreover, in chapter 3 we analyse
the family of thermal covert channels on modern multicores
in detail using the methodology presented in chapter 2, and
present an improved transmission scheme, in comparison to
Masti et al. [Mas+15].

In contrast to the thermal status information based data
leaks presented in this section, in chapter 6, we will illustrate
how to use thermal status information to infer information on
the observed system. This means that there are no colluding
applications which actively leak data.

1.1.4 Data leaks using power measurements
Recent work has also presented several data leaks based on
measuring the changes in the power dissipation of devices.
For instance, Michalevsky et al. [Mic+15] presented a method
that allowed location tracking of a mobile device based on
the power dissipation. The authors generated a power-map
of an area using power fingerprints for every location. Using
this map, the authors were able to reconstruct the movement
trajectory of a mobile device by analysing the power trace.

Spolaor et al. [Spo+17] showed that it was possible to
extract data from a charging phone by modulating the amount
of power taken in via the charger by changing the utilisation
of the mobile phone’s processor. The authors manipulated the
charger to measure the current input to the phone and could
reconstruct the leaked data stream by analysing the recorded
power trace.

Unlike Michalevsky et al. [Mic+15], in chapter 4, we will
use active data transmission based on the power dissipation

10 Chapter 1. Introduction

of a device. Furthermore, contrary to Spolaor et al. [Spo+17],
we will not use any external devices to establish the covert
channel but only rely on internal device measurements. We
present a method to transfer data directly from one application
to another within the device, which can then leak the data later
via conventional communication interfaces.

1.1.5 Data leaks based on timing measurements
Many previous studies have analysed covert timing channels,
which are based on injecting and monitoring timing variations
on certain events. For example, Yue et al. [Yue+14] presented a
covert channel where information was encoded into the inter-
packet spacing of the network traffic by directly controlling
the operating frequency of a device. Similarly, we will establish
a covert channel by taking advantage of the timing variation of
specific operations. However, we do not control the operating
frequency through operations that require elevated privilege
levels, nor do we decode information by reading system
timestamps. Furthermore, while the above-mentioned covert
channel is established within a communication network, the
timing covert channels we analyse in chapter 2 and 5 are
established between different applications within the same
device.

A well-studied timing channel exploits the local clock skew
introduced by temperature variations [Mur06; ZM08; Ris+09].
If a sending application can trigger temperature variations
on a victim host, it can induce a skew in the local clock.
The receiving application can observe the skew by looking at
timestamps and comparing to a reference clock. This channel
was exploited to reveal hidden services, for example, services
running under the Tor network or to infer the topology of
a public cloud infrastructure. Zander, Branch and Armitage
[ZBA11] estimated the capacity of this timing channel to

1.1. Background and related work 11

be up to 20.5 bits per hour. In contrast, the timing channels
we analyse in the chapters 2 and 5 do not depend on the
temperature-induced clock skew, but on the execution of
operations due to changes of the cache status of the data
(chapter 2) or the operating frequency of the system (chapter 5).

Wang and Lee [WL06b] presented a covert timing channel
which allows the communication between two otherwise isol-
ated applications. The sending application blocks a functional
unit for a certain amount of time to cause a delay in the
computation of the receiving application. This is interpreted
as sending a 1; to send a 0, the sending application stays idle.
Similarly, Marforio et al. [Mar+12] analysed a frequency-based
covert channel in which the sending application utilises the
processor or stays idle, causing a change of the frequency of the
core. The receiving application detects frequency changes by
reading the core frequency from system files and can interpret
whether a 0 or a 1 is sent. In chapter 5 we study a covert
channel similar to the timing channel presented by Wang and
Lee [WL06b] and the frequency covert channel presented by
Marforio et al. [Mar+12].

As opposed to the covert channel used by Wang and Lee
[WL06b], in chapter 5, we place the sending application and
the receiving application on two different cores allowing cross
core communication. Moreover, Wang and Lee [WL06b] could
control the timing changes directly by blocking a functional
unit. In contrast, we indirectly control the timing changes by
changing the utilisation of the core so that the system scales
the operating frequency. As the system may not behave as
desired, our implementation takes advantage of a feedback
loop that allows the sender to react to the system behaviour.

Unlike Marforio et al. [Mar+12], the frequency covert
channel implementation we present in chapter 5 uses timing
measurements to determine the operating frequency. We show

12 Chapter 1. Introduction

that such a method poses a higher threat, as it is harder to
mitigate than using system readings for the implementation of
the frequency covert channel, which can be easily blocked by
changing the access permission to these system files. Further, as
the evaluation presented by Marforio et al. [Mar+12] is purely
experimental, we provide the missing theoretical analysis by
presenting a capacity bound that gives an initial estimate of
the threat level of such a channel.

Therefore, we can state that our work in chapter 5 presents
an exhaustive analysis of a new covert channel implementation
which combines and extends the two previously presented
timing and frequency covert channels.

1.1.6 Machine learning in security applications
Fuelled by the rapid advances in the machine learning domain,
techniques from this field are more frequently applied to device
security and privacy relevant topics.

Machine learning methods have been employed to build
detectors for malicious applications. For example, the detectors
analyse the Application Program Interface (API) calls and
correlate it with the permission set of applications [PZ13].
Buczak and Guven [BG16] gathered many other examples for
machine learning applications in the domain of cyber security,
classifying all these methods in three groups: (i) misuse-based
approaches that identify known attacks by their signature,
(ii) anomaly-based approaches which recognise behaviour
which is not considered “normal”, and (iii) hybrid systems,
which are a mix of misuse- and anomaly-based approaches. All
of these techniques rely on the availability of a large amount
of data for training.

In our work, we will also apply machine learning tech-
niques in the security domain.Whilemost of the existingworks
take advantage of machine learning techniques for defence

1.2. Challenges of data leak threat potential assessment 13

mechanisms, in chapters 5 and 6, we will use machine learning
from the perspective of an adversary. Furthermore, in chapter 6
we will show how to generate a large amount of data for
training, without having to deploy a complex measurement
system for a long period of time.

1.2 Challenges of data leak threat poten-
tial assessment

Despite the research efforts in the field of data leak evaluation,
there remain a few challenges which have not been fully
addressed by the related work presented in section 1.1. In
particular, there are still challenges related to the confident
assessment of the threat potential of data leaks. In this section,
we give an overview of the main challenges that we focus on
in this thesis.

Handling system dependencies. Data leaks are often the
result of unintended side effects when using a computing
system or side effects caused by the interaction of different
components of the system. Therefore, evaluating data leaks
requires in-depth knowledge of the analysed system and
its usage. Furthermore, data leaks can be highly system-
specific, and while data leaks may occur on different systems,
evaluating the same data leak on different systems might not
be possible using the same techniques. For example, different
microprocessor architectures might not offer the same software
interface to read hardware sensors, provide different sensor
readings, or the interplay of different Operating Systems (OSs)
with the same hardware may change the characteristics of a
data leak.

Determining comparable and expressive metrics. The
decision on whether a data leak can be tolerated or not

14 Chapter 1. Introduction

is always subject to the application scenario of the device.
Therefore, an assessment of the data leak threat potential is
necessary to be able to make a confident decision on a case-
to-case basis. Such a threat potential assessment requires an
exhaustive analysis of the data leak to obtain reproducible,
comparable and expressive data leak metrics. However, due to
the complexity of data leaks, such an exhaustive evaluation
could be very resource-intensive.

Presenting a proof-of-concept. To verify whether a data
leak poses a threat, it is necessary to present a proof-of-concept
and underlay the theoretical analysis with experimental
evidence. Yet, such a proof-of-concept potentially requires the
use of novel technologies or techniques from different areas
of research due to the complexity of data leaks. In addition,
to present and evaluate a proof-of-concept implementation,
large amounts of data may be necessary. This could require a
complex measurement setup, or techniques for data generation
if a measurement campaign is not feasible.

Coping with high analysis effort. All of the above-men-
tioned challenges contribute to one additional important
challenge of data leak threat potential assessment: the analysis
effort. In this thesis, we relate this challenge to the required
time and engineering effort to execute an analysis, as executing
a reproducible and exhaustive analysis to determine compar-
able and expressive results, as well as presenting a proof-of-
concept, may involve a large investment in time. Furthermore,
evaluations may not be easily portable to different systems,
which can increase the necessary engineering effort for an
evaluation of the same data leak on multiple systems.

1.3. Aims of this thesis 15

1.3 Aims of this thesis
With this work, we aim to defend the following two theses:

To confidentially assess the threat potential of data leaks,
it is necessary to conduct an exhaustive analysis that
yields comparable, reproducible and expressive results.

and

The dynamic power management of multicore systems
can be misused to leak data. Therefore, it is necessary to
consider the interplay of the power management system
and executed applications, as well as the availability
of power management related sensor readings, when
building a security and privacy framework.

1.4 Thesis outline and contributions
In this thesis, we try to address the challenges encountered
when assessing the threat potential of power management
related data leaks, as presented in section 1.2. An overview of
the thesis contributions is illustrated in Figure 1.1, and in the
remainder of this section, we will present the contributions of
each individual chapter in detail.

Chapter 2: A holistic approach to data leak threat
potential assessment. As outlined in section 1.2, we need
to determine comparable, reproducible and expressive results
based on an exhaustive theoretical and experimental data leak
analysis to assess the threat potential of a data leak. However,
the amount of effort needed for such an exhaustive analysis
can be very high. Therefore, in this chapter, we propose a
methodology to analyse data leaks exhaustively and describe
the steps to execute the methodology in detail. Furthermore,

16 Chapter 1. Introduction

Frequency

Chapter 5.

Power

Chapter 4.

Chapter 6.

Chapter 3. Thermal

Toolkit

Chapter 2.

i

o

o

o

o

o

RNN
decoder

Side
channel

Method-
ology

Capacity
bound

derivation

Figure 1.1: We present the methodology to assess the threat
potential of data leaks and the toolkit that implements it in
chapter 2. In chapter 3 and 4, we outline methods to derive
capacity bounds for covert channels and present analyses of
the thermal and the power covert channel. We apply machine
learning techniques in chapters 5 and 6, proposing a robust
signal decoder to cope with system dependencies of covert
channels and introducing the novel thermal side channel
attack.

1.4. Thesis outline and contributions 17

we introduce a toolkit which implements the methodology
and helps to decrease the engineering effort needed for an
exhaustive data leak analysis and illustrate its usability by
presenting an evaluation of known cache covert channels. We
summarise the contributions in chapter 2 as follows:

• To the best of our knowledge, we are the first to
propose a widely-applicable methodology for covert
channel analysis. The methodology helps researchers to
define models, metrics and experiments for a data leak
analyses. This supports the repeatability, comparability
and expressiveness of the analysis results.

• In addition, we present the supporting Experiment
Orchestration Toolkit (ExOT). Experiment Orchestration
Toolkit (ExOT) implements and aims at reducing the
engineering effort needed to execute the proposed
methodology. ExOT is designed to be easily extended or
reconfigured, such that a variety of different classes of
experiments can be executed.

Chapter 3: Analysing continuous covert channels. In this
chapter, we present a method to determine the capacity bound
for continuous covert channels. The capacity bound reports the
theoretical maximum information throughput of a channel. As
the capacity bound is independent of implementation artefacts,
it is considered to be a comparable and expressive metric
for a data leak towards its threat potential. Furthermore, we
present an exhaustive analysis of the thermal covert channel
in multicore systems. Chapter 3 tackles two main challenges:

• Estimating the capacity (under controlled but realistic
conditions) of the thermal covert channel to determine
a comparable and expressive metric.

18 Chapter 1. Introduction

• Finding a communication scheme that achieves through-
put results close to the channel capacity to present a
proof-of-concept for the thermal covert channel.

Chapter 4: Analysing discrete covert channels. In
chapter 4, we illustrate how to apply the methodology
presented in chapter 2 to another class of covert channels:
discrete covert channels. This shows that our toolkit and the
data leak analysis methodology are applicable to a broad range
of covert channels. The main contributions in chapter 4 are:

• A generally-applicable method to model and derive a
tight channel capacity bound for discrete covert channels.
The capacity bounds help to estimate the security threat
caused by covert channels.

• We present the novel power covert channel and provide
models and capacity bounds for this data leak.

• To the best of our knowledge, we are the first to show an
implementation of a communication scheme that proves
the functionality of the power covert channel on Intel-
based platforms.

Chapter 5: Machine learning for covert channel symbol
decoding. In chapter 5, we present an in-depth analysis of
the frequency covert channel and give a detailed overview of
the system-dependent behaviour of this data leak and how to
compensate for them in an implementation. The contributions
in chapter 5 are:

• We are the first to apply a formal communication model
and derive an upper bound on the capacity of the
frequency covert channel. Furthermore, we derive a
robust communication scheme based on the formal
communication model of the frequency covert channel.

1.4. Thesis outline and contributions 19

• In contrast to previous work, our implementation of
the frequency covert channel does not require elevated
privileges for system file access. It allows the source
and the sink application to communicate if they run on
different cores.

• To the best of our knowledge, we are the first to present
the usage of a Recurrent Neural Network (RNN) for
signal decoding in a covert channel scenario.

• We present extensive experimental evidence to evaluate
the feasibility of the frequency covert channel under
realistic conditions for two platforms, representative for
laptops and hand-held devices. Furthermore, we use our
extensive experimental evaluation to provide hints for
possible mitigation strategies.

Chapter 6: Extracting runtime information via the
thermal side channel. Based on the findings in chapter 3,
we present an implementation of the novel thermal side
channel attack. This attack allows the runtime information of
applications to be leaked by observing the thermal behaviour
of a mobile device and is based on the use of sequence labelling
models. We summarise the contributions in chapter 6 as
follows:

• We present a novel side channel attack that uses thermal
data collected from mobile devices to determine patterns
of application usage.

• We propose a data augmentation scheme that allows
to generate a training data set without the need for an
extensive measurement campaign.

• To the best of our knowledge, we are the first to
apply machine learning techniques from the time-

20 Chapter 1. Introduction

series processing domain to determine an application
execution sequence.

• We present an extensive experimental evaluation of the
thermal side channel based on real user interactions with
the device, using laboratory and real-world data.

2
A holistic approach to data

leak threat potential
assessment

Data leak analyses presented in literature often lack formal
methods and metrics or are not exhaustive. Due to these
shortcomings, a confident threat potential assessment based
on these analysis results is not possible. In this chapter, we
address these issues by proposing a holistic approach for data
leak analysis.

We present a novel methodology to improve reproducibility,
comparability and expressiveness of data leak analyses and
introduce the Experiment Orchestration Toolkit (ExOT). ExOT
implements our methodology and aims to reduce the engin-
eering overhead required for an exhaustive data leak analysis.
Moreover, ExOT allows the application of our methodology to

This chapter is based on [MKT20c], [Klo18] and [Klo19].

22 Chapter 2. Approach to data leak threat potential assessment

Frequency

Chapter 5.

Power

Chapter 4.

Chapter 6.

Chapter 3. Thermal

Toolkit

Chapter 2.

i

o

o

o

o

o

RNN
decoder

Side
channel

Method-
ology

Capacity
bound

derivation

Figure 2.1: In chapter 2, we present a novel methodology
to improve reproducibility, comparability and expressiveness
of data leak analyses. Furthermore, we introduce the
Experiment Orchestration Toolkit (ExOT), which implements
our methodology.

a variety of platforms and data leaks. Therefore, we use ExOT
for all experimental evaluations presented in the remainder of
this thesis.

2.1. Introduction 23

source

channel

sink

Figure 2.2: A data leak where the source emits information
via the channel, received by the sink and forwarded to an
adversary. The hidden data transfer is either intentional (covert
channel), or unintentional (side channel).

2.1 Introduction
As computing devices are getting more powerful, they are
often intended for shared use to utilise the available resources
fully. For example, multiple users have access to the same
cloud computing infrastructure. Similarly, mobile devices are
used for multiple application domains with different security
clearances, such as business and private applications. Both
cloud and mobile computing systems must prevent data leaks
from one user or one application domain to another. Such a
data leak may exist in the form of a covert or side channel
– two closely related concepts. This relation is highlighted
by Ristenpart et al. [Ris+09], stating that “Covert channels
provide evidence that exploitable side channels may exist.”.
In other words, covert channels help to assess the extent to
which side channel attacks might be feasible. This is important,
as quantifiable metrics often cannot be determined for side
channels, but for covert channels, this may be possible (see
chapters 3 and 4).

We base our analysis of covert channels on the setup
illustrated in Figure 2.2, which is widely used in literature.
The main components are (i) the source application with access
to confidential information, (ii) the channel, and (iii) the sink
application which receives and forwards data to an adversary.

24 Chapter 2. Approach to data leak threat potential assessment

While the system in Figure 2.2 looks rather simple, an
exhaustive analysis can be very costly in terms of time
and engineering effort. Hence, an exhaustive analysis is
not common practice. Examples for limited experimental
evidence can be found in recent literature. An example of
a non-exhaustive analysis is cache covert channels. Gruss
et al. [Gru+16a] stated that the comparison of previously
presented throughputs of different cache covert channels was
not possible. The authors pointed out that all experiments
had to be repeated, due to the differences in the analyses
and the fact that the reported metrics where implementation
dependent. This might require considerable engineering effort
and highlights the importance of analysis methodologies that
describe how to derive comparable metrics for data leaks,
rather than implementations. These examples indicate that
there is a need for a well-defined methodology for the analysis
of covert channels.

Such a methodology would allow a confident assessment
of the threat potential of a covert channel if it (i) is generally
applicable to a large class of covert channels, (ii) helps to
define models, metrics and experiments, as well as (iii) support
the reproducibility, comparability and expressiveness of results.
Based on the international vocabulary of metrology [20012],
we define reproducibility, comparability and expressiveness as
follows.

Reproducibility. An analysis is reproducible if different
researchers can repeat it based on the description of the original
work and derive the same conclusions.

Comparability. Comparability of different data leak analyses
is assured if their results are reported using the same metrics.
For example, the threat potential of data leaks cannot be
compared if one is quantified using throughputs and another
using capacity bounds.

2.2. Revisiting known data leak evaluations 25

Expressiveness. The expressiveness of metrics describes
qualitatively how well they characterise relevant properties
of the evaluated system. For example, an implementation
might not reveal the full potential of a data leak. Therefore,
throughput and the corresponding error rate are only express-
ive towards an implementation, rather than a data leak. In
contrast, the channel capacity bound reports the maximum
possible throughput under ideal conditions. Hence, the capacity
bound is expressive towards the threat potential of a data leak.

Contributions. To the best of our knowledge, we are the first
to propose a widely-applicable methodology for covert channel
analysis. The methodology helps researchers to define models,
metrics and experiments for data leak analyses. This supports
the repeatability, comparability and expressiveness of the ana-
lysis results. In addition, we present the supporting Experiment
Orchestration Toolkit (ExOT). Experiment Orchestration Toolkit
(ExOT) implements and aims at reducing the engineering effort
needed to execute the proposedmethodology. ExOT is designed
to be easily extended or reconfigured so that a variety of classes
of experiments can be executed. Thus, ExOT substantially
exceeds the functionality of previously presented work like
the Mastik toolkit [Yar16] or libflush [Lip+16; Gru+16b].

2.2 Revisiting known data leak evalu-
ations

In this section, we review a selection of cache covert channels
that have been presented in recent years. While the selection
is not exhaustive, its purpose is to show the usability of the
proposed methodology and ExOT.

26 Chapter 2. Approach to data leak threat potential assessment

The cache covert channels we consider in this chapter all
operate on similar principles, which we briefly describe in the
following paragraphs.

Memory de-duplication. In order to optimise the usage of
the available memory, pages with identical content are often
shared among processes or even Kernel Virtual Machine (KVM)
subsystems [AEW09; YF14]. For example, two processes load
the same read-only library objects. While the library objects
will be mapped to the private virtual address space of each
process, these private virtual addresses will point to the same
physical memory location.

Inclusive Last-Level-Caches (LLCs). Many LLCs in modern
computing systems are implemented with an inclusive policy.
This means that the LLC always contains a copy of all the
cached data in the lower-level caches. If data is evicted from
the LLC, back invalidation will be performed on all lower-
level caches. This means that the data is also evicted from the
lower cache levels. Furthermore, many LLCs are indexed with
physical addresses. Therefore, a shared library will include its
addresses in the LLC when loaded and accessed.

Unprivileged cache flushing operations. Calling cache
flushing operations will evict a cache line from all cache
levels. These operations might even broadcast the invalidation
“throughout the cache coherency domain” [Int18, p. 11-12].
As these cache flushing operations are unprivileged in both
x86_64 (cflush [Int18]) and 64-bit Arm architectures (data cache
maintenance instructions [Arm19, p. 2353]), they can easily be
used for malicious purposes.

Cache-status dependent execution time. The execution
time of specific operations will vary, depending on the cache
status of the data, i. e., in which level of the memory hierarchy
the data resides.

2.2.
Revisiting

know
n
data

leak
evaluations

27

Covert Channel
Empirical Throughput / Error Rate

x86_64 ARM

Flush+Flush 496KB/s / 0.84% 178.3Kbps / 0.48%
Flush+Reload 298KB/s / 0.00% 1.14Mbps / 1.10%
Flush+Prefetch 146KB/s / < 1% N/A

Table 2.1: Throughputs of known covert channels reported by Gruss et al. [Gru+16a]. These
values are not expressive towards the threat potential of the analysed data leak, as they are
highly implementation and setup dependent.

28 Chapter 2. Approach to data leak threat potential assessment

We consider three different cache timing covert channels.
These cache covert channels take advantage of memory
de-duplication, inclusive LLCs and unprivileged flushing
operations to manipulate the execution time of certain
operations in other processes or Virtual Machines (VMs).

1. The Flush+Flush [Gru+16a; Lip+16] channel relies on
the execution time of the flush operation. This operation
tends to take more time to execute if the data has been
cached.

2. The Flush+Reload [YF14; Gru+16a; Lip+16] channel uses
the time needed to execute the reload command. The
reload operation will have different latencies depending
on whether data has already been cached or not.

3. The Flush+Prefetch [Gru+16b] channel exploits the tim-
ing of the prefetch instruction. The prefetch instruction
is executed faster if data is already present in the cache,
i. e., is already cached.

None of the references mentioned present capacity bounds
for their covert channels, while all provided throughput
experiments. In Table 2.1, we report the results obtained
from the re-implementation of the “Flush+” channels by
Gruss et al. [Gru+16a]. The throughputs were all determined
using different implementations and report different error rate
metrics. Hence, they cannot be used as a measure of the general
threat potential of this class of data leaks. The throughputs
are only an expressive metric for a specific implementation.
In the remainder of this chapter, we address the issue of
expressiveness of analysis results.

2.3. A novel covert channel analysis methodology 29

Modelling
Capacity
Bound

Derivation

Experimental
Channel

Evaluation

Deployment
Test

Figure 2.3: Main steps of the proposed methodology for covert
channel analysis.

2.3 A novel covert channel analysis
methodology

Figure 2.3 illustrates the four main steps of our proposed covert
channel analysis methodology. In this section, we describe
these four steps and how our toolkit implements them.

2.3.1 Modelling
During the modelling phase, the covert channel needs to be
formally described. A model is a necessary prerequisite for
comparability and is beneficial when defining the metrics for
evaluation. For example, in the case of covert channels, the
formal models enable us to derive an upper capacity bound.

This phase cannot be automated, as it relies on the
expertise of the researcher. However, the framework provides
blueprints for two ready-to-use models, which can be applied
and determine the experimentation flow. The formal models
that are implemented and described in ExOT are

1. time-continuous and value-continuous, suited to de-
scribing, for example, the thermal covert channel, see
chapter 3, as well as

2. time-discrete and value-discrete that can be used to
model, for example, the power covert channel, see
chapter 4.

30 Chapter 2. Approach to data leak threat potential assessment

2.3.2 Capacity bound derivation
The capacity bound is a metric that allows us to estimate
the threat potential of a covert channel. A capacity bound is
independent from the implementation artefacts, as it describes
the maximum capacity of a channel achievable under ideal
conditions. Hence, capacity bounds are expressive regarding
the general threat potential of a data leak, rather than a specific
implementation. Examples for capacity bound derivations can
be found in chapters 3 and 4.

Depending on the previously established model, ExOT
provides an experimentation scaffold to determine the para-
meters necessary to derive the capacity bounds. This includes
the experiment definition and configuration, as well as
the experiment generation, execution and analysis flow. In
addition, ExOT controls environmental factors if the hardware
setup allows it. Furthermore, ExOT provides basic building
blocks for the applications generating the channel input and
recording the channel output. These building blocks can be
used on many different platforms, as ExOT also includes a
cross-compilation suite and allows for the integration with
other tool chains.

2.3.3 Experimental channel evaluation
Based on the experimental evidence provided by the evaluation,
the previously established channel model and the capacity
bounds are validated. An expressive metric for the threat
potential of a specific implementation is provided in the form
of throughputs.

The experiments are conducted under well-defined labor-
atory conditions with a prescribed software flow to support
reproducibility. Their purpose is to understand the capabilities
of the channel and the effect of external influences. The

2.3. A novel covert channel analysis methodology 31

experiment setup ensures reproducibility as the source and the
sink application are well-synchronised, and external influences
are controlled. In this phase, first, a simple stream of random
bits is transmitted from one application to another. Simple
source coding (conversion of bits to symbols) and line coding
(conversion of symbols to a channel input trace) techniques
are used to establish a rudimentary communication channel
with minimal engineering effort. Using this configuration,
possible throughputs with corresponding error rates are
determined, and additional experiments can be performed to
understand the covert channel better. For example, the effect of
external influences or additional noise, e. g., generated by other
applications, can be quantified. This approach yields insights
that are useful for the development of mitigation techniques.

ExOT maintains the prescribed software flow and handles
source and sink application synchronisation. Furthermore,
ExOT offers a variety of source and line coding options that can
be configured and applied to a randomly generated bit stream.
Moreover, ExOT provides an interface to control external
influences and additional applications to investigate external
influences.

2.3.4 Deployment test
Using the knowledge gained in the previous steps, it is possible
to evaluate the covert channel in a real-world scenario. An
example of a deployment test was presented by Maurice
et al. [Mau+17]. In contrast to the experimental channel
evaluation phase, in the deployment test phase, the source
and sink applications have to operate fully autonomously. This
requires that the source and sink application also implement
measures that compensate for external influences, like noise or
interference. Furthermore, the application might need to imple-
ment sophisticated protocols with synchronisation methods,

32 Chapter 2. Approach to data leak threat potential assessment

packeting, bi-directional communication, error detection or
error correction. Therefore, such real-world implementations
can be designed in many different ways, and the throughput
will often depend heavily on the invested engineering effort.
The main goal of the deployment test is to show that an attack
can be deployed outside of a laboratory setup. In addition
to the previously determined metrics, the deployment tests
can yield additional measures, like the attack footprint or the
necessary implementation effort. ExOT provides application
building blocks, and experimentation execution flows to reduce
the engineering effort in this phase of the analysis.

Review. When applied to analyse a specific data leak, our
methodology helps to determine metrics and experiments
for an exhaustive evaluation. This supports reproducibility,
comparability and expressiveness of results. We present
examples for such applications in chapter 3 and 4. Moreover,
these examples illustrate that the methodology is generally
applicable to different kinds of covert channels. Therefore,
our proposed methodology meets the requirements defined in
section 2.1.

2.4 TheExperimentOrchestrationToolkit
(ExOT)

In this section, we present an overview and implementation
details of our Experiment Orchestration Toolkit ExOT. Figure 2.4
shows the structure of ExOT and the interaction of the different
components of the setup.

ExOT supports repeatability of experiments by keeping
track of all relevant experiment information in a single location.
The configuration and environment descriptor files written in

2.4. The Experiment Orchestration Toolkit (ExOT) 33

environment
description file

configuration
file

driver

experiment

zone(s) source app sink app jammer app(s)

experiment engine

experimental
data

Figure 2.4: Experimental setup using the Experiment Orches-
tration Toolkit (ExOT). The driver is the interface to the
experiment environment consisting of different zone(s) and
the applications.

TOML1 capture relevant experiment parameters. Moreover, the
complete flow, including experiment generation, experiment
execution and analysis of the experimental data, can be written
in one Python script, which makes experiments easier to
version and maintain.

The experiment environment consists of at least one
environment zone, a source and sink application pair and
optionally jammer applications. Jammers can be used to
simulate disruptive influences on the covert channel, which is
useful to either (i) understand the influence of external factors
on the covert channel, or (ii) evaluate possible mitigation
strategies. Any application can be instrumented as a jammer
application, either custom-made applications with similar
functionality as the source application or applications that can
be installed on the device, like the ffmpeg video conversion
tool. All applications are mapped to a zone, whereas one zone
defines a certain configuration. The environment zones define

1Tom’s Obvious, Minimal Language by Tom Preston-Werner, Pradyun
Gedam, et al.: github.com/toml-lang/toml

https://github.com/toml-lang/toml

34 Chapter 2. Approach to data leak threat potential assessment

the runtime environment of the applications. This can be,
for example, the host Operating System (OS), a virtualised
environment on a device or a node in a network.

The experiment engine will setup the environment by
configuring the zones(s) and applications as well as copying the
necessary data. It controls the experiment execution, fetches
the data and cleans up the environment after the experiment
execution has finished. The experiment engine also offers a
variety of debug outputs in the form of log-messages during
execution or plots for data preview during analysis.

2.4.1 Creating sending and receiving applications
In order to identify a possible covert channel, colluding sending
and receiving applications are needed. While in the literature,
the two colluding applications are usually called trojan and spy,
we refer to them as source (src) and sink (snk). We choose this
terminology due to the broader applicability of ExOT, which
we will outline in subsection 2.4.3. In this section, we describe
how ExOT can help to reduce the effort to implement source,
sink and custom jammer applications.

We implemented the application library using C++17,
taking advantage of modern language features. This includes
the use of generic programming, compile-time code generation,
templated design and inheritance without complex class
hierarchies. These development paradigms ensure that the
code base is extendable without too much code duplication.
The library provides basic building blocks for the application,
the design of which is based on the concept of process networks.
We chose a process network-based design, as it provides high
modularity while still maintaining a simple structure. These
characteristics are helpful when developing applications for
laboratory evaluation and for deployment test applications.

The three main building blocks are interfaces, tokens and

2.4. The Experiment Orchestration Toolkit (ExOT) 35

. . .input
parser

data nodes

module
generator

module

. . .logger module
meter

module

system

source
schedule

meas.
data

SRC

SNK

token queuedata I/O interaction

Figure 2.5: Structure of source and sink applications build with
Experiment Orchestration Toolkit (ExOT). The application
structure is based on process networks.

nodes. The interfaces are token queues, which are used to
pass on tokens from one node to another. Tokens are data
containers, the type and structure of which can be defined
according to the needs of the nodes. There are three types of
nodes, (i) producers, which have only an output token queue,
(ii) processors, which have input and output token queues, and
(iii) consumers, which have only an input token queue. The
nodes are used to implement the main functionality of the
applications. Basic applications, like source, sink and jammers,
are built using unidirectional chains of nodes. Figure 2.5 shows
a minimal abstract example of a source and sink application
pair, built with the ExOT application library. A producer node,
i. e., the input parser in the source or the meter node in the
sink, generates tokens based on the input and passes them
on to a chain of processing nodes. At the end of the process
network chain, a consumer node, i. e., the generator node in
the source or the logger in the sink, processes the incoming
tokens and performs their respective action. The generator and
meter nodes are special, as they can hold multiple modules.
These modules allow a generator or a meter to interact with

36 Chapter 2. Approach to data leak threat potential assessment

multiple system components simultaneously in a timed fashion.
Finally, the library also provides automatic node connectors
and executors to reduce the burden on the developer.

The library also contains many different utilities to make
the development of experimentation applications easier. For
example:

• A simple and reliable JSON interface for application
configuration.

• Logging and debug output.

• File system and Model Specific Register (MSR) handling.

• Execution, exception and signal handlers.

• Timekeeping and clocking.

In addition to the application library of ExOT, we provide
a compilation suite. This compilation suite is based on
docker and CMake, allowing easy cross-compilation and
integration with other tool-chains, for example, the Android
NDK. This enables researchers to port an analysis to different
architectures easily.

2.4.2 Information flow
We base our data processing design on a layered information
flow model, illustrated in Figure 2.6. Similar to the well known
OSI model, information travels from the highest layer to the
lowest, and then up to the highest again.

Layer 6 describes how input data is generated and how
metrics are calculated from the measurement data. In layer 5
and 4, the source and line coding is defined, which is used to
compress and shape the data stream depending on the channel
specifications. Layer 3 describes the data format required

2.4. The Experiment Orchestration Toolkit (ExOT) 37

3 - Raw Data Processing
4 - Line Coding
5 - Source Coding
6 - Generate/Verify

2 - I/O Module
1 - Applications
0 - Channel

output formatting
symbol to trace
bits to symbols
generate bits

write schedule files
utilise channel

raw data to trace
trace to symbols
symbols to bits

calculate metrics

read meas. files
observe channel

covert information transmission

Layer Name Layer Functions

Figure 2.6: Information flow model. Data travels from the
highest to the lowest layer, gets transferred via the channel
and travels up to the highest layer.

by the applications, while layer 2 defines file I/O. The two
bottom layers describe the source (sending) and sink (receiving)
applications and the channel.

Layers 2 to 6 are implemented as Python packages,
which has the following advantages: (i) there is no need for
recompilation when a new data processing scheme is tested,
(ii) the implementation is platform-independent, and (iii) data
checks and debugging are easy to perform.

2.4.3 Extendability and limitations
Due to its design, ExOT can be applied to a wide variety of
fields and is not limited to analyses presented in this chapter.
Using ExOT for additional channels, attacks or other analyses
requires an extension of the experiment definitions in the
Python framework. If specific deployment applications are
necessary, these can be implemented using the building blocks
of the C++17 library, or by extending the library.

The applicability of ExOT mostly depends on the devices
the source, sink and jammer applications are run on. This
dependency arises as the application building blocks provided

38 Chapter 2. Approach to data leak threat potential assessment

Figure 2.7: Left: Experiment Orchestration Toolkit (ExOT)
logo; Right: QR-Code linking to the Experiment Orchestration
Toolkit (ExOT) website

by the C++ library often depend on the architectural features
of the devices. For example, the timing accuracy and maximum
sampling period of the applications depends on the timing
source provided by a device.

ExOT supports various devices that are based on a Linux or
Android OS and require SSH or ADB capabilities of the devices.
However, an extension of ExOT to other OSs or communication
interfaces is possible. While including a new communication
interface only requires to add a fitting driver to the Python
framework, expanding ExOT to new OSs would also call for
an extension of the C++17 library.

2.4.4 Availability
The Experiment Orchestration Toolkit (ExOT) is available
on exot.ethz.ch [MKT20b] as an open source project. On the
website, we provide further documentation of the project. This
includes the following resources:

• A white paper with detailed descriptions of the underly-
ing development paradigms.

• A wiki containing detailed manuals and “how-to”
regarding the software.

• Links to the git repositories, including the source code

https://www.exot.ethz.ch
https://www.exot.ethz.ch
http://www.exot.ethz.ch

2.5. Applying the methodology 39

and application examples.

2.5 Applying the data leak evaluation
methodology

In this section, we show how to apply the proposed method-
ology from section 2.3 using ExOT, which we introduced in
section 2.4. We analyse and present an experimental evaluation
for the covert channels presented in section 2.2. We determine
a comparable metric, namely the capacity bound, for all
of the considered covert channels. To provide experimental
evidence for the validity of the models and bounds, we conduct
experimental throughput evaluations. These allow a direct
comparison of different implementations and platforms. In
addition, we analyse the robustness of the implementations
towards interference. To support the reproducibility of the
analysis, all information gathered during the experiments is
publicly available [MKT20a]. We perform the evaluation on

• a Lenovo T440p laptop based on an Intel i7-4700MQ
running Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-58-
generic x86_64), referred to as Haswell-i7, and

• a NVIDIA Jetson TX2 based on a dual-core Denver 2
64-bit CPU and quad-core ARM A57 cluster running
Ubuntu 18.04.3 LTS (GNU/Linux 4.9.140-tegra aarch64),
referred to as ARMv8-Dev.

2.5.1 Modelling and capacity bound derivation
We determine the capacity of the cache covert channels
using the method which we outline in detail in chapter 4.
This method is already implemented in ExOT as part of the

40 Chapter 2. Approach to data leak threat potential assessment

data leak analysis methodology. Furthermore, the application
library of ExOT provides the basic building blocks for the
measurement applications needed in this phase. Therefore, the
implementation effort for this phase is reduced by using ExOT.

To derive the channel capacity bound using the method
proposed in chapter 4, we need a channel model. Typically,
there are multiple memory levels in a computing system, i. e.,
up to three cache levels, the main memory and swap. However,
as already indicated in the original work [Gru+16a; Lip+16;
YF14; Gru+16b], our initial experiments have also shown that
it is only feasible to control and determine reliably whether
data is cached or not. Considering this observation and the
fact that no models of cache covert channels were given in the
original work, we establish a channel model based on a state
machine with two states and all possible transitions. Hence,
we derive a maximum capacity of 1 bit per channel use.

To acquire a comparable metric, we need to determine
the duration of one channel use. We define one channel use
as (i) measuring the timing with the defined method, and
(ii) resetting the memory state. To measure the channel access
times, we employ an application developed using the ExOT
application library. To outline the measurement procedure, the
disassembly of the application for the Flush+Reload capacity
channel on Haswell-i7 is shown in Listing 2.1. This application
is also published as part of ExOT [MKT20b].

In the example, an address from shared memory is loaded
into register r10 . We measure the time needed to execute the
operation in line 9 using two accesses to the Time Stamp
Counter (TSC) at lines 5 and 11. In line 17, we reset the channel
and the lines 19 to 25 are needed to calculate the time delta
between the two calls to the TSC, i. e., the execution time
of the instruction in line 9. The rest of the instructions, for
example, mfence , are required to prevent the instructions in the

2.5. Applying the methodology 41

1 leaq 12(%rsp), %r10 ;; Setup
2

3 mfence ;; Measurement begins ...
4 cpuid
5 rdtsc
6 movl %eax, %r8d
7 movl %edx, %edi
8

9 mov (%r10), %eax ;; The measured operation
10

11 rdtscp ;; ...Measurement ends
12 movl %eax, %r9d
13 movl %edx, %esi
14 cpuid
15 mfence
16

17 clflush (%r10) ;; Resetting the channel
18

19 salq $32, %rsi ;; Compute time difference
20 movl %r9d, %r9d
21 salq $32, %rdi
22 movl %r8d, %r8d
23 orq %r8, %rdi
24 orq %r9, %rsi
25 subq %rdi, %rsi

Listing 2.1: Disassembly of the measurement procedure for one
channel use of the Flush+Reload cache covert channel.

measurement routine from being reordered by the processor.
We measure the channel access times for Flush+Reload,

Flush+Flush and Flush+Prefetch access on either a cached
or not-cached set, as shown in the example above. The
measurement results shown in Table 2.2 are the average time
acquired from a quarter-million measurements per channel
and cache state. Using the best-case timing for each cache
channel, we derive the upper channel capacity bounds.

Comparison. The formal models of the considered covert

42 Chapter 2. Approach to data leak threat potential assessment

Haswell-i7

3555
4516 4027

Flush+Flush Flush+Reload Flush+Prefetch

ARMv8-Dev

Capacity
Bound
[kbps]

524 510 500

Flush+Flush Flush+Reload Flush+Prefetch

Figure 2.8: ExOT helps to derive channel capacity bounds,
required by the proposed methodology. The capacity bounds
allow direct comparison of different covert channels and
indicate that cache based data leaks have a high threat
potential.

channels enable us to derive capacity bounds, outlined in
Figure 2.8. As expected, the capacity bounds suggest that the
threat potential of cache based data leaks is high. However, the
capacities vary by almost 10×when comparing our two devices
Haswell-i7 and ARMv8-Dev. Furthermore, the throughputs
reported by Gruss et al. [Gru+16a] for their ARM-core based
device are higher than the capacity bounds we derived for
the ARMv8-Dev platform. This indicates that the threat
potential of cache covert channels is highly dependent on the
specific processor architecture and, therefore, highlights the
importance of data leak evaluations on different devices and
architectures.

2.5.2 Experimental channel evaluation
As a final step, we conduct experiments to show how our
methodology and ExOT help to validate the previously
established model and the capacity bounds. Furthermore,
we show how ExOT helps to assess how other applications
influence the performance of the covert channels.

Our two platforms are described in the two environment
descriptor TOML files, partly outlined in Listings 2.2 and 2.3.
The environment descriptor files define zones for each

2.5.
A
pplying

the
m
ethodology

43

Covert Channel
Haswell-i7 ARMv8-Dev

cached flushed cached flushed

Flush+Flush 281.3 ns 294.6 ns 1910.1 ns 2183.4 ns
Flush+Reload 221.4 ns 312.9 ns 1960.7 ns 2310.0 ns
Flush+Prefetch 248.3 ns 328.5 ns 2001.4 ns 2450.7 ns

Table 2.2: Time for one covert channel use depending on the cache state.

44 Chapter 2. Approach to data leak threat potential assessment

platform, i. e., [host] and [combined] respectively. In the zone
settings, model defines what kind of computing device is used
and which cores are mapped to the zone. In addition, further
system parameters, like the available operating frequencies
(frequencies), can be specified to ensure the experiments are
reproducible. schedule_tag defines the string pattern that is used
to identify the source application schedules used in this zone.
path_apps and path_data specify where the executables of the
applications are located and where the experiment engine
will put the experiment data during execution. These paths
are relative to the user home path. In the remaining lines, the
necessary parameters to set up the connection to the zone are
specified. We use an SSH connection with the user=”exot” and
key-authentication. If access to the zone is restricted via the
network, a gateway can be used as well.

Listing 2.4 the general experiment settings from the ExOT
experiment configuration file are listed. These settings are
used for all remaining experiments in this chapter. In lines 30
and 31 we define the type of experiment that we want to
execute and which type of channel to use. These two values
determine which experiment parameters are needed and which
ready-to-use analyses can be done on the experiment data.
The remaining parameters are applied to all platforms and
used to setup the experiment environment. latency defines
the maximum wake-up latency of the system and is used to
restrict the platform from entering deep sleep states. We use
this setting to prevent timing variations in the experiment
execution. fan defines whether a fan is used and, if possible,
which fan level. We overwrite the fan setting for ARMv8-Dev
in line 42, as this platform expect a numerical value rather than
a Boolean. Furthermore, we set the operating frequency of the
platforms, the sampling period of the sink application and the
delays after spawning the different applications. These delays

2.5. Applying the methodology 45

29 [host]
30

31 # zone/platform details
32 model = ”Lenovo T440p”
33 cores = [0, 1, 2, 3, 4, 5, 6, 7]
34 frequencies = [800000, 900000, 1000000, 1100000,

1300000, 1400000, 1500000, 1600000, 1700000, 1800000,
1900000, 2100000, 2200000, 2300000, 2400000]

↪

↪

35 schedule_tag = ”t440p”
36

37 # app and data location
38 path_apps = ”bin”
39 path_data = ”data”
40

41 # connection details
42 driver_type = ”SSHUnixDriver”
43

44 [host.driver_params]
45 ip = ”XXX.XXX.XXX.XXX” # masked value
46 port = 51808
47 user = ”exot”
48 group = ”exot”
49 key = ”$EXOT_ACCESS_DIR/id_ed25519”
50 # gateway = ”exot-gateway”

Listing 2.2: Snippet from the ExOT environment descriptor file
for Haswell-i7. The IP-address has been masked.

are used to make sure that starting the applications does not
influence the measurements.

To quantify the performance of the covert channels, we
divide the analysis into two phases, training and evaluation,
outlined in Listing 2.5. During the training phases, we transmit
a 1.5 kbit random bitstream, which we use to train the decoder
decision device. As a decision device, we use a linear support
vector classifier2 In the evaluation phase, a 5 kbit random
bitstream is transmitted and evaluated using the trained

2sklearn.svm.LinearSVC

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

46 Chapter 2. Approach to data leak threat potential assessment

78 [combined]
79

80 # zone/platform details
81 model = ”Nvidia Jetson Tegra TX2”
82 cores = [0, 1, 2, 3, 4, 5]
83 frequencies = [345600, 499200, 652800, 806400, 960000,

1113600, 1267200, 1420800, 1574400, 1728000, 1881600,
2035200]

↪

↪

84 schedule_tag = ”tegraTX2”
85

86 # app and data location
87 path_apps = ”bin”
88 path_data = ”data”
89

90 # connection details
91 driver_type = ”SSHUnixDriver”
92

93 [combined.driver_params]
94 ip = ”XXX.XXX.XXX.XXX” # masked value
95 port = 51808
96 user = ”exot”
97 group = ”exot”
98 key = ”$EXOT_ACCESS_DIR/id_ed25519”
99 # gateway = ”exot-gateway”

Listing 2.3: Snippet from the ExOT environment descriptor file
for ARMv8. The IP-address has been masked.

decoder decision device. We repeat each phase 5 times and
use the mean of the error rate of each repetition for further
calculations, to compensate for variations introduced by the
setup. Such variations in single measurements might be
introduced by the OS running on the tested device, for example,
sudden utilisation peaks caused by vital system services which
we cannot disable. We execute both phases, training and
evaluation, for multiple bitrates, so that we perform a bitrate
sweep to quantify the throughput to bit error rate relation.

In the original work, the channel accesses were performed

2.5. Applying the methodology 47

29 [EXPERIMENT]
30 type = ”PerformanceExperiment”
31 channel = ”Cache”
32

33 [EXPERIMENT.GENERAL]
34 latency = 10
35 fan = true
36 governors = ”userspace”
37 frequencies = ”max”
38 sampling_period = 2e-5
39 delay_after_spawn = 5.0
40 delay_after_auxiliary = 1.0
41 active_wait = true
42 ARMv8 = {fan = ”255”, sampling_period =

0.000225}↪

Listing 2.4: Snippet from the ExOT experiment configuration
file outlining the general experiment settings. These settings
are used for all experiments to evaluate the three cache covert
channels.

asynchronously at the highest possible rate. Therefore, the
throughput could not be controlled, and it was not possible to
show how the transmission rate influences the bit error rate. In
contrast to the original implementation, our implementation,
based on the ExOT application library, allows us to set the
transmission rate and time the channel accesses. Therefore,
we can perform a bitrate sweep from 6.4 kbps to 5Mbps with a
step size of 64 kbps to show how the bit error rate changes with
increasing throughput. However, the timekeeping necessary
to control the transmission rate limits our maximum sampling
period. When we use one cache set and let the sampling rate
approach 5 𝜇s, we start to observe transmission errors due to
inaccurate timing, i. e., channel accesses are not synchronised.
Thus, to be able to achieve high bitrates with longer sampling
periods, we use 64 cache sets in parallel, defined in the data

48 Chapter 2. Approach to data leak threat potential assessment

50 [EXPERIMENT.PHASES.trainARMv8]
51 bit_count = 1500
52 symbol_rates = ”[100] + (list(range(250, 6001, 250)))”
53 repetitions = 5
54

55 [EXPERIMENT.PHASES.evalARMv8]
56 bit_count = 5000
57 symbol_rates = ”[100] + (list(range(250, 6001, 250)))”
58 repetitions = 5
59

60 [EXPERIMENT.PHASES.trainHaswell]
61 bit_count = 1500
62 symbol_rates = ”[100] + (list(range(1000, 78001, 1000)) +

[78125])”↪

63 repetitions = 5
64

65 [EXPERIMENT.PHASES.evalHaswell]
66 bit_count = 5000
67 symbol_rates = ”[100] + (list(range(1000, 78001, 1000)) +

[78125])”↪

68 repetitions = 5

Listing 2.5: Snippet showing the measurement phases settings
from the ExOT experiment configuration file.

44 [EXPERIMENT.LAYERS]
45 src = {name = ”BitsetCoding”, params={bitset_length = 64}}
46 lne = {name = ”MultiN”, params={N=64}}
47 rdp = {name = ”DirectActivation”, params={}}
48 io = {name = ”TimeValue”, params={timebase='ns'}}

Listing 2.6: Snippet from the ExOT experiment configuration
file presenting the data processing layer settings. These settings
are used for all experiments to evaluate the three cache covert
channels. As we use 64 cache sets in parallel, bitset_length for
the source-coding layer src and N for the line-coding layer lne

are set to 64.

2.5. Applying the methodology 49

70 [ENVIRONMENTS.Haswell.APPS]
71 src = {executable = ”generator_cache_read_st”, zone =

”host”}↪

72 snk = {executable = ”meter_cache_ff”, zone =
”host”}↪

Listing 2.7: Snippet from the ExOT experiment configuration
file outlining the application zone mapping for Haswell-
i7. While all experiments use the same source application,
a different sink application is used depending on the
evaluated cache channel. Both Haswell-i7 and ARMv8-Dev use
applications based on the same source code from the ExOT C++
library but compiled for the respective processor architecture.

processing layer settings outlined in Listing 2.6. The cache lines
we used have a spacing of 64 sets on Haswell-i7 and 16 sets on
ARMv8-Dev. This cache channel parametrisation allows us to
sample every 22 𝜇s on Haswell-i7 and 225 𝜇s on ARMv8-Dev.
We determine the sampling rate on both platforms using the
worst-case time per channel use for one set from Table 2.2, plus
a small security margin. The application settings, including
the cache parameters, are outlined in Listings 2.7, 2.8 and 2.9,
while the sampling rate is defined in Listing 2.4. For further
information regarding the application parameters, please refer
to the ExOT project [MKT20b].

After fixing the parameters for the communication channel
setup, we use ExOT to generate and execute the necessary
experiments. ExOT allows us to do this using a single python
script, as shown in Listing 2.11. This supports reproducibility
and allows for experiment versioning. Figure 2.9 illustrates the
results for the evaluation of bitrate sweepswithout interference
in the upper plots. On Haswell-i7, this configuration allows us
to establish transmissions with less than 1% bit errors at almost
200 kbps using Flush+Flush, 300 kbps with Flush+Reload and

50 Chapter 2. Approach to data leak threat potential assessment

74 [ENVIRONMENTS.Haswell.src]
75 generator.host_pinning = 3
76 generator.should_pin_host = true
77 generator.cores = [0]
78 generator.should_pin_workers = true
79 generator.host_policy = ”round_robin”
80 generator.host_priority = 97
81 generator.worker_policy = ”round_robin”
82 generator.worker_priority = 98
83 generator.use_busy_sleep = true
84 generator.busy_sleep_yield = false
85 generator.use_huge_pages = true
86 generator.shm_file = ”/dev/hugepages/8”
87 generator.set_count = 64
88 generator.set_increment = 64
89

90 logging.append_governor_to_files = false
91 logging.async = true
92 logging.async_size = 4096
93 logging.log_level = ”debug”
94 logging.provide_platform_identification = false
95

96 schedule_reader.reading_from_file = true

Listing 2.8: Snippet from the ExOT experiment configuration
file showing the source application settings for Haswell-i7.
These settings are specific to the used source application and
are described in detail in the ExOT project wiki [MKT20b].
We use the same settings for ARMv8-Dev, except that
generator.set_increment=16 .

around 500 kbps for Flush+Prefetch. The significant increase
of errors around 1Mbps is caused by timing issues of our
implementation. These lead to inaccurate synchronisation
of the source and sink application and to higher errors, as
at higher throughputs there are less samples per symbol.
On ARMv8-Dev the channels allow throughputs of around
15 kbps using Flush+Flush, 40 kbps with Flush+Reload and

2.5. Applying the methodology 51

98 [ENVIRONMENTS.Haswell.snk]
99 logging.append_governor_to_files = false

100 logging.async = true
101 logging.async_size = 4096
102 logging.log_level = ”debug”
103 logging.provide_platform_identification = true
104 logging.timestamp_files = false
105 logging.rotating_logs = false
106 logging.rotating_logs_count = 10
107 logging.rotating_logs_size = 104857600
108

109 meter.host_policy = ”round_robin”
110 meter.host_pinning = 7
111 meter.should_pin_host = true
112 meter.host_priority = 95
113 meter.log_header = true
114 meter.start_immediately = false
115 meter.use_busy_sleep = true
116 meter.busy_sleep_yield = false
117

118 cache.use_huge_pages = true
119 cache.shm_file = ”/dev/hugepages/8”
120 cache.set_count = 64
121 cache.set_increment = 64

Listing 2.9: Snippet from the ExOT experiment configuration
file illustrating the sink application settings for Haswell-i7.
These settings are specific to the used sink application and
are described in detail in the ExOT project wiki [MKT20b].
We use the same settings for ARMv8-Dev, except that
cache.set_increment=16 .

Flush+Prefetch, for less than 1% bit errors. The discrepancy
of the results in comparison with the original work (see
Table 2.1) can be explained by the differences between the
implementation and platforms. In addition, the experimental
results show a high degree of difference between the capacity
bound and the achieved throughputs. This is caused by the

52 Chapter 2. Approach to data leak threat potential assessment

123 [ENVIRONMENTS.Haswell.APPS.ffmpeg]
124 executable = ”ffmpeg”
125 type = ”standalone”
126 start_individually = true
127 zone = ”host”
128 args = [”-y”, ”-loglevel”, ”error”,

”-stream_loop”, ”-1”, ”-i”, ”media/video.mp4”, ”-c:v”,
”libx264”, ”-b:v”, ”1000k”, ”-f”, ”null”,
”/dev/null”,]

↪

↪

↪

Listing 2.10: Snippet from the ExOT experiment configuration
file outlining the jammer application settings for Haswell-i7.
The settings used for ARMv8-Dev.

limitations of our implementation, namely the limitation
of cache sets and sampling rate we can use, rather than
channel effects. Moreover, the capacity bounds are not very
tight, as they are based on the optimistic assumption that all
channel accesses can be done with the best case time reported
in Table 2.2. Therefore, we still consider the experimental
evidence sufficient to validate the capacity bounds.

Interference. To evaluate the performance of the covert
channels under the influence of other applications, we repeated
the sweeps while running a jammer application. ExOT allows
us to integrate the jammer application into the experiment
execution by adding the parameters to the respective exper-
iment configuration file. Yet, ExOT maintains a controlled
experiment environment and guarantees a timed execution of
the source, sink and jammer application. To cause additional
utilisation of the cores and cache operations, we started video
encoding using ffmpeg one second prior to the transmission.
We configured ffmpeg to run an infinite loop to convert a
9.56minutes long animated mp4 video3 and pipe the output to
/dev/null .

3peach.blender.org

https://peach.blender.org/

2.5. Applying the methodology 53

The results of the evaluation sweeps with interference are
illustrated in the lower plots in Figure 2.9 and show that the
channels suffer from interference. In addition, the robustness
of the cache channels can be increased by using multiple cache
lines for redundant transmissions, rather than increasing the
throughput. Therefore, we consider the cache covert channels
to be robust and ultimately to pose a considerable threat in
multicore systems.

Lessons learned. The data leak evaluation we have presented
in this section highlights three points:

• Throughput results can vary to a great degree for
different implementations.

• It is necessary to derive capacity bound as a metric
for comparing data leaks rather than the throughput
to compare implementation.

• There is a need for experimental evidence to validate the
models and metrics.

These three points highlight the need for an extensive
experimental evaluation, which can be very costly. However,
the evaluation of the cache covert channels has also illustrated
that we can reduce the resource overhead necessary for
such an extensive experimental study by following the
proposed methodology (see section 2.3) and taking advantage
of ExOT. Furthermore, ExOT supports the repeatability of the
experimental study, as all vital data is gathered in one location
and, therefore, is easy to publish [MKT20a].

54 Chapter 2. Approach to data leak threat potential assessment

154 # Instantiate, generate and write the experiment
155 channel = ChannelFactory()(
156 config[”EXPERIMENT”][”channel”])
157 experiment = ExperimentFactory()(
158 config[”EXPERIMENT”][”type”], config=config,
159 channel=channel)
160 experiment.generate()
161 experiment.print_duration()
162 experiment.write()
163

164 # Execute sequentially in all environments.
165 for env in environments_to_execute:
166 experiment.execute_in_environment(env,

phases[env]['normal'], resume=False)↪

167 experiment.write()
168

169 # Analyse the experiment
170 for env in phase_mappings:
171 tmp_phase_mapping=dict(
172 [tuple(phase_mappings[env][to_evaluate])])
173 experiment.calculate_performance_metrics(
174 phase_mapping=tmp_phase_mapping
175 envs=[env],
176 reps=[],
177 **analysis_args[env],
178)
179

180 # Show the performance metrics...
181 experiment.performance_metrics.head()
182

183 # ...and the aggregated performance metrics
184 experiment.aggregate_performance_metrics()
185

186 # Serialise the experiment with the calculated performance
metrics↪

187 experiment.write()

Listing 2.11: Snippet from the ExOT experiment generation,
execution and analysis script. All channels are evaluated using
similar simple scripts.

2.5.
A
pplying

the
m
ethodology

55

0
10
20
30
40
50

10k 100k 1M

Flush+Flush
Bit
Errors
[%]

Bit Rate [bps]
10k 100k 1M

Flush+Reload

Bit Rate [bps]
10k 100k 1M

Flush+Prefetch

Bit Rate [bps]

0
10
20
30
40
50

10k 100k 1M

Flush+Flush
Bit
Errors
[%]

10k 100k 1M

Flush+Reload

10k 100k 1M

Flush+Prefetch

No Interference

ffmpeg Interference

ARMv8-Dev Haswell-i7

Figure 2.9: ExOT allows the evaluation of different channels on different platforms and different scenarios
with low overhead. Without interference, the bit error increases similarly for all three cache covert
channels. The throughputs of the Flush+Flush covert channel are more deteriorated by the ffmpeg
interference. In general, higher throughputs can be achieved on Haswell-i7.

56 Chapter 2. Approach to data leak threat potential assessment

2.6 Summary
In this chapter, we proposed a methodology for covert channel
evaluation and presented the Experiment Orchestration Toolkit
(ExOT). Our methodology helps researchers to define models,
metrics and experiments for data leak analyses. This supports
the reproducibility, comparability and expressiveness of covert
channels analysis results. The Experiment Orchestration
Toolkit (ExOT) implements the methodology and aims to
reduce the engineering effort needed for an analysis and
improve the reproducibility of experiments. The source
code and documentation of ExOT are publicly available for
download on exot.ethz.ch [MKT20b].

We showed the effectiveness of our methodology and
ExOT by evaluating three variations of cache covert channels.
In our evaluation, we captured different aspects of the data
leaks by determining capacity bounds as well as empirical
throughput and error rates. Furthermore, we showed that
ExOT allows researchers to evaluate external influences on the
covert channel with low overhead. Such an extensive analysis
and the resulting comparable metrics will help researchers to
understand which data leaks need immediate action and which
ones can be tolerated.

http://www.exot.ethz.ch

3
Analysing continuous covert

channels

In the previous chapter, we introduced a methodology that
describes how to conduct an exhaustive data leak analysis to
assess its threat potential. In this chapter, we show how to
apply this methodology to a value and time continuous covert
channel.

We present an extensive theoretical and experimental
analysis of the thermal covert channel inmulticore systems.We
show how to model and derive upper channel capacity bounds
for such continuous covert channels. Moreover, we define an
advanced communication scheme for the covert channel based
on our channel model and evaluate it on three different devices,
using the Experiment Orchestration Toolkit (ExOT) presented
in chapter 2. Furthermore, we briefly analyse the thermal covert
channel regarding its robustness towards external influences.

This chapter is based on work presented in [BMT16], [MT20] and [Sel17].

58 Chapter 3. Analysing continuous covert channels

Frequency

Chapter 5.

Power

Chapter 4.

Chapter 6.

Chapter 3. Thermal

Toolkit

Chapter 2.

i

o

o

o

o

o

RNN
decoder

Side
channel

Method-
ology

Capacity
bound

derivation

Figure 3.1: In chapter 3, we show how to apply our data
leak analysis methodology on value and time continuous
covert channels. We derive upper channel capacity bounds and
present an advanced communication scheme for the thermal
covert channel in multicore systems.

3.1. Introduction 59

3.1 Introduction
After the breakdown of Dennard Scaling [Esm+11], power
density growswith increasing integration in CMOS technology.
Due to this effect, switching too many transistors at the same
time generates more heat than can be dissipated, possibly
damaging the chip by exceeding the maximum safe temperat-
ure. While hardware-driven Dynamic Thermal Management
(DTM) [BM01] can avoid damages and ensure integrity, it
resorts to techniques that severely impair performance, such as
sharp speed throttling. For this reason, most current multicores
expose a software interface to the temperature sensors to
enable smarter thermal management policies that gracefully
impact performance and avoid triggering hardware DTM. For
example, Intel Core processors expose one sensor per core.
Similarly, Arm big.LITTE Systems-on-Chips (SoCs) expose
multiple sensors for their cores. These sensors are easily
accessible on laptops or desktops running Windows or Linux
through simple tools that export temperature information
to userspace processes. Additionally, we verified that user-
installed apps could access temperature sensors on Android-
based smartphones and tablets without requiring any specific
permissions.

Temperature sensors are a valuable asset for thermal man-
agement, but they can represent a security breach in privilege-
separated or sandboxed systems. A widespread example of such
systems is an Android-based smartphone, where each app has
access to data and resources based on user-granted system
permissions. Another example is sandboxing in state-of-the -
art browsers, where each tab runs in an isolated process with
restricted permissions [RBP09].

Recent research [Mas+15] provides evidence that temperat-
ure sensors can be used to implement a covert channel [Lam73]
that allows applications that are otherwise isolated to commu-

60 Chapter 3. Analysing continuous covert channels

core 0 core 1
src snk

Figure 3.2: The source app (src) has access to restricted data,
but no network access; the sink app (snk) has no access to the
restricted data but has network access. A compromised source
app can leak sensitive data to the sink app through the thermal
covert channel, violating the security paradigm of application
isolation and privilege separation.

nicate and possibly leak sensitive data. For instance, consider
the dual-core system depicted in Figure 3.2. A source (src) app
runs on core 0 and has access to sensitive data that is only
stored locally, but it does not have network access. A sink
(snk) app runs on core 1 and can freely communicate over
the network but has no rights to access the sensitive data. In
theory, privilege-separation should disallow communication
between the two applications and keep the sensitive data
secured, even in the presence of a compromised source app
and a malicious sink app. However, if the sink app can read
the on-chip temperature sensors, communication is possible
through the thermal covert channel, regardless of application
isolation.

If the system load is low, the source app can exploit the
sleep-states [Bar15] used in current multicores to save energy
and increase battery life to influence the temperature of its
core predictably and, due to heat transfer, the temperature
of the nearby cores. When the source app is active, its core
wakes up and dissipates heat, thus raising the temperature.
When the source app is idle, its core goes back to sleep and
the temperature drops. At low load, the other cores are mostly
in sleep-mode and do not introduce much noise. The source

3.1. Introduction 61

app exploits this effect to encode a message into its execution
trace; the sink app can retrieve the message by decoding
the temperature trace it reads from the on-chip sensors. In
section 3.2, we specify in more detail our threat model, while
section 3.3 illustrates howwemodel this covert communication
channel.

Previous work [Mas+15] presents an empirical study of the
1-hop channel, i. e., when the sink app can read the temperature
of the core physically next to the onewhere the source app runs.
This study outlines experiments that achieve a throughput
of up to 1.33 bits per second (bps) with an error rate of 11%
on an Intel Xeon-based server. This result demonstrates the
feasibility of communication on the 1-hop channel at low rates.
Yet finding the actual channel capacity and the achievable
rates and evaluating different platforms remain challenging
open questions. We need to answer these questions in order to
understand the possible entity of this threat in current systems.

Contributions. In this chapter, we present and exploit a new
methodology that mixes theoretical and experimental analysis
to tackle two main challenges:

1. Estimating the capacity (under controlled but realistic
conditions) of the thermal covert channel; and

2. Finding a communication scheme that improves previ-
ous throughput results towards the channel capacity.

Both for estimating the channel capacity and for evaluating
the throughput of our communication scheme, we use experi-
mental data collected from diverse multicores representative
of server systems, laptops, smartphones and automitive
applications, compared to the single server platform studied in
previous work. Section 3.4 illustrates our experimental setup.
We estimate that the capacity can be in the order of 50 bps for

62 Chapter 3. Analysing continuous covert channels

the 1-hop channel and in the order of 300 bps for the same-core
channel, i. e., when the sink app can read the temperature of
the core where the source app runs (section 3.5). Moreover, we
show a communication scheme that achieves rates ofmore than
10 bps on the 1-hop channel andmore than 100 bps on the same-
core channel, with less than 1% error probability (section 3.6).
This result is much higher than the maximum rate of 1.33 bps
on the 1-hop channel with 11% error probability achieved in
previous work [Mas+15] with a naïve communication scheme.

3.2 Threat model
We are interested in the scenario introduced in the example of
Figure 3.2. Without loss of generality, we assume that the sink
app only records a temperature trace by reading the sensors
and later sends it to the attacker over the network; message
decoding is done offline by the attacker. Thus, the sink app is
mostly idle and only periodically wakes up to read the sensor.

We target current multicore devices, which implement
per-core sleep states to extend battery life. On these devices,
the Operating System (OS) puts idle cores to sleep and, when
sleeping, cores consume little power and produce almost zero
heat. On Intel Core processors, when scheduling the idle thread,
the OS calls the mwait instruction to switch the current core
from the active state to a lower c–state and save power. For
instance, the C1-HSW state, which implements clock-gating on
the Haswell generation of these processors, brings most of
the power savings for a cheap wakeup latency of 2 𝜇s [Bar15].
Switching to deeper c-states saves more power but implies a
higher wakeup latency, up to hundreds of 𝜇s. ARM big.LITTLE
multicores implement a similar, but simpler, hierarchy, where
the C1 state implements clock-gating. Assuming no scheduling

3.2. Threat model 63

artefacts, even a costly wakeup latency of 200 𝜇s only puts a
loose upper bound of 5KHz on how fast the source app can
switch.

We note that the current devices that we target are idle or
lightly-loaded most of the time (e. g., a smartphone resting
in a pocket or a laptop only running a text editor). Thus,
the source and sink app can wait for the system load to be
low before starting to use the covert channel, so as to avoid
interference. We briefly evaluate the impact of background
load in subsection 3.6.3, but we leave a more detailed study
of interference to future work. In this chapter, we focus on
bounding the channel capacity and studying achievable rates
in controlled, yet realistic, conditions that enable repeatability
of our experiments. We also present a minor study outlining
the capabilities of the thermal covert channel in a realistic
scenario. Thus, we set the environment to limit interference
and noise as much as possible (section 3.4); subsection 3.6.3
presents a study of the sensitivity of our results to departure
from this controlled environment.

Finally, we note that current multicores, e. g., Intel Core
processors or ARM multicores, generally feature one tem-
perature sensor per core and that these sensors are easily
accessible by userspace processes or apps. For instance, on
Linux, lm_sensors exports a simple command-line interface;
on Windows, CoreTemp offers a graphical interface. While
setting up these tools might require administrative rights
(e. g., # sensors_detect), they are commonly installed on client
devices. On Android devices, the temperature sensors are even
easier to access for the apps: we verified that the CPU-Z app
(v. 1.15), available on the Google Play Store, requires no system
permissions to be installed and it reports several temperature
measurements on a Nexus 4 running Android 5.0.2. Moreover,
once the sensors are exposed, any app can read all sensors

64 Chapter 3. Analysing continuous covert channels

through the userspace interface, regardless of on which core it
runs.

3.3 Communication channel model
We study a family of storage covert channels [US 85; MP14]
where a source and a sink app share a multicore processor
and covertly communicate through the on-chip temperature
sensors. Assuming that the source app runs on core 𝑛, we can
define at least as many channels as there are temperature
sensors. Similarly to previous work [Mas+15], we consider one
sensor per core and a floorplan with cores in a linear array,
as commonly found on multicores with a moderate number
of cores1. While the actual floorplan of our experimental
platforms is not documented, the results we obtain are
compatible with this assumption and our definitions can be
adapted to a more general topology. Since the sink app is
mostly idle and, on current systems, usually has access to all
the sensors, it is not important on which core it runs; wemerely
assume that it runs on a different core than the source app. As
Figure 3.3 illustrates, when the sink app reads the temperature
of core 𝑛 (the one where the source app runs), we have the
same-core channel. Similarly, we have an 𝑚-hop channel when
the sink app reads the temperature of a core𝑚 hops away from
core 𝑛, i. e., core (𝑛 ± 𝑚).

We expect the same-core channel to have the highest
capacity, as the thermal resistivity of silicon degrades the signal
for the 𝑚-hop channels. In fact, the sink app can simply record
a trace for each sensor and send all the data to the attacker,

1For example the 4th generation Intel Core Processors, see
http://images.anandtech.com/doci/7003/Screen%20Shot%202013-05-31%
20at%207.59.16%20PM.png

http://images.anandtech.com/doci/7003/Screen%20Shot%202013-05-31%20at%207.59.16%20PM.png
http://images.anandtech.com/doci/7003/Screen%20Shot%202013-05-31%20at%207.59.16%20PM.png

3.3. Communication channel model 65

core 0 core n-1 core n core n+1 core N

.src

same-core channel

1-hop channels

(N - n)-hop channel

Figure 3.3: The sink app can establish several channels,
depending on the physical location of the temperature sensor
it reads with respect to the location of the source app.

+
temperature

trace y(k)
execution
trace x(k)

noise q(k)

H(f)
Quantizer

Figure 3.4: Discrete linear channel model with transfer function
𝐻(𝑓) from the execution trace 𝑥(𝑘) to the temperature trace
𝑦(𝑘), with additive noise 𝑞(𝑘). In our analysis, we neglect the
quantiser.

who could always exploit the same-core channel. Studying
the 𝑚-hop channels is, however, still interesting since system
virtualisation may restrict the sink app to have visibility only
over the sensor of its local core(s).

We consider the discrete-time channel model of Figure 3.4.
The input to the channel is 𝑥(𝑘), the execution trace of the
source app. At each instant 𝑘, 𝑥(𝑘) = 0 if the source app is idle
and 𝑥(𝑘) = 1 if it is active. The output of the channel is 𝑦(𝑘), i. e.,
the temperature trace from the corresponding sensor. Similar
to previous work [LDC02; SAS02; Rai+12], we use the linear
block with transfer function 𝐻(𝑓) to model the temperature
variations at the sensor caused by the execution trace. The
additive noise 𝑞(𝑘) models thermal noise and any disturbances
from other apps or the OS. The quantiser block models the fact
that commercial processors offer a coarse sensor resolution,
e. g., 1 ∘C on our platforms. Explicitly considering the quantiser

66 Chapter 3. Analysing continuous covert channels

might increase the model accuracy, but adds a non-linear
component, which is complex to analyse. For this reason, in
our analysis, we ignore the quantiser and consider a linear
approximation of the system. Our results (Sections 3.5 and 3.6)
indicate that this approximation is reasonable.

Thanks to the model of Figure 3.4 (excluding the quantiser),
we can employ the powerful tools available for the analysis
of discrete linear dynamic systems for estimating the channel
capacity (section 3.5). Additionally, we refer to this model to
design the experiments that evaluate the throughput achieved
with our transmission scheme (section 3.6).

3.4 Experimental setup
We base our analysis on experimental data collected from two
diverse and representative hardware platforms:

1. A Lenovo ThinkPad T440p laptop, featuring a quad-
core Intel Core i7-4710MQ processor clocked at 2.5GHz
running Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-58-
generic x86_64)

2. A server rack based on a 3rd generation Intel Xeon
E5-2690 octa-core processor clocked at 2.9GHz, and
running Ubuntu 16.04.5 LTS (GNU/Linux 4.4.0-137-
generic x86_64).

3. An Odroid-XU3 board, featuring a Samsung Exynos 5422
SoC, including an Arm big.LITTLE processor with two
quad-core clusters of A7 and A15 cores, respectively.
The big cluster is clocked at 2.1GHz, and the device runs
Ubuntu 18.04.2 LTS (GNU/Linux 4.14.111-158 armv7l)

3.4. Experimental setup 67

4. A NVIDIA Jetson TX2 based on a dual-core Denver 2
64-bit CPU and quad-core Arm A57 cluster. The Arm
cluster is clocked at 2.04GHz and the device is running
Ubuntu 18.04.3 LTS (GNU/Linux 4.9.140-tegra aarch64).

In the rest of the chapter, we refer to platform 1 as Haswell-i7,
to platform 3 as ARMv7-Mobile and to platform 4 as ARMv8-
Dev. Haswell-i7 is representative of current business laptops;
ARMv7-Mobile is representative of hand-held devices (it has
the same SoC as the Samsung Galaxy S5 SM-900H smartphone);
ARMv8-Dev is representative of multicore systems used in, for
example, automotive applications. We use the platforms to
analyse the channels for capacity estimation and to evaluate
a communication scheme that achieves higher rates than
previous work, in all cases, we use the following experimental
setup. Additionally, we reproduce previous results [Mas+15] on
our three platforms and evaluate our communication scheme
on a third Sandy-Xeon platform (section 3.6).

3.4.1 System settings
On all platforms, we install Ubuntu 18.04.3 and use the
/dev/cpu_dma_latency interface of the Linux kernel to limit the
maximum wakeup latency to 10 𝜇s. With this setting, the
deepest c-state for Haswell-i7 is limited to C1E-HSW and C1E-SNE

for Sandy-Xeon, with a wakeup latency of 10 𝜇s. The deepest
sleep state for ARMv7-Mobile and ARMv8-Dev is C1 , with a
wakeup latency of 1 𝜇s2.

On Haswell-i7, the temperature sensors are refreshed every
1ms [Int15].Wewere not able to find the sensors refresh period
for ARMv7-Mobile on the SoC documentation. To determine
this parameter, we collected several traces with a varying

2We retrieve wakeup latencies from the sysfs interface exposed at
/sys/devices/system/cpu/cpu$i/cpuidle/state/$n/latency .

68 Chapter 3. Analysing continuous covert channels

1 # set maximum fan speed level
2 echo 'level 7' > /proc/acpi/ibm/fan

Listing 3.1: Commands necessary to set themaximum fan speed
level on Haswell-i7.

1 FAN_PATH = /sys/devices/platform/pwm-fan/hwmon/hwmon0
2 # Disable automatic mode
3 echo 0 > ${FAN_PATH}/automatic
4 # Set maximum fan pwm
5 echo 255 > ${FAN_PATH}/pwm1

Listing 3.2: Commands necessary to set themaximum fan speed
level on ARMv7-Mobile and ARMv8-Dev

system load, using 1ms as the sampling period. We noticed
that the temperature only changed every 5ms, which we took
as the sensor refresh rate for this platform. Based on these
characteristics, we set the sampling period to 𝑇 = 1ms for
Haswell-i7 and Sandy-Xeon; 𝑇 = 5ms for ARMv7-Mobile and
ARMv8-Dev. Therefore, the Nyquist frequency of our discrete
system is 0.5/1ms= 500Hz for Haswell-i7 and Sandy-Xeon,
while its 100Hz for ARMv7-Mobile and ARMv8-Dev.

To favour repeatability, we run all experiments in a
controlled, yet realistic, environment. We set all devices in
an air-conditioned server room with an ambient temperature
of ≈ 23C∘ and, for both, we fix the fan speed to the maximum
level (see Listing 3.1 and Listing 3.2) and set the clock frequency
of active cores to the maximum, i. e., 2.5GHz for Haswell-i7,
2.1GHz for the big cores on ARMv7-Mobile and 2.035GHz
on ARMv8-Dev. In order to avoid scheduling artefacts, we
run the source and sink app with the SCHED_FIFO scheduling
class at highest priority by using the pthread_setschedparam()

interface and pin the source app to one core by using the
pthread_setaffinity_np() interface. During all experiments, the

3.4. Experimental setup 69

system is idle except for the source and sink apps and the
default system services of the Ubuntu installation.

For all three, the four cores of Haswell-i7, the four big
cores of ARMv7-Mobile and the four Arm cores in ARMv8-
Dev, we assume a linear floorplan, as shown in Figure 3.3.While
the actual floorplan of the two platforms is not documented,
our results are compatible with this assumption. We run the
source app on the third core in the array, i. e., on core 4 on
Haswell-i7, which has eight virtual cores with two-way hyper-
threading, and on core 6 on ARMv7-Mobile, where cores 0
to 3 are the LITTLE cores and cores 4 to 7 are the big cores.
On ARMv8-Dev, we run the source app on core 4, as cores 1
and 2 are the Denver cores. In the rest of the chapter, we
only count the four physical (big/Arm) cores, starting from
0; thus, for all platforms, we say that we run the source app
on core 2 and record the temperature traces from cores 0 to
3. On ARMv7-Mobile, we run the source app on the big cores
since the LITTLE cores provide no temperature sensors and
they do not sensibly affect the measurements on the big cores.
This setup allows us to analyse one same-core channel (when
looking at the temperature trace of core 2), two different 1-hop
channels (when looking at either core 1 or core 3), and one 2-
hop channel (when looking at core 0).

OnHaswell-i7, we exploit hyper-threading and run the sink
app with four parallel threads on the odd-numbered virtual
cores; each thread reads the temperature of its core from the
/dev/cpu/$i/msr interface. On ARMv7-Mobile and ARMv8-Dev,
all the sensors are exposed via the sysfs in the respective
directory /sys/devices/virtual/thermal/thermal_zone$i/temp , where
$i is the thermal zone; on ARMv7-Mobile we run the sink
app on the first LITTLE core and on ARMv8-Dev on the first
Denver core. This setup avoids timing interference between
the source and the sink app.

70 Chapter 3. Analysing continuous covert channels

1 volatile double a = 2.0e0;
2 volatile double b = 2.0e0;
3

4 /* Heavy floating-point work loop. */
5 while (flag) {
6 a *= b;
7 b -= a;
8 }

Listing 3.3: Source app worker threat tight loop, used to keep
cores active.

Unless differently specified, we use these settings in all
our experiments. Since a real attack would not benefit from
this controlled environment, in subsection 3.6.3 we analyse the
sensitivity of our results to variations to these settings.

3.4.2 Reference apps
We base our reference apps on the Experiment Orchestra-
tion Toolkit (ExOT) application library, presented in sub-
section 2.4.1. Snippets 3.4 and 3.5 illustrate their main
functionality.

The source app replays the execution trace that is passed
via the token queue and consists of one host threat and one
worker threat per core. The source app host threat (Listing 3.4)
processes the tokens from the input queue and synchronises
the worker threats using barriers. The generator host enables
all workers which, depending on the subtoken, keep their
core active (1) or stay idle by calling the sleep function (0).
After sleeping for the specified time, the generator disables
all workers, waits for all workers to report to the second
rendezvous point and starts processing the next token. When
activated, the workers execute a tight loop similar to the

3.4. Experimental setup 71

1 while (!local_state_->is_stopped()) {
2 // read token from the input queue
3 in_.read(token);
4

5 // Decompose the input token into duration and
6 // subtoken. subtoken defines which cores are
7 // active and which are idle. Worker threats
8 // access the subtoken_ via shared memory.
9 duration_ = std::get<duration_type>(token);

10 subtoken_ = std::get<subtoken_type>(token);
11

12 // Core routine:
13 // (1) Workers start processing the subtoken...
14 // (2) ... after the first rendezvous point.
15 // (3) The host thread sleeps for the duration.
16 // (4) Host stops the workers from processing.
17 enable_flag_ = true; // (1)
18 barrier_.wait(); // (2)
19 timer_.sleep(duration_); // (3)
20 enable_flag_ = false; // (4)
21

22 // Correct for timing offsets
23 timer_.update_offset();
24

25 // Second rendezvous point to synchronise all
26 // workers threads
27 barrier_.wait();
28 }

Listing 3.4: Stripped-down code for the reference source app
host thread. We use multiple worker threads in addition to the
host thread to utilise the different cores and employ barriers
to synchronise these different worker threads.

one of the popular cpuburn stress-test3 to keep their respective
core active. The tight loop of the source app worker threat is
outlined in Listing 3.3. To ensure proper timing of the execution

3patrickmn.com/projects/cpuburn

https://patrickmn.com/projects/cpuburn/

72 Chapter 3. Analysing continuous covert channels

1 auto until = [this]() {
2 return !global_state_->is_stopped();
3 };
4 auto action = [this]() {
5 out_.write(measure());
6 };
7

8 // If configured, pin the meter host threat to
9 // a specific core

10 if (conf_.should_pin_host) {
11 exot::utilities::ThreadTraits::set_affinity(
12 conf_.host_pinning);
13 }
14

15 // Set the scheduling used for the meter threat
16 exot::utilities::ThreadTraits::set_scheduling(
17 conf_.host_policy,
18 conf_.host_priority);
19

20 debug_log_->info(”[meter] running on {}”,
21 exot::utilities::thread_info());
22

23 // Wait for the signal to start measuring
24 while (!global_state_->is_started()) {
25 std::this_thread::sleep_for(
26 std::chrono::milliseconds{100});
27 }
28

29 // Run `action` till `until` returns false.
30 timer_.run_every(conf_.period, until, action);

Listing 3.5: Stripped-down code for the reference sink app host
thread. The host thread configures the measurement threads
and a timer to ensure the measurement threads perform a
measurement with the period conf_.period .

trace replay, the source app uses the Time Stamp Counter (TSC)
of the system on Haswell-i7 and Sandy-Xeon. On ARMv7-
Mobile and ARMv8-Dev we use the hardware performance

3.4. Experimental setup 73

counter to generate timestamps, due to the lack of a TSC.
Additionally (not shown in Listing 3.4), the source app keeps
track of the overall elapsed time and keeps adjusting internal
timer to avoid drifting apart due to jitter in the execution.

The sink app (Listing 3.5) samples the temperature sensors
every 𝑇 𝜇s (𝑇 = 1000 for Haswell-i7 and ARMv8-Dev, 𝑇 =
5000 for ARMv7-Mobile) and keeps a pre-allocated in-memory,
which it dumps to a file after the application is stopped. Similar
to the source app, the sink app uses barriers to synchronise
all reading threats using barriers (not shown in the code). We
register a signal handler to set the global_state->is_started() to
start the measurement and global_state->is_stopped() flag at the
experiment end. After the experiment end, we retrieve the log
file and analyse it offline.

3.4.3 Platform characterisation
Before starting the thermal covert channel evaluation, we need
to determine which thermal readings are available on the
different platforms. In this study, we only focus on sensor
readings within the processing core.

Haswell-i7 offers sensor readings for every logical core.
However, the readings for two logical cores mapped to the
same physical core are identical. Therefore, we have used four
sensor readings on Haswell-i7, one for each physical core.

Similarly, ARMv7-Mobile offers thermal sensor readings
for every big core. In addition, one sensor reading for the GPU
is also available, which we do not consider in this chapter.

In contrast, ARMv8-Dev only supplies one sensor reading
for all of its Arm cores, as outlined in Table 3.1. The sensor
reading for all Arm cores reports the maximum temperature

74 Chapter 3. Analysing continuous covert channels

Zone Name Sensed Location(s)

0 BCPU-therm Centrally in each A57 CPU
1 MCPU-therm Centrally in each Denver CPU
2 GPU-therm Within the GPU
3 PLL-therm Placed adjacent to PLLX
4 Tboard_tegra Temperature of the board
5 Tdiode_tegra Temperature on die near GPU

Table 3.1: Thermal zones of ARMv8-Dev as reported by
Nvidia. If multiple sensors are located in one zone, the max
measurement value of all sensors is reported.

measured in all of the cores4. In order to keep the analysis
scenario consistent, we consider this sensor reading to be the
temperature reported for each of the four Arm cores and do
not consider the other thermal sensors.

On Sandy-Xeon, we are able to get one measurement
for each of the 16 cores in the system. Therefore, we ran a
preliminary experiment with a simple active/sleep pattern of
the source application pinned to core 2 to determine which
cores are of interest. The resulting trace for each core is
illustrated in Figure 3.5 and show that the initial temperature
for the cores 0 to 7 is around 45∘C, while for cores 8 to 15 its
around 35∘C. We assume that this is caused by the separation
of the cores into two sockets (or clusters), whereas the cores 0
to 7 form socket 1 and are in close physical vicinity. Moreover,
knowing that the Sandy-Xeon processor has only 8 physical
cores5, we would expect that two cores in each cluster show
the same temperature trace. However, only the temperature

4https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%2520Lin
ux%2520Driver%2520Package%2520Development%2520Guide%2Fpower_manageme
nt_tx2_32.html%23wwpID0E05H0HA

5https://ark.intel.com/content/www/de/de/ark/products/64596/inte
l-xeon-processor-e5-2690-20m-cache-2-90-ghz-8-00-gt-s-intel-qpi.html

https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%2520Linux%2520Driver%2520Package%2520Development%2520Guide%2Fpower_management_tx2_32.html%23wwpID0E05H0HA
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%2520Linux%2520Driver%2520Package%2520Development%2520Guide%2Fpower_management_tx2_32.html%23wwpID0E05H0HA
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%2520Linux%2520Driver%2520Package%2520Development%2520Guide%2Fpower_management_tx2_32.html%23wwpID0E05H0HA
https://ark.intel.com/content/www/de/de/ark/products/64596/intel-xeon-processor-e5-2690-20m-cache-2-90-ghz-8-00-gt-s-intel-qpi.html
https://ark.intel.com/content/www/de/de/ark/products/64596/intel-xeon-processor-e5-2690-20m-cache-2-90-ghz-8-00-gt-s-intel-qpi.html

3.4. Experimental setup 75

sleep
active

 35
 45Temp.

[°C]
core 0

 35
 45Temp.

[°C]
core 1

 35
 45Temp.

[°C]
core 2

 35
 45Temp.

[°C]
core 3

 35
 45Temp.

[°C]
core 4

 35
 45Temp.

[°C]
core 5

 35
 45Temp.

[°C]
core 6

 35
 45Temp.

[°C]
core 7

 35
 45Temp.

[°C]
core 8

 35
 45Temp.

[°C]
core 9

 35
 45Temp.

[°C]
core 10

 35
 45Temp.

[°C]
core 11

 35
 45Temp.

[°C]
core 12

 35
 45Temp.

[°C]
core 13

 35
 45Temp.

[°C]
core 14

 35
 45

Time [s]

Temp.
[°C]

core 15

0 1 2 3 4 5 6 7

Figure 3.5: Temperature traces for Sandy-Xeonwhen the source
app executes the trace in the top plot on core 2. We identify
the two core clusters (or sockets) with cores 0-7 and 8-15. The
thermal traces do not allow us to determine which logical cores
are mapped to the same physical core.

76 Chapter 3. Analysing continuous covert channels

on core 2 closely follows the execution trace of the source
application, heating up when the source is active and cooling
down when the application is idle. Therefore, other than for
Haswell-i7, we cannot determine the logical core mapping
simply by analysing the temperature trace. Unfortunately, we
were not able to acquire any further information on the logical
core mapping nor on how the thermal sensor readings are
processed before they can be read through the Model Specific
Registers (MSRs). Hence, we simply choose the cores 0 to 4 for
the further analysis, assuming these thermal sensor readings
are taken from the four different physical cores in socket 1.

Figure 3.6 shows the results of the same preliminary
experiment run on Sandy-Xeon and also for the three other
platforms. We use these results to characterise the temperature
range and dynamics of our platforms. On all platforms, the
source app runs on core 2with the execution trace shown in the
top plots. The execution trace is an active/sleep square wave
with 50% duty cycle and varying frequency, with 4 periods each
at 1Hz, 2Hz, and 4Hz. The bottom plots report the resulting
temperature traces for cores 0 to 3, i. e., for the same-core
channel (core 2), the two 1-hop channels (cores 1 and 3), and
the 2-hop channel (core 0). The dynamic temperature range
for each platform and each core is indicated by the tics on the
y-axis of each plot and highlighted in Table 3.2.

For ARMv8-Dev, all temperature traces are the same, as
the system only reports one temperature reading for all cores.
Therefore, there is no difference between the same-core, 1-
hop and 2-hop channel. Furthermore, we note that despite the
narrow dynamic temperature range of only 1∘C, due to the
sensor resolution of 0.5∘C it is possible to reconstruct the input
wave from the temperature trace for the whole experiment.

For the other three platforms, the sensor resolution is 1∘C
and the same-core channel resembles the response of a low-

3.4.
Experim

entalsetup
77

sleep

active

 48

 54
Temp.
[°C]

 40
 43

 44
 47 35

 36
core 0

 50

 58Temp.
[°C]

Haswell-i7

 41

 45

Sandy-Xeon

 44
 47

ARMv7-Mobile

 35
 36

ARMv8-Dev

core 1

 49

 62
Temp.
[°C]

 39

 45

 45

 55

 35
 36

core 2

 49

 56

Time [s]

Temp.
[°C]

0 1 2 3 4 5 6 7

 40

 44

Time [s]Time [s]
0 1 2 3 4 5 6 7

 44

 49

Time [s]Time [s]Time [s]
0 1 2 3 4 5 6 7

 35
 36

Time [s]Time [s]Time [s]Time [s]

core 3

0 1 2 3 4 5 6 7

Figure 3.6: Traces from Haswell-i7, Sandy-Xeon, ARMv7-Mobile and ARMv8-Dev when the source app
executes on core 2; the top plot shows the active/idle execution trace of the source app, the other plots
show the temperature traces from the four cores. The dynamic temperature range is indicated by the tics
on the y-axis for every plot. In general, the thermal dynamics are higher on the two Intel-based devices
than on the Arm-based ones.

78 Chapter 3. Analysing continuous covert channels

Platform core 0 core 1 core 2 core 3

Haswell-i7 6.0℃ 8.0℃ 13.0℃ 7.0℃
Sandy-Xeon 3.0℃ 4.0℃ 6.0℃ 4.0℃
ARMv7-Mobile 3.0℃ 3.0℃ 10.0℃ 5.0℃
ARMv8-Dev 1.0℃ 1.0℃ 1.0℃ 1.0℃

Table 3.2: Dynamic temperature ranges measured on the
different platforms for the experiment of Figure 3.6.

pass filter that oscillates between a high and a low value with
a smoothed version of the input wave. Therefore, similar to
ARMv8-Dev, for Haswell-i7, Sandy-Xeon and ARMv7-Mobile
it is also viable to restore the complete input waveform from
the temperature trace.

As expected, the execution trace is harder to infer from
the 1-hop channels for the platforms Haswell-i7, Sandy-Xeon
and ARMv7-Mobile. This is due to the increased distance of
the corresponding sensors from the heat source. Moreover, the
1-hop channels show a different amount of attenuation and
distortion for the different platforms. The trace from core 1
looks “better” than core 3 for Haswell-i7 and Sandy-Xeon,
while the opposite is true for ARMv7-Mobile. Finally, Haswell-
i7 shows much less attenuation for the 2-hop channel than
Sandy-Xeon and ARMv7-Mobile, for which the temperature
trace is basically flat, making the input trace impossible to
reconstruct.

Haswell-i7 shows the least attenuation across the different
channels, which is also reflected in the dynamic temperature
ranges. For each channel, Haswell-i7 has a dynamic temper-
ature range that is at least 2∘C wider than the same channel
on the other platforms. For the same-core channel, ARMv7-
Mobile has a wider dynamic range of 10 ∘C, while the dynamic
range on Sandy-Xeon is just 6 ∘C. However, for the 1-hop

3.4.
Experim

entalsetup
79

Platform Process Package Area TDP Form Cooling

Haswell-i7 22 nm 1200.0mm2 47W Laptop Medium Fan
Sandy-Xeon 32 nm 2362.5mm2 135W Rack Big Fans
ARMv7-Mobile 28 nm 213.0mm2 < 20W SBC + Case Small Fan
ARMv8-Dev 16 nm 4350.0mm2 < 15W SBC Medium Fan

Table 3.3: Platforms hardware specifications that influence the thermal behaviour. TDP, the Thermal
Design Power, is the average power dissipated by the device at the base operating frequency with all
cores active.

http://ark.intel.com/content/www/us/en/ark/products/78931/intel-core-i7-4710mq.html
http://ark.intel.com/content/www/de/de/ark/products/64596/intel-xeon-processor-e5-2690.html
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
http://developer.nvidia.com/embedded/develop/hardware

80 Chapter 3. Analysing continuous covert channels

channels the dynamic range degrades less on Sandy-Xeon,
where it is 4 ∘C for both core 1 and core 3, compared to the
dynamic ranges reduction to just 3 ∘C and 5 ∘C, respectively,
measured on ARMv7-Mobile. On the 2-hop channel, the
temperature trace is basically flat for both platforms, Sandy-
Xeon and ARMv7-Mobile. This different behaviour depends on
the floorplan, fabrication characteristics and cooling system of
the four platforms, outlined in Table 3.3.

Intuitively, on all platforms and for all channels, the
dynamic range shrinks as the frequency of the input increases.
As a notable example, the temperature trace of core 3 of
ARMv7-Mobile shows significant variations as long as the
input frequency is 1Hz, but the signal is quickly lost when the
frequency increases (from time 4 s on).

Finally, another important difference between the plat-
forms lies in the incidence of noise in the temperature traces.
The traces from the Intel based platforms Haswell-i7 and
Sandy-Xeon present a sensible amount of noise, with the
temperature constantly oscillating by 1 ∘C. Instead, the traces
from the Arm based platforms ARMv7-Mobile and ARMv8-
Dev show almost no noise and have an accentuated staircase-
like quantisation effect, probably due to internal filtering in the
sensors, which have a slower refresh rate compared to Haswell-
i7 (5ms versus 1ms). The lack of noise on ARMv7-Mobile
and ARMv8-Dev accentuates the signal attenuation at higher
frequencies and further distance since temperature variations
are only observable if the actual temperature varies across a
quantisation boundary; otherwise, variations are hidden by
the quantisation. Despite this difference, we found that we
were able to stick to the linear channel model of Figure 3.4 for
the platforms in our study to estimate the channel capacity
(section 3.5).

The heterogeneity in the behaviour of these platforms

3.5. Capacity estimation 81

makes them good candidates for the source of representative
data for our study of the capacity bounds (section 3.5) and for
the evaluation of our communication scheme (section 3.6).

3.5 Capacity estimation
In the 1985 Orange Book [US 85], the U. S. Department of De-
fence reports that “a covert channel bandwidth that exceeds
a rate of one hundred (100) bits per second is considered high”
and that covert channels with “maximum bandwidths of less
than one (1) bit per second are acceptable in most application
environments”. While these numbers might look somewhat
different if estimated today, the 1.33 bps transmission rate
with 11% error probability achieved by Masti et al. [Mas+15]
for the 1-hop channel seems too low to be considered a
threat in practice. Still, much higher rates with much lower
error probability are possible when considering the same-core
channel or a better communication scheme, as we show in
section 3.6. In order to evaluate whether these channels can or
cannot be a security threat, we need to find a reliable estimation
of their capacity 𝐶, i. e., we need to find the upper bound
on the rate of communication achievable through them with
arbitrarily small error probability [Sha01; CT06].

Following Shannon’s seminal work [Sha01], researchers
extensively studied ways to determine the capacity of a wide
range of channel models [CT06]. Yet even with this vast
theoretical literature available, estimating the capacity of a
physical channel remains very challenging: it requires using
an appropriate model and retrieving quantitatively accurate
measurements of the channel parameters, despite the noise
and limited precision. We tackle this challenge by leveraging
the simple model described in section 3.3 and determining its

82 Chapter 3. Analysing continuous covert channels

transfer function𝐻(𝑓) through carefully designed experiments
based on the experimental setup described in section 3.4.

3.5.1 The theoretical approach to channel capa-
city bounds

The first step towards determining a good estimate of
the channel capacity 𝐶 is finding a suitable mathematical
expression to compute it based on observable parameters.
One of the simplest expressions for the channel capacity is

𝐶 = 𝐵 log2 (1 +
𝑆
𝑁
) [bps] (3.1)

given by the Shannon-Hartley theorem [CT06], reported in
Equation (3.1). The theorem gives the capacity 𝐶 for the ideal,
additive white gaussian noise (AWGN), band-limited channel
with bandwidth 𝐵 and Signal-to-Noise-Ratio (SNR) 𝑆/𝑁.

Since Equation (3.1) applies exactly only to an ideal,
band-limited, channel, we first need to verify whether we
can reasonably approximate our channels this way. If this
approximation is possible, we can determine the bandwidth
𝐵 and the SNR 𝑆/𝑁 of our channels based on experimental
measurements and use these values to estimate the capacity.
To find the bandwidth, we try to fit a discrete-time dynamical
system model to match the dynamics of the channels. For
instance, we were able to fit the same-core channel of ARMv7-
Mobile with a discrete-time model with six poles and four
zeros [Hel+04]. Figure 3.7 shows the measured and modelled
step response for this channel (left) and the magnitude Bode
diagram of the corresponding model (right). The step response
plot visually shows how well the model can predict the
measured behaviour of the channel, while the Bode diagram

3.5. Capacity estimation 83

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

Temp.
Diff.
[K]

Time [s]

Step Response

Measured
Model

-40
-30
-20
-10

 0
 10
 20
 30

10-3 10-2 10-1 100 101 102

Magnitude
[dB]

Frequency [Hz]

Bode Magnitude Response

3dB drop
B = 0.029 Hz 15 dB drop

B = 10.4 Hz

Figure 3.7: Step response of the same-core channel on ARMv7-
Mobile; the input is 1 in the interval [150, 750) s, 0 elsewhere.

shows the asymptotic approximation of the frequency response
in logarithmic scale. In an ideal band-limited channel, wewould
expect the bode diagram to have a rectangular shape that lets a
band of frequencies pass and blocks all the rest of the spectrum.
While the model fits the step response well (the normalised
mean-squared-error is 4.7%), its Bode magnitude plot does not
allow to easily define the bandwidth 𝐵. On the one hand, the
commonly used cut-off frequency at the 3 dB drop (shown in
Figure 3.7) does not seem to be a good choice to determine the
bandwidth in this case since the magnitude keeps decreasing
slowly up to about 10Hz, where there is a clear knee. On the
other hand, using the frequency at the knee for the bandwidth
would be rather arbitrary as well since the amplitude is far from
constant up to there, with a 15 dB drop. Moreover, looking at
the preliminary experiment of Figure 3.6, we notice that there is
a significant attenuation when increasing the input frequency,
even just from 1Hz to 4Hz. Therefore, using a fixed SNR
value for the whole passband would not be accurate. We omit
the step responses and Bode diagrams for the other channels
and for Haswell-i7, Sandy-Xeon and ARMv8-Dev, as similar
considerations apply in those cases. From these observations,
we conclude that Equation (3.1) is not adequate to estimate the
capacity of our channels since we are not able to estimate the
required parameters reliably.

84 Chapter 3. Analysing continuous covert channels

While using the Shannon-Hartley theorem is not effective
in our case, we can leverage a different approach to find
the capacity [CT06; VPL10]. We can search among all the
possible input patterns 𝑥(𝑘) for the one that has the frequency
characteristics that make the most information pass through
the channel. In other words, we need to find the best allocation
of the input power ̂𝑆𝑥𝑥(𝑓) across the frequency spectrum. If
we can find this ideal allocation ̂𝑆𝑥𝑥(𝑓), we can use results
from the information theory literature to compute the channel
capacity. The key observation in this method is that we can
only allocate as much power as we are able to put into our input
signal, i. e., we have a power cap 𝑝0 on howmuch power we can
input into our system. The general approach to determining
̂𝑆𝑥𝑥(𝑓), and thus 𝐶, subject to a power cap 𝑝0 is known as water-

filling [CT06; VPL10]. The water-filling technique is based on
the assumption that the optimal input spectrum is the one that
allocates power such that the sum of the noise and the signal
power is constant over the whole channel spectrum, so that
there is more power from the signal in the parts of the spectrum
with high SNR. We study two different solutions based on
this technique. First, we consider the classic solution [VPL10],
which considers the constraint 𝑝0 on the average input power.
Second, we analyse a constrained-input solution [HO92] that
explicitly considers the extra constraint that the input to our
channels is a binary value (active/idle).

Classic water-filling approach. The classic water-filling
technique allows us to compute the capacity of channels
with arbitrary transfer function 𝐻(𝑓) and additive Gaussian
noise 𝑞(𝑘), not necessarily white [CT06; VPL10]. If we can
estimate the power spectrum of the channel 𝑆ℎℎ = |𝐻(𝑓)|2
and of the noise 𝑆𝑞𝑞 then, given a cap 𝑝0 on the average
input power, we can derive the channel capacity according
to Equation (3.2) [VPL10, Eq. (6.15)]. The capacity 𝐶𝑏 is

3.5. Capacity estimation 85

determined by the spectral power allocation 𝑆𝑥𝑥(𝑓), which
cannot exceed the power cap 𝑝0, as Equation (3.3) states. We
can maximise the expression in Equation (3.2) and determine
the capacity by intelligently shaping the power allocation 𝑆𝑥𝑥
so that more power is allocated at those frequencies with better
SNR. This ideal allocation ̂𝑆𝑥𝑥 can be determined with a water-
filling procedure [CT06; VPL10], which we do not describe in
detail here.

𝐶𝑏 = max
𝑆𝑥𝑥

{∫
ℱ
log2 (1 +

𝑆𝑥𝑥(𝑓) ⋅ 𝑆ℎℎ(𝑓)
𝑆𝑞𝑞(𝑓)

) 𝑑𝑓} [bps] , (3.2)

under the constraint that ∫
ℱ
𝑆𝑥𝑥(𝑓)𝑑𝑓 ≤ 𝑝0 (3.3)

As we will show in subsection 3.5.2, we are able to estimate
𝑆ℎℎ and 𝑆𝑞𝑞 for our channels. Thus, we can use the water-
filling procedure on Equation (3.2) to estimate the capacity
𝐶𝑏. We expect 𝐶𝑏 to be an upper bound on the real capacity 𝐶
because the classic water-filling approach does not consider
the more stringent constraint that our input is required to be a
binary value. In order to evaluate how much more stringent
this constraint is, we use an additional result from the literature
to compute a tighter upper bound on the real capacity.

Constrained-input water-filling. In a 1992 paper, Heegard
and Ozarow [HO92] studied the capacity of saturation record-
ing, i. e., the capacity of storage systems such as tape recorders
or optical disks. While this problem has, in general, little to
do with our study, it has the same saturation constraint on
the channel input: input values can only be either 0 or 1.
This shared property allows us to leverage their expression
for an upper bound 𝐶𝑎 on the channel capacity 𝐶 [HO92, Eq.
(11)]. We report this result (with minor notation changes) in

86 Chapter 3. Analysing continuous covert channels

Equation (3.4). 𝐶𝑎 depends on the value of the power spectrum
of the channel 𝑆ℎℎ and the parameter 𝜆 over𝐴𝜆, which is the set
of frequencies 𝑓 ∈ (−∞,∞) for which 𝜆⋅𝑆ℎℎ ≥ 1. The parameter

𝐶 ≤ 𝐶𝑎 = max
𝜆

{
1
2 ∫

𝐴𝜆

log2 (𝜆 ⋅ 𝑆ℎℎ(𝑓)) 𝑑𝑓} [bps] , (3.4)

𝜆must be maximised subject to the constraint of Equation (3.5),
which ensures that the SNR does not exceed the ratio of the
power cap 𝑝0 over the noise power𝑁0. These equations assume
that the noise is white, i. e., that the noise has a constant power
spectrum 𝑆𝑞𝑞 = 𝑁0 across the frequency range 𝐴𝜆. Since, in

1
2 ∫

𝐴𝜆

(𝜆 −
1

𝑆ℎℎ(𝑓)
) 𝑑𝑓 ≤

𝑝0
𝑁0

(3.5)

our channels, 𝑆𝑞𝑞 is not constant, we use this constrained-input
solution only after applying a whitening filter to the spectra
so that 𝑆𝑞𝑞 can be assumed constant; subsection 3.5.3 explains
this technique in more detail. Finding the 𝜆 that maximises
Equation (3.4) subject to Equation (3.5) follows a water-filling
procedure again.

3.5.2 Determining the power spectra
To use the water-filling methods, we need to find reliable
estimates for the power spectra of the noise and our channels
on our two platforms. Computing reliable estimates from
experimental data is challenging mainly due to (i) the limited
temperature resolution (1K) of the sensors, (ii) the noise (on
Haswell-i7), (iii) the quantisation effect (on ARMv7-Mobile),
and (iv) the saturation constraint on the input.

3.5. Capacity estimation 87

Noise spectra. 𝑆𝑞𝑞 is easier to estimate than 𝑆ℎℎ since
the input constraint does not play a role in this case. For
all platforms, we simply record a 120 s long temperature
trace for each channel, with the system idle except for the
sink app, which records the traces and the default system
services. Then, we compute the power spectral density 𝑆𝑞𝑞(𝑓)
over the frequency range [0.5, 𝑓𝑚]Hz for each channel, with
𝑓𝑚 = 250 for Haswell-i7 and 𝑓𝑚 = 100 for ARMv7-
Mobile, which is limited by the lower sampling rate. After
subtracting the mean value from the temperature traces, to
remove the DC component, we get the spectra through Fast
Fourier Transforms (FFTs) [CLW69] of each temperature trace.
To improve the accuracy of our analysis, we use Welch’s
method [Wel67] and a Blackman-Harris window [AST89].
Welch’s method is commonly used to minimises the variability
in the calculation of the power spectral density, i. e., the noise
in the power spectrum, compared to standard Fourier analysis.
The Blackman-Harris window is designed to minimise the side-
lobes in the frequency domain and, therefore, the influence
of neighbouring frequencies on each other. We report the
resulting high-resolution noise spectra in Figure 3.9, together
with the channel spectra 𝑆ℎℎ, which we illustrate next.

Channel spectra. Determining 𝑆ℎℎ is more challenging
because of the constraint on the input. This constraint basically
restricts the variety of input signals that we can use to
rectangular waves of different frequency, similar to the one we
used in the preliminary experiment of Figure 3.6. Our approach
to determining 𝑆ℎℎ consists of designing a set of experiments
{ℰ𝑓} where experiment ℰ𝑓 gives us an estimate of the value of
the channel power 𝑆ℎℎ(𝑓) at frequency 𝑓. We go into detail in
the example of Figure 3.8, which illustrates how we determine
𝑆ℎℎ for the 1-hop channel of core 1 of Haswell-i7. The data
used to draw Figure 3.8 come from five separate experiments

88 Chapter 3. Analysing continuous covert channels

10-6

10-4

10-2

100

1 10 20 30 40

Input

Power
Density
[Hz-1]

Frequency [Hz]
10-4

10-2

100

1 10 20 30 40

Output

Power
Density
[K2/Hz]

Frequency [Hz]

5.1 Hz 14.9 Hz 25.0 Hz 34.5 Hz Sxx Syy Shh

Figure 3.8: Input (left) and output (right) spectra from core 1
of Haswell-i7 for the five experiments ℰ𝑓 at the frequencies 𝑓
reported in the legend. We use the spectra peaks to build 𝑆𝑥𝑥
and 𝑆𝑦𝑦; then, 𝑆ℎℎ = 𝑆𝑦𝑦/𝑆𝑥𝑥. The 𝑦-axis is in logarithmic scale.

ℰ𝑓, with 𝑓 ∈ {5.1, 14.9, 25.0, 34.5, 45.5}Hz. Each experiment
ℰ𝑓 consists of using a modified version of the source app
to excite the system with a square wave at frequency 𝑓 and
computing the power spectra of the input and the output,
which are superimposed in the left and right plots of Figure 3.8,
respectively. To compute these spectra, we use the same FFT-
based method that we use to compute 𝑆𝑞𝑞. The spectra from
experiment ℰ𝑓 show a peak at frequency 𝑓, which is where
most of the power is allocated. We take these peaks as the
values of the input 𝑆𝑥𝑥 (blue circles in Figure 3.8) and output
𝑆𝑦𝑦 (green triangles in Figure 3.8) power spectra. Then, we
can simply compute the power spectrum of the channel 𝑆ℎℎ
as the sample-wise output-over-input ratio 𝑆𝑦𝑦/𝑆𝑥𝑥. Figure 3.9
reports the values of the 𝑆ℎℎ spectra that we derive with this
methodology for the four channels on our two platforms, along
with the noise spectra 𝑆𝑞𝑞.

3.5.2.1 Additional notes on the experiments {ℰ𝑓}

Each experiment ℰ𝑓 lasts 120 s on Haswell-i7 and Sandy-Xeon,
while on ARMv7-Mobile and ARMv8-Dev it lasts for 600 s, so
that we collect the same number of samples (120 k) for all

3.5.
C
apacity

estim
ation

89

10-4
10-2
100
102

4001 10 100

core 0 (two hops)
Power
Density
[K2/Hz]

4001 10 100

core 1 (one hop)

4001 10 100

Haswell-i7
core 2 (same core)

4001 10 100

core 3 (one hop)

10-4
10-2
100
102

4001 10 100

core 0 (two hops)
Power
Density
[K2/Hz]

4001 10 100

core 1 (one hop)

4001 10 100

Sandy-Xeon
core 2 (same core)

4001 10 100

core 3 (one hop)

10-4
10-2
100
102

901 10

core 0 (two hops)
Power
Density
[K2/Hz]

901 10

core 1 (one hop)

901 10

ARMv7-Mobile
core 2 (same core)

901 10

core 3 (one hop)

10-4
10-2
100
102

901 10

core 0 (two hops)
Power
Density
[K2/Hz]

Frequency [Hz]
901 10

core 1 (one hop)

Frequency [Hz]
901 10

ARMv8-Dev
core 2 (same core)

Frequency [Hz]
901 10

core 3 (one hop)

Frequency [Hz]

Shh (measured) Shh (trend) Sqq (measured)

Figure 3.9: Power density spectra 𝑆ℎℎ for the four channels measured on our platforms. The crosses are
measured values, and the red solid line is the Bezier trend for 𝑆ℎℎ. The dotted grey lines are the spectra
of the noise 𝑆𝑞𝑞. Both axes are in logarithmic scale.

90 Chapter 3. Analysing continuous covert channels

platforms. The longer experiments on ARMv7-Mobile and
ARMv8-Dev also help to make sure that we can actually
observe enough variations in the temperature traces to build
a meaningful spectrum (recall the accentuated quantisation
effect on ARMv7-Mobile and ARMv8-Dev that was discussed
in subsection 3.4.3). Finally, for all the channels, we only keep
the 𝑆ℎℎ points up to the frequency 𝑓 where 𝑆ℎℎ(𝑓) drops at or
below the noise level 𝑆𝑞𝑞(𝑓).

We determine the frequency range {𝑓 } for the experiments
{ℰ𝑓} to reduce measurement errors as much as possible. We
only use frequencies that, at the sampling period of either 1ms
(Haswell-i7) or 5ms (ARMv7-Mobile), have an integer number
of samples per period of the square wave. We start from 0.5Hz
and proceed in steps of either 0.2Hz or one fewer sample
per period, whichever yields the largest step. The crosses in
Figure 3.9 are located at these frequencies along the 𝑥-axis. In
total, we evaluate 180 different frequencies for Haswell-i7 and
Sandy-Xeon; 78 different frequencies for ARMv7-Mobile and
ARMv8-Dev.

Due to the constraints on the input, we use square
waves as an approximation of sine waves, which would be
the most appropriate waveform to concentrate the input
power at the corresponding frequency. In practice, the non-
ideal characteristics of our channels (particularly, the c-state
sleep/wakeup latency) ensure that our logical square waves are
really steep ramps that approximate a sine wave well enough.
In fact, the spectra of Figure 3.8 clearly show the peaks at the
fundamental frequencies, with some negligible harmonics.

One way to approximate sine waves better on the input
would be to use active/sleep Pulse-Width-Modulation (PWM)
at a rate 𝑟 much higher than the frequency corresponding to
the sampling time 𝑇 we use (i. e., 𝑟 ≫ 1KHz). In this way, it
is possible to obtain different power levels and to generate a

3.5. Capacity estimation 91

Requirements Experimental
Evaluation

Spectral
Analysis

Calculate
Capacity Bound

HW Properties

Channel Model

Define
experiments

 &
noise exp.

Derive Power
Spectra for

Channel
and Noise

Water-Filling

Figure 3.10: Summary of the steps necessary to determine
upper channel capacity bounds for complex value and time
continuous covert channels.

sampled sine wave. Since the c-state and scheduling latencies
are fast enough to do so, we actually implemented this PWM
approach in a modified version of the source app. However,
we found that the results were not significantly different; thus,
we decided to stick with the “square” waves.

3.5.3 Computing the capacity bounds
We can finally compute the two capacity bounds 𝐶𝑏 and 𝐶𝑎,
with the classic and constrained-input water-filling methods,
respectively. Figure 3.10 summarises the necessary steps for
deriving the capacity bounds. Since we work with discrete
spectra, we accordingly adapt the equations of subsection 3.5.1
to use summations instead of integrals and to consider the
discretisation intervals along the frequency range. While
the noise spectra 𝑆𝑞𝑞 already come with a high frequency
resolution, the 𝑆ℎℎ spectra are more coarsely quantised, as
the crosses in Figure 3.8 show. To simplify the computations,
we linearly interpolate all the spectra on a regular frequency
grid with 0.1Hz spacing.

Classic water-filling. This method can handle non-white
noise spectra 𝑆𝑞𝑞, which is the case in our measurements
(see Figure 3.9). We define the input power cap 𝑝0 as the
maximum input power measured in our experiments {ℰ𝑓},

92 Chapter 3. Analysing continuous covert channels

see Equation (3.6). To find 𝐶𝑏, we compute the ideal power

𝑆𝑒𝑥𝑥… Input power spectrum of experiment 𝑒 ∈ {ℰ𝑓}

𝑝0 = max
𝑒∈{ℰ𝑓}

(∫
𝑓
(𝑆𝑒𝑥𝑥)) (3.6)

allocation ̂𝑆𝑥𝑥 by iteratively refining the value of the parameter
𝜆 until the condition of Equation (3.5) is met (almost) with
equality (with a maximum error of 10−6).

Constrained-input water-filling. In order to compute 𝐶𝑎,
Equation (3.4) assumes that the additive noise is white, with
constant power density 𝑆𝑞𝑞 = 𝑁0 across the relevant frequency
range. However, our measured 𝑆𝑞𝑞 spectra vary significantly
across the frequency range we are interested in. To address this
issue, we apply a whitening filter to all spectra. Assuming the

𝑆𝑊𝐹 =
𝑆𝑞𝑞
𝑁0

=
𝑆𝑞𝑞
𝑆𝑞𝑞

(3.7)

̂𝑆ℎℎ =
𝑆ℎℎ
𝑆𝑊𝐹

(3.8)

̂𝑆𝑞𝑞 =
𝑆𝑞𝑞
𝑆𝑊𝐹

(3.9)

�̂�0 = ̂𝑆𝑞𝑞 (3.10)

constant noise power 𝑁0 as 𝑆𝑞𝑞, we determine the spectrum
of the whitening filter 𝑆𝑊𝐹 as shown in Equation (3.7). We
now apply this whitening filter 𝑆𝑊𝐹 to our channel to get
the whitened channel spectrum ̂𝑆ℎℎ and the whitened noise
spectrum ̂𝑆𝑞𝑞 as illustrated in Equation (3.8) and (3.9). The
white noise level �̂�0 is defined in Equation (3.10). We adopt

3.5. Capacity estimation 93

the Equations (3.4) and (3.5) as illustrated in Equation (3.11)
and (3.12), to determine the capacity of the channel. Given

𝐶 = max
𝜆

{
1
2 ∫

𝐴𝜆

log2 (𝜆 ⋅ ̂𝑆ℎℎ(𝑓)) 𝑑𝑓} [bps] (3.11)

1
2 ∫

𝐴𝜆

(𝜆 −
1

̂𝑆ℎℎ(𝑓)
) 𝑑𝑓 ≤

𝑝0
�̂�0

(3.12)

the global power cap 𝑝0, which we determine in the same way
as in the classic water-filling case, we compute the optimal
allocation to the sub-bands based on their width and their noise
level [VPL10, Chap. 6.5]. Finally, we consider one sub-band at
a time and independently compute the capacity in an iterative
way, similar to the classic case. To compute 𝐶𝑎, we sum the
resulting capacity in all the sub-bands.

Capacity bounds. Figure 3.11 shows the capacity bounds
𝐶𝑏 (upper) and 𝐶𝑎 (lower) that we compute with the classic
and constrained-input water-filling methods, respectively. In
general, the observations of subsection 3.4.3 seem to comply
with the determined capacity bounds, i. e., the channel on core 3
is better than the one on core 1 for ARMv7-Mobile, while the
opposite is true for Haswell-i7 and Sandy-Xeon. As expected,
𝐶𝑏 > 𝐶𝑎 and the bound for the same-core channel is the highest
all platforms and both methods. Also, the trend that capacity
bounds reduce drastically for 𝑚-hop channels with 𝑚 > 0
compared to the same-core channels is consistent among all
platforms except ARMv8-Dev. Here, ARMv8-Dev is a special
case, as it supplies the same sensor reading for all of the cores,
as outlined in section 3.4.

While for Sandy-Xeon and ARMv7-Mobile the capacity
bound decreases with increasing hop count, the 2-hop channel
on Haswell-i7 yields a higher channel capacity bound than the

94 Chapter 3. Analysing continuous covert channels

1-hop channels. This can be explained by closely reviewing
the spectra for Haswell-i7 illustrated in Figure 3.9. While the
signal power reduces slightly when comparing core 0 to 𝑐𝑜𝑟𝑒 1
and 3, the noise power is significantly lower on core 0.

These results do not exclude that the same-core channel
might be a security threat, with 𝐶𝑎 well above 100 bps for three
of the four platforms. While the bounds for the 1-hop channels
and channels onARMv8-Dev are all below 100 bps, they are still
much higher than our initial expectations based on previous
research. In section 3.6 we show a transmission scheme able
to increase previous results on transmission rates notably.

3.6 Transmission scheme and achieved
rates

The transmission scheme that Masti et al. [Mas+15] used to
evaluate the 1-hop channel is based on ON-OFF keying: the
source app is active to transmit a 1 and it goes idle to transmit
a 0. A major issue with this simple scheme is that the average
load level depends on the input message: a message with
several ones (respectively, zeros) in a row will leave the source
core active (respectively, idle) for a long time compared to
the symbol duration, causing the average temperature to drift
up and down. This drift of the operating point unpredictably
changes the temperature dynamics over time, making the
channel non-stationary and the decoding more complicated.
This issue, coupled with the simplistic edge-detection decoding
method they used, could explain the poor performance that
they measured compared to the capacity bounds that we
derived in section 3.5. In this section, we evaluate a simple
communication scheme that overcomes this issue.

3.6.
Transm

ission
schem

e
and

achieved
rates

95

 0

 100

 200

 300

 400

 500

Capacity
[bps]

97.21 80.21

469.58

74.84

17.15 31.06

422.04

19.2323.22 41.35

199.52

74.42
42.56 42.56 42.56 42.56

Classic water-filling
(Cb)

 0

 100

 200

 300

 400

 500

core 0
2 hops

core 1
1 hop

core 2
same core

core 3
1 hop

Capacity
[bps]

70.99 56.06

314.82

53.62
15.14 24.18

301.48

16.0616.11 27.27

131.65

48.9930.82 30.82 30.82 30.82

Haswell-i7 Sandy-Xeon ARMv7-Mobile ARMv8-Dev

Constrained-input water-filling
(Ca)

Figure 3.11: Upper bounds 𝐶𝑏 (top) and 𝐶𝑎 (top) on the channel capacity 𝐶. Except for ARMv8-Dev, the
capacity degrades drastically for 𝑚-hop channels with 𝑚 > 0, compared to same-core channels. The
constrained-input water-filling yields tighter capacity bounds.

96 Chapter 3. Analysing continuous covert channels

(a)0 1 0 1 1

sleep
active

(b)

sleep
active

(c)

 48
 55
 62

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

(d)
Temp.
[°C]

Time [s]

Figure 3.12: An input message (a), encoded onto the 1Hz clock
(b), gives the execution trace (c), which leads to the temperature
trace (d) on the same-core channel of Haswell-i7.

3.6.1 Encoding and decoding scheme
A simple way to keep the channel in the dynamic range
during communication is to encode the input message so as to
maintain, on average, a constant load. To do so, we use square
waves with a 50% duty cycle as a clock signal onto which we
encode the input message.

Message encoding. We generate the execution trace of the
source app with the Manchester encoding scheme [Tan02], as
Figure 3.12 illustrates for a 5-bit message and a 1Hz clock. A
one in the message is encoded into an unmodified clock signal
in the execution trace; a zero becomes a 180° phase-shifted
clock signal in the execution trace. The resulting execution
trace leads to temperature traces oscillating around a roughly
constant average, as Figure 3.12 (d) shows for the same-core
channel on Haswell-i7. The transmission rate directly depends
on the frequency of the clock signal since the trace carries 1 bit
of information per period of the clock, i. e., 𝑟 bits per second
(bps) for a 𝑟Hz clock.

Message decoding. Message decoding happens offline (see
section 3.2) from the temperature traces recorded by the sink
app. The first step of decoding is determining the phase of the
clock signal. For simplicity, we synchronise our experiments

3.6. Transmission scheme and achieved rates 97

0°-shifted
clock c(k)

90°-shifted
clock c(k)

temp.
trace
y(k) ++

+

+

bit

mean

Re

Im

Re

Im
Classifier

0

1

Figure 3.13: Block diagram of our bit-wise decoding scheme.

so that the beginning of the temperature trace coincides
with the beginning of the message. In a real attack, where
this synchronisation would not be possible, the source app
could send a known preamble that the sink app could use
to detect the clock phase. Once the clock phase is detected,
it will not change during an experiment, since our source
and sink app are designed to not accumulate clock skew (see
subsection 3.4.2). To proceed with decoding, we look at each
clock period, i. e., at each bit, separately. As Figure 3.13 shows,
for each bit, we first get a 0-mean signal by subtracting its mean
temperature. In this way, the decoding is robust against long-
term temperature variations due to environmental changes.We
decode the resulting trace with traditional signal-processing
techniques [VPL10]. We first multiply the trace with a 90°
and a 0° phase-shifted clock signals and we integrate over
the two resulting signals (∫ blocks in Figure 3.13). The two
resulting numbers are the real (Re) and imaginary (Im) parts of
a representation of the bit in the complex plane ℂ. To classify
each bit as a 1 or a 0 in this signal space, we use a linear support
vector classification6 previously trained on data from the same
platform.

6We use the sklearn python module using a data pipeline consisting of a
standard scaler and a LinearSVC.

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

98 Chapter 3. Analysing continuous covert channels

3.6.2 Performance evaluation
To evaluate our transmission scheme, we encode several
random messages onto clock signals at different frequencies
and we use our source and sink app to transmit and record
these messages on our two platforms, configured according to
the reference setup of section 3.4. We decode the temperature
trace from each channel with our classifier. As the performance
indicator, we use the error probability, as measured through
the empirical bit error probability, i. e., the relative number
of misclassified bits. We only report raw transmission rates
and error probabilities and do not evaluate error correction
strategies. We leave such study to future work.

Error probability at increasing rates. As a first test, we
generate a 1500 bit and a 5000 bit message and we evaluate the
error probability of our channels at increasing transmission
rates, from 1 bps in 1 bps steps up to 100 bps, and 5 bps steps for
higher rates. For each channel, we use the 1500 bit message to
train the classifier, which we evaluate on decoding the 5000 bit
message. In a real attack, the source app could first transmit
a known message that the sink app could use for training the
classifier and then the actual information, which the sink app
could decode with the trained classifier. Figure 3.14 shows the
resulting error probability (measurements and Bezier trends)
for the four channels on our two platforms. For the two x86_64
based platforms Haswell-i7 and Sandy-Xeon, the same-core
channel shows very few errors (≪ 1%) up to ≈ 90 bps; the
error plot in logarithmic scale in Figure 3.15 illustrates this.
The error probability is much higher on the two Arm-based
platforms, ARMv7-Mobile and ARMv8-Dev. While on ARMv7-
Mobile the error stays below 1% up to approximately 30 bps,
ARMv8-Dev only allows low error transmission up to 5 bps. At
increased rates, the errors increase more slowly on the x86_64
based platforms, where we achieve ≈ 175 bps at 10% error

3.6. Transmission scheme and achieved rates 99

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400

Error
Probability
[%]

Haswell-i7

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400

Error
Probability
[%]

Sandy-Xeon

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Error
Probability
[%]

ARMv7-Mobile

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Error
Probability
[%]

Bit Rate [bps]

ARMv8-Dev

core 0 (2 hops) core 1 (1 hops) core 2 (same core) core 3 (1 hop)

Figure 3.14: Error probability on decoding a 5000 bit random
message for the four channels on all platforms. The x86_64
based platforms Haswell-i7 and Sandy-Xeon perform similarly,
while the performance is notably worse on the Arm-based
platforms ARMv7-Mobile and ARMv8-Dev.

100 Chapter 3. Analysing continuous covert channels

 0.01
 0.1

 1
 10

 100

1 10 100

Error
Probability
[%]

same-core

 0.01
 0.1

 1
 10

 100

1 10 100

Error
Probability
[%]

one-hop

 0.01
 0.1

 1
 10

 100

1 10 100

Error
Probability
[%]

Bit Rate [bps]

two-hop

 0.01
 0.1

 1
 10

 100

1 10 100

Error
Probability
[%]

Bit Rate [bps]

Haswell-i7 Sandy-Xeon ARMv7-Mobile ARMv8-Dev

two-hop

Figure 3.15: Logarithmic illustration of Figure 3.14; showing
one channel type per plot. For the 1-hop channels, for Haswell-
i7 and Sandy-Xeon core 1 is illustrated and for ARMv7-Mobile
core 33.

probability, than on the Arm-based platforms. On ARMv7-
Mobile, the transmission rate is ≈ 40 bps, and ≈ 7 bps on
ARMv8-Dev, at the same error level, because on the Arm-
based platforms signals with higher frequency suffer frommore
attenuation. Haswell-i7 also show better performance for the
1-hop and 2-hop channels, where the error probability remains
below 1% up to ≈ 10 bps and hits the 10% level between 40 bps
and 50 bps. On Sandy-Xeon, the 1-hop and 2-hop channels
perform slightly worse than on Haswell-i7 up to the 10%
error probability threshold, after which the performance is
comparable. We assume this is caused by the higher signal
attenuation for lower frequencies on Sandy-Xeon, compared
to Haswell-i7. Another interesting effect is that on Haswell-i7
and Sandy-Xeon, the 2-hop channel does not perform much
worse than the 1-hop channels. Instead, on ARMv7-Mobile

3.6. Transmission scheme and achieved rates 101

the error probability immediately increases steeply, and the
performance gaps are more evident, with the 2-hop channel
showing several errors already below 5 bps. These results relate
to the stronger quantisation effect and the higher attenuation
for these two channels on ARMv7-Mobile.

While directly comparing these results with the capacity
bounds of Figure 3.11 is not rigorous since we are not
considering the overhead of error correction, we can observe
that the Arm-based platforms ARMv7-Mobile and ARMv8-
Dev generally perform worse than the x86_64 based platforms
Haswell-i7 and Sandy-Xeon when compared to the capacity
bounds. In fact, for the capacity study, we hid the negative
effects of quantisation on ARMv7-Mobile and ARMv8-Dev
through longer experiments (see subsection 3.5.2), while our
transmission scheme is oblivious to this effect. A better
transmission scheme for ARMv7-Mobile and ARMv8-Dev
might leverage temperature observations in the source app in
order to tune the duty cycle of the clock signal so as to bring the
average temperature at a quantisation boundary, thus making
the small 1K variations visible and reducing the errors at high
rates.

Direct comparison with previous work. To evaluate our
transmission scheme against the naïve ON-OFF keying scheme
used by Masti et al. [Mas+15], we provide a direct comparison.
We both evaluate our scheme on the exact same platform
they used7 and implement the ON-OFF keying scheme in our
framework to evaluate it on Haswell-i7, Sandy-Xeon, ARMv7-
Mobile and ARMv8-Dev. Figure 3.16 shows all these results
for the 1-hop channel. For all platforms, we plot the best of
the two 1-hop channels. The solid lines show the results we
obtained with our scheme on the four platforms (Haswell-i7,

7The same type dual-socket server with two Intel Xeon E5-2690
multicores clocked at 2.90GHz as Sandy-Xeon

102 Chapter 3. Analysing continuous covert channels

10-5

10-4

10-3

10-2

10-1

100

101

102

 1 10 100

Error
Probability
[%]

Bit Rate [bps]

On-Off Keying
Manchester
[Mas+15]

Haswell-i7
Sandy-Xeon
ARMv7-Mobile

ARMv8-Dev

Figure 3.16: Direct comparison with Masti et al. [Mas+15,
Tab. 1] for the 1-hop channel. The solid lines show the results
with our scheme (see subsection 3.6.1), the dashed lines show
the results reported by Masti et al. [Mas+15] on Sandy-Xeon
and the results we obtained using their same scheme (ON-
OFF keying). Our scheme outperforms their scheme on all
platforms.

Sandy-Xeon, ARMv7-Mobile, and ARMv8-Dev). The dashed
lines show the results that we obtained on the four platforms
by implementing the ON-OFF keying scheme, as described
in Masti et al. [Mas+15]. However, in contrast to the edge
detection decoder used by Masti et al. [Mas+15], we use a
threshold detection. For each symbol duration, we determine
the median temperature and then feed it to a previously
trained linear support vector classifier to decode the symbol.
In addition to our experiments, in Figure 3.16 we also report
the original results from this previous work [Mas+15, Tab. 1],
which only covers a smaller range of bit rates. As Figure 3.16
shows, on Sandy-Xeon, our results with ON-OFF keying are
very close to the original ones. Our scheme achieves 10 bps at
about 0.1% error probability, while ON-OFF keying does not
go below 1% error probability at 1 bps. On all platforms except
Haswell-i7, establishing communication with ON-OFF keying
proves virtually impossible due to symbol coding scheme, our

3.6. Transmission scheme and achieved rates 103

10-5
10-3
10-1
101

5
bp

s

80
 b

ps

Input
Input spectra Ideal power allocation Output spectra

Input
Power
Density
[K2/Hz]

10-5
10-3
10-1
101

100 101 102

Output
Power
Density
[K2/Hz]

Frequency [Hz]
100 101 102

Output

Frequency [Hz]

Figure 3.17: Input and output (same-core channel on Haswell-
i7) power spectra of the evaluation sequences at 5 bps and
80 bps, compared to the ideal water-filling power allocation.

scheme proves more robust and obtains better results than on
Sandy-Xeon. From this extensive comparison, we conclude that
our transmission scheme ensures much better performance
than ON-OFF keying in all cases.

Spectral efficiency. To get a feeling of whether our scheme
could be further improved, Figure 3.17 compares the input
(green, top) and output (red, bottom) power spectra of the
5000 bit evaluation sequences at 5 bps and 170 bps with the
ideal water-filling power allocation 𝑆𝑥𝑥 for the same-core
channel on Haswell-i7. The comparison is purely indicative
since the water-filling solution only gives an upper bound
on the capacity of our channels (see subsection 3.5.1), but it
is interesting nonetheless. On the one hand, the 5 bps input
spectrum allocates much power at low frequency, resulting in
very little distortion in the output spectrum in that area, which
is where most information is encoded. On the other hand, the
170 bps input spectrum shifts most of the power at a higher
frequency, leading to visible distortion in the output spectrum
due to the noise which, as Figure 3.9 shows, is stronger at
lower frequencies. A better scheme should have a levelled
input power allocation across the spectrum. Finding such a
scheme, despite the limitations on the input, is an interesting

104 Chapter 3. Analysing continuous covert channels

 50
 70
 90

Temp.
[°C] core 0

 50
 70
 90

Temp.
[°C] core 1

 50
 70
 90

Temp.
[°C] core 2

 50
 70
 90

0 10 20 30 40 50Time [s]

Temp.
[°C] core 3

Figure 3.18: The temperature of ARMv7-Mobile increases
drastically until the Dynamic Thermal Management (DTM)
throttles the device. Ultimately this leads to an OS freeze,
which makes it impossible to perform experiments with heavy
interference using the ffmpeg application.

challenge for future work.

3.6.3 Sensitivity to environmental conditions
To assess the robustness of the thermal covert channel, we
evaluate how variations in the environmental conditions affect
the error probability on our channels. First, we perform a
general interference evaluation across all platforms. Therefore,
concurrent with the transmission, we employ the ffmpeg
application to generate interference, similarly to chapter 2.
We configure ffmpeg to run an infinite loop to convert a
9.56minutes long animated mp4 video8 and pipe the output to
/dev/null .

On ARMv7-Mobile the high load of the ffmpeg application
causes a drastic increase in the core temperatures, such that the
DTM is triggered. This behaviour is illustrated in Figure 3.18.
Unfortunately, as a final consequence, the ARMv7-Mobile

8peach.blender.org

https://peach.blender.org/

3.6. Transmission scheme and achieved rates 105

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

Error
Probability
[%]

Haswell-i7

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

Error
Probability
[%]

Sandy-Xeon

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25

Error
Probability
[%]

Bit Rate [bps]

ARMv8-Dev

core 0 (2 hops) core 1 (1 hops) core 2 (same core) core 3 (1 hop)

Figure 3.19: Error probability on decoding a 5000 bit random
message for the four channels on all platforms with a
concurrently running interference application.

platform freezes and further data collection is not possible.
Therefore, we exclude ARMv7-Mobile from the interference
study.

Figure 3.19 illustrates the error probability on decoding
a 5000 bit random message with heavy ffmpeg interference.
Compared to the results without interference in Figure 3.14 the
performance of the thermal covert channel notably degrades
on all platforms. While on Sandy-Xeon and ARMv8-Dev,
no transmissions with error probabilities lower than 10%
are possible, on Haswell-i7 the same-core channel allow
transmission of up to 10 bps for the same core channel. Judging
from these results, a thermal covert channel transmission

106 Chapter 3. Analysing continuous covert channels

 0

 10

 20

 30

 40
Error
Probability
[%]

 0

 10

 20

 30

 40

0 50 100 150 200 250 300 350 400

Error
Probability
[%]

Bit Rate [bps]

Fan auto No pinning Baseline No RT DVFS Conserv.

Figure 3.20: Sensitivity of the error probability to using
automatic fan speed, not pinning the apps to cores, no real-
time scheduling, or the conservative Linux DVFS governor.

would still be possible under noisy conditions on Haswell-
i7. Therefore, we perform a more detailed study of the different
environmental influence factors on for the same-core channel
on Haswell-i7, as a representative case.

We identify four important parameters that, in a real
attack, would not be fixed as in our experimental setup
(section 3.4) and we evaluate the sensitivity of our results to
variations of these parameters. Figure 3.20 shows how the error
probability is affected when changing these four parameters
in the experimental setup:

1. Setting the fan speed to automatic (Fan auto);

2. not pinning the apps to a specific core (No pinning);

3. using the default, Linux scheduling policy (SCHED_OTHER)
instead of the high-priority SCHED_FIFO (No RT);

4. letting the ondemand Linux DVFS governor change the
frequency of the cores (DVFS Ondemand.).

3.6. Transmission scheme and achieved rates 107

These four parameters have different impacts on our baseline
results, represented in Figure 3.20 by the solid light blue line.

Automatic fan speed. Using a variable, automatic fan speed
highly affects the channel and makes it more chaotic. This
result is intuitive, as the fan controller is designed to keep the
temperature on a low constant level, hindering the possibility
to encode data in temperature variations.

Conservative DVFS governor. Enabling DVFS has a strong
effect on the communication channel, which becomes highly
unstable and chaotic. This result is due to the fact that the
active frequency of the cores largely determines the active
power consumption, and thus temperature. Notice, however,
that since, on many platforms, multiple active cores run at
the same frequency, load-level based frequency scaling (which
the Linux conservative governor implements) might enable
another covert channel, where the sink app observes frequency
variations induced by the source app. We explore such a covert
channel in chapter 5.

No real-time priority. Similar to variable fan speed, real-
time priority affects the error probability only for rates faster
than ≈ 100 bps. The additional errors are due to increased
jitter in the timing of the source and sink apps. Figure 3.21
further investigates this effect by analysing the jitter in the
state transitions of the source appwhen running a 100s random
trace with our baseline setup (pin, rt) and when dropping real-
time priority (nort) or thread pinning (nopin). We repeat the
experiments with different levels of system load, which we
simulate using the stress-ng app9. At low load, dropping real-
time priority causes the jitter to increase to ≈ 80 𝜇s in ≈ 50%
of the transitions; the sink app is similarly affected in the

9We generate the system load using the bash command stress-ng -c 0
-l $LOAD , where $LOAD is the system load in percent.

108 Chapter 3. Analysing continuous covert channels

 0

20

40

60

80

100

100 101 102 103 104

0% load

CDF
[%]

Jitter [μs]
100 101 102 103 104

50% load

Jitter [μs]
100 101 102 103 104

80% load

Jitter [μs]

pin, rt nopin, rt pin, nort nopin, nort

Figure 3.21: Cumulative distribution functions of the transition
jitter of the source app on Haswell-i7 with or without real-
time scheduling ([no]rt) and thread pinning ([no]pin) and with
different background load.

90

92

94

96

98

100

100 101 102 103 104

0% load

CDF
[%]

Jitter [μs]
100 101 102 103 104

50% load

Jitter [μs]
100 101 102 103 104

80% load

Jitter [μs]

pin, rt nopin, rt pin, nort nopin, nort

Figure 3.22: Zoom in illustration of Figure 3.21.

precision of its sampling rate. Figure 3.20 shows that this effect
only starts impairing the performance of our scheme at rates
faster than ≈ 160 bps. Figure 3.22 illustrates that the jitter is
higher at increased load, but it does not exceed 0.1ms for 94%
of the transitions at 80% load for the nopin, nort case; thus,
error correction should still enable communication at low rates
even with system load.

No thread pinning. When the source and sink apps are not
pinned to a specific core, the different channels effectively
move with the source app. As an example, Figure 3.23 shows
part of a trace from Haswell-i7 where the source app, which is
transmitting a 1 bps data signal, migrates between cores 0 and

3.6. Transmission scheme and achieved rates 109

 45
 48
 51
 54
 57
 60

 666 671 676

Temp.
[°C]

Time [s]

core 1 core 2

Figure 3.23: Traces from cores 0 and 1 of Haswell-i7; the source
app is not pinned. The source application is migrated from
core 0 to 1 at ≈ 671 s.

 0

 10

 20

 30

 40

 50

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425

Error
Prob.
[%]

Bit Rate [bps]

Baseline core 2 All-cores

Figure 3.24: Same-core vs. all-cores channel comparison with
no pinning on Haswell-i7.

1. Initially, reading the temperature from core 2 corresponds
to a same-core channel, while it becomes a 1-hop channel
at time ≈ 671 s, when the source app migrates to core 1.
Furthermore, Figure 3.23 illustrates that at the time of the
core migration, measurement artefacts may occur and the
thermal dynamics might be different for different cores. As
Figure 3.24 shows, if the sink app always observes the same
core (core 2 on Haswell-i7 in this case), the error probability
without thread pinning will sensibly increase compared to
the baseline since the channel type keeps changing. However,
there is a simple way to work around this issue. Since the
sink app can always read the temperature of all the cores, we
can simply look at the all-cores channel, which is the sum of
the temperatures from all cores. As Figure 3.24 shows, the all-

110 Chapter 3. Analysing continuous covert channels

cores channel has performance comparable than the same-core
channel up to 80 bps. For higher rates, more errors occur due to
an increased amount of measurement artefacts and presumably
lower thermal dynamics due to the use of different cores by
the source application.

We conclude that our communication scheme is robust to
disabling thread pinning and, to some extent, to dropping real-
time priorities and having background system load. The most
sensitive parameters are varying fan speed and enabling the
DVFS governor, which makes communication impossible with
our scheme but might enable a different covert channel when
all cores share the same active frequency.

3.6.4 Deployment test
As a final step, we set up a realistic scenario to perform a
deployment test. We intend to leak the id_rsa private SSH key
file which contains ASCII characters translating into 13432 bits.

Setup. We employ a Lenovo ThinkPad T460s with an Intel
Core i7-6600U CPU with two physical cores, each running two
hyph-threads, resulting in four logical cores. The laptop runs
Ubuntu 15.10 as a host OS and as a virtual machine client in
an Orcale VM VirtualBox. The virtual machine is configured
to emulate two cores and is able to fully utilise the host CPU
(execution cap of 100%). Contrary to the controlled laboratory
setup, the laptop uses the powersave frequency governor and
the completely fair scheduler (CFS). The source application is
located within the virtual machine, while the sink application
is running on the host OS. For our evaluation, we let the laptop
sit on an office table without actively using it. Thus, we do not
need to differentiate between busy and idle periods to start a
transmission. We deem this scenario to be valid, as laptops are
often kept active in offices during the night or the weekend.

3.6. Transmission scheme and achieved rates 111

Signal coding. We empirically evaluated the transmission
parameters on the target setup. We found that a Manchester
encoding that uses a duty cycle of 70% outperforms the
standard version with 50% duty cycle, which we used in the
laboratory setup. Here, duty cycle defines the ratio of the
symbol duration inwhich the source applicationworker threats
are active. Furthermore, we fixed the transmission rate to
17 bps.
Application synchronisation. We assume that the system
clock of the virtual machine and the host operating system
are synchronised. Therefore, we define a rendezvous points
between src and snk every 30 minutes at the .00 and .30 hour
mark, independent of the system utilisation.

Data coding. We zero pad the data to 13440 bit and split it
into 840 packets; each packet contains a 2.7 bit header pulse,
16 bits data load and 4 bits for error-detection. The header pulse
is generated by the source application by fully utilising the
cores for the duration of 2.7 bits. We use this header pulse to
forces the system to scale the operating frequency to a higher
level, which increases the thermal dynamics due to the higher
power dissipation of the cores. Furthermore, the header pulse
as an additional indicator for the message start and is used in
the data processing to synchronise the thermal stream before
decoding it. Including all the overhead, the data that needs to
be leaked totals to 19068 bits, which takes approximately 18
minutes and 42 seconds to transmit.

Results. After having received 9 complete packet sets after
approximately 2 hours and 49minutes, we were able to
successfully recover the SSH key file from the thermal data.
Hence, such an attack can be carried out during the night when
the target device is not active. This deployment illustrates the
feasibility of a thermal covert channel attack under realistic
conditions.

112 Chapter 3. Analysing continuous covert channels

3.6.5 Threat mitigation
As we reported in Sections 3.1 and 3.2, the on-chip temperature
sensors that enable the thermal covert channels we studied
are easily accessible by user-level apps on current multicore
systems. A technically simple way to block the potential
threats coming from these channels is to restrict access
to the temperature sensors to trusted code. If temperature
information needs to be made available to user apps (e.g.,
a CPU temperature monitor), viable mitigation strategies
include increasing the refresh interval from milliseconds to
seconds or minutes and reducing the sensor resolution, thus
directly limiting the capacity of the thermal covert channels.
While mitigating this threat is not technically challenging, it
requires shipping security patches to a huge base of affected
devices running different versions of different system software
stacks. Our aim with this chapter was to raise awareness of
the potential threat that current systems are exposed to and
provide a quantitative study that can be used as a base to decide
what actions to take in order to mitigate this threat.

3.7 Summary
In this chapter, we analysed a family of covert channels where
a source app induces temperature variations on a multicore
processor, and the sink app observes these changes through
the on-chip temperature sensors. Our two main contributions
with this chapter are providing upper bounds on the capacity
of these channels and showing a transmission scheme that
improves previous results on communication rates by more
than 20×. Based on experimental data from two diverse
platforms representative of ch3:item:laptops and smartphones,
we derived capacity bounds by leveraging information theory

3.7. Summary 113

and spectral analysis. Based on our results, we cannot exclude
the possibility that these channels might be a security issue,
as the capacity could be in the order of 300 bps for the same-
core channel. We presented a transmission scheme based on
Manchester encoding that sensibly improves the performance
of previous work and studied the sensitivity of our results
to non-ideal conditions. With this scheme, we were able to
achieve rates of more than 100 bps on the same-core channel
and more than 10 bps on the 1-hop channel, with less than 1%
error probability. Furthermore, we show that it is possible to
establish a thermal covert channel to successfully leak an SSH
key in a realistic scenario, where one application is running
inside a virtual machine and the other running on the host
system.

114 Chapter 3. Analysing continuous covert channels

4
Analysing discrete covert

channels

In the previous chapter, we illustrated how to use the
methodology presented in chapter 2 to analyse continuous
channels, like the thermal covert channel. However, some data
leaks are established based on quantities that are discrete. As
discrete quantities are not necessarily able to be differentiated
over time and may only take values from a finite set, different
models and capacity bound derivation methods are needed for
their analysis. In this chapter, we present such a model and the
corresponding channel capacity bound derivation method.

In addition, we present the novel power covert channel,
which takes advantage of power readings provided in current
Intel CPUs.We perform a detailed theoretical and experimental
analysis in which we determine a channel model, derive
the channel capacity bounds and present an exhaustive

This chapter is based on work presented in [MT18] and [Tho17].

116 Chapter 4. Analysing discrete covert channels

Frequency

Chapter 5.

Power

Chapter 4.

Chapter 6.

Chapter 3. Thermal

Toolkit

Chapter 2.

i

o

o

o

o

o

RNN
decoder

Side
channel

Method-
ology

Capacity
bound

derivation

Figure 4.1: In chapter 4, we apply our data leak analysis
methodology on value and time discrete covert channels.
We illustrate how to model such covert channels and derive
upper channel capacity bounds. Moreover, we present the
novel power covert channel, which takes advantage of power
readings provided by Intel CPUs.

experimental evaluation.

4.1. Introduction 117

4.1 Introduction
Today, general-purpose and embedded multicore processors
face two major challenges: (i) preventing overheating in the
face of increasing maximal power density, and (ii) keeping
a low average power dissipation despite the need for a high
quality of service and large variability of the processing load.
To deal with these problems, different power management
schemes have been developed and deployed in computing
systems. Implementations range from simple hardware-based
Dynamic Thermal Management (DTM), which impose a high-
performance penalty on the system, to sophisticated solutions
relying on software implementation.

An example of a more sophisticated method is sleep states,
which are specific power-saving modes that drastically reduce
the power dissipation using, for example, clock gating or
flushing and turning off the cache. Another popular technique,
often deployed in addition to sleep states, is Dynamic Voltage
and Frequency Scaling (DVFS). DVFS allows the Operating
System (OS) to change the operating frequency and voltage of
the processor cores according to the system utilisation. This
demand-based control allows the system to reduce the power
dissipation with little or no noticeable performance impact.
On some architectures, DVFS also allows overclocking of the
processor cores to deliver a higher performance for a limited
time.

Yet, to prevent the system from exceeding its physical
limitations when overclocking, the power management system
requires more detailed information than the common per-
formance counters. Such detailed information is offered by
many processors, for example, in the form of temperature or
powermeasurements. However, in a systemwhere applications
with different security clearances share the same cores, these
measurements can be misused to compromise the system’s

118 Chapter 4. Analysing discrete covert channels

core 1

snk

core 0

src

Figure 4.2: The source application (src) has access to restricted
data, while the sink application (snk) has access to the
communication interfaces. Although source and sink are
isolated from each other, they manage to establish a covert
channel by observing the processor power dissipation. This
compromises the security paradigm of permission separation
and application isolation.

security framework.
In this chapter, we investigate the potential security threats

that arise from accessible processor power information by
using power measurements on Intel cores. In particular, we
consider a scenario similar to the one presented in Figure 4.2.
Here, a simple dual core system is running only the basic OS
services besides our two attack applications, the source applic-
ation src and the sink application snk . The source application
has access to highly sensitive information, i. e., cryptographic
keys, but it cannot use any communication interfaces. In
contrast, the sink application has no access to highly sensitive
information, but it has access to the communication interfaces
to send data to third-party servers. The two applications are
isolated from each other, complyingwith the security paradigm
of privilege separation and application isolation. In case of
low system load, the source application may take advantage
of the power management system to encode information by
modulating the power dissipation. Now, the sink application
is capable of logging the power dissipation and decoding and

4.2. Power management in Linux 119

forwarding the information to a third-party server for analysis.
This constitutes the so-called power covert channel and violates
the security paradigm of privilege separation and application
isolation.

Contribution. In this chapter, we present a detailed study of
a covert channel based on processor power information: the
power covert channel. Our contributions are:

1. A generally applicable method to model and derive a
tight channel capacity bound for discrete covert channels.
The capacity bound helps to estimate the security threat
caused by covert channels.

2. We present the novel power covert channel and provide
models and capacity bounds for this data leak.

3. To the best of our knowledge, we are the first to show an
implementation of a communication scheme that proves
the functionality of the power covert channel on x86_64
based Intel platforms.

4.2 Power management in Linux
The power covert channel depends on variations of the power
dissipation of the device cores. As we base our experimental
setup on Linux systems, we will take a brief look into the two
main parts of the Linux power management: the cpufreq and
the cpuidle subsystem. We note that although we execute all
our experiments on Linux, power measurements can also be
read on other OSs like Windows or Mac OS. For example, Intel
allows us to read power measurements using the Intel Power
Gadget API1.

1https://software.intel.com/en-us/articles/intel-power-gadget-20

https://software.intel.com/en-us/articles/intel-power-gadget-20

120 Chapter 4. Analysing discrete covert channels

cpufreq . The cpufreq subsystem is responsible for power man-
agement during the active time. Its main purpose is to scale
the operating frequency and voltage according to the system
utilisation, based on a so-called governor policy [PS06]. In
our experimental evaluation, we will use the acpi-cpufreq
driver, which offers various governor policies. Among the
most notable governor policies are the conservative and the
userspace governor. The conservative governor automatically
scales the operating frequency of the cores stepwise up or
down, depending on whether the utilisation is above or below
certain thresholds. In contrast, the userspace governor allows
direct control of the operating frequency from the userspace
via sysfs nodes. For more detailed information on the cpufreq

subsystem, please refer to chapter 5.

cpuidle . The cpuidle subsystem controls the sleep mechanisms
of the device. Similar to cpufreq , the behaviour of cpuidle is
also based on governor policies [PLB07]. Whenever a core
is not utilised, cpuidle decides to which sleep state, also called
C-state, that core is sent. Deeper C-states have a higher power
saving effect but also have a higher exit latency. The standard
implementation of cpuidle offers two governor policies, the
ladder and the menu governor. While the ladder governor
selects the C-state with a step-wise approach, moving down
from the shallowest to the deepest C-state, the menu governor
is more sophisticated. The menu governor selects the deepest
possible C-state by evaluating various parameters, like the
expected core sleep time, latency requirements or the last C-
state used by the core.

Power Measurements. In order to optimise the power
dissipation and maximise the performance of the processor
up to its physical limits, power measurements are needed
in addition to thermal and system utilisation measurements.
The granularity of the power measurements depends on the

4.3. Channel model 121

platform. For instance, the platforms used in this chapter
provide only one power measurement for the entire multicore
processor. An example of the use of power measurements for
performance optimisation is the Intel Turbo Boost. It allows
processor overclocking in case of high-performance need and
sufficient overclocking budget. The overclocking budget is
determined using power and thermal measurements, which
are used to determine how long a processor can be operated at
a frequency higher than specified rated operating frequency
without overheating.

4.3 Channel model
To apply the methodology we presented in chapter 2 to the
power covert channel, we first need to define a channel
model. The proposed system abstraction model in Figure 4.3
is composed of three parts: the Input Stage, the power covert
channel and the Output Stage.

Input stage. The encoder performs channel coding to convert
the input bitstream 𝑏𝑖 with bits 𝑏𝑖[𝑘] into the input symbol
trace 𝑥, containing symbols 𝑥[𝑘]. One symbol can, for example,
represent a specific power dissipation of the processor. The set
of feasible symbols depends on the granularity of the power
measurements, i. e., the number of observable levels. The input
symbol trace 𝑥 is transferred to the power covert channel.

Power covert channel. In the proposed system model, the
source and the sink applications, src and snk , are part of the
power covert channel. Input to src is the input symbol trace 𝑥
generated by the encoder component. The source application
src converts the input symbol stream 𝑥 to a utilisation trace 𝑥𝑈
with core utilisations 𝑥𝑈[𝑘] and applies these utilisations at run-
time. The power trace 𝑦𝑝 with power values 𝑦𝑝[𝑘] is obtained as

122 Chapter 4. Analysing discrete covert channels

Input Stage

Output Stage

Power Covert Channel

 encoder

decoder

src app

snk app

h(t)

input
bitstream bi

0 1 1 0 1 0

input symbol
trace x

I U U I U I

utilization
trace xU

power
trace yp

output symbol
trace y

A B B A B A

output
bitstream bO

0 1 1 0 1 0

Figure 4.3: The proposed system abstraction model for a power
covert channel.

a result of the transformation ℎ. In our model, ℎ depends on the
platform configuration (i. e., the power management) as well
as power characteristics (hardware specific parameters), and
transforms the current system utilisation to the corresponding
power value. The transformation ℎ cannot be determined easily,
and in section 4.6, we show that ℎ can be time-invariant or
time-variant, depending on the platform configuration. The
sink application snk observes the power changes and generates
the corresponding output symbol trace 𝑦 with symbols 𝑦[𝑘].
We assume that the power covert channel has the following
three characteristics:

1. It is time-discrete; we represent every channel use as a
single sample 𝑘, as the Model Specific Registers (MSRs)
used for the power measurements are just updated with
a period of 𝑇msr.

2. It is value-discrete; we show in section 4.6 that there is
only a limited set of output symbols.

3. It is noise-free; any measurements artefacts in the power
trace are not visible in the output symbol trace 𝑦, due
to the conversion from power values to symbols by the
sink application.

4.4. Threat model and target setup 123

Output stage. A decoder converts the output symbol trace
𝑦 to a bitstream 𝑏𝑜. In an error-free information transfer, the
output bitstream 𝑏𝑜 equals the input bitstream 𝑏𝑖.

Our model enables us to understand the power covert chan-
nel better and to determine a capacity bound (section 4.6). We
also refer to this model when we design our test environment
and the experiments to evaluate the channel (section 4.7).

4.4 Threat model and target setup
Our threat model is based on the scenario outlined in Figure 4.2.
Furthermore, we assume that the sink application records a
power trace, which it forwards via the Ethernet interface to a
third-party server.

As presented in section 4.2, the current system utilisation is
a main factor in the control loop that is the power management
system. We assume that the device is idle during the time of
the attack; for example, a Laptop in an office during a weekend
or during the night. Hence, the utilisation of the device is
mainly controlled by the source application. Furthermore,
the source and the sink application cannot control any of
the system’s parameters, i. e., the cpufreq or cpuidle governors,
as this would require elevated permission levels. Therefore,
the source and sink applications are tailored to the attacked
platform, which requires detailed knowledge of the system.
We present an assessment of the implications of changing
platform parameters on such a naïve implementation and
propose improvements to the applications to make the power
covert channel more robust, in section 4.7.

We demonstrate the power covert channel on the example
of Intel-based platforms. There are two reasons for our choice:
(i) they allow powermeasurements through energy estimations

124 Chapter 4. Analysing discrete covert channels

provided by the system via MSRs, and (ii) x86_64 is still the still
most used architecture in server and laptop systems, where
Intel holds a market share of around 70% in Q1 20202. In this
chapter, we consider the following platforms:

1. A Lenovo ThinkPad T440p laptop based on a 4th
generation Intel Core i7-4710MQ quad-core processor.
The CPU supports two hyper-threads per core and allows
operating frequencies between 800MHz and 2.4GHz as
well as turbo boost of up to 3.5GHz.

2. A server rack based on a 3rd generation Intel Xeon E5-
2690 octa-core processor. This processor also features
two hyper-threads per core and allows operating fre-
quencies from 1.2GHz up to 2.9GHz and a turbo boost
of up to 3.8GHz.

For the rest of this chapter, we will refer to platform 1 as
Haswell-i7, and platform 2 as Sandy-Xeon.

In favour of reproducibility, we define a controlled en-
vironment that is used throughout all experiments, unless
otherwise stated. Both platforms are situated in a server room
with an average ambient temperature of ≈ 23C∘ and run
Ubuntu, version 18.04.3 on Haswell-i7 and version 16.04.5 on
Sandy-Xeon. Furthermore, both platforms use the cpuidle menu
governor and the cpufreq userspace governor, such that the
operating frequency is locked to the maximum. The source
and the sink application are pinned to specific cores during
the experiments using pthread_setaffinity_np() . Moreover, both
applications are run with the highest priority with SCHED_FIFO

scheduling class to minimise the scheduling artefacts using
pthread_setschedparam() . Initial experiments showed that any
further differentiation between C-states that are deeper than

2https://www.cpubenchmark.net/mobile/market_share.html

https://www.cpubenchmark.net/mobile/market_share.html

4.5. Channel implementation 125

C1E-HSW on Haswell-i7, respectively C1E-SNE for Sandy-Xeon is
not possible. Therefore, we set the maximum wakeup latency
to 10 𝜇s; limiting the maximum C-state to C1E-HSW for Haswell-
i7 and C1E-SNE for Sandy-Xeon3.

4.5 Channel implementation
Similar to the previous chapters, the applications used in
this evaluation are also based on Experiment Orchestration
Toolkit (ExOT). In this section, we give a brief overview of
the two applications used for implementing the power covert
channel, the source and the sink application. For more detailed
information regarding ExOT and how applications are build,
please refer to chapter 2.

Source application. The source application requires a core
list and an execution trace as input. It creates as many threads
as cores specified in the core list, pins them to the defined cores
and replays the execution trace by activating as many threads
as specified and idling the rest of the threads using usleep() .
Active threads will execute a tight loop similar to the cpuburn
benchmark4 to ensure that the cores are not sent to a C-state
by the cpuidle subsystem, while cores with idle threads will
enter the C-state. An example of a tight loop is illustrated
in Listing 4.1. All timing checks are done using the Time
Stamp Counter (TSC), which proves sufficiently lightweight
and accurate for our task. In addition, the application checks
the overall timing and adapts the execution trace to avoid
timing drifts due to jitters in the execution of the tight loop
and usleep() .

3The wakeup latencies can be read via the sysfs interface at
/sys/devices/system/cpu/cpu$i/cpuidle/state/$n/latency.

4patrickmn.com/projects/cpuburn

https://patrickmn.com/projects/cpuburn/

126 Chapter 4. Analysing discrete covert channels

1 double a = 2.0e0;
2 double b = 2.0e0;
3

4 for (int count = 0; count < 1000; count++) {
5 a *= b;
6 b -= a;
7 }

Listing 4.1: C++ example of a tight loop with floating point
operations and 1000 iterations.

Sink application. The sink application samples the MSR for
the PP0 power plane (MSR_PP0_ENERGY_STATUS) with a sampling rate 𝑇
and immediately converts the samples to power values. These
power values are then kept in an in-memory log, which is
dumped to a file as soon as the execution is stopped. Similar
to the source application, the sink application uses TSC to
monitor the overall timing to adjust 𝑇 to avoid a long term
timing skew.

4.6 Channel capacity bound
As outlined in chapter 2, we need to determine the channel
capacity bound of the covert channel as a comparable metric.
Following the definitions made by MacKay [Mac03, Chapter
17], we determine an upper bound 𝐶 for the capacity per
channel use of a noise-free channel, as shown in Equation (4.1).
Here, 𝑁 denotes the number of sent symbols, i. e., the number

𝐶 = lim
𝑁→∞

1
𝑁
log𝑀𝑁[𝑏𝑖𝑡] (4.1)

of channel uses, and 𝑀𝑁 the number of distinct and feasible

4.6. Channel capacity bound 127

symbol series of length 𝑁.
We construct a state diagram, where the states 𝑆 represent

the states of the channel. Every valid path in the state diagram
corresponds to a sequence of transitions. Consequently, every
state transition in the diagram represents a symbol that is
forwarded to the channel. Starting from the initial state of the
channel, 𝑀𝑁 is equal to the number of distinct paths of length
𝑁 in the state diagram.

To determine 𝑀𝑁, the number of possible distinct paths
of length 𝑁, we derive the 𝑆 × 𝑆 connection matrix A based
on the state diagram. An example of such a derivation is
illustrated in Figure 4.7. An element 𝐴𝑠,𝑠′ of the connection
matrix A is 1 if there is a transition from state 𝑠 to 𝑠′ and 0
otherwise. To this end, we count the transitions to a state
by means of Equation (4.2) and Equation (4.3). c(0) is the
initial state vector consisting of one 1, representing the initial
state, and 0 otherwise. c(𝑛) holds the number of paths that

c(𝑛+1) = Ac(𝑛) (4.2)

c(𝑁) = A𝑁c(0) (4.3)

lim
𝑁→∞

c(𝑁) = constant ⋅ 𝜆𝑁1 ⋅ e1 (4.4)

𝑀𝑁 = ∑
𝑠
𝑐(𝑁)𝑠 (4.5)

lead to a certain state after 𝑛 uses of the channel. In the
limit, the principal eigenvalue of A, i. e., the eigenvalue with
the largest absolute value, starts dominating the iteration in
Equation (4.3). As a result, we obtain Equation (4.4), which
shows that the dominating term of c(𝑁) is 𝜆𝑁1 . Here, 𝜆1 is
the principal eigenvalue of A and e1 is the corresponding
eigenvector.

The number of possible paths is calculated, as shown

128 Chapter 4. Analysing discrete covert channels

 0

 50

 100
Util.
[%]

 0

 2

 4

 6

 8

 0 2 4 6 8 10

Power
[W]

Time [s]

Figure 4.4: The power dissipation does not correlate to
increasing utilisation from 0% to 100% on a single core.

in Equation (4.5), where 𝑐(𝑁)𝑠 is element 𝑠 of the vector c(𝑁). We
now use Equation (4.4) and Equation (4.5) in Equation (4.1) to
obtain the channel capacity bound as shown in Equation (4.6).

𝐶 = log2 𝜆1 (4.6)

In the remainder of this section, we outline how to
determine the state diagram model for the power covert
channel and present the capacity calculations for the two
platforms Haswell-i7 and Sandy-Xeon.

4.6.1 Determining the state diagram
Based on the threat and channel model presented in section 4.3,
the power covert channel only allows a finite set of discrete
symbols. These symbols represent the so-called power covert
channel states, which we define in this subsection based on
simple experiments.

First, we need an initial experiment to determine if
the utilisation of a single active core influences the power
measurements. Therefore, we ramp up the utilisation of one

4.6. Channel capacity bound 129

(a)- 0 0-1 0-2 0-3 0-4 0-5 0-6 0-7

 0
10
20
30
40
50

(b)Power
[W]

 0

10

20

 0 10 20 30 40 50 60 70 80 90

(c)Power
[W]

Time [s]

Figure 4.5: When setting a fixed operating frequency, we are
able to identify how many physical cores are active. Due to
the high amount of measurement artefacts, we apply median
filtering to the raw power trace (b) to obtain the power trace
(c). We observe a stepwise increase of the power dissipation
depending on the number of fully utilised cores (a).

logical core from 0% to 100%, to check whether the resolution
of the power trace is fine enough to detect different utilisation
levels. The results for Haswell-i7 are depicted in Figure 4.4 and
show some fluctuations for different utilisations. However, it
is not possible to draw a direct connection from the utilisation
trace to the power trace, as long as the core is not in any C-state.
We conclude that utilisation changes may cause measurement
artefacts in the power trace, but do not have an influence on
the average measured power.

Next, we conduct an experiment to determine the power
dissipation depending on the number of active cores for a fixed
frequency case by using the maximum operating frequency.
This allows us to determine the channel behaviour in a static
scenario, a time-invariant transformation from utilisation to
power ℎ (see section 4.3). In Figure 4.5, the top plot (a) shows
the set of fully-utilised logical cores (utilisation is 100%) in a
10 s time interval, (b) the power trace with a sampling rate of
1ms, and (c) the power trace median filtered with a window

130 Chapter 4. Analysing discrete covert channels

size of 8 samples.
The experiment reveals that there is a high amount of meas-

urement artefacts, which may cause errors at higher symbol
rates and can be explained by following MSR characteristics:

1. Reading is destructive, meaning that the value is set to 0
after reading.

2. According to the Intel® 64 and IA-32 Architectures
Software Developer’s Manual [Int16] the MSR is updated
“approximately” every 1ms.

Due to these two characteristics, it could happen that the sink
application reads the MSR twice between two updates, causing
a 0 in the power trace. Moreover, two logical cores are mapped
to one physical core. For example, logical cores 0 and 1 are
mapped to physical core 0.

Based on the observations of the experiments outlined in
Figure 4.4 and 4.5, we define the states of the power covert
channels as follows: A power covert channel state is defined
by an observable and distinguishable power dissipation level
of the system. Therefore, we identify 5 power covert channel
states in our power trace for the fixed frequency case:

1. from time 0 to 10 s when no physical cores are utilised,

2. from 10 to 30 s when one physical core is utilised,

3. from 30 to 50 s when two physical cores are utilised,

4. from 50 to 70 s when three physical cores are utilised,
and

5. from 70 to 90 s where all four physical cores are utilised.

This equals 𝑁𝐶 + 1 = 5 states for Haswell-i7, where 𝑁𝐶 is the
number of physical cores.

4.6. Channel capacity bound 131

 0

 5

 10

 15

 20

 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Power
[W]

Operating Frequency [GHz]

Active Physical Cores: 0 1 2 3 4

Figure 4.6: By varying the operating frequency, more power
covert channel states can be exposed. Due to the lack of
knowledge on the operating frequency, the sink application can
only distinguish 20 power covert channel states, as illustrated
in the power plane to the right.

The usage of a different cpufreq governor makes the channel
more complex, as the power dissipation, and, respectively, the
power covert channel states, also depend on the used processor
frequency. Considering our channel model from section 4.3,
this means that the transformation from utilisation to power
ℎ is time-variant. Therefore, we repeated the experiment
illustrated in Figure 4.5 for every operating frequency of
Haswell-i7. This experiment exploits all possible utilisation to
power transformations ℎ. Figure 4.6 illustrates the identified
power covert channel states for different numbers of active
physical cores and different operating frequencies. One point
in the plot equals the integer-rounded mean of the power trace
values within one power covert channel state, i. e., the integer-
rounded power mean of interval 0 to 10 s from Figure 4.5 is
represented as a point for 0 active physical cores at frequency
2.4GHz in Figure 4.6.

The right scale presents the projection of all power
covert channel states onto the power plane. This projection
is necessary, as the sink application cannot determine the
operating frequency of the cores but only the power trace. The

132 Chapter 4. Analysing discrete covert channels

p0

p4

p2p3

p1 A =

⎧
⎪

⎨
⎪
⎩

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎫
⎪

⎬
⎪
⎭
(4.7)

Figure 4.7: State diagram (left) and connection matrix (right)
for the fixed frequency case for Haswell-i7 with the power
covert channel states 𝑝0 to 𝑝4.

power plane shows that there are 20 distinguishable power
covert channel states in a variable frequency case, where the
operating frequency changes can be fully controlled. We do
not include the operating frequencies reachable through the
Intel turbo boost in our analysis because these frequencies can
only be reached under certain conditions and cannot be forced
through the userspace governor.

As we now know the number of states |𝑆|, we can determine
the transition matricesA. Under the conditions that every core
can be switched on and off, and there are no restrictions to
setting the operating frequency, for our two cases fixed and
variable frequency, all elements ofA are one. The state diagram
and the corresponding transitionmatrix for the fixed frequency
case for Haswell-i7 are outlined in Figure 4.7.

We also performed the same experiments and evaluation
on our second platform Sandy-Xeon. Based on this evaluation,
we identify 𝑁𝐶 + 1 = 9 states for the fixed frequency case and
13 states for the variable frequency case.

Accessibility of power covert channel states. Elements of
a transition matrix A of a power covert channel setup might
be 0 if, for example, a governor would not allow all frequency
transitions or some cores were prohibited from entering sleep

4.6. Channel capacity bound 133

states. Therefore, it is essential to have a detailed knowledge of
the setup to be able to determine all possible state transitions
in the channel model.

4.6.2 Capacity calculation
Now, we derive the principal eigenvalue 𝜆1 of A and use
Equation (4.6) to determine the channel capacity bound per
channel use. For Haswell-i7, we derive upper channel capacity
bounds of 2.32 and 4.32 bits per channel use; for Sandy-Xeon
3.17 and 3.70 bits per channel use, for the fixed and variable
frequency case.

Knowing the capacity bound and the update period of the
MSR 𝑇msr = 1ms, we calculate the theoretical bandwidth of the
channel, as shown in Equation (4.8). This yields a maximum

𝐵max =
𝐶

𝑇msr
(4.8)

bandwidth of 𝐵max = 2322 bits per second (bps) for Haswell-
i7 and 3170 bps for Sandy-Xeon, considering a fixed operating
frequency (time-invariant utilisation to power transformation
ℎ).

The variable frequency case yields higher maximum
bandwidths of 4322 bps and 3700 bps for Haswell-i7 and
Sandy-Xeon, respectively. However, implementing the variable
frequency case version of the power covert channel would
require the source application to have elevated privilege
levels to be able to set the operating frequency governor to
userspace and control the current operating frequency. This
contradicts our threat model, outlined in section 4.4, which
defines that neither the source nor the sink application has
elevated privilege levels. Therefore, for the remainder of the

134 Chapter 4. Analysing discrete covert channels

fixed frequency
case

variable frequency
case

fixed frequency
case

variable frequency
case

Capacity [bits per channel use] Capacity [bits per second]

2.32

4.32

3.17
3.70

2.32k

4.32k

3.17k
3.70k

Haswell-i7 Sandy-Xeon

Figure 4.8: Determined capacity bound for the two analysed
platforms. The capacity bounds indicate that the power covert
channel might pose a high risk when the operating conditions
are favourable for the attacker, i. e., the platforms are idle, and
there is little interference.

chapter, we will only focus on the fixed frequency case, as an
implementation does not require elevated privilege levels of
the source application.

Capacity based threat potential assessment. According
to the US department of defence 1985 Orange Book [US
85], “a covert channel bandwidth that exceeds a rate of one
hundred (100) bits per second is considered high”. Based on
this definition, we state that, in terms of the capacity outlined
in Figure 4.8, the power covert channel is a high-risk data leak.

4.7 Experimental analysis
In this section, we deploy our channel setup (see section 4.5) on
the two platforms Haswell-i7 and Sandy-Xeon (see section 4.4)
to provide experimental evidence that supports the theoretical
analysis, consisting of the model defined in section 4.3 and the
capacity bound we derived in section 4.6.

The sink application uses a sampling rate 𝑇 of 1ms, as
oversampling of the MSR does not improve signal quality

4.7. Experimental analysis 135

Power Covert Codeword
Channel State Binary Huffman 5 Huffman 9

𝑝0 0 00 010
𝑝1 01 011
𝑝2 100 000
𝑝3 101 001
𝑝4 1 11 100
𝑝5 101
𝑝6 110
𝑝7 1110
𝑝8 1111

Table 4.1: Power covert channel state, or symbol, to bit-
codeword mapping for the different encoding used in the
evaluation.

without implementing a sophisticated zero replacement and
filtering scheme. ExOT ensures that the applications are
synchronised at the start of the transmission. Furthermore,
we evaluate different source codes for transmission, as defined
in Table 4.1. Each symbol of a code is equal to a power covert
channel state:

• the Binary code defines a zero as no active core and a
one as 4 cores active,

• a Huffman code with 5 states called Huffman 5, and

• a Huffman code with 9 states called Huffman 9 for Sandy-
Xeon only.

Using Huffman 5 and Huffman 9, we exploit all available power
covert channel states (see section 4.6) for the two platforms
Haswell-i7 and Sandy-Xeon, respectively.

The decoding is done according to the block diagram
in Figure 4.9. We first filtered the signal with a moving

136 Chapter 4. Analysing discrete covert channels

median
filter

over-
sampler quantizer decoder

sample

stream

output

bitstream

Figure 4.9: The signal decoding is performed in multiple stages.

median filter to remove measurement artefacts. Equation (4.9)
ensures that the window length of the median filter decreases
in proportion to the measurement samples per symbol.
The window length of the median filter 𝑤𝑖 at bitrate 𝑖 is
calculated according to Equation (4.9), where 𝑁𝑖 is the number
of measurement samples per symbol. The minimum and

𝑤𝑖 = min {max {2 ⋅ ⎢⎢
⎣

𝑁𝑖

3
+ 0.5⎥⎥

⎦
+ 1, 1} , 9} (4.9)

maximum filter length, 1 and 9, as well as the proportionality
factor of 3 were evaluated experimentally towards a minimal
bit error rate.

After filtering, the signal is oversampled so that there are
at least 100 samples per symbols, whereas nearest-neighbour
interpolation is used. The filtered signal is then quantised
according to the platform-specific power levels using amajority
voter. Last, the median power value for the symbol duration
is calculated and provided to a random forest classifier with
100 estimators, and standard parameters otherwise, for symbol
decoding5.

As not all symbols in a Huffman code translate into the
same number of bits, this may lead to different lengths of the
received bitstream and the ground truth bitstream. In addition,
a symbol error at the beginning of the message might result in

5sklearn.ensemble.RandomForestClassifier

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

4.7. Experimental analysis 137

 0

 1

 0 10 18 22 27 47

Normalized
Count

Power [W]

 0

10

18

22

27

 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Power
[W]

Time [s]

Measurement Thresholds

Figure 4.10: Data to determine the quantisation thresholds for
Haswell-i7. The histogram and the time trace show that the
power stages are well separated.

a shift by one bit in the remainder of the transmission, which
would lead to a high bit error count. Therefore, instead of a bit-
wise comparison of the received bitstream and the ground truth
to calculate the number bit errors, we employ the Levenshtein
distance as an error metric. The Levenshtein distance describes
how many modifications have to be applied to a sequence
so that it is identical to a reference sequence, whereas valid
modifications are “insert”, “delete” and “replace”. We calculate
the error rate as Levenshtein distance divided by the length of
the ground truth.

4.7.1 Determining the quantisation thresholds
We empirically determine the quantisation thresholds by
analysing the power trace of a 5000 bit transmission. These
thresholds are used to map the power measurements to the
corresponding power covert channel states. The quantisation
levels could also be determined using supervised or unsu-

138 Chapter 4. Analysing discrete covert channels

 0

 1

 20 35 40 43 47 51 55 58 62 67

Normalized
Count

Power [W]

35

40
43
47
51
55
58
62

 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Power
[W]

Time [s]

Measurement Thresholds

Figure 4.11: Data to determine the quantisation thresholds for
Sandy-Xeon. There is more interference in the data, and the
power levels are not clearly separated.

pervised machine learning methods, like random trees or
clustering algorithms for 1D sequence data, but we leave an
evaluation of such methods to future work. Figure 4.10 and 4.11
illustrate the maximum-normalised histogram and a snippet
from the time trace for each platform.

To determine the quantisation thresholds for Haswell-i7,
we simply separate the peaks in the histogram by trying to
centre peaks in between the thresholds. The time trace in
Figure 4.10 also indicates that this naïve approach is sufficient
to provide a fitting signal quantisation.

Figure 4.11 indicates that determining the thresholds for
Sandy-Xeon is more challenging. This is due to the increased
amount of measurement artefacts, as well as the fact that the
different power levels are less clearly distinct for Sandy-Xeon
than for Haswell-i7. Therefore, empirical evaluation indicated
that, rather than separating the peaks in the histogram,
thresholds found using visual inspection of the trace data

4.7. Experimental analysis 139

 0
 10
 20
 30
 40
 50

Haswell-i7

Error
Rate
[%]

 0
 10
 20
 30
 40
 50

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Sandy-Xeon

Error
Rate
[%]

Approximate Bit Rate [bps]

Binary Huffman 5 Huffman 9

Figure 4.12: Average error rate for three runs for each bit
rate and the corresponding trend line for the different coding
schemes for Haswell-i7 (upper plot) and Sandy-Xeon (lower
plot). The increased amount of outliers on Sandy-Xeon indicate
that the power covert channel is more error-prone on this
platform.

show better performance. For example, consider the trace
in Figure 4.11. We identify the power levels in the power
measurement trace, for instance, the highest power level from
54 s to 56 s. Next, we choose the quantisation thresholds to
separate the power levels visible in the time trace data.

4.7.2 Controlled environment performance
To evaluate the performance of the power covert channel,
we perform a symbol rate sweep from 1 to 1000 symbols
per second, which is the maximum possible symbol rate
due to the maximum sampling rate of 1ms (see section 4.6).
Furthermore, we use a symbol rate spacing of 10 symbols per
second. For each symbol rate, we perform three runs where
we transmit a 1500 bit random message to train the random
forest classifier and a 5000 bit random message to perform the
performance evaluation, for each run. Figure 4.12 shows the

140 Chapter 4. Analysing discrete covert channels

average error rate for three evaluation runs for both platforms
Haswell-i7 and Sandy-Xeon and the corresponding trend lines.
The symbol rate is converted to the approximate bit rate
using the compression factor 𝑐, as defined in Equation (4.10)
and Equation (4.11). For example, the Binary code has two

𝑐 =
∑𝑁

𝑖 (𝑙𝑖)
𝑁

(4.10)

̃𝑓𝑏 = 𝑓𝑠 ⋅ 𝑐 (4.11)

𝑙𝑖… length in bits of the 𝑖th codeword in a code

𝑁…Number of codewords in a code

𝑐 …Compression factor
̃𝑓𝑏…Approximate bit rate

𝑓𝑟… Symbol rate

codewords of length 1, which results in a compression factor 𝑐
of 1. The compression factor 𝑐 for the Huffman encodings are
2.40 for Huffman 5 and 3.22 for Huffman 9.

The analysis results presented in Figure 4.12 show that
the performance of the power covert channel is highly system
dependent. While the Binary encoding seems to work better on
Sandy-Xeon, allowing almost 450 bps with less than 10% error
rate compared to only 350 bps on Haswell-i7, the contrary is
true for Huffman 5 encoding. Here, on Sandy-Xeon, according
to the trend line, we can only achieve bitrates of less than
600 bps for error rates lower than 10%, while on Haswell-i7
we achieve up to 900 bps. Transmissions with the Huffman 9
encoding result in error rates of at least 15%.

These observations and the fact that there are more outliers
on Sandy-Xeon indicate that the power covert channel is more
error-prone on Sandy-Xeon than onHaswell-i7 when using
more than two power covert channel states. Based on a detailed

4.7. Experimental analysis 141

analysis of the experimental data, we trace back a majority
of these errors on Sandy-Xeon to architectural properties.
Despite the fact that we limit the wakeup latency for cores
to return from C-states, the power trace does not follow our
input utilisation trace fast enough. This might be caused by
higher latencies when waking up from and sending cores to
C-states. Moreover, the power traces collected from Sandy-
Xeon show that there is a slow, long-term increase in the
power measurements. We assume that this is caused by the
rising temperature of the core, which also causes higher power
dissipation. Therefore, the differentiation of the power covert
channel states, i. e., the powermeasurement quantisation, is not
working reliably on Sandy-Xeon. While the latencies cannot be
compensated in the symbol decoding, de-trending methods can
be used to nullify the long term power measurement increase.

Another problem of the power covert channel, which
applies to both platforms Haswell-i7 and Sandy-Xeon, is
the synchronisation between source and sink application.
Inaccurate synchronisation leads to higher error probabilities
at higher bitrates, as there are fewer samples per symbol. This
could be handled with a more sophisticated signal processing
and synchronisation scheme.

Finally, experiments have shown that the power measure-
ments representing the power covert channel states may vary
slightly for repeated executions of the same utilisation trace.
To compensate varying power measurements, an improved
implementation of the power covert channel needs to be
capable of adapting the power threshold for power covert
channel state detection according to the current trace. For
example, adaptive power covert channel state detection
can be implemented using a calibration header in the data
transmission and threshold detection during decoding.

142 Chapter 4. Analysing discrete covert channels

(a)Freq. Scaling Stable Freq.

 0

 5

 10

 15

 20

 25

 30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(b)Power
[W]

Time [ms]

Figure 4.13: If the operating frequency is not stable, the data
transmission is disturbed, as the frequency scaling leads to a
time-variant utilisation to power transformation ℎ.

4.7.3 Robustness
To briefly evaluate the robustness of the power covert channel,
we analyse three scenarios on Haswell-i7:

1. the variable frequency case where the conservative
governor is used to set the operating frequency of the
cores,

2. the light interference case where a second source
application is used to keep all but one physical core
active permanently, and

3. the heavy interference case where we employ the ffmpeg
application to utilise the device.

4.7.3.1 Variable frequency

The use of frequency governors adds more disturbance to the
channel, as the transformation from utilisation to power ℎ (see
section 4.3) is time-variant. Figure 4.13 illustrates the start of a
data transmission in a system using the conservative governor
and Huffman 5 encoding at 100 symbols per second.

4.7. Experimental analysis 143

As the system is idle before starting the transmission,
the conservative governor will scale to the lowest possible
operating frequency to minimise the power dissipation of
the device. Therefore, after starting the transmission, the
power measurements increase as the system is scaling up
the frequency due to the high utilisation generated by the
source application. In the example illustrated in Figure 4.13,
after approximately 4500ms, the system reaches the maximum
operating frequency. Due to the core utilisation during the
transmission, the governor keeps the operating frequency at
the maximum. Therefore, the system is now in a stable state,
during which ℎ is time-invariant, and the power measurements
are properly mapped to the symbols, i. e., the power covert
channel states, and decoded.

To be able to compensate for changing operating fre-
quencies, i. e., a time-variant channel transfer function ℎ,
advanced signal coding schemes need to be applied. For
example, for the conservative governor used in this evaluation,
the implementation could use the following coding scheme to
ensure that the system is at the highest operating frequency
for the whole transmission. Every message uses a preamble
that fully utilises the cores and forces the system to scale to
the highest frequency. In addition, the messages would need
to be encoded in a way that ensures that at least one core has a
utilisation high enough to prevent the conservative governor
from scaling down the frequency. Which encoding fulfils this
utilisation requirement depends on the coding scheme, the
transmission rate and the setting of the governor.

4.7.3.2 Light interference

In this scenario, a second source application is occupying all
but one physical core. This prohibits the occupied cores from
entering C-states for power saving and, therefore, some power

144 Chapter 4. Analysing discrete covert channels

(a)

Binary Encoding
0 1 1 0 1 1 1 0 1

0
10
20

(b)Power
[W]

0
10
20

0 1 2 3 4 5 6 7 8

(c)Power
[W]

Time [s]

(a)

Huffman 5 Encoding
0 4 2 3 1 0 2 0 1

0
10
20

(b)Power
[W]

0
10
20

0 1 2 3 4 5 6 7 8

(c)Power
[W]

Time [s]

Figure 4.14: Binary encoding is more robust against interfer-
ence than Huffman 5 encoding, as the symbols (a) can be
distinguished without (b) and with interference (c).

covert channel states cannot be reached. Figure 4.14 illustrates
power traces for the controlled environment and the inference
scenario for both encoding schemes Binary and Huffman 5.
The figures show that only a differentiation between two states
is possible; therefore, the transmission with Binary encoding
is still feasible while the Huffman 5 transmission is disturbed.

This experiment shows that a transmission is viable
whenever the number of states needed to transmit 𝑁𝑇 is less or
equal than (𝑁𝐶 − 𝑁𝐼 + 1). Here, 𝑁𝐶 is the number of physical
cores available on the system and 𝑁𝐼 is the number of physical
cores occupied by interfering applications. This means that a
coding scheme that requires less power covert channel state
is more robust against such partial utilisation than a scheme
that requires many power covert channels states. Moreover, an

4.7. Experimental analysis 145

 0
 10
 20
 30
 40
 50

Haswell-i7

Error
Rate
[%]

 0
 10
 20
 30
 40
 50

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Sandy-Xeon

Error
Rate
[%]

Approximate Bit Rate [bps]

Binary Huffman 5 Huffman 9

Figure 4.15: The power covert channel on both platforms,
Haswell-i7 (upper plot) and Sandy-Xeon (lower plot), does not
allow data transmission if the platforms are heavily utilised.
We used ffmpeg video conversion to utilise the platforms.

attacker may use the power measurements to detect when the
utilisation of the platform is low enough that sufficient power
covert channel states are accessible to start a transmission.

4.7.3.3 Heavy interference

In a second test, we employ the ffmpeg application as a source
of interference. Similar to chapter 2 and 3, we configure
ffmpeg to run an infinite loop to convert a 9.56minutes long
animated mp4 video6 and pipe the output to /dev/null . The
results illustrated in Figure 4.15 show that a transmission using
the power covert channel is no longer possible, as ffmpeg
utilises as many cores as possible.

Our experiments show that, compared similar cover
channels, like the thermal covert channel we presented
in chapter 3, the power covert channel channel allows a
higher throughput but is less robust to disturbances by other
applications on the platform.

6peach.blender.org

https://peach.blender.org/

146 Chapter 4. Analysing discrete covert channels

4.8 Summary
In this chapter, we presented the power covert channel: a covert
channel based on processor power measurements. For our
evaluation, we chose broadly used Intel-based platforms, which
provide power measurements via MSRs.

We presented a detailed theoretical analysis illustrating
how to model the power covert channel and derived a capacity
bound. Our methodology to derive the channel capacity bound
is generally applicable to other covert channels with similar
characteristics as the power covert channel. We considered
a fixed operation frequency of the platform during the
transmission, which resulted in a capacity bound of 2322 bps
for a platform with 4 physical cores and 3170 bps with 8
physical cores.

Moreover, we conducted a thorough experimental analysis
to exploit achievable throughputs under controlled conditions
and evaluated the robustness of the power covert channel
against external influences. Our experiments showed that,
under controlled conditions, we could achieve throughputs
of up to 900 bps with an error probability of less than 10%
using a very simplistic channel implementation.

The power covert channel has a high channel capacity
bound and allows high throughputs, which shows the chan-
nel’s potential to leak information. However, the channel is
more prone to disturbance than comparable covert channels,
and a successful attack requires detailed knowledge of the
attacked platform utilisation pattern, architecture and power
management system. Therefore, we classify the power covert
channel as a threat that only needs to be considered when
designing highly secure systems.

5
Machine learning for covert

channel symbol decoding

In the previous chapters, we outlined how to analyse data leaks
exhaustively in current computing systems. We also presented
two data leaks based on CPU sensor readings. However, such
data leaks can be mitigated by restricting the access to CPU
sensor readings.

In this chapter, we present an exhaustive analysis of a data
leak which cannot be mitigated easily: the frequency covert
channel. The frequency covert channel is a discrete covert
channel based on indirect measurements of the operating
frequency of the CPU. To analyse this discrete covert channel,
we will apply the methods presented in chapters 2 and 4.
Furthermore, we will show that a frequency covert channel
cannot be established using naïve signal processing strategies.
To remedy this, we present amethod to build high-performance

This chapter is based on work presented in [Mie+18].

148 Chapter 5. Machine learning for symbol decoding

Frequency

Chapter 5.

Power

Chapter 4.

Chapter 6.

Chapter 3. Thermal

Toolkit

Chapter 2.

i

o

o

o

o

o

RNN
decoder

Side
channel

Method-
ology

Capacity
bound

derivation

Figure 5.1: In chapter 5 we present a communication model
and evaluation of the threat potential of the frequency covert
channel on two distinct platforms. In addition, we propose a
robust signal decoder based on a Recurrent Neural Network
(RNN).

signal decoders based on machine learning techniques.

5.1. Introduction 149

5.1 Introduction
Current mobile computing systems are expected to optimise
their power consumption for various reasons, e. g., for pro-
longing the battery life or for thermal protection. One of the
most commonly used techniques for power optimisation is
Dynamic Voltage and Frequency Scaling (DVFS). DVFS allows
the optimisation of the energy consumption by changing
the operating frequency and the supply voltage according
to performance needs. Typically, a software component in
the operating system, denoted as governor, is responsible for
selecting the frequency based on a specific predefined policy,
the associated parameters and run-time information.

Another important design challenge for current computing
systems is to provide security and confidentiality of sens-
itive information, despite concurrent application execution.
To ensure the security and confidentiality of data, system
designers often apply the security paradigm of permission
separation and application isolation. This paradigm dictates
that applications are executed in isolation and have specific
sets of permissions regarding shared resources and memory.
The corresponding mechanisms are typically implemented by
the Operating System (OS), possibly supported by hardware.
Examples for such mechanisms are sandboxing, virtualisation
and fine-grained permission control like in Android, or moving
applications into hardware enclaves, like when using Intel
SGX1 or the Arm TrustZone2. The secure operation of systems
using these mechanisms is only guaranteed if no data transfer
between the isolated elements is possible. Therefore, data leaks
like covert channels are one of the biggest threats for systems
relying on permission separation and application isolation.

In this chapter, we investigate how to build such a data

1https://software.intel.com/en-us/sgx
2https://developer.arm.com/ip-products/security-ip/trustzone

https://software.intel.com/en-us/sgx
https://developer.arm.com/ip-products/security-ip/trustzone

150 Chapter 5. Machine learning for symbol decoding

core 1

snk

core 0

src

o

o

o

i

Figure 5.2: The two applications source (src) and sink (snk) are
placed on different cores and are isolated from each other.
While src has access to restricted data, snk can use the systems
communication interfaces. If the two applications establish a
covert communication channel to transfer data, the restricted
data is leaked to an attacker. This covert channel compromises
the security paradigm of permission separation and application
isolation.

leak based on frequency scaling of mobile multicore systems.
Figure 5.2 illustrates the example scenario we use to analyse
the data leak. As in the previous chapters, we consider two
colluding applications trying to establish a covert channel on a
multicore system. The source application (src) running on core 0
has access to restricted data, i. e., a cryptographic key, but no
access to the communication interfaces. The sink application
(snk) runs on core 1 and has full access to a communication
interface, but no access to the restricted data. To comply with
the security paradigm of permission separation and application
isolation, source and sink are isolated from each other and
are not allowed to communicate. In addition, we consider a
common setting in current multicore architectures, namely
a processor with multiple cores in the same voltage and
frequency domain, i. e., both cores share the same voltage
and frequency level at any point in time. Furthermore, we
assume that the system is idle, hence only the OS and its vital
processes are active at attack time. As the system is idle, the
source application is able to influence the behaviour of DVFS

5.1. Introduction 151

by generating utilisation patterns. If the sink application is
able to detect the frequency changes induced by the source
application, the two applications have established a covert
channel, which can be used to extract restricted information.
This covert channel is referred to as frequency covert channel,
as the key shared resource is the frequency of the cores.

We will present an implementation of the frequency covert
channel without the need for elevated privileges by the attacker.
Furthermore, we will show that the frequency covert channel
has a sufficient bandwidth and low error rate to break the
security paradigm of permission separation and application
isolation. Considering that, with emerging trends like edge
computing, embedded systems are also often equipped with
powerful processors using DVFS, this illustrates that the
frequency covert channel poses a substantial threat for a broad
range of devices.

In this chapter, we will show that baseline signal decoding
methods fail for data sent via the frequency covert channel.
This is due to two main reasons, (i) the governor behaviour is
heavily platform-dependent, and (ii) the operating frequency of
a system depends on the current utilisation and past operating
frequencies. Therefore, a signal decoder which is capable of
compensating for these characteristics of the data stream is
needed. We show how to build such a signal decoder based on
a Recurrent Neural Network (RNN) and apply it on data sent
through the frequency covert channel.

Contributions. Our main contributions in this chapter are

1. We are the first to apply a formal communication model
and derive an upper bound on the capacity of the
frequency covert channel. Furthermore, we derive a
robust communication scheme based on the formal
communication model of the frequency covert channel.

152 Chapter 5. Machine learning for symbol decoding

2. In contrast to previous work, our implementation of
the frequency covert channel does not require elevated
privileges for system file access. It allows the source
and the sink application to communicate if they run on
different cores.

3. To the best of our knowledge, we are the first to present
the usage of a Recurrent Neural Network (RNN) for
signal decoding in a covert channel scenario.

4. We present extensive experimental evidence to evaluate
the feasibility of the frequency covert channel under
realistic conditions for two platforms representative for
laptops and hand-held devices. Furthermore, we use our
extensive experimental evaluation to provide hints for
possible mitigation strategies.

5.2 Frequency scaling in Linux
The operating frequency of current CPUs can be controlled
by different modules in the system, for example, Linux Kernel
DVFS, CPU throttling through Dynamic Thermal Management
(DTM), device manufacturer-specific power and performance
optimisation or CPU hot-plug techniques. In this chapter, we
focus on the effect of the Linux Kernel DVFS. As our threat
scenario considers the devices to be idle, we assume CPU
throttling caused by DTM will not occur. Moreover, other
power optimisation techniques for commercial devices are
modelled as a (systematic) interference on the channel. This
restriction is valid as long as there is a change of the frequency
depending on the utilisation pattern of the CPU.

Linux is used among a diverse range of devices, for
example, server or desktop systems, laptops, Android on

5.2. Frequency scaling in Linux 153

KERNEL
SPACE

USER-
SPACE

CPU Statistics

Hardware Driver

CPU Frequency Driver

(Root) Process

sysfs /proc/stats

Scheduling & TimingGovernor

Figure 5.3: A simplified illustration of the CPU frequency
control in the Linux Kernel, depicting which modules interact.

smartphones or tablets and various embedded systems like
the Raspberry Pi. In addition, the open source nature of the
Linux Kernel and its components allows us to review the code
that handles frequency scaling. Examples of CPU frequency
driver implementations in Linux are the intel p_state or the acpi-
cpufreq3 driver. In this chapter, we consider the acpi-cpufreq
driver, which is used in Android systems as well as in Ubuntu
and similar OSs. Figure 5.3 gives a simplified overview of the
main components of the acpi-cpufreq driver, which we discuss
in detail in this section.

5.2.1 The CPU frequency driver
The CPU frequency driver operates as an interface to all the
other Kernel components, most importantly the sysfs nodes and
the hardware driver. One responsibility of the CPU frequency
driver is to maintain the sysfs nodes used to control frequency
scaling from userspace. Furthermore, the CPU frequency driver
instructs the hardware driver to set the frequency for each

3https://uefi.org/specifications

https://uefi.org/specifications

154 Chapter 5. Machine learning for symbol decoding

frequency domain, interacts with the scheduling unit and
passes information, like the utilisation statistics, from the
Kernel to the governor.

5.2.2 The governor
The governor should be called periodically with the timer
period 𝑇𝑠, also called sampling period. When called, the gov-
ernor determines the new frequency 𝑓set for every frequency
domain. Due to differences in hardware and user needs, many
customised frequency governors are available for devices based
on open source platforms like the Linux Kernel. The multitude
of governor options allows the user to set the trade-off between
performance and energy consumption. Different governors
can vary in terms of static characteristics, like minimum and
maximum frequency, but also in their frequency dynamics. In
this chapter, we will focus on the conservative governor, which
is one of the most commonly used governors in mobile, battery-
powered systems.

The rules which the conservative governor applies to
determine the next ideal target frequency 𝑓new are summarised
in Equation (5.1). Roughly speaking, the conservative governor

𝑓new =

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

𝑓max ∀ 𝑡𝑖
𝑡𝑚
< 𝐼low ∧ 𝑓max < 𝑓cur + Δ𝑓

𝑓cur + Δ𝑓 ∀ 𝑡𝑖
𝑡𝑚
< 𝐼low ∧ 𝑓max ≥ 𝑓cur + Δ𝑓

𝑓cur ∀ 𝐼low ≤ 𝑡𝑖
𝑇𝑠
≤ 𝐼high

𝑓cur − Δ𝑓 ∀ 𝑡𝑖
𝑡𝑚
> 𝐼high ∧ 𝑓min ≤ 𝑓cur − Δ𝑓

𝑓min ∀ 𝑡𝑖
𝑡𝑚
> 𝐼high ∧ 𝑓min > 𝑓cur − Δ𝑓

(5.1)

uses the average core utilisation in the past time interval to
determine the new frequency 𝑓set. If the utilisation is below or
above a certain threshold, the governor reduces or increases

5.2. Frequency scaling in Linux 155

the frequency, respectively. Here, 𝑓cur is the current frequency
target and Δ𝑓 is the frequency scaling step. To scale the
frequency, the governor uses the relationship between idle
time 𝑡𝑖 and the total measurement time 𝑡𝑚, which is equal to
the time elapsed between the last and the current call time of
the governor. For simplicity, let us call the term 𝑡𝑖/𝑡𝑚 idleness.
The governor adapts the frequency depending on the lower
idleness threshold 𝐼low and the higher threshold 𝐼high. There
are five scaling cases:

1. The idleness is lower than 𝐼low and the sum of the
frequency 𝑓new and Δ𝑓 is higher than 𝑓max:
𝑓new is set to 𝑓max.

2. The idleness is lower than 𝐼low:
𝑓new is increased by Δ𝑓.

3. The idleness is between 𝐼low and 𝐼high:
𝑓new is not changed.

4. The idleness is higher than 𝐼high:
𝑓new is decreased by Δ𝑓.

5. The idleness is higher than 𝐼high and difference of the
frequency 𝑓new and Δ𝑓 is lower than 𝑓min:
𝑓new is set to 𝑓min.

After calculating 𝑓new, the CPU frequency driver selects
𝑓set from the discrete set of frequency levels that are available
on the system. To select the frequencies, the CPU frequency
driver applies one of two rules:

(A) If the frequency is scaled up, 𝑓new > 𝑓cur, 𝑓set is set to
the highest available frequency below or at the target.

(B) If the frequency is scaled down, 𝑓new < 𝑓cur, 𝑓set is set
to the lowest available frequency at or above the target.

After the frequency has been changed to 𝑓set, 𝑓cur is set to 𝑓new.

156 Chapter 5. Machine learning for symbol decoding

5.2.3 Userspace interfaces
The sysfs and the /proc/stats pseudo file system nodes allow
processes to access frequency scaling relevant information
from userspace. On the one hand, detailed information on the
cpu usage statistics can be read via the /proc/stats node. On
the other, the sysfs nodes offer not only information about the
governor, but also give processes with root permissions the
opportunity to change the governor behaviour during runtime.

The sysfs holds a so-called policy4 for every frequency
domain. Among others, the policies contain the following
parameter nodes:

• All cores affected by the policy in affected_cpus .

• The current frequency 𝑓cur in scaling_cur_freq .

• The minimum frequency 𝑓min in scaling_min_freq .

• The maximum frequency 𝑓max in scaling_max_freq .

• scaling_available_frequencies reports all possible frequency
steps.

• scaling_available_governors shows all available governors.

• Currently used driver and governor in scaling_driver and
scaling_governor , respectively.

Furthermore, the sysfs contains nodes for the global governor
and frequency driver settings, which apply to all frequency
domains5. The global parameters contain, e. g., the sampling
period 𝑇𝑠, the utilisation thresholds as (1 − 𝐼high) ⋅ 100 and
(1 − 𝐼low) ⋅ 100, as well as the relative frequency step-size Δ𝑓𝑟𝑒𝑙 ⋅
100.

4 /sys/devices/system/cpu/cpufreq/policy$i/ in Ubuntu OSs, where i
is the frequency domain number.

5 Ubuntu: /sys/devices/system/cpu/cpufreq/[governorname]/

5.3. Threat Model 157

5.3 Threat Model
We consider the scenario presented in Figure 5.2, where
we assume that the source and sink application are already
deployed. This could either be done through code injection
or by user installation. For example, an attacker could put
two separate applications on the application store that seem
unrelated but contain the necessary functionality to establish a
joint covert channel. These applications are not suspicious,
because each on its own does not violate any security
restrictions and might be marked as coming from a different
source.

The sink application snk measures and records the current
frequency. The gathered information is then forwarded via a
communication interface to an attacker device. Further, we
assume that the attacked device is idle or only lightly utilised
during the attack, e. g., a hand-held device like a smartphone
during the night or a laptop powered on in an empty office
during a weekend. Therefore, the source application src and the
sink application snk wait until the average system utilisation is
low and will presumably stay low for some time.

The target platforms for this chapter are mobile devices
with shared frequency domains among multiple cores. This
architectural feature is present in almost all state-of-the-art
processor architectures that are used in computing devices such
as mobile phones, tablet computers, laptops or servers. For
instance, commonly used big.LITTLE architectures in mobile
processors typically feature one frequency domain for all
LITTLE and one frequency domain for all big cores, e. g., the
Samsung Exynos 5422 Octa. Moreover, in systems with hyper-
threading, where multiple logical cores reside on a single
physical core, these logical cores share the same frequency
domain.

The frequency of cores can be inspected with two methods:

158 Chapter 5. Machine learning for symbol decoding

1 double a = 2.0e0;
2 double b = 2.0e0;
3

4 for (int count = 0; count < 1000; count++) {
5 a *= b;
6 b -= a;
7 }

Listing 5.1: C++ example of a tight loop with floating point
operations and 1000 iterations.

(a) reading system files, or (b) timing measurements. On
Linux, method (a), can easily be blocked by requiring elevated
privilege levels to read the system file6 . The main restriction
of method (b) is that it only works if the source and the sink
application are placed on two cores within the same frequency
domain.

Timing Measurements Method. To inspect the frequency
via timing measurements with method (b), the sink application
snk executes a tight loop with a fixed number of instructions
and measures the computation time. An example of a tight
loop is illustrated in Listing 5.1. This measurement is then
used to determine the empirical frequency of the core. The
sink application snk only needs access to a reliable timer in
order to determine the time between starting and stopping
the measurement load. For instance, the sink application may
use the gettimeofday() system call a standard interface, which
is a POSIX-conform and does not require elevated privileges.
While the method for timing measurements (b) does not need
any elevated privileges, it comes with two major challenges:
(i) its accuracy suffers from interference from other tasks, and
(ii) the measurement load increases the total utilisation of

6i. e., with the acpi-cpufreq drivers
/sys/devices/system/cpu/cpu$i/cpufreq/scaling_cur_freq

5.4. Channel capacity bound 159

the cores which influences the frequency via the governor,
i. e., the measurements indirectly influence the quantity to
be determined. In section 5.8 we show how to cope with
the challenges and implement the frequency covert channel
without the need for elevated privileges.

5.4 Channel capacity bound
In this section, we present the derivation of the capacity
bound of the frequency covert channel. As mentioned in
chapter 2, capacity bounds are useful to assess the threat
potential of data leaks, as they are independent from the
data leak implementation artefacts. We determine the channel
capacity bound using the method presented in section 4.6.

We consider the frequency covert channel to be value and
time-discrete for the following two reasons: (i) it has a discrete
number of different frequency levels, and (ii) only updates the
operating frequency with a period of 𝑇𝑠. Therefore, to calculate
the channel capacity bound, we need to determine the state
diagram of the channel and the number of states of the channel.
The number of states in the state diagram |𝑆| does not only
depend on the possible frequency levels of the system, but also
on the characteristics of the governor. As |𝑆| influences the
complexity and capacity bound of the channel, let us derive a
bound for |𝑆|.

Based on the detailed description of the conservative
governor in section 5.2, we characterise a state by the pair
(𝑓new, 𝑓set). Here, 𝑓new denotes the target frequency and 𝑓set
the actual frequency, which is selected by the CPU frequency
driver. The value of 𝑓new only changes with a step size of Δ𝑓.
Furthermore, 𝑓new is clipped so that it cannot exceed 𝑓min
and 𝑓max. 𝑓min and 𝑓max are the minimum and maximum

160 Chapter 5. Machine learning for symbol decoding

operating frequency the hardware platform supports. Hence,
we have at most 2⌈(𝑓max − 𝑓min) /Δ𝑓 ⌉ different possible values
of 𝑓new. As there are two possible rules to determine 𝑓set
from 𝑓new, see rules (A) and (B) in subsection 5.2.2, we find
4⌈(𝑓max − 𝑓min) /Δ𝑓 ⌉ as an upper bound on the total number
of states, see Equation (5.2).

|𝑆| ≤ 4 ⋅ ⎡⎢
⎢

𝑓max − 𝑓min

Δ𝑓
⎤
⎥
⎥

(5.2)

The detailed system setup is described later on in sec-
tion 5.5, but for the purpose of the example, we only need
the governor parameters 𝑓min, 𝑓max, Δ𝑓rel and the frequency
levels from Table 5.1 for the two analysed platforms Haswell-
i7 and ARMv7-Mobile. Here, Δ𝑓rel is the frequency step-size
given as the percentage of the maximum frequency 𝑓max, see
Equation (5.3).

Δ𝑓rel =
Δ𝑓
𝑓max

⇒ Δ𝑓=Δ𝑓rel ⋅ 𝑓max (5.3)

We now use Equation (5.1), the rules to choose 𝑓𝑠𝑒𝑡 (see
subsection 5.2.2) and the parameters of the governor for
Haswell-i7 to derive the state diagram of the frequency covert
channel on this device. Furthermore, we constrain the covert
channel such that a symbol represents either an increase or
decrease of the operating frequency. Although staying at the
same frequency is possible, we do not consider it a valid symbol.
This restriction is necessary due to implementation artefacts of
the governor, which we present in subsection 5.6.1. The state
diagram is depicted in Figure 5.4.

Using the state diagram of the frequency covert channel, we

5.4. Channel capacity bound 161

...

...

...

...

920 224011601040

2120920

21601080960 2280

22802040960840 2160

800

1040

2360

2240

2400

900 220011001000 2300

220011001000 2300

21001000900 2200

230021001000900 2200

2400800

Operating Frequency fset[n]Internal Metric fnew[n]

Figure 5.4: The state diagram of the frequency covert channel
for Haswell-i7 and the conservative governor. Every state is
defined by the tuple (𝑓new, 𝑓set), e. g., (920, 900).

f1 f3 f4f2 A =
⎡
⎢
⎢
⎢
⎣

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎤
⎥
⎥
⎥
⎦

Figure 5.5: Example of a state diagram (left) to connection
matrix (right) conversion.

derive the connectionmatrixA of size |𝑆|×|𝑆|. An example of the
derivation of the connection matrixA from the state diagram is
illustrated in Figure 5.5. Now we calculate the channel capacity
bound, as explained in section 4.6. We use Equation (5.4),

𝐶 = log2 𝜆1 (5.4)

where 𝜆1 is the principal eigenvalue of A. For Haswell-i7, our
analysis yields an upper bound on the channel capacity of

162 Chapter 5. Machine learning for symbol decoding

𝐶 = 0.972 bits per channel use. If we apply this scheme to our
second platform, ARMv7-Mobile, we determine a capacity of
𝐶 = 0.982 bits per channel use.

As outlined in Table 5.1, Haswell-i7 has a governor
sampling period 𝑇𝑠 = 80ms by default and ARMv7-Mobile
𝑇𝑠 = 100ms. Using Equation (5.5), this yields a maximum
bandwidth 𝐵max = 12.15 bits per second (bps) and 9.82 bps,
respectively. As we are considering the frequency covert

𝐵max =
𝐶
𝑇s

(5.5)

channel to be noiseless in this abstraction, this also equals
the maximum throughput.

Finally, we note that these calculated upper capacity
bounds cannot be achieved in a practical setting, as they
are based on idealised conditions. The bounds assume a
transmission scheme that maximises the information content
per channel use, no errors due to interferences of other
processes, perfect synchronisation between the source and sink
applications and no implementation artefacts of the governor.
In addition, the bound calculation is based on the assumption
that every state transition is observable. We expect a further
degradation of the achievable capacity for two main reasons:

1. The sink application can only observe 𝑓set and it is not
possible to determine 𝑓new.

2. Some state transitions cannot be detected, for example
the transition from state (1040, 1000) to (920, 1000) on
Haswell-i7.

Therefore, we present an implementation of the channel in
section 5.8 using RNNs, to validate the capacity bounds and
determine their tightness.

5.5. Experimental setup and initial tests 163

5.5 Experimental setup and initial tests
Our experiments are carried out on two diverse hardware
platforms representative for two kinds of mobile devices:

1. A Lenovo ThinkPad T440p laptop, based on a 4𝑡ℎ
generation Intel Core i7-4710MQ quad-core processor. It
can be clocked at frequencies in the range from 800MHz
to 2.4GHz in 15 frequency levels, excluding the Intel
Turbo Boost;

2. An Odroid-XU3 board, featuring a Samsung Exynos
5422 System-on-Chip (SoC) with an ARM big.LITTLE
processor with two quad-core clusters of Cortex-A7
and Cortex-A15 cores. The LITTLE cluster is clocked
at frequencies in the range of 200MHz to 1.4GHz in 13
frequency levels; the big cluster in a range of 200MHz
to 2.0GHz in 19 levels.

In the rest of the chapter, we refer to platform 1 as Haswell-i7
and to platform 2 as ARMv7-Mobile.While Haswell-i7 is repres-
entative for business laptops, ARMv7-Mobile is representative
for hand-held devices (ie tablets or smartphones). Haswell-i7 is
running Ubuntu 16.04.1 LTS and ARMv7-Mobile is operating
on Ubuntu 14.04.4 LTS.

To support reproducibility of all of the experiments, we
defined a strict experimental environment for our two chosen
platforms based on the Experiment Orchestration Toolkit
(ExOT) data processing and experiment control design (see
chapter 2 and [MKT20b]). On both platforms we use the
/dev/cpu_dma_latency interface of the Linux kernel to set the
maximumwakeup latency to 0 𝜇s. As the deepest allowed sleep
state is POLL (C0 active), the system cannot go into sleep mode,
which could cause changes in the timing behaviour of the
governor. We place both devices in an air-conditioned server

164 Chapter 5. Machine learning for symbol decoding

Param. Value Param. Haswell-i7 ARMv7-Mobile

Δ𝑓set 5% 𝑇𝑠 80ms 100ms
𝐼𝑙𝑜𝑤 20% 𝑓min 0.8GHz 0.2GHz
𝐼ℎ𝑖𝑔ℎ 80% 𝑓max 2.4GHz 2.0GHz
f-levels in 0.1GHz steps w/o {1.2, 2.0}GHz all

Table 5.1: Parameters of the conservative governor and the
characteristics of the platforms Haswell-i7 and ARMv7-Mobile.

room with an ambient temperature of ≈ 23C∘. Furthermore,
we fix the fan speed of both platforms Haswell-i7 and
ARMv7-Mobile to the maximum level7. With these measures,
we minimise any thermal side effects. To avoid scheduling
artefacts, we run the source and sink application in the
SCHED_FIFO scheduling class at the highest priority on both
platforms, using the pthread_setschedparam() interface.

Source and sink application are executed on two separate
cores that share a frequency domain. The source application is
placed on core 4 (physical core 2) and the sink application on
core 0 (physical core 0) of Haswell-i7. On ARMv7-Mobile, we
run the two apps on the cores 6 and 7, two big cores, although
the channel would still work if the two applications were
executed on two of the LITTLE cores. The applications are
pinned to the respective cores using the pthread_setaffinity_np()

interface. Moreover, we do not alter the standard settings of the
governor, presented in Table 5.1. Finally, we note that during
all the experiments, the systems are only running the source,
the sink and the default system services of the OS.

7Haswell-i7:
echo 'level 7' > /proc/acpi/ibm/fan
ARMv7-Mobile:
echo 255 > /sys/devices/odroid_fan.14/pwm_duty

5.5. Experimental setup and initial tests 165

5.5.1 Platform-dependent governor behaviour
We conduct initial experiments on Haswell-i7 using the 4.4.0-
112-generic Linux Kernel. The initial experiments revealed
that, in practice, the governor behaviour substantially deviates
from the ideal behaviour described in section 5.2. These
deviations cause unexpected frequency scalings, which lead to
problematic transmission behaviour.

5.5.1.1 Timing issues

The first problem arises due to the fact that the governor is not
called with a period of 𝑇𝑠. Therefore, the total measurement
time of the governor (𝑡𝑚) can vary (see subsection 5.2.2).
According to a previous communication exchange with one of
the acpi developers, this behaviourmay be caused by one of two
reasons, (i) the core is not active, or (ii) in kernel versions older
than 4.7 calls to the governor are managed by a work queue
which can cause delays if the queue is congested. After version
4.7, the developers decided to change the implementation
and call the governor using the scheduler to increase the
governor call periodicity. Therefore, this behaviour might not
be observable using newer versions of the Linux kernel.

As the system cannot detect whether a governor call has
been delayed because of the work queue, it always applies
the policy implemented for non-active cores. This policy
defines that the system should give rescheduled threads
a chance to start on a reasonably high frequency after a
core has been idle, implemented with Listing 5.2 in the
governor. This piece of code causes a further deviation from
the ideal governor behaviour described in subsection 5.2.2. The
developers assume that the core was idle if the time between
two consecutive governor calls (wall_time) is longer than twice
the governors sampling period 𝑇𝑠 (sampling_rate). In this case,

166 Chapter 5. Machine learning for symbol decoding

1 if (unlikely(wall_time>(2*sampling_rate)
2 && j_cdbs->prev_load)) {
3 load = j_cdbs->prev_load;
4 j_cdbs->prev_load = 0;
5 } else {
6 load = wall_time-idle_time) / wall_time
7 * 100;
8 j_cdbs->prev_load = load;
9 }

Listing 5.2: Snippet from the cpufreq_governor.c file in kernel
version 4.4.0. If the time between two consecutive governor
calls exceeds twice the sampling period, the current utilisation
measurement is discarded, and the last one is used, if it is not
zero.

the governor discards the current utilisation measurement
(wall_time-idle_time/wall_time*100) and uses the last measurement
(j_cdbs->prev_load), if it is not zero. As the replacement of the
measured utilisation must not happen multiple times in a
row, the governor performs a destructive read on the last
measurement (j_cdbs->prev_load=0).

By setting up a customised Kernel, we were able to insert
additional debug outputs to observe the timing behaviour of
the governor. A simple experiment that illustrates the complex
behaviour is illustrated in Figure 5.6. The intention of the
experiment was to scale up once and then scale down. This
frequency manipulation should only need two channel uses.
However, the governor is not called periodically, as indicated by
the tics on the x-axis. The governor is called the second time at
105.4ms and the third time at 285.9ms. Therefore, the elapsed
time between the two calls is 180.5ms, which is higher than
twice the sampling period 𝑇𝑠. Hence, the governor assumes that
the core was idle and does not update the utilisation, but keeps
the previously-measured utilisation of 80%. As a result, the

5.5. Experimental setup and initial tests 167

 800

 900

 1000

30.2 105.4 285.9 391.2 603.6 758.9

 20

 80

Operating
Frequency
[MHz]

Util.
[%]

Time [ms]

Frequency Overall System Util. Governor Meas. Util.

Figure 5.6: The plot shows the unexpected governor behaviour
due to non-periodical governor calls, indicated by the vertical
dashed lines, and architecture-dependent available operating
frequencies. At the third call (285.9ms) the governor assumes
that the core was idle and does not update the utilisation value,
which causes a frequency upscaling while the utilisation was
below 20%. Furthermore, rather than observing two steps from
1000MHz to 900MHz and then to 800MHz, due to limited
visibility of governor states only one frequency scaling can be
observed at the fifth governor call (603.6ms).

governor scales the frequency up instead of down, despite the
fact that the utilisation is below the lower utilisation threshold
of 20%.

5.5.1.2 State transition issues

We already mentioned the second problem that may arise
during a transmission: some internal state transitions are not
visible as frequency changes of the core. In such a case, a state
(𝑓new, 𝑓set) is not completely observable, as it is not possible to
determine 𝑓new with a singlemeasurement. Therefore, contrary
to our assumption, when deriving the capacity bounds, we
cannot use all states to encode symbols. This problem is also
illustrated in our simple example in Figure 5.6. Considering the
governor state diagram in Figure 5.4 and the channel input, we

168 Chapter 5. Machine learning for symbol decoding

conclude that the governor is in the state (1040, 1000) after the
third governor call (285.9ms). As the utilisation is lower than
20% after the third governor call and the observed frequency
is 1000MHz, the sending source application would expect the
frequency to decrease to 900MHz. However, with the fourth
governor call, the governor moves from state (1040, 1000) to
(920, 1000), which cannot be observed as the frequency stays
at 1000MHz. At 603.6ms the governor is called the fifth time
and the state changes from (920, 1000) to (800, 800), resulting
in a visible state transition from 1000MHz to 800MHz.

5.5.1.3 Lessons learned

This simple experiment highlighted the main issues that arise
when manipulating the operating frequency by changing the
CPU utilisation. Therefore, we expect a degradation of the
bandwidth of the frequency covert channel, caused by three
problems:

1. The governor is not called periodically with the sampling
period 𝑇𝑠. This will require additional overhead, as the
transmission scheme cannot assume constant symbol
durations.

2. Due to the variations of the governor call times, the
governor may use old utilisation measurements instead
of the actual one (see Listing 5.2). This can lead to
unexpected operating frequency scalings during the data
transmission.

3. Not all states can be used to transmit information, as
some of them cannot be identified by just observing the
operating frequency.

5.6. Channel implementation 169

Decoder

Encoder

snk app

src app Core 0

Core 1

Domain
Frequency

Output
Symbolstream

Empirical
Frequency Frequency

Frequency

UtilizationFrequency
Level Goal

Input
Symbolstream

Figure 5.7: Block diagram of the transceiver system with signal
flow indicated by solid arrows and indirect influences of one
component on another with dashed arrows.

5.6 Channel implementation
Figure 5.7 illustrates the structure of the frequency covert
channel implementation. In this section, we describe the
transmission scheme used and the two applications source
(src) and sink (snk).

5.6.1 Transmission scheme
Considering the conservative governor functionality outlined
in section 5.2 and its practical behaviour analysed in sub-
section 5.5.1, as well as the standard parameters outlined in
Table 5.1, we derive a robust transmission scheme, based on
the following constraints:

1. As the timing of the frequency scaling is not foreseeable
by our applications, a transmission scheme relying on
fixed symbol length is not possible. Therefore, valid
symbols can only be encoded into frequency changes,
rather than using absolute frequency values.

2. Due to the functionality of the governor (see section 5.2),
symbols can only be based on an incremental change of
the frequency level.

3. It is not possible to decrease the frequency if the core is at

170 Chapter 5. Machine learning for symbol decoding

𝑓min, nor is it possible to increase it if the core is at 𝑓max.
In addition, we assume that the core frequency is 𝑓min
when the transmission starts. This is a valid restriction
as our threat model (see section 5.3) defines that the
attack will only start after the system was idle for some
time. Thus, we have to make sure that the first channel
use increases the frequency of the core. In addition, we
have to restrict the number of consecutive symbols that
would de- or increase the frequency.

4. We have to take into account the non-ideal governor
behaviour shown in subsection 5.5.1, i. e., unexpected
frequency scalings during a transmission. As our source
application cannot forecast but only detect and react
to frequency scalings, we have to tolerate a frequency
uncertainty of one level.

5. Due to the characteristics of the frequency covert
channel, we know that an error that is not recognised
and corrected by the source application will corrupt all
following symbols.

Considering these constraints, we define the following
transmission scheme. To avoid that one non-correctable error
corrupts all following symbols, the symbol-stream is divided
into packets of fixed length. Each packet has a pre- and a
postamble. The preamble consists of scaling up the frequency
to the 10𝑡ℎ frequency level and then scaling down by 2 levels to
reach the centre frequency. Similarly, the postamble consists of
scaling up 2 levels and then scale down to the lowest frequency
level. By going back to the lowest frequency level, we guarantee
that the channel is reset after every packet and ensure that no
error is dragged on from one packet to another. In addition,
there are two data symbols, 0 and 1. A 0 is transmitted by
scaling up 2 levels and then back to the centre frequency, a 1

5.6. Channel implementation 171

is transmitted by scaling down 2 levels and then back to the
centre frequency, respectively.

5.6.2 Source application
As shown in Figure 5.7, the main task of the source application
is to utilise the core such that the frequency is scaled depending
on the input frequency level gaol flg . Moreover, the source
application compensates for non-observable state transitions,
governor miss-scalings and non-periodical execution of the
governor (see subsection 5.5.1) by detecting and tracking the
current frequency level.

The core functionality of the source application is imple-
mented sub-function force_scale() , illustrated in Figure 5.8. The
inputs of the function force_scale() are (i) the current frequency
level threshold flg describing the desired frequency level, and
(ii) the current measured empirical frequency ef_cur , which
is at the same time also an output. ef_cur is first set in the
initialisation phase of the source application and updated every
time force_scale() is called.

force_scale() is called whenever a new symbol is ready
to be transmitted. First, the sub-function get_ef() is called
to determine the low and high threshold for the empirical
frequency. As measurement can vary slightly, the source
application uses these thresholds to define an interval within
the empirical frequency has to be for a certain frequency level,
rather than using fixed values.

Next, the source application checks whether the current
empirical frequency measurement ef_cur lies within or outside
of the low and high threshold. Here, we distinguish three cases:

(I) If ef_cur is smaller than the lower threshold ef_low , the
frequency needs to be scaled up (scaling=UP).

(II) If ef_cur is bigger than the higher threshold ef_high , the

172 Chapter 5. Machine learning for symbol decoding

hits==threshold

ef_cur=utilise_core(scaling, ef_cur)

(ef_low, ef_high) = get_ef(flg)

ef_cur < ef_low

ef_cur > fe_high

hits++

scaling=DOWN; hits=0;

scaling=UP; hits=0;

scaling=NONE;

(I)

(II)

(III)

 ef_cur = force_scale(flg,ef_cur)

Yes

No

Yes

Yes

No

No

Figure 5.8: A simplified flowchart of the source application
function force_scale() , using pseudocode with C-like notation.
The inputs are the current frequency level threshold flg and
the current empirical frequency value ef_cur , with ef_cur also
being the output of the function.

frequency needs to be scaled down (scaling=DOWN).

(III) If ef_cur is between the two thresholds, the desired
frequency level has been reached and no more scaling is
required (scaling=NONE).

Case (III) is called a hit. In case of a hit, counter variable
hits is incremented, otherwise hits is set to zero. As faulty
measurements may occur, a symbol transmission (frequency
scaling) is only considered successful if threshold consecutive
hits occur.

5.6. Channel implementation 173

If a symbol transmission was successful, the force_scale()

function returns. In case the transmission was not completed
successfully, the function utilise_core() is called to force the
desired frequency scaling. The inputs to utilise_core() are the
desired scaling direction scaling and the current empirical
frequency ef_cur , which are used to determine the parameters
needed to generate the appropriate core utilisation. The
function utilise_core() also implements a so-called backchannel,
which allows the source application to update the current
empirical frequency based on the timing measurements, as
described in section 5.3. The timing measurements are done
using a tight loop similar to the one in the cpuburn stress-test8

(see Listing 5.1) and gettimeofday() . One timing measurement
is performed during the initialisation of the application to
get a reference value, which is used to normalise all timing
measurements to determine the empirical frequency.

The main function of the source application implements a
timeout, which aborts sending of a packet after a pre-defined
time and restarts the transmission process.

5.6.3 Sink application
The frequency is indirectly measured by the sink application,
with a sampling period 𝑇; by default 𝑇 = 20ms. The sink
application inspects the frequency using the same timing
measurement method as the source application (also see
section 5.3). In order to minimise measurement uncertainty,
the sink application performs multiple timing measurements
per data point. These measurements are then averaged to
determine the empirical frequency. To increase the accuracy
of the empirical frequency measurements, the length of the
tight loop used for the timing measurements can be increased.

8patrickmn.com/projects/cpuburn

https://patrickmn.com/projects/cpuburn/

174 Chapter 5. Machine learning for symbol decoding

However, a long, tight loop causes more utilisation, which leads
to a higher channel interference. Therefore, we need to tune
the length of the tight loop depending on the attacked device
to achieve a good trade-off between accuracy and interference.
The tuning is done manually before the experiments are
started. However, this tuning could be automated using a more
sophisticated design of the sink applications, but we leave this
for future work. All time measurements are performed using
gettimeofday() , which proves precise and lightweight enough for
our purposes.

All samples are stored in a pre-allocated in-memory log

and dumped at the end of the execution to a log-file. After the
experiment has terminated, the log-file are analysed offline.

5.7 A Recurrent Neural Network as sig-
nal decoder

In this section, we give a brief overview of the underlying
techniques used to build a Recurrent Neural Network (RNN)
based signal decoder. We base the decoder design on Connec-
tionist Temporal Classification (CTC) introduced by Graves
[Gra12, Chapter 7], as we categorise the decoding as time-
sequence classification with variable length symbols. CTC
is the state-of-the-art technique for classification of (time-)
sequences. It allows a RNN to make soft labelling decisions at
every timestamp and calculate the probability of the correct
sequence. By using this probability for the loss function, the
RNN is able to learn to predict the label sequence without
the pre-knowledge of the occurring locations and quantity of
the labels. CTC allows us to implement the decoder with a
single RNN and does not require the RNN to be combined with
Hidden Markov Model (HMM). Furthermore, Graves [Gra12]

5.7. A Recurrent Neural Network as signal decoder 175

i Input Neuron

o Output NeuronLSTM Neuron

i

o

o

o

o

o

C
T

C
 D

ec
od

er

Symbol
Sequence

Normalized
Empricial
Frequency
Sequence

Figure 5.9: Network architecture example of a signal decoder
based on a Recurrent Neural Network (RNN) with Long Short-
Term Memory (LSTM) neurons using Connectionist Temporal
Classification (CTC).

already stated that CTC often even outperforms pure HMM or
RNN-HMM hybrid models.

We employ a RNN based on Long Short-Term Memory
(LSTM) units to make the decoding adaptive, and thus less
error-prone, compared to static decoders. In contrast to simple
feed-forward Neural Networks (NNs), RNNs have a feedback
loop that allows us to capture temporal information of the data.
An RNN example architecture is illustrated in Figure 5.9. We
give more detailed information on RNN and the advantage of
LSTM units in section 6.4.

The RNN we use in this chapter consists of one input
neuron, bi-directional LSTM hidden layers and one layer that
is fully connected to the last hidden layer. A bi-directional
LSTM layer basically consists of two sub-layers, where one
layer traverses the data from past to future and the second
one from future to the past. Graves [Gra12] has empirically
evaluated that bi-directional networks show better value and
temporal accuracy than simple uni-directional networks. As
we run our model on dedicated hardware, the complexity is
not a limiting factor and, therefore, we favour more complex
bi-directional networks over simpler uni-directional ones.

176 Chapter 5. Machine learning for symbol decoding

The output layer of our model consists of 𝑌 + 1 neurons,
where 𝑌 is the number of used symbols. One output neuron is
dedicated to each symbol used in the transmission, and one
additional one is used for the blank symbol. The blank symbol
is used as a separator for the other symbols and is placed by the
RNN whenever no other symbol seems probable. It is also used
to separate two sequential occurrences of the same symbol.
The output of the output layer is then fed to the so-called
CTC-decoder, which converts this output into the final symbol
sequence.

The downside of a RNN based decoder is that it needs
a lot of training data and high computational overhead for
training. However, the training of the network can be done
offline using dedicated hardware. Moreover, generating data
for commercially available devices like the ones analysed
in this chapter is easily possible, as the platform setup can
be replicated. The training of the RNN is crucial for the
performance of the decoder. If the RNN is not designed fitting
the complexity of the decoding task, the training is badly
parametrised or the training data is of bad quality, the decoder
might not work at all.

5.8 Experimental analysis
We first analyse a static decoding strategy. The static decoding
strategy is based on an empirical frequency-to-frequency level
mapping, which we determined experimentally. An example
of a message transmission with a packet length of 5 bits is
illustrated in Figure 5.10. Starting from the top, plot (a) shows
the input symbols, where S indicates the preamble and E the
postamble. Plot (b) depicts the goal frequency level input to
the source application. According to this frequency goal and

5.8. Experimental analysis 177

(a)S 1 0 0 1 0 ESymbols

 6
 8

 10
(b)Frequency

Level Goal

20%
80% (c)Util.

[%]

140
180
220
260

(d)Empirical
Frequency

0

6
8

10

 0 1095 1848 3208 3943 44884920 6980

(e)Frequency
Level

Time [ms]

Figure 5.10: The input symbol stream (a), is converted to the
goal frequency level (b). Using this input, the source generates
the utilisation trace (c). This utilisation causes frequency
scalings visible in the empirical frequency measurements trace
(d). By filtering and discretise the frequency levels trace (e) is
obtained, to reconstruct the symbol stream.

input through the backchannel, the source application tries to
generate the utilisation presented in plot (c). Plot (d) shows
the empirical frequency measurements of the sink application,
including the measurement artefacts. Lastly, plot (e) illustrates
the processed empirical frequency trace.

Most of the measurement artefacts shown in (d) are
eliminated by the offline post-processing. In the offline post-
processing, we apply an average filter with a window size
of 9 samples and discretise the empirical frequency measure-
ments. The discretisation is based on the platform-specific
empirical frequency-to-frequency level mapping. Although
the frequency scaling is not exactly as intended by the source
application, the example shows that it is still possible to
correctly decode the signal. This is thanks to the source
application and coding measures which compensate for

178 Chapter 5. Machine learning for symbol decoding

most of the governor implementation artefacts mentioned
in subsection 5.5.1. For example, at the end of the second
bit (shortly before 3208ms), the frequency level drops below
the centre frequency. To compensate for this drop, the source
application increases the utilisation again to force the system
back to the centre frequency.

While the static decoding implementation worked fine
for short and few packets, detailed experiments reveal its
limitations. Using the static decoding scheme, we were not

𝐹(𝑓 (𝑡)) … ideal transformation of operating

frequency to empirical frequency

𝑓 ′𝑒 (𝑡) … observed empirical frequency

𝑀 … multiplicative random interference factor

𝐴 … additive random interference factor

𝑓 ′𝑒 (𝑡) = 𝑀 ⋅ 𝐹(𝑓 (𝑡)) + 𝐴 (5.6)

able to reproduce the transmission error rates reliably when
usingmultiple datasets consisting ofmany packets each. Packet
error rates varied between 20% and up to 60% for repeated
transmissions of the same 200 packets with a length of 8 bit
each. Unlike in our initial tests, the measurement artefacts
could not be fully compensated by the offline post-processing
and generated a substantial amount of symbol errors. The static
decoding strategy failed because the system showed a higher
sensitivity to interferences than we originally anticipated.
The caused by the traces containing (i) multiplicative, and
(ii) additive random interference, as shown in Equation (5.6).
These issues are induced by system interferences in the
initialisation process and themeasurements of the source or the

5.8. Experimental analysis 179

(a)
Empirical
Frequency

(b)Probability

(c)- S S 1 - - 0 0 - 0 1 1 0 - - E E ESequence

(d)S 1 0 0 1 0 ESymbols

EF P(S) P(E) P(0) P(1) P(-)

Figure 5.11: Example of a packet decoding using Connectionist
Temporal Classification (CTC). Using the empirical frequency
measurements (a) as input, the Recurrent Neural Network
(RNN) determines the symbol probabilities (b). The Connection-
ist Temporal Classification (CTC) decoder uses the probabilities
to generate the label sequence (c) and then determine the
final output symbol stream (d), equal to the input shown in
Figure 5.10.

sink application. They cause the static mapping from empirical
frequency-to-frequency level to be incorrect.

5.8.1 Recurrent Neural Network based decoding
To address the limitations of the static decoding scheme, we
employ a RNN as a signal decoder that takes a normalised
empirical frequency measurement as an input. The LSTM
layers contain 72 neurons each using tanh as the activation
function for the output of the neurons and sigmoid for the
gates. The output layer consists of 5 neurons using the softmax
activation function. We need 5 output neurons for the 5
possible labels S (preamble), E (postamble), 0, 1 and - (blank).
An example of a packet decoding is illustrated in Figure 5.11
for the same packet as used in Figure 5.10. Plot (b) depicts
the probabilities for the different symbols, determined by the
RNN. The plots (c) and (d) illustrate the two-step task the CTC-

180 Chapter 5. Machine learning for symbol decoding

decoder performs. First, the one-hot encoded label vectors are
converted to a label sequence and further to the final output
symbol sequence.

For the training, we generated packets with a random
length between 8 and 32 bits, summing up to a total of
32000 bits. By using random length packets, we prevented the
RNN from just learning the length of the packets, instead of
correctly classifying the preamble and postamble. Furthermore,
we did not need to re-train it for each different packet
length again. We concatenated the recorded traces such that
the resulting training sequences consist of 5000 empirical
frequency readings. Such a sequence is called a sample. In the
training, we used 200 of those samples, grouped into 10 mini-
batches, where 20 samples (1mini-batch) is used for validation.
The training itself consisted of two phases (i) 200 epochs for the
initial training and no regulative measures, and (ii) 1000 epochs
for the fine-tuning, using a clip-norm of 70.0 to prevent
gradient explosion. We used a Nesterov accelerated stochastic
gradient descent optimiser with a learning rate of 0.001, a
momentum of 0.9 and a decay of 0. Furthermore, if the
validation loss decreased, we saved the RNN model after each
epoch, to make sure we used the best model in the final decoder.

5.8.2 Threat level assessment
We evaluate the robustness of our transmission scheme for
different payload length of the packets, i. e., 8, 16, 32 and
64 bit. For every packet length, we send 5 traces of 200 packets
each, with random payload bits generated using the python
random packet. The payload of each of our traces is big
enough to contain multiple 512 bit elliptic-curve cryptography
keys [Bar16], see Table 5.2.

To evaluate the throughput degradation of the frequency
covert channel caused by the governor implementation

5.8. Experimental analysis 181

artefacts, we compare the results of our experiments with two
theoretical baseline platforms. These baseline platforms have
the same parameters as the respective real platform Haswell-i7
and ARMv7-Mobile (see Table 5.1), but we assume that none of
the frequency covert channel and the governor implementation
artefacts occur (see subsection 5.5.1 and section 5.6). We

TP𝑏𝑎𝑠𝑒 =
𝑝𝑎𝑦𝑙𝑜𝑎𝑑

𝑇𝑠 ⋅ (𝐶𝑈𝑃𝑅𝐸 + 𝐶𝑈𝐵𝐼𝑇 ⋅ 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝐶𝑈𝑃𝑂𝑆𝑇)
(5.7)

calculate the throughput TP𝑏𝑎𝑠𝑒 of the baseline platforms using
Equation (5.7). Here, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 is the number of bits per packet.
𝐶𝑈𝑃𝑅𝐸 is the number of channel uses for the preamble and
𝐶𝑈𝑃𝑂𝑆𝑇 for the postamble, which are both 12. The number of
channel uses per bit, denoted as 𝐶𝑈𝐵𝐼𝑇, is 4. The respective
throughput for each packet length is given in Table 5.2 for
both baseline platforms.

5.8.2.1 Achievable rates and error probability

The upper diagram in Figure 5.12 shows the achieved through-
put in bps, calculated as an average of each single packet
throughput for all packets that have been transmitted without
error. The packet throughput is calculated by dividing the
number of payload bits in a packet by the time needed to
send the whole packet, including preamble and postamble. The
middle diagram presents the degradation of the throughput
of the real platforms in comparison to the baseline platform,
i. e., the percentage of throughput loss. The Packet Error Rate
(PER) in % is illustrated in the bottom diagram.

Our experimental analysis shows that the achievable
throughput is substantially lower than the capacity bound
determined in section 5.4. The difference between capacity

182 Chapter 5. Machine learning for symbol decoding

bound and maximum throughput of our baseline platforms is
caused by the transmission scheme. Our transmission scheme
needs 4 channel uses per bit in an error-free environment
without governor implementation artefacts. Therefore, we
only achieve a throughput of 0.25 bits per channel use for
packets of infinite length. This is significantly lower than the
upper channel capacity bound of 0.972 bits per channel use
for Haswell-i7 and 0.982 for ARMv7-Mobile, respectively. Yet,
the high complexity of the transmission scheme is necessary
due to the platform-dependent behaviour and implementation
artefacts of the governor (see subsection 5.5.1).

As plot (b) in Figure 5.12 outlines, the real platforms
Haswell-i7 and ARMv7-Mobile show a further throughput
degradation when comparing them to the respective baseline
platform, i. e., relative decrease of the throughput on the real
platforms compared to the baseline platforms. This degradation
is caused by corrections the source application has to apply
due to unexpected frequency scalings. While we expect
an increasing trend for the throughput with rising packet
length, both platform Haswell-i7 and ARMv7-Mobile show
a plunge for packets with a length of 32 bits. This shows that
the platform dependencies and implementation artefacts of
the governor cause substantial disturbance in the channel,
independent of the duration of the packets.

We observe increasing packet error rates (PERs) for
increasing packet lengths for both platforms, which correlates
with the higher likelihood for bit errors, i. e., non-recoverable
unexpected governor behaviour for increasing packet length.
However, on ARMv7-Mobile the PER is lower by almost a
factor of 4, than on Haswell-i7. We chalk the lower PER up to
a combination of two reasons: (i) different Kernel versions of
ARMv7-Mobile and Haswell-i7, and (ii) the architecture of the
processor of ARMv7-Mobile. ARMv7-Mobile is operated on

5.8.
Experim

entalanalysis
183

Packet Payload Payload Bits per Trace Haswell-i7 TP𝑏𝑎𝑠𝑒 ARMv7-Mobile TP𝑏𝑎𝑠𝑒

8 bit 1600 bit 1.79 bps 1.43 bps
16 bit 3200 bit 2.27 bps 1.82 bps
32 bit 6400 bit 2.63 bps 2.11 bps
64 bit 12800 bit 2.86 bps 2.29 bps

Table 5.2: Packet payload, the corresponding number of data bits per trace and the throughput
on the baseline platforms.

184 Chapter 5. Machine learning for symbol decoding

Kernel version 3.10.96, while Haswell-i7 uses 4.4.0-112-generic.
As we presented in subsection 5.5.1, different Kernel versions
can cause differences in the behaviour of the governor due to
implementation artefacts. Furthermore, on Haswell-i7 all cores
share one frequency domain, whereas the LITTLE and the big
cores in ARMv7-Mobile have separate frequency domains. Due
to the fact that the ARMv7-Mobile will try to utilise the LITTLE
cores as much as possible and only migrate processes into the
big cluster if necessary, we experience fewer interferences for
our transmission.

Our analysis suggests that shorter packets show lower
PERs but also yield less throughput. However, we cannot
make a definite statement that this is true for every platform,
as our analysis also shows platform variations. In order to
find the best configuration for a specific platform, further
exploration considering the packet length, as well as possible
error detection or error correction codes and protocol overhead,
has to be done.

5.8.2.2 Interference by other processes

In our attack scenario, we assume that the attacked platform
is idle. This is a valid expectation, considering the usage
pattern of mobile and embedded platforms. Nonetheless, other
processes could still increase the core utilisation and interfere
with the channel. While short utilisation bursts caused by
background processes and idle applications can be handled, a
high utilisation floor would cause more problems.

Short utilisation bursts have the same effect on the
governor behaviour, as the issues introduced by Listing 5.2,
namely, a single unexpected frequency scaling. We show with
our implementation that single unexpected frequency scalings
can already be handled with measures like a backchannel, an
appropriate transmission scheme (see section 5.6) and a smart

5.8. Experimental analysis 185

(a)Throughput
[bps] 0.82 1.11 1.00 1.201.23 1.70 1.51 1.83

(b)Degradation 43% 39% 52% 48%
 31% 25%

 43% 36%

(c)
Packet

16 bit 32 bit 64 bit8 bit

Error
Rate

Packet Dataload Length

1.05% 1.50% 1.62% 1.99%4.52% 4.99%
8.46% 8.34%

Haswell-i7 ARMv7

Figure 5.12: Increasing packet length versus (a) throughputs,
(b) throughput degradation in relation to baseline platforms
and (c) Packet Error Rate (PER). As we expect that increasing
packet lengths lead to growing throughputs, the throughput
plunge at 32 bit packets indicates high channel disturbance.

decoder (see subsection 5.8.1). In contrast, if the interfering
utilisation is constant and high enough to force the governor to
scale to a frequency higher than the lowest possible frequency,
the number of reachable frequency levels is reduced. The
reduction of frequency levels can only be compensated in
the design of the transmission scheme or by a smart source
application.

We conclude that burst interference by other processes
can be compensated during an attack, while permanent
interference might make an attack impossible. Thus, launching
an attack while the platform is idle maximises the chance of
success.

5.8.2.3 Threat Classification

To assess the threat potential of the frequency covert channel,
we consider the small message criterion by Moskowitz and
Kang [MK94]. Therefore, we assume the following scenario:
The highly sensitive data is a cryptographic key that could be

186 Chapter 5. Machine learning for symbol decoding

used to enter a company network or servers. The cryptographic
key is saved on the hand-held platform of a company,
such that the employee can access the company network
and servers while on a business trip. Today, the National
Institute of Standards and Technology considers elliptic-
curve cryptography with a key size of 512 bit to be highly
secure [Bar16].

We assume that an attacker manages to deploy a setup
of the slowest implementation of our frequency covert
channel on the hand-held platform. Furthermore, the attacker
uses one parity bit per packet for error detection and a
handshake scheme. The handshake scheme involves sending
an acknowledge from the sink to the source application after
8 data packets to acknowledge whether the packets were
received correctly. An acknowledge packet does not contain a

𝑇…Total number of packets 𝐴… Number of acknowl-

𝐷…Number of data packets edgement packets

𝑘…Transmission round 𝑒 … Error probability

𝑇 = ⎡
⎢
⎢

∞

∑
𝑘=1

(𝐷 ⋅ 𝑒(𝑘−1))⎤⎥
⎥
+ ⎡
⎢
⎢

∞

∑
𝑘=1

(𝐴 ⋅ 𝑒(𝑘−1))⎤⎥
⎥

(5.8)

= ⎡
⎢
⎢
𝐷 ⋅

1
1 − 𝑒

⎤
⎥
⎥
+ ⎡
⎢
⎢
𝐴 ⋅

1
1 − 𝑒

⎤
⎥
⎥

(5.9)

= 86 packets (5.10)

parity bit and the 8 data bits correspond to the 8 data packets
sent before. This results in 𝐷 = ⌈512/7⌉ = 74 data packets and
𝐴 = ⌈𝐷/8⌉ = 10 acknowledgement packets that need to be
transmitted correctly.

In our scenario, the acknowledge packet is always trans-

5.8. Experimental analysis 187

mitted correctly, and only faulty packets are retransmitted.
Therefore, in the transmission round 𝑘 = 1, 𝐷 data and 𝐴 ac-
knowledgement packets have to be transmitted; in transmis-
sion round 𝑘 = 2, ⌈𝐷 ⋅ 𝑒%⌉ data and ⌈𝐴 ⋅ 𝑒⌉ acknowledgement
packets; in transmission round 𝑘 = 3, ⌈𝐷 ⋅ 𝑒 ⋅ 𝑒⌉ data and
⌈𝐴 ⋅ 𝑒 ⋅ 𝑒⌉ acknowledgement etc.. As illustrated in Equation (5.8),
the expected total number of packets that need to be trans-
mitted can be expressed as an infinite row. This results in an
expected total of 𝑇 = 86 packets for an error-free transmission
of the cryptographic key, as illustrated in the Equations (5.9)
to (5.10). As each packet contains 𝑏 = 8 bits and we assume
an average throughput of 𝑇𝑃 = 0.82 bps, we determine a
transmission duration of 13.98min, as shown in Equation (5.11).

𝑏…Bits per packet 𝑇𝑃…Average throughput

𝑇 ⋅ 𝑏
𝑇𝑃

=
86 packets ⋅ 8 bits per packet

0.82 bits per second
= 839.02 s = 13.98min

(5.11)

Our analysis shows that we can expect the attack to be car-
ried out successfully in approximately 14minutes. Therefore,
the attack could be executed, for example, within the lunch
break of the employee. Furthermore, as our implementation
and transmission scheme are rather naïve, this attack can be
executed more efficiently. For instance, an attacker could find a
more efficient symbol encoding and achieve throughputs closer
to the channel capacity bound. Moreover, devices ranging from
embedded systems used in mobile devices to server systems
rely on DVFS, necessary to establish the frequency covert
channel. Using this reasoning, we state that the frequency

188 Chapter 5. Machine learning for symbol decoding

covert channel poses a significant threat to a wide range of
platforms.

5.9 Mitigation Strategies
Applications commonly require access to either a timer or
timestamps during execution. These timers and timestamps
enable applications to indirectly measure processing speed
without the need for special OS permissions, as described in
section 5.3. As timers cannot be easily restricted, mitigation
strategies for the frequency covert channel require advanced
mechanisms. We provide a brief, high-level outlook on possible
mitigation strategies and list some examples, without claiming
a complete overview of past work.

Similar to Intel SGX or the Arm TrustZone, an effective
mitigation strategy could be based on hardware enclaves, i. e.,
not to share the frequency domain among different cores.
Furthermore, the concurrent execution of applications with
different security clearances on the same core has to be
restricted.

Another possible solution is a detector using different char-
acteristics of a process execution or the system architecture,
i. e., memory access or instruction stream, and apply classifiers
to identify malicious processes. Such a detector can either be
realised in software using middleware or system calls [PZ13;
Can+12; ADY13], or as dedicated hardware [Hoe+13; Ana+13;
Ozs+15; YST16; CV14]. Using training frameworks, some
existing malware detectors could be trained to detect the
frequency covert channel [KRT16].

A more direct approach is altering the part of the system
which is responsible for the information leakage [Sha+15]. As
presented in section 5.4, the choice of governor is vital for

5.10. Summary 189

the performance of the frequency covert channel. Therefore, a
smart governor design can reduce the available bandwidth
of the frequency covert channel, such that the threat is
negligible. For example, deviating from the expected governor
behaviour by introducing randomness in terms of timing
and frequency scaling will reduce the achievable channel
bandwidth. Such behaviour has, by accident, already been
implemented in the Linux Kernel 4.4.0 and led to a substantial
throughput degradation. However, this strategy needs to be
evaluated carefully, as it can also have a negative impact on
the effectiveness of the governor in terms of energy saving.

Finally, attacks only work well on idle devices, i. e., when
there is no additional load that influences the core frequency
(see section 5.3). Detecting and protecting the idle-mode can be
used correspondingly. For example, in the case of smartphones
or tablets, the governor design could take device characteristics
into account, i. e., controlling the idle mode depending on
whether the screen is on or off9.

5.10 Summary
In this chapter, we analysed a covert channel based on the
frequency of the core, called frequency covert channel. We
showed that the main threat posed by the frequency covert
channel is the possibility to leak data to compromise the
widely used security paradigm of permission separation and
application isolation.

To this end, a source application utilises the core such
that its frequency scalings encode the transmitted data. As
a counterpart, a sink application detects the changes of the

9e. g., InteractiveX governor for Android, see http://androidforums.co
m/threads/android-cpu-governors-explained.513426/

http://androidforums.com/threads/android-cpu-governors-explained.513426/
http://androidforums.com/threads/android-cpu-governors-explained.513426/

190 Chapter 5. Machine learning for symbol decoding

frequency by repeatedly measuring the duration of a fixed
set of operations. The measurement method used by the sink
application does not require any elevated privilege levels or
special function, and can therefore easily be deployed on any
platform.Wemodelled the channel as noise-free time and value
discrete to derive the corresponding channel capacity bounds.
The capacity deviation method is applicable for every platform-
governor combination that allows us to derive a channel state
diagram. The channel capacity bound was used to compare
different kinds of covert channels or help to estimate the
associated security risk and develop mitigation strategies. For
the conservative governor (see section 5.4) we determined the
upper channel capacity bound of about 1 bit per channel use.

We developed transmission schemes for two distinct
and representative platforms, Haswell-i7 and ARMv7-Mobile,
which we experimentally evaluated. Our findings showed
that it is possible to achieve throughputs of 1 to 2 bps
with packet error rates between 1% to 8%. Furthermore, our
experimental evaluation illustrated that the capacity and
achievable throughputs with the frequency covert channel
have a high dependency on the used hardware, frequency
governor and OS version (see section 5.8). Last, we gave a
brief outline of possible mitigation strategies to omit the threat
presented by the frequency covert channel.

Despite the low capacity of the frequency covert channel,
considering that (i) the attacker does not need any special per-
missions to establish the frequency covert channel, (ii) almost
every current mobile multicore system and many embedded
systems are affected, (iii) systems can often be compromised
by leaking a relatively small amount of information, i. e., a
cryptographic key or a password, and (iv) these systems are
often idle, which makes the execution of the attack easier, we
stated that this covert channel needs special attention.

6
Extracting runtime

information via the thermal
side channel

As Lampson [Lam73] outlined, there are two large groups
of data leaks: (i) covert channels, where two colluding
applications actively share information, and (ii) side channels,
where information is extracted by observing an unaware
system.While in chapters 2 to 5, we focused on covert channels
to assess the threat potential of data leaks, in this chapter, we
present a side channel attack.

Based on the finding that thermal sensor readings can
be used to leak data, shown in chapter 3, we present the
novel thermal side channel attack. This attack relies on openly
available thermal sensor readings on current devices to extract
runtime information of applications. We illustrate how to

This chapter is based on work presented in [MAT20].

192 Chapter 6. The thermal side channel

Frequency

Chapter 5.

Power

Chapter 4.

Chapter 6.

Chapter 3. Thermal

Toolkit

Chapter 2.

i

o

o

o

o

o

RNN
decoder

Side
channel

Method-
ology

Capacity
bound

derivation

Figure 6.1: In chapter 6, we present the novel thermal side
channel attack. This attack leverages openly available thermal
sensor readings on smartphones to extract application runtime
information.

employ Neural Networks and subsequent label processing to
determine which application is running at which time on a
commercial smartphone.

6.1. Introduction 193

6.1 Introduction
Due to their high computational power, mobile devices, such as
smartphones and tablets, are often used for multiple purposes
concurrently. Consequently, applications with different levels
of security and privacy clearances reside on the same piece
of equipment. For example, companies may allow their
employees to use the same smartphone for business and
private applications, or people with medical conditions may
use their smartphone to monitor their health status. In both
cases, applications performing highly-critical tasks operate
beside benign applications, like games. To prevent security and
privacy violations due to different applications on the same
device, Operating Systems (OSs) often rely on the security
paradigm of application isolation and permission separation.
This paradigm defines that security and privacy are ensured
if information transfer between applications is only possible
under the oversight of the OS. In this chapter, we show how
to bypass this security paradigm and compromise a system
by providing a method that allows an adversary to determine
which applications are executed on the device at specific time
intervals.

The execution of applications influences the power con-
sumption of the device and its temperature. Therefore, tem-
perature readings may contain information on the executed
application. Modern Systems-on-Chips (SoCs) typically have
multiple thermal sensors to support smart power management.
For example, Arm big.LITTLE SoCs often feature thermal
sensor readings in both core clusters and several more for
other components of the SoC. In general, these thermal
measurements are exposed to the OS through an unrestricted
software interface, which makes thermal data easily accessible.
For instance, there are several applications on the Google Play
Store that allow the thermal information of an Android device

194 Chapter 6. The thermal side channel

o

o

o

i

(a) (b) (c) (d)

Figure 6.2: (a) Different applications are executed on a mobile
device depending on the user input. (b) Thermal information
provided by the Operating System is collected by a third-party
application. (c) Analysis of the thermal data to determine the
application sequence. (d) The application sequence is used to
create a usage profile or detect other applications, causing
security and privacy violations.

to be read, without the need for elevated privileges1. It has
already been shown that these thermal readings may lead to
security issues [DS05]. In particular, the thermal covert channel
presented in chapter 3 shows the possibility of a data leak, as
Ristenpart et al. [Ris+09] already stated that “Covert channels
provide evidence that exploitable side channels may exist”.
However, as thermal information is vital to powermanagement,
it remains accessible without further permission requirements.

In this chapter, we present a side channel attack based
on thermal sensor readings of a mobile device, as depicted
in Figure 6.2. Different applications are executed on a mobile
device based on the user input (a). These applications are not
allowed to share any information without the supervision of
the OS, due to the security paradigm of application isolation
and permission separation. However, applications are allowed
to read thermal information from the OS software interface.
An adversary may deploy an application to read the thermal
information (b) and analyses the thermal data (c). This allows

1e. g., Simple System Monitor (https://play.google.com/store/apps/d
etails?id=com.dp.sysmonitor.app)

https://play.google.com/store/apps/details?id=com.dp.sysmonitor.app
https://play.google.com/store/apps/details?id=com.dp.sysmonitor.app

6.2. Threat model 195

the adversary to determine the execution sequence of other
applications or detect the set of running applications (d). As
this establishes an information transfer between intentionally
isolated applications, such a thermal side channel violates the
security and privacy restrictions imposed by the OS.

Contributions. Our main contributions in this chapter are:

1. We present a novel side channel attack that uses thermal
data collected from mobile devices to determine patterns
of application usage.

2. To the best of our knowledge, we are the first to applyma-
chine learning techniques from time-series processing
domain to determine an application execution sequence.

3. We present an extensive experimental evaluation of the
thermal side channel based on real user interactions with
the device, laboratory and real-world data.

6.2 Threat model
First, we describe the attack scenario to define the threat model
of the thermal side channel attack. Second, we present the
attack concept to outline the techniques used to mount a
thermal side channel attack.

6.2.1 Attack scenario
We base our threat model on the scenario presented in
Figure 6.2 and the information flow in Figure 6.3. A user
runs a sequence of applications A on a mobile device. This
sequence consists of an arbitrary sequential order and duration
of application executions, depending on the user needs. Due
to the difference in computational effort and the components

196 Chapter 6. The thermal side channel

sequence
transformer

device

application
sequence A'

application
sequence A

time

time

sequence
model

sink app

temperature
sequence SA(t, z)

time

system
files F

label
sequence LA'(t)

/sys/[...]/temp

time
...333322...

...

Figure 6.3: The information flow during a thermal side channel
attack. A user executes a sequence of different applications
A on the device. The sink application monitors the resulting
heat generation from the device by reading the respective
system files F for the different thermal zones 𝑧 ∈ Z. The sink
application outputs the thermal sequence 𝑆𝐴 (𝑡, 𝑧), which is
fed to the sequence model. This model generates the label
sequence 𝐿𝐴

′
(𝑡), holding one application label per time-step.

𝐿𝐴
′
(𝑡) is fed to the sequence transformer, which then outputs

the inferred application sequence A′.

utilised by different applications, the device generates different
heat patterns in time and space. These heat patterns can be
determined by observing the different thermal zones of a device.
A thermal zone defines sensor readings for a specific part of a
device, for example, a processor core. An adversary infiltrates
the mobile device, for example, by disguising a thermal
monitoring sink application as a benign game. Therefore, the
adversary is able to monitor the temperature sensors of the
mobile device.

The sink in Figure 6.3 collects a temperature sequence

6.2. Threat model 197

𝑆𝐴 (𝑡, 𝑧), which is composed of the thermal readings of all
observed thermal zones 𝑧 ∈ Z. The adversary analyses the
temperature sequence 𝑆𝐴 (𝑡, 𝑧) using a sequence model. As a
result of the analysis, the adversary obtains an application
label sequence 𝐿𝐴

′
(𝑡) with one label per time-step. In the

final analysis step, the per-time-step label sequence 𝐿𝐴
′
(𝑡)

is transformed into a condensed application label sequence
A′. This transformation is necessary to eliminate duplicate
labels and artefacts in the per-time-step label sequence 𝐿𝐴

′
(𝑡).

Finally, the output application sequenceA′ allows an adversary
to derive further insights into the user behaviour with different
security and privacy implications. These implications depend
on whether the adversary does the analysis offline or online.

Offline Scenario. In this scenario, the adversary only deploys
the sink application on the attacked device. The sequence
model, as well as the sequence transformer, are implemented
on a dedicated analysis device. Therefore, the sink application
transfers the thermal data to the analysis device for application
sequence inference. This way, the attacker can determine
which applications were executed at what time and create
a detailed user profile containing sensitive information. For
example, the usage of medical applications would allow
inferences on the medical condition of the user, or location-
based applications, e. g., a regional tourism application, allow
inferences about the location and activities of the user. Such
a data leak would present a major privacy violation, as the
profiling of the user behaviour could be performed without
the user’s knowledge or consent.

Online Scenario. In the online attack scenario, the attacker
performs the application sequence inference on the attacked
device in real-time. This means, in addition to the sink
applications, the sequence model and the sequence transformer
also have to be deployed on the attacked device. The attacker

198 Chapter 6. The thermal side channel

may then use the real-time information to time a targeted
attack on a specific application in the secure domain. Such
an attack is dangerous when considering a company that
enforces the bring-your-own-device policy. According to this
policy, employees will use their mobile devices for private
and business applications. Therefore, the phone features two
application domains, i. e., business and private, which are
separated by virtualisation. An example of a virtualisation
environment is “Android for work”. Such a system is vulnerable
if an attacker can retrieve information about applications in
the secure domain. This can be achieved if an attacker mounts
an online thermal side channel attack in the less secure domain
to gain runtime information from the secure domain.

6.2.2 Concept of a thermal side channel attack
To mount the thermal side channel attack, the sink application,
the sequence model and the sequence transformer need
to be implemented. We base the sink application design
on Experiment Orchestration Toolkit (ExOT), presented in
chapter 2, which allows us to sample the thermal zones of a
device in a timed fashion and without the need for elevated
privileges.

The thermal side channels establish a highly complex
transformation from device usage patterns to observable
temperature changes in the various thermal zones 𝑧 ∈ Z. In
addition, the usage patterns of applications differ vastly, as do
the interactions of applications with their users. Therefore,
we use techniques from the machine learning domains of
sequence-to-sequence labelling and time-series modelling
to implement the sequence model. We build our sequence
model using a Convolutional-Neural-Network (CNN) and a
Recurrent Neural Network (RNN), which we describe in detail
in section 6.4. The sequence transformer is based on classical

6.3. Data augmentation 199

filtering algorithms and rules of condensing labels, as outlined
in section 6.5.

It is well known that CNNs and RNNs require a tremendous
amount of labelled training data to perform well. In our case,
suitable data should be available to represent user interactions
and to represent thermal traces from different applications
on different devices and in different thermal environments.
However, there is no appropriate dataset available, nor is
it feasible to deploy a long-term measurement setup to
gather sufficiently diverse data (user interactions, applications,
devices, thermal environments, interferences) and label them
correctly. Therefore, we must define a data augmentation
scheme that allows us to generate a highly representative and
diverse data set.

6.3 Data augmentation
The overall process to generate a large set of diverse thermal
sequences is depicted in Figure 6.4. It contains four distinct
components that will be detailed in the subsequent sections.
Input to the data augmentation scheme are (i) the device for
which the thermal sequence needs to be generated, (ii) the set
of applications that will potentially run and corresponding
user inputs, and (iii) a dataset configuration, which contains
information to configure the whole generation scheme. The
device characterisation uses measurements in order to model
the thermal behaviour of the device itself. The outcomes are
temperature coefficients, namely, the internal thermal, ambient
heating and ambient cooling coefficients, which are used to
concatenate the thermal profiles of applications and augment
the data by modelling changes in the ambient temperature of
the device. Note that these coefficients are determined for each

200 Chapter 6. The thermal side channel

temperature sensor (or zone) 𝑧 individually.
The purpose of the application characterisation is to

record the temperature trace of a running application. This
is characteristic for the application and can be used by an
adversary application to spy on it. Again, the traces are
collected for each temperature zone individually.

The sequence parameter generation determines (random)
sequences of applications whose corresponding temperature
sequences are generated by the thermal sequence generation.
In order to increase the diversity of training data, it also
(randomly) generates traces of ambient temperature offsets
in order to model that the device is exposed to dynamically
changing external temperatures.

The thermal sequence generation combines all of this
information to generate a temperature sequence and its
associated label sequence.

We base our thermal modelling on Newton’s law of cooling.
It states that the rate of heat loss of a body is directly
proportional to the difference in the temperatures between the
body and its surroundings. Therefore, it is expected that the
system will experience exponential decay in the temperature
difference of body and surroundings as a function of time.
Note that Newton’s law does not take heat transfer between
individual architectural elements into account. However, as the
experimental results show, this approximation is sufficiently
accurate for our purpose.

The basic form of Newton’s law is shown in Equation (6.1),
where 𝛽 denotes the thermal coefficient, 𝑇 (𝑡) denotes the
temperature at time 𝑡, we have 𝑡2 ≥ 𝑡1, and 𝑇 idle denotes
the steady-state temperature. For convenience, we introduce
the temperature function 𝐶(⋅) in Equation (6.2). It returns
the temperature difference to the steady-state temperature
Δ𝑇(𝑡0 + Δ𝑡) = 𝑇 (𝑡0 + Δ𝑡) − 𝑇 idle after time 𝑡 and uses the initial

6.3.
D
ata

augm
entation

201

device

application
sequence A

thermal
offset Toffset(t,z)

dataset
configuration

thermal
sequence SA(t, z)

thermal
profiles Ta(t, z)

time

sequence parameter
generation

application
characterisation

thermal sequence
generation

thermal coefficients
βz

ambient heating
coefficients βz

heat

device
characterisation ambient cooling

coefficients βz
cool

label
sequence LA(t)

time
...333322...

user inputs

applications

Figure 6.4: Overall data augmentation scheme structure. We generate a thermal sequence and its labels
based on (i) the particular device and its measured thermal characterisation, (ii) the set of identifiable
applications and their thermal characterisations, and (iii) the highly-configurable data set configuration.
Using diverse configurations, we generate representative training data.

202 Chapter 6. The thermal side channel

temperature difference Δ𝑇(𝑡0) = 𝑇 (𝑡0) − 𝑇 idle, the thermal
coefficient 𝛽, and the time difference 𝑡. In order to be able

𝑇 (𝑡2) = 𝑇 idle + (𝑇 (𝑡1) − 𝑇 idle) ⋅ 𝑒−𝛽(𝑡2−𝑡1) (6.1)

Δ𝑇(𝑡0 + 𝑡) = 𝐶(Δ𝑇 (𝑡0), 𝛽, 𝑡) = Δ𝑇 (𝑡0) ⋅ 𝑒−𝛽⋅𝑡 (6.2)

to consider different heat transfer mechanisms that mediate
between heat losses and temperature differences, we can use
different constant thermal coefficients in the temperature
function 𝐶(⋅).

6.3.1 Device characterisation
One basic component of the data augmentation scheme is
the characterisation of each device in terms of its thermal
coefficients. This model will be used later on to combine the
temperature profiles of two applications that run in sequence.

In order to consider different heat transfer mechanisms,
we will characterise each thermal zone 𝑧 ∈ Z of a given device
by three thermal coefficients:

1. the internal temperature coefficient 𝛽𝑧,

2. the ambient heating coefficient 𝛽heat
𝑧 , and

3. the ambient cooling coefficient 𝛽cool
𝑧 .

The internal temperature coefficient 𝛽𝑧 describes how
long the heating effect from a previously-executed applica-
tion continues. To approximate this coefficient, we conduct
measurements on the respective device. The device is placed
in an environment with the controlled ambient temperature
and kept idle before the start of the measurement. Next, a
benchmark application is executed for some randomly chosen

6.3. Data augmentation 203

time, which increases the temperatures of the zones by some
value. As soon as the application is stopped, a temperature
trace is recorded. The measurement is repeated for different
run-times of the benchmark. From these traces, we derive
the internal temperature coefficient 𝛽𝑧 for each thermal zone
𝑧 using regression analysis of the temperature traces, i. e.,
fitting the temperature function 𝐶 (⋅) in Equation (6.2) to the
temperature measurements using non-linear least squares.

The two ambient coefficients for heating and cooling,
𝛽ℎ𝑒𝑎𝑡𝑧 and 𝛽𝑐𝑜𝑜𝑙𝑧 , respectively, model the influence of increasing
or decreasing ambient temperatures on a specific thermal
zone. Both coefficients are determined by first moving the
idle device to an environment with a different ambient
temperature, then moving it back to the initial environment
and taking the corresponding temperature trace. By isolating
the time intervals when the device adapts to the new ambient
temperature, similar to 𝛽𝑧, we use regression analysis to
determine 𝛽heat

𝑧 and 𝛽cool
𝑧 .

6.3.2 Application characterisation
We characterise an application 𝑎 running on a chosen device by
determining the thermal profile 𝑇 𝑎 (Δ𝑡, 𝑧), which describes the
thermal behaviour caused by the execution of the application
𝑎. Here, Δ𝑡 denotes the time since the application start and 𝑧
denotes the observed thermal zone of the device.

To derive the thermal profile of an application, we record
a thermal trace 𝑇 𝑎 (𝑡, 𝑧) during the execution of the application
𝑎, i. e., 0 ≤ 𝑡 ≤ 𝑡exec. We do this measurement in the same
environment as before for the internal thermal coefficients
𝛽𝑧. This way, we can ensure that the device has settled
before starting the measurement and minimise the chance
for interference from external factors.

For every application, we perform multiple measurements

204 Chapter 6. The thermal side channel

to derive multiple thermal profiles. This allows us to acquire
a more diverse set of profiles and compensate for thermal
variations caused by the measurement setup.

6.3.3 Sequence parameter generation
The component for sequence parameter generation provides a
sequence of applications and a trace of changing ambient tem-
perature offsets. Depending on these inputs, the corresponding
thermal sequence is generated. By changing the sequence of
applications and the ambient temperature offset of the device
in an appropriate way, a large set of diverse thermal sequences
and their associated labels can be generated. The strategy by
which the sequence parameters are generated is described in
the dataset configuration. In the following, we describe the
functionality of the sequence parameter generation.

Based on the available applications 𝑎 and the dataset
configuration, we generate the application sequence as an
ordered list of tuples A. The 𝑖𝑡ℎ tuple of A is defined as
< 𝑎𝑖, 𝑡start𝑖 , 𝑡end𝑖 >, where 𝑎𝑖 defines the 𝑖th application which
is started at time 𝑡start𝑖 and closed at time 𝑡end𝑖 . We do not
consider the concurrent execution of two or more applications.
Therefore, the execution intervals of individual applications
are assumed to be disjoint and consecutive: 𝑡start𝑖+1 = 𝑡end𝑖 and
𝑡end𝑖 > 𝑡start𝑖 . This assumption is realistic, considering the
typical usage of a mobile device where a single foreground
application is executed at a time.

Depending on the information in the dataset configuration,
we generate the application sequence A either (A) randomly,
(B) systematically to increase the number of different thermal
profile sequences in the data set, or (C) such that thermal
profiles are randomly chosen from two sets of profiles,
alternating. Method (B) ensures that the maximum number of
different thermal profiles appear in the data set. Method (C)

6.3. Data augmentation 205

is used, for example, if the thermal profiles can be split into
two groups, i. e., thermal profiles of known and unknown
applications.

The thermal offset 𝑇 offset(𝑡, 𝑧) simulates different envir-
onmental temperatures for different locations of the mobile
device, e. g., indoors or outdoors. To generate a relative
offset trace 𝑇 offset(𝑡, 𝑧) for each temperature 𝑧, the sequence
parameter generation first randomly generates an initial
thermal ambient thermal offset Δ𝑇 ambient

0 and an ambient
thermal offset sequence Tambient with 𝑛 tuples. The 𝑖𝑡ℎ
tuple of the sequence is defined as < Δ𝑇 ambient

𝑖 , 𝑡enter𝑖 >
and specifies that the device enters an environment with
the ambient thermal offset of 𝑇 ambient

𝑖 at time 𝑡enter𝑖 . The
ambient thermal offset is relative to the ambient temperature
in the measurement environment used for the application
characterisation (see above). Based on this ambient thermal
offset sequence, we derive 𝑇 offset(𝑡, 𝑧) using Newton’s law
in Equation (6.3), where 𝑡enter𝑛+1 = ∞. Note that when the
ambient temperature increases, we use 𝛽heat

𝑧 as the thermal
parameter for the thermal behaviour model of the zone,
while for decreasing ambient temperatures, we employ 𝛽cool

𝑧 .
𝑇 offset (𝑡, 𝑧) not only contains the ambient offset of the thermal
trace but also adds random thermal noise 𝒰(−1, 1), where −1
and 1 define the maximum amplitude of the thermal noise in
∘C. This is necessary, as traces generated from laboratory data
is less noisy than real-world recordings.

6.3.4 Thermal sequence generation
Now that we have chosen the sequence parameters and have
characterised the device, as well as the applications, we are in
the position to generate a corresponding thermal sequence.

The first challenge is to generate application sequences
based on the provided temperature profiles. The simple con-

206 Chapter 6. The thermal side channel

catenation of these profiles following the provided application
sequence A is not possible for three reasons: First, the final
temperature of a temperature profile does not typically match
the initial temperature of the subsequent application. Second,
we cannot expect that an application runs from start to end.
Rather, it undergoes a halting or closing phase when a context
switch takes place. Finally, we must consider the changing
ambient temperature offset, as well as the initial temperature
offset of the thermal sequence. We will now go through these
challenges one-by-one.

Before we can concatenate the thermal profiles according
to the generated application sequence A, we have to select
and crop thermal profiles to the desired length. However, we
must include the thermal information of closing or halting
the application in the cropped thermal profile. To this end, we
empirically evaluate the time interval at the end of a thermal
profile necessary to close an application. For example, a thermal
profile has the length of 20 s, and we have evaluated that the
last 4 s are used to close the application. If we now want to
crop the thermal profile to a length of 12 s, we crop it to 8 s
and then append the final 4 s. To ensure that there are no
temperature discontinuities in the cropped thermal profile, we
employ the temperature function 𝐶 (⋅) in Equation (6.4). Here,
𝑡𝑐𝑟𝑜𝑝 is the cropped length the thermal profile, i. e., the length
as requested from the application sequence, 𝑡𝑐𝑙𝑜𝑠𝑒 is the time
interval needed for closing an application, and 𝑡𝑒𝑥𝑒𝑐 the total
length of the thermal profile. We note that 𝑡𝑐𝑙𝑜𝑠𝑒 < 𝑡𝑐𝑟𝑜𝑝 < 𝑡𝑒𝑥𝑒𝑐.

Now, we will determine the thermal sequence 𝑆𝐴 (𝑡, 𝑧) of
an application sequence A with tuples < 𝑎𝑖, 𝑡start𝑖 , 𝑡end𝑖 > for
1 ≤ 𝑖 ≤ 𝑛𝐴, while (i) considering that there are no discontinues
in the sequence when switching from one application to the
next, (ii) taking into account that the ambient temperature is
changing, and (iii) setting the initial temperature of the

6.3.
D
ata

augm
entation

207

𝑇 offset(𝑡, 𝑧) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝒰(−1, 1) + Δ𝑇 ambient
0

∀ 0 ≤ 𝑡 < 𝑡enter1
𝒰(−1, 1) + Δ𝑇 ambient

𝑖 + 𝐶 (𝑇 offset(𝑡enter𝑖 , 𝑧) − 𝑇 ambient
𝑖 , 𝛽heat

𝑧 , 𝑡 − 𝑡enter𝑖)
∀ 1 ≤ 𝑖 ≤ 𝑛 ∧ 𝑡enter𝑖 < 𝑡 ≤ 𝑡enter𝑖+1 ∧ 𝑇 ambient

𝑖−1 ≤ 𝑇 ambient
𝑖

𝒰(−1, 1) + Δ𝑇 ambient
𝑖 + 𝐶 (𝑇 offset(𝑡enter𝑖 , 𝑧) − 𝑇 ambient

𝑖 , 𝛽cool
𝑧 , 𝑡 − 𝑡enter𝑖)

∀ 1 ≤ 𝑖 ≤ 𝑛 ∧ 𝑡enter𝑖 < 𝑡 ≤ 𝑡enter𝑖+1 ∧ 𝑇 ambient
𝑖−1 > 𝑇 ambient

𝑖

(6.3)

𝑇𝑎(𝑡, 𝑧) =

⎧
⎪

⎨
⎪
⎩

𝑇 𝑎(𝑡, 𝑧)
∀ 𝑡 ≤ 𝑡𝑐𝑟𝑜𝑝 − 𝑡𝑐𝑙𝑜𝑠𝑒

𝑇 𝑎(𝑡 + 𝑡𝑒𝑥𝑒𝑐 − 𝑡𝑐𝑟𝑜𝑝, 𝑧) + 𝐶 (𝑇 𝑎(𝑡𝑐𝑟𝑜𝑝 − 𝑡𝑐𝑙𝑜𝑠𝑒, 𝑧) − 𝑇 𝑎(𝑡𝑒𝑥𝑒𝑐 − 𝑡𝑐𝑙𝑜𝑠𝑒), 𝛽𝑧, 𝑡 + 𝑡𝑐𝑙𝑜𝑠𝑒 − 𝑡𝑐𝑟𝑜𝑝)
∀ 𝑡𝑐𝑟𝑜𝑝 − 𝑡𝑐𝑙𝑜𝑠𝑒 < 𝑡 ≤ 𝑡𝑐𝑟𝑜𝑝

(6.4)

𝑆𝐴 (𝑡, 𝑧) =

⎧
⎪

⎨
⎪
⎩

𝑇 offset (𝑡, 𝑧) + 𝑇𝑎1 (𝑡, 𝑧)
∀ 0 = 𝑡start1 ≤ 𝑡 ≤ 𝑡end1

𝑇 offset (𝑡, 𝑧) + 𝑇𝑎𝑖 (𝑡, 𝑧) + 𝐶 (𝑆𝐴(𝑡end𝑖−1 , 𝑧) − 𝑇𝑎𝑖 (0, 𝑧) , 𝛽𝑧, 𝑡 − 𝑡start𝑖)⋯
∀ 2 ≤ 𝑖 ≤ 𝑛𝐴 ∧ 𝑡start𝑖 < 𝑡 ≤ 𝑡end𝑖

(6.5)

208 Chapter 6. The thermal side channel

0.0
0

28
.26

12
0.7

4

16
9.6

6

21
2.9

0

32
6.1

0

39
0.0

2

43
4.6

2

47
4.3

4

50
2.9

0
(c)HO GA - HO WB HO MA HO ClApplications

Time [s]

(b)
Label Sequence
LA(t)

 20

 40

 60

 80

(a)Temperature
[°C]

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7

Figure 6.5: Thermal sequence build from different thermal
profiles collected from a Sony Xperia Z5, see Equation (6.6). (a)
illustrates the thermal traces, (b) the label sequence 𝐿A (𝑡) and
(c) the application trace A. Our data augmentation removes
temperature discontinuities at application pre-emption points
without distorting the thermal profiles.

thermal sequence. We obtain the thermal sequence 𝑆𝐴 (𝑡, 𝑧)
for each temperature zone 𝑧 in Equation (6.5) Here, we have
𝑛𝐴 applications with indices 1 ≤ 𝑖 ≤ 𝑛𝐴, where the first
application starts at time 𝑡start1 = 0. Note that we use the
cropped temperature profiles, as determined in Equation (6.4).
We employ the temperature function 𝐶 (⋅) to offset every
thermal profile in accordance with our temperature model
so that there are no discontinuities in the thermal trace at
the concatenation points. As a final step, we derive the label
sequence 𝐿𝐴(𝑡) corresponding to the thermal sequence 𝑆𝐴(𝑡, 𝑧).
The label sequence 𝐿𝐴(𝑡) is the numerical representation of
the application label for each time step.

Figure 6.5 illustrates the thermal sequence generated from
the example application sequence A defined in Equation (6.6).
The application labels are defined in Table 6.1, and the thermal
profiles were collected from a Sony Xperia Z5 smartphone and

6.4. The sequence model 209

the settings outlined in section 6.6. The example illustrates

A = (<HO, 0.00 s, 1.13 s >,<GA, 1.13 s, 4.83 s >,
< - , 4.83 s, 6.79 s >,<HO, 6.79 s, 8.52 s >,
<WB, 8.52 s, 13.04 s >,<HO,13.04 s,15.60 s >,
<MA,15.50 s, 17.38 s >,<HO,17.38 s,18.97 s >,
<CL ,18.97 s,20.22 s >)

(6.6)

that our data augmentation scheme is able to generate traces
that look realistic and do not show any discontinuities.

6.4 The sequence model
In this section, we show how we can apply well-known
methods from time-series and sequence-to-sequencemodelling
to mount a thermal side channel attack. In particular, we
describe an implementation of the sequence model, as shown
in Figure 6.3. Its purpose is to transform the received thermal
sequences from all the thermal zones 𝑆𝐴 (𝑡, 𝑧) into a sequence
of labels 𝐿𝐴

′
(𝑡), i. e., the sequence of presumably running

applications. We describe the chosen basic neural network
architecture, as well as the training setup.

6.4.1 Neural Network architecture
The thermal side channel is characterised by complex, largely
unknown and non-deterministic properties. First, the run-
ning applications can only be identified through their time-
dependent usage pattern of the various components of
the device such as its CPUs, GPU, memory and dedicated
processing components. This usage pattern is unknown and
non-deterministic, as it depends on the interaction of the

210 Chapter 6. The thermal side channel

user with the application, as well as data input. Second,
the usage pattern leads to distributed power consumption
that is converted to temperature changes and heat diffusion
through an unknown thermal model of the device. Last but
not least, interferences from changing ambient temperature,
air flow, running software services, as well as measurement
noise change, the temperature pattern received by the sink
application.

The transformation of a running application to a cor-
responding thermal sequence involves long-term and state-
dependent behaviour. For example, an application can be
identified by a sequence of usage patterns of the various
components of the device and, therefore, memorising and
identifying this sequence of usage patterns is an essential
prerequisite for the sequence mode. The transfer from usage
patterns to the thermal response at the thermal zones of the
device also involves long-term state dependencies. In this case,
the thermal energy that is diffusing. As a result, an effective
sequence model needs to be able to flexibly represent state-
dependent behaviour internally, i. e., it should have an internal
state.

Due to this complexity of the input data, we choose
a Neural Network (NN) based sequence model, which is
able to learn the relation between running applications and
the received thermal sequence. We compose this NN based
sequence model using a feed-forward Convolutional-Neural-
Network (CNN) for feature extraction and a Long Short-Term
Memory (LSTM) based Recurrent Neural Network (RNN) to
obtain the temporal relation between the thermal features. We
give a brief overview of these two NN types in the following
two sections.

6.4. The sequence model 211

1D-convolution layer

hidden feature map
[tconv x K]

input
[tin x Din]

output feature map
[(tconv / P) x K]

pooling layer

...Din number of input dimensions ...k kernel size

... pooling sizeP... number of time steps after convolutiontconv

number of kernels...Ktin ... number of input time steps

}
k

}
P

Figure 6.6: A simplified example of a one-dimensional
Convolutional-Neural-Network (CNN). Note that the number
of time steps after the 1D-convolution 𝑡𝑐𝑜𝑛𝑣 depends on the
kernel size 𝑘 and the data padding used for the convolution.

6.4.1.1 The Convolutional Neural Network

A Convolutional-Neural-Network (CNN) is one of the tech-
niques used in time-series processing, for example, seismic
data [Mey+19]. As stated by Goodfellow, Bengio and Courville
[GBC16, Chapter 9], a CNN implements the convolution
operation to extract feature maps from the input using kernels,
defined in Equation (6.7), where 𝑥(𝑡) is the input and 𝑘(𝑡) is
the kernel. In our model, we employ one-dimensional feed-
forward convolutional layers to transform the input to feature
maps. Furthermore, we use pooling layers to reduce the size

𝑦(𝑡) = (𝑥 ∗ 𝑘)(𝑡) =
∞

∑
𝑖=−∞

(𝑥(𝑖) ⋅ 𝑘(𝑡 − 𝑖)) (6.7)

of the convolutional layer output. Roughly speaking, a CNN

212 Chapter 6. The thermal side channel

it ht

ot

F z-1

ht+1

i0h0

o0

F

h1

o1

F

i1 i2h2

o2

F

i3h3

o3

F

itht

ot

F...unrolling

i4h4

o4

F

Figure 6.7: A Recurrent Neural Network (RNN) cell, in simple
representation (left), and unrolled over time. 𝑖𝑡 represents the
input, 𝑜𝑡 the output and ℎ𝑡 the internal state at time 𝑡.

can efficiently transform our time-series data into a suitable
format for further processing, while reducing the data size and
thus reducing the complexity of following computation steps.

Figure 6.6 illustrates an example of such a CNN. The input
data has a length of 𝑡𝑖𝑛 time steps and 𝐷𝑖𝑛 dimensions. Different
dimensions can be, for example, different sensors that are read.
The 1D-convolutional layer processes the input data to obtain
the so-called hidden feature map, which has a size of [𝑡𝑐𝑜𝑛𝑣 × 𝐾].
Here, 𝑡𝑐𝑜𝑛𝑣 defines the number of time steps in the data after the
convolution operation, which depend on the size of the kernel
𝑘 and the padding method that is used. 𝐾 defines the number
of different kernels, or filters, used by the 1D-convolutional
layer, illustrated by the different colours in Figure 6.6. The
hidden feature map is downsampled by the pooling layer using
a fixed pooling size 𝑃 and a pre-defined function, for example,
max. The pooling layer outputs the final feature map of size
[(𝑡𝑐𝑜𝑛𝑣/𝑃) × 𝐾].

6.4.1.2 The Long Short-TermMemory based Recurrent
Neural Network

In contrast to simple feed-forward neural networks, RNNs have
internal feedback loops that allow them to capture, represent
and use temporal information in the input sequences. Figure 6.7
illustrates an RNN consisting of a single cell, feeding the

6.4. The sequence model 213

internal state of the current time-step to the next time-step.
For training, the RNN is unrolled over time (see Figure 6.7),
to perform a back-propagation through time for computing
gradients. In other words, after unrolling, the input vector
dimensions of the RNN are extended by the time dimension.
For example, a RNN that takes an input vector with 𝑁𝐹 feature
dimensions and is unrolled 𝑁𝑇 time-steps, will take an 𝑁𝑇 × 𝑁𝐹
input matrix during training.

The main issue of simple RNN cells is the vanishing-
gradient-problem, which does not allow them to capture long-
term temporal relations in the data [Gra12, Section 3.2].
This problem arises because, as the weights are shared for
all time steps, input values are multiplied with the same
weights, which leads to exponential decay of the sensitivity
of the nodes towards the input data. To compensate the
vanishing-gradient-problem, Hochreiter and Schmidhuber
[HS97] designed Long Short-Term Memory (LSTM) cells with
an input, a forget and an output gate. These gates allow LSTMs
to control the information flow over time (long-term memory)
better and, therefore, compensate for the vanishing-gradient-
problem [Gra12, Chapter 4].

LSTMs are often implemented as bi-directional networks,
which capture temporal relationship in the data in both
directions. Simply speaking, bi-directional networks consist
of two sub-networks, one of which traverses the data from
past to future and the other from future to past [Gra12, Section
3.2.3]. Bi-directional networks often perform better, but they
are more complex due to the increased size of the network.
In addition, bi-directional networks cannot be used on-line as
they require information from the future to process a label
output. Therefore, we will use simple uni-directional LSTM
layers in our sequence model.

214 Chapter 6. The thermal side channel

thermal
sequence SA(t, z)

time

sequence model

label
sequence LA(t)

time
...333322...

label
sequence LA'(t)

time
...333322...

sequence loss

RMSprop
optimizer

loss

apply
gradients

weight generator

weights

Figure 6.8: Setup during the training phase of the sequence
model.

6.4.2 Model structure and training setup
For our experiments, we use a network consisting of (i) one
convolutional layer with 64filters and a kernel size of 25 (1 s),
(ii) one max-pooling layer, (iii) 4 LSTM-layers with 128 units
each, and (iv) a dense layer with as many units as labels in the
experiment scenario. The CNN reduces the amount of data fed
to the LSTM layers and extracts the most important thermal
features. Using the LSTM layers, we derive and memorise
timing-related information from the internal thermal feature
stream. Lastly, the dense layer converts the LSTM layer output
to a one-hot-encoded output label vector.

Figure 6.8 illustrates the setup for training of the sequence
model. The input for the training are the thermal sequence
𝑆A (𝑡, 𝑧) and the corresponding label sequence 𝐿A (𝑡), which we

6.4. The sequence model 215

generate as described in section 6.3.
During training, we use the sequence loss from the

TensorFlow 2.0 Addons seq2seq package2. This loss function
allows us to weight the individual samples of the trace for two
purposes: (i) if the input trace length is shorter than the actual
input length of the model, we use zero weights to indicate
which samples should be ignored, and (ii) the weights allow us
to compensate if some labels appear disproportionately often in
the training data to ensure the training puts the same emphasis
on all labels (example-weighted training). The weight generator
generates the weights depending on how often a label occurs
in a batch. For example, in a batch label with two labels A and
B, A occurs twice as often as B. In this case, the weights are 0.5
for label A and 1 for label B. The determined loss is then fed
to the RMSprop optimiser, an adaptive learning rate optimiser
which has proven to work well for many applications [TH12].
We choose the RMSprop optimiser because it is widely used
and has been empirically evaluated to outperform simple
stochastic gradient decent in terms of training time3. However,
we acknowledge criticism towards stochastic optimisation
techniques that has been raised in the past [RKK19], but leave
an evaluation of different optimisers for future work.

To avoid over-fitting, we use dropout layers and early
stopping during training. The early stopping is triggered
whenever the loss on the test set does not decrease, and the
per-time-step accuracy does not increase after 20 epochs of
training.

2https://www.tensorflow.org/addons/api_docs/python/tfa/seq2seq/s
equence_loss

3https://towardsdatascience.com/understanding-rmsprop-faster-neur
al-network-learning-62e116fcf29a

https://www.tensorflow.org/addons/api_docs/python/tfa/seq2seq/sequence_loss
https://www.tensorflow.org/addons/api_docs/python/tfa/seq2seq/sequence_loss
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a
https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a

216 Chapter 6. The thermal side channel

6.5 Sequence transformation and per-
formance metrics

Following the information flow, as depicted in Figure 6.3, the
sequence model transforms the thermal sequence into a label
sequence. Due to the limited view of the sequence model
on the relation between the application sequence and the
resulting temperature sequence, we can observe artefacts when
switching between applications. Finally, in order to evaluate
the difference between the initial application sequence and the
predicted application sequence, appropriate metrics need to be
defined.

6.5.1 Sequence transformation
After training the sequence model, we feed an example thermal
sequence to obtain the label trace, as illustrated in Figure 6.9.
The example is generated using thermal profiles collected from
a Sony Xperia Z5 smartphone, using the experimental setup
outlined in section 6.6. In this section, we highlight issues in
the label trace 𝐿𝐴

′
(𝑡) as produced by the sequence model and

provide an approach to address them. Figure 6.9 illustrates a
thermal sequence using the applications outlined in Table 6.1
and thermal profiles from a Sony Xperia Z5 (see section 6.6
and section 6.7). (a) shows the thermal sequence 𝑆𝐴(𝑡, 𝑧) for
one of the zones, (b) the output label trace 𝐿𝐴

′
(𝑡) from the time-

sequence model, (c) the output application sequence A′, and
(d) the ground truth A.

The literature offers a variety of different approaches for
a transformation from a label per time unit to a label interval.
For example, combining the RNN with a Hidden Markov
Model (HMM) or using the so-called Connectionist Temporal
Classification (CTC) algorithm [Gra12]. CTC based models
provide an output distribution over all possible application

6.5. Sequence transformation and performance metrics 217

(c)HO GA - HO WB HO MA HO ClPredicted Apps

0.0
0

28
.26

12
0.7

4

16
9.6

6

21
2.9

0

32
6.1

0

39
0.0

2

43
4.6

2

47
4.3

4

50
2.9

0
(d)HO GA - HO WB HO MA HO ClGround Truth

Time [s]

(a)
Temperature
[°C]

(b)
Most
likely
label

Figure 6.9: A thermal sequence processing example taken from
the evaluation in section 6.7 using thermal profiles collected
from a Sony Xperia Z5. shows (a) the thermal sequence 𝑆𝐴(𝑡, 𝑧)
for one of the zones, (b) the labelling sequence 𝐿𝐴

′
(𝑡), (c)

the predicted application sequence A′ and (d) the actual
application sequence A. The plot shows that the sequence
model is capable of predicting correct labels with only a small
amount of timing inaccuracy. Yet, labelling artefacts at the
application pre-emption points at 169.66 s and 390.02 s occur.
However, the sequence transformation using a majority voting
filter and label condensing is able to compensate for such
labelling artefacts.

sequences for a given input. One can use this distribution either
to infer a likely application sequence or to assess the probability
of a given one. However, as such advanced approaches require
a considerable amount of training and computing overhead, we
resort to the following simpler two-step approach: Use a filter
to avoid the jitter label and a label condensing rule to convert
𝐿𝐴

′
(𝑡) into A′. We consider this simple approach sufficient for

our application, as we do not need to differentiate whether an
application has been executed multiple times in a row or once
for a longer period of time.

218 Chapter 6. The thermal side channel

In Figure 6.9, the output label trace 𝐿𝐴
′
(𝑡) at the pre-

emption points at 169.66 s and 390.02 s jumps between multiple
labels. Therefore, there is a need for an additional filter to
eliminate such a label jitter. We apply a simple sliding window
with majority voting replacement with a window length of
25 s. This window size is sufficiently large to compensate the
label jitter and other labelling artefacts, yet small enough to
allow for a sufficient temporal accuracy of the labelling.

After determining the filtered per-time-step labelling
sequence 𝐿𝐴

′
(𝑡), we have to apply a final transformation to

derive the predicted application sequence A′. All consecutive
equal labels are combined to a single label. By tracing the
start and end time of the condensed labels, we can determine
when an application is executed. The example from Figure 6.9
shows that the network is capable of determining the correct
application sequence and that the timing is reasonably accurate.
The latency of the labels at the application pre-emption points
can be considered normal as Graves [Gra12] already stated
that uni-directional LSTM models often set the labels with
some delay. However, the example also shows that if the
thermal trace does not contain sufficient thermal features,
misclassifications might happen. As the gaming application
(GA) seems to be idle at the pre-emption point at 120.74 s, the
sequence model sets the unknown label (“-”) too early.

6.5.2 Performance metrics
In order to evaluate the performance of the whole approach
as outlined in Figure 6.3, we need to determine the difference
between the initial application sequence A and the predicted
one A′. The associated challenges are due to the following
characteristics: (i) two application sequences A and A′

might have different lengths, (ii) element-wise comparison
of two sequences may lead to misleading results, and (iii) we

6.5. Sequence transformation and performance metrics 219

are interested in the temporal correctness of the predicted
application sequence in addition.

For example, the element-wise comparison of the correct se-
quence “ABDABABAB” and predicted sequence “ABDBABAB”
yields a relative error of 5/8 when taking only the shorter
application sequence as a reference. Besides the problem of
different sequence lengths, we can also observe that there is
just one difference in the two sequences, namely the missing
“A” after “D”. A metric that can handle sequences of different
lengths is the relative Levenshtein distance, also known as
relative edit distance. The relative Levenshtein distance is
the minimal number of modifications that have to be applied
to a sequence to be equal to another one, divided by the
length of the correct sequence. Possible modifications are
insert, delete and replace. For our example sequences, the
relative Levenshtein distance is 1/8 as we just need to insert
the application “A” after “D”. This result shows that the
two sequences are rather similar in terms of the relative
Levenshtein distance, which is closer to our intuition.

The second metric we use for the final evaluation is the
average timing error or temporal label placement error. A
naive approach would measure the time error of the label
placement by calculating the Euclidean distance between the
predicted application pre-emption points and the actual pre-
emption points. However, the predicted application sequence
can contain a different number of application pre-emptions
than the real application sequence. Therefore, we combine the
Euclidean distance with the Dynamic Time Warping (DTW)
algorithm [SC07]. DTW will calculate the Euclidean distance
between all pre-emption points reported in the predicted
application sequence, with the most similar pre-emption point
in the true application sequence, and report the sum of all
distances calculated for the sequences. For example, let us

220 Chapter 6. The thermal side channel

assume the network reports three application pre-emptions
at 5 s, 8 s and 11 s, while the true sequence only contains two
pre-emption points at 5 𝑠 and 9 s. Using DTW, the reported
Euclidean distance will, therefore, be 0 s +1 s +2 s = 3 s. To
normalise the time error metric, we divide the value reported
by the DTW algorithm by the number of actual pre-emptions
in the true sequence. This would result in an average time error
of 1.5 s in the example. If a predicted application sequence only
contains one application and, therefore, no pre-emption point,
the average timing error is 𝑁𝑎𝑁.

6.6 Target Setup
The final performance evaluation of the thermal side channel
attack is based on data from real smartphones. We chose
two different smartphones from two different vendors for our
evaluation:

• A Samsung Galaxy ARMv7-S5 SM-900H based on a
Samsung Exynos 5422 SoC, with Android 5.0 and
3 thermal zones; from now on referred to as ARMv7-
S5.

• A Sony Xperia ARMv8-Z5 based on a Snapdragon 810
SoC with Android 7.0 and 36 thermal zones, referred to
as ARMv8-Z5.

If not otherwise specified, the two smartphones are placed
in an air-conditioned server room with approximately 22∘C
and are connected to the power outlet. To generate our datasets,
we use a measurement setup based on the ExOT (see chapter 2).
ExOT provides building blocks for measurement applications,
as well as an experiment execution and analysis flow. To
read the thermal zones, we employ a sink application which

6.6. Target Setup 221

Label Application Name Description

VM AnTuTu Benchmark Suite
CL Dropbox Cloud storage application
DO Document Viewer Standard document viewer
GA Angry Birds Rio Game
SM Facebook Social Media client
IM Wire Instant messaging service
WB Chrome Browser Web browser
MA Gmail E-mail client
LO Google Maps Location services
VI YouTube Video streaming service
HO Launcher/Home Android system
- Blank/Unknown Unknown application

Table 6.1: Used applications and associated labels during the
performance evaluation.

reads the corresponding sysfs files4. In addition, the sink
application determines the current foreground application, i. e.,
the ground truth. The foreground application is determined
by querying the usage stats or activity manager, depending
on the Android build. The sink application is implemented as
an Android background service and is configured to conduct
a measurement every 1ms. However, due to the Android
scheduling policy, the sampling period is longer and fluctuates.
This results in an average sampling period of approximately
30ms on ARMv7-S5 and 46ms on ARMv8-Z5. To get equally-
spaced samples for further data processing, we re-sample all
thermal traces with a sampling period of 40ms.

To minimise the data processing overhead, we embed our

4On the most Unix based systems the thermal zone nodes can be
accessed via the sysfs where $i is the respective thermal zone number:
/sys/devices/virtual/thermal/thermal_zone$i/temp

222 Chapter 6. The thermal side channel

analysis into the existing ExOT framework to take advantage
of the data processing stack. We randomly choose ambient
thermal offset between −35∘C and 35∘C and allow multiple
ambient temperature changes per batch. Table 6.1 outlines all
possible foreground applications and the associated labels, if
not defined otherwise. We selected those applications since
they cover the most common use cases of a current smartphone.

6.6.1 Thermal parameters
For applying a thermal side channel attack according to
Figure 6.3, we need to train the corresponding sequence model,
see Figure 6.4. To be able to apply the data augmentation
scheme as described in section 6.3, we need to characterise
the device and determine the necessary thermal parameters,
namely, the internal thermal, ambient heating and ambient
cooling coefficients.

We also use the thermal coefficients to select the thermal
zones which show high thermal dynamics, i. e., potentially
carry useful information. Initial measurements on ARMv8-Z5
show that 24 of the 36 thermal zones provide usable thermal
measurements. The other thermal zones either only provide
0∘C outputs or are not affected by any application execution.
Furthermore, on ARMv7-S5, we exclude the battery sensor as
it does not show any application-dependent thermal variations.
All parameters are outlined in Figure 6.10.

To determine the thermal coefficients 𝛽𝑧, we place the
target devices in a testbed [Sig20, Chapter 3], which allows
us to control the temperature in a range of approximately
15∘C to 50∘C. For each ambient temperature, we conduct two
measurements where we keep the device idle for 3minutes and

6.6. Target Setup 223

0.0038

0.0022

0.0025

0.0026

0.0024

0.0026

0.0025

0.0039

0.0026

0.0029

0.0027

0.0025

0.0027

0.0026

0.0027

0.0026

0.0028

0.0027

0.0026

0.0027

0.0024

0.0025

0.0025

0.0025

0.0028

0.0036

0.0010

0.0008

0.0006

0.0005

0.0005

0.0005

0.0010

0.0010

0.0008

0.0007

0.0007

0.0010

0.0010

0.0011

0.0011

0.0011

0.0011

0.0010

0.0010

0.0011

0.0008

0.0009

0.0009

0.0010

0.0010

0.0010

0.0003

0.0003

CPU7

CPU0

CPU1

CPU2

CPU3

TZ11

GPU

CPU4

CPU5

CPU6

BMS

PMC

MSM

EMMC

PA0

PA1

XO

BAT

FLS

TZ00

MEM

TZ02

TZ03

TZ04

TZ05

CPUs

SFG

0.0300

0.0299

0.0356

0.0412

0.0410

0.0235

0.0250

0.0344

0.0314

0.0313

0.0089

0.0228

0.0184

0.0197

0.0149

0.0152

0.0177

0.0089

0.0217

0.0306

0.0252

0.0260

0.0251

0.0238

0.0239

0.0686

0.0061

 βz βheat
z βcool

z

S5 Z5

Figure 6.10: Thermal coefficients for internal (𝛽𝑧), increasing
(𝛽heat
𝑧) and decreasing ambient temperatures.

224 Chapter 6. The thermal side channel

active idle

 30
 40
 50
 60
 70
 80
 90

 0 70 285

Temperature
[°C]

bigLITTLE Cores at Tambient = 40°C

Time [s]

Figure 6.11: The device is heated up by an active application
and we derive the thermal coefficients from the measurements
taken when the device is idle and cools down.

then execute a CPU benchmark5 for either 70 or 130 seconds.
The execution of the benchmark heats up the device, and we
observe the cooling-off phase for 3.5minutes, as illustrated in
Figure 6.11.

To determine the ambient heating and cooling coefficients,
we simply move the idle phones to different locations in- and
outside of an office building. From the resulting thermal trace,
we isolate the resulting thermal changes and determine 𝛽heat

𝑧
and 𝛽cool

𝑧 . The results in Figure 6.10 illustrate that the ambient
thermal coefficients 𝛽heat

𝑧 and 𝛽cool
𝑧 are significantly lower than

the respective 𝛽𝑧, on both platforms. However, due to the length
of our temperature observations, the long-term influence of
varying ambient temperatures cannot be neglected.

The thermal coefficients illustrated in Figure 6.10 show
that the CPUs have the highest thermal dynamics on both
smartphones ARMv7-S5 and ARMv8-Z5. Furthermore, while
the internal thermal coefficients 𝛽𝑧 for the cores are high
compared to other thermal zones, the influence of increasing
ambient temperatures is rather low, as indicated by the
comparison of 𝛽heat

𝑧 for different zones. Therefore, we will

5CPU Throttling Test (https://play.google.com/store/apps/details?i
d=skynet.cputhrottlingtest)

https://play.google.com/store/apps/details?id=skynet.cputhrottlingtest
https://play.google.com/store/apps/details?id=skynet.cputhrottlingtest

6.6. Target Setup 225

only use the eight CPU thermal zone readings on ARMv7-S5
and the single CPU cluster reading on ARMv8-Z5 as input for
the application detection.

6.6.2 Preparing thermal profiles for data aug-
mentation

In order to generate the thermal profiles 𝑇 𝑎(𝑡, 𝑧) required
by the data augmentation scheme, see Figure 6.4, we need
user inputs to interact with the selected applications. We
use the RepetiTouch Pro application6 to record user inputs.
RepetiTouch Pro also allows us to replay recorded user inputs
to generate multiple thermal profiles for one application usage.
In our experimental setup, the user inputs are collected by a
single user, who executes 49 different use cases. Each use case
defines the usage of one application in a specific manner. By
defining multiple use cases for each application, we ensure that
the model learns the thermal profile of an application rather
than one specific use case. In order to increase the pool of
thermal profiles to feed to the data augmentation scheme, we
record 10 traces per use case, i. e., 10 thermal profiles per use
case.

The collected thermal profile traces can contain labels
which we do not specify in Table 6.1. This is caused by dynamic
application content, for example, advertisement pop-ups. As
the execution of recorded user inputs with RepetiTouch is
static, such dynamic application content causes deviations from
the defined use case and results in unknown application labels.
Depending on the evaluation scenario, we remove parts with
unknown labels and use data augmentation to ensure there
are no temperature discontinuities in the thermal profiles.

6https://play.google.com/store/apps/details?id=com.cygery.repetit
ouch.pro

https://play.google.com/store/apps/details?id=com.cygery.repetitouch.pro
https://play.google.com/store/apps/details?id=com.cygery.repetitouch.pro

226 Chapter 6. The thermal side channel

6.7 Performance evaluation
In this section, we evaluate the performance of the thermal side
channel attack based on the training and test datasets defined
in subsection 6.6.2. We divide our performance evaluation
into multiple scenarios. For each scenario, we generate 28
training and 7 test batches, with a batch length of 3 hours and
45minutes (13500 s). The augmentation scheme uses 8 thermal
profiles of each use case to generate the training dataset and
the remaining 2 thermal profiles of each use case as a base for
the test dataset.

No Augmentation Scenario. In the “No Aug” scenario, we
train the network using the raw data we have collected
without using the proposed augmentation technique. Thermal
sequences that are shorter than the specified model input are
zero-padded, and we use zero weights so that the training is
not affected by the padding. This results in 325 training batches,
one for each application use case. As a test, we generate
7 batches by simply concatenating recorded lab traces without
augmenting the ambient temperature and the dynamic offset.

Whitebox Scenario. The training dataset for the “Whitebox”
scenario, generated using the data augmentation scheme,
only contains known labels. This means we remove all
portions with unknown labels from the datasets as described
in subsection 6.6.2.

NewApps Scenario. In the “NewApps” scenario, we evaluate
the performance of the model if a new application is added
to the device after training using augmented data. In contrast
to the “Whitebox” scenario, we keep all unknown labels in
the training dataset. Furthermore, we record thermal profiles
using the AndroBench7 application and add it to the test data.

7https://play.google.com/store/apps/details?id=com.andromeda.andr
obench2

https://play.google.com/store/apps/details?id=com.andromeda.androbench2
https://play.google.com/store/apps/details?id=com.andromeda.androbench2

6.7. Performance evaluation 227

Instead of introducing new labels for applications not defined
in Table 6.1, the unknown (“-”) label is used.

6.7.1 Expressiveness of the performance metrics
First, we intend to validate whether the chosen performance
metrics are sufficiently expressive. To this end, we perform a
manual evaluation by means of a visual inspection of a sample
of the “New Apps” scenario, shown in Figure 6.12, and compare
it to the performance metrics illustrated in Figure 6.13.

The per-time-step accuracy outlined in Figure 6.13 indic-
ates that the models perform better with data from ARMv8-Z5
thanARMv7-S5, which is also supported by the trace illustrated
in Figure 6.12. However, the relative Levenshtein distance is
quite high for both platforms, as the experiments yield 0.83
for ARMv7-S5 and 0.70 for ARMv8-Z5. This indicates that
the model misclassifies short thermal patterns, which are not
compensated by the majority filtering. As the durations of
the misclassified trace intervals are very short, they cause
a higher relative Levenshtein distance while still yielding a
high per-time-step accuracy. We assume that this behaviour is
mainly caused by the fact that thermal patterns occurring
during the execution of an application are very similar to
the thermal pattern when starting other applications and,
therefore, are misclassified. A possible solution to this issue
could be to increase the long-term-memory of the model, to
increase the amount of temporal context information that is
taken into account by the model when placing the labels. The
majority filter size could also be increased, but this would also
increase the minimal detectable application execution length.
This example shows that neither the per-time-step-accuracy
nor the relative Levenshtein distance on its own are expressive
regarding the performance of the model. Only when combined
can these metrics be used to assess the performance of the

228 Chapter 6. The thermal side channel

models reliably.
The average temporal errors, shown in Figure 6.13 for the

two platforms, ARMv7-S5 and ARMv8-Z5, are significantly
lower than the length of the majority filtering window of 25 s.
This indicates that the temporal error of the labelling models is
mainly due to label misclassifications. This assumption is also
supported by the labelling sequences illustrated in Figure 6.12.

6.7.2 Effectiveness of the data augmentation
scheme

The experimental results depicted in Figure 6.13 show that
training without augmentation (“No Aug”) is not able to learn
a proper sequence model, in contrast to the “Whitebox” and
the “New Apps” scenario.

To provide a more detailed experimental analysis of the
effectiveness of the data augmentation scheme, we run an
experiment where we generate the training data with a
reduced set of raw thermal profiles, i. e., we use 2 instead
of 8 thermal profiles per use case as a basis for the training
dataset. Figure 6.14 illustrates the results for the “New Apps”
scenario with the normal and a reduced raw thermal profile set
as used for generating the training dataset. For ARMv8-Z5, the
performance for the reduced training data scenario decreases.
For ARMv7-S5, however, training fails completely. We assume
that these two effects are caused by the following factors:

• The performance for ARMv8-Z5 degrades as the model
does not generalise well. The augmentation scheme
is not capable of generating a training data set with
sufficient variance to allow the model to generalise well
based on two very similar thermal profiles for each use
case.

• For ARMv7-S5, training of the sequence model is not

6.7.
Perform

ance
evaluation

229

Temperature
[°C]

VM
CL
DO
GA
SM
IM

WB
MA
LO
VI

HO
-

5000 6000 7000 8000

Label
Trace

Time [s]

Temperature
[°C]

VM
CL
DO
GA
SM
IM

WB
MA
LO
VI

HO
-

7000 8000 9000 10000

Label
Trace

Time [s]

S5 Z5Temperature Predictions Ground Truth

Figure 6.12: Traces indicate a higher amount of labelling errors on ARMv7-S5 than on ARMv8-Z5.

S5 Z5
Per-Time-Step Accuracy

8.7% 10.9%

77.4%
90.9%

72.3%
84.6%

S5 Z5
Relative Levensthein Distance

0.92 0.940.78
0.47

0.83 0.70

S5 Z5
Average Time Error

NaN NaN

9.17s
3.98s

8.25s 6.66s

No Aug. Whitebox New Apps

Figure 6.13: Training the model without augmented data is not possible. Models trained with augmented
data perform well, but adding a new application cause performance degradation.

230 Chapter 6. The thermal side channel

S5 Z5
Per-Time-Step Accuracy

72.3%
84.6%

13.2%

81.9%

S5 Z5
Relative Levensthein Distance

0.83 0.70
0.98

0.70

S5 Z5
Average Time Error

8.25s 6.66s

14.64s

5.59s

New Apps Reduced Raw-Training-Data

Figure 6.14: Reducing the base dataset of thermal profiles for
the data augmentation causes a slight performance drop for
ARMv8-Z5, but has a substantial impact on the performance
for data from ARMv7-S5. This is caused by the dependency of
our data augmentation scheme on the amount and quality of
the thermal profiles available for data generation.

possible anymore, as the thermal profiles chosen for the
training set are not representative. This might be caused
by the fact that the measurement of the thermal profiles
contains more measurement artefacts. Therefore, the
smaller the set of thermal profiles, the more important
their quality.

In sum, we can state that while the proposed augmentation
scheme helps to generate datasets which allow for the training
of the sequence model, there are some caveats that need to be
considered. The quality of the training dataset highly depends
on the quality of the thermal profiles. However, as there is the
risk of measurement artefacts, data cleansing is necessary, as
the quality of the training and test data highly depends on the
quality of the initial raw data. Unfortunately, data cleansing is
a process which can hardly be automated and, to some extent,
will always have to be done manually.

6.7. Performance evaluation 231

6.7.3 Performance on different devices
The results illustrated in Figure 6.13 show that in general
models trained for ARMv8-Z5 outperform the models for
ARMv7-S5. While we mentioned in the previous subsection
that the quality of the thermal profiles collected on ARMv7-S5
seem to be less representative, we also assume that the lower
performance on ARMv7-S5 is caused by the lack of thermal
information that we can collect. On ARMv8-Z5, we can use 8
sensor reading for 8 cores, while on ARMv7-S5 we can only
get 1 reading for all 8 cores. Therefore, the amount of thermal
information that we can extract is lower on ARMv7-S5, which
lowers the performance of the sequence model.

6.7.4 Influence of new applications
To assess the influence of a new application in the test dataset,
we compare the performance metrics for the “Whitebox” and
the new app scenario illustrated in Figure 6.13. The metrics
suggest that the model performance suffers when the test
data contains applications labelled as unknown, which are
not present in the training dataset. A detailed analysis of the
labelling traces shows that the accuracy degradation of the
per-time-step accuracy from the “Whitebox” to “New Apps”
scenario is approximately the amount of unknown label in the
test dataset. Therefore, we conclude that our models are not
capable to properly label new applications with the unknown
(“-”) label.

The models react as expected and simply label the new
application with the application label, which has the most
similar thermal profile. This issue can be addressed by either
implementing unsupervised online learning to update the
model constantly or offline re-training of the model. However,
these extensions are left for future work.

232 Chapter 6. The thermal side channel

6.7.5 Single application detection
For the final laboratory test, we evaluate the performance of the
model when it only has to detect whether a specific application
is running or not. Therefore, in the training set, we only
have two labels (i) the targeted application, or (ii) unknown.
Figure 6.15 illustrates the performance metrics for the different
applications, i. e., each case corresponds to a completely new
learning scenario where one of the applications is known and
all other applications are labelled as unknown (“-”).

Except for Chrome (“WB”), Google Maps (“MA”) and You-
Tube (“VI”), on both platforms single applications are detected
with an accuracy above 80%, sometimes even exceeding 90%.
However, we also have to consider the relative Levenshtein
distance, which is above 0.5 for many test-cases and also high
average timing errors. We assume that the lower performance
for some applications is caused by more ambiguous thermal
profiles. For example, for YouTube (“VI”), the thermal profile
is very different depending on whether a video is played or
the application is only opened and the search function is used,
without video playback. Therefore, we conclude that it might
also be useful to introduce multiple labels per application to
differentiate, for example, different operations like menu and
video replay.

Training a model for single application detection is harder
than for the multilabel case. This is caused by the fact that the
real data and the training data might be very different. While
we configured our augmentation scheme to generate training
data sets to contain many occurrences of the target application,
in real life, a target application might not be used for a long
time. However, if the target application does not appear often
enough in the training data, the model will not be able to learn
the thermal profile of the application. On the other extreme,

6.7.
Perform

ance
evaluation

233

Per-Time-Step
Accuracy
[%]

(a)
92.8 98.9 80.8 92.7 92.4

60.0
89.5 97.8

39.2
86.4 96.9 84.8 98.7 95.3 84.1 65.4

97.5 89.7

Relative
Leveshtein
Distance

(b)0.7
0.2

0.7
0.2 0.3

0.7 0.4 0.2
0.70.6 0.3 0.4 0.1 0.3 0.6

1.4

0.3 0.5

VM CL GA SM IM WB MA LO VI

Average
Time
Error
[s]

(c)6.38
1.65

9.22
4.15 4.25

9.74 6.32 3.16
14.63

4.03 7.44
1.54 3.80 6.52

18.06

2.03 6.04

S5 Z5

Figure 6.15: Performance metrics for the detection of a single application. While the per-time-step
accuracy is very high for most applications, the relative Levenshtein distance varies between 0.1 to 0.6.
This indicates that the applications with a high relative Levenshtein distance have a less unique thermal
profile. Furthermore, the time errors indicate that the labels are placed with an almost perfect temporal
accuracy, as they are considerably smaller than the majority voting filter window of 25 s.

234 Chapter 6. The thermal side channel

if the target application thermal profile is inserted too often
and with an unintended periodicity, the model might learn
the periodicity in which the target application appears, rather
than the thermal profile. Therefore, a model needs to be trained
carefully to learn the target application thermal profile without
expecting this thermal profile to occur regularly.

If trained properly and when considering the observations
from subsection 6.7.4, a model for single application detection
might be more robust in a real deployment. Let us consider
that the multidimensional feature space used by the RNN to
classify the thermal traces is a high-dimensional Euclidean
space. In such a case, the similarity of two thermal profiles can
be illustrated by the distance between the two corresponding
points in the feature space. The space mapped to the target
application label will be small compared to the space which
maps to all the other unknown applications. Therefore, if a
new application thermal profile is presented to the model, its
representation will most likely be mapped to the unknown
label. Hence, the model performance will not degrade, i. e., the
model is robust against new applications.

6.7.6 Real-world applicability
In addition to the lab generated data, we also collect a real-
world trace: the same user who recorded the inputs for the
laboratory setup carries each smartphone for a day. The user
freely runs the applications available on the smartphones to
imitate normal behaviour. As no data is recorded when the
smartphone is locked, this results in trace lengths of (i) 3h
(10800 s) for ARMv7-S5, and (ii) 4.5h (16200 s) for ARMv8-Z5.

The models trained with the “New Apps” scenario training
set achieved a per-time-step accuracy of less than 20%. This
means that the models are not able to detect any applications
in the real-world thermal trace correctly, as outlined in the

6.7.
Perform

ance
evaluation

235

Temperature
[°C]

VM
CL
DO
GA
SM
IM

WB
MA
LO
VI

HO
-

7200 7800 8400 9000

Label
Trace

Time [s]

Temperature
[°C]

VM
CL
DO
GA
SM
IM

WB
MA
LO
VI

HO
-

0 600 1200 1800 2400

Label
Trace

Time [s]

S5 Z5Temperature Predictions Ground Truth

Figure 6.16: The real-world traces for both smartphones, ARMv7-S5 and ARMv8-Z5. The short temporal
snippets validate the performance metrics and illustrate that the models are not able to correctly label
the thermal trace.

236 Chapter 6. The thermal side channel

example illustrated in Figure 6.16. Also, models for the binary
use cases were not capable of detecting the respective target
application in the real-world trace.

While the results based on laboratory data are promising
and clearly show the threat potential of the thermal side
channel, the tests using data collected outside of the laboratory
illustrate that there are still challenges to overcome to imple-
ment the thermal side channel attack in a real environment.
As the sequence model requires a large amount of data for
training, we do not consider manual data collection outside of
a laboratory setup a viable alternative to a data augmentation
scheme. However, the data augmentation scheme needs to
be refined to resemble real-world data more closely. This
includes, for example, influences on the temperature of the
smartphone when it is held in the hand compared to sitting
on a table. In addition, the current scheme does not take
scheduling and core pinning variations into account, as all
thermal profiles are collected from smartphones running the
same set of background services.

6.8 Summary
In this chapter, we presented a data leak based on the
measurement of the temperature of a mobile device using its
internal sensors. We showed that it is possible to determine
which applications were executed at what time. This kind of
information can be acquired without the knowledge of the user
and may pose a serious security and privacy violation.

We showed how to generate a fitting dataset for training
a model based on real-world measurements but without the
need for an extensive measurement campaign. Furthermore,
we explained in detail how to build and train this time-

6.8. Summary 237

sequence model using Convolutional-Neural-Network (CNN),
Long Short-Term Memory (LSTM) and label trace filtering.
In addition, we outlined an extensive laboratory study based
on data from two smartphones, a Samsung Galaxy S5 and
a Sony Xperia Z5. The results of the laboratory results are
promising, with per-time-accuracy of up to 90% for a scenario
with 11 different application labels. However, tests using data
recorded outside of the laboratory setup revealed that the
data augmentation scheme is not sophisticated enough to use
laboratory data to generate training datasets that resemble
outside use.

Lastly, we showed that it is possible to misuse this thermal
information to mount a thermal side channel attack. Because
a thermal side channel attack violates security and privacy
constraints, action needs to be taken to mitigate this data leak
before it can become a real threat.

238 Chapter 6. The thermal side channel

7
Concluding remarks and

outlook

The breakdown of the Dennard scaling, i. e., the effect that with
decreasing size of transistors the power density stays constant,
caused two developments: (i) the shift towards multicore
architectures to further increase the computational power of
processors, and (ii) the introduction of power management
systems for a resourceful use of the available thermal budget.
Here, the thermal budget defines the amount of thermal
energy that can be dissipated without exceeding the physical
limitations of the chip. In addition, the rise of battery-powered
systems further fuelled the development of more sophisticated
power management systems, increasing the battery lifetime
while still offering a high quality of service to the user.

Due to the increased computational capabilities of our
devices, they are now often shared between multiple users or
application domains to increase the utilisation of the available
resources. For example, cloud systems run multiple virtual

240 Chapter 7. Concluding remarks and outlook

machines on the same physical server, or a single smartphone
may be used for work and private applications.While programs
from different user or application domains should be isolated
and independent from each other, the behaviour of the power
management system of the underlying hardware depends on
the overall system utilisation and, therefore, establishes a link
between those applications.

The possibility of influencing applications in different
execution domains on the same hardware by manipulating
the behaviour of the power management system has security
implications. As Lampson [Lam73] stated, data can only be
regarded as secure if it can be guaranteed that it cannot be
transferred to a third party without the consent of the data
owner. Therefore, the prospect of (mis-) using the power
management system to send, or leak, data from one application
or user domain to another poses a severe security threat.

In recent years, the focus of the research community on
detecting and mitigating such data leaks has increased, but
some challenges remain. For instance, due to the variability in
the analysis methodology, comparability and reproducibility
of the results were often not achieved. Furthermore, due to
the complexity of data leaks and the lack of a suitable toolkit,
the amount of engineering effort required to perform a data
leak analysis remained high. In addition, many previously-
presented analyses were solely based on empirical evaluation
and did not provide a theoretical analysis.

As data leaks related to the power management system rely
on the interplay of many different system aspects, mitigating
them may not always be feasible without major changes to
the system design. Therefore, we argue that it is important
to assess the threat potential of data leaks to decide whether
immediate actions need to be taken, or if it is sufficient for
the security level of a device to monitor a potential data leak.

241

However, a confident assessment of the threat potential of
data leaks requires an exhaustive analysis. Such an exhaustive
analysis must consist of a theoretical analysis to determine
the capabilities of the data leak and an extensive experimental
study to provide evidence that a data leak could pose a threat
under realistic conditions.

In this thesis, we addressed these open challenges and
provided analyses of power management related data leaks in
multicore systems. We illustrated how to perform exhaustive
analyses of data leaks. Moreover, we provided theoretical
analyses by establishing channel models and determining
upper bounds on the channel capacity, i. e., the maximum
amount of information that could be transferred through a
data leak under ideal conditions. Furthermore, we presented
extensive experimental studies of different data leaks to
illustrate the feasibility of them being implemented and posing
a security threat.

With our data leak analyses, we showed that the power
management system has implications for the security frame-
work of a system. We illustrated that the threat emerging from
these power management related data leaks has to be taken
into account when designing secure systems. In the remainder
of this chapter, we give an overview of the contributions of
each chapter and present possible future directions.

242 Chapter 7. Concluding remarks and outlook

Figure 7.1: We presented a methodology for data leak threat
potential evaluation and the supporting toolkit ExOT and how
to apply it in chapter 2, 3 and 4. Based on these findings
and using ExOT future research could evaluate data leaks
in wireless sensor networks. Using the machine learning
techniques applied in chapters 5 and 6, future research could
develop a method for automatic channel setups and evaluate
energy harvesting side channels.

7.1. Contributions 243

7.1 Contributions
An overview of the chapters and the main contributions is
illustrated in Figure 7.1. We discuss the contributions in detail
in the remainder of this section.

7.1.1 Data leak evaluation methodology
In chapter 2, we presented a methodology to analyse data leaks
and assess their threat potential. The methodology supports
the reproducibility, comparability and expressiveness of the
analysis results by relating general data leaks to cover channels
and providing a four phase framework to execute an exhaustive
covert channel analysis.

To analyse covert channels exhaustively, we first proposed
to determine a channel model to establish a theoretical
understanding of the data leak. Based on this model, we then
derived a channel capacity bound, which allowed us to assess
the threat potential, as the capacity bound is independent of
implementation artefacts. In the third phase, we proposed
to back the theoretical analysis with experimental data by
executing a performance evaluation of a simple covert channel
implementation in a controlled scenario. The fourth phase
consisted of an implementation of the covert channel in
a realistic environment to illustrate its threat outside the
laboratory setup.

7.1.2 Experiment Orchestration Toolkit (ExOT)
We presented the Experiment Orchestration Toolkit (ExOT) in
chapter 2, which implements the methodology and helps to
reduce the engineering effort necessary for a data leak analysis.

ExOT is designed to be easy to extend and to reduce
the effort needed to port experiments to a different setup.

244 Chapter 7. Concluding remarks and outlook

Furthermore, ExOT simplifies the task of data generation,
collection, analysis and sharing by providing python based
data processing modules to simplify the handling of data. ExOT
contains a C/C++ application library with Java extensions to
enable fast development of experimental applications for a
wide range of different devices. ExOT is published under the
revised BSD 3-clause licence and freely available for download.

7.1.3 Methods for capacity bound derivation
We presented methods to derive capacity bounds for two
different classes of covert channels – continuous and discrete.

In chapter 3, we illustrated how to derive the capacity
of continuous covert channels by approximating the power
spectral density function of the channel. By executing a series
of experiments, it was possible to approximate the input power
spectrum 𝑆𝑥𝑥 and the output power spectrum 𝑆𝑦𝑦 of the channel.
Using these spectra, we showed that we could determine the
channel power spectrum 𝑆ℎℎ = 𝑆𝑦𝑦/𝑆𝑥𝑥 and apply water-filling
algorithms to determine an upper channel capacity bound.

In chapter 4, we presented a methodology to derive
capacity bounds for discrete covert channels as well. To derive
an upper bound on the channel capacity, a state model of the
covert channel had to be established. Based on this model, it
was possible to derive the transition matrix A and determine
the channel capacity bound per channel use. In cases where
experimental evaluation allowed us to determine the state
transition time 𝑇, we showed that it was possible to determine
an upper bound on the channel capacity.

7.1. Contributions 245

7.1.4 Robust Recurrent Neural Network (RNN)
based signal decoder design

Some covert channels experience high interference and are
very dependent on the interplay of different components
of a system, for instance, the frequency covert channel
presented in chapter 5. Therefore, conventional signal decoding
mechanisms may fail.

To tackle the issues of high signal interference and
variability, we presented a signal decoder design based
on a Recurrent Neural Network (RNN). In particular, we
employed fully connected Long Short-Term Memory (LSTM)
unit layers and a fully connected dense layer to implement
the Connectionist Temporal Classification (CTC) sequence
labelling algorithm [Gra12]. We showed that a decoder based
on this design is able to decode data sent through the frequency
covert channel reliably and can easily be ported to different
platforms.

7.1.5 Thermal data augmentation scheme
Evaluating data leaks may require large amounts of data, and
it may not be feasible to generate appropriate data using
a measurement setup. Therefore, there is a need for data
augmentation methods to provide appropriate data sets to
evaluate data leaks.

In chapter 6, we presented such a data augmentation
scheme for thermal data. The data augmentation scheme
allowed us to generate large sets of thermal data to train
complex machine learning models successfully. We have also
presented the limitations of our data augmentation technique
and outlined which improvements are necessary so that the
augmented data resembles real-world data more closely.

246 Chapter 7. Concluding remarks and outlook

7.1.6 Evaluation of power management related
covert channels

As stated before, the power management system has security
implications that have not yet been thoroughly studied. We
presented exhaustive evaluations of three different power
management related covert channels and assessed their threat
potential:

• The thermal covert channel, a robust cross-core data leak
established by encoding data into the thermal behaviour
of a device, by deliberately heating it up or letting it cool
down.

• The power covert channel, which allows high throughput
cross-core communication between otherwise isolated
applications, by modulating the power dissipation of the
device.

• The frequency covert channel, a covert channel that is
established by encoding information in the operating
frequency of the device, which is hard to mitigate, as it
relies only on timing measurements.

These covert channels illustrated that the power management
system has to be taken into account when designing the
security framework of a system.

7.1.7 Thermal side channel attack
In chapter 6, we presented the novel thermal side channel
attack. This attack allows us to leak application runtime inform-
ation in current smartphones. We showed that by employing
a Convolutional-Neural-Network (CNN), a Recurrent Neural
Network (RNN) and subsequent label processing, we were able
to determine which application was running at what time on a

7.2. Possible future directions 247

smartphone. The experimental evaluation was executed using
real user interaction with two smartphones and data collected
both from a controlled laboratory setup and from outside of
the laboratory.

7.2 Possible future directions
The contributions of this thesis mark an important step towards
an improved approach to data leak analysis, which yields
comparable, reproducible and expressive results. Furthermore,
in this thesis, we illustrated that the power management of
current computing systems adds another attack surface, which
must be considered when designing security frameworks. In
this section, we highlight new research directions related to
the security implications of power management systems in
computing systems.

Automatic channel setup for discrete covert channels.
The signal decoder design presented in chapter 5 already
illustrated how to automate the receiver setup in a commu-
nication channel. This design could be extended to the whole
communication chain for discrete covert channels. In particular,
process mining techniques might be able to determine the
state model of discrete covert channels by providing detailed
characteristics of the channel. Based on this model, sender and
receiver pairs based on adaptive techniques, like reinforcement
learning or genetic algorithms, may be used to automate the
setup of the covert channel fully and relieve researchers from
the engineering-heavy task of covert channel implementations.
An important aspect of this research is also the attack footprint.
As many machine learning or adaptive algorithms are quite
resource-intense, techniques must be developed to enable the
application of such an automated channel setup under highly

248 Chapter 7. Concluding remarks and outlook

constraint conditions.

Data leaks in wireless communication networks. Wire-
less communication protocols are a potential key technology
in future Internet-of-Things (IoT) applications, for example,
in the automation of industry production. Therefore, wireless
communication protocols should receive more attention from
a security perspective to identify possible attack vectors.
For example, investigating the ability to detect and identify
wireless communication protocols used in industrial IoT
applications and further decode their packets with Commercial
Off-the-Shelf (COTS) hardware is important for understanding
the potential attacks and design countermeasures for wireless
IoT networks. This is crucial, as wireless communication
protocols commonly used in industrial IoT applications exhibit
distinct temporal and spectral characteristics. COTS wireless
radios and transceivers are capable of recognising and decoding
packets from a different protocol in the same frequency band.
A focus could be put on the sub-1GHz band technologies,
like Long Range Wide Area Network (LoRaWAN), which are
extensively used in industrial context due to their energy
efficiency, long battery life and extended range for remote
sensors. Possible research questions are:

• Is it possible to build a device using COTS hardware with
energy and form factor constraints?

• How can we detect, localise and identify wireless
protocols?

• How can we decode packets of the identified protocols?

• How much information about the network (e. g., topo-
logy, structure, number of nodes, etc.) can be inferred if
the set of observable nodes is limited?

7.2. Possible future directions 249

• How can we harden defences of protocols against
sniffing and attacks?

Possible challenges are, for instance, the fact that the presence
of multiple devices operating heterogeneous protocols and
dynamically changing their protocol parameters makes it
hard to detect, localise and identify communication protocols.
Furthermore, the temporal and spectral properties of protocols
in the sub-1GHz-band might have an impact on the capability
to gather data and identify a protocol based on that data.

Energy harvesting side channels. Another emerging topic
in the IoT era is energy harvesting systems, i. e., systems that
collect the energy necessary for their operation from their
environment. Similar to the power management system in
server or mobile systems, the energy harvesting strategies
applied in IoT systems might offer a previously undiscovered
attack surface. To analyse whether there are attack vectors
for energy harvesting systems, a model of the interaction
of the system sensors and actuators with the environment
is necessary. In addition, it is necessary to establish threat
mitigation techniques to minimise the attack surface. However,
due to the nature of energy harvesting systems, mitigation
strategies are restricted by resource constraints. Furthermore,
it is important to distinguish between actual attacks and
ageing effects of the system or changing environmental
conditions. This research may lead to a formal verification and
testing framework to ensure that energy harvesting systems
conform to their security requirements. Such a verification
must go beyond a single-use case demonstration and provide
guarantees on the system security level, which still need to be
defined.

250 Chapter 7. Concluding remarks and outlook

7.3 Availability
All the data presented in this thesis, and the tools used to
process it are available online.

Experiment Orchestration Toolkit (ExOT): [MKT20b]
Detailed information on Experiment Orchestration Toolkit
(ExOT) can be found on the website exot.ethz.ch , as well
as links to download it. Below, on the left, the Experiment
Orchestration Toolkit (ExOT) logo illustrated, and on the right
the QR-Code linking to the ExOT website.

To process the data of this thesis, download version 1.1.0 of
Experiment Orchestration Toolkit (ExOT) either manually or
by using the script below:

1 ${GITURL}=https://gitlab.ethz.ch/tec/public/exot
2 for repo in eengine app_unx app_apk compilation; do
3 git clone ${GITURL}/${repo}.git
4 cd ${repo}
5 git checkout pub_Mie20
6 git submodule –init –recursive update
7 cd ..
8 done

Data: [Mie20]
The data is available in multiple repositories in the ETH
Research Collection, which are listed bellow.

Chapter 2:
http://www.doi.org/10.3929/ethz-b-000418146

http://www.exot.ethz.ch
https://www.exot.ethz.ch
https://www.exot.ethz.ch
http://www.doi.org/10.3929/ethz-b-000418146

7.3. Availability 251

http://www.doi.org/10.3929/ethz-b-000418157
http://www.doi.org/10.3929/ethz-b-000418163
http://www.doi.org/10.3929/ethz-b-000418166

Chapter 3:
http://www.doi.org/10.3929/ethz-b-000418168
http://www.doi.org/10.3929/ethz-b-000418171
http://www.doi.org/10.3929/ethz-b-000418173

Chapter 4:
http://www.doi.org/10.3929/ethz-b-000418174

Chapter 5:
http://www.doi.org/10.3929/ethz-b-000418180

Chapter 6:
http://www.doi.org/10.3929/ethz-b-000418183
http://www.doi.org/10.3929/ethz-b-000418184

The data needs to be extracted to the datapro/data directory of
ExOT, for example using following commands:

1 for tar in $(ls -d ${DOWNLOAD_DIR}/*.tar.part00); do
2 cat ${tar/00/*} >

${EXOT_PATH}/eengine/data/tmp_${tar/\.part00/}↪

3 tar -xf ${EXOT_PATH}/eengine/data/tmp_${tar/\.part00/}
-C ${EXOT_PATH}/eengine/data/↪

4 rm ${EXOT_PATH}/eengine/data/tmp_${tar/\.part00/}
5 done

Here, DOWNLOAD_DIR is the path to the directorywhich contains
the downloaded zip files and EXOT_PATH is the path to the root
directory in which the checkouts of all ExOT repositories
are located. Experiments may contain a README.md with further
instructions.

http://www.doi.org/10.3929/ethz-b-000418157
http://www.doi.org/10.3929/ethz-b-000418163
http://www.doi.org/10.3929/ethz-b-000418166
http://www.doi.org/10.3929/ethz-b-000418168
http://www.doi.org/10.3929/ethz-b-000418171
http://www.doi.org/10.3929/ethz-b-000418173
http://www.doi.org/10.3929/ethz-b-000418174
http://www.doi.org/10.3929/ethz-b-000418180
http://www.doi.org/10.3929/ethz-b-000418183
http://www.doi.org/10.3929/ethz-b-000418184

252 Chapter 7. Concluding remarks and outlook

Bibliography

[20012] JCGM 200. International vocabulary of metrology–Basic
and general concepts and associated terms. 2012. url:
https://www.bipm.org/utils/common/documents/
jcgm/JCGM_200_2012.pdf.

[ADY13] Yousra Aafer, Wenliang Du and Heng Yin. ‘Droidap-
iminer: Mining api-level features for robust malware
detection in android’. In: International Conference
on Security and Privacy in Communication Systems.
Springer. 2013, pp. 86–103. doi: 10.1007/978-3-319-
04283-1_6. url: https://doi.org/10.1007/978-3-319-
04283-1_6.

[AEW09] Andrea Arcangeli, Izik Eidus and ChrisWright. ‘Increas-
ing memory density by using KSM’. In: Proceedings of
the linux symposium. Citeseer. 2009, pp. 19–28. url:
https://www.kernel.org/doc/ols/2009/ols2009-pages-
19-28.pdf.

[Ana+13] Ittai Anati et al. ‘Innovative technology for CPU
based attestation and sealing’. In: Proceedings of the
2nd international workshop on hardware and architec-
tural support for security and privacy. Vol. 13. 2013.
url: https : / / pdfs . semanticscholar . org / 708a /
3c03556b5bc20b5bd8e58ef2f47f6a9fc7d2.pdf.

[Arm19] Arm Limited. ARM Architecture Reference Manual
ARMv8, for ARMv8-A architecture profile. Tech. rep. Apr.

https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1007/978-3-319-04283-1_6
https://doi.org/10.1007/978-3-319-04283-1_6
https://www.kernel.org/doc/ols/2009/ols2009-pages-19-28.pdf
https://www.kernel.org/doc/ols/2009/ols2009-pages-19-28.pdf
https://pdfs.semanticscholar.org/708a/3c03556b5bc20b5bd8e58ef2f47f6a9fc7d2.pdf
https://pdfs.semanticscholar.org/708a/3c03556b5bc20b5bd8e58ef2f47f6a9fc7d2.pdf

254 Bibliography

2019. url: https://static.docs.arm.com/ddi0487/db/
DDI0487D_b_armv8_arm.pdf.

[AST89] G. Andria, M. Savino and Amerigo Trotta. ‘Windows
and interpolation algorithms to improve electrical
measurement accuracy’. In: IEEE Transactions on Instru-
mentation and Measurement 38.4 (Aug. 1989), pp. 856–
863. doi: 10.1109/19.31004. url: https://doi.org/10.1109/
19.31004.

[Bar15] Davide B. Bartolini. ‘Techniques and Tools for Efficient,
QoS-Driven Warehouse-Scale Computing’. Tesi di
Dottorato (PhD Thesis). Politecnico di Milano, 2015.
url: https://www.politesi .polimi . it/handle/10589/
100464.

[Bar16] Elaine Barker. ‘Recommendation for key management
Part 1: General (Revision 4)’. In: NIST special publication
800.57 (2016), pp. 1–147. url: https://csrc.nist .gov/
publications/detail/sp/800-57-part-1/rev-4/final.

[Bar18] Carsten Barth. Come again? Towards repeatable security
experiments. Tech. rep. 1. Semester Thesis; Supervisors:
Philipp Miedl and Lothar Thiele. Gloriastrasse 35, 8092
Zürich, Switzerland: ETH Zürich, Aug. 2018.

[BG16] Anna L Buczak and Erhan Guven. ‘A survey of
data mining and machine learning methods for cyber
security intrusion detection’. In: IEEE Communications
Surveys & Tutorials 18.2 (2016), pp. 1153–1176. doi:
10.1109/COMST.2015.2494502. url: https://doi.org/10.
1109/COMST.2015.2494502.

[BM01] David Brooks and Margaret Martonosi. ‘Dynamic
Thermal Management for High-Performance Micro-
processors’. In: Proceedings of the 7th International
Symposium on High-Performance Computer Architecture.
HPCA ’01. USA: IEEE Computer Society, 2001, p. 171.
isbn: 0-76951-019-1. doi: 10.5555/580550.876439. url:
http://csdl.computer.org/comp/proceedings/hpca/2001/
1019/00/10190171abs.htm.

https://static.docs.arm.com/ddi0487/db/DDI0487D_b_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/db/DDI0487D_b_armv8_arm.pdf
https://doi.org/10.1109/19.31004
https://doi.org/10.1109/19.31004
https://doi.org/10.1109/19.31004
https://www.politesi.polimi.it/handle/10589/100464
https://www.politesi.polimi.it/handle/10589/100464
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-4/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-4/final
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.5555/580550.876439
http://csdl.computer.org/comp/proceedings/hpca/2001/1019/00/10190171abs.htm
http://csdl.computer.org/comp/proceedings/hpca/2001/1019/00/10190171abs.htm

Bibliography 255

[BMT16] Davide B. Bartolini, Philipp Miedl and Lothar Thiele.
‘On the Capacity of Thermal Covert Channels in
Multicores’. In: Proceedings of the Eleventh European
Conference on Computer Systems. EuroSys ’16. London,
United Kingdom: ACM, 2016, 24:1–24:16. isbn: 978-1-
45034-240-7. doi: 10.1145/2901318.2901322. url: http:
//doi.acm.org/10.1145/2901318.2901322.

[Bro+09a] J. Brouchier et al. ‘Temperature Attacks’. In: IEEE
Security and Privacy 7.2 (Mar. 2009), pp. 79–82. issn:
1540-7993. doi: 10.1109/MSP.2009.54. url: https://doi.
org/10.1109/MSP.2009.54.

[Bro+09b] Julien Brouchier et al. Thermocommunication. Crypto-
logy ePrint Archive, Report 2009/002. 2009. url: https:
//eprint.iacr.org/2009/002.

[Can+12] Davide Canali et al. ‘A Quantitative Study of Accuracy
in System Call-Based Malware Detection’. In: Proceed-
ings of the 2012 International Symposium on Software
Testing and Analysis. ISSTA 2012. Minneapolis, MN,
USA: Association for Computing Machinery, 2012,
pp. 122–132. isbn: 978-1-45031-454-1. doi: 10 . 1145 /
2338965.2336768. url: https://doi.org/10.1145/2338965.
2336768.

[CLW69] James W. Cooley, Peter A. W. Lewis and Peter D. Welch.
‘The Fast Fourier Transform and Its Applications’. In:
IEEE Trans. on Educ. 12.1 (Mar. 1969), pp. 27–34. issn:
0018-9359. doi: 10.1109/TE.1969.4320436. url: https:
//doi.org/10.1109/TE.1969.4320436.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory (Wiley Series in Telecommunications
and Signal Processing). Wiley-Interscience, 2006. isbn:
978-0-471-24195-9.

[CV14] Jie Chen and Guru Venkataramani. ‘CC-Hunter: Un-
covering Covert Timing Channels on Shared Processor
Hardware’. In: Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO-
47. Cambridge, United Kingdom: IEEE Computer

https://doi.org/10.1145/2901318.2901322
http://doi.acm.org/10.1145/2901318.2901322
http://doi.acm.org/10.1145/2901318.2901322
https://doi.org/10.1109/MSP.2009.54
https://doi.org/10.1109/MSP.2009.54
https://doi.org/10.1109/MSP.2009.54
https://eprint.iacr.org/2009/002
https://eprint.iacr.org/2009/002
https://doi.org/10.1145/2338965.2336768
https://doi.org/10.1145/2338965.2336768
https://doi.org/10.1145/2338965.2336768
https://doi.org/10.1145/2338965.2336768
https://doi.org/10.1109/TE.1969.4320436
https://doi.org/10.1109/TE.1969.4320436
https://doi.org/10.1109/TE.1969.4320436

256 Bibliography

Society, 2014, pp. 216–228. isbn: 978-1-47996-998-2. doi:
10.1109/MICRO.2014.42. url: https://doi.org/10.1109/
MICRO.2014.42.

[Den+74] Robert H Dennard et al. ‘Design of ion-implanted MOS-
FET’s with very small physical dimensions’. In: IEEE
Journal of Solid-State Circuits 9.5 (1974), pp. 256–268.
doi: 10.1109/JSSC.1974.1050511. url: https://doi.org/10.
1109/JSSC.1974.1050511.

[DS05] P Dadvar and K Skadron. ‘Potential thermal security
risks’. In: Semiconductor Thermal Measurement and
Management Symposium, 2005 IEEE Twenty First Annual
IEEE. 2005, pp. 229–234. doi: 10.1109/STHERM.2005.
1412184. url: https://doi.org/10.1109/STHERM.2005.
1412184.

[EPA15] Dmitry Evtyushkin, Dmitry Ponomarev and Nael Abu-
Ghazaleh. ‘Covert Channels through Branch Predictors:
A Feasibility Study’. In: Proceedings of the Fourth
Workshop on Hardware and Architectural Support for
Security and Privacy. HASP ’15. Portland, Oregon:
Association for Computing Machinery, 2015. isbn: 978-
1-45033-483-9. doi: 10 . 1145 / 2768566 . 2768571. url:
https://doi.org/10.1145/2768566.2768571.

[EPA16] Dmitry Evtyushkin, Dmitry Ponomarev and Nael Abu-
Ghazaleh. ‘Understanding and Mitigating Covert Chan-
nels Through Branch Predictors’. In: ACM Transactions
on Architecture and Code Optimization (TACO) 13.1 (Mar.
2016). issn: 1544-3566. doi: 10.1145/2870636. url: https:
//doi.org/10.1145/2870636.

[Esm+11] Hadi Esmaeilzadeh et al. ‘Dark Silicon and the End of
Multicore Scaling’. In: SIGARCH Comput. Archit. News
39.3 (June 2011), pp. 365–376. issn: 0163-5964. doi: 10.
1145/2024723.2000108. url: https://doi.org/10.1145/
2024723.2000108.

[Fit19] Athanasios Fitsios. Towards Task Inference on Mobile
Systems based on Thermal Traces. Tech. rep. 1. Semester
Thesis; Supervisors: Philipp Miedl, Rehan Ahmed

https://doi.org/10.1109/MICRO.2014.42
https://doi.org/10.1109/MICRO.2014.42
https://doi.org/10.1109/MICRO.2014.42
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/STHERM.2005.1412184
https://doi.org/10.1109/STHERM.2005.1412184
https://doi.org/10.1109/STHERM.2005.1412184
https://doi.org/10.1109/STHERM.2005.1412184
https://doi.org/10.1145/2768566.2768571
https://doi.org/10.1145/2768566.2768571
https://doi.org/10.1145/2870636
https://doi.org/10.1145/2870636
https://doi.org/10.1145/2870636
https://doi.org/10.1145/2024723.2000108
https://doi.org/10.1145/2024723.2000108
https://doi.org/10.1145/2024723.2000108
https://doi.org/10.1145/2024723.2000108

Bibliography 257

and Lothar Thiele. Gloriastrasse 35, 8092 Zürich,
Switzerland: ETH Zürich, Mar. 2019.

[FPK17] Apostolos P Fournaris, Lidia Pocero Fraile andOdysseas
Koufopavlou. ‘Exploiting Hardware Vulnerabilities to
Attack Embedded System Devices: a Survey of Potent
Microarchitectural Attacks’. In: Electronics 6.3 (2017),
p. 52. doi: 10.3390/electronics6030052. url: https://doi.
org/10.3390/electronics6030052.

[GBC16] Ian Goodfellow, Yoshua Bengio and Aaron Courville.
Deep Learning. MIT Press, 2016. url: http : / /www .
deeplearningbook.org.

[Göt+17] Johannes Götzfried et al. ‘Cache Attacks on Intel
SGX’. In: Proceedings of the 10th European Workshop
on Systems Security. EuroSec’17. Belgrade, Serbia:
Association for Computing Machinery, 2017. isbn: 978-
1-45034-935-2. doi: 10 . 1145 / 3065913 . 3065915. url:
https://doi.org/10.1145/3065913.3065915.

[Gra12] Alex Graves. ‘Supervised sequence labelling’. In: Super-
vised Sequence Labelling with Recurrent Neural Networks.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 5–13. isbn: 978-3-64224-797-2. doi: 10.1007/978-3-
642-24797-2_2. url: https://doi.org/10.1007/978-3-642-
24797-2_2.

[Gru+16a] Daniel Gruss et al. ‘Flush+Flush: A Fast and Stealthy
Cache Attack’. In: Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9721. DIMVA 2016.
San Sebastián, Spain: Springer-Verlag, 2016, pp. 279–
299. isbn: 978-3-31940-666-4. doi: 10.1007/978-3-319-
40667-1_14. url: https://doi.org/10.1007/978-3-319-
40667-1_14.

[Gru+16b] Daniel Gruss et al. ‘Prefetch Side-Channel Attacks:
Bypassing SMAP and Kernel ASLR’. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’16. Vienna, Austria: As-
sociation for Computing Machinery, 2016, pp. 368–379.

https://doi.org/10.3390/electronics6030052
https://doi.org/10.3390/electronics6030052
https://doi.org/10.3390/electronics6030052
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1007/978-3-642-24797-2_2
https://doi.org/10.1007/978-3-642-24797-2_2
https://doi.org/10.1007/978-3-642-24797-2_2
https://doi.org/10.1007/978-3-642-24797-2_2
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14

258 Bibliography

isbn: 978-1-45034-139-4. doi: 10.1145/2976749.2978356.
url: https://doi.org/10.1145/2976749.2978356.

[Gur+15] Mordechai Guri et al. ‘BitWhisper: Covert Signal-
ing Channel between Air-Gapped Computers Using
Thermal Manipulations’. In: Proceedings of the 2015 IEEE
28th Computer Security Foundations Symposium. CSF
’15. USA, 2015, pp. 276–289. isbn: 978-1-46737-538-2.
doi: 10.1109/CSF.2015.26. url: https://doi.org/10.1109/
CSF.2015.26.

[Has+05] Jahangir Hasan et al. ‘Heat Stroke: Power-Density-
Based Denial of Service in SMT’. In: Proceedings of
the 11th International Symposium on High-Performance
Computer Architecture. HPCA ’05. IEEE Computer
Society, 2005, pp. 166–177. isbn: 0-76952-275-0. doi:
10.1109/HPCA.2005.16. url: https://doi.org/10.1109/
HPCA.2005.16.

[He17] Xiaoxi He. ‘A Smart Attack using the Frequency Covert
Channel’. Supervisors: Philipp Miedl, Matthias Meyer
and Lothar Thiele. MA thesis. Gloriastrasse 35, 8092
Zürich, Switzerland: ETH Zürich, Oct. 2017.

[Hel+04] Joseph L. Hellerstein et al. Feedback Control of Com-
puting Systems. John Wiley & Sons, 2004. isbn: 978-0-
47166-881-7.

[HO92] C. Heegard and L. Ozarow. ‘Bounding the capacity
of saturation recording: the Lorentz model and ap-
plications’. In: Selected Areas in Communications, IEEE
Journal on 10.1 (Jan. 1992), pp. 145–156. issn: 0733-8716.
doi: 10.1109/49.124474.

[Hoe+13] Matthew Hoekstra et al. ‘Using Innovative Instructions
to Create Trustworthy Software Solutions’. In: Proceed-
ings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy. HASP ’13.
Tel-Aviv, Israel: Association for Computing Machinery,
2013. isbn: 978-1-45032-118-1. doi: 10.1145/2487726.
2488370. url: https://doi.org/10.1145/2487726.2488370.

https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1145/2976749.2978356
https://doi.org/10.1109/CSF.2015.26
https://doi.org/10.1109/CSF.2015.26
https://doi.org/10.1109/CSF.2015.26
https://doi.org/10.1109/HPCA.2005.16
https://doi.org/10.1109/HPCA.2005.16
https://doi.org/10.1109/HPCA.2005.16
https://doi.org/10.1109/49.124474
https://doi.org/10.1145/2487726.2488370
https://doi.org/10.1145/2487726.2488370
https://doi.org/10.1145/2487726.2488370

Bibliography 259

[HS14] Michael Hutter and Jörn-Marc Schmidt. ‘The Temper-
ature Side Channel and Heating Fault Attacks’. In:
(2014). Ed. by Aurélien Francillon and Pankaj Rohatgi,
pp. 219–235. doi: 10.1007/978-3-319-08302-5_15. url:
http://eprint.iacr.org/2014/190.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. ‘Long Short-
Term Memory’. In: Neural Comput. 9.8 (Nov. 1997),
pp. 1735–1780. issn: 0899-7667. doi: 10 . 1162 / neco .
1997.9.8.1735. url: https://doi.org/10.1162/neco.1997.9.
8.1735.

[Hun+15] C. Hunger et al. ‘Understanding contention-based
channels and using them for defense’. In: Proceedings
of the 21st IEEE International Symposium on High
Performance Computer Architecture. 2015, pp. 639–650.
doi: 10.1109/HPCA.2015.7056069. url: https://doi.org/
10.1109/HPCA.2015.7056069.

[INK11] T. Iakymchuk, M. Nikodem and K. Kepa. ‘Temperature-
based covert channel in FPGA systems’. In: Recon-
figurable Communication-centric Systems-on-Chip (Re-
CoSoC), 2011 6th International Workshop on. June 2011,
pp. 1–7. doi: 10 . 1109 /ReCoSoC .2011 . 5981510. url:
https://doi.org/10.1109/ReCoSoC.2011.5981510.

[Int15] Intel Corporation. Intel 64 and IA-32 architectures
software developer’s manuals volume 3: System program-
ming guide. 2015. url: http://cse.iitkgp.ac.in/~goutam/
compiler/readingMaterial/intelXeon/253665.pdf.

[Int16] Intel. ‘Intel® 64 and IA-32 Architectures Software
Developer’s Manual’. In: Combined Volumes: 1, 2A, 2B,
2C, 2D, 3A, 3B and 3D (2016). url: https://software.intel.
com/en-us/articles/intel-sdm.

[Int18] Intel Corporation. Intel® 64 and IA-32 Architectures De-
veloper’s Manual. Architectures Software Developer’s
Manual: Intel® 64 and IA-32 includes supporting
processors programming environment and architecture.
May 2018. url: https : / / www . intel . com / content /

https://doi.org/10.1007/978-3-319-08302-5_15
http://eprint.iacr.org/2014/190
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/HPCA.2015.7056069
https://doi.org/10.1109/HPCA.2015.7056069
https://doi.org/10.1109/HPCA.2015.7056069
https://doi.org/10.1109/ReCoSoC.2011.5981510
https://doi.org/10.1109/ReCoSoC.2011.5981510
http://cse.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pdf
http://cse.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html

260 Bibliography

www/us/en/architecture-and-technology/64-ia-32-
architectures-software-developer-manual-325462.html.

[IRW17] Mohammad A. Islam, Shaolei Ren and Adam Wier-
man. ‘Exploiting a Thermal Side Channel for Power
Attacks in Multi-Tenant Data Centers’. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’17. Dallas, Texas,
USA: Association for Computing Machinery, 2017,
pp. 1079–1094. isbn: 978-1-45034-946-8. doi: 10.1145/
3133956.3133994. url: https://doi.org/10.1145/3133956.
3133994.

[Klo18] Bruno Klopott. You also want to explore other security
leaks? Building an easily extendable application library
for security leak research. Tech. rep. 1. Semester Thesis;
Supervisors: Philipp Miedl and Lothar Thiele. Glorias-
trasse 35, 8092 Zürich, Switzerland: ETH Zürich, Aug.
2018.

[Klo19] Bruno Klopott. ‘How bad are data leaks really?’
Supervisors: Philipp Miedl and Lothar Thiele. MA
thesis. Gloriastrasse 35, 8092 Zürich, Switzerland: ETH
Zürich, June 2019.

[Koc+18] Paul Kocher et al. ‘Spectre attacks: Exploiting specu-
lative execution’. In: arXiv preprint arXiv:1801.01203
(2018). url: https://spectreattack.com/.

[KRT16] Mikhail Kazdagli, Vijay Janapa Reddi and Mohit
Tiwari. ‘Quantifying and Improving the Efficiency of
Hardware-Based Mobile Malware Detectors’. In: The
49th Annual IEEE/ACM International Symposium on
Microarchitecture. MICRO-49. Taipei, Taiwan: IEEE
Press, 2016. doi: 10.5555/3195638.3195683. url: https:
//doi.org/10.5555/3195638.3195683.

[Lam73] Butler W. Lampson. ‘A Note on the Confinement Prob-
lem’. In: Commun. ACM 16.10 (Oct. 1973), pp. 613–615.
issn: 0001-0782. doi: 10.1145/362375.362389. url: https:
//doi.org/10.1145/362375.362389.

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://doi.org/10.1145/3133956.3133994
https://doi.org/10.1145/3133956.3133994
https://doi.org/10.1145/3133956.3133994
https://doi.org/10.1145/3133956.3133994
https://spectreattack.com/
https://doi.org/10.5555/3195638.3195683
https://doi.org/10.5555/3195638.3195683
https://doi.org/10.5555/3195638.3195683
https://doi.org/10.1145/362375.362389
https://doi.org/10.1145/362375.362389
https://doi.org/10.1145/362375.362389

Bibliography 261

[LDC02] Chee How Lim, W Robert Daasch and George Cai. ‘A
thermal-aware superscalar microprocessor’. In: Quality
Electronic Design, 2002. Proceedings. International Sym-
posium on. IEEE. 2002, pp. 517–522. doi: 10.1109/ISQED.
2002.996797. url: https://doi.org/10.1109/ISQED.2002.
996797.

[Lip+16] Moritz Lipp et al. ‘ARMageddon: Cache Attacks on
Mobile Devices’. In: SEC’16 (2016), pp. 549–564. doi:
10.5555/3241094.3241138. url: https://doi.org/10.5555/
3241094.3241138.

[Lip+18] Moritz Lipp et al. ‘Meltdown’. In: arXiv preprint
arXiv:1801.01207 (2018). url: https : / / spectreattack .
com/.

[Mac03] David JC MacKay. Information theory, inference and
learning algorithms. Cambridge university press, 2003.
url: http://www.inference.org.uk/mackay/itila/book.
html.

[Mar+12] Claudio Marforio et al. ‘Analysis of the Communication
between Colluding Applications on Modern Smart-
phones’. In: Proceedings of the 28th Annual Computer
Security Applications Conference. ACSAC ’12. Orlando,
Florida, USA: Association for Computing Machinery,
2012, pp. 51–60. isbn: 978-1-45031-312-4. doi: 10.1145/
2420950.2420958. url: https://doi.org/10.1145/2420950.
2420958.

[Mas+15] Ramya Jayaram Masti et al. ‘Thermal Covert Channels
on Multi-core Platforms’. In: 24th USENIX Security
Symposium (USENIX Security 15). Washington, D.C.:
USENIX Association, Aug. 2015, pp. 865–880. isbn: 978-
1-93197-123-2. doi: 10 . 5555 / 2831143 . 2831198. url:
https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/masti.

[MAT20] Philipp Miedl, Rehan Ahmed and Lothar Thiele. ‘We
know what you’re doing! Application detection using
thermal data’. In: Leibniz Transactions on Embedded

https://doi.org/10.1109/ISQED.2002.996797
https://doi.org/10.1109/ISQED.2002.996797
https://doi.org/10.1109/ISQED.2002.996797
https://doi.org/10.1109/ISQED.2002.996797
https://doi.org/10.5555/3241094.3241138
https://doi.org/10.5555/3241094.3241138
https://doi.org/10.5555/3241094.3241138
https://spectreattack.com/
https://spectreattack.com/
http://www.inference.org.uk/mackay/itila/book.html
http://www.inference.org.uk/mackay/itila/book.html
https://doi.org/10.1145/2420950.2420958
https://doi.org/10.1145/2420950.2420958
https://doi.org/10.1145/2420950.2420958
https://doi.org/10.1145/2420950.2420958
https://doi.org/10.5555/2831143.2831198
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti

262 Bibliography

Systems Special Issue on Embedded System Security.1
(2020). Under review.

[Mau+17] Clémentine Maurice et al. ‘Hello from the other side:
SSH over robust cache covert channels in the cloud’. In:
NDSS, San Diego, CA, US (2017). url: https://cmaurice.
fr/pdf/ndss17_maurice.pdf.

[Mei18] Manuel Meier. Feature Extraction from Thermal Traces
for the Thermal Fingerprinting Attack. Tech. rep. 1.
Semester Thesis; Supervisors: Philipp Miedl, Rehan
Ahmed and Lothar Thiele. Gloriastrasse 35, 8092 Zürich,
Switzerland: ETH Zürich, May 2018.

[Mey+19] Matthias Meyer et al. ‘Systematic identification of ex-
ternal influences in multi-year microseismic recordings
using convolutional neural networks’. In: Earth Surface
Dynamics 7.1 (2019), pp. 171–190. doi: 10.5194/esurf-7-
171-2019. url: https://www.earth-surf-dynam.net/7/
171/2019/.

[Mic+15] Yan Michalevsky et al. ‘PowerSpy: Location Tracking
Using Mobile Device Power Analysis’. In: (Aug. 2015),
pp. 785–800. url: https://www.usenix.org/conference/
usenixsecurity15 / technical - sessions / presentation /
michalevsky.

[Mie+18] Philipp Miedl et al. ‘Frequency Scaling as a Security
Threat on Multicore Systems’. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems 37.11 (Nov. 2018), pp. 2497–2508. issn: 1937-
4151. doi: 10.1109/TCAD.2018.2857038. url: https:
//doi.org/10.1109/TCAD.2018.2857038.

[Mie20] PhilippMiedl.Data: Threat potential assessment of power
management related data leaks. June 2020. doi: 10.3929/
ethz-b-XXXXXXXXX. url: http://hdl.handle.net/XX.
XXX.XXXXX/XXXXXX.

[Mil18] Max Millen. ‘Analysis and Optimization of Frequency
Governors’. Supervisors: Rehan Ahmed, Philipp Miedl
and Lothar Thiele. MA thesis. Gloriastrasse 35, 8092
Zürich, Switzerland: ETH Zürich, Apr. 2018.

https://cmaurice.fr/pdf/ndss17_maurice.pdf
https://cmaurice.fr/pdf/ndss17_maurice.pdf
https://doi.org/10.5194/esurf-7-171-2019
https://doi.org/10.5194/esurf-7-171-2019
https://www.earth-surf-dynam.net/7/171/2019/
https://www.earth-surf-dynam.net/7/171/2019/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/michalevsky
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/michalevsky
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/michalevsky
https://doi.org/10.1109/TCAD.2018.2857038
https://doi.org/10.1109/TCAD.2018.2857038
https://doi.org/10.1109/TCAD.2018.2857038
https://doi.org/10.3929/ethz-b-XXXXXXXXX
https://doi.org/10.3929/ethz-b-XXXXXXXXX
http://hdl.handle.net/XX.XXX.XXXXX/XXXXXX
http://hdl.handle.net/XX.XXX.XXXXX/XXXXXX

Bibliography 263

[MK94] Ira S Moskowitz and Myong H Kang. ‘Covert channels-
here to stay?’ In: Computer Assurance, 1994. COM-
PASS’94 Safety, Reliability, Fault Tolerance, Concurrency
and Real Time, Security. Proceedings of the Ninth Annual
Conference on. IEEE. 1994, pp. 235–243. doi: 10.1109/
CMPASS.1994.318449. url: https://doi.org/10.1109/
CMPASS.1994.318449.

[MKT20a] Philipp Miedl, Bruno Klopott and Lothar Thiele. Data:
Thermal and cache covert channel analysis with ExOT.
Mar. 2020. doi: 10.3929/ethz-b-000378872. url: http:
//hdl.handle.net/20.500.11850/378872.

[MKT20b] Philipp Miedl, Bruno Klopott and Lothar Thiele. ExOT
Website. Mar. 2020. url: https://www.exot.ethz.ch/.

[MKT20c] Philipp Miedl, Bruno Klopott and Lothar Thiele. ‘In-
creased reproducibility and comparability of data leak
evaluations using ExOT’. In: 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE.
2020. doi: 10.3929/ethz-b-000377986. url: https://doi.
org/10.3929/ethz-b-000377986.

[MM07] Carol Marsh and David McLaren. ‘Poster: Temperature
Side Channels’. In: In the Proceedings of the 9th
International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), 2007. 2007.

[Moo98] G. E. Moore. ‘Cramming More Components Onto
Integrated Circuits’. In: Proceedings of the IEEE 86.1
(Jan. 1998), pp. 82–85. issn: 1558-2256. doi: 10.1109/
JPROC.1998 .658762. url: https : / /doi .org/10 .1109/
JPROC.1998.658762.

[MP14] Aleksandra Mileva and Boris Panajotov. ‘Covert chan-
nels in TCP/IP protocol stack - extended version-’. In:
Central European Journal of Computer Science 4.2 (2014),
pp. 45–66. issn: 1896-1533. doi: 10.2478/s13537-014-
0205-6. url: https://doi.org/10.2478/s13537-014-0205-6.

https://doi.org/10.1109/CMPASS.1994.318449
https://doi.org/10.1109/CMPASS.1994.318449
https://doi.org/10.1109/CMPASS.1994.318449
https://doi.org/10.1109/CMPASS.1994.318449
https://doi.org/10.3929/ethz-b-000378872
http://hdl.handle.net/20.500.11850/378872
http://hdl.handle.net/20.500.11850/378872
https://www.exot.ethz.ch/
https://doi.org/10.3929/ethz-b-000377986
https://doi.org/10.3929/ethz-b-000377986
https://doi.org/10.3929/ethz-b-000377986
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.2478/s13537-014-0205-6
https://doi.org/10.2478/s13537-014-0205-6
https://doi.org/10.2478/s13537-014-0205-6

264 Bibliography

[MT18] Philipp Miedl and Lothar Thiele. ‘The Security Risks of
Power Measurements in Multicores’. In: Proceedings of
the 33rd Annual ACM Symposium on Applied Computing.
SAC ’18. Pau, France: Association for Computing
Machinery, 2018, pp. 1585–1592. isbn: 978-1-45035-191-
1. doi: 10.1145/3167132.3167301. url: https://doi.org/
10.1145/3167132.3167301.

[MT20] Philipp Miedl and Lothar Thiele. Capacity calculations
in “Increased reproducibility and comparability of data
leak evaluations using ExOT”. Mar. 2020. doi: 10.3929/
ethz-b-000378017. url: http://hdl.handle.net/20.500.
11850/378017.

[Mur06] Steven J. Murdoch. ‘Hot or Not: Revealing Hidden
Services by Their Clock Skew’. In: Proceedings of the
13th ACM Conference on Computer and Communications
Security. CCS ’06. Alexandria, Virginia, USA: Associ-
ation for Computing Machinery, 2006, pp. 27–36. isbn:
1-59593-518-5. doi: 10 . 1145 / 1180405 . 1180410. url:
https://doi.org/10.1145/1180405.1180410.

[Ozs+15] Meltem Ozsoy et al. ‘Malware-aware processors: A
framework for efficient online malware detection’.
In: High Performance Computer Architecture (HPCA),
2015 IEEE 21st International Symposium on. IEEE. 2015,
pp. 651–661. doi: 10.1109/HPCA.2015.7056070. url:
https://doi.org/10.1109/HPCA.2015.7056070.

[PLB07] Venkatesh Pallipadi, Shaohua Li and Adam Belay.
‘cpuidle: Do nothing, efficiently’. In: Proceedings of the
Linux Symposium. Vol. 2. Citeseer. 2007, pp. 119–125.
url: https://www.kernel.org/doc/ols/2007/ols2007v2-
pages-119-126.pdf.

[PS06] Venkatesh Pallipadi and Alexey Starikovskiy. ‘The
ondemand governor’. In: Proceedings of the Linux
Symposium. Vol. 2. 00216. sn. 2006, pp. 215–230. url:
ftp://157.158.0.32/pub/linux/kernel/people/lenb/acpi/
doc/OLS2006-ondemand-presentation.pdf.

https://doi.org/10.1145/3167132.3167301
https://doi.org/10.1145/3167132.3167301
https://doi.org/10.1145/3167132.3167301
https://doi.org/10.3929/ethz-b-000378017
https://doi.org/10.3929/ethz-b-000378017
http://hdl.handle.net/20.500.11850/378017
http://hdl.handle.net/20.500.11850/378017
https://doi.org/10.1145/1180405.1180410
https://doi.org/10.1145/1180405.1180410
https://doi.org/10.1109/HPCA.2015.7056070
https://doi.org/10.1109/HPCA.2015.7056070
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-126.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-119-126.pdf
ftp://157.158.0.32/pub/linux/kernel/people/lenb/acpi/doc/OLS2006-ondemand-presentation.pdf
ftp://157.158.0.32/pub/linux/kernel/people/lenb/acpi/doc/OLS2006-ondemand-presentation.pdf

Bibliography 265

[PZ13] Naser Peiravian and Xingquan Zhu. ‘Machine learning
for androidmalware detection using permission and api
calls’. In: Proceedings of the 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence. ICTAI
’13. USA: IEEE Computer Society, 2013, pp. 300–305.
isbn: 978-1-47992-971-9. doi: 10.1109/ICTAI.2013.53.
url: https://doi.org/10.1109/ICTAI.2013.53.

[PZ17] Danny Philippe-Jankovic and Tanveer A Zia. ‘Breaking
VM Isolation-An In-Depth Look into the Cross VM
Flush Reload Cache Timing Attack’. In: International
Journal of Computer Science and Network Security
(IJCSNS) 17.2 (2017), p. 181. issn: 1738-7906. url: https:
//researchoutput.csu.edu.au/en/publications/breaking-
vm-isolation-an-in-depth-look-into-the-cross-flush-
reloa-2.

[Rai+12] Devendra Rai et al. ‘Power Agnostic Technique for
Efficient Temperature Estimation of Multicore Embed-
ded Systems’. In: Proceedings of the 2012 International
Conference on Compilers, Architectures and Synthesis
for Embedded Systems. CASES ’12. Tampere, Finland:
Association for Computing Machinery, 2012, pp. 61–70.
isbn: 978-1-45031-424-4. doi: 10.1145/2380403.2380421.
url: https://doi.org/10.1145/2380403.2380421.

[RBP09] Charles Reis, Adam Barth and Carlos Pizano. ‘Browser
Security: Lessons from Google Chrome’. In:ACMQueue
7.5 (2009), p. 3. doi: 10 .1145 /1551644 .1556050. url:
https://dl.acm.org/doi/pdf/10.1145/1551644.1556050.

[Ris+09] Thomas Ristenpart et al. ‘Hey, you, get off of my cloud:
exploring information leakage in third-party compute
clouds’. In: Proceedings of the 16th ACM conference
on Computer and communications security. CCS ’09.
Chicago, Illinois, USA: Association for Computing
Machinery, 2009, pp. 199–212. isbn: 978-1-60558-894-0.
doi: 10.1145/1653662.1653687. url: https://doi.org/10.
1145/1653662.1653687.

https://doi.org/10.1109/ICTAI.2013.53
https://doi.org/10.1109/ICTAI.2013.53
https://researchoutput.csu.edu.au/en/publications/breaking-vm-isolation-an-in-depth-look-into-the-cross-flush-reloa-2
https://researchoutput.csu.edu.au/en/publications/breaking-vm-isolation-an-in-depth-look-into-the-cross-flush-reloa-2
https://researchoutput.csu.edu.au/en/publications/breaking-vm-isolation-an-in-depth-look-into-the-cross-flush-reloa-2
https://researchoutput.csu.edu.au/en/publications/breaking-vm-isolation-an-in-depth-look-into-the-cross-flush-reloa-2
https://doi.org/10.1145/2380403.2380421
https://doi.org/10.1145/2380403.2380421
https://doi.org/10.1145/1551644.1556050
https://dl.acm.org/doi/pdf/10.1145/1551644.1556050
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687

266 Bibliography

[RKK19] Sashank J. Reddi, Satyen Kale and Sanjiv Kumar. On
the Convergence of Adam and Beyond. 2019. arXiv: 1904.
09237 [cs.LG] . url: https://arxiv.org/abs/1904.09237.

[Ron+15] Hong Rong et al. ‘WindTalker: An Efficient and
Robust Protocol of Cloud Covert Channel Based on
Memory Deduplication’. In: Proceedings of the 2015
IEEE Fifth International Conference on Big Data and
Cloud Computing. BDCLOUD ’15. USA: IEEE Computer
Society, 2015, pp. 68–75. isbn: 978-1-46737-183-4. doi:
10.1109/BDCloud.2015.12. url: https://doi.org/10.1109/
BDCloud.2015.12.

[SAS02] Kevin Skadron, Tarek Abdelzaher and Mircea R. Stan.
‘Control-Theoretic Techniques and Thermal-RC Mod-
eling for Accurate and Localized Dynamic Thermal
Management’. In: Proceedings of the 8th International
Symposium on High-Performance Computer Architecture.
HPCA ’02. USA: IEEE Computer Society, 2002, p. 17.
doi: 10.5555/874076.876476.

[SC07] Stan Salvador and Philip Chan. ‘Toward Accurate
Dynamic Time Warping in Linear Time and Space’.
In: Intell. Data Anal. 11.5 (Oct. 2007), pp. 561–580. issn:
1088-467X. doi: 10.5555/1367985.1367993. url: https:
//dl.acm.org/doi/10.5555/1367985.1367993.

[Sel16] Mirko Selber. UnCovert: Operating Frequency, a Security
Leak? Tech. rep. 1. Semester Thesis; Supervisors:
Philipp Miedl and Lothar Thiele. Gloriastrasse 35, 8092
Zürich, Switzerland: ETH Zürich, Feb. 2016.

[Sel17] Mirko Selber. ‘UnCovert3: Covert Channel Attacks on
Commerical Multicore Systems’. Supervisors: Philipp
Miedl and Lothar Thiele. MA thesis. Gloriastrasse 35,
8092 Zürich, Switzerland: ETH Zürich, Apr. 2017.

[Sha+15] Ali Shafiee et al. ‘Avoiding Information Leakage in
the Memory Controller with Fixed Service Policies’.
In: Proceedings of the 48th International Symposium on
Microarchitecture. MICRO-48. Waikiki, Hawaii: Associ-
ation for Computing Machinery, 2015, pp. 89–101. isbn:

https://arxiv.org/abs/1904.09237
https://arxiv.org/abs/1904.09237
https://arxiv.org/abs/1904.09237
https://doi.org/10.1109/BDCloud.2015.12
https://doi.org/10.1109/BDCloud.2015.12
https://doi.org/10.1109/BDCloud.2015.12
https://doi.org/10.5555/874076.876476
https://doi.org/10.5555/1367985.1367993
https://dl.acm.org/doi/10.5555/1367985.1367993
https://dl.acm.org/doi/10.5555/1367985.1367993

Bibliography 267

978-1-45034-034-2. doi: 10.1145/2830772.2830795. url:
https://doi.org/10.1145/2830772.2830795.

[Sha01] C. E. Shannon. ‘A Mathematical Theory of Commu-
nication’. In: SIGMOBILE Mob. Comput. Commun. Rev.
5.1 (Jan. 2001), pp. 3–55. issn: 1559-1662. doi: 10.1145/
584091.584093. url: https://doi.org/10.1145/584091.
584093.

[Sig20] Lukas Sigrist. ‘Design and Instrumentation of
Environment-Powered Systems’. PhD thesis. ETH
Zurich, 2020.

[Spo+17] Riccardo Spolaor et al. ‘No Free Charge Theorem: a
Covert Channel via USB Charging Cable on Mobile
Devices’. In: International Conference on Applied Crypto-
graphy and Network Security. Springer. 2017, pp. 83–102.
doi: 10.1007/978-3-319-61204-1_5. url: https://doi.org/
10.1007/978-3-319-61204-1_5.

[Str17] Raphael Strebel. What is my Thermal Fingerprint? Tech.
rep. 1. Semester Thesis; Supervisors: Philipp Miedl,
Rehan Ahmed and Lothar Thiele. Gloriastrasse 35, 8092
Zürich, Switzerland: ETH Zürich, July 2017.

[Suz+11] Kuniyasu Suzaki et al. ‘Memory Deduplication As a
Threat to the Guest OS’. In: Proceedings of the Fourth
European Workshop on System Security. EUROSEC
’11. Salzburg, Austria: Association for Computing
Machinery, 2011, 1:1–1:6. isbn: 978-1-45030-613-3. doi:
10.1145/1972551.1972552. url: https://doi.org/10.1145/
1972551.1972552.

[Tan02] Andrew Tanenbaum. Computer Networks. 4th. Prentice
Hall Professional Technical Reference, 2002. isbn: 978-
1-29202-422-6.

[TH12] Tijmen Tieleman and Geoffrey Hinton. ‘Lecture 6.5-
rmsprop: Divide the gradient by a running average of
its recent magnitude’. In: COURSERA: Neural networks
for machine learning 4.2 (2012), pp. 26–31.

https://doi.org/10.1145/2830772.2830795
https://doi.org/10.1145/2830772.2830795
https://doi.org/10.1145/584091.584093
https://doi.org/10.1145/584091.584093
https://doi.org/10.1145/584091.584093
https://doi.org/10.1145/584091.584093
https://doi.org/10.1007/978-3-319-61204-1_5
https://doi.org/10.1007/978-3-319-61204-1_5
https://doi.org/10.1007/978-3-319-61204-1_5
https://doi.org/10.1145/1972551.1972552
https://doi.org/10.1145/1972551.1972552
https://doi.org/10.1145/1972551.1972552

268 Bibliography

[Tho17] Ólafur Jón Thoroddsen. UnCovert 4: The Power Covert
Channel. Tech. rep. 1. Semester Thesis; Supervisors:
Philipp Miedl and Lothar Thiele. Gloriastrasse 35, 8092
Zürich, Switzerland: ETH Zürich, June 2017.

[TS19] Shanquan Tian and Jakub Szefer. ‘Temporal Thermal
Covert Channels in Cloud FPGAs’. In: Proceedings of
the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA ’19. Seaside, CA, USA:
Association for Computing Machinery, 2019, pp. 298–
303. isbn: 978-1-45036-137-8. doi: 10 .1145/3289602 .
3293920. url: https://doi.org/10.1145/3289602.3293920.

[US 85] U.S. Department of Defense. DOD Trusted Computer
System Evaluation Criteria “The Orange Book” [DOD
5200.28]. National Computer Security Center, 1985. url:
https : / / csrc . nist . gov / csrc / media / publications /
conference-paper/1998/10/08/proceedings-of-the-
21st-nissc-1998/documents/early-cs-papers/dod85.pdf.

[VPL10] P. P. Vaidyanathan, See-May Phoong and Yuan-Pei Lin.
Signal Processing and Optimization for Transceiver Sys-
tems. Cambridge Books Online. Cambridge University
Press, 2010. isbn: 978-1-13904-274-1. doi: 10 . 1017 /
CBO9781139042741. url: http://dx.doi.org/10.1017/
CBO9781139042741.

[Wel67] Peter D. Welch. ‘The use of fast Fourier transform for
the estimation of power spectra: A method based on
time averaging over short, modified periodograms’. In:
IEEE Transactions on Audio and Electroacoustics 15.2
(June 1967), pp. 70–73. doi: 10.1109/TAU.1967.1161901.
url: https://doi.org/10.1109/TAU.1967.1161901.

[Wil16] Pascal Wild. UnCovert: Evaluating thermal covert chan-
nels on Android systems. Tech. rep. 1. Semester Thesis;
Supervisors: Philipp Miedl and Lothar Thiele. Glorias-
trasse 35, 8092 Zürich, Switzerland: ETH Zürich, Aug.
2016.

https://doi.org/10.1145/3289602.3293920
https://doi.org/10.1145/3289602.3293920
https://doi.org/10.1145/3289602.3293920
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.pdf
https://csrc.nist.gov/csrc/media/publications/conference-paper/1998/10/08/proceedings-of-the-21st-nissc-1998/documents/early-cs-papers/dod85.pdf
https://doi.org/10.1017/CBO9781139042741
https://doi.org/10.1017/CBO9781139042741
http://dx.doi.org/10.1017/CBO9781139042741
http://dx.doi.org/10.1017/CBO9781139042741
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1109/TAU.1967.1161901

Bibliography 269

[WL06a] Zhenghong Wang and R.B. Lee. ‘Covert and Side Chan-
nels Due to Processor Architecture’. In: Proceedings
of the 22nd Annual Computer Security Applications
Conference. ACSAC ’06. USA: IEEE Computer Society,
2006, pp. 473–482. isbn: 0-76952-716-7. doi: 10.1109/
ACSAC.2006.20. url: https://doi.org/10.1109/ACSAC.
2006.20.

[WL06b] Zhenghong Wang and Ruby B Lee. ‘Covert and side
channels due to processor architecture’. In: Proceedings
of the 22nd Annual Computer Security Applications
Conference. ACSAC ’06. USA: IEEE Computer Society,
2006, pp. 473–482. isbn: 0-76952-716-7. doi: 10.1109/
ACSAC.2006.20. url: https://doi.org/10.1109/ACSAC.
2006.20.

[WXW15] Zhenyu Wu, Zhang Xu and Haining Wang. ‘Whispers
in the Hyper-Space: High-Bandwidth and Reliable
Covert Channel Attacks inside the Cloud’. In: IEEE/ACM
Trans. Netw. 23.2 (Apr. 2015), pp. 603–614. issn: 1063-
6692. doi: 10 .1109/TNET.2014 .2304439. url: https :
//doi.org/10.1109/TNET.2014.2304439.

[Xu 11] Xu, Yunjing and Bailey, Michael and Jahanian, Farnam
and Joshi, Kaustubh and Hiltunen, Matti and Sch-
lichting, Richard. ‘An Exploration of L2 Cache Covert
Channels in Virtualized Environments’. In: Proceedings
of the 3rd ACM Workshop on Cloud Computing Security
Workshop. CCSW ’11. Chicago, Illinois, USA: Associ-
ation for Computing Machinery, 2011, pp. 29–40. isbn:
978-1-45031-004-8. doi: 10.1145/2046660.2046670. url:
https://doi.org/10.1145/2046660.2046670.

[Yar16] Yuval Yarom. Mastik: A Micro-Architectural Side-
Channel Toolkit. Accessed 21st of May 2019. 2016.
url: https://cs.adelaide.edu.au/~yval/Mastik/.

[YF14] Yuval Yarom and Katrina Falkner. ‘FLUSH+ RELOAD:
A High Resolution, Low Noise, L3 Cache Side-Channel
Attack’. In: Proceedings of the 23rd USENIX Conference
on Security Symposium. SEC’14. San Diego, CA: USENIX

https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1109/TNET.2014.2304439
https://doi.org/10.1109/TNET.2014.2304439
https://doi.org/10.1109/TNET.2014.2304439
https://doi.org/10.1145/2046660.2046670
https://doi.org/10.1145/2046660.2046670
https://cs.adelaide.edu.au/~yval/Mastik/

270 Bibliography

Association, 2014, pp. 719–732. isbn: 978-1-93197-115-7.
doi: 10.5555/2671225.2671271. url: https://doi.org/10.
5555/2671225.2671271.

[YST16] Mengjia Yan, Yasser Shalabi and Josep Torrellas. ‘Re-
playconfusion: Detecting Cache-Based Covert Channel
Attacks Using Record and Replay’. In: The 49th Annual
IEEE/ACM International Symposium on Microarchitec-
ture. MICRO-49. Taipei, Taiwan: IEEE Press, 2016. doi:
10.5555/3195638.3195685. url: https://doi.org/10.5555/
3195638.3195685.

[Yue+14] Mengchao Yue et al. ‘Constructing Timing-Based
Covert Channels in Mobile Networks by Adjusting
CPU Frequency’. In: Proceedings of the Third Workshop
on Hardware and Architectural Support for Security
and Privacy. HASP ’14. Minneapolis, Minnesota, USA:
Association for Computing Machinery, 2014. isbn: 978-
1-45032-777-0. doi: 10 . 1145 / 2611765 . 2611768. url:
https://doi.org/10.1145/2611765.2611768.

[ZBA11] S. Zander, P. Branch and G. Armitage. ‘Capacity of
Temperature-Based Covert Channels’. In: Communica-
tions Letters, IEEE 15.1 (2011), pp. 82–84. doi: 10.1109/
LCOMM.2010.110310.101334. url: https://doi.org/10.
1109/LCOMM.2010.110310.101334.

[ZM08] Sebastian Zander and Steven J. Murdoch. ‘An Improved
Clock-skew Measurement Technique for Revealing
Hidden Services’. In: Proceedings of the 17th USENIX
Security Symposium. SS’08. San Jose, CA: USENIX
Association, 2008, pp. 211–226. doi: 10.5555/1496711.
1496726,. url: https://www.usenix.org/legacy/event/
sec08/tech/full_papers/zander/zander_html/.

https://doi.org/10.5555/2671225.2671271
https://doi.org/10.5555/2671225.2671271
https://doi.org/10.5555/2671225.2671271
https://doi.org/10.5555/3195638.3195685
https://doi.org/10.5555/3195638.3195685
https://doi.org/10.5555/3195638.3195685
https://doi.org/10.1145/2611765.2611768
https://doi.org/10.1145/2611765.2611768
https://doi.org/10.1109/LCOMM.2010.110310.101334
https://doi.org/10.1109/LCOMM.2010.110310.101334
https://doi.org/10.1109/LCOMM.2010.110310.101334
https://doi.org/10.1109/LCOMM.2010.110310.101334
https://doi.org/10.5555/1496711.1496726,
https://doi.org/10.5555/1496711.1496726,
https://www.usenix.org/legacy/event/sec08/tech/full_papers/zander/zander_html/
https://www.usenix.org/legacy/event/sec08/tech/full_papers/zander/zander_html/

List of Publications

The following list includes publications that form the basis of this thesis.

The corresponding chapters are indicated in parentheses.

PhilippMiedl, BrunoKloptott and Lothar Thiele Increased reproducibility
and comparability of data leak evaluations using ExOT 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE) IEEE (Chapter 1,

Chapter 2, Chapter 3)

Davide B. Bartolini, Philipp Miedl and Lothar Thiele On the Capacity
of Thermal Covert Channels in Multicores Proceedings of the Eleventh
European Conference on Computer Systems, EuroSys ’16 ACM (Chapter 1,

Chapter 3)

Philipp Miedl and Lothar Thiele The Security Risks of Power
Measurements in Multicores Proceedings of the 2018 ACM Symposium on
Applied computing ACM 2018 (Chapter 1, Chapter 4)

Philipp Miedl, Xiaoxi He, Matthias Meyer, Davide Basilio Bartolini and

Lothar Thiele Frequency Scaling as a Security Threat on Multicore
Systems CASES’18, International Conference on Compilers, Architectures,
and Synthesis for Embedded Systems IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, IEEE (Chapter 1, Chapter 5)

Philipp Miedl, Rehan Ahmed and Lothar Thiele We know what you’re
doing! Application detection using thermal data Special Issue on
Embedded System Security Leibniz Transactions on Embedded Systems

[Under review] (Chapter 1, Chapter 6)

272 List of Publications

Curriculum Vitæ

Personal Data
Name Philipp Miedl.
Date of Birth July 23, 1989.
Citizenship Austria.

Education
2015–2020 ETH Zurich, Switzerland.

Computer Engineering and Networks Laboratory.
Ph.D. supervised by Prof. Dr. Lothar Thiele.

2011–2014 Graz University of Technology, Austria.
Masters program Telematics with the main curricula
“System on Chip Design” & “Mobile Computing”.
Diplom-Ingenieur (equivalent MSc).

2008–2011 Graz University of Technology, Austria.
Bachelors program Telematics.
Bachelor of Science (BSc)

Professional Experience
2015–2020 ETH Zurich, Switzerland.

Computer Engineering and Networks Laboratory.
Research and teaching assistant.

2012–2014 Maxim Integrated AG, Graz, Austria
Contractor as SoC Verification Engineer (2012) &
Firmware Development Engineer (2012–2014)

2005–2010 A1 Telekom Austria AG, Vienna, Austria Internships
July/August 2005–2008 & 2010
Web Development, Technical Support Help-desk,
Customer order processing

	Abstract
	Kurzfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background and related work
	Challenges of data leak threat potential assessment
	Aims of this thesis
	Thesis outline and contributions

	A holistic approach to data leak threat potential assessment
	Introduction
	Revisiting known data leak evaluations
	A novel covert channel analysis methodology
	The Experiment Orchestration Toolkit (ExOT)
	Applying the data leak evaluation methodology
	Summary

	Analysing continuous covert channels
	Introduction
	Threat model
	Communication channel model
	Experimental setup
	Capacity estimation
	Transmission scheme and achieved rates
	Summary

	Analysing discrete covert channels
	Introduction
	Power management in Linux
	Channel model
	Threat model and target setup
	Channel implementation
	Channel capacity bound
	Experimental analysis
	Summary

	Machine learning for covert channel symbol decoding
	Introduction
	Frequency scaling in Linux
	Threat Model
	Channel capacity bound
	Experimental setup and initial tests
	Channel implementation
	A Recurrent Neural Network as signal decoder
	Experimental analysis
	Mitigation Strategies
	Summary

	Extracting runtime information via the thermal side channel
	Introduction
	Threat model
	Data augmentation
	The sequence model
	Sequence transformation and performance metrics
	Target Setup
	Performance evaluation
	Summary

	Concluding remarks and outlook
	Contributions
	Possible future directions
	Availability

	Bibliography
	List of Publications
	Curriculum Vitæ

