

DISS. ETH Nr. 15578

CIP Model-Checking

A dissertation submiited to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY

for the degree of

Doctor of Technical Sciences

presented by

Andreas Hubert Moglestue
dipl. El.-Ing ETH Zürich

born 06.09.1971

citizen of
the United Kingdom

accepted on the recommendation of

Prof. Dr. Lothar Thiele
Prof. Dr. Albert Kündig
Prof. Dr. Armin Biere

2004

CIP Model Checking

Table of Contents

Table of Contents . i

Zusammenfassung . xi

Abstract . xiii

Acknowledgements . xv

1. Introduction . 1
1.1. Purpose of this project . 1

1.2. What is CIP? . 2
1.2.1. Brief history 2
1.2.2. What is the purpose of CIP? 2
1.2.3. What are the constraints of CIP? 3

1.3. Brief introduction to Model Checking . 3
1.3.1. What is Model Checking? 3
1.3.2. Target properties of Model Checking 4
1.3.3. Limits of Model Checking 5

1.4. What can Model Checking do for CIP? . 5
1.4.1. Model Checking and CIP: current possibilities 5
1.4.2. Model Checking from program code 5
1.4.3. Generating meta-code from CIP-Tool 6
1.4.4. The integrated model checker 6

1.5. Goals . 7
1.5.1. What the CIP model checker should do 7
1.5.2. The CIP model checker and the design process 7
1.5.3. The execution tester 8
1.5.4. Goals of this project 10

1.6. Summary of results . 10
1.6.1. General 10
1.6.2. Notation and definitions 10
1.6.3. State-space traversal 11
1.6.4. Coping with state-explosion 11

1.7. Guide for the reader . 11
1.7.1. General 11
i

Table of Contents

1.7.2. Background 12
1.7.3. Realisation 12
1.7.4. Conclusions 13
1.7.5. Appendices 13

2. CIP in a nutshell. 15
2.1. Purpose . 15

2.2. Introduction to the CIP method . 15
2.2.1. Why CIP? 15
2.2.2. Looking at an embedded system from the CIP perspective 15

2.3. Processes . 17
2.3.1. What is a process? 17
2.3.2. A simple process 17
2.3.3. Extended finite state machines 19
2.3.4. Code extensions 19
2.3.5. Conditions 19

2.4. Non external triggers . 20
2.4.1. Timer 21
2.4.2. Chains 21
2.4.3. Auto 22

2.5. Clusters . 22
2.5.1. What is a cluster? 22
2.5.2. Pulse translation 22
2.5.3. Cast order 24
2.5.4. Interaction trees and their execution 26
2.5.5. Run to Completion Semantics 27

2.6. Inspections, Gates and Master-Slave structures 28
2.6.1. Inspections 28
2.6.2. Gates 28
2.6.3. Master-Slave Structures 30

2.7. Multi-cluster systems . 33
2.7.1. A single cluster 33
2.7.2. Multiple clusters 33
2.7.3. How can different clusters communicate? 33
2.7.4. Why does a system need more than one cluster? 34

2.8. CIP and model checking . 34

3. Model Checking Concepts. 35
3.1. Purpose . 35
ii

CIP Model Checking

3.2. Basic concepts of a model system . 35
3.2.1. The essentials of a model system 35
3.2.2. Describing the finite state machine 36
3.2.3. Transition relations 36
3.2.4. State relations 37
3.2.5. Enabling, disabling and independence of transitions 37
3.2.6. The state diagram 38
3.2.7. Determinism of transitions 39

3.3. Paths . 39
3.3.1. Path definition 39
3.3.2. States visited, path length, first and last states 39
3.3.3. Subpaths 40
3.3.4. Transitions and paths 40
3.3.5. Continuing paths 41
3.3.6. Full paths 41
3.3.7. Reacheable states 41
3.3.8. Loops 41

3.4. Kripke Structures . 42
3.4.1. Introduction 42
3.4.2. Atomic propositions 42
3.4.3. Kripke structures 42
3.4.4. Propositions 43
3.4.5. Property 44

3.5. Some properties . 44
3.5.1. Note on notation 44
3.5.2. Next 45
3.5.3. Invariance 45
3.5.4. Reacheability 45
3.5.5. Eventually 46

3.6. Liveness requirement . 46

3.7. Fairness . 47
3.7.1. Fairness in this project 47
3.7.2. Fairness constraints, fair and unfair transitions 47
3.7.3. Fair paths 48
3.7.4. Fair loops 48
3.7.5. Some new definitions 49
3.7.6. Some basic properties of fair and unfair paths 49
3.7.7. Fair Kripke Structures 49
3.7.8. Applying fairness to the eventually property 50
iii

Table of Contents

4. Similar Work . 51
4.1. Purpose . 51

4.2. A brief history of Model Checking . 51

4.3. Temporal logic . 52
4.3.1. What is temporal logic? 52
4.3.2. Computation Tree Logic (CTL*) 52
4.3.3. CTL 53
4.3.4. LTL 53

4.4. Strong and weak fairness . 54
4.4.1. Fairness 54
4.4.2. Definitions 54
4.4.3. Example of strong transition fairness 54
4.4.4. Example of weak transition fairness 55
4.4.5. Example of strong process fairness 56
4.4.6. Example of weak process fairness 56
4.4.7. Hierarchy of fairness strength 57
4.4.8. The bearing of strong and weak fairness on this project 57

4.5. Fairness constraints as sets of states . 60
4.5.1. Fairness constraints 60
4.5.2. Applicability to the fairness concept of this project 61
4.5.3. Fairness constraints as CTL formulas 63
4.5.4. CTL and project fairness constraints 63

4.6. The model checker SMV . 64
4.6.1. Introduction 64
4.6.2. An example 64

4.7. The model checker SPIN . 66
4.7.1. Introduction 66
4.7.2. SPIN and CIP 67
4.7.3. A PROMELA example 68
4.7.4. LTL properties in SPIN 69

4.8. Model Checking and Statecharts . 69
4.8.1. Introduction 69
4.8.2. Statecharts in a nutshell 70
4.8.3. Statecharts and CIP 71
4.8.4. Model Checking and Statecharts 72

4.9. Conclusions . 73
4.9.1. Other model checkers and temporal logics 73
4.9.2. Other model checkers and fairness 73
4.9.3. What can be borrowed from other model checkers? 73
4.9.4. Contribution of this thesis 73
iv

CIP Model Checking

5. Applicability of Model Checking to CIP 75
5.1. Model Checking and CIP . 75

5.2. The system model within the CIP cluster 75
5.2.1. A process oriented view of the CIP cluster 75
5.2.2. Describing the cluster as a unit 75
5.2.3. The state explosion problem 76
5.2.4. The state explosion problem in practice 77
5.2.5. Interpreting the cluster-state diagram 78
5.2.6. Conclusion 82

5.3. Processes and clusters . 82
5.3.1. Processes as extended finite state machines 82
5.3.2. Processes and outPulses 82
5.3.3. Describing the process extended finite state machine 83
5.3.4. Process extended finite state machine operations 83
5.3.5. Extracting process states from cluster states 83

5.4. Deterministic and non-deterministic branching 84
5.4.1. Branching 84
5.4.2. Non-deterministic branching 84
5.4.3. Deterministic branching 84

5.5. Reduced cluster structures . 84
5.5.1. A further measure against state-explosion 84
5.5.2. Example of cluster state-space reduction 85
5.5.3. The remedy 88
5.5.4. Implications 88
5.5.5. A caveat for the eventually property 89

5.6. Segments . 89
5.6.1. Purpose of segments 89
5.6.2. Cylinder sets 90
5.6.3. Forming segments as logical intersections of cylinder sets 91
5.6.4. An example of a segment 91

5.7. Fairness . 92
5.7.1. Fairness in CIP 92
5.7.2. Example illustrating the use of fairness and a first problem 92
5.7.3. Fairness for process transitions 95
5.7.4. Example with more than one fairness constraint 95
5.7.5. General guidelines for setting fairness 97

5.8. Conclusions and summary . 97
5.8.1. Conclusions 97
5.8.2. Summary 98
v

Table of Contents

6. Partial Order Reduction 101
6.1. Purpose . 101

6.2. Introduction . 101

6.3. Independence and visibility of transitions 102
6.3.1. Enabledness, commutativity and independence 102
6.3.2. Visibility 103
6.3.3. Reduced state graphs 103

6.4. Introduction to reduction techniques . 104
6.4.1. The set ample(s) 104
6.4.2. Creating ample sets - a simple set of rules 104
6.4.3. Creating ample sets in practice 105

6.5. More approaches to Partial Order Reduction 105
6.5.1. Purpose 105
6.5.2. Degree of process-enabledness 106
6.5.3. Process-enabling and process-disabling 106
6.5.4. Rules for creating ample(s) 106
6.5.5. Note on visibility of transitions 107
6.5.6. Proof of correctness of rules of 6.5.4. 107

6.6. Implementation . 109
6.6.1. Purpose 109
6.6.2. Implementation of algorithm 109
6.6.3. Example 111

6.7. Discussion . 116
6.7.1. State space reduction 116

6.8. Conclusions . 118

7. Implementation . 119
7.1. Introduction . 119

7.2. Implementation methods . 119
7.2.1. States and state vectors 119
7.2.2. Process transitions 121
7.2.3. Pulse propagation 123
7.2.4. Conditional transitions 124

7.3. The CIP model checker . 126
7.3.1. The user interface 126
7.3.2. Simple testing 127
7.3.3. State space traversal 128
7.3.4. Segments 128
7.3.5. Properties 129
vi

CIP Model Checking

8. Conclusions . 131
8.1. What has been achieved? . 131

8.1.1. The contribution of this thesis 131
8.1.2. The software concept: summary 132
8.1.3. Some achievements 132
8.1.4. Some results 133

8.2. A self critical appraisal . 134
8.2.1. Implementation of the project 134
8.2.2. State explosion problem 135
8.2.3. Overall appraisal 135

8.3. Possibilities for further development . 135
8.3.1. Command line interface 135
8.3.2. Interfacing with SPIN 135
8.3.3. Generating meta-code for other model checkers 136

Appendix A: Sequentiality and fairness 137
A.1. Sequence of transitions . 137

A.1.1. Time and sequentiality 137
A.1.2. Example of an interpretation problem 137
A.1.3. Infinite sequences 137
A.1.4. Sequentiality 139

A.2. Zeno’s Paradox of Achilles and the Tortoise 139
A.2.1. Zeno 139
A.2.2. The paradox 139
A.2.3. What does all this have to do with Model Checking? 140
A.2.4. Discussion 141
A.2.5. Correspondence of time and sequentiality 142
A.2.6. Conclusion 142
A.2.7. Application 142

A.3. Fairness . 143
A.3.1. About fairness in general 143
A.3.2. The problem of event starvation 143
A.3.3. Preventing starvation 144
A.3.4. Fairness constraints, fair and unfair transitions 144
A.3.5. System behaviour 144
A.3.6. Some examples 144
A.3.7. Another look at Zeno’s paradox 146

A.4. Reachability and fair paths . 146
A.4.1. Proof 146
vii

Table of Contents

Appendix B: Notes on similar work 149
B.1. Fairness constraints . 149

B.1.1. A special case of a CTL* fairness constraint 149
B.1.2. Proof 149

Appendix C: Cluster reduction. 155
C.1. Effects of cluster reduction on behaviour 155

C.1.1. Example of cluster reduction leading to new behaviour. 155
C.1.2. Example of behaviour loss through cluster reduction. 157
C.1.3. Further example of behaviour loss through cluster reduction 160
C.1.4. General discussion on the effects of cluster reduction 161

C.2. Preventing loss of transitions in cluster reduction 162
C.2.1. The problem of loss of behaviour 162
C.2.2. Detecting potential loss of behaviour 163
C.3.3. Example of detecting loss of behaviour 163
C.3.4. Handling loss of behaviour by tree splitting 165
C.3.5. Example of handling loss of behaviour 165
C.3.6. Measures reducing the number of additional transitions 168
C.3.7. Example of reducing the number of additional transitions 169
C.3.8. Consequences of cluster reduction and a caveat 171
C.3.9. Handling part-transitions 172
C.3.10. Example using non-deterministic replacement for process 172

Appendix D: Traversing the State-Space 177
D.1. Introduction to state-space traversal . 177

D.1.1. Purpose 177
D.1.2. A simple example 177

D.2. Proving the eventually property . 178
D.2.1. Depth-first-search algorithm (DFS) 179
D.2.2. Expanding the DFS algorithm to accommodate fairness. 181
D.2.3. Depth-first-search algorithm with fairness. 188

Appendix E: Traversal examples 193
E.1. DFS algorithm . 193

E.1.1. Without fairness, property fails 193
E.1.2. Without fairness, property holds 195
viii

CIP Model Checking

Appendix F: Partial Order Reduction 197
F.1. Introduction . 197

F.2. Independence and visibility of transitions 198
F.2.1. Enabledness 198

F.3. Examples . 199
F.3.1. Partial Order Reduction of a simple system 199
F.3.2. The same example solved using method of section 6.4.3. 201
F.3.3. Degree of process enabledness 202
F.3.4. Example of process enabling and disabling 202
F.3.5. Example of F.3.1 using rules of 6.5.4 203
F.3.6. Differences between the methods 204

F.4. Discussion . 206
F.4.1. Comparison of rules 206
F.4.2. Discussion of visibility of transitions 208

F.5. Notes on discussion . 210
F.5.1. State space reduction 210

Appendix G: Data structures 213
G.1. Transitions . 213

Bibliography and references 215

Appendix R: Quick Reference 219
R.1. Symbols . 219

R.2. Functions and relations . 220

Index . 223

Curriculum Vitae . 237
ix

Table of Contents
x

CIP Model Checking

Zusammenfassung

Verifikation ist ein wichtiger Bestandteil im Entwicklungszyklus jedes Produktes. Um
Software vollständig und wiederholbar verifizieren zu können, müssen klar definierte
Methoden angewandt werden. Model Checking ist eine derartige Methodik. Ein Model
Checker kann eine passend eingegebene. Systembeschreibung analysieren und Aussa-
gen über das System machen. Einige Beispiele sind Signalsysteme bei der Bahn oder
Überwachungssysteme bei der Luftfahrt, bei denen es unerlässlich ist, dass sich über-
schneidende Trajektorien nie gleichzeitig freigegeben werden können. Oder, im kleine-
ren Maßstab, muss gezeigt werden, dass ein Kommunikationsprotokoll frei von
Deadlocks ist. Formell definiert wird eine solche Anforderung eine Eigenschaft (proper-
ty) genannt.

Es existieren bereits eine ganze Reihe von Model Checkern und einige davon werden in
dieser Arbeit kurz besprochen. Allerdings weicht der Model Checker, der als Thema der
vorliegenden Dissertation vorgestellt wird, von diesen ab, indem er eng verknüpft ist mit
einem bereits existierenden Entwicklungsrahmen, CIP. CIP (Communicating Interac-
ting Processes) bietet bereits deutliche Verbesserungen bei der Entwicklung von einge-
betteter Software durch seine Methodik, Struktur, Unterhaltsfreundlichkeit und bei der
Erstellung von Dokumentationen. Der Model Checker, der hier vorgestellt wird, benützt
diese Strukturen vorteilhaft, indem sie als Basis für seine Verifikationstechnik dienen.

Ein Model Checker interpretiert ein System als eine Menge von Zuständen (states), wel-
che durch Übergänge (transitions) untereinander verbunden werden. Der Model Chek-
ker analysiert die so dargestellte Struktur und sucht Pfade (paths) (durch Übergänge
miteinander verbundene Reihen von Zuständen) welche die zu beweisende Eigenschaft
widerlegen. Wenn ein derartiges Gegenbeispiel nicht existiert, ist die Eigenschaft be-
wiesen.

Der offensichtlichste Weg, die nicht-existenz solcher Gegenbeispiele zu beweisen, ist
ein systematisches Durchprobieren aller Pfade. In der Praxis ist die Anzahl der mögli-
chen Zustände allerdings derart groß, das der benötigte Speicherplatz und Zeitbedarf ein
solches Vorgehen ausschließen. Dieses Problem wird State Explosion genannt. In echten
Systemen, die mit CIP implementiert werden, wirken die CIP-typischen Interaktionen
diesem Problem entgegen. CIP verhindert gewisse Übergänge und verhindert damit die
Erreichbarkeit vieler Zustände. Weitere Einsparungen werden ermöglicht durch die
Wahl einer geeigneten Darstellung im Speicher.

Zusätzlich kann mit dem sogenannten Partial Order Reduction das State Explosion Pro-
blem wesentlich vermindert werden. Partial Order Reduction nützt Symmetrieeigen-
schaften des Systems und reduziert dadurch die Anzahl der Pfade, die betrachtet werden
müssen, um zu einer sinnvollen Aussage zu kommen. Die Anzahl der erreichten Zustän-
xi

Zusammenfassung
de und der Zeitbedarf nehmen dadurch ebenfalls ab. Diese Methode macht von dem Um-
stand Gebrauch, dass nur eine von allen möglichen Reihenfolgen betrachtet werden
muß, wenn die Reihenfolge gewisser Übergänge beliebig ist.

Eine wichtige Quelle falscher Ergebnisse, die bei Model Checking auftreten können,
sind Pfade, welche von den benötigten Übergängen zugelassen werden, jedoch kein tat-
sächlich mögliches Verhalten des zu modellierenden physikalischen Systems darstellen.
Solche nicht zulässigen Pfade können verursacht werden von Übergangssequenzen, die
sich unendlich wiederholen und dadurch die Ausführung anderer Übergänge verhindern,
die im physikalischem System sicher zur Ausführung kommen würden. Ein solcher
Pfad, welcher im Modell auftreten kann, aber im physikalischen System nicht, wird als
unfair bezeichnet. Im Modell, fehlen die mechatronische Zusammenhänge die das Un-
terscheiden von zulässige und nicht-zulässige Pfade ermöglichen. Deshalb müssen vom
Benutzer zusätzlich Fairness Constraints definiert werden, um in dieser Hinsicht das
Modell zu vervollständigen. Dieses ist die einzige Ergänzung des Modells, das der Mo-
del Checker dem Benutzer abverlangt.

Der wichtigste Beitrag in diesem Projekt liegt in der Bildung eines Modells für den Mo-
del Checker aus dem CIP Modell, und die Behandlung dieses Modells innerhalb des CIP
Rahmens. Dieses wird erreicht durch eine Erweiterung der CIP Funktionalität, damit er
von einem Anwender, der CIP ausreichend kennt, aber nur sehr geringe Model Checking
Kenntnisse besitzt, verstanden und verwendet werden kann.

Diese These führt eine Notation ein zur formellen Beschreibung von CIP Modellen und
ihren Komponenten. Das CIP Tool selber wird erweitert durch die Möglichkeit, Fairness
Constraints zu definieren, die es dem Benutzer erlauben, das zu modellierende System
für den Model Checker besser zu beschreiben, damit keine falschen Gegenbeispiele oder
Ergebnisse geliefert werden.

Ein weiterer Beitrag dieses Projektes ist das Hinzufügen eines Execution Testers zum
CIP Tool. Dieses Werkzeug erlaubt es dem Entwickler, neu definierte oder veränderte
Strukturen einfach und rasch zu testen. Dieser Schritt war eine notwendige Grundlage
für den Model Checker, bildet aber ebenfalls ein selbständiges Test- und Simulations-
werkzeug.

Bei der Umsetzung des CIP Model Checkers wurde auf eine enge Integration mit dem
CIP Tool Wert gelegt. Mit diesem wurden Fehler korrekt identifizieren und industrielle
Systeme erfolgreich traversiert. Der CIP Model Checker ist eine wertvolle Erweiterung
des CIP Tools und hilft CIP Anwendern bessere und sicherere Software zu schreiben.
xii

CIP Model Checking
Abstract

Verification is a central component of the development process of any product. To be
able to verify embedded software in a complete, and reproducible way, clearly defined
techniques must be applied. Model Checking is such a technique. A model checker can
analyse an appropriately presented system description and make statements about that
system. Some examples are a railway signalling system or an air traffic control system,
where it is vital to be able to show that conflicting paths can never be allocated simulta-
neously. Or on a smaller and more mundane scale, it must be shown that communica-
tions protocols are free of deadlocks. When such a requirement is formalised it is called
a property.

Many model checkers already exist and some are briefly discussed in this thesis. How-
ever, the model checker which is developed in this project differs in being closely inte-
grated with a pre-existing development tool, CIP. CIP (Communicating Interacting
Processes) in itself already offers considerable advances in embedded software develop-
ment through its methodology, structure and ease of maintenance and documentation.
The model checker presented in this thesis takes advantage of these structures and uses
them as a basis for integrating a verification technique.

A model checker basically views the system as a set of states which are connected by
transitions. Looking at the structure so represented, it searches for paths (sequences of
states connected by transitions) which disprove the property to be verified. Failure to
find such a counter-example in an exhaustive search of the system proves that the prop-
erty holds.

The most obvious way of executing such a proof is by brute force exhaustive testing of
all possible paths. In practice, however, the sheer number of possible states of the system
is so great that the physical memory of normal computer systems would be insufficient
to hold them and the time required would be prohibitive. This problem is known as the
state explosion problem. In real systems implemented with CIP Tool this problem is re-
duced to an extent by the restrictive and interactive nature of CIP. CIP disallows certain
transitions and so intrinsically excludes the reacheability of many states. Further savings
are made possible by the choice of a suitable coding in memory.

A method known as partial order reduction further strongly reduces the state explosion
problem. Partial order reduction makes use of symmetries in the system to decrease the
number of paths that must be followed and so the number of states found and also the
time required. This method makes use of the fact that when transitions are interleaving
(their order of execution is irrelevant), then only one of all possible orders must be
looked at.
xiii

Abstract
An important source of false results in Model Checking is caused by infinite paths which
are legal from the point of view of all states being connected by transitions, but do not
represent real behaviours of the physical system being modelled. Such illegal paths can
be caused by certain sequences of transitions being infinitely repeated to the exclusion
of other transitions which certainly would be executed in the real system. Such a path
which can occur in the model but not in the physical system is an unfair path. Fairness
constraints can be defined to tell the model checker which transition sequences are un-
fair.

The principle contribution of this project lies in the extraction of the Model Checking
model from the CIP model and the treatment of that model within the CIP framework.
This can be achieved through an extension of the CIP functionality in a way which is
easily understandable for a user with very basic Model Checking knowledge but ade-
quate understanding of CIP.

This thesis also presents a notation for formally describing CIP models and their com-
ponents. The CIP Tool itself is also extended through the addition of fairness constraints
which allow the user to tell the model checker more about the behaviour of the real sys-
tem so that no physically impossible counter-examples or claims are produced.

Another addition to the CIP Tool made in this thesis is the execution tester. This greatly
facilitates testing of the model by the developer. As soon as a component is defined, the
user can already test how this component responds to inputs. This was a necessary step
towards the creation of a model checker but also provides a useful testing and simulation
tool in its own right.

The CIP model checker has been implemented in close integration with CIP Tool. It has
been shown to correctly identify constructed errors and successfully traverse real indus-
trial systems. It should prove to be a valuable enhancement to CIP Tool, helping CIP us-
ers to create better and safer software.
xiv

CIP Model Checking
Acknowledgements

Many thanks are due to Hansruedi Müller, CEO of CIP System AG for his support and
especially for introducing me to the internal architecture of the CIP Tool and the fine art
of SmallTalk programming.

Thanks are also due to Hugo Fierz, inventor of CIP and co-founder of CIP System AG
whose contagious enthusiasm accompanied me for much of the realisation phase of the
CIP model checker. He introduced me to the methodology and philosophy behind CIP
but also kept me up to date on real life situations and problems and enabled me to meet
several CIP users.

Special thanks is due to Prof. Albert Kündig for enabling this project to come about and
for his continuous support, patience and numerous suggestions, especially concerning
the presentation of this thesis.

I would also like to thank Prof. Armin Biere and Prof. Lothar Thiele for their support
and suggestions.

Additional support was received from Johanna Schön in proofreading parts of this thesis.

Also worthy of recognition are the computer and infrastructure support teams of TIK and
all staff for creating an inspiring and pleasant working environment.

I would also like to thank Armin Deiss for his friendship and support during our time
together at the ETH.
xv

Acknowledgements
xvi

1.1. Purpose of this project
1. Introduction

1.1. Purpose of this project

How many software developers don’t test run their own code? Or for that matter, how
many cooks don’t taste their own food? How many writers don’t check their own words
and how many artists don’t look at their own painting? Almost all creative processes are
associated with some form of verification. This verification has a dual purpose. On the
one hand, it provides a feedback during the phase of creation. Is there enough salt in the
food? Does a subroutine perform the required task? On the other hand it serves as a final
verification before the product is passed on to the customer. This project is concerned
with supporting software developers in both of these phases.

Over the last 30 years or so, software development has probably made more significant
bounds than any other domain. Not only have the complexity of the problems tackled
and the solutions offered increased beyond the imagining of those who pioneered the
first computers, but many new methods and schools of thought have arisen as to how
software should be written and how it should act and react. The verification activities are
probably the part to have made the least progress. Many software companies rely largely
on their customers to report bugs. In most other industries such an approach would be
unacceptable. In embedded software this is also the case. A bug could cause huge costs
and setbacks if it causes a component to malfunction. The safety of humans may be at
risk if a railway signalling or aviation control system malfunctions. Huge sums of money
and effort are wasted if a satellite cannot fulfill its specifications. Clearly, intuitive test-
ing and feedback alone cannot serve as a basis for quality guarantees.

One approach to the quality assurance problematic is the use of formal verification tech-
niques and in particular Model Checking. Model Checking is the exhaustive execution
of a model to check that it conforms to the specification. The first succesful application
of this discipline was in hardware verification. It has since come to be used for software
also.

The CIP-Tool was first developed to tackle the problem from the other end. It supports
the software developer by enabling him to easily use a structured and disciplined ap-
proach to building and servicing software. This approach cuts down the risk of bugs
caused by sloppiness or absence of transparency while forcing developers to respect a
strictly structured approach based directly on the model being implemented. Whilst this
method assures a close correlation between theoretical and implemented model (ideally
identical), it cannot prevent bugs from occurring in the model itself.

This project aims to integrate a model checker in the CIP-Tool to do just that, and in so
doing make a contribution to quality assurance techniques in software development.
1

1. Introduction
Modern quality assurance techniques lay much value on defined standards and bench-
marks for testing. Test documentation is increasingly becoming part of the formal ac-
ceptance procedure of new products and this is reflected in the stringency of methods
and criteria. CIP-Tool itself makes a contribution in this direction by providing a struc-
tured and referrable development platform. The CIP model checker enhances this
strength considerably by adding a clearly defined Model Checking tool to that developer
platform with reproducible results.

1.2. What is CIP?

1.2.1. Brief history

CIP (Communicating Interacting Processes) was created as a research project at the
Swiss Federal Institute of Technology (ETH) in the 1990ties by H. Fierz [10]. Later the
development was continued by a spin-off company [9]. Today CIP-Tool is available as
a commercial product and is successfully used by many companies as a development
tool. Products realised with CIP include a hybrid automobile, a tamping machine for rail-
way tracks, automatic door systems and compact disk manufacturing machines.

1.2.2. What is the purpose of CIP?

The purpose of CIP is to raise the quality and serviceability of embedded software by
introducing an approach to problem solving which is considerably more structured than
common development methods including UML1. CIP provides a development environ-
ment that supports the software engineer by allowing him to concentrate on his principal
job, i.e, designing the system, by relieving him of repetitive onerous tasks such as hand
coding every system transition and keeping track of the system status. The finished mod-
el is stored and represented as a graphically composed model rather than code. This
makes it easier to modify and service.

The developer designs the system graphically by specifying and connecting compo-
nents. Once the model is created in CIP-Tool, compiler ready code can be generated
from it. If any modifications are necessary, these are made in the graphic CIP-Tool en-
vironment and the code is generated again. The generation of system documentation is
equally supported by CIP-Tool.

CIP-Tool also allows multiple developers or teams to work on the same project. Mo-
dules can easily be imported and exported and interfaces can be defined permitting sep-
arate teams to develop components independently.

1. This will be discussed in section 4.8.
2

1.3. Brief introduction to Model Checking
1.2.3. What are the constraints of CIP?

Since it was first released, CIP-Tool has been continuously streamlined and its function-
ality extended. So it has been able to meet and adapt to the demands of it’s users. In this
manner, the integration of a Model Checking facility meets the demands of many users
who are faced with increasingly complex systems which make it more and more difficult
to be sure that the model is still correct.

Despite the growth in the functionality of the tool, the reader should bear in mind that
CIP-Tool is designed and intended for embedded systems. While isolated applications
may exist in other fields, the strength of the tool lies in embedded system development.

One constraint with particular bearing on this project is the model does not contain the
information permitting executions which are possible in the physical system to be dis-
tinguished from those which are not. This will be discussed in greater detail in the sec-
tions on fairness (sections 3.7. and 5.7.) and an extension to the model will be introduced
to overcome this constraint (section 5.7.). The lack of this feature in CIP is not surprising
as the tool was never designed with Model Checking in mind, and this feature does not
have any other purpose.

1.3. Brief introduction to Model Checking

1.3.1. What is Model Checking?

With the continuous increase in complexity of systems, testing alone is no longer suffi-
cient to guarantee that the behaviour of the software conforms to the specification which
the testing is intended to verify. The vast number of permutations of system states and
inputs make a thorough test approach impossible. Additionally, programmers have a ten-
dency to test the situations they had in mind when writing the software, whereas it is the
unforeseen and unexpected which more often causes critical situations. To some extent
the latter is relativised by the common practice of independent groups performing the
tests. But knowledge of the application can equally lead to the same scenarios being test-
ed as where written for by the programmers reducing the usefulness of the test.

Model Checking is the verification of a model to check that it conforms to the specifica-
tion. Model Checking is not based on testing by subjecting the system to quasi-random
sequences of inputs as the human tester does. It is based on a thorough approach which
is able to make general statements about the system in all situations.

In 1981 E.M.Clarke and E.A.Emerson [11] defined Model Checking as follows:
3

1. Introduction
Model Checking is an automated technique that given a finite state model of a sys-
tem and a logical property, systematically checks whether this property holds for
that model.

1.3.2. Target properties of Model Checking

Model checking allows the user to test a whole range of logical properties. The following
are typical questions we cannot be completely sure of even after extensive testing, but
could verify with a model checker.

a) In a railway junction, can two trains be in a critical section simultaneously?

b) Can we be sure that a lift cabin cannot move when the door is not closed1?

c) When the alarm button has been pressed, can a dangerous action still be begun?

d) If a resource is requested, is it possible that it will be granted?

e) When the alarm has been pressed, will all parts of a machine enter a safe state?

f) When a resource is requested, can we be sure that it will be allocated?

(a) and (b) are examples of the invariance property. This demands that the state of the
system never (or always) conforms to certain rules.

(c) and (d) are examples of the reacheability property. This demands that if the state has
conformed to a rule A, then it is possible that it can at once or later conform to rule B.

(e) and (f) are examples of the eventually property. This demands that if the state has
conformed to a rule A, then it must at once or later conform to rule B. This property is
also known as request → acknowledge, because every request must eventually be ac-
knowledged.

More complex properties can be defined by mixing these basic properties. This can be
done by combining expressions using boolean operators. For example:

- when an action A is requested it will eventually be performed unless the alarm button
is pressed

can be reformulated as:

1. The forulation ‘not open’ is chosen intentionally as it includes also transient cases in which
the door is neither open nor closed.
4

1.4. What can Model Checking do for CIP?
- when an action A is requested without the alarm button being pressed, eventually A
will be performed or the alarm button will be pressed.

The CIP model checker can check several properties simultaneously.

1.3.3. Limits of Model Checking

The demands on memory space of model checkers is huge and grows exponentially with
every process added. We call this the state-explosion problem. Although several ap-
proaches exist for reducing the impact of state-explosion, some of which will be dis-
cussed in this project, state-explosion essentially limits the size and complexity of
systems to which Model Checking can be applied.

Other limits of Model Checking are that most classical Model Checking techniques are
limited to finite state machines. Most real systems also include some data processing
parts which may affect the behaviour of the system. This subject will also be addressed
in this thesis and some workarounds presented.

1.4. What can Model Checking do for CIP?

1.4.1. Model Checking and CIP: current possibilities

Many CIP users have been demanding the possibility of formal verification. This could
be achieved by using an existing model checking environment. The CIP user could eas-
ily buy a model checking software or download a free one. Why then is a dedicated CIP
model checker required?

In most model checkers the model has to be described in a so called meta-code or meta-
language. The code of this is similar to a programming language. The user thus has to
learn the meta-language and the handling of the model checker and then transfer the al-
gorithms to be tested to the meta-language. This is not only time consuming. but also
poses an important source of errors by the possibility of the compilable code not being
completely equivalent to the verifiable code.

1.4.2. Model Checking from program code

One solution to this problem is automatic extraction of verifiable code from compilable
code. This is not easy due to the vast expressive power of programming languages. How-
ever some progress has recently been made. For example, G. Holzmann announced that
his model checker SPIN is to integrate the option of directly extracting meta-code from
C-code [32][39].
5

1. Introduction
So technically, it is possible to generate C-code with CIP-Tool and then feed that code
to SPIN for verification. But this is not an optimal procedure. Not only is the C-code ex-
traction still at an early stage of its development and unable to cope with the full syntac-
tical strength of C, but there is a more systematic proble:

In the CIP model, the system is represented in a manner reflecting the system structure
and interaction mechanisms, which are also advantageous to Model Checking. This use-
ful structure is largely lost in the C-code generation in the same way that a well struc-
tured C program does not necessarily compile into well structured machine-code. Also,
the C-code model is considerably more complex than the CIP model from which it is de-
rived (just as the machine code model is more complex still), and so an attempt to per-
form Model Checking on this will require considerably more resources and require the
ability to respond to a larger range of inputs. Even if the growth of model complexity is
linear, the growth in resource requirements will be exponential (see state explosion, sec-
tion 5.2.3.).

1.4.3. Generating meta-code from CIP-Tool

A related and tempting alternative would be to extend CIP-Tool to generate meta-code
for a model checker just as it can generate compilable C or Java code. This code would
then be fed to the model checker.

This approach is considerably more practical than that of passing through C-code. In fact
it is well worth looking into as a future development.

The drawbacks are, that the available model checkers were designed for problems of a
general nature and are far too expressive for CIP. CIP has strict run to completion se-
mantics (this will be discussed in section 2.5.5.) and strict rules governing pulse casting
and propagation. To restrict an off the shelf model checker to such behaviour would re-
quire considerable auxiliary structures.

A drawback for the user would be having to run two independent applications with a
possible loss of correlation between what the model checker is doing and his own de-
signs.

1.4.4. The integrated model checker

The approach that was finally chosen is that of an integrated model checker in CIP-Tool.

Data structures in CIP are well suited to model checking because all possible interactions
are conatined in the model’s definition. The goal of this thesis is to be able to perform
model checking operations directly on the structures as they are represented in CIP, tak-
ing full advantage of these structures.
6

1.5. Goals
An additional advantage of this approach is that the user interface can be made to con-
form to that of CIP-Tool. The properties to be tested can be made easy to understand and
easy for the user to define. Ideally, the user should be able to use the tool without acquir-
ing any specific Model Checking knowledge.

1.5. Goals

1.5.1. What the CIP model checker should do

The CIP model checker should be fully integrated within CIP-Tool so that the user can
access and use it with a series of mouse clicks. It should enable the user to verify the
model he is constructing, both in finished form and on the fly during the design process.
The principal properties whose verification it permits are those described in section
1.3.2. The meanings of these properties and their uses should be presented to the user in
a comprehensible way so that a user who has working knowledge of the CIP-Tool and
CIP methods but no specific Model Checking background is able to make productive use
of the checker.

The CIP model checker will compare these properties with the modelled system and ei-
ther confirm they hold or otherwise produce a counterclaime violating the property.

In this way, the CIP model checker can become an active and important part of the de-
sign cycle of products developed with CIP-Tool.

1.5.2. The CIP model checker and the design process

In figure 1.1. the classic “waterfall model” [17] of software development is shown. Clas-
sic model checkers are especially useful in the transition from analysis to design where
they check the correctness of algorithms. Modern model checkers such as SPIN which
are closer to the actual code can increasingly be used in the design to code and code to
test phases. This requires of course that these model checkers can interpret and correctly
translate the full expressive power of program code. At the present moment this is not
necessarily the case.

The CIP model checker aims to be useful in the analysis to design transition. The manual
part of the design to code phase is greatly reduced by CIP. The process is automated and
risk of error greatly reduced. Hence Model Checking in this phase in the CIP environ-
ment can be considered superfluous. CIP also saves time on the testing and maintenance
phases. If the model has been correctly checked the results are by implication also appli-
cable to these phases. Of course this implication relies on the code being generated cor-
rectly by CIP Tool so that the code is fully equivalent to the design model. As CIP Tool
has been in common commercial use for many years now, it is likely that all bugs in this
7

1. Introduction
respect have been identified, reported and corrected. A high degree of confidence can
thus be placed in properties holding for the model also holding for the final product.

figure 1.1. System development “waterfall model”

1.5.3. The execution tester

Previously, for testing purposes, C-code could be generated with CIP Tool. This could
be compiled and linked to a CIP simulator permitting software testing of the C-code
from the CIP environment. The model checker provides an alternative to this. The exe-
cution of models can be tested at model level thus saving the need to recompile and link
for testing purposes after every change. This execution tester lies at the heart of the Mod-
el Checker, but is also a very useful tool in its own right. It provides an alternative to the
code generator when functionaity tests are required. The CIP execution tester makes it
feasible to make minor changes and then quickly retest the modified model as it stands.

Also, the C-code generator requires models to be complete to be able to generate code.
Where parts of the specification are missing, the code generator cannot perform its task,
even when the missing parts have no bearing on the test to be performed. The model
checker is more tolerant and assumes the more general case where the specification is
incomplete. However, as the complete model cannot always be extrapolated from the in-
complete, no results from such a test excuses the programmer from re-running the model
checker for the complete model.

system engineering

analysis

design

code

testing

maintenance

‘classic’ model checking

‘modern’ model checking

CIP model checking
8

1.5. Goals
One very valid question that can be asked of the execution tester, is whether it is really
equivalent to the generated, compiled and linked code. All Model Checking results im-
plicitly rely on the correctness of the execution tester. Behavioural differences can be at-
tributed to errors in either the translation from CIP model to execution tester or any of
the transitions between CIP-model and the execution of the compiled code on the target
system.

To demonstrate the confidence which can be placed in this equivalence, the parallel op-
eration of the execution tester and the compiled code would be desirable for a large
number of (preferably randomly generated models) and a random event sequence ap-
plied to both machines in parallel. At present this is not possible because CIP-Tool lacks
a command line interface permitting such a task to be automated. Such an extension is
desirable for a future phase.

figure 1.2. Method for demonstrating confidence in equivalence of CIP execution tester
and generated code

The manual testing of the model as facilitated by the execution tester is not made super-
fluous by Model Checking. Manual and intuitive testing remains an important feedback
component in any development cycle. The value of a test case depends also on how it is

CIP Model

input
sequence

CIP
execution
tester machine

built from
generated
code

output
sequence

output
sequence

equivalence
tester

data flow

creation of
components

generator
9

1. Introduction
handled. One structured approach to handling test cases is Extreme Programming, where
test cases are defined before the model is designed and further test cases added based on
experiences gained and problems identified during the modelling or programming
phase. A command line interface would also greatly facilitate the exection of such test
cases and hence the application of such structured testing approaches.

1.5.4. Goals of this project

This project aims to realise the CIP model checker as described above. In doing so opti-
mal use will be made of the existing data structures. Where these need to be extended or
modified this will be done in line with the general design philosophy of CIP-Tool.

1.6. Summary of results

1.6.1. General

The CIP model checker was successfully implemented and integrated with CIP-Tool and
its function demonstrated both with constructed examples and genuine systems taken
from industrial implementations.

The CIP model checker is the first approach at integrating a model checker in an embed-
ded system development tool operating at the ‘model level of abstraction’1. It can be
used to check real systems and make a real contribution to development and quality as-
surance support. Especially, it guides the user from the modelling point of view without
requiring him to learn Model Checking notations or definitions. For example, the con-
cepts of fairness and liveness are tackled from the point of view of the modeller rather
than that of the verification theoretician.

1.6.2. Notation and definitions

This thesis develops a notation for the formal description of CIP Models (see chapter 3.).

It also introduces a definition of fairness specifically aimed at the type of situation which
occurs in CIP models. With a couple of mouse clicks, the user can add or remove fairness
attributes from transitions. These prevent the model checker from identifying false coun-
terexamples or claims. Existing fairness definitions could also have been used, but
would have required the user to redesign system components to accomodate this. The
goal of the CIP model checker is to allow the user to perform model checking on existing
systems without having to redesign these (see sections 3.7. and 4.4.).

1. Tools such as Statecharts [41] offer some model checking possibilities [24], but do not offer
the modelling power of CIP. See section 4.8. (page 69) for a discussion on this.
10

1.7. Guide for the reader
1.6.3. State-space traversal

An important step towards the realisation of this project was the creation of the execu-
tion tester. Previously, the code generated by CIP-Tool was the only means of actually
traversing the system or indeed testing any particular transition of the system. CIP-Tool
showed the relationship of the components but was unable to directly equate this to be-
haviour. Model testing during the design phase thus required code generation and com-
pilation for every design iteration.

Besides being vital for the model checker, this behaviour tester allows the user to hand
test the behaviour of the complete or incomplete model during the design phase. For the
CIP user, this function can be almost as valuable as the model checker itself.

1.6.4. Coping with state-explosion

Throughout the implementation phase, care was taken to observe the extent of the state-
explosion problem. The strong interaction structure of the CIP model resulted in this be-
ing less extreme than initially feared. Additionally a user-controlled reduction approach
was implemented (cluster reduction) as was an automatic reduction mechanism (partial
order reduction). All of these mechanisms were shown to make a noteworthy contribu-
tion to reducing the state-explosion problem. Nevertheless, very large systems tested
still caused considerable strain through state-explosion.

1.7. Guide for the reader

1.7.1. General

Some readers of this thesis may have good knowledge of CIP-Tool, but less so of Model
Checking. For others the situation may be vice-versa, and for others again both fields
will probably be new. The reader should feel free to skip chapters on subjects with which
he feels sufficiently familiar or which are of no consequence to him. For any ambiguity
concerning terms defined or explained in those chapters and used in subsequent chap-
ters, the reader is referred to the quick reference tables of section Appendix R:
(page 219) or to the extensive index.

Chapters 2. to 4. discuss the background of the project and introduce many concepts and
definitions to be used in later chapters.

Chapters 5. to 7. discuss the methods lying at the heart of the CIP model checker.

Results and conclusions are discussed more broadly in chapter 8.
11

1. Introduction
1.7.2. Background

Chapter 2. discusses CIP. This chapter should enable the reader with no previous know-
ledge of CIP to gain a general overview of the functionality and method of CIP. For the
more knowledgeable reader it recapitulates or can be used as a reference to the concepts
used in later parts of this project.

Chapter 3. presents Model Checking basics and many of the aspects of Model Checking
which are used in this project are introduced. This chapter defines many of the concepts
which will be used in later chapters. It introduces Kripke structures, which are a tool in
understanding whether properties are fulfilled. Finally a concept called fairness is intro-
duced. This basically limits the possible input sequences the system model has to deal
with by preventing behaviours which a classic state diagram allows but a real system
doesn’t (such as events occurring in a sequence which physical limitations of the system
would not allow).

Chapter 4. looks into the history of Model Checking, and Model Checking in practice
and discusses some of the available tools and their bearing on this project. It especially
discussed the concept of fairness which is central in this project and compares it with de-
finitions of fairness used elsewhere.

1.7.3. Realisation

The threads of chapters 2. and 3. finally join in chapter 5. This chapter discusses how the
processes of the CIP machine combine to form a finite state-machine, and how this finite
state-machine can be interpreted from the CIP perspective. The problem of state-explo-
sion is discussed, as is the method of tackling this by a method called cluster reduction.
Cluster reduction attempts to simplify models by leaving away certain components.
Such components should ideally be outside the cone of influence of the property being
investiagted. In strongly interconnected models it is not always practicable to determine
whether this is the case and the possible effects of leaving away other components are
considered. It is shown that such cluster-reduction can causes undesirable changes in the
behaviour of the machine which may lead to false Model Checking results. The mecha-
nism involved is discussed at length and mechanisms for preventing these problems are
developed.

Chapter 5. also shows how the properties introduced briefly in section 1.3.2. and dis-
cussed at greater length in chapter 3. can be translated into the CIP environment. The
concept of fairness is also discussed again, this time in perspective of its use in CIP.

The problem of state-explosion has already been mentioned and this is discussed at
greater length1 in chapter 3. Chapter 6. returns to this thematic and introduces partial
order reduction. Partial order reduction is a method for reducing the number of states of
12

1.7. Guide for the reader
a system without modifying its behaviour as far as the properties to be verified are con-
cerned.

The implementation is discussed in chapter 7. and an idea is given of how the interface
looks and how the tool is used in practice.

1.7.4. Conclusions

Chapter 8. presents the conclusions of the project together with a self critical appraisal
and discusses the possibilities of further work.

1.7.5. Appendices

The appendices contain a lot of background information such as examples, proofs and
discussions which were not sufficiently relevant or original to be placed in the main part
of this thesis.

Appendix A: Sequentiality and fairness, contains notes relating to the discussion of paths
and fairness of chapter 3. The correlation between time and sequentiality is investigated
and illustrated with an example that was already known to the ancient Greeks: One of
Zeno’s paradoxes.

Appendix B: Notes on similar work, contains notes on chapter 4. going into proofs and
backgrounds which would have gone beyond the limits of chapter 4.

Appendix C: Cluster reduction, discusses the cluster reduction attempts of chapter 5. and
shows with examples why simpler attempts at solving the problem can lead to loss of
behaviour.

Appendix D: Traversing the State-Space, introduces the depth first search state traversal
algorithm which is used by the CIP model checker.

Appendix E: Traversal examples, provides further examples illustrating the algorithm
introduced in appendix D.

Appendix F: Partial Order Reduction, provides background to chapter 6. with examples
and discussions.

Appendix G: Data structures, summarises important data structures used in the realisa-
tion of this project.

1. A so called cone of influnce reduction is used. This presents many problems in itself which
are then addressed and solved.
13

1. Introduction
Appendix R: Quick Reference, summarises the meanings of the symbols and functions
used in this work and is located immediately before the index for quick access.
14

2.1. Purpose
2. CIP in a nutshell

2.1. Purpose

In this chapter CIP will be introduced as far as it is relevant to this project. For fuller de-
tails, especially concerning the interface, the reader is referred to CIP manuals and liter-
ature [8], [9], [10] and [37].

2.2. Introduction to the CIP method

2.2.1. Why CIP?

Much of the software used in embedded systems, and indeed elsewhere, is developed
and evolves in a way which can be described as organic. During the life cycle of a pro-
gram, the code is continuously modified and added to, and as a result becomes increas-
ingly unserviceable. Time pressure within the development environment favours the
creation of code which is essentially functional but not developed according to any spe-
cific rigorous methodology. Different programmers with different styles modify each
other’s code leading to an increasingly unstructured status. This makes trouble-shooting
tedious and costly. Consequently, inexcusable bugs often survive in the finished pro-
duct.

CIP-Tool helps to solve these problems by moving away from the code based approach,
replacing this by an object based approach. CIP provides objects of numerous types,
such as communication objects or status objects, each with appropriate attributes and re-
lated to one-another in the appropriate way. The objects are represented graphically and
attributes and relationships can be created or modified with simple mouse clicks. The be-
haviour of the system can easily be interpreted from the relationship of these objects.
Different programmers can service the same objects, or can produce different objects
and then connect them. Once this process is complete, the model can be converted to
compiler-ready code (currently CIP- Tool supports C and Java).

It is not just another gadget to relieve the programmer of repetitive chores. Neither is it
merely a tool. It is a method which must be learnt and applied. The CIP method enforces
structure on the programmer’s approach to the problem and maintains a high level of
serviceability and modifiability. CIP users commonly report that the method has led to
considerable time and cost savings while raising the quality of the finished product.

2.2.2. Looking at an embedded system from the CIP perspective

figure 2.1. shows how embedded system software is connected to the physical system.
On the function layer, the description of the physical system is a combination of the de-
15

2. CIP in a nutshell
scriptions of all its components (their positions, velocities, pressures, voltages etc.).
These are infinitely variable analog values. On the communication level, sensors and ac-
tors extract far simpler data from these values. A simple sensor, for example, is not con-
cerned with the exact height of a column of liquid at all times (which is of no interest to
the control software), but reduces this to atomic events (the height has fallen below or
passed above a critical value). The sensor passes this information to the control software
(in this case the CIP software) via the connector.

Likewise, when the control software deems it necessary to effect an action, this is passed
to the corresponding actor via the connector. The actor then influences the physical state
of the system by acting on one of its components. By passing through the communica-
tion layer, a virtual connection is created between the control software and the external
processes on the function layer.

figure 2.1. Software architecture1

When programming, we can act as if this connection were real. In the software we re-
ceive events and transmit actions. These reflect events and actions taking place in the
physical system.

It is central in the CIP method, that we do not ignore the mechatronic causality between
our actions and events. For example, if we start a motor that closes a door, we must ex-
pect the door to be closed at some point. If necessary we must be able to act on the re-
ception of the message that the door has closed. If the door is not closing, we do not
expect such a message to occur and are not prepared to act on it (except possibly in an
error handling framework). By making this distinction, we implicitly reflect that the po-

1. From The CIP Method: Component- and Model-Based Construction of Embedded Systems by
H. Fierz [37].

external

sensors

processes

and
actors

CIP
components

connector

function layer

communication

physical system embedded system

virtual
connection

real
connection

layer
16

2.3. Processes
sition of the door in the physical system is more or less constant when the door is not
moving and the position of the door is progressing when the door is moving. Whatever
the situation, the door certainly never jumps. When moving from A to B it passes
through all intermediate positions, only some of which may be of interest to the embed-
ded software. It would, however, be too simplistic to say that the state of the door in the
CIP-model is a synchronous many to few mapping of the physical state of the door. Such
a simplification would ignore factors such as the time delay of the communication, ac-
tion delay of actors, and the possibility of communication messages crossing between
the CIP components and the physical system all of which may lead to discrepancies be-
tween the supposed and actual state of the CIP-components.

For further background on the links between the embedded system and the physical
world, Separate connection and functionality is the pivot in embedded system design
[28] by H. O. Trutmann is recommended reading.

2.3. Processes

2.3.1. What is a process?

Reactive systems are commonly described by finite state machines. The decomposition
of system functionality into finite state machines is also a central part of the CIP ap-
proach. When creating a finite state machine to model the system behaviour, we could
describe the entire system in one large state machine. In CIP this is also possible but not
encouraged. It is better practice to decompose the functionary into processes. Each proc-
ess is concerned with one aspect of the behaviour of the system, and communicates with
other processes by sending and receiving messages.

Processes are grouped into clusters. The importance and meaning of clusters will be dis-
cussed more fully in section 2.5. For the moment it is sufficient to state that processes
within clusters work together more closely than processes in different clusters.

2.3.2. A simple process

This simple process of figure 2.2. models a button.
17

2. CIP in a nutshell
figure 2.2. A simple process modelling a button

The process has two states (up and down) and two transitions (numbered 1 and 2). Ini-
tially, the active state of the process is the state up (the token marker in the state circle
identifies this as the initial state). When the event Down occurs, transition 1 is triggered
changing the active state of the process to the state down. This transition sends the mes-
sage pressed. When the process is in state down, the event Up can trigger transition 2
returning the process to its initial state.

Each transition is represented by two arrows and a box. The state from which the first
arrow leads is the pre-state of the transition. The state to which the second arrow leads
is the post-state. Between the arrows is a box as shown in figure 2.3.

figure 2.3. A transition description box

An event is a message received from outside the cluster, for example from a sensor of
the physical system or from another cluster. An inPulse is a message received from an-
other process within the cluster.

The trigger object shown in figure 2.3. is an event or inPulse which must be received by
the process for the transition to occur. The outPulse object is a message sent to another
process of the same cluster. The action object is a message sent to an actor of the phys-
ical system or to a process in another cluster.

Every transition must have a trigger attribute, whereas the outPulse and action attributes
are optional.

1

pressed
Down

2

released
Up

downup

1

outPulse
trigger

action

1

outPulse
trigger

action
18

2.3. Processes
2.3.3. Extended finite state machines

A finite state machine is a system with a finite number of states, where the active state
changes in response to events1. The example process discussed above is a (simple) finite
state machine.

Finite state machines do not always suffice to model all aspects of a system. Many sys-
tems also need to handle data or even take actions based on this data. An extended finite
state machine is a machine which has extensions allowing such operations to be per-
formed. Sections 2.3.4. and 2.3.5. discuss extensions to CIP enabling it to model extend-
ed finite state machines.

2.3.4. Code extensions

We cannot reduce every desired behaviour to simple state diagrams. For example, we
may wish to include a control algorithm or handle other data. An operation is a code
fragment which is an attribute of a transition. Whenever this transition is executed, the
code fragment is also executed. Transitions with operations are recognisable by the letter
O in the top right hand box.

figure 2.4. Transition with operation

2.3.5. Conditions

Operations of the type introduced above can perform additional calculations, but cannot
alone influence the overall behaviour of the system. We may wish to make transitions
dependent on ‘hand programmed’ code. CIP-Tool provides a mechanism for this called
a condition.

1. A more comprehensive discussion of finite state machines can be found in section 3.2.2.
(page 36).

1 O
trigger
19

2. CIP in a nutshell
figure 2.5. Process with conditional transitions

In the process of figure 2.5. we see that both represented transitions have the same pre-
state and the same trigger element. In order to tell the process how to react to this trigger,
we implement conditions. These are code fragments returning a boolean value determin-
ing whether or not the transition is to be executed. In this example, the condition could
depend on the value of a variable n which is incremented by the operation of both tran-
sitions. When n is below a threshold value, transition 1 is executed (‘n<threshhold’ is the
condition attribute of transition 1), otherwise transition 2 is executed (ELSE is the con-
dition attribute of transition 2).

These conditions form a switch structure. The presence (or need) of such a structure is
shown in the state diagram view by the grey shading of the states to which switch struc-
tures apply.

Every switch must include an ELSE condition. Thus it is guaranteed that when the proc-
ess is in the pre-state of a transition and the trigger of that transition is received, then a
transition will be executed.

With the exception of ELSE, which obviously is considered last of all when executing a
switch structure, no order can be defined for the conditions in the structure. It is thus the
programmer’s responsibility to ensure all the conditions are mutually exclusive.

As the parsing of code is beyond the scope of the CIP model checker, the model checker
assumes the general case that any of the alternative transitions is enabled can be execut-
ed in any given situation. Some more restrictive methods such as gates and master-slave
structures introduced in section 2.6. (page 28).

2.4. Non external triggers
The user may require functions enabling a transition to be executed without an external
trigger. This is done using timers, chains and autos. These trigger mechanisms are called
extensions.

finished

1 O
increment

2 O
increment

counting
20

2.4. Non external triggers
2.4.1. Timer

The timer extension allows a process to retrigger itself after a set time has elapsed.

To set the timer, a transition must have the set timer extension as attribute. When this
transition is executed, a timer is set. After the timer times out, the process is sent a timeup
trigger.

In the example process of figure 2.6. a timer is set by transitions 1 and 4. The letter T
indicates that the transition has the set timer attribute. Note that (as in the case of transi-
tion 4) a running trigger is restarted by such a transition.

Transition 2 is triggered by the timer when this times out. The TIMEUP_ trigger is a pre-
defined message.

Transition 3 stops a running timer. The stop timer attribute is shown by the letter S. In
this example it is not strictly necessary to stop the timer as a timeup being received in
the state not_timing is of no consequence.

figure 2.6. Process with timer function

Cases are imagineable where incorrect behaviour is obtained in verification by a timer
being able to timeout although it was never set. For this reason the CIP model checker
can model timers explicitly.

2.4.2. Chains

A chain is a timer with a time of zero. It can be used to allow a process to activate itself.
set chain (letter C) and chain (message CHAIN_) are equivalent to set timer and timeup
respectively. There is no stop chain.

not_timing timing

1 T
start

2
TIMEUP_

3 S
stop

4 T
start
21

2. CIP in a nutshell
2.4.3. Auto

An auto is a trigger which is continuously and automatically received. It cannot be set
or stopped. Autos can be used, for example, to activate processes carrying out repetitive
tasks in the background. The auto message is written AUTO_.

2.5. Clusters

2.5.1. What is a cluster?

A cluster is a set of processes which are connected by a common scheduling strategy.
This scheduling strategy is run to completion. The exact mechanism implied will be dis-
cussed in section 2.5.5.

On account of the scheduling strategy, communication between processes within clus-
ters is synchronous whereas communication between processes of different clusters is
asynchronous. Because of this, different clusters of a CIP system can be implemented
on separate processors and even at physically separated locations.

Different clusters can equally also share a single processor. The use of separate clusters
in such situations is justified when the purposes of the clusters are sufficiently independ-
ent. For a further discussion of multi-cluster systems see section 2.7.

2.5.2. Pulse translation

A pulse is a message passed from one process to another process in the same cluster. The
user must define which processes may pass pulses to one another.

Let us consider the processes of figure 2.2.and figure 2.6. We want the button process to
send messages to the timer process. For this we must define a connection from process
button to process timecntrl. This is done in the pulse cast net view of CIP Tool as shown
in figure 2.7.

figure 2.7. The pulse cast net view of a cluster with processes button and timecntrl

button

timecntrl
22

2.5. Clusters
The arrow from button to timecntrl indicates that button can send pulses to timecntrl. If
this relation were not defined, pulses could not be sent.

A pulse translation editor is used to define exactly which pulses may be passed by this
connection and how they are to be translated.

In the pulse translation editor of figure 2.8., the outPulse pressed of process button is
mapped to the inPulse start of process timecntrl.

figure 2.8. The pulse translation editor

The example shown in figure 2.9. shows how this pulse translation works in practice.

figure 2.9. Processes button and timecntrl in initial state

Process button receives the message Down which triggers transition 1 and changes the
active state of button to down. This transition sends the outPulse pressed which is trans-
lated (as shown in figure 2.8.) to the inPulse start in process timecntrl. This inPulse trig-
gers transition 1 changing the active state of timecntrl to timing.

1

pressed
Down

2

released
Up

downup

not_timing timing

1 T
start

2
TIMEUP_

3 S
stop

4 T
start

process: button process: timecntrl

marks current state of process
23

2. CIP in a nutshell
figure 2.10. Processes of figure 2.9. after receiving message Down

2.5.3. Cast order

The user must not only define which processes may pass pulses to one another but also
the order in which this passing occurs. This guarantees a deterministic and reproducea-
ble behaviour.

The pulse cast net of figure 2.11. shows a cluster with four processes (button, door, lamp
and controller). Transitions triggered in process button can be propagated to process
lamp by several different ways. It could therefore even occur that process lamp receives
more than one message as a result of a single transition in process button. The order in
which the pulses are received influences the response of the receiving process. Therefore
it is vital that a cast order is defined to lay down the order in which pulses are sent by a
process. For every sending process there exists a cast order list.

figure 2.11. A pulse cast net in which transitions can be propagated by several different
ways.

1

pressed
Down

2

released
Up

downup

not_timing timing

1 T
start

2
TIMEUP_

3 S
stop

4 T
start

process: button process: timecntrl

door lamp

controller

button
24

2.5. Clusters
figure 2.12. Pulse cast editor defining the order in which outPulses sent by process but-
ton are cast

For the example of figure 2.12. process button first sends an outPulse to process door.
Only when the triggered cascade is complete does process button send the outPulse to
process lamp. When that trigger is also complete the pulse is sent to process controller.

In the following example we show the importance of defining cast order when a single
transition can influence a process through more than one propagation path.

figure 2.13. Some of the processes of cluster of figure 2.11.

The message Down is received by process button where it triggers transition 1 and sends
the outPulse pressed. This is first sent to process door where it is translated to the inPulse
button_pressed and triggers transition 1 thus sending the outPulse opening. This is sent
to process lamp where it is translated to the inPulse pressed and triggers transition 1. The
outPulse pressed from process button is also sent to process lamp where it is translated
to the inPulse pressed and triggers translation 2. Finally, the outPulse pressed from proc-
ess button is sent to process controller (not shown)

closed opening

open

6
DoorClosed

7

opened
DoorOpen

Stop

3
close_command

Close

closing

2

opened
DoorOpen

Stop

reopening

5
button_pressed

Open

1

opening
button_pressed

Open

4

closed
DoorClosed

Stop

off on_dark
3
released

Dark

2
pressed

Bright

on_bright4
closed

Off

1
opening

Dark

1

pressed
Down

2

released
Up

downup

process: button process: door

marks current state of process

process: lamp
25

2. CIP in a nutshell
figure 2.14. Processes of figure 2.13. after execution of cascade triggered by message
Down

If the cast order had been different, and the outPulse pressed first sent to process lamp,
it would not have triggered a transition there. The outPulse opening of process door
would have triggered transition 1 in process lamp. The final state of lamp would have
been different.

figure 2.15. Processes of figure 2.13. after execution of cascade triggered by message
Down but with modified cast order (door after lamp).

2.5.4. Interaction trees and their execution

The definitions made by the user as discussed in sections 2.5.2. and 2.5.3. define the or-
der in which pulses are sent to processes. An interaction tree is a mapping of this order.

closed opening

open

6
DoorClosed

7

opened
DoorOpen

Stop

3
close_command

Close

closing

2

opened
DoorOpen

Stop

reopening

5
button_pressed

Open

1

opening
button_pressed

Open

4

closed
DoorClosed

Stop

off on_dark
3
released

Dark

2
pressed

Bright

on_bright4
closed

Off

1
opening

Dark

1

pressed
Down

2

released
Up

downup

process: button process: door

process: lamp

closed opening

open

6
DoorClosed

7

opened
DoorOpen

Stop

3
close_command

Close

closing

2

opened
DoorOpen

Stop

reopening

5
button_pressed

Open

1

opening
button_pressed

Open

4

closed
DoorClosed

Stop

off on_dark
3
released

Dark

2
pressed

Bright

on_bright4
closed

Off

1
opening

Dark

1

pressed
Down

2

released
Up

downup

process: button process: door

process: lamp
26

2.5. Clusters
Such trees are automatically generated by CIP-Tool and can be displayed in a browser
as illustrated in figure 2.16. This example shows the interaction tree discussed in the ex-
ample of section 2.5.3.

figure 2.16. Interaction tree of example of section 2.5.3.

For every process it shows the trigger and the pulse sent. It is not necessary that every
pulse shown in the tree is actually sent. If the process is not in the right state to execute
the necessary transition, the transition is not executed and neither are any of the transi-
tions below it in the tree.

Note that in CIP, these trees are always traversed depth-first and left to right.

In the example of figure 2.16. the processes are activated in the order: button, door,
lamp, lamp, controller.

During the development phase, CIP-Tool automatically checks whether any change
could result in a recursive interaction tree structures and does not allow such a structure
to be defined (so ensuring that every interaction tree remains finite and thus guarantees
termination).

2.5.5. Run to Completion Semantics

The scheduling algorithm of CIP is run to completion semantics. This means that within
a cluster, only a single interaction tree can be in execution at any time. The scheduler
accepts no external messages until the execution of the tree is complete.
27

2. CIP in a nutshell
Given the states of all processes in the cluster and a message, the states of all processes
in the cluster after the transition are deterministic (allowing of course for the behaviour
of code extensions as described in section 2.3.4.).

As the cluster transition cannot be interrupted, it can be considered to be a single instan-
taneous transition.

2.6. Inspections, Gates and Master-Slave structures

2.6.1. Inspections

In section 2.3.5. transitions were introduced with both the same trigger element and the
same pre-state. In order to know which of the transitions is to be executed in which si-
tuation, additional code was provided. Such switches are called conditions.

In some cases, the condition may be dependent on the state or code variable of another
process. In this case, a message is sent to that process and the requested information re-
turned. Such information sharing operations are called inspections. The CIP-Model pro-
vides inspection links (similar to the pulse transmission links of section 2.5.2.). The
actual handling of the request, however, must be implemented in code. This code is an
attribute of the inspected process in the model structure. It would be beyond the scope
of this project for the model checker to actually parse this code. Wherever possible, the
developer is encouraged to use gates instead.

2.6.2. Gates

Where an inspection inspects only the states of another process, a codeless and more
transparent alternative is provided. This alternative is called a gate. Not only is a gate
easier and faster to implement than ‘hand written’ code, but it can be fully described
within the framework of CIP, an advantage when we come to considering this in Model
Checking.

Gates inspect processes using a similar communication framework to conditions. Rather
than code being attached, however, a truth table is defined.
28

2.6. Inspections, Gates and Master-Slave structures
figure 2.17. truth table inspecting process door.

The truth table of this example inspects a single process. Up to three processes can be
inspected in a single truth table.

This gate is used in the process controller shown in figure 2.18. This is process control-
ler of the cluster of figure 2.11. and figure 2.13.

figure 2.18. process controller of cluster of figure 2.11. and figure 2.13.

When the process is in state not_timing and the inPulse released is received, a switch
structure is used to ascertain whether transition 1 or transition 3 should be executed.
Transition 1 uses the truth table of figure 2.17. and transition 3 uses ELSE.

Therefore, when the inPulse released is received in state not_timing, transition 1 is exe-
cuted iff the state of door is open. Transition 3 is executed otherwise.

not_timing
timing

5 T
opened

1 T
released

4

close
TIMEUP_

3
released

6
opened

2 S
pressed
29

2. CIP in a nutshell
Likewise, when the process is in state not_timing and the inPulse opened is received, an-
other switch structure is used to ascertain whether transition 5 or 6 should be executed.

Note that, as with inspections, every gate must include an ELSE case to ensure that one
of the alternative transitions is executed.

2.6.3. Master-Slave Structures

When many transitions within a structure depend on the same gate, it may be preferable
to use a master-slave structure. In a master-slave structure, the slave process has more
than one set of transitions (such a transition set is a mode). The slave switches between
one mode and another depending on the state of other processes known as the master
processes. The following example shows how the process of figure 2.18. can also be rep-
resented as two modes.

The functionality of this process remains identical to that of figure 2.18.

figure 2.19. Mode nottiming of process controller

figure 2.20. Mode istiming of process controller

Note that all modes of a process have the same states.

timing
not_timing

4 S
pressed

not_timing
timing

1 T
released

5 T
opened

4

close
TIMEUP_
30

2.6. Inspections, Gates and Master-Slave structures
These mode diagrams each resembles a process diagrams, only that the slave process
has several such mode diagrams, each with a different transition set. The mode that ap-
plies is changed through changes in state of other processes, the master processes.

In the mode control net view of the cluster (figure 2.21.), these master slave dependen-
cies are established.

Mode settings are defined using the mode setting editor as shown in figure 2.22.

figure 2.21. Mode control net

figure 2.22. Mode setting editor for process controller from figure 2.19. and figure
2.20.

The following example illustrates the mode changing mechanism

button door

controller

lamp
31

2. CIP in a nutshell
figure 2.23. Cluster before transition

Before the transition, the processes are in the states shown. Because the processes button
and door are in the states up and opening respectively, controller is in mode nottiming.

The transition is triggered by the event DoorOpen received by process door. Transition
2 in process door is triggered. The action Stop is sent to the door motor and the outPulse
opened to process controller, where it is translated to the inPulse opened. The master
processes of controller now have as active states up and open, therefore the mode of con-
troller has changed to istiming. Process controller executes transition 1 and starts the
timer.

timing
not_timing

4 S
pressed

closed opening

open

6
DoorClosed

7

opened
DoorOpen

Stop

3
close_command

Close

closing

2

opened
DoorOpen

Stop

reopening

5
button_pressed

Open

1

opening
button_pressed

Open

4

closed
DoorClosed

Stop

off on_dark
3
released

Dark

2
pressed

Bright

on_bright4
closed

Off

1
opening

Dark

1

pressed
Down

2

released
Up

downup

process: button process: door

process: lamp

process: controller (mode nottiming)

not_timing
timing

1 T
released

5 T
opened

4

close
TIMEUP_

process: controller (mode istiming)

marks current state of process
32

2.7. Multi-cluster systems
figure 2.24. Cluster of figure 2.23. after transition

2.7. Multi-cluster systems

2.7.1. A single cluster

A cluster is a grouping of processes. Pulses can only be used to communicate between
processes of the same cluster, and the run to completion semantics (described in section
2.5.5.) apply strictly within the cluster.

2.7.2. Multiple clusters

A CIP system can have multiple clusters, each of which has a number of processes. Run
to completion semantics apply within each cluster, but different cluster are independent-
ly scheduled and can execute in parallel.

2.7.3. How can different clusters communicate?

Channels can be defined between clusters through which messages can be passed. Mes-
sages are written to inter-cluster channels in the same way that messages are sent to the

closed opening

open

6
DoorClosed

7

opened
DoorOpen

Stop

3
close_command

Close

closing

2

opened
DoorOpen

Stop

reopening

5
button_pressed

Open

1

opening
button_pressed

Open

4

closed
DoorClosed

Stop

off on_dark
3
released

Dark

2
pressed

Bright

on_bright4
closed

Off

1
opening

Dark

1

pressed
Down

2

released
Up

downup

process: button process: door

process: lamp

process: controller (mode nottiming)

not_timing
timing

1 T
released

5 T
opened

4

close
TIMEUP_

process: controller (mode istiming)

timing
not_timing

4 S
pressed
33

2. CIP in a nutshell
physical system to cause actions. Likewise, messages received from channels are han-
dled similarly to events received from the physical system. Data can also be passed with
the messages. However, inspections are not possible and do not make sense due to the
asynchronous nature of multi-cluster systems. Likewise, master-slave dependencies are
not possible.

2.7.4. Why does a system need more than one cluster?

A system may need several clusters to be able to implement these on separate processors,
possibly even in separate locations. It can also make sense to implement several clusters
on a single processor when the function of the clusters is sufficiently separate to warrant
this.

Functionality can be split between clusters when the tasks are sufficiently independent.
Inspections between clusters are not possible although data exchange can be handled by
attaching data to the messages. As the communication is asynchronous, such informa-
tion does not necessarily reflect the state of the sending cluster at the moment it is pro-
cessed by the receiving cluster. Ideally, therefore, separate clusters should not need to
share real-time data.

Another advantage of having separate clusters is that each cluster can be seen as a ‘limit
of development’, i.e. each cluster is designed and implemented by a different unit. The
interfaces between clusters are defined beforehand.

2.8. CIP and model checking

The suitability of CIP for model checking lies in its formal nature and definitions. The
behaviour of a system implemented in CIP can be extracted entirely from the CIP model.
All information needed to check a given property is contained in the model. Whereas
most model checkers require the user to extensively define the system behaviour before
even simple checking tasks can be attempted, this definition is already given in a CIP
model. This saves time and, more importantly, eliminates an important source of error.
In CIP, the behaviour of the implemented system is identical to that of the model, pend-
ing of course errors in the code generation and compiler. Serious errors are unlikely as
both CIP Tool and compilers have been extensively tested and used in practice and any
such errors would have come to light and been addressed by now.

Another source of error is the model checker itself. As the checker presented in this the-
sis is new and only minimal experience with it is available, the correctness aspect must
be taken seriously. The proofs provided in this thesis address this issue. However, there
may also be errors in the implementation. In order to gain confidence on this matter, an
extension to the CIP model checker with command line interface is desirable as intro-
duced in section 1.5.3. (page 8).
34

3.1. Purpose
3. Model Checking Concepts

3.1. Purpose

The purpose of this chapter is to define Model Checking concepts such as states, transi-
tions, paths, Kripke structures and fairness as they are used in the context of this project.

In the case of fairness, the definition used in this thesis deviates slightly from other de-
finitions. The definition chosen in this thesis is the easiest to apply to the CIP Model for
the required purpose. A discussion of the differences to other definitions is to be found
in section 4.4. (page 54). As for definitions of such structures as state machines, transi-
tions and their attributes and dependents1, various slightly different definitions are to be
found in literature, hence the necessity to define them unambiguously here.

The properties defined in section 3.5. are defined especially for the purpose of this thesis
and for their application in the CIP model checker. For more common definitions, the
reader is referred to section 4.3.

For the reader interested in further background to the themes discussed here, the reading
of Appendix A: Sequentiality and fairness is recommended.

3.2. Basic concepts of a model system

3.2.1. The essentials of a model system

When modelling a system we reduce the system to the properties that interest us for the
purpose of the model. A system engineer might model a switch as a device with two
states between which it can be switched by an external operator. For the switch designer,
this approach is insufficient. He may be more interested in the materials of the switch
and how they react to being moved.

When a software engineer models an embedded system, he looks at the aspects of the
system that may be of interest to the software. These are essentially the events of the sys-
tem to which the software should react, the actions of the system which the software can
trigger and the correlation mechanism between them. This model structure is called ex-
tended finite state machine. For an explanation of why the term extended is used, see sec-
tion 2.3.3.

1. For further background see Model Checking by Clarke, Grumberg and Peled [18] and Soft-
ware Reliability Methods by Peled [30].
35

3. Model Checking Concepts
The following sections introduce many definitions used in this thesis. The reader wish-
ing to skip these definitions can proceed directly to section 3.5.

The formalisations introduced below are specific to this thesis.

3.2.2. Describing the finite state machine

A finite state machine is defined by the tuple:

M := (S, E, A, R, sinit).

M is the finite state machine.
S is the atomic set of system-states.
E is the atomic set of events.
A is the atomic set of actions and includes the null-action.
R is the transition relation: R: ⊆ E × S × S × A
sinit ∈ S is the initial system-state.

Note that A is of little relevance in this project but is included here for completeness.

3.2.3. Transition relations

The members of R are called transitions.

The following mappings are defined for transitions:

pre-state:

pre: R :→ S
pre((e, s0, s1, a)) := s0

post-state:

post: R :→ S
post((e, s0, s1, a)) := s1

trigger-element:

trig: R :→ E
trig((e, s0, s1, a)) := e

action-element:

action: R :→ A
action((e, s0, s1, a)) := a
36

3.2. Basic concepts of a model system
3.2.4. State relations

For every state, the following mappings are defined:

successors:
the successor set of a state s is the set of post-states of transitions which have s as pre-
state.

suc: S :→ 2S

suc(s) := {s′ | ∃r ∈ R: ((pre(r) = s) ∧ (post(r) = s′))}

predecessors:
the predecessor set of a state s is the set of pre-states of transitions which have s as post-
state.

pred: S :→ 2S

pred(s) := {s′ | ∃r ∈ R: ((pre(r) = s′) ∧ (post(r) = s))}

enabled transitions:
the set of transitions enabled in a state is the set of transitions of which that state is the
pre-state.

enabled: S :→ 2R

enabled(s) := {r | s = pre(r)}

if r ∈ enabled(s), we say that r is enabled is s.

disabled transitions:
the set of transitions disabled in a state is the complement of the set of transitions enabled
in that state.

disabled: S :→ 2R

disabled(s) := R ∩ ¬enabled(s)

if r ∈ disabled(s), we say that r is disabled is s.

dead ends:
dead ends are states without successors.

D :⊆ S | ∀s ∈ D: suc(s) = ∅

3.2.5. Enabling, disabling and independence of transitions

enabling transitions:
37

3. Model Checking Concepts
A transition r0 enables another transition r1 iff r1 is disabled in the pre-state of r0 and
enabled in the post-state of r0. The function enables returns all transitions enabled by a
transition.

enables: R :→ 2R

enables(r) := {r’ | r’ ∈ (enabled(post(r)) - enabled(pre(r)))}

disabling transitions:

A transition r0 disables another transition r1 iff r1 is enabled in the pre-state of r0 and
disabled in the post-state of r0. The function disables returns all transitions disabled by
a transition.

disables: R :→ 2R

disables(r) := {r’ | r’ ∈ (disabled(post(r)) - disabled(pre(r)))}

dependency of transitions:

The transitions which are independent of a transition r are neither enabled nor disabled
by r.

independent: R :→ 2R

independent(r) := {r’ | (r’ ∉ enables(r)) ∧ (r’ ∉ disables(r))}

A transition is dependent on r if it is not independent.

dependent: R :→ 2R

dependent(r) := {r’ | (r’ ∈ enables(r’)) ∨ (r ∈ disables(r’))} = R - independent(r)

3.2.6. The state diagram

The state diagram is a diagram showing all states of the system and the transitions in re-
lationship to those states.

A state is represented by a circle which can be labelled with the name of the state.

The initial state additionally has a marker in the circle.

A transition r is represented by an arrow pointing from pre(r) to post(r). It can be labelled
with the value of trig(r) or the values of trig(r) and action(r) separated by the ‘/’ charac-
ter.
38

3.3. Paths
figure 3.1. The state diagram for the simple system ({s0, s1}, {e}, {a}, {(e, s0, s1, a)}, s0)

3.2.7. Determinism of transitions

A transition is deterministic iff there is no other transition in R with which it shares both
pre-state and trigger.

deterministic: R :→ {true, false}
deterministic(r) := (∀r′ ∈ R: (pre(r) = pre(r′)) ∧ (trig(r) = trig(r′)) ⇒ (r = r’))

figure 3.2. State diagram for a simple system with a non deterministic transition

3.3. Paths

3.3.1. Path definition

A path is a sequence of states such that there exists a sequence of transitions permitting
the states to be traversed in that order.

P* := { f: � → S | ∀n ∈ �: f[0] ∈ S ∪ {∅}
f[n+1] ∈ suc(f[n]) ∪ {∅} iff f[n] ≠ ∅
f[n+1] = ∅ else
}

3.3.2. States visited, path length, first and last states

If a state s occurs in a path, we say the state is visited by the path.

visited: P* :→ 2S

visited(p) := { s | ∃n ∈ �: p[n] = s }

The following functions require no additional explanation.

s1s0

e/a

s1s0

e/a

s2

e

39

3. Model Checking Concepts
length: P* :→ � ∪ {∞}
length(p) := 0 iff p[0] = ∅
length(p) := n | (p[n-1] ∈ S) ∧ (p[n] = ∅) iff ∃n > 0 | p[n] = ∅
length(p) := ∞ else

A path of infinite length is an infinite path. Other paths are finite paths.

first: P* :→ S ∪ {∅}
first(p) := p[0]

last: P* :→ S ∪ {∅}
last(p) := p[length(p)-1] iff length(p) ≥ 1 and length(p) ≠ ∞
last(p) := ∅ else

occurrences: (S ∪ R) × P* :→ � ∪ {∞}

∀(s, p) ∈ S × P*:
occurrences(s, p) determines the number of occurrences of s in p.

∀(r, p) ∈ R × P*:
occurrences(r, p) determines the number of occurrences in p of post(r) occurring imme-
diately after pre(r).

3.3.3. Subpaths

A subpath of a path p is a path whose states are a sub-sequence of the sequence of p:

subpath: P* :→ 2P*

subpath(p) := { f: � → S | ∃ (m, n) ∈ �2, ∀k ∈ �: f[k] = p[k+n] if k≤m
f[k] = ∅ if k>m
}

3.3.4. Transitions and paths

It would be tempting to consider a transition as a special case of a path with length 2.

It should be noted, however, that a transition additionally has a trigger attribute and op-
tionally an action attribute which a path does not have. Two transitions with identical
pre- and post-states need not be identical. Two paths containing the same states in the
same order are identical.

In this thesis, square brackets are used to enclose state sequences when these are paths
and round brackets when they are transitions. This notation is ambiguous for transitions
40

3.3. Paths
when these share pre- and post-states but have different trigger or action elements.
Where this ambiguity may be relevant, the notation is expanded.

examples: paths: [s0, s1, s2, s0], [s1, s2], [].
transitions: (s0, s1), (s1, s2), (e, s2, s0, a).

Where s0, s1, s2 are states, e is a trigger element and a an action.

The function path projects a transition to a path.

path: R :→ P*
path(r) := { f: � → S | f[0] = pre(r)

f[1] = post(r)
f[2] = ∅
}

The function trans returns all transitions of a path:

trans: P* :→ 2R

trans(p) := { r | path(r) ∈ subpath(p) }

3.3.5. Continuing paths

A continuing path is a path whose last element is a dead-end or whose length is infinite.

P# :⊆ P* | ∀p ∈ P# : (length(p) ≠ ∞) ⇒ (p[length(p)-1] ∈ D)

3.3.6. Full paths

A full path is a continuing path whose first element is sinit.

P :⊆ P# | ∀p ∈ P : p[0] = sinit

3.3.7. Reacheable states

The set of reacheable states SR is the set of states visited by the set of full paths.

SR := { s ∈ S | ∃p ∈ P : s ∈ visited(p) }

3.3.8. Loops

A loop is a path of length > 1 in which the first state is the same as the last state and no
other state in between is equal to the first state.
41

3. Model Checking Concepts
LP :⊆ P* | ∀p ∈ LP : (length(p) > 1) ∧ (length(p) ≠ ∞) ∧
(∀n ∈ � : n > 0 ⇒ (p[n] = p[0] ⇔ n = length(p)-1))

3.4. Kripke Structures

3.4.1. Introduction

A Kripke structure [18] is a formal description of a state machine. Kripke structures are
named after the mathematician and philosopher Saul Kripke [22], who besides his better
known work on the logics of recognition and naming and the philosophy of language,
made notable contributions to formal and modal logics. Today, Kripke structures are the
basis for model checking.

3.4.2. Atomic propositions

Having designed a system to conform to the principles introduced above, we wish to
verify whether that system conforms to the specification it was designed to fulfil. For
this, we must first decide for every state whether or not it fulfils certain conditions.

For this purpose we define AP, a set of atomic propositions which can be true or false in
every state.

AP := 2S

An examples of such an atomic proposition may be ‘the door is not closed’. The pro-
position returns true for all states where this is the case and false for the others.

3.4.3. Kripke structures

A Kripke structure is a structure consisting of states, transitions between the states, and
labels attached to the states telling us which conditions they fulfil.

A Kripke structure is defined by the tuple:

K := (S, R’, sinit, L)

K is the Kripke structure.
S is the atomic set of system-states (as in section 3.2.2.).
R’ is the transition relation: R’ : ⊆ S × S.
sinit is the initial system-state (as in section 3.2.2.).
L : S → 2AP is a function that labels each state with the set of atomic propositions that
are true in that state.
42

3.4. Kripke Structures
In Kripke structures, the transition relation must be total. This means that for every state
s ∈ S, suc(s) ≠ ∅.

figure 3.3. State diagram of an example system

figure 3.4. Kripke structure diagram of above example

The example above shows a state diagram and the corresponding Kripke structure dia-
gram. In this transformation, the labelling of transitions with events and actions is
dropped. New information is introduced with the atomic propositions A and B.

In the Kripke structure diagram, the atomic proposition label is placed inside the circle
representing the state.

In this example, A is fulfilled in states s0, s1 and s3 and B is fulfilled in states s1, s2 and s3.

The additional transition (s3, s3) is introduced to achieve the completeness of the transi-
tion relation required for Kripke structures. Dead ends do not appear in Kripke struc-
tures.

3.4.4. Propositions

Atomic propositions (section 3.4.2.) are true or false in a given state, regardless of the
position of that state on a path. ‘The door is not closed’ is an atomic proposition, but ‘the
door was once closed’ is not an atomic proposition because it may or may not be true in
a given state. To be able to say whether such a proposition is true, we require knowledge
of the path.

s1s0

e1/a1

s2

e
2 /a

2

e1

e
1

e
2

s3

s1
s0

s2

A BA

B s3A B
43

3. Model Checking Concepts
We define the set of path propositions which can be true or false at any position of any
(full) path.

PP := 2P×�

Because reacheable states can be mapped as positions on paths:

AP ∩ 2SR ⊆ PP

The function propCount counts the number of times a proposition holds on a path:

propCount: PP × P → � ∪ {∞}
length(p) - 1

propCount(pr, p) := Σ (if pr(p, n) : 1 else : 0).
n=0

Example: In the example of figure 3.4. on the path propCount(A ∧ ¬B, [s0, s1, s3]) = 1.

When, in the notation, a path proposition is replaced its definition, a symbol may be re-
quired to denote the position on the path. This is noted as a subscript to propCount:

∀(y,z) ∈ symbols2: propCounty: PP × P → � ∪ {∞}
length(p) - 1

propCounty(pr(z, y), p) := Σ (if pr(p, n) : 1 else : 0).
n=0

Example: propCountn(p[n] = p[n+2], [s0, s2, s0, s1, s3]) = 1.

3.4.5. Property

A property is a boolean mapping which is true or false for the Kripke structure as a
whole. We call GP the set of properties.

GP:= 2{true, false}

3.5. Some properties

3.5.1. Note on notation

The properties defined below are defined especially for the purpose of this thesis and use
in the CIP model checker. For the common definitions, the reader is referred to section
4.3.
44

3.5. Some properties
3.5.2. Next

A next property requires that if a state fulfils a proposition, a, then its successors all fulfil
another proposition, b.

next : PP × PP :→ {true, false}
next(b, a) := (∀s ∈ SR: (a(s) ⇒ (∀s’ ∈ suc(s): b(s))))

3.5.3. Invariance

An invariance property requires that a proposition is fulfilled by all states on all full
paths.

invariant: CP :→ {true, false}
invariant(a) := (∀s ∈ SR: a(s))

Examples: in figure 3.4. the property invariant(A ∨ B) is fulfilled. The condition invar-
iant(B) is not fulfilled (counter-example: s0).

Practical example: A lift may never be in a state fulfilling the proposition ‘cabin moving
and door open’.

3.5.4. Reacheability

A reacheability property requires that every reacheable state fulfilling the proposition a
is the first state of at least one path which visits a state fulfilling b.

reacheable: CP × CP :→ {true, false}
reacheable(b, a) := (∀s ∈ SR: (a(s) ⇒

(∃p ∈ P: (s = first(p) ∧ (∃s’ ∈ visited(p): b(s’))))))

Examples: in figure 3.4. the property reacheable(A ∧ B, ¬A) is true. The property
reacheable(¬B, A) is false (counter-example: there is no path from s3 to any state ful-
filling ¬B).

Practical example: when button x has been pressed, action y can be performed. Reache-
ability is often more useful in it’s negated form: when the alarm button has been pressed,
no dangerous actions will be performed. This is fulfilled when the following property is
failed: when the alarm button is pressed, a dangerous action can be performed.

The reacheability property also exists with one argument. In that case the second argu-
ment is assumed to be universally true.
45

3. Model Checking Concepts
reacheable: CP :→ {true, false}
reacheable(b) := (∀s ∈ SR: (∃p ∈ P: (s = first(p) ∧ (∃s’ ∈ visited(p): b(s’)))))

Example: in figure 3.4. the property reacheable(B) is fulfilled. The property reachea-
ble(¬B) is not fulfilled.

Practical example: the lift can reach the 4th floor.

Note: ∀a ∈ AP: invariant(a) ⇒ ¬reacheable(¬a)

3.5.5. Eventually

An eventually property requires that for every reacheable state fulfilling the proposition
req, all continuing paths starting in that state visit a state fulfilling ack.

The property is also known as request → acknowledge, because every request must
eventually be acknowledged.

eventually: CP × CP :→ {true, false}
eventually(ack, req) := (∀s ∈ SR: (req(s) ⇒

(∀p ∈ P#: (s = first(p) ⇒ ∃s’ ∈ visited(p): ack(s’)))))

Examples: in figure 3.4. the property eventually(A, ¬A) is fulfilled. The condition even-
tually(¬A, A) is not fulfilled.

Practical example: when the alarm button has been pressed, all dangerous activities will
eventually cease.

The eventually property also exists with one argument. In that case the second argument
is assumed to be universally true.

eventually: CP :→ {true, false}
eventually(ack) := (∀s ∈ SR: (∀p ∈ P#: (s = first(p) ⇒ ∃s’ ∈ visited(p): ack(s’))))

Example: in figure 3.4. the property eventually(B) is fulfilled. The condition eventual-
ly(¬A) is not fulfilled.

Practical example: the system will always eventually return to its initial state.

3.6. Liveness requirement

By definition, all full paths fulfil the liveness requirement:
46

3.7. Fairness
Liveness requirement: We require, that whatever the state of a Kripke structure,
a further transition will always be triggered.

(this statement was already subsumed when requiring the transition relation to be total
in section 3.4.3. on page 42)

For a full discussion and justification of the liveness requirement see appendix A.1. but
to present a summary example, we study the system of figure 3.4. (page 43). It is appar-
ent, that if the system is in state s2, then the next system transition will change its state
to s0.

∀(p, n) ∈ P × � : p[n] = s2 ⇒ p[n+1] = s0

It could, however, be argued that in a real system this is not necessarily the case. If no
further transition is triggered, then the system can remain in state s2 forever. The liveness
requirement rules out this possibility.

3.7. Fairness

3.7.1. Fairness in this project

For a more full discussion of fairness in this project, what exactly it is and why it is need-
ed, the reader is referred to appendix A.3.

There are many different concepts of fairness in use. To read how some of these differ
from that used in this thesis, the reader is referred to sections 4.4. and 4.5.

3.7.2. Fairness constraints, fair and unfair transitions

A fairness constraint is an attribute which can be associated with one or several transi-
tions.

F is the set of all fairness constraints.

F :⊂ 2R

fairness is a function returning the fairness constraints attributed to a transition.

fairness: R :→ 2F

fairness(r) := {f | r ∈ f}

A transition with at least one fairness constraint is called a fair transition. A transition
which is not fair is called an unfair transition.
47

3. Model Checking Concepts
3.7.3. Fair paths

A fair path is a path for which the following statement holds:

If the path visits a state infinitely often and a transition with the fairness constraint
f is enabled in that state, then the path traverses infinitely often a transition with
the fairness constraint f.

Note that the above statement does not require the infinitely traversed transition to be
identical to the one enabled in the infinitely traversed state.

Example:

figure 3.5. State diagram illustrating a fair path

The fairness constraint of a transition is labelled in sqaure brackets.

In the example of figure 3.5., the path p = [s0, s2, s0, s2,] infinitely visits the state s0.
The fair transition (s0, s1) is enabled in this state but never executed on this path. The
path is nevertheless fair because it infinitely executes another transition (s2, s0) which
has the same fairness transition.

fairpaths: 2P* :→ 2P*

fairpaths(P0) := {p ∈ P0 | ∀s ∈ visited(p): (occurrences(s, p) = ∞ ⇒
(∀r ∈ enabled(s): ∀f ∈ fairness(r): ∃t ∈ f: occurrences(t, p) = ∞))}

An unfair path is a path which is not a member of fairpaths(P*).

Note that when F is empty, all paths are fair.

3.7.4. Fair loops

A fair loop is a loop which is a fair path if traversed infinitely.

FLP := LP ∩ {p | ∀s ∈ visited(p): ∀r ∈ enabled(s): ∀f ∈ fairness(r): f ∩ trans(p) ≠ ∅}

An unfair loop is a loop which is not a member of FLP.

s1s0

s3s2

[f]

[f]
48

3.7. Fairness
Note that when F is empty, all loops are fair.

3.7.5. Some new definitions

Based on the definition of fair paths of section 3.7.3. the following shorthand notations
are defined:

FP* := fairpaths(P*)
FP# := fairpaths(P#)
FP := fairpaths(P)

3.7.6. Some basic properties of fair and unfair paths

Every finite path is fair (follows from definition).

By consequence, every unfair path is infinite.

If a state is reacheable by an unfair path it is also reacheable by a fair path (it is reache-
able by a finite sub-path and any finite path is fair).

All states reacheable by an unfair full path are also reacheable by a fair full path (see
proof in Appendix A, section A.4.1. on page 146)

3.7.7. Fair Kripke Structures

To be able to make use of fairness in Kripke structures, we must include fairness in the
definition of Kripke structures. A fair Kripke structure is defined by the tuple:

K := (S, R’, sinit, L, F)

K is the Kripke structure.
S is the atomic set of system-states (as in section 3.2.2.).
R’ is the transition relation: R’ : ⊆ S × S × F.
sinit is the initial system-state (as in section 3.2.2.).
L : S → 2AP is a function that labels each state with the set of atomic propositions that
are true in that state.
F is the atomic set of fairness constraints.

All functions and properties of normal Kripke structures (see section 3.4. page 42) ap-
ply.
49

3. Model Checking Concepts
3.7.8. Applying fairness to the eventually property

In fair Kripke structures we restrict the definition of the eventually property (see section
3.5.5.) by replacing P# by FP#.

eventually: CP × CP :→ {true, false}
eventually(ack, req) := (∀s ∈ SR: (req(s) ⇒

(∀p ∈ FP#: (s = first(p) ⇒ ∃s’ ∈ visited(p): ack(s’)))))

eventually: CP :→ {true, false}
eventually(ack) := (∀s ∈ SR: (∀p ∈ FP#: (s = first(p) ⇒ ∃s’ ∈ visited(p): ack(s’))))
50

4.1. Purpose
4. Similar Work

4.1. Purpose

In this chapter, approaches to Model Checking concerned with embedded systems are
presented. The history of Model Checking is discussed briefly and common temporal
logics such as CTL and LTL are introduced. The concepts of fairness used elsewhere are
explained and these are compared to that adopted in this thesis. Further background on
the fairness comparison can be found in appendix B. This chapter presents two examples
of widely used model checkers (SPIN and SMV) with small samples of the style of their
input code. Finally, State Charts, a software development tool which is often considered
a rival of CIP is introduced and the differences between this and CIP, especially relating
to Model Checking ability are discussed.

4.2. A brief history of Model Checking

The discipline of Model Checking is comparatively new. First major steps in this direc-
tion occurred in the 1970’s with the development of temporal logic with respect to its
applicability to computer programs by Burstall [27] and Kröger [16]. Temporal logic is
used to describe the order of events without introducing time. During this period, auto-
matic verification was not yet possible. Instead verification was done manually using
rules and axioms making it cumbersome and inapplicable to many real problems.

Later in the 1970’s Pnueli [40] advanced this method further by using it to reason about
concurrent systems. By the early 1980’s it was being used to analyse sequential circuits
[13],[36].

Model checking algorithms paving the way towards automatic verification were intro-
duced in 1981 by Clarke and Emerson [7],[11]. These names have since become closely
associated with Model Checking. There is hardly any literature in the field that does not
reference them and their contribution provides the basis for all subsequent development.
Clarke and Emerson’s work is especially focused on the branching time logic CTL (this
will be discussed in section 4.3.3.).

At the same time progress was also being made in handling fairness [23]. Fairness has
to be considered where the possibility arises of certain transitions or sets of transitions
being repetitively executed to the exclusion of other enabled transitions. It is especially
important to be able to handle fairness without greatly increasing the complexity of the
algorithm. Some common definitions of fairness (differing from that used in this project)
are introduced and discussed in sections 4.4. and 4.5.
51

4. Similar Work
The power of Model Checking algorithms was long confined by the limits of computing
power, hence its relatively recent transition from a rather theoretical field to one that is
commonly used as part of design cycles.

A large variety of model checkers are available today, ranging from commercial pro-
ducts to open source and shareware contributions. Two of these, SPIN and SMV are
briefly discussed in sections 4.6. and 4.7.

4.3. Temporal logic

4.3.1. What is temporal logic?

Temporal logic is a logic that looks at the order in which events occur without necessari-
ly looking at time.

4.3.2. Computation Tree Logic (CTL*)

Computation tree logic (CTL*) is a logic describing computation trees. A computation
tree is basically a tree created by unwinding the Kripke structure starting from its initial
state. A computation tree thus contains all full paths of the system.

figure 4.1. Simple Kripke structure (left) and the corresponding computation tree
(right)

CTL* formulas are composed of path quantifiers and temporal operators. The path
quantifiers are [18]:

A : for all computational paths
E : for some computational path.

The temporal operators are [18]:

A

A A

AAA

A

52

4.3. Temporal logic
X : next time, requires that the property holds in the next state of the path.
F : in the future, requires that a property will hold in some future state of the path.
G : globally, requires that a property holds in the present and for every future state of the
path.
U : until, requires that the first property holds on all future states of the path until the
second property holds. The second property holds eventually on the path.
R : release, requires that the second property holds along the path up to the first state
where the first property holds. The first property must not hold eventually.

A state formula is a formula which holds in a given state.

A path formula is a formula which holds along a given path of the Kripke structure.

4.3.3. CTL

CTL is a subset of CTL*. The subset is formed by the following syntax restrictions

- temporal operators applied to state formulas are path formulas.
- every path quantifier must be followed by a temporal operator.

Examples of CTL expressions:

for all these examples, (a, b) ∈

2

CTL notation notation used in this project

AG(a → AX b) next(b, a)
AG a invariant(a)
EF a reacheable(a, sinit)
AG(a → EF b) reacheable(b, a)
AG(EF a) reacheable(a)
AF a eventually(a, sinit)
AG(a → AF b) eventually(b, a)
AG(AF a) eventually(a)

4.3.4. LTL

Linear Time Logic (LTL) is another subset of CTL*. It has the following restrictions:

- if p ∈ AP, then p is a path formula.
- if f and g are path formulae, then all boolean combinations of f and g or temporal op-
erators applied thereto are path formulae.
53

4. Similar Work
It follows that the only state formulae permitted in LTL expressions are atomic proposi-
tions.

4.4. Strong and weak fairness

4.4.1. Fairness

In section 3.7. (page 47) fairness was introduced as it is understood in this project. Fair-
ness disallows paths which repeat certain transitions infinitely and starving others which
could also be executed. In that section it was mentioned that the definition of fairness
used here is far from universal. Some of the alternative definitions will be introduced
here and their applicability to that used in this project discussed.

4.4.2. Definitions

To distinguish different forms of fairness, fairness can be said to be strong or weak. In
Software Reliability Methods [30], Doron A. Peled makes the following definitions:

Strong transition fairness: Rules out a [path] where there is a transition that
is enabled on [the path] infinitely many times but is executed only a finite
number of times.

Weak transition fairness: Rules out a [path] if for some state s on [the path]
and forever there is a transition that is enabled, but is never executed after s.

Strong process fairness: Rules out a [path] if transitions of process Pi are
enabled on [the path] infinitely many times, but are executed finitely many
times.

Weak process fairness: Rules out a [path] if for some state s on it and forev-
er there is at least one transition of some process Pi that is enabled, but no
transition of Pi is ever executed after s.

4.4.3. Example of strong transition fairness

figure 4.2. Example of strong transition fairness.

s1s0

t0

t1
s3

Process P0

if state(P0) = s1: t2
s2

Process P1
54

4.4. Strong and weak fairness
The transition labelled if state(P0) = s1 : t2 is a conditional transition1. The if statement
is a guard. The transition t2 can only be triggered when the formula returns true.

The example of figure 4.2. has two processes. s0 and s1 are states of process P0. s2 and
s3 are states of process P1. t0, t1 and t2 are transitions of these processes. t2 is a condi-
tional transition, it can only be enabled when a condition is fulfilled. The processes are
each a finite state machine. They can be combined to a product finite state machine
whose states are state vectors each containing exactly one state from every component
process. State vectors and the combination of processes will be discussed more fully in
section 5.2.

Let us consider the full paths of the product finite state machine formed by the example
of figure 4.2. On every full path not executing t2, t2 is enabled infinitely many times.
Strong transition fairness excludes all such paths.

In this example only one path is actually excluded by strong transition fairness. It is the
full path infinitely executing t0 and t1 without executing any other transition.

4.4.4. Example of weak transition fairness

figure 4.3. Example of weak transition fairness.

In the example of figure 4.3. on every full path not executing t2, t2 remains enabled for-
ever. Weak transition fairness excludes all such paths.

Note that all paths permitted by strong transition fairness are also permitted by weak
transition fairness but not vice-versa (We say that strong transition fairness is stronger
than weak transition fairness).

1. In CIP, a conditional transition would require an alternative for the ELSE case (see section
2.6. page 28). In these examples the general case is discussed.

s1s0

t0

t1
s2 s3

Process P0 Process P1

t2
55

4. Similar Work
4.4.5. Example of strong process fairness

figure 4.4. Example of strong process fairness.

In the example of figure 4.4. on every full path not executing a transition of P1, transi-
tions of P1 are enabled infinitely many times. Strong process fairness excludes all such
paths.

Note that strong transition fairness is stronger than strong process fairness.

4.4.6. Example of weak process fairness

figure 4.5. Example of weak process fairness.

In the example of figure 4.5. on every full path not executing a transition of P1, it holds
that forever there is at least one transition of P1 which is enabled. Weak process fairness
excludes all such paths. In this example only one path is actually being excluded. It is
the full path infinitely executing t0 and t1 without executing any other transition.

Note that strong process fairness is stronger than weak process fairness.

s1s0

t0

t1

if state(P0) = s1: t4
s3 s4

Process P0 Process P1

s5

if state(P0) = s2: t5

s2

t2t3

s1s0

t0

t1

if state(P0) = s1: t2
s2 s3

Process P0 Process P1

s4

if state(P0) = s0: t3
56

4.4. Strong and weak fairness
4.4.7. Hierarchy of fairness strength

figure 4.6. Hierarchy of fairness strength

4.4.8. The bearing of strong and weak fairness on this project

This approach to fairness is different to that adopted in this project.

In this project a fairness was desired which could be applied or withheld from individual
transitions. For example, it is fair, that a door that is closing cannot continue doing so
indefinitely and must at some time transit to a different state. It is equally fair that an
emergency alarm button may remain in the state not pressed CIP Tool is primarily a de-
velopment tool and not a Model Checking tool and the developer may wish to choose in
which processes to place such transitions for reasons other than fairness.

In this project fairness is not based on processes. It is based on individual transitions.
However, as the following examples show, some of the fairness requirements which can
be expressed are the same.

In figure 4.7. (see also figure A.5. on page 143) a state machine is shown which is de-
composed into two processes in order to express the required fairness properties. The de-
composed system fulfils the same fairness requirements for both strong transition
fairness and strong process fairness.

paths permitted by strong transition fairness

paths permitted by weak transition fairness

paths permitted by strong process fairness

paths permitted by weak process fairness

all paths of finite state machine
57

4. Similar Work
figure 4.7. Finite state machine and its decomposition into two processes.

This decomposition is relatively straightforward. Studying that of figure 4.11. (page 62)
however, it is clear that the decomposition of this figure is considerably more difficult
and requires a large number of conditional transitions which confuse rather than enhance
the user’s understanding of the system.

Decomposition according to fairness may not necessarily coincide with the functional
decomposition which is the strength of the CIP model. An automatic recomposition to
respect fairness is possible but would be quite cumbersome to implement.

The definition of strong and weak process and transition fairness requires that all pro-
cesses and transitions are treated equally. In this project, this is not always desired. For
example a transition corresponding to the pressing of an alarm button need never be exe-
cuted even though it is infinitely enabled.

The definition of fairness used in this project (see section 3.7.) is thus more flexible. In
this project, fairness rules out all paths where transitions with a fairness constraint are
enabled infinitely many times but are only executed a finite number of times. This fair-
ness can be given the same expressive power as strong process fairness if all transitions
of every process have the same fairness constraint and transitions of different processes
have different fairness constraints. This is illustrated in figure 4.8.

start stop

arrived

not_moving

moving done

[f]

start if state(P1)=not_done: stop

not_moving

moving

not_done done

Process P0 Process P1

Complete system

if state(P0)=moving: arrived
58

4.4. Strong and weak fairness
figure 4.8. Example of figure 4.4. with fairness constraints replacing strong process
fairness to give same expressive power.

The expressive power of strong transition fairness can also be emulated with the fairness
definition of this project. For this every process transition must be allocated a unique
fairness constraint. This is illustrated in figure 4.9.

s1s0

[f0]

[f0]

if state(P0) = s1
s3 s4

Process P0 Process P1

s5

if state(P0) = s2

s2

[f0] [f0]

[f1]

[f1]

[f0]

[f0]

[f0] [f0] [f0]

[f0]

[f0] [f0]

[f0]

[f0]

[f0] [f0]

[f1]

Product finite state machine

[f1]s1_5

s0_5

s2_5 s2_3

s0_3 s1_3

s2_4

s1_4

s0_4
59

4. Similar Work
figure 4.9. Example of figure 4.2. with fairness constraints replacing strong transition
fairness for same expressive power.

Note that not all fairness constraints shown are relevant. Fairness constraints f0 of figure
4.8. and f0 and f1 of figure 4.9. do not lead to the rejection of any paths and so their omis-
sion has no effect on the fairness requirement being expressed.

Weak fairness cannot be modelled with the fairness concept of this project.

4.5. Fairness constraints as sets of states

4.5.1. Fairness constraints

In section 4.4. a concept of fairness was introduced which rejects paths not executing
certain transitions under certain conditions. In this section a different approach is intro-
duced. In this, a path is fair if a construct called a fairness constraint is true infinitely
often. This fairness constraint is not the same as that of this project (introduced in section
3.7.2.).

E.M.Clarke, J.Grumberg and D.A.Peled in Model Checking [18] write:

A fairness constraint [in CTL] can be an arbitrary set of states, usually de-
scribed by a formula of [CTL] logic. If fairness constraints are interpreted as
sets of states, then a fair path must contain an element of each fairness con-
straint infinitely often.

s1s0

[f0]

[f1]
s3

Process P0

if state(P0) = s1
s2

Process P1

[f2]

Product finite state machine

s0_2
[f0]

[f1]
s1_2

s1_3s0_3
[f0]

[f1]

[f2]
60

4.5. Fairness constraints as sets of states
(To avoid confusion, in this section we always write the CTL fairness constraint: CTL
fairness constraint. The fairness constraint of this project we write project fairness con-
straint).

4.5.2. Applicability to the fairness concept of this project

A CTL fairness constraint prevents the repetition of certain sequences of states to the
starvation of others. For example in the Kripke structure of figure 4.10. the infinite repe-
tition of transition r0 can be excluded by declaring the state labelled A as fairness con-
straint.

figure 4.10. Example Kripke structure

An attempt can be made to equate this definition of fairness to that used in this project
(see section A.3.). The CTL fairness constraint as defined above could be the set of all
post-states of transitions with the corresponding project fairness constraint.

The project fairness constraint solving the fairness problem of figure 4.10. would be to
make transition r1 fair.

For the state diagram of figure 4.11. the project fairness constraint f0 would be represent-
ed as CTL fairness constraint by the set {s2, s4}, f1 by {s3} and f2 by {s2}. With these
CTL fairness constraints, the path infinitely repeating the loop (s0, s1, s3, s2, s0, s1, s2,
s0) is fair (as it is with the shown project fairness constraints) because it contains states
from all fairness constraints infinitely often.

A

r0

r1

r2
61

4. Similar Work
figure 4.11. example finite state machine

However, the path commencing (s0, s1, s3, s4) is not fair in the CTL definition although
it is fair in the project definition. A workaround can be made by automatically including
all dead ends in all CTL fairness constraints. In this case the above path is fair (remember
that in a Kripke structure dead ends have transitions leading to themselves).

However, if s4 were not a dead end we would not have this possibility. The definition
used in this project can thus not always be transformed to match that of the definition
introduced above.

An additional problem is that we can easily create fairness constraints which do not per-
mit any paths at all if the definition is applied strictly. For example in figure 4.10. we
could place the state marked A in one CTL fairness constraint and the initial state in an-
other (illustrated in figure 4.12.). No path can visit both infinitely. This problem can be
avoided in most model checking applications by assuming the user does not make un-
reasonable demands. In the CIP-model checker, however, it was decided to choose a
transition and not process oriented approach to fairness as this is closer to the user’s in-
tuitive approach to CIP modelling. In CIP, no unreasonable fairness constraints can be
defined.

figure 4.12. A finite state machine with unreasonable fairness constraints A and B

s0

s1 s2

s3

s4

[f0]

[f0]

[f2][f1]

A

r0

r1

r2

B

62

4.5. Fairness constraints as sets of states
4.5.3. Fairness constraints as CTL formulas

The same source (as quoted in section 4.5.1.) [18] continues, however:

If fairness constraints are interpreted as CTL formulas, then a path is fair if
each constraint is true infinitely often along the path.

This definition is more general than that of section 4.5. It can be made to include the pre-
vious definition if the set of states S that forms the CTL fairness constraint in that defi-
nition is translated into a CTL expression.

4.5.4. CTL and project fairness constraints

Can the project approach to fairness also be expressed in this form? Does a CTL con-
straint exist so that a path of the Kripke structure is fair only if that constraint is true in-
finitely often along its length?

The definition of a fair path in this project (see section 3.7.3.) states that a path is fair
only if the following statement holds:

If the path visits a state infinitely often and a transition with the [project] fair-
ness constraint f is enabled in that state, then the path traverses infinitely often
a transition with the [project] fairness constraint f.

It follows that for every fair path fp and every fairness constraint f:

- no states where transitions with f are enabled is infinitely visited by fp
- or at least one transition with f is infinitely executed along fp.

Both these requirements are path requirements and so if a corresponding CTL expres-
sion exists then it must be a path formula.

However, a path formula holds for a path and not for states along the path. It is not pos-
sible to create a strict CTL state formula suitable for use as a CTL fairness constraint.

If we allow CTL* style expressions, however, making statements about a state at a given
position on a given path rather than about a state or a path in general, an expression can
be constructed. This is demonstrated in appendix B.1.
63

4. Similar Work
4.6. The model checker SMV

4.6.1. Introduction

SMV (Symbolic Model Verifier) is a model checking program used to check that finite
state systems satisfy CTL specifications. SMV was first described by McMillan in 1993
[35]. SMV is a text based model checker, i.e. the input and output are text.

4.6.2. An example

The following code is a simple example of input code for SMV. It describes a basic at-
tempt to write a mutual exclusion program for two processes and tests the proposed so-
lution for simple properties.

figure 4.13. Sample SMV input code

 1 MODULE main --two process mutual exclusion program

 2 VAR
 3 sp0: {noncritical, trying, critical};
 4 sp1: {noncritical, trying, critical};
 5 p0: process prc(sp0, sp1);
 6 p1: process prc(sp1, sp0);

 7 FAIRNESS !(s0 = critical)
 8 FAIRNESS !(s1 = critical)

 9 SPEC AG((sp0 = trying)-> AF(sp0 = critical))
10 SPEC AG((sp1 = trying)-> AF(sp1 = critical))
11 SPEC AG(!((sp0 = critical)&(sp1 = critical)))

12 MODULE prc(s0, s1)
13 ASSIGN
14 init(s0) := noncritical;
15 next(s0) :=
16 case
17 (s0 = noncritical) : {trying,noncritical};
18 (s0 = trying) & (s1 != critical) : critical;
19 (s0 = critical) : {critical, noncritical};
20 1 : s0;
21 esac;

22 FAIRNESS running;

The following explanation is intended to aid in the comprehension of the above code.
For a full definition of the SMV syntax, the reader should refer to the appropriate docu-
mentation [29],[35].
64

4.6. The model checker SMV
Lines 2 to 6 declare variables. Variables sp0 and sp1 are atomic variables and their pos-
sible values are listed in brackets with the declaration. These variables are used as states
of processes.

Variables p0 and p1 are processes. The keyword process states that interleaved com-
position is used. This means that a step of the execution of the program is a step of the
execution of exactly one component. Without this keyword, synchronous composition is
assumed, which means that a step of the execution of the program is a step of the execu-
tion of all components. prc is a MODULE (representing a process type) to be defined lat-
er. p0 and p1 are therefore instances of prc. sp0 and sp1 are used as parameters for p0
and p1.

Lines 7 and 8 are (CTL) fairness declarations of the type presented in section 4.5. The
statements !(s0 = critical)and !(s1 = critical) must be fulfilled infinitely
often. Therefore neither sp0 nor sp1 may retain the value critical infinitely long.

Lines 9 to 11 specify the properties to be checked. These are written in CTL notation.
The first two require (for each process separately, although for reasons of symmetry only
one such statement is really required) that when a process is in state trying then it will
eventually enter state critical. The third statement requires that the two processes
may never be in state critical simultaneously.

Lines 12 to 21 specify the behaviour of processes of type prc. The command
init(s0):= noncritical sets the initial state of the process to noncritical. The
following next(s0) declaration lays down the possible transitions of the process and
associated conditions. The transitions of lines 17 and 19 are non-deterministic, that of
line 18 is deterministic.

The conditions of the case structure (lines 16 to 21)

Line 22 is another fairness declaration. The proposition running requires that transi-
tions of all processes are executed infinitely often. This is not strictly the same as strong
process fairness because strong process fairness requires that transitions of a process be
executed infinitely often only if transitions of the process are enabled infinitely often.
However, in this example the effect is the same.
65

4. Similar Work
figure 4.14. The processes of the mutual exclusion program

4.7. The model checker SPIN

4.7.1. Introduction

SPIN (Simple Promela INterpreter) is an LTL based model checker. It has been devel-
oped by G. Holzmann [32] at Bell Labs since 1980 and has been freely available since
1991. The adjective simple is becoming increasingly stretched as the tool continues to
evolve and gain increasingly sophisticated features. SPIN is widely used for software
verification.

The input for SPIN is in an executable language called PROMELA (PROto MEta LAn-
guage). This language is based on C syntax and has a considerable expressive power.

SPIN is also available with an intuitive graphical user interface called Xspin.

noncritical

trying
if state(P1) != critical

critical

noncritical

trying
if state(P0) != critical

critical

Process P0

Process P1

[f0]

[f1]
66

4.7. The model checker SPIN
4.7.2. SPIN and CIP

Holzmann has recently announced the possibility of translating C-code directly into
PROMELA. SPIN thus holds in common with the CIP model checker that the user is
guaranteed that the verification results apply to the final code and not just to the model.

This and the graphical user interface Xspin could lead the user to ask whether SPIN is
not an alternative to the CIP model checker. Could the C-code generated by CIP Tool
not be fed to SPIN for verification so eliminating the need for an integrated model check-
er?

The obvious similarities of the two tools should not cloud the fact that they operate on
different levels of abstraction. SPIN can extract PROMELA directly from C-code. May-
be one day there will be a tool to extract PROMELA directly from machine code. If this
were to happen one could be justified in asking why PROMELA should be extracted
from machine code when the C-code is also available and the abstraction from the model
is smaller at C-code level. Likewise one could ask why extract PROMELA from gener-
ated C-code when the original model is available and can be checked.

Maybe one day the CIP model checker will offer the possibility of generating PROME-
LA from the model, or other meta-codes for other model checkers to be able to check.
For the moment CIP will remain a standalone system not requiring the user to learn any
other tools.
67

4. Similar Work
4.7.3. A PROMELA example

figure 4.15. Sample PROMELA code

1 byte sp[2];
2 byte mutex=0;

3 proctype prc(bit i, j) {
4 sp[i] = 0;
5 do
6 ::
7 if
8 :: (sp[i] == 0) -> sp[i] = 1;
9 :: (sp[i] == 0);
10 :: (sp[i] == 1) ->
11 atomic {
12 if
13 :: (sp[j] != 2) -> sp[i] = 2; mutex++
14 :: (1);
15 fi;
16 }
17 :: (sp[i] == 2) -> sp[i] = 0; mutex--;
18 :: (sp[i] == 2);
19 fi;
20 od;
21 }

22 proctype monitor() {
23 assert (mutex !=2);
24 }

25 init {
26 atomic {
27 run prc(0,1);
28 run prc(1,0);
29 run monitor();
30 }
31 }

The following explanation is intended to aid in the comprehension of the above code.
For a full definition of the SPIN syntax, the reader should refer to the appropriate docu-
mentation [32],[38].

Lines 1 and 2 declare global variables. sp is a byte array of size 2 and mutex is a byte
which is initialised with the value 0.
68

4.8. Model Checking and Statecharts
Lines 3 to 21 declare a procedure type. In SPIN procedures are executed in interleaving
mode. Only one command can be executed at any one time but scheduling is non deter-
ministic.

Line 4 initialises sp[i] with value 0.

Lines 5 to 20 are enclosed in a do loop. This is infinitely repeated.

Lines 7 to 19 form an if statement. If one guard before the -> sign returns true then the
commands after it are executed. If several guards return true then it is decided non-de-
terministically which set of commands is executed. If no guard returns true then the exe-
cution of that process is halted until at least one guard returns true.

The atomic statement (lines 11 to 16) ensures that the command sequence within it can-
not be interrupted. No command of any other process may be executed until this se-
quence is complete.

The assert statement (line 23) checks that the boolean evaluation within it is true. If
this evaluation is failed, SPIN terminates with an error.

Lines 25 to 31 call and run the three processes.

4.7.4. LTL properties in SPIN

In addition to using the assert statement to check properties, LTL formulae can be
tested. Some examples are:

[]P always P
<>P eventually P
P U Q P is true until Q becomes true.

Xspin offers possibilities to edit such statements.

4.8. Model Checking and Statecharts

4.8.1. Introduction

Statecharts is a software design formalism built around UML (Unified Modelling Lan-
guage) [41] developed by D. Harel (ca. 1984-87) [21] [34]. Similarly to CIP, these mo-
dels can be designed graphically and compilable code can be generated from the models.

In fact many potential users who are not familiar with one or both systems assume they
are basically different tools for the same job and ask whether they are not interchangea-
69

4. Similar Work
ble or how easy it is to transfer models from one to the other. In this section, the similar-
ities and differences will be discussed as will the effects of these differences on model
checking.

4.8.2. Statecharts in a nutshell

A simple Statechart process is shown in figure 4.16. The process has three states. These
are represented by boxes. The initial state (Idle) is identified by an arrow leading to it
from a dot. The other arrows are transitions analogue to those of state diagrams (see sec-
tion 3.2.6. on page 38). They are labelled with the trigger element followed by any action
which may be taken. In contrast to CIP, where system transitions can only be triggered
by events, in Statecharts they can also be triggered by boolean guards. In such a case, a
transition will not execute as long as a boolean value or a function returns false, but ex-
ecutes when this returns true.

In figure 4.16. transitions also connect to objects marked with the letter C or T. The letter
C denotes a condition. Depending on whether a condition is fulfilled or not, one or an-
other transition is executed. The letter T denotes that the process terminates.

figure 4.16. A simple process in Statecharts1

Another property of Statecharts is that sub-states can be created. In the process of figure
4.17. three states are shown, two of which contain structures similar to the process itself.
When the system enters such a state, it also enters the initial state of the sub structure.
The sub-state of the state can change according to events. When the super-state changes,
the sub-state also ceases to be valid. Sub-states can contain sub-states of their own and
there is no formal limit to the number of nested sub-state levels.

1. The diagrams shown in figure 4.16. and figure 4.17. are taken from UML Statecharts by B. P.
Douglass [41].
70

4.8. Model Checking and Statecharts
figure 4.17. A process with sub-states1

4.8.3. Statecharts and CIP

It may seem at first glance, that Statecharts is similar to CIP. Like CIP, states and pro-
cesses can be defined. Statecharts, additionally, appears to offer many features which
CIP users do not have such as sub-states or the means to terminate a process.

CIP experts, on the other hand, will retort that this is not necessarily an advantage. Al-
though it is clear what happens when a process terminates at the coding level, it becomes
less clear at a modelling level. In figure 2.1. (page 16) the CIP modelling concept was
introduced as reflecting the state of the physical model. In the physical model, processes
do not terminate when they cease to be of interest. Even when we are not interested in
the state of a switch, it does not cease to have a physical state, and indeed this may be of
interest again in the future. Likewise, in CIP sub-state machines are modelled by sepa-
rate processes rather than embedded within states. This permits them to continue to exist
even when they are temporarily irrelevant.

Turning away from states and looking at transitions, UML Statecharts [41] by B. P.
Douglass says

Transitions are modelled as taking approximately zero time to execute, as im-
plied by the statement that an object spends all of its time in states. If a tran-
sition can take a significant amount of time, then the object should be
decomposed into more states so that eventually, the time taken to get from a
predecessor state to a subsequent state is insignificant.

In a footnote, the author specifies:

Classical state machines assume zero-time transitions, but this constraint is
relaxed in the UML statechart semantics definition. Nevertheless, transitions
need to be “very short” and the object dwells in states virtually all of its life.

1. The labels have been removed from this diagram for clarity.
71

4. Similar Work
This is a completely different approach from CIP, where the scheduler protects us from
such niceties and the user can model in sequence rather than in time mode.

To better understand the difference, the reader is referred to Appendix A.1. (page 137)
where the fundamental differences between time and sequentiality are discussed and
some problems which can result from not observing this difference are shown. In Ap-
pendix A.2. (page 139) the difference is illustrated with a classical example: Zeno’s Par-
adox of Achilles and the Tortoise.

In CIP (and in classical state machines), the object does not need to dwell in states vir-
tually all of its life. Such a statement merely suggests that the processing power of the
hardware must be grossly overdimensioned. On a code level, the scheduler needs to as-
sure that nothing nasty will happen while a transition is being calculated. On a model
level, we can assume that the lower levels (including the scheduler) are functioning cor-
rectly. In our sequential view we do not need to consider intermediate undefined states
even if in the time view the period required for calculating transitions outweighs the idle
phases.

Additionally, in CIP we do not decompose [an object] into more states so that eventu-
ally, the time taken to get from a predecessor state to a subsequent state is insignificant.
We decompose processes solely in order to separate functionality. If a transition is sim-
ple but requires a lot of time, so be it. Decomposing it will not reduce the total time re-
quired but decomposing where it is not appropriate can make a model more difficult to
understand.

Figures such as 4.16. and 4.17. may at first create the impression that they represent state
machines in a similar way to CIP, but on closer inspection they represent the code struc-
tures of processes (with initialisation, sub-processes and termination). Whilst relieving
the user of the repetitive chore of coding processes, the user is not really on the same
level of modelling abstraction as he would be with CIP.

4.8.4. Model Checking and Statecharts

There are Model Checking tools written specially for Statecharts [24]. Similarly to the
CIP Model Checker, these base on deriving the Model Checking structures from the
available data. As shown above, the basic philosophies of Statecharts and CIP are dif-
ferent so the approach taken is only of limited usefulness for this thesis.
72

4.9. Conclusions
4.9. Conclusions

4.9.1. Other model checkers and temporal logics

As presented in this chapter, other model checkers and temporal logics exist, some of
which have a greater expressive power than the CIP model checker. However, it was
never the goal of this thesis to duplicate these model checkers. Indeed, many were built
by large teams of people over more than 10 years. Doubtlessly, techniques from these
could be adopted, or better still, these could be integrated with the CIP model checker
and this leaves scope for future development. Much of the expressive power of these
model checkers is, however, not required in CIP, and in some cases additional structures
would have to be implemented to limit these model checkers to a CIP style behaviour
(such as run to completion semantics).

Most of these model checkers deal with a description of the input system which is struc-
turally closely related to the compilable code. Some even permit direct conversion from
meta-code to compilable code. This is different from the CIP model checker: CIP does
not model code behaviour but functionality. The structure represented in a CIP diagram
does not necessarily reflect the structure of the generated code. The widespread experi-
ence which customers have obtained with CIP Tool stands as a guarantee that the gen-
erated code is equivalent to the model. But the CIP model checker does not check the
generated code or any abstraction thereof. It tests the model as designed by the user.

4.9.2. Other model checkers and fairness

The fairness model used in this thesis clearly separates process decomposition from fair-
ness allowing the developer to model his system along lines of functionality in accord-
ance with the CIP principles rather than having to compromise for the sake of fairness.

4.9.3. What can be borrowed from other model checkers?

Much of the underlying theory and formalisms used in this thesis are borrowed from oth-
er model checkers. However, the desire to make the most of the existing CIP environ-
ment make many implementation aspects of other model checkers inappropriate without
substantial auxiliary structures or transformations.

4.9.4. Contribution of this thesis

CIP Tool permits the user to design his software at a level of abstraction where the be-
haviour can be modelled without being hampered by vestiges of code structure. A clear
analysis and decomposition of the problem is enabled. CIP Tool supports the developer
by providing an easy to use system which favours good practice in system design. This
enhances maintenance and further development efforts and so contributes to the all-
round quality of the finished product.
73

4. Similar Work
The CIP model checker is in line with this philosophy. It permits the developer to verify
the system under development (even on the fly testing of an incomplete system or com-
ponent is supported) without having to generate any meta-code or set any parameters on
the model checker. By steering clear of any code or meta-code, the model checker per-
mits the developer to verify the model on the same level of abstraction as it was created.
74

5.1. Model Checking and CIP
5. Applicability of Model Checking to CIP

5.1. Model Checking and CIP

In this chapter the applicability of Model Checking to CIP models will be discussed. The
structure of CIP models makes them well suited to Model Checking without requiring
significant additions or modifications. Likewise, the run to completion semantics of CIP
makes it kinder from the Model Checking point of view than many other fields in which
Model Checking is applied.

Significantly, this permits a seamless integration of the model checker within the struc-
tures of the CIP-Tool and within the CIP modelling approach. Furthermore, the CIP
model checker, while offering a high level of Model Checking capability to the user,
should still remain understandable by a user without specific model checking know-
ledge.

5.2. The system model within the CIP cluster

5.2.1. A process oriented view of the CIP cluster

In chapter 2. the basics of CIP were introduced. The CIP cluster is seen by the user as a
collection of interacting processes. The CIP model so enables the developer to divide the
problem into individual sub-problems. Every process handles a part of this sub-problem,
each largely separated from the rest of the problem. For example, in the cluster of figure
5.1., the process button handles only the behaviour of the button (it ensures that button
presses and releases are correctly handled). Likewise, process door handles the behavi-
our of the door by ensuring the motor is started and stopped correctly. Each process is
concerned only with those messages which have a bearing on its behaviour. While de-
veloping process button, the developer does not need to consider what will happen when
the message Door_Open is received. The developer thus views the cluster as a collection
of individual processes. Different aspects of the behaviour are separated and the problem
is split into smaller problems which are easier to solve.

5.2.2. Describing the cluster as a unit

In Model Checking we are more often interested in the state of the cluster than in the
states of individual processes. The model checker must thus reverse the division of the
problem and constitute the cluster as a single unit.

The active state of the cluster is defined by a set of the active states of the processes. We
call this set of states the active state vector.
75

5. Applicability of Model Checking to CIP
Just as every individual process can be mapped as an extended finite state machine with
process states and process transitions, so the entire cluster can be mapped with cluster
states and cluster transitions. Each cluster state is a state vector containing one process
state from every component process. The state machine so formed is a product extended
finite state machine.

figure 5.1. CIP cluster from section 2.6.3.

5.2.3. The state explosion problem

In the example of figure 5.1. we have 4 processes with between 2 and 5 states each. If
we wish to list all possible state vectors, we would have to list 2 × 3 × 5 × 2 = 60 state
vectors. The fact that the complexity of such a mapping could make the cluster far more
incomprehensible than it is in the process view is not an impediment for the CIP user, as
the user will not need to inspect these structures in the cluster view. The model checking
program, however, will need to traverse this structure. The exact traversal required will
be discussed in Appendix D, but independently of the approach implemented and no

off on_dark
3
released

Dark

2
pressed

Bright

on_bright4
closed

Off

1
opening

Dark

1

pressed
Down

2

released
Up

downup

process: button process: door

process: lamp

process: controller (mode nottiming)

not_timing
timing

1 T
released

5 T
opened

4

close
TIMEUP_

process: controller (mode istiming)

closed opening

open

6
DoorClosed

7

opened
DoorOpen

Stop

3
close_command

Close

closing

2

opened
DoorOpen

Stop

reopening

5
button_pressed

Open

1

opening
button_pressed

Open

4

closed
DoorClosed

Stop

timing
not_timing

4 S
pressed
76

5.2. The system model within the CIP cluster
matter whether the entire state space is mapped out or another approach is tried, many if
not all cluster states will have to be held in memory simultaneously.

Here lies the problem. The cluster state space can soon grow too large for memory. For
example a real cluster may have 10 processes with 10 states each. The cluster state dia-
gram would need 1010 states. Thus a moderately sized cluster already requires more
memory than most computer systems can offer, even with relatively moderate assump-
tions on the memory an individual state requires. This problem is the state explosion
problem.

5.2.4. The state explosion problem in practice

In practice, not all possible state vectors need actually be considered in the cluster state
diagram. The reason for this lies in the initialisation of the processes. Rather than listing
all possible state-vectors and the transitions between them, we extract our cluster state
diagram by beginning with the initial state-vector (up, off, closed, not_timing) and tra-
versing from there. To the cluster map we add all transitions of which this is a pre-state
and their corresponding post-states. This operation is repeated for the newly found states
until no further new states can be found.

Interestingly, the state diagram obtained as shown in figure 5.2. has 8 cluster states in-
stead of the 60 that are possible.

What are the reasons for this reduction?

The reduction in the number of state-vectors found is caused by the strong interdepend-
ence of the processes. Some transitions trigger other transitions so that they cannot be
executed individually, making many state-vectors unreacheable from the initial state-
vector. If a different initial state were selected, quite a different state diagram might
emerge.

This strong reduction in the number of state-vectors having to be considered is a wel-
come help in countering the state explosion problem. Further reduction possibilities will
be discussed in section 5.5. (cluster reduction) and chapter 6 (partial order reduction).
77

5. Applicability of Model Checking to CIP
figure 5.2. Cluster of figure 5.1. condensed into one process (actions omitted)

5.2.5. Interpreting the cluster-state diagram

At first it may seem, that the structured nature of the individual processes of figure 5.1.
is completely lost in figure 5.2. This is not, however, the case. The original process struc-
tures are still implicitly contained in the structure and can be read out using a simple
method which will be introduced here.

1
Down

up_off_closed_nt

down_bright_opening_nt

down_bright_open_ntup_dark_opening_nt

up_dark_closing_nt

down_bright_reop_nt

up_dark_reop_nt

2
Up

3
DoorOpen

4
Down

6 T
Up

5 T
DoorOpen

7 S
Down

8
TIMEUP_

9
DoorClosed

10
Down

11
DoorClosed

12
DoorOpen

13
Up

14
DoorClosed

up_dark_open_t

15
DoorOpen

16
Down
78

5.2. The system model within the CIP cluster
Every state in the cluster-state diagram of a cluster represents a state-vector. The state-
vector contains exactly one state from every cluster process. There is a similarity here to
geometric locations described by cartesian coordinates. In the latter case, each set of co-
ordinates contains exactly one number corresponding to every dimension of the geomet-
ric space.

The cluster states can thus be represented as points in an n-dimensional space, where n
is the number of processes. In contrast to the geometric space, where coordinates are un-
bounded and infinitely variable, cluster-states can take only discrete positions on a finite
grid.

Before attempting to graphically represent the 4-dimensional grid of this example, we
look into the general principle with a simpler 2-dimensional example.

The example of figure 5.3. shows the two-process cluster from the example of section
2.5.2. The cluster transitions are listed in table 5.1. This cluster-state diagram of the clus-
ter is shown in figure 5.4. In this representation and those that follow, the transition la-
bels are omitted as we are more interested in the structure of the cluster than in what
triggers the transitions.

figure 5.3. Processes of two-process system introduced in figure 2.9.

1

pressed
Down

2

released
Up

downup

not_timing timing

1 T
start

2
TIMEUP_

3 S
stop

4 T
start

process: button process: timecntrl pulse translations

button: pressed
→ timecntrl: start
79

5. Applicability of Model Checking to CIP
table 5.1. Cluster-transitions of cluster of figure 5.3.

figure 5.4. Cluster-state diagram represented on two dimensional grid

Note that in this two-dimensional grid representation, transitions following the grid lines
represent transitions causing state-change in only one process, whereas the diagonal
transitions represent transitions causing state change in both processes.

If we were to attempt an n-dimensional representation for the cluster of figure 5.2., we
would have to be able to draw in 4 dimensional space. Rather than attempt this on a two-
dimensional page, two different three-dimensional projections of the four-dimensional
structure are illustrated in figure 5.5. These three dimensional projections are mapped
from the four dimensional structure by projecting out one of the dimensions. In the struc-
ture on the left, the dimension describing process controller is projected out, in that on
the right it is the dimension describing process lamp.

pre-state

timecntrlbutton

up1 not_timing1

button timecntrl

triggerpost-state

down timing Down
down timing up timing Up
down timing down not_timing _TIMEUP

Downup timing down timing
up timing up not_timing _TIMEUP
down not_timing up not_timing Up

1: initial cluster state

up

down

pr
oc

es
s

bu
tt

on

not_timing timing

process timecntrl
80

5.2. The system model within the CIP cluster
figure 5.5. Two there-dimensional projections of the four-dimensional cluster-state
model of the cluster of figure 5.2.

By making one dimensional projections of the n-dimensional structure, we obtain the
structures of the original process state diagram structures. This is illustrated in figure 5.6.
with the example of process door.

closed

opening

open

closing

reopening

pr
oc

es
s

do
or

up

down

off on_dark on_bright
pro

ces
s

not_timing timing

process controllerprocess lamp

butto
n

81

5. Applicability of Model Checking to CIP
figure 5.6. Projection of structure of figure 5.5. into ‘door’ dimension

This projected state diagram is structurally identical to the original process state diagram
for process door (illustrated in figure 5.3.).

5.2.6. Conclusion

The CIP cluster is a representation of the extended finite state machine. A CIP process
is a representation of a projection of that extended finite state machine.

5.3. Processes and clusters

5.3.1. Processes as extended finite state machines

Just as the whole cluster can be interpreted as a finite state machine, so too can individual
processes be interpreted as finite state machines. When the user creates processes, he is
designing them from this perspective.

5.3.2. Processes and outPulses

In section 3.2.2. the extended finite state machine was defined. The extended finite state
machine corresponding to the CIP process could also be defined in this way, but to do
so we would have to model outPulses as messages. For describing an individual process
this may be sufficient, but in the context of a cluster, the two are fundamentally different.
An outPulse is a pulse which is sent by one process to another during the execution of a

closed

opening

open

closing

reopening

pr
oc

es
s

do
or
82

5.3. Processes and clusters
cluster transition. Run to completion semantics are in force during such a transition and
therefore strict rules are in force governing the sequence and the interruptability of the
process transitions. A message on the other hand does not face such constraints. Any
transition sequence is possible provided the laws of cause and effect are not violated. For
this reason, a distinction must be made between actions and outPulses.

5.3.3. Describing the process extended finite state machine

The definition of the process extended finite state machine is extended from the defini-
tion of the extended finite state machine presented in section 3.2.2.

A process extended finite state machine is defined by the tuple:

� := (S�, (E ∪ In�), A, R�, sinit_�, Out�).

� is the process extended finite state machine.
S� is the atomic set of process states of �.
E is the atomic set of events.
In� is the atomic set of process inPulses of �.
A is the atomic set of actions and includes the nul-action.
Out� is atomic set of process outPulses of � and includes the nul-outPulse
R� is the transition relation of �: R� : ⊆ (E ∪ In�) × S� × S� × A × Out�
sinit_� ∈ S� is the initial process state.

∏ is the set of all processes.

5.3.4. Process extended finite state machine operations

All operations applicable to extended finite state machines introduced in chapter 3 are
also applicable to process extended finite state machines. The latter differ by additional-
ly having Out� in the definition tuple which is not used in chapter 3. The other tuple ele-
ments correspond to those in the same position in the definition of section 3.2.2.

Additionally, the following operation applies:

outPulse-element:

outPulse: R� :→ Out�
outPulse(r) := (u | r = (e, s0, s1, a, u))

5.3.5. Extracting process states from cluster states

processState: S × ∏ :→ S�
processState(s, p) := projection of s to p.
83

5. Applicability of Model Checking to CIP
5.4. Deterministic and non-deterministic branching

5.4.1. Branching

In sections 2.3.5. and 2.6.2. conditional branching structures were introduced. When
more than one transition shares the same pre-state and trigger, additional information is
required to know which of the two is to be executed. CIP-Tool offers three possibilities
for providing this information. In conditions (section 2.3.5.), the user can embed a code
fragment to determine which transition is to be executed. In gates (section 2.6.2.), a
look-up table is defined in which the transition to be executed is mapped as a function
of the states of other processes. In section 2.6.3., master-slave structures were introduced
in which the process behaviour is also made dependent on the states of other processes.

5.4.2. Non-deterministic branching

The model checker is unable to parse the embedded code used for conditions. To make
the model checker able to do this would be very difficult on account of the large expres-
sive power of programming languages. Even if this possibility were implemented, the
model checker would have to trace the values of all variables leading to a great increase
in the state-explosion problem. So these switch structures must be considered non-deter-
ministic from the model checking point of view. The model checker must assume that
when a process is in the pre-state of several transitions with the same trigger, and when
the execution preference is ruled by a condition, then any of these transitions can be ex-
ecuted when the trigger is received. In some cases this may lead to transitions being ex-
ecuted which would otherwise not be executed. For example when there is some
dependency on the states of other processes. To reduce this, the use of gates should be
preferred over that of conditions.

5.4.3. Deterministic branching

Switch structures, where the selection of the transition to be executed is dependent on
gates or on master-slave structures, and where the determining process states are known,
are wholly deterministic to the model checker. When a process is in the pre-state of se-
veral transitions with the same trigger, and when the execution preference is ruled by a
gate or master-slave structure and all the determining process states are known, then
only one of these transitions can be executed when the trigger is received.

5.5. Reduced cluster structures

5.5.1. A further measure against state-explosion

In section 5.2.3.ff (page 76) the problem of state explosion was introduced. The number
of states actually found can be expected to be largely inferior to the total number of states
84

5.5. Reduced cluster structures
possible. In the example discussed (figure 5.1. and figure 5.2.) the state space was re-
duced from 60 possible states to 8 actually occurring states. In some large systems, how-
ever, even this reduced number of states may be too large to handle.

In some situations, further savings are possible by omitting certain processes from the
cluster and studying only the interaction of the remaining processes. This method of
omitting processes from the cluster to reduce complexity is called cluster reduction. So
that processes can still react to pulses being received from processes which are removed,
these pulses are replaced by messages from an external source.

In this section it will be shown that cluster reduction can cause several problems for
model checking. These problems are illustrated by examples in Appendix C (page 155)
and various ways of working around these are discussed. These methods are rejected in
favour of a simple but highly effective remedy presented in section 5.5.3.

In the following an example of cluster reduction is illustrated. The reader not wishing to
study this example can proceed to section 5.5.3. (page 88).

5.5.2. Example of cluster state-space reduction

Suppose we wish to investigate a condition dependent only on the processes button and
controller. Is it possible to do so without considering the other processes?

In figure 5.7. the pulse cast net is shown with the processes door and lamp removed.
There is still a direct pulse translation from process button to process controller. In the
full pulse cast net, process controller also receives pulses from process door. So that this
aspect of the behaviour of process controller is still modelled, these pulses are replaced
by messages from an external source. In this example only the inPulse opened is affect-
ed.

figure 5.7. pulse cast net from figure 2.11. with processes door and lamp removed

door lamp

controller

button
85

5. Applicability of Model Checking to CIP
In figure 5.8. the state diagrams of the remaining processes are shown, as is the mode
setting diagram for process controller. Note how this is projected from the mode setting
table for the full cluster. The wholly deterministic structure becomes partially determin-
istic (it is deterministic for process button in state down and non-deterministic for pro-
cess button in state up).

figure 5.8. processes of reduced cluster (as figure 5.1. but processes door and lamp
omitted)

All possible cluster transitions are listed in the following table:

table 5.2. Cluster-transitions of cluster of figure 5.8.

1

pressed
Down

2

released
Up

downup

process: button

process: controller (mode nottiming)

not_timing
timing

1 T
released

5 T
opened

4

close
TIMEUP_

process: controller (mode istiming)

mode setting for process: controller

button

up down

open

(other)

istiming

nottiming

 nottiming

 nottiming

(unknown) (either) nottiming

do
or

timing
not_timing

4 S
pressed

pre-state

controllerbutton

up1 not_timing1

button controller

trigger notespost-state

down not_timing Down
up1 not_timing1 up timing opened
down not_timing up not_timing Up non-deterministic

Up transitiondown not_timing up timing
up timing down not_timing Down
up timing up not_timing _TIMEUP

1: initial cluster state

}

86

5.5. Reduced cluster structures
figure 5.9. Cluster-state graph of cluster of figure 5.8.

The cluster-graph obtained has only 3 states instead of the 8 states we would have ob-
tained without omitting processes. The attempt to reduce the state-space was successful.

Does the reduced cluster-state graph still accurately represent the behaviour of these two
processes? In this case it does, as the following projection from the cluster state diagram
of figure 5.5. shows.

figure 5.10. Projection of state diagram of processes controller and button out of full
cluster state diagram

At first sight, it might seem that this approach is without dangers. However, neither a
state-space reduction, nor a preservation of behaviour is guaranteed, examples showing
how both additional behaviour is gained and lost, and remedies are discussed in Appen-

up

down

pr
oc

es
s

bu
tt

on

not_timing timing

process controller

up

down

not_timing timing

process controller

pro
ces

s

butto
n

87

5. Applicability of Model Checking to CIP
dix C. In many other state machine formalisms, transitions are gained but never lost. Due
to the scheduling strategy of CIP, transitions could be lost if appropriate measures are
not taken.

5.5.3. The remedy

Missing processes are replaced by single state processes with non deterministic transi-
tions which either relay outPulses or do not. For more information on this the reader is
referred to C.3.9. and C.3.10. (page 172ff.).

figure 5.11. Single state process replacing process door in cluster reduction.

A process of this kind takes no memory space in the state vector. There is only one state
to choose from and therefore no information is conveyed by the indication of this state.

5.5.4. Implications

Due to this remedy, additional transitions can appear in the cluster state diagram but
transitions are not lost. What effect can this have on Model Checking?

The effect on the invariance property is that additional states may be reached, so wrong-
ly failing the property. This is on the safe side as it can lead to a good design being in-
correctly thought to violate the property, but every system that genuinely violates the
property will being recognised as such.

The effect on the reacheability property is that states may wrongly be shown to be
reacheable. However, reacheability is normally tested for negatively. To check that a
state can be reached it is easy to manually construct a path or show that such a path exists
by testing. We use a model checker on the other hand to show that a state is not reach-
able. In this respect the additional paths found provide a safety margin. A warning is dis-
played by the model checker to remind the reader that the model checker is assuming
negative reacheability is being tested for.

The effect on the eventually property is that additional paths are found which may pro-
vide false counter examples, but existing counter examples are not lost. So when even-
tually is checked positively, the additional paths provide a safe margin. If eventually is
tested for negatively (we desire that a request will not certainly be acknowledged), ad-
ditional loops can be formed providing examples. Such properties cannot be verified un-
der cluster reduction.

1

opening
button_pres

5
button_pres

4

closed
1 DoorClosed

6
1 DoorClosed

unique
88

5.6. Segments
5.5.5. A caveat for the eventually property

Another problem with the eventually property is that fair loops can be made unfair
through additional fair transitions being enabled on the loop. This can lead to valid coun-
terexamples being rejected.

If a fair loop exists in the full cluster and is made unfair in the reduced cluster, this is
because in the full cluster, the fair trigger message could not trigger a transition in that
state because
i) a gate or master-slave structure prevented the execution or
ii) the first process of the pulse propagation tree was not able to accept the trigger.

The problem is solved by considering fair transitions unfair if they are dependent on a
missing process through a gate or master-slave structure or if the first process of the
pulse propagation tree is missing.

5.6. Segments

5.6.1. Purpose of segments

In the previous sections of this chapter, methods for creating and interpreting the cluster
state diagram from the process state diagrams were discussed.

Once a way has been found of creating the cluster state diagram, we need to put it to the
use for which we created it: checking properties.

The algorithm used for traversing the state space will be discussed in Appendix D. In
this section, the method will be discussed which is used to recognise whether the
reached state fulfils certain conditions.

We may wish to know whether a certain cluster state is reached during the state space
traversal, for example the cluster state scrit = [up, closed, off, timing]. This is easy to de-
tect as we can compare every cluster state reached with scrit.

Frequently, however, we are not interested in individual cluster states, but sets of cluster
states that fulfil certain criteria.

For example: we wish to know whether process door can be in state closed when process
button is in state down. For this we need to detect for every cluster state whether it fulfils
this criterium.

A segment is a region in the cluster state space for which it interests us whether a given
cluster-state is a member or not.
89

5. Applicability of Model Checking to CIP
Segments can be defined by enumerating their member cluster states. Normally, howev-
er, it is preferable to have a rule to determine which states are included in the cluster and
which are not.

5.6.2. Cylinder sets

If we wish to test whether a cluster state s fulfils the criterium ‘process door is in state
open or opening’, we check the component of the state vector of s which corresponds to
the process state of door. Mathematically speaking, we orthogonally project s onto the
axis of process door and decide whether the criterium is fulfilled dependent on the point
on the axis onto which it is projected. For the purpose of this thesis I define the region
in the cluster state space where the criterium is fulfilled is a cylinder set.

These cylinder sets are used to map the atomic propositions introduced in section 3.4.2.

figure 5.12. the cylinder set for the criterium ‘process door is in state open or opening’
shown on the state space of figure 5.5.

closed

opening

open

closing

reopening

pr
oc

es
s

do
or

up

down

off on_dark on_bright
pro

ces
s

not_timing timing

process controllerprocess lamp

butto
n

= state in cylinder set

= state outside cylinder set

= cylinder set
90

5.6. Segments
5.6.3. Forming segments as logical intersections of cylinder sets

In the CIP model checker, segments are formed as logical combinations of cylinder sets.
The user defines expressions combining cylinder sets. Logical expressions such as and,
or, exor and not can be used to define the segment.

These segments are used to map the propositions introduced in section 3.4.4.

5.6.4. An example of a segment

Suppose we wish to know whether process door can be in state closed when process but-
ton is in state down. For this we need to define the cylinder sets door_closed (process
door is in state closed) and button_down (process button is in state down). We need to
check that no reacheable states are in the segment door_closed and button_down. This
segment is illustrated in figure 5.13.

The property we might wish to check is invariant(door_closed and button_down). In-
spection of figure 5.13. reveals that no reacheable states are contained in this segment.
The invariant requirement is fulfilled.
91

5. Applicability of Model Checking to CIP
figure 5.13. Segment for door closed and button down shown on the state space of fig-
ure 5.5.

5.7. Fairness

5.7.1. Fairness in CIP

In section 3.7. fairness was introduced as a way of securing that starvation of certain
transitions in favour of others does not occur when this is not desired. A fairness con-
straint was defined as an attribute for a transition. Fairness was discussed more generally
in sections 4.4. and 4.5. In the basic CIP-method, there is no concept of fairness as the
CIP-model is concerned with all transitions that can occur, regardless of whether these
are certain to occur or may occur optionally. CIP consequently has only one type of tran-
sition. To be able to reflect fairness, the CIP model needs to be extended, allowing the
user to mark certain transitions as fair.

5.7.2. Example illustrating the use of fairness and a first problem

In the example of figure 5.2. and figure 5.5. the following loop can be executed infinitely
often

closed

opening

open

closing

reopening

pr
oc

es
s

do
or

up

down

off on_dark on_bright
pro

ces
s

not_timing timing

process controllerprocess lamp

butto
n

= segment for door closed and button down
92

5.7. Fairness
[[down, opening, on_bright, not_timing], [up, opening, on_dark, not_timing], [down,
opening, on_bright, not_timing]]

Translated into the behaviour of the real system, this means that the button is being
pressed and released infinitely while the door is closing. The physical nature of the sys-
tem dictates that when the door is closing it will be closed at some point in time1. The
button cannot be pressed and released infinitely during this finite time span because it
too has physical constraints.

Without fairness, the following path of the model system (infinitely repeating a loop)
would be legal in the model system but illegal in the physical system.

[[up, closed, off, not_timing], [down, opening, on_bright, not_timing], [up, opening,
on_dark, not_timing], [down, opening, on_bright, not_timing], ...]

1. Unless some other effect comes into play such as the door being blocked. If the system should
react to such effects then the fairness constraints can be made to allow for this.
93

5. Applicability of Model Checking to CIP
figure 5.14. counter-example to condition eventually(door_open, Pressed) which would
be illegal in the physical system.

The definition of path fairness (see section 3.7.3.) states that a path is fair iff the follow-
ing statement holds.

If the path visits a state infinitely often and a transition with the fairness constraint f is
enabled in that state, then the path traverses infinitely often a transition with the fairness
constraint f.

So to ensure that all fair loops entering this loop also leave it, we have to declare as fair
at least one of the transitions leaving this loop. The candidate transitions are ([down,
opening, on_bright, not_timing], [down, open, on_bright, not_timing]) and ([up, open-
ing, on_dark, not_timing], [up, open, on_dark, timing]). Declaring either of these as fair
would make the path of figure 5.14. unfair, and so prevent such physically unacceptable
behaviours from leading to false conclusions in Model Checking.

closed

opening

open

closing

reopening

pr
oc

es
s

do
or

up

down

off on_dark on_bright
pro

ces
s

not_timing timing

process controllerprocess lamp

butto
n

= process on path

= process not on path

= transition on path

= transition not on path
94

5.7. Fairness
Should we declare one of these transitions as fair, or both? Suppose we declare only one
transition t0 as fair. Then all fair paths infinitely visiting the loop would have to execute
t0 infinitely. The other transition, t1, could be traversed finitely or infinitely. If, however,
we make both t0 and t1 fair (with different fairness constraints), then all infinite paths
visiting the loop would have to execute both transitions infinitely. Which of these solu-
tions best represents physical reality?

Neither option is suitable. The physical system dictates that the door must be opened at
some point if it is opening. The physical effect of the door opening does not discriminate
between states of the button. t0 and t1 must be infinitely executed between them. Wheth-
er one is executed finitely or both are executed infinitely is not part of the requirement
and it would be incorrect to cement such an arbitrary decision into the model.

The solution is to make fuller use of the definition of path fairness, and declare that both
these transitions must share all fairness constraints.

In the same example, a similar problem occurs with the loop [[down, reopening,
on_bright, not_timing], [up, reopening, on_dark, not_timing]]. Four different transitions
leave this loop, but there is no reason to prioritise any individual or set of these over the
others. All four must therefore share the same fairness constraint(s).

5.7.3. Fairness for process transitions

In general, being able to attach fairness to process transitions rather than cluster transi-
tions has the huge advantage for the CIP user as well as for the implementation, that
there are usually considerably fewer process transitions than cluster transitions. The
meaning of fairness in conjunction with a process transition is also much more intuitive.
Managing and keeping track of the fairness constraints of processes is therefore easier
and less prone to error (quite apart from the fact that generating and displaying in an ed-
itor list all cluster transitions would in itself cause considerable state explosion prob-
lems). Furthermore, most fairness conflicts occur when one process starves another of
triggers. There may be few cases where applying fairness to process transitions only
causes implementation conflicts for the user, but a workaround can normally be found.
For this reason it was decided to implement fairness allocation on process level only.

The fairness constraint of a cluster transition is the union set of all the fairness con-
straints of its component process transitions.

5.7.4. Example with more than one fairness constraint

Sometimes, a transition may have more than one fairness constraint.

In figure 5.15. our door control system is illustrated with projections of processes door
and lamp. The following fairness constraints were applied:
95

5. Applicability of Model Checking to CIP
f1: applied to transition (up, down) of process button because it is assumed that the but-
ton is sure to be pressed again when it has been released (it could be that there is a timer
waiting a random but finite time).

f2: applied to transition (opening, open) of process door because the process may not re-
main in state opening indefinitely.

f3: applied to transitions (closing, closed) and (closing, reopening) of process door be-
cause the process may not remain in state closing indefinitely.

f4: applied to transitions (reopening, opening) and (reopening, open) of process door be-
cause the process may not remain in state reopening indefinitely.

In fact, fairness constraints f2, f3 and f4 may also be handled as if they were the same
constraint because they can never be enabled simultaneously, and can only be disabled
through the execution of a transition with this fairness constraint.

figure 5.15. Door control system with fairness constraints shown in square brackets [].
Only processes button and door are shown. The fairness constraints are defined for the
processes and applied by implication to the cluster.

Looking at the cluster state graph, we see that the transition ([up, closing], [down, reo-
pening]) has two fairness constraints (f1 and f3). It follows that all fair paths infinitely

closed

opening

open

closing

reopening

pr
oc

es
s

do
or

up down

process button

[f1]

[f2]

[f3]

[f3]

[f4][f4]

[f1]

[f1]

[f1]

[f1, f3]

[f1]

[f3]

[f2] [f2]

[f4]

[f4][f4]
[f4]
96

5.8. Conclusions and summary
visiting [up, closing] must infinitely execute at least one transition with the constraint f1
and infinitely execute at least one transition with the constraint f3.

A path which infinitely executes the transition ([up, closing], [down, reopening]) can be
fair. A path which infinitely executes ([up, closing], [up, closed]) is only fair if it also
infinitely executes ([up, closing], [down, reopening]). It follows that all fair paths infi-
nitely visiting [up, closing] must also infinitely visit [down, reopening]. Therefore the
property eventually([down, reopening], [up, closing]) holds for the system. The property
eventually([up, closed], [up, closing]) does not hold. The fair loop [[up, closing], [down,
reopening], [down, open], [up, open], [up, closing]] is a counterexample (transitions
with the fairness constraints f1, f3 and f4 are enabled and executed).

Without the fairness constraint f1, the property eventually([down, reopening], [up, clos-
ing]) does not hold.

5.7.5. General guidelines for setting fairness

- When a physical state of the system can only last finitely, then all transitions changing
this state share a fairness constraint (e.g. door is closing and must either be closed or start
reopening).

- When a timer is set, the timeout shares a fairness constraint with the transitions that
reset or stop the timer, or take the timer to a state where the timeout does not trigger a
transition.

5.8. Conclusions and summary

5.8.1. Conclusions

The CIP model is well suited for model checking purposes on account of its strict defi-
nitions of processes and their communication. Only very little additional information is
needed and must be added by the user wishing to use the Model Checking capability.

In section 2.2.2. and especially in figure 2.1. the software architecture of a system im-
plemented with CIP-Tool was illustrated. On the left side of the figure is the physical
system described by a large number of analog variables. On the right side are the CIP
components which follow or influence these analog values, but are themselves described
by discrete values. This introduction also underlines the mechatronic causality between
actions and events. We can, in our door system example, start the process of closing the
door by sending the software connector of the door motor the Close message. When this
message is sent, the CIP process door is in state closing. The connector of the door motor
receives the message and then causes electrical switches to be set which then cause
changes in the magnetic fields of the drive. These in turn cause kinetic change in the ro-
97

5. Applicability of Model Checking to CIP
tor and consequently affect the velocity of the door. The velocity of the door causes a
change in its position ultimately causing the door to trigger the sensor telling the CIP
cluster that the door is closed. If the door had not been set into motion, this message
would not have been received.

The model checker does not know the nature of the physical system and does not aim to
simulate this system with all its analog variables. It does not know that the message
DoorClosed can only be received after Close has been sent. Neither does it know that
the button can only be released if it is pressed. The model checker is prepared to deal
with any arbitrary sequence of input messages, including those which it would be im-
possible to receive from the physical system such as (DoorClosed, DoorClosed, Door-
Closed, Down, Down, Down,).

These arbitrary sequences do not, however, lead to a state explosion problem which is
considerably larger than that of the physical system, because the processes themselves
rigidly introduce order. The state diagram of process button, for example, only accepts
the message Down when it is in state up. The message sequence (Down, Down, Down,
Up, Up, Down) causes the same sequence of cluster transitions as the message sequence
(Down, Up, Down).

Additional order is introduced by fairness constraints. In contrast to the structural order
described above, fairness constraints cannot be detected automatically by CIP-Tool but
must be defined by the user. Fairness constraints prevent the repetitive execution of cer-
tain transitions to the exclusion of events which would certainly occur in the physical
system.

5.8.2. Summary

The points raised below are explained in the previous sections of this chapter. They are
repeated to provide an overview of the principal points learned. They provide mecha-
nisms which the user may wish to exploit when using the CIP model checker and tips
for making best use of the tool. The numbers of the sections to be read for further infor-
mation are suggested in square brackets.

- To aid the model checker, gate and master-slave structures should be preferred over
conditions whenever possible [5.4.].

- To help reduce the state space, processes can be omitted. This method is cluster reduc-
tion [5.5.]. If the processes to be omitted are carefully chosen, the effects on the cluster
behaviour can be kept minimal. By using a suitable strategy for handling missing inter-
actions, interactions between the remaining processes are not lost [5.5.3.]. Some addi-
tional interactions may be gained however. Their presence is on the safe side as, when
certain precautions [5.5.4. - 5.5.5.] are respected, these additional transitions may lead
to correct conditions being failed but not to incorrect conditions being accepted [5.5.4.].
98

5.8. Conclusions and summary
- Segments are used to denote groups of cluster states for which given propositions hold.
In model checking these are the basis for defining the conditions which have to be veri-
fied [5.6.].

- Fairness constraints can be allocated to process transitions or sets of process transitions
by the user [5.7.] in order to prevent the model checker identifying false counter exam-
ples by identifying loops which can otherwise be infinitely executed in the model but not
on the physical system.
99

5. Applicability of Model Checking to CIP
100

6.1. Purpose
6. Partial Order Reduction

6.1. Purpose

This section discusses partial order reduction, a tool reducing state explosion problems.
The basics of Partial Order Reduction are introduced and the implementation in the CIP
model checker is discussed. Further information and the background are discussed in ap-
pendix F.

The concepts of partial order reduction are well known and documented [18]. Sections
6.2. to 6.4. introduce a general approach to partial order reduction as presented in hand-
books on the subject. The material presented is however cut down to that which is spe-
cifically relevant for this thesis. The definitions used conserve their full relevancy but
the discussion of these and examples are presented with the aims of this thesis in mind.

From section 6.5. onwards this chapter concentrates on the solution which was created
for this thesis and deviates slightly from the earlier approach.

6.2. Introduction

Partial order reduction is the mapping of the full state graph onto a reduced state graph
whilst conserving the properties of the full state graph. Such a mapping is worthwhile if
the reduced state graph requires less memory or can be traversed faster.

Let us consider the following example:

figure 6.1. graph with potential for Partial Order Reduction

This cluster-state graph consists of 4 states and 4 cluster transitions. The labels on the
transition arrows indicate the associated process transition. The graph has two full paths,
[s0,s1,s3] and [s0,s2,s3]. If the intermediate states are irrelevant to the property being

s0 s1

s2 s3
α

ββ

α

101

6. Partial Order Reduction
checked, we only need to follow one of these paths. The transitions α and β are inter-
leaving. They can be executed in either order and it does not matter in which order they
are traversed. The full state graph can thus be replaced by a reduced state graph contain-
ing only one of the above two paths.

This example is discussed more fully in appendix F.1.

When constructing this reduced state graph, we first had to construct the full state graph.
The method thus failed to reduce memory requirements. In this chapter, methods will be
introduced for constructing a reduced state graph without constructing the full state
graph.

6.3. Independence and visibility of transitions

6.3.1. Enabledness, commutativity and independence

Enabledness, commutativity and independence are criteria used in recognising which
transitions can be omitted from a reduced state graph and which must be retained.

For a full discussion of enabledness, the reader is referred to section 3.2.5. and appendix
F.2.1. The basic concepts are presented below.

Definition: process-transitions t1 and t2 are commutative iff for all states s such that
{t1,t2} ⊆ enabled(s), t1(t2(s))=t2(t1(s)).

In figure 6.1. α and β are commutative.

Note that this definition implies that if t1 and t2 are not jointly enabled for any state, then
t1 and t2 are commutative.

Definition: process-transitions t1 and t2 are independent iff they are commutative and
not mutually disabling.

Therefore process-transitions t1 and t2 are independent iff for all states s such that
{t1,t2} ⊆ enabled(s), t1 ∈ enabled(t2(s)) and t2 ∈ enabled(t1(s)) and t1(t2(s))=t2(t1(s)).

In figure 6.1., α0 and β are independent.

Definition: process-transitions t1 and t2 are dependent iff they are not independent.

Definition: processes p1 and p2 are independent iff all process-transitions of p1 are in-
dependent of all process-transitions in p2.
102

6.3. Independence and visibility of transitions
6.3.2. Visibility

Definition: a cluster-transition t is visible for a proposition c iff its c(pre-state(t)) ≠
c(post-state(t)).

Definition: a cluster-transition is invisible iff it is not visible.

In the example of figure 6.2., let us suppose we are checking a condition based on s4.
The transitions (s0, s1), (s0, s2), (s1, s3), (s2, s3) are invisible to this condition.
The transition (s1, s4) is visible.

figure 6.2. visibility of transitions to condition testing for s4.

6.3.3. Reduced state graphs

All full paths in figure 6.2. take one of the following two forms:
-initially not s4 and subsequently s4
-never s4

The individual states traversed may vary, but all paths respect one of these two patterns.
But as the condition does not distinguish any states other than s4, it cannot distinguish
between the paths [s0, s1, s3] and [s0, s2, s3]
This full state graph can be reduced to a reduced state graph by omitting indistinguisha-
ble paths. The following figures show possible variants for a reduced state graph.

figure 6.3. possible reduction of state graph from figure 6.2.

s0
s1

s2 s3
α0

ββ

α0 s4
α1

invisible transition

visible transition

s0
s1

s3

β

α0 s4
α1
103

6. Partial Order Reduction
figure 6.4. another possible reduction of state graph from figure 6.2.

The reduced state graph of figure 6.3. is preferable because it uses both fewer states and
fewer transitions. In a real situation however, we cannot always obtain the optimal struc-
ture. Instead we are content when we can obtain a significant reduction of the state
graph.

6.4. Introduction to reduction techniques

6.4.1. The set ample(s)

When creating a reduced state graph, we replace the set enabled(s) of every reached state
s by a subset which we denominate ample(s).

ample(s) ⊆ enabled(s)

Definition: a state s is fully expanded iff ample(s) = enabled(s).

A set of rules is required to decide which elements of enabled(s) may be omitted in am-
ple(s).

In case of doubt over whether ample(s) should include a transition or not, the transition
should be included in order not to exclude any behaviour.

6.4.2. Creating ample sets - a simple set of rules

In Model Checking by Clarke, Grumberg and Peled [18] on pp 147ff, a method for ob-
taining ample sets is introduced.

rule C0: ample(s) = ∅ iff enabled(s) = ∅.

rule C1: Along every path in the full state graph that starts in s, the following con-
dition holds: a transition that is dependent on a transition in ample(s) can-
not be executed without a transition in ample(s) occurring first.

s0
s1

s2 s3
α0

β

α0 s4
α1
104

6.5. More approaches to Partial Order Reduction
rule C2: If s is not fully expanded, then every α ∈ ample(s) is invisible.

rule C3: A cycle is not allowed if it contains a state in which some transition α is
enabled, but is never included in ample(s) for some state of the cycle.

Rule C0 prevents the reduced-state graph containing dead ends where the full-state
graph does not.

C1 is by far the most complex of the rules. Note that it applies to every path of the full-
state graph. Fortunately, there are methods of ensuring this rule is respected without con-
structing the full state graph.

One important consequence of this rule is that all elements of enabled(s) - ample(s) are
all independent of all elements of ample(s).

Proof: suppose there exists a transition t1 ∈ enabled(s) which is dependent on a transi-
tion t2 ∈ ample(s). t1 cannot be executed without a transition in ample(s) being executed
first. However, as t1 is the first transition, it must also be included in ample(s).

An example illustrating the application of this method can be followed in appendix
F.3.1.

6.4.3. Creating ample sets in practice

Rule C1 as described above still requires a full state exploration. Some of the decisions
taken could not have been taken without knowledge of the full state graph. The approach
described by Clarke, Grumberg and Peled [18] is to consider all pairs of transitions be-
longing to the same process to be dependent and all transitions in different processes
which share a variable to be dependent on all transitions in both processes. Based on this
assumption, we select for ample(s) a set of dependent transitions so that all elements of
enabled(s) - ample(s) are independent of ample(s).

The example of appendix F.3.2. shows that less reduction is obtained than was obtained
for the reduction of the same system in F.3.1. There is room for improvement.

6.5. More approaches to Partial Order Reduction

6.5.1. Purpose

In this section, an alternative set of rules is introduced that can be used to create am-
ple(s).
105

6. Partial Order Reduction
6.5.2. Degree of process-enabledness

Definition: the degree of process-enabledness (dpe) of a process transition t in a clus-
ter-state s is the maximum number of process-states the state-vector of s has in common
with a state-vector where t is enabled.

dpe: S × ΤΤΤΤ → �
dpe(s,t) is the degree of process-enabledness of transition t in cluster-state s.

dpe(s,t) can be calculated using the following algorithm:

dpe(s, t)
var sum := 0;
for all p ∈ processes

if t ∈ enabled(p component state of s)
sum ++;

end if
end for

return sum

To interpret dpe in terms of the coordinate system model introduced in section 5.2.5,
dpe(s, t) is the maximum number of dimensions a projection of the cluster can have so
that t is enabled in s.

A transition is enabled when its dpe equals the number of processes.

See also the example of appendix F.3.3. (page 202)

6.5.3. Process-enabling and process-disabling

Definition: a cluster-transition t0 process-enables a transition t1 iff
dpe(post-state(t0),t1) > dpe(pre-state(t0),t1)

Definition: a cluster-transition t0 process-disables a transition t1 iff
dpe(pre-state(t0),t1) > dpe(post-state(t0),t1)

6.5.4. Rules for creating ample(s)

The following simple set of rules allow ample(s) to be determined.

rule R1: search for a non empty subset of invisible transitions of enabled(s) so that no
process transition outside the subset is process-disabled by any member of the subset un-
less all members of enabled(s) disable that process transition.
if successful, select that subset as ample(s)
otherwise, ample(s) = enabled(s)
106

6.5. More approaches to Partial Order Reduction
rule R2: check that no element in ample(s) closes a loop of the reduced state graph. If a
loop is closed, check that in the loop no transition t is enabled but not included in am-
ple(s) for any state of the loop, unless a path branches from the loop and t is not disabled
by the first transition of that branch. Add transitions to reduced-state graph if necessary.

rule R3: dead ends are treated as transitions.

rule R4: if a fair transition is enabled in a state s, then ample(s) must include at least one
fair transition. Additionally, preference is given to transitions in the following order:
transitions whose post-states were previously visited, transitions not already on the
search path, transitions of the same process as the previous transition.

See also the example of appendix F.3.5. (page 203).

Differences between this method and that of 6.4.2. are shown in the example of appendix
F.3.6. (page 204).

6.5.5. Note on visibility of transitions

Visible transitions are transitions for which the pre- and post-states respond differently
to propositions. The pre and post-states of such transitions are thus in different cylinder
sets.

As model checking statements are based on the sequences of segments visited, any state
reduction is correct if all segment sequences are conserved. To demonstrate that a state
reduction mechanism is correct, it suffices to prove that any segment sequence of the full
state graph also exists in the reduced state graph.

(See also appendix F.4.2.)

6.5.6. Proof of correctness of rules of 6.5.4.

In this section it is shown that if a path p of the full state graph visits segments in a given
sequence, then there is a path in P’, the set of paths of the reduced state graph, so that a
path of P’ visits these segments in the same sequence.

In the full state graph, all full paths start in the segment containing the initial state Sinit
and either
i. visit another segment upon leaving Sinit, or
ii. do not leave Sinit.

In case ii, the path p’ either
ii.a reaches a dead end or
ii.b loops infinitely.
107

6. Partial Order Reduction
By rule R3, ii.a and ii.b can be considered as one.

The path p starts in sinit and is either a path of P’ or it branches from such a path in a state
sbranch.

1) In the first case, p is obviously contained in P’. The latter case requires proof.

2) Let t0 be the first transition on p after sbranch. t0 is invisible because otherwise
p would not remain within the initial segment. t0 remains enabled on a path of
P’ until executed because if this were not the case, rule 1 would be violated at
the transition of a path of P’ disabling t0. Therefore at least one path of P’ exe-
cutes t0 after sbranch and before leaving the segment.

3) Let t1 be the transition on p after t0. Like t0, t1 is invisible. The value
dpe(sbranch, t1) is known. Along at least one path of P’ the dpe of t1 in every state
after sbranch must be equal to or greater than this value until t1 is executed or all
enabled transitions disable t1 (otherwise rule R1 would be violated).

4) If t1 is not enabled in sbranch then it is process-enabled by t0. If t1 is enabled
in sbranch then it is not process-disabled by t0.

5) It was shown in (2) that t0 is executed on p. Combining with (4) it is clear that
t1 becomes fully enabled on at least one path of P’. For the same reason that t0
is executed on one such a path (2), t1 is subsequently executed on a path of P’
unless a state sfe has previously been visited where all transitions from that state
process-disable t1. It must be assumed that sfe occurs prior to the execution of t0
and that t0 process-enables t1, otherwise t1 would be a member of ample(sfe) (by
rule R1).

6) But ample(sfe) must include t0 and therefore t0 must process-disable t1. This
contradicts (4). Therefore at least one path of P’ executes t1 after sbranch and be-
fore leaving the segment.

7) The arguments applied to t1 also hold for t2, the transition following t1 on p.
Likewise, they hold for all subsequent transitions of the loop section of p.

8) On the loop path, t0 has become enabled by the point where the loop is closed.
On all paths of P’ where the loop transitions have been executed, t0 has also be-
come enabled. If this were not the case, the path must have previously executed
a transition process-disabling t0. If this were the case (with at least one loop tran-
sition enabled), there must be another path in P’ branching off at this point
where t0 is not process disabled.
108

6.6. Implementation
Therefore P’ must contain a path forming a loop within the initial segment.

We now proceed to case i. If there is a path p from the initial state (in segment S0) and
proceeding to a segment S1 without visiting another segment, we must show that there
is also a path in P’ doing the same.

9) p crosses from S0 to S1 by the visible transition tv. By applying arguments
(2) to (6) we show that there is a path in P’ executing tv.

But is there a path in P’ executing tv without passing through a segment other than S0
before doing so?

10) If a path in P’ passes through a segment other than S0 before executing tv
then it executes another visible transition before executing tv. The pre-state of
this visible transition is fully expanded (rule R2). On at least one of the paths in
P’ branching off at this point, tv will eventually be executed as shown in (9).

Therefore if there is a path of the full state graph visiting segments in a given sequence
there is also a path of the reduced state graph visiting the same segments in the same se-
quence.

The equivalence of these rules to those of section 6.4.2. is discussed in appendix F.4.1.
(page 206).

6.6. Implementation

6.6.1. Purpose

In this section, the implementation of the algorithm presented in section 6.5.4.
(page 106) is discussed.

6.6.2. Implementation of algorithm

Rule R1 may appear highly complex at first because of the need to evaluate the dpe of
every process transition in the post-state of every enabled transition for every state vis-
ited by the reduced state graph.

On closer inspection this is not necessary. A process transition t can only process-enable
or process-disable process transitions which:

a) have component transitions in the same processes as t or its components or
b) process-enable or process-disable transitions in other processes because the latter are
dependent on t through inspections (conditional transitions) or master-slave structures.
109

6. Partial Order Reduction
All transitions whose pre-state is the post-state of the executed transition are process-en-
abled and all transitions whose pre-state is the pre-state of the executed transition are
process-disabled (rule R1.1).

This rule can be verified by checking for transitions sharing pre-states with the transition
to be executed.

A transition process-disables any transition of which a component is process-disabled
(rule R1.2).

This criterium can be verified by checking whether any component of the transition
could trigger other components or not trigger components which are triggered.

When a process transition which is triggered by an inPulse is process-enabled, this pro-
cess-disables the sending transition by potentially replacing it by a new combined tran-
sition (rule R1.3).

This criterium can be verified by checking in the processes with components of the ex-
ecuted transition whether message triggered transitions are process-enabled.

In case b, it is known for every transition which process transitions it process-enables or
disables and these can be determined before the state space exploration is begun and list-
ed (rule R1.4).

During exploration, for every executed transition it is verified whether any of these are
process-disabled.

If several invisible enabled transitions process-disable the same set of (combined) tran-
sitions, these need not all be included in ample(s) (rule R1.5).

Sometimes a transition t is process-disabled when replaced by another transition made
up of t and a transition t’. We can obtain additional partial order reduction when treating
t as if it were not process-disabled provided t’ is invisible and does not disable any tran-
sition other than itself. This procedure is correct because in the correctness demonstra-
tion of section 6.5.6. t and t’ can be considered to be two consecutive transitions rather
than t+t’ (rule R1.6). Transitions of the type of t’ can be identified before traversal be-
gins so saving time.

Failure to find a reduced ample set leads to the entire enabled set being used as ample
set (rule R1.7).

The implementation of rule R2 is straightforward.
110

6.6. Implementation
To correctly implement rule R3, all dead-ends are identified before the state graph is
constructed. A dead-end is a state vector of which all members are dead-ends in their
process state graphs. It can thus easily be detected which transitions process-disable
these dead ends (rule R3.1).

Rule R4 needs no additional commentary.

6.6.3. Example

The subject of this example is the door control example of chapter 5. Fairness constraints
have been added to process door.

We wish to evaluate the property eventually(closing). Therefore the process transitions
(open, closing), (closing, closed), (closing, reopening) and any transitions containing
these as component are visible.
111

6. Partial Order Reduction
figure 6.5. CIP cluster of door control example

According to rule 1.4, the process transitions of process controller (not_timing, timing)
and (timing, not_timing) (the latter triggered by TIMEUP_) are process-disabled by the
transitions (up, down) and (open, closing) and process-enabled by (down, up) and (open-
ing, open). Likewise, the process transition (timing, not_timing) (triggered by pressed)
is process-disabled by the process transition (timing, not_timing) (triggered by pressed)
and process-enabled by the process transitions (up, down) and (open, closing).

Now the construction of the reduced state graph can begin.

ample(s0)

The initial state vector is s0 = [up, closed, off, not_timing].

off on_dark
3
released

Dark

2
pressed

Bright

on_bright4
closed

Off

1
opening

Dark

1

pressed
Down

2

released
Up

downup

process: button process: door

process: lamp

process: controller (mode nottiming)

not_timing
timing

1 T
released

5 T
opened

4

close
TIMEUP_

process: controller (mode istiming)

closed opening

open

6
DoorClosed

7

opened
DoorOpen

Stop

3
close_command

Close

closing

2

opened
DoorOpen

Stop

reopening

5
button_pressed

Open

1

opening
button_pressed

Open

4

closed
DoorClosed

Stop

timing
not_timing

4 S
pressed

[f]
[f]

[f]

mode setting for process: controller

button

up down

open

(other)

istiming

nottiming

 nottiming

 nottimingdo
or
112

6.6. Implementation
Only one transition is enabled in s0. Therefore ample(s0) = enabled(s0) = {(up, down) +
(closed, opening) + (off, on_dark) + (on_dark, on_bright)} (rule R1.7).

This transition reaches s1 = [down, opening, on_bright, not_timing].

ample(s1)

enabled(s1) = {(down, up) + (on_bright, on_dark), (opening, open)}.

By rule R1.1, neither transition process-disables other transitions.

By rule R1.2, the first transition process-disables (down, up). The second transition does
not process-disable other transitions by this rule.

So we only look into the suitability of the second transition for inclusion in ample(s1)
(rule R1.6 does not apply to the above case because (on_bright, on_dark) disables tran-
sitions).

By rule R1.3, the second transition process-disables (timing, not_timing) (triggered by
TIMEUP_) because this could trigger (open, closing).

By rule R1.4, the second transition process-enables all process transitions of mode istim-
ing. This compensates for the process-disabling of (timing, not_timing) (triggered by
TIMEUP_). It can also process-disable transitions sending messages released and
opened to controller but this can be ignored through rule R1.6. The second transition also
process-disables all transitions containing (timing, not_timing) (triggered by pressed).
But as the first transition process-disables the same, these can be ignored through rule
1.5.

Thus ample(s1) = {(opening, open)}.

This transition reaches s2 = [down, open, on_bright, not_timing].

ample(s2)

enabled(s2) = {(down, up) + (on_bright, on_dark) + (not_timing, timing)}.

As there is only one element in enabled(s2), rule R1.7 again applies and:

ample(s2) = {(down, up) + (on_bright, on_dark) + (not_timing, timing)}.

This transition reaches s3 = [up, open, on_dark, timing].
113

6. Partial Order Reduction
ample(s3)

enabled(s3) = {(up, down) + (on_dark, on_bright) + (timing, not_timing), (timing,
not_timing) + (open, closing)}.

The first transition disables several process-transitions through rule R1.1 (including all
those including (on_dark, off)). The second is visible. Thus ample(s3) = enabled(s3).

Let us first follow the first transition. This transition reaches [down, open, on_bright,
not_timing] which is s2. A loop is closed and rule 2 is applied. No transition is included
in enabled(s) for any state s of the loop without that transition ever being included in am-
ple(s), therefore no further transitions must be added to any ample(s) of the loop.

But the closure of the loop also triggers another check. We are seeking to verify an even-
tually property. We therefore check whether the newly found loop is fair. It is not be-
cause the process-transition (open, closing) is fair. Therefore we proceed.

We now follow the second transition of ample(s3).

This transition is visible and reaches s4 = [up, closing, on_dark, not_timing].

This fulfils the property eventually(closing, {s0, s1, s2, s3, s4}). {s0, s1, s2, s3, s4} are
placed into ful.

However, the exploration is not yet complete. The transitions enabled in s4 have yet to
be followed.

ample(s4)

enabled(s4) = {(closing, closed) + (on_dark, off), (up, down) + (closing, reopening) +
(on_dark, on_bright)}.

Both transitions are visible and thus ample(s4) = enabled(s4).

Following the first transition we reach [up, closed, off, not_timing] which is s0 and is
now in ful.

Following the second transition we reach s5 = [down, reopening, on_bright, not_timing].

ample(s5)

enabled(s5) = {(down, up) + (on_bright, on_dark), (reopening, opening), (reopening,
open)}.
114

6.6. Implementation
By rule R1.1, the second and third transition are mutually disabling so that if one is
placed in ample(s5), the other must too.

By rule R1.2, the first transition process-disables (down, up). The other transitions do
not process-disable other transitions by this rule.

So we only look into the suitability of the second and third transitions for inclusion in
ample(s5) (rule 1.6 does not apply to the above case because (on_bright, on_dark) dis-
ables transitions).

By rule R1.3, the third transition process-disables (timing, not_timing) (triggered by
TIMEUP_) because this could trigger (open, closing).

By rule R1.4, the third transition process-enables all process transitions of mode istim-
ing. This compensates for the process-disabling of (timing, not_timing) (triggered by
TIMEUP_). It can also process-disable transitions sending messages released and
opened to controller but this can be ignored through rule R1.6. The third transition also
process-disables all transitions containing (timing, not_timing) (triggered by pressed).
But as the first transition process-disables the same, these can be ignored through rule
1.5.

Thus ample(s5) = {(reopening, opening), (reopening, open)}.

Following the first of these transitions we reach [down, opening, on_bright, not_timing]
which is s1 and is already contained in ful.

Following the second of these transitions we reach [down, open, on_bright, not_timing]
which is s2 and is also contained in ful.

All transitions of the reduced state graph have been followed and the property eventual-
ly(closing) shown to hold.
115

6. Partial Order Reduction
figure 6.6. Representation of reduced state graph

6.7. Discussion

6.7.1. State space reduction

The purpose of implementing partial order reduction is to reduce the state space. So to
what extent is the state space reduced? Obviously this depends on the system in question.

We start by considering the best case, which is a system with the minimum possible de-
pendency of transitions. Let:

n := number of processes
sp := typical number of states per process
rp := typical number of transitions per process

sf := number of states in full state graph
rf := number of transitions in full state graph

closed

opening

open

closing

reopening

pr
oc

es
s

do
or

up

down

off on_dark on_bright
pro

ces
s

not_timing timing

process controllerprocess lamp

butto
n

= process on reduced state graph

= other process

= transition on reduced state graph

= other transition

s0 s0

s1 s1

s2 s2

s3s3

s4 s4

s5 s5

[f] [f]

[f] [f]

[f][f]
116

6.7. Discussion
sr := number of states in reduced state graph
rr := number of transitions in reduced state graph

Best case example

For a finite state machine with a minimum possible dependency between transitions:

sf ≈ (sp)n

rf ≈ n ⋅ rp ⋅ (sp)n-1

sr ≈ n ⋅ sp
rr ≈ n ⋅ rp

For the derivation of these formulae the reader is referred to appendix F.5.1. (page 210)

The total reduction is:

sr/sf = n ⋅ sp / (sp)n = n / (sp)n-1

rr/rf = n ⋅ rp / (n ⋅ rp ⋅ (sp)n-1) = 1 / (sp)n-1

Assuming values of sp = 6, rp = 9 and n = 12 we obtain:

sr/sf ≈ 3⋅10-8

rr/rf ≈ 3⋅10-9.

The reduced state graph size would be:

sr = 61 (calculated according to exact formula as shown in appendix F.5.1.)
rr = 108

The savings and compactness of the reduced state graph may seem astonishing, but be-
cause the processes are fully independent, this example is highly unrealistic. If such an
example should occur anyway, nothing can be learnt from checking the cluster as a
whole as all properties can just as well be tested on the individual processes.

On the other hand, if we have a system where no transitions are independent and every
transition process disables another, no reduction is possible at all. Fortunately, although
the algorithm uses its usefulness in such a case, the strong dependency of the processes
itself assures against state explosion.
117

6. Partial Order Reduction
The critical cases are the intermediate ones with sufficient dependency to make state
space reduction cumbersome, yet insufficient to permit inherent structural state space re-
duction.

To create mathematical models of these requires a large number of assumptions, the ba-
sis of which may vary from system to system. It is therefore preferable to allow obser-
vations to speak for themselves.

An example [44] was tested and a state space reduction of 40% was achieved for a sim-
ilar execution time. In another example from the same source (albeit implemented with
conditions where inspections could have been used) no significant improvement was ob-
served.

6.8. Conclusions

The methods of partial order reduction are applicable to CIP model checking. The fre-
quent interactions between the processes which may at first sight seem a disadvantage
for partial order reduction are turned into an advantage through the introduction of the
degree of process-enabledness. This allows more powerful reduction in the CIP context
than would have been achieved using ‘off the shelf’ algorithms.
118

7.1. Introduction
7. Implementation

7.1. Introduction

This chapter aims to present some of the methods used in implementing the CIP model
checker and to give the reader an impression of how the model checker is handled. It is
not intended to be a full guide to the code or a full manual for the use or maintenance of
the model checker.

7.2. Implementation methods

7.2.1. States and state vectors

Although the CIP model checker is nested within the code of the CIP Tool and many
common variables are used, and the full behaviour of the system can be derived from the
stored model, it is not efficient to do so at run time.

For this reason the stored model needs to be mapped in a way which renders access as
fast as possible during run time.

The state vector is stored as an integer. This reduces the space required to a minimum
and makes it easy to check whether the state vector is already contained in a list (espe-
cially if the list is sorted).

The bits of this integer represent the states of individual processes.

In figure 7.1. the door control example is shown which has already been amply discussed
in chapter 5. and also used in chapter 6.
119

7. Implementation
figure 7.1. CIP cluster of door control example

This example has four processes. The first process is button which has two states. A sin-
gle bit (bit 0) is thus sufficient to describe this.

up = 0
down = 1

The next process is lamp which has 3 states. 2 bits (bits 1 to 2) are required to describe
this. The codes advance in steps of 2 as the lowest bit is used by button.

off = 0
on_dark = 2
on_bright = 4

off on_dark
3
released

Dark

2
pressed

Bright

on_bright4
closed

Off

1
opening

Dark

1

pressed
Down

2

released
Up

downup

process: button process: door

process: lamp

process: controller (mode nottiming)

not_timing
timing

1 T
released

5 T
opened

4

close
TIMEUP_

process: controller (mode istiming)

closed opening

open

6
DoorClosed

7

opened
DoorOpen

Stop

3
close_command

Close

closing

2

opened
DoorOpen

Stop

reopening

5
button_pressed

Open

1

opening
button_pressed

Open

4

closed
DoorClosed

Stop

timing
not_timing

4 S
pressed

[f]
[f]

[f]

mode setting for process: controller

button

up down

open

(other)

istiming

nottiming

 nottiming

 nottimingdo
or
120

7.2. Implementation methods
The codes for processes door and controller are allocated likewise:

closed= 0
opening = 8
open = 16
closing = 24
reopening = 32

not_timing = 0
timing = 64

The state vector integer is formed by summing the codes of the individual states. Thus
[down, reopening, on_bright, not_timing] is represented by the state vector 1 + 32 + 4 +
0 = 37.

7.2.2. Process transitions

Just as state vectors need to be coded efficiently, so do transitions need to be executed
efficiently.

The structure of the process is stored in an array called transStructArray. This array1 is
divided into blocks with one block for every trigger the process can accept. It contains
integers which must be added to the state vector to determine the post-state for that proc-
ess transition.

Below, the change transStructArray of button is shown. This array has two blocks of
size 2 each. The first block contains transition structures triggered by Down, the second
block contains transitions triggered by Up. The first address of such a block is the trig-
gerOffset.

table 7.1. changeArray for process button

transStructArray
1: trCas(+1, [lamp -> 4, door -> 1, controller -> 1])
2: trNil
3: trNil
4: trCas(-1, [lamp -> 7, controller -> 3])

triggerOffset(Down) = 1
triggerOffset(Up) = 3

1. Note that in SmallTalk arrays begin at 1 and not at 0 as in C.
121

7. Implementation
trCas1 indicates a transition casting pulses to other transitions. The first argument is the
change in the state vector. The second argument is discussed in section 7.2.3.
trNil indicates no transition.

Down triggers no change of state if button is in state down (transStructArray[2]
= tsNil). Down triggers a change of state to down if button is in state up
(transStructArray[1] = tsCas(+1, ...)).

The formula for determining the transition to execute is:

transition to execute
= transStructArray[triggerOffset(trigger)
+ ((stateVector AND processMask) SHIFT processShift)]

AND and SHIFT are bitwise logical functions and processMask and processShift are
process dependent constants. In this example they are

table 7.2. processMask and processShift

process processMask processShift bitWidth

button 1 0 1
lamp 6 1 2
door 56 3 3
controller 64 6 1

Because all functions used are very basic, a fast execution is assured.

Example 1:

The state vector is [down, reopening, on_bright, not_timing] coded by 1 + 32 + 4 + 0 =
37. The event Up is sent to process button.

transition to execute
= transStructArray[triggerOffset(trigger)
+ ((stateVector AND processMask) SHIFT processShift)]
= transStructArray[3 + ((37 AND 1) SHIFT 0)] = transStructArray[4]
= trCas(-1, ...).

The new state vector is 37 - 1 = 36.

Note that this is not a cluster transition but only the first component of that transition
(cluster transitions will be discussed in section 7.2.3.).

1. For a full explanation of these different transition types see appendix G.1. (page 213)
122

7.2. Implementation methods
Example 2:

The state vector is 36. The inPulse released is received by process lamp.

table 7.3. changeArray for process lamp

changeArray
1: trTra(+2)
2: trNil
3: trNil
4: trNil
5: trTra(+2)
6: trNil
7: trNil
8: trNil
9: trTra(-2)
10: trNil
11: trTra(-2)
12: trNil

triggerOffset(opening) = 1
triggerOffset(pressed) = 4
triggerOffset(released) = 7
triggerOffset(closed) = 10

trTra is similar to trCas only that no outPulses are cast.

transition to execute
= transStructArray[triggerOffset(trigger)
+ ((stateVector AND processMask) SHIFT processShift)]
= transStructArray[7 + ((36 AND 6) SHIFT 1)] = transStructArray[9]
= trTra(-2).

The new state vector is 36 - 2 = 34.

7.2.3. Pulse propagation

Additionally to the information on the change in state vector, trCas contains information
on which processes receive pulses, what the trigger element is and in which order these
are sent. This is held in an array.

Example:

The state vector [down, reopening, on_bright, not_timing] = 37 receives the trigger Up.
As described in section 7.2.2. (first example) this activates the transition structure but-
123

7. Implementation
ton.transStructArray[4] = tsCas(-1, [lamp -> 7, controller -> 3]) changing the state vec-
tor to 36.

Then, trigger 7 is sent to process lamp. As described in section 7.2.2. (second example)
this activates the transition structure lamp.transStructArray[9] = tsTra(-2) changing the
state vector to 34.

Lastly, trigger 3 is sent to controller where it does not trigger a transition. The state vec-
tor remains 34.

The post-state of the cluster transition is 34 = 0 + 32 + 2 + 0 = [up, reopening, on_dark,
not_timing].

7.2.4. Conditional transitions

There are two types of conditional transitions, those which are deterministic because all
relevant information is available to the model checker and those which are non deter-
ministic because information is missing. Consequently, the CIP model checker also has
two types of structure for handling conditional transitions.

The conditional dependency of transitions is defined by tables containing all appropriate
transitions. In table 7.4. the mode settings for process controller are shown. The process
transition (not_timing, timing) is enabled and disabled accordingly.

table 7.4. mode setting table for process controller

button

up down

closed

opening

nottiming

nottiming

 nottiming

 nottiming

do
or open

closing
reopening

istiming nottiming

nottiming nottiming
nottiming nottiming
124

7.2. Implementation methods
table 7.5. corresponding transition identification table

Similarly to the method of obtaining the processStateCode of section 7.2.2. we can iden-
tify the correct field of the table through mask and shift operations.

modeSettingField()
{
 var field := 1;
 var usedBits := 0;
 for proc ∈ inspected processes in order do
 {
 field += (stateVector AND proc.processMask) SHIFT
 (proc.processShift - usedBits);
 usedBits += proc.bitWidth;
 }
return field;
}

Example:

For the state vector [up, reopening, on_dark, not_timing] = 34 we wish to ascertain
whether (not_timing, timing) can be executed. The inspected processes are button and
door. After the first traversal of the for loop,

field = 1 + (34 AND 1) SHIFT 0 = 1
usedBits = 0 + 1.

After the second traversal,

field = 1 + (34 AND 56) SHIFT (3 - 1) = 9

A glance at table 7.4. shows that the 9th field is indeed the mode setting for this situation.

A conditional deterministic transition structure of this type is called trCoD.

button

0 1

0

8

tsNil

tsNil

 tsNil

 tsNil

do
or 16

24
32

tsTra(+64) tsNil

tsNil tsNil
tsNil tsNil
125

7. Implementation
In the actual realisation, the values for processMask and processShift - usedBits are
stored locally in arrays maskArray and shiftArray to reduce access and evaluation times.

Conditional transition structures can also be non-deterministic from the point of view of
the model checker. This can happen when

1) code conditions decide which of several transitions is to be executed (see section
2.3.5. on page 19)

2) or when one or several of the inspected processes is missing through cluster reduc-
tion (see section 5.5. on page 84)

3) or when the model is not yet finished and relevant information is missing.

In such cases all possible transitions are evaluated and all valid post-states returned.

7.3. The CIP model checker

7.3.1. The user interface

The main user interface of the Model Checking part of CIP is shown in figure 7.2.

figure 7.2. main Model Checking window

This window has four list views. The list view on the left lists state vectors. Only one
such state vector can be active at any one time. The active state vector can be changed
by selection in the list. When the model checker is first initialised only the initial state is
contained in this list and this is the active state vector. This is the situation illustrated.

The second list view shows the process states making up the active state vector. The cor-
responding process is shown in brackets.

The third list view lists the properties being tested. These will be discussed in section
7.3.5.
126

7.3. The CIP model checker
The fourth list view lists the messages which can be sent to the cluster.

7.3.2. Simple testing

The fourth list can be used to send messages to the active state vector. The example of
figure 7.3. shows the selected message being sent. The result is shown in figure 7.4.

figure 7.3. Menu in message list selected

figure 7.4. post-state of transition is displayed.

Note that because the active state vector has changed, the list of process states and the
list of available messages have also been adapted.

This function can be used to test the system or components of the system during deve-
lopment. In contrast to the simulation tool provided with CIP, the model checker does
not require the model to be fully specified. Any triggerable transition with a pre- and
post-state can be simulated as soon as it is created.

Process states can be changed manually using the menu of the second list. This function
is useful if the test should commence at a cluster state or cluster states other than the ini-
tial state.
127

7. Implementation
figure 7.5. Process state is changed manually.

The same menu can also be used to remove (and re-add) processes if required. This func-
tion is especially useful for cluster reduction (see section 5.5. on page 84).

7.3.3. State space traversal

The state space traversal can be launched from the menu of the fourth list by selecting
explore state space (see figure 7.3.).

After such a state space traversal the window may look as follows:

figure 7.6. Window after state space traversal

All state vectors found are listed in the state vector window. If this list gets very long it
is automatically truncated to prevent problems with the graphic display. The cluster
states remain in memory however.

7.3.4. Segments

Segments are used to mark sections of the state space which interest us for Model Check-
ing purposes (see section 5.6. on page 89). They are defined in CIP using the segment
editor.
128

7.3. The CIP model checker
figure 7.7. The segment editor for process lamp

A segment is made up of states of the same process. Segments are created by the user in
the list on the left and states added or removed as required to the corresponding list in
the centre by selection or deselection from the list on the right.

figure 7.8. Definition of the segment lamp_on

7.3.5. Properties

The properties to be tested are defined by the user in the properties list of the Model
Checking window. The syntax is based on that introduced in section 3.5. (page 44).

figure 7.9. The properties list of the main Model Checking window

The properties are currently entered in text mode and parsed. This approach was chosen
because it was considered to be more flexible and faster to use than combining elements
from a browser. However, this can easily be changed if required.

The properties defined in figure 7.9. combine basic segments using boolean operations.
Supported operations are and, or, exor, exnor, not, 1 (true) and 0 (false).

When a property is defined or edited, the model checker checks that no state vector of
the list violates this. If so, an error message is generated of the style of that shown in fig-
129

7. Implementation
ure 7.10. Of course, only properties not requiring path knowledge such as invariant can
be verified at this point and for these states.

figure 7.10. Error message when property violated

While state exploration is in progress, or while the user is simulating the system, these
properties are continuously checked. Any violation prompts an error message similar to
that above. Additionally a log file is saved to disk indicating the path that caused the vi-
olation.

If the user chooses to edit the property, the traversal must be begun again as already vis-
ited structures may violate the new property and transition visibilty may be affected (see
section 6.3.2. on page 103).
130

8.1. What has been achieved?
8. Conclusions

8.1. What has been achieved?

8.1.1. The contribution of this thesis

This thesis sets out from two methods designed to support the developer of embedded
system software: CIP and Model Checking. It bridges the gap between the two by giving
CIP users access to Model Checking without requiring them to learn Model Checking
techniques specifically. The model checker uses formulations and abstractions which
are easily understood from within the CIP context.

The synthesis is achieved by extracting the extended state machine structure from the
CIP model and using this for Model Checking. The user does not leave the CIP environ-
ment or context when using the model checker. Data pertaining to the model checker is
defined and handled just as data for any other function of the tool would be. For example,
fairness constraints are allocated to transitions and accessed within the CIP environment
just as any other CIP related attribute would be allocated or defined.

Independently of this, the extraction of the extended state machine from the CIP model
means that the former is closely based on the latter. So, rather than building or using a
model checker which we can confront with any type of interaction, the CIP model check-
er is specifically oriented towards the type of problems which could occur in a CIP en-
vironment. For example, in CIP the interactions between processes of a cluster occur in
a strictly defined order known as run to completion semantics. Most model checkers are
prepared to accept interactions in any order so greatly increasing the number of possible
interactions and system states. To limit this, we would have to introduce additional struc-
tures in another model checker to reduce to the CIP behaviour. But this reduction goes
beyond a cutting back of the total possible interaction patterns. The partial order reduc-
tion possibilities of CIP go beyond those commonly used by using CIP-specific interac-
tion restraints.

It is not the primary goal of this thesis to duplicate the full expressive and operational
power of advanced model checkers. It is to show how Model Checking can be performed
on the CIP model using what is basically the existing structure of the model. The neces-
sary transformation stands at the centre of this thesis.

Some experience has been gained with the CIP model checker in analysing real projects.
To date these investigations have concentrated on checking that these systems can be tra-
versed (that their size is not too big and that the termination does indeed terminate).
Some test properties were also verified but to date no productive use has yet been made
of the model checker in such projects, since the model checking features have not yet
been added to the commercial version of CIP Tool.
131

8. Conclusions
8.1.2. The software concept: summary

In a CIP model, structures such as processes and states already exist. This is a mixed
blessing: whereas most other model checkers have the luxury of being able to define
these from scratch, this was not necessary in this thesis. Besides the obvious advantage,
this posed problems in that a CIP model does not behave entirely like a generic extended
state machine. Especially, inter-process communication and scheduling is more restrict-
ed. Transitions cannot be triggered in an arbitrary order and through run to completion
semantics, sequences of triggers cannot be interrupted. The possible interactions of the
CIP finite state machine are more restricted than they would be in a ‘classic’ finite state
machine. If a ‘classic’ model checker were to be applied to CIP, these restrictions would
have to be enforced by additional constructs. In the CIP model checker where develop-
ment starts from the existing CIP model, these restrictions are implemented generically.

To apply Model Checking to the CIP model, first a basic interpreter had to be created.
This identifies the post-state of a cluster transition with a given pre-state and trigger.
Message passing between the processes is handled as it is in a system designed with CIP
Tool and transitions scheduled in the same order that such a system would schedule
them. This element of the model checker is useful in its own right as it permits the user
to ‘simulate’ the behaviour of the model without having to generate any code and can be
used even when the model is largely incomplete, so enhancing the supportive power of
the tool during the design phase.

This interpreter also provides the basis for the real model checker by permitting state ex-
plorations. The basic interpreter can work with incomplete models (only a single transi-
tion need be defined and this can already be executed), so all functions basing on this
including the full model checker can be used on partially complete subsystems during
the development process. The model checker can so be used on the fly to verify whether
any sub-systems or structures the user is implementing perform the desired task as re-
quired.

The CIP model checker allows the user to manually exclude processes from the check
to reduce the complexity of the problem and concentrate on the section being checked.

8.1.3. Some achievements

The state explosion problem is addressed by a range of measures. Firstly, CIP itself,
through strong dependencies between processes and strict scheduling makes a signifi-
cant contribution to reducing this problem.

Additionally to this, the cluster reduction approach permits further reduction of the state
space by omitting selected processes. This omission can lead to the introduction of ad-
ditional transitions in the cluster state space but also to the loss of existing transitions.
The latter (which is rather CIP specific, in systems without such strict scheduling it
132

8.1. What has been achieved?
would not occur) is tackled by adding dummy processes with a single state (therefore
taking no additional space in the state vector). The former cannot be avoided entirely but
can be accommodated by an appropriate interpretation of results. Additional paths may
lead to false counter-examples or false examples being found. For some properties these
additional paths may be on the safe side, with the property failing where it holds for the
full system. In other cases such paths may lead to a property holding where it would fail
in the full system. Which case is appropriate varies from property to property and special
treatment was required to prevent the model checker from returning false results. In
some cases certain properties may not be tested when certain processes are removed.

The third measure against state explosion is partial order reduction. This is based on re-
ducing the number of paths of the system by omitting equivalent paths. However, in this
thesis an implementation called degree of process-enabledness is used. This helps de-
cide which transitions should be followed and which can be omitted.

Also implemented in this thesis is an approach to fairness which permits fairness con-
straints to be applied to transitions independently of their process. This supports the CIP
modelling philosophy in that clusters can continue to be decomposed into processes
along functional lines rather than through fairness motivations.

8.1.4. Some results

In figure 8.1. the result of a breadth first search of a sample system is shown. This 14-
process system was developed and is used by a CIP customer in industry [44]. Normally
the state space is searched depth first as the recognition of loops is simpler this way. But
to show the state of the progress and give some idea about the structure of the system, a
breadth first traversal was applied in this case. The level of BFS (x-axis) shows the
number of transitions needed to find the number of new states found (y-axis). As can be
expected, the number of states found per level increases in an exponential style at first
as the state graph branches out. Growth drops as more and more of the states found are
identical to those found previously and finally tails back to zero as the exploration is
completed.
133

8. Conclusions
figure 8.1. Breadth first search of real system [check reference].

This traversal took about 15 minutes on a 500MHz Macintosh G4. No use of partial or-
der reduction or any other state space reductions were activated. Many other model
checkers could have traversed the same state space in a much shorter time. The draw-
back of the CIP model checker is that it is implemented in SmallTalk which is a high
level language. Implementation in a lower level language would have provided consi-
derably greater speed. SmallTalk was chosen because CIP Tool was already implement-
ed in this language and this continuity provided the best possible integration and access
to data structures. The advantages of higher level languages lie in the possibility to create
well structured and documented programs, but the sheer mass of data requiring process-
ing could have justified a lower level language in this case. Many model checkers
achieve a high efficiency by not checking the model themselves but by generating code
which can be compiled into a program to solve the one and only task which is required
of it. This method combines the strengths of both approaches and is worth giving greater
consideration in a further development of the project. Additionally, the CIP model
checker does not make use of all Model Checking constructs such as BDDs which could
greatly enhance performance, but adding these at a later point should be relatively
straightforward.

8.2. A self critical appraisal

8.2.1. Implementation of the project

The SmallTalk code of the CIP Tool is well structured, documented and maintained.
This facilitated the understanding of the code to an external observer such as myself who
had previously not been involved with the project. Care was taken to maintain the same

7000

6000

5000

4000

3000

2000

1000

0

n
e
w

s
t
a
t
e
s

f
o
u
n
d

2 52 01 51 050
level of BFS
134

8.3. Possibilities for further development
level of transparency and maintainability in implementing the additions and modifica-
tions necessary for the model checker so that these can continue to be used and devel-
oped as the tool continues to develop.

8.2.2. State explosion problem

From the outset of this thesis it was clear that the state explosion problem would be a
major issue. As it is not clear how many states will be found during a state space traversal
it can not always be predicted whether a search can be terminated or not. The full extent
of the issue was, however, underestimated and the checking of several larger systems
had to be aborted. It seems that the performance of SmallTalk also degrades somewhat
as the memory used grows. As it is not visible how many of the functions used are im-
plemented it is not always possible to make statements about the relative efficiencies of
algorithm variants.

Had this been recognised earlier, more effort would have been put into making fuller use
of model checking concepts such as BDDs. Now this must be referred to future deve-
lopment phases.

8.2.3. Overall appraisal

Although the system has yet to be presented to ‘guinea pigs’ among the CIP user com-
munity, in general I am convinced that the implementation is successful, that it is robust
and that it addresses real verification needs.

8.3. Possibilities for further development

8.3.1. Command line interface

It is difficult to sell a new tool without there being sound evidence for its correct per-
formance. Analytical analysis alone does not suffice to show that the execution tester re-
ally does behave identically to the generated and compiled code. Implementation errors
could have occurred. In section 1.5.3. (page 8) a method for demonstrating confidence
in the equivalence was described. Both systems execute in parallel and the results are
compared. With a command line interface such a process could be automatised for a very
large number of systems and inputs (see figure 1.2. on page 9).

8.3.2. Interfacing with SPIN

In sections 1.4.3. and 4.7.2. the possibilities for making CIP Tool work more closely
with SPIN were suggested. It was mentioned that it will soon be, at least in principle,
possible to feed the generated C-code to SPIN for checking. It was also pointed out that
this is not generally desirable due to the different level of abstraction. In generating C-
code we are moving a level of abstraction away from the model. Why run a complex ver-
135

8. Conclusions
ification of the abstraction when we can do a simple verification of the original? Espe-
cially bearing in mind the human errors that can be made when specifying properties for
the complex abstraction?

One exception to this recommendation is when the CIP model contains C-code opera-
tions and conditions (see sections 2.3.4. and 2.3.5.) which have a vital influence on the
property being tested. The reader will recall that the CIP model checker will not attempt
to parse such ‘hand written’ code fragments. Any decision based on such a condition is
considered non deterministic by the CIP model checker. If this is the case, this rather
cumbersome passage via C-code may be the only possibility. On the other hand, re-de-
sign or deployment of other CIP structures may reduce the importance of such structures
and make model checking possible in CIP.

8.3.3. Generating meta-code for other model checkers

As CIP is capable of automatically generating C-code or Java it would be but a relatively
small step to also include an option for generating meta-code for model checkers. This
way the full expressive power of large model checkers could be placed at the disposal of
the CIP user. The underlying concepts used in this project are all borrowed from or based
on those of large scale model checking and to bridge this gap by writing an interface
would be a relatively simple to achieve.
136

A.1. Sequence of transitions
Appendix A: Sequentiality and fairness

A.1. Sequence of transitions

A.1.1. Time and sequentiality

In section 3.2.6. the basic structure of state diagrams was introduced to describe systems.
One interpretation of such a state diagram is that when the implementation is being ob-
served, the active state can be mapped in function of time. When the system is initialised,
the active state is the initial state. This state changes in accordance with the events the
system receives. If all transitions are deterministic, then the active state of the system is
a function of the sequence of events that have been received up to that point. During the
course of the system’s execution, exactly one path is traversed.

Looking at the system for Model Checking purposes, however, we are not interested in
one path, but we want to be able to make general statements about all paths.

When looking at paths, their time schedules are of little importance. Important is the se-
quentiality of transitions (and thus events) which define the paths. This view of paths is
known as temporal logic.

A.1.2. Example of an interpretation problem

In section 3.5.5. (page 46) we stated that for the example system of figure 3.3. and 3.4.
(pages 43 and 43) the property eventually(B) holds. Does this mean that for any se-
quence of events we know that at all times we are sure that B will be fulfilled at some
point in the future?

Suppose that at the time our observation begins, the system is in state s0. In this state, the
proposition B is not fulfilled. Let us suppose that no further events occur for the rest of
time. On account of this, the proposition B is never fulfilled by the system.

Is this a valid counterexample disproving the property? This is discussed in sections
A.1.3. and A.2.

A.1.3. Infinite sequences

Liveness requirement: We require, that whatever the state of a Kripke structure,
a further transition will always be triggered.

This rule prevents the system from freezing in a state with enabled transitions.
137

Appendix A: Sequentiality and fairness
In some cases this rule may cause a problem. Certain transitions may never be triggered.
For example if we have a system with an emergency alarm switch, it would be incorrect
to say that it is certain that this switch will ever be used. This is also true when a state is
reached where no other transition is possible.

To illustrate this better, let us suppose we have a system with only one transition enabled
in the initial state, and that transition is triggered by the pressing of the emergency alarm
switch. According to the above statement, it is certain that this event will occur at some
point in the future.

Now, we compare this to a second system where another transition triggered by another
event is also enabled in the initial state. Now it is no longer certain that the emergency
alarm will be pressed.

This disparity is unsatisfactory. Whether or not it is certain that the emergency alarm will
be pressed is an absolute truth and should not depend on the presence or absence of al-
ternative transitions of the system. One remedy would be to soften up the above rule and
allow event sequences to terminate although further transitions are possible. This could
lead to false counterexamples as described in section A.1.2.

Another remedy is to ask the user to introduce dummy transitions (where the pre- and
post-states are the same and no action is taken) as alternatives to such transitions so that
full paths can exist where they are not executed. The user should recognise their neces-
sity from false counter-examples generated by the model checker. The introduction of
such loops can lead to an eventually property being wrongly failed but not to an eventu-
ally property being falsely verified. Thus the addition is safe.

figure A.1. Two systems compared

In the system on the left, the property eventually(s1) is fulfilled because all full paths of
the system each include the transition (s0, s1). This implies that the emergency alarm is
sure to be pressed. In the system on the right, the same property is not fulfilled because
there is a full path which continuously follows the loop (s0, s0, s0, ...). So the emergency
alarm is not sure to be pressed.

dummy

alarm_pressedalarm_pressed

s0 s0

s1 s1
138

A.2. Zeno’s Paradox of Achilles and the Tortoise
A.1.4. Sequentiality

The rule introduced in section A.1.3. rules the correlation between time and sequential-
ity. However, it is well worth looking into this thematic a little deeper. The following
case, which was first presented by the Greek philosopher Zeno, illustrates well the dif-
ference between the time and sequence based views of events and raises some interesting
points on this subject.

A.2. Zeno’s Paradox of Achilles and the Tortoise

A.2.1. Zeno

Zeno of Elea lived from circa 495 to circa 435 B.C. He presented a total of 40 paradoxes,
all of which reach absurd conclusions using apparently logical proof. None of his wri-
tings survive, but some of his paradoxes were paraphrased by Plato, Aristoteles and oth-
er commentators [25]. Arguably the best known of these paradoxes is the Paradox of
Achilles and the Tortoise [43].

A.2.2. The paradox

In this paradox, Zeno asks us to imagine that the athlete Achilles is to race a tortoise.
Achilles is able to run ten times faster than the tortoise, but the tortoise is given a head
start. Zeno provocatively states that Achilles is never able to overtake the tortoise. He
argues, that when Achilles reaches the point previously occupied by the tortoise, the tor-
toise has also made progress and consequently still occupies a more advanced position
than Achilles. By the time Achilles has reached the new position of the tortoise, the tor-
toise has again advanced. In this way, Achilles is unable to overtake the tortoise with any
number of iterations, and consequently he is unable to overtake the tortoise at all.

Of course, studying the problem kinetically, we could plot the time-space trajectories of
Achilles and the tortoise, and see that Achilles would overtake the tortoise after having
travelled ten ninths of the initial distance between the contestants. That is not the prob-
lem, however. The problem is finding the fault in Zeno’s reasoning.
139

Appendix A: Sequentiality and fairness
figure A.2. Time-space diagram showing progress of Achilles and tortoise in Zeno’s
paradox and the events triggering the first two observations

A.2.3. What does all this have to do with Model Checking?

We only make an observation when Achilles has reached the position occupied by the
tortoise at the last observation. The observer is inactive at other times. We could thus say
that Achilles reaching such a position is an event triggering the observer.

Although state diagrams were not invented until long after Zeno’s time, the state dia-
gram he is inferring in his explanation is the following.

figure A.3. State diagram of Achilles versus tortoise race

po
si

tio
n

time

fi
rs

t o
bs

er
va

tio
n:

 A
ch

ill
es

 r
ea

ch
es

 p
os

iti
on

 o
f

to
rt

oi
se

 a
t s

ta
rt

se
co

nd
 o

bs
er

va
tio

n:
 A

ch
ill

es
 r

ea
ch

es
 p

os
iti

on
 o

f
to

rt
oi

se
 a

t f
ir

st
 o

bs
er

va
tio

n

tra
jec

tor
y o

f A
ch

ill
es

trajectory of tortoise

st
ar

t o
f

ra
ce

s1

s0 e

e

s0 = tortoise leading.
s1 = Achilles leading.
e = event: Achilles reaches position occupied by
 tortoise at last e.
conditional transitions:
(s0, s1) if: position(Achilles) > position(tortoise)
(s0, s0) ELSE
140

A.2. Zeno’s Paradox of Achilles and the Tortoise
figure A.4. Kripke structure of Achilles versus tortoise race

If we do not include the kinematics of the situation in the model, the triggered transition
is non deterministic. reacheable(A, sinit) is fulfilled but eventually(A, sinit) is failed. This
means that Achilles is capable of overtaking the tortoise but it is not certain that he will.

If we do include the kinematics in the model, both reacheable(A, sinit) and eventually(A,
sinit) are false as Zeno tells us. We thus obtain a result which clearly contradicts reality.

With kinematics included in the model, when we wait sufficiently much time, Achilles
is certain to win. But even if we wait infinitely many events, the tortoise will still be
ahead.

This example shows how the time and event oriented approach to the problem can de-
liver completely different results.

A.2.4. Discussion

Is the event oriented approach sufficient to model a time oriented process, such as this
race? In a real-time system, the events would occur at ever shorter intervals and ultimate-
ly occur at such short intervals that the hardware would be unable to handle them faster
than they are queued in the buffer. The event buffer would then overflow, possibly lead-
ing to malfunction, or otherwise to events being lost. In either case, the result would no
longer be reliable.

This statement, however, is itself based on a time oriented approach, namely that the
hardware is running in a time driven and time oriented environment. In a hypothetical
event driven environment where time has no significance, Achilles would never over-
take the tortoise and the hardware would never cause such constraints.

But then it could also be argued that the kinematics of the race are also anchored in a
time oriented view of the universe and in a universe without time but with only sequen-
tiality, no statement could be made as to the absolute positions of the contestants. We
would only know that they have advanced between events. The transition would thus be
non deterministic and so would the outcome of the race.

As1

s0
A = proposition for “Achilles has overtaken tortoise”.
141

Appendix A: Sequentiality and fairness
A.2.5. Correspondence of time and sequentiality

In this example, the problem is caused by insufficient correspondence between the time
oriented and sequence oriented views of the system. Infinitely many events occur in fi-
nite time, preventing a full mapping of the time oriented view onto the sequence oriented
view. Just as we can reach any element of � if we count long enough, although � itself
is infinite, so we must be able to reach any event in the infinite event sequence by finite
sequential execution. This is not the case in Zeno’s example as it takes infinite events to
reach the case where the transition (s0, s1) is executed.

Finite event rate requirement:

It is necessary that a one-to-one mapping between time space and sequence space
is possible along the full relevant length of time and sequence space. For this to be
possible, the number of events occurring in a finite section of time must itself be fi-
nite.

In all real systems, this property is already fulfilled. Any implementation not fulfilling
it is not sustainable because such a system would suffer a hardware failure of the type
described in the first paragraph of section A.2.4.

A.2.6. Conclusion

Zeno’s prediction of the outcome of the race defies kinetics because the proof is per-
formed in event space rather than time space. The point in time where Achilles should
overtake the tortoise is never reached because it requires infinite events to reach that
point. The fault in the reasoning lies in Zeno choosing a model where infinite events oc-
cur in finite time.

A.2.7. Application

Where is the applicability of this paradox, seeing thst in the models likely to be modelled
by CIP-Tool, such scenarios can practically be excluded? They can be excluded when
the events triggering the transitions are real physical events. But what about dummy
events introduced for modelling purposes such as that of figure A.1. (page 138).

The dummy transition was introduced to falsify the claim that the alarm will certainly
be pressed. Because of the dummy transition, there is a fair full path which never reaches
s1. This path models the case that the alarm is not used at any point during the life of the
system, which is physically possible and even likely. The dummy transition has no phys-
ical trigger, and so it will not be traversed during the real operation of the system. For
the model-checker, however, it can be traversed infinitely. Because of the liveness re-
quirement, the model assumes that either the alarm must be pressed at some point, or the
dummy transition must be executed. In the latter case, the system returns to its initial
142

A.3. Fairness
state and faces the same choice again. As the model is not bound by time constraints, we
can model infinite traversals of the dummy transition. We can even model infinite tran-
sitions and map this onto finite time. All events occurring beyond this finite time are no
longer relevant and so this construct can be used to circumvent the liveness requirement.
The finite event rate requirement is necessary to prevent this.

A.3. Fairness

A.3.1. About fairness in general

In this section the need for fairness in model checking will be introduced. Fairness will
be defined and its implementation shown. Fairness as applied here is not completely
identical to the general definition of fairness which has been discussed in sections 4.4.
and 4.5.

A.3.2. The problem of event starvation

In section A.1. we saw that every state s in a continuing path must be followed by a fur-
ther state unless s is a dead-end. In this section it will be shown that not all paths are ac-
ceptable and that further criteria are necessary for determining paths representing real
behaviours of the system.

In the state diagram of figure A.5. a system is shown which moves an object towards its
required position. The object is initially not moving and not in the required position.
Movement is always towards the required position and this position is immobile. The
movement can be started and stopped by the events start and stop. When the required
position is attained, this is communicated by the event arrived. The movement stops and
cannot be restarted.

figure A.5. An example system in which event starvation can occur

We wish to verify the property eventually(done). Considering the system being mo-
delled, we know that this is fulfilled because the required position is immobile (in con-
trast to Zeno’s tortoise) and movement is always towards it.

start stop

arrived

not_moving

moving done
143

Appendix A: Sequentiality and fairness
Studying the state diagram, this is not apparent. The diagram allows the path
[not_moving, moving, not_moving, moving,]. This path can continue infinitely with-
out ever visiting done. We say that the transition (moving, done) is being starved. Al-
though the path enters the pre-state of the transition infinitely often, the transition is
never executed.

A.3.3. Preventing starvation

A first approach to preventing starvation would be to disallow paths which infinitely of-
ten visit the pre-state of a transition without executing the transition. This is insufficient
as some transitions need never be executed as discussed in section A.1.3. (we would be
able to infer that every system with an emergency alarm button will eventually stop be-
cause the button will eventually be used).

To solve this problem we extend the model system by the concept of fairness.

A.3.4. Fairness constraints, fair and unfair transitions

A fairness constraint is an attribute which can be associated with one or several transi-
tions.

This is defined in sections 3.7.2. to 3.7.7.

A.3.5. System behaviour

The behaviour of a system is the set of all its full fair paths.

A.3.6. Some examples

Returning to the example of section A.3.2. we declare that the transition (moving, done)
has the fairness constraint f. The loop infinitely executing (not_moving, moving) is un-
fair because the transition (moving, done) is enabled in state moving, but no transition
with the fairness constraint f transition is executed in the loop. Therefore no fair path
may infinitely repeat that loop. The condition eventually(done) is fulfilled.
144

A.3. Fairness
figure A.6. Example of section A.3.2. modified by adding a fairness constraint

Is the loop [s0, s1, s3, s2, s0] of the system of figure A.7. fair? No, it is unfair. It visits the
states s1 and s3 where transitions with the fairness constraint f0 are enabled but no such
transition is executed on the loop.

figure A.7. Example system (from figure 4.11. on page 62)

Is the loop [s0, s1, s2, s0] fair? No, it visits the state s1 where a transition with the fairness
constraint f1 is enabled but no such transition is executed on the loop.

Is the loop [s0, s1, s3, s2, s0, s1, s2, s0] fair? Yes, because the only transition to be enabled
but not executed is (s3, s4). This transition has a fairness attribute but this attribute is also
fulfilled by the transition (s1, s3) which is part of the loop. This example shows how un-
fair loops can sometimes be combined to make fair loops.

Is the path [s0, s1, s3, s4] fair? It visits the state s3 where a transition with the fairness
constraint f2 is enabled and no transition with that constraint is executed on the path. But
the path length is not infinite so this is of no concern. All finite paths are fair.

start stop

arrived

not_moving

moving done

[f]

fairness attributes of transitions are
shown in square brackets.

s0

s1 s2

s3

s4

[f0]

[f0]

[f2][f1]
145

Appendix A: Sequentiality and fairness
A.3.7. Another look at Zeno’s paradox

Does the introduction of fairness constraints make any difference to the paradox of sec-
tion A.2.? We know that Achilles runs faster than the tortoise. Therefore it is fair that he
will catch up with the tortoise. A fairness constraint must be attached to the transition
(s0, s1) of figure A.3. Because of this fairness constraint, Achilles must overtake the tor-
toise in a finite number of steps.

This conclusion is almost as confusing as the original paradox. We know that Zeno is
right when he says that Achilles cannot overtake the tortoise in a finite number of steps,
yet we have created a case where this is not so. The reason lies once again in the finite
event rate requirement of section A.2.5. If we could somehow limit the events to a finite
number of events in finite time, Achilles would indeed overtake the tortoise and the
model would once again be correct.

A.4. Reachability and fair paths

A.4.1. Proof

In section 3.7.6. (page 49) it was claimed that:
All states reacheable by an unfair full path are also reacheable by a fair full path.

Proof:
A state s is visited by an unfair full path u. We wish to demonstrate that there also exists
a fair full path visiting s.
Because the state space is finite, there exists a finite path v’ so that v’ starts in the initial
state and ends in s.

∀s ∈ SR : ∃v’ ∈ P : (first(v’) = sinit) ∧ (last(v’) = s)

For s to be unreacheable by fair full paths, all full paths having v’ as prefix must be un-
fair. The following demonstration shows that this is not possible.

Let V be the set of full paths (both fair and unfair) with v’ as prefix or subpath.

V ⊆ P | ∀v ∈ V : v’ ∈ subpath(v)

If s is unreacheable by fair full paths, then V contains only unfair paths.
Every path in V infinitely visits at least one state z, in which a transition r with farness
constraint f is enabled, so that transitions of f are not traversed infinitely by the path.

(V ∩ FP = ∅) ⇒ ∀v ∈ V : ∃z ∈ SR : (occurrences(z, v) = ∞ ⇒
(∀r ∈ enabled(z): ∀f ∈ fairness(r): ∀t ∈ f: occurrences(t, v) ∈ �))
146

A.4. Reachability and fair paths
If no transition of f is traversed infinitely by any path of V, then:
a) no transition of f is traversed by any path of V after first reaching s.
b) some transitions of f are traversed by some paths of V after first reaching s, but no
path does so infinitely.

Case (a) cannot be because if a path of V enables r, then there must also be a path of V
traversing r.

Case (b) implies that the fair transitions are so placed that they cannot be infinitely tra-
versed, otherwise at least one path of V would traverse them infinitely. Therefore, for
any transition t ∈ f so that pre(t) is reacheable from s, pre(t) is not reacheable from
post(t). The state-space containing the paths of V after this transition must thus exclude
pre(t).

(V ∩ FP = ∅) ⇒ (∀t ∈ f : reacheable(pre(t), s) ⇒ ¬reacheable(pre(t), post(t)))

All paths of V traversing r must do so exactly once. As these paths are all unfair, they
must infinitely enable other transitions of f. The same argument applies for these transi-
tions.

Therefore V must contain at least one path which infinitely traverses transitions of f, but
after reaching s traverses each transition of f at most once.

This is impossible because the state space is finite.

Therefore it is impossible for V to contain only unfair paths.
147

Appendix A: Sequentiality and fairness
148

B.1. Fairness constraints
Appendix B: Notes on similar work

B.1. Fairness constraints

In section 4.5.4. CTL fairness constraints were introduced and their applicability to the
fairness constraints used in this project (see section 3.7.3.) was discussed (hereafter
called project fairness constraints to avoid confusion). In the following it is demonstra-
ted that project fairness constraints are a special case of CTL* fairness constraints.

B.1.1. A special case of a CTL* fairness constraint

The formula for a project fairness constraint is:

fairTrans(p, n, f) ∨ G¬preFair(p[n], f)

where:

p is the path on which these formulas are tested.
n is an integer representing the position on the path at which these formulas are tested.
f is a fairness constraint according to the definition of this project.
the formula fairTrans(p, n, f) is true only if constraint f applies to the nth transition of
path p:

fairTrans: P × � × F → {true, false}
fairTrans(p, n, f) := (∃t ∈ f : ((t ∈ enabled(p[n])) ∧ (p[n+1] ∈ post(t))))

the formula preFair(s, f) is true only if a transition with constraint f is enabled in state s :
preFair: S × F → {true, false}
preFair(s, f) := (enabled(s) ∩ f ≠ ∅)

B.1.2. Proof

If fairTrans(p, n, f) ∨ G¬preFair(p[n], f) is true for infinite n along p, then
- either infinitely many transitions along the path have the fairness constraint f.
- or transitions with fairness constraint f are not infinitely activated (hence a point is
reached on the path that no further activations occur).

Proof that this expression is equivalent to project fairness:

fairTrans(p, n, f) ∨ G¬preFair(p[n], f)
is true infinitely often along all fair full paths
149

Appendix B: Notes on similar work
∀(f, p) ∈ F × FP :
propCountn(fairTrans(p, n, f)
∨ (∀m ∈ � : ¬preFair(p[n+m], f)), p) = ∞

⇔

(splitting the propCount operator)

∀(f, p) ∈ F × FP : (
(propCountn(fairTrans(p, n, f), p) = ∞)
∨
(propCountn(∀m ∈ � : ¬preFair(p[n+m], f), p) = ∞))

⇔

(splitting the ∀ operator)

(∀(f, p) ∈ F × FP : propCountn(fairTrans(p, n, f), p) = ∞)
∨

(∀(f, p) ∈ F × FP : propCountn(∀m ∈ � : ¬preFair(p[n+m], f), p) = ∞)

These two statements are considered individually:

∀(f, p) ∈ F × FP : propCountn(fairTrans(p, n, f), p) = ∞

⇔

(replacing fairTrans by its definition)

∀(f, p) ∈ F × FP : propCountn(
(∃t ∈ f : ((t ∈ enabled(p[n])) ∧ (p[n+1] ∈ post(t)))), p) = ∞

⇔

∀(f, p) ∈ F × FP : propCountn(
∃t ∈ f : ((p[n] ∈ pre(t)) ∧ (p[n+1] ∈ post(t))), p) = ∞

⇔

(because f is a finite set at least one of its elements must occur infinitely along p)

∀(f, p) ∈ F × FP : ∃t ∈ f: occurrences(
t : ((p[n] ∈ pre(t)) ∧ (p[n+1] ∈ post(t))), p) = ∞
150

B.1. Fairness constraints
⇔

∀(f, p) ∈ F × FP : ∃t ∈ f : occurrences(t, p) = ∞

It also follows:

∀(f, p) ∈ F × FP : ∃t ∈ f : occurrences(t, p) = ∞

⇒

∀(f, p) ∈ F × FP : ∃t ∈ f : occurrences(pre(t), p) = ∞

Therefore:

∀(f, p) ∈ F × FP : propCountn(fairTrans(p, n, f), p) = ∞

⇔

(∀(f, p) ∈ F × FP : ∃t ∈ f : occurrences(t, p) = ∞)
∧

(∀(f, p) ∈ F × FP : ∃t ∈ f : occurrences(pre(t), p) = ∞)

Now turning to the second statement:

∀(f, p) ∈ F × FP : propCountn(∀m ∈ � : ¬preFair(p[n+m], f), p) = ∞

⇔

(replacing preFair by its definition)

∀(f, p) ∈ F × FP : propCountn(∀m ∈ � : ¬(enabled(p[n+m]) ∩ f ≠ ∅), p) = ∞

⇔

∀(f, p) ∈ F × FP : propCountn(∀m ∈ � : enabled(p[n+m]) ∩ f = ∅, p) = ∞

⇔

(infinitely many continuing sub-paths do not execute any fair transitions. We
study only one of these but without losing generality because this continuing
subpath itself has infinite continuing subpaths which do not execute any fair
transitions)

∀(f, p) ∈ F × FP : ∃n ∈ � : ∀m ∈ � : enabled(p[n+m]) ∩ f = ∅
151

Appendix B: Notes on similar work
⇔

(the formula enabled(p[k]) ∩ f ≠ ∅ can be fulfilled at the most n times)

∀(f, p) ∈ F × FP : propCountk(enabled(p[k]) ∩ f ≠ ∅, p) ≤ n

⇔

∀(f, p) ∈ F × FP : ∀t ∈ f : occurrences(pre(t), p) ≤ n

⇒

∀(f, p) ∈ F × FP : ¬∃t ∈ f : occurrences(pre(t), p) = ∞

Therefore:

∀(f, p) ∈ F × FP : propCountn(∀m ∈ � : ¬preFair(p[n+m], f), p) = ∞

⇔

(∀(f, p) ∈ F × FP : ∀t ∈ f : occurrences(pre(t), p) < ∞)
∧

(∀(f, p) ∈ F × FP : ¬∃t ∈ f : occurrences(pre(t), p) = ∞)

Putting the two parts back together:

∀(f, p) ∈ F × FP :
propCountn(fairTrans(p, n, f)
∨ (∀m ∈ � : ¬preFair(p[n+m], f)), p) = ∞

⇔

((∀(f, p) ∈ F × FP : ∃t ∈ f : occurrences(t, p) = ∞)
∧

(∀(f, p) ∈ F × FP : ∃t ∈ f : occurrences(pre(t), p) = ∞))
∨

((∀(f, p) ∈ F × FP : ∀t ∈ f : occurrences(pre(t), p) ≤ n)
∧

(∀(f, p) ∈ F × FP : ¬∃t ∈ f : occurrences(pre(t), p) = ∞))

This statement is universally true. It follows that:

∀(f, p) ∈ F × FP : (∃r ∈ f : occurrences(pre(r), p) = ∞ ⇒
∃t ∈ f : occurrences(t, p) = ∞)
152

B.1. Fairness constraints
⇔

(substituting s for pre(r))

∀(f, p) ∈ F × FP : (∀s ∈ S : occurrences(s, p) = ∞ ⇒
(f ∩ enabled(s) ≠ ∅ ⇒
∃t ∈ f : occurrences(t, p) = ∞))

⇔

(moving the declaration of f)

∀p ∈ FP : (∀s ∈ S : occurrences(s, p) = ∞ ⇒
∀f ∈ F : (f ∩ enabled(s) ≠ ∅ ⇒
∃t ∈ f : occurrences(t, p) = ∞))

⇔

(splitting f ∩ enabled(s))

∀p ∈ FP : (∀s ∈ S : occurrences(s, p) = ∞ ⇒
∀f ∈ F : ∀r ∈ enabled(s) : (r ∈ f ⇒
∃t ∈ f : occurrences(t, p) = ∞))

⇔

(∀f ∈ F : ∀r ∈ enabled(s) : r ∈ f ⇒ is equivalent to ∀r ∈ enabled(s) : ∀f ∈ fair-
ness(r) :)

∀p ∈ FP : (∀s ∈ S : occurrences(s, p) = ∞ ⇒
∀r ∈ enabled(s) : ∀f ∈ fairness(r) : ∃t ∈ f : occurrences(t, p) = ∞)

⇔

(the statement can only hold for states s which are visited by the path)

∀p ∈ FP : (∀s ∈ visited(p) : occurrences(s, p) = ∞ ⇒
∀r ∈ enabled(s) : ∀f ∈ fairness(r) : ∃t ∈ f : occurrences(t, p) = ∞)

Which is the project definition of fair paths (compare section 3.7.3.)
153

Appendix B: Notes on similar work
154

C.1. Effects of cluster reduction on behaviour
Appendix C: Cluster reduction

C.1. Effects of cluster reduction on behaviour

In section C.1.1. an example is discussed which does not reduce the state-space and in-
troduces additional behaviour. In sections C.1.2. and C.1.3. examples are discussed
which lead to existing behaviour being omitted. The reader who is not interested in stud-
ying these examples can jump to the discussion in section C.1.4.

C.1.1. Example of cluster reduction leading to new behaviour.

Starting off with the same system as used in the previous example, we wish to investi-
gate a condition dependent on processes button and door. In this example the results of
using the full cluster and of using a cluster reduced by removing processes lamp and con-
troller are compared.

In figure C.1. the process state graphs of the reduced cluster are shown. In figure C.2.
the corresponding cluster state graph is shown.

figure C.1. processes of reduced cluster (as figure 5.1. but processes lamp and control-
ler omitted)

1

pressed
Down

2

released
Up

downup

process: button process: door

closed opening

open

6
DoorClosed

7

opened
DoorOpen

Stop

3
close_command

Close

closing

2

opened
DoorOpen

Stop

reopening

5
button_pressed

Open

1

opening
button_pressed

Open

4

closed
DoorClosed

Stop
155

Appendix C: Cluster reduction
figure C.2. Cluster-state graph of cluster of figure C.1.

As comparison, the cluster state graph of the full cluster is shown in figure C.3.

figure C.3. State-graph for processes door and button projected from full cluster state-
graph

Comparison of figures C.2. and C.3. shows that two additional states and four additional
transitions have been introduced by the omission of processes lamp and controller. This
is because process door is able to receive a timeout in the reduced state graph whereas
this is not possible in the full state graph. Whether or not these additional states and tran-

closed

opening

open

closing

reopening

pr
oc

es
s

do
or

up down

process button

closed

opening

open

closing

reopening

pr
oc

es
s

do
or

up down

process button
156

C.1. Effects of cluster reduction on behaviour
sitions are a problem depends on the condition being checked. The effects of these ad-
ditional states and transitions will be discussed later (see section C.1.4).

This example shows that cluster reduction does not always reduce the complexity of the
system. In this example, the number of cluster states and number of transitions has actu-
ally increased over that of the full system. Admittedly, this example was constructed for
the purpose of demonstrating this, and the effect of the actual increase in the number of
states and transitions can be considered to be rather exceptional. However, even if the
total number of transitions decreases, the appearance of additional ones does create false
behaviours.

C.1.2. Example of behaviour loss through cluster reduction.

Again, starting off with the same system as used in the previous example, we wish to
investigate a condition dependent on processes button and lamp.

figure C.4. processes of reduced cluster (as figure 5.1. but processes door and control-
ler omitted)

The transitions of this reduced cluster are listed in the following table:

table C.1. Cluster-transitions of cluster of figure C.4.

off on_dark
3
released

Dark

2
pressed

Bright

on_bright4
closed

Off

1
opening

Dark

1

pressed
Down

2

released
Up

downup

process: button process: lamp

pre-state

lampbutton

up1 off1

button lamp

triggerpost-state

down off Down
up1 off1 up on_dark opening
down off up off Up

openingdown off down on_dark
up on_dark down on_bright Down
up on_dark up off closed

1: initial cluster state

down on_dark up on_dark Up
down on_dark down off closed
down on_bright up on_dark Up
157

Appendix C: Cluster reduction
figure C.5. Cluster-state graph of reduced cluster of figure C.4.

Does the reduced cluster-state graph still accurately represent the behaviour of these two
processes?

figure C.6. Projection of state diagram of processes button and lamp out of full cluster
state diagram.t

up

down

pr
oc

es
s

bu
tt

on

off on_dark

process lamp
on_bright

off on_dark on_bright

process lamp

up

down pro
ces

s

butto
n

158

C.1. Effects of cluster reduction on behaviour
figure C.7. Projected state graph showing processes button and lamp, projected from
full cluster (compare figure C.5.).

Comparing figure C.5. with figure C.7., we see some fundamental differences. The tran-
sition ([up, off], [down, on_bright]) appears in the projected state-graph but not in the
reduced cluster-state graph. This is because in the full state graph, process lamp is acti-
vated twice in a single transition. In the same cluster transition, a pulse is first propagated
from process button to process lamp via process door, and then a second pulse is prop-
agated directly.

figure C.8. pulse cast net from figure 2.11. with processes door and controller removed

With process door removed, this double activation no longer occurs. The transition ([up,
off], [down, on_bright]) can be replaced by other sequence transitions reaching the same
state. This is not the same thing, however, as it is not the same behaviour which is being
modelled. In figure C.9., the three process transitions which compose the cluster transi-
tion ([up, off], [down, on_bright]) are shown. The process transitions are shown as dotted
lines and the cluster transition as a full line.

First, the process button is activated by the message Down. The process transition (up,
down) is executed. The outPulse pressed is propagated via process door to process lamp
where it is received as inPulse opening. This triggers the process transition (off,
on_dark). Next, the outPulse pressed from process button is received directly by process
lamp where it triggers the process transition (on_dark, on_bright).

up

down

pr
oc

es
s

bu
tt

on

off on_dark

process lamp
on_bright

door lamp

controller

button
159

Appendix C: Cluster reduction
figure C.9. The cluster transition ([up, off], [down, on_bright]) of the projected full
state cluster decomposed into process transitions

In the reduced cluster this behaviour is not possible. The process transition (up, down)
can be triggered just as described above. The outPulse pressed is cast to the process door
where it is lost because this process is missing in the reduced cluster. The same outPulse
is then cast directly to process lamp but cannot trigger any transition because process
lamp is not in a suitable pre-state. As a next step, the message opened (replacing the in-
Pulse opened from process door) can be sent to process lamp. There it triggers the tran-
sition (off, on_dark). So far the behaviour of the projected full cluster has been correctly
emulated. However, the third transition (on_dark, on_bright) cannot be triggered be-
cause it must be triggered by the inPulse pressed from process button. This process is
unable to send the corresponding outPulse because it is in a state where the required tran-
sition is not active.

C.1.3. Further example of behaviour loss through cluster reduction

To accentuate the problem, let us make a small and seemingly insignificant modification
to the cluster. If the process transition (off, on_dark) in process lamp were dependent on
a gate (see section 2.6.2.) requiring that process button be in state down, this would have
no effect on the behaviour of the full cluster because in the full cluster this is already ful-
filled for the one instance where this transition occurs (transition 1 in figure 5.2.,
page 78). Likewise, making the process transition (down, up) in process button depen-
dent on a gate requiring process lamp to be in state on_bright does not affect the behav-
iour of the full cluster, because it is also fulfilled in all instances where it occurs (transi-
tions 2, 6 and 13 in the same figure). In the reduced cluster, however, the effects of these
restrictions would be catastrophic.

up

down

pr
oc

es
s

bu
tt

on

off on_dark

process lamp
on_bright process transition, component of

cluster transition

cluster transition

temporary intermediate state
during cluster transition
160

C.1. Effects of cluster reduction on behaviour
table C.2. Table of table C.1. with the transitions which are disabled by the described
changes crossed out

figure C.10. Cluster-state graph of reduced and modified cluster

Note that although six transitions remain in the transition table, only three are in the clus-
ter state graph. The other three transitions cannot be executed because they cannot be
enabled (as their pre-states are no longer reacheable).

Many of the states reacheable in the projected full cluster (figure C.7.) are not reacheable
any more. Thus the apparently attractive method of reducing the cluster complexity by
removing processes must be modified to circumvent this problem.

C.1.4. General discussion on the effects of cluster reduction

Cluster reduction does not always perfectly preserve behaviour. Additional cluster tran-
sitions can be created and cluster transitions can be lost. It would seem at first that the
method is therefore not very useful.

Cluster reduction is best suited to removing processes having no effect on the condition
being verified. Limiting the method to such cases, however, is often impractical as the
results of the interconnectedness of processes is not always clear. A more general ap-
proach to handling such non-idealities is thus required.

pre-state

lampbutton

up1 off1

button lamp

triggerpost-state

down off Down
up1 off1 up on_dark opening
down off up off Up

openingdown off down on_dark
up on_dark down on_bright Down
up on_dark up off closed

1: initial cluster state

down on_dark up on_dark Up
down on_dark down off closed
down on_bright up on_dark Up

up

down

pr
oc

es
s

bu
tt

on

off on_dark

process lamp
on_bright
161

Appendix C: Cluster reduction
The cases of cluster transitions being lost are due to the loss of sequentiality when a pro-
cess is activated several times during a cluster transition. This phenomenon can be reli-
ably prevented using methods which will be presented in section C.2.

In other cases, cluster transitions are conserved and additional transitions appear. What
effects do the additional transitions have on model checking?

When testing for eventually, these transitions provide additional safety. All paths of the
full cluster survive in the reduced cluster and additional ones also appear. If the eventu-
ally property is fulfilled for all paths of the reduced cluster, then it is also fulfilled for all
paths of the full cluster. If, however, the condition is failed for the reduced cluster, there
is still a possibility it might be fulfilled for the full cluster (especially if the counter ex-
ample would not be possible in the full cluster), and the check could be started again with
a different set of processes.

When testing for invariance, the same safety applies as for eventually.

When testing for reacheability, there is no safety, however, as states may be reacheable
in the reduced cluster which are not reacheable in the full cluster. In the case of positive
reacheability (the user wants the condition to be fulfilled), cluster reduction is of no use.
However, positive reacheability is normally of little interest to the developer as it can be
demonstrated by a simple example. Negative reacheability is normally of more interest
(the developer wishes to make sure certain states are not reached). Here too, cluster re-
duction is a useful device.

C.2. Preventing loss of transitions in cluster reduction

C.2.1. The problem of loss of behaviour

Cluster reduction can lead to loss of behaviour (transitions are no longer possible and
states are no longer reacheable). Loss of behaviour is possible when at some point in an
interaction tree of the full cluster, a transition can be executed which is dependent on an-
other transition which could have been executed at an earlier point during the interaction
tree, but it is not known whether this transition was actually executed. Examples of this
were discussed in sections C.1.2. and C.1.3.

To prevent such erroneous propagation patterns, a first approach is to design the model
checker to recognise pulse propagation structures which can lead to such behaviour and
give them an appropriate treatment.
162

C.2. Preventing loss of transitions in cluster reduction
C.2.2. Detecting potential loss of behaviour

When setting up the model of the (reduced) cluster for model checking, the checker iden-
tifies situations which can potentially lead to loss of transitions. It does this by traversing
every potential interaction tree and analysing it for potential loss of behaviour. Behav-
iour can be lost when a transition is to be performed which is dependent on another tran-
sition in a part of the tree which was not executed.

algorithm C.3. Detecting potential loss of behaviour

A depth first traversal of the interaction tree (see section
2.5.4.) is performed (traversal in the order of activation during
execution).

For every process P of the reduced cluster reached during tra-
versal and the associated inPulse in, the following operations
are performed:

- if a process Q not in the reduced cluster occurs above P in
the tree hierarchy, then all transitions of P which can be exe-
cuted at this point in the traversal are associated with Q.

- for all transitions r of P which are triggered by in; if r is
dependent on a transition associated with a process which does
not occur above P in the tree hierarchy, then a potential loss
of behavior is detected.

Explanation:

When calculating a traversal of the reduced cluster, the pre-state of the cluster reduction
is known. Therefore the process pre-states of all processes of the reduced cluster are
known. It is thus known whether an inPulse triggers a process transition or not and
whether an outPulse is sent. When a process is missing, however, its pre-state is not
known and so it is not known whether or not an outPulse was sent. For all processes oc-
curring below this missing process in the interaction tree, it is not known whether a tran-
sition took place or not. These are associated with the missing process on which this
transition is dependent. Any further transition of a process of the cluster that is depen-
dent on these transitions can thus be identified.

C.3.3. Example of detecting loss of behaviour

This example shows how the method presented above detects the loss of behaviour that
was illustrated in section C.1.2. The interaction tree for this example is shown in figure
C.11.
163

Appendix C: Cluster reduction
figure C.11. Interaction tree (from figure 2.16.)

In this example, the reduced cluster has only processes button and lamp.

Process button is activated by message Down and can send outPulse pressed to process
door. No actions are needed on process button, because there are no processes above it
in the tree.

The outPulse is translated to inPulse button_pressed and sent to process door. No action
is required on process door as it is not in the reduced cluster. The translations that can
be triggered by the inPulse button_pressed are (closed, opening) and (closing, reopen-
ing). The former sends the outPulse opening, the latter sends no outPulse.

This outPulse opening is translated to inPulse opening and sent to process lamp. InPulse
opening can trigger the transition (off, on_dark). The process door is above lamp in the
tree hierarchy and door is not in the reduced cluster. So the transition (off, on_dark) is
associated with the process door.

(off, on_dark) -> {door}

The next process to be considered in the interaction tree traversal is lamp again. It re-
ceives inPulse pressed. The inPulse pressed triggers the transition (on_dark, on_bright).
This transition is dependent on (off, on_dark) which is associated with process door.
Process door does not occur above the present instance of process lamp in the tree hier-
archy. A potential loss of behaviour is thus detected.

process button
trigger: Down
outPulse: pressed

process door
trigger: button_pressed
outPulse: opening

process lamp
trigger: pressed
outPulse: (none)

process controller
trigger: pressed
outPulse: (none)

process lamp
trigger: opening
outPulse: (none)

= process in reduced cluster

= process not in reduced cluster
164

C.2. Preventing loss of transitions in cluster reduction
C.3.4. Handling loss of behaviour by tree splitting

Loss of behaviour can occur when the execution of transitions in the correct order is not
possible due to transitions being disabled when the correct order of execution cannot be
observed.

We can prevent this by splitting up interaction trees. The tree is divided above every
process where potential loss of behaviour is detected and the severed section is made
into a separate interaction tree.

We split the tree above the process occurrence where the potential loss of behaviour is
first detected. If the cast being split casts to further processes after the process occur-
rence where potential loss of behaviour was first detected, these further process occur-
rences are made part of the tree being split off. Correct behaviour could also be observed
if these remained with the main tree, but splitting this way helps conserve sequentiality.

C.3.5. Example of handling loss of behaviour

We return to our now amply discussed example last visited in section C.3.3.

The potential loss of behaviour is detected in the second occurrence of process lamp. The
tree is separated above this process occurrence as shown in figure C.12.

figure C.12. The interaction tree is severed above the second occurrence of process
lamp

The two resulting interaction trees are shown in figure C.13.

process button
trigger: Down
outPulse: pressed

process door
trigger: button_pressed
outPulse: opening

process lamp
trigger: pressed
outPulse: (none)

process controller
trigger: pressed
outPulse: (none)

process lamp
trigger: opening
outPulse: (none)

= severed connection

= process in reduced cluster

= process not in reduced cluster
165

Appendix C: Cluster reduction
figure C.13. The interaction tree is divided into two separate trees

Omitting the processes not included in the reduced cluster, we end up with three inter-
action trees formed from the original tree.

figure C.14. Processes not in the reduced cluster are removed from the interaction tree

The effects of the three separated trees on the reduced cluster behaviour is the following:

process button
trigger: Down
outPulse: pressed

process door
trigger: button_pressed
outPulse: opening

process lamp
trigger: pressed
outPulse: (none)

process controller
trigger: pressed
outPulse: (none)

process lamp
trigger: opening
outPulse: (none)

= process in reduced cluster

= process not in reduced cluster

interaction tree #1 interaction tree #2

process button
trigger: Down
outPulse: pressed

process lamp
trigger: pressed
outPulse: (none)

process lamp
trigger: opening
outPulse: (none)

interaction tree #1 interaction tree #2 interaction tree #3
166

C.2. Preventing loss of transitions in cluster reduction
table C.3. Table of transitions of this example

figure C.15. Reduced cluster state graph

The more restrictive example of section C.1.3. is treated likewise. The resulting cluster
state graph is shown in figure C.16.

figure C.16. Reduced cluster state graph for more restrictive example of section C.1.3.

Comparing figure C.15. and figure C.16. to figure C.9., we see that all states reacheable
in the projection of the full cluster state graph are now again reacheable in the reduced
cluster state graphs. Not all transitions from figure C.9. appear, because ([up, off],
[down, on_bright]) has been decomposed into its component transitions: ([up, off],

pre-state

lampbutton button lamp

triggerpost-state

1: initial cluster state

up1 off1 down off Down
up1

down
off1 up on_dark opening
off up off Up

down off down on_dark opening
up on_dark down on_dark Down
up on_dark up off closed
up on_dark up on_bright pressed
down on_dark up on_dark Up
down on_dark down off closed
down on_dark down on_bright pressed
up on_bright down on_bright Down
down on_bright up on_dark Up

up

down

pr
oc

es
s

bu
tt

on

off on_dark

process lamp
on_bright

up

down

pr
oc

es
s

bu
tt

on

off on_dark

process lamp
on_bright
167

Appendix C: Cluster reduction
[down, off]), ([down, off], [down, on_dark]) and ([down, on_dark], [down, on_bright]).
Likewise, ([up, on_dark], [down, on_bright]) has been decomposed into its component
transitions: ([up, on_dark], [up, on_bright]) and ([up, on_bright], [down, on_bright]).

It is obvious that this splitting of the interaction tree has also produced a whole range of
new transitions adding to the behaviour of the system but having nothing to do with the
original behaviour. This adds to the state-explosion problem which cluster reduction was
actually intended to alleviate. Whether or not this method is appropriate must be judged
on a case to case basis.

Some of the transitions of figure C.15. and figure C.16. are avoidable, however, if cer-
tain structural measures are taken to prevent transitions firing out of context.

C.3.6. Measures reducing the number of additional transitions

Until now we have assumed that process states are arbitrary when pulses are cast. This
assumption is too general and the enhancement discussed here addresses the issue of
making better use of available information.

When a process �cast casts a pulse p to the first receiving process �rec1, the state of �cast
must be the post-state of a transition able to cast p. If it were not then no such transition
could have been executed and p would not be cast. Therefore, when �rec1 receives that
pulse, the state of �cast is not arbitrary.

figure C.17. Interaction tree structure.

The pulse cast is propagated to the processes below �rec1 in the interaction tree. It could
be that the process �cast appears below �rec1 in the interaction tree. If this is the case,
�rec1 could change its state again. This is not certain however, as it depends on whether
or not the interaction was propagated so far and whether the triggered transition was en-
abled.

�cast

�rec1 �rec2
168

C.2. Preventing loss of transitions in cluster reduction
When the execution of the part of the interaction tree below �rec1 is complete, the pulse
p is cast from �cast to �rec2. �rec2 being the state after �rec1 in the cast order of �cast.

At this point, the state of �cast is either still the post-state of the transition that cast p, or
it is in the post-state of another transition that was executed in the part of the interaction
tree below �rec1.

Now, supposing the tree were split between �rec1 and �rec2. In the previous approach,
the interaction tree starting with �rec2 is independent of that from which it was separated.
Therefore it can be triggered independently of the state of �cast. This approach does not
make full use of our knowledge of the system. The triggering of the tree starting with
�rec2 can be limited to cases where the state of �cast is the post-state of a transition exe-
cuted during the full interaction tree prior to that point.

To implement this in practice, �cast is added as the root of the split off interaction tree T.
Non state-changing transitions are added from all states at which T can be triggered.
These transitions trigger the interaction tree T and are triggered by messages created for
the purpose.

C.3.7. Example of reducing the number of additional transitions

Once again, we return to our example with the processes button and door. Interaction
tree #2 (from figure C.14.) has the process button added at its root. The trigger is a new
message introduced for the purpose.

figure C.18. process button is added as a root to interaction tree #2 (compare figure
C.14.)

The process state graph of process button is extended by adding a transition 3 as shown
in figure C.19. Transition 3 is a non state changing transition added at state down. State
down is the post-state of the only transition. (The model checker does not actually mod-

process button
trigger: Down
outPulse: pressed

process lamp
trigger: pressed
outPulse: (none)

process lamp
trigger: opening
outPulse: (none)

interaction tree #1 interaction tree #2 interaction tree #3

process button
trigger: _pressed_to_lamp
outPulse: pressed_2
169

Appendix C: Cluster reduction
ify the CIP-model but behaves as if this modification had taken place). No such transi-
tion is added at state up, and therefore the interaction tree can only be triggered when the
state of button is down.

figure C.19. process state graph of process button with transition 3 added

table C.4. Table of transitions replacing that of table C.3.

figure C.20. Reduced cluster state graph corresponding to table C.4.

1

pressed
Down

2

released
Up

downup

_pressed_to_lamp
pressed_2

3

pre-state

lampbutton button lamp

triggerpost-state

1: initial cluster state

up1 off1 down off Down
up1

down
off1 up on_dark opening
off up off Up

down off down on_dark opening
up on_dark down on_dark Down
up on_dark up off closed
down on_dark up on_dark Up
down on_dark down off closed
down on_dark down on_bright pressed
down on_bright up on_dark Up

up

down

pr
oc

es
s

bu
tt

on

off on_dark

process lamp
on_bright
170

C.2. Preventing loss of transitions in cluster reduction
figure C.21. Corresponding cluster state graph for more restrictive example of section
C.1.3.

Note that figure C.20. has two transitions and one cluster state less than figure C.15. and
figure C.21. offers the same reduction over figure C.16.

C.3.8. Consequences of cluster reduction and a caveat

Cluster reduction is a useful tool against the state explosion problem. However, by re-
moving some processes, some interaction mechanisms are also lost. As a result some
transitions can be executed when otherwise this would not be possible. The reduced
cluster state graph can contain transitions and states not occurring in the (projected) full
cluster state graph. The effects of these additional transitions on the conditions being
checked was discussed in section C.1.4.

In the example of section C.3.5. it was shown that although the set of states reacheable
in the reduced cluster includes all states reacheable in the projected full cluster, some
transitions are modified due to interaction trees being interrupted. As a result of this, the
single cluster transition of the full cluster is broken up into several transitions. A transi-
tion tfull(sa, sb) of the full cluster may be split up into a series of individual transitions
t0(sa, s1), t1(s1, s2), t2(s2, s3), ... tn(sn, sb). As a result there may no longer be a direct tran-
sition from sa to sb. All paths from sa to sb may pass through the states s1, s2, s2, ... sn,
some of which may not be reacheable in the projected full state graph.

This may seem of little consequence, but it could be, for example, that we are testing the
condition eventually(ack) where si ∈ ack and i ∈ {1, 2, ... n}. If transition tfull is a tran-
sition of all paths failing this condition, and eventually(ack) is failed in the projected full
system graph, then the condition could be wrongly verified in the reduced system graph.

How can we obtain security against such cases? The problem does not lie in tree split-
ting. Examples can be made where tree splitting is not necessary but the problem still
occurs. The problem lies in the basic concept of cluster reduction.

Is it possible to make the model checker recognise that certain cluster states are only in-
termediate stages on cluster transitions, and not reached by the full cluster?

up

down

pr
oc

es
s

bu
tt

on

off on_dark

process lamp
on_bright
171

Appendix C: Cluster reduction
C.3.9. Handling part-transitions

If a process is missing from a cluster, the reduced cluster does not ‘know’ the state of
this missing process. Therefore it cannot know if a pulse triggering this process in the
full cluster will or will not result in the missing process sending pulses to the processes
in the tree below it.

So is there no way of knowing how the full cluster will behave?

All is not lost. We may not know exactly how the missing cluster would react, but we
know all possible reactions. These can be represented by an equivalent non-determinis-
tic structure without adding to the overall complexity of the system. The function out-
Pulses returns all possible outPulses which a process can send as the result of a given
trigger.

outPulses: (In� ∪ E) × ∏ :→ 2Out�

outPulses(in, �_0) = {u ∈ Out�_0 | ∃r ∈ R�_0: (in = trig(r)) ∧ (u = outPulse(r))}

Note that the set returned by outPulses can contain the nul outPulse. This is contained in
the definition of Out� (see section 5.3.3. on page 83) and is contained in the set returned
by outPulses if the trigger parameter of the function call triggers at least one transition
without outPulse.

The equivalent generic state diagram for a missing process �missing is a single state with
transitions pairing all in ∈ In�_missing with all elements of outPulses(in, �missing).

C.3.10. Example using non-deterministic replacement for process

In our example, process door is missing from the interaction tree.

Process door pairs triggers with outPulses as follows:

button_pressed -> opening
button_pressed -> none
DoorOpen -> opened
close_command -> none
DoorClosed -> closed
DoorClosed -> none
172

C.2. Preventing loss of transitions in cluster reduction
figure C.22. state diagram of process door

As the trigger close_command does not trigger a transition with an outPulse associated,
it can be omitted. The trigger DoorOpen can also be omitted because the outPulse
opened is sent only to process controller and this is also missing from the reduced clus-
ter. The four remaining trigger, outPulse pairs form the equivalent state diagram of fig-
ure C.23.

figure C.23. equivalent state diagram of process door for reduced cluster

The equivalent state diagram of process door has two purposes:

- to non-deterministically relay outPulse button_pressed from process button to process
lamp.
- to non-deterministically relay the (externally sourced) trigger closed to process lamp.

closed opening

open

6
DoorClosed

7

opened
DoorOpen

Stop

3
close_command

Close

closing

2

opened
DoorOpen

Stop

reopening

5
button_pressed

Open

1

opening
button_pressed

Open

4

closed
DoorClosed

Stop

1

opening
button_pres

5
button_pres

4

closed
1 DoorClosed

6
1 DoorClosed

unique
173

Appendix C: Cluster reduction
figure C.24. interaction tree with process door replaced by non-deterministic relay

Although it would be possible to implement the CIP model checker using equivalent
state diagrams of the type of figure C.23., for reasons of simplicity of implementation it
was chosen to transfer this functionality to the adjacent processes. Thus trigger closed is
sent directly from the external source to process lamp and the non-deterministic nature
of the transmission of button_pressed is achieved by a non deterministic sending mech-
anism in process button.

The modified interaction tree is shown in figure C.26.

process button
trigger: Down
outPulse: pressed

process lamp
trigger: pressed
outPulse: (none)

non deterministic relay
replacing process door

process lamp
trigger: opening
outPulse: (none)
174

C.2. Preventing loss of transitions in cluster reduction
figure C.25. interaction tree of figure C.24. with non deterministic relay replaced by
direct relay, but pulse cast made non deterministic so that the same behaviour is mod-
elled

figure C.26. Modified interaction tree

process button
trigger: Down
outPulse: pressed

process lamp
trigger: pressed
outPulse: (none)

direct relay replacing
process door

process lamp
trigger: pressed
outPulse: (none)

two possible cast sequences

process lamp
trigger: opening
outPulse: (none)

process button
trigger: Down
outPulse: pressed

process lamp
trigger: pressed
outPulse: (none)

process lamp
trigger: opening
outPulse: (none)

process lamp
trigger: pressed
outPulse: (none)

two possible cast sequences
175

Appendix C: Cluster reduction
table C.5. Table of transitions

figure C.27. Reduced cluster state graph corresponding to table C.4.

figure C.28. Corresponding cluster state graph for more restrictive example of section
C.1.3.

The resulting state diagrams are closer to those of the projected cluster state diagram
than any other approach discussed until now.

This is the method used for handling cluster reduction in the CIP model checker.

pre-state

lampbutton button lamp

trigger notespost-state

1: initial cluster state

up1 off1 down off Down non-
up1

down
off1 down on_bright Down deterministic
off up off Up

down on_bright up on_dark Up
up on_dark down on_bright Up
up on_dark up off closed

}

up

down

pr
oc

es
s

bu
tt

on

off on_dark

process lamp
on_bright

up

down

pr
oc

es
s

bu
tt

on

off on_dark

process lamp
on_bright
176

D.1. Introduction to state-space traversal
Appendix D: Traversing the State-Space

D.1. Introduction to state-space traversal

D.1.1. Purpose

Whether a property holds on a given model depends on the structure of that model. Some
properties were introduced along with model checking basics in chapter 3. In chapter 5.
system modelling concepts were applied to the CIP-Model. In this chapter methods will
be introduced for looking at the system structure to ascertain whether conditions are ful-
filled by that structure. Some methods presented are applicable for state space traversals
in general. The focus of the chapter, however, is to show how they are specifically ap-
plied to CIP.

D.1.2. A simple example

The state graph of a simple finite state machine is shown in figure D.1.

figure D.1. A simple state-graph.

Suppose we wish to traverse this system to verify the following properties:
(1) eventually({s3}, S)
(2) eventually({s5}, {s1})
where S is the set of all states in the graph.

The meaning of eventually was defined in section 3.5.5. The meanings of these specific
formulas are recapitulated briefly as follows:

Property (1) requires that for every state sn ∈ S, all continuing paths starting in sn subse-
quently visit s3.

(For the definition of continuing paths see section 3.3.5.)

Property (2) requires that all full paths visiting s1 subsequently visit s5.

s0

s4

s1

s3

s2

s5
177

Appendix D: Traversing the State-Space
Visual inspection of the state-graph reveals that the first property is failed by the full path
(s0, s4, s5, s2, s1, s4,). No obvious path can be found failing the second property, but
failure to produce a counter-example in a non-exhaustive search is no proof.

A method will be presented which inspects the state-space and proves or disproves prop-
erties of this type.

D.2. Proving the eventually property
The property eventually(ack, req) is failed iff there exists a path p starting in a state of
req and not visiting any state in ack which takes one of the following forms:

(i) p reaches a dead-end.
(ii) p closes a fair loop.

proof: If eventually(ack, req) is fulfilled, then every full path visiting req sub-
sequently visits ack. Therefore that path has a continuing sub-path which starts
in req and visits ack.

If a path p starts in req and reaches a dead-end without reaching ack, p does not
reach ack. The condition is not fulfilled.

If a path p starts in req and closes a fair loop before reaching ack, then there also
exists a path p´ starting in req and repeating the fair loop infinitely. p´ is fair and
infinite and does not reach ack. The condition is not fulfilled.

We have so far shown that the presence of a path p not visiting ack so that p runs
from req to a dead end or closing a fair loop is sufficient to fail the condition
eventually(ack, req), but to complete the proof, we must also demonstrate it is
necessary.

Suppose there is an extended finite state machine in which eventually(ack, req)
does not hold, but in which no path exists which starts in req and reaches a dead
end or closes a fair loop without visiting ack.

Because the condition is failed, the system must contain a continuing fair path
cfp so that cfp starts in req and does not reach ack.

If p is infinite, p has to visit at least one state infinitely (the state space being
finite). Let Si(p) be the set of states visited infinitely by p. For every s ∈ Si(p),
s has at least one successor in Si(p) (because p is infinite). Therefore there exists
at least one loop of which all states are in Si(p). We call L(p) the set of loops
visiting only states of Si(p). A path can be traced from every state of Si(P) to any
other state of Si(p) visiting only states of Si(p) (because if this were not the case
then the path p could not visit all states of Si(p) infinitely). As p is fair, a fair
178

D.2. Proving the eventually property
transition f enabled in at least one state of Si(p) must be executed infinitely.
Therefore at least one post-state of f must be included in Si(p). At least one fair
loop can thus be traced within Si(p). Let Q(p) be the set of fair loops traceable
within Si(p). If p exists and is infinite, an infinite path p´(f) exists for every f ∈
Q(p) so that visited(p´(f)) ⊆ visited(p). The existence of p´(f) is contrary to our
initial assumption and therefore p cannot be infinite.

So p must be finite and may not close a fair loop. The last state of p must have
successors because it cannot be a dead-end. We call P´(p) the set of fair paths
whose first part is identical to p and which do not visit ack except in their final
state. The only paths of P´(p) which do not visit ack are infinite.

Therefore, the condition eventually(ack, req) is failed iff there exists a path p visiting a
reacheable state of req and not subsequently visiting any state in ack so that p takes one
of the following forms:

(i) p reaches a dead-end.
(ii) p closes a fair loop.

This property is at the heart of our verification algorithm.

D.2.1. Depth-first-search algorithm (DFS)

The depth-first-search method traces a single path through the state-space. States where
the condition is known to be fulfilled are collected in a set we call ful.

We first introduce the simpler algorithm which does not take fairness into account. The
fuller algorithm is discussed in section D.2.3. (page 188).

The search algorithm is as follows:

DFS (ack, req) {
ful = empty set

p = empty path

sucp = empty list of sets

while (req∩¬ful not empty) {
p(0) = element from req∩¬ful
sucp(0) = suc(p(0))

if (sucp(0) empty AND p(0) ∉ ack) return p
n = 0

while (n>=0) {

if (p has loop) return p
if (sucp(n) empty OR p(n) ∈ ack)

ful = ful + p(n)

else {
179

Appendix D: Traversing the State-Space
p(n+1) = element from sucp(n)

sucp(n) = sucp(n) - p(n+1)

n += 1

sucp(n) = suc(p(n))

if (sucp(n) empty) return p }
if (p(n) ∈ ful) {

if (n>0) sucp(n-1) = sucp(n-1) - p(n)

p(n) = nil

n -= 1 }

}

}

return nil }

The algorithm returns a counter example if found and nil otherwise.

explanation:

1) Every state in ful is either in ack or it’s successors are all in ful.

proof: only in one place in the algorithm are states added to ful. This can be done
to p(n) if sucp(n) is empty or p(n) is in ack.

In the latter case, the above statement is obviously true.

In the former case it is true because sucp(n) is initially suc(p(n)). No states are
added to sucp(n) and states are only removed if they are in ful or immediately
follow p(n) in the path . p(n) can only be placed in ful when it is at the end of the
search path. p(n) therefore has no successor in the path and all states of suc(p(n))
are either in sucp(n) or in ful. If sucp(n) is empty, then all successors of p(n) are
in ful.

2) If a dead-end is reacheable from a state s by a path not visiting ack, then s cannot be
placed in ful.

proof: if a dead-end is reacheable from s by a path not visiting ack, then s cannot
be in ack and also either s is a dead end or s has at least one successor s1 so that
a dead-end is reacheable from s1 by a path not visiting ack. s cannot be placed
into ful when it has a successor not in ful. Likewise, this successor s1 cannot be
placed into ful and so on until the dead-end is considered. So for s to be placed
into ful, the dead-end must be placed into ful first. This is not possible, because
in order to be placed into ful, the dead-end must first become p(n). At this stage
the algorithm sees that suc(p(n)) is empty and terminates. p(n) can therefore not
be placed into ful. Neither can s.
180

D.2. Proving the eventually property
As a result of this, we know that if a state is in ful, then no path from that state can reach
a dead end without visiting ack.

3) If a path from a state s closes a loop without visiting ack, then s cannot be placed in ful.

proof: if a path p from s closes a loop without visiting ack, then p has a subpath
p´ so that p´ does not close a loop or visit ack but there exists a state s´ in
suc(last(p´)) so that s´ is a state of p´. last(p´) cannot be placed in ful while s´ is
not in ful. s´ cannot be placed in ful while last(p´) is not in ful. And whilst these
states are not in ful, s cannot be in ful.

consequence: If a state is in ful, then there does not exist any path from s reaching a
dead-end or closing a loop without visiting ack.

consequence: All full paths starting in ful reach ack.

If the algorithm does not find any counter-example, it will terminate when all states of
req are also in ful.

If all states of req are in ful. All full paths starting in req reach ack.

example: An example of this algorithm is discussed step by step in section E.1.

The algorithm needs to be expanded however, to take fairness into account. Suppose the
transition (s2,s3) is fair, then the loop [s1,s4,s5,s2,s1] is unfair. Then this counter-example
of figure E.5. is not valid.

D.2.2. Expanding the DFS algorithm to accommodate fairness.

The DFS algorithm as introduced in section D.2.1. must be extended to accommodate
fairness.

We must find a way of distinguishing between a fair loop (which can be repeated infi-
nitely often sequentially) and an unfair loop (which cannot).

One way to do this is by unravelling the unfair loops.

Unravelling a loop is a transformation of the system which removes a loop by introduc-
ing new states where a fair path would otherwise revisit states. As these loops are unfair,
a finite number of states is sufficient for unravelling and the finite nature of the system
is preserved.
181

Appendix D: Traversing the State-Space
figure D.2. Unravelling of loop (s1,s4,s5,s2) of example system of figure D.1. (assuming
that the transformation (s5,s3) is fair.)

Applying the DFS algorithm of section D.2.1.to an unravelled state graph would verify
the system correctly. In practice, however, this is not possible as the states cannot be held
in a finite memory. Simplification is required.

As we learn nothing new from paths traversing the loop twice in sequence or more, we
can reduce the unravelled state-space by removing these.

figure D.3. Reduction of system of figure D.2. by removing paths traversing loops more
than once in sequence.)

The system no longer displays all the behaviours of the original system. However, if
there exists a fair path traversing a loop n-times in sequence, there also exists a fair-path
traversing the loop once in sequence. A new loop is closed when the path reaches a state
that is already in it’s path history, and multiple traversals of the same loop do not con-
tribute to the path history.

A further simplification is possible in DFS by removing states that occur twice due to
unravelling, and instead constructing new transitions in the search path to by-pass these.

s0

s4

s1

s3

s2

s5

s4´

s5´

s2´s1´´

s1´

s4´´ s5´´

s0

s4

s1

s3

s2

s5

s4´

s5´

s2´

s1´
182

D.2. Proving the eventually property
These new transitions have the same fairness constraints as the paths they replace. The
paths found are now no longer identical to those of the original system, but the path his-
tories remain the same, which is sufficient for detecting loops.

Thus in the example below, the transition (s1´,s3) replaces the path (s1´,s4´,s5´,s3). The
new cluster-transition is treated as having as component the same process transition that
causes the fairness of (s1,s3).

figure D.4. Modified state-graph for DFS with search path (s0,s4,s5,s2,s1).)

The paths found are now no longer identical to those of the original system, but the path
histories remain the same, which is sufficient for detecting loops.

Unravelling alone is not sufficient to detect all fair loops. Let us consider the following
example:

figure D.5. Example system, with fair transitions fo and f1

s0

s4

s1

s3

s2

s5

s1´

s0 ∈ req

s1 s3s2

s5 ∈ ack

[f0]

s4

[f1]
183

Appendix D: Traversing the State-Space
The search path can traverse the system in many different manners.

The first example of traversal sees the search path follow (s0, s1, s2, s3, s0). A fair loop
is closed without ack being visited. This is a counter-example and the condition is dis-
proved.

figure D.6. Counter-example disproving condition.,

The second example of traversal sees the search path follow (s0, s1, s4, s3, s0). A loop is
closed. The loop is unfair because the transitions fo and f1 are enabled and disabled but
not executed by the loop.

figure D.7. Example of figure D.5., with unfair loop (s0, s1, s4, s3, s0)

s0 ∈ req

s1 s3s2

s5 ∈ ack

[f0]

s4

[f1]

s0 ∈ req

s1 s3s2

s5 ∈ ack

[f0]

s4

[f1]
184

D.2. Proving the eventually property
We unravel the loop along (s0, s1) and continue exploration from s1. At s3, a loop is again
closed. The path now closes the loop (s0, s1, s4, s3, s0, s1, s2, s3). This loop is again unfair
because it enables and disables f1 without executing it.

figure D.8. Closing of loop (s0, s1, s4, s3, s0, s1, s2, s3)

The unfair loop, [s0, s1, s4, s3, s0, s1, s2, s3] contains a sub-loop [s3, s0, s1, s2, s3] which
is fair.

This example shows that a system with multiple interconnected unfair loops can have
fair loops. To detect these, it is necessary to look at the whole system of interconnected
unfair loops which can be very large and indeed take up much of the total state space.

The loop system consists of several interconnected loops which we divide into path sec-
tions connecting nodes.

s0 ∈ req

s1 s3s2

s5 ∈ ack

[f0]

s4

[f1]
185

Appendix D: Traversing the State-Space
figure D.9. The loop system has two nodes (s1 and s3), connected by three path sec-
tions.

If a subset of these path sections form a system of loops not containing a fair loop, the
section (s1, s4, s3) cannot be part of any of the interconnected loops because f1 is disabled
by (s4, s3) but not executed by any loop of the search path. The section is thus removed.

figure D.10. The path section (s1, s4, s3) is removed from the system of loops.

The remaining path sections form a loop which is fair. This is a counter-example and the
search can be ended.

Modifying the example slightly, let us suppose (s1, s4) is also a fair transition:

s0 ∈ req

s1 s3s2

s5 ∈ ack

[f0]

s4

[f1]

s0 ∈ req

s1 s3s2

s5 ∈ ack

[f0]

s4

[f1]
186

D.2. Proving the eventually property
figure D.11. The path section (s1, s4, s3) is removed from the system of loops and (s1,
s4) is fair.

The remaining loop (s0, s1, s2, s3) is unfair because (s1, s2) disables f2 and f2 is not exe-
cuted at any point of the loop. The path sections visiting s1 are thus removed from the
loop system.

figure D.12. The path section (s0, s1, s2, s3, s0) is removed from the system of loops.

Only the initial state s0 remains in the loop system. No fair loops are formed, therefore
the initial loop system did not contain any fair loops. The search must continue. All re-
moved sections are restored to the search path.

s0 ∈ req

s1 s3s2

s5 ∈ ack

[f0]

s4

[f1]

[f2]

s0 ∈ req

s1 s3s2

s5 ∈ ack

[f0]

s4

[f1]

[f2]
187

Appendix D: Traversing the State-Space
figure D.13. All removed sections are restored to the search path, which reaches s5.

The search path reaches s5 which is a member of ack. The eventually condition is proved.

The search path reaches ack, and all states of the system can be placed into ful, verifying
the condition.

D.2.3. Depth-first-search algorithm with fairness.

This algorithm is essentially the same as that of section D.2.1. but has following addi-
tions as explained in section D.2.2.:
- on closing a loop, we do not automatically return the path as counterexample, but first
verify the fairness of the loop. If a fair subloop is found, we return this, otherwise the
search continues.
- due to the introduction of new transitions, p is no longer necessarily a path allowed by
the behaviour of the system. However, it represents a path of the system with some du-
plicate states removed. To reconstitute a correct path we introduce the function path(p).
path is applied to all returned paths.
- preference is given to fair successors.

fairDFS (ack, req) {
ful = empty set

loopNodes = empty set

p = empty path

sucp = empty list of sets

while (req∩¬ful not empty) {
p(0) = element from req∩¬ful
sucp(0) = suc(p(0))

if (sucp(0) empty AND p(0) ∉ ack) return path(p)

s0 ∈ req

s1 s3s2

s5 ∈ ack

s4

[f2]

[f1]

[f0]
188

D.2. Proving the eventually property
n = 0

while (n>=0) {

if (p(n) closes loop) {

if p has fair subloop return path(p)
else {

loopNodes = loopNodes + p(n)

if there exists k so that p(k) on loop and

sucp(k) not empty {

p(n = n+1) = p(k)

loopNodes = loopNodes + p(n) }

}

}

if (sucp(n) empty OR p(n) ∈ ack)
ful = ful + p(n)

else {

p(n+1) = element from sucp(n)

sucp(n) = sucp(n) - p(n+1)

n += 1

sucp(n) = suc(p(n))

if (sucp(n) empty) return path(p) }
if (p(n) ∈ ful) {

p(n) = nil

n -= 1 }

}

}

return nil }

This algorithm is equivalent to that of section D.2.1. for systems without fair transitions
because in such a case no loop can be unfair so all loops are valid as counter examples.

To illustrate this algorithm, we return to the example of figure D.1.and the condition
eventually({s3}, S)
The transition (s2, s3) is marked as fair.

figure D.14. State-graph from figure D.1. with transition (s2, s3) marked fair.

s0

s4

s1

s3∈ack

s2

s5

[f]
189

Appendix D: Traversing the State-Space
Our initial search path is (s0,s1,s4,s5,s3) as shown in figure E.3. s3 is placed in ful as
shown in figure E.4. and the path closes a loop at s1 as shown in figure E.5.

However, in contrast to the example of figure E.5., this loop is not fair and has no fair
subloops.

figure D.15. The search path closes a loop.

s1 is placed in loopNodes, the loop has a state with not-empty sucp, and this state (s2) is
added to the end of the path as p(6) and also to loopNodes.

figure D.16. Search path after closing an unfair loop.

From s2, the search path reaches s3 again.

figure D.17. The search path reaches ack.

s0

s4

s1

s3∈ack

s2 p(4)

s5

[f]

p(0)

p(1)

p(2) p(3)

p(5)

ful

s0

s4

s1

s3∈ack

s2 p(4) p(6)

s5

p(0)

p(1)

p(2) p(3)

p(5)

ful

loopNodes
[f]

s0

s4

s1

s3∈ack

s2 p(4) p(6)

s5

p(0)

p(1)

p(2) p(3)

p(5)

ful

loopNodes

p(7)

[f]
190

D.2. Proving the eventually property
s3 is in ack, it is removed from the search path.

figure D.18. The search path again closes a loop.

The last state of the search path (s2) once again closes an unfair loop. This time, however, no
state of the loop has a not-empty sucp. p(6) is removed from the search path and is placed into
ful.

figure D.19. p(4) is placed into ful.

Likewise, p(5), p(4), p(3), p(2) and p(1) are removed from the search path and placed
into ful.

figure D.20. The search path is reduced to (s0).

sucp of s0 is not empty, so s4 is added to the path.

s0

s4

s1

s3∈ack

s2 p(4) p(6)

s5

p(0)

p(1)

p(2) p(3)

p(5)

ful

loopNodes

[f]

s0

s4

s1

s3∈ack

s2 p(4)

s5

p(0)

p(1)

p(2) p(3)

p(5)

ful

loopNodes

[f]

s0

s4

s1

s3∈ack

s2

s5

p(0)

ful
[f]
191

Appendix D: Traversing the State-Space
figure D.21. The search path grows to (s0, s4).

s4 is already in ful, however, and is removed again. sucp of s0 is now empty and s0 is also
removed from the path leaving the path empty.

figure D.22. The search path grows to (s0, s4).

All elements of req are now in ful, therefore the condition is fulfilled and the demonstra-
tion is complete.

s0

s4

s1

s3∈ack

s2

s5

p(0)

ful

p(1)

[f]

s0

s4

s1

s3∈ack

s2

s5

ful
[f]
192

E.1. DFS algorithm
Appendix E: Traversal examples

E.1. DFS algorithm

E.1.1. Without fairness, property fails

We consider the example from figure D.1. and check the property
eventually({s3}, S)

figure E.1. state-graph from figure D.1. before start of search.

req = S.
We start by setting p(0)=s0.
sucp(p(0))={s1,s4}. We choose p(1)=s1.

figure E.2. search path of length 1 starting at s0.

sucp(p(1))={s4}. So p(2)=s4.
sucp(p(2))={s5}. So p(3)=s5.
sucp(p(3))={s2,s3}. We choose p(4)=s3.

s0

s4

s1

s3

s2

s5

transition in search path

transition

transition enabled in path

state

initial state

state on path

state of ful

s0

s4

s1

s3

s2

s5

p(0)

p(1)
193

Appendix E: Traversal examples
figure E.3. search path of length 4 starting at s0.

s3 ∈ ack. s3 is placed in ful and removed from the search path.

figure E.4. ack state is placed in ful.

sucp(p(3))={s2}. So p(4)=s2.
sucp(p(4))={s1,s3}. We choose p(5)=s1.
The path now completes a loop:

figure E.5. search path completes a loop.

This is a counter-example and shows the condition is not fulfilled. The search need not
be continued.

s0

s4

s1

s3

s2

s5

p(0)

p(1)

p(3)p(2)

p(4)

s0

s4

s1

s3

s2

s5

p(0)

p(1)

p(3)p(2)

ful

s0

s1

s3

s2 p(4)

s5

p(0)

p(1)

p(3)

ful

p(5)

s4
p(2)
194

E.1. DFS algorithm
E.1.2. Without fairness, property holds

We now look at the second condition: eventually({s5}, {s1})

req = {s1}
We start by setting p(0) = s1.
sucp(p(0))={s4}. So p(1)=s4.
sucp(p(1))={s5}. So p(2)=s5.

figure E.6. path of length 2 starting at s1

s5 ∈ ack. s3 is placed in ful and removed from the search path.

figure E.7. ack state is placed in ful.

sucp(p(1))={}. So p(1) is placed in ful and removed from the search path.
sucp(p(0))={}. So p(0) is placed in ful and removed from the search path.
All req states are now in ful and the condition is fulfilled.

s0

s4

s1

s3

s2

s5

p(0)

p(2)p(1)

s0

s4

s1

s3

s2

s5

p(0)

p(1)

ful
195

Appendix E: Traversal examples
figure E.8. all req states are in ful.

s0

s4

s1

s3

s2

s5

ful
196

F.1. Introduction
Appendix F: Partial Order Reduction

F.1. Introduction
Partial order reduction is the mapping of the full state graph onto a reduced state graph
whilst conserving the properties of the full state graph. Such a mapping is worthwhile if
the reduced state graph requires less memory or can be traversed faster.

Let us consider the following example:

figure F.1. process-state graphs.

The system consists of two processes with each two states and one transition. These are
combined into a cluster-state graph as follows:

figure 6.2. cluster-state graph

This cluster-state graph consists of 4 states, s0...s3, and 4 cluster transitions, (s0,s1),
(s0,s2), (s1,s3), (s2,s3). It has two full paths, [s0,s1,s3] and [s0,s2,s3]. If the intermediate
states are irrelevant to the property being checked, we only need to follow one of these
paths. The transitions α and β are interleaving. They can be executed in either order and

a0 a1α b0

b1

β

Process A Process B

s0 s1

s2 s3
α

ββ

α

197

Appendix F: Partial Order Reduction
it does not matter in which order they are traversed. The full state graph can thus be re-
placed by a reduced state graph containing only one of the above two paths.

In order to construct this reduced state graph, we first had to construct the full state
graph. The method thus failed to reduce memory requirements. In this section and in
chapter 6, methods are introduced for constructing a reduced state graph without con-
structing the full state graph.

F.2. Independence and visibility of transitions

F.2.1. Enabledness

Reminder: a process-transition t is enabled in a cluster-state s iff the pre-state of t. is an
element of the state-vector of s.

In figure 6.2., α is enabled in s0 and s2. β is enabled in s0 and s1.

Reminder: a transition t is disabled in a cluster-state s iff t is not enabled in s.

In figure 6.2., all transitions are disabled in s3.

Reminder: the set enabled(s) contains all transitions which are enabled in cluster-state
s.

In figure 6.2., enabled(s0) = {α,β}, enabled(s1) = {β}, enabled(s2) = {α}, enabled(s3) =
{}.

Reminder: a cluster-transition t1 enables a transition t2 iff t2 ∉ enabled(pre-state(t1))
and t2 ∈ enabled(post-state(t1)).

In the figure F.3. the cluster-transitions (s1,s3) and (s2,s3) enable the transition α1
198

F.3. Examples
figure F.3. example of transition being enabled.

Note that this definition allows only cluster-transitions to enable. It does not always
make sense to extend this label to process-transitions. In the above example, we cannot
say whether or not α0 enables α1 because one occurence of α0 enables α1 whereas the
other does not. Thus we restrict the ability to enable to cluster-transitions.

Reminder: a cluster-transition t1 disables a process-transition t2 iff t2 ∈ enabled(pre-
state(t1)) and t2 ∉ enabled(post-state(t1)).

In the example of figure F.4. the cluster-transitions (s1,s3) disables the transition α1

figure F.4. example of transition being disabled.

F.3. Examples

F.3.1. Partial Order Reduction of a simple system

Reminder of rules of section 6.4.2:

rule C0: ample(s) = ∅ iff enabled(s) = ∅.

s0 s1

s2 s3
α0

ββ

α0

s4
α1

s0
s1

s2 s3
α0

ββ

α0 s4
α1
199

Appendix F: Partial Order Reduction
rule C1: Along every path in the full state graph that starts in s, the following condition
holds: a transition that is dependent on a transition in ample(s) cannot be executed with-
out a transition in ample(s) occurring first.

rule C2: If s is not fully expanded, then every α ∈ ample(s) is invisible.

rule C3: A cycle is not allowed if it contains a state in which some transition α is enabled,
but is never included in ample(s) for some state of the cycle.

Let us consider the system of figure F.5.

figure F.5. example system

We start by determining ample(s0).
enabled(s0) is not empty so ample(s0) must be {α0}, {β} or {α0, β} (rule C0).
α1 is enabled by α0 and disabled by β. Therefore it is dependent both. If ample(s0) = {β},
then, α1 cannot be executed without β being executed first (rule C1). This is not the case,
so α0 ∈ ample(s0).
Therefore, ample(s0) is {α0} or {α0,β}.
As we are interested in reducing the state space, we choose the smaller of these and am-
ple(s0)={α0}.

figure F.6. ample(s0)={α0}

s0
s1

s2 s3
α0

ββ

α0 s4
α1

transition not in reduced state graph

transition in reduced state graph

s0
s1

s2 s3
α0

ββ

α0 s4
α1

transition not in reduced state graph

transition in reduced state graph
200

F.3. Examples
Now we must determine ample(s1)
α1 and β are dependent, therefore either both or neither must be included in ample(s1).
Including neither would leave ample(s1) empty, therefore ample(s0) = {α1,β}

figure F.7. ample(s1)={α1,β}

We have thus obtained the same reduction as in figure 6.3.

Note that the reduction of figure 6.4. which is also correct cannot be obtained by this
method.

F.3.2. The same example solved using method of section 6.4.3.

The decomposition of our example system into component processes as shown in figure
F.8.shows that

- α0 and α1 are dependent because they are in the same process.
- α1 and β share a variable (through inspection), therefore β is dependent on all

transitions in A.
All transitions are dependent and therefore no reduction is possible.

s0
s1

s2 s3
α0

ββ

α0 s4
α1

transition not in reduced state graph

transition in reduced state graph
201

Appendix F: Partial Order Reduction
figure F.8. component processes of system of figure F.5..

Clearly, this approach is insufficient for CIP-systems, where the dependency of process-
es makes significant state-space reduction difficult. In the above example it would lead
to no reduction at all.

F.3.3. Degree of process enabledness

The degree of process enabledness is introduced in section 6.5.2.

In the example of figure F.4. (decomposed in figure F.8.), the only cluster state where
α1 is enabled is s1 whose state vector is (a1,b0). This has both process-states in common
with s1, only one process state in common with s0, s3 and s4 and no process-states in
common with s2. Thus:

dpe(s1, α1) = 2,
dpe(s0, α1) = dpe(s3, α1) = dpe(s4, α1) = 1,
dpe(s2, α1) = 0

F.3.4. Example of process enabling and disabling

The concepts of process enabling and disabling are introduced in section 6.5.3.

In the example discussed above, (s0,s2), (s1,s3) and (s1,s4) process-disable (s1,s4). (s0,s1)
and (s2,s3) process-enable (s1,s4).

a0

a1

α0 a2
α1

b0

b1

β

Process A

if (state(B)=b0)

Process B
202

F.3. Examples
F.3.5. Example of F.3.1 using rules of 6.5.4

Reminder of rules of section 6.4.2

rule R1: search for a non empty subset of invisible transitions of enabled(s) so that no
process transition outside the subset is process-disabled by any member of the subset un-
less all members of enabled(s) disable that process transition.
if successful, select that subset as ample(s).
otherwise, ample(s) = enabled(s)

rule R2: check that no element in ample(s) closes a loop of the reduced state graph. If a
loop is closed, check that in the loop no transition t is enabled but not included in am-
ple(s) for any state of the loop, unless a path branches from the loop and t is not disabled
by the first transition of that branch. Add transitions to reduced-state graph if necessary.

rule R3: dead ends are treated as transitions.

rule R4: If a fair transition is enabled in a state s, then ample(s) must include at least one
fair transition.

To illustrate these rules, we reconsider the example of figure F.5.

figure F.9. system from figure F.5.

(s0,s2) process-disables α1 whereas (s0,s1) does not affect the dpe of any state.
Therefore ample(s0) = {α0}.

s0
s1

s2 s3
α0

ββ

α0 s4
α1

transition not in reduced state graph

transition in reduced state graph
203

Appendix F: Partial Order Reduction
figure F.10. ample(s0) = {α0}

(s1,s4) process-disables β and (s1,s3) process-disables α1.
Therefore ample(s1) = {α1, β}.

figure F.11. ample(s1) = {α1, β}

The reduced state-graph has now been completed. In this example it is identical to that
obtained in figure F.7. but this need not always be the case.

F.3.6. Differences between the methods

Let us consider the following slightly more complex system:

s0
s1

s2 s3
α0

ββ

α0 s4
α1

transition not in reduced state graph

transition in reduced state graph

s0
s1

s2 s3
α0

ββ

α0 s4
α1

transition not in reduced state graph

transition in reduced state graph
204

F.3. Examples
figure F.12. example system

First we construct the reduced state graph using the method of section F.3.5.

ample(s0)={β1} because α0 process-disables β1.
ample(s3)={α0, β1} because α0 process-disables β1 and β1 is visible.
ample(s4)={α1} because α1 is the only element of enabled(s4).
ample(s5)={β1} because β1 is the only element of enabled(s5).
ample(s8)={α2+β2} because α2+β2 is the only element of enabled(s8).
This transition closes a loop. In this loop, no transition is enabled that is not included in
ample(s) for any state of the loop. Therefore no further action is required.
ample(s6)={α0} because α0 is the only element of enabled(s6).
ample(s7)={α1} because α1 is the only element of enabled(s7).

figure F.13. reduced state graph created using method of section F.3.5.

s0 s1

β0

α0 s2
α1

transition not in reduced state graph

transition in reduced state graph

β0 β0

α0 α1s4

β1

s5

β1

α0 α1

s3

s8s7s6

α2+β2

transition not in reduced state graph

transition in reduced state graph

invisible

visible

s0 s1

β0

α0 s2
α1

β0 β0

α0 α1s4

β1

s5

β1

α0 α1

s3

s8s7s6

α2+β2
205

Appendix F: Partial Order Reduction
This reduction reduces graph complexity from 9 states and 13 transitions to 7 states and
9 transitions.

Now as a comparison, we apply the method of section F.3.1.

α0, α1 and α2 are dependent because they are in the same process.
β0, β1 and β2 are dependent because they are in the same process.
β1 is dependent on α0, α1 and α2 because of inspections.
α2+β2 is dependent on α0, α1, β0, and β1.
By consequence all transitions are dependent. No reduction is possible.

figure F.14. component processes of system of figure F.13.

F.4. Discussion

F.4.1. Comparison of rules

The rules of section F.3.1. do not provide identical results to those of section F.3.5. In
this section the differences will be discussed.

a0 a1
α0 a2

α1

b0
β0

β1

b1

b2

Process A

α2
/m

Process B

m
β2

if (state(A)!=a1)

if (state(B)=b2)
206

F.4. Discussion
Rules C0, C2 and C3 from section F.3.1. are respected completely by the algorithm of
section F.3.5.

rule C0: ample(s) = ∅ iff enabled(s) = ∅.

by rule R1, ample(s) cannot be empty unless ample(s) = enabled(s).

rule C2: If s is not fully expanded, then every α ∈ ample(s) is invisible.

by rule R1, ample(s) cannot contain visible transitions unless ample(s) = enabled(s).

rule C3: A cycle is not allowed if it contains a state in which some transition α is
enabled, but is never included in ample(s) for some state of the cycle.

this is largely covered by rule R2. This rule is to prevent the reduced state graph from
reaching a loop which it fails to leave (Model Checking by Clarke, Grumberg and Peled
page 150 [18]). Rule 2 also prevents such a loop from forming, and also prevents such a
loop from being recognised as fair when in fact it is not. Rule R2 offers a more powerful
reduction than rule C3.

The reduced state graph of figure F.15.shows a reduced state graph which conforms to
the rules of section F.3.5. but not those of F.3.1. This is because [s1, s2, s1] forms a loop
but there are transitions which are enabled on this loop but never included in the ample
set. (Note that this is not the optimal reduced state graph. It is possible to construct one
with two transitions less)

figure F.15. Example reduced state graph conform to rules of section F.3.5.

Finally we come to the trickiest of these rules:

s1

transition not in reduced state graph

transition in reduced state graph

s3

s0 s2

s5

s6

s4

s7 s8

s9 s10 s11
207

Appendix F: Partial Order Reduction
rule C1: Along every path in the full state graph that starts in s, the following con-
dition holds: a transition that is dependent on a transition in ample(s) can-
not be executed without a transition in ample(s) occurring first.

This rule can be violated by the rules of section F.3.5. This is illustrated in the following
example. The reader not interested in the example can proceed to section F.4.2.

The state graph of figure F.16. is considered. α, β and γ are transitions of three separate
but dependent processes. The 3-dimensional state space is shown.

figure F.16. Example reduced state graph conform to rules of section F.3.5.

By the rules of section F.3.5.

ample(s0) = {α} because α does not process-disable β or γ.
ample(s1) = {γ} because γ does not process-disable α or β.
ample(s4) = {β} by default.

By the rules of section F.3.1. this reduction is incorrect:

α, β and γ are all dependent. Therefore the path [s0, s3, s5] violates rule 3. Transition β
and transition α are dependent and α ∈ ample(s0), yet no element of ample(s0) is execut-
ed on [s0, s3, s5].

Clearly, the two methods are not equivalent. We must therefore prove the correctness of
the rules of section F.3.5.

F.4.2. Discussion of visibility of transitions

Visible transitions are transitions for which the pre and post-states respond differently to
propositions. The pre and post-states of such transitions are thus in different cylinder
sets.

s1
α

transition not in reduced state graph

transition in reduced state graph

s3

s0

s2

s5 s6

s4

β

β
β

γ γ

α

208

F.4. Discussion
In figure F.17. the state graph of figure F.13. is repeated but with cylinder set divisions
added.

figure F.17. state diagram with cylinder set divisions added

We can thus distinguish four segments marked S0 ... S4.

Note that transitions crossing from one segment into another are visible. The others are
invisible.

In the full state graph, the sequences of segments visited by paths are:

a. S0, S1, S3, S0, S1, S3, S0, S1, S3...
b S0, S2, S3, S0, S1, S3, S0, S1, S3...

In the reduced state graph, both sequences are represented.

Properties such as reacheable(S3, S0) and eventually(S1, S2) can be checked in either
graph and the results are the same.

As model checking statements are based on the sequences of segments visited, any state
reduction is correct if all segment sequences are conserved. To demonstrate that a state
reduction mechanism is correct, it suffices to prove that any segment sequence of the full
state graph also exists in the reduced state graph.

s0 s1

β0

α0 s2
α1

β0 β0

α0 α1s4

β1

s5

β1

α0 α1

s3

s8s7s6

α2+β2

state(B) = b2

state(B) ≠ b2

state(A
) ≠ a2

state(A
) = a2

segm
ent S0

segm
ent S2

segm
ent S1

segm
ent S3
209

Appendix F: Partial Order Reduction
F.5. Notes on discussion

These notes are intended as a background to the discussion of section 6.7.

F.5.1. State space reduction

In section 6.7.1. the complexity of full and reduced state graphs are compared. For a state
machine with minimum dependency between processes, the following are stated:

sf ≈ (sp)n

rf ≈ n ⋅ rp ⋅ (sp)n-1

If two processes are combined which have s0, s1, r0 and r1 states and transitions respec-
tively, for the combined process:

sf = s0 ⋅ s1
rf = s0 ⋅ r1 + s1 ⋅ r0

We assume for simplification that every process has exactly the same number of states
and transitions.

The first formula sf ≈ (sp)n is obvious because the number of states of the full state graph
grows exponentially with the number of processes.

The formula rf ≈ n ⋅ rp ⋅ (sp)n-1 is derived as follows:

For n = 1, rf = rp

For n = 2, rf = rp ⋅ sp + rp ⋅ sp = 2 ⋅ rp ⋅ sp

For n = 3, rf = (2 ⋅ rp ⋅ sp) ⋅ sp + rp ⋅ (sp)2 = 3 ⋅ rp ⋅ (sp)2

So the formula holds for n = 1, 2 or 3.

For any n>1, rf = ((n-1) ⋅ rp ⋅ (sp)n-2) ⋅ sp + rp ⋅ (sp)n-1 = n ⋅ rp ⋅ (sp)n-1

In the same section, the following are stated:

sr ≈ n ⋅ sp
rr ≈ n ⋅ rp

By the reduction rules and their implementation (section 6.6.2. page 109), transitions are
preferred which close loops or otherwise do not already occur in the search path. This
210

F.5. Notes on discussion
favours a search path containing every transition exactly once. The post-state of the last
transition is either a dead-end or an earlier state of the path. The number of transitions
of the cluster is thus sum of the numbers of transitions of the processes, hence rr = n ⋅ rp
if all processes have exactly rp transitions. The number of states is not directly derived
from the number of transitions as some states could indeed occur several times in the
search path. But each process state must be a component of at least one cluster state. So
the reduced state graph has a state for every process state minus the first which is already
contained in the previous cluster state. Thus sr = n ⋅ sp - n + 1. This is approximated to sr
≈ n ⋅ sp.
211

Appendix F: Partial Order Reduction
212

G.1. Transitions
Appendix G: Data structures

G.1. Transitions

As shown in section 7.2.2. (page 121), there are many types of transitions. For each, a
separate class exists. The hierarchy of these classes is shown in figure G.1.

figure G.1. Class hierarchy of transitions

Explanation of variables:

change: an integer which is added to the state vector of the pre-state to provide the
value of the post-state.

maskArray: array of integers with mask values. See section 7.2.4. (page 124).

outPulse: integer which is sent to the receiving process to denote triggerOffset of the
trigger being sent.

outPulses: array of integers outPulse when several triggers cast.

receiver: process receiving outPulse.

receivers: array of processes receiver when several triggers cast.

trNil

basic transition structure
with no attributes.
no new variables.

trCas

casts outPulses.

trTra

changes process state.
new variable: change.

trCasSin

casts single outPulse.
new variables: outPulse,new variables: outPulses,

receivers. receiver.

trCoD

deterministic choice.
new Variables:

trCoNoD

non-deterministically
chooses transition.
new variable: trArray.

maskArray, shiftArray.
213

Appendix G: Data structures
shiftArray: array of integers with shift values. See section 7.2.4. (page 124).

trArray: array of transitions of types trNil and subclasses.
214

CIP Model Checking
Bibliography and references
[1] A Case Study in Model Checking Software Systems, J. M. Wing, M. Vazari-Faraha-
ni, Science of Computer Programming 28, pp273-299, Elsevier Science B.V, 1997.

[2] Abstract Interpretation of Reactive Systems, D. Dams, R. Gerth, O. Grumberg, ACM
Transactions on Programming Languages and Systems, Vol 19, No 2, pp253-291,
March 1997.

[3] An automata-theoretic approach to automatic program verification, M. Y. Vardi, P.
Wolper, Proc. First IEEE Symp. on Logic in Computer Science, pp. 322-331, 1986.

[4] An Improvement in Formal Verification, G. Holzmann, D. Peled, Proc. FORTE 1994
Conference, Bern 1994.

[5] Analysis of Real-Time Systems Using Symbolic Techniques, S Campos, E. Clarke,
M. Minea, Formal Methods for Real-Time Computing, C. Heitmeyer, D. Mandrioli (ed-
itors), pp217-235, John Wiley and Sons 1996.

[6] Automatic Analysis of Architectural Style, D. Jackson, School of Computer Science,
Carbegie Mellon University, downloadable from website: http://www.cs.cmu.edu/~dnj.

[7] Branching time temporal logic and the Design of Correct Concurrent Programs, E.
A. Emerson, PhD thesis, Harvard University 1981.

[8] CIP Grundkurs: Konstruktion und Implementation von CIP-Modellen, H. Fierz, CIP
System AG 1999.

[9] CIP Tool, (documentation, tutorial and a trial version can be downloaded from the
CIP Tool website: http://www.ciptool.ch).

[10] CIP Tool - Model-based Construction of Embedded Real-Time Components, H.
Fierz, downloadable from CIP Tool website [9].

[11] Design and synthesis of synchronisation skeletons using branching time temporal
logic, E. M. Clarke, E. A. Emerson, in Logic of Programs: Workshop, Yorktown
Heights, NY, May 1981, MNCS 131, Springer 1981.

[12] Eingebettete Systeme als Architektur Mechanistischer Modelle: Architekturorien-
tierte Modellkonstruktion mit CIP Tool, H. Fierz, downloadable from CIP Tool website
[9].
215

Bibliography and references
[13] Hardware specification with temporal logic: An example, G. von Bochmann, IEEE
Transactions on Computers C-31.

[14] Improving Efficiency of Symbolic Model Checking for State-Based System Re-
quirements, W. Chan, R. J. Anderson, P. Beame, D. Notkin, Software Engineering
Notes, ACM Press, Volume 23, No 2, pp102-112, March 1998.

[15] Introduction to Modal Logic, G. E. Hughes, M. J. Creswell, Methuen 1977.

[16] LAR: A logic of algorithmic reasoning, F. Kröger, Acta Informatica 1975.

[17] Managing the Development of Large Software Systems, W. W. Royce, Proceedings
of IEEE WESCON, August 1970.

[18] Model Checking, E. M. Clarke (Jr), O. Grumberg, D. A. Peled, MIT Press 1999.

[19] Model Checking and Abstraction, E. M. Clarke, O. Grumberg, D. E. Long, Confer-
ence Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, ACM Press, pp343-354, 1992.

[20] Model Checking Large Software Specifications, R. J. Anderson, P. Beame, S.
Burns, W. Chan, F. Modugno, D. Notkin, J. D. Reese, Software Engineering Notes,
ACM Press, Volume 21, No 6, pp156-166, November 1996.

[21] Modelling Reactive Systems with Statecharts: The STATEMATE Approach, D.
Harel and M. Politi, McGraw-Hill, 1998.

[22] Naming and Necessity, Saul Kripke, Analytic Philosophy 1972.

[23] On the temporal analysis of fairness, D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, in
Proceedings of the 7th Symposium on Principles of Programming Languages, pp. 163-
173, ACM 1980.

[24] Optimizing Symbolic Model Checking for Statecharts, W. Chan, R. J. Anderson, P.
Beame, D. H. Jones, D. Notkin, W. E. Warner, IEEE Transactions on Software Engi-
neering, February 2001, Vol. 27, No. 2, pp. 170-190.

[25] “Parmenides” in Plato: Complete Works, J. M. Cooper (ed), Hackett Publishing Co
1997.

[26] Process and Reality, A. N. Whitehead, The MacMillan Co New York 1929.
216

CIP Model Checking
[27] Program proving as hand simulation with a little induction, R. M. Burstall, in IFIP
Congress 74, pp 308-312, North Holland 1974.

[28] Separate connection and functionality is the pivot in embedded system design, O.
Trutmann, Diss., Technische Wissenschaften ETH Zürich, Nr. 13891, 2000.

[29] SMV (model checker and documentation downloadable from Carnegie Mellon uni-
versity: www-2.cs.cmu.edu/~modelcheck/smv.html). Many related resources can be
found by searching for “SMV model checker” using search engine.

[30] Software Reliability Methods, D. A. Peled, Springer-Verlag 2001.

[31] Specification and verification of concurrent systems in CESAR, J. P. Quielle, J. Si-
fakis, in Proceedings of the 5th international Symposium on Programming, pp. 337-350,
1981.

[32] SPIN (model checker and documentation downloadable from SPIN website:
www.spinroot.com/spin/whatisspin.html). Many related resources can be found by
searching for “SPIN model checker” using search engine.

[33] SPIN Beginners’ Tutorial, T. C. Ruys, SPIN Workshop Grenoble 2002, can be
downloaded from SPIN website [32].

[34] STATEMATE: A working Environment for the Development of Complex Reactive
Systems, D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A.
Shtull-Trauring, IEEE Transactions on Software Engineering, Vol. 16, No. 14, April
1990.

[35] Symbolic Model Checking: An Approach to the State Explosion Problem, K. L.
McMillan, Kluwer Academic 1993.

[36] Temporal specifications of self-timed systems, Y. Malachi, S. S. Owicki, in VLSI
Systems and Computations, Computer Science Press 1981.

[37] The CIP Method: Component- and Model-Based Construction of Embedded Sys-
tems, H. Fierz, ESEC 1999, downloadable from CIP Tool website [9].

[38] The Model Checker SPIN, G. Holzmann, IEEE Trans. on Software Engineering,
Vol. 23, No. 5, pp. 279-295, 1997.

[39] The SPIN Model Checker, Primer and Reference Manual, Addison Wesley 2003
217

Bibliography and references
[40] The temporal logic of programs, A. Pnueli, in 18th IEEE Symposium on Founda-
tion of Computer Science, pp 46-57, IEEE Computer Society Press 1977.

[41] UML Statecharts, B. P. Douglass, http://www.embedded.com/1999/9901/
9901feat1.htm. Many related resources can be found by searching for “UML” or “State-
charts” using search engine.

[42] Visual Verification of Safety and Liveness, A. Valmari, M. Setälä, Proc. FME (For-
mal Methods Europe) ‘96, LNCS 1051, pp228-247, 1996.

[43] Zeno’s Paradoxes, in the Stanford Encyclopedia of Philosophy, E. N. Zalta (ed),
Stanford 2002 and online: www.plato.stanford.edu.

[44] CIP system designed by Zühlke Engineering.
218

R.1. Symbols
Appendix R: Quick Reference

R.1. Symbols

Note that only symbols for sets are written bold.

symbol short description see section page

∏ set of processes 5.3.3. 83
A set of actions 3.2.2. 36
AP set of atomic propositions 3.4.2. 42
CTL Computation Tree Logic 4.3.3. 53
CTL* Computation Tree Logic (general form) 4.3.2. 52
D set of dead-end states: D :⊆ S | ∀s ∈ D: suc(s) = ∅ 3.2.4. 37
E set of events 3.2.2. 36
F set of fairness constraints 3.7.2. 47
false boolean symbol
FLP set of fair loops 3.7.4. 48
FP set of fair full paths 3.7.5. 49
FP* set of fair paths 3.7.5. 49
FP# set of fair continuing paths 3.7.5. 49
GP set of properties: GP:= {gp | gp: → {true, false}} 3.4.5. 44
In� set of inPulses of process � 5.3.3. 83
K Kripke structure 3.4.3. 42
L Labelling function: L : S → 2AP 3.4.3. 42
LP set of loops 3.3.8. 41
LTL Linear Time Logic 4.3.4. 53
M system 3.2.2. 36
� set of natural numbers (includes zero)
Out� set of outPulses of process � 5.3.3. 83
P set of full paths 3.3.6. 41
P* set of paths 3.3.1. 39
P# set of continuing paths 3.3.5. 41
PP set of path propositions 3.4.4. 43
R transition relation: R: ⊆ E × S × S × A 3.2.2. 36
R’ (in Kripke structure) transition relation: R’: ⊆ S × S 3.4.3. 42
R’ (in fair Kripke structure) transition relation:

R’: ⊆ S × S× F 3.7.8. 50
R� transition relation:

R�: ⊆ (E ∪ In�) × S� × S� × A × Out� 5.3.3. 83
S set of states 3.2.2. 36
S� set of process states of process � 5.3.3. 83
219

Appendix R: Quick Reference
sinit initial state 3.2.2. 36
sinit_� initial state of process � 5.3.3. 83
SR set of reacheable states 3.3.7. 41
true boolean symbol

R.2. Functions and relations

Arguments shown in square brackets [] are optional.

name mapping short description see section page

action R → A action of transition 3.2.3. 36
ample S → 2R subset of enabled(s) used in

partial order reduction 6.4.1. 104
dependent R → 2R dependent transitions 3.2.5. 37
deterministic R → boolean is transition deterministic? 3.2.7. 39
disabled S → 2R transitions disabled in state 3.2.4. 37
disables R → 2R transitions disabled by

transition 3.2.5. 37
dpe S × ΤΤΤΤ → � degree of process-enabledness 6.5.2. 106
enabled S → 2R transitions enabled in state 3.2.4. 37
enables R → 2R transitions enabled by

transition 3.2.5. 37
eventually CP [× CP] a state fulfilling proposition

 → boolean will eventually be reached
[from all states fulfilling
second proposition] ? 3.5.5. 46
(with fairness) (3.7.8. 50)

fairness R → 2F fairness constraints 3.7.2. 47
fairpaths 2P* → 2P* extracts paths which are fair 3.7.3. 48
fairTrans P × � × F

 → boolean fair transition at position? Β.1.1. 149
first P* → S + nil first state of path 3.3.2. 39
independent R → 2R transitions independent of

transition 3.2.5. 37
invariant CP → boolean proposition is invariant? 3.5.3. 45
last P* → S + nil last state of path 3.3.2. 39
length P* → � length of path 3.3.2. 39
next CP × CP

 → boolean proposition holds in next state 3.5.2. 45
occurrences (S ∪ R) × P*

→ � occurrences of object on path 3.3.2. 39
outPulse R� → Out� outPulse of transition 5.3.4. 83
220

R.2. Functions and relations
outPulses (In� ∪ E) × ∏ outPulses triggered by inPulse
 → 2Out� or event for process C.3.9. 172

post R → S post-state of transition 3.2.3. 36
pre R → S pre-state of transition 3.2.3. 36
pred S → 2S set of predecessor states 3.2.4. 37
preFair S × F →

boolean is pre-state of fair transition? Β.1.1. 149
processState S × ∏ :→ S� process state for process and

cluster state 5.3.5. 83
propCount CP × P → � occurrences of proposition on

path 3.4.4. 43
reacheable CP [× CP] a state fulfilling proposition is

 → boolean reacheable [from all states
fulfilling second proposition] ? 3.5.4. 45

subpath P* → 2P* subpaths 3.3.3. 40
suc S → 2S set of successor states 3.2.4. 37
sucp - (see DFS algorithm) D.2.1. 179
trans P* :→ 2R all transitions on path 3.3.4. 40
trig R → E trigger of transition 3.2.3. 36
visited P* → 2S states visited 3.3.2. 39
221

Appendix R: Quick Reference
222

CIP Model Checking
Index

A

A, 13
Achilles, 139
action, 18

CIP, 16
element of transition, 36
in extended finite state machine definition, 36
in process extened finite state machine definition, 83

action (function), 36
ample set, 104
Aristoteles, 139
atomic proposition, 42

in fair Kripke structure, 49
in Kripke structure, 42

in diagram, 43
auto (CIP), 22

B

BDD, 134
behaviour, 144, 161

additions to through cluster reduction, 155
loss of through cluster reduction, 157, 162

detection, 163
Biere, A., xv

C

cartesian coordinate, 79
cast order, 24
C-code, 5, 8, 15, 67, 135–136
chain (CIP), 21
change, 213
channel, 33
CIP, xi, xiii, 2–3, 5, 9–10, 15–34, 67, 135

code generation, 2, 6, 15
code-extension, 19
communication

between clusters, 33
between processes, 17
223

Index
with physical system, 16
embedded code, 19, 84, 136
generating meta-code for external model-checker (possibilty of), 6
history, 2
integration of model-checker, 6
method, 15
purpose, 1–2
scheduler, 27
software architecture, 16
System AG, xv

CIP execution tester, 8–9, 11
Clarke, E.M., 3, 51, 60, 104–105
cluster, 17, 22–28, 34, 77, 82

reduction, 11–12, 84, 126, 128, 161, 171
in CIP model-checker, 176

state, 76
state diagram, 78, 80
transition, 76, 80

code generation, 2, 15
C, 6, 15, 136
Java, 6, 15, 136
meta-code, 6, 67, 136
PROMELA, 67

command line interface, 9–10, 34, 135
commutative transitions, 102
computation tree, 52
condition, 19, 28, 84, 136

ELSE, 20
gate, 28
inspection, 28

conditional transition, 55, 109, 124
cone of influence, 12
cone of influnce reduction, 13
continuing path, 41, 151
coordinate

cartesian, 79
in cluster-state diagram, 79, 106

CTL, 53, 63–65
fairness, 60, 63

CTL*, 52–53
cylinder set, 90–91, 107, 208–209
224

CIP Model Checking
D

dead end, 37, 62, 105
in Kripke structure, 43

degree of process-enabledness, 106, 118, 133
Deiss, A., xv
delay, 17
dependency

transitions, 38, 102
dependent (function), 38
depth first search, 13
depth first traversal, 27
determinism, 88, 124, 137

mode setting, 86
transition, 39, 65, 84

deterministic (function), 39
disabled (function), 37
disabled transition, 37, 198
disables (function), 38
disabling transitions, 38
door control example, 16, 24–27, 29–33, 75–76, 78, 80–82, 85–87, 90–92, 94–97, 111, 119,

155–161, 164–167, 169, 172–173, 175–176
Douglass, B. P., 70–71
dpe, 106
dummy transition, 138

E

embedded code, 19
parsing, 84, 136

Emerson, E.A., 3, 51
enabled (function), 37
enabled transition, 37, 198
enables (function), 38
enabling transitions, 37
equivalent state diagram for missing process, 88, 172
ETH Zürich, 2, 237
event, 18

CIP, 16
in extended finite state machine definition, 36
in process extened finite state machine definition, 83
rate, 142
starvation, 143–144
225

Index
eventually, 4, 46, 88–89
in cluster reduction, 162
with fairness, 50

eventually (function), 46, 50
execution, xiv
execution tester, xii, xiv, 8–9, 11, 135
extended finite state machine, 19, 76, 82

process, 83
extension, 20

auto, 22
chain, 21
timer, 21

Extreme Programming, 10

F

fair
Kripke structure, 49
loop, 48
path, 48, 63, 94
transition, 47

fairness, 3, 12, 65, 133, 143–146
constraint, xii, xiv, 47, 59–60, 95, 131, 144

for process transition, 95
in fair Kripke structure, 49

in CIP, 92, 95
in CTL, 60, 63
process, 54
strength, 55–56
transition, 54

fairness (function), 47
fairpaths (function), 48
fairTrans (path formula), 149
false counter-example, 133, 138
false example, 133
Fierz, H., xv, 2, 16
finite event rate requirement, 142
finite path, 40

fairness, 49
finite state machine, 17, 19, 36, 55

extended, 19, 76, 82
process extended, 83
product, 55
226

CIP Model Checking
product extended, 76
first (function), 40
formal verification, 1
formula

path, 53
state, 53

full path, 41
fully expanded, 104

G

gate, 28, 89
geometric location, 79
Grumberg, J., 60, 104–105
guard, 70

H

hardware
overload, 141
verification, 1

Harel, D., 69
Holzmann, G., 5, 66

I

independence of transitions, 102
independent (function), 38
infinite path, 40

fairness, 49
initial state, 18

effect of, 77
in CTL*, 52
in extended finite state machine definition, 36
in fair Kripke structure, 49
in Kripke structure, 42
in process extended finite state machine definition, 83
in state diagram, 38

inPulse, 18, 110
in process extened finite state machine definition, 83

inspection, 28, 34, 109
interaction tree, 26

modifying, 168
227

Index
splitting, 165, 171
interleaved composition, 65
interleaving transitions, xiii, 102
interpreter, 132
invariance, 4, 45, 88

in cluster reduction, 162
invariant (function), 45
invisibility of transitions, 103

J

Java, 6, 15, 136

K

Kripke structure, 42–44, 52
diagram, 43
fair, 49

Kripke, S., 42
Kündig, A., xv

L

last (function), 40
length (function), 40
level, 133
limit of development, 34
liveness

requirement, 137, 142–143
liveness requirement, 46
loop, 41

fair, 48
unfair, 48

LTL, 66, 69

M

machine code, 67
Macintosh, 134
maskArray, 126, 213
master-slave structure, 30, 34, 89, 109
McMillan, K.L., 64
mechatronic causality, 16
228

CIP Model Checking
memory space, 88
message, 18, 82

replacing pulse in cluster reduction, 85
meta-code, 5, 73–74

extraction from C-code, 5
generating with CIP-Tool (possibility of), 6

meta-langauge, 5
mode, 30

control net, 31
setting, 31

Model Checking, xi, xiii, 1, 3–10
limits, 5
using external model checker, 5–6
window, 126

modelling, 35
Moglestue, A., 237
Müller, H., xv
multi-cluster system, 34
multiple developers, 2

N

next, 45
next (function), 45
non deterministic transition, 39, 65, 84, 136

O

occurrences (function), 40
operation, 19, 136
outPulse, 18, 82–83

in process extened finite state machine definition, 83
outPulse, 213
outPulse (function), 83
outPulses, 213
outPulses (function), 172

P

Paradox of Achilles and the Tortoise, 72, 139–143, 146
parsing embedded code, 84, 136
partial order reduction, xi, xiii, 11, 101, 133
path, xi, xiii, 39–42
229

Index
continuing, 41, 151
fair, 48, 63
finite, 40
formula, 53
full, 41
infinite, 40
length, 39
notation, 40
quantifiers (CTL*), 52
sub-, 40
unfair, 48

path (function), 41
path proposition, 44
Peled, D.A., 54, 60, 104–105
Plato, 139
Pnueli, A., 51
post (function), 36
post-state, 36, 77
pre (function), 36
pred (function), 37
predecessor, 37
preFair (formula), 149
pre-state, 36, 77
process, 17–20, 55, 65, 75, 82–83

disable (transition), 106
enable (transition), 106
extended finite state machine, 83
fairness, 54
state

in process extened finite state machine definition, 83
transition, 18

processing power, 72
processState (function), 83
product finite state machine, 55

extended, 76
project fairness constraint, 149
projection, 81–82
PROMELA, 66–68
propCount (function), 44
properties, 136
property, xi, xiii, 34, 44–46, 89, 129, 136

eventually, 4, 46
with fairness, 50
230

CIP Model Checking
invariance, 4, 45
next, 45
reacheability, 4, 45

proposition, 43–44
atomic, 42

pulse
cast editor, 25
cast net, 22
casting, 6
propagation, 6
translation, 22

editor, 23

Q

quality, 1–2, 73

R

reachability, 88
reacheability, 4, 45

in cluster reduction, 162
negative, 162

reacheable (function), 45
reacheable states, 41

for fair path, 49, 146–147
reactive system, 17
receiver, 213
receivers, 213
reduction

cluster, 11, 84
partial order, 11

request->acknowledge, 4
See also eventually

requirement
finite event rate, 142
liveness, 137, 142–143

rule
C0, 104
C1, 104
C2, 105
C3, 105
R1, 106, 203
231

Index
R1.1, 110
R1.2, 110
R1.3, 110
R1.4, 110, 112
R1.5, 110
R1.6, 110
R1.7, 110
R2, 107, 110, 203
R3, 107, 203
R3.1, 111
R4, 107, 203

run to completion semantics, 6, 27, 73, 75, 83, 131

S

scheduler, 72
Schön, J., xv
segment, 89, 91, 107, 129, 209

editor, 129
sequentiality, 137–142
shiftArray, 126, 214
slave, 30
SmallTalk, xv, 121, 135
SMV, 52, 64
SPIN, 5, 7, 52, 66–68, 135
starvation, 143
state, xi, xiii

atomic set of
in extended finite state machine definition, 36
in fair Kripke structure, 49
in Kripke structure, 42
in process extened finite state machine definition, 83

CIP, 18
dead end, 37
diagram, 38
explosion, xi, xiii, 5, 11, 76, 84, 132, 171
formula, 53
in state diagram, 38
initial

effect of, 77
in CIP process, 18
in CTL*, 52
in extended finite state machine definition, 36
232

CIP Model Checking
in fair Kripke structure, 49
in Kripke structure, 42
in process extended finite state machine definition, 83

inspection, 28, 34
machine, 71–72

extended finite, 19, 76, 82
finite, 17, 19
process extended finite, 83
product extended finite, 76
product finite, 55

post, 36
pre, 36
reacheable, 41
space

traversal, 11
vector, 55, 75, 119
visited by path, 39

state machine
finite, 36

Statecharts, 51, 69–72
strength of fairness, 55–56
strong process fairness, 54, 57–59, 65
strong transition fairness, 54, 56–57, 59–60
subpath, 40
subpath (function), 40
sub-state, 70–71
suc (function), 37
successor, 37
super-state, 70
switch structure, 20
synchronous composition, 65
system-state

in fair Kripke structure, 49
in Kripke structure, 42
in system definition, 36

T

temporal logic, 51–52
temporal operators (CTL*), 52
testing, 4
Thiele, L., xv
TIK, xv
233

Index
time, 142
time and sequentiality, 137
timed button example, 22–24, 79–80
timer (CIP), 21
tortoise, 139, 143
trans (function), 41
transition, xi, xiii, 18, 36, 213

action-element, 36
CIP

conditional, 20
cluster, 76, 80
commutative, 102
conditional, 55, 109
dependence, 102
dependency, 38
determinism, 39, 65, 84, 136
disabled, 37, 198
disabling, 38
dummy, 138
enabled, 37, 198
enabling, 37
fair, 47
fairness, 54
in state diagram, 38
non deterministic, 39, 84
notation, 40
post-state, 36
pre-state, 36
relation, 36

in extended finite state machine definition, 36
in fair Kripke structure, 49
in Kripke structure, 42
in process extended finite state machine definition, 83

trigger
in CIP, 18

trigger-element, 36
unfair, 47
visible, 103

transStructArray, 121
trArray, 214
traversal

depth first, 27
of state-space, 11
234

CIP Model Checking
trCas, 122–123, 213
trCasSin, 213
trCoD, 125, 213
trCoNoD, 213
tree splitting, 165, 171
trig (function), 36
trigger, 18

element of transition, 36
in cluster reduction, 85
non-external, 20

triggerOffset, 121, 213
trNil, 122, 213–214
trTra, 123, 213
Trutmann, H. O., 17

U

UML, 2, 69
unfair

loop, 48
path, xii, xiv, 48
transition, 47

Unified Modeling Langauge, 69
unravelling loops, 181

V

verification, xiii, 1
hardware, 1
See also Model Checking

visibility of transitions, 103, 107, 208
visible transitions, 209
visited (function), 39

W

waterfall model, 7–8
weak process fairness, 54, 56
weak transition fairness, 54–55

X

Xspin, 66–67, 69
235

Index
Z

Zeno of Elea, 139
See also Paradox of Achilles and the Tortoise
236

CIP Model Checking
Curriculum Vitae

Personal information

Name: Moglestue
Forenames: Andreas Hubert
Address: Bucheggstrasse 103 / 13

8057 Zürich
Switzerland

Date of birth: 06/09/1971
Place of birth: Reading, United Kingdom
Nationality British

Education

until 1988: Primary and secondary schools in Reading
(UK)

1988-1991: Deutsch Französisches Gymnasium in
Freiburg im Breisgau (Germany)

1991-1996: Study of Electrical Engineering at
Swiss Federal Institute of Technology (ETH)
Zürich

First semester project: Programming of a DSP for controlling a high-
speed drive (Professur für
Leistungselektronik und Messtechnik, 1994-5)

Second semester project: Design and construction of an energy saving
switch for remote operation via ethernet
(Institut für Elektrische Maschinen, 1995)

Diploma project: Optimisation of switching patterns for a
1.5kHz voltage source inverter (Professur für
Leistungselektronik und Messtechnik, 1995-6)

Doctorate thesis: Doctorate at ETH Zürich (CIP Model
Checking, Institut für Technische Informatik
und Kommunikationsnetze, 1999-2004)

Professional experience

1996-1999: ABB Semiconductors AG, Quality and
Reliability department.

1999-2003: Employee of Swiss Federal Institute of
Technology (ETH), Institut für Technische
Informatik und Kommunikationsnetze
237

Curriculum Vitae
238

	Table of Contents
	Zusammenfassung
	Abstract
	Acknowledgements
	1. Introduction
	1.1. Purpose of this project
	1.2. What is CIP?
	1.2.1. Brief history
	1.2.2. What is the purpose of CIP?
	1.2.3. What are the constraints of CIP?

	1.3. Brief introduction to Model Checking
	1.3.1. What is Model Checking?
	1.3.2. Target properties of Model Checking
	1.3.3. Limits of Model Checking

	1.4. What can Model Checking do for CIP?
	1.4.1. Model Checking and CIP: current possibilities
	1.4.2. Model Checking from program code
	1.4.3. Generating meta-code from CIP-Tool
	1.4.4. The integrated model checker

	1.5. Goals
	1.5.1. What the CIP model checker should do
	1.5.2. The CIP model checker and the design process
	1.5.3. The execution tester
	1.5.4. Goals of this project

	1.6. Summary of results
	1.6.1. General
	1.6.2. Notation and definitions
	1.6.3. State-space traversal
	1.6.4. Coping with state-explosion

	1.7. Guide for the reader
	1.7.1. General
	1.7.2. Background
	1.7.3. Realisation
	1.7.4. Conclusions
	1.7.5. Appendices

	2. CIP in a nutshell
	2.1. Purpose
	2.2. Introduction to the CIP method
	2.2.1. Why CIP?
	2.2.2. Looking at an embedded system from the CIP perspective

	2.3. Processes
	2.3.1. What is a process?
	2.3.2. A simple process
	2.3.3. Extended finite state machines
	2.3.4. Code extensions
	2.3.5. Conditions

	2.4. Non external triggers
	2.4.1. Timer
	2.4.2. Chains
	2.4.3. Auto

	2.5. Clusters
	2.5.1. What is a cluster?
	2.5.2. Pulse translation
	2.5.3. Cast order
	2.5.4. Interaction trees and their execution
	2.5.5. Run to Completion Semantics

	2.6. Inspections, Gates and Master-Slave structures
	2.6.1. Inspections
	2.6.2. Gates
	2.6.3. Master-Slave Structures

	2.7. Multi-cluster systems
	2.7.1. A single cluster
	2.7.2. Multiple clusters
	2.7.3. How can different clusters communicate?
	2.7.4. Why does a system need more than one cluster?

	2.8. CIP and model checking

	3. Model Checking Concepts
	3.1. Purpose
	3.2. Basic concepts of a model system
	3.2.1. The essentials of a model system
	3.2.2. Describing the finite state machine
	3.2.3. Transition relations
	3.2.4. State relations
	3.2.5. Enabling, disabling and independence of transitions
	3.2.6. The state diagram
	3.2.7. Determinism of transitions

	3.3. Paths
	3.3.1. Path definition
	3.3.2. States visited, path length, first and last states
	3.3.3. Subpaths
	3.3.4. Transitions and paths
	3.3.5. Continuing paths
	3.3.6. Full paths
	3.3.7. Reacheable states
	3.3.8. Loops

	3.4. Kripke Structures
	3.4.1. Introduction
	3.4.2. Atomic propositions
	3.4.3. Kripke structures
	3.4.4. Propositions
	3.4.5. Property

	3.5. Some properties
	3.5.1. Note on notation
	3.5.2. Next
	3.5.3. Invariance
	3.5.4. Reacheability
	3.5.5. Eventually

	3.6. Liveness requirement
	3.7. Fairness
	3.7.1. Fairness in this project
	3.7.2. Fairness constraints, fair and unfair transitions
	3.7.3. Fair paths
	3.7.4. Fair loops
	3.7.5. Some new definitions
	3.7.6. Some basic properties of fair and unfair paths
	3.7.7. Fair Kripke Structures
	3.7.8. Applying fairness to the eventually property

	4. Similar Work
	4.1. Purpose
	4.2. A brief history of Model Checking
	4.3. Temporal logic
	4.3.1. What is temporal logic?
	4.3.2. Computation Tree Logic (CTL*)
	4.3.3. CTL
	4.3.4. LTL

	4.4. Strong and weak fairness
	4.4.1. Fairness
	4.4.2. Definitions
	4.4.3. Example of strong transition fairness
	4.4.4. Example of weak transition fairness
	4.4.5. Example of strong process fairness
	4.4.6. Example of weak process fairness
	4.4.7. Hierarchy of fairness strength
	4.4.8. The bearing of strong and weak fairness on this project

	4.5. Fairness constraints as sets of states
	4.5.1. Fairness constraints
	4.5.2. Applicability to the fairness concept of this project
	4.5.3. Fairness constraints as CTL formulas
	4.5.4. CTL and project fairness constraints

	4.6. The model checker SMV
	4.6.1. Introduction
	4.6.2. An example

	4.7. The model checker SPIN
	4.7.1. Introduction
	4.7.2. SPIN and CIP
	4.7.3. A PROMELA example
	4.7.4. LTL properties in SPIN

	4.8. Model Checking and Statecharts
	4.8.1. Introduction
	4.8.2. Statecharts in a nutshell
	4.8.3. Statecharts and CIP
	4.8.4. Model Checking and Statecharts

	4.9. Conclusions
	4.9.1. Other model checkers and temporal logics
	4.9.2. Other model checkers and fairness
	4.9.3. What can be borrowed from other model checkers?
	4.9.4. Contribution of this thesis

	5. Applicability of Model Checking to CIP
	5.1. Model Checking and CIP
	5.2. The system model within the CIP cluster
	5.2.1. A process oriented view of the CIP cluster
	5.2.2. Describing the cluster as a unit
	5.2.3. The state explosion problem
	5.2.4. The state explosion problem in practice
	5.2.5. Interpreting the cluster-state diagram
	5.2.6. Conclusion

	5.3. Processes and clusters
	5.3.1. Processes as extended finite state machines
	5.3.2. Processes and outPulses
	5.3.3. Describing the process extended finite state machine
	5.3.4. Process extended finite state machine operations
	5.3.5. Extracting process states from cluster states

	5.4. Deterministic and non-deterministic branching
	5.4.1. Branching
	5.4.2. Non-deterministic branching
	5.4.3. Deterministic branching

	5.5. Reduced cluster structures
	5.5.1. A further measure against state-explosion
	5.5.2. Example of cluster state-space reduction
	5.5.3. The remedy
	5.5.4. Implications
	5.5.5. A caveat for the eventually property

	5.6. Segments
	5.6.1. Purpose of segments
	5.6.2. Cylinder sets
	5.6.3. Forming segments as logical intersections of cylinder sets
	5.6.4. An example of a segment

	5.7. Fairness
	5.7.1. Fairness in CIP
	5.7.2. Example illustrating the use of fairness and a first problem
	5.7.3. Fairness for process transitions
	5.7.4. Example with more than one fairness constraint
	5.7.5. General guidelines for setting fairness

	5.8. Conclusions and summary
	5.8.1. Conclusions
	5.8.2. Summary

	6. Partial Order Reduction
	6.1. Purpose
	6.2. Introduction
	6.3. Independence and visibility of transitions
	6.3.1. Enabledness, commutativity and independence
	6.3.2. Visibility
	6.3.3. Reduced state graphs

	6.4. Introduction to reduction techniques
	6.4.1. The set ample(s)
	6.4.2. Creating ample sets - a simple set of rules
	6.4.3. Creating ample sets in practice

	6.5. More approaches to Partial Order Reduction
	6.5.1. Purpose
	6.5.2. Degree of process-enabledness
	6.5.3. Process-enabling and process-disabling
	6.5.4. Rules for creating ample(s)
	6.5.5. Note on visibility of transitions
	6.5.6. Proof of correctness of rules of 6.5.4.

	6.6. Implementation
	6.6.1. Purpose
	6.6.2. Implementation of algorithm
	6.6.3. Example

	6.7. Discussion
	6.7.1. State space reduction

	6.8. Conclusions

	7. Implementation
	7.1. Introduction
	7.2. Implementation methods
	7.2.1. States and state vectors
	7.2.2. Process transitions
	7.2.3. Pulse propagation
	7.2.4. Conditional transitions

	7.3. The CIP model checker
	7.3.1. The user interface
	7.3.2. Simple testing
	7.3.3. State space traversal
	7.3.4. Segments
	7.3.5. Properties

	8. Conclusions
	8.1. What has been achieved?
	8.1.1. The contribution of this thesis
	8.1.2. The software concept: summary
	8.1.3. Some achievements
	8.1.4. Some results

	8.2. A self critical appraisal
	8.2.1. Implementation of the project
	8.2.2. State explosion problem
	8.2.3. Overall appraisal

	8.3. Possibilities for further development
	8.3.1. Command line interface
	8.3.2. Interfacing with SPIN
	8.3.3. Generating meta-code for other model checkers

	Appendix A: Sequentiality and fairness
	A.1. Sequence of transitions
	A.1.1. Time and sequentiality
	A.1.2. Example of an interpretation problem
	A.1.3. Infinite sequences
	A.1.4. Sequentiality

	A.2. Zeno’s Paradox of Achilles and the Tortoise
	A.2.1. Zeno
	A.2.2. The paradox
	A.2.3. What does all this have to do with Model Checking?
	A.2.4. Discussion
	A.2.5. Correspondence of time and sequentiality
	A.2.6. Conclusion
	A.2.7. Application

	A.3. Fairness
	A.3.1. About fairness in general
	A.3.2. The problem of event starvation
	A.3.3. Preventing starvation
	A.3.4. Fairness constraints, fair and unfair transitions
	A.3.5. System behaviour
	A.3.6. Some examples
	A.3.7. Another look at Zeno’s paradox

	A.4. Reachability and fair paths
	A.4.1. Proof

	Appendix B: Notes on similar work
	B.1. Fairness constraints
	B.1.1. A special case of a CTL* fairness constraint
	B.1.2. Proof

	Appendix C: Cluster reduction
	C.1. Effects of cluster reduction on behaviour
	C.1.1. Example of cluster reduction leading to new behaviour.
	C.1.2. Example of behaviour loss through cluster reduction.
	C.1.3. Further example of behaviour loss through cluster reduction
	C.1.4. General discussion on the effects of cluster reduction

	C.2. Preventing loss of transitions in cluster reduction
	C.2.1. The problem of loss of behaviour
	C.2.2. Detecting potential loss of behaviour
	C.3.3. Example of detecting loss of behaviour
	C.3.4. Handling loss of behaviour by tree splitting
	C.3.5. Example of handling loss of behaviour
	C.3.6. Measures reducing the number of additional transitions
	C.3.7. Example of reducing the number of additional transitions
	C.3.8. Consequences of cluster reduction and a caveat
	C.3.9. Handling part-transitions
	C.3.10. Example using non-deterministic replacement for process

	Appendix D: Traversing the State-Space
	D.1. Introduction to state-space traversal
	D.1.1. Purpose
	D.1.2. A simple example

	D.2. Proving the eventually property
	D.2.1. Depth-first-search algorithm (DFS)
	D.2.2. Expanding the DFS algorithm to accommodate fairness.
	D.2.3. Depth-first-search algorithm with fairness.

	Appendix E: Traversal examples
	E.1. DFS algorithm
	E.1.1. Without fairness, property fails
	E.1.2. Without fairness, property holds

	Appendix F: Partial Order Reduction
	F.1. Introduction
	F.2. Independence and visibility of transitions
	F.2.1. Enabledness

	F.3. Examples
	F.3.1. Partial Order Reduction of a simple system
	F.3.2. The same example solved using method of section 6.4.3.
	F.3.3. Degree of process enabledness
	F.3.4. Example of process enabling and disabling
	F.3.5. Example of F.3.1 using rules of 6.5.4
	F.3.6. Differences between the methods

	F.4. Discussion
	F.4.1. Comparison of rules
	F.4.2. Discussion of visibility of transitions

	F.5. Notes on discussion
	F.5.1. State space reduction

	Appendix G: Data structures
	G.1. Transitions

	Bibliography and references
	Appendix R: Quick Reference
	R.1. Symbols
	R.2. Functions and relations

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Curriculum Vitae

