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Abstract

Energy harvesting (also known as energy scavenging) is the process of
generating electrical energy from environmental energy sources. There
exists a variety of different energy sources such as solar energy, kinetic
energy, or thermal energy. The term has been frequently applied in the
context of small autonomous devices such as wireless sensor nodes.

This thesis addresses power management in energy harvesting em-
bedded systems. As an example scenario, we focus on wireless sensor
nodes which are powered by solar cells. We demonstrate that classical
power management solutions have to be reconceived and/or new prob-
lems arise if perpetual operation of the system is required. In particular,
we provide a set of algorithms and methods for different application sce-
narios, including real-time scheduling, application rate control as well as
reward maximization. Goal is to optimize the performance of the appli-
cation subject to given energy constraints. Compared to state-of-the-art
approaches, our methods optimize the system performance or achieve the
same performance as state-of-the-art approaches requiring, e.g., smaller
solar cells and smaller batteries. Furthermore, we show how to dimen-
sion important system parameters like the minimum battery capacity or
a sufficient prediction horizon. Our theoretical results are supported by
simulations using long-term measurements of solar energy in an out-
door environment. Furthermore, to demonstrate the practical relevance
of our approaches, we measured the implementation overhead of our
algorithms on real sensor nodes.





Zusammenfassung

Als Energy Harvesting (oder Energy Scavenging) bezeichnet man die
Erzeugung elektrischer Energie aus z.B. Sonnenenergie, Vibrationen oder
Umgebungstemperatur. Der Begriff wird häufig im Zusammenhang
mit miniaturisierten, eingebetteten System verwendet. Entsprechende
Energiewandler machen besonders dann Sinn, falls drahtlose Tech-
nologien zum Einsatz kommen oder Batterien als Energiequellen keine
ausreichende Betriebsdauer garantieren.

Die vorliegende Arbeit leistet einen Beitrag zur Optimierung einge-
betteter Systeme welche ihre Energie mittels Energy Harvesting aus
der Umgebung entnehmen. Typischerweise werden Batterien in
solchen Systemen nicht mehr als primäre Energiequellen, sondern
nur noch als Zwischenspeicher verwendet. Am Beispiel von so-
largetriebenen, drahtlosen Sensorknoten wird gezeigt, wie geeignete Al-
gorithmen die Energieversorgung langfristig optimieren können. Ziel
dieser Optimierung ist es, unterbrechungsfreien Betrieb des Systems zu
gewährleisten und gleichzeitig die verfügbare Energie möglichst sinnvoll
zu nutzen. Zu diesem Zweck werden in dieser Arbeit verschiedene An-
wendungsszenarien untersucht. Darüber hinaus werden Methoden zur
Berechnung der notwendigen Speicherkapazität der Batterie vorgestellt,
welche für einen unterbrechungsfreien Betrieb notwendig ist. Die ent-
worfenen Algorithmen wurden teilweise auf Sensorknoten implemen-
tiert und getestet. Zudem haben Simulationen gezeigt, dass unsere Al-
gorithmen die langfristige Energieversorgung im Vergleich zu State-of-
the-Art Lösungen deutlich verbessern. Die durchgeführten Simulatio-
nen basieren auf Messdaten solarer Energie, die in Langzeitmessungen
von einer Photovoltaikanlage aufgezeichnet wurden. Auf der Grundlage
dieser Messdaten wurden unsere Algorithmen ausgiebig getestet.





Acknowledgement

This thesis would not have been possible without the help and support
of many people to whom I would like to express my gratefulness. In the
first place, I would like to thank my advisor Professor Dr. Lothar Thiele.
Your constant support and patience was always very motivating, and the
many fruitful discussions inspired much of the work presented in this
thesis. I have benefited a lot from your experience and I am very glad
that I got the chance to join your research group.

I would also like to express my gratitude to Professor Dr. Rolf Ernst
for being my co-examiner. Thanks for investing the time to read through
the thesis and for your positive comments.

Furthermore, I thank Dr. Jian-Jia Chen. Your enthusiasm and vast
knowledge has always been a great source of inspiration. Thank you for
the very fruitful research cooperation and for your friendship!

I thank all my current and former colleagues of the TEC group for their
company and support. In particular, I would like to thank Kai Huang for
the great time we had while sharing our office in the last years.

Last but not least, my dearest thanks go to my parents Maria and
Rainer, my brother Vincent, and my girlfriend Karin, for their love and
support throughout all these years of my education.

The work presented in this thesis was supported by the National Com-
petence Center in Research on Mobile Information and Communication
Systems (NCCR-MICS), a center supported by the Swiss National Science
Foundation under grant number 5005- 67322. In addition, this research
has been supported by grants from the European Network of Excellence
Artist2 and ArtistDesign. This support is gratefully acknowledged.





Contents

Abstract i

Zusammenfassung iii

Acknowledgement v

1 Introduction 1
1.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . 1
1.2 Energy Harvesting in Sensor Networks . . . . . . . . . . . 3
1.3 Environmental Energy Sources for Sensor Networks . . . . 5

1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Photovoltaic Energy Harvesting . . . . . . . . . . . 8

1.4 Thesis Outline and Contributions . . . . . . . . . . . . . . . 11

2 Real-Time Scheduling 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Energy Source . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Energy Storage . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Task Scheduling . . . . . . . . . . . . . . . . . . . . . 22

2.4 Lazy Scheduling Algorithms LSA . . . . . . . . . . . . . . . 23
2.4.1 Simplified Lazy Scheduling . . . . . . . . . . . . . . 24
2.4.2 General Lazy Scheduling . . . . . . . . . . . . . . . 24
2.4.3 Optimality of Lazy Scheduling . . . . . . . . . . . . 28

2.5 Admittance Test . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.1 Lazy Scheduling Algorithm . . . . . . . . . . . . . . 31
2.5.2 Comparison to EDF . . . . . . . . . . . . . . . . . . 34

2.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Practical Considerations . . . . . . . . . . . . . . . . . . . . 39

2.7.1 Energy Source Predictability . . . . . . . . . . . . . 39
2.7.2 Task Processing . . . . . . . . . . . . . . . . . . . . . 40
2.7.3 Energy Storage Model . . . . . . . . . . . . . . . . . 42



viii Contents

2.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Application Rate Control 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 System Concept . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Basic Models and Methods . . . . . . . . . . . . . . . . . . . 51

3.4.1 Power Flow and Energy Storage Model . . . . . . . 51
3.4.2 Rate-Based Application Model . . . . . . . . . . . . 51
3.4.3 Energy Prediction and Receding Horizon Control . 53
3.4.4 Linear Program Specification . . . . . . . . . . . . . 54

3.5 Multiparametric Control Design . . . . . . . . . . . . . . . 56
3.5.1 Controller Generation . . . . . . . . . . . . . . . . . 57
3.5.2 Adaptation of Sensing Rate (Example I) . . . . . . . 58
3.5.3 Local Memory Optimization (Example II) . . . . . . 60
3.5.4 Optimization with Non-Ideal Energy Storage (Ex-

ample III) . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6 Hierarchical System Model . . . . . . . . . . . . . . . . . . 65

3.6.1 Design Principles . . . . . . . . . . . . . . . . . . . . 65
3.6.2 Optimization with Non-Ideal Energy Storage (cont.

Example III) . . . . . . . . . . . . . . . . . . . . . . . 69
3.7 Approximate Control Design . . . . . . . . . . . . . . . . . 72

3.7.1 An Approximative MP Linear Programming Algo-
rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7.2 Optimization with Non-Ideal Energy Storage (cont.
Example III) . . . . . . . . . . . . . . . . . . . . . . . 75

3.8 Hardware Implementation Issues . . . . . . . . . . . . . . . 79
3.8.1 Average Computation Demand . . . . . . . . . . . . 79
3.8.2 Worst-Case Computation Demand and Storage De-

mand . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.8.3 Realistic Modelling of the Energy Storage . . . . . . 82

3.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Reward Maximization 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 System Model and Problem Statement . . . . . . . . . . . . 88

4.3.1 Energy Harvesting Model . . . . . . . . . . . . . . . 88
4.3.2 Energy Storage Model . . . . . . . . . . . . . . . . . 89
4.3.3 Application and Service Model . . . . . . . . . . . . 89
4.3.4 Problem Definition . . . . . . . . . . . . . . . . . . . 92

4.4 Proposed Service Allocation Framework . . . . . . . . . . . 94
4.4.1 Inter-Frame Service Allocation . . . . . . . . . . . . 95



Contents ix

4.4.2 Intra-Frame Service Allocation . . . . . . . . . . . . 104
4.5 Design Considerations . . . . . . . . . . . . . . . . . . . . . 106

4.5.1 Energy Prediction Techniques . . . . . . . . . . . . . 106
4.5.2 Sliding Horizon Operation . . . . . . . . . . . . . . 107
4.5.3 The Minimum Energy Storage Capacity Emax,min . . 108
4.5.4 Energy Buffering, Limited Energy Consumption

and Discrete Service Levels . . . . . . . . . . . . . . 108
4.6 Simulative Evaluation . . . . . . . . . . . . . . . . . . . . . 109

4.6.1 Simulation Environment and Setup . . . . . . . . . 109
4.6.2 Efficient Implementation of the Intra-Frame Service

Allocation . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6.3 Choosing Sufficient Parameters K and Emax . . . . . 111
4.6.4 Comparison to an Adversary Algorithm . . . . . . 113

4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Conclusions 117
5.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 121

A Adversary Inter-Frame Service Allocation Algorithm 129

List of Publications 131

Curriculum Vitae 133



x Contents



1
Introduction

This thesis presents a set of novel power management solutions for en-
ergy harvesting embedded systems. In particular, in the field of wireless
sensor networks, energy harvesting techniques are currently gaining mo-
mentum. Therefore, we will focus on wireless sensor nodes as a primary
application scenario throughout this thesis. Nevertheless, our methods
generally apply to all kinds of embedded systems which take advantage
of regenerative energy sources to achieve long-term operation.

In Section 1.1, we start with a short survey of application scenarios and
the design space of wireless sensor networks. In Section 1.2, we discuss
the benefits of energy harvesting and elaborate on the new challenges
which have to be mastered. A discussion of various environmental en-
ergy sources is provided in Section 1.3. Finally, we give the outline and
summarize the contributions of this thesis in Section 1.4.

1.1 Wireless Sensor Networks

Wireless sensor networks (WSN) have opened up an exciting field of
research that is increasingly becoming popular nowadays. A WSN can be
seen as a system of self-powered, wireless sensors which are able to detect
and transmit events to a base station. WSNs are deployed wherever it
is not possible or practical to maintain a wired network infrastructure.
Main applications of WSNs are, e.g., the monitoring of environmental
physical quantities such as temperature, humidity or vibrations as well
as physiological monitoring, smart spaces or factory instrumentation.
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(a) BTnode rev3 hardware overview. (b) The BTnode sensor node.

Fig. 1: A state of the art sensor node: The BTnode.

In the recent years, a great number of prototype sensor networks have
been deployed, including networks for volcano monitoring [WALJ+06],
habitat monitoring [SPMC04] or glacial movement monitoring [MOH04].
For most of these deployments, unattended operation of the network for
long periods is highly desirable.

In the last decade, a large number of sensor network platforms
both from academia and from industry have emerged, including, e.g.,
the BTnode [BDH+04], the Moteiv Tmote Sky [PSC05], the Crossbow
Mica2 [HHKK04] and the Intel Imote [NKA+05]. In Figure 1, the BTnode
rev3 sensor node is displayed. It is introduced here since it can be seen
as a state of the art sensor network platform and it has been us for the
experiments in this thesis. The BTnode system core consists of an Atmel
ATmega128l microcontroller, two radios for wireless communication and
SRAM memory. As standard power supply, 2-cell AA batteries are used.

As for many other battery-operated embedded systems, a sensor’s op-
erating time is a crucial design parameter. As electronic systems continue
to shrink, however, less energy is storable on-board. Research continues
to develop higher energy-density batteries and supercapacitors, but the
amount of energy available still severely limits the system’s lifespan. As
a result, size as well as weight of most existing sensor nodes are largely
dominated by their batteries.

A comprehensive overview of the design space of sensor networks is
given in [RM04]. For many application scenarios, the sensor nodes are
anticipated to be small and inexpensive devices which can be unobtru-
sively embedded in their environment. Thus, a sensor node’s hardware
is stringently limited in terms of computation, memory, communication
as well as storable energy (e.g. batteries). These hardware constraints
also limit the complexity of the software executed on a sensor node.
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1.2 Energy Harvesting in Sensor Networks
One of the main advantages of WSNs is their independence of pre-
established infrastructure. That is, in most common scenarios, recharg-
ing or replacing nodes’ batteries is not practical due to (a) inaccessibility
and/or (b) sheer number of the sensor nodes. In order for sensor net-
works to become a ubiquitous part of our environment, alternative power
sources should be employed. Therefore, environmental energy harvesting
is deemed a promising approach: If nodes are equipped with energy
transducers like, e.g., solar cells, the generated energy may increase the
autonomy of the nodes significantly.

Benefits
The past several years have seen an increasing interest in wireless sensor
nodes which are scavenging energy from their environment. Specifi-
cally, techniques to harvest energy via photovoltaic cells have attracted
the interest of the sensor network community [RKH+05]. Solar energy is
certainly one of the most promising energy sources and typical environ-
mental monitoring applications have access to solar energy. Due to the
progress in low-power design, the energy generated by small solar panels
suffices to execute most common data gathering applications. Equipped
with photovoltaic cells, perpetual operation becomes possible without fre-
quent recharging and replacement of the batteries. Ideally, sensor nodes
once deployed in a harsh environment benefit from a drastically increased
operating time and become virtually immortal. Since batteries are solely
used as energy buffers and not as primary energy sources, the cost, weight
and size of batteries can be reduced significantly.

Challenges
The overhead of the energy harvesting hardware as well as demand for
corresponding software control can be seen as disadvantages compared to
battery driven systems. Concerning the hardware, an energy harvesting
device like a solar panel or a piezoelectric element has to be integrated into
the system. Besides the actual harvesting device, dedicated power supply
circuits are required to efficiently charge the battery. This thesis, however,
focuses on the design of adaptive software solutions for energy harvesting
systems. Here, carefully designed power management algorithms must
be applied in order to avoid wasting precious energy. The energy re-
quired for sophisticated control algorithms may introduce a high control
overhead for low-power applications. For sensor nodes which periodi-
cally sense and transmit data, but spend most of the time in power-saving
sleep modes, simple, low-complexity solutions are needed.
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Fig. 2: Recording of solar light intensity during one week [Sun06].

From a networking perspective, classical sensor network protocols
cannot harness the full potential provided by the harvesting technology.
Here, some attempts have been made to make routing or clustering de-
cisions within the network harvesting aware [LSR05, VRS+04]. Based on
the knowledge of the currently generated power at the single nodes, the
network lifetime can be optimized by shifting the communication and
computation load. In the example of a solar powered network, nodes
which are directly exposed to sunlight have to disburden nodes who are
harvesting less energy due to shadowing effects.

In contrast, this thesis focuses on the temporal variations of the energy
source experienced by a single node instead of spatial variations between
several nodes. The obtained results can, e.g., be applied to networks,
whose nodes are independently from each other transmitting data to a
base station. The temporal variations of solar energy harvested by a
sensor node in an outdoor environment is exemplified in Figure 2. The
figure displays recordings of solar light intensity during one week.

It becomes evident that solar energy is an infinite energy source, com-
pared to conventional batteries, which are finite energy sources. On the
other hand, the harvested power can only be regarded as constant on aver-
age in a long-term perspective. On a short-term perspective, however, the
harvested power is highly unstable, as shown in Figure 2. While the forth
and fifth day turn out to be quite sunny, for instance, only little energy is
harvested at the second and sixth day.

A prerequisite for any reasonable power management is an energy
prediction of the energy harvested in the future. For the example of solar
energy in Figure 2, the wheather forecast may be of help. In the course
of this thesis, we will explore different methods for energy prediction.
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Subsequently, the actual power management decides on the future use of
energy based on the input of the energy prediction.

Sensor nodes executing a given application may frequently run out of
energy in times with insufficient illumination. In the example of Figure 2,
this may happen during the cloudy days number 2 and 6 or during the
nights. If one strives for predictable, continuous operation of a sensor
node, common power management techniques have to be reconceived.
In addition to perform classical power saving techniques, the sensor node
has to adapt to the stochastic nature of the energy source and has to
decide when to use this energy. Goal of this adaptation is to maximize
the utility of the application in a long-term perspective. The resulting
mode of operation is sometimes called energy neutral operation [KPS04]:
The performance of the application is not predetermined a priori, but
adjusted in a best effort manner during runtime and ultimately dictated
by the power source. Therefore, storage devices like batteries are solely
used as energy buffers to compensate the variations of the underlying
energy source.

Simply stated, this thesis addresses questions like the following:

• When should a sensor node use energy to sample and transmit
data, and when should the sensor node idle and recharge the energy
storage?

• If the energy storage is empty, the application has to be suspended
and the sensor node has to be shut down. How can such energy
underflows be avoided?

• If the energy storage is full, harvested energy cannot be stored and
is wasted. How can such energy overflows be avoided?

• In real-time systems where a deadline violation may lead to severe
performance degradation of the system, in which order shall we
process tasks in order to respect all deadlines?

• How should we dimension the energy storage to optimally playout
the variations of the underlying energy source?

• The hardware of a sensor node is stringently limited in terms of
computation, memory and communication. How can we design
low complexity power management solutions which respect those
hardware constraints?

1.3 Environmental Energy Sources for Sensor
Networks

In this section, we make an effort to overview potential energy sources
for wireless sensor networks. In [RSF+04, Yea04, RWR03], current state of
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the art, ongoing research as well as theoretical limits for many potential
energy sources have been discussed. In comparison to the latter works,
the overview in this thesis is not meant to be exhaustive. Rather, we want
to provide the reader with some basic understanding of conversion prin-
ciples and want to document the substantial interest that this topic has
attracted recently, both in academia as well as in industry. For this pur-
pose, we will also provide examples of commercially available products
which have appeared on the market.

We will start with an brief overview in Section 1.3.1 and take a closer
look at photovoltaic energy harvesting techniques in Section 1.3.2.

1.3.1 Overview
In general, the source and amount of energy that can be leveraged depends
on the environment and the application. As the power consumption of
electronic devices decreases permanently to the range of only μW, even
formerly disregarded energy sources have become attractive.

Vibrational Energy

Devices which convert mechanical motion into electricity can be catego-
rized in electromagnetic, electrostatic and piezoelectric converters. In the
case of electromagnetic converters, a coil is oscillating in a static magnetic
field and induces a voltage. In electrostatic converters, electric charge
on variable capacitor plates creates a voltage if the plates are moved.
Piezoelectric converters, finally, exploit the ability of some materials like
crystals or ceramics to generate an electric potential in response to me-
chanical stress. A prominent example for the employment of vibrational
harvesters is the watch industry, where vibrational energy converters
have been used with success to power wristwatches.

Fig. 3: Piezoelectric generator, power circuit and radio powered from vibra-
tions [RSF+04].
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In the context of wireless sensor networks, the authors of [RWR03]
have analyzed common vibration sources such as cars, buildings or trains.
The power harvested from the occurring low level vibrations can amount
up to 300 μW

cm3 . On the other hand, also human activity can be the source
of vibrational energy. In [SP01], a piezoelectric-powered RFID system for
shoes has been presented which harvests energy from human walking ac-
tivity. A similar approach has been taken in [RSF+04], where piezoelectric
generators have been developed as an attractive method to power wire-
less transceivers (see Figure 3). In [ABM+05], one of the first prototype
sensor nodes with a vibration harvesting micro power generator has been
presented.

Thermal Energy

In principle, the presence of a temperature difference between two dif-
ferent metals or semiconductors causes a voltage. This effect is called
Seebeck effect. Using thermoelectric conversion, thermal gradients in the
environment can be directly converted into electric energy. An exam-
ple for a commercial product which exploits thermoelectric conversion is
Thermo Life ® [Sta06]. Thermo Life ® is a small thermoelectric generator
manufactured by thin film technology which offers a power output of a
few 10 to 100 μW and voltages in the Volt-range. For this output power,
temperature gradients of only a few Kelvin are necessary. As displayed
in Figure 4, the Thermo Life ® module has a diameter of≈ 1 cm and a total
height of 1.4 mm. Examples for possible application areas are biomedi-
cal implants, wearable electronic systems as well as structure embedded
wireless micro sensors.

Fig. 4: Working principle of Thermo Life ® [Sta06].

Wind Energy

Compared to other methods, harvesting wind energy is limited to special
application scenarios. Although it is less attractive due to the size of the
mechanical components, some efforts to generate power at a very small
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scale have been made recently.
As shown in [RSF+04], the power densities harvested from air velocity

are quite promising. In addition, the authors of [PCFZ05] designed a
windmill which uses piezoelectric elements to generate electricity from
wind energy, see Figure 5(b). A power output of 10.3 mW was reported
for a wind flow which leads to 6 rotations per minute. Furthermore, a
maximum power point tracker for a small windmill was implemented
in [PC06]. The experimental setup used in [PC06] is illustrated in Fig-
ure 5(a).

(a) AmbiMax hardware with a solar
panel, wind generator, lithium polymer
battery and Eco Node [PC06].

(b) Piezoelectric windmill proto-
type [PCFZ05].

Fig. 5: Wind harvesting circuits.

1.3.2 Photovoltaic Energy Harvesting
For outdoor deployments, solar energy harvested by photovoltaic cells is
readily available in many sensor network scenarios. It becomes evident
that solar energy is one of the most powerful energy sources [RSF+04].
Moreover, there is another reason why solar energy deserves a dedicated
treatment in this thesis: Compared to other forms of environmental en-
ergy, solar energy is to some extent predictable. As already mentioned
in the previous section, predictability is a prerequisite for meaningful
planning of the future energy consumption.

Solar Cell Characteristics and Maximum Power Point Tracking (MPPT)

Photovoltaic systems have been used for decades to generate electric-
ity, spanning from large-scale systems generating megawatts of power
to small-scale systems operating in the range of milliwatts. For sensor
network applications in an outdoor environment, several hundreds of mW

cm2

are achievable.
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Figure 6 depicts the voltage-current curve of a solar cell for a certain
light condition. Obviously, the output power Psolar of the solar cell – which
is the product of the voltage Vsolar and the current Isolar – is very sensitive
to the solar cell’s voltage Vsolar. The operation point in which the solar cell
is providing the maximum power for a certain light condition is called
the maximum power point (MPP). The current, voltage and power in the
MPP are called maximum power point current IMPP, voltage VMPP and
power PMPP. If the light intensity is increasing, also the voltage VMPP and
the maximum power PMPP are increasing.

0
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0,03
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0,09

0 0,5 1 1,5 2 2,5 3 3,5 4
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IMPP VMPP

Fig. 6: Measured voltage-current and voltage-power curves of a solar cell for a certain
light condition.

A lot of research has been done in the field of maximum power point
tracking techniques [EC07]. These techniques try to aim for a continuous
operation of the solar cell in its maximum power point (MPP) while
adapting to varying light conditions. The goal is to harvest as much
energy as possible from the available solar energy. For large-scale systems,
where plenty of energy is available, dedicated microcontrollers are used
for maximum power point tracking.

Photovoltaic Energy Harvesters for Sensor Nodes

Recently, a number of solar powered prototype sensor nodes have
been presented which perform more and more efficient energy con-
version. Two of the first prototypes were Heliomote [HKF+05] and
Prometheus [JPC05a]. In both systems, the solar panels are directly
connected with the storage device. A picture of the energy scavenger
Prometheus is depicted in Figure 7(a). Here, the solar cell is directly
connected to a supercapacitor. This means that especially for low su-
percapacitor voltages, the solar cell generates much less power than its
maximum power PMPP.
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(a) Prometheus sensor node [JPC05a]. (b) Everlast prototype system [SC06].

(c) AmbiMax solar panel with light sen-
sor [PC06].

(d) AmbiMax board with supercapaci-
tors [PC06].

Fig. 7: Solar powered wireless sensor nodes.

An efficient solar harvesting system should adapt the electrical oper-
ating point of the solar cell to the given light condition. For solar cells the
size of a few cm2 particular care has to be taken in order not to waste the
few mW generated by the solar cell. To this end, Everlast [SC06] uses the
fractional short-circuit current technique (see Figure 7(b)). This technique
is easy and cheap to implement and does not necessarily require DSP
or microcontroller control. The voltage VMPP is estimated based on the
open-circuit voltage of the solar cell, which is measured periodically by
momentarily shutting down the power converter that is connected to the
solar cell. During this time, no energy is harvested. The AmbiMax [PC06]
system exploits a small photosensor to detect the ambient light conditions
and to force the solar cell to work in its MPP (see Figure 7(c)). The cir-
cuit presented in [BBMT08] is similar in nature to AmbiMax; however,
instead of a photosensor miniaturized photovoltaic modules are used as
pilot cells.

Latest versions of MPPT circuits accurately track the MPP of a solar
cell and can adapt to changing light conditions quickly. These prototypes
have successfully demonstrated that solar energy is a realistic energy
source for sensor nodes and perpetual operation is indeed possible.
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Fig. 8: Illustration of the system model and chapter overview.

1.4 Thesis Outline and Contributions

In this thesis, we present a set of novel power management solutions
for energy harvesting embedded systems. As example scenario, we will
stick to wireless sensor nodes which receive their energy from solar cells.
Figure 8 sketches the principal setup which is investigated in this thesis:
An energy source (e.g. a solar cell) generates electrical energy ES which
can be stored in an energy storage device (e.g. a battery). The stored
energy EC can be used by the sensor node to drive various applications.
In Figure 8, the solid arrows indicate physical power flow whereas the
dashed arrows represent information or control flow, respectively.

As illustrated in Figure 8, this thesis investigates three different appli-
cation scenarios, namely Real-Time Scheduling, Application Rate Con-
trol as well as Reward Maximization. We provide dedicated algorithms
for these application scenarios which will be presented in Chapters 2, 3
and 4, respectively. For all application scenarios, an estimation of the
future energy harvesting is required to optimize the system performance.
As illustrated in Figure 8, the estimation of the prediction unit is used
as an input to the online scheduler which controls the application. In
addition, the currently stored energy in the energy storage is measured.

The Real-Time Task Schedulers presented in Chapter 2 guarantee op-
timal task ordering in a short-term perspective. For instance, for time scales
of milliseconds or seconds, the scheduler decides how to assign energy
to time critical tasks. Application parameters as well as average power
consumption are not influenced by the Real Time Task Scheduler.

Both the Application Rate Controller and the Service Level Allocator
decide on the usage of harvested energy in a long-term perspective. At
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this, parameters of the application are adapted for the next days or even
weeks. As a result, the average power consumption of the system is
optimized. The main difference between the approaches in Chapter 3
and Chapter 4 is the objective function, i.e., the way how the overall
system performance is evaluated: While Chapter 3 addresses the case of
(piece-wise) linear objective functions, Chapter 4 deals with concave ob-
jective functions. The resulting controllers for the application scenario in
Chapter 3 are look-up tables, which basically store optimal application
parameters for every possible input. The Service Level Allocator pre-
sented in Chapter 4, however, consists of a polynomial time algorithm
which only requires the storage of a few internal variables. In return, the
Application Rate Controllers in Chapter 3 can be designed for a wider
variety of system dynamics and constraints.

All three application models and corresponding solution methods
turn out to be of practical concern. They can be applied independently
as presented in the respective chapters. Furthermore, it is possible to
combine the proposed application models. For a discussion on how
to combine the different models and methods, the reader is referred to
Section 5.2.

So far, not much attention has been paid to the peculiarities of power
management in energy harvesting systems. Most of the related works
deal with maximizing energy savings in systems with finite energy
sources. In this thesis, we demonstrate that classical power manage-
ment solutions have to be reconceived and/or new problems arise in the
context of energy harvesting. For the application scenarios Real-Time
Scheduling and Reward Maximization, to the best of our knowledge, we
have been the first to identify, formulate and solve the respective opti-
mization problems. In general, compared to systems running state of the
art power management solutions (which may not be tailored to energy
harvesting systems), our methods offer the following advantages:

• Our methods optimize the system performance and significantly
outperform state of the art approaches. The superior performance
manifests, e.g., in a greater number of tasks which is schedulable
(see Chapter 2), a better average performance (see Chapter 3) or a
higher achievable system reward (see Chapter 4).

• The other way round, to achieve the same system performance,
our methods allow the usage of less powerful energy sources (e.g.
smaller solar panels) compared to state of the art approaches.

• Using our techniques, substantially smaller energy storages suffice
to achieve the same performance as state of the art approaches,
resulting in a reduced size, weight and cost of the embedded system.
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• Our methods are carefully designed and exhibit low computational
complexity. In other words, our software solutions are well-suited
for resource constrained embedded systems.

Our results can be applied to, e.g., sensor nodes which are situated
in an outdoor environment and are directly exposed to sunlight. More-
over, our results are applicable to other systems which are powered by
an environmental energy source which has some kind of predictable be-
haviour. For instance, for sensor networks deployed in office buildings
or hospitals, the harvested photovoltaic energy of the indoor illumination
can also be predicted to some extent. On the one hand, lights in corridors
and offices are switched on/off according to a fixed schedule. On the other
hand, the different attendance times of employees can be learned readily
by a prediction algorithm (day, night, weekday, weekend, holidays, etc.).
Another example are sensor network deployments for monitoring vibra-
tions of industrial machines, where the harvested vibrational energy can
be predicted using the schedule of the machine activities.

In the following, the individual contributions of the three main chap-
ters are summarized.

Chapter 2: Real-Time Scheduling
In Chapter 2, we consider applications with real-time requirements where
tasks are given by arrival times, deadlines, computation times as well as
a certain amount of energy which is required to complete each task. We
point out that greedy scheduling is not suitable if tasks are processed
using regenerative energy. We present Lazy Scheduling LSA, an optimal
real-time scheduling algorithm for energy harvesting systems. Further
we present an admittance test that decides whether a task set can be
scheduled without deadline violations. Simulation results how that our
algorithm allows substantial reductions of the battery size compared to
EDF scheduling. The contributions described in this chapter are as fol-
lows:

• We present an energy-driven scheduling scenario for a system
whose energy storage is recharged by an environmental source.

• For this scenario, we state and prove optimal online algorithms
that dynamically assign power to arriving tasks. These algorithms
are energy-clairvoyant, i.e., scheduling decisions are driven by the
knowledge of the future incoming energy.

• We present an admittance test that decides, whether a set of tasks
can be scheduled with the energy produced by the harvesting unit,
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taking into account both energy and time constraints. For this pur-
pose, we introduce the concept of energy variability characterization
curves (EVCC). In addition, a formal comparison to EDF scheduling
is provided.

• Using our admittance test, we show how to dimension important
system parameters like, e.g., the size of the battery or the solar cells.

• By means of simulation, we demonstrate significant capacity sav-
ings of our algorithms compared to the classical EDF algorithm.
Finally, we provide approximations which make our theoretical re-
sults applicable to practical energy harvesting systems.

Chapter 3: Application Rate Control
In contrast to the application model in Chapter 2 where the occurance of
tasks is given and not a controllable parameter, in Chapter 3, tasks are ac-
tively invoked with certain rates. These rates are adapted using feedback
controllers such that a maximal utility of the application is obtained. We
present a framework for performance optimization in energy harvesting
systems which allows the specification of various objectives, constraints
as well as dependencies between application rates. The problems are
formulated as linear programs. In order to avoid online optimization,
we apply multiparametric linear programming to precompute state feed-
back controllers which are well-suited for resource constrained systems
like, e.g., sensor nodes. Specifically, the chapter contains the following
contributions:

• We present a specification model that is able to capture the perfor-
mance and parameters of a large variety of rate-based applications
in environmentally powered systems.

• We suggest the use of simple model predictive controllers for perfor-
mance optimization. Concretely, we are applying results of the well-
established field of multiparametric programming to the emerging
area of energy harvesting systems.

• A hierarchical software design is presented which increases the ro-
bustness towards energy prediction mistakes. By designing the up-
per control layer for worst-case situations, depletion of the energy
storage is avoided and robustness of the overall system is increased.
In addition, we show that the hierarchical design reduces the com-
putation overhead and storage demand significantly.
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• We present a new algorithm for approximative multiparametric lin-
ear programming. The resulting control laws are rough approxima-
tions of the optimal solution and reduce the involved online over-
head substantially. An experimental setup reveals that the achieved
performance is not necessarily decreased compared to the optimal
solution.

• We evaluate our methods by means of simulation using longterm
measurements of solar energy as input data. In this way, we could
extensively test the performance of our algorithms for time scales
one usually wants to achieve with, e.g., solar powered sensor net-
works.

• We propose practical techniques for the efficient implementation
of the controllers, give a thorough analysis of the involved imple-
mentation overhead and demonstrate the practical relevance of our
approach by measurements of the controller running on a real sensor
node.

Chapter 4: Reward Maximization
In Chapter 4, we explore how to maximize the system reward for embed-
ded systems which provide services periodically with adjustable quality.
At this, different qualities of services are expressed utilizing the notion
of rewards. We assume the reward of a service to be monotonically in-
creasing and concave with respect to its energy consumption. For this
particular optimization problem, we propose polynomial-time algorithms
that derive optimal assignments in energy consumption to maximize the
overall reward. The detailed contributions are listed below.

• We formulate the general reward maximization on energy harvesting
problem, which is to maximize the sum of rewards for concave
reward functions due to constraints of a regenerative energy source
and the energy buffer.

• We propose a two-stage mechanism for service level allocation in-
cluding polynomial time algorithms that derive optimal service lev-
els to maximize the overall reward.

• To provide insights for system designers, we show how to determine
the minimum battery capacity and a sufficient prediction horizon
for a given power source.

• Our results are supported by simulations based on long-term mea-
surements of photovoltaic energy.
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• Finally, we outline how our algorithms can be implemented ef-
ficiently on embedded systems and elaborate on implementation
details.



2
Real-Time Scheduling

Energy harvesting has recently emerged as a feasible option to increase
the operating time of sensor networks. If each node of the network,
however, is powered by a fluctuating energy source, common power
management solutions have to be reconceived. This holds in particular if
real-time responsiveness of a given application has to be guaranteed. Task
scheduling at the single nodes should account for the properties of the
energy source, capacity of the energy storage as well as deadlines of the
single tasks. We show that conventional scheduling algorithms (like e.g.
EDF) are not suitable for this scenario. Based on this motivation, we have
constructed optimal scheduling algorithms that jointly handle constraints
from both energy and time domain. Further we present an admittance
test that decides for arbitrary task sets, whether they can be scheduled
without deadline violations. To this end, we introduce the concept of
energy variability characterization curves (EVCC) which nicely captures
the dynamics of various energy sources. Simulation results show that our
algorithms allow significant reductions of the battery size compared to
Earliest Deadline First scheduling.

2.1 Introduction

In this chapter, we investigate scheduling policies for application scenarios
with real-time requirements, like e.g. fire or intruder detection systems. In
general, one can classify real-time application scenarios for wireless sen-
sor networks into safety critical systems, smart spaces as well as entertain-
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ment [SAL+03]. For all these scenarios, our research reveals fundamental
problems and tradeoffs when real-time behaviour has to be guaranteed
although a sensor’s driving energy source is highly unstable.
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Fig. 9: Greedy vs. lazy scheduling.

The example in Figure 9 illustrates why greedy scheduling algorithms
(like Earliest Deadline First EDF) are not suitable in the context of regen-
erative energy. Let us consider a node with an energy harvesting unit
that replenishes a battery. For the sake of simplicity, assume that the
harvesting unit provides a constant power output. Now, this node has to
perform an arriving task "1" that has to be finished until a certain dead-
line. Meanwhile, a second task "2" arrives that has to respect a deadline
which is earlier than the one of task "1". In Figure 9, the arrival times
and deadlines of both tasks are indicated by up and down arrows respec-
tively. As depicted in the top diagrams, a greedy scheduling strategy
violates the deadline of task "2" since it dispenses overhasty the stored
energy by driving task "1". When the energy is required to execute the
second task, the battery level is not sufficient to meet the deadline. In
this example, however, a scheduling strategy that hesitates to spend en-
ergy on task "1" meets both deadlines. The bottom plots illustrate how a
Lazy Scheduling Algorithm described in this chapter outperforms a naive,
greedy approach like EDF in this situation. Lazy scheduling algorithms
can be categorized as non-work conserving scheduling disciplines. Un-
like greedy algorithms, a lazy scheduler may be idle although waiting
tasks are ready to be processed.

The research presented in this chapter is directed towards sensor
nodes. But in general, our results apply for all kind of energy harvesting
systems which must schedule processes under deadline constraints. For
these systems, new scheduling disciplines must be tailored to the energy-
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driven nature of the problem. This insight originates from the fact, that
energy – contrary to the computation resource "time" – is storable. As a
consequence, every time we withdraw energy from the battery to execute
a task, we change the state of our scheduling system. That is, after having
scheduled a first task the next task will encounter a lower energy level in
the system which in turn will affect its own execution. This is not the case
in conventional real-time scheduling where time just elapses either used
or unused.

The rest of this chapter is organized as follows: In the next section, we
review related work. Subsequently, Section 2.3 gives definitions that are
essential for the understanding of the results in this chapter. In Section 2.4,
we present Lazy Scheduling Algorithms for optimal online scheduling and
proof their optimality. Admittance tests for arbitrary task sets are the
topic of Section 2.5. Simulation results are presented in Section 2.6 and
Section 2.7 deals with practical issues. At the end, Section 2.8 concludes
the chapter.

2.2 Related Work
In [KPS04], the authors use a similar model of the power source as we
do. But instead of executing concrete tasks in a real-time fashion, they
propose tuning a node’s duty cycle dependent on the parameters of the
power source. Nodes switch between active and sleep mode and try to
achieve sustainable operation. This approach only indirectly addresses
real-time responsiveness: It determines the latency resulting from the
sleep duration.

The approach in [RMM03] is restricted to a very special offline schedul-
ing problem: Periodic tasks with certain rewards are scheduled within
their deadlines according to a given energy budget. The overall goal is
to maximize the sum of rewards. Therefore, energy savings are achieved
using Dynamic Voltage Scaling (DVS). The energy source is assumed to
be solar and comprises two simple states: day and night. Hence the au-
thors conclude that the capacity of the battery must be at least equal to
the cumulated energy of those tasks, that have to be executed at night. In
contrast, our work deals with a much more detailed model of the energy
source. We focus on scheduling decisions for the online case when the
scheduler is indeed energy-constraint. In doing so, we derive valuable
bounds on the necessary battery size for arbitrary energy sources and
task sets.

The research presented in [AM01] is dedicated to offline algorithms for
scheduling a set of periodic tasks with a common deadline. Within this
so-called "frames", the order of task execution is not crucial for whether
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the task set is schedulable or not. The power scavenged by the energy
source is assumed to be constant. Again – by using DVS – the energy
consumption is minimized while still respecting deadlines. Contrary to
this work, our systems (e.g. sensor nodes) are predominantly energy
constrained and the energy demand of the tasks is fixed (no DVS). We
propose algorithms that make best use of the available energy. Provided
that the average harvested power is sufficient for continuous operation,
our algorithms minimize the necessary battery capacity.

The primary commonality of [PUBG01] and our work is the term
"lazy scheduling". In [PUBG01], lazy packet scheduling algorithms for
transmitting packetized information in a wireless network are discussed.
The approach is based on the observation that many channel coding
schemes allow to reduce the energy per packet if it is transmitted slower,
i.e. over a longer duration. Goal of this approach is to minimize the
energy, whereas in our work the energy consumption is fixed (given by
the task set). Furthermore, their scheduling algorithms are fully work
conserving, which is not true for our algorithms.

2.3 System Model
The chapter deals with a scheduling scenario depicted in Fig. 10(a). At
some time t, an energy source harvests ambient energy and converts it
into electrical power PS(t). This power can be stored in a device with
capacity C. The stored energy is denoted as EC < C. On the other hand,
a computing device drains power PD(t) from the storage and uses it to
process tasks with arrival time ai, energy demand ei and deadline di. We
assume that only one task is executed at time t and preemptions are
allowed.

The problem statement presented in this section comprises two major
constraints which have to be satisfied: First, tasks can be processed ex-
clusively with energy ES generated by the energy source. And second,
timing constraints in terms of tasks’ deadlines di must be respected. For
this purpose, two degrees of freedom can be exploited. The scheduler
may decide which task Ji of all ready tasks to execute and what amount
of power PD to assign to this task. The following subsections define the
relations between these quantities in more detail.

2.3.1 Energy Source
Many environmental power sources are highly variable with time. Hence,
in many cases some charging circuitry is necessary to optimize the charg-
ing process and increase the lifetime of the storage device. In our model,
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Fig. 10: Representation of the system model.

the power PS incorporates all losses caused by power conversion as well
as charging process. In other words, we denote PS(t) the charging power
that is actually fed into the energy storage. The respective energy ES in
the time interval [t1, t2] is given as

ES(t1, t2) =
∫ t2

t1

PS(t)dt .

In order to characterize the properties of an energy source, we define now
energy variability characterization curves (EVCC) that bound the energy
harvested in a certain interval Δ: The EVCCs εl(Δ) and εu(Δ)with Δ ≥ 0
bound the range of possible energy values ES as follows:

εl(t2 − t1) ≤ ES(t1, t2) ≤ εu(t2 − t1) ∀t2 > t1

Given an energy source, e.g., a solar cell mounted in a building or outside,
the EVCCs provide guarantees on the produced energy. For example, the
lower curve denotes that for any time interval of length Δ, the produced
energy is at least εl(Δ) (see Fig. 10(b)). Three possible ways of deriving an
EVCC for a given scenario are given below:

• A sliding window of length Δ is used to find the mini-
mum/maximum energy produced by the energy source in any time
interval [t1, t2) with t2 − t1 = Δ. To this end, one may use a long
power trace or a set of traces that have been measured. Since the re-
sulting EVCC bounds only the underlying traces, these traces must
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be selected carefully and have to be representative for the assumed
scenario.

• The energy source and its environment is formally modeled and the
resulting EVCC is computed.

• Approximations to EVCCs can be determined on-line by using ap-
propriate measurement and estimation methods, see Section 2.7.1.

In Section 2.5, the lower EVCC εl will be used in an admittance test
which decides, whether a task set is schedulable given a certain energy
source. Furthermore, both EVCCs will serve as energy predictors for the
algorithms simulated in Section 2.6.

2.3.2 Energy Storage
We assume an ideal energy storage that may be charged up to its capacity
C. According to the scheduling policy used, power PD(t) and the respec-
tive energy ED(t1, t2) is drained from the storage to execute tasks. If no
tasks are executed and the storage is consecutively replenished by the
energy source, an energy overflow occurs. Consequently, we can derive
the following constraints

0 ≤ EC(t) ≤ C ∀t
EC(t2) ≤ EC(t1) + ES(t1, t2) − ED(t1, t2) ∀t2 > t1

and therefore

ED(t1, t2) ≤ EC(t1) + ES(t1, t2) ∀t2 > t1 .

2.3.3 Task Scheduling
As illustrated in Fig. 10(a), we utilize the notion of a computing device
that assigns energy EC from the storage to dynamically arriving tasks. We
assume that the power consumption PD(t) is limited by some maximum
value Pmax. In other words, the processing device determines at any point
in time how much power it uses, that is

0 < PD(t) < Pmax .

We assume tasks to be independent from each other and preemptive.
More precisely, the currently active task may be preempted at any time
and have its execution resumed later, at no additional cost. If the node
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decides to assign power Pi(t) to the execution of task Ji during the inter-
val [t1, t2], we denote the corresponding energy

Ei(t1, t2) =
∫ t2

t1

Pi(t)dt .

The effective starting time si and finishing time fi of task i are dependent
on the scheduling strategy used: A task starting at time si will finish as
soon as the required amount of energy ei has been consumed by it. We
can write

fi = min {t : Ei (si, t) = ei} .
The actual running time ( fi− si) of a task i directly depends on the amount
of power Pi(t) which is driving the task during si ≤ t ≤ fi. At this, the
energy demand ei of a task is independent from the power Pi used for
its execution. Note that we are not using energy-saving techniques like
Dynamic Voltage Scaling (DVS), where ei = f(Pi). In our model, power
Pi and execution time wi behave inversely proportional: The higher the
power Pi, the shorter the execution time wi. In the best case, a task may
finish after the execution time wi =

ei
Pmax

if it is processed without interrupts
and with the maximum power Pmax.

Current hardware technology does not support variable power con-
sumption as described above. So clearly, the continuous task processing
model presented in this section is idealized. However, a microproces-
sor for example may stepwise advance a task by switching power on
(Pi = Pmax) and off (Pi = 0). By tuning the so-called duty cycle accord-
ingly, devices can approximate the average power 0 ≤ Pi ≤ Pmax. For a
more detailed discussion about practical task processing and the system
model in general, see Section 2.7.

2.4 Lazy Scheduling Algorithms LSA

After having described our modeling assumptions, we will now state and
prove optimal scheduling algorithms. In subsection 2.4.1, we will start
with the analysis of a simplified scheduling scenario where tasks need
only energy as computation resource but may execute in zero time. By dis-
regarding the computation resource time, we focus on the energy-driven
nature of the scheduling scenario. In Section 2.4.2, we will consider finite
execution times as well and construct a more general algorithm which
manages to optimally trade off energy and time constraints. Theorems
which prove optimality of both algorithms will follow in subsection 2.4.3.



24 Chapter 2. Real-Time Scheduling

2.4.1 Simplified Lazy Scheduling
We start with a node with infinite power Pmax = +∞. As a result, a task’s
execution time wi collapses to 0 if the available energy EC in the storage
is equal to or greater than the task’s energy demand ei. This fact clearly
simplifies the search for an adequate scheduling algorithm but at the same
time contributes to the understanding of the problem.

As already indicated in the introduction, the naive approach of simply
scheduling tasks with the EDF algorithm may result in unnecessary dead-
line violations, see Fig. 9. It may happen, that after the execution of task
"1" another task "2" with an earlier deadline arrives. If now the required
energy is not available before the deadline of task "2", EDF scheduling pro-
duces a deadline violation. If task "1" would hesitate instead of executing
directly, this deadline violation might be avoidable. These considerations
directly lead us to the principle of Lazy Scheduling: Gather environmental
energy and process tasks only if it is necessary.

The Lazy Scheduling Algorithm LSA-I for Pmax = ∞ shown below at-
tempts to schedule a set of tasks Ji, i ∈ Q such that deadlines are re-
spected. Therefore, the processing device has to decide between three
power modes. The node may process tasks with the maximal power
PD(t) = Pmax or not at all (PD(t) = 0). In between, the node may choose to
spend only the currently incoming power PS(t) from the harvesting unit
on tasks. The algorithm is based on the three following rules:

• Rule 1: If the current time t equals the deadline dj of some arrived
but not yet finished task Jj, then finish its execution by draining
energy (ej − Ej(aj, t)) from the energy storage instantaneously.

• Rule 2: We must not waste energy if we could spend it on task
execution. Therefore, if we hit the capacity limit (EC(t) = C) at
some times t, we execute the task with the earliest deadline using
PD(t) = PS(t).

• Rule 3: Rule 1 overrules Rule 2.

Note that LSA-I degenerates to an earliest deadline first (EDF) policy, if
C = 0. On the other hand, we find an as late as possible (ALAP) policy for
the case of C = +∞.

2.4.2 General Lazy Scheduling
The LSA-I algorithm instantaneously executes a task at its deadline. How-
ever, with limited power consumption PD and finite, minimal computa-
tion times wi =

ei
Pmax

a general algorithm has to determine earlier starting
times si ≤ di in order to respect deadlines. In the following, we sketch
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Algorithm 1 Lazy Scheduling Algorithm LSA-I (Pmax = ∞)
Require: maintain a set of indices i ∈ Q of all ready but not finished tasks Ji

PD(t)⇐ 0;
while (true) do

dj ⇐ min{di : i ∈ Q};
process task Jj with power PD(t);
t⇐ current time;
if t = ak then add index k to Q;
if t = f j then remove index j from Q;
if t = dj then EC(t)⇐ EC(t) − ej + Ej(aj, t);

remove index j from Q;
PD(t)⇐ 0;

if EC(t) = C then PD(t)⇐ PS(t);

how to determine optimal starting times si that balance the time and energy
constraints for each single task Ji. For a more detailed derivation of the
starting times si the reader is referred to [MBTB06].

At first sight, starting a task as late as possible (ALAP) seems to be a
promising approach. The upper plots in Fig. 11 display a straightforward
ALAP-translation of the starting time for task "1": To fulfill its time condi-
tion, task "1" begins to execute at starting time s1 = d1− e1

Pmax
. As illustrated,

it may happen that shortly after s1 an unexpected task "2" arrives. Assume
that this unexpected task "2" is nested in task "1", i.e., it also has an earlier
deadline than "1". This scenario inevitably leads to a deadline violation,
although plenty of energy is available. This kind of timing conflict can be
solved by shifting s1 to earlier times and thereby reserving time for the
unpredictable task "2" (see lower plots Fig. 11). But starting earlier, we
risk to "steal" energy that might be needed at later times (compare Fig. 9).
According to the "lazy" principle we have to take care that we don’t start
too early.

From the above example, we learned that it may be disadvantageous
to prearrange a starting time in such a way, that the stored energy EC

cannot be used before the deadline of a task. If the processing device
starts running at time si with Pmax and cannot consume all the available
energy before the deadline di, time conflicts may occur. On the other
hand, if we remember the introductory example in Fig. 9, energy conflicts
are possible if the stored energy EC(t) is 0 at some time t < di. Hence we
can conclude the following: The optimal starting time si must guarantee,
that the processor could continuously use Pmax in the interval [si, di] and
empty the energy storage EC(di) = 0 exactly at time di. Before the optimal
starting time si, the scheduler has to conserve energy and keep the storage
level EC as high as possible.

A necessary prerequisite for the calculation of the optimal starting time
si is the knowledge of the incoming power flow PS(t) for all future times
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t ≤ di. Finding useful predictions for the power PS(t) can be done, e.g., by
analyzing traces of the harvested power, as we will see in Section 2.6. In
addition, we assume that PS(t) < Pmax, that is, the incoming power PS(t)
from the harvesting unit never exceeds the power consumption Pmax of
a busy node. Besides from being a realistic model in many cases, this
assumption ensures that no energy is wasted if the energy storage is full
and the system is running with Pmax.

To calculate the optimal starting time si, we determine the maximum
amount of energy EC(ai) + ES(ai, di) that may be processed by the node
before di. Next, we compute the minimum time required to process this
energy without interruption and shift this time interval of continuous
processing just before the deadline di. In other words, we calculate the
starting time s∗i as

s∗i = di − EC(ai) + ES(ai, di)
Pmax

.

If now the energy storage is filled before s∗i , it is reasonable to advance
task Ji with power PS in order to avoid an energy overflow (compare Rule
2 of LSA-I). However, this also means that not all energy EC(ai)+ ES(ai, di)
can be processed continuously in [s∗i , di] and we find EC(t) = 0 at some
time t < di. Thus a better starting time s′i allows for the reduced amount
of energy C + ES(s′i , di) which is processible in this situation:

s′i = di −
C + ES(s′i , di)

Pmax
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By choosing the maximum of s∗i and s′i we find the optimal starting
time

si = max
(
s′i , s

∗
i

)
,

which precisely balances energy and time constraints for task Ji.
The pseudo-code of a general Lazy Scheduling Algorithm LSA-II is

shown below. It is based on the following rules:

• Rule 1: EDF scheduling is used at time t for assigning the proces-
sor to all waiting tasks with si ≤ t. The currently running task is
powered with PD(t) = Pmax.

• Rule 2: If there is no waiting task i with si ≤ t and if EC(t) = C, then
all incoming power PS is used to process the task with the smallest
deadline (PD(t) = PS(t)).

Algorithm 2 Lazy Scheduling Algorithm LSA-II (Pmax = const.)
Require: maintain a set of indices i ∈ Q of all ready but not finished tasks Ji

PD(t)⇐ 0;
while (true) do

dj ⇐ min{di : i ∈ Q};
calculate sj;
process task Jj with power PD(t);
t⇐ current time;
if t = ak then add index k to Q;
if t = f j then remove index j from Q;
if EC(t) = C then PD(t)⇐ PS(t);
if t ≥ sj then PD(t)⇐ Pmax;

Although it is based on the knowledge of the future incoming energy
ES, LSA-II remains an online algorithm. The calculation of si must be
performed once the scheduler selects the task with the earliest deadline.
If the scheduler is not energy-constraint, i.e., if the available energy is more
than the device can consume with power Pmax within [ai, di], the starting
time si will be before the current time t. Then, the resulting scheduling
policy is EDF, which is reasonable, because only time constraints have
to be satisfied. If, however, the sum of stored energy EC plus generated
energy ES is small, the scheduling policy changes towards an ALAP policy.
In doing so, LSA avoids spending scarce energy on the "wrong" tasks too
early.

In summary, LSA-II can be classified as an energy-clairvoyant adap-
tation of the Earliest Deadline First Algorithm. It changes its behaviour
according to the amount of available energy, the capacity C as well as
the maximum power consumption Pmax of the device. For example, the
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lower the power Pmax gets, the greedier LSA-II gets. On the other hand,
high values of Pmax force LSA-II to hesitate and postpone the starting time
si. For Pmax = ∞, all starting times collapse to the respective deadlines,
and we identify LSA-I as a special case of LSA-II. In the remainder of the
chapter, we will solely consider the general LSA-II algorithm derived in
this section. From now on, we will denote this algorithm LSA.

2.4.3 Optimality of Lazy Scheduling
In this section, we will show that Lazy Scheduling algorithms optimally
assign power PD to a set of tasks. For this purpose, we formulate Theorem
1 and Theorem 2 which show that LSA makes the best use of the available
time and energy, respectively. With the help of Theorem 1 and 2, we proof
optimality of LSA in Theorem 3.

The scheduling scenario presented in this chapter is inherently energy-
driven. Hence, a scheduling algorithm yields a deadline violation if it fails
to assign energy ei to a task before its deadline di. We distinguish between
two types of deadline violations:

• A deadline cannot be respected since the time is not sufficient to
execute available energy with power Pmax. At the deadline, unpro-
cessed energy remains in the storage and we have EC(d) > 0. We
call this the time limited case.

• A deadline violation occurs because the required energy is simply
not available at the deadline. At the deadline, the battery is ex-
hausted (i.e., EC(d) = 0). We denote the latter case energy limited.

For the following theorems to hold we suppose that at initialization of the
system, we have a full capacity, i.e., EC(ti) = C. Furthermore, we call the
computing device idle if no task i is running with si ≤ t.

Let us first look at the time limited case.

Thm. 1: Let us suppose that the LSA algorithm schedules a set of tasks. At time d the
deadline of a task J with arrival time a is missed and EC(d) > 0. Then there exists
a time t1 such that the sum of execution times

∑
(i) wi =

∑
(i)

ei
Pmax

of tasks with
arrival and deadline within time interval [t1, d] exceeds d − t1.

Proof. Let us suppose that t0 is the maximal time t0 ≤ d where the
processor was idle. Clearly, such a time exists.

We now show, that at t0 there is no task i with deadline di ≤ d waiting.
At first, note that the processor is constantly operating on tasks in time
interval (t0, d]. Suppose now that there are such tasks waiting and task
i is actually the one with the earliest deadline di among those. Then, as
EC(d) > 0 and because of the construction of si, we would have si < t0.
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Therefore, the processor would actually process task i at time t0 which is
a contradiction to the idleness.

Because of the same argument, all tasks i arriving after t0 with di ≤ d
will have si ≤ ai. Therefore, LSA will attempt to directly execute them
using an EDF strategy.

Now let us determine time t1 ≥ t0 which is the largest time t1 ≤ d such
that the processor continuously operates on tasks i with di ≤ d. As we
have si ≤ ai for all of these tasks and as the processor operates on tasks
with smaller deadlines first (EDF), it operates in [t1, d] only on tasks with
ai ≥ t1 and di ≤ d. As there is a deadline violation at time d, we can
conclude that

∑
(i) wi > d − t1 where the sum is taken over all tasks with

arrival and deadline within time interval [t1, d].

�

It can be shown that a related result holds for the energy limited case,
too.

Thm. 2: Let us suppose that the LSA algorithm schedules a set of tasks. At time d the
deadline of a task J with arrival time a is missed and EC(d) = 0. Assume further,
that deadline d is the first deadline of the task set that is violated by LSA. Then
there exists a time t1 such that the sum of task energies

∑
(i) ei of tasks with arrival

and deadline within time interval [t1, d] exceeds C + ES(t1, d).

Proof. Let time t1 ≤ d be the largest time such that (a) EC(t1) = C and
(b) there is no task i waiting with di ≤ d. Such a time exists as one could
at least use the initialization time ti with EC(ti) = C. As t1 is the last time
instance with the above properties, we can conclude that everywhere in
time interval [t1, d] we either have (a) EC(t) = C and there is some task i
waiting with di ≤ d or we have (b) and EC(t) < C.

It will now be shown that in both cases a) and b), energy is not used
to advance any task j with dj > d in time interval [t1, d]. Note also, that all
arriving energy ES(t1, d) is used to advance tasks.

In case a), all non-storable energy (i.e. all energy that arrives from the
source) is used to advance a waiting task, i.e., the one with the earliest
deadline di ≤ d. In case b), the processor would operate on task J with
dj > d if there is some time t2 ∈ [t1, d] where there is no other task i with
di ≤ d waiting and sj ≤ t2. But sj is calculated such that the processor could
continuously work until dj. As dj > d and EC(d) = 0 this can not happen
and sj > t2. Therefore, also in case b) energy is not used to advance any
task j with dj > d.

As there is a deadline violation at time d, we can conclude that
∑

(i) ei >
C+EC(t1, d) where the sum is taken over all tasks with arrival and deadline
within time interval [t1, d].
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�

From the above two theorems we draw the following conclusions: First,
in the time limited case, there exists a time interval before the violated
deadline with a larger accumulated computing time request than avail-
able time. And second, in the energy limited case, there exists a time
interval before the violated deadline with a larger accumulated energy
request than what can be provided at best. These considerations lead us
to one of the major results of the chapter:

Thm. 3: (Optimality of Lazy Scheduling) Let us consider a system characterized by
a capacity C and power Pmax driven by the energy source ES. If LSA cannot
schedule a given task set, then no other scheduling algorithm is able to schedule
it. This holds even if the other algorithm knows the complete task set in advance.

Proof. The proof follows immediately from Theorems 1 and 2. Assume
a set of tasks is scheduled with LSA and at time d the deadline of task J is
missed. Assume further, that deadline d is the first deadline of the task set
that is violated by LSA. In the following, we distinguish between the case
where the energy at the deadline is EC(d) > 0 and EC(d) = 0, respectively.

In the first case, according to Theorem 1, there exists a time t1 such
that the sum of execution times

∑
(i) wi =

∑
(i)

ei
Pmax

of tasks with arrival and
deadline within time interval [t1, d] exceeds d − t1. Here, knowing arrival
times, energy demands and deadlines in advance does not help, since
every scheduling algorithm will at least violate one deadline in [t1, d].

In the energy limited case with EC(d) = 0, according to Theorem 2,
there exists a time t1 such that the sum of task energies

∑
(i) ei of tasks

with arrival and deadline within time interval [t1, d] exceeds C + ES(t1, d).
Hence, no algorithm can hold deadline d without violating an earlier
deadline in [t1, d]. This holds also for omniscient scheduling algorithms,
since (a) at the beginning of the critical interval [t1, d], the energy level
may be EC(t1) = C at most and (b) the execution of the critical tasks can
start at time t1 at the earliest.

So every time LSA violates deadline d, we have either the time limited
case (EC(d) > 0) or the energy limited case (EC(d) = 0). Since in both cases
it is impossible for another algorithm to respect deadline d and all earlier
deadlines simultaneously, we conclude that LSA is optimal.

�

If we can guarantee that there is no time interval with a larger accu-
mulated computing time request than available time and no time interval
with a larger accumulated energy request than what can be provided
at best, then the task set is schedulable. This property will be used to
determine the admittance test described in the next section.
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On the other hand, given a task set and a certain energy source ES(t)
we can also make a statement about the necessary hardware requirements
of the sensor node: Due to its optimality, LSA requires the minimum
processing power Pmax and the minimum capacity C necessary to avoid
deadline violations:

Thm. 4: (Optimal tuple (C ; Pmax)) Let us assume a given task set has to be scheduled
using an energy source ES. Among all algorithms, LSA requires the minimum
capacity C and the minimum power Pmax that are necessary to successfully
schedule the task set.

Proof. We proceed by contradiction. Let us denote C and Pmax the
minimum capacity and the minimum processing power which are needed
to schedule a given task set with LSA. Assume that an adversary algorithm
succeeds to schedule the task set with some C′ < C or P′max < Pmax given the
same energy source. This means the adversary algorithm can schedule
the respective task set with (C′,P′max) and LSA cannot. This however
contradicts the optimality of LSA according to Theorem 3.

�

The admittance test in the next section will allow us to explicitly de-
termine the minimum values of C and Pmax for LSA scheduling.

2.5 Admittance Test

2.5.1 Lazy Scheduling Algorithm
In this section, we will determine an offline schedulability test in case
of periodic, sporadic or even bursty sets of tasks. In particular, given
an energy source with lower EVCC εl(Δ), the device parameters (C ; Pmax)
and a set of periodic tasks Ji, i ∈ I with period pi, relative deadline di and
energy demand ei, we would like to determine whether all deadlines can
be respected.

To this end, let us first define for each task its arrival curve α(Δ)
which denotes the maximal number of task arrivals in any time interval
of length Δ. The concept of arrival curves to describe the arrival patterns
of sets of tasks is well known (request bound functions) and has been
used explicitly or implicitly in, e.g., [Bar03] or [WMT05]. To simplify the
discussion, we limit ourselves to periodic tasks, but the whole formulation
allows to deal with much more general classes (sporadic or bursty) as well.

In case of a periodic task set, we have for periodic task Ji, see also
Fig. 12:

αi(Δ) =
⌈Δ
pi

⌉
∀Δ ≥ 0
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In order to determine the maximal energy demand in any time interval of
lengthΔ, we need to maximize the accumulated energy of all tasks having
their arrival and deadline within an interval of length Δ. To this end, we
need to shift the corresponding arrival curve by the relative deadline.
We are doing this since the actual energy demand becomes due at the
deadline of the respective task. In case of a periodic task Ji, this simply
leads to:

αi(Δ) =
{

ei · αi(Δ − di) Δ > di

0 0 ≤ Δ ≤ di

In case of several periodic tasks that arrive concurrently, the total
demand curve A(Δ) (called demand-bound function in [Bar03]) can be
determined by just adding the individual contributions of each periodic
task, see Fig. 12:

A(Δ) =
∑
i∈I
αi(Δ)

Δ

α1(Δ)

1 2 4 6

1
2

4

Δ1 2 4 6

2
4

8

α1 (Δ)α1 (Δ) Α(Δ)

p1 = 2 p1 = 2, d1=1, e1 = 2
p

1
= 2, d

1
=1, e

1
= 2

p
2

= 3, d
2
=4, e

2
= 1

Δ1 2 4 6

2
4

8

8

Fig. 12: Examples of an arrival curve αi(Δ), a demand curve αi(Δ) and a total demand
curve A(Δ) in case of periodic tasks.

Using the above defined quantities, we can formulate a schedulability
test for the LSA algorithm that can be applied to a quite general class of
tasks specifications.

Thm. 5: (LSA Schedulability Test) A given set of tasks Ji, i ∈ I with arrival curves
αi(Δ), energy demand ei and relative deadline di is schedulable under the energy-
driven model with initially stored energy C, if and only if the following condition
holds

A(Δ) ≤ min
(
εl(Δ) + C , Pmax · Δ

)
∀Δ > 0

Here, A(Δ) =
∑

i∈I ei · αi(Δ − di) denotes the total energy demand of the task set
in any time interval of length Δ, εl(Δ) the energy variability characterization
curve of the energy source, C the capacity of the energy storage and Pmax the
maximal processing power of the system. In case of periodic tasks we have
A(Δ) =

∑
i∈I ei ·

⌈
Δ−di

pi

⌉
.
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Proof. The proof of the if direction is omitted, since it is a direct
consequence of Theorems 1 and 2. We just prove the only-if direction.

Remember that the total demand curve A(Δ) denotes the maximal
energy demand of tasks in any interval [t1, t2] of length Δ. It equals the
maximal accumulated energy of tasks having their arrival and deadline
within [t1, t2]. Therefore, in order to satisfy all deadlines for these tasks,
at least energy A(t2 − t1) must be available.

Let us suppose that the condition in Theorem 5 is violated for some Δ
due to missing energy. Let us suppose also that the task arrival curve and
the energy variability characterization curve are strict, i.e., there exists
some time interval [t1, t2] where the energy demand is A(t2− t1) and at the
same time the energy ES(t2 − t1) is received. Then in time interval [t1, t2]
withΔ = t2−t1 the difference between the energy demand and the received
energy is larger than the maximal stored energy C as A(Δ) > εl(Δ)+C. As
a result, the task set is not schedulable.

On the other hand, whenever the demanded computation time A(Δ)
Pmax

of
a task set in the interval Δ is larger than the interval itself, a task set is
not schedulable. Therefore it is evident, that both the energy condition
A(Δ) ≤ εl(Δ) + C and the time condition A(Δ) ≤ Pmax · Δ must be fulfilled
in order to avoid deadline violations.

�

Theorem 5 tells us that we can decouple energy and time constraints
if we have to decide whether a task set is schedulable or not. On the one
hand, only if

Pmax ≥ max
0≤Δ

(
A(Δ)
Δ

)
,

the system is fast enough to process the given task set. This condition
is independent of the energy provided by the environmental source (i.e.
εl) and the capacity of the storage device. Even increasing the capacity
does not help. If a task set however satisfies the time constraint, the role
of the capacity C as a design parameter for the energy harvesting system
becomes important.

Suppose now that the time constraint is fulfilled. For this case, Theo-
rem 5 states that the capacity C needed to schedule a task set with A(Δ)
using a source with εl(Δ) is constrained by

C ≥ max
0≤Δ

(
0,A(Δ) − εl(Δ)

)
.

Fig. 13 illustrates an example schedulability test. The left diagram
displays the total demand curve A(Δ) for two periodic tasks with p1=2,
d1=1, e1=2 and p2=3, d2=4, e2=1. Furthermore, the EVCC εl(Δ) is given by
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Fig. 13: Determining the optimal tuple (C; Pmax) according to theorem 5.

a piecewise linear function using three pieces (0,0,0),(2,0,1),(5,3,3), where
each piece i is defined by the triple of the form (initialΔi, initial εl(Δi), slope
of piece i). Now, the maximal difference between the total demand curve
A and the EVCC εl can be computed. It has value 4 and is obtained at
Δ = 5. Therefore, one can conclude that the set of tasks can be scheduled
(with LSA) using a minimal capacity C = 4. The respective schedulability
test with C = 4 is shown in the middle diagram of Fig. 13. As displayed in
the right diagram, power Pmax = 2 is required to fulfill the time condition
in theorem 5.

As a last point to mention, let us consider the middle diagram in Fig. 13
once again. Regarding the slopes of the curves, we can guess that A and
εl won’t intersect after the critical time interval of length 5. Formally,
this is because the minimum average power lim

Δ→∞
εl(Δ)
Δ

is higher than the

maximum average power demand lim
Δ→∞

A(Δ)
Δ

of the task set. Simply stated,

the average harvested power is higher than the average power demand of
the application. It becomes evident that an optimal algorithm, like LSA,
can only optimize the short-term behaviour of the system by suitable
power management. LSA achieves the minimum capacity C needed to
temporarily buffer energy for single tasks, but on the long run the average
of power PD is dictated by the task set.

2.5.2 Comparison to EDF
It is useful to formally compare LSA with the well know EDF algorithm
in terms of the schedulability region and the required capacity C. In order
to simplify the discussion, we will investigate an energy limited scenario
only, see Section 2.4.1 and 2.4.3. Then we can state the following result:

Thm. 6: (EDF Schedulability Test) A given set of tasks Ji, i ∈ I with arrival curves
αi(Δ), energy demand ei and relative deadline di is schedulable with initially
stored energy C, only if the following condition holds for any deadline dk, k ∈ I:∑

i∈I
ei · αi(Δ − dk) ≤ C + εl(Δ) ∀Δ > 0
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In case of periodic tasks with period pi we have αi(Δ) = �Δpi
.

Proof. Remember that the left hand side of the condition denotes the
maximal energy used by all the tasks in any interval [t1, t2] of length
t2 − t1 = Δ − dk. There is an instance of task arrivals compliant with
the arrival curves αi such that task Jk arrives at time t2, i.e. by correctly
adjusting the phase of all instances of task Jk. In this case, the deadline of
the task instance arriving at t2 is t2 + dk. In order to be able to execute this
instance within its deadline, the available energy in any interval [t1, t2+dk]
must be larger than

∑
i∈I ei ·αi(t2− t1), i.e. the energy used by tasks arriving

in [t1, t2]. The maximal energy available in [t1, t2 + dk] is in the worst case
given by C + εl(t2 + dk − t1). Replacing t2 − t1 by Δ − dk yields the desired
result.

�

The strongest bound is obtained by using the task Jk with the smallest
deadline dmin = mini∈J{di}. Comparing Theorems 5 and 6 in the energy-
constraint case we obtain the two constraints

∑
i∈I ei ·αi(Δ−dmin) ≤ C+εl(Δ)

for EDF and
∑

i∈I ei ·αi(Δ−di) ≤ C+εl(Δ) for LSA. Clearly, EDF has a smaller
schedulability region as

∑
i∈I ei ·αi(Δ−dmin) ≥ ∑

i∈I ei ·αi(Δ−di) for all Δ ≥ 0.
Finally, let us derive specialized results in the case of periodic tasks

Ji with pi = di (period equals deadline) and a simple energy variability
characterization curve εl(Δ) shown in Fig. 14 with εl(Δ) = max{σ·(Δ−ρ), 0}.

Δ

εl(Δ)

δ

σ

Fig. 14: Simple EVCC for comparing EDF and LSA scheduling.

We also suppose that the available average power σ from the energy
source is sufficient to support the long term power demand σ̄ of the task
set

σ ≥ σ̄ =
∑
i∈I

ei

pi

as otherwise, deadline violations are unavoidable. In the following com-
parison, we suppose that the energy source has a minimal average power,
i.e. σ = σ̄, i.e. it is as weak as possible. Under these assumptions (periodic
task with periods equal deadlines, energy-limited scenario) and using the
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results of Theorems 5 and 6, one can compute the minimal possible ca-
pacities of the energy storage for the two scheduling methods LSA and
EDF as follows:

CEDF =
∑
i∈I

ei + (δ − pmin) · σ̄ ; CLSA = δ · σ̄

Therefore, the relative gain in the necessary storage capacity between
the two scheduling methods can be quantified and bounded by

0 ≤ CEDF − CLSA

CLSA
=

1
δ · σ̄ (

∑
i∈I

ei + pmin · σ̄) ≤ pmax − pmin

δ

For the bounds we use the fact that pmin ≤ (
∑

ei)(
∑

(ei/pi)) ≤ pmax where
pmin and pmax denote the minimal and maximal period of tasks Ji, respec-
tively. In other words, the maximal relative difference in storage capacity
depends on the differences between the task periods. The larger the dif-
ference between the largest and smallest period is, the large the potential
gain in storage efficiency for the LSA algorithm.

2.6 Simulation Results
In the previous section, a method to compute the minimum capacity
for a certain energy source characterization εl was presented. In the
following, we will call this optimal value Cmin. The value Cmin obtained
represents a lower bound since it is obtained for energy-clairvoyant LSA
scheduling. In addition, it remains unclear, which capacities C∗min are
required if other scheduling disciplines are applied. For this reason, we
performed a simulative study to evaluate the achievable capacity savings
in a more realistic scenario. The EDF algorithm – which is optimal in
traditional scheduling theory– serves as a benchmark for our studies.

We investigated variants of LSA which utilize the measured EVCCs εl

and εu to predict the future generated energy ES(t) for the LSA algorithm.
Each time a starting time si has to be calculated for the task i with the
earliest deadline di, the energy εl(di − ai) (or εu(di − ai)) plus the stored
energy EC(ai) is assumed to be processible before the deadline.

The trace of the power source PS(t) is generated by a random number
generator according to

PS(t) =
∣∣∣∣∣10 ·N(t) · cos(

t
70π

) · cos(
t

100π
)
∣∣∣∣∣ ,

where N(t) denotes a normally distributed random variable with mean 0
and variance 1. The values of PS have been cut off at the value PS,max = 10.
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As illustrated in Fig. 15(a), the obtained power trace PS(t) exhibits both
stochastic and deterministic, periodic behaviour. The latter is simulating
day and night periods similar to those experienced by solar cells in an
outdoor environment. From this trace we compute the average power PS

as well as upper and lower EVCCs εu and εl.
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Fig. 15: Calculation of Cmin in two steps: (1) Extract εl(Δ) from PS(t) and (2) Compute
Cmin for every task set with respective energy demand A(Δ).

A task set consists of an arbitrary number of periodic tasks. Periods p
are taken from a set {10, 20, 30, ... , 100}, each value having an equal prob-
ability of being selected. The initial phases ϕ are uniformly distributed
between [0,100]. For simplicity, the relative deadline d is equal to the
period p of the task. The energies e of the periodic tasks are generated
according to a uniform distribution in [0, emax], with emax = PS · p.

We define the utilization U ∈ [0, 1] of a scheduler as

U =
∑

i

ei

PS

pi
.

One can interpret U as the percentage of processing time of the device if
tasks are solely executed with the average incoming power PS. A system
with, e.g., U > 1 is processing more energy than it scavenges on average
and will deplete its energy reservoir.

In dependence of the generated power source PS(t), N task sets are
generated which yield a certain processor utilization U. For that purpose,
the number of periodic tasks in each task set is successively incremented
until the intended utilization U is reached. Hence, the accuracy of the
utilization U is varying ±1% with respect to its nominal value.
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At the beginning of the simulation, the energy storage is full. We
set Pmax = 10. The simulation terminates after 10000 time units and is
repeated for 5000 task sets. In order to show the average behaviour of all
task sets in one plot, we normalized the capacities C with the respective
Cmin of the task set. Fig. 15(b) shows the calculation of Cmin for a random
task set.
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Fig. 16: Comparison of pure LSA, LSA using εl, LSA using εu and EDF for different
utilizations U.

Fig. 16 illustrates the percentage of tasks that could be scheduled with-
out deadline violations for different utilizations U. Clearly, no deadline
violations occur for energy-clairvoyant LSA scheduling and values of

C
Cmin
≥ 1. For all values of U, both approximations of LSA with εl and εu

outperform the EDF algorithm, whereat the lower curve εl seems to be
the better approximation. At U = 40% and C = Cmin, e.g., almost no task
set is schedulable with EDF. Here, LSA with εu is able to schedule ≈ 78%
of all task sets; LSA with εl even ≈ 85%.

Concerning the relative capacity savings achieved with our algo-
rithms, we are especially interested in the smallest capacities C neces-
sary to avoid any deadline violations. The highest savings are obtained
at U = 20%, where EDF needs more than 2.0 · Cmin to respect deadlines
whereas LSA using εl shows the same behaviour at 1.1 · Cmin. This trans-
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lates into capacity savings of ≈ 45%. At higher values of the utilization U
these savings are decreasing, yet they are still significant: At utilizations
of U = 40%, 60%, 80%, the capacity savings of LSA with εl compared to
EDF are still ≈ 40%, 21%, 20%, respectively.

Albeit randomized task sets are not necessary representative for all
kind of applications, these simulation results demonstrate that significant
capacity savings are possible. If the application involves bursty instead of
periodic task processing, the benefits of Lazy Scheduling may be indeed
even more striking: As showed in [MBTB06], a greedy algorithm like
EDF may violate an arbitrary number of deadlines and may suffer from
worst case scenarios. This holds in particular for sensor nodes, where the
energy demands of different tasks are highly varying (e.g. communica-
tion, sensing and data processing tasks) and tasks have to satisfy various
timing constraints (e.g. urgent and less urgent tasks which have to run in
parallel).

2.7 Practical Considerations
The system model introduced in Section 2.3 and used throughout this
chapter implies idealized modelling abstractions, which demand further
explanations. Therefore, this section is dedicated to general implementa-
tion aspects and possible application scenarios

2.7.1 Energy Source Predictability
Clearly, the performance of LSA is strongly dependent on the accuracy
of the predicted power PS(t) of the harvesting unit. The better the ap-
proximation, the better the algorithm performs in terms of optimality.
As illustrated by the simulation results of the previous section, energy
variability characterization curves (EVCC) are suitable for that purpose.
Especially for small utilizations U of the sensor node, EVCCs appear to
converge towards the optimal, energy-clairvoyant LSA. It should be men-
tioned, that the prediction of ES(t) by EVCCs may even be improved if the
sensor node is learning the characteristics of the energy source adaptively:
By observing energy values ES(Δ′) for past intervals Δ′, the prediction for
future intervals Δ can be optimized online. This extension, however,
increases at the same time the computational demand of the scheduler,
which is one of the advantages of using simple EVCCs.

Solar energy harvesting through photovoltaic conversion is deemed a
number one candidate for the power source PS described in our model. If
we assume the sensor node to be placed in an outdoor environment, the
impinging radiation is variable with time, but follows a diurnal as well
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as annual cycle. Moreover, during short time intervals, the produced
power PS can be regarded as constant and sudden changes of the light
intensity are improbable. Due to this specific nature of solar energy,
a two-tiered prediction methodology is self-evident: On the one hand,
long-run predictions must be made for less urgent tasks with rather late
deadlines. Here, using exponential decaying factors to weight the history
of recorded powers PS is one possibility. An alternative is to combine
daily and seasonal light conditions of the past with the knowledge about
a sensor’s environment and possible shadowing. One can think of a
plurality of prediction mechanisms, which are clearly out of the scope of
this work.

For urgent tasks with close deadlines within milliseconds or seconds,
intelligent prediction algorithms may not be necessary. Here, tasks like,
e.g., sending a few bits over the wireless channel may be planned assum-
ing constant power PS(t) = PS,const during si ≤ t ≤ di. For stationarity of the
power inflow PS the calculation of the starting time si for a task i simplifies
to

si = di −min
(
EC(ai) + (di − ai)PS,const

Pmax
,

C
Pmax − PS,const

)
.

In the worst case, a sensor node is powered by an energy source with
pure stochastic behaviour. If nothing is known about this source, the cur-
rently stored energy ES is the only indicator for making scheduling deci-
sions. By iteratively updating the starting time ŝi = di − EC(t)

Pmax
(and thereby

increasing the computational overhead) starting task i too early can be
avoided. However, once the device is running with Pmax, the incoming
energy ES(ŝi, di) may not be processible in the remaining interval [ŝi, di].
Consequently, optimality cannot be guaranteed for this scenario since the
starting time ŝi is always earlier then the optimal starting time si.

2.7.2 Task Processing
The task processing model presented in this chapter exhibits two major
assumptions:

1. We assume the power PD(t) driving a task to be continuously ad-
justable with respect to its value in [0; Pmax] as well as with respect
to time t. That is, at any point in time a task can be advanced with
an accurately defined amount of power.

2. We assume a linear relationship between the power PD used for
executing a task and the execution time w. We can say: the higher
the power PD, the shorter the execution time w.
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The first modelling assumption is only needed in situations when the
energy storage is full (EC(t) = C). In practice, there is no existing hardware
that supports a continuous consumption of the scavenged power PS(t) as
claimed by LSA. A microcontroller, e.g., drains roughly constant power
from the battery when running a piece of program. The same holds for
the radio interface. When transmitting a certain amount of data, most
radios won’t operate properly with unstable power supply. Therefore,
we assume that the respective hardware attempts to approximate the
power level of the power source by continuously switching power on
(PD = Pmax) and off (PD = 0). In Fig. 17, the achieved average power
PD ≈ PS is sketched.

It becomes evident that in an implementation, one will have to respect
a certain granularity. The scheduler needs to determine when the energy
storage is full and then, a task is executed for a given interval of time Δt
which results in an energy consumption of ΔE = Pmax · Δt − ES(Δt). For a
microcontroller or a sensing unit, the time intervals Δt can be considered
rather short while radio communication may require larger Δt due to
packetized nature of the transmitted data. During the subsequent idle
time, the stored energy is recovering again. In the worst case, this "duty
cycling" results in a stored energy that is reduced by

ΔEmax = Pmax ·max{Δt} − εl(max{Δt}))
in comparison to ideal LSA. With max{Δt}we denote the maximum period
of continuous processing that can be observed for a given task. In terms
of the admittance test in section 2.5, a task set is schedulable if it is
schedulable under ideal LSA with reduced capacity C − ΔEmax.

Fig. 17: Approximated power consumption PD ≈ PS by means of duty cycling and
resulting non-ideal storage level EC(t) = C − ΔE.
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In the light of the considerations regarding assumption 1, also assump-
tion 2 becomes plausible. Unlike common power management solution
like Dynamic Voltage Scaling DVS, the energy ei consumed by a task is
the same regardless of the power PD used during its execution. Although
attractive due to its potential to save energy, DVS will come to its end if
feature sizes of ICs get smaller. Hence, DVS or similar techniques were
not considered in our work. In contrast, time and energy are assumed
to be directly proportional – as indicated in Fig. 17 – with power PD as
constant of proportionality. The greater the number and size of time slots
allocated to a given task, the higher the average power PD and the faster
the execution.

2.7.3 Energy Storage Model
An important step for the validation of the theory presented in this chap-
ter is the discussion of the energy storage model. Looking at the various
devices available on the market, there are two principal methods to store
energy in a small volume or mass device: using an electro-chemical pro-
cess or just performing physical separation of electrical charges across a
dielectric medium. The first technique is used by rechargeable batter-
ies and it is currently the most common and for long time it was the
only method to achieve high capacities in a small size. Nevertheless,
research in the last years has found new materials in order to increase
the specific energy of capacitors, producing devices that are called super-
capacitor or ultra-capacitor [KC00]. As shown in the so-called ’Ragone
plot’ in Fig. 18, supercapacitors offer a trade-off between power- as well as
energy-density, filling the gap between batteries and capacitors. Beyond
their ability to support higher power flows than batteries, supercapacitors
overcome many other drawbacks of batteries: They have very long life-
times and tolerate an almost unlimited number of charge/recharge cycles
without performance degradation. Unlike batteries, no heat is released
during charging/discharging due to parasitic, chemical reactions. In the
following, we will focus on supercapacitors as possible candidates for an
energy storage device.

2.7.3.1 Charge retention

Self-discharging is a natural phenomena that occurs in all kind of stor-
age devices. It is caused by leakage currents that flow inside the device
discharging it. Supercapacitors exhibit leakage currents that are typi-
cally in the order of magnitude of μA (see e.g. [Mt06]). Moreover, it
should be mentioned that the leakage is proportional to the energy level.
In [JPC05b], the leakage behaviour of different supercapacitors have been
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Fig. 18: Power and energy characteristics of storage devices.

tested. From Fig.2 in the latter work it becomes evident, that there exist
a potential to minimize the leakage of fully charged supercapacitors by
appropriate choice (manufacturer technology) and arrangement (serial,
parallel) of devices.

Apart from the intrinsic energy leakage of supercapacitors, also the
idle power consumption of the sensor node has to be considered. This
"external leakage" can be reduced by switching to a low-power mode
if no tasks are executed. In case of a low power wireless sensor node
like Moteiv’s Tmote Sky [Cor06], its ultra low power Texas Instruments
MSP430 F1611 microcontroller exhibits a maximum current of 3.0μA in
low power mode (LPM3). The wakeup to active mode is finished after
6μs.

Altogether, it can be assumed that the energy conservation laws de-
scribed in Section 2.3.2 hold and introducing an additional term allowing
for energy leakage is dispensable.

2.7.3.2 Monitoring the stored energy

An important feature of energy harvesting systems is the capability to
estimate the remaining energy in the storage device. Unlike batteries,
the energy of supercapacitors can be measured in a straightforward way:
The equations describing the physical behaviour of supercapacitors are
nearly the same as the ones for ordinary capacitors, and the energy stored
is hence EC ≈ 1

2CV2.

2.7.3.3 Storage efficiency

The efficiency η of a supercapacitor can be regarded as the quantity that
relates the power flows and energies displayed in Fig. 18. Since charg-
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ing a supercapacitor with PS and discharging it with PD can be seen as
symmetrical operations, let us consider the efficiency η when the super-
capacitor is charged. In this case, the increment of stored energy in time
interval Δ = t2 − t1 can be written as

EC(t2) − EC(t1) =
∫ t2

t1

PS(t)dt = η
∫ t2

t1

PS,raw(t)dt ,

where PS,raw denotes the power fed into the supercapacitor. In general,
supercapacitors may suffer from low efficiencies ηdue to their high equiv-
alent series resistance [BR03]. This circumstance, however, does not jeop-
ardize our modeling assumptions as such since, as stated in section 2.3.1,
all losses are included in the definition of PS. Actually, the more important
property of the efficiency η is its independence of the energy level EC(t) at
time t, which is approximately true for supercapacitors. Moreover, super-
capacitors barely produce thermal heat which could reinforce non-linear
charging/discharging behaviour.

In summary, we conclude that a linear charging/discharging behaviour
with constant efficiency η is a reasonable abstraction for the example of a
supercapacitor and hence our modeling assumptions hold. It should be
mentioned, that possible variations of the efficiency η have been disre-
garded in related work like [JPC05b] and [KPS04], too.

2.8 Chapter Summary
We studied the case of an energy harvesting sensor node that has to
schedule a set of tasks with real-time constraints. The arrival times, en-
ergy demands and deadlines of the tasks are not known to the node in
advance and the problem consists of assigning the right amount of power
in the right order to those tasks. For this purpose, we constructed optimal
Lazy Scheduling Algorithms LSA which are energy-clairvoyant, i.e., the
generated energy in the future is known. Contrary to greedy scheduling
algorithms, LSA hesitates to power tasks until it is necessary to respect
timing constraints. As a further result, we discuss an admittance test
that decides, whether a set of energy-driven tasks can be scheduled on
a sensor node without violating deadlines. This admittance test simul-
taneously shads light on the fundamental question of how to dimension
the capacity of the energy storage: Provided that the average harvested
power is sufficient for continuous operation, we are able to determine the
minimum battery capacity necessary. Furthermore, achievable capacity
savings between 20% and 45% are demonstrated in a simulative study,
comparing the classical Earliest Deadline First algorithm with a variant of
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LSA, which uses energy variability characterization curves EVCC as en-
ergy predictor. Finally, practical considerations are provided that suggest
practical applicability of the theoretical results.

By starting to study a single node, we believe that extensions towards
multihop networks where end-to-end deadlines have to be respected are
possible. If sensors jointly perform a common sensing task, distributed
energy management solutions are needed. An example for the common
task could be redundantly deployed sensors with overlapping coverage
regions.
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3
Application Rate Control

In Chapter 2, an optimal real-time scheduling algorithm for energy har-
vesting systems was presented. Taking into account the available time
as well as the harvested energy, an optimal task ordering was determined
based on the prediction of the available energy. The parameters of the
application in Chapter 2 are assumed to be given (in form of task arrival
times, energy consumptions and deadlines). By scheduling the different
tasks, short-term decisions on the use of environmental energy are made
which do not affect the average power consumption.

In contrast, in this chapter we are adapting parameters of the application
to optimize the performance in a long-term perspective. By adapting the
activation rates of tasks, we control the average power consumption of the
embedded system. We demonstrate that many optimization problems in
energy harvesting systems can be modeled by the class of linear programs.
As a main contribution, a framework for adaptive power management
is proposed which builds on multiparametric programming techniques. In
doing so, we link methods from control theory with the software design
of environmentally powered systems. In addition, particular care has
been taken to account for the unreliable nature of environmental energy.
On the one hand, we address the design for worst-case situations in order
to guarantee sustainable operation. On the other hand, an approximate
multiparametric programming algorithm is presented which results in an
acceptable system behaviour, avoiding an overly precise computation of
the application parameters. In summary, we propose a low complexity
and robust software design which is well-suited for resource constrained
systems like, e.g., sensor nodes.



48 Chapter 3. Application Rate Control

3.1 Introduction
Recently, there has been a substantial interest in the design of systems that
receive their energy from regenerative sources such as solar cells. In con-
trast to approaches that minimize the power consumption subject to per-
formance constraints, we are concerned with optimizing the performance
of an application while respecting the limited and time-varying amount
of available power. Based on a prediction of the future available energy,
we adapt parameters of the application in order to maximize the utility
in a longterm perspective. The chapter presents a formal specification of
the corresponding optimization problem including constraints concern-
ing buffer sizes, timing and rates. Instead of solving the optimization
problem online which may be prohibitively complex in terms of running
time and energy consumption, we apply multiparametric programming
to pre-compute the application parameters offline for different environ-
mental conditions and system states. In order to guarantee sustainable
operation, we propose a hierarchical software design which comprises a
worst-case prediction of the incoming energy. As a further contribution,
we suggest a new method for approximate multiparametric linear pro-
gramming which substantially lowers the computational demand and
memory requirement of the embedded software. Our approaches are
evaluated using longterm measurements of solar energy in an outdoor
environment. Furthermore, we provide a detailed analysis of the im-
plementation overhead in terms of computation and storage demand for
embedded systems. For the particularly interesting application area of
wireless sensor networks, we implement selected applications on a sensor
node platform and measure the actual implementation overhead.

This chapter is organized as follows: In the next section, we discuss
related works. In Section 3.3, a brief overview of the system concept is pre-
sented, followed by a detailed discussion of the models and correspond-
ing notation in Section 3.4. Section 3.5 describes the basic principles of
multiparametric linear programming and illustrates its application with
practical examples. A hierarchical system design to separate decisions on
energy usage and energy savings is the topic of Section 3.6. In Section 3.7,
a new method for approximate multiparametric linear programming is
presented. Finally, we have a detailed look at implementation issues in
Section 3.8 before Section 3.9 concludes the chapter.

3.2 Related Work
In [KHZS07], the authors point out how the problem of adapting the duty
cycle of a solar powered sensor can be modeled by a linear program. As
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objective, the average duty cycle shall be optimized. Instead of periodi-
cally solving this linear program online, a heuristic algorithm of reduced
complexity is proposed which attempts to decrease the duty cycle in times
when the scavenged energy is low (e.g. at night) and increase the duty
cycle when scavenged energy is high (e.g. during the day). In contrast,
the class of linear programs presented in this chapter is capable of model-
ing a wider variety of application scenarios, constraints and optimization
objectives. We are able to handle arbitrary objectives such as maximizing
the minimum duty cycle. For the latter objective, we are able to achieve
a more balanced system behaviour, i.e., we try to prevent an embedded
system from shutting down during periods with little harvested energy.
The work in [VGB07] improves on the results in [KHZS07]; however, the
assumed optimization objective and application remain very specific.

The approach in [RMM03] is restricted to a very special scheduling
problem: Periodic tasks with certain rewards are scheduled within their
deadlines according to a given energy budget. The overall objective is to
maximize the sum of rewards. Therefore, energy savings are achieved
using Dynamic Voltage Scaling (DVS). The energy source is assumed to
be solar and comprises a simplified day state as well as a night state.
A similar reward maximization problem has been recently presented
in [MCT08]. In the latter work, the received reward is assumed to be a
concave function over the energy consumption. Again, our approach gen-
eralizes the work in [RMM03, MCT08] for a much larger variety of applica-
tion scenarios and objective functions and the works in [RMM03, MCT08]
can be seen as special cases of our approach.

3.3 System Concept
The system model is depicted in Figure 19. The whole hardware/software
system is powered by an energy harvesting device that delivers in a unit
time interval starting at t the energy ES(t). In the same time interval,
the system uses energy ER(t). At time t, there is the stored energy EC(t)
available. It is a typical feature of recent energy harvesting circuits that
solar energy ES is either used directly by the system or is stored in the
energy storage for later use. In the latter case, the charging of the battery
is done with some efficiency η whereas the direct usage is free of energy
losses. This possibility of bypassing the energy storage can be exploited
to save energy by minimizing the round trip losses in the energy storage
device. For a discussion on how this system model matches real hardware
implementations, the reader is referred to Section 3.8.3.

Besides the application, there are two additional software tasks run-
ning on the target architecture. The estimator predicts future energy
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Fig. 19: Illustration of the system concept.

production of the harvesting device based on measurements of the past.
The controller adapts properties of the application, e.g. task activation
rates, based on the estimation of future available energy, the currently
stored energy and additional information about the system state, e.g. the
amount of available data memory. Parameters of the application are mod-
ified by the online controller. During execution, the system state (e.g. the
amount of information stored in local memory and the stored energy) is
changed.

It is the duty of the controller to adjust properties of the application
such that longterm objectives are optimized (for example maximizing
the sampling rate of a sensor) while respecting system constraints (for
example using not more than the available memory). The complexity of
the controller design is caused by the fact that (a) the harvested energy
changes in time, (b) the available future energy can only be estimated and
(c) the overall objective is usually a long term goal, e.g. maximizing the
minimal sampling rate of a sensor in the future. For example, a sensor
node powered by an outdoor solar cell may save energy during the day
in order to have enough energy available at night for transmitting sensor
data. But it may also store the sensor data at night and send them during
the day. If one now also takes into account that it is more advantageous
to use solar energy directly (e.g. at noon), complex controller strategies
may be required.
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3.4 Basic Models and Methods

3.4.1 Power Flow and Energy Storage Model
The modeling is based on the notion of discrete time t ∈ Z≥0 where the
difference in physical time between two discrete time instances is denoted
as T. Energy related sensing and control may happen only at times t. In
a practical setting, one may have a basic time interval T of a few minutes
or even an hour.

The energy harvesting device is modeled as a power source which
delivers energy ES(t) in the time interval [t, t + 1) of length T. There-
fore, in time interval [t1, t2) with t1, t2 ∈ Z≥0 it delivers energy ES(t1, t2) =∑

t1≤u<t2
ES(u). The incoming power can be stored in an energy storage

device, e.g. a rechargeable battery or a supercapacitor. We denote η the
storage efficiency of a non-ideal storage device. The energy level at time
t is denoted as EC(t). In dependence on the energy ER(t) drawn from the
sensor node, the increment ΔEC(t) of the stored energy is defined at each
time t according to the following statement:

if ES(t) > ER(t) then ΔEC(t) = η · (ES(t) − ER(t))
else ΔEC(t) = (ES(t) − ER(t))

If the generated energy ES(t) is higher than energy ER(t), the sensor node
is powered directly by the solar cell and excess energy is used to replenish
the energy storage. As in [KHZS07] and [MTBB08], we account for the
efficiency ηduring the charging of the energy storage. As the arrangement
in Figure 19 is fully symmetrical, one could also consider η when the
storage is discharged. Alternatively, efficiencies of η2 for charging and
discharging are thinkable; from a control point of view, all three mappings
of the efficiency η are equivalent.

The energy ER(t) is used to execute tasks on various system com-
ponents. For sensor nodes, tasks may be as diverse as sensing, signal
processing, A/D or D/A conversion, computing, or communicating. A
task τi ∈ I from the set of tasks I needs energy ei for completing a single
instance. We suppose that a task is activated with a time-variant rate si(t),
i.e. during the basic time interval T starting at t, the task is executed si(t)
times. Therefore, a task needs energy Ei(t1, t2) =

∑
t1≤u<t2

ei · si(u) in time
interval [t1, t2) for successful execution. Finally, we denote S(t) the vector
of all task rates si at time t. The detailed application and task model will
be described in the next section.

3.4.2 Rate-Based Application Model
As described in Section 3.3, parameters of the application are changed at
run-time in order to optimally use the available energy in the future. In



52 Chapter 3. Application Rate Control

this chapter, we restrict ourselves to a rate-based application model.
The application consists of tasks τi, i ∈ I. A task is instantiated si(t) ≥ 0

times in the interval of length T starting at time t and the execution of each
instance needs energy ei. The activation of tasks can be modeled by a rate
graph whose nodes and edges represent tasks and activation relations,
respectively. In particular, an edge from i to j denotes that task τi activates
task τ j. We may also say, that an edge (i, j) is activated rij times; such an
activation is caused by the activation of task τi and leads to an activation
of task τ j.

A scaling factor σi j is associated to an edge (i, j) that represents how
often task τ j is activated for each activation of it. The default scaling is
σi j = 1. If there are several edges leaving a node, then the sum of their
rates equals the activation rate s of the source node, e.g. s1 = r12 + r13.
This way, we can model a decision in the application, i.e. the execution
of a task may either lead to the activation of one or another subsequent
task. If there are several edges leaving from the same (graphical) location
at some node then their activation rates are equal. This models the case
that two subsequent tasks are activated with the same rate, i.e. r12 = r13 if
(1, 2) and (1, 3) have their tails at the same location.

The rate relations that are covered by a rate graph as defined above
can be formulated as a set of linear (in)-equalities. Free variables Rk(t)
in this system are determined by the controller shown in Figure 19. In
general, we can formulate the rate equations as

P · R(t) +Q = S(t) (3.1)
F · R(t) +G ≥ 0 (3.2)

where S(t) is a vector containing all activation rates si(t), R contains all
controlled parameters Rk(t) and P, Q, F and G are vectors and matrices of
appropriate dimensions.

The next Figure 20 exemplifies the rate graph and gives an example
for the associated rate equations.

Fig. 20: Illustration of rate graph and rate equations.
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3.4.3 Energy Prediction and Receding Horizon Control

According to the system model described in Section 3.3, the online con-
troller receives energy estimations Ẽ(t, k) of the future harvested energy.
Based on these predictions, the online controller computes future control
parameters R which optimize the longterm behaviour of the system. In
order to keep the control problem computationally tractable, both energy
prediction and calculation of future control rates are planned for a finite
horizon, leading to the concept of receding horizon control (RHC) [ML99].

The estimation unit receives tuples (t,ES(t)) for all times t ≥ 1 and
delivers N predictions on the energy production of the energy source.
We assume that the prediction intervals are of equal size denoted as the
number L (in units of the basic time interval T). We denote the total
prediction horizon H = N · L (again in units of the basic time interval T),
see also Figure 21. At time t, the predictor produces estimations ẼS(t + k ·
L, t+ (k+ 1) ·L) for all 0 ≤ k < N. We write Ẽ(t, k) = ẼS(t+ k ·L, t+ (k+ 1) ·L)
as a shorthand notation, i.e. the estimation of the incoming energy in the
(k + 1)st prediction interval after t.

The prediction algorithm should depend on the type of the energy
source and the system environment. Standard techniques known from
automatic control and signal processing can be applied here. In this
chapter, we will, e.g., provide prediction algorithms which are useful for
solar cells that operate in an outdoor environment. The algorithms used
for the experimental results will be presented in the respective sections.

0 1 L 2 L H = N L (N+1) L t

prediction horizon

prediction

interval

Fig. 21: Illustration of the prediction horizon.

At time t, the controller is computing the control sequence R(t + k · L)
for all prediction intervals 0 ≤ k < N based on the estimates Ẽ(t, k) as well
as the current system state (e.g. EC(t)). In other words, the rates si of the
different tasks are planned to be constant during each prediction interval.
However, only the first control rates R(t) are applied to the system during
the first time step T. The rest of the control sequence is discarded. At
time t + T, a new vector R(t) is computed which extends the validity of
the previous vector R(t− 1) by one time step. Again only the first control
is used, yielding a receding horizon control (RHC) strategy.
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3.4.4 Linear Program Specification
The first step in constructing the online controller is the formulation of
the optimization problem in form of a parameterized linear program (LP).
Corresponding solution methods will be described in Section 3.5 and 3.7.

The equations and inequations of the linear program can be partitioned
into the following two classes:

• State Relations: It is apparent from Figure 19 that executing a task
changes the state of the system. This state may not only be the fill
level of the energy storage but also, e.g., the used memory.

• Reward Relations: The reward relations describe the objective that
needs to be optimized. Note that we will model the future evolution
of the application and the system state over a finite horizon, i.e. for
a time interval covered by the energy prediction. This way, it is
possible to take into account long term expectations.

One of the essential states of the system is the stored energy. Using
the power model described in Section 3.4.1 we obtain the following state
equations:

EC(t + k · L) =EC(t) − k · ζ +
k−1∑
j=0

(
Ẽ(t, j)

)

−
k−1∑
j=0

(
L · E T · S(t + j · L)

)
− (1 − η)

k−1∑
j=0

λ( j) (3.3)

λ( j) ≥ 0 (3.4)

λ( j) ≥ Ẽ(t, j) − L · E T · S(t + j · L) (3.5)

They determine the expected contents of the energy storage at times
t+ kL for 1 ≤ k ≤ N. S(t) is a vector containing all activation rates si(t) and
E T is a (row)-vector that contains all energy requirements ei for all i ∈ I.
Therefore, E T ·S(t) =

∑
i∈I ei · si(t). The factor ζ accounts for energy leakage

of the storage device. The auxiliary variable λ accounts for the physical
switching behaviour described in Section 3.4.1: In intervals when the
energy provided by the source is higher than the energy demand of the
sensor node, the energy storage is charged with efficiency η. The other
way round, the energy storage is discharged in intervals when Ẽ(t, j) is
low and λ is forced to 0.

In a similar way, we can also model other system states, for example
memory. A task could produce a certain amount of data that is stored and



3.4. Basic Models and Methods 55

another removes it, e.g. by means of communication to another node. In
this case we would have for 1 ≤ k ≤ N the state equations:

M(t + k · L) =M(t) + L
k−1∑
j=0

M T · S(t + j · L) (3.6)

M(t) denotes the amount of stored data at time t and mi is the amount
of data produced or consumed by a task τi with rate si in a time interval
of length T. M T is a (row)-vector that contains all data amounts mi for
all i ∈ I. Of course, equations (3.3) to (3.6) provide only examples of
possible system states and their associated changes. Moreover, there may
be constraints on the feasible states, for example

0 ≤ EC(t + k · L) ≤ Emax (3.7)
0 ≤M(t + k · L) ≤Mmax (3.8)

for 0 ≤ k ≤ N.
One can now easily combine (3.1)-(3.8) and obtain a system of linear

equalities and inequalities that contain as free variables M(t + k · L) (the
state of the memory), EC(t + k · L) (the state of the energy) for 1 ≤ k ≤ N
and the rate control R(t + k · L) for 0 ≤ k < N.

So far, no optimization goal has been formulated and therefore, any
feasible rate control R(t + k · L) could be a solution. Any linear objective
function J that makes use of the free variables given above is possible
in this case. One may also define additional variables in order to model
specific objectives. One possible (very simple) example would be the
objective

maximize J = μ
s1(t + k · L) ≥ μ ∀0 ≤ k < N (3.9)

which would attempt to maximize the minimal rate with which the task τ1

is operated in the finite horizon 0 ≤ k < N. This could for example be a task
that gathers sensor data and it is desired that the minimal rate is as large as
possible. In terms of intervals, the objective translates into a minimization
of the maximum interval between any two consecutive measurements.
Hence, one could apply this objective in scenarios where one attempts to
minimize unobserved time periods like e.g. in environmental monitoring
or intruder detection applications.

Clearly, for the objective in (3.9), the controller would continuously
try to empty the storage at the horizon to obtain an optimal objective
value. Therefore, we formulate a final state constraint that ensures energy
neutral, sustainable operation:
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EC(t +N · L) ≥ EC(t) + α(t) (3.10)

A common choice for the prediction horizon is H · T = 24h, see
e.g. [HZK+06] or [MTBB08]. In [HZK+06], the energy offset α(t) is set
to 0 for all times t. Following a diurnal circle, solar energy is assumed to
behave similarly on consecutive days. In [MTBB08], α is manually tuned
to some fixed value. However, it has become evident that the choice ofα(t)
severely influences the performance of a system: decreasing α(t) results
in a more aggressive control behaviour, running the risk to deplete energy
EC. On the other hand, increasing α(t) may lead to overly conservative
rates S, poor performance and an high energy level EC. In Section 3.6,
a solution will be presented how α can be tuned automatically using an
hierarchical control approach.

Following the well known concept of receding horizon control, we
could optimize the linear program in (3.3)-(3.10) at each time step t and
obtain the desired values for the free variables R. They are valid for the
next time interval of length T. After this time interval t is incremented and
we would receive new energy estimates Ẽ(t, j) and new state information
(EC(t), M(t)) which will be used to set up a new linear program, i.e. a linear
program with the same structure but different parameters. Its solution
will determine new controller variables R(t). This process is repeated for
every time step t.

Obviously, solving at each time step t a linear program in a resource
limited system is prohibitive in general. However, we can conclude that
the optimal rate control can be determined by solving a parameterized
linear program, where the parameters are Ẽ(t, j), EC(t) and M(t). In the
next section, we will describe an optimal method for solving the above
parameterized linear program offline and using the result for constructing
an optimal online controller. In Section 3.7, we will show how this online
controller can be approximated to obtain a less precise but much simpler
controller.

3.5 Multiparametric Control Design
Next, we will show how to design an online controller based on multipara-
metric linear programming (mp-LP) which avoids solving a linear pro-
gram at each time step. Thereby, we are following the ideas in [BBM02],
where the regulation of discrete-time constrained linear systems is studied
in the context of model predictive control. In [MTBB07], the application of
multiparametric linear programming has been proposed for the first time
for energy harvesting systems. We will briefly recall the main results in
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Section 3.5.1 and illustrate the approach with the help of simple examples
in Sections 3.5.2 and 3.5.3. The last example presented in Section 3.5.4
shows the limits of the approach.

3.5.1 Controller Generation
As a first step, we define a state vector X consisting of the actual system
state, the level of the energy storage as well as the estimation of the incom-
ing energy over the finite prediction horizon (cp. Figure 19). Resuming
the system dynamics formulated in (3.3)-(3.10), the state vector X can be
written as

X(t) =
(
EC(t) , M(t) , Ẽ(t, 0) , . . . , Ẽ(t,N − 1)

)T
(3.11)

Furthermore, let us denote the vector of optimal control inputs to the
system, i.e., the vector of planned rates R as

U∗(X, t) =
(
R T(t) , R T(t + L) , . . . ,R T (t + (N − 1) · L)

)T
. (3.12)

The state space of X (in our case RN+2 bounded by possible constraints
on EC(),M() and Ẽ()) can now be subdivided into a number NCR of poly-
hedrons. For each of these polyhedrons j (also called critical regions)
the optimal solution U∗(X) of the control problem can be made available
explicitly as

U∗(X) = B jX + C j if H jX ≤ K j, j = 1, . . . ,NCR (3.13)

where B j ∈ RN×(N+2),C j ∈ RN and H jX ≤ K j, j = 1 . . .NCR is a polyhedral
partition of the state space of X. For simplicity, we dropped the depen-
dence on t of the state vector X. The computation of the vectors and
matrices of control law (3.13) is done offline using, e.g., the algorithm
presented in [BBM03] or other efficient solvers cited in the latter work.

In the online case, the controller has to identify to which region j the
current state vector X belongs. After this membership test, the optimal
control moves U∗ for the next N prediction intervals may be computed
by evaluating a linear function of X. However, according to the receding
horizon policy it is sufficient to calculate only the first rates R(t) for the
next interval. These rates R(t) are identical to the rates one would obtain
by solving the linear program. However, the computational demand is
greatly reduced compared to solving a LP online. After having solved
the mp-LP in advance, a set of NCR polyhedra with associated control
laws has to be stored and evaluated at each time step t. The computation
demand in the online case now depends on

• the number of critical regions NCR which have to be tested,
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• the size of the state vector X (in particular the number of prediction
intervals N),

• and finally on the number of controlled rates R which have to be
determined.

If the number of critical regions NCR gets large, the computational effort
still may be large as many tests of the form H jX ≤ K j must be performed.
Typically, the computational effort spent for these matrix multiplications
is much higher than evaluating the linear function B jX + C j. In related
work, there have been proposals how the online complexity of a given
control law (3.13) can be reduced. In [BBBM01], e.g., this issue has been
addressed by finding a representation of the polyhedral partition which
allows more efficient region testing. In [MTBB07], the average number of
region tests could be reduced with the help of probabilistic region check-
ing. Nevertheless, those techniques come to their end if the number NCR

of critical regions is high. As we will see in Section 3.5.4, such an explosion
of regions may happen for applications of practical concern. Indeed, this
general shortcoming of the mp-LP approach may render the calculated
controllers inapplicable for resource constrained systems. By dividing
the problem in subproblems within a hierarchical framework (see Sec-
tion 3.6) and by proposing an approximate, sub-optimal multiparametric
solver (see Section 3.7) we will show how complex control problems can
be mastered anyhow. To this end, we will reduce the number of critical
regions NCR for a given control problem.

Multiparametric programming approaches are not limited to prob-
lems with continuous variables and linear objectives as formulated in
equations (3.1) − (3.10). If the performance index is quadratic, the op-
timization problem can be solved using multiparametric quadratic pro-
gramming (mp-QP). An efficient algorithm to compute the explicit state
feedback controller in case of mp-QP has been presented in [BMDP02]. In
addition, techniques for the broader class of hybrid systems have been dis-
cussed in literature. Here, the authors of [BBM00] address optimization of
systems with continuous as well as discrete dynamics, leading to the con-
cept of multiparametric mixed-integer linear programming (mp-MILP)
and multiparametric mixed-integer quadratic programming (mp-MIQP),
respectively.

3.5.2 Adaptation of Sensing Rate (Example I)
We implemented online controllers for exemplary case studies using the
MATLAB toolbox in [KGB04]. Measurements of solar light intensity [ W

m2 ]
recorded at [Sun06] serve as energy input ES(t). Of course, one would have
to scale the measured power profile with the size, number and efficiency
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of the actually used solar panels. The energy prediction algorithm that
has been used is the same as in [MTBB07]. It is similar in nature to the
predictor used in [HZK+06] and attempts to predict the most probable,
average energy values for the prediction intervals.

Let us assume the following example: A sensor node is expected
to measure some physical quantity like, e.g., ambient temperature or
mechanical vibrations and has to transmit the sampled data to a base
station. We can model these requirements as a single sensing task τ1 with
rate R1(t), i.e., a task which is instantiated R1-times in the interval [t, t+T).
For the sake of simplicity, the sensing task τ1 drains at every instantiation 1
energy unit from the battery. Assume further that we want the maximum
interval between two consecutive reports to be as small as possible, as
in (3.9). Assuming an ideal energy storage process with an efficiency
η = 1 and no leakage ζ = 0, we can formulate the linear program LP I as
shown below. Note that the last inequality in LP I is used to stabilize the
receding horizon controller.

maximize J = λ subject to: (LP I)

R1(t + k · L) ≥ λ ∀0 ≤ k < N

EC(t + k · L) = EC(t) +
∑k−1

j=0

(
Ẽ(t, j) − L · R1(t + j · L)

)
∀1 ≤ k ≤ N

EC(t + k · L) ≥ 0 ∀1 ≤ k ≤ N

EC(t +N · L) ≥ EC(t) − 100

In general, the number of partitions NCR of a multiparametric solution
grows with the size of the state vector X. Hence, it is of practical con-
cern to keep the number of prediction intervals Ẽ(t, i) and therewith the
dimension of X as small as possible. We chose L = 24 and N = 6 and

obtain the states X(t) =
(
EC(t), Ẽ(t, 0), . . . , Ẽ(t, 5)

)T
. The resulting online

controller consists of NCR = 7 partitions. Figure 22 visualizes the parti-
tion HiX(t) ≤ Ki, i = 1, . . . , 7 for an arbitrarily chosen set of parameters
Ẽ(t, 2) − Ẽ(t, 5).

In Figure 23, the generated controller is optimizing the sensing rate R1

over a time period of 7 days. We started the simulation with an energy
level EC(0) = 500 and found a nearly constant rate R1 during the whole
simulation time. On the other hand, the stored energy EC(t) is highly
varying, since the controller successfully compensates the unstable power
supply ES(t). As a consequence, the stored energy EC(t) is increasing
during the day and decreasing at night. Even the 4th displayed day with
significant less sunshine is not jeopardizing the sensing rate R1. Figure 23
demonstrates that the online controller manages to meet the optimization
goal for this simple example.
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Fig. 22: 3-dimensional view of the polyhedral partition of the state space X for LP I. Cut
through Ẽ(t, 2) = 100.0, Ẽ(t, 3) = 120.0, Ẽ(t, 4) = 300.0, Ẽ(t, 5) = 10.0.
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Fig. 23: Adaptation of the sensing rate R1.

3.5.3 Local Memory Optimization (Example II)
Another simple scenario may consist of two tasks running on a sensor
node: A first task τ1 is sampling some physical quantity, i.e., performing
an A/D-conversion and storing the data in some local memory. A second
task τ2 is transmitting stored samples with a rate R2 and thereby frees
memory from the storage device. Clearly, the scaling factor σ12 = R1/R2

represents the ratio with which the amount of stored data M is increasing
(σ12 < 1) or decreasing (σ12 > 1).

For this application, two reasonable optimization objectives would be
(a) to minimize the unobserved intervals between any two consecutive
samples and (b) to minimize the amount of stored data M. The purpose
of the second objective is twofold: On one hand, sensor nodes are usu-
ally small, inexpensive low power devices with constrained hardware
resources such as memory. On the other hand, the objective may to some
extent enforce the freshness of data arriving at the base station. In gen-
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eral, radio communication is the main energy consumer on a sensor node.
Hence we set the energies e1 = 0.1 and e2 = 0.9. The corresponding linear
program LP II is given below.

maximize J =
(
λ − μ) subject to: (LP II)

R1(t + k · L) ≥ λ ∀0 ≤ k < N

M(t +N · L) ≤ μ
EC(t + k · L) = EC(t) +

∑k−1
j=0 Ẽ(t, j) −∑k−1

j=0
(
L · [0.1 0.9] · R(t + j · L)

) ∀1 ≤ k ≤ N

EC(t + k · L) ≥ 0 ∀1 ≤ k ≤ N

M(t + k · L) =M(t) + L
∑k−1

j=0 [1 − 1] · R(t + j · L) ∀1 ≤ k ≤ N

M(t + k · L) ≥ 0 ∀1 ≤ k ≤ N

EC(t +N · L) ≥ EC(t) − 150

To account for the additional system state M(t) we reduced the number
of prediction intervals and set L = 36 and N = 4. The state space of

X(t) =
(
EC(t),M(t), Ẽ(t, 0), . . . , Ẽ(t, 3)

)T
is divided by the control law in

NCR = 39 critical regions.
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Fig. 24: Top: scenario without local memory. Bottom: scenario with optimized local
memory.

Figure 24 displays the simulated curves of the state and control vari-
ables during 6 days. The figure at the top represents a scenario with no use
of local memory, i.e. the control problem in LP I whereas the bottom figure
shows a comparable scenario using local memory according to LP II. Until
t = 1700, both tasks are adjusted to the same rate R1 = R2 and the mem-
ory M(t) is empty. However, after two days with little harvested energy,
the energy level EC(t) on the sensor node is falling and the controller starts
to suspend the energy-costly communication task τ2 by reducing rate R2.
Consequently, the number of buffered samples M is increasing starting
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before t = 1800. In the following, the controller achieves to autonomously
regulate the tradeoff between EC(t) and M(t). While a lack of EC(t) would
cause the non-initiation of task τ1, an increasing M(t) directly affects the
second optimization objective. After t = 1950, the controller reduces the
amount of occupied local memory by increasing the rate R2. It becomes
obvious that in terms of the minimum sampling rate R1, the controller for
LP II outperforms the controller for LP I. The minimum rate R1,min ≈ 820
for LP I is significantly lower than the minimum rate R1,min ≈ 1280 for LP
II.

3.5.4 Optimization with Non-Ideal Energy Storage (Exam-
ple III)

In this section, we discuss a more involved example to pinpoint the limits
of a pure multiparametric control approach. Firstly, we show that ex-
plosions of the polyhedral partition of the online controller may happen
for practical examples. And secondly, we show that care has to be taken
when choosing the energy prediction algorithm, since the robustness of
the overall system severely depends on it.

maximize J = μ subject to: (LP III)

R1(t + k · L) ≥ μ ∀0 ≤ k < N

R1(t + k · L),R2(t + k · L) ≥ 0 ∀0 ≤ k < N

EC(t + k · L) = EC(t) +
k−1∑
j=0

(
Ẽ(t, j) − (

L · [0.1 0.9] · R(t + j · L)
) − (1 − η)λ( j)

)
∀1 ≤ k ≤ N

λ( j) ≥ Ẽ(t, j) − (
L · [0.1 0.9] · R(t + j · L)

) ∀0 ≤ j < N

λ( j) ≥ 0 ∀0 ≤ j < N

EC(t + k · L) ≥ 0 ∀1 ≤ k ≤ N

M(t + k · L) =M(t) +
∑k−1

j=0 L · [1 − 1] · R(t + j · L) ∀1 ≤ k ≤ N

0 ≤M(t + k · L) ≤Mmax ∀1 ≤ k ≤ N

EC(t +N · L) ≥ EC(t)

Example III is similar to Example II. The main difference is that we now
consider an energy storage device with a non-ideal roundtrip efficiency
η = 0.8. Assume a video surveillance application where a first task τ1

is recording images, performing some image compression and stores the
data in some local memory. The task is instantiated with rate r1(t) and
at every instantiation, one data unit is stored. The maximum storage
capacity of the sensor node is Mmax = 1000. A second task τ2 with rate
r2(t) frees memory by transmitting images to a base station. We choose
again e1 = 0.1 and e2 = 0.9 as energy demands of the tasks r1(t) and r2(t),
respectively. For this application, we want to minimize the unobserved
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intervals between any two consecutive images (i.e. activations of task τ1).
The corresponding linear program LP III is given above.

We performed the experiments using longterm measurements of solar
light intensity measured in [sol07] and shorter time intervals of T = 5
minutes. The energy predictor used is the same as in the previous sections.
We set the prediction horizon to H · T = 24h and subdivided the horizon
in N = 6 intervals of length L = 48. For the optimization problem in LP
III, we compute the explicit solution via multiparametric programming

for the state vector X(t) =
(
EC(t),M(t), Ẽ(t, 0), . . . , Ẽ(t, 5)

)T
. The resulting

online controller consists of NCR = 1049 partitions. Figure 25 visualizes
the partition H jX(t) ≤ K j, j = 1, . . . , 1049 for an arbitrarily chosen set of
parameters Ẽ(t, 1) − Ẽ(t, 5).

 EC ( t ) M ( t )      

~
 E ( t , 0 )

Fig. 25: 3-dimensional view of the polyhedral partition of the state space X for LP III. Cut
through Ẽ(t, 1) = 1200, Ẽ(t, 2) = 1000, Ẽ(t, 3) = 0, Ẽ(t, 4) = 100 and Ẽ(t, 5) = 500.

The complete control law requires the storage of (3N + 9) · NCR real
numbers. In the worst case, the active region is the last one to be examined,
and the controller will give a solution after (3N + 6) ·NCR multiplications,
(3N + 3) ·NCR sums and NCR − 1 comparisons. In Table 1, the complexity
of the control law is given in terms of storage demand and number of
operations. As it turns out, even with probabilistic region checking or
efficient representations of the state space, the computational demand
of the problem remains considerable. This holds in particular since the
control law has to be evaluated every time step T.

In Figure 26, an exemplary situation is displayed where the generated
controller is optimizing the sampling rate R1 and the transmission rate R2

during 7 days. During the first 5 days, the controller achieves to optimize



64 Chapter 3. Application Rate Control

2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

0

1000

2000

3000

4000

5000 stored energy EC ( t )
communication rate R2( t )

occupied memory M ( t )      

sensing rate R1( t )

harvested energy ES ( t )
~

predicted energy E ( t , 0 )

Fig. 26: Single controller for LP III, explicit solution via multiparametric programming,
average energy prediction Ẽ(t, k).

the rate R1 in spite of the unstable power supply ES(t). The transmission
rate R2 is oscillating around the sampling rate R1. Since it is favourable
to use energy when available, data is stored at night and transmitted
during day. At this, the finite amount of storable data Mmax = 1000 is
chosen large enough not to constrain the dynamic of the ratio R1

R2
. Only if

the memory is Mmax < 800, we observed that the parameter Mmax begins
to influence the overall system behaviour. Note that the parameters in
Figure 26 are scaled appropriately to show them all in one diagram. The
absolute values, however, are not necessary those displayed on the y-axis
in Figure 26.

However, at the end of the displayed time period, the controller is
forced to suspend the sampling of data and achieves the worst objective
value possible: Shortly before t = 4200, the sampling rate R1 is set to 0 for
approximately 20 minutes. One of the main reasons for this breakdown
is the averaging energy predictor Ẽ which – per definition – is unable to
foresee extreme situations. As illustrated in Figure 26, an overestimation
of the actually incoming energy ES may deplete the stored energy quickly,
resulting in an unpredicted performance degradation. From our experi-
ments we know that the controller computed for LP III is unable to avoid
these kind of breakdowns with the chosen predictor Ẽ, independent of
the length of the prediction horizon H and the number of intervals N.
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3.6 Hierarchical System Model

3.6.1 Design Principles
From the examples presented in the last section, we identify unexpected
energy depletion as a major challenge for environmentally powered sys-
tems. In this section, we present a hierarchical system design whose
primary purpose is to prevent the system from running out of energy.

The main idea is to subdivide the controller for the problem formu-
lated in (3.3)-(3.10) into two subcontrollers, each with its dedicated energy
prediction algorithm. The parameters of the prediction horizons are de-
noted L1,N1 and H1 for the upper control layer, and L2,N2 and H2 for
the lower control layer. According to Figure 27, subcontroller 1 receives
estimates of the daily energy in order to ensure longterm sustainability of
the energy harvesting system. Therefore, we assume a prediction interval
to be 1 day, i.e. L1 · T = 24h and the total prediction horizon should be
chosen in the order of several weeks, e.g. H1 ·T = 30days. At the interface
of both control layers, we define the energy allowance ED(t) as the sum of
energies which shall be used by the system at the next day.

By calculating ED(t), the upper layer determines an energy budget
which serves as input to the lower control layer. Receiving hourly esti-
mates with a prediction horizon of H2 · T = 24h, subcontroller 2 decides
how to set the controlled parameters R(t) during the next day. At this,
the efficiency of the energy utilisation is optimized by e.g. exploiting the
sunlight directly when available.

subcontroller 2
hourly

average

estimation

average case [save energy]

worst-case [use energy]

application

subcontroller 1
daily

worst-case

estimation

energy storageenergy source

system state

Fig. 27: Illustration of the hierarchical control model.
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Algorithm 3 Daily worst-case energy prediction.
Input: t,ES(t),N1,L1

Output: Ẽ1(t, k) ∀ 1 ≤ k ≤ N1

if t == 0 then
εls(Δ) = ∞ ∀ 1 ≤ Δ ≤ N1

if t mod L1 == 0 then

ES,d(d) =
d·(L1−1)∑

i=(d−1)·L1

ES(t − i) ∀ 1 ≤ d ≤ N1 (S1)

ε̃s(Δ) =
Δ∑

i=1
ES,d(i) ∀ 0 ≤ Δ ≤ N1 (S2)

εls(Δ) = εls(Δ) + Δ · γ ∀ 1 ≤ Δ ≤ N1 (S3)
εls(Δ) = min

[
εls(Δ), ε̃s(Δ)

]
∀ 1 ≤ Δ ≤ N1 (S3)

Ẽ1(t, k) = max
0≤l≤N1−k

{
εls(k + l) − ε̃s(l)

}
∀k ≥ 1 (S4)

The advantages of the hierarchical control model can be summarized
as follows (see also experimental results in Section 3.6.2): First, by virtue
of its worst-case design, the upper control layer avoids depletion of the
energy storage and increases the robustness of the overall system. Second,
the control formulation renders manual tuning of the final state constraint
unnecessary (cp. equation (3.10)), resulting in an automatical optimiza-
tion and stabilization of the system behaviour. Third, by decoupling the
control problem into two subproblems, the complexity of the online con-
troller is reduced significantly. In the following, the two control layers
will be described in detail.

3.6.1.1 Longterm Performance Optimization

The optimization objective of subcontroller 1 is to maximize the minimal
available energy ED(t) per day. In other words, we would like to guarantee
sustainable operation in a worst-case sense, similar as in objective (3.9).
For this reason, an energy prediction for a worst-case scenario is required.
Unlike most of the energy estimation algorithms presented in related
work, we would like to determine the minimal accumulated energy for
the next days, which we denote as Ẽ1(t, k). For prediction intervals of
size L1 ·T = 24h, the algorithm is given in Algorithm 3. Note that contrary
to the definition of Ẽ(t, k) in Section 3.4.3 Ẽ1(t, k) denotes the cumulated
energy for the next k intervals.

During the day, only a counter is running which accumulates the har-
vested energy of the current day. Once per day, Algorithm 1 is executed
and new energy estimates for the next N1 days are computed. The har-
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Fig. 28: Visualization of the daily energy prediction in Algorithm 3.

vested energies of the last N1 days are stored in the vector ES,d(d). In a first
step (S1), vector ES,d(d) is updated by shifting all entries by one day and
storing the harvested energy ES,d(1) of the current day. In step (S2), the
daily energies ES,d(d) are summed up to obtain the energies ε̃s(Δ) for time
periods Δ of several days. As an internal state, the estimator stores the
minimum of all vectors ε̃s(Δ) observed so far in a variable denoted εls(Δ) .
Next, Step (S3) checks whether the energies ε̃s(Δ) harvested in the past Δ
days are smaller then the minimum energies εls(Δ) observed so far for
the respective time interval Δ. In addition, a constant γ is added to the
minimum εls(Δ) to account for aging of old measurements. In doing so,
the algorithm avoids pessimistic predictions based on low values of εls(Δ)
measured long time ago. Finally, step (S4) improves the estimates εls(Δ) if
intervals with little harvested energy ε̃s(Δ) have occurred recently.

For a small number of days, the worst-case energy prediction algo-
rithm gives pessimistic predictions Ẽ1(t, k), which is reasonable if contin-
uous operation of a sensor node has to be guaranteed. During this time,
an underestimation of the actually scavenged energy may happen. In
a longterm perspective of a few weeks, however, the worst-case energy
prediction algorithm begins to predict the average incoming energy just
as conventional estimation algorithms.

The linear optimization problem underlying subcontroller 1 is given
below. With the help of the worst case energy predictions Ẽ1(t, k) it is now
possible to maximize the smallest energy ED(t + k · L1) for all 0 ≤ k < N1

in the prediction horizon. However, only the first energy ED(t) is passed
to subcontroller 2 and will be used during the next day.

maximize J = μ subject to: (subcontroller 1)

ED(t + k · L1) ≥ μ ∀0 ≤ k < N1

EC(t + k · L1) = EC(t) + Ẽ1(t, k) −∑k
j=1

(
ED(t + ( j − 1) · L1)

) ∀1 ≤ k ≤ N1

0 ≤ EC(t + k · L1) ≤ Emax ∀1 ≤ k ≤ N1
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3.6.1.2 Shortterm Power Saving

As already indicated, the prediction horizon of the lower control layer
spans H2 ·T = 24h. For a general control problem and a prediction Ẽ2(t, k),
the final state constraint of the lower control layer can be set to α(t) =

ED−
N2−1∑
i=0

Ẽ2(t, i) in order to force the system to spend energy ED during the

next day. Hence, the final state constraint α(t) is calculated automatically
by the upper layer.

In this chapter, we focus on a concrete application (Example III) where
energy losses due to storage efficiencyη shall be minimized. Nevertheless,
our methods are also applicable to other power saving techniques, like
e.g. dynamic voltage scaling (DVS), energy-efficient packet scheduling
for wireless links or applications with data compression.

For the optimization problem with non-ideal energy storage in LP III,
we have to ensure that the sensor node uses no more than energy ED

during the next day. The only degree of freedom to be exploited by
subcontroller 2 is when to transmit the images with rate R2(t) in order
to save as much energy as possible. Thus, we want to maximize the
energy EC(t+L2 ·N2) at the end of the day. For this setup, we can formulate
the linear program to be solved by subcontroller 2 as follows:

maximize J = EC(t + L2 ·N2) subject to: (subcontroller 2)

R1 =
η·ED(t)

N2·(e1+e2)∑N2−1
j=0 R2(t + j · L2) = η·ED(t)

e1+e2

R2(t + k · L2) ≥ 0 ∀0 ≤ k < N2

EC(t + k · L2) = EC(t) +
∑k−1

j=0 Ẽ2(t, j) − e1 · L2 · k · R1 −
e2 · L2 ·∑k−1

j=0 R2(t + j · L2) − (1 − η) ∑k−1
j=0 λ( j) ∀1 ≤ k ≤ N2

λ( j) ≥ Ẽ2(t, j) − e1 · L2 · R1 − e2 · L2 · R2(t + j · L2) ≥ 0 ∀0 ≤ j < N2

M(t + k · L2) =M(t) +
∑k−1

j=0
(
R1(t + j · L2) − R2(t + j · L2)

) ∀1 ≤ k ≤ N2

0 ≤M(t + k · L2) ≤Mmax ∀1 ≤ k ≤ N2

To exploit the typical profile of solar energy during a day, an energy pre-
dictor Ẽ2(t, k) is needed which predicts the most probable energy values
for the next hours. In contrast to Ẽ1(t, k), the hourly estimation Ẽ2(t, k)
should keep a history of harvested energies and use a representative,
average value as predictor.
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3.6.2 Optimization with Non-Ideal Energy Storage (cont.
Example III)

Next, we subdivide the control problem in LP III into two hierarchically
structured subproblems as described in the previous section. Using mul-
tiparametric linear programming, we compute the explicit solutions for
subcontroller 1 and subcontroller 2. Concerning the upper control layer,
we chose a prediction horizon of 30 days, where each interval spans one
day. We set the aging of old data γ = 100 for the worst case prediction
algorithm Ẽ1. To avoid unnecessary control overhead, subcontroller 1
is not activated every T = 5 minutes, but only once per day. As in the
previous experiment with a single controller, the constraint Emax on the
maximum storable energy is omitted for subcontroller 1. For the lower
control layer, the prediction algorithm in [MTBB07] has been used, again
with the same parameters. As for the single controller, the prediction
horizon of the lower control layer spans one day, with 6 intervals of 4
hours length.
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Fig. 29: Hierarchical system, multiparametric programming, worst case predic-
tion Ẽ1(t, k), average prediction Ẽ2(t, k).

Table 1 summarizes the design parameters and the implementation
overheads of both control designs. In terms of storage demand, the hierar-
chical approach yields a substantial reduction of the storage requirement
of 83, 0%. Since subcontroller 1 is only activated once per day, one has to
divide its computation demand by L1 to obtain the number of operations
per interval T. More precisely, assuming that all regions have to be tested
before evaluating the control law, 3689 operations have to be executed
at every 288th multiply of the basic time interval T. Hence, only 12.8
operations plus 4829 operations of subcontroller 2 have to be executed at
every time step T. This yields a reduction of the worst case computation
demand of 91, 0% compared to a single controller.

In dependence on how the control laws are implemented in practice,
the number of necessary operations will be smaller than the worst case
values in Table I. As it has been shown in [MTBB07], the average number
of region tests can be reduced by exploiting the fact, that some regions
are more frequently activated then others. For the probabilistic region
checking method proposed in [MTBB07], we experienced that the average
number of regions tests is proportional to the total number of regions NCR

(and hence also to the number of operations in the worst case). Since the
worst-case number of region tests is independent of the implementation
strategy used, we opted for this metric to indicate the computational
effort. Nevertheless, our methods simultaneously reduce the average as
well as the worst-case number of operations.

Clearly, the daily energy estimation can be seen as an additional over-
head of the hierarchical approach. However, apart from a counter which
is accumulating the incoming energy ES, all calculations are performed
only once per day. Thus, we assume the contribution of the second pre-
dictor to the overall overhead to be negligible.
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Figure 29 depicts the performance of the hierarchical control approach.
The simulation result is plotted for 22 days, covering also the 7 days of
simulation period of the previous experiment. This time, the controllers
successfully stabilize the sampling rate at r1 ≈ 1300. Depending on the
season, we found that rate r1 may slightly increase (in summer) or decrease
(during winter). In any case, subcontroller 1 prevents the system to run
out of energy and simultaneously maximizes the amount of energy ED

per day. For a small number of days, like e.g. 1-4 days, the predictor
Ẽ1 is generating rather pessimistic estimates, accounting for a couple
of cloudy days. For several days or weeks, the accumulated energy is
very likely converging towards an average value, like the estimate Ẽ2

used for subcontroller 2. Exploiting this mechanism, subcontroller 1
autonomously regulates the offset α(t) of the final state constraint and
optimizes the longterm system behaviour.

On the other hand, to exploit the possibility to save power it is essential
to work with the most probable energy estimates for the next hours, like
the ones generated by Ẽ2. This is now possible since the stability of the
system is guaranteed from the upper control layer. In addition, prediction
mistakes of Ẽ2 do not jeopardize the stability of the system anymore.
Hence, one can say that our approach also improves the robustness against
prediction mistakes.

In the left diagram of Figure 29, all data displayed is scaled in the
same way as in Figure 26 except of the stored energy EC. In fact, the
stored energy EC in Figure 29 is divided by a factor of 6 in comparison
to Figure 26. In other words, the stored energy is actually varying up to
30000 units instead of 5000. On sunny days, however, the accumulated
daily energy may be more than 10000 energy units. In consideration of
this fact, a sensor node running our hierarchical control approach would
require an energy storage which is able to store solar energy of 3 days
in advance. It becomes evident that this is the capacity of the energy
storage which is necessary for stable, sustainable operation. Using our
methods, one can simulate the system and dimension the capacity Emax

of the battery in a pre-operational phase.

3.7 Approximate Control Design
In this section, we present an algorithm for approximative multiparamet-
ric linear programming. As a matter of fact, only a few such algorithms
have been proposed in the literature so far (among them, e.g., the algo-
rithms in [Fil04] and [JBM07]). The algorithm is presented in Section 3.7.1
and in Section 3.7.2 we evaluate the algorithm for the exemplary sensor
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application (Example III) from the previous sections.

3.7.1 An Approximative MP Linear Programming Algo-
rithm

It is well known in the control community that the size of the explicit
solution obtained by multiparametric linear programming grows quickly
if the complexity of the control problem increases. In deed, already
a moderate number of control variables and parameters may result in
a huge number NCR of critical regions. At this, adjacent regions are
often characterized by almost identical control laws. This circumstance,
however, has neglectable impact on the resulting control profile in many
cases. Rather, numerous regions NCR entail an high overhead in terms of
storage requirement, running time as well as energy consumption.

Beyond these general short-comings, one could also argue in favour
of an approximate control approach due to the stochastic nature of the
harvested energy. The future energy provided by photovoltaic cells can
only be estimated. The predicted energy values which are available in
practice may be too inexact and too unreliable to provide the basis for
"exact" procedures like linear programming. From this point of view, a
precise calculation of the optimal control values turns out to be worthless
if significant prediction errors occur.

In this section, we present a new algorithm for approximative multi-
parametric linear programming. The basic idea was

• to take a large number of samples Xi of the state space of X (compare
equation (3.11)),

• to solve a linear program for each sample Xi to obtain the respective
optimal solution U∗i ,

• to find a (preferably simple) fitting function Û∗(X) for the multidi-
mensional data (Xi,U∗i ),

• and finally to use Û∗(X) (which has been calculated offline) as ap-
proximation for U∗(X) in the online case.

At first, a random number generator is used to generate the sam-
ples Xi, 1 ≤ i ≤ NS, where NS denotes the total number of samples. We
used independent, uniformly distributed random values as samples for
the single elements of X. For example, values of the stored energy EC

have been chosen according to a uniform distribution

fEC(EC) =
{

1
Emax

if 0 < EC < Emax

0 else
, (3.14)
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with the probability density function fEC(EC) and the maximum storable
energy Emax. In the same way, we sampled M and Ẽ using the respective
upper bounds on the available memory as well as producible energy.

As fitting algorithm, we opted for the algorithm proposed in [MB06].
This algorithm attempts to fit data samples to a set of convex, piece-wise
linear candidate functions. In order to provide a good fit, the algorithm
requires the function which generates the samples to have a convex curva-
ture. The optimal control rates U∗(X), however, are not necessary convex
over the state space X. Hence, a direct fitting of the control rates is not
possible using the algorithm in [MB06].

According to the following theorem, the optimal objective value J∗(X)
exhibits the wished convexity property.

Thm. 7: (cf. page 180 in [Gal95]) The function J∗(X) is continuous, piecewise affine
and convex over X.

As the optimal control vector U∗(X), J∗(X) can be computed exactly
using multiparametric programming as

J∗(X) = T jX +V j if H jX ≤ K j, j = 1, . . . ,NCR (3.15)

where T j and V j are matrices of appropriate dimensions. It is important
to note that J∗(X) is piecewise linear over the same polyhedral partition
H jX ≤ K j as the optimal control U∗(X) (cf. equation (3.13)).

For each sample Xi, we now solve a linear program and determine the
optimal control vector U∗(Xi) as well as the optimal objective value J∗(Xi).
This can be done using common simplex-based or interior-point solvers.
Next, we implement the heuristic algorithm in [MB06] to fit the objec-
tive J∗(Xi), i.e to solve the least square fitting problem

minimize
NS∑
i=1

(
max

j=1,...,N̂CR

(T̂T
j · Xi + V̂ j) − J∗(Xi)

)2

(3.16)

Like that, we obtain the approximated objective function Ĵ∗(X) in the
so-called "max-affine" form:

Ĵ∗(X) = max
j=1,...,N̂CR

{T̂T
j · X + V̂ j} (3.17)

The piecewise affine convex function (3.17) can be recast easily in
the following equivalent form which explicitly defines the polyhedral
partition Ĥ jX ≤ K̂ j (see also [Sch87]).

Ĵ∗(X) = T̂ jX + V̂ j if Ĥ jX ≤ K̂ j, j = 1, . . . , N̂CR (3.18)
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Next, we group the samples Xi according to the region j they belong to.
For each region j, we perform a simple least square fitting of the respective
samples to compute the coefficients Â j and B̂ j of the approximated control
rates Û∗. As a result, we have derived an explicit form for the control
rates Û∗(X) as a function of the current state X:

Û∗(X) = Â jX + B̂ j if Ĥ jX ≤ K̂ j, j = 1, . . . , N̂CR (3.19)

Everything done so far has to be done offline. The approximated con-
trol law in (3.19) can now be used in an online controller instead of the
exact solution in (3.13). Since the convex fitting algorithm in [MB06] al-
lows to tune the number N̂CR of critical regions, one may chose a smaller
number of regions N̂CR < NCR to reduce the complexity of the control
problem. The fitting algorithm then attempts to create a smaller polyhe-
dral partition which minimizes the least square error of the objective value
function. In comparison to the optimal, multiparametric solution the fit-
ting algorithm seems to merge smaller regions and reshape the geometry
of the partition, as we will see in the next section. Albeit no performance
guarantees of the heuristic algorithm are given in [MB06], it turns out that
the algorithm performs well and produces suitable approximations, both
in [MB06] and also in our experiments.

3.7.2 Optimization with Non-Ideal Energy Storage (cont.
Example III)

In Section3.6, both controllers involved in the hierarchical control design
have been computed using the optimal partitions of the parameter space
obtained by multiparametric programming. In this section, we derive and
test suboptimal, approximate control laws using the algorithm presented
in previous section.

The key operation in finding an approximate solution for a control
problem is the fitting of the (convex) objective function Ĵ∗(X) = max

j=1,...,N̂CR

{T̂T
j ·

X + V̂ j}. At this, the algorithm in [MB06] alternates between partitioning
the data in new regions j and carrying out least-squares fits to update
the coefficients T̂ j and V̂ j. Starting with an initial number N̂CR,init, critical
regions may be merged at every iteration, leading to a reduced number of
regions. The algorithm converges if a partition remains unchanged after
an iteration or some maximum number of iterations is reached. The final
number of partitions N̂CR can be influenced by appropriate choice of the
initial parameters.

For subcontroller 1, we sampled the state space X1 =(
EC(t), Ẽ1(t, 0), . . . , Ẽ1(t, 29)

)
using NS = 1000 samples. For subcontoller



76 Chapter 3. Application Rate Control

(a) N̂CR = 3 (b) N̂CR = 5

(c) N̂CR = 10

Fig. 30: Illustration of approximated polyhedral partitions for subcontroller 2. Cut
through Ẽ2(t, 1) = 1200, Ẽ2(t, 2) = 1000, Ẽ2(t, 3) = 0, Ẽ2(t, 4) = 100 and
Ẽ2(t, 5) = 500.

2, NS = 2000 samples have been taken from the state space X2 =(
ED(t),M(t), Ẽ2(t, 0), . . . , Ẽ2(t, 5)

)
. In Figure 30, some exemplary partitions

of X2 are displayed. In dependence of the choice of the 3-dimensional cut,
not all N̂CR partitions may be visible in diagrams (a)-(c).
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Fig. 31: Hierarchical system, approximate multiparametric programming, N̂CR = 4 for
both subcontroller 1 and subcontroller 2.

We denote R̂1, R̂2, ÊC and M̂ the rate and state variables obtained if
approximate control laws are applied. Let us also define the rectifier
function [ΔE ]+ as follows:

[ΔE ]+ =
{
ΔE if ΔE ≥ 0
0 if ΔE < 0 (3.24)

Using this notation, we denote the average efficiency of the energy
utilisation

ηavg = 1 −
(1 − η) ·∑

t
[ES(t) − e1R1(t) − e2R2(t)]+∑

t
ES(t)

(3.25)

Figure 31 displays the evaluation of an approximate control law with
N̂CR = 4 for both subcontroller 1 and subcontroller 2. The actual optimiza-
tion objective of regulating the sensing rate R1 is met almost as well as the
exact solution. The maximal derivation of R̂1 from R1 is 1.52%, making
both lines indistinguishable in the left diagram of Figure 31. Obviously,
the approximated algorithm manages to save even slightly more energy
then its exact counterpart. As displayed in the right diagram of Figure 31,
the transmission rate R̂2 is adjusted to much higher values during day and
consequently set to 0 at night. Apparently, this strategy even yields a gain
of 0.75% of the average efficiency ηavg. The stored energy ÊC is varying
up to 11.57% from EC. However, the peak of ÊC is just 4.03% above the
one of EC. That is, the capacity of the energy storage is required to be
approximately 5% higher if the system is controlled by an approximated
algorithm.

Showing a comparable performance during runtime, the main advan-
tage of the approximation becomes obvious considering the complexity of
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the control laws. According to Table 2, the storage demand is significantly
reduced by 92.44% compared to the optimal solution. In terms of worst-
case computation demand, the reduction even amounts 98.55%. Table 2
also outlines the results for a second low-complexity approximation. It
exhibits a slightly lower efficiency ηavg. On the other hand the second
approximation closely matches the optimal case in terms of control rate
R1.

In summary, we can state that the approximate solutions to the mul-
tiparametric control problem do not necessarily entail a degraded per-
formance in terms of the controlled parameters. In deed, in most cases
we could find simple but useful approximations for the underlying con-
trol problems. Besides the significant complexity reduction, there is an-
other advantage of the proposed approximation technique that should be
mentioned. For highly complex control problems consisting of several
thousands of regions NCR, conventional solvers may be unable to find the
optimal polyhedral partition. We experienced that sometimes even no
solution can be found at all. In other examples, the mp-LP solvers we
used could not generate the optimal partition with the minimal number of
regions NCR. Rather, a high number of overlapping regions is constructed
which cannot be removed afterwards. Here, our method turned out to be
helpful to find a reasonable solution at all.

3.8 Hardware Implementation Issues
In this section, we demonstrate how the proposed control laws can be
implemented efficiently and evaluate the implementation overhead on
a BTnode [BDH+04]. For this purpose, we show measurements of two
implementations of exemplary controllers which has been introduced and
discussed in the last sections.

3.8.1 Average Computation Demand
In general, the identification of the active region j dominates the linear
function evaluation of a control law (3.13) in terms of time and energy
consumption. In the worst case, for all NCR regions a matrix multiplication
has to be performed in order to identify the active region j at time t.
However, the identification of the active region j can be simplified due
to the following facts: First, the matrices H j are sparse which reduces the
number of necessary multiplications and additions significantly. Second,
usually only a subset of all NCR is activated in practice and some of the
regions in this subset are activated more frequently than others.

The second observation can be exploited by starting the search always
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Fig. 32: Running the controller for the memory optimization problem (LP II) on a BTnode.

with the region with the highest statistical occurrence, continue with the
second highest, and so on. To this end, an algorithm should maintain a
list of regions j ordered by their frequencies which is updated every time
step t.

For the memory optimization problem in LP II in Section 3.5.3, we
found that on average ≈ 40% of the entries of the matrices H j are different
from zero. Moreover, only 7 of 39 regions were used during the whole
simulation period. Using probabilistic region testing as described above,
the critical term of the form H j · X ≤ K j is only evaluated ≈ 1.45 times
at time t, taking the average over the whole simulation period. At this,
we enforced the list of regions to be pre-ordered in a worst case sense,
i.e., every time a region is activated for the first time, all other regions are
checked first.

Figure 32(a) displays the measured power consumption of a BTn-
ode [BDH+04]. At first, the current energy level EC(t) of the battery and the
scavenged energy ES(t) are determined via two A/D-conversions, which
mark the two major peaks in plot 32(a). Focusing on the overhead of the
proposed controller, we omit predicting the future energies Ẽ(t, i). Instead,
an average situation is displayed where the region with the second highest
frequency is the active one. Subsequently, the optimal control output for
this region is calculated. It becomes evident, that the computations lead-
ing to the actual control actions take as long as the two A/D-conversions
(≈ 2ms). Hence, these measurements demonstrate how the simple, but
efficient implementation of the proposed controller is applicable to sensor
nodes, involving only marginal computation overhead.
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Fig. 33: Worst-case power consumption of subcontroller 2 on a BTnode.

3.8.2 Worst-Case Computation Demand and Storage De-
mand

For some applications, it is also important to consider the worst-case
computation demand. Here, worst-case refers to the situation where the
currently active region is the last one to be checked. For example, for the
hierarchical control design presented in Section 3.6, we are interested in
the worst-case computation time and energy consumption for a practical
implementation.

Since the daily energy estimation and subcontroller 1 are only acti-
vated once per day, their influence on the computation demand is neg-
ligible. In our test implementation on a BTnode (see Figure 33), we
measured a worst-case computation time < 190 ms for subcontroller 2.
The evaluation of this control law is only done every T time units, which
may be every 5 or 10 minutes, depending on the characteristics of the
energy source. Compared to the energy consumption of the rates R of
the actual application during this interval T, the evaluation of the control
laws contributes a negligible control overhead.

Using multiparametric programming techniques instead of solving
the optimization problem online basically means a shift from computation
to storage. Thus, one has to ensure that the storage of the control law does
not exceed the limits of the embedded system. From the example applica-
tions presented in this chapter, all control laws could be implemented on
a BTnode. For example, the controller for LP III presented in Section 3.5.4
requires the storage of the NCR = 1049 regions and corresponding control
laws. In terms of physical memory, this amounts to 55,3 Kbyte using a 16
bit integer representation per coefficient. Using the hierarchical control
approach as presented in Section 3.6, we could reduce the storage de-
mand to 9,4 Kbyte. This reduction makes the control law implementable
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on commonly used sensor nodes like the Tmote Sky [Cor06], which fea-
tures 48 Kbyte Flash ROM or the BTnode [BDH+04], which exhibits 128
Kbyte Flash ROM. In summary, using the tools and methods described in
this chapter, we believe that controllers for a large class of optimization
problems can be implemented on commonly used sensor network plat-
forms. To this end, both the presented hierarchical control design and the
approximation algorithm may be used.

3.8.3 Realistic Modelling of the Energy Storage
In Section 3.4, the energy storage model has been presented which allows
the solar cells to directly power the embedded system and to charge
the energy storage with efficiency η. In the following, we will shortly
elaborate on how this model fits a realistic hardware implementation.

Let us discuss the simplest possible configuration consisting of a solar
cell, a battery as well as a sensor node. As a matter of fact, using a
parallel connection of the three components, it can be shown that the
model presented in Section 3.4 fits perfectly. The voltage over the three
components is equal and – according to Kirchhoff’s law – the sum of
currents at the junction is 0. Thus, in terms of power flow, the power
delivered by the solar cell splits into one part powering the sensor node
and the rest, which is charging the battery with efficiency η.

For more sophisticated charging circuits as the ones presented
in [SC06, PC06], it is less obvious why the power flow shows this be-
haviour. Furthermore, for energy storage devices whose efficiencies η are
not constant over time, a more detailed modelling may become neces-
sary. To this end, the efficiency η can be modeled by a piece-wise linear
function over, e.g., the stored energy EC. For instance, we also performed
experiments with low efficiencies η when the stored energy is close to 0
and Emax and a higher efficiency η for values in between. Like that, a
more realistic modelling of the energy storage becomes possible, which,
of course, increases the complexity of the optimization problem.

3.9 Chapter Summary
In this chapter, we present a framework of tools and methods to opti-
mize the performance of energy harvesting systems using multiparamet-
ric programming techniques. On the one hand, we have successfully
designed and evaluated an hierarchical control design which is tailored
to the requirements of solar-powered sensor nodes. Due to its worst
case design, the upper control layer prevents the sensor node from run-
ning out of energy. On the lower control layer, we showed how power
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saving techniques can work more efficiently if stability of the operation
is guaranteed by the layer above. Simultaneously, the reformulation of
the control problem into two subproblems yields a significant reduction
in online complexity. On the other hand, we propose a new algorithm
for approximative multiparametric programming. The resulting control
laws are rough approximations of the optimal solution and reduce the in-
volved online overhead substantially. An experimental setup reveals that
the achieved performance may be comparable to the optimal solution. All
methods are supported by extensive simulations results which are based
on longterm measurements of solar energy. Measurements of our con-
trollers running on a sensor node together with a detailed analysis of the
implementation overhead show that our algorithms can be implemented
efficiently.
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4
Reward Maximization

In Chapter 2, it was pointed out that greedy scheduling disciplines are
not suitable if tasks on a uniprocessor are processed using time as well
as regenerative energy. An optimal scheduling algorithm which tries
to avoid deadline violations was presented. In contrast, the application
discussed in this chapter requires sequential execution of periodic tasks.
Task preemption is not allowed, and also not necessary. Instead, we try
to optimize the overall reward of the application. Similar as in Chapter 3,
parameters of the applications are adapted in a long-term perspective.

In Chapter 3, we show that many optimization problems arising in en-
ergy harvesting systems can be modeled by the class of linear programs. A
multiparametric linear programming approach is presented which solves
optimization problems offline and stores look-up tables for online us-
age. As objective, (piecewise) linear functions are possible whereas this
chapter focuses on concave objective functions. Moreover, this chapter
presents polynomial time algorithms for a specific system dynamic which
solely require the storage of a few internal variables.

4.1 Introduction

Energy management has become vitally important to battery-operated
embedded systems. In the past years, significant research effort has been
dedicated to achieve efficient energy utilization. This holds in particular
for systems adopting dynamic voltage scaling [YDS95, CK07a], dynamic
power management [JPG04, CK07b], and micro-architectural techniques
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for cache re-configuration [YL04]. Such methods tempt to increase the
battery lifetime and maximize energy savings while still maintaining an
acceptable service level for the user.

Instead of energy consumption minimization under performance con-
straints, in energy harvesting systems, the energy consumption of the
system should depend on the energy harvested from the environment to
maximize the performance. Typically, the harvested energy by, e.g., solar
cells is not constant over time but arrives in bursts. In an outdoor envi-
ronment, the energy generated by a photovoltaic cell normally follows a
diurnal cycle with plenty of energy arriving at noon. At night, however,
the system has to survive for several hours by solely consuming energy
stored in the battery which has been harvested during the last days. There
exist two major constraints which arise due to the burstiness of common
energy sources: The harvested energy is temporarily low and the service
must be lowered or suspended. (2) During bursts of incoming energy,
the harvested energy exceeds the battery capacity and is wasted. Driven
by solar energy, the main challenge for such a system is to optimize its
performance while respecting the time-varying amount of energy. How
to design and play out a given battery capacity becomes a key concern.

For battery-driven systems without energy harvesting possibilities, re-
ward maximization has been studied extensively in the literature. At this,
the energy is provided by a finite energy source, e.g., a battery. Typically,
energy saving mechanisms like dynamic voltage scaling (DVS) are ex-
ploited to save energy and maximize the overall reward. For instance,
Yun and Kim [YK04a, YK04b] study reward-based voltage scheduling for
hard real-time systems. Furthermore, heuristic algorithms for schedul-
ing multiple real-time tasks with different rewards have been presented
by Rusu et al. [RMM03]. Recently, Chen et al. [CKY04, CK05] have
proposed new approximation algorithms for energy-efficient scheduling
on DVS platforms. In our work, we also adopt the notion of rewards
to express different qualities of services and, as the objective, we try to
maximize the overall reward. Our methods support DVS platforms, but
work as well in the absence of DVS. The main difference is that we explore
systems which are powered by an infinite environmental energy source,
e.g., solar energy. We shad light on fundamental principles how to maxi-
mize the overall reward using a prediction of the energy generated in the
future.

In general, the reward associated with a service increases with the
amount of computation required to provide the service. Prominent
models used in literature are the imprecise computation model [LLS+91]
and the increasing reward with increasing service (IRIS) model [DKT96,
SLC91]. For numerous practical applications, such as image and speech
processing, time-dependent planning, and multimedia applications, the
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reward function is modeled as a concave function of the amount of com-
putation [AMMA99].

In this chapter, we explore how to maximize the system reward for
embedded systems which provide services periodically with adjustable
quality. The reward garnered for a service is monotonically increasing
and concave with respect to the energy consumption of the service. As a
main result, we provide algorithms to optimally adjust service parameters
dynamically. Our work is supported by simulation results which are
based on long-term measurements of the power generated by real solar
cells. Furthermore, we demonstrate how to dimension the embedded
system, e.g., the battery capacity and elaborate on implementation details
which are of practical importance.

The remainder of this chapter is organized as follows: We start by
summarizing related works in Section 4.2. Section 4.3 defines the system
model and the studied problem in this chapter. Section 4.4 provides the
proposed algorithms as well as illustrative examples, while Section 4.5
gives the related remarks for designing an embedded system. In Sec-
tion 4.6, a simulative evaluation is presented which is based on real data
recorded for photovoltaic cells. A short summary concludes the chapter.

4.2 Related Work
In the following, we will discuss some works which investigate power
management for energy harvesting systems and are closely related to the
work presented in this chapter.

In [KHZS07], Kansal et al. show how to maximize the utilisation of
solar energy and minimize the losses in the battery by tuning the duty
cycle of a sensor node. However, the objective of maximizing the average
duty is completely different from the one in our chapter. In principal,
the proposed heuristic in [KHZS07] attempts to decrease the duty cycle
when the harvested energy is low (e.g. at night) and tries to increase the
duty cycle when plenty of energy is harvested (e.g. during the day). By
optimizing the sum of reward values which are concave over the energy
consumption, our algorithms avoid this unbalanced behaviour and, e.g.,
try to prevent the embedded systems from shutting down during periods
with little harvested energy.

Rusu et al. [RMM03] explore the reward maximization for a set of
real-time tasks with multiple versions for execution by applying energy
harvesting devices. The execution frames are divided into two types,
namely recharging frames and discharging frames. These two types of
frames are then executed by applying their static schedules individually.
If the scheduler observes more energy residual in the battery, three dif-
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Fig. 34: Illustration of the system model.

ferent approaches are proposed to distribute the additional energy for
getting more system reward. Our chapter focuses on a more fundamen-
tal problem to maximize the system reward globally, in which the energy
consumption in all recharging frames and discharging frames might be
different to achieve the global optimization.

4.3 System Model and Problem Statement
This chapter explores how to exploit energy harvested from the environ-
ment to maximize the system performance for applications with different
reward functions. The harvested energy varies over time. For example,
the energy harvested from a solar panel at a sunny noon is much more than
the energy harvested at dawn. As a result, the system should adjust the
quality of the associated applications to reflect the dynamic behavior for
performance maximization instead of energy consumption minimization.
In general, the more energy an application consumes, the more reward
the system gains. However, an application might over-consume energy
so that the possibility to gain more reward in the future is sacrificed.

This section will present the system model studied in this chapter,
including the energy harvesting model for the energy source, the energy
storage model, and the service and application models. The overview
of the studied system is depicted in Figure 34, where the energy har-
vested from the energy source is stored in the energy storage, and the
scheduler makes decisions for consuming the energy based on the infor-
mation provided by the prediction unit and the available energy in the
energy storage. At the end of this section, the problem definition will be
presented.

4.3.1 Energy Harvesting Model
We are given an energy harvesting device, such as a solar panel, which
generates energy depending on the environment. A prediction unit esti-
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mates the energies harvested in each of the next K frames in the future,
where K is the number of frames of the prediction horizon. We assume that
each frame has the same length and the basic time unit is the length of
one frame. We denote ẼS(k) the accumulated energy harvested in the k-th
frame. For instance, a frame may correspond to one hour, and having
K = 24 would correspond to a prediction horizon of one day. How to
determine a reasonable parameter K will be presented in Section 4.6.3 by
means of simulation. For the rest of this chapter, we assume a perfect
energy predictor. For a discussion about suitable energy prediction al-
gorithms or how to handle prediction mistakes, the reader is referred to
Section 4.5.1.

4.3.2 Energy Storage Model
The energy storage, e.g., a supercapacitor or a battery then stores the
energy harvested from the environment. As energy storage is not a perfect
process, there might be some loss of energy. The efficiency factor defined as
the actually stored energy divided by the harvested energy can be used
to model the storage process. Usually, the efficiency factor, denoted by
η(ẼS), is a function of the harvested energy, and, by definition, is between
0 and 1. As a result, only η(ẼS) · ẼH(k) amount of the harvested energy
will be stored to the energy storage in the k-th frame.

The amount of the harvested energy that will be stored to the energy
storage in the k-th frame is denoted by ES(k), where ES(k) is η(ẼS) · ẼH(k).
For simplicity of presentation, for the rest of this chapter, we denote ES(k)
as the harvested energy in the k-th frame.

The energy storage is constrained by the maximum capacity Emax of the
energy in the storage. If the energy storage is full, the additional harvested
energy dissipates. Formally, suppose that EC(k) is the energy in the energy
storage at the end of the k-th frame. After servicing the applications in the
k-th frame with energy consumption ek, the energy in the energy storage
is min{Emax,EC(k− 1)+ES(k)− ek}. In other words, if EC(k− 1)+ES(k)− ek is
larger than Emax, the system dissipates EC(k− 1)+ES(k)− ek −Emax amount
of energy, which is a waste.

4.3.3 Application and Service Model
In every frame k, a set of N services is executed. For each service an
energy consumption εk,n has to be chosen, where the index 1 ≤ n ≤ N
indicates the respective service in each of the 1 ≤ k ≤ K frames of the
prediction horizon. We assume that the energy consumption εk,n can have
any positive value and is constant during each frame k. For extensions on
how to handle upper and lower bounds on the energy consumption εk,n or
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how to handle a discrete set of energies εk,n, related remarks are provided
in Section 4.5.4.

For a frame k, we denote ek the total energy consumption of all services.
Obviously, if one knows the energy consumptions εk,n of all services, one
obtains the total energy consumption per frame

ek =

N∑
n=1

εk,n

by simple summation over all services.
This chapter explores how to achieve performance maximization for

a variety of applications running on an embedded system, e.g., a sen-
sor node. In fact, the service model presented in this chapter is capable
of modeling numerous applications which are of practical importance.
Two types of application models are studied in this chapter: one is the
computation-based application model and the other is the rate-based appli-
cation model. Both types of application models can be treated separately
or can be even combined in a joint service model. For both application
models, the quality of the provided services is evaluated in each frame
k and is only dependent on the energy consumption εk,n. Specifically, let
rn(εk,n) denote the reward for executing the service n in a frame k with
energy consumption εk,n, where

• rn(εk,n) is continuous and differentiable.

• rn(εk,n) is monotonically increasing in εk,n.

• rn(εk,n) is concave in εk,n, i.e.,

α · rn(εκ1,n) + (1 − α) · rn(εκ2,n) ≤ rn
(
α · εκ1,n + (1 − α) · εκ2,n

)
,

for any two frames 1 ≤ κ1, κ2 ≤ K with εκ1,nεκ2,n ≥ 0, εκ1,n � εκ2,n, and
1 > α > 0.

Computation-based application model

For the classical computation-based application model, all applications
are independent from each other. Moreover, the higher the computa-
tion/workload/demand of the assigned service, the more reward the sys-
tem gains for the execution, such as the imprecise computation model
[LLS+91] and the increasing reward with increasing service (IRIS) model
[DKT96, SLC91]. The quality of the provided service is evaluated in each
frame, in which the reward function is a strictly concave and increasing
function of the amount of computation, such as image and speech pro-
cessing, time-dependent planning, and multimedia applications. The
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Fig. 35: An example for rate graphs.

energy consumption for a given workload of provided service is as-
sumed to be a convex function (when dynamic voltage scaling is adopted
[CK05, YDS95]) or a linear function (when the power consumption is a
constant). Therefore, the reward rn(εk,n) is a strictly concave and increas-
ing function of the energy consumption εk,n. For the rest of this chapter,
we will only discuss the amount of energy consumption εk,n, while the
required computation time to complete the service in a frame with the
specified energy consumption can be derived by simple calculation. In
some cases, the maximum time to finish a service within a frame may
be specified by a deadline. This translates into a minimum energy con-
sumption εk,n, which can also be handled by our algorithms presented in
the next sections. For a discussion on minimum and maximum energy
consumptions εk,n of a service, the reader is referred to Section 4.5.4.

Rate-based application model

For the rate-based application model, the reward of a service depends on
the rate to activate the application, while the computation demand and the
energy consumption are fixed for one activation. For example, a sensor
application which observes an environmental phenomenon may be more
precise when the sensing rate is higher, where each sensing activity takes
the same time and consumes the same energy.

In contrast to the computation-based model, for the rate-based model,
the rates of applications can not be set independently but need to satisfy
some constraints. For instance, a sensor node may sense some data,
and then decide whether to compress and store the data in some local
memory or to directly transmit the data via the radio. Clearly, the sum of
stored and transmitted data has to equal the amount of originally sensed
data. In this chapter, we explore rate-conserving applications that can be
described by rate-based graphs (RBGs) defined as follows: A rate-based
graph is a directed tree, denoted by G = (V,E), in which a vertex in V
is an application and a directed edge (u → v) in E is the relationship
between the rates of two applications. Suppose that ρ(v) is the rate of an
application in vertex v inV. If (u→ v) in E is the only incoming edge to
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application v and is the only outgoing edge from application u, the rates
of applications u and v are the same. If there are more than one incoming
edge to an application v, the rate of the application v must be the sum of
the rates of the applications that have directed outgoing edges to vertex
v, i.e., ρ(v) =

∑
(u→v)∈E ρ(u). Moreover, if there are more than one outgoing

edge from an application v, the rate of the application v must be the sum
of the rates of the applications that have directed incoming edges from
vertex v, i.e., ρ(v) =

∑
(v→u)∈E ρ(u). Figure 35 depicts an example for 9

applications and their rate relationships.1

For the rate-based model, once we assign an energy consumption
to an application, the corresponding rate of the application is known.
Furthermore, we assume the reward rn(εk,n) to be a strictly concave and
increasing function of the energy consumption εk,n. This assumption
is justified since, e.g., for many audio or video applications in sensor
networks the reward saturates for high transmission rates, i.e., for high
rates the additional perceived reward is getting smaller.

For each frame, the scheduler has to determine how to provide the
services of different applications. As already stated at the beginning of
this section, we assume the reward rn(εk,n) for executing a service n in
frame k to be concave over the energy consumption εk,n. For the rest of
this chapter, we will only discuss the amount of energy consumption εk,n
of an application in each frame, while the corresponding computation
times and rates can be derived by simple calculation.

4.3.4 Problem Definition
We are given a predictor for K frames at time 0. The energy in the energy
storage at time 0 is specified as EC(0) and the energy harvested in the
k-th frame is ES(k). The k-th frame starts from time k − 1 to time k. A set
of N applications is going to be executed in each frame, in which each
application has its reward function rn(εk,n) of the energy consumption.

The objective is to determine an inter-frame energy assignment

�e = (e1, e2, . . . , eK)

of energy consumption for these K frames and intra-frame energy assign-
ments

�εk = (εk,1, εk,2, . . . , εk,N)

for the N applications within the k-th frame such that the sum of re-
wards

∑K
k=1

∑N
n=1 rn(εk,n) is maximized without violating the required en-

ergy constraints.

1The approaches in this chapter also work for rate-based graphs with scaling factors
on the edges. For example, it could be 0.5ρ(v1) + 0.3ρ(v2) = ρ(v3).
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According to the rate-based application model, the energy consump-
tions of some applications in a frame might be related. For example,
suppose the energy consumption of application vn is σn when its rate is 1.
The relationship ρ(v1) + ρ(v2) = ρ(v3) in Figure 35 leads to εk,1

σ1
+
εk,2
σ2
=
εk,3
σ3

,
where εk,n is the energy consumption of application vn in the respective
frame k. By bringing these equations in a left-hand side form, we write the
constraints from the rate-based graphs (RBG) in the form cm(�εk) = 0, where
m = 1, . . . ,M. The constraints cm(�εk) can be arbitrary linear combinations
of the assignment �εk which conserve the rates of the application.

Let EC(k,�e) be the energy in the energy storage at time k by applying the
assignment of energy consumption�e. After completing the last frame, we
would like to reserve some amount E� of energy in the energy storage for
future use, and, hence, a feasible assignment �e must satisfy EC(K,�e) ≥ E�.
We denote the studied problem as the general reward maximization on energy
harvesting problem. Without loss of generality, we only explore the case
that EC(0) − E� +

∑K
i=1 ES(i) ≥ 0 in this chapter since there is no feasible

solution for the other case.
We formally define the feasibility of an assignment for the general

reward maximization on energy harvesting problem as follows:

Def. 1: [Feasible Assignment] An energy vector �e = (e1, . . . , eK) along with �εk =
(εk,1, εk,2, . . . , εk,N) for all these K frames is feasible if

(a) EC(k,�e) = ∧Emax,EC(k − 1,�e) + ES(k) − ek,
where EC(0,�e) is EC(0),

(b) EC(k,�e) ≥ 0, ∀1 ≤ k < K,

(c) EC(K,�e) ≥ E�,

(d)
∑N

n=1 εk,n = ek, and

(e) cm(�εk) = 0, ∀1 ≤ m ≤M.

For simplicity of presentation, in property (b) of Definition 1, we as-
sume that the energy storage can be emptied completely for all frames
1 ≤ k < K. Note, however, that the algorithms presented in the next
section can be extended easily to cases where a minimum energy Emin has
to be stored at all times, i.e. EC(k,�e) ≥ Emin, ∀1 ≤ k < K.

An assignment is said optimal for the general reward maximization
on energy harvesting problem if its accumulated reward

∑K
k=1

∑N
n=1 rn(εk,n)

is the maximum among all feasible assignments. We say there exists an
energy underflow for an assignment �e if there exists EC(k,�e) < 0 for some
1 ≤ k ≤ K − 1 or EC(K,�e) < E�. On the other hand, an assignment �e is said
with energy overflow if there exists some k with EC(k−1,�e)+ES(k)−ek > Emax.
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Fig. 36: Overview of the two-stage service level allocation framework.

4.4 Proposed Service Allocation Framework
In this section, we will show how to optimally allocate services subject
to the available energy given by the environment and the energy storage.
Thereby, we exploit the nature of the general reward maximization on
energy harvesting problem and split it into two subproblems, namely the
inter-frame problem and the intra-frame problem, which can be solved
independently. As illustrated in Figure 36, an Inter-Frame Service Al-
location Algorithm focuses on finding inter-frame energy assignments
�e = (e1, e2, . . . , eK). The respective algorithm will be presented in Sec-
tion 4.4.1 and has to be executed once per prediction horizon. As input
data, it takes a vector of the harvested energies ES(1),ES(2), . . . ,ES(K), the
initially stored energy EC(0), the capacity Emax as well as the final energy E�.
As a matter of fact, the Inter-Frame Service Allocation Algorithm solves
the fundamental problem of handling energy underflows and overflows.

The intra-frame problem copes with computing intra-frame energy
assignment �εk = (εk,1, εk,2, . . . , εk,N) for every k-th frame. The energy con-
sumption of a frame in assignment �e can be treated as the energy bud-
get which has to be distributed among all running applications. De-
pending on the reward functions r1(), . . . , rN() of the applications and the
constraints c1(), . . . , cM() from possible rate-based graphs, the intra-frame
energy assignment can be calculated directly using the Intra-Frame Ser-
vice Allocation Algorithm presented in Section 4.4.2. Alternatively, as
we will see in Section 4.6.2, it is much more efficient to compute ex-
plicit solutions f1(), . . . , fN() offline and compute the energy consumptions
εk,1, εk,2, . . . , εk,N of the applications in the online case by simply evaluating
the functions f1(), . . . , fN(). In any case, the Intra-Frame Service Allocation
has to be repeated for every frame k in the prediction horizon.

This section is organized as follows: In Section 4.4.1, we present an
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optimal algorithm for Inter-Frame Service Allocation. For the sake of
clearness, we start by presenting an algorithm for energy storages with
unlimited capacity in Section 4.4.1.1. In Section 4.4.1.2, the algorithm is
then extended to general cases by considering a limited energy storage
capacity and we denote this algorithm as Inter-Frame Service Allocation.
Section 4.4.1.3 provides the proofs for the optimality of the Inter-Frame
Service Allocation Algorithm. Finally, the Intra-Frame Service Allocation
and proofs for the optimality of the overall two-staged service allocation
concept are presented in Section 4.4.2.

4.4.1 Inter-Frame Service Allocation
We will now present how to derive an optimal inter-frame energy assign-
ment �e. The proposed algorithm is presented in Algorithm ??, denoted
by Algorithm Inter-Frame Service Allocation. It can be proved to derive
optimal solutions for systems with only one application with any con-
cave reward function. Moreover, if there is more than one application,
Section 4.4.2 will show that these applications can be treated as one ap-
plication with a joint reward function, which is concave, too. Therefore, for
the sake of simplicity, we will now consider only one application with a
concave reward function. For the whole Section 4.4.1, we will denote ek

the energy consumption of this single application in the k-th frame (in-
stead of εk,1). Similarly, we will simply call the reward function r() instead
of r1().

4.4.1.1 A Greedy Algorithm for Unlimited Energy Storage Capacity

Based on the concavity of the reward function, the following lemma holds.

Lem. 1: If ek1+ek2 = ek3+ek4 with 0 ≤ ek1 < ek3 , ek4 < ek2 , then r(ek1)+r(ek2) < r(ek3)+r(ek4).

Proof. Let α3 be
ek2−ek3
ek2−ek1

and α4 be
ek2−ek4
ek2−ek1

. Since ek1 < ek3 , ek4 < ek2 , we
have 0 < α3 < 1 and 0 < α4 < 1. Because ek1 + ek2 = ek3 + ek4 , we know
that α3 + α4 = 1. Therefore, by the concavity, we conclude r(ek1) + r(ek2) =
(α3+α4)r(ek1)+(2−α3−α4)r(ek2) < r(α3ek1+(1−α3)ek2)+r(α4ek1+(1−α4)ek2) =
r(ek3) + r(ek4).

�

Lemma 1 tells us, that to optimally exploit the concavity of the reward
function and maximize the sum of rewards, one would like to consume
a constant, average amount of energy for all K frames of the prediction
horizon. However, due to the burst of the given energy source ES, this
is often not possible. The key idea to obtain an optimal assignment is to
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Fig. 37: The solution derived by Algorithm Greedy-Incremental for K = 6, Emax = +∞.

equate energies of an assignment as much as possible subject to feasibility
constraints.

For the case of an unlimited energy storage with Emax = +∞, we
only have to deal with energy underflows since energy overflows are not
possible. Here, the harvested energy might not be enough to support
the energy consumption. For example, as shown in Figure 38(a), if K is
6 with E� = EC(0) = 2,ES(1) = 6,ES(2) = 4,ES(3) = 0,ES(4) = 0,ES(5) =
5,ES(6) = 5, Lemma 1 suggests to have an assignment �e with 6+4+5+5

6 = 10
3

unit of energy consumption for all these six frames. However, according
to Definition 1, the resulting assignment is not feasible since there is an
energy underflow with EC(4,�e) = − 4

3 . Therefore, an optimal assignment
should try to consume some constant amounts of energy without leading
to an energy underflow.

Let k be the index of the last frame that has been assigned so far, in
which k is initialized as 0. For each j with j = k + 1, k + 2, . . . ,K, the
maximum amount of energy that is allowed to consume from time k to
time j is EC(k) +

∑ j
i=k+1 ES(i). If we decide to consume EC(k) +

∑ j
i=k+1 ES(i)

amount of energy from time k to time j, an assignment, ignoring feasibility

constraints, should consume
EC(k)+

∑ j
i=k+1 ES(i)

j−k amount of energy for each of

the frames from the (k+1)-th frame to the j-th frame. Let ẽ j be
EC(k)+

∑ j
i=k+1 ES(i)

j−k ,
∀ j = k + 1, k + 2, . . . ,K. Clearly, when ẽ j ≥ ẽk∗ for every index k < j < k∗, a
partial assignment for the k+1-th frame to the k∗-th frame with a constant
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Algorithm 4 Greedy-Incremental (GI)
Input: K, ES(k) for k = 1, 2, . . . ,K, EC(0), E�;
Output: a feasible assignment �e∗ of energy consumption for the K frames;

1: k⇐ 0;
2: while k < K do

3: let ẽ j be
EC(k)+

∑ j
i=k+1 ES(i)

j−k , ∀ j = k + 1, k + 2, . . . ,K − 1;

4: let ẽK be
EC(k)−E�+

∑K
i=k+1 ES(i)

K−k ;
5: k∗ ⇐ max{arg mink<k̂≤K {̃ek̂}};
6: e∗j ⇐ ẽk∗ , ∀k + 1 ≤ j ≤ k∗;
7: if k∗ = K then
8: EC(k∗)⇐ E� ;
9: else

10: EC(k∗)⇐ 0 ;
11: k⇐ k∗;
12: return �e∗ as the solution;

amount of energy consumption ẽk∗ will lead to a solution with EC( j) ≥ 0
for any k < j ≤ k∗. Therefore, we find the maximum index k∗ in which
ẽ j ≥ ẽk∗ for every index k < j < k∗, and then assign energy consumption
ẽk∗ to any j-th frame with j = k + 1, k + 2, . . . , k∗. Then, we can update the
index k as k∗ and repeat the above procedure. However, since we have a
constraint on the residual energy in the energy storage after completing

the K-th frame, ẽK should be revised as EC(k)−E�+
∑K

i=k+1 ES(i)
K−k to guarantee that

the residual energy at time K is E�.
The proposed algorithm is presented in Algorithm 4, denoted by Al-

gorithm Greedy-Incremental (GI) for the rest of this chapter. With the
initialization of k as 0, we calculate the values ẽ j in Step 3 and Step 4 for
every j = k + 1, k + 2, . . . ,K. Then, we find the maximum index k∗, in
which ẽ j ≥ ẽk∗ for every index k < j < k∗, in Step 5 with the assignment of
energy consumption ẽk∗ for every of the frames from the k + 1-th frame to
the k∗-th frame. Clearly, EC(k∗) is 0 (E�, respectively) when k∗ is less than
K (k∗ is equal to K, respectively). Then, the algorithm goes to the next
loop by updating k as k∗. The time complexity of the algorithm is O(K2)
with a proper implementation of the summation in Step 3 and Step 4 in
Algorithm 4. In section 4.4.1.3 we will provide the proof for the optimality
of the assignment �e∗ for the reward maximization problem with a single
application and unlimited energy capacity Emax = +∞.

Applying Algorithm GI to the example in the first paragraph in this
subsection would lead to a solution as shown in Figure 37(b). When k is
0, we have ẽ1 = 8, ẽ2 = 6, ẽ3 = 4, ẽ4 = 3, ẽ5 = 3.4, ẽ6 =

10
3 , and, hence, e∗1, e

∗
2, e
∗
3,

and e∗4 are set to 3 since k∗ is 4. Then, when k is 4, we have ẽ5 = 5, ẽ6 = 4.
Therefore, e∗5 and e∗6 are set to 4. Figure 37(c) shows the stored energy EC()
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over time.
We have the following lemmas for the derived solution.

Lem. 2: The derived solution from Algorithm Greedy-Incremental consumes energy non-
decreasingly in these K frames.

Proof. Suppose that e∗i > e∗i+1 = e∗i+2 = · · · = e∗j � e∗j+1 for some 1 ≤
i ≤ K for contradiction. (For brevity, we assume e∗K+1 is ∞.) Then, when
determining the energy consumption e∗i , we have ẽi > ẽ j, which contradicts
the selection of k∗ in Algorithm Greedy-Incremental.

�

Lem. 3: The derived solution from Algorithm Greedy-Incremental is feasible.

Lem. 4: The derived solution from Algorithm Greedy-Incremental consumes energy
EC(0) − E� +

∑K
i=1 ES(i) in these K frames.

Proof. The above lemmas come directly from the construction.

�

4.4.1.2 An Algorithm for Limited Energy Storage Capacity

We now deal with systems with energy storage capacity constraints, i.e.,
Emax � ∞. The derived solution �e∗ is guaranteed to have no energy
underflow if there is no energy overflow. But, when Emax � ∞, there
might be some energy overflows in assignment �e, and will lead to some
energy underflows since the derived solution tries to consume all the
harvested energy. Consider the setting of Emax = 5 for the example in
the first paragraph of Section 4.4.1.1. The derived solution of Algorithm
GI has energy overflow at time 2. Then, the derived solution �e will later
have energy underflow, e.g., at time 4 in this example. Therefore, if the
resulting schedule has energy overflow, we should consume more energy
to avoid energy overflow so that we can get more reward.

Beginning from the solution �e∗ derived from Algorithm GI, we revise
the solution to prevent from energy overflow. The assignment �e∗ can be
segmented into N segments, in which, in assignment �e∗, all the frames in
a segment are with the same energy consumption and any two frames
in different segments are with different energy consumptions. Suppose
that kn is the index of the frame at the end of the n-th segment for every
n = 1, 2, . . . ,N, where k0 is initialized as 0 for notational brevity. The pro-
posed algorithm, denoted by Algorithm Inter-Frame Service Allocation
as shown in Algorithm 5, then revises�e∗ individually in these N segments
by calling a recursive procedure subSeg().
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Fig. 38: The solution derived by Algorithm Inter-Frame Service Allocation for K = 6 ,
Emax = 5.

The subSeg() procedure takes four parameters k′,K′,E′C, and E′� as its
input to derive a feasible assignment between the (k′+1)-th frame and the
K′-th frame (from time k′ to time K′) with energy in the energy storage E′C
at time k′ and E′� at time K′. When K′ −k′ is 1, it is clear to execute the K′-th
frame with energy consumption ES(K′)+E′C−E′�. When K′−k′ is more than
1, we have to check whether there will be energy underflow or energy
overflow. Firstly, let e� be the average energy consumption for executing

these K′ − k′ frames, i.e., e� ⇐ E′C−E′�+
∑K′

i=k′+1 ES(i)
K′−k′ in Step 3 in Procedure subSeg

in Algorithm 5. For every k′ < j < K′, let e�j be the maximum average

energy consumption from time j to time K′, where e�j ⇐
Emax−E′�+

∑K′
i= j+1 ES(i)

K′− j
in Step 4 in Procedure subSeg in Algorithm 5. Similarly, let ê j be the
maximum average energy consumption from time k′ to time j, where

ê j ⇐ E′C+
∑ j

i=k′+1
ES(i)

j−k′ in Step 5 in Procedure subSeg in Algorithm 5. Let k� be

the index j with the minimum e�j and k̂ be the index j with the minimum

ê j, where ties are broken arbitrarily. If both e�
k�

and êk̂ are no less than e�, the
procedure returns the assignment to consume energy e� from the k′ + 1-th
frame to the K′-th frame. Otherwise these K′ − k′ frames are divided into
two sub-segments. If e�

k�
is less than e�, the frames from the k′-th frame to

the k� frame are restricted to leave energy Emax in the energy storage at time
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k� by calling subSeg(k′, k�,E′C,Emax) and subSeg(k�,K′,Emax,E′�). Otherwise,
if êk̂ is less than e�, the frames from the k′-th frame to the k̂ frame are
restricted to leave no energy in the energy storage at time k̂ by calling
subSeg(k′, k̂,E′C, 0) and subSeg(k̂,K′, 0,E′�).

Algorithm 5 Inter-Frame Service Allocation
Input: K, ES(k) for k = 1, 2, . . . ,K, EC(0), E�, Emax;
Output: a feasible assignment �e of energy consumption for the K frames;

1: let �e∗ be the solution derived from Algorithm 4;
2: divide the K frames into N segments and let kn be the index of the frame at

the end of the n-th segment for every n = 1, 2, . . . ,N, where k0 is 0;
3: for n = 1; n ≤ N; n⇐ n + 1 do
4: let e(kn−1+1), e(kn−1+2), . . . , ekn be the resulting assignment by calling

subSeg(kn−1, kn, E′C, E′�), where E′C is EC(0) when n = 1, E′C is 0 for any
n > 1, E′� is 0 for any n < N, and E′� is E� when n = N;

5: return �e as the solution;
Procedure: subSeg()

Input: (k′,K′,E′C,E
′
�);

Output: a feasible assignment of energy consumption for the frames from the
(k′ + 1)-th frame to the K′-th frame;

1: if K′ − k′ = 1 then
2: return the assignment by consuming E′C + ES(K′)− E′� for the K′-th frame;

3: e� ⇐ E′C−E′�+
∑K′

i=k′+1 ES(i)
K′−k′ ;

4: e�j ⇐
Emax−E′�+

∑K′
i= j+1 ES(i)

K′− j for every k′ < j < K′;

5: ê j ⇐ E′C+
∑ j

i=k′+1
ES(i)

j−k′ for every k′ < j < K′;
6: k� ⇐ argk′< j<K′ ∧e�j ;

7: k̂⇐ argk′< j<K′ ∧ê j;

8: if e�
k�
< e� then

9: subSeg(k′, k�,E′C,Emax);
10: subSeg(k�,K′,Emax,E′�);
11: else if êk̂ < e� then
12: subSeg(k′, k̂,E′C, 0);
13: subSeg(k̂,K′, 0,E′�);
14: else
15: return the assignment to consume e� from the k′ + 1-th frame to the K′-th

frame;

Applying Algorithm Inter-Frame Service Allocation on the example
in Figure 38(a) with Emax = 5, and E� = EC(0) = 2, the first segment with
k1 = 4 will be divided into two segments by taking k� as 2 and e�2 = 2.5.
As a result, �e is (3.5, 3.5, 2.5, 2.5, 4, 4). In Figure 38, the energies �e and the



4.4. Proposed Service Allocation Framework 101

resulting stored energies EC() are displayed.
The time complexity of Algorithm Inter-Frame Service Allocation is

O(K2) since the time complexity for the n-th segment is O((kn − kn−1)2),
while

∑N
n=1 O((kn − kn−1)2) = O(K2). In section 4.4.1.3 we will provide the

proof for the optimality of the assignment �e for the reward maximization
problem with a single application.

We have the following lemma for the derived solution.

Lem. 5: The derived solution from Algorithm Inter-Frame Service Allocation is feasible.

Proof. Since the assignment is determined in Step 2 and Step 15 in Pro-
cedure subSeg in Algorithm 5, it is clear that there is no energy overflow
or energy underflow in the derived solution.

�

4.4.1.3 Proof for the Optimality of the Inter-Frame Energy Allocation
Algorithm

This section provides the optimality of Algorithm GI and Algorithm Inter-
Frame Service Allocation. Due to space limitation, some proofs are only
sketched. The following property from the concavity of the reward func-
tion must hold for any optimal solution:

Lem. 6: (Jumping of Energy Consumption) For an optimal energy vector �e, (1) if
ei < ei+1, EC(i,�e) is 0; (2) if ei > ei+1, EC(i,�e) is Emax.

Proof. Let EC(i,�e) be γ. We prove this lemma by contradiction. Suppose
that ei < ei+1 and γ > 0. Let e⊥i be ∧ei + γ,

ei+ei+1
2 , while e⊥i+1 is ei + ei+1 − ei⊥ .

Let e⊥j be ej for any j � i, i + 1. It is clear that EC( j,�e) and EC( j,�e⊥) are the
same for any j � i. By the definition of e⊥i , EC(i,�e⊥) must be no less than 0,
and hence �e⊥ is feasible. Moreover, we know that ei < e⊥i , e

⊥
i+1 < ei+1 with

ei + ei+1 = e⊥i + e⊥i+1. By Lemma 1, assignment �e⊥ has more reward than
assignment �e, which contradicts the optimality of �e.

Suppose that ei > ei+1 and γ < Emax. Let e⊥i be ∨ei − Emax + γ,
ei+ei+1

2 ,
while e⊥i+1 is ei + ei+1 − e⊥i . Similar to the argument of the first case, we will
have contradiction to the optimality of assignment �e.

�

Moreover, the following lemma shows that there is no energy waste
for an optimal assignment.

Lem. 7: (Total Energy) For an optimal energy vector�e,
∑K

i=1 ei = EC(0)+
∑K

i=1 ES(i)−E�.
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Proof. If
∑K

i=1 ei < EC(0) +
∑K

i=1 ES(i) − E�, assignment �e is clearly sub-
optimal since the reward function is an increasing function. On the other
hand, if

∑K
i=1 ei > EC(0) +

∑K
i=1 ES(i) − E�, �e is not feasible. Both contradict

the optimality of �e.

�

Optimality of Algorithm Greedy-Incremental

Based on Lemmas 2, 3, 6, and 7, we can prove the optimality of Algorithm
GI when there is no limitation on the energy storage capacity.

Thm. 8: Algorithm Greedy-Incremental derives optimal assignments for the general re-
ward maximization on energy harvesting problem for one application (N = 1)
when Emax = ∞.

Proof. Based on Lemma 6 and Lemma 7, an optimal assignment �e⊥

must have non-decreasing energy consumption with
∑K

i=1 e⊥i = EC(0) +∑K
i=1 ES(i) − E�. Suppose that �e⊥ is different from the assignment �e∗ de-

rived by Algorithm Greedy-Incremental. By adopting the segmentation
terminology for �e∗ at the beginning of Section 4.4.1.2. Suppose that n′
is the first segment that �e∗ and �e⊥ differs from each other. By definition,
e∗(kn′−1+1) = e∗(kn′−1+2) = · · · = e∗kn′

. Let κ be the index of the first frame that �e∗

and �e⊥ differs from each other.
If e∗κ < e⊥κ , we have

∑kn′
i=kn′−1+1 e∗i <

∑kn′
i=kn′−1+1 e⊥i , since e⊥κ ≤ e⊥κ+1 ≤ · · · ≤ e⊥kn′

and, by Lemma 2, e∗κ ≤ e∗κ+1 ≤ · · · ≤ e∗kn′
. Therefore, assignment �e⊥ has

some energy underflow, which contradicts the feasibility of �e⊥.
If e∗κ > e⊥κ , because e∗κ ≤ e∗κ+1 ≤ · · · ≤ e∗K, we know that EC(kn′−1 +

1,�e∗) +
∑k

i=kn′−1+1 e⊥i <
∑k

i=kn′−1+1 e∗i <
1 EC(kn′−1 + 1,�e∗) +

∑k
i=kn′−1+1 ES(i) for

any kn′−1 + 1 ≤ k < K and EC(kn′−1 + 1,�e∗) +
∑K

i=kn′−1+1 e⊥i <
∑K

i=kn′−1+1 e∗i <
2

EC(kn′−1+1,�e∗)−E�+
∑K

i=kn′−1+1 ES(i), where <1 and <2 come from Lemma 3.
Therefore, there is energy waste in assignment �e⊥, which contradicts the
optimality of �e⊥.

As a result, assignment �e∗ derived by Algorithm Greedy-Incremental
is optimal for the general reward maximization on energy harvesting
problem if a single application is executed on a system with Emax = ∞.

�

Optimality of Algorithm Inter-Frame Energy Allocation

We now show the optimality of Algorithm Inter-Frame Service Allocation
for the general reward maximization on energy harvesting problem when
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there is some limitation on the energy storage capacity. It is obvious that
the derived assignment�e does not have energy waste, i.e.,

∑K
i=1 ei = EC(0)+∑K

i=1 ES(i) − E�. The following lemma is needed to prove the optimality
property in Lemma 6.

Lem. 8: For procedure subSeg() with specified parameters k′, K′, E′C, and E′� in Algo-
rithm 5, (1) if e�

k�
≥ e� and êk̂ < e�, then, ek̂ ≤ ek̂+1; (2) if e�

k�
< e�, ek� ≥ ek�+1.

Proof. For the first case, we will reach the contradiction by ê j < êk̂ for
some k < j < K′ or e�j < e� for some k < j < K′. For the second case, if

e�
k�
< e� and ek� < ek�+1, we will have e�j < e�

k�
for some k < j < K′.

�

Based on Lemma 8, it is not difficult to see that the derived solution
satisfies the optimality properties in Lemma 6. The following theorem
states the optimality of Algorithm Inter-Frame Service Allocation.

Thm. 9: Algorithm Inter-Frame Service Allocation derives optimal assignments for the
general reward maximization on energy harvesting problem with a single appli-
cation (N = 1).

Proof. Based on Lemma 6 and Lemma 7, an optimal assignment �e⊥
can only decrease (respectively, increase) energy consumption at time k
when EC(k,�e⊥) is Emax (respectively, 0). Suppose that �e⊥ is different from
the assignment �e derived by Algorithm Inter-Frame Service Allocation.
Let κ be the smallest index in which e⊥κ is different from eκ. Let m be
the index with em−1 � em = em+1 = · · · = eκ, where e0 is defined as ∞
for boundary condition. By definition, EC(m,�e⊥) is equal to EC(m,�e). Let
β1 (respectively, β2) be the earliest index after κ with EC(β1,�e) = Emax

(respectively, EC(β2,�e) = 0). If there does not exist β1 (respectively, β2), let
β1 (respectively, β2) be K.

If eκ < e⊥κ and β1 < β2, we know that ei ≥ ej for any m ≤ i < j ≤ β2

due to Lemma 6. Moreover, for any κ ≤ i ≤ β2, we have e⊥i > eκ since it is
impossible to have EC(i,�e) = Emax. Clearly, we reach the conclusion that
there is an energy underflow of �e⊥. The proof is similar for the case that
eκ < e⊥κ and β1 ≥ β2.

If eκ > e⊥κ and β1 ≥ β2, similarly, there will be some energy overflow of
�e⊥ or

∑K
i=1 e⊥i < EC(0) − E� +

∑K
i=1 ES(i), which contradicts the optimality of

�e⊥. If eκ > e⊥κ and β1 < β2, there will be an energy overflow at time β1 in �e⊥.
As a result, assignment �e derived by Algorithm Inter-Frame Service

Allocation is optimal for the general reward maximization on energy
harvesting problem with a single application.
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�

Note that Algorithm 5 does not have to know the exact reward func-
tion. The only requirement for guaranteeing the optimality is that the
(joint) reward function has to be concave.

4.4.2 Intra-Frame Service Allocation
In contrast to the inter-frame energy allocation, the intra-frame energy
allocation requires the precise knowledge of the reward functions rn() to
distribute the energy among all running applications n = 1, . . . ,N. Given
the energy ek as the total energy which can be consumed in the k-th frame,
we can formally write the intra-frame energy assignment problem as
follows:

maximize
∑N

n=1 rn(εk,n) subject to: (4.1)∑N
n=1 εk,n = ek

cm(�εk) = 0 ∀1 ≤ m ≤M
εk,n ≥ 0 ∀1 ≤ n ≤ N

In other words, we want to maximize the accumulated reward subject
to the energy budget ek and the constraints cm(�εk) from possible rate-based
graphs. We denote the optimal objective value of the above optimization
problem in Equation (4.1) as function R(ek) = max{∑N

n=1 rn(εk,n)}. The
following theorem establishes the concavity of R(ek) over the energy con-
sumption ek.

Thm. 10:If r(x,y) is concave in (x,y) and C is a convex nonempty set, then R(x) =
max

y∈C
r(x, y) is concave in x, provided R(x) > −∞ for some x.

Proof. A proof can be found in standard text books on convex optimiza-
tion, e.g., in [BV04, Chapter 3].

�

As a result, based on the concavity of R(ek) in Theorem 10 and the
optimality of Algorithm Inter-Frame Service Allocation in Theorem 9, we
can divide the general reward maximization on energy harvesting prob-
lem into two subproblems, namely finding inter-frame and intra-frame
energy assignments. We can now determine intra-frame service assign-
ments by using standard techniques from constrained optimization. By
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Algorithm 6 (Intra-Frame Service Allocation)
Input: ek, rn() for n = 1, . . . ,N, cm(�εk) for m = 1, . . . ,M;
Output: a feasible assignment �εk of energy consumption for the N appli-

cations in frame k;
1: let L(εk,n, . . . , εk,N, λ0, λ1, . . . , λM) be

N∑
n=1

rn(εk,n) − λ0 ·
(

N∑
n=1
εk,n − ek

)
− M∑

m=1
λm · cm(�εk) ;

2: solve ∂L()
∂ εk,1
= · · · = ∂L()

∂ εk,N
= 0, ∀1 ≤ n ≤ N under the energy constraints

N∑
n=1
εk,n = ek and cm(�εk) = 0 ;

3: return �εk as the solution;

applying the Lagrange Multiplier method, we can solve the problem in
Equation (4.1) optimally, as shown in Algorithm 6.

Certainly, solving the equations in Step 2 is a critical operation in
Algorithm 6. As already indicated in the section overview and depicted in
Figure 36, one would preferably determine explicit functions f1(), . . . , fN()
to compute the energy consumptions of the applications εk,n = fn(ek),∀1 ≤
n ≤ N efficiently in the online case. In Section 4.6, such techniques for a
practical implementation of the algorithm will be discussed.

Due to the concavity of the reward functions, the solution found by
using the Lagrange Multipliersλ0, λ1, . . . , λM is guaranteed to be the global
optimum for the intra-frame energy assignment problem. As a result, it
is not difficult to see the optimality of the derived solutions, which is a
direct consequence of Theorems 9 and 10.

Cor. 1: The energy assignment obtained by successive application of Algorithm 5 and 6
constitutes an optimal assignment for the general reward maximization on energy
harvesting problem.

To demonstrate how Algorithm 6 works, we use the following example
for illustration. Suppose that an embedded system has to execute two
independent applications v1 and v2 with the energy budget ek in a certain
frame. The respective reward functions are given by r1(εk,1) = ln εk,1
and r2(εk,2) =

√
εk,2. By setting the partial derivatives of the Lagrangian

L() equal to 0, we get ∂r(εk,1)
∂ εk,1

=
∂r(εk,2)
∂ εk,2

= λ0 under the energy constraint
εk,1 + εk,2 = ek. Thus, we have to solve

1
εk,1
=

1
2
√
εk,2
= λ0

εk,1 + εk,2 = ek.
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In this case, we know that εk,2 =
ε2k,1
4 . Therefore,

ε2k,1
4 + εk,1 − ek = 0, in which

εk,1 = −2 + 2
√

1 + ek. If we continue on the example from the previous
subsection in Figure 38, the energy consumptions in the first frame are,
e.g., ε1,1 = −2+ 2

√
4.5 and ε1,2 = 5.5− 2

√
4.5. In Figure 39, the normalized

functions εk,1ek
= 2

√
ek+1−2
ek

and εk,2
ek
= 1 − εk,1ek

are displayed over the energy
budget ek. For values ek < 8, application v1 receives the larger percentage
of ek, whereas for ek > 8, it is advantageous to assign more energy to
application v2. At ek = 8, the energy budget ek has to be shared equally
among both applications.
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Fig. 39: Intra-frame energy assignment for the example with r1(εk,1) = ln εk,1 and r2(εk,2) =√
εk,2.

4.5 Design Considerations
This section provides some remarks for designing embedded systems
with energy harvesting devices using the techniques described in this
chapter.

4.5.1 Energy Prediction Techniques
The energy prediction algorithm should depend on the type of the en-
ergy source and the system environment. In general, standard tech-
niques known from automatic control and signal processing can be
applied here. For photovoltaic cells harvesting solar energy, sev-
eral energy prediction algorithms have been presented in the litera-
ture [KPS04, MTBB07, MTBB08]. Of course, one could even use external
information from the weather forecast to predict solar radiation, but in
many cases, simple techniques turn out to be sufficient. By keeping a his-
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Fig. 40: Different sliding operation for Algorithm 5 (Inter-Frame Service Allocation).

tory of harvested energies of the past, simple algorithms based on expo-
nential decay turn out to give quite accurate predictions [KPS04]. In Sec-
tion 3.6.1.1, a worst-case energy prediction algorithm is presented which
guarantees sustainable operation for solar powered devices. Specifically,
the proposed algorithm in accounts for the fact that short-term energy
prediction can be considerably lower than average expectations.

In any case, some kind of energy prediction algorithm is necessary for
serious performance optimization of energy harvesting embedded sys-
tems. In this chapter, we study a basic problem by using a perfect energy
prediction and gain fundamental insight in optimization problems under-
lying energy harvesting systems. Certainly, a system receiving imprecise
or wrong energy prediction information will experience a performance
degradation. However, an investigation of the impact of prediction mis-
takes is beyond the scope of this chapter.

4.5.2 Sliding Horizon Operation
For the online usage of Algorithm Inter-Frame Service Allocation, one
has two principal alternatives, as illustrated in Figure 40, sliding horizon
or sliding frame operations. While the sliding horizon operation repeatedly
predicts and optimizes the energy assignments for independent horizons,
the sliding frame operation solves the problem for overlapping horizons
for every frame. The latter operation is also known as receding horizon
control in the literature [ML99]. As energy prediction is assumed perfect
for the study in this chapter, the sliding horizon operation is adopted
and will be used for presenting the simulation results in Section 4.6.
Certainly, if there are prediction mistakes, one would preferably choose
the sliding frame operation since prediction mistakes can be counteracted
more efficiently. On the other hand, the sliding frame operation imposes
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a higher computational load for the embedded system, since Algorithm 5
is executed K times more often then in the sliding horizon operation.

4.5.3 The Minimum Energy Storage Capacity Emax,min

To design the energy supply of an embedded system, it is important to
estimate how to dimension the energy storage device. Given an initial
energy EC(0), an energy source ES(k), 1 ≤ k ≤ K and a final energy con-
straint E�, we are interested in the minimum storage capacity which is
needed to achieve the maximum possible reward. We denote

Emax,min = min
Emax

{
r(�e∗,Emax) = r(�e∗,+∞)

}
the minimum capacity Emax for which the optimal reward equals the
reward for an unconstrained system which Emax = +∞. For a single
horizon, we can now determine

Emax,min = max
k=1,2,...,K

{EC(0) +
k∑

j=1

(ES( j) − e∗j)},

where�e∗ is an assignment computed by Algorithm 4 for specified ES(k) for
k = 1, 2, . . . ,K, EC(0) and E�. For sliding horizon operation, this calculation
has to be repeated for representative data samples ES(k) for the energy
source. This can be done by using, e.g., sufficiently large traces of solar
energy which have been recorded beforehand. By choosing the maximum
of all capacities Emax,min, it is possible to determine the minimum capacity
Emax to optimally exploit a given environmental source.

4.5.4 Energy Buffering, Limited Energy Consumption and
Discrete Service Levels

As already mentioned, a frame may last several hours in physical time. If
now the energy storage is full, i.e., EC(k−1) = Emax and ek = ES(k) for some
k, we may still have an energy overflow if ES(k) arrives before it is consumed
by ek. This conflict can be resolved by assuming the existence of small
energy buffers (capacitors or supercapacitors) or a lower capacity E′max.
In a similar way, problems can be resolved for the underflow problem.

In some systems, the applications might have the requirement to con-
sume at least some amount of energy consumption in a frame, and there
might also be a constraint on the maximum energy consumption in a
frame since there is no improvement in quality/reward for more energy
consumption. We can revise the solution �e derived by Algorithm Inter-
Frame Service Allocation by setting the energy consumption of the k-th



4.6. Simulative Evaluation 109

frame as the maximum energy consumption if ek is greater than the maxi-
mum energy consumption constraint. The proofs in Section 4.4.1.3 can be
extended to prove the optimality of the revised solution. If there exists ek

which is less than the minimum energy consumption constraint, it is not
difficult to see that the input does not admit a feasible assignment.

In some embedded systems, one may have to choose between a limited
number of discrete service levels with corresponding energy consump-
tions εk,n. We found that a straightforward extension of the work pre-
sented in this chapter is not trivial for these cases. Specifically, it seems
not trivial to derive optimal service level assignments since the nature
of the optimization problem changes fundamentally if one moves from
continuous to discrete energy consumptions εk,n. Nevertheless, approxi-
mations based on the algorithms presented in this chapter may provide
good (but suboptimal) results. This holds in particular if the number of
service levels is getting large.

4.6 Simulative Evaluation

4.6.1 Simulation Environment and Setup
For the experiments, we use long-term measurements of solar light in-
tensity recorded during 5 years from a photovoltaic plant at Mont Soleil,
Switzerland [sol07]. The data measured in

[
W
m2

]
serves as harvested en-

ergy ES(). Of course, to simulate a concrete system, one would have to
scale the measured power profile with the size, number and efficiency of the
actually used solar panels. The data is sampled every 5 minutes, so we
have a maximum of 288 samples per day.

Since solar energy shows a similar pattern every 24 hours, multiples
of a day are reasonable choices for the prediction horizon. The number
of frames per day does not affect the results too much. The presented
results in this section are conducted by setting 16 frames per day, which
means a frame lasts for 1.5 hours. The results for different numbers of
frames per day are quite similar. When investigating different values for
the number of frames of the prediction horizon K ∈ {16, 32, 48, . . .}, we
use the shorter notation K ∈ {1d, 2d, 3d, . . .} but keep in mind that we have
16 frames per day. At the end of the prediction horizon, we want the
remaining energy EC(K) to be at least equal to the initial energy EC(0), i.e.,
E� = EC(0).

Concerning the online complexity of Algorithm 5 we experienced
that even if the number of frames K is growing, the average number of
computation steps is by far less than the worst-case time complexity O(K2).
The worst-case scenario only happens if Algorithm 5 has to prevent an
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energy overflow or underflow in every frame k. However, if the energy
storage capacity Emax is chosen close to capacity Emax,min as presented in
Section 4.5.3, the average number of calls of procedure subSeg and hence
the online computation demand of Algorithm 5 remains low.

4.6.2 Efficient Implementation of the Intra-Frame Service
Allocation

As illustrated in Figure 36, the intra-frame energy assignments can be
computed online by Algorithm 6. However, since the reward functions
r1(), . . . , rN() and the rate constraints c1(), . . . , cM() are usually given at
design time and remain unchanged during the operation of the embedded
system, explicit functions f1(), . . . , fN() can be pre-computed offline and
evaluated online instead of running Algorithm 6. For this algorithm, we
already mentioned that solving the set of equations in Step 2 may not give
an explicit solution. In such situations, numerical root-finding algorithms
like Newton’s method can be applied to find an approximation for the
energy assignment εk,n∀1 ≤ n ≤ N. Newton’s method is known to have
a fast, quadratic convergence ratio and the precision of the result is only
limited by the finite precision of the machine which is used to carry out the
arithmetic. Like that, Algorithm 6 is performed offline for a large number
of energy budgets ek and approximation functions εk,n = fn(ek),∀1 ≤ n ≤ N
are computed.

We investigated systems consisting of several applications and dis-
cuss a representative problem next. Assume we have two independent
applications v1 and v2 with the reward functions r1(εk,1) = ln εk,1 and
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r2(εk,2) =
√√
εk,2 + 2. To our best knowledge, there exists no explicit

function to distribute the budget ek in a certain frame. Using Newton’s
method, we approximated εk,1 and εk,2 for integer values ek ∈ {1, 2, . . . , 200}.
Next, we determine the coefficients of, e.g. , a 10th degree polynomial by
least-square fitting. In Figure 41, the top plot shows the approximated
values of εk,1ek

= 3.7 ·10−21 ·e10
k −10−18 ·e9

k+1.9 ·10−15 ·e8
k−4.9 ·10−13 ·e7

k+810−11 ·
e6

k − 8.6 · 10−9 · e5
k + 6 · 10−7 · e4

k − 2.8 · 10−5 · e3
k + 0.00083 · e2

k − 0.018 · ek+ 0.97. In
this plot, it is not possible to distinguish the approximated from the real
values of εk,1ek

. The approximation mistake is expressed in terms of residual
error and can be negligible in practice, see the bottom plot in Figure 41.
The coefficients of the approximation functions have to be stored and
evaluated for every application in the online case, causing neglectable
overhead in terms of computation and memory requirement. Note that
these approximations can be performed for miscellaneous computation-
based or rate-based application models with arbitrary reward functions,
as presented in Section 4.3.3.

4.6.3 Choosing Sufficient Parameters K and Emax

A fundamental question one might ask when designing a system in
a given environment is: How many days should the horizon span
to obtain reasonable rewards? For this purpose, we simulate Algo-
rithm 5 (Inter-Frame Service Allocation) for different parameters K ∈
{1d, 2d, 3d, 5d, 10d, 15d, 30d, 70d, 105d, 210d}. To obtain a total simulated
time of 210 days for each experiment, {210, 105, 70, 42, 21, 14, 7, 3, 2, 1} hori-
zons are executed in the sliding horizon operation, respectively. The re-
sulting energy assignments �e are evaluated by applying the joint reward
function R(ek) = ln(0.01+ ek

1000 ) which assigns negative rewards (i.e., penal-
ties) to energies ek < 990, where R(ek) is the summation of reward functions
rn(εk,n) of the N applications under energy constraint ek. In particular, set-
ting the services to 0 is punished with an penalty of ln(0.01) ≈ −4.61. For
each experiment, we calculate the accumulated reward for 210 days.

As a matter of fact, the accumulated reward depends both on the
number d of days of the prediction horizon and the energy storage
capacity Emax. In Figure 42 we see that the accumulated reward in-
creases quickly with the parameters d and Emax. The minimum en-
ergy capacity Emax required to optimally exploit this energy source is
Emax,min = 759450. Using this value for the battery, a horizon of d = 15
days is sufficient to achieve 93.4% of the maximum possible reward (i.e.,
the reward for d,Emax = ∞). For this particular reward function, however,
also smaller capacities Emax are possible to achieve a similar reward.

In Figure 43, the accumulated rewards were normalized by the reward
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obtained by the experiment with the longest horizon, namely 210 days. If
one chooses a smaller Emax, it turns out that the reward converges faster
towards its longterm average with increasing d. For a horizon of d = 15
days, a capacity of Emax = 500000 will result in a reward of 93,7% of the
reward for the same capacity with d = 210 days. For smaller capacities
Emax = 24000 and 4000, the ratio increases to 97,7 % and 99.9 %, respec-
tively. The reason for this behaviour is that Algorithm 5 is getting more
and more nearsighted with smaller capacity Emax: Due to the capacity
constraint, local maxima of �e are computed to avoid energy overflows.
Hence, for small energy storage capacities Emax, the total reward can
hardly be improved by increasing the prediction horizon d.

In summary, using our techniques, one can easily determine or trade-
off suitable parameters K and Emax for a given environment. Given a
representative trace of the harvested energy, the reward functions of the
applications as well as possible rate constraints, one can easily deter-
mine suitable parameters for the energy storage Emax and the length of
the prediction horizon K. Since the reward converges quickly for both
parameters, one can simply select values of Emax and K which result in a
reward only a few percent below the optimal reward for Emax = Emax,min

and K = +∞. For our example, the energy storage should be large enough
to store the incoming energy ES during approximately 5 days and the pre-
diction horizon should be at least 2 weeks to achieve a reward close to the
optimal one.
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4.6.4 Comparison to an Adversary Algorithm
Since there are no other algorithms available for the general reward max-
imization on energy harvesting problem, we designed an adversary al-
gorithm to Algorithm Inter-Frame Service Allocation which can be found
in Appendix A (Algorithm 7). What makes finding adversary algorithms
tricky is that one has to find algorithms which are feasible and competi-
tive at the same time. To this end, the constructed adversary algorithm
constitutes the smartest solution an engineer would probably implement
on, e.g, a sensor node not being aware of the techniques described in this
chapter. Algorithm 7 averages the energy consumptions for the remaining
frames. Only if energy overflows or underflows happen, recalculations
of the energies are performed. The time complexity of the adversary
algorithm is the same as that of Algorithm 5.

Figure 44 displays a comparison of the assignments generated by the
adversary algorithm and Algorithm Inter-Frame Service Allocation for
d = 5 days. Both assignments start with an initial energy EC(0) = 3000,
the energy storage capacity is Emax = 20000. Obviously, the optimal as-
signment�e manages to balance the energy consumption much better than
the assignment �ea derived from the adversary algorithm. The latter has
to suspend the service completely during the first four nights, which is
clearly an unacceptable behaviour. Around frame 60, a burst of energy ES

is forcing �ea to increase the service to 10000, whereas �e shows only a mod-
erate increase to 6000. Using the same reward function as in Section 4.6.3,
the total reward for assignment �e amounts to 34.6; assignment �ea achieves
a negative total reward of −57.1.

For Figure 45, we repeated the experiment for 20 horizons in sliding
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horizon operation, i.e. for 100 consecutive days in total. The average
reward during this time was 68.4 for the optimal and 12.2 for the adversary
algorithm. So also in terms of average reward, the optimal assignment
outperforms �ea significantly.

The primary results of the comparison with the adversary algorithm
are as follows: Firstly, we demonstrate that energy underflows and over-
flows happen also for real energy sources (in our case we apply a typ-
ical trace of solar energy) and not only for the constructed examples
in Section 4.4.1. And secondly, we show that significant performance
improvements can be realized using our algorithms compared to naive
approaches.

4.7 Chapter Summary
This chapter copes with embedded systems equipped with energy har-
vesting devices, such as solar panels. By applying prediction techniques,
we explore how to globally optimize the system performance of diverse
applications in terms of system rewards. The reward functions of ap-
plications are assumed to be concave and increasing with respect to the
energy consumption. For a given specified prediction horizon composed
of multiple frames, we develop a two-stage mechanism for energy as-
signments. First, we determine how much energy can be consumed in
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one frame without violating the energy capacity constraint. Then, an
algorithm based on the Lagrange Multiplier method is applied to dis-
tribute the energy budget in one frame to the applications in the system.
The effectiveness of the proposed algorithms is supported by simulations
based on long-term measurements of the power generated by real solar
cells. Moreover, we also demonstrate how to dimension the embedded
system, e.g., the battery capacity and elaborate on implementation details
for efficiency issues.
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5
Conclusions

5.1 Main Results

This thesis addresses power management in energy harvesting embed-
ded systems. As example scenario, we focus on wireless sensor nodes
which are powered by solar cells. We demonstrate that classical power
management solutions have to be reconceived and/or new problems arise
if perpetual operation of the system is required. In particular, we pro-
vide a set of algorithms and methods for different application scenarios,
including real-time scheduling, application rate control as well as reward
maximization. The purpose of the latter two approaches is to decide
which and how many tasks are executed in a long-term perspective.
Based on an estimation of the energy harvested in the future, long-term
decisions on the use of the available energy are made.

On a task level, we provide real-time scheduling algorithms to as-
sign energy to upcoming tasks in a short-term perspective. By taking
into account both available time and energy, an optimal task ordering is
computed to avoid deadline violations.

While most conventional power management solutions aim to save en-
ergy subject to given performance constraints, performance constraints
are not given a priori for the energy harvesting systems discussed in this
thesis. Rather, the performance is adapted in a best effort manner ac-
cording to the availability of environmental energy. Goal is to optimize
the performance of the application subject to given energy constraints.
Compared to state of the art approaches, our methods achieve a bet-
ter performance, or achieve the same performance requiring, e.g., smaller
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solar cells and batteries. Furthermore, we show how to dimension impor-
tant system parameters like the minimum battery capacity or a sufficient
prediction horizon.

Our theoretical results are supported by simulations using long-term
measurements of solar energy in an outdoor environment. In this way,
we are able to simulate the behaviour of wireless sensor nodes for time
scales which are usually desired (i.e. several months up to several years).
Furthermore, we measured the implementation overhead of some algo-
rithms on real sensor nodes to demonstrate the practical relevance of our
approach.

5.2 Future Perspectives
The application scenarios investigated in this thesis give fundamental
insight in the challenges of energy harvesting systems. Beyond these basic
scenarios, however, we identified several topics which deserve further
investigation. It follows a short discussion of potential future work.

Combination of Approaches

As already indicated, the single approaches in this thesis could be com-
bined as follows: As illustrated in Figure 46, there may be two hierar-
chically structured schedulers which control the application. In a first
step, an Application Rate Controller or a Service Level Allocator decides
which and how many tasks are executed on the long run. In a second step,
a Real-Time Task Scheduler decides about the short-term task ordering.
To realize this combination of approaches, however, adaptations of the
methods in this thesis become necessary.

Sensor node

Prediction unit

Energy storage

Real-Time Scheduler

resources

radio

microprocessor

sensor x

…

time

Application

Energy source

Application Rate Controller

Service Level Allocator
or

Fig. 46: A Possible Combination of the Approaches presented in Chapters 2, 3 and 4.
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Energy Prediction Uncertainty

Provided that precise information about the future energy generation is
available, most methods in this thesis guarantee an optimal system per-
formance. To account for prediction mistakes, both a worst-case energy
prediction algorithm and an approximate control design have been pre-
sented in Chapter 3. We pointed out that overly precise optimization
of the application parameters turns out to be useless if major prediction
errors occur. However, for the different approaches presented in Chap-
ters 2, 3 and 4, it remains unclear to what extent prediction mistakes
actually degrade the performance of the system.

Hardware Characteristics

Practical experiments revealed that charging a storage device like e.g. a
supercapacitor or a battery with a solar cell remains a highly non-linear
process. As a consequence, the amount of harvested energy depends
on factors like, e.g., the current charging level, the charging history, the
ambient temperature and the impinging light intensity.

What is clearly missing is a performance optimization approach that
takes into account the characteristics of the underlying hardware. In other
words, the optimization software running on the sensor node not only
has to estimate how much solar energy will be available in the future but
also to what extent usable electrical energy can be generated and consumed
by the sensor node. Non-linearities of the conversion and storage pro-
cess are expected to play a dominating role in the overall performance
optimization. Hence, measurements of a prototype photovoltaic energy
scavenger would shad light on how solar energy can be used effectively.

Distributed Application Control

All scenarios discussed in this thesis investigate optimization of the tem-
poral performance of individual embedded systems. A potential exten-
sion of our work could deal with clusters of embedded systems running a
distributed application. Therefore, the spatial variations in environmen-
tal energy between different nodes must be exploited. As in multihop
wireless sensor networks, nodes have joint objective functions (e.g. joint
sensing areas), or may have joint constraints (e.g. wireless communica-
tion protocols).

Discrete Application Parameters

The work presented in this thesis considers the adaptation of continu-
ous application parameters to maximize the utility of energy harvesting
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systems. These continuous parameters represent, e.g., the instantiation
rates of tasks, the amount of computation or simply the duty cycle of a
sensor node. In practice, however, one sometimes has the choice between
a finite number of possible modes of operation. For this purpose, a more
realistic application model consisting of a finite set of discrete modes is
of importance. While some methods in this thesis can still approximately
find this parameters (e.g. by rounding to the next level), an optimal so-
lution is not any longer guaranteed. For the application scenario reward
maximization in Chapter 4, we designed efficient algorithms for systems
with discrete service levels. The respective work is described in [MCT09].
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A
Adversary Inter-Frame Service

Allocation Algorithm

In the following an adversary algorithm which tries to average the energy
consumption is described. It respects the energy constraints given by the
system and the environment, i.e., it is feasible according to Definition ??.
A straightforward approach would be to calculate an average energy

consumption EC(0)+
∑K

i=1 EH(i)−E�
K for all frames. However, since the power

source EH is not constant, energy overflows and underflows may happen.
As shown in Algorithm 7 in Steps 4 and 5, possible energy underflows
for the next frame k+ 1 are avoided by reducing the energy consumption
to EC(k)+EH(k+ 1). Analogously, the energy consumption is increased in
Step 11 to prevent the stored energy EC(k + 1) from overflowing. If such
an overflow is avoided, however, we consume more energy than initially
planned and we might end up with an infeasible schedule. Hence, a
recalculation for the remaining frames becomes necessary to obtain a
feasible schedule. This is done in Steps 12-14 by again averaging the
remaining energy. Finally, the reward of the schedule can be improved
by recalculating the energies also for energy underflows (Steps 6-8). It is
easy to verify that schedule �e a calculated by Algorithm 7 is feasible and
uses all available energy (EC(0) +

∑K
i=1 EH(i) − E�).



130 Appendix A. Adversary Inter-Frame Service Allocation Algorithm

Algorithm 7 Adversary (Inter-Frame Service Allocation)
Input: K, EH(k) for k = 1, 2, . . . ,K, EC(0), E�, Emax;
Output: a feasible assignment�ea of energy consumption for the K frames;

1: k⇐ 0;
2: ea

j =
EC(0)+

∑K
i=1 EH(i)−E�
K , ∀ j = 1, . . . ,K;

3: while k < K do
4: if EC(k) + EH(k + 1) − ea

k+1 < 0 then
5: ea

k+1 ⇐ EC(k) + EH(k + 1) ;
6: for i = k + 2; i ≤ K; i⇐ i + 1 do

7: ea
j ⇐

K∑
i=k+2

EH(i)−E�

K−k−1 ;∀ j = k + 2, ..,K;
8: if EC(k) + EH(k + 1) − ea

k+1 > Emax then
9: ea

k+1 ⇐ EC(k) + EH(k + 1) − Emax ;
10: for i = k + 2; i ≤ K; i⇐ i + 1 do

11: ea
j ⇐

Emax+
K∑

i=k+2
EH(i)−E�

K−k−1 ;∀ j = k + 2, ..,K;
12: EC(k + 1) = EC(k) + EH(k + 1) − ea

k+1;
13: k⇐ k + 1;
14: return �e a as the solution;
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