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Abstract

A fundamental aspect of the design of an embedded system is the predic-
tion of its performance in terms of timing, memory, or energy early in the
design process. The objective of this task, typically referred to as system-
level performance evaluation, is twofold. On one hand, it is instrumental
for pre-validating a system design before any resources are invested for
the actual implementation and, on the other hand, the performance eval-
uation is a central driver for the exploration of the design space. For
systems with strict performance requirements such as hard real-time sys-
tems the performance evaluation needs to be provably correct, that is,
it has to cover the worst-case performance scenarios. Furthermore, the
evaluation should be fast such that it can be employed for the exploration
of large design spaces.

Recent research efforts have led to analytical and modular methods for
worst-case performance evaluation at the system level. These methods
ensure the correctness of the performance evaluation and are fast even for
large-scale systems. However, they suffer from limited modelling scope
and analysis accuracy. As a consequence, when applying these methods
to complex systems, one often experiences considerable abstraction losses,
which lead to overly pessimistic performance results.

This thesis introduces several formal models and methods that refine
the modelling capabilities of analytical performance evaluation and pre-
vent abstraction losses. The results build on the existing framework for
Modular Performance Analysis (MPA), but apply also to other analytical
formalisms. The main contributions of this thesis can be summarized as
follows:

• The modelling scope of analytical performance evaluation is ex-
tended to systems with cyclic dependencies.

• New models and methods are introduced for handling structured
event or data streams in analytical performance evaluation.

• A novel hybrid analysis methodology is presented that combines
analytical and state-based system evaluation.

• New design methods for energy-efficient real-time systems are in-
troduced.





Zusammenfassung

Ein wesentlicher Aspekt der Entwicklung von eingebetteten Systemen ist
die Vorhersage deren Leistung bezüglich Zeitverhalten, Speicherbedarf
oder Energieverbrauch in frühen Entwurfsphasen. Diese Leistungsbew-
ertung, oft als System-level Performance Evaluation bezeichnet, dient zwei
Zielen. Zum einen ermöglicht sie die Validierung von Systementwürfen
vor der eigentlichen Implementierung des Systems. Zum anderen ist
die Leistungsbewertung ein entscheidendes Element der Exploration des
Entwurfsraumes. Für Systeme mit strengen Leistungsanforderungen wie
zum Beispiel Echtzeitsystemen, muss die Leistungsbewertung nachweis-
bar korrekt sein, d.h. sie muss Worst-Case Szenarien erfassen. Weiterhin
sollte die Leistungsbewertung möglichst schnell sein, damit sie für die
Exploration von grossen Entwurfsräumen eingesetzt werden kann.

Die Forschungsbemühungen der letzten Jahre haben analytische,
modulare Methoden zur Worst-Case Leistungsbewertung auf Syste-
mebene hervorgebracht. Diese Methoden garantieren die Korrektheit der
Leistungsbewertung und sind auch für grosse Systeme schnell. Allerd-
ings zeichnen sich diese Verfahren auch durch einen eingeschränkten
Anwendungsbereich und teilweise mangelnder Analysegenauigkeit aus.
Aus diesem Grund kommt es bei der Analyse von komplexen Systemen
häufig zu erheblichen Abstraktionsverlusten und folglich zu pessimistis-
chen Leistungsbewertungen.

Die vorliegende Arbeit stellt formale Modelle und Methoden vor, die
die Ausdruckskraft und Genauigkeit der analytischen Leistungsbewer-
tung wesentlich verbessern. Die Arbeit baut auf den bestehenden Ansatz
der Modular Performance Analysis (MPA) auf. Die Ergebnisse finden jedoch
auch in weiteren analytischen Verfahren Anwendung. Die konkreten
Beiträge dieser Arbeit können wie folgt zusammengefasst werden:

• Der Anwendungsbereich der analytischen Leistungsbewertung
wird um Systeme mit zyklischen Abhängigkeiten erweitert.

• Modelle und Methoden zur Handhabung von strukturierten Daten-
strömen werden vorgestellt.

• Ein neuartiges hybrides Analyseverfahren wird eingeführt, welches
analytische und zustandsbasierte Leistungsbewertung kombiniert.

• Neue Entwicklungsmethoden zum Entwurf von energieeffizienten
Echtzeitsystemen werden vorgeschlagen.
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1
Introduction

This thesis presents a set of novel formal methods for the performance
evaluation of distributed embedded systems. It builds on an existing
analytical framework for modular performance analysis, and aims at
improving its modeling capabilities as well as the quality of the achievable
analysis results. In this work we primarily consider real-time systems
and, hence, focus on techniques for faithful timing analysis of systems.
Existing analytical approaches for performance analysis are restricted
to specific system models and performance metrics, and deliver only
pessimistic performance guarantees for many real systems. The goal of
our work is to extend the applicability of formal performance analysis
methods by alleviating these problems.

The Introduction is structured as follows: In Section 1.1 we describe
the main features of embedded real-time systems. The principal charac-
teristics that complicate the design and the analysis of such systems are
summarized in Section 1.2. Section 1.3 introduces the reader to system-
level performance evaluation, describes its role in the design flow, and
identifies its principal requirements. Finally, in Section 1.4 we give an
overview of the thesis contents, and summarize our contributions.

1.1 Embedded Real-Time Systems

Embedded systems are computer systems that are dedicated to particu-
lar applications and are part of a larger device, often including electri-
cal or mechanical parts. Examples of embedded systems are the hard-
ware/software systems that control cars, airplanes, medical equipment,
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industrial robots, telecommunication devices, appliances, or consumer
electronics. Nowadays, embedded processors account for by far the
largest share of produced CPUs. This is not surprising if one considers,
for instance, the rapidly increasing market for mobile electronic devices.

Embedded systems have several characteristics that distinguish them
from general purpose computer systems. First of all, they are tightly
coupled to the physical system they are embedded in, meaning that they
continuously interact with it and have to meet constraints imposed by
it. Note that in this aspect, there is a close relation between control sys-
tems and embedded systems: from a broad perspective, basically every
computer-based controller in a control loop can be seen as an embedded
system.

Another characteristic of embedded systems is that they are usually
not reprogrammable by the end user of the device that embodies them.
They are designed to perform just a few dedicated tasks that are known
at design time. Knowledge about the particular system environment is
often exploited for the design of optimized hardware/software solutions.

Moreover, in most of the cases embedded systems have to meet par-
ticular requirements in terms of energy, size, weight or cost. In many
application domains, they also have to be fully predictable and highly
dependable, as a malfunction or breakdown of the device they control is
not acceptable.

A particular class of embedded systems are real-time systems. These
are systems for which the execution has to meet timing constraints. For
instance, in many cases an embedded system has to react to a stimulus or
event emitted by the environment within a specified amount of time, also
denoted as deadline. Note that real-time processing does not necessarily
mean ’fast’ processing, but is a synonym for ’timely’ or ’predictable’
execution. Real-time systems for which a deadline violation cannot be
tolerated are often denoted as hard.

Finally, we would like to note that recently many authors prefer the
denomination cyber-physical system to embedded system. In particular, the
expression cyber-physical system is often used to refer to networks of in-
dividual components which interact with their physical environment.
Within the scope of this thesis, we do, however, not distinguish the two
terms. For the sake of consistency, we will stick to the classical denomi-
nation of embedded systems.

1.2 Sources of Complexity

In many cases, modern embedded computer architectures are highly com-
plex and consequently difficult to design and analyze. In the following we
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identify different factors that contribute to the complexity of embedded
hardware/software systems.

• Distributed Architectures

Requirements of the controlled device such as scalability, fault toler-
ance or parallel completion of different (real-time) tasks very often
lead to the design of distributed embedded systems. Furthermore,
also the constraints imposed by the physical environment often en-
force distributed solutions. A distributed system consists of a set
of processing elements that communicate over some network. The
distribution of the components considerably complicates the design
and the analysis of a system. For instance, communication delays
on shared busses are typically not negligible, and need to be consid-
ered in the timing analysis. Therefore, the analysis requires a holistic
approach that considers both computation and communication in a
distributed system.

• Heterogeneous Components

Another obstacle for the design and analysis of embedded systems
is the fact that they often consist of heterogeneous components. The
irregularity of the components very often derives from differing
functionalities, or from particular characteristics of the local envi-
ronments. For example, it is not unusual to find heterogeneous
processing elements such as DSPs, microcontrollers, and (multi-
core) CPUs in one and the same device. Similarly, the commu-
nication networks are often composed by multiple heterogeneous
sub-networks.

• Multitasking

Frequently, the individual processing components of an embed-
ded system execute multiple concurrent tasks. These processors
implement a scheduling policy that determines which task is to
be executed at which time. There are a variety of static and dy-
namic, preemptive and non-preemptive (real-time) scheduling poli-
cies. Depending on the particular scheduling policy and the activa-
tion pattern of the tasks, it is often not trivial to bound the timing
interference among concurrent tasks.

• Shared Resources

Not only processors but also several other hardware resources are
subject to contention in an embedded system. Examples are memo-
ries, communication channels, and I/O devices. Often the access to
shared resources has to occur in a mutually exclusive way. Hence,
while a task is granted access to a common resource, other tasks on
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other processing elements might experience blocking, that is, they
might be forced to wait before they gain access to the resource. Pre-
dicting the worst-case interference of tasks on each other is often
hard, as the individual processing components operate in parallel,
and usually take independent resource access decisions.

Note that all the concepts mentioned above can apply at different ab-
straction levels in the system architecture. For instance, the concept of
networked components may apply to physically separated processors,
but as well to Multiprocessor Systems-on-Chip (MPSoC). Similarly, con-
tention for shared resources such as memories or busses can be observed
on-chip as well as on a system-wide scale.

1.3 System-Level Performance Evaluation

Given the stringent requirements of many application domains, it be-
comes clear that evaluating the performance of an embedded system is
highly important in the design process. In particular, not only the func-
tional correctness of the computations performed by a system is relevant,
but also the performance of the system in terms of e.g. response times or
energy consumption needs to be ensured. Note that for embedded sys-
tems the distinction between functional (behavioural) and non-functional
(performance) requirements is blurry. For instance, in a real-time system,
a correct result arriving later (or even earlier) than specified can lead to a
system failure. Similarly, in a battery operated mobile device, excessive
energy consumption can compromise the required operation time of the
device and hence its functionality.

Different performance aspects can be relevant for an embedded hard-
ware/software system. The most common ones are:

• Timing properties (e.g. response times, end-to-end latencies)

• Memory requirements (e.g. buffer sizes)

• Energy consumption

The quantification of the system behaviour with respect to one or several
of such metrics is generally referred to as performance evaluation or
performance analysis.

The performance evaluation of embedded systems is essentially dif-
ferent from the performance evaluation of general-purpose computers.
In particular, due to the restrictive requirements of many application
domains (e.g. hard real-time constraints), the designers of embedded



1.3. System-Level Performance Evaluation 5

systems often can not rely on average or stochastic performance char-
acterizations of a system. Instead, safe bounds for the best-case and
worst-case performance of a system are required. This thesis focuses
on high-level techniques for reliable worst-case (best-case) performance
evaluation.

1.3.1 Role in the Design Flow

Performance evaluation at an early design stage, mainly at the system
level, is important for taking fundamental design decisions before re-
sources are invested in detailed implementations. In particular, the role
of performance evaluation in the design flow is twofold: On one hand,
it is employed as a validation or even certification instrument after the
system-level design is completed. On the other hand, it is used as a driver
for the design space exploration, as illustrated in Figure 1.

Fig. 1: Typical design space exploration cycle (Y-model)

The figure shows the so-called Y-model, which is largely employed for
design space exploration in hardware/software co-design. It represents
an iterative design flow with successive refinements. The design starts
from modelling the hardware platform (architecture) and the software
structure (application) separately. The next design step consist in deciding
the assignment of software tasks to processing resources (mapping) and
determining the precedence relations among tasks (scheduling). At this



6 Chapter 1. Introduction

point a complete system model is configured, and its performance can be
ascertained by an appropriate performance evaluation method. After the
analysis, the performance results are used to derive the next exploration
step in the design space. In particular, based on the obtained performance
metrics, the design choices in terms of architecture, application, as well
as mapping and scheduling are revised.

It becomes apparent that the system-level performance evaluation
plays a central role in the described design methodology. It guides the
designer to efficient solutions in a potentially huge design space, and thus
supports him in taking crucial design decisions early in the design flow.

Finally, we would like to note that, in general, not only the mentioned
performance metrics, but also other design characteristics such as soft-
ware code size, chip area, cost, etc. are considered in the exploration of
the design space. In the present thesis we will, however, focus solely on
the performance metrics listed above.

1.3.2 Requirements

There are several requirements that an ideal method for system-level
performance evaluation should fulfil. In the following, we specify a list
of requirements for performance evaluation methods adapted from [TW].

• Modelling Scope

The modelling capabilities of the evaluation technique should be
rich, meaning that the method should cover a broad domain of
systems. In particular, the evaluation technique should be able to
precisely model a large variety of processing and communication
components, scheduling policies, and arbitration protocols.

• Correctness

The results of the performance evaluation should be correct in the
sense that the determined performance bounds should be inviolable
by the modelled system. In other words, every behaviour that the
system may exhibit should be contained in the performance bounds
resulting from the analysis. Note that correct performance evalu-
ation methods are often also denoted as conservative or exhaustive
methods.

• Accuracy

The result of the performance evaluation should be accurate, mean-
ing that it should be as close as possible to the actual worst-case or
best-case performance of the system. In other words, pessimistic
analysis results should be avoided.
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• Fast Evaluation

The run-times of the evaluation tools should be short. In particular,
this is essential if the performance evaluation is used in a design
space exploration loop as described in Section 1.3.1.

• Scalability

A method for performance evaluation should not just be applica-
ble to small example systems, but should scale to large, industrial
embedded systems.

• Modularity

The evaluation method should be modular in the sense that the
designer can model and analyze a system by composing several
smaller, ideally pre-build system modules. The modularity is a key
requirement for an analysis method, as it enables the fast reconfigu-
ration and extension of existing models, as well as the incremental
design of systems.

Note that some of the listed requirements might be conflicting. For
instance, a more accurate technique for performance evaluation often
comes at the price of a slower analysis. Finally, we would like to point
out that the relevance of the individual requirements highly depends on
the particular application domain and design method.

1.3.3 Approaches

In this section we give a rough overview of approaches to system-level
performance evaluation of embedded systems, and describe the major
pros and cons of each methodology. For a detailed discussion of particular
techniques, we refer the reader to Chapter 2.

Most contemporary methods for performance evaluation fall in one
of the three main classes reported in Table 1. The first class is formed
by empirical evaluation techniques such as simulation, testing or mea-
surements (on prototypes or real systems). Simulation-based methods
are often characterized by rich modelling capabilities, meaning that they
can represent a broad domain of systems in large detail. However, as
common for empirical methods, they are typically not exhaustive. In
particular, every simulation run is of finite length and, hence, simulations
can reproduce only a finite set of system behaviours. This implies that, in
general, corner cases might be missed by a simulation. In terms of per-
formance evaluation, this means that simulation-based methods cannot
be employed to derive hard performance guarantees for a system, as the
delivered worst-case (best-case) performance bounds might be incorrect.
This is represented in Figure 2, which illustrates the typical distribution
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Tab. 1: Methodologies for performance evaluation

of bounds obtained with different techniques for a generic performance
metric.

Another category of methods for performance evaluation are analyt-
ical techniques. They are based on mathematical abstractions of system
behaviours and provide closed-form expressions to quantify the perfor-
mance of a system. Analytical approaches are often considerably faster
than simulation-based methods, but more importantly, they are provably
correct. For this reason, they can be used to safely bound the performance
of a system. However, analytical methods for performance evaluation of-
ten suffer from limited modelling scope because they rely on a restricted
set of component models and are limited to the analysis of specific per-
formance metrics. If the system to be analyzed does not closely fit this set
of models, it might still be possible to find a conservative approximation
of the system behaviour, but at the price of reduced analysis accuracy.
A second issue is that the mathematical abstractions employed by these
methods might themselves not be tight. In other words, even if a system
matches the modelling capabilities of an analysis method, the perfor-
mance bounds derived for it might still be overly conservative. These
two kinds of accuracy problems are commonly referred to as abstraction
loss of an analytical performance evaluation method. Figure 2 shows the
qualitative impact of the abstraction loss on the performance bounds.

The third family of approaches for performance evaluation are the
state-based verification methods. They mostly rely on techniques from
the domain of model checking. In particular, they offer some formal-
ism for specifying a model of a system, and employ a model checker
to automatically verify whether the model meets a given (performance)
property, typically specified as formula in (temporal) logic. Compared to
analytical approaches for performance evaluation, these methods have a
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Fig. 2: Typical performance bounds obtained with different evaluation methods
(adapted from [Wan06])

much larger modelling scope, as they can typically model arbitrary state-
dependent behaviour of system components. Moreover, they can guaran-
tee exact performance results, meaning that the results are not only correct
but also perfectly accurate (cf. Figure 2). Unfortunately, state-based verifi-
cation methods suffer from state-space explosion, a problem that severely
inhibits their practical application. More specifically, the state-transition
system that is derived from a high-level model grows very quickly with
the size of a model. The consequence is that for large-scale models, the
verification tools often exhibit prohibitively long verification times and/or
large memory requirements.

Finally, we would like to mention that not all existing techniques for
performance evaluation fit in one of the above classes. For instance, there
are also several stochastic approaches which we do not consider in the
scope of this thesis.

1.4 Thesis Overview and Contributions

This thesis focuses on analytical, modular methods for performance eval-
uation of distributed embedded systems. Its principal aim is to fight
the abstraction loss of these methods. In particular, our work improves
the application scope and the accuracy of a specific formalism for per-
formance evaluation, the framework for Modular Performance Analysis
(MPA) [TCN00, WTVL06]. Most of the abstractions and concepts in-
troduced in this thesis are, however, also applicable to other analytical
formalisms.
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In the following we summarize the contents and the individual con-
tributions of the five main chapters of the thesis.

Chapter 2: Formal Methods for Performance Evaluation

In Chapter 2, we provide a survey and general discussion of existing
formal methods for performance evaluation of distributed real-time sys-
tems. The survey is followed by an introduction of the framework for
Modular Performance Analysis, which forms the basis for the theoretical
contributions of this thesis.

The second part of Chapter 2 is devoted to the quantitative assessment
of different methods for performance evaluation. In particular, we repro-
duce and extend the results presented in [Per06], where we investigated
the influence of different abstractions on the accuracy of the performance
evaluation. The assessment is based on a set of benchmark systems that
are used to quantify the accuracy and the runtimes of various evaluation
tools. The comparison points out several pitfalls for analytical perfor-
mance evaluation which stimulated most of the research presented in this
thesis.

Chapter 3: Cyclic Dependencies

In Chapter 3 we approach a major obstacle for modular, analytical tech-
niques for performance evaluation, namely the analysis of models with
cyclically dependent components. In particular, we extend the modelling
scope of MPA to systems with non-functional cyclic dependencies by
showing that such systems can be safely analyzed by means of fixpoint
iteration. While this is a natural approach successfully used in many
other domains, in the context of MPA (and similar methods), it was un-
clear to what extent the resulting fixpoints are faithful to the performance
of the modelled systems. Moreover, it was not clear how to best choose
starting points for fixpoint iterations in MPA. We solve these problems
by providing the theoretical foundations for fixpoint iterations in MPA.
More specifically, Chapter 3 contains the following contributions:

• We develop a general operational semantics underlying the MPA
framework.

• On this basis, we prove central properties about the faithfulness of
fixpoint computations in MPA.
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Chapter 4: Structured Event Streams

In Chapter 4 we introduce models and methods that considerably reduce
the abstraction loss of MPA by extending its modelling scope to a highly
relevant design pattern: the merging and splitting of event streams in
stream-based distributed embedded systems, based on event type infor-
mation. This pattern applies, for instance, if data from different streams
is first combined, transmitted over a shared communication channel, and
then separated again. Our model is based on a novel characterization
of structured event streams which seamlessly integrates in the existing
framework for Modular Performance Analysis. In particular, the contri-
butions of Chapter 4 can be summarized as follows:

• We propose a new approach for analyzing the processing and com-
munication of merged event streams in distributed embedded sys-
tems. The approach is based on Event Count Curves, a model for
representing structures in event streams.

• We show how the FIFO component introduced in Chapter 2 can be
used to handle structured event streams.

• We evaluate the two proposed models and compare their perfor-
mance with existing techniques from related work. We also apply
the proposed techniques to a realistic application scenario.

Chapter 5: Hybrid Performance Evaluation

In Chapter 5 we introduce a novel hybrid methodology for the perfor-
mance evaluation of distributed real-time systems. The approach com-
bines analytical and state-based performance analysis. In the resulting
hybrid and modular framework, system components can be modelled by
either MPA or Timed Automata, a state-based formalism for the verifica-
tion of real-time systems. In this way, we can benefit from the advantages
of both domains: On one hand, we obtain considerably better modelling
capabilities and analysis accuracy compared to a pure MPA representation
of a system. On the other hand, we can avoid state space explosion by con-
straining the verification scope to the level of single system components.
The interfaces among components in the hybrid analysis methodology
rely on conversions of arrival curves (the event stream model adopted by
MPA) to networks of co-operating Timed Automata and vice versa. To
summarise, the following contributions are contained in Chapter 5:

• We describe a pattern allowing us to convert arrival curves (or other
common event stream models) to networks of co-operating Timed
Automata, and vice versa.
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• We prove the correctness and tightness of the proposed transforma-
tions, i.e., the Timed Automata generate all event traces and solely
the event traces complying with the arrival curves.

• We evaluate the accuracy and scalability of the proposed method-
ology.

Chapter 6: MPA for Energy-Efficient System Design

While the Chapters 2-5 focus mainly on the analysis of timing charac-
teristics of embedded systems, in Chapter 6 we approach the analysis
of another very important performance aspect: the worst-case energy
consumption of embedded systems. More specifically, we look at the
combined observance of real-time and energy constraints. We show how
Dynamic Voltage Scaling (DVS), a common technique for the reduction
of the energy consumption of a processor, can be seamlessly incorporated
in the framework of MPA, extending its application scope to the de-
sign of energy-efficient real-time systems. In particular, we consider two
different design problems: (1) The energy-efficient static assignment of
execution speeds and priorities to a set of event streams. (2) The energy-
efficient dynamic adjustment of the execution speed to process a single
event stream. The first method is based on the original MPA framework
for performance evaluation, whereas the second one builds on top of the
hybrid evaluation framework introduced in Chapter 5. Specifically, the
following contributions can be identified for Chapter 6:

• We devise algorithms to derive energy-efficient static priority and
speed assignments to multiple real-time tasks with arbitrary release
patterns.

• We present an adaptive scheme that dynamically adjusts the execu-
tion speed to process an arbitrary event stream. We show that the
scheme guarantees timing and speed constraints, and at the same
time ensures energy-efficient processing.

• We demonstrate the effectiveness of the presented methods by
means of experimental test cases.



2
Formal Methods for Performance

Evaluation

The performance evaluation is a central step in the design process of
an embedded system. Testing and measurements on prototypes or real
systems are largely applied to validate the performance of system imple-
mentations. However, a major drawback of these methods is that they
cannot be applied at early design stages, that is, when implementation
details of the system are not yet defined. Model-based techniques are an
alternative way to evaluate crucial (performance) characteristics of a sys-
tem early in the design flow. The principle of model-based engineering
is to construct simplified models of a system in order to reason about its
properties. The major challenge lies in constructing models which are
abstract enough to cope with missing implementation details, but never-
theless allow us to draw correct conclusions about the system. There is a
large body of work on model-based design and verification of embedded
systems. In the present chapter we first provide an overview of existing
formalisms, with a focus on abstraction methods for system-level perfor-
mance evaluation (Section 2.1). In Section 2.2 we detail the theoretical
foundations of the Modular Performance Analysis (MPA), the formalism
used as basis for the contributions of this thesis. Finally, in Section 2.3 we
reproduce and extend our work of [Per06], that quantitatively compares
several approaches to performance evaluation. The comparison identi-
fies various pitfalls for analytical performance evaluation, and forms the
basis for the extensions and improvements presented in the following
chapters.
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2.1 Overview of related work

There are several different basic principles for model-based performance
evaluation of embedded systems. An important distinction is drawn
between empirical and worst-case methods for performance evaluation.
The former class includes most simulation-based approaches, whereas
the latter contains exhaustive methods such as analytical or state-based
verification techniques. Besides these two classes there are also stochastic
methods for performance evaluation which we do not, however, consider
in this context.

The use of simulation to estimate the performance of system designs is
the current state-of-the-art in many application domains. There exist var-
ious simulation-based methods for different levels of abstraction. Com-
mercial tool suites for electronic system design offered by companies such
as Cadence, Synopsis, Mentor Graphics, or Magma offer a broad range of
simulation instruments from high-level discrete event simulators to cycle-
accurate software/hardware co-simulators. Apart from commercial de-
sign tools, there are also open-source simulation environments. Examples
are processor architecture simulators such as SimpleScalar [ALE02, Sim]
and PTLsim [You07, PTL], network simulators such as ns-2 [ns2], full
system simulators like OVPsim [Ovp], and system-level discrete event
simulators such as SystemC [Sys, GLMS02]. While most of these simula-
tors have a fairly broad application scope, there are also tools dedicated
to particular system types, e.g. the TrueTime simulator for networked
control systems [CHL+03, TT].

The main advantage of simulation-based methods for performance
evaluation is their large and extendable modelling scope. In other words,
they permit to represent a broad domain of systems with an almost arbi-
trary level of detail. Unfortunately, detailed system simulations are often
very time consuming, especially if high timing fidelity is required (e.g.
cycle-accurate simulators). The crucial drawback of simulation-based
approaches is that they are typically not exhaustive, that is, they cannot
guarantee full coverage of the system behaviour. Especially for large and
complex system architectures, it is often unfeasible to reveal performance
corner cases by means of simulation. The consequence is that simulators
cannot be employed to provide guarantees on the best-case/worst-case
performance of embedded systems, as required by several application
domains (e.g. hard real-time systems).

The need for reliable and provably correct performance bounds for
complex embedded systems has driven research for many years. The
result are several analytic and state-based formal methods for worst-case
performance evaluation, which are discussed in the remainder of this
section.
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Various analytical methods for timing/performance evaluation have
been introduced for different abstraction levels in the design flow. At the
process level, designers of hard real-time systems are typically interested
in determining the worst-case execution time (WCET) of programs. The
complexity of this task depends largely on the architecture of the un-
derlying processor, as components such as caches, pipelines, or branch
predictors complicate the analysis. Analytical methods for WCET analy-
sis have been proposed in [LM95], [Wil] amongst others. For an extensive
overview of methods and tools we refer the reader to [WEE+08].

At the system level, designers have to guarantee the performance of
multiple real-time tasks that are executed on a single processor or on a
distributed system. The analysis of the worst-case completion times of
concurrent tasks on a single processor is commonly denoted as scheduling
analysis. This field has been extensively studied over the past 35 years and
there is a large body of results for different task scheduling policies such
as Rate Monotonic Scheduling (RM) [LL73], Fixed Priority Scheduling
(FP) [JP86, TBW94], Earliest Deadline First Scheduling (EDF) [LL73], or
Round Robin Scheduling (RR) [RKZ95, RLH+07]. There also exist many
extensions for the various scheduling algorithms, e.g. for the considera-
tion of offsets [PG98], mutually exclusive shared resources [BA06], task
re-executions [LB03], and limited priority levels [BYJ03]. Detailed infor-
mation about the various algorithms can be found in [But97], as well as
in other books on the topic. In recent years, the attention of the real-time
scheduling community has shifted mostly to multiprocessor platforms,
e.g. [GFB03, BBMS10].

The analytic performance evaluation of distributed embedded systems
has also been investigated. The major intricacies with respect to the single
processor case are concurrent task executions, heterogeneous resources
as well as communication delays on shared communication devices. Sev-
eral methods have been proposed so far for the worst-case analysis of
distributed real-time systems. The methods are based on essentially dif-
ferent abstractions. The first idea was to extend results of the classical
scheduling theory to the distributed case. The resulting combined analy-
sis of processor and bus scheduling is often referred to as holistic scheduling
analysis. Rather than a single evaluation method, holistic scheduling de-
notes a collection of techniques for the analysis of distributed systems,
each of which is tailored for a specific combination of processor schedul-
ing and communication arbitration. The first work in this direction is
by Tindell and Clark. In [TC94] they combine FP preemptive scheduling
on the processors of a distributed system with TDMA scheduling on the
interconnecting bus. In [PEP02] Pop, Eles and Peng analyze mixed event-
triggered and time-triggered task sets that communicate over protocols
with both static and dynamic phases such as FlexRay. Holistic scheduling
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under the presence of data or control dependencies has been studied in
[YW95] and [PEP00], respectively. Other holistic analysis techniques can
be found in the literature, e.g. [PG03]. The major drawback of holistic
analysis methods is their poor flexibility. While they produce accurate re-
sults for a particular system architecture, they are typically not applicable
to other system configurations. Hence, their modelling scope is strongly
limited. This implies that for every new system configuration a new holis-
tic analysis method would have to be developed, which is obviously a
very difficult task. Another important issue for holistic techniques is scal-
ability. This is because the complexity of the monolithic models obviously
increases with the size of the represented system. The heterogeneous set
of available techniques also makes it difficult to apply holistic scheduling
in practice. This latter problem was, however, alleviated by González
Harbour et al. with the release of the MAST tool [GGPD01], which en-
hances, implements and aggregates several holistic analysis algorithms.

Compositional or modular analysis methods such as
SymTA/S [HHJ+05] and Modular Performance Analysis (MPA) [CKT03]
form a more flexible and scalable alternative to analytically bound the
worst-case performance of distributed systems. These methods make use
of a modular system abstraction in which every hardware/software unit
of the system is modelled by an individual abstract component. These
abstract components represent single computation or communication
tasks of the system. Typically, it is assumed that each task is triggered
by the arrival of an input event, and that it produces an output event
after its execution is completed. The dataflow among components is
then abstracted by means of event streams (timed sequences of events).
The basic concept of compositional performance analysis methods is to
evaluate the system component-wise by forwarding the output streams
of an individual component to other dependent components. System
performance metrics such as end-to-end delays of events are then derived
by aggregating the results of individual component analyses.

The SymTA/S analysis approach was introduced by Richter, Jersak
and Ernst [RJE03, Ric05, Jer05]. The general idea of the methodology
is to reuse algorithms from classical scheduling analysis (or extensions
thereof) at the component level, and to propagate local analysis results
to other components through appropriate interfaces. These steps are
repeated until all components in the model are analyzed. In the case
of cyclic dependencies among components, fixpoint iteration is applied.
Details on the generation of starting points and on the convergence of the
SymTA/S analysis in the presence of cyclic dependencies can be found
in [Ric05] and [SDI+08], respectively. For the local performance analy-
sis of components, e.g. for determining the worst-case response time to
input events, SymTA/S uses formal analysis methods based on the busy
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window technique proposed by Lehoczky [Leh90]. SymTA/S offers local
analysis techniques for FP scheduling (preemptive and non-preemptive),
Round Robin, TDMA, EDF, CAN, and several arbitration schemes used
in the automotive domain. The key element of the SymTA/S analysis
methodology is the use of event models to represent the dataflow among
components. An event model is an abstract representation for the timing
of event arrivals in a stream. Since most algorithms of classical schedul-
ing analysis assume simple patterns for the arrival of input events (e.g.
periodic events, periodic events with jitter), in the original SymTA/S ap-
proach [HHJ+05], the interface among components is limited to a small
set of simple event models. These are commonly denoted as Standard
Event Models (SEM) or Periodic with Jitter (PJD) models. To guarantee
that the output event model of a component fits the input event model
expected by the following component, the SymTA/S method applies ap-
propriate Event Model Interfaces (EMIF) or Event Adaption Functions
(EAF). While the restriction to SEMs enables the reuse of previous results
of real-time research, and simplifies the calculation of output event mod-
els, it has the drawback of limited analysis accuracy. This is because, on
the one hand, complex timing behaviours of general event streams cannot
be captured by SEMs and, on the other hand, event model conversions
may be lossy. Recently, the restriction of SymTA/S to SEMs was relaxed
by Schliecker et al., who extended the methodology to arbitrarily shaped
event models [SRIE08]. In particular, the authors of [SRIE08] introduce
the multiple event busy time model which they use to characterize the
outputs of arbitrarily triggered components under FP scheduling. Many
other extensions and ameliorations have been presented for the SymTA/S
analysis method. Examples are the consideration of correlations among
events (context-based analysis) [JHE04, HE05], pipelined delay analy-
sis [SE09], analysis of MPSoC architectures with shared memory [NSE09],
analysis of hierarchical communication [RE08], as well as SymTA/S-based
sensitivity analysis [Rac09] and robustness optimization [Ham08]. The
rich set of available extensions as well as the development of a commer-
cial tool [Sym] make SymTA/S a very powerful framework for worst-case
system-level performance evaluation. Nonetheless, the method has some
inherent limitations. First, it is based on existing algorithms of scheduling
analysis which means that for any new scheduling policy a new, dedicated
analysis needs to be conceived. Moreover, the method is not modular in
terms of processing or communication resources. For instance, it does not
support the modelling of hierarchical scheduling policies.

A different approach to compositional performance analysis that does
not rely on classical scheduling theory is the Modular Performance Analy-
sis (MPA) which was introduced by Thiele et al. in [TCN00]. The method
uses the Real-Time Calculus (RTC), a formalism that has its roots in Net-
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work Calculus [LT01], to analyze the flow of event and resource streams
through a network of computation and communication components. The
MPA framework is discussed in detail in Section 2.2.

Apart from analytical methods for performance evaluation, one can
also apply general state-based verification techniques to characterize the
worst-case performance of a system. The state-based formal verification
of systems has been investigated extensively over the past 30 years. The
task of automatically verifying whether a state-based model of a system
meets a given specification, typically given as formula in temporal logic,
is commonly denoted as model checking. Since the pioneering work of
Clarke, Emerson and Sifakis [CES86, QS82], various techniques for model
checking have been proposed and implemented in verification tools, e.g.
[Spi, NuS]. For details on model checking and an overview of existing
techniques we refer the reader to [BK08, CGP99]. For the domain of real-
time systems, the automatic verification of hybrid models is particularly
interesting. Hybrid models are state-based representations of systems
that combine discrete system properties with continuous quantities such
as time. A prominent example are Timed Automata (TA) [AD94]; similar
formalisms can be found in [Hen96, GMM90]. Two examples of corre-
sponding model checking tools are Uppaal [BLL+] and Kronos [BDM+].
While none of the mentioned state-based verification techniques is par-
ticularly conceived for performance evaluation, there has been work on
applying them for this purpose. For instance, TA modelling techniques
have been applied for monoprocessor scheduling analysis, see [FPY02],
and the corresponding tool Times [AFM+]. In [NM09, Ch.4] Larsen et al.
provide a framework based on Uppaal for the analysis of multiproces-
sor scheduling scenarios which also considers timing uncertainties and
task dependencies. An alternative framework for scheduling analysis
of MPSoC systems has been proposed by Brekling, Madsen et al., see
[BHM08] and [NM09, Ch.5]. As last example, we mention the approach
for worst-case performance evaluation of distributed systems presented
by Hendriks and Verhoef [HV06] which relies on customized TA repre-
sentations of Standard Event Models.

State-based performance verification methods have two advantages
with respect to analytical approaches. They typically offer a larger mod-
elling scope, as arbitrary finite-state models can be used to represent the
system behaviour. Moreover, they can derive exact performance bounds
for the modelled system, as there is no inherent abstraction loss for these
methods. In other words, state-based approaches for performance veri-
fication are typically more accurate than analytical ones. However, the
detailed modelling capabilities do not come for free: the verification of
state-based models is seriously affected by state-space explosion. This fact
often forecloses the application of state-based methods to large, realistic
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systems.
There are also hybrid approaches for system-level performance evalu-

ation which integrate different paradigms. For instance, in [LRD04] Lahiri
et al. present a method that combines simulation for parameter estimation
with analytical system evaluation. The main advantage of this method are
faster system evaluations with respect to a purely simulative approach.
Similar hybrid methods can be found in [KPBT06, BPN+04, HKH+09] and
in [NM09, Ch.4]. In Chapter 5 of this thesis, we will discuss a hybrid tech-
nique for worst-case performance evaluation that combines MPA and TA,
that is, an analytical and a state-based technique.

Finally, we would like to mention languages or frameworks for
the compositional design of heterogeneous real-time systems such
as BIP [Bip], Ptolemy II [Pto], Metropolis [Met], POOSL [Poo], or
Moses [Mos]. They not only offer useful features such as deadlock anal-
ysis, correctness by construction, or automatic code generation but also
support the simulation and, in some cases, the formal verification of the
modelled systems. Hence, they can also be employed for system-level
performance evaluation.

2.2 Modular Performance Analysis

In this section, we introduce the framework for Modular Performance
Analysis (MPA) which forms the basis for the contributions of this thesis.
MPA is an analytical method for worst-case performance evaluation of
distributed systems. In contrast to SymTA/S, its origins do not come from
classical real-time scheduling, but from network performance analysis.
The MPA formalism provides an elegant way of capturing the workload
imposed on a system by concurring applications, as well as the service
offered by the system architecture. A key feature of MPA is modularity;
MPA represents each hardware/software unit of a system by an individual
abstract component. This considerably eases the analysis of large and
heterogeneous distributed systems. In MPA, abstract components are
combined to form a performance model (or MPA model) of a system. An
MPA model is used to derive performance metrics like worst-case end-
to-end delays or buffer fill levels. What distinguishes MPA from other
analysis methods is that it explicitly characterizes the service, i.e. the
processing or communication resources, which are available to individual
components. This not only permits systems designers to model complex
resource availability patterns, but also strengthens the compositionality
of the approach in terms of resource sharing schemes.

In the following, we first illustrate the general concepts of the modular
system abstraction employed in MPA (Section 2.2.1). Then, we briefly de-
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scribe a simple formalism for characterizing the performance of a system
in the time domain (Section 2.2.2). As we will explain, this formalism
in the concrete time domain is of limited practical use for the worst-case
performance evaluation of systems. However, it serves as basis for the
introduction of the Real-Time Calculus (Section 2.2.3), the interval-based
formalism commonly used within MPA for worst-case performance eval-
uation.

2.2.1 A general performance model

We will illustrate the general modelling approach of MPA by means of a
simple example. Consider the system design shown in Figure 3. The sys-
tem consists of a distributed architecture that processes two concurrent
data streams. The data streams consist of data tokens that are generated
by the data sources I1 and I2. Both data streams are first processed by ded-
icated tasks on CPU1, then transmitted over a bus, and finally processed
further by the tasks of CPU2. The processed data tokens are collected by
the sinks O1 and O2. In the considered system, each processing or com-
munication unit, i.e. each task on a CPU and each channel on the bus,
has a dedicated input buffer which temporarily stores data tokens if the
corresponding unit is already busy. We assume that a preemptive fixed
priority scheduler is adopted on CPU1 and CPU2 to execute the respective
tasks. In particular, we let task T1 have priority over task T2, and task
T3 have priority over task T4. For the communication bus, we suppose
that a TDMA arbitration scheme is employed to schedule channels C1
and C2. We assume that the data generation patterns of the data sources
are known, as well as the worst-case execution (transmission) times of
tasks (channels). The goal of the analysis is to safely bound performance
characteristics of the system such as the maximum end-to-end delays of
data tokens, or the maximum buffer fill levels.

CPU 1

I1

I2

C1

BUS

C2

T3

CPU 2

T4 O2

T1

T2

O1

Fig. 3: Architecture of example system

Figure 4 shows the MPA model for the described system. MPA adopts
component networks as a basic model of computation. Each compo-
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nent represents an individual processing or communication unit of the
modelled system. The components communicate via event passing. In
particular, the communication is based on infinite FIFO (first-in first-out)
event buffers among the components.1 The components are triggered by
input events which represent incoming data tokens that need to be pro-
cessed. Outgoing data tokens are modelled by means of output events.
These events form event streams, that is, potentially infinite sequences
of timed events. The abstraction of event streams is used in MPA (and
other modular formalisms such as SymTA/S) to represent the dataflow in
a distributed system. In Figure 4, the event streams are represented by
horizontal arrows.

Fig. 4: General MPA model of example system

The MPA formalism also explicitly quantifies the service that is avail-
able to individual components in terms of processing or communication
resources. This is done by means of resource streams. In particular, an
input resource stream is used to represent the availability of a resource
to a component over time. Similarly, an output resource stream models
the resources that are left over by a component. In Figure 4, the resource
streams are represented by vertical arrows. Note that scheduling poli-
cies for shared resources are typically modelled by the way the resource
streams are propagated. For instance, to represent the fixed priority
scheduling policy adopted on CPU1 for the tasks T1 and T2, we connect
the resource output of T1 with the resource input of T2. In other words, T2
gets only the processing service left over by T1. An important difference
between event and resource streams is that the service cannot be buffered.
In other words, resources that are not immediately used by a component
are wasted.

1For the sake of simplicity, these event buffers are not shown in Figure 4 and in all
the other MPA models represented in this thesis.
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To summarise, in the abstract view of MPA, distributed systems are
networks of components that manipulate event and resource streams.
More precisely, the individual components model the interplay over time
between demanded and available system resources. Hence, the perfor-
mance model is well suited to derive local and system-wide performance
metrics such as latencies or buffer demands.

Next to the general view of performance models in MPA, we obviously
also need a (mathematical) formalism that specifies the following points:

• How event and resource streams are represented

• What the transfer functions of different components are

• How performance metrics (e.g. end-to-end delays) are computed

These points will be addressed in Sections 2.2.2 and 2.2.3, where we
present two different but closely related alternatives for performance
analysis within MPA.

2.2.2 Performance characterization in the time domain

The most natural way to derive the performance of a component network
in MPA is to specify the involved streams as well as the transfer functions
of the various components in the time domain. In the following, we
introduce a simple formalism that allows us to do so.

2.2.2.1 Arrival and service functions

An event trace is, in essence, a timed sequence of event arrivals. More
precisely,

• a timed event is a pair (e, t) where e is some event and t ∈ R an
associated time stamp;

• an event trace (or concrete event stream) is an (infinite) sequence
(e, t1); (e, t2); . . . of timed events which are ordered by non-decreasing
time stamps, i.e., ti ≤ ti+1 for i ≥ 1.

In the following, we use the notion of arrival function to characterize
event traces.

Def. 1: (Arrival Function) An arrival function r : R × R 7→ R≥0 unambiguously
represents an event trace, where r(s, t) for s < t denotes the number of events that
arrive in the time interval [s, t), with r(s, s) := 0.



2.2. Modular Performance Analysis 23

In simpler words, the arrival function r ’counts’ the number of event ar-
rivals in a given time interval.2 Note that the definition of arrival function
is not necessarily bound to the above concept of event trace: For a given
time interval, an arrival function can also quantify the demanded pro-
cessing cycles, the bytes to transmit, or any other discrete or continuous
workload unit.

For interpretation, it is often useful to consider the following property
which holds for any arrival function as defined above:

r(s, t) = r(a, t) − r(a, s) ∀a ≤ s ≤ t (2.1)

For instance, if only the positive time axis is considered for the arrival of
events, one may choose a = 0 in Equation (2.1).

As mentioned above, components typically need resources in order to
perform the requested operation. We describe the availability of resources
by means of service functions.

Def. 2: (Service Function) A service function c : R × R 7→ R≥0 unambiguously
represents a concrete resource stream, where c(s, t) for s < t denotes the number
of resource units that are available in the time interval [s, t) with c(s, s) := 0.

Again, we allow a liberal definition of resource units here. The amount of
available resources can be specified in resource token, processing cycles,
bytes, or any other discrete or continuous quantity.

2.2.2.2 Component models

The basic building blocks of performance models are performance compo-
nents. Performance components can be basically seen as deterministic
transducers of concrete event and resource streams. More precisely, a
general performance component ϕ receives an input event trace r, and an
input resource stream c, and it produces an output event trace r′, and an
output resource stream c′. This view is illustrated in Figure 5(a). In the
figure, we useϕ to denote the behaviour of the component. ϕ is a transfer
function from input to output, i.e., (r′, c′) = ϕ(r, c). The function ϕ reflects
the particular processing semantics of the component. For now, we con-
sider only performance components with a single event input port and
a single event output port. However, MPA also supports performance
components with multiple event input/output ports (cf. Section 2.2.3).

2For easier readability, in this thesis we use the letter r to denote both, an event trace
and the corresponding arrival function; it is clear from the context to which of the two
we refer.
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Fig. 5: Performance components

Various components with different behaviours comply with the above
general description. One particular performance component which rep-
resents the behaviour of many hardware or software units is the Greedy
Processing Component (GPC). It models a task that is triggered by the events
of the incoming event stream which queue up in a FIFO buffer. The task
processes the events in a greedy fashion while being restricted by the
availability of resources. In other words, the task processes an event as
soon as it receives resources to do so. The graphical representation of a
GPC is shown Figure 5(b). Note that often we also denote GPCs with the
name of the task they model (cf. Figure 4).

Thm. 1: (Transfer function GPC) A GPC component has the input/output relations

r′(s, t) = inf
s≤λ≤t
{r(s, λ) + c(λ, t) + b(s), c(s, t) } (2.2)

c′(s, t) = c(s, t) − r′(s, t) (2.3)

where b(s) denotes the initial fill level of the event input buffer.

Proof. In any time interval, the output of the component is restricted
by the available resources. Hence, we have r′(s, t) ≤ c(s, t) and also
r′(s, t) ≤ r′(s, λ) + c(λ, t). But at the same time, in any time interval the
component cannot output more events than those available at the input.
Thus, we have r′(s, λ) ≤ r(s, λ) + b(s). If we combine these constraints,
we obtain r′(s, t) ≤ min{r(s, λ) + c(λ, t) + b(s), c(s, t)}. Let us now assume
that there is some last time λ∗ < t when the input buffer was empty. This
implies that all events that arrived up to λ∗ are processed by that time,
i.e. r′(s, λ∗) = r(s, λ∗) + b(s). In the interval (λ∗, t) the input buffer is never
empty, which means that all available resources are being used to pro-
duce output events, i.e. r′(s, t) = r(s, λ∗) + b(s) + c(λ∗, t). In the case that
the buffer is never empty, we simply have r′(s, t) = c(s, t). As a result,
we obtain the transfer function (2.2). On the other hand, relation (2.3) is
obvious: the component cannot buffer resources over time. Hence, in any
time interval, the remaining resources are simply given by the available
resources minus the consumed resources.
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An important prerequisite for the above relations is that the workload
r and the service c are specified in the same unit. Let us, for instance,
assume that r counts the number of arriving input events, but c quantifies
the available service in processing cycles. In this case, the mismatch can
be resolved by determining the resource demand of each input event
in terms of processing cycles, i.e. by converting r to a resource-based
representation. In the simplest case, each input event imposes the same
workload on the component. Then, the conversion boils down to a simple
scaling of the arrival function r (see the Scaler component below).

Besides performance components which specify the interplay of event
and resource streams, a performance model can also contain simpler
components that do not interact with resources. The following list briefly
describes a few such elementary components. The corresponding graphical
representations are shown in Figure 6.

• A scaler component is used for converting workload representations
(e.g. from events to processor cycles). Its transfer function is given
by

r′(s, t) = w · r(s, t), (2.4)

where w is a positive scaling factor.

• An OR component produces an output event for every input event.
The transfer function is

r′(s, t) = r1(s, t) + r2(s, t). (2.5)

• An AND component produces an output event only if there is an
input event on all inputs. For two input event streams r1, r2 the
transfer function of the AND component is

r′(s, t) = min{b1(s) + r1(s, t), b2(s) + r2(s, t)}, (2.6)

where b1(s) and b2(s) denote the fill levels of the two input buffers at
time s.

c

w
r

r′

(a) Scaler

+

r1

r2

r′

(b) OR

∧

r1

r2

r′

(c) AND

Fig. 6: Elementary components

We assume that all elementary operations are immediate. In other words,
elementary components do not introduce any delay.
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2.2.2.3 Performance Analysis

What remains to be specified is how performance characteristics of a
system are derived from the performance model. For a GPC component,
we can use the following equation to quantify the fill level b of the input
buffer at time t, provided that we know the fill level b at initial time s:

b(t) = b(s) + r(s, t) − r′(s, t) (2.7)

Similarly, we can quantify the delay that an event experiences at a GPC.
In particular, the delay d experienced by the last event arriving in the
interval [s, t) is given by:

d = inf{ τ ≥ 0 : b(s) + r(s, t) ≤ r′(s, t + τ) } (2.8)

Once the performance of each individual component of a model has
been computed, we can derive system-wide performance metrics by ag-
gregating the individual results. For instance, the end-to-end delay ex-
perienced by a particular event is simply given by the sum of the delays
experienced at the individual performance components that the event
traverses.

2.2.2.4 Limitation

Let us now focus on a major limitation of the formalism as presented so
far. The fundamental problem of the representation in the time domain is
that it works for concrete instances of event and resource streams only. In
other words, the formalism supposes that the system designer has full, a
priori knowledge of the input streams, and that the timing behaviour of
all streams in the system is totally deterministic. Unfortunately, this is not
the case in real systems where event streams and resource availabilities
exhibit large variability in their timing behaviour. For instance, tasks in
embedded systems are very often triggered by the physical environment
which can, in general, not be predicted accurately. The situation is fur-
ther aggravated by complex processing or communication components
with variable execution times. And finally, the components of distributed
embedded systems are often only loosely coupled, which leads to com-
plex interference patterns on shared resources. In a nutshell, real systems
present a substantial degree of timing non-determinism (at least from a
system-level perspective). For such systems, a worst-case performance
evaluation must guarantee to cover all possible system behaviours. The
discussed formalism can, however, only evaluate particular system exe-
cutions. In fact, it is equivalent to a system simulation, and hence not
adequate for deriving worst-case performance bounds for systems with
non-deterministic streams.
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2.2.3 Real-Time Calculus

In this section, we discuss the Real-Time Calculus (RTC), a formalism
conceived for worst-case performance evaluation within MPA. It was in-
troduced by Thiele et al. in [TCN00, CKT03], and has its roots in Network
Calculus [LT01, Cha00], a deterministic queuing theory for worst-case
characterization of communication networks. RTC does not operate in
the time domain, but in the interval domain. More specifically, it uses
abstract event and resource streams, an interval-based representation that
efficiently captures the variability of arrival and service patterns. To rep-
resent the processing and communication units of a system, it employs
abstract performance components which operate on abstract streams. By
doing so, RTC provides a means to capture all possible behaviours of the
modelled system. Hence, embedded in the MPA framework, RTC is a
suitable formalism for worst-case performance evaluation of distributed
systems. In the remainder of this section, we introduce the basic theoret-
ical notions of RTC.

2.2.3.1 Event stream model

RTC abstracts from particular event traces. It uses abstract event streams
to specify all event traces that can appear in a stream. An abstract event
stream simply represents a set of event traces. In RTC, abstract event
streams are specified by a tuple of arrival curves α(∆) := [αu(∆), αl(∆)]
where αu(∆) denotes the upper arrival curve and αl(∆) the lower arrival
curve of the stream.

Def. 3: (Arrival curves) Let r(s, t) be the arrival function of any event trace belonging
to an abstract event stream. Then, r, αu, αl are related to each other by the
inequality

αl(t − s) ≤ r(s, t) ≤ αu(t − s) ∀s ≤ t (2.9)

with αl(0) = αu(0) = 0. If the above inequality holds for an event trace r, we say
that r conforms to α, denoted as r |= α.

Informally, an upper arrival curve αu(∆) specifies the maximum number
of events that can appear in the stream in any time interval of length ∆.3

Similarly, a lower arrival curve αl(∆) specifies the minimum number of
events for any time interval of length ∆. Both upper and lower arrival
curves are monotonically increasing functions. An example of a tuple of
arrival curves that models an abstract event stream is shown in Figure 7.

3Note that, depending on the definition of the arrival function r, the number of events
may refer to a discrete or continuous quantity of workload units.
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Fig. 7: Tuple of arrival curves (example)

Def. 4: (Set of conforming event traces) Let α be a tuple of arrival curves as defined
above. The set of all event traces that conform to α is defined by

Rα := {r ∈ R : r |= α}, (2.10)

where R denotes the set of all event traces.

The conformance of an event trace r to an upper (lower) arrival curve αu

(αl), as well as the sets Rαu , Rαl are defined accordingly. For a particular
event trace specified by an arrival function r(s, t), the tightest arrival curves
αu

r , αl
r that model the trace are given by:

αu
r (∆) = sup

s∈R

r(s, s + ∆) ∀∆ ≥ 0 (2.11)

αl
r(∆) = inf

s∈R
r(s, s + ∆) ∀∆ ≥ 0 (2.12)

The abstraction of arrival curves is very general, as any abstract event
stream can be represented by an appropriate tuple [αu(∆), αl(∆)]. Arrival
curves generalize classical event stream models such as sporadic events,
periodic events, periodic events with jitter etc. In particular, arrival curves
are more expressive than the PJD model, an event stream model commonly
used in the literature (also denoted as Standard Event Model in the context
of SymTA/S). A PJD model is specified by three parameters: p, j and d.
It represents an event stream in which events arrive periodically with
period p, but may have a jitter of up to j time units around the ideal peri-
odic arrival time. The parameter d specifies the minimum time between
consecutive event arrivals. Figure 8(a) shows an example of an event
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trace conforming to a PJD model with j < p and d = 0. The shaded boxes
indicate the admissible arrival times of events in the stream (one event
for each box). The arrival curves that bound all the event traces of the
corresponding abstract event stream are represented in Figure 8(b). Note
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(a) Example event trace
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(b) Arrival curves of event model

Fig. 8: PJD event model with period p, jitter j < p, and minimum event distance d = 0.

that if j ≥ p, the jitter boxes overlap. In this case, the stream can contain
bursts of event arrivals, i.e., multiple event arrivals at short distance (or
even at the same time, depending on the value of d).

The derivation of the arrival curves corresponding to a PJD event
model is straightforward:

αu(∆) = min
{ ⌈

∆ + j

p

⌉

,
⌈

∆

d

⌉

}

∀∆ ≥ 0 (2.13)

αl(∆) = max
{

0,
⌊

∆ − j

p

⌋ }

∀∆ ≥ 0 (2.14)

On the other hand, a general tuple of arrival curves can typically not be
expressed precisely as PJD model. While it is always possible to find
a PJD model which conservatively approximates the arrival curves (see
[KHET07]), this often leads to less accurate performance results.

We would like to highlight that arrival curves are not necessarily
bound to the concept of event traces. Depending on the interpretation
of the corresponding arrival function, arrival curves can bound any con-
venient workload unit in a time interval, e.g., number of demanded pro-
cessing cycles, number of bytes to transmit, and even continuous arrivals
of infinitesimally small workload units. When applying the RTC for-
malism, it is often necessary to convert workload representations among
each other, e.g., transform an event-based arrival curve to a resource-
based representation, or vice versa. If each event of a stream imposes
the same workload on the corresponding component, this can again be
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done by simply scaling the arrival curves by an appropriate constant
factor (see Scaler component below). If the imposed workload is not
homogenous (because of, e.g., different payloads, caching effects), more
advanced workload conversion techniques can be applied, see [Wan06,
Ch.4] and [Mak06]. In this thesis we assume that all workload conver-
sions are implicit, that is, they are performed whenever needed, but are
not shown in the MPA models. In particular, we will use the letter α
to denote both event-based and resource-based arrival curves. Only in
situations where we want to explicitly distinguish the representations, we
will denote event-based arrival curves with ᾱ and resource-based arrival
curves with α.

For the sake of readability, we will also often omit the word ’abstract’
when referring to abstract event streams. This means that the term event
stream will generally stand for a set of possible event traces. In order to
avoid confusion, concrete event streams will always be denoted as event
traces or simply traces.

2.2.3.2 Resource model

Similarly to abstract event streams, RTC employs abstract resource streams
to characterize all possible availability patterns of a processing or commu-
nication resource. An abstract resource stream is specified by a tuple of
service curves β(∆) := [βu(∆), βl(∆)] where βu(∆) denotes the upper service
curve and βl(∆) the lower service curve of the stream.

Def. 5: (Service curves) Let c(s, t) be the service function of any concrete resource
availability pattern belonging to an abstract resource stream. Then, c, βu, βl are
related to each other by the inequality

βl(t − s) ≤ c(s, t) ≤ βu(t − s) ∀s ≤ t (2.15)

with betal(0) = βu(0) = 0. If the above inequality holds for a concrete resource
availability pattern c, we say that c conforms to β, denoted as c |= β.

Informally, an upper service curveβu(∆) specifies the maximum amount of
resource units that are available in any time interval of length∆. Similarly,
a lower service curve βl(∆) specifies the minimum amount of resource
units for any time interval of length ∆. Both upper and lower service
curves are monotonically increasing functions. An example of a tuple
of service curves that models an abstract resource stream is shown in
Figure 9.

Def. 6: (Set of conforming resource patterns) Let β be a tuple of service curves as
defined above. The set of all resource patterns that conform to β is defined by

Cβ := {c ∈ C : c |= β}, (2.16)
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Fig. 9: Service curves (example)

where C denotes the set of all resource patterns.

The conformance of a resource pattern c to an upper (lower) service curve
βu (βl), as well as the sets Cβu , Cβl are defined accordingly. For a particular
resource pattern specified by a service function c(s, t), the tightest service
curves βu

c , βl
c that model the pattern are given by:

βu
c (∆) = sup

s∈R

c(s, s + ∆) ∀∆ ≥ 0 (2.17)

βl
c(∆) = inf

s∈R
c(s, s + ∆) ∀∆ ≥ 0 (2.18)

Similarly as for event streams, we will often omit the word ’abstract’
when referring to abstract resource streams. This means that the term
resource stream will generally denote a set of concrete resource availabil-
ity patterns. Moreover, we will use the term RTC curves if we want to
generally refer to both, arrival and service curves.

2.2.3.3 Obtaining arrival and service curves

To guarantee the correctness of a performance model, we must ensure
that the employed arrival and service curves are exhaustive with respect
to system behaviour. Especially when modelling systems with stringent
performance requirements (e.g. hard real-time systems), it is essential to
cover all concrete instances of event and resource streams observable in
the real system. There are several ways to determine correct arrival and
service curves for the inputs of a system. One approach is to construct
the curves based on some (formal) specification of the corresponding
subsystem. For instance, a data sheet could be consulted to derive bounds
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on the behaviour of some hardware component (e.g. maximum sampling
rate of a sensor). Similarly, a description of the physical environment
might yield constraints on the workload imposed on the system. A second
alternative is to profile a set of representative input event traces or resource
patterns, that is, find a (minimal) set of traces such that no other trace of
the stream can be ’better’ or ’worse’. To identify such representative traces
in a stream is, however, often difficult. In the context of this work, we
assume that the input arrival and service curves are given, and that their
correctness has been verified a priori.

2.2.3.4 Abstract component models

RTC employs abstract performance components to model the individual
hardware/software units of a system. They operate on abstract event
and resource streams, and can be seen as a generalization of the concrete
performance components discussed in Section 2.2.2. Figure 10(a) repre-
sents a general abstract performance component. The component receives
an abstract event stream and an abstract resource stream as input. These
streams are specified by a tuple of arrival curves α = [αu, αl] and a tuple of
service curves β = [βu, βl], respectively. They represent the variability of
the ingoing workload and the available resources. At its output ports, the
abstract performance component again produces an abstract event stream
and an abstract resource stream. These streams are described by the tuple
α′ = [α′u, α′l] and the tuple β′ = [β′u, β′l], respectively. They model the
variability of the outgoing workload and the remaining resources. The
behaviour of an abstract performance component is characterized by a
transfer function (α′, β′) = Φ(α, β). The function Φ reflects the particu-
lar processing semantics of the modelled component, and is different for
different types of components.

Φ
α α′

β

β′

(a) A general abstract performance
component

GPC
α α′

β

β′

(b) Abstract Greedy Processing Component

Fig. 10: Abstract performance components

We can now define the conformance of a concrete performance compo-
nent (cf. Figure 5(a)) with respect to an abstract performance component.
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Def. 7: (Conformance of concrete and abstract component) Let ϕ be a concrete
performance component with transfer function (r′, c′) = ϕ(r, c). Let Φ be an
abstract performance component with transfer function (α′, β′) = Φ(α, β). Then,
ϕ conforms to Φ (written as ϕ |= Φ) if for all α, β, α′, β′, r, r′, c, c′ the following
proposition holds:

[(

r |=α
)

∧
(

c |=β
)

∧
(

(r′, c′)=ϕ(r, c)
)

∧
(

(α′, β′)=Φ(α, β)
)]

⇒
[(

r′ |=α′
)

∧
(

c′ |=β′
)]

(2.19)

In simpler words, we say that ϕ conforms to Φ if for any input that
conforms to some abstract input streams α, β the component ϕ produces
an output that conforms to the corresponding abstract output streams α′,
β′.

The abstract variant of the Greedy Processing Component (GPC) dis-
cussed in Section 2.2.2 is shown in Figure 10(b). Its transfer function is
characterized by the following equations [CKT03]:

α
′u = min{(αu ⊗ βu) ⊘ βl, βu} (2.20)
α
′l = min{(αl ⊘ βu) ⊗ βl, βl} (2.21)
β
′u = (βu − αl) ⊘ 0 (2.22)
β
′l = (βl − αu) ⊗ 0 (2.23)

The above equations use convolution and deconvolution operators of
min-plus and max-plus algebra which are defined as follows:

( f ⊗ g)(∆) = inf
0≤λ≤∆

{ f (∆ − λ) + g(λ)} (2.24)

( f ⊘ g)(∆) = sup
λ≥0
{ f (∆ + λ) − g(λ)} (2.25)

( f ⊗ g)(∆) = sup
0≤λ≤∆

{ f (∆ − λ) + g(λ)} (2.26)

( f ⊘ g)(∆) = inf
λ≥0
{ f (∆ + λ) − g(λ)} (2.27)

The proofs for Equations (2.20)-(2.23) can be found in [Wan06]. An impor-
tant observation is that these equations are correct for event and resource
traces with unbounded past, i.e., they are used to constrain arrival func-
tions r and service functions c defined on the domain R × R. However,
if an initial time point is considered for the system evolution, Equations
(2.21) and (2.22) are not correct and must be replaced by:4

α
′l = αl ⊗ βl (2.28)
β
′u = (βu − αl) ⊗ 0 (2.29)

4Without loss of generality, the initial time point can be considered to be 0. In this
case r and c are defined on the domain R≥0 ×R≥0.
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Besides the GPC component, the RTC formalism offers also abstract
models for other processing components. Examples are components
which serve multiple event streams according to different scheduling
policies such as EDF, FIFO or WFQ (see Section 2.2.3.5).

Finally, let us revisit the elementary components considered in Sec-
tion 2.2.2. RTC offers abstract variants of those components which are
shown in Figure 11. They operate on abstract event streams and are
characterized by the following transfer functions:

• Scaler:

α
′u(∆) = w · αu(∆) (2.30)
α
′l(∆) = w · αl(∆), (2.31)

where w is a positive scaling factor.

• OR:

α
′u(∆) = αu

1(∆) + αu
2(∆) (2.32)

α
′l(∆) = αl

1(∆) + αl
2(∆) (2.33)

• AND: The transfer functions for the abstract AND component are
more involved and can be found in [Wan06, Ch.3].
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Fig. 11: Abstract elementary components

2.2.3.5 Representing resource sharing schemes

In Section 2.2.1 we have seen how individual performance components
can be composed to form an MPA model for a distributed system. The
resulting network of performance components has to reproduce two main
aspects of the system:

1. The dataflow among the various system components

2. The hardware architecture of the system, including the assignment
of tasks to hardware resources and the adopted resource sharing
schemes
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The first point can be easily handled by properly connecting the event
stream ports of the individual performance components. For instance,
the dataflow of the system shown in Figure 3 translates directly to the
forwarding of event streams shown in the MPA model of Figure 4. In
terms of RTC, these connections signify that the output arrival curves of
component T1 are used as input arrival curves for component C1, the
output arrival curves of C1 become the input arrival curves of T3 and so
on.

The second point is, however, less trivial, as not all resource sharing
schemes can be modelled by appropriately forwarding resource streams.
While for the system of Figure 3 this approach works well, there are
also scheduling policies that require the use of dedicated performance
components. We will now illustrate the two variants by discussing the
RTC models of two particular resource-sharing schemes.

• Preemptive Fixed Priority Scheduling
Consider a processor that executes n tasks τ1, ..., τn with fixed and
pairwise different priorities. Assume that the processor schedules
the tasks in a preemptive fashion, i.e., an executing low priority task
is immediately preempted if a task with higher priority needs to
be executed. Without loss of generality, assume that the tasks are
ordered by their priorities, i.e., τi has higher priority than τ j if i < j.
Then, in the formalism of RTC, the processor can be represented by
a chain of abstract GPC components as shown in Figure 12. The
model has the following inputs and outputs: α1, ..., αn specify the
abstract event streams that trigger the individual tasks; β models
the available processing resources; α′1, ..., α′n bound the streams of
processed events; β′ represents the processing resources left over by
the tasks. The propagation of the service curves in the model of
Figure 12 naturally reflects the priorities of the tasks: A task τi with
i > 1 gets only the processing resources left over by the task τi − 1,
which corresponds exactly to the behaviour of a preemptive fixed
priority scheduler.

• FIFO Scheduling
Assume now that the processor schedules the n tasks τ1, ..., τn in
a first-come, first-served order. This policy is also denoted FIFO
scheduling, which stands for first-in, first-out scheduling. In this
case, the sharing scheme for the processor cannot be modelled
in RTC by properly connecting individual GPC components. In-
stead, we need to design the tailored abstract processing compo-
nent shown in Figure 13(a). The inputs and outputs have the same
interpretation as in the preemptive fixed priority model. Let us
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Fig. 12: RTC model for preemptive fixed priority scheduling

now derive a conservative transfer function for the abstract FIFO
component by applying simple best-case/worst-case reasonings.

For the computation of the remaining service β′ we adopt the fol-
lowing variant of the relations (2.22) and (2.23):

β
′u = (βu −

∑

i

αl
i)⊘ 0 (2.34)

β
′l = (βl −

∑

i

αu
i )⊗ 0 (2.35)

Here, we assume feeding a single GPC component with an event
stream α which is the sum of all the input event streams α1, · · · , αn.
In terms of remaining resources, this is clearly equivalent to the case
where multiple tasks are triggered by the individual event streams
and executed in some given order. To determine valid upper and
lower bounds for the individual outgoing event streams, we first
look at the maximum and minimum possible amount of processing
resources which are available for an individual input event stream.
More specifically, for the task associated with input stream αi we
consider the best case and the worst case in a fixed assignment
of priorities, as shown in Figure 13(b). The corresponding service
curves are given by:

βu
i = βu (2.36)

βl
i = (βl −

∑

j,i

αu
j )⊗ 0 (2.37)

Under FIFO scheduling, the amount of resources available for the
processing ofαi can obviously only be less or equal than βu

i
and larger
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Fig. 13: Modelling FIFO scheduling in RTC

or equal than βl
i
. Hence, the two bounds are a valid abstraction.

Given βu
i

and βl
i
, we can compute bounds for the corresponding

outgoing event stream α′
i

by using the relations (2.20) and (2.21):

α
′u
i = min { (αu

i ⊗ β
u
i ) ⊘ βl

i, β
u
i } (2.38)

α
′l
i = min { (αl

i ⊘ β
u
i ) ⊗ βl

i, β
l
i } (2.39)

The RTC formalism also provides models for several other scheduling
policies. For instance abstract performance components analogous to
the one shown in Figure 13(a) exist for Earliest Deadline First (EDF)
scheduling [WT06a], non-preemptive fixed priority scheduling [HT07],
and Weighted Fair Queue (WFQ) scheduling.

A main advantage of the explicit resource characterization in MPA is
that it makes the method compositional also in terms of resource shar-
ing schemes. In particular, we can combine two or more of the above
performance components to model hierarchical scheduling policies. As
an example, consider the MPA model shown in Figure 14. It represents
a hierarchical scheduling scheme, in which two tasks share a processor
according to the preemptive fixed priority policy, but the second task is
actually processing two event streams in FIFO order.

2.2.3.6 Performance analysis

The purpose of building an MPA model is to quantify the performance of
a system. Various performance metrics such as event latencies or backlogs
can be relevant for a system designer. The RTC formalism can derive hard
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Fig. 14: Hierarchical scheduling

bounds for such system characteristics. More specifically, RTC permits us
to analytically quantify the best-case and worst-case performance of each
abstract performance component as a function of the input arrival and
service curves. In the following, we present the analytical expressions
for the worst-case performance bounds of an abstract GPC component.
Note that the expressions can also be directly used for all the abstract
performance components that use GPC as a building block. For instance,
this is the case for the FIFO component discussed above.

For the maximum buffer fill level (or backlog) bmax of a GPC component
with activation pattern α = [αu, αl] and resource availability β = [βu, βl]
we have bmax ≤ Bu f (αu, βl) where the bound Bu f (αu, βl) is defined as

Bu f (αu, βl) = sup
λ≥0
{αu(λ) − βl(λ)}. (2.40)

For the maximum delay dmax experienced by an input event at the same
GPC component we have dmax ≤ Del(αu, βl) where the bound Del(αu, βl) is
defined as

Del(αu, βl) = sup
λ≥0

{

inf{τ ≥ 0 : αu(λ) ≤ βl(λ + τ)}
}

. (2.41)

Figure 15 shows the graphical interpretation of these two quantities.
The bound for the worst-case backlog corresponds to maximum vertical
distance between αu and βl. On the other hand, the bound for the worst-
case delay corresponds to the maximum horizontal distance between
these two curves.

As already indicated in Section 2.2.2, we can derive system-wide per-
formance characteristics by aggregating the results obtained for individ-
ual components. For instance, to quantify the worst-case end-to-end
delay for an event stream that traverses several components, we can first
bound the worst-case delay observable at each component by means of
(2.41), and then simply compute the sum of those delays.



2.2. Modular Performance Analysis 39

αu
βl

Del(αu, βl)
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∆

Fig. 15: Graphical interpretation of Del(αu, βl) and Bu f (αu, βl)

Summing up individual worst-case performance bounds can, how-
ever, lead to very conservative results. The reason for this is that in a
sequence of tasks, the worst-case event burst can often not appear in suc-
cession at every single task. In the literature, this phenomenon is denoted
as ’Pay burst only once’ [LT01]. For such a sequence of GPC components
the bound for the total delay can be tightened to

dmax ≤ Del(αu, βl
1 ⊗ β

l
2 ⊗ . . . ⊗ β

l
n), (2.42)

where α denotes the input event stream processed by the task sequence,
and β1, ... βn denote the service offered to the single tasks. The same
reasoning applies to the computation of the total buffer space needed by
a sequence of GPC components.

2.2.3.7 Implementation

The framework for Modular Performance Analysis with Real-Time Cal-
culus has been implemented in the RTC Toolbox for Matlab [WT]5.

The main problem to tackle in an implementation of the RTC for-
malism is to find an appropriate finite datatype to represent arrival and
service curves which are defined on an infinite domain. The chosen rep-
resentation needs to be precise enough to enable an accurate performance
analysis, but at the same time abstract enough to achieve efficiency. In the
RTC Toolbox, this issue is tackled by means of a compact representation
of RTC curves which relies on a list of piecewise linear segments. The
segments are used to specify an aperiodic curve, a periodic curve, or a
curve consisting of both an aperiodic and a periodic part. More detailed

5available at http://www.mpa.ethz.ch/Rtctoolbox
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information on efficient representation of RTC curves can be found in
[Wan06, Ch.7].

2.2.3.8 Case study: Analysis of an industrial embedded system

The MPA framework with RTC has been successfully applied to the anal-
ysis of a large-scale industrial embedded system [SPLT10]. The consid-
ered system is an avionic in-cabin communication system designed by
a major airplane manufacturer. The system, denoted as Heterogeneous
Communication System (HCS), is based on Ethernet network and con-
nects different electronic components of an aircraft cabin such as sensors,
speakers, video cameras, routers and a central server. Figure 16 illus-
trates the basic architecture of the HCS. The server is connected to more
than 200 end devices over several Network Access Controllers (NAC).
The HCS is used by a set of specific applications which produce network
traffic. Examples of applications are the synchronization of device clocks,
crew announcements, video surveillance and audio streaming. Besides
these applications, in the HCS there is also network traffic initiated by
user interaction (e.g. service calls) and background traffic (e.g. signalling
data). The goal of the analysis is to determine whether the system design
meets several requirements, mostly related to its timing behaviour. For
instance, the specification defines upper bounds for tolerable clock drifts
and end-to-end delays in the HCS.

Fig. 16: Architecture of the Heterogeneous Communication System
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To verify the above requirements, an MPA model of the HCS was
constructed. This involved the characterization of all the traffic sources
by means of arrival curves, as well as the modelling of the various system
parts by means of MPA components. The MPA model of the HCS contains
mostly GPC and FIFO components. For instance, the behaviour of the
Ethernet links can be abstracted by means of FIFO components. Besides
these components, also dedicated MPA components were employed in
the model. In particular, an MPA component for modelling Weighted Fair
Queue (WFQ) scheduling was designed.

The major challenge for the MPA analysis of the HCS was given by
the size of the system. In principle, arbitrary large systems can be mod-
elled and analyzed with MPA. In practice, however, when analyzing large
systems with the RTC Toolbox, one often faces long run-times and large
memory demands. The reason for this problem is the detailed represen-
tation of arrival and service curves mentioned in Section 2.2.3.7. More
specifically, the complexity of the MPA analysis depends on the particular
shape of the involved arrival and service curves. In large MPA models,
where the input arrival curves are manipulated by long sequences of com-
ponents, the resulting curves tend to be very complex, i.e. they consist
of a large number of segments. In order to make the analysis of the HCS
more efficient, a simple but efficient approximation scheme for arrival and
service curves was developed. The conservative approximation scheme
avoids periodic patterns in the representation of curves which proved to
be crucial to achieve fast evaluations of large systems. In the particular
case of the HCS, the approximation scheme permitted us to reduce the
analysis time by two orders of magnitude with a negligible loss of analysis
accuracy.

The complete documentation of the HCS case study including all mod-
elling assumptions and the full list of analysis results can be found in
[SPLT10]. The report also contains a description of the approximation
scheme proposed to speed up the MPA analysis of large systems.

Finally, we would like to note that the MPA framework is not necessarily
bound to RTC for analyzing the performance of a system. Instead of RTC,
any other suitable formalism that handles event and resource streams
can be used. For instance, in Chapter 5 we will show how to embed
the state-based formalism of Timed Automata into the MPA framework.
Nevertheless, most of the results presented in this thesis are based on
RTC. Hence, from now on, whenever we refer to ’MPA’, we implicitly
mean ’MPA with RTC’.
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2.3 Evaluation and Comparison of Abstractions

for Performance Verification

The formal methods of performance evaluation discussed in Section 2.1
are based on essentially different concepts of abstraction. While all these
methods provide hard bounds for the performance characteristics of dis-
tributed systems, they often lead to remarkably different bounds, depend-
ing on the analyzed system. In other words, they exhibit different kinds of
abstraction losses. It is therefore important to clarify what the influence of
the individual modelling techniques on the accuracy of the performance
evaluation is. To this end, in [Per06] we performed a quantitative compar-
ison of several formalisms for performance evaluation. The comparison
is based on a set of benchmark systems that highlights specific pitfalls for
the different evaluation techniques. In the following, we reproduce and
extend our results of [Per06], as they inspired most of the work presented
in this thesis.

2.3.1 Motivation and Challenges

An evaluation of the different formalisms is desirable for several reasons.
First of all, such an assessment allows us to highlight the effects of the
particular abstractions. It helps to determine the modelling limits and
the analysis pitfalls for different methods. And more importantly, the
comparison serves to better understand the relation between adopted
models and achieved accuracy, as well as to improve the precision of the
formalisms by combining ideas and abstractions.

Conducting a direct comparison of different formalisms for perfor-
mance evaluation is difficult for several reasons. First of all, the various
approaches differ substantially in terms of expressivity, modelling ef-
fort, and scalability. Also in terms of tool support, the variety is wide;
while some formalisms are implemented in powerful commercial soft-
ware tools, others are available as academic prototypes only, or are not
implemented at all. Moreover, several important aspects of the abstrac-
tions can only hardly be quantified. For instance, this is the case for
properties such as modelling power or scalability. Another fundamental
problem is that the modelling scopes of the methods do only partially
intersect. This means that a method often allows us to model scenarios
that are not covered by other techniques. Hierarchical scheduling, block-
ing times or complex task activation patterns are just a few examples of
numerous system properties that differentiate the modelling power of the
various abstractions.
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2.3.2 Comparison Methodology

For the comparison, we choose four state-of-the-art tools for performance
evaluation of distributed real-time systems:

• MAST (v1.3.6)
Aggregates and implements several algorithms of holistic schedul-
ing analysis. Developed at the University of Cantabria.
Available at http://mast.unican.es/.

• SymTA/S (v1.1)
Commercial tool for compositional performance analysis. Devel-
oped by Symtavision GmbH (http://www.symtavision.com/).

• RTC Toolbox (v1.0)
Tool for compositional performance analysis based on the MPA
framework with Real-Time Calculus.
Available at http://www.mpa.ethz.ch/rtctoolbox/.

• Uppaal (v4.0.3)
Model checker for state-based analysis of real-time systems based
on the formalism of Timed Automata (TA).
Available at http://www.uppaal.com.

Concerning the performance evaluation with Uppaal, we follow the ap-
proach proposed by Hendriks and Verhoef [HV06], which is based on
dedicated TA representations of PJD models, as well as TA observers for
system performance metrics. In addition to the four formal methods for
worst-case performance evaluation, we also employ a simple SystemC-
based discrete event simulator. This is done in order to illustrate the
difference among the performance bounds obtainable by formal and em-
pirical methods.

To enable a direct quantitative comparison of the formalisms, we de-
cide to focus mostly on systems in the intersection of the modelling scopes.
This allows us to highlight the specific effects of the different abstractions.
We intentionally keep the considered benchmark systems small, with the
purpose of isolating the influence of particular system characteristics,
and exposing specific analysis difficulties. In order to produce mean-
ingful evaluations, we do not restrict the benchmarks to single system
configurations but specify sets of values for relevant system parameters.

Furthermore, we would like to point out that the comparison is not
intended as competition between formalisms for performance evalua-
tion. Given the large heterogeneity of the modelling capabilities, such
a competition could hardly be fair. Rather than ranking the individual
approaches, our main motivation is the detection and investigation of
abstraction losses.
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2.3.3 Benchmark Systems

In this section, we describe a set of benchmark systems that are used for
the evaluation of the different formalisms. Some of the described bench-
mark systems were discussed, among others, at the ARTIST2 Workshop
on Distributed Embedded Systems.6 Every benchmark is tailored to a
particular analysis issue, and consists of a simple system architecture (in-
volving only few event streams, tasks and resources) and a performance
characteristic to be quantified. The set of proposed benchmarks is not
exhaustive by far, as there are lots of system configurations that lead to
challenging analysis problems. However, our benchmarks define several
orthogonal scenarios that lead to abstraction losses for different analysis
tools. For the sake of simplicity, we define only benchmarks with constant
task execution times. This choice is made to permit an easier interpre-
tation of the analysis results but is not strictly necessary, since all the
considered tools can handle variable task execution times, typically spec-
ified as intervals [BCET,WCET]. Moreover, in the described benchmarks
the input streams are fully asynchronous and the buffering of events does
not affect the performance of the system, i.e. we consider unbounded and
infinitely fast buffers.

2.3.3.1 Benchmark 1: Complex task activation pattern

The intention of this benchmark is to compare the ability of different
abstractions to handle complex task activation patterns. By complex we
mean activation patterns that cannot be precisely captured by means of a
PJD model.

Figure 17 depicts the architecture of the benchmark system. Three
periodic event streams are processed by four tasks running on two CPUs
that implement preemptive fixed priority scheduling. The performance
characteristic to determine is the worst-case response time of task T3 as
a function of the period of stream I3. Note that the activation pattern of
task T3 is not periodic anymore, since task T1 can preempt task T2. In
other words, the output behaviour of task T2 is complex, i.e., cannot be
precisely described by a PJD model. Thus, we expect pessimistic analysis
results for abstractions relying on PJD models.

2.3.3.2 Benchmark 2: Variable feedback

The purpose of this benchmark is to confront the different formalisms
with a feedback loop, and the consequent correlations among the acti-
vation times of the involved tasks. The system topology is shown in
Figure 18. A periodic event stream I2 is processed in sequence by three

6http://www.tik.ee.ethz.ch/˜leiden05/
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I1

I2

I3
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O3

CPU1

CPU2

Input streams
I1: periodic (P = 60ms)
I2: periodic (P = 5ms)
I3: periodic (P = [60..110]ms)

Resource sharing CPU1: FP preemptive, CPU2: FP preemptive

Execution times T1: 35ms, T2: 2ms, T3: 4ms, T4: 12ms

Scheduling parameters priority T1: high, priority T2: low
priority T3: low, priority T4: high

Fig. 17: Specification of Benchmark 1

tasks running on two CPUs and forming a feedback loop. In addition,
CPU2 also processes a second periodic event stream I1 of higher priority.
The performance metric to determine is the worst-case latency from I2 to
O2. In order to vary the correlation among the task activation times in
the feedback loop, the benchmark specifies different values for the exe-
cution time of task T3. Since the compositional formalisms do not take
into account such correlations among task activation times, we expect
abstraction losses for these methods.

T1

T2

T3

T4

I1

I2

O1

O2

CPU1

CPU2

Input streams I1: periodic (P = 100ms)
I2: periodic (P = 5ms)

Resource sharing CPU1: FP preemptive, CPU2: FP preemptive

Execution times T1: 2ms, T2: 2ms, T3: [2..22]ms, T4: 1ms

Scheduling parameters priority T1: high, priority T2: low
priority T3: high, priority T4: low

Fig. 18: Specification of Benchmark 2
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2.3.3.3 Benchmark 3: Cyclic dependencies

The intention of this benchmark is to examine the capability of the differ-
ent abstractions to deal with cyclic dependencies.

T1 T2

T3

I1

O1

CPU1 CPU2

Input stream I1 periodic with burst (P = 10ms, J = [0..50]ms)

Resource sharing CPU1: FP preemptive

Execution times T1: 1ms, T2: 4ms, T3: 4ms

Scheduling parameters 1) priority T1: high, priority T3: low
2) priority T1: low, priority T3: high

Fig. 19: Specification of Benchmark 3

Figure 19 represents the system to evaluate. A periodic event stream
with bursts is processed by a sequence of three tasks running on two
resources. On CPU1 a preemptive fixed priority scheduler is used to
execute the tasks T1 and T3. The performance characteristic to determine
is the worst-case delay from I1 to O1 for increasing values of the input
jitter and in two different scenarios. In scenario 1, T1 has higher priority
than T3. In scenario 2, T3 has higher priority than T1, i.e., there is a cyclic
dependency between the two tasks: T1 indirectly triggers T3, but T3
preempts T1). We expect this cyclic dependency to make the evaluation
difficult for compositional system abstractions.

2.3.3.4 Benchmark 4: Data dependencies

The purpose of this benchmark is to quantify the abstraction losses ex-
perienced with different formalisms for the analysis of systems with data
dependencies among tasks. The system specified below was first pre-
sented as example in [YW95] by Yen and Wolf. Figure 20 depicts the
architecture of the system. Two periodic event streams are processed by
three tasks on a CPU that implements preemptive fixed priority schedul-
ing. The data dependency is given by the execution sequence T2-T3. The
performance metric to determine is the worst-case delay from I2 to O2
as function of the execution time of T1. For this benchmark we expect
pessimistic analysis results for abstractions that cannot take into consid-
eration data dependencies among tasks.
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T2 T3
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I2

O1

O2

CPU

Input streams I1: periodic (P = 80ms)
I2: periodic (P = 50ms)

Resource sharing CPU: FP preemptive

Execution times T1: [15..30]ms, T2: 20ms, T3: 10ms

Scheduling parameters priority T1: high,
priority T2: medium, priority T3: low

Fig. 20: Specification of Benchmark 4

2.3.3.5 Benchmark 5: Multiple inputs with OR-activation

The intention of this benchmark is to compare the different abstractions
with respect to the combination of multiple event streams for the activa-
tion of tasks. We consider a simple system consisting of a task with two
inputs in OR-combination, i.e., each event on both input streams activates
the task. The system topology is shown in Figure 21.

T

I1

I2

O1

CPU

OR

Input streams I1: periodic with jitter (P = 100ms, J = 20ms)
I2: periodic with jitter (P = 150ms, J = 60ms)

Execution time T: [25..60]ms

Fig. 21: Specification of Benchmark 5

Task T is triggered by the events of two periodic streams with jitter
which queue up in a shared FIFO buffer. The performance characteristic
to determine is the worst-case delay from I1 to O1 as function of the
execution time of task T. Since the sum of the two input event streams
cannot be accurately represented with a PJD model, we expect loose
performance bounds for formalisms relying on these models.

2.3.4 Analysis Results

In this section, we present the results obtained by applying the formal
performance evaluation methods listed in Section 2.3.2 to the benchmarks
of Section 2.3.3. We compare the performance bounds obtained and
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discuss differing results and analysis pitfalls. All the models adopted are
available online.7

In the following graphs, the performance results obtained by discrete
event simulation are shown for comparison only. They illustrate that em-
pirical methods for performance evaluation can sometimes miss corner
cases of the system behaviour. Details on the employed simulator, PES-
IMDES [Per], can be found online.8 The length of the simulated traces is
shown in brackets in the graphs.

2.3.4.1 Benchmark 1: Complex task activation pattern

In this experiment we evaluate the accuracy of the different formalisms
when some event patterns in the system deviate from PJD event models.
For this purpose, we tap the event stream between the tasks T2 and T3 in
the system of Figure 17, where a distortion of the periodic event pattern
occurs due to the influence of task T1. Figure 22 shows the analysis
results for the worst-case response time of task T3.9 The performance
values derived with Uppaal are obtained through model checking, and
represent the exact worst-case response time of task T3. In other words,
there is no abstraction loss for the results determined by Uppaal. In
general, this statement holds only if one can show that the TA model
accurately reflects the behaviour of the real system. For the considered
benchmark systems this is, however, trivial. As a result, we can use the
Uppaal values as reference for the assessment of the other formalisms.

The graph shows that the compositional methods provide pessimistic
predictions for the worst-case response time of task T3. It also points
out that there is a remarkable difference between the results obtained by
SymTA/S and MPA. This can be explained by the different event models
employed by the two abstractions. While MPA accurately models the
complex output pattern of T2 by an appropriate pair of arrival curves,
SymTA/S approximates the output of T2 by a periodic event stream with
burst.

Figure 23 shows the effect of the two different event models on the
analysis accuracy for the case PI3 = 65 ms. The worst-case response time
of T3 is given by the maximum horizontal distance between the worst-
case resource availability (dashed curve), and the worst-case execution
demand (solid curves). The graph illustrates that the approximation
adopted by SymTA/S leads to an overestimated response time of task
T3. Interestingly, however, the pessimistic event model of SymTA/S has

7http://www.tik.ee.ethz.ch/˜leiden05/index2.html#publications
8http://www.mpa.ethz.ch/PESIMDES/Overview
9The MAST tool does not support the analysis of local response times in the current

release and was thus not considered for this analysis problem.
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no negative effect on the total delay from I2 to O2. This is because the
adopted path analysis detects that the total worst-case delay from I2 to
O2 is smaller than the sum of the two single worst-case delays (’Pay burst
only once’ phenomenon). For the worst-case delay I2-O2 all considered
formalisms determine the exact performance results.

2.3.4.2 Benchmark 2: Variable feedback

In Benchmark 2, depicted in Figure 18, the behaviour of the feedback
stream I2-O2 depends strongly on the execution time of task T3. The
reason is that task T3 may preempt task T4 and thus affect its response
time. In particular, increasing the worst-case execution time of T3 in
uniform steps causes the correlation effects between T1 and T2 to oscillate
in a periodic manner. This effect is shown in Figure 24 by the exact
values of the worst-case delay I2-O2 determined with Uppaal. The graph
shows that also the MAST tool provides the exact worst-case performance
values for all the parameter configurations of the specified benchmark.
However, the compositional analysis approaches MPA and SymTA/S do
recurrently overestimate the performance of the system, and provide
pessimistic predictions for several parameter values. A closer analysis
of the behaviour of the feedback loop reveals that this overestimation
happens for those parameter configurations that lead to the worst-case
delay I2-O2, without a full preemption of task T2 on CPU1. Since the
compositional abstractions cannot take into consideration the correlation
between the activation times of T1 and T2, the corresponding evaluation
methods have no means of recognizing the missing or partial preemption.
Hence, they assume that a full preemption is possible in the worst-case,
which leads to pessimistic performance bounds.

2.3.4.3 Benchmark 3: Cyclic dependencies

In the first scenario of the specification depicted in Figure 19, task T1 has
higher priority than task T3, and thus there is no cyclic dependency in the
system. However, correlation effects as described for Benchmark 2 are
present. For instance, depending on the input stream parameters, it may
happen that task T3 is not preempted by task T1. Such correlations are
not fully exploited by all formalisms, as already mentioned above. While
the Uppaal model permits us to determine the exact worst-case latencies
of the system, other formal evaluation methods like MPA and SymTA/S
slightly exceed the exact performance values, and their pessimism grows
with increasing input jitter, as shown in Figure 25.

The poor performance predictions of MAST have another cause.
Holistic analysis methods compute the worst-case delay not referring
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Fig. 26: Analysis results for the worst case delay I1-O1 in Benchmark 3 (scenario 2)

to the actual release time of an event, which varies within the jitter inter-
val, but referring to the ideal periodic release time. In other words, the
release jitter is considered part of the delay already, and thus the predicted
worst-case end-to-end latency cannot be smaller than the maximum input
jitter. This explains why the pessimism of the predictions provided by
MAST increases for increasing values of the input jitter. Unfortunately,
this deviation with respect to the other formalisms cannot simply be ad-
justed after the analysis. The reason is that the actual release instant
leading to the worst-case performance is generally unknown. However,
the interpretation of latency adopted by MAST is useful in other settings.
For instance, in a system in which the activation jitter of a task is caused
by a low resolution clock, it is more appropriate to refer the deadline for
the response time of the task to the real activation request rather than to
the actual activation instant.

The graph in Figure 25 also shows that simulation can in general not
be used to guarantee hard performance bounds. In fact, for some input
configurations, the corner-cases with worst-case performance are missed
by the simulator.

In scenario 2, T3 has higher priority than T1 and thus there is a cyclic
dependency: The output behaviour of T1 depends on the CPU availabil-
ity left over by T3, while at the same time, the activity of T3 depends
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on the output behaviour of T1. For the holistic system abstraction this
dependency does not make the analysis more difficult. Figure 26 shows
that the performance predictions provided by MAST do not differ more
significantly from the exact values than in the previous scenario (note the
different scaling of the ordinate axes). However, for compositional ab-
stractions the cyclic dependency complicates the analysis process. Both
MPA and SymTA/S use a fixpoint calculation to handle it, but the graph
shows that this leads to overly pessimistic performance predictions.

2.3.4.4 Benchmark 4: Data dependencies

Figure 27 displays the performance results obtained by applying the dif-
ferent abstractions to Benchmark 4 specified in Figure 20. The chart
shows that MPA and SymTA/S largely overestimate the worst-case de-
lay I2-O2, while MAST determines the exact worst-case performance of
the system. The overly pessimistic performance prediction of the former
two approaches results from the disregard of data dependencies in the
system. In particular, the activation times of the tasks T2 and T3 are not
independent. The data dependency forces the two tasks to be executed
in a fixed order, and imposes a temporal offset between their activation.
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Fig. 27: Analysis results for the worst case delay I2-O2 in Benchmark 4

For instance, let us consider the system configuration with an execu-
tion time of 15 ms for T1. It is simple to verify that in this configuration T1
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can only preempt either T2 or T3, but not both in a single execution. More-
over, T2 cannot preempt T3. Hence, the worst-case latency I2-O2 is 45 ms.
However, MPA and SymTA/S ignore the data dependency between T2
and T3. They consider the activation times of the two tasks as completely
independent. Thus, they suppose a worst-case response time of 35 ms for
T1 and 45 ms for T2. As result, they predict a worst-case latency of 80 ms
for the path I2-O2, which corresponds to the sum of the two individ-
ual delays. In contrast, the MAST tool implements offset-based analysis
methods, designed for detecting and exploiting data dependencies among
tasks. This permits us to determine tighter performance bounds.

2.3.4.5 Benchmark 5: Multiple inputs with OR-activation

As for the previous benchmarks, the exact performance results have been
determined with Uppaal. In this case it was, however, necessary to
extend the TA models proposed in [HV06]. The issue is that the original
modelling approach uses simple counter variables to represent the fill
level of event buffers. This implies that in the TA model, all events stored
in a buffer are indistinguishable. However, in the present benchmark, it is
necessary to distinguish the activations of T caused by input events from
I1 and I2. In particular, to permit the quantification of the latency I1-O1,
the model of the shared buffer has to reflect the arrival order of the two
different event types. Hence the input buffer can no longer be represented
by means of a counter variable and must be modelled explicitly. Figure 28
shows the TA used to model the input buffer. The automaton basically
enumerates all possible buffer states. For the particular parameters of
the benchmark, the backlog of T does not exceed 3 events, and thus
the automaton has only 16 locations. However, the number of locations
grows exponentially with the maximum backlog: For an OR-activated
task with m inputs and a maximum backlog of n activation requests, an
automaton with mn+1−1

m−1 +1 locations is required. Therefore, in general, this
way of modelling the OR-activation involves an impractical modelling
and verification effort.

Figure 29 shows the analysis results for the worst-case delay I1-O1
as determined by the different formalisms. The graph shows that the
two compositional evaluation approaches provide different results: MPA
determines the exact performance of the system for all the considered
parameter values, whereas SymTA/S is more conservative for certain pa-
rameters. As for Benchmark 1, the difference originates from the different
event models adopted by the two abstractions. The combination of the
two event streams I1 and I2 can be accurately modelled by MPA, whereas
it is approximated with a PJD model in SymTA/S. The more pessimistic
performance predictions of MAST are again related to the different inter-
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Fig. 28: TA model for the activation buffer in Benchmark 5

pretation of jitter for the input streams. The chart of Figure 29 also shows
that the discrete event simulator misses the worst-case performance of
the system for several parameter configurations.

2.3.4.6 Analysis times

In the present assessment of performance evaluation methods, we do not
only want to quantify the accuracy of the achieved results but also the
efficiency of their computation. For this reason, we measured the analysis
or verification times of the different tools for all considered benchmarks.
Table 2 sums up the minimum, median and maximum analysis time for
each performance evaluation tool and benchmark. The values show that
most of the considered abstractions permit a fast performance evaluation
for all the specified benchmarks. However, the analysis approach based
on model checking of timed automata networks forms an exception, as in
two benchmarks it suffers from very long verification times. For instance,
in the first scenario of Benchmark 3, the maximum verification time of
the Uppaal model checker is more than a hundred times larger than the
analysis times of the other tools. Especially in the presence of large jitters
the state space of the TA models grows considerably, and leads to long
verification times.
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Fig. 29: Analysis results for the worst-case delay I1-O1 in Benchmark 5

Another interesting observation is that in some cases there is a re-
markable difference between the minimum, median and maximum anal-
ysis time. This shows that, in general, the analysis times of the different
approaches may depend highly on the particular system parameters.

2.3.5 Discussion

The results of Section 2.3.4 show that the accuracy of the performance
predictions determined with a given formalism varies considerably for
the different benchmarks. The only exception is the approach based
on Uppaal, which provides the exact performance predictions for all the
considered benchmarks. However, the exact results are often paid for by a
large analysis effort, i.e., Uppaal may require very long verification times.
Thus, considering not only the achieved accuracy, but also the necessary
analysis times, we can state that none of the considered abstractions
performed best in all the benchmarks.

Nevertheless, the results permit us to give some indications as to
which abstractions are more appropriate than others for the evaluation of
particular scenarios. For instance, Benchmarks 1 and 5 indicate that the
approximation of complex event streams with PJD models can be inap-
propriate for precise performance predictions at a local level. Benchmark
3 emphasizes that systems with cyclic dependencies represent a serious
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B1 B2 B3(1) B3(2) B4 B5

min 0.60 0.03 0.01 0.04 0.03 0.01
MPA med 1.06 0.04 0.01 0.15 0.05 0.01

max 19.72 0.08 0.04 0.30 0.20 0.05
min 0.05 0.03 0.03 0.03 0.06 0.01

SymTA/S med 0.09 0.05 0.06 0.34 0.09 0.01
max 1.50 0.23 0.09 0.80 0.31 0.01
min - <0.5 <0.5 <0.5 <0.5 <0.5

MAST a med - <0.5 <0.5 <0.5 <0.5 <0.5
max - <0.5 <0.5 <0.5 <0.5 <0.5
min 18.0 <0.5 <0.5 <0.5 <0.5 <0.5

Uppaal. a,b med 34.5 <0.5 1.0 <0.5 <0.5 <0.5
max 60.5 <0.5 52.0 5.5 <0.5 <0.5
min 1.0 <0.5 0.5 0.5 <0.5 <0.5

Simulation a med 1.0 <0.5 0.5 0.5 <0.5 <0.5
max 1.0 <0.5 0.5 0.5 <0.5 <0.5

a For MAST, Uppaal and Simulation we have timed the analysis duration by an external tool
since the corresponding tools do not support automatic measuring of the analysis time. For these
methods a ’<0.5’ in the table stands for a value below the measuring accuracy of 0.5 seconds.
b For Uppaal the analysis times are referred to one single step of binary search.

Tab. 2: Analysis/Verification times in seconds

pitfall for the accuracy of compositional analysis methods. Benchmarks 2
and 4 indicate that holistic analysis approaches are generally more appro-
priate than modular abstractions in the presence of correlations among
task activations and data dependencies. On the other hand, holistic anal-
ysis methods are less appropriate for the analysis of timing properties that
refer to the actual release time of an event within a large jitter interval.
Overall, it is advisable for a system designer to use at least two different
formal performance evaluation methods in order not to step in one of the
above-mentioned analysis pitfalls.

Moreover, the results show that for the considered benchmarks, the
discrete event simulator often provides pretty accurate results, but these
results are not necessarily correct, as shown in Benchmark 3 and 5. In other
words, by simulation we cannot derive hard bounds for the performance
of a system. While for some soft real-time systems this might be tolerable,
it is not for systems with hard real-time requirements.

We would also like to emphasize that most of the encountered pitfalls
for the analytical techniques are not related to system characteristics that
are conceptually impossible to integrate in the respective abstraction.
Rather, the analysis difficulties point out aspects that have not yet been
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investigated for the corresponding methods. In this sense, poor analysis
results indicate potential research directions for the improvement of the
various formalisms.

Obviously, there are also several questions that the proposed set of
small benchmarks cannot answer. For instance, it would be very useful
to analyze larger systems with the aim of examining the scalability of
the different abstractions with respect to analysis accuracy and analysis
times. It could also be interesting to consider the combination of several
system properties that have been isolated in the single benchmarks.

2.4 Summary

In this chapter we introduced the reader to the model-based performance
evaluation of distributed real-time systems. We identified the deficiencies
of empirical performance evaluation methods and stressed the need for
formal techniques. We provided an overview of existing formal meth-
ods for holistic and compositional performance evaluation in early de-
sign stages. Besides analytical approaches, we also indicated state-based
methods that can be applied to determine the performance of a system.

In the second part of the chapter we gave a thorough introduction
to one particular compositional abstraction, the framework for Modular
Performance Analysis (MPA). By means of a simple example, we showed
how MPA employs event and resource streams to interface models of in-
dividual system components. Based on the general MPA framework, we
presented a simple formalism for performance quantification in the time
domain. We described its usefulness for the simulation of concrete system
executions, but at the same time, we pointed out that it is inappropriate
for worst-case performance evaluation. We then described the Real-Time
Calculus (RTC), a generalization of the discussed formalism to the inter-
val domain. We discussed the essential elements of RTC such as arrival
curves, service curves, and abstract performance components. Finally,
we explained how abstract performance models are constructed in RTC,
and how they can be used for bounding the performance of distributed
systems.

In the last part of the chapter, we provided a quantitative comparison
of formal methods for performance evaluation. In particular, we defined
a set of benchmark systems, and applied different performance evalua-
tion techniques to these systems. We showed that the results obtained
by the various approaches are remarkably different even for apparently
basic systems. In other words, we demonstrated that the choice of an ap-
propriate evaluation method matters. But more importantly, we pointed
out several pitfalls for the analytical abstractions. These results disclose
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interesting research problems, such as the proper analysis of cyclic sys-
tems (see Chapter 3) or the fight of abstraction losses by means of hybrid
analysis approaches (see Chapter 5).
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3
Cyclic Dependencies

Modular formalisms such as MPA or SymTA/S have shown to be very use-
ful for validating the performance of large and heterogeneous embedded
systems. The key for the scalability and low computational complexity
of these methods lies in the component-based system representation. In
a component-based system model, the interaction among components is
abstracted by means of appropriate interfaces. These interfaces enable
the incremental validation of very large system architectures by follow-
ing simple composition mechanisms. However, in the presence of cyclic
dependencies among components, the validation of a system is less triv-
ial. A natural way to approach such cyclic dependencies is to apply a
fixpoint computation starting from some initial system characterization.
However, it is neither known under which conditions such a fixpoint
computation converges, nor to what extent the result is faithful to the
behaviour of the analyzed system. In this chapter, we develop a general
operational semantics underlying the MPA framework, permitting us to
answer these questions. We show that the behaviour of systems with non-
functional cyclic dependencies can be analyzed by fixpoint iterations. We
characterize conditions under which such iterations give safe results, and
devise a method that leads to the optimal fixpoint. The results are not
limited to MPA, but can be transferred to other modular formalisms.
A large part of the technical contents of this chapter has been originally
published in [JPTY08] with important contributions by Prof. Bengt Jons-
son.
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3.1 Introduction

The formalism of Modular Performance Analysis introduced in Chapter 2
has been successfully used for the analysis of academic and industrial case
studies [WTVL06, SPLT10, CLS+06]. All of the considered system models
were, however, based on acyclic networks of performance components.
Such networks can be analyzed in an incremental fashion by considering
each component only once. More specifically, there is at least one compo-
nent at which the analysis can start, because all inputs of the component
are initially known. The computed outputs are then forwarded and uti-
lized for the analysis of dependent system components. This way, an
entire system can be progressively analyzed, provided that there are no
components which are mutually dependent.

Unfortunately, the analysis of systems with cyclic dependencies is not
so straightforward. In this case there exists no component in the compo-
nent network for which all inputs are initially defined. Hence, it is not
obvious how to approach the analysis of the system. Figure 30 shows
two examples of systems with cyclic dependencies among components.
In general, one can distinguish between functional and non-functional
cyclic dependencies. Functional cyclic dependencies are found in sys-
tems where the dataflow among components forms cycles. An example
of such a system is shown in Figure 30(a). On the other hand, non-
functional cyclic dependencies appear if there are opposed dataflow and
resource dependencies in a system. An example of a non-functional
cyclic dependency is represented in Figure 30(b): component TC triggers
component TD (dataflow) while component TD preempts component TC

(resource flow).

βA βB

TA TB

(a) Functional cyclic dependency

TC TD

α

βD

(b) Non-functional cyclic dependency

Fig. 30: Cyclic dependencies in MPA models

An interesting property of cyclic dependencies is that they hinder the
abstract performance analysis of a system, but not its simulation. More
specifically, the considered physical systems are causal, and hence their
simulation is straightforward. On the other hand, the MPA model of a
system is purely functional, that is, stateless. Thus, it is not clear how to
interpret cycles in an MPA component network.
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In various domains, cyclic dependencies can be resolved by means
of fixpoint computations. Also in MPA, the most natural way to handle
systems with cyclic dependencies is to define some initial event and/or
resource streams, and to iterate the analysis until a stable system char-
acterization is reached. For instance, this was the approach followed for
the analysis of the benchmark system specified in Section 2.3.3.3. While
in practice such fixpoint computations have sometimes resulted in rea-
sonable solutions, its theoretical foundations are completely unclear. For
instance, it is not known how to best start a fixpoint iteration in MPA.
Also, it is not clear under which conditions the iteration converges, and
to what extent the result is trustworthy.

The above questions arise because fundamental issues in linking the
abstraction of MPA to an operational semantics have not yet been inves-
tigated. In this chapter, we fill this gap by proposing a simple operational
model of distributed systems of processes underlying the MPA frame-
work. On this basis, we prove central properties about the faithfulness of
fixpoints computed using MPA. The main result is a method that leads
to the optimal fixpoint, i.e., to the fixpoint with the smallest abstraction
loss. We limit our discussion to non-functional cyclic dependencies. To
handle systems with functional cycles in MPA, other abstractions such as
dataflow graphs are more appropriate, cf. [TS09].

This chapter is organized as follows. In Section 3.2, the basic problem
is detailed by means of a simple example system. In Section 3.3, we
present a general operational model of components and streams. We also
prove correctness and convergence properties for fixpoint iterations. In
Section 3.4, we specialize these results to the MPA framework and discuss
techniques for obtaining initial approximations for fixpoint iterations. In
Section 3.5, we present the results of a simple experimental evaluation,
and comment on the precision of fixpoint computations in MPA. The
chapter concludes with an overview on related work in Section 3.6, and a
summary in Section 3.7.

3.2 Motivational example

We use the MPA model represented in Figure 31 as a simple motivational
example, since it contains a non-functional cyclic dependency which in-
hibits its compositional analysis. The considered system consists of two
tasks, T1 and T2, executed on a processor which implements preemptive
fixed priority scheduling. We assume that task T2 has higher priority
than task T1. The priorities of the tasks are encoded in the MPA model by
appropriately forwarding the stream of processing resources. We assume
that the input event traces which trigger T1 are constrained by the arrival
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T2

T1

βI
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β α

Fig. 31: MPA model of example system

curves αI = [αu
I
, αl

I
], and that the processing resources of the system are

bounded the service curves βI = [βu
I
, βl

I
]. We do not consider any overhead

for the context switches between T1 and T2. The goal of the analysis is to
determine bounds for the event stream from T1 to T2, and for the resource
stream from T2 to T1.

The computation of these streams is not straightforward, as there is
a cyclic dependency among the components: T1 triggers T2 while T2
preempts T1. We denote a particular characterization of these streams by
a pairΣS = (α, β) with α = [αu, αl] and β = [βu, βl]. Similarly, we denote the
two input streams from the environment by a pair ΣI = (αI, βI). Following
the dependencies represented in Figure 31, we obtain the equations

α = Φα(αI, β) (3.1)
β = Φβ(α, βI), (3.2)

where we use Φα and Φβ to denote the transfer functions of the abstract
GPC component, see Equations (2.20)-(2.23). If we ignore the output
streams to the environment, the considered system is fully characterized
by a pair Σ = (ΣI,ΣS). Let us use the letter Ψ to denote the mapping
from one characterization Σ to another Σ′ by means of the equations (3.1)
and (3.2). It is then natural to expect that a characterization of the system
behaviour can be obtained as a fixpoint of Ψ, i.e., as a solution to the
equation Σ = Ψ(Σ). A natural way to determine such a fixpoint is to
start from some initial approximation Σ0, and to compute the sequence
Σ0,Σ1,Σ2, ...withΣk+1 = Ψ(Σk), in the hope that the sequence will converge
to a limit Σ∗. However, the correctness of such a fixpoint computation in
the context of MPA has not been formally justified so far. In particular,
several questions need to be answered:

• Does any fixpoint of Ψ correctly characterize all possible traces of
the system?
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• Can there be several fixpoints?

• If so, is there an optimal fixpoint (one that provides tighter bounds
than all others)?

• Can an (optimal) fixpoint be computed as the limit of a sequence of
approximations Σ0,Σ1,Σ2, ...?

• Will the iteration always converge to a limit Σ∗?

• How to choose the initial approximation Σ0?

Let us use the above example to illustrate that fixpoints are in general
not unique. Assume that both T1 and T2 need one unit of resources to
process an event and that the service of the processor corresponds to one
resource unit per time unit, i.e., βu

I
(∆) = βl

I
(∆) = ∆. Let an input event

arrive every second time unit, i.e.,

αu
I (∆) =

⌈

∆

2

⌉

and αl
I(∆) =

⌊

∆

2

⌋

.

The optimal fixpoint is the one in which also on the internal event stream
α an event arrives every second time unit, i.e., α = αI. It is not difficult
to see that this characterization corresponds to the real behaviour of the
system. However, there is also a second (much worse) fixpoint for the
system which characterizes the internal streams as follows:

αu(∆) = ⌈∆⌉, αl(∆) = 0, βu(∆) = ∆, βl(∆) = 0.

This second fixpoint corresponds to the widest possible bounds for the
internal event and resource streams and hence does not contain any in-
formation at all.

3.3 Fixpoint Computations on Streams

In order to investigate the remaining questions listed above, in the fol-
lowing we establish a more general framework to specify quantitative
properties in component-based systems. This framework can be under-
stood as an abstract description of formalisms such as MPA or SymTA/S.

3.3.1 Operational Model

We consider general systems which consist of components and streams,
see Figure 32 for an example.
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ϕ1 ϕ2
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Fig. 32: A general system model

3.3.1.1 Streams

Streams are observable connections between components or between a
component and the environment of the system. A stream captures the
interaction of a component with its surroundings in terms of data flow or
resource flow.

Def. 8: (Trace) A trace on a set V of streams is a function σ : V 7→ ((R × R) 7→ R≥0)
which to each stream v ∈ V assigns a function σ(v) from time intervals to
observations.

We take R≥0 as the range of observations, since we intend to model the
accumulation of some quantity such as events or resource units. For
instance, σ(v)(s, t) could denote the number of events that have arrived,
or the amount of resource units which are available in the time interval
[s, t). We assume σ(v)(s, t) + σ(v)(t, u) = σ(v)(s, u) for s ≤ t ≤ u. If there is
an initial time point for the evolution of the system, we adapt the above
definition by using (R≥0×R≥0) as domain for σ(v).1 We use Tr(V) to denote
the set of traces on a set V of streams. The restriction of a trace σ to a
subset of streams V′ ⊆ V is denoted σ|V′ .

3.3.1.2 Components

In our abstract framework, a component is simply a transducer of traces.
It features a set VI of input streams and a set VO of output streams.

Def. 9: (Component trace mapping) The behaviour of a component is specified by
means of a trace mapping ϕ : Tr(VI) 7→ Tr(VO) which maps any trace σI on the
input streams VI to a trace ϕ(σI) on the output streams VO.

1Without loss of generality, we assume the initial time point to be 0.
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3.3.1.3 Systems

A system is a combination of components and streams. It has a set VI

of external input streams, and a set VO of internal streams and external
output streams. All streams of VO are output streams of some component.
They either serve as inputs for other components (internal streams) or go
to the system environment (external output streams). In our abstraction,
a system is seen as a transducer of traces that combines the behaviour of
all its components.

Def. 10: (System trace mapping) The behaviour of a system is specified by means of a
trace mapping ψ : Tr(VI ∪ VO) 7→ Tr(VI ∪ VO) which maps any trace on the
streams of the system to another trace on system streams. The mapping ψ fulfils

σ|VI
= ψ(σ)|VI

∀σ ∈ Tr(VI ∪VO), (3.3)

that is, it preserves the traces on the input streams. Moreover, for any component
of the system with input streams Vin, output streams Vout and component trace
mapping ϕ, the system trace mapping ψ observes

ϕ(σ|Vin
) = ψ(σ)|Vout ∀σ ∈ Tr(VI ∪ VO), (3.4)

that is, it assigns traces to the internal streams and external output streams
according to the trace mappings of the individual components.

We consider only deterministic systems where any trace σI on the
input streams VI induces a unique trace σO on the output streams VO. In
other words, we suppose a causality relation between inputs and outputs.
In the following, we formalize this requirement by defining the property
of simulatability of a system. Roughly speaking, a system is simulatable
if all its components are deterministic, and it does not contain zero-delay
cycles. In such a system, for a given input trace, the resulting system trace
can be constructed by a stepwise simulation of the system behaviour. For
a formal definition of simulatability, we need the following notions:

• A time vector on a set of streams V is a function τ : V 7→ R≥0 that
assigns a non-negative time stamp to each stream v ∈ V. We use t
to denote a time vector which assigns the same time stamp t to all
streams v ∈ V.

• For two time vectors τ, τ′ on the same set of streams V, τ ≤ τ′ denotes
τ(v) ≤ τ′(v) ∀v ∈ V.

• Let τ be a time vector on a set of streams V ⊆ V′. We say that two
traces σ and σ′ agree up to τ, written as σ ≃τ σ′, if

σ(v)(s, t) = σ′(v)(s, t) ∀v ∈ V, ∀s ≤ t ≤ τ(v) and
σ(v) = σ′(v) ∀v ∈ V′ \ V.

(3.5)
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We use a time vector to express to what extent a trace has been constructed
in a simulation. For example, τ(vi) denotes the time until which the trace
σ(vi) has been determined in the simulation. Note that for two distinct
streams vi and v j the time stamps τ(vi) and τ(v j) can be different since in
a simulation it may be possible to know the state of a stream further in
time with respect to another stream.

Def. 11: (Simulatable system (bounded past)) A system is simulatable if for each
input trace σI ∈ Tr(VI) there is a sequence τ0, τ1, τ2, ... of time vectors on VO

with τi ≤ τ j for i < j, τ0 = 0, and lim
i→∞

τi(v) = ∞ ∀v ∈ VO, called the simulation

sequence for σI, such that for all traces σ, σ′ ∈ Tr(VI∪VO) with σ|VI
= σ′|VI

= σI

it holds
σ ≃τi

σ′ ⇒ ψ(σ) ≃τi+1 ψ(σ′) ∀i ≥ 0. (3.6)

In essence, a system is simulatable if one can advance time stepwise, and
at each step, compute outputs from previously known inputs such that
the entire system trace can be determined inω steps. More specifically, the
resulting system trace of a simulatable system is constructed as follows.
Let σI be a trace on the input streams VI of the system and let ψ be the
trace mapping of the system. Assume that τ0, τ1, τ2, ... is the simulation
sequence for σI. Define a sequence of traces σ0, σ1, σ2, ... where σ0 is any
trace such that σ0|VI

= σI and σi+1 = ψ(σi). Since the system is simulatable,
we have σi ≃τi

σi+ j ∀i, j ≥ 0. Hence, the sequence σ0, σ1, σ2, ... converges
to a limit σ = ψω(σ0) which is the resulting system trace for the input σI.

3.3.1.4 Extensions for unbounded past

Let us now extend the above concepts to the case where the past is un-
bounded, that is, where there is no initial time point for the evolution of
a system. This case can be handled by adapting the above definitions as
follows:

• A time vector is a function τ : V 7→ R that assigns a time stamp to
each stream v ∈ V.

• For a given time vector τ, we say that σ0 is a possible system trace up
to τ if σ0 ≃τ ψ(σ0). We denote the set of traces σ such that σ ≃τ σ0 as
Cont(σ0, τ).

Note that now a time vector can also assign negative time stamps to
streams. In other words, time stamps can reach arbitrarily far into the
past. The set Cont(σ0, τ) can be interpreted as the set of all possible
continuations of the trace σ0 after the time vector τ.

Next, we define the concept of simulatability from a given time vector.
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Def. 12: (Simulatable system from time vector) Consider a system with a set of
streams V = VI ∪ VO. Let τ be an arbitrary real-valued time vector on VO. The
system is simulatable from τ if, whenever σ0 is a possible system trace up to τ,
there is a sequence τ0, τ1, τ2, ... of time vectors on VO with τi ≤ τ j for i < j,
τ0 = τ, and lim

i→∞
τi(v) = ∞ ∀v ∈ VO, called the simulation sequence for σ0 from

τ, such that for all traces σ, σ′ ∈ Tr(VI ∪ VO) with σ|VI
= σ′|VI

= σI it holds

σ ≃τi
σ′ ⇒ ψ(σ) ≃τi+1 ψ(σ′) ∀i ≥ 0. (3.7)

The difference with respect to Definition 11 is that the simulation sequence
does not start any longer at the origin of the time axis, but at a point in
time until which possible system traces are defined.

Def. 13: (Simulatable system (unbounded past)) A system is simulatable if it is
simulatable from any real-valued time vector τ.

In essence, a system with unbounded past is simulatable if it is always
possible to extend a partially defined system trace by means of simulation.
For a system that is simulatable from τ, we can construct the resulting
system trace σ = ψω(σ0) in the same way as above, starting from σ0 which
is now a possible system trace up to τ, i.e., σ ≃τ σ0.

3.3.1.5 Abstract characterization of streams, components and systems

MPA or SymTA/S do not reason about single traces of a system. Rather,
they use sets of traces to characterize streams. As we have seen in Sec-
tion 2.2.3, this is the main prerequisite for worst-case performance eval-
uation. In this section, we extend our abstract operational model to this
kind of stream characterization.

Def. 14: (Stream characterization) A characterization on a set V of streams is a function

Σ : V 7→ 2((R×R)7→R≥0) which assigns a set of traces Σ(v) to each stream v ∈ V.

For instance, a characterization Σ could specify upper and lower
bounds on the number of events that can arrive in a given time inter-
val. Similarly, it could specify bounds for the amount of resources which
are available in a given time interval. We use Char(V) to denote the set of
characterizations on a set V of streams. The restriction of a characteriza-
tion Σ to a subset of streams V′ ⊆ V is denoted Σ|V′ .

Def. 15: (Conformance of a trace w.r.t. a stream characterization) Let σ be a trace
on a set V of streams. Let Σ be a characterization on the same set V of streams.
Then, we say that σ conforms to Σ, denoted as σ |= Σ, if σ(v) ∈ Σ(v) ∀v ∈ V.

If a trace σ conforms to a characterization Σ, we also say that σ satisfies Σ.
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Def. 16: (Satisfiable characterization) LetΣ be a characterization on a set V of streams.
Σ is satisfiable if there exists a trace σ on V such that σ |= Σ.

The action of a component can now be seen as a transformation of stream
characterizations.

Def. 17: (Component characterization mapping) Consider a component with input
streams VI, output streams VO, and trace mapping ϕ. The component can
be specified by a characterization mapping Φ : Char(VI) 7→ Char(VO) from
characterizations on the set VI of input streams to characterizations on the set
VO of output streams. The mapping Φ is correct with respect to ϕ, i.e., it has the
property

σI(vi) |= ΣI(vi) ∀vi ∈ VI ⇒ ϕ(σI)(vo) |= Φ(ΣI)(vo) ∀vo ∈ VO. (3.8)

Similarly as for trace mappings, we can combine all component charac-
terization mappings to form a system characterization mapping.

Def. 18: (System characterization mapping) Consider a system with streams VI ∪

VO and system trace mapping ψ. The system can be specified by means of a
characterization mapping Ψ : Char(VI ∪ VO) 7→ Char(VI ∪ VO) which maps
any characterization of the system streams to another characterization of the
system streams. The mappingΨ is correct with respect to ψ, that is, it fulfils

σ |= Σ ⇒ ψ(σ) |= Ψ(Σ) ∀σ ∈ Tr(VI ∪VO),Σ ∈ Char(VI ∪VO). (3.9)

3.3.2 Correctness and Convergence

In this section we use the above general operational model to ascertain
the iterative computation of system characterizations. More specifically,
we investigate the correctness and convergence of such iterations. We
first discuss systems with an explicit starting point in time, and thereafter
extend the results to the case of unbounded past.

3.3.2.1 Correctness

Consider a simulatable system with a set of input streams VI and set of
internal streams and output streams VO. Let ψ be the trace mapping
of the system and let Ψ be a characterization mapping which is correct
with respect to ψ. Assume that ΣI is a characterization on VI that bounds
the input traces of the system. Let σI be any input trace with σI |= ΣI.
The basic question we need to study is whether the trace ψω(σI), i.e., the
resulting system trace on input σI, conforms to the limit of a sequence
Σ0,Ψ(Σ0),Ψ2(Σ0), .... In other words, we want to know whether the iter-
ation on system characterizations is correct with respect to the resulting
system trace ψω(σI).
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In the following, we answer this question by relating the iteration on
system characterizations to the evolution of system traces. To do so, it is
helpful to link the definition of trace conformance to a time vector.

Def. 19: (Conformance of trace up to time vector) Let τ be a time vector and Σ a
characterization on V. A trace σ conforms to Σ up to τ, denoted as σ |=≤τ Σ if
there exists a trace σ′ such that σ′ |= Σ and σ ≃τ σ

′.

We can now show that the iteration on an appropriate initial system
characterization is correct with respect to the behaviour of the system.

Thm. 2: Let τ0, τ1, τ2, ... be the simulation sequence for σI and let ψω(σI) be the resulting
system trace. If the characterization Σ0 is satisfiable and Σ0|VI

= ΣI then

ψω(σI) |=≤τi
Ψi(Σ0) ∀i ≥ 0. (3.10)

Proof. The system trace ψω(σI) is the limit of a sequence σ0, σ1, σ2, ...with
σ0|VI

= σI and σi+1 = ψ(σi). We can prove by induction that σi |=≤τi
Ψi(Σ0).

The base case σ0 |=≤0 Σ
0 results from σ0|VI

= σI, Σ0|VI
= ΣI, and the

satisfiability of Σ0. For the inductive step, assume that σi |=≤τi
Ψi(Σ0), i.e.,

there is a trace σ′ with σi ≃τi
σ′ such that σ′ |= Ψi(Σ0). Since ψ is correct

with respect to Ψ, we obtain ψ(σ′) |= Ψi+1(Σ0). Moreover, ψ(σi) ≃τi+1 ψ(σ′)
because the system is simulatable. Hence, we get ψ(σi) |=≤τi+1 Ψ

i+1(Σ0).
The conclusion of the theorem follows by noting that ψω(σI) ≃τi

σi ∀i ≥ 0.

�

Intuitively, Theorem 2 states that the behaviour of a system can be
safely bounded by iteratively applying the system characterization map-
pingΨ to a satisfiable initial system characterization Σ0 which is compat-
ible with the specification of the input streams ΣI. In other words, if the
iteration Σ0,Ψ(Σ0),Ψ2(Σ0), ... converges, then the fixpoint of the iteration
is a correct characterization of the system behaviour.

3.3.2.2 Convergence

Theorem 2 does not say anything about convergence of the iteration.
For practical reasons, we are obviously also interested in knowing when
the sequence Σ0,Ψ(Σ0),Ψ2(Σ0), ... converges and, in particular, in how to
choose Σ0. To investigate these questions, let us ascertain the ordering of
stream characterizations.

Def. 20: (Partial order on Char(V)) Let V be a set of streams. The conformance relation
|= establishes a natural partial order ⊑ on the set of all characterizations Char(V)
which is defined as

Σ ⊑ Σ′ ⇔ ( σ |= Σ ⇒ σ |= Σ′ ∀σ ∈ Tr(V) ) (3.11)
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We assume that the considered systems fulfil the following conditions:

1. The system is simulatable.

2. The set Char(V) with the partial order ⊑ forms a chain-complete
partially ordered set, that is, any chain Σ0 ⊑ Σ1 ⊑ Σ2 ⊑ ... has a least
upper bound ⊔

i≥0
Σi.

3. The satisfaction of a characterization Σ is a safety property, that is,

σ |=≤τ Σ ∀τ ⇒ σ |= Σ. (3.12)

4. For any trace σ ∈ Tr(V) there is a least (strongest) characterization
Σσ such that σ |= Σσ.

5. The system characterization mappingΨ is monotone, that is,

Σ ⊑ Σ′ ⇒ Ψ(Σ) ⊑ Ψ(Σ′). (3.13)

6. The system characterization mappingΨ is continuous, that is,

Ψ(⊔
i≥0
Σi) = ⊔

i≥0
Ψ(Σi) (3.14)

for any chain Σ0 ⊑ Σ1 ⊑ Σ2 ⊑ ... .

Based on the above assumptions, we can draw formal conclusions on the
convergence of iterative applications ofΨ, as well as on the optimality of
fixpoints.

Thm. 3: Among all characterizations Σ such that Σ|VI
= ΣI and that are satisfiable by

at least one actual system trace, Ψ has a unique smallest fixpoint Σ∗ which is
satisfied by all traces σ with σ|VI

|= ΣI.

Proof. Let σ be some actual system trace with σ|VI
|= ΣI, and let Σσ be

the strongest characterization of σwith Σσ|VI
= ΣI. SinceΨ is correct with

respect to ψ, we have ψ(σ) = σ |= Ψ(Σσ) and hence Σσ ⊑ Ψ(Σσ). By mono-
tonicity of Ψ, we obtain Ψk(Σσ) ⊑ Ψk+1(Σσ) ∀k ≥ 0. This means that the
sequence Σσ,Ψ(Σσ),Ψ2(Σσ)... converges to a fixpoint Σ∗ which is the least
upper bound of the chain Σσ ⊑ Ψ(Σσ) ⊑ Ψ2(Σσ) ⊑ ... . Moreover, because
of Theorem 2 and the assumption that the satisfaction of a characteriza-
tion is a safety property, it holds that σ′ |= Σ∗ for any system trace σ′ with
σ′|VI

|= ΣI. It remains to show that the same fixpoint is reached no matter
which system trace is used for constructing the initial characterization.
Consider two distinct system traces σ1, σ2 with σ1|VI

|= ΣI and σ2|VI
|= ΣI.

Let Σσ1 , Σσ2 be the corresponding strongest characterizations. Let Σ∗1, Σ∗2
denote the fixpoints reached by the iterations Σσ1 ,Ψ(Σσ1),Ψ

2(Σσ1), ... and
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Σσ2 ,Ψ(Σσ2),Ψ
2(Σσ2), ..., respectively. Due to Theorem 2 we have that Σ∗1

covers all possible system traces. In particular, it must hold Σσ2 ⊑ Σ
∗
1. By

monotonicity of Ψ, we obtain Ψk(Σσ2) ⊑ Ψ
k(Σ∗1) = Σ∗1 ∀k ≥ 0 and hence

Σ∗2 ⊑ Σ
∗
1. By applying the same reasoning to Σσ1 and Σ∗2, we get Σ∗1 ⊑ Σ

∗
2

and hence Σ∗1 = Σ
∗
2.

�

The above theorem guarantees convergence to the optimal fixpoint if
the particular characterization Σσ is used as starting point for the iteration
where σ is some actual system trace. It is, however, also possible to
generalize this result to initial characterizations Σ0 with Σσ ⊑ Σ0 ⊑ Σ∗.

Cor. 1: The optimal fixpoint Σ∗ of Ψ can be obtained as the limit of a sequence
Σ0,Ψ(Σ0),Ψ2(Σ0), ... of characterizations, provided that

• Σ0|VI
= ΣI

• Σ0 is satisfied by at least one actual system trace

• Σ0 ⊑ Σ∗

Proof. By assumption we have Σσ ⊑ Σ0 ⊑ Σ∗. Since Ψ is monotone, we
obtain Ψk(Σσ) ⊑ Ψk(Σ0) ⊑ Σ∗ ∀k ≥ 0. It follows that also the sequence
Σ0,Ψ(Σ0),Ψ2(Σ0)... converges to Σ∗.

�

Intuitively, Theorem 3 and Corollary 1 state that there is a unique least
fixpoint among all characterizations of a system which are compatible
with the specification of the input streams. Further, this fixpoint can be
obtained by iterating on a system characterization which is satisfied by an
actual system trace. Hence, if we can construct one actual system trace,
then we can also bound all possible traces of the system by means of a
fixpoint computation.

3.3.2.3 Extensions for unbounded past

The above results on correctness and convergence of fixpoint iterations
can be easily extended to systems without an explicit starting point, that
is, with unbounded past. The basic idea for adapting Theorems 2, 3 and
Corollary 1 to this case is to consider possible system traces up to a general
time vector τ.

Thm. 4: Let σ0 be a possible system trace up to a time vector τ with σ0|VI
|= ΣI. Let

τ0, τ1, τ2, ... be the simulation sequence for σ0 from τ. If σ0 |= Σ0, then

ψω(σ0) |=≤τi
Ψi(Σ0) ∀i ≥ 0. (3.15)



74 Chapter 3. Cyclic Dependencies

Proof. Analogous to the proof of Theorem 2.

�

Thm. 5: Let σ0 be a possible system trace up to a time vector τ with σ0|VI
|= ΣI. Among

all characterizations Σ such that Σ|VI
= ΣI and that are satisfied by at least one

actual system trace in Cont(σ0, τ),Ψ has a unique smallest fixpoint Σ∗ which is
satisfied by all traces σ ∈ Cont(σ0, τ) with σ|VI

|= ΣI.

Proof. Analogous to the proof of Theorem 3.

�

Cor. 2: The optimal fixpoint Σ∗ of Ψ can be obtained as the limit of a sequence
Σ0,Ψ(Σ0),Ψ2(Σ0), ... of characterizations, provided that

• Σ0|VI
= ΣI

• Σ0 is satisfied by at least one actual system trace in Cont(σ0, τ)

• Σ0 ⊑ Σ∗

Proof. Analogous to the proof of Corollary 1.

�

3.4 Fixpoint Computations in MPA

Let us now discuss how to transfer the results of Section 3.3 to the for-
malism of MPA with RTC. The aim is to guarantee the correctness and
convergence of fixpoint iterations in the framework of MPA.

3.4.1 Verification of Assumptions

Consider a general MPA system S with a set of streams V = Vr ∪ Vc

where Vr represents the set of event streams and Vc the set of resource
streams. In the MPA view, a trace σ on V corresponds to the assignment
of an arrival function r(s, t) to each event stream v ∈ Vr and of a service
function c(s, t) to each resource stream v ∈ Vc. Similarly, a characterization
on V corresponds to the assignment of a tuple of arrival curves α =
[αu, αl] to each event stream v ∈ Vr and of a tuple of service curves
β = [βu, βl] to each resource stream v ∈ Vc. In MPA, the trace mapping ϕ
and the characterization mapping Φ of a system component are specified
by appropriate transfer functions (r′, c′) = ϕ(r, c) and (α′, β′) = Φ(α, β), see
Sections 2.2.2.2 and 2.2.3.4. The trace mapping ψ and characterization
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mappingΨ of an MPA system are then simply obtained by combining all
transfer functions ϕ and Φ of the individual MPA components.

In order to carry over the results on correctness and convergence of
fixpoint iterations to MPA, we need to carefully verify that all assumptions
made in Section 3.3 are met by MPA systems. In particular, we must
ensure that the following requirements are met:

1. The MPA system S is simulatable.

In general, not every system is simulatable. We can, however, de-
fine two practically unrestrictive conditions which are sufficient to
guarantee simulatability:

• For each MPA component of S, the time needed to process an
input event is > 0.

• S does not have any cycle of resource streams.

The above conditions can be informally justified as follows. For each
component, the future output can be predicted until the next point
in time when it receives an input event, or until the availability
of resources changes. Hence, given the input traces of S and an
arbitrary time point t, it is possible to infer a simulation sequence
for S uniquely, that is, an increasing sequence of time points t0 =

t, t1, t2, ... at which some event or resource streams of the system
evolve.

2. The tuple (Char(V),⊑) forms a chain-complete poset.

This condition requires that every chain of characterizations Σ0 ⊑

Σ1 ⊑ Σ2 ⊑ ... has a least upper bound. Translated to the domain
of MPA, it means that the sets of upper arrival curves and upper
service curves need to have upper bounds and, analogously, the
sets of lower arrival curves and lower service curves need to have
lower bounds. The sets of lower arrival curves and lower service
curves have the implicit lower bounds αl(∆) = 0 ∀∆ > 0 and βl(∆) =
0 ∀∆ > 0, respectively. However, the set of upper arrival curves
has no natural upper bound. The reason is that for any given upper
arrival curve αu

1 it is always possible to find another curve αu
2 such

that αu
1(∆) > αu

2(∆) ∀∆ > 0. Therefore, we augment the set of upper
arrival curves by all curves αu with αu(∆) = ∞ ∀∆ ≥ ∆0 for some
∆0 > 0. This extension is not necessary for the set of upper service
curves, since any resource availability is upper bounded by a curve
βu(∆) = c · ∆ where c represents the maximum bandwidth of the
resource, i.e., the maximum amount of service units provided per
time unit. As a result, we can guarantee that the extended set of
stream characterizations in MPA forms a chain-complete poset.
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3. The satisfaction of a characterization Σ is a safety property.

In the setting of MPA, the requirement (3.12) translates to

αl(t − s) ≤ r(s, t) ≤ αu(t − s) ∀s ≤ t ⇒ r |= α
βl(t − s) ≤ c(s, t) ≤ βu(t − s) ∀s ≤ t ⇒ c |= β,

(3.16)

which is satisfied by definition of arrival and service curves (cf.
Relations (2.9) and (2.15)).

4. For any trace σ there is a strongest characterization Σσ with σ |= Σσ.

In MPA, the strongest characterization of a trace is obtained by
means of Equations (2.11), (2.12), (2.17), and (2.18).

5. The system characterization mappingΨ is monotone.

For the sake of simplicity, we limit the verification of this require-
ment to a single GPC component as described in Section 2.2.3.4. Let
us abbreviate the transfer functions (2.20)-(2.23) with

α′ = ΦGPC,α(α, β) and β′ = ΦGPC,β(α, β).2

We have to verify that

Rα1 ⊆ Rα2 ⇒ RΦGPC,α(α1,β) ⊆ RΦGPC,α(α2,β) ∀α1, α2, β

Cβ1 ⊆ Cβ2 ⇒ RΦGPC,α(α,β1) ⊆ RΦGPC,α(α,β2) ∀α, β1, β2

Rα1 ⊆ Rα2 ⇒ CΦGPC,β(α1,β) ⊆ CΦGPC,β(α2,β) ∀α1, α2, β

Cβ1 ⊆ Cβ2 ⇒ CΦGPC,β(α,β1) ⊆ CΦGPC,β(α,β2) ∀α, β1, β2,

where Rα denotes the set of all event traces that conform to α, and Cβ

the set of all resource patterns that conform to β. These propositions
are clearly satisfied as for a GPC component an extension of the
input traces cannot lead to a restriction of the output traces.

6. The system characterization mappingΨ is continuous.

By applying similar reasoning as for monotonicity, also this require-
ment can be ensured for MPA components.

The above properties ensure that Theorems 2, 3, 4, 5, as well as Corol-
laries 1 and 2 can be directly applied to guarantee the correctness and
convergence of fixpoint iterations in MPA. There is, however, one more
thing to take into account: As stated by the theorems of Section 3.3, the
iteration converges to the optimal fixpoint Σ∗ only if the initial character-
ization Σ0 of the system is satisfied by an actual system trace and Σ0 ⊑ Σ∗.
How to get such a characterization will be discussed next.

2In the case of bounded past we consider Equations (2.28) and (2.29) instead of
Equations (2.21) and (2.22).
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3.4.2 Obtaining an Initial Characterization

The simplest way to obtain Σ0 is to construct an actual system trace σ by
means of a simulation and then to determine its strongest specification
Σσ. The simulation of an MPA model can be performed with various
discrete event simulators. For instance, system-level simulators such
as PESIMDES [Per] (limited to PJD inputs) or the Real-Time Simulation
Toolbox [TS] can be used to this end. The task is simplified by the fact
that any arbitrary system trace is adequate, as long as it conforms to the
specification of the input streams ΣI. Hence, input traces with highly
regular patterns, e.g. periodic input traces, can often be employed to
trigger the simulation.

An alternative way for constructing an initial characterization Σ0 is to
employ analytic techniques such as the method proposed by Schiøler et
al. in [SJDL05]. More specifically, in [JPTY08] we further strengthen the
theorems of Section 3.3 such that the convergence of a fixpoint iteration
can be ensured whenever the initial characterization Σ0 is satisfiable, that
is, even if Σ0 is not satisfied by an actual system trace. This extension
permits us to start fixpoint iterations with a characterization Σ0, derived
from long-term rates of system streams, as first proposed in [SJDL05].

3.4.3 Summary of the Method

Let us summarize the proposed methodology for analyzing MPA systems
with non-functional cyclic dependencies.

1. Construct some trace σ for the system such that σ|VI
|= ΣI and σ |= Σ∗.

Such a trace can be determined by means of a simulation. The task
is made easier by the fact that only one trace is needed and that the
trace can be chosen as regularly as possible.

2. Determine the strongest characterization Σσ for σ by means of Equa-
tions (2.11), (2.12), (2.17), and (2.18). Use Σσ as initial characteriza-
tion Σ0.

3. Perform the fixpoint iteration Σ0,Ψ(Σ0),Ψ2(Σ0), ..., that is, apply the
transfer functions of all MPA components until a stable characteri-
zation Σ∗ is reached. Σ∗ is the optimal fixpoint ofΨ.

An alternative to steps 1. and 2. is to construct an initial characterization
Σ0 for the system by the analytic technique of [SJDL05].

In short, the recommended way to compute fixpoints is to start from
a strong initial characterization which is included in the sought optimal
fixpoint and thereafter to iterate towards a fixpoint. We observe that
the dual approach - starting from a weak initial characterization and
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iterating towards a stronger solution - will often lead to poor precision,
as illustrated by the example in Section 3.2.

3.5 Experiments

In this section, we show how the fixpoint iteration described above suc-
ceeds in the analysis of a concrete example system with a non-functional
cyclic dependency. Consider the system depicted in Figure 33. It consists
of a sequence of three tasks T1, T2 and T3 that process a periodic event
stream αI . The system has two processing resources with resource avail-
ability βI(∆) = βII(∆) = ∆. The first processor is shared by T1 and T3 and
implements preemptive fixed priority scheduling with T3 having higher
priority than T1. The second processor executes T2 only. The system
contains a non-functional cyclic dependency since T1 indirectly triggers
T3 while T3 preempts T1.

T1

T2T3

αI α′

α′′

βI

β′

βII

Fig. 33: MPA model for experiment

We assume that the input event stream αI is strictly periodic with a period
P of 10 time units, that is,

αu
I (∆) =

⌈

∆

10

⌉

and αl
I(∆) =

⌊

∆

10

⌋

.

Further, we assume that T1, T2 and T3 have constant event processing
times of 4, 7 and 5 time units, respectively. We want to compute bounds for
the event streams α′, α′′ and for the service stream β′ shown in Figure 33.

In order to find an appropriate initial characterization for the fixpoint
iteration, we first simulate the system execution. For this simulation we
use the PESIMDES tool [Per]. Since the system architecture is simple, the
simulation could also be performed by hand without much effort. We
observe that after an initial transitory phase, task T1 produces output
events for task T2 with a recurring timing pattern. In particular, it pro-
duces events with consecutive distances of 4 time units, 16 time units, 4
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time units, 16 time units etc. This makes it easy to characterize the trace
σ of the event stream T1-T2, and find the strongest characterization Σσ of
this trace in terms of upper and lower arrival curves. The corresponding
arrival curves are depicted in Figure 34.
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α′u (0)

α′l (0)

Fig. 34: Strongest characterization of the simulated trace T1-T2

We then use these arrival curves as initial characterization for the fixpoint
iteration in MPA. More specifically, we model the tasks T1, T2 and T3 with
three GPC components, and repeatedly compute their outgoing arrival
and service curves according to Equations (2.20)-(2.23), and in the order
T2, T3, T1. After 4 iterations we reach a fixpoint, that is, all the arrival
curves and service curves in the MPA model are stable. The iteration
sequence for α′, α′′, and β′ as well as the final characterizations of these
streams are shown in Figures 35, 36(a), and 36(b), respectively.

Note that the optimal fixpoint for the system characterization map-
ping Ψ does not necessarily correspond to a tight characterization of the
individual streams in a system. For example, in the considered system,
the initial characterization α′(0) is satisfied not only by the simulated sys-
tem trace σ but by all traces that the system can exhibit. In fact, these
traces differ only by the arrival time of the first event, as this is the
only non-deterministic element of the system. In other words, α′(0) is a
tight characterization of the stream T1-T2. Nevertheless, in Figure 35 we
can observe that the performed fixpoint iteration leads to a considerably
weaker, i.e. less accurate, characterization α′(∗). Similar reasonings apply
to the streams α′′ and β′.

The potentially poor precision of fixpoint solutions in compositional
performance analysis was already pointed out in Section 2.3.4.3. The
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Fig. 35: Iteration sequence for the stream α′
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Fig. 36: Iteration sequences for the streams α′′ (a) and β′ (b)
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reasons for this common effect are not yet fully clarified. For sure the
implicit abstraction losses of the transfer functions (2.20)-(2.21) play an
important role. Nevertheless, it is not clear why in fixpoint solutions the
abstraction losses are often particularly pronounced.

Moreover, the accuracy of fixpoint characterizations basically seems
to be unpredictable. In order to illustrate this, let us slightly modify the
above example system by reducing the processing time of task T2 to 2
time units. By following the same analysis approach as before, we obtain
the iteration sequence of Figure 37 for α′, where we stopped the fixpoint
computation after 30 iterations. In the figure, successive iterations are
represented in alternate colors. The figure shows that with the proceeding
iteration, the characterization of α′ becomes progressively weaker and
finally looses all information about the stream. In essence, the experiment
shows that small variations in the configuration of a cyclic system may
have a strong impact on the results of the performance analysis.
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Fig. 37: Iteration sequence for the characterization α′ in the modified system

3.6 Related Work

The general topic of modelling (cyclic) systems as transformers of streams
goes back to Kahn process networks [Kah74] (extension to real-time
in [Yat93]). The major difference between such dataflow models and
our operational model is that we do not compute fixpoints to determine
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the actual behaviour of a system. Rather, we consider fixpoints of con-
straints on system behaviours. Consequently, our model can be employed
as operational semantics for quantitative worst-case formalisms such as
MPA or SymTA/S.

Within the domain of compositional performance evaluation, Jersak et
al. [JRE05] first proposed using fixpoint iterations to handle cyclic systems
in the context of SymTA/S. They consider the special case of systems in
which event streams are abstracted by means of PJD event models. The
approach is limited in terms of the underlying abstraction in the sense that
it cannot be extended to other compositional formalisms such as MPA. It
makes only informal statements about convergence properties of fixpoint
iterations. Moreover, it does not discuss the influence of initial system
approximations on the result of fixpoint iterations.

Schiøler et al. presented a method for the analysis of cyclic systems
with Network Calculus [SJDL05]. The method employs analytical long-
term rates of streams to construct an initial characterization of a system,
and thereafter iterates towards a fixpoint. The authors of the method
show that, under some assumptions, the iteration converges to an optimal
fixpoint. However, the method does not explicitly define an operational
model of system behaviours. In addition, the statement on correctness of
fixpoints seems to rely on unstated assumptions regarding causality or
absence of zero-delay cycles.

Following the original publication of our results in [JPTY08], Stein et
al. established a similar mathematical framework to prove the correctness
and convergence of fixpoint iterations in the SymTA/S approach [SDI+08].
Under similar assumptions, e.g. monotonicity and continuity of transfer
functions, they prove that the SymTA/S analysis converges to an optimal
fixpoint. Furthermore, they show that in an iteration, the same fixpoint is
found irrespective of the particular sequence of local component evalua-
tions.

Lastly, in [TS09] Thiele et al. described a method to handle functional
cycles in MPA. The method extends the MPA analysis framework to cyclic
dataflow graphs such as SDF (synchronous dataflow), or marked graphs.
The approach enables the analysis of applications that are specified as
dataflow graphs, and executed on distributed systems with resource shar-
ing mechanisms such as Fixed Priority (FP) or Time Division Multiple
Access (TDMA). As the method is very general, it permits the designer to
analyze many practically relevant scenarios such as systems with finite
buffers and back-pressure effects due to blocking write semantics.
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3.7 Summary

In this chapter we discussed the performance analysis of distributed sys-
tems with non-functional cyclic dependencies. We formally justified the
natural approach of using fixpoint iterations to handle such dependen-
cies in compositional performance analysis. More specifically, we proved
that fixpoint iterations in MPA are correct in the sense of faithful to the
behaviour of the system, if the initial system characterization is chosen ap-
propriately, and the system meets some mild assumptions such as being
simulatable. We also devised conditions under which fixpoint iterations
in MPA converge. The main result is a method that leads to the optimal
fixpoint of a system. Our findings are not limited to MPA but can be
transferred to other compositional formalisms such as SymTA/S.

In order to obtain these results, we developed a general operational
model underlying the MPA framework. The model represents stream-
oriented distributed systems in an abstract and compositional fashion.
We first looked at systems with an explicit starting point on the time axis
and then generalized the results to the case of unbounded past. Our
research indicates that the recommended way to determine fixpoints is to
start from a strong initial characterization of the system, which is included
in the sought optimal fixpoint, and then to iterate towards the fixpoint
while obtaining weaker and weaker system characterizations.

A fundamental step of the approach is finding a suitable initial system
characterization. For this step, we suggested the use of simulation. An
alternative method is the technique proposed by Schiøler et al. [SJDL05],
which relies on determining long-term rates of system streams.

Finally, we studied the precision of fixpoints in MPA. We showed that
the abstraction loss experienced when analyzing systems with cyclic de-
pendencies may be considerable, even for simple system architectures.
In addition, we showed that it is very hard to predict the abstraction
loss experienced in a fixpoint iteration. This was highlighted by a simple
experiment, in which a small variation in the setup of a system severely
affected the precision of the obtained fixpoint. How to effectively pre-
vent the abstraction losses experienced with fixpoint iterations in MPA or
SymTA/S remains an open issue.
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4
Structured Event Streams

The MPA formalism assumes that all events or data token in a stream are
homogeneous. However, this is often not the case in real systems. Com-
plex stream-processing systems commonly contain streams that consist
of event or data token of different types. In many cases, the particular
type of a token determines not only the processing demand imposed on
individual system components, but also how the token is routed through
the network of components. In other words, events or data packets of
different types may follow different processing paths in a distributed sys-
tem. For instance, one can often observe the design pattern in which
different event or data streams are merged into a joined stream which
is processed by various system components, and then again split into
individual sub-streams. Since such patterns cannot be captured in usual
MPA models, one often faces serious abstraction losses when analyzing
the performance of real systems. In this chapter, we extend the MPA
framework such that it supports the modelling of such join/split scenar-
ios. Specifically, we present two new methods that allow us to do so. The
first method employs the abstract FIFO component introduced in Chap-
ter 2, whereas the second method is based on Event Count Curves, an
abstraction to represent the structure of a joined event stream.

4.1 Introduction

In distributed embedded systems that involve complex communication
systems such as networks or buses, different event or data streams are of-
ten merged, transmitted over shared communication channels, and then
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separated again into individual streams. For example, data from different
streams could be combined into frames that are transmitted over a net-
work. In [RE08] such a combined stream is denoted as hierarchal event
stream (HES). After the delivery of a frame, the data is unpacked, that
is, the hierarchical data stream is split into its composing sub-streams.
Another related scenario that does not involve packaging is illustrated in
Figure 38. In this case, different event streams are simply merged to a
single stream which is processed by an arbitrary complex subsystem, and
then decomposed into individual sub-streams. There are many practical
systems where these scenarios apply. For instance, they are encountered
in the automotive domain in standards such as AUTOSAR or Flexray.

Fig. 38: Joining and forking of streams

In this chapter, we introduce abstractions that permit us to take into
account such scenarios in MPA. The main result is a method that allows
us to join and fork abstract event streams with high accuracy without ex-
plicitly maintaining the types of individual events in the abstract stream
models. The method is based on Event Count Curves, a model for the
representation of structures in heterogeneous event streams. The concept
of Event Count Curve is orthogonal to previously used stream repre-
sentations such as PJD models and arrival curves. It is transparent to
existing analysis components, and hence well suited to being embedded
into analysis frameworks such as MPA or SymTA/S.

4.1.1 Motivational example

In this section, we describe a concrete distributed system in which dif-
ferent event streams are merged, processed and separated again. The
simple system highlights the need for appropriate models in analytic per-
formance analysis. It serves as example throughout the chapter, and is
used to illustrate the presented methods. In Section 4.3.5 we provide the
analysis of the example system and discuss the obtained results.
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Fig. 39: MPA model of example system

The MPA model of the considered system is represented in Figure 39.
It contains various event streams that are represented by arrival curves
α. The arrival curves model the flow of data through the system. The
system consists of several GPC components that represent computation
or communication tasks. The service curves β model the amount of
computation or communication resources available to the single tasks.

The system processes five input event streams αi j that are joined (J)
and forked (F) several times between the individual processing compo-
nents. We assume ’OR’ semantics for the join operator. This means that
it produces one output event for each input event arriving on any of the
inputs. We assume that the events of the joined stream are distinguishable
with respect to their provenance. In particular, we say that an event is
’of type ex’ if it origins from the stream αx. We also adopt this notation in
the remainder of the chapter. Note that in the case of successive joins, the
single events of a joined stream belong to several types. For instance, in
the model shown in Figure 39, an event in the stream α′ originating from
stream α12 is of type e1 but at the same time of type e12. For the forking
of streams, we assume that every input event is forwarded to only one
output stream, depending on its type. In the figure, the indices of the
event streams denote the processing paths followed by the various event
types. For instance, the streams represented by α21 and α′′′21 contain events
of the same type.

We assume that both CPU1 and CPU2 implement preemptive fixed-
priority scheduling, where task T1 has higher priority than task T2, and
task T3 has higher priority than task T4. Further, we assume that all
input event streams are periodic streams with jitter, and that the tasks
are characterized by best-case and worst-case execution times (BCET,
WCET). The corresponding parameters can be found in Table 3. The goal
of the analysis is to characterize the output event streams as precisely as
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possible.

Stream Period Max. Jitter

α11 100 30

α12 90 15

α21 30 0

α22 80 20

α23 75 5

Task BCET WCET

T1 2 3

T2 3 4

C1 9 12

T3 2 3

T4 4 5

Tab. 3: Parameters for the example system

4.1.2 Terminology

In this chapter, we distinguish simple and structured event traces. The
former term refers to an event trace in which all events are of the same
type. The latter is used for traces in which the events are of different types.
A structured event trace results whenever several simple (or structured)
event traces are joined, see Figure 40 for a graphical illustration. We also
denote structured event traces as joined event traces.

We apply the same distinction to abstract event streams: A simple event
stream is a set of simple event traces (assuming a unique event type for
the different traces); a structured event stream is a set of structured event
traces (assuming common event types for the different structured traces).
A formal definition of these terms follows in Section 4.3.1. We also denote
structured event streams as joined event streams.

Simple event trace Structured event trace

Join: FIFO semantic Fork: Based on event type

Fig. 40: Simple and structured event traces
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4.1.3 Organization

This chapter is organized as follows. In Section 4.2 we briefly describe
how the abstract FIFO component of the MPA framework can be used
to handle joined event streams. In Section 4.3 we introduce the concept
of Event Count Curves (ECC) and illustrate how it can be employed for
abstractly modelling join and fork operations on event streams. Thereby,
we distinguish two alternatives for the application of ECCs in complex
systems (hierarchical vs. flat arrangement of ECCs). Further, we apply
the proposed methods to the example system, and compare the obtained
results. In Section 4.4 we describe a realistic case study. We conclude the
chapter with a discussion of related work in Section 4.5, and a summary
in Section 4.6.

4.2 FIFO Scheduling

A first alternative for modelling the processing of a joined event stream
in MPA is to keep the individual sub-streams separated in the model, and
to adapt the abstraction of the corresponding processing components
such that they explicitly handle multiple input streams. To this end, we
use the abstract FIFO component for the MPA framework introduced
in Section 2.2.3.5. The use of the FIFO component for modelling the
processing of a joined event stream is justified by the observation that
the merging of two or more event traces preserves the arrival order of
the individual events. In other words, processing the events of a joined
stream by means of an abstract GPC component is semantically equivalent
to processing the events of the various sub-streams with an abstract FIFO
component. A simple example of this modelling principle is shown in
Figure 41. On the left-hand side, the figure shows the processing of a
joined event stream by a task T. After the processing the stream is forked
into its composing sub-streams. On the right-hand side, the figure shows
the equivalent model making use of a FIFO component. The component
represents the processing of two equivalent tasks T that are scheduled in
FIFO order of their activations.

The described modelling method represents structured streams as
bundles of distinct streams. Hence, each time a system processes a struc-
tured stream, in the MPA model this has to be considered by abstracting
the corresponding task by means of a FIFO component that processes a
bundle of streams. This approach allows the modelling of arbitrary com-
positions and decompositions of event streams. However, it has a major
drawback. It is not transparent to the existing abstract performance com-
ponents of the MPA framework. In particular, it requires the explicit
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Fig. 41: FIFO model for the processing of a structured stream

adaptation of all the components of a model that process a structured
event stream.

4.3 Event Count Curves

In this section, we introduce a second method for handling structured
event streams that does not have the above limitation. The approach is
based on the concept of Event Count Curves (ECC), a model that repre-
sents the structure of joined streams.

The method applies join and fork operations on abstract event streams
to compose and decompose structured streams. It is based on the fact that
the order of the events in a trace is preserved no matter how many and
what kind of components process the trace. Hence, when merging differ-
ent event streams into a structured one, we can store some information
about the structure of the resulting stream, and then use this information
at a later stage to split the structured stream again. Obviously, it is not
wise to store the exact event type sequence for every possible trace of
the structured stream, as this would result in an unbearable modelling
overhead. However, for any sequence of events in a structured stream,
we can still bound the number of events belonging to a given sub-stream,
which is the main idea behind ECCs.

Note that the concept of ECCs is orthogonal to any event stream model
such as PJD or arrival curves; event stream models describe the timing of
event occurrences in event traces, whereas ECCs describe the occurrence
of particular event types in sequences of heterogeneous events. Further,
note that ECCs are involved in join/fork operations of event streams only;
they are ignored (and also not affected) by the performance components
of an MPA model. In other words, the abstraction of ECCs is totally
transparent to all existing MPA component models, which means that the
compositionality of the formalism is preserved.
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4.3.1 Definitions

In this section, we formally define some terms that are relevant to the
handling of structured event streams.

Def. 21: (Structured event trace) A structured event trace with event types ei, i ∈ I is
described by a set of arrival functions ri(s, t), i ∈ I. For some given times s and t
with s < t, ri(s, t) denotes the number of events of type ei that arrive in the time
interval [s, t).

Note that, for a given a set of arrival functions ri(s, t), we can unequiv-
ocally determine the type and the timing of the individual events in the
structured trace.

To characterize a structured event stream, we use a tuple of arrival curves
that bound the total number of events which arrive in the stream and,
in addition, a tuple of ECCs for each event type ei. Intuitively, an ECC
bounds the number of events that belong to a particular type within a
given number of consecutive events of the structured stream.

Def. 22: (Structured event stream) A structured event stream is characterized by a
tuple of arrival curves α(∆) = [αu(∆), αl(∆)], ∆ ≥ 0 and multiple tuples of
ECCs γi(n) = [γu

i
(n), γl

i
(n)], n ≥ 0, one tuple for each event type ei, i ∈ I. The

upper and lower arrival curves bound the total number of events arriving in the
structured stream, i.e., for any time interval [s, t) with s < t, i ∈ I we have

αl(t − s) ≤
∑

i∈I

ri(s, t) ≤ αu(t − s) (4.1)

The upper and lower ECCs bound the number of events of type ei within a certain
number of consecutive events of the structured stream, i.e., for all s < t and i ∈ I
we have

γl
i(
∑

j∈I

r j(s, t)) ≤ ri(s, t) ≤ γu
i (
∑

j∈I

r j(s, t)) (4.2)

For the single sub-streams that compose a structured stream, we can again
define ordinary arrival curves.

Def. 23: (Arrival curves for sub-streams) For each event type ei, i ∈ I, of a structured
event stream, the arrival curves αi(∆) = [αl

i
(∆), αu

i
(∆)], ∆ ≥ 0, satisfy

αl
i(t − s) ≤ ri(s, t) ≤ αu

i (t − s) (4.3)

for all s < t.

Let us now illustrate the concept of ECCs by means of a simple example.
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Ex. 1: Consider two strict periodic event streams α1 and α2 with periods p1 = 10 and
p2 = 20, respectively. Two example traces for the two streams are shown on the
left side of Figure 42(a). Consider now the structured event stream α obtained
by joining the simple event streams α1 and α2. A representative trace for α is
shown on the right side of Figure 42(a). The ECCs γ1 and γ2 which describe the
structure of the joined stream α are depicted in Figure 42(b). For any number
of consecutive events in α, γ1 and γ2 specify bounds on the number of possible
occurrences of events of type 1 and 2, respectively. For instance, for 5 consecutive
events in the structured stream α, at least 3 and at most 4 events are of type 1,
or in short, γl

1(5) = 3 and γu
1(5) = 4.

t

t

t

representative trace for stream

representative trace for stream

representative trace for the

structured stream

1 1 1 1 1 1 1 1

2 2 2 2

1 2 1 1 2 1 1 1 1 12 2

α1

α2

α

(a) Event traces used in Example 1.
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Fig. 42: Representative event traces and ECCs for Example 1

Please note that ECCs are defined for integer values only. In Figure 42(b)
the interconnecting lines are shown for illustration purposes only.

In the following sections we will also use the concept of pseudo-inverses
of arrival curves and ECCs.
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Def. 24: (Pseudo-inverse of arrival curve) The pseudo-inverses of upper and lower
arrival curves α(∆) = [αu(∆), αl(∆)] are defined as

α−u(n) = inf{∆ ≥ 0 : αu(∆) ≥ n} (4.4)
α−l(n) = sup{∆ ≥ 0 : αl(∆) ≤ n} (4.5)

Upper and lower arrival curves αu(∆) and αl(∆) denote the maximum
and minimum number of events that may arrive in a stream in any time
interval of length ∆ ∈ R≥0, respectively. Their pseudo-inverses have the
following interpretation: α−u(n) denotes the length of the shortest time
interval in which there can be n event arrivals in the stream; α−l(n) denotes
the length of the longest time interval with n event arrivals.

Def. 25: (Pseudo-inverse of ECC) The pseudo-inverses of upper and lower ECCs
γi(n) = [γu

i
(n), γl

i
(n)] are defined as

γ−u
i (ni) = inf{n ≥ 0 : γu

i (n) ≥ ni} (4.6)
γ−l

i (ni) = sup{n ≥ 0 : γl
i(n) ≤ ni} (4.7)

Upper and lower ECCs γu
i
(n) and γl

i
(n) denote the maximum and mini-

mum number of events of type ei in any sequence of n ∈ N events of the
structured stream, respectively. Their pseudo-inverses are interpreted as
follows: γ−u

i
(ni) denotes the minimum length of an event sequence that

contains ni events of type ei; γ−l
i

(ni) denotes the maximum length of a
sequence with ni events of type ei.

4.3.2 Join and Fork of Simple Event Streams

Let us now show how ECCs can be computed when several event streams
are joined, and how they are utilized to split structured streams into sub-
streams.

J

α1

αn

α

γ1, ..., γn

(a)

F

α1

αn

α

γ1, ..., γn

(b)

Fig. 43: (a) Join operator for merging n event streams into one structured event stream.
(b) Fork operator for decomposing a structured event stream into n sub-streams.

Consider first the fork operator shown in Figure 43(b). Given the joined
event stream and the various ECCs that describe its structure, we can
derive the individual sub-streams as follows.
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Thm. 6: Given is a structured event stream with arrival curve α and ECCs γi, i ∈ I.
Then, we have

αu
i (∆) = γu

i (αu(∆)) (4.8)
αl

i(∆) = γl
i(α

l(∆)) (4.9)

Proof. The evaluation of αu(∆) gives the maximum number n of events in
the structured stream for a given interval∆. This number can be translated
using γu

i
which, by definition, determines the maximum number of events

of type ei in a sequence of n events in the structured stream. The proof for
αl(∆) is analogous.

�

Consider now the join operator shown in Figure 43(a). Given the indi-
vidual streams α1, · · · , αn, we can compute the resulting structured event
stream and the individual ECCs as follows.

Thm. 7: Given are n event streams with arrival curves α1, · · · , αn that are joined to a
single event stream. Then the resulting structured event stream is characterized
by the arrival curves

α(∆) = [αu(∆), αl(∆)] =
[
∑

i

αu
i ,
∑

i

αl
i

]

. (4.10)

The ECCs of the structured event stream are determined by

γi(n) = [γu
i (n), γl

i(n)] = [ǫ−l
i (n), ǫ−u

i (n)] (4.11)

with

ǫl
i(ni) = ni +

∑

j,i

αl
j(α
−u
i (ni)) (4.12)

ǫu
i (ni) = ni +

∑

j,i

αu
j (α
−l
i (ni)) (4.13)

Proof. The join operator forwards the events of all input event streams
without delay. Thus, for any time interval we have that the number of
event arrivals in the structured stream is equal to the sum of the event
arrivals in the individual sub-streams, which justifies (4.10). Formally,
we can prove (4.10) by combining the inequalities (4.1) and (4.3). For the
computation of the ECCs, let us focus on γl

i
(n). The curve γl

i
(n) represents

the minimum number ni of events of type ei in a sequence of n events of
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the structured stream. Consider now the pseudo-inverse of γl
i
(n) which

we denote as ǫu
i
(ni). The curve ǫu

i
(ni) represents the maximum length n

of an event sequence that contains ni events of type ei. The basic idea
for finding this n for a given ni is to construct a time interval in which
there are ni event arrivals of type ei and as many event arrivals as possible
for the remaining event types e j with j , i. In (4.13) this is done by first
considering the largest time interval ∆ for which in sub-stream αi there
can be exactly ni event arrivals, given by ∆ = α−l

i
(ni). The total length n of

the event sequence is then found by considering the maximum number of
event arrivals of types e j with j , i in the interval ∆, given by

∑

j,i α
u
j
(∆).

We need to show that this length n corresponds to the maximum number
of consecutive events in the structured stream, among which there are
exactly ni events of type ei. In other words, we have to exclude the
existence of an interval ∆′ in which there ni events of type ei and more than
n total events. By definition of α−l

i
, every interval ∆′ with ∆′ > ∆ contains

more than ni events of type ei. Hence, such intervals can be ignored.
On the other hand, reducing the size of ∆ can definitely not increase the
total length n of the considered event sequence. Thus, such an interval ∆′

cannot exist, which proves the correctness of ǫu
i

and consequently of γl
i
.

The derivation of γu
i

is analogous.

�

Note that in terms of the overall arrival curve α(∆), the above described
join operator is equivalent to the OR-composition of the input streams
α1, · · · , αn, as described in [HT07].

4.3.3 Hierarchical application of ECCs

In the presence of multiple successive join and fork operations, we can
organize and apply ECCs in an hierarchical manner. Consider for in-
stance the example system of Figure 39. We can model the merging and
splitting of event streams by the operators introduced in Section 4.3.2.
In particular, by joining the streams α11 and α12 we obtain the structured
stream α1 and two ECCs γ11 and γ12. Similarly, the join of α21, α22 and
α23 results in the structured stream α2 and the ECCs γ21, γ22 and γ23.
The processed event streams α′1 and α′2 are then joined once more, which
yields the structured stream α′ and two ECCs γ1 and γ2. Following the
various stream compositions, we can hierarchically organize the ECCs
that describe the structure of the event stream α′. In particular, we can
represent the hierarchy of event types by means of a tree, as shown in
Figure 44. The edges of the tree represent ECCs that are computed when
merging event streams, and applied when splitting event streams.
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γ1 γ2

γ11 γ12
γ21 γ22

γ23

Fig. 44: Hierarchy of ECCs for the system of Figure 39

In the model of Figure 39, we apply the above hierarchy of ECCs to fork
the event stream α′′ into its composing sub-streams. More specifically,
we first apply γ1 and γ2 to fork α′′ into α′′21 and α′′22. Afterwards, we fork
α′′21 and α′′22 again by applying γ11, γ12, γ21, γ22, and γ23.

4.3.4 Join and Fork of Structured Event Streams

The hierarchical organization of ECCs described above has a major draw-
back: a structured event stream can be decomposed only in the inverse
order in which it has been composed. However, to extend the modelling
scope of the method, it is highly desirable to provide join/fork opera-
tors that permit an arbitrary decomposition of structured streams into
sub-streams, no matter how the structured streams were constructed.
Consider again the motivational example introduced in Section 4.1.1. As-
sume a system that is analogous to the one of Figure 39, but in which the
splitting of the event stream α′′ is different. For instance, assume that the
stream α21 is processed by task T3, instead of task T4. In other words,
the composition and decomposition of the streams are not symmetrical.
In this case, with the ECC model described so far, we have no means of
correctly abstracting the system behaviour.

In this section we tackle the above problem, and introduce more gen-
eral join and fork operators that operate on structured event streams. The
new operators allow us to arbitrarily join and fork event streams, and rely
on a flat hierarchy of ECCs. In other words, to characterize a structured
stream, only ECCs referring to simple sub-streams are used. ECCs refer-
ring to structured sub-streams will not be computed and forwarded any
longer.

Consider the join operator shown in Figure 45(a). It merges two struc-
tured event streams αI and αJ. In contrast to the case of a hierarchical orga-
nization of ECCs, this join operator computes a new tuple γ′

i
of ECCs for

all simple sub-streams composing the outgoing structured stream. Hence,
at any following component in the model, it is possible to isolate arbitrary
subsets of the previously joined event streams. For this new join operator,
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Fig. 45: (a) Join operator to merge two structured event streams.
(b) Fork operator to split a structured event stream into two structured sub-
streams.

the outgoing structured event stream can be characterized as follows.

Thm. 8: Assume that a structured event stream with arrival curve αI and ECCs γi, i ∈ I
is joined with a second structured event stream with arrival curve αJ and ECCs
γi, i ∈ J (see Figure 45(a)). Then, the resulting structured event stream is
characterized by the arrival curve

α(∆) = [αu(∆), αl(∆)] = [αu
I (∆) + αu

J (∆), αl
I(∆) + αl

J(∆)]. (4.14)

The ECCs of the resulting structured stream are given by

γ′i(n) = [γ′ui (n), γ′li (n)] = [γu
i (γu

I (n)), γl
i(γ

l
I(n))] (4.15)

for i ∈ I. Here, we use the partial ECCs for stream I

γu
I (n) = ǫ−l

I (n) (4.16)
γl

I(n) = ǫ−u
I (n) (4.17)

with

ǫl
I(nI) = nI + α

l
J(α
−u
I (nI)) (4.18)

ǫu
I (nI) = nI + α

u
J (α−l

I (nI)) (4.19)

The ECCs γ′
i
(n) for i ∈ J are determined in analogous manner.

Proof. For any time interval, the number of event arrivals in the joined
output stream is equal to the sum of the event arrivals in the two input
streams, which justifies (4.14). For the outgoing ECCs, let us focus on
γ′li(n) with i ∈ I. By ignoring that αI and αJ are structured streams and by
applying Theorem 7, we get (4.17). The ECC γl

I(n) defines the minimum
number of events of all types ek with k ∈ I in a sequence of n events of
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the structured stream α. In order to determine how many of these γl
I(n)

events are of a specific type ei with i ∈ I, we just need to consider that αI

is a structured stream itself and apply the corresponding ECC γl
i
. Hence,

we obtain γ′l
i
(n) = γl

i
(γl

I
(n)). The derivation of γ′u

i
(n) is analogous.

�

The above theorem can easily be extended to more than two inputs.

Let us now move to the fork operator shown in Figure 45(b). It splits a
structured event stream α into two structured event streams αI and αJ. The
outgoing structured event streams can be characterized as follows.

Thm. 9: Given is a structured event stream with arrival curve α(∆) and ECCs γi(n),
i ∈ I ∪ J. Then, the arrival curve αI(∆) = [αu

I
(∆), αl

I
(∆)] of a sub-stream I with

event types ei, i ∈ I, is characterized by by the bounds

αu
I (∆) ≤

∑

i∈I

γu
i (αu(∆)) (4.20)

αu
I (∆) ≤ sup

0≤λ≤∆

{

αu(λ) −
∑

i∈J

γl
i(α

l(λ))
}

(4.21)

and
αl

I(∆) ≥
∑

i∈I

γl
i(α

l(∆)) (4.22)

αl
I(∆) ≥ max

{

inf
λ≥∆

{

αl(λ) −
∑

i∈J

γu
i (αu(λ))

}

, 0
}

. (4.23)

The arrival curve αJ(∆) is derived in an analogous manner.
The ECCs γ′i(n) = [γ′ui (n), γ′li(n)] with i ∈ I are characterized by the bounds

γ′ui (n) ≤ g−l
i (n) γ′ui (n) ≤ f−l

i (n) (4.24)

γ′li(n) ≥ g−u
i (n) γ′li(n) ≥ f−u

i (n) (4.25)

with
gl

i(ni) = ni +
∑

k∈I\{i}

γl
k(γ
−u
i (ni)) (4.26)

f l
i (ni) = max

{

inf
λ≥ni

{

γ−u
i (λ) −

∑

k∈J

γu
k (γ−l

i (λ))
}

, 0
}

(4.27)

gu
i (ni) = ni +

∑

k∈I\{i}

γu
k (γ−l

i (ni)) (4.28)

f u
i (ni) = sup

0≤λ≤ni

{

γ−l
i (λ) −

∑

k∈J

γl
k(γ
−u
i (λ))

}

(4.29)

The ECCs γ′i(n) with i ∈ J are characterized in an analogous manner.
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Proof (Sketch). Let us start with the upper bounds for αu
I (∆). The curve

αu
I
(∆) represents the maximum number of events that arrive on the upper

output stream of Figure 45(b) in any interval of length∆. This quantity can
obviously not be larger than the maximum number of events that arrive
on the input stream αwithin an interval of length∆ and that are of types ei

with i ∈ I. Hence, by applying Theorem 6 and summing up the obtained
arrival curves αu

i
, i ∈ I, we get the bound (4.20). On the other hand, an

alternative upper bound for αu
I (∆) is found when subtracting from αu(∆)

the minimum number of events that are of types ei with i ∈ J, which
leads to (4.21). Note that in (4.21) we use a sup operator to guarantee the
monotonicity of the resulting curve, as the difference of two arrival curves
can in general be not monotone.1 For αl

I
(∆) the reasoning is analogous.

The only difference is that in (4.23) we also use a max operator to guarantee
a positive result.

For the bounds on the outgoing ECCs, let us consider γ′li(n). As
already done in Theorem 7, we determine such an ECC by deriving its
pseudo-inverse which we call ǫ′ui (ni). The function ǫ′ui (ni) specifies the
maximum length n of an event sequence in αI that contains ni events of a
specific type ei with i ∈ I. Similarly as for αu

I (∆), we can again construct
two alternative upper bounds for ǫ′ui (ni) which we denote as gu

i
(ni) and

f u
i

(ni), respectively. The function gu
i
(ni) computes the maximum number

of events of all types eh, h ∈ I, in any event sequence of the input stream
α that contains exactly ni events of the specific type ei. The function f u

i
(ni)

subtracts the minimum number of events of all types ek, k ∈ J, that are
present in any event sequence of the input stream α that contains ni events
of the specific type ei. The ECCs γ′ui (n) are determined in an analogous
manner.

�

4.3.5 Experimental Evaluation

Let us now compare the quality of the discussed abstractions on the basis
of the example system introduced in Section 4.1.1. In order to do so, we
first build three new MPA models for the system of Figure 39. In the first
model, we apply the method described in Section 4.2, that is, we use FIFO
performance components with multiple inputs instead of the depicted
GPC components. In the second model, we adopt hierarchies of ECCs
as described in Section 4.3.3. In particular, we use the tree of Figure 44
to organize the ECCs that represent the structure of the streams α′ and
α′′. The third model is based on a flat hierarchy of ECCs as described in
Section 4.3.4. Thus, it contains two ECCs for α1 and α′1, five ECCs for α′

1The same construct was already used in Equation (2.23).
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and α′′, etc. Note that in the two latter models we can employ standard
GPC components (cf. Figure 39) which are not affected by the structure
of the input event stream.

We use the three models to bound the five output streams of the system.
Figures 46 and 47 depict the results achieved for the output curves α′′′12
and α′′′21 . The figures show that the approach based on FIFO scheduling
and the approach based on hierarchically organized ECCs provide close
results. For the output stream α′′′12 , the FIFO approach determines tighter
(i.e., less conservative) bounds. For the output stream α′′′21 , the approach
based on hierarchical ECCs is tighter. The method based on the flat
organization of ECCs provides the worst bounds for both output streams,
with local exceptions as α′′′ u

21 shows. However, as pointed out earlier, this
is the only method applicable in scenarios with unsymmetrical join and
fork operations, and hence it is still highly useful in general.
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Fig. 46: Results for the characterization of the event stream α′′′12

We also compare the results of the proposed abstractions with the
bounds obtained when applying the method described in [RE08]. The
figures show that the hierarchical event model of [RE08] (HES) provides
slightly better bounds than the approaches proposed in this chapter. Nev-
ertheless, it has to be noted that, in contrast to the model of [RE08], the
approaches based on ECCs have the advantage of not affecting the com-
positionality of existing analysis methods.
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Fig. 47: Results for the characterization of the event stream α′′′21

4.4 Case Study

In this section we show how the presented theory can be applied to
the analysis of a realistic distributed embedded system. We consider
a heterogeneous communication system which is similar to the system
described in Section 2.2.3.8, and which we denote as HCST in short. The
HCST implements a distributed information/audio streaming application
deployed in the waiting lounge of a large railway station.

4.4.1 General System Description

The HCST consists of various devices that are connected by a communica-
tion network. It comprises a central server (SERV), a backbone network,
and a large number of end-devices (DEV). We assume that there are n net-
work access controllers (NAC) connected in a chain along the backbone
network, and that m distinct end-devices are connected to each NAC.
Figure 48 shows the architecture of the HCST for the case n = 3, m = 3.

NAC 1 NAC 2 NAC 3

Fig. 48: System architecture
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We assume that there is an end-device for each seat of the waiting
lounge. The main function of the end-devices is the playback of audio
streams that are transmitted over the backbone network by the server.
We consider an on-demand audio system, where each traveler can choose
their individual audio content from a large database stored on the server.
We assume that the audio streams are transmitted in unicast mode, mean-
ing that for each end-device there is a dedicated data stream from the
server to the device. Besides on-demand audio streaming, the server ex-
ecutes a second application, namely the periodic broadcast of live train
arrival/departure information (denoted as status data) over the backbone
network. We assume that in the waiting lounge there are a number of
LCD monitors connected to some of the NACs, displaying the transmitted
train status data.

In this case study, we focus on the communication among the com-
ponents of the HCST. In particular, we look at the timing of the data
transmissions over the links of the network. We neglect the computations
carried out by the components themselves, that is, we will not consider
the execution times of the various processes on the server and the end-
devices.

The HCST provides different QoS for the two different kinds of net-
work traffic (audio streams and status data). We assume that, for the
transmission of frames over the outgoing links, both the server and the
NACs implement a preemptive fixed-priority arbitration policy, where
audio traffic has higher priority than status traffic. This means that an
ongoing transmission of status data over a link will be interrupted when-
ever there is an audio frame to be transmitted over the same link. The
interrupted transmission will be resumed as soon as the link is free again.
For the sake of simplicity, we assume that the transmission of frames can
be interrupted and resumed at any time, without the need of retransmis-
sions.

The goal of the analysis is to determine whether all frames with status
data are guaranteed to reach their destination within a given deadline. To
keep the illustration of the proposed methods simple, we restrict ourselves
to the analysis of the small system architecture shown in Figure 48. In
order to show meaningful effects still, we choose an accordingly small
bandwidth for the backbone network.

4.4.2 Detailed specification

We consider a full duplex backbone network with a bandwidth of 5 Mbit/s.
We are interested in the traffic from the server to the end-devices only.
The server sends an individual audio stream to each of the nine devices
shown in Figure 48. We index the audio streams with the number of the
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corresponding destination device. The considered audio streams have a
net data rate of 384 kbit/s. The server partitions the data of each audio
stream in frames of constant size. The sending pattern of the audio
frames is periodic with a small jitter. The complete specification of the
audio traffic is given in the upper part of Table 4.

Size Period Jitter Deadline

Audio Frames 1’518 Bytes 30 ms 5 ms 100 ms

Status Frames 106’500 Bytes 5 s 0 s 1.5 s

Tab. 4: Specification of the network traffic

The server also periodically sends status data to the LCD monitor. We
assume that all the needed data is transmitted in a single frame of constant
size. The detailed specification of the status data stream is reported in
Table 4. The aim of the analysis is to clarify whether each status frame is
guaranteed to reach its destination within the specified deadline.

4.4.3 Models and Analysis

Let us now proceed to the modelling of the specified system in MPA.
We start from a rough model of the HCST in classical MPA in which the
merging and splitting of event streams cannot be accurately captured. We
then refine the MPA model by means of the newly proposed abstractions,
and show how this permits us to drastically reduce abstraction losses.

The common basic abstraction of all the models is to represent the
frame traffic in the network by means of timed event traces. This allows
us to model communication components of the network such as data
links by means of abstract components that process event traces. Fig-
ure 49 illustrates the basic modelling principle. The abstract processing
components are triggered by incoming events which represent frames
that need to be transmitted over the corresponding link. The processing
time of an event in the abstract component corresponds to the transmis-
sion time of the frame on the concrete network link. The completion of
a frame transmission is represented by the generation of an output event
by the abstract component.

To model the transmission patterns of the server, we use Equations 2.13
and 2.14. This results in nine arrival curves α1, · · · , α9, which represent
the audio streams that are generated by the server. Similarly, we construct
an arrival curve αstatus, which models the status stream generated by the
server. We use three service curves β1, β2, β3 to represent the availability of
the three network links for the transmission of frames. The fixed-priority
arbitration policy is modelled by appropriately forwarding service curves
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Fig. 49: Frame transmission abstracted as processing of timed event streams

among abstract processing components (cf. Figure 50). The transmission
times for the frames on the network links are derived from the corre-
sponding frame sizes and the network bandwidth. They amount to 2.429
ms for audio frames, and 170.4 ms for status frames.

Figure 50(a) shows a model of the HCST in classical MPA, that is,
without the methods introduced in this chapter. The joining of the nine
audio streams into a single stream is modelled by a simple sum of the
corresponding arrival curves. This corresponds to a correct representation
of the network traffic sent over link 1. However, in contrast to the newly
proposed methods, in classical MPA there is no means to decompose the
resulting stream again. Hence, we can only forward the entire joined
event stream to other components in the model. In other words, with this
model we overestimate the amount of network traffic on Links 2 and 3,
and hence expect overly conservative performance results.

In Figure 50(b) we show the MPA model that makes use of the FIFO
scheduling component as introduced in section 4.2. The models of the
HCST that employ ECCs are shown in Figures 50(c) and 50(d). In the
model of Figure 50(c), we consider a flat organization of the ECCs. Hence,
whenever we have to branch off sub-streams from a structured stream,
this can be done with a single fork operator as shown in the figure. In
contrast, in the model of Figure 50(d) we join and fork sub-streams in a
hierarchical manner.

4.4.4 Results

Table 5 sums up the results of the performance analysis. It reports the
worst-case end-to-end delay for status frames predicted by the different
models. For the sake of simplicity, we compute the end-to-end delay
as sum of the response times of the individual links. Tighter bounds
for the end-to-end delay could potentially be obtained by considering
that a status frame cannot experience the worst-case interference of audio
frames consecutively on all three links (cf. Section 2.2.3.6). However,
such a holistic analysis is more involved and beyond the scope of this
discussion.

The table shows that the newly proposed abstractions for modelling
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Classical FIFO ECC (flat) ECC (hierar.)

Max. delay 1.954 s 1.255 s 1.316 s 1.248 s

Tab. 5: Worst-case end-to-end delay for status frames derived with the different models

the merging and splitting of event streams lead to considerably better
results for the analysis of the HCST compared to the naive modelling ap-
proach of Figure 50(a). In particular, based on the classical MPA analysis,
we would have to reject the designed system, as we could not guarantee
that all status frames arrive in time. On the other hand, the MPA models
based on the abstract FIFO component or on ECCs show that the deadline
for the transmission of status frames cannot be violated. Hence, the de-
signed system fulfills the requirements. The reason for the better results
is that the newly proposed methods permit us to capture the amount of
audio traffic on Links 2 and 3 more precisely than the naive MPA model.
This is confirmed by the better worst-case bounds on the availability of
Links 2 and 3 to transmit status frames. For instance, Figure 51 shows the
improvement for the lower service bound β′l2 for Link 2. These improved
service bounds finally yield tighter worst-case delay predictions.
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Table 5 and Figure 51 show that the three newly proposed abstraction
variants lead to close worst-case performance predictions for the system.
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For the particular system under analysis, the model based on the hier-
archical organization of ECCs turns out to be best. More importantly,
however, the case study shows that all three proposed methods (FIFO,
ECC hierarchical, ECC flat) permit us to reduce the abstraction loss expe-
rienced with classical MPA analysis considerably.

4.5 Related work

Rox et al. studied the merging and splitting of event streams in the
context of SymTA/S. In [RE08] they proposed a hierarchical event model
(HEM) to represent structured event streams which they call hierarchi-
cal event streams (HES). A hierarchical event model consists of an outer
event model describing a joined event stream, and several inner event
models describing the individual sub-streams. When a hierarchical event
model is processed by a component, the outer event model is manipulated
according to the usual SymTA/S transfer functions. In addition, appro-
priate functions update the various inner event models. The authors of
[RE08] demonstrated significant reductions of abstraction losses when
using HEMs instead of flat event stream models. Since the approach ex-
plicitly represents the individual sub-streams composing a joined stream,
it allows the designer to arbitrarily decompose a joined stream whenever
needed. However, the method is not transparent to existing compo-
nent models. All SymTA/S modelling components need to be adapted to
handle hierarchical event streams. Moreover, the analysis requires deep
processing of the hierarchical event models.

Albers [ABS06] used a hierarchical data structure to describe repeti-
tively occurring patterns within event streams. The approach enables fast
scheduling analysis by ignoring lower levels of the event stream hierar-
chy. While in principle such a hierarchical event model can be obtained by
combining several simpler event models, the approach of [ABS06] is dif-
ferent from the method discussed in this chapter. We do not assume any
repetitive patterns for the occurrence of events, and our work is focused
on the composition and decomposition of event streams.

FIFO scheduling has been considered in Network Calculus, see [LT01].
The results concern the service that is given to individual streams which
are processed by some resource in FIFO order. These results are closely
related to the transfer function of the abstract FIFO component described
in Section 2.2.3.5.

The combination of multiple event streams for the activation of a
task has been considered in both MPA and SymTA/S. For instance, the
AND/OR conjunction of multiple event streams has been studied in
[HT07, HHJ+05]. The OR-activation of tasks is closely related to the
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joining of event streams discussed in this chapter. However, the methods
of [HT07, HHJ+05] do not support the separation of a joined stream into
individual sub-streams.

Timing correlations in the presence of simple split-join scenarios of
event streams have been studied in [HTSD07, SE09]. In contrast to the
work discussed in this chapter, these methods are more limited since
they do not consider different event types and cannot represent arbitrary
merge and fork operations on streams.

Finally, we would like to note that Event Count Curves have also been
considered in [WMT05] where they are called Type Rate Curves. How-
ever, in [WMT05] it is assumed that the type of an event determines only
the workload imposed on the processing components of a system. We
consider more general systems in which the type of an event determines
its routing through the system. Therefore, we can represent the merging
and forking of individual event streams.

4.6 Summary

In this chapter we introduced two novel methods for the modelling and
analysis of joined event streams in MPA. The methods allow us to capture
the structure of joined event streams that are processed by the components
of a distributed system. The first approach is based on the abstract FIFO
scheduling component introduced in Chapter 2. It keeps sub-streams
separated in the system model, and represents structured event streams
as bundles of individual event streams. Therefore, it ensures full flexi-
bility regarding the splitting of joined streams. However, the approach
requires the explicit adaptation of all the performance components of an
MPA model. The second approach is based on Event Count Curves, an
abstraction for representing the structure of joined event streams. This
method explicitly handles the joining and forking of event streams, and is
totally transparent to existing modelling components. Hence, it is highly
suited for being embedded into frameworks for compositional perfor-
mance evaluation such as MPA or SymTA/S. The main idea behind the
Event Count Curves is to abstractly represent the structure of a joined
event stream without explicitly maintaining exact sequences of typed
events. We further extended the basic modelling approach based on Event
Count Curves, such that arbitrary decompositions of event streams can be
represented. This considerably extends the modelling scope of MPA. We
evaluated and compared the proposed methods by means of experiments.
The results indicate that none of the methods completely outperforms the
other methods in terms of abstraction losses. In other words, the exper-
iments highlight the utility of all the proposed approaches. Finally, we
demonstrated the applicability of the described methods by analyzing a
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realistic application scenario.
A potential extension of the work described in this chapter is the

consideration of join and fork operators with different semantics. For
instance, one could consider general join/fork operators with multiple
inputs and multiple outputs that join/fork event streams according to
particular rules, e.g. load balancing.
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5
Hybrid Performance Verification

A major cause for abstraction losses in MPA is the limited expressivity
of the modelling approach. In fact, pessimistic performance predictions
have to be expected whenever the MPA model of a system is correct (in
the sense of conservative) but not accurate, meaning that it does not pre-
cisely reflect the real behaviour of the system. The problem is obviously
not limited to MPA, but also concerns other analytical methods such as
SymTA/S or MAST. In the following, we tackle this problem by propos-
ing a novel hybrid approach to evaluate the performance of distributed
real-time systems. The method abstracts system components either by
an analytical and flow-based representation or by a state-based model in
the form of timed automata. The interaction between the heterogeneous
modelling components is captured by means of streams of discrete events.
The resulting hybrid analysis framework enables trade-offs between anal-
ysis precision and efficiency. In particular, it allows the system designer
to choose the level of detail at which individual system components are
modelled. The proposed approach improves contemporary performance
evaluation for the following reasons: (a) Abstraction losses as common
for analytical methods can be reduced by means of more detailed system
models; (b) State space explosion as common for state-based verification
methods can be limited to the level of single system components. In this
chapter, we first lay the theoretical foundations for the hybrid analysis
framework. We then describe the implementation of a corresponding
tool chain. The effectiveness of the method is demonstrated in a simple
but realistic case study. Finally, we perform experiments to ascertain the
scalability and the accuracy of the proposed approach.
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5.1 Introduction

Distributed embedded systems often contain hardware or software com-
ponents that exhibit complex, state-dependent behaviour. Typically, such
behaviour cannot be precisely expressed by analytical component ab-
stractions such as the ones employed in MPA. Examples of such state-
dependent components are processing elements with caches as well as
adaptive components with multiple execution modes, e.g., with dynamic
power management. There exist several formal methods for verifying
the behaviour of state-based systems. Finite state machines, Petri nets or
Timed Automata are just a few examples of formalisms commonly used
for this purpose.

Timed Automata (TA) [AD94] are a well-established formalism for the
verification of real-time systems. Modelling and verification tools such
as Uppaal [BLL+96] have considerably contributed to the dissemination
of TA. The major advantage of TA is that they permit us to model com-
plex real-time systems at an almost arbitrary level of detail. In model
checkers such as Uppaal, the high-level model is then translated to a fi-
nite state-transition system which is used to verify the correctness of the
model. Unfortunately, the state-transition system grows exponentially
with the number of clocks and clock constants employed in the high level
model. This fact heavily constrains the practical verification of large and
complex real-time systems, and is commonly referred to as state space
explosion problem. On the other hand, analytical (stateless) formalisms
such as MPA, SymTA/S or methods from classical scheduling theory rely
on the solution of closed-form expressions. Therefore, these approaches
typically scale well with the size of models. In particular, this holds
for compositional formalisms such as MPA or SymTA/S. However, there
are two major disadvantages for these methods: (a) The evaluation of a
system is limited to particular performance metrics such as worst-case
latencies or backlogs; (b) The expressivity of these methods is limited to
particular component models. Whenever the system under analysis con-
tains complex components that cannot be accurately modelled in MPA, a
conservative abstraction of the system has to be performed, which results
in unprecise performance bounds (abstraction losses).

For overcoming the above deficiencies, we propose combining analyt-
ical performance evaluation and state-based system verification. Specif-
ically, in this chapter we couple the formalism of Timed Automata (TA)
with the framework for Modular Performance Analysis (MPA). We choose
the former because it is widespread for the verification of state-based sys-
tems with real-time constraints. The latter is chosen as it is an advanced
method for analytical performance evaluation. The result is a hybrid
modelling framework in which for each individual system component
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the most appropriate formalism can be employed. The hybrid frame-
work permits us to reduce the abstraction losses experienced with MPA.
At the same time, it maintains scalability, as TA models are employed ex-
clusively for those components where an MPA analysis is too pessimistic.

For coupling the formalisms of MPA and TA, the following obstacles
have to be overcome:

• Unlike TA, the abstract MPA models lack concrete execution seman-
tics.

• The verification of a TA model cannot be transformed to the evalu-
ation of a closed-form expression.

• The two formalisms are based on different time domains. TA models
operate on the conventional time line, whereas MPA models employ
the time-interval domain.

We would like to highlight that the proposed methodology is not
limited to MPA. The coupling of TA with other analytic formalisms such as
SymTA/S, or any algorithm of classical scheduling theory, can be reduced
to a special case of what is presented in this chapter.

5.1.1 Organization

The content of this chapter is organized as follows. Section 5.2 gives a
brief introduction to the modelling capabilities of TA. In Section 5.3 the
general approach and the requirements for the hybrid analysis framework
are described. In Section 5.4 we present a pattern that allows us to convert
abstract stream representations such as PJD models or arrival curves to
a network of TA. In Section 5.5, the inverse transformation is described,
that is, how to extract abstract stream models from a TA-based subsystem.
Section 5.6 contains a case study that highlights the usefulness of the
approach. Moreover, it reports the results of experiments that investigate
the scalability and the accuracy of the method. Finally, we discuss related
work in Section 5.7 and provide a summary of the chapter in Section 5.8.

5.2 Timed Automata

In this thesis we consider timed safety automata extended with variables
as employed in the model checker Uppaal [Upp]. In the following we
briefly summarize the modelling capabilities of such TA. Thereby, we
focus on the most relevant aspects only. A more detailed introduction to
the modelling and verification of TA networks can be found in [BY04].
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A timed automaton is substantially a graph consisting of locations and
edges. In addition, it may be equipped with clocks and (integer) variables.
Clocks hold non-negative time values and model the advancing of time.
More specifically, they track the amount of time that passed since their
last reset. Three examples of TA are shown in Figure 52, which depicts
the model of a smart outdoor light. The execution of the edges in a TA
is controlled by conditions imposed on clocks and variables. Conditions
related to locations are denoted as invariants whereas conditions related
to edges are denoted as guards. The execution of an edge can only occur
if both the guard of the edge and the invariant of the target location
are satisfied. The execution of an edge may be followed by clock resets
and/or variable updates. Note that the invariant of a target location must
be satisfied after the clock resets and variable updates have taken place.
A location can be defined as urgent, see e.g. the left location of the TA
shown in Figure 52(a). In an urgent location, time cannot elapse. This
means that once entered, an urgent location has to be left in zero time
over one of the outgoing edges.

y<=300
y==300

y:=0

li:= measure_light(),
if (li < THRES)

dark:=true
else

dark:=false

motion!

ON x<=60OFF

dark==false
motion?

dark==true
motion?

x:=0

dark==false
motion?

x==60

dark==true
motion?

x:=0

invariant

guard

synchronization
signal

clock
reset

variable
update

(a) Controller

(d) Declarations(c) Environment

(b) Light

Local Declarations (Controller) System Declarations

clock y; channelmotion;
int li; boolean dark;
const int THRES = 100;

Local Declarations (Light)

clock x;

Fig. 52: Network of Timed Automata modelling a motion-sensing light

A key feature of the TA formalism is modularity. Complex systems can
be represented by composing individual TA models. In such a network of
TA, the interaction among the different modules relies on two concepts:
(a) the synchronized execution of edges in distinct TA; (b) the use of shared
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global variables. For instance, the system model of Figure 52 consists of
three individual TA. They represent a light, its controller and its environ-
ment, respectively. The modelled outdoor light is motion-sensitive. This
means that it is equipped with a motion sensor and can automatically
turn on when some movement is detected in its environment. We assume
that the smart light also tracks the light intensity (li) of the environment.
This operation is carried out every 300s. At the sensing of some motion,
the light only turns on if the environment is dark, i.e., if the last measured
light intensity was below a certain threshold. Once the light is turned
on, it stays on until 60 seconds after the last registered movement. In
the model of Figure 52, the two TA representing the controller and the
light interact via the shared global variable dark. On the other hand, the
TA models of the environment and the light interact via synchronized
execution of their edges labeled with motion. Edges of different TA with
the same synchronization label, also called channel, must be executed
contemporaneously in an atomic manner. In Uppaal, two synchronizing
TA are often denoted as sender and receiver. Uppaal supports two kinds
of synchronization mechanisms:

• Binary synchronization
Two TA, a sender and a receiver, jointly execute an edge with the
same synchronization label (channel). In the sender the synchro-
nization label is followed by an exclamation mark (cf. Figure 52(c)).
In the receiver the synchronization label is followed by a question
mark (cf. Figure 52(b)). In the case of binary synchronization, a
sending edge of a TA can be executed only together with one corre-
sponding receiving edge of another TA and viceversa.

• Broadcast synchronization
If a synchronization label (channel) is defined as broadcast, the sender
synchronizes with any number of receivers. In other words, one
sending TA executes a sending edge, which can be understood as
the emission of a signal, and between 0 and n receiving TA execute
a receiving edge, which can be understood as the instantaneous re-
ception of this broadcast signal. Note that even though the sender
can synchronize with any number of receivers, participating in a
broadcast synchronization is not facultative for receivers. In partic-
ular, all TA containing a receiving edge have to execute this edge
if, at the time of the synchronization, it is executable, that is, if no
conditions interdict its execution.

For better readability of the models, not all the TA shown in this thesis
are syntactically correct with the respect to the syntax of Uppaal. In
particular, when updating variables or resetting clocks, we sometimes
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use an if-else construct which in Uppaal has to be implemented by
means of the ?-operator of ANSI C. The same applies to the max and min
operators that we sometimes employ in assignments.

For formally verifying properties of a TA model, in Uppaal the high-
level model is automatically translated to a finite state-transition graph.
The complete state graph of a model is obtained by iteratively consider-
ing all possible edge executions in the high-level model until a fixpoint is
reached. Properties of the modelled system, specified as propositions of
simplified computation tree logic (CTL), are then verified by the model
checker by systematically analyzing the resulting state graph. Such prop-
erties to be verified by the model checker are also called queries. For
instance, we can use the query1

E<> (LIGHT.ON && not dark)

for verifying whether in the system of Figure 52 the light may be on when
it is not dark. The result of the verification is that this property holds for
the above system. The reason is that the TA representing the light may be
in the location ON when the light intensity of the environment changes
from dark to not dark.

5.3 General Approach and Requirements

The proposed hybrid analysis framework is based on a general scheme for
interfacing abstract MPA components and TA models, see Figure 53. The
main result of the scheme is the transformation of abstract event streams
specified as arrival curves to sets of timed event traces specified as TA
and vice versa. The scheme consists of two independent parts that we
will discuss separately:

Input Interface
In Section 5.4 we show how to represent a general tuple of arrival
curves by means of a network of TA called input generator. In Fig-
ure 53 this transformation is denoted with ’MPA→ TA’.

Output Interface
In Section 5.5 we show how to extract a tuple of arrival curves
from a TA model. In Figure 53 this transformation is denoted with
’TA→MPA’.

These two interfaces enable the evaluation of hybrid performance models
in which the individual processing and communication components of a



5.3. General Approach and Requirements 117

Input
Interface
MPA     TA

α' = f  (α, β) 

β' = f  (α, β)
α

β

 

UTA1

UTAK

LTA 1

LTA L

Freq2

x <= ETfast

Freq1

x <= ETslow

inEvent?
e++

inEvent?
e++

inEvent?
e++

e > 0 && e <= threshold
hurry!
x = 0

x == ETfast
outEvent!

e--

e > threshold
hurry!
x = 0

x == ETslow
outEvent!

e--

x <= Delta

x == Delta

x = 0,
b = min(b+1, BMAX)

b > 0 

event?

Sync++,

b--

if (b==BMAX)

       x = 0,
x <= Delta

x == Delta

x = 0,
b = min(b+1, BMAX)

b > 0 

event?

Sync++,

b--

if (b==BMAX)

       x = 0,

x <= Delta

x == Delta

x = 0,
b = min(b+1, BMAX)

b > 0 

event?

Sync++,

b--

if (b==BMAX)

       x = 0,

x <= Delta & &
b <= BMAX

event?

x == Delta

x = 0,
b++

if (b==0)

       x = 0,

b = max(b-1, 0)
x <= Delta & &
b <= BMAX

event?

x == Delta

x = 0,
b++

if (b==0)

       x = 0,

b = max(b-1, 0)

x <= Delta & &
b <= BMAX

event?

x == Delta

x = 0,
b++

if (b==0)

       x = 0,

b = max(b-1, 0)

Sync == K

Sync = 0

event!

Input Generator

Output
Interface
TA     MPA

α' = f  (α, β)

β' = f  (α, β)
α

β

MPA MPATA

MPA

TA

α1

β1

β′1

α′1 α2

β2

β′2

α′2

Fig. 53: Overview of hybrid analysis method

system are either abstracted on the basis of MPA or modelled by means
of TA.

In this chapter we focus entirely on the conversion of arrival curves
to TA and vice versa. The presented approach is, however, not limited
to arrival curves, but can also be applied to service curves. The only
limitation to consider is that in TA models, in particular when using
Uppaal, one can only make use of discrete variables. Hence, we can only
transform streams of discrete events or resource units, which on the level
of RTC curves, refers to staircase functions.

Let us now discuss the requirements for the hybrid analysis frame-
work. The main requirement is that the described input and output
interfaces are correct, in the sense that they do not harm the safety of the
analysis. In particular, in order to guarantee conservative analysis results,
whenever transforming the abstraction of an event stream to another rep-
resentation, we have to make sure that the conversion does not suppress
any event trace of the stream.

Ω1
- -

Rα1 R1

(a) Interface MPA→TA

Ω2
- -

R2 Rα2

(b) Interface TA→MPA

Fig. 54: Interfaces of hybrid method seen as transformations among sets of event traces

Consider first a generic input interface (MPA→TA) in which a tuple of
arrival curves α1 is converted to an input generator, that is, to a network of

1In Uppaal E<> stands for ’possibly’.
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TA. Figure 54(a) illustrates the corresponding transformation among sets
of event traces where Rα1 denotes the set of event traces that conform to α1

and R1 represents the set of event traces specified by the input generator.
We denote the set R1 also as the set of event traces producible by the input
generator. We say that the input interface is correct iff R1 ⊇ Rα1 . More
precisely, for the input interface we require that

r |= α1 ⇒ r ∈ R1 ∀r ∈ R. (5.1)

Now consider a generic output interface (TA→MPA) in which the output
of a TA subsystem is translated to a tuple of arrival curves α2. Figure 54(b)
shows the corresponding transformation, where R2 denotes the set of
traces producible by the TA subsystem and Rα2 represents the set of traces
that conform to α2. We say that the output interface is correct iff Rα2 ⊇ R2.
More precisely, for the output interface we require that

r ∈ R2 ⇒ r |= α2 ∀r ∈ R. (5.2)

Note that the above properties guarantee a correct worst-case per-
formance analysis, but do not exclude pessimistic analysis results. In
particular, the accuracy of the performance analysis can degrade in cases
in which R1 ⊃ Rα1 holds for an input interface or Rα2 ⊃ R2 holds for an out-
put interface. For instance, this corresponds to the case when the model
of a system component is fed with more event traces than originally spec-
ified for the ingoing event stream. Such pessimistic transformations are
avoided if R1 ⊆ Rα1 holds for all input interfaces, and Rα2 ⊆ R2 holds for
all output interfaces. However, in certain cases this requirement can be
sacrificed, for instance to improve the efficiency of the analysis.

5.4 Interface MPA-TA

The input interface MPA→TA requires the conversion of an interval-
based arrival curve α = [αu, αl] into a TA model that represents possibly
infinitely many timed event traces. The basic principle for this conversion
can be summarized as follows:

(i) Decomposition of the arrival curve into simpler curve components

(ii) Representation of each curve component as individual TA

(iii) Synchronization of the individual TA

The main idea behind the conversion of arrival curves into TA is the
observation that any integer-valued arrival curve α can be represented
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by means of a set of linear staircase functions that are combined with
minimum and maximum operations. By linear staircase function, we
mean a step-function with uniform step-width, as the ones shown in
Figure 55(a). In our approach, we decompose a general arrival curve α
into its composing staircase functions and automatically translate each
of them to an individual TA model according to a predefined modelling
template. The resulting set of TA is then unified to a network in which
the individual TA modules interact via synchronization and shared vari-
ables. Specifically, the synchronization of the TA reflects the minimum
and maximum operations that combine the individual staircase functions.
The resulting network of cooperating TA, shortly denoted as input gen-
erator, emits dedicated event-signals to the environment. These signals
can be used for stimulating a user-defined TA model representing a pro-
cessing or communication component of the system under evaluation.
The input generator has to be constructed in such a way that each trace
r = (event, t1); (event, t2); ... of event-signals that it can emit conforms to
the arrival curve α. In the following, we elaborate on the realization of
the described conversion scheme. To keep the discussion simple, we first
start with the simplest case, in which αu and αl consist of a single linear
staircase function only. Thereafter, we consider the conversion of more
general arrival curves.

5.4.1 Linear Pattern

We define upper and lower linear staircase functions as follows:

α{u,l}(∆) := N{u,l} +
⌊

∆

δ{u,l}

⌋

(5.3)

An example of two such curves is shown in Figure 55(a). The upper curve
is defined by two parameters Nu and δu. The parameter Nu represents
the maximum burst of the event stream, that is, the maximum number
of events that may arrive at the same time. The parameter δu specifies
the step-width of the upper arrival curve. Similarly, the lower curve is
defined by two parameters Nl and δl. The parameter δl specifies the step-
width of the lower arrival curve. The absolute value of the parameter Nl

can be understood as the maximum number of consecutive δl delays that
may separate two successive events. Hence, Nl indirectly specifies the
longest possible interval without events in the stream. For both staircase
curves αu and αl we assume a uniform step-height of one event.

5.4.1.1 Implementation

In this section we discuss how to encode the event stream specified by
a tuple α = [αu, αl] of linear staircase functions in timed automata. As
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mentioned before, the goal is to construct an input generator in the form
of a TA network that produces all the event traces specified by α. In our
approach, we use two distinct TA to guard the conformance of the gener-
ated event traces to the upper and lower arrival curves. The upper bound
αu is guarded by a dedicated automaton that we call UTA. Similarly, the
lower bound αl is guarded by a dedicated automaton denoted as LTA. The
binary synchronization of UTA and LTA ensures that the input generator
produces only event traces r that fulfill r |= α. The actual implementation
of the input generator is shown in Figures 55(b) and 55(c). Both UTA and
LTA employ their own counter b, clock x, as well as integer constants N{u,l}

and δ{u,l}, see Figure 55(d) for the complete list of declarations, including
the initialization of the counters. The two automata periodically increase
their local counters. UTA does so every δu time units and LTA every δl

time units. Both counters have a respective upper bound Nu and |Nl|. The
two TA cooperate by synchronized execution of their event-edges. The
non-deterministic emission of events is possible as long as for UTA b > 0
holds. On the other hand, an event has to be generated when both the
local counter b and the clock x of LTA reach their respective thresholds
|Nl| and δl. This is enforced by a corresponding location invariant in LTA.
When an event generation takes place, both UTA and LTA decrease their
local counters b. It is also important to note that UTA resets its clock
whenever its counter holds the maximum value Nu and an event is emit-
ted, whereas LTA does so whenever its counter holds the minimum value
0 and an event is emitted.

5.4.1.2 Correctness and tightness of interface

Let us now show that the input generator consisting of LTA and UTA is
fully equivalent to the tuple of linear staircase curves α = [αu, αl] in terms
of modelled event traces.

Thm. 10: Let Rα be the set of event traces that conform to α = [αu, αl] as defined in
Equation (5.3). Let RTA denote the set of event traces producible by the input
generator of Figure 55. Then, Rα = RTA.

Proof (Sketch). To prove the theorem, we have to show that the described
conversion is both correct and also tight. In the following, we briefly
sketch the proof ideas for both properties for the linear input pattern.
A more detailed proof can be found in Section 5.4.2, where we consider
more complex input patterns.

• Correctness (Rα ⊆ RTA):
We have to show that the event generator can produce all event
traces r such that r |= α. This can be shown by contradiction. Con-
sider the upper bound αu. Let us assume that there exists an event
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Fig. 55: Linear pattern: Arrival curves and their TA-based implementation
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trace r with r |= αu that is not producible by the input generator. It
follows that there is a time instant t at which UTA is blocked, mean-
ing that its counter b = 0, but r contains a timed event (event, t).
However, by considering the prefix of any trace possibly produced
by the input generator up to time t, it can be shown that an addi-
tional event at t would violate αu, which contradicts the assumption
r |= αu. Hence, such a trace r cannot exist. For the lower bound αl

the reasoning is analogous.

• Tightness (Rα ⊇ RTA):
We have to show that the event generator can produce only event
traces r such that r |= α, that is, a general trace r can neither violate
the upper bound αu nor the lower bound αl. These two statements
can be justified as follows:

(i) Upper bound
UTA enforces that the input generator can only produce traces
with at most Nu + ⌊ ∆

δu ⌋ events in any interval of length ∆. This
is because event emission is blocked once the counter b of UTA
equals 0 and because the local clock x of UTA is reset at event
emissions for which b = Nu holds.

(ii) Lower bound
The invariant defined in LTA enforces that after at most (Nl +

1) · δl time units of silence (no events), an event is emitted, and
from then on a new event follows at least every δl time units.
Therefore, every event trace produced by the input generator
contains at least αl(∆) events in any interval of length ∆.

�

5.4.2 Concave/Convex Pattern

In this section, we extend the input interface MPA→TA to more general
arrival curves. We consider arrival curves that can be represented as the
minimum or maximum of multiple linear staircase functions. Specifically,
we consider arrival curves of the form

αu(∆) := min
i

{

αu
i (∆)
}

(5.4)

αl(∆) := max
i

{

0, αl
i(∆)
}

(5.5)

where the curves α{u,l}
i

are defined according to (5.3), each with an individ-
ual pair of parameters N{u,l}

i
, δ{u,l}

i
. An example of such a tuple of arrival
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curves is shown in Figure 56(a). We require that the following constraints
hold for the parameters of the individual staircase curves α{u,l}

i
:

Nu
i

< Nu
j

∀i < j

|Nl
i
| < |Nl

j
| ∀i < j

δ{l,u}
i

> 0 ∀i

δl
i

> δl
j

∀i < j

δu
i

< δu
j

∀i < j

(5.6)

The above constraints ensure that each linear staircase function α{u,l}
i

con-
tributes to the overall minimum/maximum derived in (5.4)/(5.5). In other
words, they exclude redundant specifications of curve components. In
the context of our work, we denote upper arrival curves that satisfy (5.4)
and (5.6) as concave. Similarly, we say that a lower arrival curve is convex
if it satisfies (5.5) and (5.6). In the hybrid analysis framework, we employ
the above pattern for specifying concave/convex approximations of gen-
eral arrival curves. These approximations are a key factor for ensuring
simple and scalable TA models.

5.4.2.1 Implementation

Let us now discuss how to represent an event stream specified by a tuple
α = [αu, αl] of concave/convex arrival curves by means of Timed Au-
tomata. The basic principle is to construct an input generator consisting
of several UTA and LTA, each of which guards a linear staircase function
α{u,l}

i
that composes the overall arrival curve α. The individual automata

of the input generator need to cooperate in a way that reflects the min-
imum and maximum conditions of Equations 5.4 and 5.5. Specifically,
these equations translate to the following requirements:

1. Minimum condition
At a generic time point t, the input generator may emit an event if
the resulting event stream conforms to all staircase functions αu

i
.

2. Maximum condition
At a generic time point t, the input generator has to emit an event if
not emitting it would lead to an immediate violation of at least one
staircase function αl

i
.

The actual TA implementation of the input generator for concave/convex
arrival curves is shown in Figure 56. The automata of Figures 56(b)
and 56(c) are templates of TA models. They are instantiated multiple
times according to the number of requested UTA and LTA. Each of these
instances has its own local counter bi, clock xi, as well as integer constants
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Fig. 56: Convex/concave pattern: Arrival curves and their TA-based implementation
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N{u,l}
i

and δ{u,l}
i

, where the index i identifies the particular instance of UTA or
LTA.2 As before, each UTA and LTA periodically increases its local counter
bi every δ{u,l}

i
time units and reduces it whenever an event is generated. The

major difference to the TA network of Section 5.4.1 is that now we employ
broadcast synchronization to coordinate the various automata to generate
events. Specifically, the input generator contains a dedicated scheduler
automaton, represented in Figure 56(d), that initiates the generation of
events by sending a synchronization signal over the broadcast channel
event. All UTA and LTA of the network receive this signal and participate
in the event generation by executing their corresponding event-edges.
However, the generation of an event is only possible if the minimum
condition holds. On the other hand, the emission of an event must be
enforced when the maximum condition applies. In the TA network of
Figure 56, these two conditions are implemented as follows:

1. The minimum condition is enforced by the location invariant
Sync = Num UTA defined in the scheduler automaton (see Fig-
ure 56(d)). The invariant ensures that the target location of the
event-edge in the scheduler can be entered only if the global vari-
able Sync is equal to the number of UTA in the network. Since at a
broadcast synchronization each UTA increments Sync by 1, we have
that the synchronization takes place only if all UTA can participate.3

In other words, the input generator may emit an event only if all
UTA allow to do so.

2. The maximum condition is implemented by means of the loca-
tion invariants of the different LTA. A single LTA enforces an event
generation whenever executing the event-edge is the only way for
circumventing the violation of the invariant.

The described implementation of the minimum condition yields full syn-
chronization of all the TA in the network, meaning that either all event-
edges are jointly executed or none. This also comports the nice feature
that the input generator deadlocks if the represented upper and lower
arrival curves are not consistent. For concave/convex arrival curves as
described above, this is the case if the upper and lower curve cross each
other. Hence, by verifying the deadlock-freeness of the input generator,
we can exclude inconsistent tuples of arrival curves.

2For the sake of better readability, we omit the index i for local variables and clocks
in the automata of Figures 56(b) and 56(c).

3Remember that the invariant of a target location must be satisfied after the variable
updates have taken place.
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5.4.2.2 Correctness and Tightness of Interface

As done for the linear pattern, we have to show that the conversion
mechanism is correct and tight. In particular, we have to prove that
Rα = RTA also holds for concave/convex arrival curves. This will be done
in two steps. In step (A) we prove that the input generator can produce all
the event traces that conform to α{u,l}, i.e., Rα ⊆ RTA. In step (B) we prove
that the input generator cannot violate the upper and lower bounds α{u,l},
i.e., Rα ⊇ RTA. The final result is summarized in (C).

(A) Correctness (Rα ⊆ RTA)

Lem. 1: Let Rαu
be the set of event traces that conform to αu defined according to Equa-

tions (5.4) and (5.6). Let RUTA be the set of event traces producible by the
input generator of Figure 56 without LTA, shortly denoted as GenUTA. Then,
Rαu
⊆ RUTA.

Proof. This will be shown by contradiction. Let us assume that there
is an event trace r with r |= αu, but that is not producible by the input
generator GenUTA. This means that GenUTA can reproduce the event trace r
only up to a time tx at which the generator blocks even though r contains a
timed event (event, tx). Let us denote this partially reproduced trace as rTA.
Then, we have (event, tx) ∈ r but (event, tx) < rTA. Since GenUTA is blocked
at time tx, there must be at least one UTA that prevents event generation
at tx, that is, ∃bi : bi(tx) = 0, otherwise GenUTA could generate an event.
Let t j with t j ≤ tx be the earliest point and tk with tk > tx be the latest point
in the trace r such that in bi(t) = 0 holds ∀t ∈ [t j, tk), see also Figure 57. In
other words, tk is the next time when counter bi is incremented and [t j, tk)
represents the blocking interval of GenUTA due to UTAi. Let t1 with t1 < tx

be the latest point in the trace r where bi(t1) = Nu
i

was satisfied. Under

blocked

t = 0 t1 t j tk

t
bi(0) = Nu

i
xi(0) = 0

bi(t1) = Nu
i

xi(t1) = 0
bi(t j) = 0 bi(tk) = 1

tx t2

Fig. 57: Timed event trace rTA with evaluation of bi and xi

these assumptions, we conclude that for the number of events r(t1, t2) that
are present in the trace r in the interval [t1, t2) with t2 ∈ (tx, tk) we have

r(t1, t2) > Nu
i +

⌊

(t2 − t1)
δu

i

⌋

= αu
i (t2 − t1), (5.7)
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because r has at least one additional event with respect to rTA, namely
the event (event, tx). Obviously, this number of events violates the bound
imposed by αu

i
. Thus such a trace r cannot exist.

�

Lem. 2: Let Rαl
be the set of event traces that conform to αl defined according to Equa-

tions (5.5) and (5.6). Let RLTA denote the set of event traces producible by the
input generator of Figure 56 without UTA, shortly denoted as GenLTA. Then,

Rαl
⊆ RLTA.

Proof (Sketch). Analogously to the proof of Lemma 1, this can be shown
by contradiction. We assume that there is a trace r with r |= αl, but that
is not producible by the generator GenLTA. In particular, we assume that
for a given time interval [t1, t2) with ∆ = t2 − t1 the trace r contains less
events than the minimum number of events enforced by GenLTA for any
time interval of length ∆. By reasoning about the behaviour of GenLTA for
different interval sizes (see also proof of Lemma 5), it can be shown that
such a trace r does not exist.

�

Lem. 3: Let Rα be the set of event traces that conform to α = [αu, αl] defined according to
Equations (5.4), (5.5) and (5.6). Let RTA denote the set of event traces producible
by the input generator of Figure 56. Then, Rα ⊆ RTA.

Proof. Follows directly from Lemmata 1 and 2.

�

(B) Tightness (Rα ⊇ RTA)

Lem. 4: Let RTA denote the set of event traces producible by the input generator of
Figure 56. Let αu be defined according to Equations (5.4) and (5.6). Then,
r |= αu ∀r ∈ RTA.

Proof (Sketch). As discussed above, the parameters Nu
i

and δu
i

of UTAi

correspond to the parameters of the respective linear staircase function

αu
i
. It is easy to see that UTAi permits the generation of at most Nu

i
+

⌊

∆
δu

i

⌋

events and that with bi = 0 it blocks event production. The minimum
condition as defined above gives that for any ∆ ∈ R≥0 the maximum

number of producible events is bounded by min
i

(Nu
i
+

⌊

∆
δu

i

⌋

). This is exactly

what was defined for αu in Equation 5.4 and 5.6.
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�

By way of illustration, consider again Figure 56(a). If y events are
produced in a time interval of length t, then the counter b3 = 0 and UTA3

blocks the event generation. From then on, αu
3 determines the amount of

producible events, as it is the minimal curve among the upper staircase
functions.

Lem. 5: Let RTA denote the set of event traces producible by the input generator of
Figure 56. Let αl be defined according to Equations (5.5) and (5.6). Then,
r |= αl ∀r ∈ RTA.

Proof (Sketch). As discussed above, the parameters Nl
i

and δl
i

of LTAi

correspond to the parameters of the respective linear staircase function αl
i
.

It is easy to see that LTAi enforces the generation of an event after at most
(Nl

i
+ 1) · δl

i
time units of silence, followed by further event enforcements

every δl time units. Hence, for each stream r ∈ RTA we have r |= αl
i
.

Since the same must hold for all remaining staircase functions αl
j

with

j , i, we also have r |= max
k

{

αl
k

}

= αl. It remains to show that each

event enforced by some LTA can effectively be generated. Without loss of
generality, we assume that the input generator is deadlock-free, meaning
that the upper and lower bounds imposed by the various UTA and LTA are
consistent. This implies that the events enforced by some LTA can never
be suppressed by an UTA. Hence, the input generator cannot violate the
bound αl.

�

Lem. 6: Let Rα be the set of event traces that conform to α = [αu, αl] defined according to
Equations (5.4), (5.5) and (5.6). Let RTA denote the set of event traces producible
by the input generator of Figure 56. Then, Rα ⊇ RTA.

Proof. Follows directly from Lemmata 4 and 5.

�

(C) Identity (Rα = RTA)

Thm. 11: Let Rα be the set of event traces that conform to α = [αu, αl] defined according to
Equations (5.4), (5.5) and (5.6). Let RTA denote the set of event traces producible
by the input generator of Figure 56. Then, Rα = RTA.

Proof. Follows directly from Lemmata 3 and 6.

�
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5.4.3 Extensions

In practice, systems may show event streams that do not adhere to the
above described input pattern. While in such cases the pattern can still be
used to conservatively approximate the arrival curves, it is often desirable
to avoid approximations. Therefore, in the following, we briefly sketch
two possible refinements for the discussed input pattern.

5.4.3.1 Shifted staircase functions

In the input pattern described in Sections 5.4.1 and 5.4.2, each linear
staircase function has a uniform step width for all steps. However, in
practice one often encounters staircase functions α̂{u,l} that have an initial
offset θ{u,l}, meaning that they are horizontally shifted. For instance, this
is the case for the arrival curves of a pjd event stream. An example of
such translated curves is shown in Figure 58.

α̂u
1

α̂u
2

α̂l
1

δu
1

δu
2

δl
1

θu
1

θu
2

θl
1

Nu
2

Nu
1

Nl
1

1

1

1 ∆

events

Fig. 58: Shifted staircase functions with offset θ{u,l}
i

Staircase functions with initial offset can be modelled by a more gen-
eral version of the TA shown in Figure 56. In the following, we will
explain the underlying principle of the model on the basis of α̂u

i
. The

corresponding automaton UT̂Ai is shown in Figure 59. There are two
differences with respect to UTAi:

1. At each event generation the counter bi is decreased by eu
i

units.

2. Scaled constants N̂u
i

and δ̂u
i

are used as counter threshold and incre-
ment period.
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x <= δ

x == δ

x = 0,
b = min (b+1, N  )

b >= e 

event?

Sync++
b = b - e  ,
if (b==N  )  { x = 0 },

u

u

u

u

i

i

i

i

^

^

^

^

i

i

Fig. 59: TA for shifted upper staircase function α̂u
i

The idea for achieving the initial offset θu
i

in the modelled curve is
to use a value for eu

i
that is not a factor of N̂u

i
. In this way, after an

immediate generation of the maximum burst of events, the next event
can be generated earlier compared to the previous model. This is because
after the generation of the maximum burst, the counter will be equal
to a residual value 0 < bi < eu

i
and, hence, the generation threshold eu

i

is reached earlier. The following equations permit to derive the model
parameters eu

i
, N̂u

i
, and δ̂u

i
for given curve parameters θu

i
, Nu

i
, and δu

i
:

δ̂u
i = gcd(δu

i , θ
u
i ); eu

i =
δu

i

δ̂u
i

; N̂u
i = (Nu

i + 1) · eu
i −

θu
i

δ̂u
i

(5.8)

Consider, for instance, α̂u
2 shown in Figure 58 and defined by Nu

2 = 6,
δu

2 = 8, and θu
2 = 4. By applying Eq. 5.8 we obtain δ̂u

2 = 4, eu
2 = 2, and

N̂u
2 = 13. One can easily verify that with these parameters the automaton

of Figure 59 generates event traces which conform to α̂u
2 .

For lower curves α̂l
i

the reasoning is analogous and results in the
following equations:

δ̂l
i = gcd(δl

i, θ
l
i); el

i =
δl

i

δ̂l
i

; N̂l
i = Nl

i · e
l
i −

θl
i

δ̂l
i

+ 1 (5.9)

5.4.3.2 Non-concave/convex patterns

Another issue is that, in practice, systems may sometimes not show strictly
concave or convex patterns. For instance, the overall upper input curve
may have parts with decreasing step widths (see, e.g., α′u2, MPA in Fig-
ure 68), or the lower curve may contain parts with increasing ones. As-
suming that the non-concave (non-convex) patterns occur only finitely
often within an upper (lower) arrival curve, one can handle the situation
by making use of nested sets of UTA, LTA, and local synchronization.
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This strategy permits us to represent local minima and maxima and,
hence, non-concave and non-convex arrival curves. Specifically, in order
to implement such patterns, we need to encapsulate the respective sets of
co-operating UTA and LTA in their own sub-system. These subsystems
can be implemented analogously to the pattern illustrated in Section 5.4.2,
but requiring slightly adapted TA-specifications with respect to the em-
ployed thresholds.

Note that in the case of non-concave/convex input curves, the specifi-
cation of an upper and a lower bound might be inconsistent even if the
two curves do not intersect. This problem is described in more detail in
[AM10]. In our framework, such inconsistencies can easily be detected
by model checking a corresponding deadlock query.

5.4.4 Limiting the Complexity

The complexity of model checking TA is exponentially bounded by the
number of clocks and clock constants [AD94]. Thus, it is straightforward
to see that the efficiency of the approach is closely related to the number
of linear staircase functions employed to model lower and upper input
curves. In the following, we propose a simple method that permits us to
approximate a general arrival curve with the concave/convex combination
of just a few linear staircase functions. The approach first approximates
the arrival curve by a PJD event model, and then derives the parameters
for the corresponding staircase curves α{u,l}

i
.

Arrival curves are, in general, more expressive than PJD models. How-
ever, every arrival curve can be conservatively approximated by a PJD
model. Given a general arrival curve to be fed into a TA-based compo-
nent, we first use the algorithm described in [KHET07] to approximate
it with a PJD model. Then, we convert the PJD parameters to a set of
appropriate parameters N{u,l}

i
and δ{u,l}

i
. Finally, we use these parameters

to specify the input generator for the TA-based component as described
in Section 5.4.2.

The upper arrival curve of a PJD model can be represented by the
minimum of at most two linear staircase functions αu

1 and αu
2 . Specifically,

two linear staircase functions are needed if d > 0 ∧ d > p − j, while only
one linear staircase function suffices otherwise. For the lower bound of
a PJD model, one linear staircase function αl is always sufficient. The
parameters of the staircase functions are computed as follows:

• Case d = 0 ∨ d ≤ p − j :
Nu :=

⌈

j

p

⌉

+ 1; Nl := −
⌈

j

p

⌉

; δu := δl := p
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• Case d > 0 ∧ d > p − j :
Nu

1 := 1; δu
1 := d; Nu

2 :=
⌈

j

p

⌉

+ 1; Nl := −
⌈

j

p

⌉

; δu
2 := δl := p

Note that an exact representation of a PJD model by means of linear
staircase functions αu

1 , αu
2 and αl is not always possible if we exclude

horizontally shifted staircase functions. However, in such a case the
above formulae guarantee a correct (i.e. conservative) approximation
of the PJD model. On the other hand, if we use the generalized input
model described in Section 5.4.3.1, then we can precisely represent any
PJD model by means of at most three linear staircase functions. In this
case, the parameters of the staircase functions are computed as follows:

• Case d = 0 ∨ d ≤ p − j:
N̂u = x ∈N+, eu = y ∈N+ such that x

y
=

j

p
+ 1 ∧ gcd(x, y) = 1;

δ̂u =
p

eu

N̂l = v ∈N+, el = w ∈N+ such that v
w
=

j

p
∧ gcd(v,w) = 1;

δ̂l =
p

el

• Case d > 0 ∧ d > p − j:
N̂u

1 = 1; eu
1 = 1; δ̂u

1 = d

N̂u
2 = x ∈N+, eu

2 = y ∈N+ such that x
y
=

j

p
+ 1 ∧ gcd(x, y) = 1;

δ̂u
2 =

p

eu
2

N̂l = v ∈N+, el = w ∈N+ such that v
w
=

j

p
∧ gcd(v,w) = 1;

δ̂l =
p

el

The approximation of arrival curves with PJD models represents a
simple way to coarsely bound an event stream with few staircase func-
tions. However, in the presented hybrid analysis approach the interface
MPA→TA is of course not limited to PJD curves. Any other algorithm
that correctly bounds a general arrival curve with an arbitrary number of
linear staircase functions α{u,l}

i
can be used as interface between the two

domains.

5.5 Interface TA-MPA

In this section we describe the realization of the output interface
TA→MPA. The goal is to bound the output of a TA subsystem by means
of a tuple of arrival curves α′ = [α′u, α′l]. As described in Section 5.3, the
requirement for a correct output interface is Rα ⊇ RTA, where RTA denotes
the set of event traces producible by the TA subsystem. In other words,
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the output of the TA subsystem may be approximated, as long as the
approximation is conservative. The main concept used for constructing
valid output curves α′{u,l} can be considered just the reverse of the event
generation: We derive a set of linear staircase functions α′u

i
and α′l

i
for the

output of the TA subsystem, and construct an overall output curve α′{u,l}

by means of minimum and maximum operators. To achieve this goal,
we couple the system under analysis (including the input generator) with
a set of observing TA. The model checking of reachability queries for
these TA-systems allows us to derive the parameters N{u,l}

i
and δ{u,l}

i
that

uniquely characterizeα′u
i

andα′l
i
. In the following, we first describe the TA

that are used for verifying individual staircase parameters. After that, we
describe the overall composition strategy for constructing a valid output
curve α′{u,l}(∆).

5.5.1 Observer TA

We use the observer TA shown in Figure 60 to derive various characteris-
tics of the output event stream.

(a) Maximum burst size: An upper bound for the maximum number of
events that the TA system can generate simultaneously can be verified
by means of the observer automaton of Figure 60(a) and the query4:
A[] (count<=estimate).

(b) Maximal distance between two successively emitted events: We can ver-
ify a bound on the maximum pause time between two output
events by employing the observer of Figure 60(b) and the query
A[] (pause imply x<=estimate).

(c) Arbitrary upper staircase functionα′u
i

: For obtaining an individual upper
staircase function, we employ the observer TA of Figure 60(c) which
witnesses the violation or invulnerability of the respective curve. The
witnessing TA moves into the location violation once the respec-
tive curve is violated, that is, once the observed system produces too
many events. The reachability of this location is ascertained by the
query A[] (not violation). Hence, given some staircase parame-
ters Nu

i
and δu

i
, we can determine whether the corresponding staircase

function is a valid upper bound for the output event stream.

(d) Arbitrary lower staircase function α′l
i
: To obtain an individual lower

staircase function, we employ the observer TA of Figure 60(d) and
use the same principle as described above: Given some parameters

4In Uppaal A[] stands for ’always invariantly’.



134 Chapter 5. Hybrid Performance Verification

Nl
i

and δl
i
, we can determine whether the corresponding staircase

function is a valid lower bound for the output event stream.

(e) Long-term rates: In order to construct output curves α′{u,l} that approxi-
mate the system behaviour well also for large time intervals, we need
to make sure that we follow the long-term event output rate. By
long-term rate of an arrival curve α we mean the inverse of the limit

lim
∆→∞

α(∆)
∆

, which always exists as detailed in [JPTY08]. The largest δu
i

and the smallest δl
i

of any correct upper and lower output staircase
function denote upper and lower bounds on the long-term rate of the
output. The principle of efficiently verifying that a given staircase
function represents this upper or lower bound will be explained by
means of α′u

i
. The procedure for α′l

i
is analogous and is omitted for

conciseness. The idea is to verify whether the observed system can
produce an event trace such that for arbitrary long intervals the rate
of the trace is not slower than δu

i
. To do so one may employ the TA

depicted in Figure 60(e). This TA monitors the difference between the
number of event arrivals allowed by the rate δu

i
and the number of

events actually produced by the observed system. Once this differ-
ence exceeds a constant D, the TA moves to the location drift. If there
is a trace for which the observer TA stays indefinitely in the location
count, it means that we have found a trace that, on the long-term,
never gets slower than δu

i
, i.e., the rate δu

i
is not overly pessimistic for

the system output. Such a trace can be found as counterexample to
the query: count --> drift.5

The above automata can be employed in many different ways to derive
arrival curves α′{u,l} for the output event stream. In the following list, we
summarize only a few of the possibilities:

• A binary search on estimate (see (a) and (b)) yields the maximum
burst size and the maximal pause time of the output stream, respec-
tively.

• By fixing any of the two free parameters in the automaton of (c) or
(d) and by performing a binary search on the other parameter, we
obtain an upper or lower staircase bound, respectively. For example,
we can use the maximum burst size from (a) in the automaton of (c)
and perform a binary search on the remaining parameter δu

i
which

yields a valid upper staircase function α′u
i

for the output stream.

5In Uppaal --> stands for ’always eventually leads to’.
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event?
count++

event?
count++

count = 0

(a) Maximum burst

pause

event?

event?

event?
x = 0

(b) Maximum distance

violation
x <= Delta

b == 0  && x < Delta

event?

x == Delta

x = 0,
b = min(b+1,BMAX)

b > 0

event?

if (b==BMAX) x = 0,

b--

(c) Upper bound

violation
x <= Delta

event?

x = 0

x == Delta && b == BMAX
x = 0

x > 0

x == 0
event?event?

if (b==0) x = 0,
b = max(b-1,0)

x == Delta  
   &&  
b < BMAX

x = 0,  b++

(d) Lower bound

drift
count

x <= Delta && i<= D

event?

i == D

event?

x = 0

x == Delta
x = 0,
i++

event?
i--

(e) Tester for upper long-term rate

Fig. 60: Observer automata for deriving upper and lower output curves
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• Another option is to use the automaton of (c) with a sufficiently
large initial burst capacity Nu

i
and to perform a binary search on δu

i
.

This leads to a tight upper bound on the maximal long-term rate.

• By repeatedly applying the above alternatives, one can determine a
concave hull of the upper and a convex hull of the lower (unknown)
arrival curves of the output event stream. For example, in case of
an upper curve, we can consider a sequence of increasing values Nu

i

and use the automaton (c) to determine the corresponding maximal
values δu

i
that bound the system output. The sequence ends if the

long-term rate is met, see (e).

• All constructed upper and lower staircase functions can be com-
bined to a valid arrival curve by applying minimum and maximum
operations, respectively.

5.5.2 Algorithm

Let us now formalize one alternative for extracting a tuple α′ = [α′u, α′l]
of output arrival curves from a TA-based subsystem. Algorithm 1 defines
a simple heuristic procedure that employs the above observer automata.
We will employ this algorithm in the case study and the experiments
of Section 5.6. The heuristic returns four vectors N̄u, δ̄u, N̄l, δ̄l with
the parameters of the linear staircase functions that bound the output
event stream. The input parameters of the algorithm have the following
meaning:

n, m Maximal number of staircase functions α′u
i

and α′l
i

that
shall be used to bound the output stream

BMIN, BMAX Delimit the search interval for the maximum burst size

PMIN, PMAX Delimit the search interval for the maximum pause be-
tween two events

δMIN, δMAX Delimit the search interval for the parameters δl
i
and δu

i

k Scaling factor > 1 for Nu
i
, Nl

i

In line 5, the heuristic determines the maximum burst Nu
1 in the output

event stream. This is done by means of the function max burst which
implements a binary search. Specifically, in line 37, the functionmax burst
calls the Uppaal model checker to verify whether in the observer TA
of Figure 60(a), denoted as OMB, a given event counter value is never
exceeded. Similarly, in line 6, the function max delta determines the
maximal value of δu

1 such that the output stream never violates the bound
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Algorithm 1 Bound output of TA component (part 1)
1: function derive bounds

2: input: n, m, k, BMIN, BMAX, PMIN, PMAX, δMIN, δMAX

3: output: N̄u, δ̄u, N̄l, δ̄l

4: // Upper bound
5: Nu

1 ←max burst(BMIN,BMAX)
6: δu

1 ←max delta(Nu
1 , δMIN, δMAX)

7: Tu
1 ← Nu

1
8: for i← 2, n do

9: Tu
i
← k ∗ Tu

i−1
10: δu

i
←max delta(Tu

i
, δu

i−1, δMAX)
11: Nu

i
←min N upper(δu

i
,Nu

i−1,T
u
i
)

12: if isLongTermRate(δu
i
) then

13: break

14: end if

15: end for

16: // Lower bound
17: P←max pause(PMIN,PMAX)
18: [Nl

1, δ
l
1]←min delta pause(P, δMIN, δMAX)

19: Tl
1 ← Nl

1
20: for i← 2,m do

21: Tl
i
← k ∗ Tl

i−1
22: δl

i
←min delta(Tl

i
, δMIN, δ

l
i−1)

23: Nl
i
←max N lower(δl

i
,Nl

i−1,T
l
i
)

24: if isLongTermRate(δl
i
) then

25: break

26: end if

27: end for

28: remove redundant bounds()
29: return N̄u, δ̄u, N̄l, δ̄l

30: end function
...
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Algorithm 1 Bound output of TA component (part 2)
...

31: function max burst

32: input: estmin, estmax

33: output: N
34: est← ⌈(estmin + estmax)/2⌉
35: repeat

36: estold ← est
37: if verifyta ( A[] (OMB.count ≤ est) ) = satisfied then

38: estmax ← est
39: else

40: estmin ← est
41: end if

42: est← ⌈(estmin + estmax)/2⌉
43: until est = estold

44: return est
45: end function

46: function max delta
47: input: N, estmin, estmax

48: output: δ
49: est← ⌈(estmin + estmax)/2⌉
50: repeat

51: estold ← est
52: if verifyta ( A[] (not OUB.violation) ) = satisfied then

53: estmin ← est
54: else

55: estmax ← est
56: end if

57: est← ⌈(estmin + estmax)/2⌉
58: until est = estold

59: return estmin

60: end function
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specified by (Nu
1 , δ

u
1). Here the model checker is used to verify whether

the observer TA of Figure 60(c), denoted as OUB, can reach its violation
location (line 52). At this point, the first staircase curve α′u1 is fixed. Next,
the heuristic enters a loop (line 8) in which at most n − 1 other staircase
functions are determined for the upper bound. At each loop iteration
the value Tu

i
is scaled by a factor k, where Tu

i
represents a tentative value

for Nu
i
. Line 10 is equivalent to line 6. However, when looking for

the largest valid δu
i
, the algorithm considers that δu

i
> δu

i−1. Hence, it
uses tighter bounds for the binary search. In line 11 the heuristic calls
the function min N upper which determines Nu

i
by verifying whether the

found staircase function with parameters (Tu
i
, δu

i
) can be further shifted

down vertically. This may be possible, as the staircase function (Tu
i
, δu

i
)

is not necessarily the smallest correct staircase function with rate δu
i
. The

function min N upper is analogous to max delta, with the only difference
that the binary search is carried out on Nu

i
instead of δu

i
. For conciseness,

we omit the corresponding pseudo-code. After α′u
i

is fixed, the heuristic
calls the function isLongTermRate which uses the TA of Figure 60(e)
to verify whether δu

i
corresponds to the long-term rate of the system

output. If this is the case, it does not make sense to further increase Tu
i

and the approximation of the upper bound terminates. The derivation
of the lower bound follows the same line of thought, with analogous
functions max pause, min delta pause, and max N lower which employ
the TA of Figures 60(b), 60(d), as well as an adapted version of the TA
of Figure 60(e). One notable difference to the upper bound is that we
cannot directly compute Nl

1 given the value of P, the maximum pause
between two events. In particular, there are multiple staircase functions
that contain the cartesian point (P, 0). Hence, in line 18, the heuristic calls
the function min delta pause which looks for a curve α′l1 that contains
(P, 0) and in addition has the smallest correct value of δl

1. At this point Nl
1

is also determined. Finally, in line 28, the heuristic removes redundant
staircase curves, that is, α′u

i
for which it holds

∃α′uj : ((Nu
j < Nu

i ) ∧ (δu
j ≥ δ

u
i )) ∨ ((Nu

j ≤ Nu
i ) ∧ (δu

j > δ
u
i )), (5.10)

and α′l
i

for which it holds

∃α′lj : ((
∣

∣

∣

∣
Nl

j

∣

∣

∣

∣
<
∣

∣

∣Nl
i

∣

∣

∣) ∧ (δl
j ≤ δ

l
i)) ∨ ((

∣

∣

∣

∣
Nl

j

∣

∣

∣

∣
≤
∣

∣

∣Nl
i

∣

∣

∣) ∧ (δu
j < δ

u
i )), (5.11)

If after termination the upper (lower) long-term rate of the system is not
reached, we can either use a larger value for the parameter n (m), or try a
larger value for the scaling factor k. In many practical systems, however,
the long-term rates of the system output are known a priori. For instance,
it is often the case that a component affects the jitter of an event stream,
but not its period. In such cases, it is better to adopt an inverse search
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strategy in the heuristic. Specifically, for the upper bound, one would
start from the known long-term rate δu

n and derive the corresponding
value Nu

n in order to fix the last staircase function α′un . The function α′u1
could be found as described before by using the maximum burst of the
output stream. Successively, for refining the upper bound, one would
use different values Nu

i
with Nu

1 < Nu
i
< Nu

i
and derive the corresponding

values δu
i
.

5.5.3 Correctness

It remains to be shown that the heuristic of Algorithm 1 guarantees the
correctness of the output interface.

Thm. 12: Let RTA be the set of event traces producible by a TA subsystem S. Let α′ =
[α′u, α′l] be a tuple of arrival curves derived for the output of S by means of
Algorithm 1. Then, Rα′ ⊇ RTA.

Proof (Sketch). We illustrate the idea for the justification of the upper
bound α′u. The reasoning for the lower bound α′l is analogous. Let N̄u

and δ̄u be the parameter vectors derived by the heuristic for the output
of S. Let α′u

i
with i ∈ {1...n} be the staircase functions defined by those

parameters. It is sufficient to show that for each individual staircase curve
α′u

i
we have Rα′u

i ⊇ RTA, i.e, for each output event trace r producible by
S we have r |= α′u

i
. Consider first α′u1 . The function max burst called in

line 5 implements a binary search on the maximum burst in the output
of S. By using the observer TA of Figure 60(a), the function verifies
that a conservative estimate Nu

1 is returned for the maximum burst in
the stream. Similarly, by means of the TA of Figure 60(c), the function
max delta guarantees that a value δu

1 is returned such that α′u1 is never
violated by the output of S. Hence, r |= α′u1 ∀r ∈ RTA. The same argument
holds also for all successive calls of max delta, since the scaling factor k
is such to assure Nu

i
≥ Nu

1 . Thus, r |= α′u
i
∀r ∈ RTA ∀i ∈ {1...n}.

�

5.6 Experimental Evaluation

In this section we evaluate the performance of the proposed analysis
methodology. We first discuss a case study that demonstrates the ben-
efits of the hybrid analysis approach. Thereafter, we elaborate on the
scalability and accuracy of the presented method.
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Fig. 61: System architecture

5.6.1 Case Study

The considered system is shown in Figure 61. It consists of three event-
triggered tasks T1, T2 and T3 that run on two distinct processors CPU1

and CPU2. We assume that each task is triggered by the events of the
corresponding input event stream, and that it produces an event on the
corresponding output event stream once its execution is completed. The
three tasks process two event streams SA and SB which are periodic streams
with large jitters that lead to bursts. SA and SB are specified by the pa-
rameter triples pA = 7ms, jA = 28ms, dA = 1ms and pB = 7ms, jB = 23ms,
dB = 6ms, respectively. CPU2 implements a preemptive fixed-priority
scheduling policy, with T2 having higher priority than T3. The execution
of each task on its respective CPU takes 106 cycles. CPU2 operates at a
constant frequency of 350MHz. CPU1 implements a load-dependent fre-
quency adaptation. Specifically, it operates at 166MHz if there are 3 events
or less in its input buffer, and at 500MHz otherwise. Note that, for the
sake of simplicity, we assume that the CPU frequency cannot be changed
during the processing of an event. That is, the new CPU frequency is
chosen only at the beginning of an event processing (depending on the
current buffer fill level) and this frequency is kept constant until the next
event processing starts. The goals of the performance evaluation are to
characterize the event output stream of T1, to determine the maximum
delays and backlogs that events can experience at the single tasks, and to
find the maximum end-to-end delay for stream SA.

In this case study, we compare three different analysis approaches:

1. We analyze the described system with classical MPA using the RTC
Toolbox.

2. We carry out the analysis with the discussed hybrid analysis ap-
proach, where we model the state-dependent behaviour of CPU1 as
TA and analyze CPU2 with MPA.

3. We verify the performance of the entire system by means of a ded-
icated, holistic TA model according to the method described in
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[HV06]. This method is applicable, as the input streams can be
represented by means of PJD event models.

Freq2

x <= ETfast

Freq1

x <= ETslow

inEvent?
e++

inEvent?
e++

inEvent?
e++

e > 0 && e <= threshold
hurry!
x = 0

x == ETfast
outEvent!

e--

e > threshold
hurry!
x = 0

x == ETslow
outEvent!

e--

Fig. 62: TA model for CPU1

For the hybrid analysis approach (2.), we first represent the input stream
SA by the combination of three staircase functions αu

1 , αu
2 and αl. Using

the equations of Section 5.4.4, we get the parameters Nu
1 := 1, δu

1 := 1,
Nu

2 := 5, δu
2 := 7, Nl := −4 and δl := 7 for the staircase functions. The

corresponding arrival curve αSA
is shown in Figure 63(a). Given these

parameters, we automatically create the input generator as described in
Section 5.4.2. In order to increase the efficiency of the analysis, we merge
the input generating network of TA into a single automaton and simplify
it slightly by considering that Nu

1 = 1, that is, for αu
1 we do actually not

need a counter variable b, but just a clock to enforce a minimum distance
δu

1 between consecutive events. This input generator is then coupled with
the automaton shown in Figure 62, which models the load-dependent
behaviour of CPU1. In this automaton, we use the signals inEvent and
outEvent to distinguish between ingoing events coming from the Event
Source A and outgoing events sent to T2. Buffer1 of CPU1 is modelled
by means of a local counter variable e. The two locations Freq1 and Freq2
represent the processing of events at low and high frequency, respectively,
with corresponding processing times ETslow and ETfast. The signal hurry
belongs to an urgent channel which is always ready for synchronization.
This construct enforces greedy event processing. At this point, we apply
the heuristic of Section 5.5.2 to get arrival curves for the output of the
TA subsystem, where we choose to represent the upper bound as the
minimum of three staircase functions, and the lower bound with just one
staircase function. The resulting pair of arrival curves is then used as
input for the MPA analysis of CPU2. For the delay analysis of CPU1, we
customize the automaton of Figure 62 following the ideas of [HV06].

Table 6 summarizes the results of the performance evaluation. The
worst-case end-to-end delay of stream SA is denoted as EEA. Note that in
general for a sequence of components, the worst-case end-to-end delay
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Max delay [ms] Max buffer [events]

T1 T2 T3 EEA T1 T2 T3

MPA 29 8 28.6 31.9 5 3 5
Hybrid 25 5.5 17.2 30.5 5 2 3

TA 25 4.6 14.3 27.9 5 2 3

Tab. 6: Results of Performance Evaluation

can be smaller than the sum of the individual worst-case delays (see Sec-
tion 2.2.3.6). While in the abstractions of MPA and TA this phenomenon
can be captured, this is obviously not possible in the hybrid approach.
The table shows that in terms of accuracy the hybrid approach is clearly bet-
ter than the pure MPA analysis. In particular, the conservativeness of the
results is highly reduced, with a maximum delay and backlog at T2 that
are 31% and 33% lower with respect to the MPA analysis, respectively.
For the delay and the backlog at T3, the hybrid approach achieves values
that are 40% lower compared to the pure MPA analysis.

Let us explain the reason for the better results with the help of Fig-
ure 63. A pure MPA-based analysis of the system cannot capture the load-
dependent behaviour of CPU1. Hence, one has to assume that the pro-
cessor always operates at 500MHz in the best case, and at 166MHz in
the worst case. This assumption corresponds to using the service curves
βuCPU1

MPA
and βlCPU1

MPA
(cf. Figure 63(a)) for the analysis of CPU1. This yields

conservative worst-case processing load predictions for T2, captured by
α′u1,MPA

. However, a TA-based analysis of CPU1 produces tighter input
bounds for T2, captured by α′u1,Hybrid

. This leads to smaller worst case delay
guarantees in the hybrid analysis, as shown in Figures 63(b) and 63(c).

The last line of Table 6 contains the exact values for the worst-case
performance of the system. These values are determined by means of the
dedicated TA model for the entire system. As can be seen in the table, the
results of the hybrid analysis are slightly more conservative. The reason is
that the concave (convex) hull determined as bound for the output event
stream of T1 does slightly over- (under)-approximate the real behaviour
of the system.

The higher degree of accuracy of the hybrid analysis method has its
price, namely a substantially longer run-time compared to pure MPA, see
Table 7. This becomes worse if one requires an even higher accuracy for
the hybrid analysis, e.g. more staircase functions or non-concave/convex
patterns for the arrival curves. Nevertheless, the run-times achieved for
the hybrid approach are still significantly better compared to the verifica-
tion of the pure TA model.

Furthermore, we found that in the hybrid approach, the run-times
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Fig. 63: Curves associated with the case study
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MPA Hybrid TA

Total run-time < 1s 11min 1h

Tab. 7: Run-times for Performance Evaluation (referred to a commodity PC with a dual
core CPU and 2GB of RAM)

to derive an output curve from a TA component can be considerably
reduced if, for the representation of the input stream, we omit the lower
bound. In other words, we can speed up the procedure by employing
only UTA in the input event generator, and leaving out LTA. In this case
study, this corresponds to representing the event stream SA by the upper
bound αu

SA
of Figure 63(a) only, without specifying the lower bound αl

SA
.

Such a relaxation of the stream specification does not harm the correctness
of the analysis. In particular, by omitting the lower bound, we specify a
superset of input traces with respect to the case with both upper and lower
bounds. In other words, all behaviours of the original model are contained
in the relaxed model, and hence the analysis is safe. However, depending
on the behaviour of the modelled system component, considering more
input streams than in the original model might lead to more conservative
analysis results. In the system of Figure 61 this is not the case, meaning
that the same analysis results are achieved when representing the stream
SA with UTA only. In terms of verification effort the difference is, however,
substantial; by leaving out the LTA, the run-time of the hybrid approach
is reduced from 11 min to 18 s. This shows that the synchronization of
UTA and LTA in the input generator is the major source of complexity for
the discussed verification method.

5.6.2 Scalability of the Approach

In the following, we report the results of two different experiments that
investigate the scalability of the proposed analysis method. The first ex-
periment demonstrates that the presented compositional methodology is
clearly superior to holistic TA models in terms of scalability of the ver-
ification effort. The second experiment points out a main limitation of
TA-based performance evaluation in general, namely the blow-up of the
verification effort with increasing non-determinism in the system specifi-
cation.

5.6.2.1 Modular vs. Holistic TA verification

In this experiment we consider a larger distributed system consisting of
several state-based components. We compare two different TA-based
methods for the analysis of the system. The first approach performs a



146 Chapter 5. Hybrid Performance Verification

holistic analysis based on a single TA model of the entire system. In the
second approach, the analysis is strictly modular. In particular, in the
second case each component of the system is analyzed separately by an
individual TA model, where we use the described interfaces based on
staircase-functions to represent the input and output event streams of
the components. Obviously, it comports some verification overhead to
explicitly characterize the input/output interfaces of each component by
appropriate staircase functions. However, we still expect better scalabil-
ity for the modular approach, as in contrast to the holistic method, the
analysis of a component is totally decoupled from other components. In
order to highlight how well the two different approaches scale with the
size of systems, we gradually increase the number of components in a
predefined system architecture, and compare the results and run-times of
the analysis methods.

The considered system template is a chain of n tasks, where each task
executes on a dedicated processor. We assume that the execution of each
task takes 106 processor cycles. The tasks are arranged one after another
and process the events of an input event stream S. Figure 64 shows an
instance of the system for n = 5.

Fig. 64: System instance with five components

Each CPU in the chain implements a load-dependent frequency adap-
tation (see details below). For the experiments, we consider five different
system instances, from n = 1 to n = 5. That is, the first instance consists
of T1/CPU1 only, the second instance of T1/CPU1 and T2/CPU2 etc. In
order to allow for event bursts also at the last components of the chain,
we choose different maximum frequencies for the five processors. The
parameters for the processors are summed up in Table 8. The load-
dependent frequency adaptation works as follows: If there are not more
than threshold events in the input buffer of a CPU, the CPU executes at
frequency flow, otherwise at fhigh. We again exclude frequency changes
during the processing of an event.

The aim of the performance evaluation is to determine the worst-
case backlogs at the single event buffers for each system instance. The
considered system has a pure feed-forward architecture. Hence, when
we extend it by adding one component at the end of the chain, we need to
verify only the backlog of the new component. This is because previous
components are not affected by the extension of the system.
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CPU1 CPU2 CPU3 CPU4 CPU5

flow [MHz] 166 166 166 166 166

fhigh [MHz] 1000 500 333 1000 500
threshold [events] 1 1 1 1 1

Tab. 8: Parameters for the CPU chain

For the input event stream S, we assume the same upper bound as for
SA in the previous case study, that is, αu

S
= αu

SA
. In order to speed up the

run-times for both the holistic and the modular analysis, we do, however,
omit the specification of the lower bound αl

S
(see comment at the end of

Section 5.6.1). The resulting TA model for the input generator consists of
two UTAs with parameters Nu

1 = 1, δu
1 = 1, and Nu

2 = 5, δu
2 = 7.

Buf1 Buf2 Buf3 Buf4 Buf5

TA holistic 5 5 4 4 3

TA modular 5 5 5 4 5
MPA 5 6 6 6 7

Tab. 9: Worst-case backlogs as derived with the different approaches

The results of the performance evaluation are reported in Table 9. The
first row in the table contains the exact values for the worst-case backlogs.
These values are determined by means of holistic TA models for the
different system instances. The second row shows the worst-case backlogs
as predicted by the modular analysis approach based on TA. The reason
for the slightly more conservative results is the same as in the case study
of Section 5.6.1: The concave hulls derived as upper bounds for the event
streams transmitted between components are an over-approximation of
the real streams. In particular, for the sake of efficiency, we decided
to represent each input/output stream with a concave pattern of two
linear staircase functions only. This is not sufficient to capture the exact
behaviour of the streams. For comparison, in the last row of Table 9
we also report the analysis results achieved by an MPA analysis of the
system instances. This analysis is obviously penalized, as the state-based
behaviour of the components cannot be captured in the MPA models.

Let us now focus on the computational effort required by the consid-
ered analysis approaches. Figure 65 displays the run-times of the different
methods for the analysis of the five system instances. These run-times
are cumulative, meaning that for a system instance with n components
they express the total time needed to determine the worst-case backlog
values for all n buffers. For the holistic TA analysis we consider two
different alternatives for the modelling of the input generator. The first
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variant uses the staircase-based TA pattern for event generation described
before, which in this case corresponds to the combination of two UTA.
The second variant uses an optimized input generator for periodic event
streams with jitter/bursts as described in [HV06]. The chart of Figure 65
shows a clear trend for the holistic analysis approaches: The run-times
increase exponentially with the size of the considered system instance
(note the logarithmic scale on the y-axis). This holds for both types of
input event generators, the general one based on UTA, and the optimized
one designed for PJD streams. When we use the general input generator
to trigger the holistic TA model, we report a run-time of more than two
hours for analyzing the first three components. For system instances with
more than three components, the model checker runs out of memory af-
ter several hours of verification. For the optimized input generator the
run-times are slightly better with a maximum bearable system size of five
components.

Also for the modular TA-based analysis approach, we can identify a
trend: The run-times increase nearly linearly with the number of con-
sidered components. In particular, for each additional component in the
chain, the run-time increases by roughly 4-30 s. Given the concave hull
that describes the input stream of a component, this is the time needed
to determine the worst-case backlog of the component, and to derive the
concave hull that bounds the output stream. The deviations from an exact
linear increase are supposedly a consequence of the varying amount of
non-determinism present in the input streams at the different stages.

The above experiment highlights one of the main advantages of the
proposed analysis framework: It enables a fully compositional system
analysis by adopting appropriate patterns to represent the input/output
interfaces of components. As a result, the state-space explosion is limited
to the level of isolated components. Consequently, the proposed analysis
technique scales to systems of almost arbitrary size, provided that the TA
abstractions of the single components are reasonably simple and that the
representation of the event streams is reasonably coarse.

5.6.2.2 Non-determinism in event stream specifications

In this second experiment we investigate how sensitive the run-times of
the proposed compositional analysis method are with respect to increas-
ing non-determinism in the specification of the input event streams. In
order to do so, we gradually increase the burstiness of the input event
stream for a simple TA component, and measure the run-time needed to
characterize the corresponding output stream.

We consider the component T1/CPU1 from Figure 61 that implements
the load-dependent frequency adaptation described in Section 5.6.1. As
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Fig. 65: Computational effort of the modular and the holistic approaches

input to the component, we consider event streams upper bounded by
a simple linear staircase function with step-width δu = 7, and seven
different levels of burstiness varying from Nu = 5 to Nu = 150. As for
the previous experiment, in order to speed up the verification times, we
consider only an upper bound for the input event stream, and omit the
lower bound. For all seven different input bounds we record the run-
time needed by the heuristic described in Section 5.5.2 to characterize the
output event stream, where we choose to represent the output bounds
as the minimum of two linear staircase functions. In order to ensure
that in all seven cases the same number of verification steps is needed to
characterize the system output, we set k := Nu in the heuristic.

The results of the experiment are shown in Figure 66. As can be seen
in the chart, the total run-time needed to characterize the output stream
increases exponentially with the jitter/burstiness of the input stream. For
the input stream with Nu = 5, the derivation of the output event stream
is performed in roughly one second. For the input stream with Nu = 125,
we record a run-time that is three orders of magnitude larger. For the
input stream with Nu = 150, the model checker runs out of memory.

The described experiment clearly shows a limitation of TA-based per-
formance evaluation: Only event streams with mediocre degree of non-
determinism regarding the timing of event arrivals can be handled with
reasonable verification effort. This result is not very surprising, as with
increasing non-determinism in a TA model, the model checker has to
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explore a larger number of system states.

5.6.3 Approximation Errors

In this final part of the experimental evaluation of the proposed
method, we briefly elaborate on possible approximation errors intro-
duced by bounding the output streams of system components with a
convex/concave hull of staircase functions as described in Section 5.5. In
order to characterize these approximation errors in isolation from other
effects, we apply the described TA-based analysis approach to two sys-
tems consisting of stateless components only. We compare the obtained
bounds with the results of an MPA analysis, which for the considered
systems ensures tight results.

Consider first the simple system architecture shown in Figure 67. The
depicted system consists of a CPU that executes two tasks T1 and T2. The
two tasks are triggered by two strictly periodic streams S1 and S2 with
periods p1 = 60ms and p2 = 5ms, respectively. The CPU schedules the
two tasks according to a preemptive fixed priority scheme, where T1 has
higher priority than T2. We assume that the CPU executes at a constant
frequency of 1GHz, and that the execution of T1 and T2 takes 60 · 106

and 5 · 106 cycles, respectively. The goal of the analysis is to characterize
the output event stream S′2. For the TA-based analysis of the system we
employ a holistic TA model for the preemptive fixed priority scheduling
of two tasks, as described in [Per06].

Figure 68 shows the result for both the MPA analysis and the TA
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Fig. 67: Fixed priority scheduling of two tasks

heuristic of Section 5.5.2 . The curves [α′l2, MPA, α
′u
2, MPA] (depicted with a

solid line in the plot) represent the exact lower and upper arrival curves
for the stream S′2 computed by the MPA analysis. The dashed lines in
the plot represent the bounds for the output event stream derived by the
heuristic, where we decided to represent the upper bound α′u2 TA as the
minimum of two linear staircase functions and the lower bound α′l2 TA by
one single linear staircase function. As can be seen in the plot, the heuristic
clearly over-approximates the real upper bound for S′2. The reason for this
abstraction loss (represented by grey shaded areas in the figure) is that
the heuristic constructs only a concave hull of linear staircase functions
to upper bound the output stream, whereas the real upper bound of the
stream does not have a strictly concave shape. To avoid such losses, we
could think of extending the heuristic of Section 5.5.2 such that it handles
mixed convex/concave output patterns. However, such an extension is
not trivial and would obviously also slow down the verification process
considerably.

Let us now perform a second experiment to illustrate a different kind
of approximation error. Consider a simplified version of the compo-
nent T1/CPU1 from Figure 61. Assume that instead of the described
load-dependent frequency adaptation, CPU1 can arbitrarily change its
execution frequency between 166MHz and 500MHz. Such a stateless
best-case/worst-case component description is ideally suited to an exact
MPA analysis of the component. As input for the component we consider
the stream SA as given in Section 5.6.1, that is, a periodic event stream
with jitter specified by the parameter triple p = 7ms, j = 28ms, d = 1ms.
The goal of the analysis is again to characterize the output event stream of
the component. Figure 69 shows the results of both approaches, the MPA
analysis and the TA heuristic of Section 5.5.2. The curves [α′lMPA, α

′u
MPA]

represent the exact lower and upper arrival curves for the component
output computed by MPA. These curves correspond to a periodic event
stream with jitter specified by the parameter triple p′ = 7ms, j′ = 32ms,
d′ = 2ms. For the heuristic approach, we decide to represent the upper
bound α′uTA as the minimum of two linear staircase functions and the
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Fig. 68: Bounds for S′2 determined by MPA (exact) and the TA-heuristic
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lower bound α′lTA by one linear staircase function. The plot shows that
the heuristic slightly over-approximates the real upper bound, although
the maximum component output follows a concave pattern. Similarly,
the lower bound is slightly under-approximated. The reason for this
abstraction loss is that the heuristic of Section 5.5.2 does not consider
horizontal translations of linear staircase functions. In particular, looking
at Figure 69, we see that the offset ηu, after which the real upper bound
of the component output follows the long-term rate δu

2 , is not a multiple
of the long-term rate itself. In fact, without horizontal offset no linear
staircase function α′u can precisely capture the long-term behaviour of
the component. The reason for the under-approximation of the lower
bound is analogous.

In Section 5.4.3.1 we have described how this kind of approximation
error can be avoided when converting known input event streams to TA
input generators. The case of bounding the output stream of a TA compo-
nent is, however, more difficult, as the stream that needs to be bounded
is obviously not known a priori. In particular, permitting arbitrary hori-
zontal shifts for the linear output staircase functions would mean adding
another degree of freedom for the search heuristic. This would also clearly
slow down the analysis process.

5.7 Related work

There are a few other methods that tackle the combination of analytical
performance evaluation and state-based system verification. The authors
of [PCTT07] present an approach that permits them to convert arrival
curves as used in MPA and Network Calculus to Event Count Automata
(ECA) [CPT05], a finite state representation of event streams. An ECA
is an ordinary FSM, augmented with counter variables. It specifies the
minimum and maximum number of events that arrive in a stream, while
the automaton is in a given location. The ECA takes transitions at discrete
time points, based on the current values of its counters. For converting an
arrival curve to an ECA, the authors of [PCTT07] propose a procedure that
relies on the finite data type for arrival curves adopted in the RTC Toolbox
(see Section 2.2.3.7). The procedure automatically transforms successive
vertices of the arrival curve to a sequence of ECA locations. The opposite
conversion, i.e., the transformation of an ECA to an arrival curve, relies
on dedicated observer ECA and binary search. By means of ordinary
reachability analysis, the procedure extracts the minimum and maximum
number of events that may arrive in an interval of a particular length.
In [PCT08] it is shown how this approach can be applied to the analysis
of multi-mode real-time systems. Compared to the ECA formalism, our



154 Chapter 5. Hybrid Performance Verification

usage of TA appears more advantageous for the modelling of real-time
systems. The reason is that TA have an explicit notion of time, whereas
ECA advance in a lock-step fashion. Moreover, the output interface of
our method requires only one observer automaton for an entire linear
staircase function, whereas with ECA one observer is needed for each
discrete interval size.

In [DMS09] another approach is presented that exploits the advan-
tages of both analytical performance evaluation and state-based system
verification. The method is not hybrid at the component level. Rather,
it applies the different formalisms at different stages of the system eval-
uation. Specifically, it first maps the system under evaluation to a pro-
cess network which is analyzed via compositional response time analysis
[HHJ+05]. The resulting event models and response times are then used
to parameterize a pre-defined TA model of the system automatically. At
this point the system model is coupled with other TA models that express
the system properties to be verified. Finally, ordinary model checking
is used to ascertain the correctness of the system. A major drawback
of this approach is that it cannot explicitly represent components with
state-based behaviour. Rather, it uses TA models as intermediate repre-
sentation for intrinsically stateless systems, which makes the application
of TA questionable.

The authors of [KMY07] also address the combination of MPA and
TA. For encoding arrival curves by means of TA, they use a circular
array of clocks as basic data structure. These clocks keep track of the
time that passed since the generation of the last events. The bounds
imposed by the arrival curve are encoded by appropriate constraints on
the clock variables. By observing these constraints, the input generator
can produce only event traces that conform to the arrival curve. The
main drawback of this kind of input generators is that they may require
a prohibitive number of clocks. In fact, one needs one clock for each
vertex of the modelled arrive curve. To extract arrival curves from a
TA model, the authors of [KMY07] suggest the use of observer automata
and binary search. Specifically, they employ model checking to verify
the minimum/maximum number of events that can appear on the output
stream in an interval of a particular size. This output interface is basically
equivalent to the one of [PCTT07]. Its major drawback is that it can
characterize the system output for a finite set of interval sizes only, as it
verifies the output arrival curve vertex by vertex. In this chapter, we have
overcome these limitations by decomposing arrival curves to simpler
curve components. The decomposition permits us to employ single clock
variables for representing entire curve components, and not just single
vertices of a curve. As has been demonstrated, this leads to considerably
more scalable system models.
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5.8 Summary

In this chapter we introduced a hybrid analysis method that combines
analytic performance evaluation with state-based system verification. In
the resulting modular framework, system components are abstracted ei-
ther analytically by means of MPA or with state-based models in the form
of Timed Automata. The proposed methodology permits us to consider-
ably reduce the abstraction losses experienced with MPA due to coarse
abstractions of components with state-dependent behaviour. At the same
time, it limits state space explosion, as intrinsic to formal verification, to
the level of individual system components. To maintain the scalability of
the approach, we suggest employing detailed TA models exclusively for
those components where an MPA analysis is too pessimistic. In short, our
method can balance the accuracy and the complexity of the performance
evaluation.

The presented technique derives from the observation that arrival
curves can be represented as sets of linear staircase functions which are
composed by minimum and maximum operations. The method is based
on two interfaces, the input interface MPA→TA and the output interface
TA→MPA, that were extensively discussed. The input interface converts
an arrival curve to an input generator, that is, to a network of TA that
generates event traces and that is used to trigger a user-defined TA com-
ponent model. In the input generator, each linear staircase component
of the arrival curve is guarded by a dedicated TA. To represent the min-
imum and maximum of staircase functions, appropriate synchronization
mechanisms are employed. The output interface performs the inverse
transformation, that is, it constructs valid arrival curves for the output
of a TA component. This is done by employing appropriate observe au-
tomata in a binary search based heuristic. For both interfaces we have
proven correctness, which means that the hybrid framework delivers
hard performance guarantees for the modelled systems. As the class of
arrival curves includes other event stream models such as the widely
used PJD (periodic with jitter) model, the proposed method can also be
directly applied for coupling TA-based system verification with MAST or
SymTA/S.

By means of a simple case study, we demonstrated that our method
achieves more accurate performance bounds for systems with state-
dependent components, while still being more efficient than the verifi-
cation of a holistic TA model. We also performed experiments to inves-
tigate the scalability of the proposed method, and to identify potential
inaccuracies of the conversions.

Finally, let us indicate some issues that our work leaves open. The
heuristic devised for the output interface does not explore shifted stair-
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case curves or non-convex/concave patterns. In more general terms, the
present work does not assure the tightness of the output interface. It does
also not consider cycles in the event flow or non-functional cyclic depen-
dencies among components as considered in Chapter 3. These matters
are left for future work.



6
Energy-Efficient System Design

with MPA

So far, our discussion of performance evaluation has concerned only the
timing properties and memory requirements of embedded systems. How-
ever, as mentioned in the introduction, there are also other performance
requirements that many systems need to meet. One fundamental aspect
for several embedded systems is their energy consumption. For instance,
the amount of dissipated power directly affects the battery lifetime of
mobile devices such as cell phones or PDAs. During the last decade,
many techniques have been proposed to reduce the energy consumption
of real-time embedded systems. Examples are the real-time adaptations
of Dynamic Voltage Scaling (DVS) and Dynamic Power Management
(DPM). However, most of these techniques rely on stringent assumptions
such as deterministic input event streams. In this chapter, we consider the
design and analysis of energy-efficient real-time systems which process
non-deterministic input streams. We propose novel energy-aware design
methods, which are based on MPA and TA. We focus on DVS, but similar
results may be obtained for DPM. Specifically, we consider two distinct
design problems: (1) The energy-efficient offline assignment of execution
speeds and priorities to a set of real-time tasks triggered by event streams;
(2) The energy-efficient online adjustment of the execution speed of a task
that processes an event stream. The first method is based on the MPA
framework discussed in Chapter 2. The second one builds on top of the
hybrid evaluation framework introduced in Chapter 5.
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6.1 Introduction

Power dissipation increasingly limits the performance of modern com-
puting systems. Therefore, power management in both hardware and
software has become one of the primary aspects of system design. Effec-
tive power management can significantly prolong the battery lifetime of
autonomous embedded systems or reduce the power bill of server sys-
tems. The dynamic energy consumption of a system can be reduced by
means of dynamic voltage scaling (DVS), a technique that balances sys-
tem performance and energy savings. In general, a lower supply voltage
for a processor leads not only to a lower execution speed, but also to a
lower power consumption. Hence, most DVS scheduling algorithms, e.g.
[YDS95], tend to execute events/jobs as slowly as possible in order to save
energy. On the other hand, to consume less leakage (static) power, one
can apply dynamic power management (DPM). In DPM systems the pro-
cessor can switch among different power modes such as running, idle or
sleep. DPM algorithms, e.g. [JPG04], tend to aggregate jobs and typically
put the system into a sleep mode when there are no events/jobs to process.
In our work we focus on DVS in real-time systems.

For real-time systems, energy-efficient design stands for minimizing
the energy consumption without violating the deadlines of tasks. Known
techniques can broadly be divided into the two main classes of offline
and online methods. Offline approaches determine the system behaviour
statically by assuming worst-case workload for tasks, see, e.g., [YDS95].
On the other hand, online approaches reclaim energy dynamically by
adapting to the actual workload of a system, see, e.g., [AMMMA01].

Most studies for energy-efficient scheduling in real-time systems as-
sume that the input events arrive according to regular patterns, i.e., pe-
riodically or sporadically. Another common assumption is to consider
irregular arrival patterns, but with full a priori knowledge of event ar-
rival times. Unfortunately, both assumptions are not realistic for many
systems. In fact, event arrivals in practical systems are often neither regu-
lar nor fully predictable. There are two main reasons for non-deterministic
event arrival times:

(a) Tasks of embedded systems are often triggered by the physical envi-
ronment which can, in general, not be predicted accurately

(b) Variable execution demands, communication delays, and interference
on shared resources all make it extremely difficult to predict precise
activation times of individual tasks in distributed architectures.

In the domain of performance analysis of distributed embedded systems,
powerful abstractions have been developed for capturing the timing non-
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determinism of event streams. Examples are the PJD event model and
the abstraction of arrival curves described in Chapter 2.

In this chapter we propose novel design methods for energy-efficient
real-time systems with non-deterministic event streams. Our methods
employ the concept of arrival curves to represent the bounded non-
determinism of event streams. The proposed techniques target the ef-
ficient DVS scheduling of event streams and rely either on MPA or TA
to guarantee the observation of timing constraints. Since arrival curves
permit the characterization of arbitrary event streams, our methods con-
siderably extend the modelling scope of existing DVS techniques. In
particular, we look at the following two design problems:

1. Offline DVS scheduling
Given is a monoprocessor system with multiple non-deterministic
input event streams and real-time requirements. The processor
schedules the streams with static priorities and preemption. Assign
static execution speeds and priorities to the streams such that the
timing and speed constraints are met, and the energy consumption
is minimized.

2. Online DVS scheduling
Given is a monoprocessor system that executes a single non-
deterministic input event stream with real-time requirements.
Adapt the execution speed dynamically such that the timing and
speed constraints are met, and the energy consumption is mini-
mized.

6.1.1 Organization

The contents of this chapter are organized as follows. In Section 6.2 we
give a brief introduction to Dynamic Voltage Scaling. We also describe
two existing approaches for offline and online DVS scheduling of single
event streams, which form the basis of our contributions. In Section 6.3,
we tackle design problem 1. Specifically, we propose different heuristics
for the design of systems with offline DVS and static priorities. In Sec-
tion 6.4, we approach design problem 2. We propose an adaptive scheme
that combines pessimistic and optimistic DVS scheduling to execute a
real-time event stream. The scheme ensures that both timing and speed
constrains are met and at the same time ensures an energy-efficient ex-
ecution. Finally, we discuss related work in Section 6.5 and provide a
summary of the chapter in Section 6.6.
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6.2 Dynamic Voltage Scaling

The switching activity in CMOS circuits leads to dynamic power dissipa-
tion due to charging and discharging of load capacitances. Specifically, for
the dynamic power dissipation Pd of a CMOS processor it holds [CSB92]

Pd ∼ a CL V2
dd f , (6.1)

where Vdd is the supply voltage, a is the switching activity, CL is the load
capacitance, and f is the clock frequency of the processor. Note that
the above term does not consider any static components of the power
dissipation, such as leakage currents. Consequently, the dynamic en-
ergy consumption for the execution of a task with processing time t (at
frequency f ) fulfills

Ed ∼ a CL V2
dd f t = a CL V2

dd n, (6.2)

where n corresponds to the number of processing cycles required for the
execution of the task. On the other hand, for the delay d of CMOS circuits
we have

d = k CL
Vdd

(Vdd − VT)2 , (6.3)

where k is a positive constant and VT is the threshold voltage with
VT ≪ Vdd. From Equations 6.2 and 6.3, it follows that by decreasing the
supply voltage Vdd one can reduce the dynamic energy consumption Ed

quadratically, whereas the gate delay d will increase only linearly. This fact
is exploited by the technique of Dynamic Voltage Scaling (DVS), which
achieves energy savings by reducing the supply voltage of the processor.
A linear increase of the circuit delay translates to a linear decrease of the
maximal practicable processor frequency fmax, and hence also to a linear
increase of the processing time of a task. In short, one can save energy
by executing tasks at a slower pace. In real-time systems, the adaptation
of the execution pace must obviously be such that the timing constraints
are met. In the reminder of this chapter we express the execution pace
of a CPU not by its clock frequency f , but by a speed s that denotes the
amount of workload units that the CPU processes per time unit.

In the following, we summarize two existing DVS approaches for exe-
cuting a single non-deterministic event stream with real-time constraints.
The first approach determines the execution speed offline (at design time)
whereas the second one adopts the execution speed online (at run time).
These methods form the basis for our contributions in Sections 6.3 and
6.4.
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6.2.1 Offline DVS scheduling

The offline DVS scheduling of a single non-deterministic event stream is
considered in [MCT05]. The method models the stream by means of an ar-
rival curve and employs MPA to derive the minimum speed that guaran-
tees the deadlines. Since from the arrival curve one cannot infer the actual
arrival times of individual events in the stream, the method determines
the minimum constant execution speed that ensures the schedulability of
all possible event traces.

The minimum constant execution speed is found by considering the
expression for the worst-case response time (or maximum delay) of a
GPC component Del(α, β) (cf. Equation (2.41)), where α is the upper
arrival curve of the non-deterministic event stream and β is the lower
service curve of the processor1. The stream is schedulable if Del(α, β) ≤ D.
In other words, all timing constraints are met if the worst-case response
time for the stream is not larger than its relative deadline D. Remember
that Del(α, β) corresponds to the maximal horizontal distance between α
and β. Hence, the schedulability condition can also be expressed as

α(∆ −D) ≤ β(∆) ∀∆ ≥ 0, (6.4)

where α(∆−D) is the upper arrival curve translated by the deadline D, see
Figure 70. Based on the above analysis, the offline DVS schedule consists
in executing the stream at a constant speed sSD such that

α(∆ −D) ≤ sSD · ∆ ∀∆ ≥ 0. (6.5)

Figure 70 illustrates an example of the above strategy. Executing the
event stream at the constant speed sSD ensures that all deadlines are met,
even under worst-case arrivals of events. In the following we denote this
offline approach as Algorithm SD which stands for static DVS.

Note that a concrete event trace of the non-deterministic stream might
be far below the arrival curve α in many time intervals. This is because
α bounds the worst-case event trace. In such a case, Algorithm SD still
executes the trace at constant speed sSD, that is, faster than actually nec-
essary. In other words, by means of a static speed assignment one tends
to be too pessimistic. For this reason, we call the above offline approach
also pessimistic DVS scheduling.

6.2.2 Online DVS scheduling

In contrast to an offline scheme, an online DVS scheduling algorithm takes
a new scheduling decision each time an event really arrives. Hence, an

1In this chapter we consider only upper arrival curves and lower service curves. We
will therefore omit the superscripts u and l.
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α(∆)

α(∆ −D)

D

β(∆) = sSD · ∆

∆

Fig. 70: Graphical illustration for the derivation of sSD

online DVS algorithm can reduce the energy consumption of a system by
adapting the CPU speed to the actual trace of input events. Different on-
line DVS algorithms have been proposed in the literature [YDS95, BP05].
A well-known online DVS scheme is the Algorithm OPT proposed by Yao
et al. [YDS95]. In the following, we briefly summarize the behaviour of
this algorithm.

For an event e j that is not yet fully processed at a time t, suppose that

• C j(t) is its worst-case remaining execution time at speed smax,

• a j is its arrival time,

• d j is its absolute deadline.

Algorithm OPT makes the scheduling decision at time t by executing the
first event in the queue at speed

s(t) = max
e j



















∑

ei:ai≤t,ei�e j

Ci(t)
d j − t



















. (6.6)

In other words, the algorithm chooses the execution speed online in a
greedy fashion and guarantees a low energy consumption by consider-
ing only the events that have arrived so far and are not yet completely
processed.2 Algorithm OPT has a competitive factor of γγ with respect to
an optimal DVS schedule [BKP04]. This means that it consumes at most
γγ as much dynamic energy as an optimal schedule which is computed
offline, based on a priori knowledge of event arrival times.

2Note that if speed switching requires a timing overhead bounded by χ, we just have
to modify d j − t in Equation (6.6) to d j − t − χ.
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An important observation is that Algorithm OPT can guarantee the
schedulability of any arbitrary event stream, provided that the system
has no maximum speed constraint, that is, smax = ∞. However, if smax is
constrained, applying the algorithm can lead to a schedule that violates
deadlines, because the algorithm may require execution speeds that ex-
ceed smax. In other words, the Algorithm OPT may be too optimistic in the
sense that it is not provident enough. For this reason, we call the above
online approach also optimistic DVS scheduling.

6.3 Design of Offline DVS Systems with MPA

In this section we consider the energy-efficient scheduling of mul-
tiple event-processing real-time tasks with static priorities and non-
deterministic release times. We assume that the event arrival times are
not known a priori but are constrained by arrival curves. For this setting,
it is still an open issue how to statically or dynamically determine the
execution speeds and the priorities of the individual tasks such that the
energy consumption is minimized. We focus on offline algorithms, that
is, on methods that fix the execution parameters at design time according
to the predicted worst-case workload. Specifically, we explore how to
statically determine the priorities and execution speeds of multiple tasks
that are triggered by arbitrary event streams. We first consider systems
with a bounded continuous speed range, and then adapt the developed
concepts to the case of discrete operating speeds.

Determining the optimal individual execution speeds of tasks in a
static priority setting and under arbitrary release patterns is not trivial.
For instance, it is often not wise to process a high priority task as slowly as
possible, as this might force low priority tasks to use very high speeds in
order to meet their timing constraints. Also, there is a mutual dependency
between priorities and execution speeds: a task can tolerate a lower
execution speed if it has a higher priority. To the best of our knowledge, all
present DVS methods for static priority systems consider task priorities
as given. By not rearranging the priorities of tasks, they preclude an
important possibility to further reduce the energy consumption.

The contributions of this section can be summarized as follows:

• We devise a simple algorithm for computing a static priority assign-
ment to multiple real-time tasks with arbitrary release patterns. We
show that the computed priority assignments are energy-optimal in
the particular case that one global speed is used to execute all the
tasks.
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• We show that priority-monotonic speed assignments are energy-
efficient, and present a heuristic that determines the individual task
execution speeds in the particular case that the task priorities are
predetermined.

• We propose an efficient heuristic for the general case in which both
priorities and execution speeds need to be determined.

• We demonstrate the benefits of the presented methods in several
experimental test cases.

6.3.1 Models and Problem Definition

In the following, we first describe the system and power models adopted
in our approach. We then state the problem definition and provide a
motivational example.

6.3.1.1 System Model

The studied system consists of a CPU that executes N independent real-
time tasks, Γ = {τ1, · · · , τN}. The tasks are executed with static priorities
and in a preemptive manner. The CPU supports DVS and hence can use
different execution speeds (supply voltages) at different times. For the
sake of simplicity, we assume that there is no timing or energy overhead
for speed changes. We denote the set of available execution speeds with
Ŝ . Recent DVS processors have only a discrete set of available speeds.
However, it is still possible to emulate a continuous speed range by means
of voltage hopping [LS00]. In our approach, we consider both the con-
tinuous and the discrete case, that is, we either assume Ŝ = [ŝmin, ŝmax],
or Ŝ = {ŝ1, ŝ2, · · · , ŝK} with ŝmin := ŝ1, ŝmax := ŝK, ŝ1 < ŝ2 < · · · < ŝK. In
Section 6.3.2 we discuss both cases separately. Without loss of generality,
we consider ŝmax = 1 and normalize all related metrics.

Each task τi is specified by the following parameters:

• ᾱi(∆) : Upper arrival curve

• Ci : Execution time at the maximum speed ŝmax

• Di : Deadline (relative to the task release)

The arrival curve ᾱi(∆) bounds the maximum number of task releases in
any time interval of length ∆. We assume that all instances of a task τi

have the same execution time Ci at the maximum speed ŝmax. The curve
αi(∆) = Ci · ᾱi(∆) represents an upper bound for the processing demand of
τi in any time interval of size ∆. The processing demand is expressed in
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units of execution time at speed ŝmax. If τi is executed at a different speed
s ∈ Ŝ , the processing of an instance takes Ci/s time units. Hence, the curve
αi(∆)/s represents an upper bound for the demanded execution time in
any interval of size ∆, under the assumption that the task is executed at
speed s. The worst-case response time of a task τi is defined as the longest
time between the release and the completion of the task. We say that τi is
schedulable if WCRTτi ≤ Di.

6.3.1.2 Power Model

We consider the power model of [ZMM04], in which the power dissipation
of the CPU at speed ŝ is represented as follows:

P(ŝ) = Psta + ~(Pind + Pd) = Psta + ~(Pind + Cefŝ
γ) (6.7)

In the above equation, Psta, Pind, and Pd are static power, speed-independent
active power, and speed-dependent active power, respectively. If the system
is in active mode, ~ is 1, whereas ~ is set to 0 when the system is in
sleep mode. The constants Cef and 2 ≤ γ ≤ 3 are system-dependent,
and represent the effective switching capacitance and the dynamic power
exponent, respectively.

We exclude the possibility to turn the system off dynamically due to
excessive time/energy overhead. This means that the static power Psta is
not manageable, and therefore we do not consider it in the reminder of the
chapter. Instead, we focus on how to manage the active power dissipation
of the CPU. We assume that in addition to the DVS carried out in the active
mode, the processor can switch to a sleep mode in which there is no active
power dissipation. In particular, we consider the simplest form of DPM
in which the processor goes to the sleep mode whenever it is idle, and
returns to active mode as soon as a task is released. We assume that there
is no overhead in terms of time or energy for switching between the two
modes. This is reasonable, if gated supply voltage is applied [ZMM04].

Under the mentioned assumptions, the dynamic energy consumption
of the CPU is merely a convex function of the execution speed, and there
is a critical speed ŝcrit ∈ Ŝ such that executing at ŝcrit is more energy-
efficient than executing at any other (also lower) speed [JPG04, ZMM04].
By the definition of critical speed, only speeds in the set S should be
used, where S = {s ∈ Ŝ | s ≥ ŝcrit}. The set S can again be continuous,
S = [smin, smax], or discrete, S = {s1, s2, · · · , sM} with smin := s1, smax := sM,
and s1 < s2 < · · · < sM.
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6.3.1.3 Problem Definition

We consider the problem of statically assigning priorities and execution
speeds to real-time tasks with bounded non-deterministic release pat-
terns, such that all tasks are guaranteed to meet their deadlines and the
worst-case energy consumption of the system is minimized. Formally,
we can define the problem as follows:

Given is a set of real-time tasks Γ = {τ1, · · · , τN} characterized as
described above. Let Π : Γ → {1, · · · ,N} be a bijective function
that assigns a unique priority to each task, where task τi has higher
priority than task τ j if Π(τi) < Π(τ j). Let Σ : Γ → S be a function
that assigns an execution speed to each task. Let E(∆) denote the
worst-case dynamic energy consumption of the system for any time
interval of length ∆. The problem is to find static assignments Π
and Σ such that the following two conditions hold:

• WCRTτi ≤ Di ∀i ∈ {1, · · · ,N}

• E(∆) is minimized

In the defined setting, each task is executed with a constant speed, that is,
speed changes are allowed only at context switches. The constant execu-
tion speed of a task has to be chosen such that the worst-case workload
of the task can always be handled. A more fine-grained DVS schedule
in which different instances of the same task are executed with different
speeds, or in which the speed is changed during the execution of a task (see
e.g. [XMM04]) makes sense only in the presence of a priori knowledge of
task release times, or in the context of online DVS.

Note that in general for different time intervals ∆1, ∆2 different static
speed assignments Σ1, Σ2 can be optimal in terms of energy consumption,
as we will show later. In other words, an overall optimal static speed
assignment may not exist for a system. Therefore, we do not focus on op-
timizing the energy consumption for a specific time interval ∆, but rather
devise heuristics that determine reasonable solutions for all sufficiently
large intervals.

6.3.1.4 Motivational example

Let us now illustrate the above problem by means of a simple example.
Consider a system with three tasks τ1, τ2, τ3 that are released periodically
with some non-deterministic but bounded release jitter. The tasks are
specified by the parameter tuples τ1 = 〈10, 3, 1, 1〉, τ2 = 〈5, 3, 1, 9〉, τ3 =

〈8, 1, 1, 10〉. Each tuple contains the parameters 〈p, j,C,D〉 (expressed in
ms) with the following meaning: p = period, j =max. jitter, C = execution
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time at smax, D = deadline. The active power consumption of the CPU is
assumed to be P(s) = ~(0.08+1.52s3) Watt. We want to determine the static
priority and speed assignments for the tasks that minimize the long-term
worst-case energy consumption of the system.

(a)

(b)

(c)

Fig. 71: Execution traces

Figure 71 shows the execution of the tasks under worst-case workload
(critical instant) for three different priority and speed assignments. The
upward and downward arrows in the figure indicate task releases and
task deadlines, respectively. The rectangles represent the execution of
task instances (also denoted as jobs). The height of a rectangle indicates
the speed at which the corresponding job is executed. A small dot on
the time axis indicates the completion of a job. If no dot is shown at
the bottom right of a rectangle, it means that the corresponding job is
preempted by a higher-priority job. The respective priority and speed
assignments are shown next to the execution traces.

A feasible priority and speed assignment is shown in Figure 71(a). The
corresponding execution trace shows that the first job of τ3 completes just
in time (at t = 10). We conclude that the speed assignment in (a) is ’tight’,
in the sense that lowering the execution speed for any of the three tasks
leads to a deadline violation. Nevertheless, the speeds chosen in (a) are
not the most energy-efficient ones. In order to illustrate this, we compute
the worst-case dynamic energy consumption of the system for a time
interval of 10s. By a simple simulation of the worst-case execution trace,
we obtain an energy consumption of Ea(10s) = 3.475J. Consider now the
speed assignment of Figure 71(b). It is again tight, as lowering any of the
execution speeds would lead to a deadline violation for τ3. For this case
we compute a worst-case energy consumption of Eb(10s) = 3.357J, that
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is, assignment (b) is more energy-efficient than (a). Finally, we decide to
invert the priorities of τ2 and τ3. Figure 71(c) shows that this permits to
use even lower speeds compared to (b), while the real-time constraints
are still guaranteed. The corresponding worst-case energy consumption
amounts to Ec(10s) = 3.163J. In the following, we discuss heuristics in
order to find such energy-efficient priority and speed assignments.

6.3.2 Proposed Algorithms

In this section, we present the algorithms that we propose to solve the
static priority and speed assignment problem with. For the sake of clar-
ity, we first discuss the assignments of priorities and speeds in isolation
(Sections 6.3.2.1 and 6.3.2.2). Thereafter, we show how the algorithms can
be integrated to achieve more energy-efficient solutions (Section 6.3.2.3).
We initially consider systems with continuous speeds, and then explain
how to adapt the algorithms for the discrete case (Section 6.3.2.4).

6.3.2.1 Priority Assignment

Let us first consider the simple case where we want to determine the pri-
ority assignment Π for a task set Γ with fixed speed assignment Σ. Since
the execution speeds for the tasks are fixed, so also is the worst-case en-
ergy consumption of the system. This is because the amount of energy
consumed depends only on the speed at which the single tasks are exe-
cuted, but not on the order in which the tasks are processed. Nevertheless,
the priorities of the tasks have an influence on the schedulability of the
system. We want to determine a priority assignment Π under which Γ
is schedulable, if such an assignment exists. Note that for N tasks, there
are N! possible priority assignments, and a brute-force algorithm would
have to check all of them in the worst case. For simplified instances of this
problem, one can find efficient solutions in the literature. For instance,
the deadline-monotonic (DM) priority assignment has been shown to be
optimal for periodically activated tasks with relative deadlines smaller
than the respective periods [LW82]. In the following, we devise a simple
and efficient algorithm that solves the priority assignment problem in the
general case, that is, under arbitrary task activation patterns.

The basic idea behind our method is that the processing resources
which are available to a task do not depend on the order in which higher-
priority tasks are processed. This is illustrated in the example of Figure 72,
where the input service curve β′ of the lowest-priority task τ3 is the same
in both shown cases. Therefore, for verifying whether a given task is
schedulable at the lowest priority level, it is sufficient to perform a single
run of the scheduling analysis, with an arbitrary arrangement of the
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Fig. 72: Two chains of Greedy Processing Components with different priority assign-
ments but same service for τ3

Algorithm 2 Determine priorities

1: function Find schedulable order(Γ,Σ, β): Π
2: Π← random priority assignment on Γ
3: for i← N, 1 do

4: last task schedulable← false

5: for j← 1, i do

6: Π′ ← Π

7: Π′(Π−1(i))← j
8: Π′(Π−1( j))← i
9: β′ = β

10: for k← 1, i − 1 do

11: τx ← Π
′−1(k)

12: β′ = RT(β′, αx/Σ(τx))
13: end for

14: τx ← Π
′−1(i)

15: if Del(αx/Σ(τx), β′) ≤ Dx then

16: last task schedulable← true

17: Π← Π′

18: break

19: end if

20: end for

21: if not last task schedulable then

22: Warning(ΓNOT SCHEDULABLE)
23: return ⊥

24: end if

25: end for

26: return Π

27: end function
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higher-priority tasks. This concept is employed iteratively in Algorithm 2
to derive a schedulable priority assignment Π for a task set Γ that is
executed on a CPU with service β. The algorithm goes through all priority
levels, starting from the lowest, and assigns a task to each level. The task
is chosen among the unassigned ones by making sure that it is schedulable
at the given priority level. In the algorithm, we make use of the inverse
priority assignment function Π−1(γ), which for a given priority level γ
returns the task assigned to it. The time complexity of Algorithm 2 is
O(N3). The following theorem states the optimality of the described
priority assignment strategy.

Thm. 13: Let Γ be a task set specified as described above and Σ a speed assignment for
Γ. Let β be the service guaranteed by a CPU with preemptive static priority
scheduling. This being the case, Algorithm 2 finds a priority assignment Π
such that the system 〈Γ,Π,Σ, β〉 is schedulable, provided that such a priority
assignment exists.

Proof. The theorem can be shown by contradiction. Assume that ∃Π
such that 〈Γ,Π,Σ, β〉 is schedulable, but Algorithm 2 does not return Π.
This means that the algorithm either returns another schedulable priority
assignment Π′, which is fine, or it returns ⊥. In the latter case, the
algorithm must have reached a priority level γ such that none of the
γ unassigned tasks can tolerate the execution at the lowest unassigned
priority level. Note that revising priority assignments done previously is
not helpful, as this would comport an even lower priority for at least one
of these γ tasks. Hence, Algorithm 2 returns ⊥ only in the case where
there is no schedulable priority assignment for the system.

�

The above algorithm can be extended to solve another simplified in-
stance of the problem described in Section 6.3.1.3: Find the most energy-
efficient pair (Π,Σ) for a task set Γ, under the restriction that all tasks
execute at equal speed. In other words, determine the priority assignment
that allows the minimum global execution speed. The proposed solution
for this problem is shown in Algorithm 3. We will reuse it within the
combined optimization heuristic, discussed in Section 6.3.2.3. In Algo-
rithm 3, we use Σs to denote the assignment of the same speed s to all
tasks in Γ. The algorithm implements a simple binary search strategy, in
which the global speed is increased if no schedulable priority assignment
is found or decreased otherwise. The search stops once the minimum
global speed is approximated with a specified precision ǫ. Algorithm 3
has time complexity O(N3 log 1

ǫ
).
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Algorithm 3 Determine min global speed

1: function Min global speed(Γ, β,S, ǫ): s, Π
2: Π← Find schedulable order (Γ,Σsmax , β)
3: if Π = ⊥ then

4: Error(ΓNOT SCHEDULABLE)
5: end if

6: sup ← smax

7: slo ← smin

8: repeat

9: s← (slo + sup)/2;
10: Π′ ← Find schedulable order (Γ,Σs, β)
11: if Π′ = ⊥ then

12: slo ← s
13: else

14: sup ← s
15: Π← Π′

16: end if

17: until sup − slo ≤ ǫ
18: return sup, Π
19: end function

Cor. 3: Let Γ be a task set specified as described above. Let β be the service guaranteed
by a processor with preemptive static priority scheduling and let S = [smin, smax]
denote the continuous set of available execution speeds. Assume that a priority
assignmentΠ and a minimal speed s ∈ S exist such that 〈Γ,Π,Σs, β〉 is schedu-
lable. Let ǫ > 0 be an arbitrary small constant. This being the case, Algorithm 3
finds a priority assignment Π′ and a speed s′ ∈ S with s′ − s ≤ ǫ such that the
system 〈Γ,Π′,Σs′ , β〉 is schedulable.

Proof. Follows directly from Theorem 13 and the monotonicity of the
schedulability with respect to the execution speed: A task set Γ which is
schedulable at a global speed s is also schedulable at a global speed s̃ > s.

�

Since the energy consumption function is monotone on S, we conclude
that Algorithm 3 finds the energy-optimal global speed assignment that
satisfies the timing constraints.

6.3.2.2 Speed Assignment

Let us now consider the opposite case where we want to determine an
energy-efficient speed assignment Σ for a task set Γ with fixed priority
assignment Π. For better readability, in the following we make use of
the abbreviated notation τi

pr := Π−1(i) to refer to the task assigned to a
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priority level i. We denote the task parameters accordingly: αi
pr,D

i
pr, · · · .

Analogously, we denote the execution speed of the task at priority level i
with si

pr := Σ(Π−1(i)), and the service available to that task with βi
pr.

For minimizing the energy consumption for the execution of multiple
tasks, it is typically not adequate to assign the same execution speed to
all the tasks, as done in Section 6.3.2.1. For instance, the minimum ad-
missible global speed for a priority chain of tasks could be determined
by a high priority task with a stringent deadline. However, this speed
could be unnecessarily high for tasks with lower priorities and less strin-
gent timing requirements. To save energy, we should further slow down
lower priority tasks as much as possible, and avoid premature task com-
pletions. In other words, we should always use tight speed assignments.
We call a speed assignment tight if slowing down any of the speeds in
the assignment compromises the timing guarantees. Unfortunately, there
are often a multitude of different tight speed assignments for a chain of
tasks. Hence, it is not easy to find the most energy-efficient one. This
is because the assignment of a speed to a particular priority level affects
the speeds required at lower priority levels. For instance, it may not be
energy-efficient to process a high priority task slowly, if in turn this forces
a low priority task to use a high speed to meet its deadline. The convexity
of the power function suggests using the same execution speed for both
tasks in such a situation, or, if two different speeds are necessary, as close
speeds as possible. This is illustrated in the example of Figure 73, which
shows two different execution traces for a system with two tasks. Trace
(a) results from an assignment with s1

pr < s2
pr where we assume that the

assignment is tight with respect to the deadline of τ2
pr. Trace (b) results

from another tight assignment with s1
pr = s2

pr. This second assignment is
more energy-efficient due to the convexity of the power function.

0 5 10 15 20 25
t

τ

(a)

0 5 10 15 20 25

(b)

t

speed 1speed
pr

τ2
pr

Fig. 73: Schedules in a busy interval. (a) Original schedule. (b) Lower energy consump-
tion.

Based on the above observation, we propose using speed assignments Σ
that satisfy the following constraints:

s1
pr ≥ s2

pr ≥ · · · ≥ sN
pr (6.8)

si−1
pr > si

pr only if WCRT τi−1
pr = Di−1

pr (6.9)
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The first constraint imposes a priority-monotonic speed assignment,
such that a lower priority task never executes at a higher speed than a
higher priority task. The second constraint enforces the use of as close
speeds as possible. It states that a high priority task is executed at a higher
speed than a low priority task only in case it cannot be further slowed
down. Note that priority-monotonic speed assignments have also been
explored in [SR03], however for strict periodic tasks only.

Let us now introduce a heuristic to compute an energy-efficient speed
assignment Σ that fulfills the above constraints. The basic principle of
the heuristic is first, to determine a minimum global speed assignment,
and then to find the ’bottleneck’ of the assignment. The bottleneck is the
highest priority task τi

pr that cannot tolerate a lower speed assignment
for any task τ j

pr with j ≤ i, as this would compromise its schedulability.
At this point the speed assignments for τ1

pr, · · · , τ
i
pr are made definitive

and the procedure is repeated for the lower priority tasks. The procedure
stops once τN

pr becomes the bottleneck of a speed assignment.
Algorithm 4 implements the described procedure. The function

MinSpeed employs a binary search to find the minimum global speed
for the remaining part of the task chain, given the service βin left over by
higher priority tasks. The scheduling analysis for the respective tasks is
carried out by the function Sched, which implements Equation (2.41). The
function FindBottleneck determines the bottleneck of a given sub-chain
of tasks, with guaranteed service βin and under constant speed s. The
overall time complexity of Algorithm 4 is O(N2 log 1

ǫ
).

Remarks on Non-Optimality

We mentioned already in the problem description that for different time
intervals, different static speed assignments can be optimal in terms of en-
ergy consumption. Therefore, we cannot expect that the above algorithm
always determines an overall optimal speed assignment. The following
example highlights the potential non-optimality of the proposed speed
assignment strategy.

Ex. 2: Consider the execution of two periodic tasks that are specified by the parameter
tuples τ1

pr = 〈8, 0, 1, 2〉 and τ2
pr = 〈4, 0, 1, 4〉 where we use again the format

〈p, j,C,D〉. Assume that τ1
pr is executed at a general speed s1

pr = x ≥ 0.5, as
shown in the worst-case arrival trace represented in Figure 74. Consequently,
τ1

pr needs to be executed at speed s2
pr =

1
4−1/x in order to meet its deadline.

Assume that the speed-dependent power dissipation of the system is given by
P(s) = s3. Then, the energy consumption of the system for the interval ∆2 shown
in Figure 74 amounts to Ex(∆2) = 1

x
· x3 + 2 · (4 − 1

x
) · ( 1

4−1/x )3, which is minimal
for x = 0.565. With Algorithm 4 we would use x = 0.5, that is, execute both
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Algorithm 4 Determine speeds (part 1)
1: function Determine speeds(Γ,Π, β,S, ǫ): Σ
2: if Sched(Γ, Π, 1, n, smax, β) = true then

3: s0
pr ← smax

4: β1
pr ← β

5: i← 0
6: repeat

7: i← i + 1
8: s←MinSpeed (Γ, Π, i, N, smin, si−1

pr , β
i
pr, ǫ)

9: for k← i,N do

10: sk
pr ← s

11: βk+1
pr = RT(βk

pr, α
k
pr/s)

12: end for

13: if s − smin < ǫ then

14: break

15: else

16: i← FindBottleneck (Γ, Π, i, s, βi
pr, ǫ)

17: end if

18: until i = N
19: else
20: Error(UNSCHEDULABLE)
21: end if

22: return Σ = {τ1
pr → s1

pr, · · · , τ
N
pr → sN

pr}

23: end function

24: function MinSpeed(Γ,Π, From pr,To pr, slo, sup, βin, ǫ): s
25: repeat

26: s← (slo + sup)/2;
27: if Sched(Γ, Π, From pr, To pr, s, βin) = true then

28: sup ← s;
29: else
30: slo ← s;
31: end if

32: until sup − slo ≤ ǫ
33: return sup

34: end function

...
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Algorithm 4 Determine speeds (part 2)
...

35: function Sched(Γ,Π, From pr,To pr, s, βin): schedulable
36: β′ = βin
37: for k← From pr,To pr do

38: if Del(αk
pr/s, β

′) ≤ Dk
pr then

39: β′ = RT(β′, αk
pr/s)

40: else

41: return false

42: end if

43: end for

44: return true

45: end function

46: function FindBottleneck(Γ,Π, From pr, s, βin, ǫ): pr
47: sred ← s − ǫ
48: for k← From pr,N do

49: if Sched (Γ, Π, From pr, k, sred, βin) = false then

50: return k
51: end if

52: end for

53: end function

tasks at the same speed s1
pr = s2

pr = 0.5. This second speed assignment is clearly
not optimal for ∆2 but it minimizes the energy consumption in other intervals,
e.g., ∆1.

Fig. 74: Execution trace for example system

The above example demonstrates that the constraint (6.9), which enforces
the use of as close speeds as possible, does not always lead to the most
energy-efficient solution. Nevertheless, the heuristic gives reasonable
solutions for sufficiently large time intervals, as we will demonstrate in
Section 6.3.3.
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6.3.2.3 Combined Priority and Speed Assignment

Let us now consider the general case where we want to determine both
the priority assignment Π and the speed assignment Σ for a task set Γ.
For this case, we propose a heuristic that combines Algorithms 4 and
3. In particular, we integrate the priority reordering in the bottleneck
speed assignment algorithm. At each loop iteration of the bottleneck
algorithm, instead of just revising the global speed for a task sub-chain,
we reorder the tasks in the sub-chain such that the minimal execution
speed is achieved. In other words, we alternate task reordering and
bottleneck finding in task sub-chains. This results in an algorithm with
time complexity O(N4 log 1

ǫ
).

6.3.2.4 Adaptations for Discrete Speeds

Practical CPUs typically provide a finite number of operating
speeds/frequencies. In this section, we illustrate how the above algo-
rithms can be adapted to the discrete case in which S = {s1, s2, · · · , sM}.

Algorithms 2 and 3 can be easily reproduced for the discrete case. The
only adaptation in Algorithm 3 concerns the binary search over S, which
is now carried out over the discrete set of available speeds. The time
complexity of this discrete version of Algorithm 3 is O(N3 log M), where
M is the number of available execution speeds. The reformulation of Al-
gorithm 4 for the discrete case is less trivial, as there is no clear notion of
bottleneck task anymore. In particular, if after a global speed assignment
to a sub-chain of tasks a particular task τi

pr results unschedulable, it could
be overly conservative to execute all tasks τ j

pr of the sub-chain with j ≤ i
at the next highest speed. Rather, it could suffice to increase the speed of
just a few of those tasks to guarantee the schedulability of τi

pr. A simple
workaround to this problem is to treat each priority level as bottleneck,
meaning that we repeat the speed assignment to the remaining tasks at
each priority level. The corresponding pseudo-code is shown in Algo-
rithm 5. For better readability, in Algorithm 5 we denote a discrete speed
si with s(i). To find minimum global speeds for sub-chains of tasks, the
algorithm employs the function MinSpeedLevel, which implements a bi-
nary search on the ordered set of discrete speeds. The time complexity
of Algorithm 5 is O(N2 log M) in contrast to the complexity O(MN) of a
brute-force solution.

Finally, as done in the continuous case, we combine the algorithms
for priority and speed assignment. In particular, each time we have to
assign a global speed to a sub-chain of tasks, we reorder the tasks such
that the minimum speed is obtained. Note that in the resulting heuristic,
we still reorder the tasks assuming continuous speeds, and then assign
the next highest available discrete speed. This choice is done because
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Algorithm 5 Determine discrete speeds

1: function Determine discrete speeds(Γ,Π, β,S): Σ
2: if Sched(Γ, Π, 1, n, sM, β) = true then

3: sl0pr ←M

4: β1
pr ← β

5: for i← 1,N do

6: sl←MinSpeedLevel (Γ, Π, S, i, N, 1, sli−1
pr , β

i
pr)

7: for k← i,N do

8: slkpr ← sl

9: βk+1
pr = RT(βk

pr, α
k
pr/s(sl))

10: end for

11: if sl = 1 then

12: break

13: end if

14: end for

15: else

16: Error(UNSCHEDULABLE)
17: end if

18: return Σ = {τ1
pr → s(sl1pr), · · · , τN

pr → s(slNpr)}
19: end function

20: function MinSpeedLevel(Γ,Π,S, From pr,To pr, sllo, slup, βin): sl
21: if Sched(Γ, Π, From pr, To pr, s1, βin) = true then

22: sl← 1
23: return sl
24: end if

25: repeat

26: sl← ⌈(sllo + slup)/2⌉;
27: if Sched(Γ, Π, From pr, To pr, s(sl), βin) = true then

28: slup ← sl
29: else

30: sllo ← sl
31: end if

32: until slup − sllo = 1
33: return slup

34: end function
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under discrete speeds the reordering procedure is less selective (assuming
ǫ <<

∣

∣

∣si − s j

∣

∣

∣ ∀si, s j ∈ Sdiscr). In other words, under discrete speeds the
reordering procedure is more likely to determine a priority order that
restrains further speed reductions at lower priority levels. The described
heuristic has time complexity O(N4 log 1

ǫ
), compared to O(N!MN) of a

brute-force approach.

6.3.3 Experimental Evaluation

In this section, we experimentally evaluate the quality of the proposed
algorithms. We compare the worst-case energy consumption of different
systems when the priorities and the execution speeds of tasks are de-
termined according to Algorithms 3, 4, 5, and the combined heuristics.
We consider both continuous and discrete sets of execution speeds, and
compare the corresponding results.

6.3.3.1 Experimental setup

We have implemented the above algorithms in Matlab. The algorithms
call functions of the RTC Toolbox to handle arrival and service curves and
perform the scheduling analysis. We construct nine test cases to evalu-
ate the algorithms. Each test case consists of a processor that executes
ten tasks with static priorities and preemptive scheduling. Each task is
activated by an event stream which is represented by means of an ar-
rival curve. To facilitate the replication of the experiments by means of
other analysis tools, we use PJD models for the timing characterization
of the event streams. For each test case, we randomly generate integer
parameters for ten tasks, as shown in Table 10 for test case 6. The periods
pi are chosen uniformly in the range [5ms, 30ms], the jitters ji in [0, 2pi],
the minimum event inter-arrival times di in [0, ⌈pi/4⌉], and the execution
times Ci in [1ms, ⌈pi/15⌉]. We also associate a relative deadline Di to each
task.

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10

p 14 28 15 30 28 7 25 25 30 22
j 20 35 3 19 35 5 30 20 0 15
d 2 2 0 0 4 0 5 0 0 0
C 1 1 1 1 1 1 2 1 1 2
D 21 1 53 406 276 41 6 342 4 181

Tab. 10: Parameters for test case No. 6 [ms]

For each test case, we automatically construct an MPA model and
discard parameter sets that are not schedulable at the maximum speed.
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The arrival curves are obtained with αi(∆) = Ci ·ᾱi(∆), where we determine
ᾱi(∆) according to Equation (2.13). We let β represent a fully available
CPU, and set the precision requirement for the case of continuous speeds
to ǫ = 10−4. The complete parameter sets for the nine test cases, the full
list of computed results, as well as the source code of the algorithms are
available online.3

For determining the worst-case energy consumption of the various test
systems, we have implemented a simple discrete-event simulator. The
simulator reproduces worst-case task activation patterns, simulates the
execution of tasks, and keeps track of the consumed energy. We assume a
power dissipation of ~(0.08+1.52s3) Watt. This function approximates the
active power dissipation of an Intel XScale CPU with maximum frequency
of 1GHz normalized to smax = 1.

For each test case we consider two scenarios: A) continuous speed as-
signment, B) discrete speed assignment. For the two scenarios, we assume
ŜA = [0, 1] and ŜB = {0.15, 0.4, 0.6, 0.8, 1}, respectively. After computing
the critical speed, we obtainSA = [0.297, 1] andSB = {0.4, 0.6, 0.8, 1}. For
each test case we consider three different priority and speed assignment
policies, and compare the corresponding worst-case energy consumption
for a time interval ∆ = 104 ms. For scenario A (continuous speeds) the
policies are as follows:

(a) Compute Π and Σs with Algorithm 3

(b) Compute Π′ with Algorithm 3, then compute Σ′ with Algorithm 4

(c) Compute Π′′ and Σ′′ with the combined heuristic

For scenario B (discrete speeds), the priority and speed assignment poli-
cies are defined accordingly.

6.3.3.2 Results

Table 11 reports the detailed priority and speed assignments derived by
the various algorithms for test case 6 and scenario A (continuous speeds).
The upper line in the rows indicates which task has been assigned to the
corresponding priority level. The lower line shows the execution speed
assigned to the task. The table illustrates that a global speed assignment
may be pessimistic for a set of real-time tasks with static priorities. This
is because the execution speeds of some tasks can be reduced without
harming any timing constraints. In addition, the table shows that the
combined optimization of priorities and speeds can lead to considerably
better results than consecutive priority and speed assignments.

3http://www.tik.ee.ethz.ch/%7Epsimon/FPDVS.zip
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Fig. 75: Worst-case energy consumption for an interval of ∆ = 104 ms.
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Policy \Priority 1 2 3 4 5 6 7 8 9 10
(a) Algorithm 3 τ2 τ9 τ7 τ10 τ8 τ6 τ1 τ5 τ4 τ3

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(b) Algorithms 3 + 4 τ2 τ9 τ7 τ10 τ8 τ6 τ1 τ5 τ4 τ3

1.000 .9445 .9445 .9445 .9445 .9445 .9445 .5776 .5776 .5776
(c) Combined τ2 τ9 τ7 τ8 τ1 τ6 τ3 τ5 τ4 τ10

1.000 .7500 .7500 .5914 .5914 .5914 .5914 .5914 .5914 .5914

Tab. 11: Priority and speed assignments determined by the different approaches for test
case 6 and scenario A

Figure 75 sums up the the worst-case energy consumption for all nine
test cases and all assignment policies. The chart shows that the conclu-
sions of test case 6 also apply to the remaining test cases. In particular, the
heuristic for combined priority and speed assignment clearly outperforms
the other algorithms. It achieves energy savings up to 60% compared to
the optimal priority ordering for minimum global speed (Algorithm 3),
and up to 44 % compared to the consecutive priority and speed assign-
ment (Algorithms 3 + 4). The results demonstrate that a large part of
the optimization potential is sacrificed if priorities and speeds are not
optimized in a combined manner. The chart of Figure 75 also compares
the worst-case energy consumption under the discrete speed set SB, and
the continuous speed set SA. The comparison shows that in the discrete
case, more energy is consumed due to the coarser granularity of the speed
assignments.

Scenario Continuous (A) Discrete (B)

Assignment Policy (a) (b) (c) (a) (b) (c)

Minimum run-time 3.4 4.5 7.8 0.6 1.2 15.6
Maximum run-time 43.5 49.6 56.4 6.3 10.0 357.5

Tab. 12: Minimum and maximum run-times measured for the different assignment poli-
cies [seconds].

In Table 12 we report the minimum and maximum run-times mea-
sured for the different algorithms. For policy (b) the cumulative run-time
of both employed algorithms is indicated. The table shows that for the
considered test cases with ten tasks the algorithms compute the priority
and speed assignments in less than one minute, and that in general the
algorithms for the discrete setting are considerably faster than their con-
tinuous counterparts. This is simply because, in the more coarse-grained
discrete setting, less solutions have to be explored. Nevertheless, the com-
bined heuristic is considerably slower in the discrete case compared to
the continuous one, which might seem incongruous. The reason for this
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effect is that in both the continuous and the discrete scenarios, continuous
speeds are used for the task reordering procedure (cf. Section 6.3.2.4), but
Algorithm 5 typically explores more cases than Algorithm 4, because it
repeats the task reordering at each priority level.

6.4 Design of Online DVS Systems with TA

In the previous section, we concentrated on minimizing the energy con-
sumption by finding the minimum (or most effective) constant speeds to
process individual event streams. This is also the approach followed in
[MCT05] for a single input event stream. However, as the arrival curve
representing a stream does not reveal how events actually arrive, this
constant speed must be dimensioned for the worst-case. Ordinary event
arrival patterns will, in general, not lead to the worst-case workload for
the processor. Hence, when applying offline DVS scheduling for the exe-
cution of non-deterministic streams, most of the time the system will run
at an unnecessarily high speed. For instance, if bursts of events happen
only rarely in a stream, the above methods would, nevertheless, always
run at a high speed in order to guarantee schedulability.

Instead of choosing a constant speed assignment, one can dynami-
cally adapt the execution speed to the current workload by means of on-
line DVS algorithms. These methods decide the execution speed, based
on the events that actually arrive on the input. Various online DVS al-
gorithms can be found in the literature [YDS95, BP05]. They guarantee
the schedulability of arbitrary input event streams, provided that there
is no upper limit for the CPU speed. Obviously, this is not a reasonable
assumption for real CPUs. In other words, it may happen that the execu-
tion speed required by an online DVS algorithm exceeds the maximum
speed of a CPU, which translates to deadline violations. This imposes a
careful verification of the maximum required speed before an online DVS
algorithm can be applied [CST09]. However, an online DVS algorithm
might exceed the maximum available speed only for a short time interval,
depending on the actual event arrivals. Falling back on a constant speed
assignment in such a case, as suggested by Chen et al. [CST09], is overly
pessimistic.

In this section we propose an adaptive DVS scheme, in which an online
DVS algorithm is applied when the system is light-loaded and a pessimistic
speed is assigned when the system is heavy-loaded. On one hand, the
proposed adaptive DVS algorithm reduces the energy consumption by
being as optimistic as possible. On the other hand, it guarantees the
schedulability of the event stream by switching to a pessimistic mode
once the system is heavily loaded. The key issue for the adaptive DVS



6.4. Design of Online DVS Systems with TA 183

algorithm is to decide when to be pessimistic and when to be optimistic.
In the following, we discuss how to design and analyze such an adaptive
DVS scheme by means of Timed Automata.

6.4.1 System Model and Problem Definition

The studied system consists of a CPU with DVS that supports a continuous
range of execution speeds Ŝ = [ŝmin, ŝmax]. We assume that the power
dissipation of the CPU can be abstracted by the general power model
of Equation (6.7). As already done in Section 6.3, we discard execution
speeds below the critical speed ŝcrit, that is, we restrict the selectable speeds
to the range S = [smin, smax].

The CPU executes a single real-time task τ which is triggered by the
events of a non-deterministic input event stream. The event stream is
characterized by an upper arrival curve ᾱ(∆) which specifies the maxi-
mum number of possible task activations in a time interval of length ∆.
We assume that τ has an execution time C at maximum speed smax and
a relative deadline D. We again use a curve α(∆) = C · ᾱ(∆) to express
the maximum processing demand imposed on the system, where the pro-
cessing demand is expressed in units of execution time at speed smax. If
the CPU runs at a different speed s ∈ S, then the execution time requested
in a time interval of length ∆ amounts to α(∆)/s.

For the above system, we consider the problem of finding a dynamic
DVS schedule such that all deadlines are met, and, at the same time, the
energy consumption of the CPU is minimized.

6.4.2 Adaptive Scheduling Scheme

In this section, we present a concrete example that motivates the appli-
cation of an adaptive DVS scheme, followed by the definition of such a
scheduling scheme.

6.4.2.1 Motivational Example

Consider an input event stream specified by a PJD event model with
parameters p = 2 ms, j = 4 ms, and d = 1 ms. The corresponding
upper arrival curve ᾱ(∆) can be obtained by means of Equation (2.13).
Assume that the CPU can select execution speeds in the range smin = 0,
smax = 1 GHz and that its power dissipation is described by the simple
function P(s) = ~( s

1GHz
)3 Watt. The processing time of an input event is

4
3 ms at speed smax and the relative deadline D is 4 ms.

Let us now compare the behaviour of three different DVS schemes in
the presence of a concrete input event trace that conforms to the above
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Fig. 76: Execution traces of different DVS schedulers

model. We consider the input trace r consisting of 15 events with arrival
times (4, 5, 6, 7, 8, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32) ms.

1. The first DVS scheme is an offline scheduler that statically deter-
mines a constant execution speed for ᾱ according to Equation (6.5).
The resulting constant execution speed is sSD =

5
6 GHz. The corre-

sponding execution of r is shown in Figure 76(a) and leads to an
energy consumption of 13.89 mJ.

2. The second DVS scheme is an online scheduler that implements Al-
gorithm OPT, as described in Section 6.2.2. This scheduler adapts
the execution speed dynamically as represented in Figure 76(b). The
corresponding energy consumption amounts to 10.91 mJ, that is, the
dynamic method is more energy-efficient than the static one. How-
ever, Figure 76(b) reveals that the maximum speed required by Al-
gorithm OPT for the execution of r exceeds smax. In other words, the
online DVS scheduler cannot be used to ensure the timely execution
of the input stream. Specifically, in the time interval [8 ms, 12 ms]
Algorithm OPT requires an execution speed of 1.017 GHz.

3. Looking at the execution trace of Algorithm OPT, it becomes ap-
parent that there is no need to fall back on the pessimistic variant
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of Figure 76(a) to exclude deadline violations. Rather, it suffices to
adapt the online scheduler such that it becomes slightly more con-
servative. This leads us to the third DVS scheme which is defined
by the following rule: At each event arrival/completion compute s(t)
according to Equation (6.6). If s(t) ≤ 0.85 GHz use speed s(t), otherwise
use speed smax. The corresponding execution trace is shown in Fig-
ure 76(c). In this trace the CPU switches to smax already at t = 7 ms
which permits to fulfill both timing and speed constraints. The re-
sulting energy consumption amounts to 10.92 mJ, which is 21% less
compared to the offline DVS scheduler.

6.4.2.2 Definition of the Adaptive DVS Scheme

To achieve energy savings while satisfying the timing constraints, we
propose the adaptive DVS scheduling scheme shown in Figure 77. At a
scheduling point at time t, the scheme derives the speed s(t) by applying
Algorithm OPT. If s(t) is less than or equal to a speed threshold s∗, it
greedily executes at speed s(t). Otherwise, it executes at speed smax for
resolving the burst of event arrivals. We say that the adaptive DVS scheme
is feasible with a threshold speed s∗, if schedulability is guaranteed for
all input event traces conforming to the arrival curve ᾱ. To maximize
the energy savings, we require that the DVS scheme is as optimistic as
possible. In other words, the objective of our method is to derive the
maximal threshold speed s∗, such that the adaptive DVS scheme is feasible.

Derive s(t)

with OPT

Execute at

speed s(t)

Execute at

speed s    max   

s(t) ≤ s*

Yes

No

Fig. 77: Behaviour of adaptive DVS scheme at a generic scheduling point t

An important remark is that in the above adaptive scheme we do not
employ the orignal OPT algorithm described in Section 6.2.2, but a slight
variant of it. The original OPT algorithm is an event-driven scheduling
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algorithm, which means that the instant an event arrives, or its process-
ing completes are scheduling points at which the speed is recomputed.
In contrast, we employ a time-driven variant of Algorithm OPT in which
the scheduling points are artificial clock ticks. The reason for this design
choice is that we want to employ state-based models to derive s∗ and
verify the correctness of the scheme. More specifically, the problem is
the encoding of the speed computation of Equation (6.6) in a state-based
model. Equation (6.6) requires precise knowledge of the amount of re-
maining processing demand at a given time t. The same applies for the
times left until the deadlines of the various input events. In a state-based
model these quantities can only be correctly taken into account if the cor-
responding modelling formalism has a notion of continuous time, and
if it supports computations on time variables. In our case, we want to
employ the formalism of Timed Automata to model the system. The
corresponding model checker Uppaal does, however, not support com-
putations on clocks. This means that event-driven scheduling policies
that are based on elapsed/remaining time such as OPT or EDF can not be
precisely modelled with TA and Uppaal. Moreover, it is also not trivial
to come up with a conservative TA approximation of the original OPT
algorithm. The reason is that, on the one hand, any approximation that
overestimates the actual speed s(t) selected by OPT at time t is not safe, as
it may ignore deadline violations, and on the other hand, any approxima-
tion that underestimates the actual speed s(t) is not safe, as it might result
in premature changes to smax in the model, and hence again jeopardize
the verification of deadlines.

Therefore, in order to avoid ambiguous results for the verification of
a system, we restrict the adaptive DVS scheme to time-driven scheduling,
a scenario that can be precisely captured in TA. We discretize time in the
algorithm by introducing artificial clock ticks with period T. These ticks
are counted in order to keep track of elapsed/remaining computation
times. An event that arrives between two clock ticks is buffered, and
affects the system only at the following tick. This means that an event
that arrives at time t′ will be released to the scheduler at time

⌈

t′

T

⌉

T.

Similarly, we anticipate the deadline of the event from t′ + D to
⌊

t′+D
T

⌋

T.
The resulting algorithm is an adaptive and time-driven variant of the
original OPT algorithm.

6.4.3 Parametrization and Verification

The key issue for the design of the adaptive DVS scheduler described
above is to determine the maximal threshold speed s∗. In this section,
we introduce a method that permits us to derive this parameter for a
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given non-deterministic input event stream. The method exploits the
formalism of TA to represent the adaptive DVS scheme, and to verify
its correctness. The choice of a TA model is motivated by the fact that
the behaviour of the adaptive scheduler is clearly state-dependent. In
fact, the scheduler selects the current execution speed based on the actual
history of event arrivals. Hence, to model the scheduler, traditional state-
less MPA components are not helpful. As shown in [CST09], it is also
not trivial to employ MPA to analyze the maximum speed that Algorithm
OPT requires.

The proposed design method uses an arrival curve to abstractly de-
scribe the input event stream. To interface the event stream model with
the TA based model of the DVS scheduler, the method employs the hybrid
analysis framework introduced in Chapter 5. Figure 78 gives an overview
of the proposed design method. It consists of the following components:

1. Simplification of arrival curve
To reduce the complexity of the system verification, we conserva-
tively approximate the input arrival curve ᾱ with a staircase curve
ᾱ′ with non-decreasing step widths.

2. Event generator
We automatically derive a network of TA, which produces event
traces that are bounded by the simplified staircase curve ᾱ′. This
event generator is fully equivalent to ᾱ′ in the sense that it is able to
produce all event traces that are constrained by ᾱ′.

3. TA based model of adaptive DVS processor
We use a TA based model of the adaptive DVS scheduler in which we
employ clock discretization to keep track of the completed/remaing
processing demands of events. The interaction of the event gener-
ator with the state-based DVS scheduler is modelled by means of
a shared variable which represents the number of buffered input
events. We employ the timed model checker Uppaal to derive the
maximum threshold speed s∗. Specifically, we adopt a binary search
strategy in which the timing constraints are verified for different val-
ues of s∗. If for a given value of s∗ Uppaal reports a possible deadline
violation, we have to be more conservative, that is, we reduce s∗.
In contrast, if Uppaal confirms that for a given s∗ all events meet
their deadline, we try to use a more optimistic speed threshold, that
is, we increase s∗. This verification procedure is repeated until the
maximal threshold speed is approximated with enough precision.

An important observation is that the verification framework described
above, which is based on (expensive) model checking of TA models, is
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Fig. 78: Design framework for adaptive DVS scheme

used at design time only. It is employed offline to parameterize and
verify the adaptive DVS scheduler for a given set of input event traces.
However, there is no additional run-time overhead for the online DVS
algorithm itself, which is just a simple adaptive variant of Algorithm
OPT.

In the following, we describe the individual parts of the verification frame-
work in more detail.

6.4.3.1 Conservative Simplification of the Input Arrival Curve

As described in Chapter 5, a general upper arrival curve ᾱ can be conser-
vatively approximated by a pseudo-concave arrival curve. Specifically,
we approximate ᾱ with a curve ᾱ′ of the form

ᾱ′(∆) := min
i

{

ᾱ′
i
(∆)
}

with

ᾱ′
i
(∆) := Ni +

⌊

∆
δi

⌋

.
(6.10)

The curve ᾱ′ is a staircase curve with non-decreasing step widths which
results from the minimum composition of several linear staircase func-
tions ᾱ′

i
, each specified by a parameter tuple (Ni, δi). The number of linear

staircase functions ᾱ′
i

that are employed for representing the input event
stream determines the precision of the curve approximation and affects
the complexity of the TA based system verification.
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6.4.3.2 TA Based Representation of the Arrival Curve

To translate the simplified arrival curve ᾱ′ to a network of cooperating
TA, we employ the conversion mechanism described in Section 5.4.2.1.
Specifically, we convert ᾱ′ to an event generator in the form of TA. The
event generator consists of several UTA and an event scheduler (cf. Fig-
ure 56). We do not employ any LTA, as we represent an upper arrival
curve only.

In Chapter 5, we have seen that this TA based model of arrival curves
is very general in the sense that it can employ an arbitrary number of
linear staircase components. However, there are also other more specific
TA models to represent particular types of event streams. For instance,
in [HV06], a TA model for periodic event streams with jitter is presented.
While such dedicated models have a clearly limited application scope,
they are at times more efficient in terms of verification compared to the
above modelling principle.

6.4.3.3 TA Model and Verification of the Adaptive DVS Scheduler

In this section we introduce a TA model for the adaptive DVS scheduler
described above. The model is based on a time-driven and discretized
variant of Algorithm OPT.

DEADLINE_MISS

BUSY

IDLE

(deadlines[0] >= rct / s) && (b == 1)
shift_deadline_array(),
b--

(rct > s * T) && 
(deadlines[0] <= T)
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(deadlines[0] >= rct / s) && (b > 1)
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Fig. 79: TA model of discretized adaptive DVS scheduler

The TA model for a CPU that processes a single input event stream and
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implements the proposed adaptive DVS scheme is shown in Figure 79.
The figure depicts a network of TA that cooperate by means of channels
and global variables. The model assumes that all the events of the input
stream have a constant execution demand C, expressed in processing
units, and a constant relative deadline D, expressed in time units, where
both C and D are integers. The model relies on an explicit representation
of discrete time which is advanced by periodic clock ticks. Specifically,
Automaton (a) broadcasts a signal tick every T time units (clock period).
Automaton (b) handles the arrival of new events, by synchronizing with
the event generator over the broadcast signal event. Every time a new
event arrives, the automaton increments the counter variable b which
represents the current number of buffered events. Note that the event
arrivals are independent of the discrete clock ticks, meaning that new
events can arrive at any point in time. However, in the proposed model
an event arrival does not affect the CPU until the next clock tick, when
the automaton either moves to the BUSY location if the CPU was idle, or
determines a new processing speed if it was busy. The processing speed
is represented by a global integer variable s. The value of s represents
the number of processing units that the CPU provides per time unit. The
model uses the integer array deadlines to keep track of the number of time
units remaining until the deadlines of the individual events. At an event
arrival, the corresponding position in the array is initialized with D, see
Figure 79(b). At every clock tick, all elements in the deadline array are
decreased by T. Note that at a clock tick, the deadline array is updated
before the new processing speed is computed. This makes sure that the
selected speed guarantees the schedulability of an event, even if it has
been released with some delay (at the next clock tick following its actual
arrival time).

The automaton of Figure 79(c) models the CPU itself. It manipulates
a global integer variable rct that represents the remaining execution de-
mand of the currently processed event. At each clock tick rct is decreased
according to the selected processing speed. If the deadline of an event
occurs within the next clock tick, but the processing of the event cannot be
finished in time, the automaton immediately reports a deadline violation
by moving to an appropriate state.4 On the other hand, if the remaining
execution demand for an event is less or equal than the processing service
provided in a clock period, the location BUSY is immediately left, and
one of the following three cases applies:

(1) The number of time units left to the deadline is not sufficient to com-
plete the processing of the event. In this case, a deadline violation is

4An immediate reaction is guaranteed by the urgent channel hurry which is always
ready to synchronize.
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reported.

(2) The completion of the event processing happens in time, and there are
no other events in the queue. In this case the transition to the location
IDLE is taken.

(3) The completion of the event processing happens in time and there
are other events in the queue. In this case the direct transition to the
location BUSY is taken.

In both cases (2) and (3) the elements of the array deadlines are shifted by
one position and the variable b is decremented.

Algorithm 6 Compute speed

1: function speed

2: int s← 0, int s′

3: for i← 0, b − 1 do

4: s′ = (rct + i ∗ C)/deadlines[i]
5: s← max(s, s′)
6: end for
7: if s > s∗ then

8: s← smax

9: end if

10: return s
11: end function

The function speed adopted in the model to compute the new pro-
cessing speed is shown in Algorithm 6. The algorithm implements the
described adaptive scheduling scheme by setting the processing speed to
smax if a speed above the threshold s∗ is requested.

We employ the model checker Uppaal to verify whether an event stream
can be correctly executed by the adaptive scheduler with a given threshold
speed s∗. Specifically, we verify whether the following proposition holds
for the TA model:

A[] (not CPU.DEADLINE MISS)

By performing a simple binary search on s∗, we determine the maximal
threshold speed that guarantees all timing constraints.

Finally, we would like to highlight that the discrete time representation
of the scheduling scheme can be made arbitrarily precise by reducing
the length of the clock period T. However, a more fine-grained time
representation results in longer verification times. Hence, the system
designer can balance accuracy and verification time of the model.
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6.4.3.4 Generalization to Multiple Input Event Streams

The described approach is not limited to a single input event stream. In
this section, we briefly sketch how the TA model introduced above can
be adapted for the case of multiple input event streams.

We consider a CPU that processes the events of n input streams ac-
cording to the Earliest Deadline First (EDF) scheduling policy. Each event
is characterized by an execution demand Ci and a relative deadline Di,
i ∈ n. The extended TA model still uses a single counter b and a single
array deadlines to handle all the input events, now originating from dif-
ferent streams. However, in a system with multiple input streams, the
last arrived event does not necessarily have the farthest absolute dead-
line. Hence, we have to explicitly keep the elements in the array deadlines
sorted, meaning that new deadline counters have to be inserted at the
right position in the array. Moreover, under EDF scheduling, it can hap-
pen that the processing of an event is preempted by a newly arrived event
with an earlier deadline. In our discrete time representation of the CPU,
this case can be conservatively approximated by selecting the next event
to be processed at each clock tick. The preemptions also imply that we
have to explicitly store the remaining execution demand for each buffered
event. This can be done by replacing the variable rct by an appropriate
array of integers.

In principle, these adaptations extend the scope of the design method
to systems with an arbitrary number of input streams. However, it is
clear that the complexity of the verification increases drastically with the
number of considered input streams. In other words, we expect that state
space explosion is quickly encountered when applying the method to
systems with multiple input streams.

6.4.4 Experimental Evaluation

In this section, we evaluate the performance of the proposed DVS sched-
uler in terms of energy consumption. Specifically, we compare the worst-
case energy consumed by Algorithm SD, Algorithm OPT and the adaptive
DVS scheme (denoted Algorithm AD) to process different event streams.

6.4.4.1 Experimental Setup

To compare the performance of the three algorithms, we use a set of six
different input event streams adapted from [WT06b]. The considered
streams are periodic event streams with jitter that are specified by the
following parameters: period p, jitter j, minimum event inter-arrival time
d, worst-case execution time C (at smax), and relative deadline D. Table 13
summarizes the parameter values for the six event streams.
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I II III IV V VI

p 198 102 283 239 148 114
j 387 70 269 222 91 13

d 48 45 58 65 78 0
C 30 35 77 69 53 52
D 110 140 310 280 200 120

Tab. 13: Parameters for the six input event streams in [ms].

The streams have been selected such that if they are scheduled with
Algorithm OPT, the scheduler violates the maximum system speed,
smax = 0.5 GHz. In other words, Algorithm OPT cannot be used for
guaranteeing the schedulability of these streams on the considered CPU.
The maximum speeds required by Algorithm OPT are shown in the sec-
ond row of Table 14. These maximum speeds are computed with the
method proposed in [CST09]. Specifically, we use approximative traces
of length 3 ·D ms (where D is the relative deadline of a stream), which in
[CST09] was shown to be a tight approximation. The first row of Table 14
shows the speeds required by Algorithm SD. These speeds are calculated
with Equation 6.5.

I II III IV V VI

sSD 0.44 0.38 0.42 0.4 0.39 0.47

smax
OPT

0.513 0.505 0.501 0.506 0.506 0.506

s∗ (T=2ms) 0.38 0.36 0.29 0.39 0.37 0.39

Tab. 14: Maximum speeds of Algorithms SD and OPT (first two rows). Threshold speeds
s∗ for Algorithm AD, determined assuming smax = 0.5 (last row). All speeds are
expressed in GHz.

For Algorithm AD, we derive the speed thresholds s∗ with the model
checker Uppaal based on the TA models of Section 6.4.3. In the TA model
of the DVS scheduler, we employ discrete clock ticks with a granularity
of T = 2 ms. To improve the efficiency of the verification, we employ
the dedicated TA event generators of [HV06] to represent the input event
streams. This is possible due to the periodic nature of the considered
streams. The resulting threshold speeds are shown in the last row of
Table 14. Table 15 reports the run-times of Uppaal to compute these
speed thresholds on a 64-bit Sun Fire X2200 M2 with 8GB RAM.

To evaluate the energy-efficiency of the different algorithms, we first
use the RTC Toolbox to produce 10 random event traces for each of the
streams. These traces are generated such that they are as close as possible
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I II III IV V VI

T=2ms 210 262 16679 2973 459 2

Tab. 15: Run-times [s] for computing the threshold speeds s∗with discretization T = 2 ms.

to the arrival curve, each with a length of 20000 ms. We then simulate the
execution of these traces by means of a simple discrete event simulator that
implements the described scheduling schemes and monitors the energy
consumption of the system. The simulator employs the power function
P(s) = 0.04+~ ·1.56( s

0.5GHz
)3 Watt, which is an approximation for the power

dissipation of the Intel XScale architecture. Finally, for each algorithm we
calculate the average energy consumed for scheduling the different traces
of a particular stream.

6.4.4.2 Results

Figure 80 shows the average energy consumed by the algorithms to pro-
cess the traces of the individual event streams. Since Algorithm OPT can-
not guarantee the schedulability of the streams with a maximum speed
of 0.5 GHz, its energy consumption is shown just as reference to illustrate
the energy overhead of Algorithm AD. The chart shows that Algorithm
AD is not much worse than Algorithm OPT in terms of consumed energy,
on average 10%. On the other hand, for five of the streams, the adaptive
DVS scheduler performs better than the static DVS scheduler, with an
average energy saving of 22%.

There is, however, also one case (event stream VI), where Algorithm
SD performs better than the adaptive approach. The reason for this result
is that stream VI is almost fully periodic, that is, it exhibits only a very
small amount of non-determinism. Therefore, executing at a constant
speed is more energy-efficient than adapting the execution speed.

6.5 Related Work

The design of energy-efficient real-time computing systems has been an
active research topic for many years. As a result, there is a large body of
work on DVS and DPM scheduling for real-time systems. The existing
approaches can be classified roughly into offline and online techniques.
Offline algorithms as found in [YDS95, QH07, YK03] take scheduling de-
cisions statically according to the expected worst-case workload of the
system. Online algorithms as presented in [AMMMA01, MHQ05] decide
on the task scheduling dynamically by adapting to the actual workload of
the system. While online approaches can help to considerably reduce the
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Fig. 80: Average energy consumed by the different algorithms for processing the event
traces of the individual streams.

energy consumption in the case of light workloads, they often perform
worse than offline methods for heavy workloads [YDS95]. Moreover, de-
pending on the processed event stream, it can happen that online methods
require an execution speed which is higher than the maximum available
system speed. Therefore, the applicability of online methods has to be
carefully verified a priori, which is the problem studied in [CST09].

Most of the studies on DVS scheduling in real-time systems assume
that the input event streams are scheduled according to the Earliest Dead-
line First (EDF) policy, e.g., [YDS95, AMMMA01, KK05]. However, there
are also several results for static priority scheduling. For instance, the
authors of [YK03] propose an offline method to compute a near-optimal
DVS schedule, assuming full a priori knowledge of event arrival times. In
[QH07] a more efficient solution to the same problem is provided. Other
approaches for static priority DVS scheduling assume periodic/sporadic
event arrivals, e.g, [SR03, MHQ05]. In [SR03] the effect of discrete exe-
cution speeds on the energy performance of DVS scheduling is studied,
and four different DVS schemes are presented. One of the four heuristics
relies on priority-monotonic speed assignments, which is also the central
idea of the offline method that we presented in Section 6.3. The authors
of [MHQ05] take into account transition overheads for speed changes,
while in [HJ08] energy-efficient preemption thresholds are discussed.

Almost all methods for static priority DVS scheduling are based on de-
terministic event traces, meaning that they either assume a priori knowl-
edge of event arrival times, or presume periodic (or at most sporadic)
event traces. Two exceptions are the methods proposed in [SK06] and
[RHE+06]. The authors of [SK06] consider mixed event streams (periodic
and aperiodic event streams), and use scheduling servers to handle non-
deterministic aperiodic event arrivals. They discuss interesting tradeoffs
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between energy consumption and response times for aperiodic events,
but, cannot guarantee the deadlines of aperiodic events. In [RHE+06]
the authors admit limited non-determinism for event arrival times, and
express it by means of a PJD event model. They provide a stochastic
method for power optimization based on multi-dimensional evolution-
ary algorithms.

The energy-aware processing of events with non-deterministic release
times bounded by arrival curves has been recently explored in [MCT05,
CST09]. For systems processing a single input event stream, the authors
of [MCT05] explore how to choose the minimal constant execution speed
that avoids an overflow of the input buffer. To the best of our knowledge,
our work is the first contribution to DVS scheduling of multiple event
streams with non-deterministic arrival times.

The problem of assigning static priorities to tasks executed by a
preemptive scheduler has been widely studied. For periodic/sporadic
tasks, optimal results are available with respect to schedulability, see
rate-monotonic (RM) scheduling [LL73] and deadline-monotonic (DM)
scheduling [LW82]. RM and DM cease to be optimal in the case of asyn-
chronous task releases, that is, if the tasks have arbitrary offsets. The au-
thor of [Aud91] provides an optimal priority assignment method for this
more general case. Also, several other extensions have been worked out
for issues such as execution blocking [BA06], task re-executions [LB03],
and limited priority levels [BYJ03]. All approaches for static priority as-
signment that we have found assume strictly periodic task activations,
except for the initial offsets. This is not the case for [DB95], where the
authors determine the optimal priorities for arbitrary aperiodic task ac-
tivations, but again without schedulability guarantees. Moreover, all
existing approaches optimize task priorities with respect to schedulabil-
ity. Besides our work, we are not aware of any other methods for real-time
systems that optimize task priorities with respect to energy consumption.

6.6 Summary

In this chapter, we studied the design and analysis of energy-efficient real-
time systems that process non-deterministic input event streams, mod-
elled by arrival curves. We proposed novel energy-aware design methods
that rely on Dynamic Voltage Scaling (DVS) and employ MPA or TA to
guarantee the timing constraints. Our methods are not bound to partic-
ular event stream models, but support arbitrary event arrival patterns,
which considerably extends the application scope of DVS. Specifically,
we considered two distinct design problems, namely the design of offline
and online DVS schedulers.
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In the first part of the chapter, we focussed on the offline DVS schedul-
ing of multiple input event streams with static priorities. We introduced
different algorithms that statically assign energy-efficient priorities and/or
execution speeds to individual event streams. We considered both con-
tinuous and discrete execution speeds, and commented on the time com-
plexity of the different approaches. The priority assignment algorithm
is based on the observation that rearranging high-priority tasks does not
affect the execution of a low-priority task. For the speed assignment
algorithm, the main idea is to use priority-monotonic speeds in order
to reduce the energy consumption. By interleaving the two algorithms,
we obtained a heuristic that assures an energy-efficient processing of the
input events, as well as the observation of all timing constraints. We
evaluated the energy performance of the proposed offline algorithms by
analyzing several test systems.

In the second part of the chapter, we concentrated on the online DVS
scheduling of a single input event stream. Specifically, we explored an
adaptive DVS scheme that dynamically switches between pessimistic and
optimistic DVS scheduling. The adaptive strategy combines the advan-
tages of both methodologies. For reducing the energy consumption, the
adaptive scheme is as optimistic as possible when the workload is light.
However, when the workload is heavy, the scheme switches to a pes-
simistic mode which guarantees the observation of deadlines. The change
between the two modes is triggered when the execution speed overruns
or underruns a threshold. To determine the most energy-efficient thresh-
old speed, we introduced a modelling and verification framework based
on Timed Automata. The framework employs the hybrid modelling tech-
nique of Chapter 5 to interface the MPA based description of the input
event stream with the TA model of the DVS processor. By means of
some simple experiments, we confirmed the beneficial properties of the
adaptive DVS scheduler.

The proposed adaptive DVS approach can be easily extended to sys-
tems with discrete speeds, without falling back to voltage hopping. Since
the restriction to discrete speeds reduces the search space, lower verifica-
tion times are expected for this case. The adaptive approach is also not
necessarily limited to a single input event stream. However, we expect a
severe growth of the state space for systems with multiple input streams.
Finally, note that executing at speed smax is not necessarily the best option
for the pessimistic mode. How to determine the most energy-efficient
speed for the pessimistic mode is an open question.
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7
Conclusions

This chapter summarizes the main results of this thesis and discusses
potential directions of future research.

7.1 Main Results

In this thesis, we addressed the compositional performance evaluation of
distributed embedded real-time systems. We introduced several formal
methods for predicting the timing, memory, and energy performance of
a system in early design stages. Our results build on top of an exist-
ing analytical method for performance evaluation, the MPA framework.
The principal aims of this thesis are to extend the modelling scope, and
increase the accuracy of current methods for compositional worst-case
performance evaluation. We pointed out various situations in which cur-
rent analytical techniques suffer abstraction losses, and also introduced
formal methods for mitigating or eliminating such losses. More specifi-
cally, in this thesis we presented the following main results:

• We extended the modelling scope of MPA to systems with non-
functional cyclic dependencies. We proved the correctness and con-
vergence of fixpoint iterations in MPA, and showed how to obtain
valid initial approximations. These results were achieved by devel-
oping a general operational semantic underlying the abstraction of
MPA.

• We introduced a technique to represent the merging and splitting
of event streams in MPA. The method is based on the concept of
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Event Count Curves, an abstraction to characterize structured event
streams. The new modelling technique seamlessly integrates into
MPA and extends its modelling scope. As a result, abstraction losses
are considerably reduced for systems with join/fork scenarios.

• We presented a novel hybrid methodology for the performance eval-
uation of distributed real-time systems, which combines analytical
and state-based system evaluation. In the resulting framework,
system components can be abstracted by either MPA or Timed Au-
tomata. The hybrid approach combines the benefits of both do-
mains. On one hand, it drastically reduces the abstraction losses
experienced with MPA due to coarse component models, and on
the other, it limits the state-space explosion problem to the level of
single system components.

• We showed how MPA can be applied to the design of energy-
efficient real-time systems. In particular, we presented two novel
design methods for offline and online DVS scheduling of real-time
event streams. In contrast to other existing solutions, our meth-
ods cope with non-deterministic input streams, which considerably
extends the application scope of DVS.

7.2 Outlook

The work presented in this thesis substantially augments the modelling
scope and analysis accuracy of the MPA framework. Nevertheless, there
still exists potential for further extensions and improvements. The fol-
lowing list identifies several possible directions for future research.

• Timing correlations
Arrival and service curves are a powerful instrument to model
bounded non-determinism in streams. However, the interval-based
representations have also a clear drawback: They cannot capture
any timing correlations between streams which can often be ob-
served in distributed systems. For instance, in MPA there is no
means to represent relative phase shifts, or any other correlation
between event traces in the time domain. As a consequence, severe
abstraction losses may be experienced when analyzing systems that
exhibit such kinds of correlations. The reason is that the correlations
often foreclose the existence of worst-case situations which are con-
sidered by the MPA model. How to refine MPA models such that
they capture and exploit knowledge about timing correlations is a
challenging open question.
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• Accurate Analysis of Cyclic Systems
In Chapter 3 we showed how systems with cyclic dependencies
can be safely analyzed in MPA by means of fixpoint iterations.
However, we also observed that modular methods such as MPA
or SymTA/S often yield overly pessimistic bounds in the presence of
cyclic dependencies. An approach to effectively prevent or mitigate
abstraction losses in fixpoint iterations would be highly beneficial.

• Scheduling Servers
Scheduling servers such as the Deferrable Server, the Total Band-
width Server, the Constant Bandwidth Server etc. are a powerful
tool to contain the influence of a particular input stream on the
schedulability of other streams. For instance, a scheduling server
can be used for processing an aperiodic and potentially unbounded
input stream in a best-effort fashion next to a set of periodic streams
with hard timing requirements. Similarly, scheduling servers may
be employed to isolate the effects of faulty input streams on a system.
In future research, the modelling scope of MPA could be extended by
designing abstract performance components for scheduling servers.
In particular, it would be useful to extend current approaches for
timing analysis of servers to the case of arbitrary input streams
bounded by arrival curves. Another promising research direction is
the design of new servers with particular guarantees, e.g., workload
conservation.

• Sensitivity Analysis and Robustness
Apart from computing the performance metrics of a system at a
specific design point, it is often also important to conduct a sen-
sitivity analysis for the performance of the system. Specifically, it
is significant to understand what effect (small) variations of sys-
tem parameters have on the performance of the system. In future
work, one could develop techniques for performing sensitivity anal-
ysis within the framework of MPA. The major application scenario
would be the design of robust systems, that is, systems which exhibit
insignificant sensitivity with respect to interferences and variations
in streams.

• Coupling with other formalisms
In Chapter 5 we combined MPA with the formalism of Timed Au-
tomata. This coupling appeared most natural due to the implicit
notion of time in TA. However, there are also other options to inte-
grate MPA with formal verification. For instance, we can think of
a hybrid analysis framework that combines analytical performance
evaluation with sat-solving. The interfaces between these domains
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could potentially borrow from the conversion patterns described in
this thesis.
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RM Rate Monotonic
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SymTA/S Symbolic Timing Analysis for Systems
TA Timed Automata
TDMA Time Division Multiple Access
WCRT Worst-Case Response Time
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