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Abstract

Mixed-Criticality is emerging as a significant trend for safety-critical
systems, especially in automotive and avionics industries. Conven-
tionally, those systems are designed as multiple sub-systems of distinct
criticality or importance levels. With the ever-increasing demand of
system functionalities and the shift of the semiconductor industry to more
powerful (multi-core) platforms, consolidating/mixing functionalities of
different criticality levels in a common hosting platform is appealing –
system costs induced by size, weight and power consumptions could be
potentially greatly reduced in the mixed-criticality setting.

The benefits brought by mixed-criticality systems are, however,
accompanied by a multitude of new challenges. Most noticeably, due to
resource sharing, functionalities of different criticality levels can interfere
with each other, jeopardizing their guarantees made in isolation. To
address this, new mixed-criticality models/protocols and corresponding
scheduling techniques need to be developed to provide adequate isolation
among criticality levels, and their limits (as well as potential extensions)
need to be understood. Many traditional design issues for conventional
embedded and/or safety-critical systems need to be rethought in the
mixed-criticality era. For example, in addition to common timing threats
considered for time-critical systems, hardware/software faults also need
to be considered in the design of real-time mixed-safety-critical systems.
In order to increase the system power efficiency, it is necessary to
extend conventional energy minimization techniques to emerging mixed-
criticality applications while considering the peculiarities of such systems.

As a step towards solving the above challenges, this thesis presents
a whole stack of solutions to model, design and optimize mixed-
criticality systems, in areas regarding real-time, fault-tolerance and
energy-efficiency. Specifically, we make three main contributions:

1 We design the first mixed-criticality models to improve the service
guarantee for less critical tasks in urgent scenarios – existing
solutions commonly assume to drop all those tasks when any
critical task overruns, which could be hardly acceptable in practice.
In particular, we propose service adaptation, detailed modeling
through interference constraint graphs, and processor over-clocking
to adaptively degrade the system service in urgent scenarios. We
show how common scheduling techniques like fixed-priority (FP)
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and earliest deadline first (EDF) can be extended under those
models and demonstrate considerable performance improvements
compared to existing solutions. To further understand the
limit of existing mixed-criticality models in line with industrial
practices (i.e., with static temporal isolation among criticality levels),
we present optimal scheduling techniques and we theoretically
quantify the schedulability loss of those models.

2 We present the first mixed-criticality framework, where fault-
tolerance, real-time requirements and runtime adaptation are
jointly considered to achieve a safe system design. Assuming
hardware/software faults, we adopt task re-execution (single-
core) and replication (multi-core) as our fault-tolerance techniques
and explicitly follow safety standards to model system safety
requirements on different criticality levels. To further deal with
urgent scenarios where critical tasks do not succeed after a certain
number of trials, we propose runtime adaptations to reallocate
system resources to critical tasks in such scenarios. Based on this, we
present fault-tolerant mixed-criticality scheduling techniques and
corresponding analysis techniques to meet both, safety and real-time
requirements. Our solutions work on single-core and multi-core
platforms, demonstrating the advantages of runtime adaptations
and revealing important findings on the impact of commonly
assumed mixed-criticality reconfigurations on the system feasibility.

3 We develop the first dynamic voltage and frequency scaling
(DVFS) techniques to improve energy efficiency for mixed-criticality
systems. We show that fundamental trade-offs exist for this
problem: DVFS can help the system to speedup in order to overcome
the urgent scenarios where critical tasks overrun, which further
allows the system to relax (slow down) and save dynamic energy
in nominal scenarios where tasks do not overrun. Assuming EDF
based scheduling, we present optimal and heuristic solutions in a
general setting firstly on a single-core, considering both leakage and
dynamic energy consumptions and all different system operation
scenarios. We then develop energy-aware mixed-criticality task
mapping techniques to extend our single-core solutions to multi-
core platforms. Our solutions demonstrate considerable energy
savings for both synthetic task sets and a realistic industrial use-
case, while revealing a rather surprising finding – the industrial
best practice of spatially isolating different criticality levels almost
has comparable energy savings to mixing them on each core.



Zusammenfassung

Mixed-Criticality ist ein bedeutender Trend im Bereich sicherheitskri-
tischer Systeme, allem voran in der Automobil- und Avionikindustrie.
Konventionelle Systeme bestehen aus mehreren Teilsystemen, welche un-
terschiedliche Kritikalitäts-/Wichtigkeitsniveaus abdecken. Mit steigender
Nachfrage nach erweiterter Systemfunktionalität und der Verlagerung
der Prozessorindustrie auf leistungsfähigere (Multi-Core) Plattformen
ist es vielversprechend die Funktionalitäten unterschiedlicher Kritika-
litätsniveaus auf einer gemeinsamen Plattform zu konsolidieren. Durch
Grösse, Gewicht und Energieverbrauch bedingte Systemkosten lassen
sich in einem Mixed-Criticality Setting möglicherweise stark reduzieren.

Die Vorteile, welche Mixed-Criticality Systeme bieten, werden jedoch
von einer Vielzahl neuer Herausforderungen begleitet. Besonders durch
Ressourcen-Sharing können sich verschiedene Kritikalitätsniveaus ge-
genseitig stören, obwohl durch Isolation diese gegenseitige Beeinflussung
ausgeschlossen werden soll. Um diese Probleme zu adressieren, müssen
neue Mixed-Criticality Modelle und Protokolle, sowie entsprechende
Scheduling-Techniken entwickelt und deren Grenzen (und mögliche Er-
weiterungen) verstanden werden um genügende Isolation zwischen den
unterschiedlichen Kritikalitätsniveaus zu garantieren. Viele typischen
Designfragen konventioneller eingebetteter und/oder sicherheitskriti-
scher Systeme müssen in der Mixed-Criticality Ära überdacht werden.
So müssen zum Beispiel zusätzlich zu den üblichen Tasküberlauf in
zeitkritischen Systemen auch Hardware- und Software-Fehler in der
Designphase von Echtzeit Mixed-Criticality Systemen bedacht werden.
Um ebenfalls die Energieeffizienz solcher Systeme zu verbessern,
ist es ebenso notwendig konventionelle Energiesparmechanismen für
zukünftige Mixed-Criticality Systeme zu erweitern.

Diese Disseration stellt einen ersten Schritt zur Lösung dieser
Probleme dar. Dabei werden eine Reihe von Lösungen zur Modellierung,
dem Design und der Optimierung von Mixed-Criticality Systemen in
den Bereichen Echtzeitverarbeitung, Fehlertoleranz und Energieeffizienz
präsentiert. Im Einzelnen werden folgende Beiträge gemacht:

1 Wir entwerfen die ersten Mixed-Criticality Modelle welche die
Servicegarantie weniger kritischer Tasks in dringenden Situationen
verbessern. Im Gegensatz dazu gehen bestehende Lösungen davon aus,
dass weniger kritische Tasks automatisch abgebrochen werden sobald
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ein kritischer Task überläuft, was in der Praxis kaum umsetzbar ist.
Insbesondere schlagen wir dynamische Serviceadaptierung, detaillier-
terer Modellierung mittels Interferenz Bedingungsgraphen und Prozes-
sorübertaktung vor, um den Systemservice in dringenden Situationen
zu adaptieren. Wir zeigen auf wie bekannte Schedulingalgorithmen
wie Fixed-Priority (FP) und Earliest-Deadline-First (EDF) mithilfe
dieser Modelle erweitert werden können und demonstrieren dass
diese die Performance gegenüber bestehenden Lösungen erheblich
verbessern. Ebenso präsentieren wir optimale Schedulingtechniken
und quantifizieren die Einbussen auf die Schedulability um die
Einschränkungen bestehender Mixed-Criticality Modellen im Zusam-
menhang mit der Industriepraxis, wie zum Beispiel zeitliche Isolation
der Kritikaliätsniveaus, zu verstehen.

2 Wir präsentieren das erste Mixed-Criticality Framework welches
Echtzeit-Anforderungen und Serviceanpassung zur Laufzeit gemein-
sam betrachtet um ein sicheres Systemdesign zu erzielen. Unter
der Annahme von Hardware- und Softwarefehlern Übernehmen wir
die Techniken Task-Wiederausführung (Single-Core) und Replikation
(Multi-Core) um Fehlertoleranz zu garantieren und folgen den
strikten Sicherheitsstandards um die Sicherheitsanforderungen der
verschiedenen Kritikalitätsniveaus zu modellieren. Weiter behandeln
wir dringende Situationen in welchen kritische Tasks auch nach einigen
Wiederausführungen nicht erfolgreich abgearbeitet wurden. In diesen
Fällen schlagen wir vor dynamisch weitere System-Ressourcen für
diese kritischen Tasks zu allozieren. Darauf aufbauend präsentieren wir
fehlertolerante Mixed-Cricicality Schedulingalgorithmen and entspre-
chende Analysetechniken um Sicherheits- und Echtzeitanforderungen
zu erfüllen. Die gezeigte Lösung arbeitet sowohl auf Single-Core
als auch Multi-Core Systemen und liefert wichtige Erkenntnisse
über den Einfluss typischer Rekonfigurationsmassnahmen auf die
Umsetzbarkeit von Mixed-Criticality Systemen.

3 Wir entwickeln die erste dynamische Spannungs- und Frequenzska-
lierung (Dynamic Voltage and Frequency Scaling, DVFS) Technik
für Mixed-Criticality Systeme und zeigen auf, welche grundlegenden
Kompromisse für dieses Problem getroffen werden müssen: DVFS kann
helfen die Ausführung zu beschleunigen um dringende Situationen zu
überwinden und hilft zudem das System zu verlangsamen um Energie
einzusparen wenn kritische Tasks keine erhöhten Ausführungszeiten
haben. Wir präsentieren eine optimale und heuristische Lösung
für EDF basiertes Scheduling für Single-Core Architekturen unter
Einbeziehung von Leakage und dynamischem Energieverbrauch und



v

allen möglichen Systemzuständen. Wir entwicklen energiebewusste
Mixed-Criticality Task-Mapping Algorithmen zur Erweiterung der
Single-Core Lösung auf Multi-Core Plattformen. Die Evaluation
unserer Lösung zeigt signifikante Energieeinsparungen sowohl für
synthetische Task-Sets, als auch realistische industrielle Anwendungen.
Interessanterweise zeigt die Anwendung der gleichen Massnahmen
auf die industrielle Best Practice räumlicher Isolation annähernd die
gleichen Energieeinsparungen.
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1
Introduction

Computer systems are evolving into complex mixed-criticality sys-
tems [BD16], in a natural process to enrich system functionali-
ties by integrating subsystems/tasks/functionalities of differing impor-
tance/criticality levels. In the embedded system industry, such a trend is
further intensified by the fact that embedded processors are nowadays
shifting aggressively towards powerful, general purpose (multi-core)
platforms [BDM09]. This creates a great platform base to enable mixed-
criticality consolidation. Consequently, in the past few years, a lot of effort
has been spent in both academia and industry (especially automotive and
avionics [L+12]) on designing those emerging mixed-criticality systems.
At the heart of their addressed problems are the following questions: How
are mixed-criticality systems fundamentally different from conventional
systems? How can existing design methods/methodologies (regarding
system modeling, reliability, energy optimization, etc.) be extended in
designing those new systems?

Implications of Mixed-Criticality: An answer to the above questions
is certainly related to the definition of “criticality”. Naturally, there
exist multiple interpretations – criticality for a laptop functionality would
merely mean user preference, while criticality for an aircraft flight control
system directly relates to system safety (i.e., high costs of failures, being
either social or economical). It is not difficult to see that the problem
would be much harder in the latter case, as the design constraints are much
more stringent. We will hence focus on mixed-safety-critical systems, the
developments of which are currently strongly pushed in automotive and
avionics industries [L+12].

Subsequently, one needs to understand the implications of “mixing”
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functionalities of varying criticality on the same platform. The foremost
problem would be that those functionalities can now interfere with each
other on shared resources, jeopardizing their guarantees made in isolation
– a strong argument that the new approach is in contradiction with the
common wisdom that, in a mixed-safety-critical setting, the best option
is to segregate functionalities of different importances [EN16]. In fact, it
is still possible to guarantee system safety under “mixing”, at the cost of
certifying all functionalities to the highest criticality level. Unfortunately,
this is often economically infeasible.

Potential Solutions: One possible solution is to achieve an
equivalence of isolation by monitoring and regulating task behaviors in a
system, as similarly done for traditional fault-tolerant systems [DGR04].
This way, we can for example ensure that tasks do not exceed their
measured worst-case execution times at runtime, i.e., they do not interfere
with each other’s real-time guarantees made offline. To further take into
account that tasks are of different importance levels, their parameters
should be estimated in a way that reflects their criticality levels, e.g., a
higher criticality indicates a more pessimistic time measurement.

Another solution is to simply enforce conventional isolation meth-
ods [AB98] among different criticality levels, e.g., by server-based
scheduling techniques [SEL08]. However, since a multitude of resources
are shared across applications on a modern computing platform (e.g.,
processing cores, memory systems, buses etc.), this would imply an
exhaustive isolation on all shared resources, giving rise to poor resource
utilization. Therefore, new isolation methods need to be developed to
allow criticality isolation in a resource efficient manner.

A Wider Perspective: We are addressing the design of systems,
with the characteristic of being mixed-critical. Thus, many conventional
design issues such as real-time performance, system reliability, and energy
conservation need to be addressed in the mixed-criticality context. A
common misconception, however, is that resource efficiency is only
a secondary design goal for safety-critical systems. This is hardly
true from a business point of view. As an example, the automotive
industry is highly competitive and cost sensitive [Sud01], and it is
of ultimate importance to design safe mixed-criticality systems while
simultaneously reducing system costs. In this context, established
techniques/methodologies [Mar10] need to be extended while taking into
account the peculiarities of mixed-criticality systems.

Thesis Contribution and Organization: This thesis provides a
whole stack of technologies to specify and schedule mixed-criticality
systems with a focus on real-time, fault-tolerance and energy efficiency.
Specifically, three main contributions are made throughout this thesis:
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• Chapter 2 proposes the first mixed-criticality models, as well as
corresponding scheduling techniques, in order to improve the
service guarantee for less critical tasks in urgent scenarios. Existing
solutions commonly assume to drop all those tasks when any critical
task overruns – a solution that improves system resource efficiency,
but is hardly acceptable in practice. For the proposed service
adaptation, the definition and use of interference constraint graphs
and processor over-clocking, we demonstrate both theoretical and
experimental improvements over existing methods. To further
understand the limit of existing mixed-criticality models in line
with industrial practices (i.e., with static temporal isolation among
criticality levels), we present optimal scheduling techniques and
theoretically quantify the schedulability loss of those models.
• Chapter 3 presents the first mixed-criticality framework, unifying

considerations of fault-tolerance, real-time and runtime adaptation
to achieve a safe and efficient system design. Under hard-
ware/software faults, we adopt task re-execution and replication
to achieve fault-tolerance and explicitly follow safety standards to
model system safety requirements on different criticality levels. We
further adopt runtime adaptations to reallocate system resources to
critical tasks, when they do not succeed after a certain number of
trials. We then present fault-tolerant mixed-criticality scheduling
techniques and corresponding analyses to satisfy both safety and
task deadlines. Our proposed solutions work on single-cores and
multi-cores, demonstrating the advantages of runtime adaptations
and revealing important findings on the impact of commonly
assumed mixed-criticality reconfigurations on system feasibility.
• Chapter 4 develops the first energy conservation techniques

for mixed-criticality systems, leveraging dynamic voltage and
frequency scaling (DVFS) capabilities of modern computing
platforms. We show that fundamental trade-offs exist for this
problem: DVFS helps the system to speedup to overcome urgent
scenarios where critical tasks overrun; this further allows the system
to relax (slow down) and save energy when tasks do not overrun. We
provide heuristic and optimal solutions to minimize system energy
on a single-core under EDF scheduling, as well as the extension
to multi-core with energy-aware task mapping. Our solutions
demonstrate considerable energy savings for both, synthetic and
industrial systems, while revealing an interesting finding – the
industrial practice of spatially isolating criticality levels almost has
comparable energy savings to mixing them on each core.

Chapter 5 summarizes this thesis and outlines future directions.
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2
Mixed-Criticality Models – Limits,

Extensions and Scheduling

Mixed-criticality systems advocate to use a common computing platform
to host applications of different criticality or importance levels (we shall
refer to all tasks with one criticality level as one task class, whenever it
is convenient). Such an approach, despite its great potential in reducing
system costs (size, weight and power), poses significant new challenges
on the system design – applications can interfere with each other on shared
resources, jeopardizing their guarantees made in isolation. Addressing
this would require a whole stack of solutions ranging from high level
modeling and specification to low level deployment. This chapter is
dedicated to understanding and solving the modeling of mixed-criticality
systems and shall focus on system real-time properties. The core of
such modeling shall be straightforwardly extensible when other system
properties are considered, see e.g., Chapter 3 for reliability.

The central problem here is to provide a high level specification
of mixed-criticality systems, clarifying most importantly the following
issues: (1) What guarantee should we provide for each criticality level?
(2) Under which conditions should the respective guarantees on various
criticality levels be made? (3) With such a model once given, it is further
important to understand how to schedule the system accordingly and
when can we guarantee task deadlines. For the first question, an intuitive
general answer is already given by common safety standards [do11] –
the rigorousness of guarantees increases as criticality levels ascend. This
means that, from a real-time perspective, more pessimistic worst-case
execution time (WCET) measurements should be adopted on a higher
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criticality level. We shall therefore focus on addressing the remaining
two issues.

As described in [TSP11, EN16, Wik16a], conventionally, the industry
favors strict (spatial and temporal) isolations among different criticality
levels. This is because isolation is often suggested by safety standards for
the ease of certification [do11, iso11] – with rigorous isolation, guarantees
made on different criticality levels (or for different applications) are
independent of each other; this enables the independent certifications
of different criticality levels (or applications), greatly reducing the
certification burden as otherwise the system has to be repeatedly certified
as a whole. Furthermore, it is up to the individual criticality level to adopt
its own model to characterize the desired guarantee. Note, however, that
strict isolation does not come for “free” – it usually tends to under utilize
system resources [BD16] as the partitions are almost never fully utilized
given the pessimism in WCET measurements.

Asymetrical Isolation (AIS): Current research commonly relaxes the
strict isolation due to its resource inefficiency [BD16]. The first attempt
is to “mix” tasks of different criticality levels on each core. However,
this causes mutual interferences among all criticality levels and would
require, in the worst-case, all tasks to be certified to the highest criticality
level. Hence, an alternative approach is to asymmetrically isolate different
criticality levels while retaining resource efficiency: WCETs of tasks are
modeled on all criticality levels; whenever a task exceeds the WCET
on one criticality level at runtime, only tasks with criticality levels
greater than this level are guaranteed afterwards. Thus, whenever a
time urgency happens, the system performs a runtime adaptation and
only protects the critical tasks by reallocating resources from less critical
tasks to them. Note that, the AIS model requires continuous runtime
system monitoring to detect possible timing threats and to trigger the
asymmetrical protection (we shall also call this approach as implicit
isolation in the sequel).

Motivation & Contribution: The commonly assumed AIS model
could incur drawbacks in that it can be abrupt and pessimistic. It is
abrupt in the sense that whenever any critical task overruns, all less
critical tasks immediately receive no services afterwards; further, it is
pessimistic because, even if some critical tasks overrun, the system might
still be able to provide services for less critical tasks. From another
perspective, in a mixed-criticality setting, a “less” critical task can still
be critical to the correct system functioning. As an example, consider
a typical avionics use-case, where the fight control subsystem is of DO-
178B [do11] criticality level A while the flight management subsystem is
of criticality levels B and C (with A being the highest and E being the
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lowest); if a level A task overruns, the flight management tasks cannot be
simply abandoned as they are also crucial to the safety of the airplane. In
light of this, meaningful and explicit guarantees for those tasks should be
introduced to the AIS model. Moreover, the AIS model asymmetrically
isolates different criticality levels only on the processing cores, neglecting
other shared resources like memory. A new scheduling model would
be required to cope with this. As a step towards addressing the above
meaningful concerns for mixed-criticality systems, we make the following
two main contributions.

1 We propose three different mixed-criticality models to address the
limit of the AIS model regarding the service guarantees to less
critical tasks. The first model is the service adaptation model which
explicitly specifies the required service of less critical tasks in the
urgent mode as well as the service resetting time from entering the
urgent mode to resuming the nominal mode. The second model
is the interference constraint graph (ICG), where for each task, the
set of less critical tasks it can affect when overrunning is explicitly
modeled as directed edges from this task to the affected tasks.
We show that the AIS model is rather a special case of the ICG
model; we further examine the properties of this new model and
propose methods to reduce the interferences to less critical tasks
by optimizing the ICG. Last, we present an extension of the AIS
model augmented with processor speedup/overclocking. We show
that speedup in situation of overrun can not only help to protect
the timeliness of critical tasks, but also to improve the degraded
services for less critical tasks. Furthermore, we show that speedup
is even more attractive as it can help the system to recover faster
to normal operation. For each of the proposed models, we present
corresponding scheduling techniques based on fixed-priority (FP)
or earliest deadline first (EDF) as well as their theoretical analyses.

2 We propose the global temporal isolation (IS) scheduling model
for mixed-criticality systems, providing rigid isolation among
criticality levels on the entire computing platform. In IS, the entire
multi-core platform is viewed as a single resource, which is time
partitioned among different criticality levels. In other words, IS
enforces mutually exclusive execution among different criticality
levels, avoiding inter level interference by construction. Within
each time partition, the associated criticality level can assume its
appropriate timing requirements, i.e., WCET measurements; any
proper scheduling techniques can be adopted to exploit the multi-
core platform and to optimize the resource utilization. Although
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the concept of IS has been approached by several recent advances
in mixed-criticality [GSHT13, BFB15], we are the first to formalize
this model and formally study it. We propose optimal scheduling
algorithms based on this model and theoretically analyze the limit
(schedulability loss) of this model compared to when IS is not
enforced. Furthermore, it is possible to combine the IS model with
the AIS model to further increase system resource efficiency – if
some task in one partition overruns its WCET on one criticality
level, all subsequent partitions with criticality levels lower could be
dropped or their services can be reconfigured or adapted.

Chapter Organization: We first briefly introduce the classical mixed-
criticality models and corresponding scheduling techniques in Section 2.1.
We then present three different mixed-criticality scheduling models
(Section 2.2 to 2.4), all endeavoring to reduce the pessimisms of the state-
of-the-art mixed-criticality task model. We then continue to formalize
in Section 2.5 several recent advances of mixed-criticality scheduling into
the isolation scheduling model and formally study the corresponding
scheduling technique as well as limits of this model.

2.1 State-of-the-art Mixed-Criticality Models
In the classical mixed-criticality task model [BD16], a task set τ consists
of independent sporadic tasks {τ1, τ2, ..., τ|τ|}, which are to be scheduled
on a platform with identical preemptive processors π = {π1, π2, ..., π|π|}
(|π| = 1 in case of a single-core). Each task τi is specified by a minimum
inter-arrival time Ti, a deadline Di, and an associated criticality level of
χi. Often, it is assumed that tasks have implicit deadlines [BBD+12] (∀τi,
Di = Ti) and dual-criticality levels (∀τi, χi can be either high (HI) or low
(LO)). Unless otherwise stated, we will assume such an implicit deadline
dual-criticality task model. In addition, to ensure timing safety, worst-
case execution time (WCET) estimations of HI criticality tasks are more
conservative than those of LO criticality tasks.

To further improve resource efficiency, the state-of-the-art mixed-
criticality model [BD16] assumes to measure task WCETs on all criticality
levels. Any HI criticality task τi has a LO criticality WCET Ci(LO) and a
more pessimistic HI criticality WCET Ci(HI). Any LO criticality task τi

has only a LO criticality WCET Ci(LO) and is not allowed to overrun
Ci(LO). At runtime, the system starts with LO operation mode and
guarantees deadlines for all HI and LO criticality tasks, assuming their
LO criticality WCETs. If any HI criticality task overruns its LO criticality
WCET, then the system switches immediately to HI operation mode and
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all LO criticality tasks are dropped in order to guarantee HI criticality
tasks. However, the system can switch back to LO mode at any time
when there are no pending tasks [SGTG12]. Since such a mixed-criticality
model effectively separates the guarantees among different criticality
levels through runtime monitoring and reconfiguration, we shall call it
the Asymmetric Isolation (AIS) model. From the above discussion, it is
also not hard to see that such a model can be easily extended to more than
two criticality levels by requiring WCET measurements on all those levels
and by triggering a mode switch whenever a task exceeds the WCET on
its own criticality level.

Under the AIS model, a task set is said schedulable if there exists a
scheduling technique, such that all tasks can meet their deadlines in LO
mode adhering to their LO level WCETs, and all HI criticality tasks can
meet their deadlines in HI mode with HI criticality WCETs. Moreover,
we say that a task set is schedulable on a processor with a speedup factor
s > 0, if the same task set with all task WCETs divided by s is schedulable
on the original processor.

Note that, the industrial best practice (e.g., see the avionics standard
ARINC 653 [Wik16a]) still follows strict spatial and/or temporal isolation
for different criticality levels – the asymmetric protection of different
criticality levels is not required, as adopted in the state-of-the-art model
in the research community.

For notational convenience, we define Uχ2
χ1

for χ1, χ2 ∈ {LO,HI} as
follows:

Uχ2
χ1

=
∑

τi∈τ∧χi=χ1

Ci(χ2)
Ti

.

Uχ2
χ1

denotes the total utilization of all χ1 criticality tasks with their
χ2 criticality WCETs. For instance, ULO

HI denotes the utilization of HI
criticality tasks with their LO criticality WCETs. We further define τχ
as the set of all χ criticality tasks, where χ ∈ {LO , HI}, and use ~a�c to
represent min(a, c).

2.1.1 Mixed-Criticality Scheduling

We provide a short overview of several mixed-criticality scheduling
policies under the AIS model, as we will build upon them. For a more
extensive overview, we refer to [BD16] as an excellent survey. We also
provide a quick introduction to mixed-criticality scheduling approaches
based on explicit isolation among criticality levels.
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2.1.1.1 EDF Based Approach

For mixed-criticality scheduling on multi-core platforms, either global
scheduling [LB12] or partitioned scheduling [KAZ11] can be applied.
In this chapter, we focus on the latter since it is more common in
industrial embedded systems. Mixed-criticality scheduling is strongly
NP-hard even for simple task models on a uniprocessor [KAZ11].
Hence, heuristic algorithms with analytical bounds are often proposed.
In this category, a well known approach is the partitioned EDF-
VD scheduling [Bar14, GGDY14]. Here, HI criticality tasks are first
mapped to all processors followed by mapping of LO criticality tasks.
Different bin packing techniques can be adopted for task mapping, while
system utilization bounds are enforced on all cores to obtain a feasible
schedule [Bar14, GGDY14].

Subsequently, EDF-VD [BBD+12] scheduling is adopted on each
processor. In EDF-VD, deadlines of all HI criticality tasks are down-scaled
by a multiplication factor x (0 < x ≤ 1) in LO mode to prioritize their
executions. This will leave enough time before their actual deadlines to
accommodate extra workload (overrun). Intuitively, a smaller x increases
system utilization in LO mode but decreases system utilization in HI
mode, as more jobs are completed in LO mode. As a result, it affects
scheduling in both LO and HI modes. For a task set τ running on a
single-core, a feasible range of x exists [BBD+12] (summarized as follows).

Theorem 2.1. To guarantee system schedulability on a single-core under EDF-
VD, x must be set in the following range:

0 <
ULO

HI

1 −ULO
LO

≤ x ≤
������1 −UHI

HI

ULO
LO

������1

.

Proof. This follows from Theorem 1 and Theorem 2 in [BBD+12]. �

Essentially, this theorem states that there is a lower bound on x, below
which LO mode will not be schedulable. Similarly, an upper bound exists,
beyond which HI mode will not be schedulable.

2.1.1.2 Fixed Priority Based Approach

Another common approach to schedule traditional real-time systems
is to employ fixed-priority scheduling [LL73, TB94], where each task
receives a fixed priority offline and higher priority tasks are scheduled
preferably in comparison to lower priority ones. Established methods



2.1. State-of-the-art Mixed-Criticality Models 11

including response-time analysis and real-time calculus [TBW95, TCN00]
offer efficient schedulability analysis for such systems. In the mixed-
criticality context, fixed-priority scheduling and analysis have been
extended to consider multiple criticality levels and asymmetrical isolation
among them [BBD11b, Pat12]. One such important result (with slight
reformulation) was given in [BBD11b]:

Theorem 2.2. For a dual-criticality task set τ with constrained deadlines (i.e.,
Di ≤ Ti,∀τi) under fixed-priority preemptive scheduling, the response time, Ri,
of task τi is:

Ri = Ci(χi) +
∑

τ j∈hp(i)

⌈
Ri

T j

⌉
·min

{
C j(χi),C j(χ j)

}
, (2.1)

where hp(i) denotes tasks with priorities higher than τi.

More sophisticated analyses have also been derived in [BBD11b]
to tighten task response times and in [Pat12] to consider multi-core
platforms.

2.1.1.3 Fluid Based Approach

[LPG+14] extended a well known optimal multi-core scheduling
technique, DP-Fair [LFS+10], to dual-criticality task systems by proposing
MC-Fluid. DP-Fair is a fluid based scheduling technique, which enforces
proportional progress of all tasks within dedicated system slices. DP-
Fair only requires a minimal set of rules for achieving proportional
progress, covering many other scheduling techniques as special cases,
e.g., the original P-Fair algorithm [BCPV93]. Conceptually similar to
EDF-VD, MC-Fluid runs the system in two modes, with the deadlines of
HI criticality tasks shortened in LO mode. In both LO and HI modes,
DP-Fair is adopted. [LPG+14] provided a corresponding schedulability
test and investigated the theoretical performance of MC-Fluid.

2.1.1.4 Approaches with Explicit Task Class/Criticality Isolation

Initial research on isolating task classes on multi-core platforms did
not explicitly address interference between task classes when jobs
concurrently access shared resources, i.e., they imply that it can be
bounded. For instance, [ABB09] and [MEA+10] adopt different strategies
(partitioned EDF, global EDF, cyclic executive) for different task classes
and use a bandwidth reservation server for timing isolation between
classes. However, interference analysis for multiple shared resources is a
very challenging task by itself. In fact, estimating response time bounds
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under contention may be even impossible for MC systems, because a
certification authority for higher criticality tasks does not necessarily
possess information on the behavior of lower criticality tasks that are
co-hosted on the same platform.

Subsequently, researchers acknowledged the problem of inter-class
interference and proposed mechanisms for criticality-aware arbitration
of shared resources, with the objective of statically bounding interference
from lower to higher criticality tasks. [YYP+12] and [FLY14] proposed a
software-based memory throttling mechanism (with predefined [YYP+12]
or dynamically allocated [FLY14] per-core budgets) to explicitly control
interference on a shared memory controller. [PQnC+09, GAG13] proposed
hardware modifications to a shared memory controller for mixed hard
and soft real-time systems. Recent works [RLP+11, WKP13, YMWP14,
GSHT14] proposed partitioning data to disjoint DRAM banks in order
to minimize inter-core interference. [TSP15] presented optimization
methods for time-triggered partition scheduling on heterogeneous multi-
core that comply with the ARINC-653 standard [ARI03]; they assume
that the platform provides both spatial and temporal partitioning that
enforce enough isolation between task classes. Similarly, [KYBS14]
relied on ARINC-653 compliance to devise a method for conflict-
free I/O transactions. Finally, [TAED13] implemented virtualization
and monitoring mechanisms to provide independence among flows
of different criticality in networks-on-chips. These mechanisms and
policies ensure sufficient isolation among criticality levels, but they suffer
from poor flexibility, e.g., memory budgets [YYP+12] cannot change
dynamically if the resource demand changes, and they may require
special hardware support, which is not widely available.

Finally, [GSHT13] and [BFB15] recently proposed scheduling strate-
gies that sidestep the need for fine-grained shared resource arbitration.
The key idea is to only permit tasks of the same criticality (i.e., from
the same class) to execute concurrently. Based on this insight, the
scheduling policies they propose avoid resource interference among task
classes, exploit multiple cores, and only suffer a limited schedulability
loss to enforce time-partitioning among task classes. The Isolation
Scheduling model we will propose includes both policies as special cases;
additionally, we will propose novel policies built from scratch.

2.2 Mixed-Criticality Service Adaptation

As already discussed at the beginning of this chapter, it is often too
pessimistic to reject all less critical tasks whenever a single high criticality
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task exceeds at runtime a certain execution time threshold. Indeed,
this has already been confirmed in [SGTG12, SZ13]. Here, instead of
dropping less critical tasks completely, either partial dropping or best-
effort scheduling are adopted for the less critical tasks. However, the
service that the system can still guarantee to the less critical tasks when a
critical one overruns is unknown. It is important to compute bounds
on the service that can be provided for the less critical tasks, which
remained as an open problem when we wrote the paper [HGST14]. Such
information could be used to guide the online reconfiguration of the
provided system services.

Furthermore, the guarantees made by the above scheduling tech-
niques [SGTG12, SZ13] are rarely acceptable in practice. Recall the
avionic use-case – the Flight Management System (FMS) application. If a
localization task (certified at DO-178B criticality level B) exceeds a certain
execution time threshold, we cannot simply reject the level C tasks (among
them be the flightplan task) or perform best-effort scheduling for them,
since the airplane constantly requires the flightplan information. Instead,
a degraded service for the level C tasks should be guaranteed. Moreover,
for FMS, when the system can be reset to provide the original service to
all tasks is an important certification criteria. Therefore, offline analysis
techniques need to be developed to bound such resetting time.

In the following, we will extend the original mixed-criticality
scheduling model and the EDF-VD [BBD+12] scheduling technique to
guarantee a degraded service for LO criticality tasks in the urgent
scenario. We will further provide a bound on the service resetting time.
To this end, we will extend the demand bound [EY12] and the arrival
bound [TCN00] techniques to analyze this new type of systems. With
our theoretical results, we demonstrate that a trade-off exists between the
degraded service and the service resetting time. Finally, we validate our
proposed techniques with a case study of an industrial application – the
flight management system.

2.2.1 System Model
Our model differs from the commonly assumed mixed-criticality model
in that, rather than dropping all LO criticality tasks in HI operation mode,
we still guarantee a degraded service for all those tasks (i.e., decreased
task activation frequencies and relaxed task deadlines). Without
loss of generality, we can then abstract each task τi with a tuple,{{

Ti(HI),Ci(HI),Di(HI)
}
,
{
Ti(LO),Ci(LO),Di(LO)

}
, χi

}
:

• Ti(χ) ∈ R+ is the minimum inter-arrival time of τi in mode χ.
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• Ci(χ) ∈ R+ is the WCET of τi in mode χ.

• Di(χ) ∈ R+ is the relative deadline of τi in mode χ.

• χ = {HI,LO} is the set of criticality levels / operating modes.

• χi ∈ χ is the criticality level of task τi.{
Ti(χ),Ci(χ),Di(χ)

}
characterizes the service to be guaranteed for τi

in mode χ. A dual-criticality task set is said schedulable if there exists
a scheduling technique, such that the service requirements for all tasks
in both operating modes can be satisfied. For a HI criticality task τi, its
WCET is adjusted from Ci(LO) to Ci(HI) when transiting to HI criticality
mode. This can lead to a unschedulable system: Consider a scenario when
a job of this task just finishes its low criticality WCET at its deadline, and
at the same time a mode transition happens; this implies that this task
must finish Ci(HI) − Ci(LO) units of execution in zero time. In order
to schedule HI criticality tasks, their deadlines need to be tuned in LO
criticality mode (Di(LO) ≤ Di(HI)), such that they can still meet their
deadlines when transiting to HI criticality mode. This concept has been
explored in [BBD+11a, BBD+12, EY12].

In summary, the following assumptions are made: If χi = HI, then

Ti(LO) = Ti(HI) = Ti,Ci(HI) ≥ Ci(LO),Di(LO) ≤ Di(HI) = Di; (2.2)

if χi = LO, then

Ti(LO) = Ti,Ti(LO) ≤ Ti(HI),Ci(HI) = Ci(LO),Di = Di(LO) ≤ Di(HI).
(2.3)

Note that we do not pose any constraint on task deadlines with respect
to their periods here.

For the original EDF-VD scheduling technique [BBD+11a, BBD+12],
all tasks are scheduled by Earliest Deadline First (EDF) in both HI and
LO criticality modes (i.e., mode-switched EDF). All LO criticality tasks
are immediately dropped when the system transits to HI criticality mode.
This can be viewed as a special case by setting Ti(HI) := Di(HI) := ∞ for all
LO criticality tasks. Furthermore, recall that, for notational convenience,
we denote by τHI (τLO) the set of HI (LO) criticality tasks.

2.2.2 Mixed-Criticality Service Reconfiguration
We present in this section the analysis of dual-criticality task sets
scheduled by mode-switched EDF. We first quantify the demand bounds
of all tasks in LO and HI criticality modes, and present the corresponding
schedulability test. We then present results on approximations of the
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Figure 2.1: A mode transition triggered by task overrun

analyzed demand bounds. We view the service degradation of LO
criticality tasks by a scaling factor (≥ 1) of their periods and deadlines.
For implicit-deadline task sets (Ti = Di), an algorithm is proposed in
Section 2.2.2.3 to adjust the services of LO criticality tasks in HI mode.
The results presented extend existing works in [BBD+11a, EY12, EY13].

2.2.2.1 Mixed-Criticality Demand Bound Analysis

The demand bound of a task in a given interval is defined as the sum
of execution times of all task instances, which have arrival times and
deadlines both in this interval. During LO criticality mode, the demand
bound dbfLO of any task in an interval of length ∆ can be bounded
according to known results in [EY12]:

dbfLO(τi,∆) = max
{⌊

∆ −Di(LO)
Ti(LO)

⌋
+ 1, 0

}
· Ci(LO). (2.4)

For HI criticality mode, we need to consider the impact of unfinished jobs
at the transition point. Those are the jobs for which the schedules may
be changed (i.e., tasks are scheduled by EDF and their deadlines may be
adjusted at the time of mode switch).

We depict in Figure 2.1 a system undergoing a mode transition at time
t̂. A job of task τi arrives in LO mode at time ai. A mode transition is
signaled λ units after that. From this time on, all jobs of this task are
guaranteed with HI criticality parameters.

In [EY12], only the demand bounds of HI criticality tasks in HI
criticality mode are derived. This is done by identifying a worst-case
demand bound including that of the unfinished job at the transition time,
see equation (2.5). We proceed to present a general approach to analyze
the demand bounds of all tasks in HI criticality mode. Let us further
define a set of functions (2.6)-(2.9):

RM(τi, λ) = Ci(HI) − Ci(LO) + min {Di(LO) − λ,Ci(LO)} , (2.5)
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dbf1
HI(τi,∆) = max

{⌊
∆ −Di(HI)

Ti(HI)

⌋
+ 1, 0

}
· Ci(HI), (2.6)

dbfRM(τi, λ,∆) =

{
RM(τi, λ) if ∆ ≥ Di(HI) − λ, (2.7a)
0 if ∆ < Di(HI) − λ. (2.7b)

dbf2
HI(τi, λ,∆) = dbfRM(τi, λ,∆) (2.8)

+ max
{⌊

∆ −Di(HI) − (Ti(HI) − λ)
Ti(HI)

⌋
+ 1, 0

}
· Ci(HI).

dbfHI(τi,∆) = sup

dbf1
HI(τi,∆), sup

0≤λ≤Di(LO)

{
dbf2

HI(τi, λ,∆)
} . (2.9)

Formally, we have the following result.

Lemma 2.1. The demand bound function of any task in HI criticality mode
can be calculated by equation (2.9).

Proof. Let us consider two different cases.

1- λ ∈ [0,Di(LO)]: In this case, the current job of τi may have not finished
its LO criticality WCET, the worst-case left-overs of the current job
can be bounded by min{Di(LO) − λ,Ci(LO)}. Since starting from t̂
the current and future jobs of τi execute according to HI criticality
mode parameters, the total left-overs of the current job of τi can
be bounded by equation (2.5). We have to further identify a time
interval of length ∆ within [t̂,+∞), which has the worst-case demand
bound. Suppose that such an interval is represented as [t̂+η, t̂+η+∆]
(η ≥ 0), i.e., the interval starts η units of time after t̂. Let us consider
further two different cases:

• η > 0: In this case, the left-over job does not belong to the interval
and its demand is not considered. Let γ represent the value of ((λ+

η) mod Ti(HI)), then the number of maximum complete arrivals
of τi in [t̂ + η, t̂ + η + ∆] is bounded by:

max
{⌊

∆ −Di(HI) − (Ti(HI) − γ)
Ti(HI)

⌋
+ 1, 0

}
if 0 < γ, (2.10a)

max
{⌊

∆ −Di(HI)
Ti(HI)

⌋
+ 1, 0

}
if γ = 0. (2.10b)

Hence, when γ = 0 we can get the maximum complete arrivals
of τi within such an interval. And the demand bound of τi in
[t̂ + η, t̂ + η + ∆] is upper bounded by equation (2.6).
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• η = 0: In this case the left-over job needs to be considered for
the demands in interval [t̂, t̂ + ∆]. Notice further that the left-over
job is only considered when ∆ ≥ Di(HI) − λ, hence the demand of
this job is given by equation (2.5). The maximum number of future
complete arrivals of τi within[t̂, t̂ + ∆] is bounded by:

max
{⌊

∆ −Di(HI) − (Ti(HI) − λ)
Ti(HI)

⌋
+ 1, 0

}
. (2.11)

Hence the demand bound function of τi can be given by
equation (2.8).

2- λ ∈ (Di(LO),Ti(LO)]: In this case τi has no active instance running
in the system, we can derive similarly that the maximum number
of complete arrivals of τi within an interval of length ∆ happens
when this interval starts with an arrival of τi. This number is again
bounded by equation (2.10b). Hence the demand bound function in
this case can be represented by equation (2.6).

Now, the demand bound function for any task τi in HI criticality mode
can be represented by equation (2.9). �

Based on the above computed demand bounds, schedulability of a
task set can be tested using existing results.

Theorem 2.3. [EY12] A dual-criticality task set τ is schedulable on a unit-
speed processor, if ∀∆ ≥ 0:

max

∑
τ

dbfLO(τi,∆),
∑
τ

dbfHI(τi,∆)

 ≤ ∆. (2.12)

2.2.2.2 Mixed-Criticality Demand Bound Approximation

For the original EDF-VD scheduling technique, all LO criticality tasks are
rejected in HI criticality mode. The problem we are addressing in this
work is different, as we aim at computing the bounds on the service for
LO criticality tasks in HI criticality mode. This is not a trivial problem as
both HI and LO criticality tasks change their schedules immediately when
transiting to HI criticality mode, which makes the analysis difficult. In
order to simplify the problem, we restrict ourselves to consider implicit-
deadline task sets (Di = Ti). According to the discussions in Section 2.2.1,
the deadlines of HI criticality tasks need to be tuned in LO criticality mode
in order to guarantee their deadlines in HI criticality mode. Similar to
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the original EDF-VD scheduling technique, we assume that the deadline
tuning for HI criticality tasks is characterized by a scaling factor x (x ≤ 1):

Ti(LO) = Ti(HI) = Di(HI),Di(LO) = xDi(HI). (2.13)

In addition, we assume that the service degradation of LO criticality tasks
is characterized by another scaling factor y (y ≥ 1):

Ti(LO) = Di(LO),Ti(HI) = Di(HI) = yTi(LO). (2.14)

We proceed to show that the demand bounds of all tasks in HI
criticality mode (Lemma 2.7) can be tightly approximated based on
equation (2.9). The essential idea is to bound the nonlinear function
dbfHI(τi,∆) by certain slopes, for both HI criticality and LO criticality
tasks. The following results are presented.

Lemma 2.2. For a HI criticality task τi,

dbfHI(τi,∆) ≤ max
{

Ci(HI) − Ci(LO)
(1 − x)Ti

,
Ci(HI)

Ci(LO) + (1 − x)Ti

}
· ∆. (2.15)

Proof. Let us consider two different cases.

1- 0 ≤ ∆ ≤ Ti: According to equations (2.6), (2.8), (2.9), we can derive:

- 0 ≤ ∆ < (1 − x)Ti : In this case, both dbf1
HI(τi,∆) and dbf2

HI(τi, λ,∆)
(independent of λ) evaluate to zero. Hence, the demand bound is
constantly zero.

- (1 − x)Ti ≤ ∆ ≤ Ci(LO) + (1 − x)Ti : In this case, dbf1
HI(τi,∆) evaluates

to zero. dbf2
HI(τi, λ,∆) has the maximum value Ci(HI) − Ci(LO) + ∆ −

(1 − x)Ti when λ = Ti − ∆. Hence, the worst-case demand bound is
Ci(HI) − Ci(LO) + ∆ − (1 − x)Ti.

- Ci(LO) + (1 − x)Ti ≤ ∆ ≤ Ti : In this case, dbf1
HI(τi,∆) evaluates to

Ci(HI). The worst-case of dbf2
HI(τi, λ,∆) also evaluates to Ci(HI) (when

λ ≤ xTi − Ci(LO)). Hence, the maximum demand bound is Ci(HI).

2- (k − 1)Ti ≤ ∆ ≤ kTi (k ∈N+): Assume that ∆ = (k − 1)Ti + δ (0 ≤ δ ≤ Ti).
First, we can derive that:

dbf1
HI(τi,∆) = (k − 1)Ci(HI) + dbf1

HI(τi, δ). (2.16)

Second, dbf2
HI(τi, λ,∆)} achieves the maximum value when λ = Ti − δ,
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then:

sup
0≤λ≤xTi

{
dbf2

HI(τi, λ, (k − 1)Ti + δ)
}

= dbf2
HI(τi,Ti − δ, (k − 1)Ti + δ)

= (k − 1)Ci + dbf2
HI(τi,Ti − δ, δ)

= (k − 1)Ci + sup
0≤λ≤xTi

{dbf2
HI(τi, λ, δ)}.

(2.17)

Hence,

dbfHI(τi,∆) = sup
{

dbf1
HI(τi,∆), sup

0≤λ≤xTi

{
dbf2

HI(τi, λ,∆)
}}

=(k − 1)Ci(HI) + dbfHI(τi, δ).
(2.18)

�

Lemma 2.3. For a LO criticality task τi,

dbfHI(τi,∆) ≤ Ci(LO)
Ci(LO) + (y − 1)Ti

· ∆. (2.19)

Proof. This can be similarly derived as shown in Lemma 2.2. �

We plot now in Figure 2.2(a) and Figure 2.2(b) the approximations of
demand bounds in HI criticality mode for both HI and LO criticality tasks
(dashed lines).

2.2.2.3 Mixed-Criticality Service Reconfiguration

We now show how to reconfigure the system such that a maximum
degraded service for LO criticality tasks can be guaranteed. Our analysis
is based on the demand bound approximations shown in the previous
section. For notational convenience, we define two functions as follows:

h(x) =
∑
τHI

Ui(HI)
Ui(LO) + (1 − x)

,

l(y) =
∑
τLO

Ui(LO)
Ui(LO) + (y − 1)

,
(2.20)

where Ui(χ) = Ci(χ)/Ti. h(x) and l(y) represent the summed slopes of HI
and LO criticality tasks in HI criticality mode, respectively. We further
use Uχ2

χ1
to denote

∑
τi:χi=χ1

Ui(χ2).
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Figure 2.2: Approximation of HI mode system demand bound function

We now explain the service reconfiguration in Algorithm 2.1. For the
case when UHI

HI + ULO
LO ≤ 1, LO criticality tasks need not be reconfigured

as the system can guarantee all tasks with their worst-case service
requirements. For the case when ULO

HI + ULO
LO > 1, the system is even not

schedulable during LO criticality mode. Excluding the above conditions,
the system needs to be further tested to see whether the reconfiguration of
services in HI criticality mode is feasible. This is ensured by enforcing that
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Algorithm 2.1: Service reconfiguration
Input: τ

1 if UHI
HI + ULO

LO ≤ 1 then
2 x← 1;
3 y← 1;
4 else
5 if ULO

HI + ULO
LO ≤ 1 then

6 x← ULO
HI

1−ULO
LO

;

7 if h(x) ≤ 1 then
8 y← inf{y ≥ 1 : h(x) + l(y) ≤ 1};
9 else

10 return false;
11 end
12 else
13 return false;
14 end
15 end
16 return true;

the total slopes of tasks in HI criticality mode is ≤ 1 (line 8). A minimal
service degradation factor y, that satisfies this condition, is computed
based on equation (2.20).

Formally, we have the following result.

Theorem 2.4. Given a dual-criticality task set, Algorithm 2.1 can compute
a minimized service degradation factor y for LO criticality tasks, and a
corresponding deadline tuning factor x for HI criticality tasks, such that the
task set is schedulable in all operating modes.

Proof. The schedulability of a task set in LO criticality mode is tested by
line 5 in Algorithm 2.1. We have to enforce further the schedulability in HI
mode according to Theorem 2.3. According to Lemma 2.2 and Lemma 2.3:∑

τ

dbfHI(τi,∆) ≤ ∆

⇐
∑
τHI

max
{

Ci(HI) − Ci(LO)
(1 − x)Ti

,
Ci(HI)

Ci(LO) + (1 − x)Ti

}
+

∑
τLO

Ci(LO)
Ci(LO) + (y − 1)Ti

≤ 1

⇔h(x) + l(y) ≤ 1.

(2.21)
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Table 2.1: Example 2.1 task set
τ τ1 τ2 τ3 τ4 τ5

χ HI LO LO LO LO
T/D 60 8 30 90 15

C(HI) 18 4 4 6 3
C(LO) 3 4 4 6 3

LO Mode

Infeasible

HI Mode 

Infeasible

(0.5,3)

0.0 0.2 0.4 0.6 0.8 1.0
x0

5

10

15

20

25

30

y

Figure 2.3: Trade off between x and y

If all LO criticality tasks are rejected in HI criticality mode, the inequality
becomes h(x) ≤ 1, which is a sufficient condition for all HI criticality
tasks to be schedulable in HI criticality mode by rejecting all LO criticality
tasks. Furthermore, we observe that the minimal value of y increases with

increasing x. Hence, we can set x to
ULO

HI

1−ULO
LO

(the minimum x to guarantee
schedulability in LO criticality mode) in order to get the maximum
degraded service for LO criticality tasks (minimal y): y = inf{y ≥ 1 :
h(x) + l(y) ≤ 1}. �

Example 2.1. Consider the set of dual-criticality task set as shown in Table 2.1.
According to Algorithm 2.1, we can derive x = 0.5, y = 2.6488.

In practice, one can ceil the value of y and multiply the periods of LO
criticality tasks by 3 in HI criticality mode. This can be done by the scheduler
skipping 2 task instances in every 3 arrivals of a task. Furthermore, according
to Theorem 2.4, there is a trade off between x and y. The more we shorten the
deadlines of HI criticality tasks (providing that all tasks are still schedulable in
LO criticality mode), the better degraded service we can get for LO criticality
tasks. We plot in Figure 2.3 the ceiling of y as a function of x. Notice that
for x < 0.5 the system will not be schedulable in LO criticality mode and for
x > 0.75 the system will not be schedulable in HI criticality mode even assuming
all LO criticality tasks are rejected.
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2.2.3 Mixed-Criticality Service Resetting
We present in this section how to quantify the resetting time of the system
services, i.e., the elapsed time between when the system transits from LO
criticality mode to HI criticality mode and when it can safely transit back.
This is not a trivial problem since we do not know offline the actual task
execution times at runtime. Our analysis in this section will not assume
any such information. First, a sufficient condition for resetting the system
service is given as follows.

Lemma 2.4. [SGTG12] A dual-criticality system can be safely reset to LO
criticality mode if the processor is idle.

Based on Lemma 2.4, a simple runtime mechanism can be imple-
mented to reset the system to LO criticality mode. However, it would
be particularly interesting to quantify statically the worst-case resetting
time, as an important measure of the guarantees that a mixed-criticality
scheduling algorithm can provide.

We use the same notion as shown in Figure 2.1, where a system transits
to HI criticality mode at time t̂. Furthermore, we define the arrival
demand function of a task (adf) in the interval [t̂, t̂ + ∆] as the cumulative
execution times of all task instances issued within this interval. We define
a list of functions as follows:

adf1
HI(τi, λ,∆) = RM(τi, λ) + max

{⌈
∆ − (Ti(HI) − λ)

Ti(HI)

⌉
, 0

}
· Ci(HI), (2.22)

adf2
HI(τi,∆) =

⌈
∆

Ti(HI)

⌉
· Ci(HI), (2.23)

adfHI(τi,∆) = sup

adf2
HI(τi,∆), sup

0≤λ≤Di(LO)

{
adf1

HI(τi, λ,∆)
} . (2.24)

Formally, we have the following results.

Lemma 2.5. The arrival demand function of any task in the interval [t̂, t̂ + ∆]
can be calculated by equation (2.24).

Proof. This lemma can be similarly derived as shown in the proof of
Lemma 2.7.

1-λ ∈ [0,Di(LO)]: In this case, the remaining execution demand of the
current job needs to be counted, see equation (2.5). The number of future
arrivals within [t̂, t̂ +∆] can be bounded by: max

{⌈
∆−(Ti(HI)−λ)

Ti(HI)

⌉
, 0

}
. Hence,

the total arrived demands in [t, t + ∆] can be given by equation (2.22).
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2-λ ∈ (Di(LO),Ti(LO)]: Clearly, in this case, there is no unfinished
instance of τi in the system. We get the worst-case arrived demands
within [t̂, t̂ + ∆] when t coincides with an arrival of τi, which is bounded
by equation (2.23).

Summarizing: the worst-case arrived demands within [t̂, t̂ + ∆] is given
by equation (2.24). �

Theorem 2.5. The service of the system can be reset at time t̂ + ∆R, where ∆R

is lower bounded by
∑
τ

Ci(χi)

1−h(x)−l(y) .

Proof. We identify a processor idle time after t̂, denoted as t̂+∆R, at which
time the system can be safely reset to LO criticality mode. It then must be
the case that

∑
τ

adfHI(τi,∆R) ≤ ∆R.

To show a lower bound of ∆R, similar to Lemma 2.2 and Lemma 2.3,
we can first approximate the arrival demand functions for both HI and
LO criticality tasks in the interval [t̂, t̂ + ∆]:

adfHI(τi,∆) ≤ Ci(HI) +
Ci(HI)

Ci(LO) + (1 − x) × Ti
× ∆ if χi = HI,

adfHI(τi,∆) ≤ Ci(LO) +
Ci(LO)

Ci(LO) + (y − 1) × Ti
× ∆ if χi = LO.

(2.25)

It follows that: ∑
τ

adfHI(τi,∆R) ≤ ∆R

⇐
∑
τ

Ci(χi) +

∑
τHI

Ci(HI)
Ci(LO) + (1 − x) × Ti

+
∑
τLO

Ci(LO)
Ci(LO) + (y − 1) × Ti

 × ∆R ≤ ∆R

⇔∆R ≥
∑
τ

Ci(χi)

1 − UHI
HI

1−x −
ULO

LO
y−1

.

(2.26)

�

Notice that according to Theorem 2.5, if we decrease x, then the

resetting time will be reduced. Hence, one can simply set x as
ULO

HI

1−ULO
LO

, which
is the minimum to guarantee the schedulability of tasks in LO criticality
mode. For setting y, there is a trade-off between the resetting time and
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Figure 2.4: Trade off between ∆R and y

Table 2.2: Task parameters for the FMS application in units of ms

τ τ1 τ2 τ3 τ4 τ5 τ6

T/D 5000 200 1000 1600 100 1000

C(LO) {0, 20} {0, 20} {0, 20} {0, 20} {0, 20} {0, 20}
χ B B B B B B

τ τ7 τ8 τ9 τ10 τ11

T/D 1000 1000 1000 1000 1000

C(LO) {0, 20} {0, 200} {0, 200} {0, 200} {0, 200}
χ B C C C C

the degraded service in HI criticality mode: if we increase the degraded
service for LO criticality tasks (i.e., decrease y), then the resetting time
will be increased.
Example 2.2. Consider the same task set as shown in Example 2.1. We can now
plot the service resetting time as a function of y, see Figure 2.4.

As one can see, the resetting time decreases with increasing y. This gives us
the flexibility to trade the degraded service of LO criticality tasks for the resetting
time. Furthermore, as y increases, the gain of saving in resetting time will also
decrease.

2.2.4 Case Study
In the European research project Certainty [cer], a Flight Management
System (FMS) case study has been chosen and implemented. We validate
in this section our approach with this avionics usecase; the system model
we will use in our experiments follow the major properties of the FMS
case study. We show the applicability of our approach, such that service
requirements for different runtime modes can be guaranteed. In addition,
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Figure 2.5: Processor speedup factors comparison – y-axis represents the
processor speedup factor, x-axis represents FMS instances

the service resetting time can be bounded to certify the scheduling of FMS.
We consider a subset of the original FMS, which contains the

localization and the flightplan tasks (DO-178B level B and level C, where
B corresponds to HI criticality and C corresponds to LO criticality). All
tasks are abstracted as implicit-deadline sporadic tasks. Typical ranges
of WCETs are assumed. We show the task parameters in Table 2.2 with
timing information in units of ms. A safety margin factor fsafe can be
used to scale the WCETs on level C in order to get the WCETs on level B.
Formally, we assume that ∀τi ∈ τHI,Ci(HI) = fsafe ∗ Ci(LO). We generate a
set of FMS instances with random level C WCETs conforming to Table 2.2.

We compare three different approaches: EDF with worst-case
reservation (i.e., all tasks are guaranteed with WCETs on HI criticality
level), EDF-VD with degraded service guarantee (i.e., a degraded service
requirement for LO criticality tasks is guaranteed in HI criticality mode),
and the original EDF-VD scheduling technique (all LO criticality tasks
are rejected in HI criticality mode). In all three cases, we calculate the
minimum speedup factors of the processor (by linear search) such that
guarantees as aimed by those approaches are provided for FMS. A smaller
speedup factor in this context means better schedulability.

We show in Figure 2.5 the speedup factors of all 3 approaches for 50
randomly generated FMS instances. The results are shown for 3 settings
as indicated in Figure 2.5. Based on the experiment results, the original
EDF-VD scheduling technique always has the minimum speedup factors
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among all three approaches. This is intuitive since schedulability of
HI criticality tasks is guaranteed by complete rejection of LO criticality
tasks. However, EDF-VD is not applicable to FMS, as a degraded service
requirement for LO criticality tasks must be provided. One solution to
achieve this is by EDF scheduling with worst-case reservation. However,
as one can expect, this approach always has the maximum processor
speedup factors among all three approaches. The extension of EDF-
VD with degraded service guarantee has a processor speedup factor
in between of the other two approaches. The above observations are
also confirmed by our theoretical analysis in condition (2.21): EDF
with no service degradation corresponds to the case when y = 1, and
EDF-VD with complete rejection of LO criticality tasks corresponds
to the case when y = ∞; with y decreasing from ∞ to 1, the total
system utilization will constantly increase by condition (2.21), leading to
worse schedulability. Based on those results, we conclude that resource
efficiency can be achieved by our proposed method in comparison to
worst-case reservation, while degraded service for LO criticality tasks
can be guaranteed in comparison to the original EDF-VD.

Furthermore, as shown in Figure 2.5, if we increase fsafe (setting 2), then
the processor speedup factor will also increase (the maximum speedup
factors of all three approaches in this case come close to 1.5, while the
maximum speedup factors come close to 1.35 in setting 1). In addition, if
we increase the degraded service for LO criticality tasks (i.e., decrease y
in setting 3), the extension of EDF-VD with degraded service guarantee
always has close or equal processor speedup in comparison to the worst-
case reservation approach. This implies that the gain in resource saving
for our extension of EDF-VD decreases with decreasing y.

We continue to quantify the service resetting time for the FMS usecase.
For this purpose, we pick one randomly generated FMS instance. We
evaluate the impact of fsafe and y on the resetting time. The results are
shown in Table 2.3 with resetting times given in units of second. For
fsafe = 3, according to Algorithm 2.1, both x and y equal to 1. The FMS
needs not be reconfigured in this case as HI criticality WCETs of all tasks
can be guaranteed. For fsafe = 4, the minimal y we calculate is 3, with
a corresponding service resetting time of 21.6s. If we increase y (i.e.,
decrease the degraded service for LO criticality tasks), we can reduce the
resetting time (y = 4,∆R = 7.8s). If we continue to increase fsafe to 5,
the minimum y becomes 22 in this case, which has an associated service
resetting time of 2.1 × 103s.

2.2.5 Summary of Results
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Table 2.3: Resetting time (∆R) for FMS in units of second

fsafe = 3 fsafe = 4 fsafe = 5

y x ∆R y x ∆R y x ∆R

1 1 0 3 0.25 21.6 22 0.25 2.1×103

- - - 4 0.25 7.8 23 0.25 661.8

- - - 5 0.25 5.92 24 0.25 406.1

Section 2.2 proposed the service adaptation model for mixed-
criticality systems. Our proposed model includes the state-of-the-art
model as a special case, and provides both explicit guarantees for LO
criticality tasks in the urgent scenario and guarantees on when the system
can resume to the nominal scenario. With EDF scheduling and an
industrial flight management system, we demonstrated the feasibility
of such a new model as well as various trade-offs.

2.3 The Interference-Constraint Graph Model
We proceed in this section by reducing the pessimism of the commonly
assumed mixed-criticality model [BD16] from a different perspective. The
rationale is that a designer would want to be able to specify and control
explicitly system runtime behaviors – under what circumstances, which
tasks in which applications may be affected by a task overrun. In the flight
management system, there are different tasks associated with the active,
secondary, and temporary flightplans. Tasks for the active flightplan are
certified at level B (when A is the highest, and E is the lowest), while tasks
for the secondary and temporary flightplan are certified at level C. When
a high criticality task executes above a certain execution time threshold,
the system may stop only tasks responsible for the secondary, or for the
temporary, but not for both even if they are of the same criticality level.
Otherwise, the pilot does not have any means to insert a new flightplan
and to update the active one. A similar problem can occur if the run-time
of a high criticality task in one application can lead to the removal of all
low criticality tasks in other applications.

Most of the existing mixed-criticality scheduling strategies assume
that they can stop a set of tasks based only on information about
their criticality level without taking into account the actual functional
requirements for these tasks. While this is commonly done in research
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on schedulability, the required functionality of the safety-critical system
may be compromised.

Currently mixed-criticality system designers do not have any means
to specify which tasks can be affected if a certain task executes above
a certain execution time threshold, and in what order the tasks can be
affected. Moreover, stopping all tasks of a particular criticality level is
often unnecessary as schedulability of the high criticality tasks can be
guaranteed even when certain low criticality tasks continue executing.
This is illustrated in the following example and confirmed by the
experimental results in Section 2.3.3.
Example 2.3. Consider a simple dual-criticality task set with three periodic
tasks and deadlines smaller than or equal to periods. The parameters are given
in Table 2.4 with time information in units of ms.

Table 2.4: Task parameters for Example 2.3
T D χ C(LO) C(HI)

τ1 10 10 high 3 5
τ2 6 6 low 3 3
τ3 15 11 low 1 1

This task set is schedulable by existing scheduling techniques, e.g., EDF-
VD [BF11]. However, it is not hard to observe that when τ1 executes at C(HI),
dropping only τ3 is sufficient to guarantee the schedulability of τ1. Therefore, the
deadline of τ2 can always be guaranteed under all runtime scenarios. �

This has been observed already in [PK11, SGTG12], and the authors
propose scheduling mechanisms that improve the guarantees given to
low criticality tasks by not unnecessarily stopping them. However, these
approaches do not have any means to specify the order and scenarios in
which tasks may interfere with each other. Here, we say a task interferes
with another one if overrun of the former task leads to the removal of the
latter task. A designer needs to be able to specify which task interferences
are allowed by the functionality of the system and only they should be
observable in any runtime scenario. Furthermore, a new scheduling
algorithm is needed that is able to take a task interference specification
and produce only schedules that meet this specification at runtime.

The motivation of this work is to propose a generalized specification
of the allowed interferences in mixed-criticality task sets. The new
specification overcomes the limitations described above. Moreover, it can
easily be used to express a special case - the common practice that any
high criticality task can interfere with all lower criticality tasks. Task sets
specified with this new specification can be tested for schedulability with
a fixed priority method which is presented and discussed. In particular,



30 Chapter 2. Mixed-Criticality Models – Limits, Extensions and Scheduling

our work makes the following contributions:

1 A new specification for mixed-criticality systems is proposed: The
allowed interferences between tasks are specified as an Interference
Constraint Graph (ICG). In this graph, each task maps to a node,
and an edge quantifies the interference between a pair of tasks.

2 We then investigate how to design a schedule to satisfy a given ICG
specification. We show that the Audsley’s algorithm [AD91] can be
used to design a fixed-priority scheduling policy which can meet
a given ICG specification. This result resembles many previous
results on mixed-criticality scheduling policies [Ves07, BBD11b].
It demonstrates that the more generic ICG specification is still
susceptible to a simple and efficient scheduling policy.

3 Experimental results based on randomly generated task sets show
that in many cases stopping all low criticality tasks is not necessary
during runtime in order to guarantee schedulability of high
criticality tasks. In particular, we show that interferences that tasks
suffer can be reduced systematically, and an algorithm that removes
edges from an ICG graph is proposed.

2.3.1 System Model
We assume again a set of n sporadic tasks denoted as τ = {τ1, τ2, ..., τn}
executed on a uniprocessor. Each task τi is characterized by the following
parameters: (1) A minimum inter-arrival time Ti ∈ R+ between any two
successive jobs. (2) A relative deadline Di ∈ R+ where Di ≤ Ti.

The actual execution time of a job of a task is not known until
runtime when the job signals that it has finished executing. Based
on this assumption, for the further discussion, we denote with s(t) the
runtime scenario at time t, t ∈ R+. A scenario is defined as the tuple
(c1(t), c2(t), . . . , cn(t)), where ci(t) is the maximum of the run times of all
jobs of task τi up to and including time t.

Each scenario s(t) has at least one associated trace tr(t) which leads to
this scenario. The trace is characterized simply by the deadlines, arrival
and finishing times of jobs up to and including time t.

Note that a scenario s(t) and a corresponding trace tr(t) depend on the
arrival and execution times of jobs as well as on the selected scheduling
strategy. In general, a task set and an associated scheduling policy may
exhibit at runtime many scenarios and associated traces.

We restrict the scope of this work to consider only online scheduling
strategies which cannot know the execution time of a job until running
the job to completion.
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2.3.1.1 Interference Constraint Graph

We propose the Interference Constraint Graph (ICG) as a specification
of mixed-criticality task sets where the designer can specify the allowed
interferences between tasks during runtime. We will discuss the syntax,
semantics, and the properties of such a graph. We will present an
example to illustrate the construction of such a graph specification from
a commonly used mixed-criticality system model.

Definition 2.1. Interference Constraint Graph. An Interference Constraint
Graph (ICG) is a directed graph G(V,E, σ), where V is a set of vertices which

corresponds to the set of tasks, i.e., V
de f
= τ, E is a set of directed edges with

ei, j ∈ E being an edge from τi to τ j, i.e., ei, j = (τi, τ j), and σ(e) is a function
σ : E→ R+ defined for all edges e ∈ E.

If there exists an edge ei, j = (τi, τ j), then we say that task τi can interfere
with task τ j, meaning that if during runtime the execution time of a job
of task τi exceeds σ(ei, j) at time t ≥ 0, then after time t, jobs of task τ j do
not need to be executed anymore. For all ei, j ∈ E, we have σ(τi, τ j) ≤ Di.
Formally, we have the following schedulability definition.

Definition 2.2. ICG-Schedulability. Given a task set τ and a corresponding
ICG G, the task set is ICG-schedulable with a particular scheduling strategy if
in any scenario s(t) and any corresponding trace tr(t) that can be produced by
the task set and the strategy, jobs of any task τ j with absolute deadlines smaller
or equal to t must meet their deadlines if for no task τi with ei, j ∈ E we have
that:

ci(t) > σ(τi, τ j) .

In other words, ICG-Schedulability requires that deadlines of a task
τ j to be met in any scenario s(t), only if each interfering task τi does not
execute for more than σ(τi, τ j) in this scenario. If a task τ j does not have
any interfering tasks, i.e., there are no edges ei, j, then jobs of task τ j should
meet their deadlines in any scenario s(t).

Since we consider only online scheduling strategies, the above
schedulability condition must be met for all t′, 0 ≤ t′ ≤ t in a scenario
s(t) and trace tr(t).

Note that the ICG definition does not pose any restrictions on the
topology of the graph. In particular, self-loops are quite useful as they
can specify the maximum allowed execution time for a job of a task. The
graph does not need to be complete, i.e., there may be no edges between
some vertices. In particular, the graph may have no edges at all, meaning
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that no tasks can interfere with each other. Checking the consistency of
ICGs is outside of the scope of the current work.

2.3.1.2 ICG Representation of a Mixed-criticality Specification

Let us consider a mixed-criticality system model which is commonly used
in literature [BV08, BLS10, LB10, LB12, BBD+12, EY12]. Each task in the
system is associated with a single safety-criticality level assigned from the
setχ ⊆ N+. The system may have an arbitrary number of criticality levels.
In addition to the mentioned task parameters (periods and deadlines),
we have that each task τi is characterized by the following parameters
(slightly modified as compared to Section 2.1 for the convenience of this
work):

• A safety-criticality level χi ∈ χ, where a bigger value denotes a
higher safety-critical level.

• A set of worst-case execution time estimates Ĉi = {Ci(χ) | Ci(χ) ∈
R+, χ ∈ χ, Ci(χ) = Ci(χi)∀χ ≥ χi}. We assume that Ci(χ) is
monotonically non-decreasing with increasing χ.

The criticality level of a scenario s(t) is determined as the smallest
value l (l ∈ χ) that satisfies the inequality ci(t) ≤ Ci(l) for all i, 1 ≤ i ≤ n.
We assume that l always exists, otherwise the scenario is considered
erroneous.

Conventionally, a mixed-criticality task set is considered schedulable
with a particular scheduling strategy if in any runtime scenario s(t) with
criticality level l and corresponding trace tr(t) that the task set and the
strategy can produce, the strategy will give sufficient execution to each
job that belongs to a task with χi ≥ l and has a deadline smaller or
equal to t, such that the job can signal finishing before its deadline. This
schedulability definition has been widely used in literature [BV08, BLS10,
LB10, PK11, GESY11, LB12, BBD+12, EY12, SGTG12].

We can now demonstrate that the conventional schedulability
condition can be easily expressed with an ICG. The following corollary
follows from the definition of an ICG, and shows that it is possible to
systematically construct an ICG for a mixed-criticality task set that is
subject to the above schedulability condition.

Corollary 2.1. A task set which is subject to the above system model and
schedulability condition can be specified with an ICG graph G = (V,E, σ)
as follows: (1) V = τ. (2) For every task, τi, add edge ei,i = (τi, τi), with
σ(ei,i) = Ci(χi). (3) For every pair of tasks τi and τ j with χi > χ j, add an edge
ei, j = (τi, τ j) with σ(ei, j) = Ci(χ j).
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Figure 2.6: ICG representation for Example 2.4

The following example illustrates the results of the corollary and
shows that the ICG specification is general enough to capture the
commonly used mixed-criticality system model.
Example 2.4. Consider a task set of five tasks with three different safety-
criticality levels. The parameters of the tasks are given in Table 2.5.

By Corollary 2.1, this commonly used task set specification can be represented
with a corresponding ICG which is shown in Figure 2.6. Notice again that, the
ICG specification is not limited to the standard specification, e.g., if τ2 is not
allowed to interfere with τ4, it can be easily modeled by removing the edge
between the two in the ICG. �

Table 2.5: Task parameters for Example 2.4
τ T D χ C(3) C(2) C(1)
τ1 15 15 3 5 3 2
τ2 10 10 2 2 2 1
τ3 20 20 2 3 3 2
τ4 30 30 1 4 4 4
τ5 8 8 1 1 1 1

Most mixed-criticality scheduling policies implicitly specify which
criticality levels are stopped under certain runtime scenarios. On the
other hand, the ICG specification explicitly defines, between pairs of
tasks, that a task may be dropped if a certain condition is satisfied. The
current proposal considers only one type for the condition: exceeding
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a certain execution time. However, it is not hard to see that this can
be extended to include more general conditions such as deadline miss
ratios, missing k deadlines in n consecutive instances, and others. On the
other hand, one may not only consider dropping tasks, but also adjusting
the Quality of Service provided to them, e.g., adjusting their periods or
execution times at runtime.

2.3.1.3 Properties of ICG-Schedulability

Based on the ICG-Schedulability Definition 2.2, we can derive two useful
properties with respect to the schedulability of an ICG.

The first one shows that whenever new interferences are introduced
between tasks in an ICG-Schedulable task set, the ICG-Schedulability is
maintained. Formally, this is specified as the Additivity property.

Property 2.1. Additivity. Given a task set τ specified with ICG G = (V,E, σ)
which is ICG-Schedulable. If we add more edges to G, i.e., we obtain
G′ = (V′,E′, σ′), where V′ = V, E ⊂ E′, and ∀e ∈ E : σ′(e) = σ(e), ICG-
Schedulability is maintained, i.e., G′ is also ICG-Schedulable.

Proof. Consider an ICG-Schedulable graph G where tasks τi and τ j cannot
interfere with each other, i.e., (τi, τ j) < E. Let us consider a feasible trace
tr where both tasks τi and τ j execute, τi has finished before τ j has arrived,
and the execution time of τi is ci.

Let us now consider the ICG G′ with the added edge (τi, τ j).
Considering the value of σ′(τi, τ j), we have two scenarios. In the first
one, suppose that σ′(τi, τ j) is greater or equal to ci, then the execution
trace is not modified. In the second scenario, suppose that σ′(τi, τ j) is less
than ci. In this scenario, the trace tr is modified by dropping instances of
τ j when the run time of τi exceeds σ′(τi, τ j), which does not change the
feasibility of the trace. �

On the other hand, one may show that removing edges from an ICG
may make the task set unschedulable. In reality, a designer may be
interested in removing interferences between tasks while still maintaining
the ICG-Schedulability property satisfied. A heuristic algorithm that
removes the maximum number of edges from a given ICG while keeping
schedulability satisfied is presented in Section 2.3.3.

The next property shows that increasing existing interferences be-
tween tasks of an ICG-Schedulable task set will keep ICG-Schedulability
property satisfied. In particular, increasing the interference that a task
τ j can suffer from another task τi, i.e., decreasing the value of σ(τi, τ j),
will keep ICG-Schedulability satisfied. Formally, this is specified as the
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Monotonicity property.

Property 2.2. Monotonicity. Given a task set τ specified with ICG G =

(V,E, σ) which is ICG-Schedulable. If we decrease the values of the function σ,
i.e., we obtain G′ = (V′,E′, σ′), where V′ = V, E′ = E, and ∀e ∈ E : σ′(e) ≤
σ(e), ICG-Schedulability is maintained, i.e., G′ is also ICG-Schedulable.

Proof. Consider an ICG-Schedulable graph G, where task τi can interfere
with task τ j with σ(τi, τ j). Let us consider a feasible trace tr where both
tasks τi and τ j execute, τi executes before τ j, and the execution time of τi

is ci. Let us consider two cases. Case 1: ci > σ(τi, τ j), in this case, when
the run time of task τi exceeds σ(τi, τ j), task τ j is dropped. Decreasing
the value of σ(τi, τ j) will only cause task τ j to be dropped earlier and the
newly obtained trace is still feasible. Case 2: ci ≤ σ(τi, τ j), in this case, task
τ j is not dropped because of interferences from task τi. When decreasing
σ(τi, τ j), we have two scenarios. Suppose that the new value is σ′(τi, τ j).
If σ′(τi, τ j) is greater or equal to ci, then the trace will not be modified. On
the other hand, if σ′(τi, τ j) is less than ci, then task τ j will be dropped when
the run time of τi exceeds σ′(τi, τ j), which does not change the feasibility
of the trace. �

The two properties of additivity and monotonicity state the
transformations of ICG graphs under which the system schedulability
is preserved. We will show later in this section how we can use such
properties “reversely” in order to minimize the interferences tasks suffer.

2.3.2 Fixed Priority Scheduling under ICG
The ICG specification as introduced in the previous section increases the
expressiveness of existing mixed-criticality specifications by modeling
explicitly the interferences between tasks. One intuition on the ICG
semantics is that this more detailed specification would lead to increased
complexity in the required scheduling strategy. In this section, we show
that a fixed-priority preemptive scheduling strategy is applicable. Tasks
are scheduled preemptively based on their statically assigned priorities.

Let us denote the set of higher priority tasks for a task τi as hp(τi).

Further, define σ(τi, τ j)
de f
= +∞ when no directed edge from τi to τ j exists

in the ICG. We can adapt previous results on response time analysis
for preemptive fixed priority scheduling [Ves07, BF11] and derive a
schedulability test which takes into account interferences between tasks.
An ICG-Schedulability test under fixed-priority preemptive scheduling
is given in the following lemma.
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Lemma 2.6. Given a task set τ and a corresponding ICG G = (V,E, σ), τ is
ICG-Schedulable if ∀τi ∈ τ, we have that Ri ≤ Di, where Ri is a fixed-point
solution of the following recurrence relation:

Ri = σ(τi, τi) +
∑

τ j∈hp(τi)

⌈
Ri

T j

⌉
·min

{
σ(τ j, τ j), σ(τ j, τi)

}
. (2.27)

Proof. According to Definition 2.2, a task τi is guaranteed to meet its
deadline only if each interfering task τ j does not execute for more than
σ(τ j, τi). We can consider two cases:

1. If a higher priority task τ j can interfere with τi, it only needs to be
assumed to execute for not more than min{σ(τ j, τ j), σ(τ j, τi)} because:

• If σ(τ j, τ j) ≥ σ(τ j, τi), τi is dropped if the runtime of τ j exceeds
σ(τ j, τi).

• If σ(τ j, τ j) < σ(τ j, τi), τ j cannot trigger the dropping of τi, since
it is not allowed to execute for more than σ(τ j, τ j).

2. If a higher criticality task τ j cannot interfere with τi, then its worst-
case execution time is assumed to be σ(τ j, τ j) when testing the
schedulability of τi.

Both cases can be compactly represented as min{σ(τ j, τ j), σ(τ j, τi)}. �

Let us illustrate now the results of Lemma 2.6 with a simple example.
First, let us denote that a task τi has higher priority than τ j with τi � τ j.
Example 2.5. Consider a task set consisting of four tasks. Task parameters
are given in Table 2.6 with Di = Ti,∀i. The corresponding ICG is shown in
Figure 2.7.

Table 2.6: Task parameters for Example 2.5
τ τ1 τ2 τ3 τ4

T 15 22 12 6

In this example, task τ1 is not allowed to interfere directly with τ4. Hence,
when considering the schedulability of τ4, τ1 must be assumed to take 6 units
of execution time, if the schedulability of τ4 depends on the execution time of
τ1 (e.g., τ1 is assigned a higher priority than τ4). In contrast, τ1 is allowed to
interfere with τ2, hence when testing the schedulability of τ2, τ1 only needs to be
assumed executing for 2 time units.
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Figure 2.7: ICG for the task set in Example 2.5

Let us consider a particular priority ordering: τ4 � τ1 � τ2 � τ3. For the
schedulability test of τ3, following Lemma 2.6, the fixed-point of the following
recursive equation gives the worst-case response time of τ3:

R3 = 3 +
⌈R3

15

⌉
× 2 +

⌈R3

22

⌉
× 3 +

⌈R3

6

⌉
× 2. (2.28)

Here, the execution times of τ1 and τ2 are assumed to be 2 and 3 units, since
τ3 does not need to be guaranteed when τ1 and τ2 execute more than 2 and 3
units, respectively. Task τ4 is assumed to execute its worst-case execution time
since it is not allowed to interfere with τ3. Equation 2.28 has a fixed-point of
12, hence τ3 is schedulable on the lowest priority level. In fact, this task set is
ICG-Schedulable with the priority assignment given above. �

The schedulability test in Lemma 2.6 is sufficient but not necessary.
The presented simple test does not take into account: 1) the interferences
higher priority tasks suffer from low priority tasks, and 2) the interferences
among the higher priority tasks. An exact schedulability test under fixed
priority scheduling considering all interferences will need to combine
all possible interference scenarios that can happen during runtime.
However, this is outside of the scope of this work.

2.3.2.1 Priority Assignment

Following Lemma 2.6, the schedulability of a task is independent of the
relative priority orderings of its higher priority tasks. Based on this, one
can immediately test which tasks can be assigned on the lowest priority
level using relation (2.27). Once the task on the lowest priority level is
determined, it is removed from the task set. We continue to find the task
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that can be assigned the second lowest priority level from the reduced
task set, and so on. This process is recursively called until: 1) no task is
left to be assigned a priority; or 2) at some step no task can be assigned
on the current priority level (in this case the process fails to find a feasible
schedule). This approach is known as the Audsley’s algorithm [AD91].

It has been shown in [DB11] that Audsley’s Optimal Priority
Assignment algorithm is compatible with a schedulability test, if the
following three conditions are satisfied:

1. The schedulability of a task is independent of the relative priority
ordering of higher priority tasks.

2. The schedulability of a task is independent of the relative priority
ordering of lower priority tasks.

3. If we swap the priorities of any two tasks of adjacent priority, then
the task assigned higher priority cannot become unschedulable, if
it was previously schedulable at the lower priority.

In particular, for a schedulability test complying with these three
conditions, Audsley’s algorithm is an optimal priority assignment
approach, i.e., it will always find a feasible priority ordering as long
as there exists one. This leads us to the following result on priority
assignment for the ICG schedulability test presented in Lemma 2.6.

Theorem 2.6. Audsley’s algorithm [AD91] is an optimal priority assignment
approach with respect to the schedulability test given in Lemma 2.6.

Proof. We need to show that the test in Lemma 2.6 satisfies the three
conditions described above.

1. The summation in relation (2.27) does not take into account the
relative priority ordering of higher priority tasks.

2. Relation (2.27) does not consider any lower priority task because of
the preemptive fixed priority strategy.

3. Consider two tasks τi and τ j with priorities k and k + 1, respectively.
The upper bound on the response time of task τ j cannot increase
when it is assigned priority k, as the only change in the computation
in relation (2.27) is the removal of task τi from the set of higher
priority tasks.

�
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2.3.3 ICG Evaluation
We demonstrate in this section the advantage of ICG specification: for
mixed-criticality task sets with corresponding ICG specifications, we can
achieve a systematic reduction of the interferences among tasks. We
quantitatively measure the reduction of interferences by the percentage
of edges that remain after edge removal in an ICG. For this purpose,
an algorithm that removes edges from a given ICG is proposed, and
numerical results on randomly generated task sets are presented.

2.3.3.1 Random Task Set Generation

The first step of our experiments is to randomly generate task sets
with corresponding ICG graphs. This is done by first generating
standard sporadic mixed-criticality task sets with implicit deadlines. The
corresponding ICG specifications of the generated task sets are produced
using the results of Corollary 2.1.

For generating the standard mixed-criticality task sets, we use a
modified version of the random task generator as proposed in [LB12,
BBD+12]. The random task generator is controlled by the following
parameters:

- [U−,U+]: utilizations of tasks are uniformly drawn from this range,
0 < U− < U+ ≤ 1;

- Ubound: the system utilization bound, which is defined as Ubound
de f
=

maxχ∈χ{ ∑
{τi|χi≥χ}

Ci(χ)
Ti
};

- r: the ratio of worst-case execution times of any task at any two
consecutive criticality levels (C(χ+1)

C(χ) );

- [R−,R+]: r is uniformly drawn from this range, 1 ≤ R− < R+;

- [T−,T+]: the periods of tasks are uniformly drawn from this range;

- Pχ: the probability that any task is of criticality χ;
∑
χ∈χ

Pχ = 1.

2.3.3.2 Edge Removing

As shown by Property 2.1, adding new edges in the ICG specification will
maintain ICG-Schedulability. On the other hand, removing edges while
the task set stays schedulable can be used to reduce the interferences tasks
suffer. We use the percentage of remaining edges in an ICG after edge
removal as a quantitative measure of the improved expressiveness of the
proposed specification.
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Algorithm 2.2: Interference Minimization
Input: τ, G(V,E, σ)
Output: G′(V,E′, σ′)

1 for e ∈ E do
2 calculate the minimum speedup factor se of the processor with

only e in G, such that the task set is ICG-Schedulable; set the
weight of edge e (contribution to schedulability, different from
σ(e)): we ← 1

se
;

3 end
4 sort edges E in decreasing order of their weights;
5 E′ ← ∅;
6 while τ is not ICG-Schedulable under G′(V,E′, σ′) do
7 add the first edge e in E to E′ and remove e from E, σ′(e)← σ(e);
8 end
9 return G′(V,E′, σ′) ;

The problem then is to maximally remove edges from a given ICG. We
view the optimality criteria simply as removal of the maximum number
of edges in the ICG specification while ensuring schedulability. In order
to solve this problem, one intuition is that different edges in an ICG have
different contributions to schedulability. Hence, we can first evaluate
their weights in terms of such contributions. Once this is done, we can
add edges in decreasing weights until ICG-Schedulability is satisfied. The
proposed heuristic algorithm is shown in Algorithm 2.2.

Specifically, for each edge we measure the minimal speedup factor
of the processor such that the task set is ICG-schedulable if only this
edge exists in the ICG. Clearly, a lower speedup factor means a higher
contribution to schedulability. Hence, the weight of an edge can be
measured by the inverse of the corresponding speedup factor. The
algorithm then tries greedily to add the minimum number of edges in
the ICG by adding one edge at a time in decreasing order of their weights
until the task set becomes schedulable. For calculation of the speedup
factor under fixed priority scheduling in Algorithm 2.2, we use an existing
technique as proposed in [DRRG10].

2.3.3.3 Results

We now apply Algorithm 2.2 to randomly generated mixed-criticality task
sets, and we are interested in observing how many edges we can remove
from the ICGs while maintaining schedulability. The experiments are
extensively conducted on 1000 random task sets generated with specific
group of controlling parameters.
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Figure 2.8: Ě with T− = 4,T+ = 16,U− = 0.02,U+ = 0.2,R− = 1,R+ = 4

Let us denote the set of schedulable task sets without any edge removal
as Sched, then the average percentage of edges (Ě) remaining after edge
removal for a set of task sets can be defined as follows:

Ě =
∑

τ∈Sched

|E′τ|
|Eτ|

/
|Sched| . (2.29)

Effect of ratio of high criticality tasks: Here we consider randomly
generated dual-criticality task sets (HI for high criticality and LO for
low criticality). In particular, we evaluate how the criticality-probability
distribution (Pχ) will affect Ě. As shown in Figure 2.8, for the typical
case when the high criticality tasks only constitute a small portion of the
dual-criticality task set, considerable number of edges in the ICG graphs
can be removed. For instance, when PHI = 0.2, we may be able to keep
at most around 20% of the edges in all tested cases in order to ensure
schedulability. Intuitively if we increase PHI, Ě would increase since more
interferences with the low criticality tasks are needed to accommodate
the extra workloads of the high criticality tasks.

Effect of ratio of worst-case execution times: Here we show how the
ratio of worst-case execution times between two consecutive criticality
levels will affect Ě. The experiments are conducted on random dual-
criticality task sets where PHI = 0.2. Intuitively, for smaller worst-
case execution time ratios between consecutive criticality levels, the
interferences low criticality tasks suffer should be less: for the extreme
case when the ratio is equal to 1, interference with low criticality tasks will
not improve schedulability and all edges in the ICGs can be removed. As
shown by Figure 2.9, for task sets generated with ratios in a wider range,
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Figure 2.9: Ě with T− = 4,T+ = 16,U− = 0.02,U+ = 0.2,PHI = 0.2,PLO = 0.8

the percentages of remaining edges after edge removal are increased.
Effect of number of criticality levels: Here we present how the

number of criticality levels will affect Ě. The larger the number of
criticality levels in the system, the more interferences tasks can suffer.
This is because the degree of uncertainties in worst-case execution times
is higher. We evaluate the impact of the number of criticality levels in
our experiments by generating ICG graphs for random task sets with 2
to 5 criticality levels, with equal criticality probabilities. As shown in
Figure 2.10, the percentage of edges we have to keep in the ICG graphs
increases with increasing number of criticality levels. Furthermore, we
can observe, for higher number of criticality levels, tasks need to interfere
with each other even when the system utilization bound is low, e.g.,
for 4 criticality levels, interferences between tasks are needed to ensure
schedulability already when Ubound = 0.35.

2.3.4 Summary of Results

Section 2.3 proposed the Interference Constraint Graph (ICG) model,
and demonstrated its dominance over the standard mixed-criticality
model regarding expressiveness; several interesting properties of this
new model were elaborated. Our experimental results explored the
structure of ICG to optimize (i.e., remove) interferences among tasks; as
indicated by the test results, interferences in mixed-criticality systems
can be reduced to a great extent under ICG.
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Figure 2.10: Ě with T− = 4,T+ = 16,U− = 0.02,U+ = 0.2,R− = 1,R+ = 4

2.4 Run and Be Safe: Mixed-Criticality Schedul-
ing with Temporary Processor Speedup

We have addressed in Section 2.2 and Section 2.3 the limit of the
classic mixed-criticality model from the software perspective (i.e., mixed-
criticality scheduling protocols); in this section, we will address the same
problem by exploring hardware features of modern computing platforms.

Our key insight is that, routine features of such platforms like dynamic
voltage and frequency scaling (DVFS) [BBPDM99], and dynamic cache
partitioning and locking (DCPL) [PA06] could facilitate the design of
adaptive mixed-criticality systems. As a proof of concept, we solve in
this section mixed-criticality scheduling with the aid of DVFS. DVFS
is conventionally used to conserve energy by exploring free slacks in
the system to slow the processor down (underclocking) [BBPDM99]. In
contrast, we adopt DVFS to speed up the processor (overclocking) when
there is a timing urgency caused by task overrun, such that all tasks could
still meet their deadlines. If service degradation for less critical tasks is
permitted under overrun, then speeding up the processor can improve
the system degraded services.

In practice, processor speedup increases energy dissipation and
is often regulated by power and thermal management [NRAW11].
For example, Intel turbo boost technology would allow a maximum
of 2x speedup for around 30s [NRAW11]. Moreover, fast recovery
from adversary events like task overrun is often desired, especially
for embedded systems deployed in safety-related domains. In both
regards, we show that processor speedup can actually help the system
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to recover faster: By speeding up the processor, the system overload
could be resolved faster, enabling quick resuming of normal operation.
Nevertheless, in an extreme case when tasks overrun frequently and the
system needs to overclock for a long period, then we could monitor
overclocking at runtime – whenever it exceeds an allowed time budget,
we could terminate tasks and reset the system to normal speed.

In this work, we assume the same mixed-criticality models in
Section 2.2.1 and adopt earliest deadline first (EDF) scheduling. We
provide theoretical results on: (1) calculating offline a minimum processor
speedup to guarantee system schedulability in critical operation mode
(Section 2.4.1), and (2) quantifying offline the system resetting time
under processor speedup (Section 2.4.2). We analytically show the trade-
offs between different design parameters including processor speedup,
service degradation and resetting time in Section 2.4.3. To demonstrate the
applicability of our proposed techniques, we conduct experiments with
both an industrial flight management system and synthesized task sets
(Section 2.4.4). Our results confirm that dynamic processor speedup can
greatly increase system schedulability regions and is typically required
for only short periods of time.

2.4.1 Minimum Processor Speedup to Handle Overrun
We present in this section how to compute the minimum required
processor speedup to handle task overrun and guarantee task deadlines.
For this purpose, we will first revisit some results on system schedulability
analysis.

Since EDF is assumed in this work, we could use demand bound
analysis to determine the system schedulability. The demand bound
function for task τi in a time interval of length ∆ is defined as the worst-
case total execution times of all τi’s jobs with both arrival times and
deadlines in this time interval. Known results exist in case that task
parameters are constant, e.g., in LO mode, the demand bound function
of any task can be calculated as [EY13]:

DBFLO(τi,∆) = max
{⌊

∆ −Di(LO)
Ti(LO)

+ 1
⌋
, 0

}
× Ci(LO). (2.30)

To guarantee schedulability in LO mode, it then suffices to show that the sum
of demand bound functions for all tasks is no greater than the provided
processing resource in any time interval [EY13].

The schedulability analysis in HI mode is non-trivial, since there could
exist schedulability dependencies between LO and HI modes. This is
because unfinished jobs in LO mode are forced to take the processing
resources in HI mode to meet their HI mode deadlines. This effect needs
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to be taken into account when calculating the demand bound functions
in HI mode. We adopt in this work a known result to calculate such HI
mode demand bound functions [EY13, HGST14]:

Lemma 2.7. For any task τi ∈ τ, define a set of functions as follows:

w(τi,∆) = (∆ mod Ti(HI)) − (Di(HI) −Di(LO)) , (2.31)

r(τi,∆,w(·)) =


min {w(τi,∆),Ci(LO)} if w(τi,∆) ≥ 0

+Ci(HI) − Ci(LO),

0, otherwise

. (2.32)

The demand bound function of τi in HI mode can be calculated as:

DBFHI(τi,∆) = r(τi,∆,w(·)) +

⌊
∆

Ti(HI)

⌋
· Ci(HI). (2.33)

Notice that in Lemma 2.7, r(τi,∆,w(·)) essentially quantifies the
impact of unfinished jobs in LO mode on HI mode system demands.
Furthermore, we see that HI mode system demands depend on: (1) the
preparation for task overrun in LO mode, i.e., LO mode deadlines of
HI criticality tasks, and (2) the degraded services in HI mode, i.e., new
deadlines and job inter-arrival times for LO criticality tasks.

Based on the above calculations of demand bound functions, we can
now compute a minimum processor speedup to guarantee schedulability in
HI mode.

Theorem 2.7. Assume the processor speeds up by a factor s when entering HI
mode to handle overrun. The minimum processor speedup factor, smin, which
guarantees HI mode schedulability, can be calculated as follows:

smin = max
∆≥0

∑
τi∈τ

DBFHI(τi,∆)
/
∆

 . (2.34)

Proof. Based on the demand bound analysis, to guarantee
HI mode schedulability, it is sufficient [EY13, HGST14] that∑
τi∈τ

DBFHI(τi,∆) ≤ s · ∆,∀∆ ≥ 0. We can then reformulate and derive

s ≥ max
{ ∑
τi∈τ

DBFHI(τi,∆)
/
∆

}
,∀∆ ≥ 0. Thus, we have equation (2.34). �



46 Chapter 2. Mixed-Criticality Models – Limits, Extensions and Scheduling

(a) No service degradation (b) Service degradation

Figure 2.11: Minimum speedup and demand bound functions

Notice that in equation (2.34), we allow the divisor ∆ to be zero: If the
total HI mode system demands are non-zero in an interval of zero length,
the system will require infinite speedup in HI mode, i.e., smin = +∞.
This could actually happen if the deadlines of HI criticality tasks are not
shortened in LO mode, see our discussions regarding relation (2.2).

Table 2.7: Example task set

τ χ Ci(LO) Ci(HI) Di(LO) Di(HI) Ti(LO) Ti(HI)

τ1 HI 2 7 4 10 12 12

τ2 LO 3 3 6 6 10 10

Example 2.6. Consider a simple dual-criticality task set with parameters shown
in Table 2.7. The LO criticality task τ2 here needs to adhere to its original service
parameters in HI mode. With dynamic processor speedup allowed, we can apply
equation (2.34) and calculate the minimum required speedup for HI mode is
4
3 . Furthermore, if we allow τ2 to degrade its service in HI mode by setting
D2(HI) = 15,T2(HI) = 20, then the required speedup factor can be reduced to
0.875. In this case, the system can actually slow down in HI mode despite the
fact that τ1 overruns, since the system load is greatly reduced by degrading the
services for τ2. We plot in Figure 2.11 our results for both cases. As we can see,
the computed minimum speedup factors do guarantee HI mode schedulability.

Computation efficiency: Equation (2.34) suggests that the computa-
tion of the minimum processor speedup would require examination of
all non-negative interval lengths. However, in practice, this computation
can be done efficiently in pseudo-polynomial time. First, due to the
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periodicity of the demand bound function (2.33), we can limit the
maximum examined interval length to the least common multiple of all
HI mode task minimum inter-arrival times. Second, only a list of discrete
interval lengths needs to be checked: As suggested by equation (2.33), the
demand bound function is piecewise-linear, which can be also observed
in Figure 2.11. Therefore, only boundaries at those piecewise-linear
segments need to be checked. Formally, we have the following results.

Lemma 2.8. Denote the least common multiple of all tasks’ HI mode minimum
inter-arrival times as LCMT, and define a set of functions as follows:

pd(τi, k) = Di(HI) −Di(LO) + Ci(LO) + kTi(HI), (2.35)

b̂d(τi, l) = {pd(τi, k) | k ∈N ∧ pd(τi, k) ≤ l}, (2.36)

b̌d(τi, l) = {pd(τi, k) − Ci(LO) | k ∈N ∧ pd(τi, k) − Ci(LO) ≤ l}. (2.37)

The minimum processor speedup smin, which guarantees HI mode
schedulability, can be computed in pseudo-polynomial time:

smin = max
∆∈

⋃
τi

b̂d(τi,LCMT)

∪⋃
τi

b̌d(τi,LCMT)



∑
τi∈τ

DBFHI(τi,∆)
/
∆

 . (2.38)

Proof. We prove in two steps. First, we will show that the maximum
interval length to be examined can be limited to the least common multiple
of all tasks’ HI mode minimum inter-arrival times (LCMT). According
to equation (2.33), the HI mode demand bound functions have periodic
patterns, i.e.,

DBFHI(τi, δ + kTi(HI)) = DBFHI(τi, kTi(HI)) + DBFHI(τi, δ)
= k ·DBFHI(τi,Ti(HI)) + DBFHI(τi, δ)
= kCi(HI) + DBFHI(τi, δ), ∀k ∈N.

(2.39)

Thus, ∀ 0 ≤ δ ≤ LCMT, ∀k ∈N, we have:∑
τi∈τ

DBFHI(τi, δ + kLCMT)

δ + kLCMT

=

∑
τi∈τ

DBFHI(τi, δ) +
∑
τi∈τ

DBFHI(τi, kLCMT)

δ + kLCMT

=

∑
τi∈τ

DBFHI(τi, δ) + k · ∑
τi∈τ

DBFHI(τi,LCMT)

δ + kLCMT
.

(2.40)
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Now, ∀ 0 ≤ δ ≤ LCMT ∧
∑
τi∈τ

DBFHI(τi,δ)

δ ≥
∑
τi∈τ

DBFHI(τi,LCMT)

LCMT
, we have:

∑
τi∈τ

DBFHI(τi, δ) + k · ∑
τi∈τ

DBFHI(τi,LCMT)

δ + kLCMT
≤

∑
τi∈τ

DBFHI(τi, δ)

δ
. (2.41)

Notice that, such δ always exists (e.g., δ = LCMT), and equation (2.40)

will increase as long as

∑
τi∈τ

DBFHI(τi,δ)

δ increases. Hence, we have:

max
∆≤LCMT

∑
τi∈τ

DBFHI(τi,∆)
/
∆

 ≥ max
∆>LCMT

∑
τi∈τ

DBFHI(τi,∆)
/
∆

 . (2.42)

Second, we prove that only a list of discrete interval lengths needs to
be examined. According to equation (2.33), the HI mode demand bound
function of any task will increase in only intervals [Di(HI) − Di(LO) +

kTi(HI),Di(HI) − Di(LO) + Ci(LO) + kTi(HI)], where k ∈ N. Furthermore,
we observe that, for such intervals, the HI mode demand bound function
is piecewise linear for all tasks due to equation (2.33) (as can be also seen
in Figure 2.11). Let us denote one such segment of

∑
τi∈τ

DBFHI(τi,∆) as

α · ∆ + β. Clearly, the maximum value of

∑
τi∈τ

DBFHI(τi,∆)

∆
(i.e., α + β/∆) in this

segment, can only be achieved at the boundaries of it. By considering all
such segments and their boundaries, we have equation (2.38). �

Runtime: During runtime, whenever any HI criticality task exceeds
its LO criticality WCET, the system transits to HI mode and the processor
is speeded up by smin. The offline bound of smin ensures that all tasks will
meet their deadlines whenever the system enters HI mode.

2.4.2 Service Resetting Time under Processor Speedup
We proceed to show that speeding up the processor to handle task
overrun is even more attractive, as it can help the system to recover
normal operation faster. Together with the fact that task overrun is rare,
this suggests processor speedup can incur low cost as it would only be
temporarily required.

To quantify service resetting time under processor speedup, we need
to first identify a sufficient condition under which a system can be safely
reset to LO mode. Since we do not know statically how long the system
will overrun, we can safely assume that the system can recover when the
processor is idle, i.e., when all arrived demands are finished. Here, we
say that the demand (in terms of WCET) of a job “arrives” whenever the
job arrives. Notice that, the system may idle many times in HI mode
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Figure 2.12: Worst-case scenario for arrived demand

whenever the arrived jobs are finished; therefore, we need to find the
closest idle time after entering HI mode, at which point the system can
safely recover.

As a second step, we need to bound the worst-case arrived system
demands starting from the transition to HI mode, as this is required to
upper-bound when all arrived demands can be firstly finished in HI
mode. Special attention needs to be paid to unfinished jobs in LO mode,
since those “partial” jobs can be viewed as if they are released at the time
of mode transition and must finish in HI mode. In fact, there is already
one known result [HGST14] in the literature which solves this problem.
However, the technique proposed therein relies essentially on exhaustive
search to find the worst-case arrived demands after entering HI mode. In
the following, we will analytically identify such worst-case scenario.

For presentation convenience, we assume the system transits to HI
mode at time t̂. In addition, let us denote the start and end of a time
interval of length ∆ as t∆

start and t∆
end, respectively. Furthermore, we

denote the latest jobs of τi arriving no later than t∆
start and t∆

end as µ and
λ, respectively. The arrival time of these two jobs are denoted as tµa , tλa ,
respectively. Figure 2.12 depicts graphically our notations.

Lemma 2.9. For a time interval of length ∆ starting from the transition to HI
mode (t∆

start = t̂), the worst-case arrived demand for any task τi ∈ τ is obtained
when this time interval ends with a future job arrival of τi, i.e., t∆

end = tλa .

Proof. Let us assume t∆
end > tλa . Now assume we shift the considered time

interval to the left such that the new end time of the time interval t′∆end
equals to tλa . In this case, the demand of job λ still arrives within the time
interval. Furthermore, for job µ, we distinguish between two cases:

1 t∆
start ≤ tµa +Di(LO): In this case, jobµ could be unfinished at transition

as it is only expected to finish by tµa +Di(LO) in LO mode. By shifting
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the considered interval to the left, job µ can only have executed less
in LO mode, and more remaining load is “carried into” HI mode.

2 t∆
start > tµa +Di(LO): Here, job µ has already finished when the system

transits to HI mode. By shifting the time interval interested to the
left, job µ could become unfinished if the time interval now starts
before or at tµa + Di(LO), i.e., it starts to “carry” load into HI mode.

Since the jobs arriving in betweenµ andλ are not affected, and the carried-
in demand of µ is non-decreasing, it follows that by setting the considered
time interval ending with one job arrival of τi, the arrived demands of τi

in the time interval cannot decrease. This concludes the proof. �

The essential idea to prove Lemma 2.9 is to show that, by letting
t∆
end = tλa (shift the dotted time interval in Figure 2.12 to the left), the

released demands of all jobs including µ and λ are not decreased. Now,
based on Lemma 2.9, we can quantify the worst-case arrived demand for
any task starting from the transition to HI mode and bound when the
system can be safely recovered.

Theorem 2.8. Assume the processor speeds up by a factor s when entering HI
mode at time t̂, and define function w′(·) as follows:

w′(τi,∆) = (∆ mod Ti(HI)) − (Ti(HI) −Di(LO)). (2.43)

The worst-case arrived demand bound of τi in time interval [t̂, t̂ + ∆] can be
calculated as:

ADBHI(τi,∆) = r(τi,∆,w′(·)) +

(⌊
∆

Ti(HI)

⌋
+ 1

)
· Ci(HI), (2.44)

where function r(·) is defined in equation (2.32).
If the system is idle at time t̂ + ∆R, it must follow that:∑

τi∈τ
ADBHI(τi,∆R) ≤ s · ∆R. (2.45)

Proof. According to Lemma 2.9, for any task τi, the worst-case arrived
demand happens for interval [t̂, t̂ + ∆] if it ends with a job arrival of τi.
In this case, the maximum number of arrived jobs after transiting to HI
mode is bounded by

⌊
∆

Ti(HI)

⌋
+ 1.

In addition, we have to consider the “carried-in” demand of the
unfinished job of τi. We can calculate that, in the worst-case, the transition
to HI mode happens w′(τi,∆) before job µ’s deadline in LO mode. If
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w′(τi,∆) < 0, then µ is finished in LO mode and the carried-in demand
is zero. Otherwise, the demand of this unfinished job is increased by
Ci(HI) − Ci(LO) due to mode transition. Moreover, the remaining LO
mode execution of µ can be calculated as min{w′(τi,∆),Ci(LO)}. This is
because µ is only expected to finish Ci(LO) units of execution by its LO
mode deadline before the mode transition and the unfinished execution
of job µ is at most Ci(LO). It then follows that the carried-in demand of job
µ can be compactly represented by r(τi,∆,w′), with function r(·) defined
in equation (2.32).

Finally, if the system is idle at time t̂ +∆R, the total arrived demands of
all tasks starting from entering HI mode must have been finished, which
leads to condition (2.45). �

With the calculation of worst-case arrived demands starting from t̂ in
equation (2.44), the system is idle whenever the arrived demands are no
greater than the supplied resources, as stated in condition (2.45). Since
the system can potentially have many idling points in HI mode, we can
then choose the first idling point after mode transition. Subsequently, we
can calculate the time difference between this idling point and the time
when the system transits to HI mode, which gives a safe lower-bound on
the service resetting time. Formally, this can be formulated as follows.

Corollary 2.2. If the processor speed is increased by a speedup factor s after
transiting to HI mode, a safe service resetting time can then be lower-bounded
by

∆R = min

∆ ≥ 0 :
∑
τi∈τ

ADBHI(τi,∆) ≤ s · ∆
 . (2.46)

Example 2.7. Consider the same task set as shown in Table 2.7. According to
equation (2.46), we can calculate the service resetting time for this task set. Our
results are depicted in Figure 2.13.

If no service degradation is allowed, we calculate that the service resetting
time is 17.25 when s equals 4

3 . In addition, if s is increased to 2, then the service
resetting time can be reduced to 6 since now overload is resolved faster with
higher processor speed. This is shown in Figure 2.13(a).

The trend of service resetting time as s increases is better illustrated with
Figure 2.13(b). As shown by the results, there is a clear gain if the dynamic
processor speedup is increased. We will present how to derive closed-formulas
to express this relation in Section 2.4.3. Furthermore, if service degradation is
enabled in parallel to processor speedup, the service resetting time can be further
reduced as less overload needs to be addressed. For our results here, the degraded
service parameters as shown in Example 2.6 are adopted.
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(a) No service degradation (b) Parametric trend

Figure 2.13: Service resetting time under dynamic processor speedup

Computation efficiency: Similar to the computation of the minimum
processor speedup, calculation (2.46) can also be reduced to pseudo-
polynomial complexity. Formally, we have the following result.

Lemma 2.10. Define a set of functions as follows:

pa(τi, k) = Ti(HI) −Di(LO) + Ci(LO) + kTi(HI), (2.47)

b̂a(τi, l) = {pa(τi, k) | k ∈N ∧ pa(τi, k) ≤ l}, (2.48)

b̌a(τi, l) = {pa(τi, k) − Ci(LO) | k ∈N ∧ pa(τi, k) − Ci(LO) ≤ l}, (2.49)

AUB(∆) =
∑
τi∈τ

Ci(HI) +

max

Ci(HI)−Ci(LO)
Ti(HI)−Di(LO) ,

Ci(HI)
Ti(HI)−Di(LO)+Ci(LO)

 · ∆
 . (2.50)

Denote the cross point of AUB(∆) and S · ∆ in interval domain as ∆AUB . The
service resetting time can then be calculated in pseudo-polynomial time: For

any two points pa1 and pa2 ({pa1, pa2} ⊂
(⋃
τi

b̂a(τi,∆AUB)
)
∪

(⋃
τi

b̌a(τi,∆AUB)
)
),

if ∑
τi∈τ

ADBHI(τi, pa1) ≥ s · pa1 ∧
∑
τi∈τ

ADBHI(τi, pa2) ≤ s · pa2, (2.51)

then the system service resetting time exists within [pa1, pa2].

Proof. According to equation (2.44), ∀0 ≤ δ ≤ Ti(HI), ∀k ∈N,

ADBHI(τi, δ + kTi(HI)) = ADBHI(τi, δ) + kCi(HI). (2.52)
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Furthermore, based on equation (2.44), the arrived demand function
for task τi only changes at zero interval length (increased to Ci(HI)) and
intervals [Ti(HI) − Di(LO) + kTi(HI),Ti(HI) − Di(LO) + Ci(LO) + kTi(HI)],
where k ∈ N. As a result, we can first upper-bound the slope of the
arrived demand function:

max
0≤δ≤Ti(HI)∧k∈N

ADBHI(τi, δ + kTi(HI)) − Ci(HI)
δ + kTi(HI)

= max
0≤δ≤Ti(HI)∧k∈N

ADBHI(τi, δ) − Ci(HI) + kCi(HI)
δ + kTi(HI)

≤ max
0≤δ≤Ti(HI)

ADBHI(τi, δ) − Ci(HI)
δ

(similar to relations (2.40) and (2.41))

≤ max
{

Ci(HI) − Ci(LO)
Ti(HI) −Di(LO)

,
Ci(HI)

Ti(HI) −Di(LO) + Ci(LO)

}
.

(2.53)
Consequently, the total arrived demands of all tasks can be bounded by
equation (2.50), the cross point of which and s · ∆ guarantees that for any
point after this (larger interval length), the supplied processing resource
is larger than the arrived demand. Thus, we get an upper-bound of
the interval length to be checked. Furthermore, due to the piecewise
linearity of the demand bound function, we can locate the minimum
service resetting time as shown by relation (2.51) – one only needs to scan
all the boundary points of linear segments to find such service resetting
time, leading to pseudo-polynomial time complexity. �

In the above proof, we first upper-bound the total arrived demand
bounds by a linear function. By comparing this linear upper-bound and
the service supply (s ·∆), we can determine the maximum interval length
to check (the cross point of the two). Second, the total arrived demands
are piecewise linear w.r.t. ∆, e.g., see Figure 2.13(a). Thus, we only need
to check the boundaries of each segment to determine whether the service
supply crosses with the segment.

Runtime: During runtime, whenever the processor is idle, the system
switches back to LO mode, and the processor speed is restored to its
original speed. Our offline bound of resetting time predicts when such
restoration can happen.

Remark: Our calculation of the service resetting time ∆R does not
assume any particular task overrun pattern. If we assume in the worst-
case two bursts of overrun are separated by at least TO units of time
(TO � 0 since overrunning expected WCET is rare), then the frequency
that the system needs to speedup is bounded by 1

TO
as long as ∆R ≤ TO. In

typical cases, the time used to speedup (∆R) is often limited to a few tens
of seconds due to power/thermal management, which would anyway
satisfy this constraint if ∆R � TO.
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2.4.3 Special Case and System Level Trade-offs
To theoretically show the relation between different system parameters,
the current research on mixed-criticality often adopts implicit-deadline
tasks with two assumptions [BBD+12, HGST14]: (1) Deadlines of HI
criticality tasks in LO mode are shortened by a common factor 0 < x < 1
to prepare for overrun:

Di(LO) = x ·Di(HI),Ti(HI) = Ti(LO) = Di(HI),∀τi ∈ τHI. (2.54)

(2) Deadlines of LO criticality tasks are scaled up by a common factor
y ≥ 1 in HI mode to react to overrun:

Di(HI) = y ·Di(LO),Ti(χ) = Di(χ),∀τi ∈ τLO ∀χ. (2.55)

We continue to show that with those assumptions, closed-formula
solutions can be derived for computing the minimum required processor
speedup and the service resetting time. In the following, we will again
denote Ci(χ)

Ti(χ) as Ui(χ), where χ ∈ {HI,LO}.

2.4.3.1 Processor Speedup

We first present the following result on bounding how overrun
preparation x and service degradation y will affect the required speedup.

Lemma 2.11. Given design parameters x and y, the minimum required speedup
to guarantee HI mode schedulability can be upper-bounded as:

smin =
∑
τHI

max


Ui(HI)

Ui(LO)+(1−x) ,

Ui(HI)−Ui(LO)
1−x

+
∑
τLO

Ui(LO)
Ui(LO) + (y − 1)

. (2.56)

Proof. According to Lemma 2.7, the demand bound function of any task
τi in HI mode only increases linearly in intervals [Di(HI) − Di(LO) +

kTi(HI),Di(HI) −Di(LO) + Ci(LO) + kTi(HI)], where k ∈N. Thus, we only
need to check for the boundaries of such intervals for the maximum value
of DBFHI(τi,∆)/∆. Furthermore, due to the periodicity of the demand
bound function, we can limit such boundaries to when k = 0 (similar to
the bound of arrived demand function as shown in Lemma 2.10). Based
on equation (2.33), at time Di(HI) −Di(LO) the demand of τi is increased
by Ci(HI) − Ci(LO), and at Di(HI) −Di(LO) + Ci(LO) the task’s demand is
further increased by Ci(LO). The maximum value of DBFHI(τi,∆)/∆ at the
two points gives the corresponding upper-bound:

DBFHI(τi,∆) ≤
max

 Ci(HI)−Ci(LO)
Di(HI)−Di(LO) ,

Ci(HI)
Di(HI)−Di(LO)+Ci(LO)

 · ∆. (2.57)
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Taking the assumptions in this section (Ti(HI) = Di(HI),∀τi), we have:∑
τi∈τ

DBFHI(τi,∆) ≤
∑
τi∈τ

max

Ci(HI)−Ci(LO)
Ti(HI)−Di(LO) ,

Ci(HI)
Ti(HI)−Di(LO)+Ci(LO)

 · ∆,
∑
τi∈τ

DBFHI(τi,∆)
/
∆ ≤

∑
τi∈τ

max

Ci(HI)−Ci(LO)
Ti(HI)−Di(LO) ,

Ci(HI)
Ti(HI)−Di(LO)+Ci(LO)


= smin (see equation (2.34)).

(2.58)

Finally, with relations (2.54) and (2.55), calculation (2.58) can be
simplified and equation (2.56) can be derived. �

Lemma 2.11 clarifies that smin will monotonically decrease with
decreasing x and/or increasing y. We explain the intuitions behind this
along with the following example.
Example 2.8. Consider the task set shown in Table 2.7, where task parameters
are now modified according to relations (2.54) and (2.55). Based on Lemma 2.11,
we depict in Figure 2.14(a) the impact of overrun preparation x and service
degradation y on the minimum required speedup to guarantee HI mode
schedulability. As we can see, for smaller x (i.e., more overrun preparation in LO
mode), the minimum required speedup is decreased: By making HI criticality
tasks finish earlier in LO mode, more resources are statically reserved for overrun
in HI mode. Thus, less speedup is required to address overload. In addition, with
higher service degradation (larger y), the required speedup also decreases. The
reason is the same as explained for x: Degrading the service for LO criticality
tasks more will reduce HI mode system load, leading to less required speedup.

2.4.3.2 Service Resetting Time

We proceed to present how the service resetting time can be affected by
system design parameters using a closed formula.

Lemma 2.12. Given design parameters x, y and speedup s in HI mode, the
service resetting time can be bounded as:

∆R =

∑
τi∈τ

Ci(HI)

s − smin
, (2.59)

where smin is given by equation (2.56).

Proof. As shown in Lemma 2.10, we can bound the total arrived demand
bound function as:

AUB(∆) =
∑
τi∈τ

Ci(HI) +

max

Ci(HI)−Ci(LO)
Ti(HI)−Di(LO) ,

Ci(HI)
Ti(HI)−Di(LO)+Ci(LO)

 · ∆
 . (2.60)
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(a) Speedup (b) Resetting time

Figure 2.14: Various tradeoffs: Impact of overrun preparation x and service
degradation y on required speedup and service resetting time

Taking relation (2.58), we get:

AUB(∆) =

∑
τi∈τ

Ci(HI)

 + smin · ∆. (2.61)

Finally, with Corollary 2.2, equation (2.59) can be derived.
�

With Lemma 2.12, we can see there is a clear gain in service resetting
time when processor speedup in HI mode is increased. In addition, the
service resetting time would be +∞ if the minimum processor speedup
smin is chosen.
Example 2.9. With the same task set used in previous examples, we plot in
Figure 2.14(b) ∆R against s with different minimum required system speedups.
Essentially, smin represents the system load in HI criticality mode. We observe,
with artificially increased smin (more system load in HI mode), the service
resetting time is increased as it will take longer to resolve overload. Likewise,
similar trend can be observed if we decrease the actual system speedup s.

2.4.4 Evaluation
We present in this section the validation of our proposed techniques with
an industrial flight management system (FMS) and synthetic task sets.

2.4.5 Flight Management System
We adopt a subset of an industrial implementation of FMS, which consists
of 7 DO-178B criticality level B (HI) and 4 criticality level C (LO) tasks.
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(a) Contour - speedup (b) Contour - resetting time

Figure 2.15: Experimental results on FMS

All tasks can be modeled as implicit deadline sporadic tasks, with task
minimum inter-arrival times in the range of 100ms to 5s. For detailed
parameters, we refer to Table 2.2. We present our results in Figure 2.15.

As suggested by Figure 2.15(a), with decreasing x (better safety
preparation) or increasing y (more service degradation), the required
speedup in HI mode to meet deadlines is reduced, see relations (2.54)
and (2.55) for definitions of x and y. This is because that the system load
in HI mode is decreased in both cases. The contour plot here clearly
depicts the freedom in setting x and y for a certain speedup in HI mode.
Furthermore, Figure 2.15(b) presents how the service resetting time is
affected by the speedup in HI mode s and the uncertainty in HI criticality
tasks’ workloads r (r := Ci(HI)

Ci(LO) ,∀τi ∈ τHI). Our results show that with
increasing r or decreasing s, the service resetting time is increased, as
increased overload is resolved more slowly. In addition, we observe
that FMS takes in the worst-case less than 3s to recover with a speedup
of 2, indicating that dynamic processor speedup could indeed only be
temporarily required.

2.4.6 Synthetic Task Sets
To show the applicability of our proposed techniques to general task
sets, we now conduct extensive experiments on synthesized task sets.
We adopt the random task generator as shown in Section 2.3.3.1. The
task generator starts with an empty task set and continuously adds new
random tasks to this set until certain system utilization Ubound is met. In
the following, we generate 500 task sets at each system utilization point
and conduct our experiments. Our results are shown in Figure 2.16, and
we observe:
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(a) Boxwhisker - speedup (b) Degradation impact

(c) Boxwhisker - resetting time (d) Speedup & degradation impact

Figure 2.16: Experiments using synthesized task sets, with task minimum inter-
arrival times randomly chosen from 2ms to 2s, task LO criticality utilization
Ci(LO)/Ti(LO) randomly chosen from 0.01 to 0.2 and r = Ci(HI)/Ci(LO) (∀τi ∈
τHI) randomly chosen from 1 to 3. Figure 2.16(a) is obtained assuming y = 2 and
shows the distribution of smin. Figure 2.16(c) is obtained assuming y = 2, s = 3
and shows the distribution of ∆R. Figure 2.16(b) and Figure 2.16(d) show the
median values of our results across different system utilizations. x in all cases is
set to the minimum to guarantee LO mode schedulability [HGST14].

• Our proposed techniques can successfully bound the required
processor speedup and the service resetting time in all tested
cases. As the system utilization Ubound increases, both the required
speedup and the service resetting time increase since more overload
needs to be addressed in HI mode.

• The maximum required processor speedup is less than 3.3 for all
tested cases (Ubound = 0.9 in Figure 2.16(a)). In this case, the 50th
percentile value of processor speedup is only 1.4. In addition, for
all cases when Ubound ≤ 0.5, the maximum required speedup is
less than 1, indicating that the system can even slow down in HI
mode. Furthermore, we see that speedup indeed greatly improves
system schedulability: Less than 25% task sets are schedulable when
Ubound = 0.9, smin = 1, which is increased to 75% when smin = 1.9.
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Figure 2.17: Schedulability region under temporary processor speedup: 2x
speedup for no longer than 5s. For this set of experiments, r (defined in
Figure 2.16) is set to 10. All other task generation parameters are the same
as in Figure 2.16. Uχ =

∑
χi≥χ

Ci(χ)/Ti(χ), χ ∈ {HI,LO}. Marked numbers represent

percentages of schedulable task sets.

• The longest service resetting time for all tested cases is less than
2.6s (Ubound = 0.9 in Figure 2.16(c)), while the median value of
resetting time in this case is only 678.6ms. Furthermore, we observe
that the median/average service resetting time increases slowly
with increased system utilization. However, the worst-case (dotted
outliers in Figure 2.16(c)) can increase dramatically. In most test
cases, the system can be reset within the average inter-arrival time
of all tasks.

• With more service degradation, both the minimum required
processor speedup and the system service resetting time can be
reduced (increasing y for Figure 2.16(b) and Figure 2.16(d)), as less
overload needs to be resolved in HI mode. Furthermore, with
increasing processor speedup s in HI mode, the service resetting
time can be further reduced, as convinced by the results in all test
cases in Figure 2.16(d).

2.4.7 Schedulability Region
We finally present in Figure 2.17 the schedulability regions under dynamic
processor speedup. For the experimental results, we set s = 2 and
explicitly require that the resetting time must fulfill ∆R ≤ 5s. We show how
the system schedulability region could be increased with such temporary
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processor speedup. For this purpose, we generate in total 6.84 × 104

random task sets at all (UHI,ULO) points and conduct our experiments,
see Figure 2.17 for explanation of Uχ. We assume that LO criticality tasks
are terminated in HI mode. At each (UHI,ULO) point, we consider a small
neighboring region (Uχ ± 0.025), and compute the percentage the system
is schedulable as the ratio of the number of schedulable task sets to the
number of all task sets in this neighboring region.

Based on our results, we observe the following: First, the region in
which the system is 100% schedulable is greatly increased compared to
the case when no processor speedup is used. Furthermore, at high system
utilization points, temporary processor speedup can still guarantee a large
portion of schedulable task sets. For example, when both UHI and ULO

equal 0.85, 90% task sets generated here can still be successfully scheduled
with 2x processor speedup for no longer than 5s.

2.4.8 Summary of Results

Section 2.4 provided theoretical results as well as empirical
evaluations, both demonstrating that over-clocking can help mixed-
criticality systems not only to improve the degraded services for less
critical tasks, but also to recover faster from the critical scenario.

2.5 A New Isolation Scheduling Model for
Mixed-Criticality Systems

Conventionally, embedded system industries favor strict isolation among
applications of different criticality levels due to ease of certification.
Following the end of Dennard scaling [EBSA+11], embedded processors
increasingly feature a multi-core architecture with shared resources
(e.g., last-level cache, memory controller) in order to keep improving
performance and efficiency (Figure 2.18 depicts an example of such an
architecture). This, however, is challenging the best practice of criticality
isolation due to contention in accessing shared resources:

• Coarse-grain static partitioning in time and space, e.g., based
on the DO-178B standard [do11] for avionics or the ISO 26262
standard [iso11] for automotive systems, is an established technique
for single-core safety-critical systems, but this approach can not be
simply applied to multi-core architectures; it would only allow one
job to execute at any point in time if strictly applied.
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Figure 2.18: Sample typical multi-core architecture with m = 4 cores that share
last-level cache, DRAM controller and I/O controller.

• More fine-grained partitioning requires to individually control the
access to each shared resource [SCM+14].

• Finally, the approach of finding a global schedule and bounding the
contention on shared resources at any time is only feasible with the
knowledge of the detailed resource sharing behavior of all tasks, and
it quickly becomes computationally intractable with an increasing
number of tasks [GLST12].

In this work, we propose a new scheduling model that we call Isolation
Scheduling (IS). IS is a practical model for efficiently scheduling real-time
tasks on multi-core processors, i.e., exploiting hardware parallelism and
shared resources. To make the problem more tractable, IS makes an
assumption about the tasks, i.e., we assume that tasks are partitioned
into task classes that have exclusive access to the processor and the
platform resources. This way, interference on shared resources is
greatly reduced; inter-class interference is eliminated by construction,
and only intra-class interference needs to be considered. Well-established
methods [GLST12, WKP13, GSH+15] can be applied to bound / control
this remaining interference.

Indeed, subdividing real-time tasks into classes provides key benefits
in several contexts. For instance, gang scheduling [ZFMS03, KI09, GB10]
groups jobs (threads) that share information through fine-grained
synchronization in the same class in order to reduce blocking times.
Conversely, when jobs do not share information and there are well-
defined task dependencies, communication takes place between classes
in order to respect task dependencies, safely bound blocking times,
and avoid concurrent access to shared memory. Furthermore, server-
based scheduling [AB98] is an established approach for performance
isolation among task classes with different timing requirements, e.g., for
co-scheduling hard and soft real-time tasks or periodic and aperiodic
tasks. Finally, in the context of mixed-criticality systems [Ves07], tasks
are grouped in classes of different safety criticality, and industrial
standards [do11, iso11] pose strict requirements for isolating these
classes in order to allow independent certification of criticality levels
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[GSHT13, BFB15, TSP15]. Isolation Scheduling guarantees that tasks of
different criticality levels do not interfere on shared platform resources,
and therefore, it allows for independent certification as well as a much
simplified intra-class interference analysis.

Contribution and Outline. While recent work approached the idea
of Isolation Scheduling from different angles (see Section 2.1), we are the
first to systematically formalize the IS model (Section 2.5). We specifically
analyze the IS model with/without the asymmetric protections among
different criticality levels. To this end, we propose fluid-based scheduling
techniques and formally study the fundamental loss incurred in the IS
model. Our work delivers a deep theoretical understanding about the IS
model, and suggests that the IS model is a useful and flexible abstraction
for designing scheduling policies for systems that require strong isolation
among task classes, such as mixed-criticality systems. Note that the
introduction of Section 2.5 and the presentation of Section 2.5.1 are based
on our paper publication [HGA+15].

2.5.1 The Isolation Scheduling (IS) Model
The Isolation Scheduling (IS) model dynamically partitions a multi-core
processor in time between different task classes so that, at any time,
only jobs of the same task class are allowed to execute on the platform.
This strategy allows to partition the problem of bounding interference
on shared resources to the single task classes; inter-class interference is
completely disallowed. We target homogeneous multi-core processors
with m identical cores that share on-chip resources. Figure 2.18 shows an
example of such an architecture.

The IS model supports real-time tasks τ, where each task periodically
or sporadically instantiates single jobs. In addition, we assume that tasks
are partitioned into K task classes S = {Sk | 1 ≤ k ≤ K}, where each task
class Sk contains nk tasks, i.e., Sk = {τi,k | 1 ≤ i ≤ nk}. For each task
τi,k in task class Sk, the tuple (Ti,k,Di,k,Ci,k) defines the period of the jobs
(or their minimal inter-arrival time), their relative deadline, and their
worst-case execution time (WCET). For the analysis in this work, we
assume D ≤ T. However, this is not a necessary constraint for the general
Isolation Scheduling model. Additionally, we define the density δi,k and
utilization ui,k of a task τi,k as

δi,k = Ci,k/Di,k, ui,k = Ci,k/Ti,k. (2.62)

Throughout Section 2.5, we use k to index task classes, and i to index
tasks within each task class. The set of task classes S is IS-schedulable
if all tasks can meet their deadlines while respecting the IS-constraint
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of mutual exclusion between task classes. We will refine some of these
notations when applying the IS model to mixed-criticality settings.

The IS model treats the multi-core processor as a single resource that
needs to be time-partitioned between the different scheduling classes. To
give an intuition of how the model works, Figure 2.19 shows an example
of an IS schedule.

core
1

core
2

core
…

core
m
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shared 
memory
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core 1

core 2

core 3

core 4

t

t

t

t

τ∈S1 τ∈S2 τ∈S3 τ∈S2 τ∈S3

Figure 2.19: Example IS schedule with three task classes S1, S2 and S3. Vertical
lines mark the synchronous switching between task classes on all cores.

One way to relate the IS model to single-processor real-time scheduling
is by comparing the synchronous task class switches (the vertical lines in
Figure 2.19) with classic job preemption. When a single-core processor
would switch between jobs, under the Isolation Scheduling model, all
cores of the multi-core processor synchronously switch between jobs of
two task classes. In other words, classical job preemption is now lifted
to synchronous switching between classes. This approach is different
from single-core equivalence [SCM+14], which achieves task isolation
by individually protecting each shared resource. An alternative way
to look at the IS model is from a server perspective. Classical real-
time servers [AB98] provide bounded capacities to task sets in a single
processor setting. Recent proposals for multi-core servers [SEL08, BBB09]
divide a multi-core platform into multiple virtual platforms (servers) that
could run in parallel. In Isolation Scheduling, the server acts globally on
all cores, i.e., switching the resource allocation happens synchronously
on all cores.

The IS model imposes synchronous class switching to bound resource
interference, but remains general enough to support different scenarios.
For instance, the model supports sporadic and periodic tasks; implicit,
constrained, and arbitrary deadlines; preemptive and non-preemptive
scheduling; static and dynamic time partitioning; and global and
partitioned mapping of tasks to cores. Moreover, the implementation
of an IS scheme depends on the specific application. For instance, if the
switching between task classes can follow a static schedule, then a time-
driven synchronization is appropriate; instead, if switching decisions
are determined dynamically at run-time, then global synchronization
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mechanisms will be helpful. In Section 2.5.2 to 2.5.3 we analyze the
schedulability and propose scheduling algorithms for some of these
combinations.

2.5.1.1 Isolation Scheduling for Mixed-Criticality Systems

Mixed-criticality systems are a notable example of systems that require
strong isolation between task classes. Mixed-criticality systems are real-
time systems where tasks are partitioned into classes, commonly called
criticality levels; different criticality levels have varying requirements
in terms of correctness, assurance, and safety. To allow independent
safety certification of criticality levels and avoid costly re-certification,
task classes need to be strongly isolated [BFB15, GSHT13, TSP15].
While coarse-grained static partitioning grants such isolation for single-
core systems, achieving a similar goal on multi-core systems requires
hardware and/or software mechanisms for guaranteeing interference-
free or interference-bounded access of tasks to any shared resource, see
for example [SCM+14]. Instead, the IS model takes advantage of the
existence of well-defined task classes and avoids concurrent execution
of jobs with different criticality by construction. In this way, different
classes cannot contend on shared resources at all, criticality levels are
completely isolated and they can be separately analyzed and certified.
We use (particularly, in Section 2.5.3) mixed-criticality systems [Ves07] as
a case study to illustrate the usefulness of the IS model.

Recap of the Mixed-Criticality Model. When we discuss the IS model
in the context of mixed-criticality systems, we focus on systems with
two task classes (i.e., two criticality levels), as commonly assumed for
simplicity [BD16]. For convenience, we repeat here the corresponding
well-known model (see Section 2.1), with minor notational modifications
to fit into the context of Isolation Scheduling.

Task class SHI only consists of tasks of high (HI) criticality; task class
SLO only includes LO criticality tasks. The execution time of HI criticality
tasks is bounded on both criticality levels: ∀τi ∈ SHI, the term Ci(LO)
denotes the low execution time bound, and Ci(HI) denotes the high execution
time bound. The high execution time bound must be always guaranteed
and is assumed to be more pessimistic than the low: ∀τi ∈ SHI we require
Ci(HI) ≥ Ci(LO). LO criticality tasks only have one execution time bound,
i.e., Ci(HI) = Ci(LO).

Equation (2.63) defines the density δi(χ) and utilization ui(χ) of task τi

as a function of its execution time bound χ ∈ {HI,LO}.
δi(χ) := Ci(χ)/Di, ui(χ) := Ci(χ)/Ti. (2.63)

Similarly, equation (2.64) defines the density ∆χ2
χ1

and utilization Uχ2
χ1

of
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the task class Sχ1 with low (χ2 = LO) and high (χ2 = HI) execution time
bounds.

∆χ2
χ1

:=
∑
τi∈Sχ1

δi(χ2), Uχ2
χ1

:=
∑
τi∈Sχ1

ui(χ2). (2.64)

In principle, one could just apply Isolation Scheduling to the above
mixed-criticality task model. However, to further improve resource
efficiency, asynchronous protections between criticality levels can be
enforced, as similarly done in the AIS model: A dual criticality system
is in LO mode as long as no HI criticality job overruns its low execution
time bound Ci(LO); when at least one HI criticality job overruns its low
execution time bound, the system switches to HI mode. The system must
satisfy two schedulability requirements:

• In LO mode, all jobs of LO and HI criticality are schedulable; and

• in HI mode, all HI criticality jobs are schedulable.

After a switch to HI mode, the system can switch back to LO mode under
certain circumstances, e.g., when there are no more HI criticality jobs to
be scheduled [SGTG12, BCLS14].

2.5.2 The IS-DP-Fair Scheduling Policy
Optimal scheduling for multi-core is provided, for both periodic and
sporadic task sets, by the DP-Fair family of algorithms [LFS+10],
which originated from P-Fair [BCPV93]. These algorithms allow inter-
class contention and inter-class use of shared resources, as discussed
in Section 2.1. We tackle this shortcoming by “porting” DP-Fair into the
IS model, i.e., we extend DP-Fair with the IS constraint of strong isolation
between task classes. We call this new algorithm IS-DP-Fair and we
present its schedulability analysis, focusing on periodic tasks. We show
that, for tasks with implicit deadlines, IS-DP-Fair is optimal in terms
of schedulability among all possible schedulers based on the IS model;
we quantify the schedulability loss of IS-DP-Fair compared to non-IS
schedulers.

2.5.2.1 The IS-DP-Fair Algorithm

Algorithm 2.3 outlines the IS-DP-Fair algorithm. Similarly to DP-Fair,
we first partition time into slices: given the sequence of all arrival times
and deadlines, a slice σ j is the time span between two consecutive such
instants, with its length denoted as L j.

As a second step, we subdivide each such slice σ j into K consecutive
subslices; each subslice σ j,k of length L j,k (see Algorithm 2.3, step 2) is used
to exclusively host task class Sk.
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Algorithm 2.3: IS-DP-Fair

1 Let t1, t2, · · · be the sequence of all arrival times and deadlines of
the jobs to be scheduled (in increasing order); subdivide time into
basic slices σ j, separated by the t j time points:

σ j = [t j, t j+1), with length L j.

2 Subdivide each σ j into K subslices: σ j = {σ j,k|1 ≤ k ≤ K}. The length
of σ j,k is

L j,k = max

L j max
τi,k∈Sk

{δi,k},
L j

m

∑
τi,k∈Sk

δi,k

 .
3 ∀i, j, k allocate an execution budget δi,kL j for task τi,k in subslice σ j,k.
4 Schedule tasks within each subslice with DP-Fair.

Third, we allocate the execution budget to all tasks. The idea is to
enforce proportional progress of all tasks (from different task classes)
within each slice: each task τi,k is exclusively assigned an execution budget
δi,kL j in subslice σ j,k within σ j. Within each subslice σ j,k, tasks are assigned
iteratively in a greedy way: each task is assigned to a processor that has a
non-empty (i.e., at least one task was already assigned to it) and non-full
(i.e., there is free capacity) subslice σ j,k. If no such processor exists, the
task is assigned to a processor that has empty σ j,k. If the available capacity
in the subslice σ j,k for the chosen processor is not enough to serve all the
execution budget of task τ j,k, then the budget is split and the excess is
allocated to the next available processor. This process continues until all
tasks are allocated.

After allocation, we know exactly when and on which processor the
budget for each task will be available. At runtime, any task executes
whenever its budget becomes available; as long as the task does not
arrive, the corresponding budget is idled.

2.5.2.2 Schedulability Analysis of IS-DP-Fair

Theorem 2.9 gives an exact schedulability test for using IS-DP-Fair to
schedule a task set S with K task classes Sk, with 1 ≤ k ≤ K, on a multi-
core architecture with m identical cores.
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Theorem 2.9. Task set S is schedulable with IS-DP-Fair iff

∑
Sk∈S

max

max
τi,k∈Sk

{δi,k}, 1
m

∑
τi,k∈Sk

δi,k

 ≤ 1. (2.65)

Proof. According to the IS-DP-Fair algorithm, the arrival time ta and the
absolute deadline td (d > a) of any job of any task τi,k from task class Sk

coincide with the start or the end of a (possibly different) slice. There
might be multiple slices σ j between ta and td, where a ≤ j < d. Task τi,k is
guaranteed to meet its deadline if its execution budget is satisfied across
these slices.

Within each sliceσ j, any task τi,k receives, by construction, an execution
budget of δi,kL j for each subslice σ j,k and, since a task cannot run in parallel
with itself, we find

L j max
τi,k∈Sk

{δi,k} ≤ L j,k. (2.66)

In addition, since all tasks from Sk must be schedulable by DP-Fair within
σ j,k, i.e., the cumulative allocated budget must be less than or equal to the
available processor time from all cores, we conclude

L j

∑
τi,k∈Sk

δi,k ≤ mL j,k. (2.67)

Combining the two bounds from relations (2.66) and (2.67), we get

L j,k ≥ max

L j max
τi,k∈Sk

{δi,k},
L j

m

∑
τi,k∈Sk

δi,k

 . (2.68)

Setting L j,k to the minimum value that satisfies relation (2.68) guarantees
schedulability within each subslice. Finally we consider the additional
constraint ∑

Sk∈S
L j,k ≤ L j

⇐⇒
∑
Sk∈S

max

L j max
τi,k∈Sk

{δi,k},
L j

m

∑
τi,k∈Sk

δi,k

 ≤ L j

⇐⇒
∑
Sk∈S

max

max
τi,k∈Sk

{δi,k}, 1
m

∑
τi,k∈Sk

δi,k

 ≤ 1. (2.69)
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Therefore, condition (2.65) is sufficient for schedulability with IS-DP-Fair
and, if the test (2.65) fails, then the task set S cannot be scheduled with
IS-DP-Fair. Thus, the test as specified in condition (2.65) is exact, i.e., both
sufficient and necessary. �

After providing the schedulability test of Theorem 2.9, we show in
Theorem 2.10 that the IS-DP-Fair algorithm is optimal for any task set S =

{Sk} with implicit deadlines under the IS constraint, i.e., under isolation
of task classes.

Theorem 2.10. IS-DP-Fair is optimal in terms of schedulability for task sets
with implicit deadlines under the IS constraint.

Proof. We prove Theorem 2.10 by showing that, whenever IS-DP-Fair
fails, no other scheduling solution exists. Since the schedulability test of
Theorem 2.9 is exact, assuming that IS-DP-Fair fails for task set S = {Sk}
implies ∑

Sk∈S
max

max
τi,k∈Sk

{δi,k}, 1
m

∑
τi,k∈Sk

δi,k

 > 1. (2.70)

For the purpose of contradiction, assume that S is still schedulable by
some other scheduling algorithm Λ.

Consider the hyperperiod of the tasks of S in the case when all
tasks initially arrive at time zero. Let Thyper denote the duration of the
hyperperiod and Thyper,k denote the total duration of the subslices allocated
to task class Sk within the hyperperiod. A task τi,k in Sk cannot run in
parallel with itself and it must execute for δi,kThyper within Thyper. Therefore,

∀τi,k ∈ Sk : Thyper,k ≥ δi,kThyper

⇐⇒ Thyper,k ≥ Thyper max
τi,k∈Sk

{δi,k}.

Since we assumed that S is schedulable by Λ, then all tasks from Sk meet
their deadlines within Thyper, implying

mThyper,k ≥
∑
τi,k∈Sk

δi,kThyper

⇐⇒ Thyper,k ≥
Thyper

m

∑
τi,k∈Sk

δi,k.

Within the hyperperiod, the total fraction of all slices allocated to any task
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class cannot be more than Thyper. Therefore:

Thyper ≥
∑
Sk∈S

max

max
τi,k∈Sk

{δi,kThyper},
Thyper

m

∑
τi,k∈Sk

δi,k


⇐⇒

∑
Sk∈S

max

max
τi,k∈Sk

{δi,k}, 1
m

∑
τi,k∈Sk

δi,k

 ≤ 1. (2.71)

Condition (2.70) contradicts condition (2.71), so no algorithm Λ can
schedule S. �

While IS-DP-Fair is optimal for implicit deadlines, the same property
does not hold for the case of a task set S with constrained deadlines, as
Theorem 2.11 states.

Theorem 2.11. IS-DP-Fair is not optimal for task sets with constrained
deadlines under the IS constraint.

Proof. We prove Theorem 2.11 by showing a counterexample. Consider
a task set S with two task classes S1 and S2, each containing a single task,
respectively τ1 = (2, 1, 1)1 and τ2 = (2, 2, 1). Trying to schedule S on a dual-
core processor fails the schedulability test of Theorem 2.9. However, S is
in fact schedulable. Since each class only contains one task, we can reduce
the problem to a single core scheduling problem and apply fixed-priority
scheduling (τ1 with higher priority). Then it is straightforward to see,
through conventional response time analysis, that S is schedulable. �

2.5.2.3 Schedulability Loss of IS-DP-Fair

Finally, it is important to quantify the loss of schedulability due to
enforcing the IS constraint, compared to allowing inter-class interference.
Theorem 2.12 provides a tight bound on the speedup required to enforce
isolation.

Theorem 2.12. Any task set S schedulable with DP-Fair (by removing the IS
constraint) is schedulable by IS-DP-Fair under the IS constraint on a platform
that is min{K,m} times faster. This speedup bound is tight.

Proof. To construct the proof, we first mathematically formulate an
optimization problem to find the minimum required speedup of IS-DP-
Fair, such that it can schedule any task set schedule by DP-Fair without

1The tuple defines the period, relative deadline, and worst-case execution time of the
task, see Section 2.1.
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the IS constraint. We then reveal properties (Fact 2.1) of our formulated
problem, with which a closed-form speedup factor can be derived.

1-Formulating an optimization problem: According to [LFS+10], the
following equation gives the schedulability test for DP-Fair:

max

max
τi,k∈Sk
Sk∈S
{δi,k}, 1

m

∑
Sk∈S

∑
τi,k∈Sk

δi,k

 ≤ 1. (2.72)

Now, let us assume that the system is IS-DP-Fair schedulable on a
hardware that is λ times faster. Using Theorem 2.9, this implies:

∑
Sk∈S

max

max
τi,k∈Sk

{ 1
λ
δi,k}, 1

m

∑
τi,k∈Sk

1
λ
δi,k

 ≤ 1

⇐⇒ λ ≥
∑
Sk∈S

max

max
τi,k∈Sk

{δi,k}, 1
m

∑
τi,k∈Sk

δi,k

 .
(2.73)

Thus the minimum possible speedup bound can be calculated as

λmin = max
S
{ f (S)}

s.t. condition (2.72)

where f (S) =
∑
Sk∈S

max

max
τi,k∈Sk

{δi,k}, 1
m

∑
τi,k∈Sk

δi,k

 .
(2.74)

2-Properties of the optimization problem (2.74): We will now
characterize the the worst case f (S) which maximizes λmin subject to
condition (2.72).

Fact 2.1. f (S) is maximized subject to condition (2.72) if:

∀Sk ∈ S,max
τi,k∈Sk

{δi,k} ≥ 1
m

∑
τi,k∈Sk

δi,k. (2.75)

Proof. We prove this by contradiction. Suppose that for some Sk′ ,

max
τi,k′∈Sk′

{δi,k′} < 1
m

∑
τi,k′∈Sk′

δi,k′ . We will now compute max
S
{ f (S)} subject to

condition (2.72). To maximize f (S) while satisfying condition (2.72), we
set:

1
m

∑
τi,k′∈Sk′

δi,k′ ≤ 1 − 1
m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k.
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As a result, for Sk′ , we have

max

 max
τi,k′∈Sk′

{δi,k′}, 1
m

∑
τi,k′∈Sk′

δi,k′


≤ 1 − 1

m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k.

(2.76)

Now, let us consider two cases:

-m = 1 : In Sk′ , we can have just one single task with density equal to
1− 1

m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k. This way, max
τi,k′∈S′k

{δi,k′} = 1
m

∑
τi,k′∈S′k

δi,k′ (m = 1∧|Sk′ | =
1) and (2.72) is still satisfied. Furthermore, the maximum possible

value of max

 max
τi,k′∈Sk′

{δi,k′}, 1
m

∑
τi,k′∈Sk′

δi,k′

 is the same compared to

calculation (2.76). Therefore, f (s) stays the same.

-m ≥ 2 : Let us denote with 0+ an infinitely small positive number. Now for
Sk′ , we can have just two tasks, one with density 1− 1

m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k+

0+ and the other with density 1 − 1
m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k − 0+. This way,

condition (2.72) is still satisfied while

max

 max
τi,k′∈Sk′

{δi,k′}, 1
m

∑
τi,k′∈Sk′

δi,k′


= 1 − 1

m

∑
Sk∈S\Sk′

∑
τi,k∈Sk

δi,k + 0+,

which is increased compared to calculation (2.76). Thus, max
S
{ f (S)}

gets larger.

Both cases lead to contradictions and condition (2.75) must hold. �

3-Speedup bound: With Fact 2.1, the problem of finding λmin becomes

λmin = max
S
{ f (S)}

s.t. condition (2.72)

f (S) =
∑
Sk∈S

max
τi,k∈Sk

{δi,k}.
(2.77)
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To get the maximum possible value of f (S), we have

f (S) =
∑
Sk∈S

max
τi,k∈Sk

{δi,k}

≤
∑
Sk∈S

1 (from condition (2.72))

= |S| = K,

f (S) =
∑
Sk∈S

max
τi,k∈Sk

{δi,k}

≤
∑
Sk∈S

∑
τi,k∈Sk

δi,k ≤ m (from condition (2.72)).

(2.78)

Thus, λmin = min{K,m}.
4-Tightness: Finally, we show that the speedup bound is tight by

finding a concrete IS task model that will lead to such a bound: For each

Sk ∈ S, let it only contain one single task with density
min{K,m}

K
≤ 1. In

this case the total density of the system can be calculated as:
min{K,m}

K
·K ≤

m. Thus, condition (2.72) is satisfied and the system is schedulable without
the IS constraint by an optimal multiprocessor scheduling algorithm like

DP-Fair. Furthermore, we calculate that f (S) =
min{K,m}

K
·K = min{K,m}.

As a result, our derived speedup bound is tight. �

For IS task models with implicit deadlines, IS-DP-Fair is optimal
according to Theorem 2.10. Therefore, the speedup bound of
Theorem 2.12 is optimal in this case. We now extend this result to derive
a general bound in case of constrained deadlines using the following
theorem.

Theorem 2.13. Under the IS constraint, no scheduler can achieve a speedup
bound better than min{K,m} compared to an optimal scheduling algorithm that
ignores the IS constraint.

Proof. In case of constrained deadlines, we can use the same concrete
example as shown in the tightness proof for Theorem 2.12. For such an
example, if tasks have a zero offset and the same period and deadline,
then no IS scheduler is able to schedule it on any platform with speedup
less than min{K,m}. �

While, in general, there is a cost for enforcing the IS constraint (as
Theorem 2.12 and 2.13 show), there is no such cost to pay under suitable
assumptions, as Corollary 2.3 shows.
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Corollary 2.3. If a task set S is schedulable by ignoring the IS constraint and
if it satisfies the condition

∀Sk ∈ S :
max
τi,k∈Sk

{δi,k}
avg
τi,k∈Sk

{δi,k} ≤
|Sk|
m
, (2.79)

where the operator avg computes the average of its arguments, then S is also
schedulable with IS-DP-Fair.

Proof. By reformatting condition (2.79), we get max
τi,k∈Sk

{δi,k} ≤ 1
m

∑
τi,k∈Sk

δi,k. If

the system is schedulable without the IS constraint and condition (2.79)
holds, then we have:

f (S) =
1
m

∑
Sk∈S

∑
τi,k∈Sk

δi,k ≤ 1 ( f (S) given by formulation (2.74)). (2.80)

According to Theorem 2.9, the system is IS-DP-Fair schedulable. �

Essentially Corollary 2.3 states that the schedulability loss due to
isolation decreases, as the variation in density across tasks within task
classes decreases and, as the number of tasks within task classes increases.

2.5.3 IS-DP-Fair for Mixed-Criticality Systems
An immediate application of IS-DP-Fair is scheduling mixed-criticality
systems on multi-core. Thanks to the IS model, IS-DP-Fair ensures
isolation between criticality levels. While all the results of Section 2.5.2
apply, mixed-criticality systems have some additional peculiarities
(see Section 2.1), e.g., they can switch between criticality modes. For this
reason, we extend IS-DP-Fair for mixed-criticality systems; we call this
new algorithm MC-IS-Fluid. An extension of the DP-Fair algorithm for
mixed-criticality systems exists for multiprocessors without considering
isolation. We outlined this algorithm, known as MC-Fluid [LPG+14],
in Section 2.1.1. The key idea, borrowed from [BBD+12], is to shorten
the deadlines of HI criticality tasks in LO mode, in order to shift demand
from HI to LO mode and improve schedulability. We adopt the same
technique in MC-IS-Fluid.

2.5.3.1 The MC-IS-Fluid Algorithm

Algorithm 2.4 outlines the MC-IS-Fluid algorithm for a dual-criticality
task set S = {SHI,SLO}. We compute shortened deadlines for HI criticality
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Algorithm 2.4: MC-IS-Fluid

1 For all HI criticality tasks τi ∈ SHI, compute the shortened deadline
D′i = xDi, to be used in LO mode; the shortening factor
x : 0 < x ≤ 1 is:

x =

max
{

max
τi∈SHI

{δi(LO)}, 1
m∆LO

HI

}
1 −max

{
max
τi∈SLO

{δi(LO)}, 1
m∆LO

LO

} . (2.81)

2 In LO mode, set the density of all HI criticality tasks τi ∈ SHI to
δi(LO)/x; for LO criticality tasks τi ∈ SLO use the density δi(LO). In
LO mode, schedule all tasks by IS-DP-Fair.

3 If any HI criticality task overruns its LO level WCET, first conclude
the current slice; then, switch to HI mode by terminating all LO
criticality tasks and restoring the original deadlines of HI
criticality tasks. Schedule the remaining HI criticality tasks with
DP-Fair (densities for HI criticality tasks set by Lemma 2.13).

tasks, similarly to MC-Fluid. In LO mode, we schedule the system with
IS-DP-Fair, using the original deadlines for LO criticality tasks and the
shortened deadlines for HI criticality tasks. After a switch to HI mode,
all LO criticality tasks are dropped and we schedule the remaining HI
criticality tasks with a DP-Fair compatible scheduling technique, using
the original deadlines. While using a similar approach to MC-Fluid,
MC-IS-Fluid has two main differences:

• we shorten the deadlines of HI criticality tasks uniformly, so we are
able to provide a closed-form schedulability test; and

• we show (see Lemma 2.14) that greedily shortening the deadlines
of HI criticality tasks is optimal for schedulability in HI mode.

2.5.3.2 Schedulability Analysis for MC-IS-Fluid

In LO mode, MC-IS-Fluid uses shortened deadlines D′i = xDi, with 0 <
x ≤ 1 (see Algorithm 2.4), for all HI criticality tasks τi ∈ SHI. Therefore,
the density of each task τi ∈ SHI in LO mode increases to δi(LO)/x. MC-IS-
Fluid does not shorten the deadlines of LO criticality tasks; so, ∀τi ∈ SLO,
the density is δi(LO). We can use the schedulability test of Theorem 2.9,
by simply using the shortened deadlines for HI criticality tasks, to test
schedulability in LO mode.

Finding a closed-form schedulability test for MC-IS-Fluid in HI mode
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is less trivial because, in general, we do not know when the system
will switch to HI mode. If, at mode switch, a partially executed HI
criticality job is carried over to HI mode, we need to know the remaining
execution requirement of this job and the time until its actual deadline
in order to bound the maximum task density in HI mode. Let us denote
such maximum density of a HI criticality task τi in HI mode as δmax

i (HI).
Formally, we establish the following result.

Lemma 2.13. For any HI criticality task τi,

δmax
i (HI) = max

{
δi(HI) − δi(LO)

1 − x
, δi(HI)

}
. (2.82)

Proof. We define a carry-over job as one job that starts in LO mode but
finishes in HI mode.

Consider τi ∈ SHI. If there is no carry-over job from this task in HI
mode, then we only need to consider jobs of τi that arrive after the mode
switch. In this case the maximum density of τi in HI mode equals δi(HI).

Otherwise, we need to consider the carry-over job. Assume that the
mode switch happens t? after the arrival of a job of τi, where 0 ≤ t? ≤ xDi.
Since, according to Algorithm 2.4, the mode switch coincides with the
end of one slice in LO mode, then the density of this carry-over job in HI
mode is:

δ∗i (HI) =
Ci(HI) − δi(LO)

x t?

Di − t?
. (2.83)

Since t∗ can only vary in the interval [0, xDi], we need to find the maximum
of δ∗i (HI) within this interval. To do so, in equation (2.84) we compute
d δ∗i (HI)/dt?, i.e., the first order derivative of δ∗i (HI) with respect to t∗:

d δ∗i (HI)
dt?

=
d
(

Ci(HI)− δi(LO)
x t?

Di−t?

)
dt?

=
1

(Di − t?)2

(
−δi(LO)

x
(Di − t?) + Ci(HI) − δi(LO)

x
t?

)
=

1

(Di − t?)2

(
−δi(LO)

x
Di + Ci(HI)

)
. (2.84)

Looking at equation (2.84), the sign of d δ∗i (HI)/dt? does not change within
the interval [0, xDi]. Therefore, the maximum of δ∗i (HI) will be at one of
the extremes of the interval, according to whether δ∗i (HI) is increasing or
decreasing (respectively, if d δ∗i (HI)/dt? is positive or negative). Since the
sign of equation (2.84) is determined by the second factor, we can look at
two cases:
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• When δi(LO)/x ≤ δi(HI), equation (2.84) is non-negative and the
maximum density of the carry-over is when t? = xDi:

max
t?=xDi

{
δ∗i (HI)

}
=

Ci(HI) − δi(LO)
x xDi

Di − xDi
=
δi(HI) − δi(LO)

1 − x
(2.85)

≥ δi(HI) − xδi(HI)
1 − x

= δi(HI).

• When δi(LO)/x > δi(HI), equation (2.84) is negative and the
maximum density of the carry-over is when t? = 0:

max
t?=0

{
δ∗i (HI)

}
=δi(HI) =

δi(HI) − xδi(HI)
1 − x

>
δi(HI) − δi(LO)

1 − x
. (2.86)

Putting the two cases together, we get Lemma 2.13. �

Using Lemma 2.13, we can formally determine a schedulability test
for HI mode (Theorem 2.14).

Theorem 2.14. A dual-criticality task set S = {SHI,SLO} is schedulable in HI
mode under MC-IS-Fluid if

max

max
τi∈SHI

{δmax
i (HI)}, 1

m

∑
τi∈SHI

δmax
i (HI)

 ≤ 1. (2.87)

Proof. Theorem 2.14 directly follows from Lemma 2.13 and the DP-Fair
schedulability test [LFS+10]. �

2.5.3.3 Optimal Greedy Choice of x

So far, our analysis did not assume any particular choice of x. With
Lemma 2.14, we show now that setting x according to equation (2.81) in
MC-IS-Fluid is optimal in terms of schedulability.

Lemma 2.14. Whenever a dual-criticality task S = {SHI,SLO} is schedulable
with MC-IS-Fluid for some choice of x, it is also schedulable when x is set
according to equation (2.81).
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Proof. Based on Theorem 2.9, in order to guarantee schedulability under
IS-DP-Fair in LO mode, we have:

1
x

max
{

max
τi∈SHI

{δi(LO)}, ∆
LO
HI

m

}
+ max

max
τi∈SLO

{δi(LO)}, ∆
LO
LO

m

 ≤ 1.

(2.88)

Now, suppose that there exists some x′ which leads to a schedulable
system in both LO and HI modes. Then, in order to guarantee LO mode
schedulability, we must have that x′ ≥ x. According to Lemma 2.13 and
Theorem 2.14, if we choose x instead of x′, then the maximum task density
in HI mode will not increase and the system remains schedulable in HI
mode. Therefore, setting x according to equation (2.81) is optimal. �

Finally, with Theorem 2.15, we summarize our analysis into a complete
schedulability test.

Theorem 2.15. A dual-criticality task S = {SHI,SLO} is schedulable with MC-
IS-Fluid under the IS constraint if 0 < x ≤ 1, with x set by equation (2.81),
and condition (2.87) is satisfied.

Proof. Theorem 2.15 directly follows from Theorem 2.9, Theorem 2.14 and
Lemma 2.14. �

2.5.4 Experimental Evaluation
In the following, we evaluate the performance of IS-DP-Fair and MC-IS-
Fluid (Section 2.5.2 and 2.5.3) in terms of schedulability. Additionally, we
provide comparisons with state-of-the-art scheduling techniques.

2.5.4.1 Random Task Set Generation

We synthetically generate implicit-deadline periodic task sets at different
system utilization points. For creating basic (non mixed-criticality) IS task
classes, we generate tasks in the following manner:

• Periods are randomly chosen from {T ∈ Z | 2 ≤ T ≤ 2000}.
• Task utilizations are uniformly chosen from [0.02, 0.2].
• Tasks are equally likely to belong to task class {S1, · · · ,SK}.
• Total system utilization is defined as U :=

∑ C
T .

For creating dual-criticality, implicit-deadline task sets, we adopt the
task generator as shown in Section 2.3.3.1. We recap here important
parameters and present their configurations:
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(b) IS-DP-Fair: Impact of number of
classes on schedulability, 8 cores

Figure 2.20: Isolation Scheduling: Fraction of schedulable task sets vs. system
utilization. Red lines in plots correspond to DP-Fair.

• Probability of any task being HI criticality PHI = 0.2.

• r = Ci(HI)/Ci(LO); for each HI criticality task r is chosen uniformly
from [1, 5].

• The utilization Ubound of any dual-criticality task set is defined as
max{ULO

HI + ULO
LO,U

HI
HI}.

Periods and LO level utilizations for dual criticality task sets are generated
similar to the non mixed-critical task sets. For both basic IS task sets and
dual criticality task sets, we perform experiments with system utilizations
varying in the interval [0.1, 4] (quad-core experiments) or [0.1, 8] (octa-core
experiments). Utilization is incremented in steps of 0.1.

2.5.4.2 Schedulability

Isolation Scheduling. First, we evaluate the schedulability loss caused
by enforcing the IS constraint (i.e., mutual exclusion among task classes).
For this purpose, we generate 1000 task sets for each system utilization
and compute the fraction of task sets that are deemed schedulable under
the IS-DP-Fair approach on m = 4 and m = 8 cores. The results
are depicted in Figure 2.20(a) (4 cores) and Figure 2.20(b) (8 cores).
For both configurations, the acceptance ratio by IS-DP-Fair decreases
as the number of classes increases. This is intuitive: with only one
task class, IS-DP-Fair is equivalent to DP-Fair and hence optimal. By
adding more classes, we limit task parallelism within each class, thus
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(b) Schedulability of MC-Fluid, MC-IS-
Fluid, 8 cores

Figure 2.21: Isolation Scheduling integrated with AIS.

impairing schedulability. Our results here also match with the theoretical
analysis. According to Theorem 2.13, with increasing number of classes or
processors, the speedup bound of IS-DP-Fair to catch DP-Fair increases,
i.e., schedulability decreases.

Isolation Scheduling integrated with AIS. We now present results
for dual-criticality systems and compare our approaches to a state-of-
the-art scheduling technique MC-Fluid [LPG+14]. We present our results
in Figure 2.21(a) (4 cores) and Figure 2.21(b) (8 cores). As shown in the
figures, the feasibility of MC-IS-Fluid is very close to MC-Fluid for all
utilizations. Therefore, we conclude that for dual-criticality task systems,
the cost of enforcing Isolation Scheduling by MC-IS-Fluid is relatively
low. However, as explained for Figure 2.20(a), this cost is expected to
increase as the number of criticality levels increases.

2.5.5 Summary of Results

Section 2.5 formalized recent advances in isolation for mixed-
criticality systems into the Isolation Scheduling model, where the
hardware platform can only be accessed by one task class/criticality
at one time; thus, inter task class/criticality interferences are excluded
by construction. Optimal scheduling technique was proposed and
the limit of the new scheduling model was studied. Asymmetric
protections among different criticality levels were further integrated into
the proposed techniques to achieve runtime adaptiveness and resource
efficiency.
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2.6 Summary
Specifying the service guarantees as well as their conditions for different
criticality levels is a central problem for mixed-criticality systems.
Current results mainly follow two directions – they either mix tasks of
different criticality levels on the same computing platform and advocate
asymmetric protections among those criticality levels, or build upon
conventional isolation based models with further extensions. In the
former case, the system is advocated to react adaptively to runtime
threats (e.g., task overrun) by sacrificing less critical tasks and protecting
only critical ones. This, while being effective in improving system
resource efficiency, could greatly impair system services or even safety
(see Chapter 3).

The first contribution of this chapter is the introduction of three
different mixed-criticality models as well as corresponding scheduling
techniques, enabling flexible and practical modeling of mixed-criticality
systems. The first service adaptation model introduces explicit guarantees
for less critical tasks under urgent scenarios (i.e., degraded service
and service resetting time). The second model introduces a graphical
representation of allowed interferences among tasks of different criticality
levels. This model (called ICG) is shown to be more expressive
than conventional mixed-criticality models; furthermore, it allows
systematic optimization of system interferences thanks to its graphical
representation. The last over-clocking model allows the system to
explore hardware features to improve the service guarantees for mixed-
criticality systems. For all introduced models, accompanying scheduling
techniques are developed as case studies of those models.

The second contribution of this chapter is the formalization and
analysis of recent works on global temporal isolation among different
criticality levels. The model, called Isolation Scheduling, constructively
removes interferences on all shared resources among different criticality
levels (or task classes), by allowing only one level/class to access the
platform at one time. We propose optimal scheduling techniques and
formally study the limits of the Isolation Scheduling model. Extensions
to integrate with asymmetric isolation among different levels are also
studied to further improve the system resource efficiency.



3
Mixed-Criticality Fault-Tolerance –

Methods, Analysis and Findings

Threats that could potentially hamper correct system functioning are
necessary concerns in the design of (mixed) safety-critical systems; they
often arise from diverse sources (e.g., software faults, hardware faults,
task overrun, system overheating, design errors, etc.), and must be
controlled or mitigated in order to guarantee the system safety. In the
context of mixed-criticality systems, the possible consequences of threats
tend to get worse, as malfunctioning of less critical tasks could affect other
critical tasks through shared resources; this, however, would have been
avoided if functionalities of different criticality levels are strictly isolated.
As an example, we have discussed in Chapter 2 the scenario that an
overrun of a less critical task can delay the execution of other critical
tasks, ultimately causing them to miss their deadlines. Furthermore, due
to the mixed-criticality nature, different safety assurances are expected on
different criticality levels.

To facilitate the design of mixed-criticality systems, the industry
often follows well-established safety standards, e.g., DO-178B [DO-92]
for avionics and ISO 26262 [iso11] for automotive, with the goal
to guarantee both functional and non-functional (real-time) safety
requirements on all criticality levels. For functional safety, various
stresses (e.g., hardware/software errors) [HYT14a] need to be mitigated
through various hardening techniques including task re-execution and
replication [BDMS+11, HRH+12]. For real-time guarantees, while
conventional techniques favor strict temporal and spatial isolation among
varying criticality levels [MEA+10, GSHT13], recent advances in mixed-
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criticality advocate asymmetric isolation (AIS) among them [BD16] –
whenever timing threats (task overruns) are detected, less critical tasks
are degraded and their occupied resources are freed to guarantee more
critical tasks.

Related Work & Motivation: To a large extent, guaranteeing functional
safety and satisfying task deadlines have been studied in isolation for
mixed-criticality systems in the literature [BD16]. Making the above
two guarantees on a commercial-off-the-shelf (COTS) platform is still
not much explored. To date, the mixed-criticality community has mainly
focused on the scheduling aspect of such a challenging problem [BD16],
e.g., scheduling techniques and schedulability analysis [Ves07, BV08,
BBD+12, BCLS14, LB10, EY12, SGTG12, PK11], communication methods
and analysis [BD+13, BHI14], and interference analysis with respect to
shared resources [GSHT13, YYP+12].

Other works, though trying to address both safety and schedulability
together [BDMS+11, HRH+12, KYK+14], might incur some drawbacks:
They do not model safety explicitly according to common safety
standards, see e.g., DO-178B [DO-92] and ISO 26262 [iso11]. Furthermore,
mixed-criticality scheduling techniques commonly advocate runtime
adaptations in urgent scenarios, e.g., by dropping less critical tasks or
degrading their services [BD16]. To our best knowledge, the impact of
such reconfigurations on system safety has not been considered for single-
core/multi-core platforms.

Challenges: We tackle in this chapter mixed-criticality fault-tolerant
scheduling on homogeneous multi-core platforms (with single-core as a
special case), where both system safety and schedulability requirements
must be satisfied. Focusing on hardware/software transient errors
and dual-criticality systems, task re-execution (on each core) and
replication (on multiple cores) are considered as the adopted fault-
tolerance mechanisms. It turns out that such a problem is highly non-
trivial, as the following challenges is involved:

1 A system level model needs to be defined in the first place to specify
the desired system behavior. One essential question is involved:
Under common fault tolerance mechanisms, when should runtime
adaptation be triggered to enforce asymmetric protections among
different criticality levels?

2 A formal analysis framework is required to analyze the system
safety given a high level behavior model; this is intrinsically a
difficult problem, as in general we do not know when threats and
adaptations occur at runtime, which will affect the system safety.
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3 A scheduling framework needs to be designed to jointly consider
fault-tolerance, run-time adaptation and the real time requirements
of tasks, while respecting the different safety requirements on
different criticality levels.

Contribution: For the mixed-criticality fault-tolerance problem on multi-
core platforms, we provide a complete framework to perform system
modeling, safety analysis and scheduling, such that both system safety
and schedulability can be satisfied. In detail, our contributions can be
summarized as follows:

• We explicitly model system safety requirements on any criticality
criticality level by the corresponding pfh (probability-of-failure-per-
hour), as commonly used in safety standards [DO-92, Bro00]. This
approach could finally enable the designed techniques to be compliant
with industrial standards.

• We propose system reconfigurations to enhance resource efficiency –
when critical tasks do not succeed after a certain number of trials,
less critical tasks are refrained from execution to guarantee the critical
tasks. We formulate the fault-tolerance problem using redundancy
and adaptation profiles, where task re-execution, task replication and
system reconfigurations are considered jointly to achieve a feasible
design. We then propose a problem transformation, leveraging classical
mixed-criticality scheduling techniques to guarantee task deadlines.

• We develop diverse analysis techniques to bound system safety when
reconfigurations are triggered on each core locally or on all cores
globally; this enables the trade-off between analysis complexity and
system feasibility. To our best knowledge, those are the first results
that bound system safety in mixed-criticality systems with runtime
adaptation. Our analysis also sheds light on the intrinsic trade-off

between system safety and schedulability.

• We validate our proposed techniques with a realistic flight management
system [HYT14a] and synthetic task sets, where the impact of online
reconfigurations on the overall system feasibility is evaluated. Our
results reveal quantitatively that service degradation for mixed-
criticality systems can greatly improve system feasibility, while task
killing only helps if performed on non-safety related tasks.

Organization: The remainder of this chapter is organized as follows.
In Section 3.1, we introduce the background and define our studied
problem. Section 3.2 and Section 3.3 describe two diverse analysis
techniques to bound system safety. Section 3.4 presents our evaluation
results while Section 3.5 concludes this chapter.
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Table 3.1: Important notations in Chapter 3

Cik (χ)
WCET of task τi on criticality

level χ on core πk

τ(χ) tasks with criticality χ

τk tasks executed on core πk

τk(χ)
all tasks with criticality

level χ on core πk

N : τ × P→N Redundancy Profile (Definition 3.1)

nik abbreviation of N (τi, πk)

ni ni =
∑|π|

k=1 nik

pfh (χ)
probability of failure per hour

of tasks with criticality level χ

fi
probability that any instance of

task τi fails with Ci units of execution

df service degradation factor

N′ : τ(HI) × P→N Adaptation Profile (Definition 3.2)

n′ik abbreviation of N′ (τi, πk)

Γ (τ,P,N(·),N′(·)) constructed mixed-criticality task set

of τ based on its N(·) and N′(·).

3.1 Background & Problem Statement
We present in this section some background on mixed-criticality systems
and scheduling. We subsequently introduce our fault models, common
safety requirements as found in [DO-92, Bro00] and corresponding fault-
tolerance mechanisms. We finally present a concrete problem definition.
All important notations used in this chapter can be found in Table 3.1.

3.1.1 Mixed-Criticality Task Model
We first briefly introduce our assumed task model in this chapter.
We consider dual-criticality systems; one such system consists of |τ|
independent sporadic tasks {τi|τi ∈ τ} running on |π| identical cores π =

{π1, π2, ..., π|π|}. Each task is characterized by a 4-tuple τi = (Ti,Di,Ci, χi),
where Ti is the minimal inter-arrival time (Ti � 1 hour) and Di is the
relative deadline (Di ≤ Ti). Each instance of τi takes a constant execution
time Ci to finish at runtime. χi is the criticality level (being either high (HI)
or low (LO)) of τi. For notational convenience, we useX to denote the set
of existing criticality levels and τ(χ) to represent all tasks with criticality
level χ ∈ X. Our assumed model is simpler than the one presented
in Section 2.1, since we do not consider task overrun in this work. We
shall explain in the rest of this chapter how to transform the fault-tolerant
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Table 3.2: DO-178B safety requirements

χ A B C D E

pfh < 10−9 < 10−7 < 10−5 ≥ 10−5 −

mixed-criticality scheduling problem (Definition 3.6) into a conventional
mixed-criticality scheduling problem as shown in Section 2.1.

We assume that all tasks run for a system operation duration of Os

hours, after which the system state is reset. For example, the typical
system operation duration would be approximately 2 hours for a domestic
flight and 10 hours for a long international flight.

3.1.2 Fault Model and Safety Requirements

Due to intrinsic transient hardware/software errors [HYT14a], for any
instance of task τi, we assume there is a probability that it does not finish
successfully, denoted as fi. We assume that failures of all task instances
issued by all tasks are independent of each other.

Because of the potential faults, safety measures need to be applied to
indicate how safe a system is. We use the probability-of-failure-per-hour
(pfh), which is widely adopted in safety standards [DO-92, Bro00]; pfh can
be efficiently calculated as the system failure rate in an hour [HGST13,
Bro00]. Naturally, the exact calculation of pfh is related to the system
level on which this safety measure is required. The pfh of one single task
involves all instances of this task in one hour, while the pfh of a task set
further requires considering all tasks. According to the general safety
standard IEC 61508 [Bro00], pfh is often specified on each criticality level.
In this case, our assumption is that it represents the probability that at
least one task instance of this criticality fails in one hour. For a system
operation of Os hours, we represent pfh using its average value during
the system operation.

In this chapter, we follow the DO-178B [DO-92] safety standard, which
defines 5 criticality levels (A is the highest and E is the lowest). The
corresponding safety requirements are shown in Table 3.2. As we can
see, pfh decreases with increasing χ, i.e., safety requirements are more
stringent on higher criticality levels. We say that a mixed-criticality
system is safe if the pfh requirements on all criticality levels are satisfied,
and it is the interest of this chapter to upper-bound pfh of each criticality
level. The results of our work can be applied to a system that contains
any two criticality levels in DO-178B.
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3.1.3 Fault Tolerance

To mitigate errors and to enhance system safety, two established
approaches exist. First, one could detect such errors at runtime by
performing sanity-checks [BDMS+11]. We suppose that at the end of
a job’s WCET, it is known whether the job has failed or not; a faulty job is
re-executed in the hope that it will succeed. Second, one could replicate
the job a priori on multiple processors, enhancing the chance that one of
them will succeed. We assume both in this work: Each instance of any
task is replicated on multiple cores offline due to safety requirements,
where migrating task instances from one core to another at runtime is
forbidden due to high runtime overheads [MOP10]; in case faults are
detected on one core, the faulty task instance is re-executed locally up to
a given number of times to achieve the required safety. We assume that
all replicas of the same task instance fail independently. Note that not all
tasks need to have replicas. If a replicate of one task’s instance succeeds
on some core, replicates on the other cores need not to proceed. However,
for our safety analysis, we need to consider the worst-case (all replicas of
each task instance fail) to bound the failure probability.

We proceed to introduce some notations. We use τk to represent all
tasks mapped to core πk, and assume any instance of task τi can execute
at most nik times on core πk and at most ni times on all cores, such that∑K

k=1 nik = ni, where we call nik the re-execution profile of task τi on coreπk.
Formally, we can define a function N to jointly represent task replication
and re-execution (referred to as the system redundancy profile), for all
LO and HI criticality tasks.

Definition 3.1 (Redundancy Profile). We define the redundancy profile N :
τ × P → N, where N (τi, πk), abbreviated as nik, is the maximum number of
executions of any instance of task τi on core πk.

With the redundancy profile, we have a general problem formulation:
if a task τi is not replicated on core πk, then nik = 0; if a task τi has no
replicas, then ni = 1. Furthermore, given the redundancy profile, one
needs to solve consequently two sub-problems: 1- All tasks with their
replicas need to be scheduled on a multi-core platform while ensuring
task deadlines. 2- The safety requirements of all criticality levels need to
be satisfied given the scheduling. Afterwards, it is subject to the system
safety and schedulability analysis to find the feasible redundancy profile,
i.e. the one which meets both safety and schedulability requirements. We
will elaborate this in the rest of this chapter.

For notational convenience, we use Nk(χ) = {nik | τi ∈ τk ∧ χi = χ} to
denote the redundancy profiles of all χ criticality tasks on core πk.
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3.1.4 System Reconfiguration
Real-time embedded systems are typically resource constrained, while
task replication and re-execution are costly in terms of required resources.
To reallocate resources occupied by less critical tasks to more critical ones
when there is an urgency (i.e., when any critical task instance does not
succeed after a certain number of trials), a straightforward approach
is to drop less critical tasks or degrade their services. We note that
the embedded system industry is already investigating/adopting such
runtime adaptations in safety-critical or mixed-criticality systems, see
e.g., [ZPKW13, saf16].

However, this would naturally affect the safety of the less critical tasks
and might only work if those tasks are not safety relevant, e.g., LO = E as
shown in Table 3.2. Otherwise, the impact of system reconfigurations on
safety needs to be addressed.

We show in the following an example system on a single-core to better
explain the need of reconfiguration and its implications.

Table 3.3: Example 3.1 task set

τ τ1 τ2 τ3 τ4 τ5

χ HI HI LO LO LO

T/D 60 25 40 90 70

C 5 4 7 6 8

Example 3.1. Consider a set of 5 sporadic tasks as shown in Table 3.3 with
task parameters in units of ms, to be scheduled on a single-core. The tasks have
criticality levels HI and LO, with HI ∈ {A,B,C} and LO ∈ {D,E}. The failure
probability of each job for every task is assumed to be 10−5.

Since LO criticality tasks are either level D or level E tasks, the pfh of LO
criticality is of no interest and we can set n3 = n4 = n5 = 1. For HI criticality
tasks, we can search using our safety analysis in Section 3.2 their minimal re-
execution profiles: n1 = n2 = 3. In this case the calculated pfh of HI criticality
is 2.04 × 10−10, which satisfies the safety requirement on the HI criticality level.
This will lead to an unschedulable system as the the total system utilization is
greater than 1: 3 × ∑

τi∈τHI

Ci
Ti

+
∑

τi∈τLO

Ci
Ti

= 1.08595 > 1.

However, since there is no requirement on the upper bound of pfh for level
D/E tasks, they can be dropped without jeopardizing the system safety. Hence, to
guarantee the schedulability of HI criticality tasks, one may drop LO criticality
tasks, e.g., when any HI criticality task instance executes a third time. This will
indeed make the task set schedulable with the fault-tolerant scheduling technique
in Section 3.1.5.
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Notice that, if LO criticality level is safety relevant, then analysis techniques
should be developed to bound the impact of system reconfiguration on the safety
of LO criticality level.

To formally model reconfiguration on each core, we use τk(χ) to denote
allX criticality tasks executed on core πk. For τi ∈ τk(HI), we assume that
dropping LO criticality tasks or degrading their services is controlled by
the parameter n′ik (n′ik ∈N∧n′ik 6 nik): If no instance of any τi executes for
the (n′ik +1)th time on πk, we say πk is in a normal mode and all local tasks
can be guaranteed; otherwise, we say it is in an urgent mode and system
reconfigurations must be performed. We call n′ik the adaptation (killing
or service degradation) profile of any HI criticality task τi on core πk. We
can now define a function N′ to specify the system adaptation profile for
all HI criticality tasks.

Definition 3.2 (Adaptation Profile). We define the adaptation profile N′ :
τ(HI) × P → N. If any instance of τi starts execution for the (n′ik + 1)th time
on any core πk at time t, then one of the following two reconfigurations are
immediately performed on πk:

1- All LO criticality tasks that are currently running at t or will arrive after t
are dropped.

2- All future arrivals of LO criticality tasks are degraded with a service
degradation factor df.

The service degradation factor df characterizes the new minimal
inter-arrival time of any task τi ∈ τ(LO) after degradation (i.e., the
minimal inter-arrival time Ti increases to df · Ti immediately after service
degradation is triggered). We assume its value is provided by the system
designer; our proposed analysis techniques in this work will further
help to validate whether the provided degradation factor is feasible or
not regarding both, system schedulability and safety. For notational
convenience, we denote with N′k(HI) = {n′ik | τi ∈ τk(HI)} the adaptation
profile of all HI criticality tasks on core πk. With N′k(HI), we define LO
and HI modes on any core πk as follows.

Definition 3.3 (Core Mode). Consider core πk alone: If no instance of any
τi ∈ τk(HI) executes for the

(
n′ik + 1

)
th time, then πk is in LO mode. Otherwise,

πk is in HI mode, see Figure 3.1(a).

In the current work, we do not consider the switching from HI mode
back to LO mode. This would result in more complex safety analysis,
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LO mode HI mode

(a) Core modes with redundancy & adaptation profiles - if a HI criticality task τi’s
instance exceeds on core πk its LO mode re-execution profile (n′ik, also called its
adaptation profile), πk enters HI mode where any HI criticality task τi’s job can
execute up to nik times (HI mode re-execution profile) and LO criticality tasks are
dropped or degraded (Definition 3.2).

π|π|

πk

π1

LO mode HI mode

(b) Global switching

π|π|

πk

π1

LO HI

LO HI

LO HI

(c) Local switching

Figure 3.1: Core modes, global & local switching

which is out of the scope of this chapter.

It is still open how different cores coordinate their mode switches
from LO to HI mode. There exists options to either trigger system
reconfigurations synchronously on all cores (global switching) or
asynchronously on each core (local switching). We formally define the
options as follows.

Definition 3.4 (Global Switching). All cores in our system switch from LO
to HI mode (Definition 3.3) at the same time whenever mode switch is signaled
on any core, see Figure 3.1(b).

Definition 3.5 (Local Switching). Any core in our system switches from LO
to HI mode (Definition 3.3) independently of other cores, see Figure 3.1(c).
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We explore the trade-offs between global and local switching in this
chapter: Global switching leads to a greatly reduced number of system
states since at any time the platform can be in either HI or LO mode. This
simplifies system safety analysis as compared to local switching, whose
possible number of system states is 2|π| at any time t (each core can be
in either HI or LO mode). However, global switching is pessimistic as
reconfiguration on any core can be triggered by any other core.

3.1.5 Fault-Tolerant Mixed-Criticality Scheduling
We have introduced above the redundancy and adaptation profiles to
achieve a safe and efficient design of mixed-criticality systems, assuming
transient errors. The remaining question is how to schedule a system
given those profiles.

Our key observation is that the fault-tolerant mixed-criticality
scheduling problem can be directly transformed into a classical mixed-
criticality scheduling problem. We now briefly discuss the conventional
mixed-criticality scheduling problem [BD16], we then establish a link
between this problem and the fault-tolerant mixed-criticality scheduling
problem in the current chapter.

Classical mixed-criticality scheduling problem: Analogous to Sec-
tion 3.1.4, this problem assumes that the system starts with a nominal
(LO) mode, where all tasks are guaranteed with their “normal” WCETs
(Ci(LO),∀τi). Exceeding normal WCETs is forbidden for LO criticality
tasks but allowed for HI criticality tasks. Whenever any HI criticality task
exceeds its LO mode WCET, the system enters HI mode. Thereafter, HI
criticality tasks are allowed larger WCETs (Ci(HI),∀τi ∈ τ(HI)), while
LO criticality tasks are dropped or degraded. In this context, both
partitioned [GSHT14] and global [HGA+15] scheduling techniques are
proposed for mixed-criticality systems on multi-core platforms. Note
that tasks of different criticality levels are asymmetrically isolated as LO
criticality tasks cannot interfere with HI criticality tasks, while the
opposite is allowed. This improves resource efficiency and differs
from industrial approaches which enforce static temporal and spatial
isolation [DO-92]. A detailed description of this problem has already
been presented in Section 2.1.

Establish the link: For the problem in this work, first, since task
instances are statically mapped to each core and task migration is
forbidden due to excessive cost (see Definition 3.1), it follows that we
have a classical partitioned scheduling problem. Second, on each core
πk, system reconfiguration is triggered when any HI criticality task τi’s
instance executes too many times, see Definition 3.2. We can translate
this into a sufficient condition that, whenever any HI criticality task τi’s
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instance exceeds its LO WCET Cik(LO) = n′ikCi on core πk, then system
reconfiguration is triggered. Afterwards, core πk is in HI mode, and we
guarantee a HI criticality WCET for any HI criticality task τi, defined as
Cik(HI) = nikCi.

For any instance of a LO criticality task τi, it cannot exceed its allocated
number of redundancies; therefore, we have Cik(HI) = Cik(LO) = nikCi for
all LO criticality tasks. We shall use Cik (χ) to denote the WCET of τi

on χ criticality level and on core πk. In other words, the original mixed-
criticality problem deals with timing errors (i.e., task overrun), thus it uses
multiple WCETs for a task on different criticality levels. In this chapter,
we focus on hardware/software transient errors, and task re-executions
are modeled as overrun in the standard mixed-criticality model.

In summary, the impact of reconfigurations on schedulability is
considered implicitly assuming classical mixed-criticality scheduling
techniques. For the fault-tolerant mixed-criticality scheduling problem,
a mixed-criticality task set Γ (τ,P,N(·),N′(·)) can be constructed given τ,
P, N(·) and N′(·), as discussed above. In this notation, any task can
be duplicated into multiple sub-tasks running on different cores due to
replication. Thus, we can adopt well-studied mixed-criticality scheduling
techniques [BD16] to schedule tasks locally on each core. We focus in
this work on the partitioned EDF-VD method [BCLS14], where EDF-
VD [BBD+12] scheduling is adopted locally on each core. However,
such an approach can be easily extended to consider other scheduling
techniques. EDF-VD follows the standard mixed-criticality model and
adopts EDF scheduling in both LO and HI modes. It uses shortened
virtual deadlines (VD) for HI criticality tasks in LO mode, such that
enough slack time is left between the virtual and actual deadlines to
accommodate job overruns.

Finally, we define the problem studied in Chapter 3 as follows.

Definition 3.6 (Fault-Tolerant Mixed-Criticality Scheduling on Multi-
cores (FMSM)). Given a set of identical cores P, a dual-criticality sporadic task
set τ and the probability of failure fi for any instance of each task τi. Assume
partitioned EDF-VD scheduling [BCLS14], find N(·) (Definition 3.1), N′(·)
(Definition 3.2), such that both safety and schedulability of Γ (τ,P,N(·),N′(·))
are satisfied with global switching (Definition 3.4) or local switching (Definition
3.5).

The core of the above problem is the system safety analysis under N(·)
and N′(·), while system schedulability is guaranteed with partitioned
EDF-VD and under a problem transformation. We shall focus on
safety analysis in this chapter and leverage standard search methods
(see Section 3.4) to find N(·) and N′(·) once the safety analysis is performed.
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3.2 Safety Analysis Under Global Switching
We quantify in this section system safety on different criticality levels
assuming global switching (Definition 3.4), with or without task killing
or service degradation.

3.2.1 Basic Safety Quantification
First, we study safety quantification without applying task killing or
service degradation, i.e., basic safety quantification. For HI criticality
tasks, this is apparently needed as they can never be killed or degraded
in our model; for LO criticality tasks, basic safety quantification is also
interesting as it will serve as a baseline to compare with the other cases
when reconfigurations are applied. Recall that any instance of τi can
execute at most nik times on core πk and ni times on all cores for one job
arrival. We refer to ni times of executions of one arrived instance of τi as
one round. In the worst-case, a round of τi fails if all ni instances of τi fail
in this round. To further quantify the worst-case pfh in any interval, we
need to upper bound the maximum number of rounds of any task τi in
any interval. Formally, we have the following result.

Lemma 3.1. Given τ, P and N(·), the maximum number of rounds of τi that
any time interval of length t can accommodate, ri(N (·) , t), is given by:

ri(N (·) , t) = max
{⌊

(t + Di −max
k
{nik} · Ci)

/
Ti

⌋
, 0

}
+ 1. (3.1)

Proof. This lemma is proved by an induction process as shown in
Figure 3.2. The shortest time interval length that can accommodate one
round failure is simply zero, supposing that the failure just falls in this
interval (say, it happens at time instant t). In order to have a shortest
time interval to accommodate one more round failure, we have to let
the two failures happen as close as possible. The latest time instant

the last round can start is
(
t −max

k
{nik} · Ci

)
, hence the second last round

starts at
(
t −max

k
{nik} · Ci − Ti

)
and fails at

(
t′ = t −max

k
{nik} · Ci − Ti + Di

)
,

which is the time instant that this round ends and the latest time instant
it can fail. Similarly, the third last round fails at time instant (t′ − Ti).
Therefore, the shortest time interval lengths that can accommodate

one, two and three failures of τi are zero,
(
max

k
{nik} · Ci + Ti −Di

)
and(

max
k
{nik} · Ci + 2 · Ti −Di

)
, respectively. By induction, the shortest length
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π|π|
t

πk

π1

t′

Ti

Di

t′ − Ti

Ti

Di

max
k
{nikCi}

τi

Figure 3.2: Induction process for Lemma 3.1

of the time interval that can accommodate n round failures of τi equals

max
{(

max
k
{nik} · Ci + (n − 1) · Ti −Di

)
, 0

}
. (3.2)

Based on equation (3.2), the maximum number of rounds of τi in any time
interval of length t is derived, as shown in equation (3.1). Note that we
use floor (b c) here to calculate the value of (n − 1). �

Lemma 3.1 derives the worst-case number of rounds for any task in
a time interval on all cores. Similarly, we can also upper-bound the local
rounds of τi in any time interval on a core πk, as shown in the following
result.

Corollary 3.1. Consider core πk, given τ and N(·), the maximum number of
local rounds of τi in any time interval of length t, rik(nik, t), is given by:

rik(nik, t) = max {b(t + Di − nik · Ci)/Tic , 0} + 1. (3.3)

Proof. Proof can be similarly derived as in Lemma 3.1. �

With Lemma 3.1, we can upper-bound the pfh of any criticality level.
The worst-case failure rate of any task τi in a given time interval happens
when this interval accommodates the maximum number of rounds of τi
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and each round fails; adding up those failure rates over all tasks of one
critical level, we get the pfh on this criticality level. This is summarized
into the following result.

Theorem 3.1. Given τ, P and N(·), pfh(χ) (probability-of-failure-per-hour of
χ criticality) can be upper bounded by:

pfh(χ) =
∑
τi∈τ(χ)

ri(N (·) , t) · f ni
i , t = 1 hour. (3.4)

Proof. For any task τi ∈ τ(χ), the probability that τi does not fail in any
time interval of length t is lower bounded by

(1 − f ni
i )ri(N(·),t), (3.5)

since all task instances fail/succeed independently. Thus, the probability
that any τi ∈ τ(χ) fails in any time interval of length t, can be upper
bounded by:

1 −
∏
τi∈τ(χ)

(1 − f ni
i )ri(N(·),t). (3.6)

Due to f ni
i � 1, we only consider its first order terms. Hence equation (3.6)

can be tightly upper-bounded by:

1 −
1 −

∑
τi∈τ(χ)

ri(N (·) , t) · f ni
i

 =
∑
τi∈τ(χ)

ri(N (·) , t) · f ni
i . (3.7)

Thus, the upper bound of pfh (χ) can be computed by setting t = 1 hour
as shown in equation (3.4). �

Summarizing, Lemma 3.1 and Theorem 3.1 enable us to quantify the
upper bound of probability of failure per hour of any criticality level
without system reconfigurations. Note that in Theorem 3.1, one could set
t to Os hours and derive the average pfh in the system operation. We do
not consider this since for our assumption (Ti � 1 hour), equation (3.4)
tightly upper-bounds the average pfh.

3.2.2 Safety Quantification with Task Killing
We proceed to quantify the system safety under task killing and global
switching. As discussed, this only has an impact on the safety of LO
criticality tasks. We will consider a system operation of Os hours, after
which the system state is reset. Os will directly affect the probability of
task killing and consequently the system safety.
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Recall that on any core πk, for any τi ∈ τk(HI), killing LO criticality
tasks is controlled by n′ik: if any instance of τi executes for the

(
n′ik + 1

)
th

time, then all LO criticality tasks are killed immediately on all cores.
We first quantify the probability that killing LO criticality tasks is

triggered by core πk within a time interval of length t; we calculate this
by using its complementary probability. Subsequently, we can derive the
probability of task killing globally triggered by any core. Formally, we
present the following lemma to quantify the probability that task killing
or service reconfiguration is not triggered on one core.

Lemma 3.2. Suppose that τk(HI) , ∅ and N′k(HI) is given. Then, the
probability that no instance of any τi ∈ τk(HI) starts executing for the (n′ik +1)th
time on πk in a time interval of length t is lower bounded by:

Rk

(
N′k(HI), t

)
=

∏
τi∈τk(HI)

(1 − f
n′ik
i )rik(n′ik,t). (3.8)

Proof. ∀τi ∈ τk(HI), the probability that an instance does not execute for
the (n′ik+1)th time in each round is (1− f

n′ik
i ), since this is the complementary

probability that all the first n′ik executions of τi’s instance fail. The
maximum number of rounds of τi on core πk in a time interval of length
t is rik(n′ik, t) according to equation (3.3). Thus, the probability that no
instance of τi executes for the (n′ik + 1)th time in a time interval of length t
is lower bounded by (1 − f

n′ik
i )rik(n′ik,t). Equation (3.8) is the product of such

probabilities over all tasks in τk(HI), which lower-bounds the probability
that no instance of any τi ∈ τk(HI) executes for the (n′ik + 1)th time in a
time interval of length t on core πk.

�

According to equation (3.8), Rk(N′k(HI), t) decreases with increasing
t, which implies that the probability of task killing (or service
reconfiguration) increases as time elapses – Rk(N′k(HI), t) approaches 0 if
t is infinity, thus killing LO criticality tasks eventually occurs for certain.
For HI criticality tasks, their safety is not affected as task killing is only
performed for LO criticality tasks and cannot hamper the execution of
HI criticality tasks. For LO criticality tasks, an instance of any τi ∈ τ(LO)
does not fail if it is not killed and one of its replicas succeeds. We can
thus first bound the failure probability of each round for any task. We
then derive the upper bound of failure rates of any τi ∈ τ(LO) in a time
interval by adding the failure probability of each round in this interval
and by maximizing the number of rounds of τi in it. This is summarized
in Theorem 3.2.
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Theorem 3.2. Given τ, P, N(·) and N′(·), assuming task killing and global
switching, pfh (HI) can be calculated as shown in Theorem 3.1, since HI
criticality tasks are not affected. Furthermore, for any τi ∈ τ(LO), define
yi (t) as a sequence of timing points unique to τi:

yi (t) = {t −max
k
{nik} · Ci −m · Ti + Di

| m ∈N ∧m ≥ 1 ∧m < ri(N (·) , t)} ∪ {t}.
(3.9)

pfh (LO) can then be upper-bounded by:

1
Os

∑
τi∈τ(LO)

∑
α∈yi(t)

1 −
 K∏

k=1

Rk(N′k(HI), α)

 · (1 − f ni
i

)
, (3.10)

where t = Os denotes the system operation hours.

Proof. For one round of any τi ∈ τ(LO) finishing at time t, the probability
that τi fails in this round can be upper bounded by:

1 −
 K∏

k=1

Rk(N′k(HI), t)

 · (1 − f ni
i ). (3.11)

Our explanations are as follows: In a time interval of length t, the
probability that no instance of any τi ∈ τk(HI) executes for the (n′ik + 1)th
time on all cores can be lower bounded by:

K∏
k=1

Rk

(
N′k(HI), t

)
. (3.12)

In addition, equation (3.12) also lower bounds the probability that LO
criticality tasks are not killed under global switching. (1 − f ni

i ) is the
probability that τi does not fail by itself in this round. Thus, the product(∏K

k=1 Rk(N′k(HI), t)
)
· (1 − f ni

i ) lower bounds the probability that τi does
not fail in this round; its complement equation (3.11) computes the upper
bound of the probability that τi fails in this round.

To get the worst-case failure rate for τi ∈ τ(LO) in a time interval
of length t, we need to maximize the number of rounds in it, simply
because this leads to the maximum number of rounds that can fail.
Since equation (3.8) decreases with increasing t, each round should finish
as late as possible to maximize failure probability, see equation (3.11).
Applying Lemma 3.1, the ri(N (·) , t)th round, in the latest case, starts at
(t − max

k
(nik) · Ci) and ends at t; similarly, the (ri(N (·) , t) − 1)th round
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starts at (t −max
k

(nik) · Ci − Ti) and finishes at (t −max
k

(nik) · Ci − Ti + Di).

By induction, in the worst case, the (ri(N (·) , t) − m)th round starts at
(t−max

k
(nik) ·Ci −m · Ti) and must finish by (t−max

k
(nik) ·Ci −m · Ti + Di)

(except for the last round, which finishes at t). Thus, for any τi ∈ τ(LO),
we use yi (t) to denote this sequence of latest finishing times for all rounds
of τi, while the total number of rounds is maximum.

With the above results, we can upper bound the probability of failure
of the round of τi finishing at α ∈ yi (t) by 1−

(∏K
k=1 Rk(N′k(HI), α

)
· (1− f ni

i ).
Therefore, pfh (LO) can be upper bounded by equation (3.10) (upper
bound of failure rate during system operation of Os hours divided by
Os) under global switching and task killing. �

Theorem 3.2 states that the safety of HI criticality tasks are not affected
under task killing since those tasks can always execute based on their
redundancy profiles. Theorem 3.2 further upper-bounds the pfh of LO
criticality level under global switching and task killing. This is done
by first identifying a worst-case scenario yi (t) for each task τi and then
applying it to every LO criticality task. Our result confirms that the safety
of LO criticality tasks depends on the adaptation profiles of HI criticality
tasks according to equation (3.10). With decreasing adaptation profiles,
LO criticality tasks are killed more often, leading to reduced system safety
if killed tasks are safety related. One can also observe that as the system
operation duration increases, the pfh of LO criticality level also tends to
be worse, since LO criticality tasks are more likely to be killed as time
progresses.

3.2.3 Service Degradation instead of Task Killing
Though task killing can greatly improve system schedulability [BD16], in
practice, service degradation is often preferred due to constant service
requirements on all criticality levels. In addition, task killing might
directly violate system safety, as LO criticality tasks (could still be safety-
related) are completely removed in such a drastic approach.

When service degradation is triggered, LO criticality tasks will have
a service degradation factor df larger than one – for any τi ∈ τ(LO), its
minimal inter-arrival time becomes df ·Ti. In addition, service degradation
on all cores are synchronously triggered due to global switching. We now
quantify the impact of service degradation on system safety under global
switching – for a system operation interval of Os hours, find the worst-
case switching time, such that the total failure rates of any task in this
interval are maximized (worst-case). This is summarized in Theorem 3.3.
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Theorem 3.3. Given τ, P, N(·) and N′(·), assuming service degradation under
global switching, pfh (HI) can be upper-bounded by Theorem 3.1 as HI criticality
tasks are not affected. Additionally, we define si(N(·), df, t) as the maximum
number of rounds that τi ∈ τ(LO) can fail (or accommodate) in an interval of
length t with service degradation factor df if service degradation is triggered at
the beginning of this time interval:

si(N(·), df, t) = max


 t + Di −max

k
{nik} · Ci

df · Ti

 , 0
 + 1. (3.13)

Furthermore, z
(
df, t

)
is defined as the upper bound of failure probability of LO

criticality tasks in this time interval:

z
(
df, t

)
=

∑
τi∈τ(LO)

si(N(·), df, t) · f ni
i . (3.14)

pfh (LO) can then be upper bounded by

1
Os

1 −
K∏

k=1

Rk(N′k(HI), t)

 · z (1, t) , (3.15)

where t = Os hours.

Proof. First of all, suppose that service of any τi ∈ τ(LO) is degraded
with a service degradation factor df in a time interval of length t on
all cores. Equation (3.13) can be derived according to Lemma 3.1. In
addition, according to Theorem 3.1, equation (3.14) upper-bounds the
probability of failure of LO criticality tasks in a time interval of length
t if service degradation of LO criticality tasks is already triggered. We
assume global switching happens at time instant λt (0 ≤ λ ≤ 1). Based on
equation (3.12), the probability that LO criticality tasks are not degraded
till λt under global switching is lower bounded by:

K∏
k=1

Rk

(
N′k(HI), λt

)
. (3.16)

The complement of equation (3.16) upper bounds the probability
that LO criticality tasks are degraded at time instant λt. For a system
operation interval of length t, from starting to λt, service degradation of
LO criticality tasks on all cores is not triggered thus probability of failure
of LO criticality tasks is upper bounded by z (1, λt). From λt to t, service
of LO criticality tasks is degraded with df on all cores; hence, failure
probability of LO criticality tasks is upper bounded by z (df, (1 − λ)t).
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Therefore, probability of failure of LO criticality tasks on all cores in a
system operation interval of length t under global switching and service
degradation can be upper bounded by:1 −

K∏
k=1

(Rk(N′k(HI), λt)

 (z (1, λt) + z (df, (1 − λ)t)) . (3.17)

Based on the proof of Lemma 3.2, equation (3.16) decreases while
λ increases. Furthermore, with increasing λ, z (1, λt) increases while
z (df, (1 − λ)t) decreases. However, the increasing rate of z (1, λt) is larger
than the decreasing rate of z (df, (1 − λ)t). This is because for a time interval
of fixed length, if service degradation of τ(LO) is triggered, any τi ∈ τ(LO)
accommodates less number of failures than it can accommodate without
service degradation. Thus, (z (1, λt)+z (df, (1 − λ)t)), accordingly the upper
bound of pfh (LO), is maximum when λ = 1. �

Theorem 3.3 calculates the pfh of LO criticality level under service
degradation and global switching. This is done by finding the worst-
case mode switching time within a system operation of Os hours, such
that the total failure rates of LO criticality tasks are maximized. The
choice of Os depends on the system under consideration; for our analysis,
it is required to bound the mode switch probability and to search for a
worst-case scenario. Together with Theorem 3.2, this concludes our safety
analysis under global switching.

3.3 Safety Analysis Under Local Switching
We proceed to perform safety analysis under local switching (Defini-
tion 3.5). Unlike global switching as presented in the previous section,
local switching provides the flexibility for each core to switch from LO to
HI mode independently, reducing the pessimism that LO criticality tasks
must be killed or degraded on all cores at once. However, this complicates
the analysis as the possible system states explode (i.e., when and which
cores incur reconfigurations). We focus on analyzing the case with task
killing. An analysis for service degradation under local switching is
provided in [ZHT16].

3.3.1 Task Killing Under Local Switching
Our key intuition is that, despite the combinatorial nature of the problem,
we can still perform a round per round analysis to pessimistically bound
system failure rates. The main reason is that, for any LO criticality task
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τi on any core πk, we can bound the probability of executing each round.
This enables us to further bound the failure probability of each round on
each core independently of other cores.

Recall that any instance of τi ∈ τ(LO) can execute at most nik times on
core πk for one job arrival. A round of τi fails on πk if it is killed or all
nik instances of τi fail in this round on πk. We quantify the upper bound
of failure probability of one round of τi finishing at time t on each core
πk individually. The product of such probability across all cores bounds
the failure probability of one round of τi finishing at time t. Furthermore,
by taking the maximum number of rounds τi can encounter in a time
interval and adding up the failure probability of each round, we get the
worst-case failure rate of a single task; from this, pfh(LO) can be further
derived. This analysis is formally presented in Theorem 3.4.

Theorem 3.4. Given τ, P, N(·) and N′(·), assuming task killing under local
switching, pfh (HI) can be upper-bounded by Theorem 3.1 as HI criticality tasks
are not affected. We further define uik (t) as the upper bound of failure probability
of one round of τi ∈ τk(LO) finishing at time t on πk:

• if nik = 0,
uik (t) = 0, (3.18)

• if ∃τj ∈ τk(HI) : njk , 0 ∧ n′jk = 0,

uik (t) = 1, (3.19)

• if
(
(Nk(HI) = ∅) ∨

(
Nk(HI) = N′k(HI)

))
∧ (nik , 0),

uik (t) = f nik
i , (3.20)

• if
(
N′k(HI) , ∅

)
∧

(
Nk(HI) , N′k(HI)

)
∧ (nik , 0),

uik (t) = 1 − Rk

(
N′k(HI), t

)
·
(
1 − f nik

i

)
. (3.21)

Using yi (t) (see equation (3.9)), pfh(LO) can be upper bounded by:

1
Os


∑

τi∈τ(LO)

∑
α∈yi(t)


K∏

k=1
uik(α),0

uik (α)


 , (3.22)

where t = Os hours.

Proof. Recall that, for any core πk, killing τi ∈ τ(LO) is adopted when any
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τj ∈ τk(HI) executes for the
(
n′jk + 1

)
th time; we derive the upper bound of

failure probability of one round of τi finishing at t on πk as uik (t) in four
cases.

1. If nik = 0, then there is no instance of τi executing on πk. Hence, τi

does not fail on πk, we have equation (3.18).

2. If ∃τj ∈ τk(HI) : njk , 0 ∧ n′jk = 0, then τj executes on πk with “zero”
adaptation profile, meaning that any τi ∈ τk(LO) will be killed when
the first instance of τj starts to execute. Thus, in the worst case, any
τi ∈ τ(LO) will not execute (i.e., simply fail), we have equation (3.19).

3. If
(
(Nk(HI) = ∅) ∨

(
Nk(HI) = N′k(HI)

))
∧(nik , 0), then onπk, there are

no HI criticality tasks or redundancy profile of HI criticality tasks
equals their adaptation profile; in both cases, killing LO criticality
tasks will not be triggered on πk. Hence, one round of τi ∈ τk(LO)
fails with probability f nik

i on πk, we have equation (3.20).

4. If
(
N′k(HI) , ∅

)
∧

(
Nk(HI) , N′k(HI)

)
∧ (nik , 0), then killing LO

criticality tasks is triggered on πk when any task τj ∈ τk(HI) executes
the (n′jk + 1)th time. Based on our system model, for one round of
τi ∈ τk(LO) ends at t, Rk(N′k(HI), t) lower bounds the probability that
it is not killed until t. Therefore, the probability that it does not fail is
lower bounded by Rk(N′k(HI), t)·

(
1 − f nik

i

)
, whose complement yields

the upper bound of the probability that it fails, see equation (3.21).

Second, to get the worst-case failure rate for τi ∈ τ(LO) in a time interval
of length t, we need to get the maximum number of rounds it can
accommodate in this time interval so that the number of rounds it can fail
is maximum. In addition, all rounds on all cores should end as late as
possible to get the maximum value of equation (3.21). According to the
proof of Theorem 3.2, for any τi ∈ τ(LO), yi (t) is a sequence of the latest
time that each round of τi finishes while there are maximum number of
rounds in the considered interval.

As shown above, equations (3.18), (3.19), (3.20) and (3.21) upper bound
uik (t) for any τi ∈ τ(LO) in all possible cases. Thus, based on our system
model, one round of τi ∈ τ(LO) finishing at time t fails if it fails on all
cores with probability upper bounded by:

K∏
k=1

uik(t),0

uik (t) . (3.23)
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The complement of equation (3.23),

1 −
K∏

k=1
uik(t),0

uik (t) , (3.24)

lower-bounds the probability that one round of τi ∈ τ(LO) finishing at t
does not fail. Thus, the probability that τi ∈ τ(LO) does not fail in a time
interval of length t can be lower bounded by the probability that ri(N (·) , t)
rounds have all executed successfully:

∏
α∈yi(t)

1 −
K∏

k=1
uik(α),0

uik (α)

 . (3.25)

Taking the complement of equation (3.25), the probability of failure of
ri(N (·) , t) rounds of τi ∈ τ(LO) in a time interval of length t can be upper
bounded by

1 −
∏
α∈yi(t)

1 −
K∏

k=1
uik(α),0

uik (α)

 . (3.26)

Due to
K∏

k=1
uik(α),0

uik (α) � 1, we only consider its first order terms,

equation (3.26) can be tightly upper-bounded by

∑
α∈yi(t)


K∏

k=1
uik(t),0

uik (t)

 . (3.27)

Therefore, the upper bound of pfh(LO) in a system operation of Os hours
can be calculated as the average overall failure rates in this interval, as
shown in equation (3.22). �

Theorem 3.4 upper-bounds the pfh of LO criticality level under task
killing and local switching. From the analysis, we can observe that as the
system operates longer (i.e., Os increases), the pfh of LO criticality also
increases as LO criticality tasks are more likely to be killed.

3.4 Evaluation
We validate in this section our proposed techniques with both a real-life
flight management system (FMS) application and synthetic task sets. As
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for the FMS application, we show the impact of task killing and service
degradation on system safety and schedulability; with synthetic task sets,
we present the improvements of system feasibility achieved by task killing
or service degradation.

3.4.1 Flight Management System
Task killing or service degradation under global/local switching are
evaluated with a real-life flight management system, and their impact on
system safety and schedulability is studied. The considered FMS consists
of 7 DO-178B criticality level B tasks and 4 criticality level C tasks, with
detailed parameters found in Table 2.2. As we consider HI = B and LO =

C, the safety requirements are pfh(HI) < 10−7 and pfh(LO) < 10−5. We
assume any instance of each task is subject to a constant failure probability
10−5 [HYT14a]. We conduct our experiments on dual-core/quad-core
platforms: For all cases, we first find a feasible redundancy profile N(·) to
satisfy system safety and schedulability without system reconfigurations,
while load balancing is achieved at the same time by applying a genetic
optimization algorithm [ga]. We then fix N(·) and increase the adaptation
profile N′(·) of all HI criticality tasks to show the impact (assuming
a uniform adaptation profile for all HI criticality tasks). The service
degradation factor df is set to 5 in case of degrading LO criticality tasks.
We present our results in Figures 3.3 and 3.4, where the x-axis represents
the values of the adaptation profile of all HI criticality tasks, the left y-axis
(uMax) represents the maximum utilization factor across all cores and the
right y-axis represents the upper bound of pfh (LO) in logarithmic scale.
In our experiments, the upper bound of pfh (HI) always satisfies safety
requirements. pfh (HI) in logarithmic scale equals −35.17 and −75.17 on
dual-core and quad-core systems, respectively. Additionally, the impact
of the adoption of task killing or service degradation is evaluated.

3.4.1.1 Analysis of Experiment Results

First of all, we can observe that in all cases, with increasing values
of adaptation profile of all HI criticality tasks, system schedulability is
hampered while safety is enhanced. With a larger adaptation profile, LO
criticality tasks are killed/degraded less likely (often), see our analysis
in Section 3.2 and Section 3.3. This will not help for system schedulability,
as we would kill or degrade LO criticality tasks frequently to improve
schedulability. However, system safety can be improved, simply because
LO criticality tasks are killed/degraded less likely. For example, with task
killing under global switching on a dual-core platform (Figure 3.3(a)),
the maximum utilization across all cores is increased from 0.345 to 0.603
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Figure 3.3: FMS: Global Switching
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Figure 3.4: FMS: Local switching
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with adaptation profile increasing from 0 to 3; at the same time, pfh(LO)
decreases by 10 orders of magnitude.

Next, as expected, we can observe that with more cores, system
schedulability can be improved. For instance, considering an adaptation
profile of 3 under service degradation and global switching (Figure 3.3(c)
and 3.3(d)), the maximum utilization factor across all cores on dual-core
(0.652) is larger than that (0.578) on quad-core. However, the difference
here is not large: In order to evaluate the impact of adaptation profile on
system feasibility, we fixed the redundancy profile of all 7 HI criticality
tasks on each core to 4. Thus, load balancing is only performed for 4
LO criticality tasks of low utilizations, which will not result in a large
difference in the maximum utilization across all cores.

Furthermore, if we compare task killing with service degradation
under global switching (e.g., Figure 3.3(a) and Figure 3.3(c)), we can
observe that task killing improves system schedulability more, while
jeopardizing more system safety. Task killing is more abrupt than service
degradation; when triggered, it removes all LO criticality tasks either
locally (local switching) or globally (global switching), freeing more
resources to guarantee schedulability of HI criticality tasks while affecting
the safety of LO criticality tasks. For example, as shown in Figure 3.3,
task killing satisfies system safety only with an adaptation profile of 3,
while service degradation satisfies safety requirements in all cases.

Last, by comparing global with local switching (e.g., task killing in
Figure 3.3(b) and Figure 3.4(b)), we can observe that both incur similar
impacts on system schedulability, since the worst-case is that all LO
criticality tasks are killed to guarantee schedulability of HI criticality tasks.
However, global switching has a stronger impact on system safety – in
global switching, killing LO criticality tasks can be triggered by any core,
leading to a significantly higher killing probability for LO criticality tasks
than in case of local switching. Regarding task killing in all cases (Figure
3.3(a), 3.3(b), 3.4(a) and 3.4(b)), system safety is guaranteed with a larger
adaptation profile under global switching (∀τi ∈ τ(HI),∀πk ∈ P : n′ik = 3)
than that under local switching (∀τi ∈ τ(HI),∀πk ∈ P : n′ik = 2).

3.4.1.2 Summary of Results

We conclude that system safety and schedulability contradicts with
each other under system reconfiguration. To improve system safety,
either the redundancy or the adaptation profile needs to be increased.
However, this increases system utilization and hampers schedulability.
Those trade-offs can be quantified by the analysis techniques proposed
in this chapter.



106 Chapter 3. Mixed-Criticality Fault-Tolerance – Methods, Analysis and Findings

3.4.2 Synthetic Task Sets
We proceed to validate the analysis and design methods on synthetic
task sets. It is well known that task killing or service degradation can
improve mixed-criticality system schedulability [BD16]. With explicit
safety analysis under system reconfigurations, we study here whether
they can help improve system feasibility if safety is also involved. To
this end, we adopt a well-known random mixed-criticality task generator
to generate 200 task sets at each system utilization point [BD16]. The
task generation is slightly modified as compared to [BD16] to fit our
system model in Section 3.1. We repetitively apply random search to each
task set to find feasible design parameters under various assumptions
(e.g., local/global switching, task killing/service degradation); if the search
process is successful then the task set is said to be feasible (otherwise not).
We then compare the system acceptance ratios (the ratio of the number
feasible task sets to the number of tested task sets) for those different
assumptions at each data point.

3.4.2.1 Task Generation

Random implicit deadline dual-criticality task sets are generated. We
adopt a similar task generator to that shown in Section 2.3.3.1, with the
following configuration of controlling parameters:

• The utilization (Ci
Ti

) of any task τi is uniformly drawn from [0.02, 0.2].

• The system utilization U is defined as
∑
τi

Ci

Ti
.

• The minimal inter-arrival time of each task is generated uniformly
from [2, 2000]ms.

• The probability a generated task has HI criticality PHI is set to 0.2.

The random task generator starts with system utilization factor U = 0.2
and randomly adds new tasks into this task set until a certain U is reached
(U in increments of 0.2). Notice that, system reconfiguration is applied
only if it is not feasible without reconfiguration.

3.4.2.2 Analysis of Results

We present our results in Figures 3.5, 3.6 and 3.7, where the x-
axis represents system utilization before applying redundancies or
adaptations, the y-axis represents the acceptance ratio, and f represents
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Figure 3.5: Feasibility evaluation with global switching

the universal failure probability of any task instance. We provide here
our results for dual-core and quad-core systems.

First, as expected, it can be observed that system feasibility constantly
improves with more reliable hardware platforms (decreasing f ) or more
cores. For example, consider system utilization U = 1 on a dual-
core/quad-core platform (LO = E) without task killing. The acceptance
ratio increases from 60% to 100% as f decreases from 10−3 to 10−7 on a
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Figure 3.6: Feasibility evaluation with global switching

dual-core platform (Figure 3.5(a)). With f = 10−3, the acceptance ratio
increases from 60% (Figure 3.5(a)) to 99% (Figure 3.5(c)) as the number of
cores increases from 2 to 4.

Next, according to the results shown in Figure 3.5, if LO criticality
tasks are not safety related (LO = E), system feasibility can be improved
by both task killing and service degradation. In addition, task killing
performs better than service degradation here, since it can safely remove
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Figure 3.7: Feasibility evaluation with local switching

all LO criticality tasks to improve schedulability. For example, consider
U = 2 and f = 10−3 on a quad-core platform (Figure 3.5(c) and 3.5(d)).
Acceptance ratio increases by 38.26%/11.30% under killing/degradation
as compared to the case when only redundancies are applied.

Moreover, as shown in Figure 3.6, if LO criticality tasks are safety
related (LO = C), then global switching with task killing hardly helps
the design of fault-tolerant mixed-criticality systems because task killing
can immediately violate system safety. In detail, the reason is two-fold:
First, after killing, those safety-related LO criticality tasks constantly
fail. Second, as time elapses, the probability that killing is triggered
constantly increases, eventually reaching 1 (see Lemma 3.2). However,
global switching with service degradation improves system feasibility
and it is more proper when LO criticality tasks are safety concerned – as
long as the system accepts degraded services, it is always beneficial for
safety as less task instances are executed. Thus, LO criticality tasks can
only fail less. For instance, consider U = 1 and f = 10−3 on a dual-core
platform (Figure 3.6(a) and 3.6(b)), acceptance ratio does not improve
under task killing, whereas it increases by 9% under service degradation.

Last, similar to global switching, for local switching (Figure 3.7), killing
LO criticality tasks when they are safety-related could rarely help system
feasibility, as this could immediately violate system safety.
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3.4.2.3 Summary of Results

We conclude that task killing greatly improves system feasibility if
LO criticality tasks are not safety related. However, if safety is a concern
for LO criticality tasks, service degradation is a proper choice as task
killing could directly violate system safety. Again, the analysis methods
derived in this chapter enable us to quantify those findings.

3.5 Summary
Fault-tolerant mixed-criticality scheduling under hardware/software
transient errors on multi-core (with single-core as a special case) was
studied in this chapter. We proposed the first framework known to date,
where runtime adaptation, mixed safety requirements and task deadlines
are considered jointly in the design of mixed-criticality systems.

Specifically, we developed techniques that could reconfigure the
system at run-time such that critical tasks can still be guaranteed
under urgent situations, i.e., when they do not succeed after a certain
number of trials. With explicit modeling of system safety on different
criticality levels according to well-known safety standards [DO-92], we
can quantify the impact of online reconfigurations (task killing or service
degradation) on safety. To guarantee schedulability, we performed a
problem transformation and reduced the mixed-criticality fault-tolerant
scheduling problem to a classical mixed-criticality scheduling problem.
Finally, with both a flight management system and synthetic task sets,
we validated our proposed techniques and demonstrated quantitatively
two important findings: Task killing as commonly assumed for mixed-
criticality systems can hardly help improving system feasibility if it
is performed on safety-related functions; except for this case, system
feasibility can be improved to a great extent under run-time system
reconfigurations.



4
Energy-Aware Mixed-Criticality –

Concepts, Methods and
Implications

Energy minimization is a prime requirement in the design of (embedded)
computer systems, not only due to cost reduction reasons, but also
due to the related thermal issues [Kum14]. As an example, a modern
car can have up to 100 electronic control units (ECUs) [Wik16b]. This
requires a tremendous power supply. In order to sustain the system
computing performance, energy minimization in the cyber space becomes
vital. Furthermore, with aggressive shrinking of circuit footprint, power
density of modern electronic circuits is drastically increasing. This
may result in overheating and lead to system failures if not handled
properly [EBA+11, Won08].

Challenges: Although there is a rich body of literature on
energy minimization techniques for conventional real-time safety-critical
systems [CK07, BBDM00], applying them to mixed-criticality systems
might not be straightforward. On one hand, well-established methods
like Dynamic Voltage and Frequency Scaling (DVFS) [YWA+11] or
Dynamic Power Management (DPM) [BBPDM99] can be applied to
mixed-criticality systems. On the other hand, mixed-criticality systems
can react to runtime threats (mainly task overrun) by switching between
different operation modes and making different service guarantees on
different criticality levels. This could consequently complicate the
reduction of energy due to the following challenges.
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1 Unclear energy objective: For mixed-criticality systems, there is
a bounded uncertain workload we have to guarantee for critical
tasks (for the sake of system safety, see [BD16]). Though assumed
to be improbable, the uncertain workload complicates energy
minimization as we do not know for which workload we are going
to minimize system energy. Hence, to conserve energy for mixed-
criticality systems, a proper energy objective needs to be justified in
the first place.

2 Conflict between energy minimization and system safety: The
main idea of applying DVFS to minimize energy consumption is to
stretch task execution times as much as possible by lowering the
processor frequency, such that tasks finish “just in time”. In other
words, DVFS tries to explore all slack in the system and pushes
the execution of tasks to the time limit. On the contrary, in order
to guarantee system safety, we have to reserve time budget for
critical tasks, such that they can still meet their deadlines even if
they overrun. This needs to be prepared a priori and prevents us
from exploring all available slack in the system. Such a conflict
needs to be taken into account when solving the mixed-criticality
energy minimization problem.

3 Energy efficient task to processor mapping: Mixed-Criticality
systems advocate to consolidate functionalities of different criticality
levels in the same commercial-off-the-shelf (COTS) computing
platform. Consequently, this could lead to compact systems with
reduced costs. However, if energy reduction is the primary goal,
mixing tasks of different criticality levels might not be beneficial as
current research on mixed-criticality systems [BD16] tends to pack
the system workload onto a minimal set of processors, hampering
load balancing and energy conservation. Addressing this requires
new energy efficient task mapping techniques to be developed.

Contribution: To tackle the above challenges, we present in this
chapter solutions on applying DVFS to mixed-criticality systems in
order to save energy. Different from Section 2.4 where we apply DVFS
to speedup the system and to guarantee less critical tasks in urgent
scenarios, we apply DVFS in this chapter to slowdown the system in
order to save energy. Due to the hardness of the underlying mixed-
criticality scheduling problem, we focus on integrating energy saving
techniques into a well-known mixed-criticality scheduling algorithm –
EDF-VD [BBD+12]. Furthermore, we minimize both static and dynamic
energy consumption while exploring the trade-off between different
system operation modes. We achieve this by first proposing an optimal
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solution and an effective lightweight heuristic on a single-core. We then
extend these results to multi-core by designing new energy-aware task
mapping techniques. Our detailed contributions are as follows.

• We clarify the characteristic of the mixed-criticality energy min-
imization problem and show that a fundamental trade-off exists
between energy consumptions in different system modes: Speeding
up to handle overrun increases system energy consumption in
urgent scenarios but reduces the energy consumption in nominal
scenarios, and vise versa.

• We integrate DVFS with the EDF-VD scheduling technique and
formulate the single-core energy minimization problem as a convex
program. We further develop more theoretical insights into this
problem and present a lightweight heuristic solution achieving near-
optimal results.

• We extend our single-core solutions to multi-core by first extending
existing mixed-criticality task mapping techniques and making
them energy-aware. Furthermore, we develop a drastically different
task mapping technique by spatially isolating tasks of different
criticality levels on different cores while performing load balancing.
The latter strategy is appealing for reasons that are 2-fold: (1)
Avoiding mixing tasks of different criticality levels on the same
processing core removes mutual interferences among them; this
leads to tighter schedulability tests and more system slack can be
exploited by DVFS to save energy. (2) Strong criticality isolation is
favored in practice due to its ease of certification [EN16].

• We demonstrate with experimental results energy saving and
various trade-offs for the mixed-criticality energy minimization
problem. Our results reveal an energy saving up to 36% on
synthetic task sets and 40% for a flight management system. We
also demonstrate that energy saving under spatial isolation among
different criticality levels is comparable to the case when tasks of
different criticality levels are mixed on each core.

Organization: This chapter is organized as follows: We introduce
in Section 4.1 the necessary background on the underlying system
model. In Section 4.2 we present an example to motivate our problem
formulation. We propose an optimal analytical solution to our energy
minimization problem on a single-core in Section 4.3, while in Section 4.4
we present a corresponding simple, yet effective, heuristic solution.
Leveraging our single-core solutions, we present different energy-aware
task mapping techniques in Section 4.5. We evaluate and conclude our
proposed techniques in Section 4.6 and Section 4.7.
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Related Work: The state-of-the-art research on mixed-criticality
systems has primarily focused on providing heterogeneous timing
guarantees for tasks of different criticality levels. To date, only a few
research results have been published to tackle the challenging problem
of energy minimization for mixed-criticality systems [LJP13, Guo14,
VHL14]. Those publications, although making different assumptions
for their specific problems, all share a common concept to sacrifice the
performance of low criticality tasks in order to manage or optimize system
energy: In [LJP13], an approach based on DPM is presented to trade
deadlines of low criticality tasks for energy saving on multi-core, while
deadlines of high criticality tasks are always guaranteed. A DVFS method
minimizing energy for single-core mixed-criticality systems is presented
in [Guo14], while respecting system reliability requirements. Rather than
treating energy as an optimization goal, energy utilization on critical tasks
is advocated in [VHL14] when the system is short of energy supply. To
our best knowledge, our proposed mixed-criticality energy minimization
solutions [HKGT14, NHG+16] are the first ones designed under the state-
of-the-art mixed-criticality task model [BD16].

4.1 System Model
In this chapter, we assume the widely adopted dual-criticality task model:
A system consists of a set of sporadic tasks with implicit deadlines, and
each task is of either HI or LO criticality. We focus on the EDF-VD
scheduling technique [BBD+12] and its multi-core extension (partitioned
EDF-VD [Bar14]). Details about the task model and the assumed
scheduling techniques can be found in Section 2.1. We introduce in the
following our assumed power model. For the convenience of the readers,
all important notations in this chapter are summarized in Table 4.1.

4.1.1 Power Model and DVFS
We adopt a popular power model from [CK07, PC13a]. Assuming
a homogeneous multi-core platform π = {π1, π2, ..., π|π|}, the power
consumption of any processor is formulated as

P( f ) = Ps + β f α, (4.1)

where P( f ) is the total power consumed and Ps stands for the static power
consumption due to leakage current. f denotes the operating frequency of
the processor. β f α represents the dynamic power consumption caused by
switching activities, where α and β are circuit dependent parameters. A
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Table 4.1: Important notations in Chapter 4
fb frequency at which WCETs are estimated

[ fmin , fmax] available frequency range with DVFS
f χi frequency of task τi in χ mode
f χ2
χ1

frequency of all χ1 criticality tasks in χ2 mode
f χ2
χ1 opt optimal f χ2

χ1
for single-core energy minimization

Eχ system energy consumption in χ mode
wχ weight factor for χ mode
x deadline shortening factor in EDF-VD

xLB, xUB lower and upper bounds of x
x̂LB, x̂UB lower and upper bounds of x at f χi = fmax

xLBopt, xUBopt optimal lower and upper bounds of x

common assumption is that α ≥ 2 [NMM+11, PC13b]. Hence, decreasing
processor frequency leads to reduced dynamic energy consumption, as
explored by the well-known DVFS technique [CK07]. However, with
reduced frequency, leakage energy will increase as it takes longer for jobs
to complete. Thus there is a critical frequency fcrit below which it is not
beneficial to reduce frequency energy-wise. For any job with workload
of nc clock cycles, [PC13b] shows that fcrit can be obtained as follows:

d(nc
f Ps + nc

f β f α)

d f
= 0⇔ fcrit = α

√
Ps

β(α − 1)
. (4.2)

As a result, we assume in this chapter that each core in a hardware
platform is independently DVFS-capable and can execute with any
frequency in [ fmin, fmax], where fmin ≥ fcrit. The WCETs of tasks are
estimated at frequency fb, where fmin ≤ fb ≤ fmax. Notice that applying
DVFS changes the actual WCETs of tasks, such that χ criticality WCET of

task τi becomes
Ci(χ) fb

f
while running at frequency f .

We focus on CPU processing energy in this chapter and neglect energy
consumed by communication and memory sub-systems. According
to [DFG+11, Vog10], CPU processing is the major energy source for
modern computer systems, which can contribute up to 75%-80% of the
total system power consumption. Under realistic but more complex
models of task execution time and system energy [YWA+11], our proposed
techniques could be extended to minimize additionally communication
energy; this could be achieved by treating the communication phases of
tasks as separate artificial tasks, as similarly done in [YWA+11].

Finally, we say that a processor is in active state if it is processing tasks;
otherwise, the processor is in inactive state. We assume that the processor
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energy consumption in the inactive state and the overhead of switching
between active and inactive states are negligible. This assumption
holds for platforms with deep-sleep modes and negligible power mode
transition overhead (e.g., current NXP Kinetis series feature∼4µs wakeup
time from the state-retaining deep-sleep mode [kin]). However, we
believe that important findings of this work would still hold, e.g., energy
trade-offs between different system modes and the benefit of isolated task
mapping, see Section 4.3 and Section 4.5.

4.2 Problem Formulation
We motivate our work using a general setting for mixed-criticality energy
minimization, where both static and dynamic power consumptions are
considered in all system modes. Based on this, we provide a concrete
problem formulation in this section.

4.2.1 Motivation
Current research on mixed-criticality systems advocates the mode-
switched paradigm – a dual-criticality system starts with the nominal
scenario or LO mode, where all tasks are guaranteed; if any HI criticality
task overruns, then the system switches immediately to an urgent scenario
or HI mode, where LO tasks are dropped.

The question then is to clarify the system energy objective while taking
into account the different system modes. We may follow two approaches.

1 If we assume that the urgent scenario is unlikely, then a meaningful
goal is to just optimize the nominal mode system energy.

2 If we take into account that the probability of switching from LO
to HI mode increases with time (eventually reaching 1 [HYT14b]),
then one should jointly consider energy consumption in all system
modes. We can define the weight factor wχ forχmode (χ ∈ {HI,LO}),
which indicates the relative importance of minimizing system
energy in χ mode. Such weight factors would help to make global
energy saving decisions and to trade-off energy consumptions
in different system modes. We assume such weight factors are
normalized, i.e., wLO + wHI = 1.

In practice, one could interpret the weight factors as the percentages
of time (or alternatively, the probabilities) that the system operates in the
corresponding modes. It is important to note that the first approach is
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merely a special case of the second one, i.e. wLO = 1 ∧ wHI = 0. Due to
this reason, we will take the second approach.

The motivation to consider static energy is rather straightforward –
static power could overwhelm dynamic power as the CMOS technology
improves [KAB+03]. Thus, it is critical to minimize static energy along
with dynamic energy [DVI+02].

We use the following motivational example to quantify the impact of
weight factors and DVFS on energy minimization. We first evaluate the
case when the system runs on a single-core and then proceed to multi-core
platforms with an additional consideration of task mapping strategies.
Example 4.1. Single-Core: Consider the task set as shown in Table 4.2, which
is schedulable on a single-core under EDF-VD (base frequency fb = 2GHz).
The processor is DVFS-capable, where [ fmin, fmax] = [1, 2]GHz. We assume
α = 3, β = 1W/GHzα and Ps = 1W [PC13b]. We calculate the total weighted
energy consumption in LO and HI modes with varying weight factors wLO

(wHI). The optimization is performed by the standard Mathematica optimization
engine [mat]. We consider 2 strategies to show the impact of weight factors and
DVFS on energy minimization:

SA No DVFS is applied; all tasks execute on base frequency fb.

SB DVFS is applied to minimize both static and dynamic energy according
to the problem formulation in Theorem 4.1 and the optimality criteria
in Section 4.3.

We summarize our results in Figure 4.1(a). We observe that energy can be greatly
reduced by employing DVFS. If we compare the two strategies, 37% of total
energy consumption is saved by employing DVFS when wLO = 0.1. In addition,
we observe that weight factors greatly affect the total energy consumption for both
strategies. For example, in Strategy B, the minimal system energy consumption
can vary by 44% when wLO changes from 0.1 to 0.9. This further implies that
the choice of weight factors is critical. That is, either neglecting HI mode energy
(wLO → 1) or neglecting LO mode energy (wLO → 0) would lead to overly
optimistic or pessimistic results. However, detailed domain knowledge about the
designed applications may be required to select meaningful weight factors.

Multi-Core: For our experiments here and for the purpose of a better
illustration, we consider the Flight Management System (FMS) as shown
in Table 4.3. We assume fmin/ fb/ fmax = 0.6/1.2/1.2GHz, β = 2W/GHzα,
Ps = 0.8W and α = 3. On multi-core platforms, we have to further consider
the impact of task mapping on energy minimization. To this end, we compare
three different approaches – two state-of-the-art mapping techniques (Baruah’s
method [Bar14] and Gu’s method [GGDY14]) and a new method EM3 proposed
in this work (see Section 4.5).



118 Chapter 4. Energy-Aware Mixed-Criticality – Concepts, Methods and Implications

Table 4.2: Task set for Figure 4.1(a) in Example 4.1 (task parameters in ms)
τ χi Ti Ci(LO) Ci(HI)
τ1 HI 40 4 12
τ2 HI 75 6 18
τ3 HI 40 3 9
τ4 LO 100 6 6
τ5 LO 80 5 5
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Figure 4.1: Motivational example – energy consumption under the impact of
weight factors, DVFS and task mapping

We apply the aforementioned techniques to the FMS application on a dual-
core platform. We first minimize the system energy consumption individually
on each core. Then, the total energy for each mapping method is calculated by
deriving the weighted energy consumption in different system modes on each core
and then summing them up across all cores. Figure 4.1(b) shows the normalized
total energy consumption obtained using different mapping techniques. As
we can observe, indeed task mapping can greatly affect the achievable energy
saving. As an example, with wLO = 0.5, EM3 achieves up to 19% energy
reduction compared to the previous methods. The reason for this is that our
method can balance the workload better across different cores in order to improve
energy saving. We provide detailed explanations in Section 4.5. Similar to the
single-core case, we can also see that weight factors play a critical role in energy
minimization for multi-core platforms. In summary, through the above example,
we have demonstrated that, weight factors and task mapping both play a critical
role in the mixed-criticality energy minimization problem. Motivated by this,
we proceed to formally define the problem studied in this chapter.
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4.2.2 Problem Formulation
We divide-and-conquer the energy minimization problem by solving
two sub-problems: (i) We first perform energy-aware task-to-processor
mapping; (ii) we then develop single-core DVFS techniques and apply
them to all cores. However, the first problem is dependent on the second,
as we want to find mapping techniques that could explore best the energy
saving potential of single-core solutions. Therefore, we will first study
the sing-core problem and then proceed to solve the multi-core problem.
In the following, we formulate these two subproblems.

4.2.2.1 Single-Core Problem

For this problem, we assume that τ is our considered task set on one core.
To apply DVFS, the essential problem is to assign each task an operating
frequency in each system mode, such that energy is minimized while
mixed-criticality real-time guarantees are satisfied.

Let us denote the frequency of task τi in mode χ as f χi , where χ ∈
{LO , HI}. We can uniformly represent this frequency assignment using
function F : τ × {LO , HI} → R+. To consider energy minimization for
both system modes, we first need to define a proper energy objective. To
achieve this, we express the importance of minimizing LO mode energy
with a weight factor wLO (similarly wHI for HI mode). We assume that
wLO,wHI ∈ [0, 1] and wLO = 1 − wHI. We do not pose any restriction on
how to obtain wLO and wHI. Our formulation is rather general: If wLO =

1 ∧ wHI = 0, we minimize only LO mode energy; if wLO = 0.5 ∧ wHI = 0.5,
we then minimize the average energy consumption in both modes.

With the weight factors, we can formalize our energy objective. First,
for one hyper-period in LO mode with length ΠτTi, we calculate the
normalized total energy consumption in this interval as the actual energy
consumption divided by the interval length:

ELO = wLO

∑
τi∈τ

Ci(LO)
Ti

fb

f LO
i

(Ps + β( f LO
i )α). (4.3)

Similarly, we normalize the system energy consumption in a HI mode
hyper-period with length Πχi=HITi as

EHI = wHI

∑
τi∈τHI

Ci(HI)
Ti

fb

f HI
i

(Ps + β( f HI
i )α). (4.4)

Finally, our goal is to minimize the system energy E across both operation
modes, where

E = ELO + EHI, (4.5)
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and the optimal task frequencies in different system modes need to
be chosen ( f χi , ∀τi∀χ). Furthermore, energy should be minimized
while satisfying the mixed-criticality real-time requirements. Using
Theorem 2.1, we can get a new schedulability condition when task
utilizations are scaled under DVFS. We show the application of DVFS
to EDF-VD, extending Theorem 2.1 using the following corollary.

Corollary 4.1. Consider a task set τ scheduled by EDF-VD on a single-core.
Assume that task τi has frequency f χi in system mode χ under DVFS, then the
feasible range of the deadline shortening factor x for HI criticality tasks is

0 <
ŨLO

HI

1 − ŨLO
LO

≤ x ≤ ~1 − ŨHI
HI

ŨLO
LO

�1, (4.6)

where

Ũχ2
χ1

=
∑
τi∈τχ1

C̃i(χ2)
Ti

; C̃i(LO) =
Ci(LO) fb

f LO
i

, ∀τi ∈ τ;

C̃i(HI) =
Ci(LO) fb

f LO
i

+
(Ci(HI) − Ci(LO)) fb

f HI
i

, ∀τi ∈ τHI.

According to Corollary 4.1, with increasing f χi for any task τi, the
lower bound of x after DVFS does not increase, while the upper bound
does not decrease as all utilization factors decrease. Thus, we know for
any possible DVFS strategy, x must be within the absolute respective
bounds when f χi = fmax, ∀τi∀χ. We denote the lower and upper bounds
in this case as x̂LB, x̂UB ∈ [0, 1], respectively.

To apply DVFS to save energy, we need to ensure that the energy
objective (4.5) is minimized while condition (4.6) is satisfied. With
reformatting, we can formulate our single-core energy minimization as a
convex program. We capture this with the following theorem.

Theorem 4.1. The single-core energy minimization problem can be formulated
as a convex program given by:

minimize E = ELO + EHI, (4.7)

s.t.
ŨLO

HI

x
+ ŨLO

LO ≤ 1; (4.8)

xŨLO
LO + ŨHI

HI ≤ 1; (4.9)
x ∈ [x̂LB , x̂UB]; (4.10)
∀τi∀χ , f χi ∈ [ fmin , fmax]. (4.11)
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The convexity of the above program can be easily verified [Boy04].
Our energy objective (4.7) is a convex function of task frequencies, see
the calculations of ELO and EHI in equations (4.3) and (4.4). In addition,
the left-hand sides of constraints (4.8) and (4.9) are also convex functions
of task frequencies and the deadline scaling factor. Although the convex
formulation suggests practical algorithms [Boy04] to solve this problem,
we will theoretically investigate the problem further and develop more
insights in later sections.

4.2.2.2 Multi-Core Problem

Assuming partitioned scheduling in this work, we still need to find an
energy efficient task mapping onto a multi-core platform, such that by
applying single-core DVFS locally on each core, the total energy consumed
by all tasks on all cores is minimized. Let us denote task mapping
with function M : τ → π. In addition, since we apply EDF-VD on
each core locally, we define deadline scaling factors on all cores through
function X : π → R+. Let us further denote with E(k) the total energy
consumption on core πk, as calculated in equation (4.7). The multi-core
energy minimization problem can then be formalized as follows.

Definition 4.1 (Mixed-Criticality Energy Minimization on Multi-Core).
Given a task set τ on a DVFS-capable platform π, findM, X and F such that
the total energy consumption on all cores

∑
1≤k≤|π| E(k) is minimized.

4.3 A Single-Core Optimal Solution
We proceed to acquire a deeper insight into the single-core energy
minimization problem. Since we have a convex formulation (Theo-
rem 4.1), we can first apply the Karush-Kuhn-Tucker (KKT) optimality
conditions [KT51] to this problem. Due to the intrinsic computation
complexity involved, we then show how to reduce the actual search space
for single-core energy minimization.

4.3.1 KKT Conditions
Let us first introduce the KKT conditions for solving general optimization
problems. Consider a problem of the form

minimize f (z),
s.t. hi(z) = 0, ∀i = 1, ...,n;

g j(z) ≤ 0, ∀ j = 1, ...,m.
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where hi(z) and g j(z) are the equality and inequality constraints for a
continuous function f (z), respectively.

Theorem 4.2 (KKT conditions). According to [KT51], if the objective and
constraint functions are continuously differentiable, then a local minimal
solution z∗ exists, when there exist Lagrange multipliers λi (1 ≤ i ≤ n) and
KKT multipliers µ j (1 ≤ j ≤ m), such that

∇ f (z∗) +

n∑
i=1

λi∇hi(z∗) +

m∑
j=1

µ j∇g j(z∗) = 0,

s.t. hi(z∗) = 0, ∀i = 1, ...n; g j(z∗) ≤ 0, ∀ j = 1, ...m;
µ jg j(z∗) = 0, ∀ j = 1, ...m; µ j ≥ 0, ∀ j = 1, ...m.

4.3.2 Problem Complexity When Applying KKT
As we have a convex program with continuous decision variables for our
single-core problem (i.e., task frequencies are continuously available and
the deadline scaling factor is also a continuous variable, see Theorem 4.1),
we can directly apply Theorem 4.2 to find the optimal solution. Due to the
convexity of the problem formulation, any local optima is guaranteed to
be the global optimal solution [BV04]. However, applying KKT conditions
could be impractical as it leads to an exponential computation complexity.

Theorem 4.3. Solving the single-core mixed-criticality energy minimization
problem directly by KKT conditions requires solving 22|τLO|+4|τHI|+4 systems of
non-linear equations.

Proof. Notice that for the single-core problem as formulated in Theo-
rem 4.1, only inequality constraints exist. Thus, we need to introduce only
the slack variables µ j in each of the complementary slackness equations
µigi(z) = 0, where at least one of µi and gi(z) must be 0. With m such
conditions, there would be 2m possible cases (µi = 0 or gi(z) = 0). For
constraints (4.8) - (4.10), we need to introduce four slack variables (in
constraint (4.10) we have to consider both upper and lower bounds).
According to constraint (4.11), for each HI criticality task, we have to
introduce two slack variables for its frequency in each system mode,
leading to a total of 4|τHI| slack variables. Similarly, we have 2|τLO| slack
variables for LO criticality tasks (they are not executed in HI mode). This
would lead to 22|τLO|+4|τHI|+4 binary cases to check for the optimal solution,
where in each case we have to solve a system of non-linear equations. �
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To reduce the intrinsic high complexity encountered, we proceed
towards an in-depth analysis of the energy minimization problem, aiming
to reduce the actual search space.

4.3.3 Reduction of Search Space
4.3.3.1 Optimality Condition in f χi
We can first reduce the frequency search space by proving that the system
energy consumption is minimal when all tasks of the same criticality level
share the same frequency in each mode. Let us introduce 3 frequency
variables f LO

LO , f LO
HI and f HI

HI , where f χ2
χ1

represents the frequency of all χ1

criticality tasks in χ2 system mode. Formally, we have the following
result.

Theorem 4.4. For the single-core mixed-criticality energy minimization
problem as specified in Theorem 4.1, in an optimal solution all tasks of the
same criticality level share the same frequency in each mode, i.e.,

∀τi ∈ τLO : f LO
i = f LO

LO ; ∀τi ∈ τHI : f LO
i = f LO

HI ∧ f HI
i = f HI

HI .

Proof. First, let us consider only HI mode energy and show that all HI
criticality tasks should share the same execution frequency in HI mode
in an optimal solution. Likewise, we can prove similar statements for LO
mode task frequencies.

Considering only two HI criticality tasks τi and τ j in the system, we
prove using KKT conditions that they share the same execution frequency;
by induction, this will hold for any pair of HI criticality tasks and our
statement follows.

For our proof here, we denote HI mode utilizations of τi and τ j on
base frequency fb as ui and u j (ui = Ci(HI)

Ti
, u j =

C j(HI)
T j

), respectively. Using
equation (4.5), we can compute HI mode energy as

EHI = wHI

(
ui

fb

f HI
i

(
Ps + β( f HI

i )α
))

+wHI

u j
fb

f HI
j

(
Ps + β( f HI

j )α
) . (4.12)

Let ui+ j be the allowed total HI criticality system utilization after any
DVFS strategy. In equation (4.12), f HI

i and f HI
j are the variables to be

determined, such that while applying DVFS to minimize energy EHI,
ui

fb
f HI
i

+ u j
fb

f HI
j
≤ ui+ j so that system schedulability is preserved. We find the
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optimal f HI
i and f HI

j using KKT conditions. Let us first summarize the
above problem as

minimize objective (4.12), s.t. ui
fb

f HI
i

+ u j
fb

f HI
j

≤ ui+ j. (4.13)

Based on Theorem 4.2, let us combine the inequality constraint with the
energy objective and introduce a KKT multiplier (µ). Then, objective (4.12)
is at a minimum when

∇( f HI
i , f HI

j )EHI + µ∇( f HI
i , f HI

j )g
(

f HI
i , f HI

j

)
= 0, (4.14)

s.t. g
(

f HI
i , f HI

j

)
= ui

fb

f HI
i

+ u j
fb

f HI
j

− ui+ j ≤ 0;

µ

ui
fb

f HI
i

+ u j
fb

f HI
j

− ui+ j

 = 0 ∧ µ ≥ 0.

(4.15)

Under KKT, relations (4.14) and (4.15) must both hold. By solving
equality constraint (4.14) further, we have

∂(·)
∂ f HI

i
∂(·)
∂ f HI

j

 =

(
0
0

)
(4.16)

⇒ wHI fbui(−Ps( f HI
i )−2 + β(α − 1)( f HI

i )α−2) = µ fbui( f HI
i )−2

⇔ β(α − 1)( f HI
i )α = Ps +

µ

wHI

⇔ f HI
i =

Ps +
µ

wHI

β(α − 1)

1/α

. (4.17)

and similarly,

⇒ wHI fbu j(−Ps( f HI
j )−2 + β(α − 1)( f HI

j )α−2) = µ fbu j( f HI
j )−2

⇔ β(α − 1)( f HI
j )α = Ps +

µ

wHI

⇔ f HI
j =

Ps +
µ

wHI

β(α − 1)

1/α

. (4.18)

From equations (4.17) and (4.18), we obtain f HI
i = f HI

j for which
objective (4.12) is minimized. Hence, both tasks share the same execution
frequency. By induction, any pair of HI criticality tasks share the same
frequency and our statement holds. Similarly, it can be proved that all LO
criticality tasks in LO system mode share the same execution frequency
and all HI criticality tasks in LO system mode share the same execution
frequency. �
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In short, Theorem 4.4 is derived by applying KKT conditions
separately to several subproblems of our single-core problem. It
is also interesting to note that the core of our proof as shown for
formulation (4.13) actually deals with a single criticality system. Thus,
we have a useful by-product of the above proof: If we have only a single
criticality in the system and there is no uncertain workload (i.e., only one
level of task WCETs), then all tasks should run on the same frequency
to minimize energy under EDF scheduling and the power model in this
paper. We shall apply this result to a corner case in Section 4.5.1.

Using Theorem 4.4, the search space in task frequencies can be greatly
reduced and the energy objective (4.3) and (4.4) can be simplified as
follows:

ELO =wLO fbULO
LO(Ps/ f LO

LO + β( f LO
LO )α−1)

+ wLO fbULO
HI (Ps/ f LO

HI + β( f LO
HI )α−1),

EHI =wHI fbUHI
HI(Ps/ f HI

HI + β( f HI
HI )α−1).

(4.19)

In the special case when we only minimize the system LO mode energy,
i.e., wLO = 1, we can further show that operating at the maximum
frequency in HI mode is optimal to reduce energy. Formally, we have
the following result.

Theorem 4.5. If only system LO mode energy ELO is considered, then setting
f HI
HI to the maximum frequency fmax is optimal in reducing system energy.

Proof. According to Corollary 4.1, if we increase the system operating
frequency in HI mode, then the system LO mode energy can be decreased
while still satisfying system schedulability. Therefore, we can simply set
the system HI mode frequency to the maximum in order to save LO mode
energy. �

Theorem 4.5 introduces another interesting property of the “Run and
Be Safe” model we proposed in Section 2.4 – if the system LO mode is
more likely, then speeding up the HI mode helps in reducing the expected
system energy consumption.

4.3.3.2 Optimality Condition in x

We continue to derive the necessary conditions in x (the deadline
shortening factor) for a single-core solution to be optimal. We find this
by relating the choice of x with the energy consumption in both system
modes.

According to Theorem 4.4, let us denote the frequencies in an optimal
solution as f LO

LO opt, f LO
HI opt and f HI

HI opt. Let us further define K, L and M as
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follows:

K =
∑
χi=HI

Ci(LO) fb

Ti
, L =

∑
χi=LO

Ci(LO) fb

Ti
,

M = 1 −
∑
χi=HI

(Ci(HI) − Ci(LO)) fb

Ti f HI
HI opt

.

(4.20)

Using Corollary 4.1, we can derive the lower and upper bounds of x in an
optimal solution as

xLBopt =

ULO
HI

f LO
HI opt

fb

1 − ULO
LO

f LO
LO opt

fb

=
K/ f LO

HI opt

1 − L/ f LO
LO opt

, (4.21)

xUBopt =

������������
1 − ULO

HI

f LO
HI opt

fb − UHI
HI−ULO

HI

f HI
HI opt

fb

ULO
LO

f LO
LO opt

fb

������������
1

=

�������M − K/ f LO
HI opt

L/ f LO
LO opt

�������1

,

(4.22)

where ~a�c = min(a, c). Now, we consider choosing the optimal deadline
scaling factor xopt. To ensure schedulability, it must follow that, xLBopt ≤
xopt ≤ xUBopt (see Corollary 4.1). From relations (4.21) and (4.22), we
observe that f LO

LO opt or f LO
HI opt can be decreased by increasing xLBopt or

decreasing xUBopt, thus minimizing LO mode energy1. Similarly, f HI
HI opt can

be decreased by decreasing xUBopt to save energy in HI mode. As a result,
as long as task frequencies are not minimal ( fmin) and xLBopt , xUBopt, we
can reduce either LO mode frequencies or HI mode frequencies to bring
the lower and upper bounds of x closer. This process can only stop if
(i) all task frequencies are already lowered to fmin or (ii) xLBopt = xUBopt. A
visualization of this process is given in Figure 4.2.

Note that the above argument still holds even if we fix the system HI
mode frequency f HI

HI to a constant. We summarize our observations on
this necessary optimality condition using the following theorem.

1Recall that fmin ≥ fcrit and reducing frequency is always beneficial in saving total
system energy (static and dynamic).
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0 1xLBopt xUBoptx̂LB x̂UB

xopt

Figure 4.2: Bounds of x in an optimal solution

Theorem 4.6. An optimal solution to our single-core problem as formulated in
Theorem 4.1 exists in one of the two following cases:

1 Extreme case: task frequencies satisfy f LO
LO = f LO

HI = f HI
HI = fmin.

2 Equilibrium case: deadline shortening factor satisfies xLBopt = xopt = xUBopt.

Proof. This directly follows from the discussion above. �

4.3.4 Optimal Solution with KKT
Using Theorem 4.4 and Theorem 4.6, we have a much reduced
search space. By adding the optimality condition on task frequencies
(Theorem 4.4) to our convex formulation in Theorem 4.1, we can reduce
the number of frequency variables from |τLO|+2|τHI| to 3, while preserving
the convexity of the problem formulation. Consequently, we can apply
KKT conditions to this simplified problem. Using a similar analysis as in
Theorem 4.3, we find that 210 systems of non-linear equations need to be
solved in order to find the global optimal solution instead of 22|τLO|+4|τHI|+4

for our original formulation.
Directly adding the optimality condition on the task deadline scaling

factor x, however, will lead to a non-convex problem formulation.
According to relations (4.21) and (4.22), the equality constraints xLBopt =

xopt and xopt = xUBopt involve non-affine functions of task frequencies;
this violates the convex programming theory [BV04] where only affine
functions are allowed in equality constraints. Nevertheless, one could
still apply KKT conditions to find local optimal solutions by adding those
two equality constraints. In this case, the benefit is that we need to solve
210 systems of non-linear equations with reduced complexities thanks
to the additional equality constraints. Since we only have 4 decision
variables (x, f LO

LO , f LO
HI , and f HI

HI ), it would be possible to compare all local
optimal solutions in order to find the global optima.
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Figure 4.3: Optimal system energy as a function of f HI
HI for different modes: The

following system parameters are used for a better illustration – fb = 2.5GHz,
[ fmin, fmax] = [1, 3]GHz, α = 3, β = 3W/GHzα, Ps = 4W and wLO = 0.3.

4.4 A Simple & Effective Single-Core Heuristic
As shown in Section 4.3, even by limiting the problem search space
without loss of optimality, applying the well-known KKT approach to
the single-core energy minimization problem still incurs high complexity,
i.e., 210 systems of non-linear equations. We proceed now to develop a
computationally simple yet effective heuristic solution to this problem.

4.4.1 Intuition
As already discussed, there exists a trade-off between energy consump-
tions in different system modes. With increasing f HI

HI , system energy
consumption in HI mode will be increased, see equation (4.19). However,
this could generate more system slack in LO mode, allowing reduction
of LO mode task frequencies to reduce LO mode energy. In other words,
increasing f HI

HI could potentially increase the optimal upper bound of the
scaling factor xUBopt as presented in relation (4.22). Due to the equilibrium
optimality condition (Theorem 4.6), this could enable us to increase the
optimal lower bound of x by decreasing task frequencies in LO mode,
see relation (4.21). Similarly, increasing LO mode task frequencies could
potentially decrease HI mode system energy.

Moreover, one of our main intuitions is that the second order
differentials of both LO and HI mode minimal energy are non-negative
with respect to f HI

HI , see equation (4.19). According to equations (4.1)
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Algorithm 4.1: A simple and effective single-core heuristic
input : τ, fb, fmin, fmax, wLO and wHI

output: f LO
LO opt, f LO

HI opt, f HI
HI opt, xopt

1 if System feasible when f LO
LO = f LO

HI = f HI
HI = fmax according to

Corollary 4.1 then
2 if System feasible when f LO

LO = f LO
HI = f HI

HI = fmin according to
Corollary 4.1 then

3 f χ2
χ1
← fmin ∀χ1∀χ2;

4 else
5 Determine the feasible range of f HI

HI according to the
Corollary 4.1 ( f LO

HI and f LO
LO set to fmax);

6 If E′ is non-negative at the smallest feasible f HI
HI , set this as

f HI
HI opt (case 1);

7 If E′ is non-positive at the biggest feasible f HI
HI , set this as

f HI
HI opt (case 2);

8 If the above does not hold, we do a binary search to find the
f HI
HI such that E′ = 0; set this as f HI

HI opt (case 3);

9 end
10 return Success;
11 else
12 return Failure;
13 end

and (4.19), with increasing f HI
HI , dynamic energy consumption in HI mode

becomes dominant compared to static energy consumption, leading to a
higher rate in energy increase. Furthermore, as f HI

HI increases, LO mode
energy reduces asymptotically to an absolute lower bound when all task
frequencies in LO mode are fmin. The above observations can be illustrated
if we consider the same example from Table 4.2 and plot the optimal
energy consumption as a function of f HI

HI for different modes, as shown in
Figure 4.3. We will show later in this section how to derive the optimal
energy consumption in each mode individually given f HI

HI . Due to the
trade-off between LO and HI mode energy consumptions, there exists a
f HI
HI in the feasible range leading to the minimum overall energy. We aim

to find such a f HI
HI using a simple heuristic.

4.4.2 Heuristic Algorithm
In the extreme case (i.e., all task frequencies are fmin), we only need to
confirm the system schedulability using Corollary 4.1.

In the equilibrium case, we propose a heuristic approach to find the
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Figure 4.4: Different cases to check in Algorithm 4.1

optimal solution based on the intuitions already discussed in this section.
Let us denote with Eχopt the minimal χ mode energy consumption with
respect to f HI

HI , where χ ∈ {HI,LO}. We further denote with Eopt the
sum of ELOopt and EHIopt, and with E′opt the first order differential of
Eopt. E′opt would be non-decreasing since the second order differentials of
ELOopt and EHIopt are both non-negative. Let the feasible range of f HI

HI be
[ f HI

HI min, f HI
HI max], where f HI

HI min is the minimum HI mode frequency required
to ensure HI mode schedulability (when LO mode frequencies of tasks
are fixed at fmax) and f HI

HI max is simply fmax. If there exists an optimal f HI
HI

within this range, then it must be in one of these three cases as shown in
Figure 4.4.

Case 1 E′opt ≥ 0 in the feasible range of f HI
HI : Eopt is always increasing,

and the optimal solution exists at f HI
HI min.

Case 2 E′ ≤ 0 in the feasible range: Eopt is always decreasing and the
optimal solution exists when f HI

HI opt = fmax.

Case 3 The above do not hold: There exists a stationary point E′ = 0
such that the minimal energy can be achieved. We perform
binary search to locate this stationary point.

The above heuristic solution is shown in steps 2-9 in Algorithm 4.1,
which only involves logarithmic computation complexity due to binary
search. Furthermore, f LO

LO opt, f LO
HI opt and xopt are all calculated based on

f HI
HI opt. We detail this and the calculation of the 1st order differentials in

the following.

According to equation (4.19), EHI is a single-variate monotonically
increasing function of f HI

HI . Therefore, with fixed f HI
HI , EHIopt equals EHI
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and the first order differential can be directly calculated. For E′LOopt, the
calculation is less trivial as we still need to find the right LO mode task
frequencies leading to the minimal LO mode energy. We achieve this by
first deriving ELOopt for any given f HI

HI based on a similar condition to that
in Theorem 4.6; we then calculate E′LOopt empirically using the principal
(linear) part [Wik15].

We now explain the derivation of f LO
LO opt, f LO

HI opt, xopt and ELOopt given
a fixed value of f HI

HI . We can first prove the LO mode energy is minimal
either when all LO mode task frequencies are minimum ( fmin) or at the
equilibrium case, see our comment to Theorem 4.6. For the former case,
ELOopt can be directly calculated. For the equilibrium case, we have

K/ f LO
HI opt

1 − L/ f LO
HI opt

= xopt =
M − K/ f LO

HI opt

L/ f LO
LO opt

, (4.23)

⇔
K/ f LO

HI opt + M − K/ f LO
HI opt

1 − L/ f LO
LO opt + L/ f LO

LO opt

= xopt,

⇔ xopt = M,

where M is a function of f HI
HI defined in equation (4.20). We replace here

f HI
HI opt with f HI

HI as we are fixing the latter. With xopt = M, we can establish
a relation between f LO

HI opt and f LO
LO opt:

M =
M − K/ f LO

HI opt

L/ f LO
LO opt

⇔ f LO
HI opt =

K/M
1 − L/ f LO

LO opt

. (4.24)

Thus, we can represent f LO
HI opt as a function of f LO

LO opt. Consequently,
to find ELOopt, we finally have a single-variate optimization problem
in a constrained search space where both f LO

HI opt and f LO
LO opt must be

drawn from the feasible frequency space. Such a problem can be
easily solved by looking at the first order derivatives for continuous
optimization. In our implementation, we use standard Mathematica
optimization engine [Wol99] to solve this single-variate optimization
problem. Once f LO

HI opt and f LO
LO opt are derived, we can calculate xopt

according to equation (4.23) and ELOopt according to equation (4.19).
In summary, this section provides a heuristic algorithm to solve the

single-core energy minimization problem as formulated in Theorem 4.1.
Leveraging the optimality conditions in Theorem 4.4 and Theorem 4.6,
our heuristic solution is presented in Algorithm 4.1 with further insights
discussed in Section 4.4.1.
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4.5 Energy Minimization on Multi-Core
In Section 4.3 and Section 4.4, we presented our single-core solutions to the
mixed-criticality energy minimization problem. Focusing on partitioned
scheduling, we proceed now to extend our single-core techniques to
multi-core by further proposing energy-aware task mapping techniques.
For all mapping techniques, we assume that unused cores are turned off to
conserve energy and task utilizations at the maximum frequency are used
when performing mapping. We first briefly discuss two existing mixed-
criticality task mapping techniques. We then propose new energy-aware
mapping techniques and platform allocation strategies.

4.5.1 Overview of Baruah’s and Gu’s methods
We first discuss two state-of-the-art mixed-criticality mapping techniques
designed to enhance system schedulability rather than energy efficiency.

Baruah’s method [Bar14]: In this method, tasks are mapped onto
multiple cores using First-Fit (FF) bin-packing, i.e., any task is assigned
to an immediate core where it fits first. This is done first for HI
criticality tasks and then for LO criticality tasks. In each phase, system
utilizations on any core are upper bounded to admit a feasible schedule,
i.e., ULO

HI + ULO
LO ≤ 3/4 ∧UHI

HI ≤ 3/4.
When mapping is successful, local EDF-VD scheduling can be applied

independently on each core [BBD+12]. However, due to the fact that
Baruah’s method only aims at enhancing system schedulability (i.e., using
FF to maximize the system utilization on each core), it leaves little room
or slack to apply DVFS in order to save energy.

Gu’s method [GGDY14]: To further enhance mixed-criticality schedu-
lability on multi-core, this method first assigns all HI criticality tasks
onto multi-core by Worst-Fit (WF) bin-packing. The intuition is that HI
criticality workload should be balanced across all cores to further admit
a fair mix of HI and LO criticality workloads on each core. Mapping of
LO criticality tasks is done in the same way as that for Baruah’s method.
However, Gu’s method still allows high utilization of cores (due to greedy
mapping of LO criticality tasks), where little room or slack can be explored
to save energy by DVFS.

4.5.2 EM3: Energy Minimized Mixed-Criticality Mapping
Both Baruah’s and Gu’s methods can lead to heavily loaded cores, where
little can be done by DVFS to save energy. Thus, we first develop a
technique aiming at balancing mixed-criticality workloads on all cores.
Achieving this is rather straightforward: We apply WF to map both HI
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and LO criticality tasks. Assuming that we have allocated m cores to be
used, our proposed method takes the following steps:

1 HI criticality tasks are mapped onto m cores using WF in the order
of decreasing utilization, with cumulative HI mode utilization on
each core upper bounded by 3

4 .

2 LO criticality tasks are mapped onto m cores using WF in the order
of decreasing utilization, with cumulative LO mode utilization on
each core upper bounded by 3

4 .

3 DVFS is applied to the mapped task set on each core using
the heuristic solution presented in Section 4.4, and all tasks are
scheduled using EDF-VD.

4 To find the optimal number of allocated cores, mopt, we repeat steps
1-3 and perform a linear search across all feasible allocations; mopt is
the one with the minimum total energy consumption.

Note: (i) If a core contains only LO criticality tasks after task mapping, we
ensure that the system utilization does not exceed one under EDF, since we
have a single criticality scheduling problem. Nevertheless, we can view
this as a special case of the problem studied in this paper. We can prove
that all tasks share a common frequency in an optimal solution, see our
discussion about Theorem 4.4. Therefore, to minimize energy, we choose
a single lowest frequency for a core mapped with only LO criticality tasks,
while ensuring that the total system utilization after DVFS is not larger
than one.

(ii) If only HI criticality tasks is mapped to a core, then we need to
consider an uncertain system workload as those tasks have two levels of
WCETs. We view this as a special case of our studied problem where
the utilization of LO criticality tasks is zero. We can directly apply the
proposed techniques in Section 4.4.

(iii) If possible, we select the minimal set of cores among all allocations
leading to the minimal energy consumption. This could minimize the
overhead incurred by utilizing additional cores, e.g., non-zero inactive or
sleep state energy. We do not explicitly address those overheads in the
current chapter.

4.5.3 IM3: Isolated and Energy Minimized Mixed-
Criticality Mapping

The above described EM3 method aims to balance mixed-criticality
workloads on multi-core to save energy. We will now present a drastically
different approach to solve the multi-core energy minimization problem
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Algorithm 4.2: Isolated Mixed-criticality Mapping Method
input : τ, π, fb, fmin, fmax, wLO and wHI

output:M, F, X
1 Set l̄0 = dULO

LO
fb

fmax
e and h̄0 = dUHI

HI
fb

fmax
e;

2 if l̄0 + h̄0 ≤ |π| then
3 for i in l̄0 + h̄0, l̄0 + h̄0 + 1, · · · , |π| do
4 linear search for l̄ and h̄, such that l̄i ≥ l̄0 ∧ h̄i ≥ h̄0 ∧ l̄i + h̄i = i

and system energy on all utilized cores is minimized;
5 end
6 Among all i, select l̄i and h̄i such that total energy is minimized

and outputM, F, X in this case;
7 return Success;
8 else
9 return Failure;

10 end

by isolating tasks of different criticality levels on different cores. This
is a common industrial practice to provide independent guarantees to
different criticality levels. The expectation is that criticality isolation could
also enable energy saving.

Conventionally, when only schedulability is considered, the main-
stream research advocates mixing workloads of different criticality levels
on each processing core. In this case, smart resource management
can be deployed to reconfigure the system under runtime threats by
exploring asymmetric guarantees on different criticality levels. As
a result, resource efficiency can be enhanced compared to isolation
methods [BD16]. However, when energy minimization is the primary
goal, mixing workloads of different criticality levels might not be
advantageous. On one hand, mixing workloads on all cores can help
to achieve global workload balancing, leading to better energy savings.
On the other hand, applying mixed-criticality scheduling reduces the
maximum attainable system utilization on each core (e.g., 3

4 for partitioned
EDF-VD [Bar14]); this hampers energy saving.

In the new IM3 method, all LO criticality tasks are mapped onto l̄
cores and all HI criticality tasks are mapped onto another h̄ cores, such
that 2 ≤ (l̄ + h̄) ≤ |π|, where |π| is the total number of cores available. Both
LO and HI criticality tasks are mapped onto their dedicated cores, using
WF in the order of decreasing utilization. The choice of l̄ and h̄ depends on
the total utilization of LO and HI criticality tasks, respectively. We apply
a simple heuristic to find the best l̄ and h̄ such that the total normalized
energy consumption is minimal, as presented in Algorithm 4.2.
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In Algorithm 4.2, we first set the minimum number of required cores
for LO criticality tasks to be schedulable as dULO

LO
fb

fmax
e (similarly dUHI

HI
fb

fmax
e

for HI criticality tasks). Next, we perform linear search to find the
allocations of LO criticality and HI criticality cores, such that the system
energy on all allocated cores is minimal. We select in the end the total
core allocation and its corresponding l̄ and h̄, such that energy is minimal
across all possible allocations.

Note that, the total system energy is computed using equation (4.19)
for all core allocations and task mappings. Since LO and HI criticality
tasks are spatially isolated, we need to deal with the case that each core
has tasks of the same criticality level. This has already been discussed in
Section 4.5.1. Furthermore, due to isolation, it is worth pointing out that
there is no needed to consider weight factors for LO criticality tasks as
they are not abandoned. However, this is required for HI criticality tasks
as two operation modes exist, and those tasks can have mode-dependent
frequencies to minimize the overall energy.

4.6 Evaluation
We evaluate now our proposed energy minimization techniques for
mixed-criticality systems with both randomly generated synthetic task
sets and a real-life Flight Management System (FMS). Assuming synthetic
task sets, we first present the results for single-core and then for multi-
core platforms. Next, we evaluate the energy saving of a realistic FMS
on a dual-core platform. Last, we evaluate the proposed task mapping
techniques in terms of multi-core schedulability for synthetic task sets.

4.6.1 Experiment Setup for Synthetic Task Sets
To validate our proposed techniques in a general setting, we adopt the
task generator as shown in Section 2.3.3.1 to generate 100 random feasible
task sets at each data point. Our task generator is slightly modified in that
LO mode utilizations of LO and HI criticality tasks are drawn from two
different ranges; this is performed to better control the utilizations of LO
and HI criticality tasks. Recall that we use Ubound to denote the maximum
system utilization across different modes, PHI to represent the probability
that a task is of HI criticality level, and r to represent the ratio of Ci(HI)
to Ci(LO) for any HI criticality task. Additionally, the task generator is
controlled by the following parameters:

- ULO: the system LO mode utilization.
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- [Ul−, Ul+]: utilization of any LO criticality task is uniformly drawn
from this range.

- [Uh−, Uh+]: LO mode utilization of any HI criticality task is
uniformly drawn from this range.

We assume that each core on the platform is DVFS-capable and we apply
our proposed techniques to the synthetic task sets to minimize energy; we
calculate the energy consumption averaged over all task sets at each data
point. All results are normalized such that their maximum in each figure is
one. For our experiments on multi-core platforms, we assume that unused
cores are turned off to further save energy. Note that, our implemented
single-core heuristic as shown in Section 4.4 yields almost identical results
when compared to the standard Mathematica optimization engine [mat].
However, the latter is faster as it is highly optimized. For this reason,
all optimizations on single-cores are done with Mathematica under our
problem formulation (Theorem 4.1) and optimality criteria (Section 4.3).

4.6.2 Single-Core Evaluation
We consider { fmin, fb, fmax} = {0.55, 0.85, 1}GHz, Ps = 0.5W, α = 2,
β = 1.76W/GHzα [NMM+11, PC13b], ULO = 0.5, [Ul−,Ul+] = [0.01, 0.05],
[Uh−,Uh+] = [0.05, 0.1], wLO = wHI = 0.5, PHI = 0.5 and r = 1.5, unless
stated otherwise.

Impact of weight factors: First, we show the impact of weight factors
on energy minimization for different system modes. We calculate the
normalized total energy with different weight factors wLO (and wHI =

1 − wLO) in the range [0, 1] in steps of 0.1. Our results are shown in
Figure 4.5(a). As we can observe, the choice of weight factors can greatly
affect the potential energy saving. In particular, the minimal expected
energy decreases by ∼20% with wLO increasing from 0 to 1. The reason
is that the system utilization in HI mode is higher than that in LO mode
(∼10% more due to task generation parameters). This further implies that
the choice of the right weight factors is crucial to the mixed-criticality
energy minimization problems – considering either only HI mode (wLO =

0) or LO mode (wLO = 1) would lead to overly optimistic or pessimistic
results. In practice, domain knowledge of the designed application would
help choosing such weight factors.

Impact of Ps: We continue to show the impact of static power
consumption on energy minimization. Our results are presented in
Figure 4.5(a) for wLO in the range [0, 1] and Ps = 0.2, 0.5, 0.8W. It is evident
from the figure that static power consumption plays an important role
in our energy minimization problem – with increasing Ps, the achievable
minimal energy consumption is increased significantly. For example,
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Figure 4.5: Normalized total energy on a single-core under the impact of weight
factors, static power consumption, r and PHI

when wLO = 0.5, the minimal system energy consumption is increased by
27% when Ps increases from 0.5W to 0.8W.

Impact of r: To show the impact of extra workload, we consider
r = C(HI)

C(LO) in the range [1,1.5] in steps of 0.1. When r = 1, there
is no extra workload as HI criticality tasks would never exceed their
LO criticality WCETs. With r > 1, there is always a timing safety
concern for HI criticality tasks as their HI mode WCETs increase. As
we see in Figure 4.5(b), with increasing r, the minimal expected energy
consumption increases due to the increase of HI mode system workload.

Impact of PHI: Finally, we demonstrate the impact of PHI on energy
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Figure 4.6: Normalized total energy on a multi-core platform under the impact
of the number of cores, weight factors, system utilization and PHI

minimization. The results are shown in Figure 4.5(b) for PHI = 0.1, 0.5, 0.9.
As we can observe, the expected minimal energy increases with increasing
PHI – the system LO mode utilization is fixed to 0.5; if PHI increases,
more HI criticality tasks are generated, leading to higher extra workload
in HI criticality system mode. As a result, the total system workload
increases across LO and HI modes, leading to an increase in system energy
consumption.
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4.6.3 Multi-Core Evaluation

Here, we consider 4 cores, Ubound = 2.2, [Ul−,Ul+] = [Uh−,Uh+] = [0.01, 0.1],
fmin/ fb/ fmax = 0.6/1.2/1.2GHz, β = 2W/GHzα, α = 3, Ps = 0.8, PHI = 0.2,
r = 1.5 and wLO = wHI = 0.5 in all cases, unless stated otherwise. It should
be noted that weight factors are not necessary for LO criticality tasks on a
core mapped with only such tasks. However, for a fair comparison with
other cases, we include the energy consumptions of LO criticality tasks
only in LO mode and use the same equation (4.19) to calculate the system
energy on each core. We obtain our results by first simulating different
task mapping techniques on the generated task sets. We then apply our
single-core method to minimize energy on all cores and to calculate the
total normalized energy.

Impact of the number of cores: We obtain our results by performing
experiments on 4 to 8 cores and show our results in Figure 4.6(a). From
the figure we can see that EM3 and IM3 achieve close energy savings.
They save around 20%/10% more energy than Baruah’s/Gu’s method for
5 cores. The energy consumption for Baruah’s method is constant – in all
cases, it employs First-Fit method to map tasks, leading to 4 utilized cores
and high utilizations on those cores. This decreases the chance to down-
scale frequency on active cores to save energy. In Gu’s method, only LO
criticality tasks are mapped using First-Fit, whereas HI criticality tasks
are mapped using Worst-Fit to balance their workload on all cores. This
leads to better balanced workload across cores, as well as better energy
saving than Baruah’s method. Our proposed EM3 method performs load
balancing for both criticality levels, leading to the highest energy saving.

Since the IM3 method achieves almost comparable energy savings to
that of the EM3 method, which matches our intuition in designing IM3
(see Section 4.5). This leads us to the conclusion that criticality isolation is
a good option when minimizing system energy if the number of utilized
cores is not a constraint; it provides one additional benefit of providing
independence between different criticality levels. Lastly, with increasing
number of cores, the minimal system energy for all methods tends to
decrease as more cores can be used to balance workload.

Impact of weight factors: We evaluate our methods for different
weight factors and show our results in Figure 4.6(b). As we can observe,
for wLO ∈ [0.2 , 0.8] in steps of 0.2, EM3 always performs best in energy
saving and IM3 follows. In addition, as wLO increases, the total energy
consumption also increases. This is because on average the LO mode
system utilization is higher than the HI mode system utilization for the
generated task sets. Hence, when the LO mode weight factor increases,
the total energy depends more on LO mode energy and increases.

Impact of system utilization: Clearly, with increasing system
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Table 4.3: FMS task set parameters
τ Ci(LO) (ms) Ci(HI) (ms)
τ1 15 21
τ2 25 36
τ3 16 22
τ4 20 28
τ5 20 35
τ6 17 24
τ7 15 21
τ8 100 100
τ9 180 180
τ10 140 140
τ11 100 100

utilization, the system operates longer, which increases the achievable
minimal energy. We evaluate this by increasing the system utilization
for generated task sets from 1.1 to 2.7 in steps of 0.4. The obtained
results are shown in Figure 4.6(c). For very low system utilizations –
independent of task mapping techniques – all tasks can execute close to
fmin in both system modes and we observe minor or no differences among
the different methods. This trend changes when increasing the system
utilization. At higher system utilizations, the EM3 method performs
constantly best as it balances both HI and LO mode utilizations across
all cores. However, the performance of the IM3 method in energy saving
decreases as the system utilization increases – at high system utilizations,
strong criticality isolation leads to heavily loaded HI or LO criticality cores
and reduces the potential of applying DVFS to save energy. However,
even when Ubound = 2.7, our proposed IM3/EM3 method still achieves
28%/36% energy saving compared to when DVFS is not applied.

4.6.4 Evaluation with A Flight Management System

Assuming a dual-core platform, we conducted experiments on a real-
world Flight Management System (FMS), which is used for aircraft
localization, nearest airport selection and trajectory computation. The
task set consists of 11 tasks as shown in Table 2.2 and the configuration
of task WCETs is listed in Table 4.3. In all experiments, we assume
the processor is DVFS-capable with fmin/ fb/ fmax = 0.6/1.2/1.2GHz, β =

2W/GHzα, Ps = 0.8W and α = 3.
We apply our proposed EM3 and IM3 methods on the FMS application

and summarize our results in Figure 4.7. Indeed, we can observe that
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Figure 4.7: Experiment on a flight management system

energy minimization is achieved by applying our technique: around 40%
of total energy is reduced by employing DVFS for weight factors in the
range 0 − 1. Additionally, we observe the impact of weight factors on
the minimal expected energy: The minimal expected energy increases
with increasing wLO, since LO mode utilization is higher than HI mode
utilization in the considered task set. Therefore, the expected overall
energy increases when more importance is given to minimize LO mode
energy. We can also observe that both EM3 and IM3 methods achieve
very close energy savings for the FMS application.

4.6.5 Schedulability Evaluation of Mapping Methods
We compare our proposed mapping methods to the state-of-the-
art techniques in terms of schedulability, i.e., Baruah’s [Bar14] and
Gu’s [GGDY14] methods. We generate 1000 random task sets at each
utilization point similarly to our previous experiments, and map them
onto a multi-core platform consisting of 4 cores. We use task generation
parameters as follows: r = 1.25, [Ul−,Ul+] = [0.002, 0.02], [Uh−,Uh+] =

[0.01, 0.1] and PHI = 0.2. The number of task sets that are schedulable for
different mapping techniques is evaluated with varying system utilization
Ubound in the range 2.5 − 3, in steps of 0.1.

We summarize our results in Table 4.4 and Figure 4.8. As we can
see, when utilization is low (Ubound = 2.5), no matter which mapping
technique we use, all task sets are schedulable on 4 cores. As the
system utilization increases, IM3 shows the worst performance in terms
of schedulability as it cannot mix workload from different criticality levels
to improve schedulability. In addition, we observe that Baruah’s method
is actually slightly better than Gu’s method in terms of schedulability. The
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Table 4.4: Number of schedulable task sets under different mapping techniques
Ubound Baruah Gu EM3 IM3

2.5 1000 1000 1000 1000
2.6 1000 1000 1000 993
2.7 1000 1000 1000 847
2.8 1000 1000 1000 693
2.9 1000 1000 1000 524
3.0 940 925 711 385
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Figure 4.8: Acceptance ratio under partitioned EDF-VD with different mapping
methods – system utilizations greater than 3 are not shown as Baruah’s, Gu’s
and EM3 methods stop accepting task sets by construction in this work.

reason is that in Gu’s method, further fine tuning on mixing workloads on
all cores and on EDF-VD scheduling is performed, which is not considered
in this chapter. Last, we find that the EM3 mapping technique has a
schedulability performance close to Baruah’s and Gu’s methods.

4.6.5.1 Summary of Results

For an industry use-case and synthetic task sets, we have
demonstrated considerable energy saving on both single-core and multi-
core platforms with our proposed energy minimization techniques.
In particular, our proposed mapping techniques improve significantly
system energy efficiency over state-of-the-art mixed-criticality task
mapping techniques. For EM3 this comes with a minor loss of
schedulability; for IM3, the gained energy efficiency is at the cost of



4.7. Summary 143

a considerable schedulability loss. Our results imply that, if the number
of available cores is not constraint in the system, then spatial isolation
among different criticality levels is attractive – it is energy-wise efficient
and it eases certification thanks to criticality isolation.

4.7 Summary
Mixed-criticality systems are emerging as a significant trend for future
automotive and avionic systems. Extending conventional energy
minimization techniques to those new systems is of vital importance due
to issues related to system cost and thermal safety.

In this chapter, we explored energy minimization for mixed-criticality
systems on modern DVFS-capable multi-core platforms. We presented
the first solutions known to date for this problem, assuming a general
setting where both static and dynamic energy consumption in all system
operation modes is considered. To tackle the difficulty in trading off

energy consumptions in different modes in order to jointly minimize
the overall energy, we first proposed an optimal single-core solution
and then a corresponding low computation complexity heuristic. Based
on this, we further developed energy-aware task mapping techniques
to reduce system energy on multi-core platforms. Experiments were
conducted for both a flight management system and synthesized task sets,
demonstrating energy savings as high as 36% for multi-core platforms.

Our proposed techniques unified the consideration of mixed-criticality
timing guarantee and energy efficiency in tractable solutions, while
demonstrating the feasibility of minimizing both static and dynamic
energy consumption across different modes to a considerable extent.
Furthermore, we have also shown that, strict spatial isolation among
different criticality levels – as favored by the industry – achieves
almost comparable energy saving to mixing tasks of different criticality
levels on each core. This is an interesting and important result:
If the number of processors is not a constraint in mixed-criticality
systems, spatially isolating tasks of different criticality levels would be
energy-wise efficient; it further enables compliance with common safety
standards [IEC15, iso11] as strict isolation is often suggested by those
standards.
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5
Conclusion and Outlook

As a natural consequence of the evolution of computer systems,
mixed-criticality systems are emerging in many different application
domains [sys]. Those systems commonly host applications of different
criticality levels on a same computing platform and show great promises
to reduce the overall system cost [BD16]. This thesis is dedicated to
the design and optimization of mixed-safety-critical systems, which are
commonly found, e.g., in automotive and avionics systems.

A multitude of new challenges can be found in the mixed-criticality
era. Most noticeably, “mixing” applications on a common platform
with shared resources directly implies interferences among them – an
issue that the automotive and avionics industries have tried to avoid in
the past few decades [EN16]. To avoid the prohibitively high cost of
certifying all applications to the highest criticality level under “mixing”,
appropriate isolation needs to be guaranteed despite resource sharing.
In addition, heterogeneous application requirements as indicated by
different criticality levels should be taken into account. To meet those
goals, new system models and scheduling techniques are required.

Furthermore, many conventional design issues like fault-tolerance and
energy conservation need to be rethought in the mixed-criticality era
while considering salient features of these new systems. For example,
a common emerging approach for designing mixed-criticality systems
is to let them dynamically adapt to runtime threats by asymmetrically
protecting critical tasks and sacrificing less critical tasks in such scenarios.
While developing methods to achieve reliability and energy saving for
mixed-criticality systems, it is important to incorporate such mechanisms
and to understand the implication on designing those new systems.
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5.1 Contributions

This thesis presents a whole stack of technologies for designing mixed-
criticality systems, covering system specification, real-time scheduling,
fault-tolerance and energy minimization.

Mixed Criticality Modeling and Scheduling: Chapter 2 introduces
first three new mixed-criticality models, all aiming to enhance the service
guarantee and flexibility of existing models. The service adaptation
model introduces guaranteed degraded service for less critical tasks
in urgent scenarios as well as the service resetting time to reset the
system to the nominal scenario. The Interference Constraint Graph
(ICG) models interferences among tasks of different criticality levels as
directed edges among them. The processor over-clocking model takes
a hardware perspective and proposes to use processor speedup in order
to overcome urgent scenarios. For all proposed models, accompanying
scheduling techniques are developed as case studies, while showing
considerable improvement over existing methods in terms of system
service. Chapter 2 further formalizes the Isolation Scheduling model for
mixed-criticality systems, where different criticality levels can only gain
mutually exclusive access to the underlying hardware platform. Efficient
scheduling techniques are proposed while the schedulability limit of such
a model is theoretically investigated.

Fault-Tolerant Mixed-Criticality Design and Analysis: Chapter 3
presents the first mixed-criticality framework, unifying considerations of
task deadlines, system reliability and runtime adaptation. Conventional
hardening techniques including task re-execution and task replication
under transient system faults are applied. The system then dynamically
orchestrates resource allocation to different tasks according to their
criticality levels and runtime demands. Based on this, safety analysis
techniques are developed to bound system reliability, and task deadlines
are guaranteed by conventional mixed-criticality scheduling techniques
through a problem transformation. Our framework enables the design of
safe, schedulable and resource efficient mixed-criticality systems.

Optimizing Energy Efficiency of Mixed-Criticality Systems: Chap-
ter 4 leverages DVFS capability of modern computing platforms to
minimize energy consumption of mixed-criticality systems. We reveal
fundamental trade-offs involved in this problem and propose optimal
as well as heuristic solutions firstly on a single-core. We then present
extensions of these results to multi-core with new energy-aware task
mapping techniques. Our experimental results on both synthetic and
real-life systems demonstrate considerable energy savings. An interesting
finding is reported: The industrial practice of spatially isolating criticality
levels achieves comparable energy savings to mixing tasks on all cores.
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5.2 Possible Future Directions

Broader Application Domains: This thesis has focused on mixed-safety-
critical systems emerging in automotive and avionics industries; the
notion of criticality is defined from the safety point of view, i.e., a higher
criticality indicates a more stringent safety requirement. This definition of
criticality would change if other application domains are considered. For
example, for Internet systems, it would be interesting to consider mixed
security guarantees provided to different information flows. In cloud
systems, applications are often characterized with business criticality
levels – the criticality of one application indicates its importance to the
company’s business. Those definitions will naturally affect the guarantee
we should make for the corresponding applications and potentially the
entire design flow.

Mixed-Criticality Models and Scheduling: To our knowledge, a
widely accepted mixed-criticality model for both industry and academia
still does not exist. For example, introducing mixed-criticality runtime
adaptation is still a controversial topic in the automotive industry [EN16].
Therefore, it is important to extend existing models or propose new ones
to close the gap between industry and academia. Such high level models
should allow correct system behavior to emerge, and they should allow
computationally tractable system design. Meanwhile, they need to be
flexible enough to represent many practical systems in order to be widely
useful. Last but not least, the designed models should not abstract away
important system features that would help the design of mixed-criticality
systems, see e.g., Section 2.4.

The scheduling methods we have developed along with the proposed
models in Chapter 2 are only proof-of-concepts – they demonstrate that
tractable scheduling can be done for those models. Potential further
extensions include the consideration of multi-core, memory contention,
runtime overhead, etc.

Fault-Tolerance: In Chapter 3, our proposed techniques are built upon
the classical mixed-criticality model [BD16], for which possible extensions
are discussed in e.g., [GB13]. As future work, it would be interesting
and important to extend the methods to incorporate such extensions,
e.g., allowing the system to switch back from HI to LO mode while
guaranteeing system safety and schedulability. Furthermore, it would
be of practical importance to integrate the proposed techniques on sub-
systems (e.g., the flight management system in a commercial aircraft)
with system wide analysis (e.g., on the level of the aircraft) to achieve
certifiable design of industrial mixed-criticality systems.

Energy-Efficiency: In Chapter 4, we have assumed EDF scheduling
and focused on the CPU processing energy. It would be interesting
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to further consider other scheduling techniques, energy sources (e.g.,
communication energy) and various system overheads (e.g., timing
and energy overheads when switching between different power states).
However, we believe that the important findings in Chapter 4 would still
hold in such an extension, e.g., trade-off between energy consumptions
in different system modes and the benefit of isolated scheduling.

Industrial Case Studies: Perhaps the most effective validation of
emerging mixed-criticality techniques is a thorough case study, possibly
through collaborations with the industry. The result and certification
feedback will provide a meaningful guide for the future development of
mixed-criticality systems. This will also provide a chance to test how
the segmented mixed-criticality techniques (e.g., in areas of real-time,
reliability, energy, etc.) could be unified together and be applicable.
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