
Diss. ETH No. 16742

Hardware Virtualization on a

Coarse-Grained Reconfigurable Processor

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH

for the degree of

Doctor of Sciences

presented by

CHRISTIAN PLESSL

Dipl. El.-Ing., ETH Zürich, Switzerland

born 1975-02-27

citizen of
Germany

accepted on the recommendation of

Prof. Dr. Lothar Thiele, examiner
Prof. Peter Cheung, co-examiner

Prof. Dr. Marco Platzner, co-examiner

2006
Examination date: July 10, 2006

Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 84

Christian Plessl

Hardware Virtualization
on a Coarse-Grained

Reconfigurable Processor

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich
for the degree of Doctor of Sciences

Diss. ETH No. 16742

Prof. Dr. Lothar Thiele, examiner
Prof. Peter Cheung, co-examiner
Prof. Dr. Marco Platzner, co-examiner

Examination date: July 10, 2006

v

Acknowledgements
I would like to thank:

• my advisor Prof. Lothar Thiele for supporting my research and
for providing me with an excellent research environment. I have
benefited a lot from his experience and his critical thinking in our
discussions.

• Prof. Marco Platzner for his invaluable advice during the Zippy
project. I appreciate his support and our continued, fruitful collab-
oration. I would also like to thank him for serving as co-examiner
for my dissertation.

• Prof. Peter Cheung for kindly serving as co-examiner for my disser-
tation.

• Rolf Enzler for the close collaboration in the Zippy research project.
The results on this work have been the basis for this dissertation.

• my colleagues from the Computer Engineering group for countless
inspiring and controversial discussions.

• my friends and my family for their continued support and encour-
agement.

vi

September 12, 2006 plessl_thesis.tex rev 563

Contents

Contents vii

1 Introduction 1
1.1 Research Topics in Reconfigurable Architectures for Em-

bedded Systems . 2
1.2 Contributions . 5
1.3 Application Specification and Execution on the Zippy Ar-

chitecture . 7
1.4 Preliminary Work at ETH 10
1.5 Thesis outline . 11

2 Dynamically Reconfigurable Processor Architecture 13
2.1 Design Objectives . 14
2.2 System Architecture . 15

2.2.1 Structure . 15
2.2.2 Embedded CPU core 16
2.2.3 Reconfigurable Processing Unit 17

2.3 Reconfigurable Processing Unit Architecture 18
2.3.1 Reconfigurable Array 19
2.3.2 FIFOs . 24
2.3.3 Register Interface . 26
2.3.4 Context Sequencer and Synchronization 26
2.3.5 Multi-Context Architecture 30
2.3.6 Configuration Architecture 31
2.3.7 Parameters of the Reconfigurable Processing Unit . 32

2.4 Summary . 32

3 Tool-Flow 35
3.1 Tool-Flows for Coarse-Grained Reconfigurable Processors 36
3.2 The Zippy Tool-Flow . 39
3.3 Hardware Tool-Flow . 41

3.3.1 Hardware specification 41
3.3.2 Architecture modelling 43

viii Contents

3.3.3 Placement . 46
3.3.4 Routing . 49
3.3.5 Configuration Generation 53

3.4 Software Tool-Flow . 55
3.4.1 Hardware- Software Interface 55
3.4.2 CPU Simulator and Compilation Tool-Chain 56
3.4.3 Extensions to the CPU Simulator 56
3.4.4 Compilation Tool-Chain 57

3.5 Summary . 58

4 Performance evaluation 61
4.1 Performance Evaluation for Reconfigurable Processors . . 62

4.1.1 Motivation . 62
4.1.2 Challenges . 62
4.1.3 Approaches . 63

4.2 System-Level Cycle-Accurate Co-Simulation for Zippy . . 64
4.2.1 Architectural assumptions 65
4.2.2 CPU Simulation Model 65
4.2.3 RPU Simulation Model 67
4.2.4 Cosimulation framework 67

4.3 Summary . 71

5 Hardware Virtualization 73
5.1 Introduction to Hardware Virtualization 74

5.1.1 Hardware Virtualization Approaches 74
5.1.2 Temporal Partitioning 76
5.1.3 Virtualized Execution 81
5.1.4 Virtual Machine . 84
5.1.5 Summary . 85

5.2 Hardware Virtualization on the Zippy Architecture 85
5.2.1 Application Specification Model 86
5.2.2 Virtualized Execution 86
5.2.3 Temporal Partitioning 87

5.3 A Novel Method for Optimal Temporal Partitioning 90
5.3.1 Outline of the Method 90
5.3.2 Models . 92
5.3.3 Basic Problem Formulation 95
5.3.4 Resource Constraints 98
5.3.5 Solving the Temporal Partitioning MILP 105
5.3.6 Extension to Functional Pipelining 105
5.3.7 Example . 105
5.3.8 Related Work and Discussion 107

5.4 Summary . 110

September 12, 2006 plessl_thesis.tex rev 563

Contents ix

6 Experimental Results 111
6.1 Virtualized Execution of a Digital Filter 111

6.1.1 FIR Filter Partitioning and Mapping 112
6.1.2 Experimental Setup 114
6.1.3 Results and Discussion 115

6.2 Temporal Partitioning of an ADPCM Decoder 118
6.2.1 Application . 119
6.2.2 Experiments . 119
6.2.3 Experimental Setup and Results 122

6.3 Summary . 124

7 Conclusions 125
7.1 Contributions . 125
7.2 Conclusions . 127
7.3 Future Directions . 128

A Acronyms 131

Bibliography 133

Abstract

In this thesis, we propose to use a reconfigurable processor as main
computation element in embedded systems for applications from the
multi-media and communications domain. A reconfigurable proces-
sor integrates an embedded CPU core with a Reconfigurable Processing
Unit (RPU). Many of our target applications require real-time signal-
processing of data streams and expose a high computational demand.
The key challenges in designing embedded systems for these applica-
tions is to find an implementation that satisfies the performance goals
and is adaptable to new applications, while the system cost is minimized.
Implementations that solely use an embedded CPU are likely to miss the
performance goals. ASIC-based coprocessors can be used for some high-
volume products with fixed functions, but fall short for systems with
varying applications.

We argue that a reconfigurable processor with a coarse-grained, dy-
namically reconfigurable array of modest size provides an attractive im-
plementation platform for our application domain. The computational
intensive application kernels are executed on the RPU, while the remain-
ing parts of the application are executed on the CPU. Reconfigurable
hardware allows for implementing application specific coprocessors with
a high performance, while the function of the coprocessor can still be
adapted due to the programmability. So far, reconfigurable technology is
used in embedded systems primarily with static configurations, e. g., for
implementing glue-logic, replacing ASICs, and for implementing fixed-
function coprocessors. Changing the configuration at runtime enables
a number of interesting application modes, e. g., on-demand loading of
coprocessors and time-multiplexed execution of coprocessors, which is
commonly denoted as hardware virtualization. While the use of static
configurations is well understood and supported by design-tools, the role
of dynamic reconfiguration is not well investigated yet. Current applica-
tion specification methods and design-tools do not provide an end-to-end
tool-flow that considers dynamic reconfiguration. A key idea of our ap-
proach is to reduce system cost by keeping the size of the reconfigurable
array small and to use hardware virtualization techniques to compensate
for the limited hardware resources.

The main contribution of this thesis is the codesign of a reconfigurable
processor architecture named ZIPPY, the corresponding hardware and
software implementation tools, and an application specification model
which explicitly considers hardware virtualization. The ZIPPY architec-
ture is widely parametrized and allows for specifying a whole family of
processor architectures. The implementation tools are also parametrized
and can target any architectural variant. We evaluate the performance of

Contents xi

the architecture with a system-level, cycle-accurate cosimulation frame-
work. This framework enables us to perform design-space exploration for
a variety of reconfigurable processor architectures. With two case studies,
we demonstrate, that hardware virtualization on the Zippy architecture
is feasible and enables us to trade-off performance for area in embedded
systems. Finally, we present a novel method for optimal temporal par-
titioning of sequential circuits, which is an important form of hardware
virtualization. The method based on Slowdown and Retiming allows us
to decompose any sequential circuit into a number of smaller, communi-
cating subcircuits that can be executed on a dynamically reconfigurable
architecture.

Zusammenfassung

In dieser Arbeit schlagen wir vor, einen Rekonfigurierbaren Prozessor als
Hauptrecheneinheit in eingebetteten Systemen für Anwendungen aus
den Bereichen Multimedia und Kommunikation zu verwenden. Ein
Rekonfigurierbarer Prozessor integriert einen eingebetteten CPU Core
mit einer Rekonfigurierbaren Recheneinheit. Viele unserer Zielanwen-
dungen verlangen nach Signalverarbeitung von Datenströmen in Echtzeit
und haben hohe Rechenanforderungen. Die grössten Herausforderungen
beim Entwurf eines Eingebetteten Systems für diese Anwendungen ist es,
eine Implementierung zu finden, welche den Leistungsanforderungen
genügt und auf neue Anwendungen angepasst werden kann, während
gleichzeitig die Systemkosten minimiert werden. Implementierungen,
welche lediglich eine eingebettete CPU verwenden, können die Leis-
tungsanforderungen in den meisten Fällen nicht erfüllen. Für gewisse
Anwendungen mit fester Funktion und hohen Stückzahlen können Co-
prozessoren basierend auf ASICs verwendet werden. Allerdings sind
diese Systeme ungeeignet, wenn die Anwendungen für das System vari-
ieren.

Wir legen dar, dass ein Rekonfigurierbarer Prozessor mit einem rel-
ativ kleinen, grobgranularen, dynamisch rekonfigurierbaren Array eine
attraktive Implementierungsplattform für unsere Anwendungsbereiche
ist. Die rechenintensiven Teile der Anwendung, die sogenannten Kernels,
werden auf der Rekonfigurierbaren Recheneinheit ausgeführt, während
die verbleibenden Teile der Anwendung auf der CPU ausgeführt wer-
den. Die Verwendung von Rekonfigurierbarer Hardware erlaubt die
Implementierung von anwendungsspezifischen Coprozessoren mit ho-
her Rechenleistung, während es die Programmierbarkeit der Hardware
erlaubt, die Funktion der Coprozessoren anzupassen. Bisher wurde
Reconfigurierbare Hardware in Eingebetteten Systemen vor allem mit
statischer Konfiguration eingesetzt, z. B. für die Implementierung von
Glue-Logic, den Ersatz von ASICs und für die Implementierung von Co-
prozessoren mit fixen Funktionen. Das Ändern der Konfiguration zur
Laufzeit ermöglicht einen Vielzahl von interessanten Anwendungsmodi,
z. B. das Laden von Coprozessoren nach Bedarf und die Verwendung von
Zeit-Multiplexing bei der Ausführung von Coprozessoren, was üblicher-
weise als Hardware Virtualisierung bezeichnet wird. Während die Ver-
wendung von statischen Konfiguration gut etabliert ist und von com-
putergestützten Entwurfswerkzeugen unterstützt wird, wurde die Rolle
der dynamischen Rekonfiguration noch nicht ausreichend untersucht.
Gegenwärtige Methoden zur Spezifizierung von Anwendungen und die
entsprechenden Entwurfswerkzeuge bieten noch keinen durchgängigen
Entwurfsprozess an der dynamische Rekonfiguration in Betracht zieht.

Contents xiii

Eine Schlüsselidee unseres Ansatzes ist es, die Systemkosten zu reduzieren,
indem wir die Grösse der Rekonfigurierbaren Recheneinheit bewusst
klein halten und die limitierten Hardware-Ressourcen mittels Hardware
Virtualisierung kompensieren.

Der Hauptbeitrag dieser Arbeit ist der gemeinsame Entwurf (Code-
sign) einer rekonfigurierbaren Prozessor Architektur (ZIPPY), den entsprechen-
den Hardware und Software Implementierungswerkzeugen und eines
Spezifikationsmodells, welches explizit Hardware Virtualisierung ein-
schliesst. Die ZIPPY Architektur ist weitgehend parametrisiert und er-
laubt somit eine ganze Familie von Prozessorarchitekturen zu spezi-
fizieren. Die Implementierungswerkzeuge sind ebenfalls parametrisiert
und unterstützen jede Architekturvariante. Die Performance der Ar-
chitektur wir mit einem Cosimulations Framework ermittelt, das eine
systemweite, zyklengenaue Performance-Analyse erlaubt. Diese Frame-
work ermöglicht uns auch eine Entwurfsraumexploration für verschiedene
rekonfigurierbare Prozessorarchitekturen durchzuführen. Mit zwei Fall-
studien zeigen wir, dass Hardware Virtualisierung mit der Zippy Ar-
chitektur möglich ist. Wir zeigen, dass wird durch Hardware Virtual-
isierung neue Flächen-Performance Trade-Offs in Eingebetteten Systemen
realisieren können. Schliesslich präsentieren wir eine neue Methode zur
optimalen Temporalen Partitionierung von sequentiellen Schaltungen.
Temporale Partitionierung ist eine wichtige Technik zur Hardware Vir-
tualisierung. Unsere Methode beruht auf Slowdown und Retiming und
erlaubt es, jede sequentielle Schaltung in eine Menge von kleineren, kom-
munizierenden Schaltungen zu zerlegen, welche auf einer dynamisch
rekonfigurierbaren Architektur ausgeführt werden können.

xiv Contents

September 12, 2006 plessl_thesis.tex rev 563

1
Introduction

Many embedded systems execute a set of data processing tasks which—
apart from the computational requirements—frequently also demand for
a guaranteed timing behavior. In recent embedded systems, e. g., Per-
sonal Digital Assistants (PDAs), digital music and video players, or set-
top-boxes for digital TV, the processing of tasks related to multi-media
applications becomes increasingly important. Typically, these tasks ex-
pose a high computational demand which is caused by complex signal
processing algorithms, e. g., for audio and video decompression, cryptog-
raphy, or communication protocols.

Given the stringent cost constraints for many embedded systems, find-
ing a cost-effective implementation for these computationally intensive
applications, such that the performance requirements are met, is a chal-
lenging task. Implementations that rely solely on an embedded CPU are
likely to miss the performance goal. For high-volume and fixed-function
systems, e. g., smart cell-phones, certain algorithms can be implemented
as Application-Specific Integrated Circuits (ASICs) to achieve an optimal
trade-off between performance, cost and power-consumption. But for
embedded systems with varying applications, low to medium produc-
tion volumes, or when field upgrades are required, ASIC solution fall
short due to their fixed function nature and the high initial cost for an
ASIC production.

The introduction of reconfigurable hardware, e. g., Field-Programma-
ble Gate-Arrays (FPGAs) has changed the design space for embedded
systems. Reconfigurable devices can be use to implement highly cus-
tomized, application-specific coprocessors that are able to deliver ASIC-
like performance, while at the same time, the functionality can be changed

2 Chapter 1. Introduction

rapidly. Reconfigurable hardware is also economically attractive since re-
configurable devices are general-purpose devices that are produced in
large quantities and can therefore benefit from the economy of scale.

Reconfigurable hardware plays an important role in general purpose
and embedded systems and has been applied for many purposes, e. g.,
logic emulation, replacement of dedicated ASICs and the implementa-
tion of runtime-reconfigurable, application specific coprocessors. The
latter is the most promising application of reconfigurable technology in
embedded systems, since it allows for cost-effective, application specific
processing.

While the use of reconfigurable technology with a static configuration
is well understood and supported by vendor design-tools, the role of
dynamic reconfiguration is not well investigated yet. Current application
specification methods and design-tools do not provide an end-to-end
tool-flow that considers dynamic reconfiguration.

This thesis advocates the use of a dynamically reconfigurable processor as
the main computation element in an embedded system. We argue that for
embedded systems, the addition of a coarse-grained dynamically recon-
figurable array of modest size is beneficial. Fast dynamic reconfiguration
enables hardware virtualization and can compensate for the limited hard-
ware resources of the reconfigurable processor. In addition to a new hard-
ware architecture, we also introduce an application specification model,
and the associated hardware and software tool-flow.

Section 1.1 briefly outlines important research topics related to the
use of coarse-grained, dynamic reconfigurable architectures as the main
computation units in embedded systems. In Section 1.2 we present an
overview of the contributions of this dissertation to the state-of-the art
in application and theory of dynamic reconfigurable architectures in em-
bedded computing systems. Section 1.3 presents the general concept of
application specification and implementation that underlies this work
and outlines the interrelations between the architecture, the design tools
and the applications. Section 1.4 discusses the relation of this thesis to
preliminary work at ETH. Finally, Section 1.5 outlines the organization of
this thesis.

1.1 Research Topics in Reconfigurable Architec-
tures for Embedded Systems

Using reconfigurable computing in embedded systems is attractive for
a number of reasons. Reconfigurable coprocessors have been shown
to achieve high-performance and energy efficient implementations for

September 12, 2006 plessl_thesis.tex rev 563

1.1. Research Topics in Reconfigurable Architectures for Embedded Systems 3

many applications [ASI+98, MMF98, CH02]. The functionality of the
coprocessor can be changed, even in the field after deployment. This
feature is a clear advantage over ASIC-based implementations and can
be used to fix system malfunctions but also enables to add new functions
to the system.

While programmable logic is routinely used in embedded systems for
implementing digital-logic, runtime reconfiguration of hardware is not
widely applied. Although academic research has shown that reconfig-
urable computing has a high potential, it is still difficult for the average
system designer to exploit the potential of reconfigurable computing.
There are a number of open issues related to the reconfigurable architec-
tures, the application specification, and the application implementation
that complicate the use of reconfigurable computing in embedded sys-
tems.

In the following, we summarize the most important research issues
related to the use of dynamic reconfigurable architectures in embedded
systems.

Reconfigurable Processor Architecture

From economical and practical aspects its favorable to implement only
the kernels of an application on the Reconfigurable Processing Unit (RPU)
while the rest of the application runs on the CPU core. Hence, a close
integration of CPU and RPU is needed, e. g., as attached coprocessor or
Reconfigurable Functional Unit (RFU). Different CPU/RPU integration
possibilities have been discussed in [CH02].

Many important multi-media signal-processing algorithms perform
arithmetic operations on word sized data, rather than bit-level operations.
We present an analysis of important applications in [EPP+01]. Since the
fine-grained logic elements of FPGAs do not match these data-processing
characteristics, a number of coarse-grained reconfigurable architectures
have been designed, e. g., [SLL+00, MO99, BMN+01, SC01]. The func-
tionality of the reconfigurable cells in these architectures differs widely,
from simple ALUs up to full-featured, autonomous CPUs with dedicated
instruction and data memories.

Multi-context architectures concurrently store multiple configurations
(contexts) on-chip and allow for rapidly switching between these contexts.
Multi-context architecture have been proposed for both fine-grained FPGA
architectures, e. g., [TCJW97, DeH94, SV98], and for coarse-grained archi-
tectures, e. g., [MO99, SLL+00]. Rapid reconfigurability enables a number
of execution modes that depend on fast reconfiguration, for example,
hardware virtualization.

4 Chapter 1. Introduction

Programming Model

The conventional logic-synthesis centric FPGA tool-flow does not match
the expectations of many embedded system designers. So far, no pro-
gramming and application specification model for applications of coarse-
grained reconfigurable CPUs has been widely accepted. There are two
main approaches to application specification and implementation for
coarse-grained architectures: high-level language compilation and circuit-
centric design. High-level compilation for coarse-grained architectures
demands for automated hardware/software partitioning and automated
hardware synthesis and has been studied for example in [CW02, LKD03,
VNK+03]. But the design of a high-level compilation tool-flow that gener-
ates high-performance implementations for arbitrary applications is still
an open research problem. In a circuit centric design-flow an applica-
tion is specified as a structural signal-flow description. This specification
approach is also the basis for block-based application specification tools,
e. g., [HMSS01]. The resulting circuits are implemented with design-tools
that are similar to FPGA placement and routing tools [BRM99, EMHB95].

Recently, FPGA vendors started to embed CPU cores into their high-
end FPGA families [Xil05, Alt02]. The reconfigurable structures in these
devices are general purpose and can be reconfigured at runtime. The
lack of a clear programming model and tool-flow is certainly one cause,
that the reconfigurable logic in these devices is so far primarily used for
custom peripherals or static coprocessors.

Dynamic Reconfiguration

Dynamically reconfigurable architectures allow for modifying the config-
uration of the device at runtime. Partially reconfigurable architectures
even allow for modifying only a part of the configuration, while the other
parts are running unaffectedly. Dynamic reconfiguration allows for treat-
ing the reconfigurable architecture as a time-shared computing resource
and enables a number of interesting application modes, such as rapid
instantiation of application-specific coprocessors or time-multiplexed ex-
ecution of circuits (hardware virtualization). Hardware virtualization
is particularly interesting for embedded systems, since the impact of
resource limitations of a reconfigurable architecture can be reduced by
hardware virtualization. Hence, the reconfigurable architecture can be
dimensioned small to reduce system cost.

We have demonstrated a tool-flow and an application of a dynami-
cally reconfigurable coprocessor for decoding compressed audio signals
in [DPP02]. Depending on the audio format a suitable coprocessor is
loaded on demand at runtime.

Although dynamic reconfiguration has been identified as an interest-

September 12, 2006 plessl_thesis.tex rev 563

1.2. Contributions 5

ing research area and a number of architectures support dynamic recon-
figuration, e. g., [TCJW97, DeH94, SV98, Xil05, Atm05], dynamic reconfig-
uration is rarely applied in practice. This fact can be attributed largely to
a missing integration into a coherent application specification and imple-
mentation tool-flow. Applications of dynamic reconfiguration frequently
require hand-crafted designs and custom tools, which is prohibitive for a
widespread use.

Performance Evaluation

Accurate evaluation of the performance of a reconfigurable processor is
a difficult problem, since the application is running partially on the CPU
core and partially on the RPU. The system-level performance depends
on the execution time for the hardware and software parts of the appli-
cation and on the performance of the CPU/RPU communication. While
determining the performance of RPU execution is relatively simple, cycle-
accurately modelling the CPU performance is much more difficult due to
dynamic effects in the CPU, e. g., branch prediction, caching, out-of-order
execution, etc.

Performance evaluation of CPUs with fine-grained RFUs have been
discussed in [CEC01, YMHB00, LTC+03], but these approaches use a sim-
plified, purely functional model of the RFU and do not account for all
dynamic effects. Although the importance of system-level performance
evaluation for reconfigurable processors is widely recognized, the topic
has not gained a lot of attention so far.

1.2 Contributions
In this dissertation we make a number of contributions to the state of
the art in reconfigurable processor architectures, design-tools and appli-
cations.

The main contribution of this thesis is the co-design of a dynami-
cally reconfigurable processor architecture for embedded systems. The
architecture and the design-tools are co-designed to enable an application
specification model that explicitly uses hardware virtualization.

Specifically, we make the following contributions:

• We present a new dynamically reconfigurable processor architecture
named Zippy. The architecture combines an embedded CPU core
with an RPU attached to the CPU’s coprocessor interface. The RPU
is a multi-context architecture and supports single-cycle, dynamic
reconfiguration. An array of coarse-grained reconfigurable cells

6 Chapter 1. Introduction

and on-chip FIFO buffers tailor the architecture to the processing of
streaming multi-media applications.

Since embedded systems frequently have stringent cost (i. e., chip-
size) constraints, we aim at keeping the size of the reconfigurable
co-processor extension to the CPU small by using a reconfigurable
array of modest size. Hardware virtualization allows for executing
application specific co-processors of virtually arbitrary size. Hence,
we employ hardware virtualization to reduce the impact of the re-
source constraints imposed by the small array.

The architecture provides dedicated hardware units to efficiently
support hardware virtualization, i. e., the time-multiplexed execu-
tion of circuits. Specifically, the architecture offers multiple configu-
ration contexts, dedicated context sequencers, and units for efficient
inter-configuration communication.

• A suite of design-tools has been developed concurrently with the
Zippy architecture. Zippy is not a single concrete architecture, but a
widely parametrized, cycle-accurate architecture simulation model.
Likewise, the design-tools are also parametrized and can generate
software and hardware implementations for all architecture vari-
ants. The hardware implementation tools base on iterative place-
ment and routing algorithms, that have been adapted to the coarse-
grained architecture.

• The performance of an instance of a Zippy architecture is evalu-
ated by co-simulation. The co-simulation environment combines a
cycle-accurate simulator for the CPU core with a the cycle-accurate
model of the RPU. This performance evaluation environment al-
lows for bit-exact and cycle-true performance evaluation of Zippy
architectures. The parametrized nature of the Zippy model and the
design-tools allow for exploring the design-space for a whole family
of architectures.

• We provide an application specification model that considers the
coarse-grained nature of the reconfigurable cells as well as the dy-
namic reconfiguration capabilities of the RPU. If circuits exceed
the resource supply of the RPU, we use hardware virtualization
to decompose the application into a set of smaller, communicating
parts, where each part respects the resource constraints. The appli-
cation specification model is translated to an implementation by an
end-to-end tool-flow, which is widely automated.

• Temporal partitioning allows for splitting arbitrary sequential cir-
cuit into a set of smaller circuits. When executed cyclically, these

September 12, 2006 plessl_thesis.tex rev 563

1.3. Application Specification and Execution on the Zippy Architecture 7

subcircuits implement the same function as the original circuit. We
present a novel method for optimal temporal partitioning of se-
quential circuits. The method bases on formulating the temporal
partitioning problem as an optimization problem. In contrast to
related work, our approach is more general since we consider struc-
tural modifications of the circuit. Additionally, thanks to a Mixed
Integer Linear Program (MILP) problem formulation, we can solve
the temporal partitioning problem optimally, while the majority of
related work uses heuristic approximations.

Zippy is a concrete architecture family, and the methods, algorithms
and models in this work have been tailored to this concrete architecture
family. However, many methods and ideas, e. g., the method for optimal
temporal partitioning, are also relevant in a broader context and can be
applied to different, dynamically reconfigurable architectures.

1.3 Application Specification and Execution on
the Zippy Architecture

In this section, we outline the general concept for application specifica-
tion, implementation and execution, that forms the basis of this work.
The Zippy architecture and the design-tools have been co-designed to en-
able the implementation of this concept. Figure 1 illustrates the general
concept.

a) Application specification

An application for a reconfigurable processor architecture is usually
not mapped to the RPU as a whole, but only the computational inten-
sive kernels of the application are executed on the RPU. The first step
in the implementation tool-flow is thus an analysis phase that iden-
tifies the kernels of the application. The example in Fig. 1(a) shows
an application that has been decomposed into three communicating
tasks. These tasks will be implemented in software or hardware. The
semantics of synchronization and communication between the tasks
is formally defined with a process network formalism.

b) Hardware/Software partitioning

This step performs hardware/software partitioning, which is a manual
process in this work. Each task is assigned either to the CPU or
to the RPU for execution. Software tasks are specified as C source
code. Software libraries for accessing the hardware communication

8 Chapter 1. Introduction

Application
C-code

HW/SW partitioning
- HW task level partitioning
- HW register transfer level
 partitioning
- SW interface generation

1

3

2b

Implementation toolflow
HW
- placement + routing
- configuration generation
SW
- communication + configuration
 libraries
- compilation

CPU

CPU
Core

Reconfigurable
Processing
Unit (RPU)

Performance evaluation
- system-level co-simulation
- cycle-accurate
- bit-true

Execution architecture
- embedded CPU core
- coarse-grained RC array
- multi-context

Application specification
- kernel analysis
- partitioning into communicating
 tasks

Chapter 3:
Tool-Flow

Chapter 2:
Dynamically
Reconfigurable
Processor
Architecture

Chapter 4:
Performance
Evaluation

Chapter 5:
Hardware
Virtualization

SW

HW

executable

config
bitstream 1

 sequencer
cfg

a)

b)

c)

d)

e)

ex seq exexcfg

Chapter 5:
Hardware
Virtualization

1

23

software hardware

performance data
statistics

2a C1

C2

co-simulation environment

Design / Implementation Step: Illustration: Discussion:

Chapter 6:
Experimental
Results

Fig. 1: Overall Concept for Application Specification and Execution

September 12, 2006 plessl_thesis.tex rev 563

1.3. Application Specification and Execution on the Zippy Architecture 9

interfaces are linked to the software tasks. If a task is mapped to
the RPU (hardware task), the designer has to specify a netlist of a
functional equivalent circuit.

While the CPU can execute software tasks of arbitrary size thanks to
virtual memory, the size of the hardware tasks is limited by the device
capacity.

We use hardware virtualization to overcome this limitation. Hardware
virtualization can be applied at the task level or at the register transfer
level. At the task level, we decompose tasks into smaller subtasks,
which is a manual process in this work. At the register transfer level,
tasks cannot be naturally decomposed into subtasks, but an automated
temporal partitioning process is used for this purpose.

The partitioning process is applied offline during the design phase
and determines a static partitioning and a corresponding execution
schedule. At runtime, the partitions are not modified, but the execu-
tion schedule can be varied depending on the timing constraints of the
application.

Fig. 1(c) shows that tasks 1 and 2 are mapped to hardware, and task
3 is mapped to software. The tasks communicate via FIFO buffers.
The hardware tasks use hardware virtualization, task 2 is temporal
partitioned into task 2a and task 2b.

c) Implementation Tool-Flow

The implementation tool-flow, see Fig. 1(c), transforms the hardware
and software tasks to representations that can be executed on the
reconfigurable processor.

The hardware tasks pass through an automated placement and routing
process that generates the configuration data for the reconfigurable
array. If the hardware tasks use hardware virtualization, the hardware
tool-flow also generates a configuration for the context sequencer that
controls the activation and execution of contexts.

The software tasks are compiled into executables, which access the
RPU with the communication and configuration libraries.

d) Execution architecture

The execution architecture is a reconfigurable processor which is based
on an embedded CPU core, see Fig. 1(d). A coarse-grained reconfig-
urable array is attached to the CPU’s coprocessor port. The reconfig-
urable array supports fast dynamic reconfiguration by providing mul-
tiple configuration contexts and a programmable context sequencer.

10 Chapter 1. Introduction

The reconfigurable processor executes the software executable gener-
ated by the software tool-flow and downloads the configuration data
and context sequencer configuration to the RPU.

At runtime, the CPU executes the software tasks, while the hardware
tasks are running on the RPU. Software and hardware tasks com-
municate via FIFO buffers, that are accessible from software via the
coprocessor port.

In this example, the hardware tasks use temporal partitioning. Thus,
during execution, the context sequencer continuously switches be-
tween the execution of context 1 (implements task 1 and 2a) and con-
text 2 (implements task 2b).

e) Performance evaluation

We use a system-level, cycle-accurate cosimulation for validating the
function of the architecture and for generating execution statistics. Our
simulation method is execution-based, i. e., the simulation models are
sufficiently detailed, to actually execute the code on the CPU core and
run the circuits on the RPU.

1.4 Preliminary Work at ETH
This thesis is part of the Zippy research project. The Zippy project
was a joint project of the Computer Engineering Lab (TIK) and the
Electronics Lab (IfE) at ETH Zürich and was running from 2000–2003.
The project aimed at studying reconfigurable architectures for embed-
ded computing in handheld and wearable computing applications. In
[EPP+01, PEW+02, PEW+03] we have shown the potential of reconfig-
urable technology in wearable computing for implementing energy effi-
cient, high-performance computing.

Two dissertations have been planned in the context of the project. Rolf
Enzler submitted the first of these dissertations [Enz04], for which he ob-
tained his PhD degree in 2004. Enzler’s thesis is focused on design-space
exploration for a dynamical reconfigurable processor, which is a ances-
tor of the Zippy architecture. He proposes system-level co-simulation
as performance evaluation methodology and presents a corresponding
simulation framework. Enzler’s thesis concludes with a case-study that
evaluates the design trade-offs in terms of performance and estimated
chip-size for different variants of the reconfigurabe processor architec-
ture.

While this dissertation builds on the infrastructure that has been de-
veloped in the course of the Zippy project, namely the co-simulation

September 12, 2006 plessl_thesis.tex rev 563

1.5. Thesis outline 11

framework and the basic reconfigurable architecture, the focus of this
work is different from the design-space exploration oriented thesis of
Rolf Enzler: This thesis advocates the use of dynamic reconfiguration for
embedded systems and proposes an end-to-end design-flow that consid-
ers hardware virtualization. To this end, the reconfigurable architecture,
the application specification model and the corresponding tool-flow have
been co-designed. Additionally, we have developed a novel method for
optimal temporal partitioning that can be applied to the Zippy architec-
ture.

1.5 Thesis outline
This section outlines the structure of this thesis.

Chapter 2 (Dynamically Reconfigurable Processor Architecture) in-
troduces the Zippy reconfigurable processor architecture, which is the
basis for this work. The architecture is defined as a widely parametrized,
cycle-accurate architecture model.

Chapter 3 (Tool-Flow) presents the application implementation tool-
flow for the Zippy architecture. The software tool-flow uses a library
based approach to control the reconfigurable processing unit. The hard-
ware tool-flow implements a placement and routing process that targets
all parametrized variants of the Zippy architecture.

In Chapter 4 (Performance evaluation) we present a performance eval-
uation environment for the simulation of the Zippy architecture. We
combine a cycle-accurate CPU simulator with a detailed VHDL model of
the reconfigurable processing unit into one co-simulator to provide the
developer with cycle-accurate and bit-exact performance results.

In Chapter 5 (Hardware Virtualization) we introduce hardware virtu-
alization and classify different approaches. We discuss the applicability
of hardware virtualization in the Zippy architecture and in embedded
systems in general. We introduce a novel method for hardware virtual-
ization by temporal partitioning. We use a problem formulation based
on mathematical programming, which can be used to solve the problem
optimally.

Chapter 6 (Experimental Results) presents two case studies that demon-
strate that hardware virtualization on the Zippy architecture is feasible.
We use the co-simulation environment for cycle-accurate performance
evaluation and we discuss performance-area trade-offs for different im-
plementations.

In Chapter 7 (Conclusions) we summarize the contributions of this
thesis and conclude the thesis with an outlook to future work.

12 Chapter 1. Introduction

September 12, 2006 plessl_thesis.tex rev 563

2
Dynamically

Reconfigurable
Processor Architecture

In this chapter we introduce a dynamically reconfigurable processor ar-
chitecture called Zippy, which has been developed for this work.

Section 2.1 presents the design objectives for the Zippy architecture,
which is a parametrized architecture and simulation model of a reconfig-
urable processor. We motivate the use of the model as an experimenta-
tion framework for reconfigurable processors in embedded systems. We
identify hardware virtualization as an important execution model and
present the architectural requirements for an efficient implementation of
hardware virtualization.

Section 2.2 outlines the system architecture of the reconfigurable pro-
cessor and introduces the two main components: the CPU core and the
Reconfigurable Processing Unit.

In Section 2.3 the architecture of the Reconfigurable Processing Unit is
described in detail. In particular, the section elaborates on the dedicated
hardware support for hardware virtualization.

While this chapter focuses exclusively on the hardware architecture,
Zippy has been co-designed with a number of supporting design-tools
and programing models. A hardware and software tool-flow for the
Zippy architecture is presented in Chapter 3. Chapter 4 introduces a
framework for system-level performance evaluation. Zippy has been
designed to support execution models for hardware virtualization, the

14 Chapter 2. Dynamically Reconfigurable Processor Architecture

related models, tools and algorithms are presented in Section 5.

2.1 Design Objectives
The Zippy architecture is not a single, concrete architecture but an archi-
tectural simulation model of a dynamically reconfigurable processor. The
model integrates an embedded CPU core with a coarse-grained Reconfig-
urable Processing Unit (RPU). Such architectures are commonly known
as Reconfigurable Processors or hybrid CPUs [CH02].

Zippy was created to provide an experimentation framework to study
the use of coarse-grained, dynamically reconfigurable CPUs and the as-
sociated design tools in the embedded system domain. The architectural
model is widely parametrized and can be configured to resemble whole
families of reconfigurable CPUs. Zippy architectures are modeled at a
level of detail that is sufficient for system-wide cycle-accurate simula-
tion. The goal of this simulation-based approach is to explore different
design alternatives and to evaluate the impact of the various architectural
parameters. An associated co-simulation framework for performance
evaluation will be presented in Chapter 4.

In contrast to many approaches studying reconfigurable technology,
we aim not at the general-purpose but at the embedded computing
domain. The embedded domain puts more stringent requirements on
computing power, energy consumption, cost, weight, volume, etc. and
stresses the trade-offs with respect to these objectives. Consequently, our
goal is to employ limited reconfigurable hardware resources in an efficient
way.

The applications we are targeting with our architecture are mainly
digital-signal processing applications for multi-media, communications
and cryptography, as they occur in handheld and wearable applications.
Our application analysis [EPP+01] has shown that these applications are
characterized by a high demand for arithmetic and logic operations on
word-sized operands. Typically the computational kernels are rather
small and work on streaming data. Consequently, we have designed our
architecture as a coarse-grained reconfigurable array rather than a typical,
fine-grained FPGA-like architecture.

A specific goal of this work is to investigate dynamic reconfiguration
in the context of embedded systems. In particular, we are interested in
studying hardware virtualization. Hardware virtualization is an imple-
mentation technique that partitions a circuit into a number of smaller
sub-circuits at compile-time. At run-time, these sub-circuits are executed
on a reconfigurable hardware device in a time-multiplexed way. The
sub-circuits perform the same function as the original circuit using less

September 12, 2006 plessl_thesis.tex rev 563

2.2. System Architecture 15

hardware resources, but at the expense of reduced performance. The
foundations of hardware virtualization and its application to the Zippy
architecture will be discussed in more detail in Chapter 5.

Although hardware virtualization can be used with any reconfigurable
architecture, an efficient implementation requires support by dedicated
hardware components in the reconfigurable architecture, namely: 1) fast
reconfiguration, 2) fast, repeated activation of a fixed sequence of config-
urations, and 3) efficient data-transfers between configurations.

The Zippy architecture supports these operations with the following
architectural features:
1) multi-context configuration architecture, i. e., several configurations are

stored on-chip concurrently. The activation of a stored configuration
happens within a single cycle

2) dedicated context sequencers that autonomously activate a programma-
ble sequence of configurations for a given time, and

3) data-transfer register-files that are shared between different configura-
tions for communicating data within the reconfigurable array (see
Section 2.3.1), and FIFO memory-queues for communication between
configurations and with the reconfigurable processor’s CPU core
Important architectural foundations for this work, e. g., multi-context

architectures, dynamic reconfiguration, have been treated in related work,
but have not been incorporated in a consistent framework for application
specification, implementation and execution.

The contribution of this thesis in the context of reconfigurable proces-
sor architecture is the design of a coarse-grained reconfigurable processor
architecture, that is explicitly co-designed with a programming model and
design-tools for the application of hardware virtualization techniques.

2.2 System Architecture
This section presents an overview of the Zippy system architecture which
consists of a CPU core and a Reconfigurable Processing Unit (RPU). The
RPU itself will be presented in more detail in Section 2.3.

2.2.1 Structure
Zippy is a reconfigurable processor composed of two main units: the
CPU core and the Reconfigurable Processing Unit (RPU). Figure 2 presents
a schematic drawing of the Zippy system architecture.

The RPU acts as a coprocessor to the CPU. i. e., the CPU’s coprocessor
interface is attached to the RPU’s register interface. All data-transfers

16 Chapter 2. Dynamically Reconfigurable Processor Architecture

FIFOs
L1/L2

caches

main memory

ALU FPU

re
gi

st
er

 IF

Reconfigurable Processing Unit

FIFOs

context sequen-
cer & synchr.

FIFOsconfig. mem

Coarse-Grained
Reconf Array

Ctrl

Addr

Data

co
pr

oc
es

so
r I

F

CPU core

ext memory IF

TLB

execution
control

branch
prediction

Fig. 2: The Zippy system architecture comprises a CPU core and a Reconfigurable Pro-
cessing Unit (RPU)

between the CPU and the RPU are performed via this coprocessor inter-
face. Additionally, the various functions of the RPU (e. g., configuration
loading, context sequencer programming or synchronization of CPU and
RPU) are exposed to the CPU via read and write operations on the register
interface. We assume that the CPU and the RPU use the same clock.

Our target applications work on data-streams rather than on single
data values and typically do not need random data access. CPU and
RPU can operate concurrently and synchronize only on demand. Hence
attaching the RPU to the coprocessor port is appropriate, since only in-
frequent communication is required. Attaching the RPU as a coprocessor
is used in many reconfigurable processor architectures, e. g., in the GARP
[HW97], OneChip [WC96], or REMARC [MO99] architecture.

Alternatively to a dedicated coprocessor interface, the RPU could also
be attached to the memory interface of the CPU. We have studied this
mechanism in [PP03b] where we interface an Field-Programmable Gate-
Array (FPGA)-based coprocessor to the system memory bus in a standard
PC. Using the memory bus as a coprocessor interface is attractive, because
it provides a high-bandwidth and low-latency communication interface
and doesn’t require modifying the CPU. On the other hand, using state-of-
the-art memory interfaces for memory mapped IO becomes increasingly
complex since CPUs use caching and complex memory-access protocols
for SDRAM access.

2.2.2 Embedded CPU core
We use the SimpleScalar CPU simulator for modeling the CPU core in the
Zippy architecture. Thus the CPU core is not a real CPU core, but a cycle-

September 12, 2006 plessl_thesis.tex rev 563

2.2. System Architecture 17

accurate simulation model of SimpleScalar’s architecture [ALE02]. Sim-
pleScalar is a well established tool for CPU architecture research because
it provides cycle-accurate simulation of a highly configurable architecture
and has an extensible instruction set. SimpleScalar has been also used for
simulating the CPU core in the OneChip [CEC01] architecture.

SimpleScalar models a parametrized 32-bit super-scalar RISC CPU
architecture with a MIPS-like instruction set. The principal parameters of
the CPU core are:
• the number of computation units (integer and floating-point ALUs

and multipliers),
• decode, issue, and commit bandwidths
• the sizes of the instruction fetch queue, the register update unit, and

the load/store queue,
• in-order or out-of-order execution, and
• the branch prediction mode.

Further, the architecture of the on-chip data and instruction caches can be
configured. At maximum, two cache-levels are supported, and caches can
be split or unified. The cache size, the number of sets, the associativity,
and the replacement strategy can be configured.

These configuration parameters allow for customizing the CPU model
to resemble a broad range of architectures, from small low-end CPUs with
a single integer ALU and small caches to powerful super-scalar CPU ar-
chitectures with multi-level cache hierarchies. Table 1 summarizes the
parameter settings for two CPU architectures, that we have used in our
studies. The Embedded CPU settings approximate the Intel StrongARM
architecture, which is a CPU that is frequently used in embedded systems.
This model is used as the default CPU configuration of the Zippy archi-
tecture. The Desktop CPU configuration is the default configuration for
the SimpleScalar architecture and simulates a 4-way super-scalar CPU.
We use this model for comparing the impact of the CPU architecture on
the system performance.

The original SimpleScalar architecture does not have a coprocessor
interface. For interfacing the RPU to the CPU core we have extended
SimpleScalar with a new functional unit that implements the coprocessor
interface. The extensible instruction set allowed us to add new instruc-
tions for co-processor access.

2.2.3 Reconfigurable Processing Unit
The main computational resource on the RPU is the coarse-grained recon-
figurable array. To provide the reconfigurable array with configurations
and data, the RPU offers memories for storing the configurations and
FIFO memory queues for data-transfers between CPU and RPU. The

18 Chapter 2. Dynamically Reconfigurable Processor Architecture

Parameter Embedded CPU Desktop CPU

Integer units 1 ALU, 1 Multiplier 4 ALU, 1 Multiplier
Floating point units 1 ALU, 1 Multiplier 4 ALU, 1 Multiplier
L1 I-cache 32-way 16k 1-way 16k
L1 D-cache 32-way 16k 4-way 16k
L2 cache none 4-way 256k (unified)
Memory bus width 32 bit 64 bit
Memory ports 1 2
Instruction fetch queue size 1 4
Register update unit size 4 16
Load/store queue size 4 8
Decode width 1 4
Issue width 2 4
Commit width 2 4
Execution order in-order out-of-order
Branch prediction static (not-taken) bi-modal

Tab. 1: CPU configurations of embedded and desktop CPU models.

RPU model is implemented as a cycle-accurate VHDL simulation model.
This modelling style allows us to use different levels of abstraction in
the RPU model. We specify complex behavior or computations with be-
havioral VHDL constructs on an abstract level, while the discrete event
semantic of VHDL allows us to preserve overall cycle accuracy.

Just as the CPU core, the RPU architecture model is also highly con-
figurable. This enables us to explore and evaluate a large family of recon-
figurable processors.

2.3 Reconfigurable Processing Unit Architecture
This section discusses the design of Zippy’s RPU. A schematic diagram
of the Reconfigurable Processing Unit is shown in Figure 3.

Zippy is a multi-context architecture, i.e., several configurations can
be stored concurrently on-chip in the configuration memory. The RPU
can switch rapidly between these configurations. The activation and
sequencing of configurations is controlled by the context sequencer. The
FIFOs are accessible by both, the reconfigurable array and the CPU core
and are used to pass input data and results between the CPU core and the
reconfigurable array and also between different configurations (contexts)
of the RPU. The register interface provides the CPU with access to the RPU

September 12, 2006 plessl_thesis.tex rev 563

2.3. Reconfigurable Processing Unit Architecture 19

re
gi

st
er

 IF

Reconfigurable Processing Unit

context
sequencer &

synchronization

Reconfigurable Array

Ctrl

Addr

Data

IO
ctrl 0

IO
ctrl 1

FIFO0

FIFO1

configuration
memory 0

active
configuration

current
context

current context
enable

INP0

OUTP0

INP1

OUTP1

Fig. 3: Reconfigurable Processing Unit Architecture

function blocks.

2.3.1 Reconfigurable Array
The reconfigurable array is the core unit of the Zippy architecture. It is
organized as an array of uniform, coarse-grained reconfigurable cells,
which are connected by two programmable interconnection structures: a
local interconnect and a bus interconnect. The reconfigurable array has
two input and two output ports (INP0/1) and (OUTP0/1) that connect the
internal buses to the IO-controllers on the RPU.

The bit-width of the ALU in the cells, the interconnection wires, and
the FIFOs can be configured. Typically, the bit-width is set to 16 bit or 24
bit, which are common bit-widths for many fixed-point signal processing
algorithms.

Interconnection network

The Zippy architecture uses two interconnect structures: a local intercon-
nect between neighboring cells, and a bus interconnect, between cells in
the same row or column. The local interconnect is shown in Figure 4.
Each cell can read the output data from all of its 8 immediate neighbors.
Having a fully uniform interconnect allows for writing simpler placement
and routing algorithms. To this end, the array’s interconnect is cyclically
continued at the edges of the array to make it fully symmetric and uni-

20 Chapter 2. Dynamically Reconfigurable Processor Architecture

c0,2 c0,3c0,1c0,0

c1,2 c1,3c1,1c1,0

c2,2 c2,3c2,1c2,0

c3,2 c3,3c3,1c3,0

Fig. 4: Reconfigurable Array: Local Interconnect

September 12, 2006 plessl_thesis.tex rev 563

2.3. Reconfigurable Processing Unit Architecture 21

form. For example, the connection of cell c1,0 pointing westward connects
to cell c1,3.

Figure 5 shows the bus interconnect for a 4 × 4 cell instance of the
Zippy array. Programmable routing switches are indicated by small bus-
driver symbols at the crossing of wires. There are three types of horizontal
buses: the horizontal north buses (hbus_n) that connect cells in adjacent
rows, the horizontal south buses (hbus_s) that connect cells in the same row,
and the memory buses (hbus_mem) that connect all cells in a row to an
on-chip memory block. Additionally, the vertical east buses (vbus_e) provide
connectivity between the cells in the same column. The example in Fig. 5
shows an architecture with 2 horizontal north, 2 horizontal south and 2
vertical east buses. The number of buses can be chosen independently
and is fully parametrized. The bit-width of the interconnect corresponds
to the data-width of the ALU.

Reconfigurable Cell

The reconfigurable cell is composed of three main structures: a versatile
input structure with overall three inputs, an operator block, and an output
structure. Figure 6 presents a detailed schematic of the cell. The function
of all shaded parts is controlled by the configuration. As Zippy is a multi-
context architecture every context has a distinct configuration for these
parts. Additionally to the inputs, the current context selector is also fed
into the cell to control the input multiplexers of the input and output
register-files.

The input multiplexer (inpX select) connects each input (inpX) to either
of six sources: to one of the cell’s inputs (horizontal bus, vertical bus, any
local neighbor), to a configurable constant, to the cell’s output register
(feedback path), or to one of the registers of the input register-file. The
input register-file provides a dedicated register per input and context,
which stores the selected bus or local input. The input register-files can
be can used for transfering data between the contexts, since the input
multiplexer (inX select) has also access to input registers that have been
written in all different contexts.

The operator block bases on a fixed-point ALU and performs the cell
computation. The operator takes up to three inputs and computes one
output value. Figure 6 includes a table of supported cell operations.

Most arithmetic and logical operations are self-explaining. The pass
operation directs the unmodified input value to the output, what can be
useful for routing purposes. The testbitat operations are used for bit-tests.
testbitat0(value,mask) takes an input value and a mask and returns 1 if all
bits that are set in mask are set to 0 in value, otherwise the operator returns
0. The testbitat1 operator works analogously for testing whether bits are

22 Chapter 2. Dynamically Reconfigurable Processor Architecture

programmable routing switch

MEM0

MEM1

MEM2

IN
P0

IN
P1

O
U

TP
0

O
U

TP
1

hbus_n

hbus_s
hbus_mem

vbus_e

MEM3

c 0,0 c 0,1 c 0,2 c 0,3

c 1,0 c 1,1 c 1,2 c 1,3

c 2,0 c 2,1 c 2,2 c 2,3

c 3,0 c 3,1 c 3,2 c 3,3

Fig. 5: Reconfigurable Array: Bus Interconnect

September 12, 2006 plessl_thesis.tex rev 563

2.3. Reconfigurable Processing Unit Architecture 23

in
0

r0
in

0
r1

in
0

r7

const

inp0 select

ou
t1

 r0
ou

t1
 r1

ou
t1

 r7

out reg select

out select

hbus vbus local

hbus vbus local

operator

inp1 select inp2 select

op0 mux op2 mux

input
register-file

output
register-file

interconnect to
neighboring cells

current
context

arithmetic ops:
 add,sub,mul,neg
logic ops:
 not,and,nand,or, nor,
 xor,xnor,srl,sll,ror,rol,pass
test ops:
 eq,neq,lte,gte,tstbitat0, tstbitat1
memory ops:
 mem
other ops:
 mux

op1 mux

to/from
memory block

inp0 inp2inp1

Fig. 6: Reconfigurable Processing Unit: Cell architecture (shaded parts are controlled
by the configuration

24 Chapter 2. Dynamically Reconfigurable Processor Architecture

set to 1. The mux(sel,a,b) operator is a ternary operator that forwards input
a or input b to the output, depending on the value of the least-significant
bit of sel. This operator is used for implementing control-flow operations,
i.e., data-dependent processing. Each row of cells has access to a shared
ROM memory block, see Fig. 5. The rom(addr) operation of a cell reads
the contents at address addr of the ROM associated with this cell.

Like the input register-file, the output register-file provides a dedicated
register per context. The output of the operator block is stored in a
dedicated register of the output register-file. The output of the cell can be
selected either as the combinational output of the operator block, or as the
contents of an output register. Since the output multiplexer has access to
all output registers it can also be used for data-transfers between different
contexts.

The structure and function of the register files is similar to the micro-
registers in the TMFPGA multi-context FPGA architecture [TCJW97]. In
contrast to Zippy, TMFPGA provides only an output register file (but no
input register files), and the cell output provides both, the combinational
output and the registered output.

In general, the use of either input or output registers in a reconfig-
urable cell is sufficient to implement arbitrary static circuits. Hence, most
architectures provide only output registers to reduce the total register
count. The Zippy architecture offers both, input and output register files,
to enable studies on the usage of input and output registers in applications
of dynamic reconfiguration, e. g., hardware virtualization.

Memory Blocks

Each row of the reconfigurable array has an associated ROM memory
block. The depth of the ROM is an architecture parameter, the content of
the ROM is defined by the configuration.

2.3.2 FIFOs
The RPU provides two FIFO memory queues. The depth of the FIFOs
is parametrized. The FIFOs are used for transfering input data from
the CPU to the RPU and for reading the results back to the CPU after
processing. As the FIFOs are accessible from any context they can be also
used for passing data between contexts. This is particularly important
for hardware virtualization through virtualized execution where FIFOs
are used to pass intermediate data from one context to the next (see
Section 5.2.2).

The control signals for the FIFOs are generated by the unit that accesses
the FIFOs, i.e., either the register interface, or the IO controller if the

September 12, 2006 plessl_thesis.tex rev 563

2.3. Reconfigurable Processing Unit Architecture 25

4LUT
(16x1
RAM)

comparator
>

=const

comparator
>

=const

up counter

bit 0
bit 1

down counter

from context
sequencer

FIFO Write Enable/
Read Enable

Fig. 7: IO port controller (shaded parts are controlled by the configuration)

reconfigurable array accesses the FIFO.

IO Ports and IO Controllers

For controlling the access from the reconfigurable array to the FIFOs
on the RPU, the Zippy architecture provides dedicated IO controllers.
These simple but effective controllers are a unique feature of the Zippy
architecture and allow for generating many important FIFO activation
sequences.

The controllers can generate repetitive activation sequences, e. g., ac-
tivating the FIFO in every fourth cycle. Additionally, the controllers can
generate more complex activation schemes that depend on the number of
execution cycles without fixing this number at circuit compilation time.
For example, writing to a FIFO can be stopped a given number of cycles
before the end of the last cycle. This activation mode is important for
pipelined circuits when the transient data-samples, caused by filling and
clearing the pipeline, shall be discarded.

The reconfigurable array accesses the FIFO contents via input and
output buses that are connected to IO ports, i. e., input ports (INP0/1) and
output ports (OUTP0/1), as well as to the bus interconnect, see Fig. 5.
Each IO port is equipped with a configurable controller (see Fig. 7) that
generates the read and write enable signals for accessing the FIFO buffers.
The controller comprises two comparators, two configurable constants, a
number of programmable multiplexers, and a 4 input look-up table (LUT).
The controller reads two inputs named up counter and down counter that are
generated by one of the context sequencers. In the case of the cycle-counter
context sequencer, the up counter denotes the number of execution cycles
the array has performed in the current execution phase, while the down
counter denotes the remaining cycles in the current execution phase. For
more details on the context sequencers we refer to Section 2.3.4.

Each comparator compares one of the counters to a configurable con-

26 Chapter 2. Dynamically Reconfigurable Processor Architecture

RPU coprocessor register CPU access

FIFO {1,2} R/W
FIFO {1,2} level R
configuration memory {1 . . . n} W
RPU reset W
cycle count R/W
context select W
context sequencer mode W
context sequencer temporal partitioning contexts W
context sequencer start W
context sequencer status R
context sequence store {1 . . . s} W

Tab. 2: Register Interface: Commands

stant and passes the result (either “greater than” or “equal”) to the LUT.
The two least significant bits of the up-counter determine the remaining
two inputs of the LUT. The configuration of the 4 input LUT allows for
defining an arbitrary boolean function of all four inputs.

2.3.3 Register Interface
The register interface implements the interface from the CPU’s coprocessor
port to the RPU and vice versa. It is accessed with the coprocessor instruc-
tions that we have added to SimpleScalar. Table 2 provides an overview
of the commands supported by the register interface.

The FIFO functions offer FIFO read and write access to the CPU,
further the FIFO’s fill-level can be queried. The configuration memory
command initiates the upload of a configuration to a context memory. The
cycle count command sets the number of execution cycles if the cycle-
counter context sequencer is used. This register is also polled by the CPU
for detecting the end of the execution. Context select activates a context
for execution. Optionally, the registers in the cell’s register-files that
are associated with the selected context can be reset on activation. The
remaining context sequencer commands are used for selecting the context
sequencer mode and setting the sequencer’s parameters.

2.3.4 Context Sequencer and Synchronization
Hardware virtualization requires the execution of a sequence of configu-
rations (contexts) where each context is executed for a predefined number
of cycles. Efficient context sequencing is a precondition for efficient hard-

September 12, 2006 plessl_thesis.tex rev 563

2.3. Reconfigurable Processing Unit Architecture 27

ware virtualization, but has so far not been explicitly targeted in related
work. The requirements on the efficiency depend on the hardware vir-
tualization approach (see Chapter 5). Hardware virtualization by “tem-
poral partitioning” requires a context switch in every cycle and hence
demands for a context sequencer with low timing overhead. Although
temporal partitioning has been proposed for the fine-grained TMFPGA
[Tri98, TCJW97] and DPGA [DeH96a] architectures, these architectures
do not provide the required context sequencer for an efficient implemen-
tation.

If the “virtualized execution” hardware virtualization method is used,
the execution can tolerate longer context switching overheads, since con-
text switches occur less frequently. Hence, the context sequencing could
be controlled either by the reconfigurable processors CPU core or a dedi-
cated sequencer. However, a dedicated sequencer as it is provided in the
Zippy architecture increases the performance.

The Zippy architecture offers a choice of three different context sequencers
that are designed to match the requirements for hardware virtualization:
a) the cycle-counter sequencer,
b) the virtualized execution sequencer, and
c) the temporal partitioning sequencer.

The context sequencers handle the activation and switching of con-
texts without CPU intervention and thus relieve the CPU from this task.
A limitation of SimpleScalar, which is consequently inherited by the Zippy
architecture, is the lack of interrupt support. The CPU core thus cannot
be asynchronously notified of events on the RPU. Hence, the synchro-
nization of the CPU and the RPU, i. e., detecting the termination of a
sequencer is implemented with polling. To avoid the inherent overheads
involved with polling, we have designed the context sequencers to work
largely autonomously without CPU intervention.

Figure 8 shows the activation sequences that are generated by the
sequencers with timing-diagrams.

a) Cycle-Counter Context Sequencer

The Cycle-Counter Context sequencer is the basic form of a context se-
quencer. It executes a single context for a configurable number of
cycles, after which the execution is stopped. This sequencer is very
similar to the mechanism proposed by Hauser to control the execution
of the GARP architecture [Hau97].

Figure 8(a) illustrates the generated activation patterns. In this ex-
ample, context 0 is activated for 128 cycles. The CPU starts the RPU
execution for a given number of cycles by first activating the desired
context (context select command) and then programming the Cycle-
Counter Sequencer with the desired number of clock cycles (cycle

28 Chapter 2. Dynamically Reconfigurable Processor Architecture

0 1 2 3 4 127126

0 0 0 0 0 00

(a) Cycle-Counter Context Sequencer

0 1 126 127 10

0 0 0 0 22

(b) Virtualized Execution Context Sequencer

0 0 0 1 1 127127

0 1 2 0 1 21

(c) Temporal Partitioning Context Sequencer

0 1 63

1 1 1

1 2 126

2 0 2

127

0

enable execution

enable execution

enable execution

active context

active context
 (micro cycle)

cycle up counter

127 126 125 124 123 01 cycle down counter

down counter
 (per macro cycle)
active context

127 126 1 0 01 63 62 0

up counter
 (per macro cycle)

127 127 127 126 126 00126 125 1 0

user-cycle up cntr
 (macro cycle)
user-cycle down cntr
 (macro cycle)

Fig. 8: Context sequencers

September 12, 2006 plessl_thesis.tex rev 563

2.3. Reconfigurable Processing Unit Architecture 29

count command). The sequencer generates two counter values, the
cycle up counter and the cycle down counter, that are also passed to
the IO controllers. After the initialization, the sequencer starts exe-
cution by enabling the reconfigurable array (enable execution signal).
The cycle down counter outputs the remaining execution cycles and
is decremented by one in every cycle. When the cycle down counter
reaches zero the execution is stopped. The CPU detects the end of the
execution phase by polling the cycle down register for reaching zero.

b) Virtualized Execution Context Sequencer

The Virtualized Execution Context Sequencer executes a programmable
sequence of contexts. After a context has been executed, the next
context is activated and executed, until the whole sequence of contexts
has been processed. The duration of the execution can be configured
per context.

Figure 8(b) shows an example for a virtualized execution sequencer
with 3 contexts: context 0 is executed for 128 cycles, then context 2 is
executed for 2 cycles, and finally, context 1 is executed for 64 cycles.

After enabling the virtualized execution mode (context sequencer mode
command) all required configurations and the desired schedule are
loaded to the RPU (context sequence store commands). When the CPU
triggers the sequencer with a context sequencer start command the se-
quencer starts to execute the programmed schedule autonomously
until the last context has finished. Switching between contexts takes
3 cycles. The execution of the reconfigurable array is disabled during
this switching phase. The termination of the sequence is detected by
polling the context sequencer status register.

c) Temporal Partitioning Context Sequencer

The Temporal Partitioning Context Sequencer is specifically designed for
hardware virtualization through temporal partitioning (Temporal par-
titioning and its application to the Zippy architecture will be intro-
duced in detail in Chapter 5). Temporal partitioning requires a very
specific, cyclic execution sequence. Each context is executed for a sin-
gle cycle, after which the next context activated and executed. After
the last context, the sequence is cyclically repeated. Due to the frequent
context switches, a context sequencer with low switching overhead is
mandatory for efficient temporal partitioning. Our design allows for
switching contexts in a single cycle, i. e., without any timing overhead.

The Temporal Partitioning Context Sequencer requires only little con-
figuration: the number of contexts (programmed with the context se-
quencer temporal partitioning contexts command) and the total number

30 Chapter 2. Dynamically Reconfigurable Processor Architecture

of macro-cycles (cycle count command). The number of macro-cycles
determine, how many times the sequencer repeats the basic schedule
(activating each context once).

Figure 8(c) shows an example with 3 contexts that are repeated 128
times. Note, that this sequencer has no overhead for context switching
in contrast to the virtualized execution sequencer (cf. Fig. 8(b)).

2.3.5 Multi-Context Architecture
An important design goal for Zippy is the support of execution modes
that rely on fast, dynamic reconfiguration. To this end, we have designed
Zippy as a multi-context architecture. Multi-context architectures con-
currently store several configurations—denoted as contexts—on-chip and
allow for switching rapidly between these configurations. We even speed-
up this switching process in our architecture with dedicated context se-
quencers. While multi-context devices do not decrease the time for initial
loading a configuration, they can dramatically reduce the reconfiguration
time because they allow for fast switching switching between preloaded
contexts. All contexts share the computation elements in the data-path,
but each context has its own set of registers. This allows us to store and
share intermediate results generated by a context until the next context
invocation and eliminates the need to use memory structures to store
these data and time-consuming context store and restore phases.

DeHon showed for FPGAs [DeH96b] that adding multiple contexts
does not only reduce reconfiguration time, but also increases the com-
putational density, while the impact on the chip-size is only moderate.
A couple of fine-grained multi-context architectures have been devel-
oped, e. g., DPGA [DeH94], TMFPGA [TCJW97], WASMII [XA95], or
CSRC [SV98]. Along with these architectures, application modes that
exploit dynamic reconfiguration have been proposed, e. g., for TMFPGA
[Tri98], DPGA [TCE+95], and DRLE a successor of the WASMII architec-
ture [FFM+99, SUA+00].

There exists also a number of coarse-grained, multi-context devices.
While many architectures bear similarities in the architecture of the re-
configurable cells and and partly also in the interconnect, the execution
models for these architectures differ a lot. Like the Zippy architecture,
all of these coarse-grained architectures include a CPU core to form a
reconfigurable processor.

The MorphoSys architecture [SLL+00] specifically targets image and
video processing. The architecture features a reconfigurable array of
8×8 cells that base on 16bit ALUs. The array follows a SIMD model
of computation, that is, all cells in a row or column perform the same

September 12, 2006 plessl_thesis.tex rev 563

2.3. Reconfigurable Processing Unit Architecture 31

operations. The architecture provides 32 configuration planes (contexts),
which determine the function of the rows or columns.

The REMARC [MO99] architecture also provides an array of 8×8
coarse-grained cells, but it uses a VLIW-like execution model. REMARC’s
cells feature a nano-processor, as small CPU core with dedicated instruc-
tion and data memories and registers. While not explicitly stated by the
authors, REMARC also provides multi-context support. The local in-
struction memories can be thought of contexts which are activated by the
Global Control Unit.

Chameleon Systems CS2000 [Cha00] architecture is tailored to wire-
less communication systems and features a coarse-grained 32-bit fabric
coupled to a processor. CS2000 provides two contexts, whereas the back-
ground context can be loaded while the active context is in use.

PACT’s XPP device [BMN+01] is a coarse-grained architecture, that
implements a data-flow oriented execution model directly in hardware.
Data transfers between the cells use a handshake protocol to ensure self-
timed execution that satisfies data dependencies. The architecture uses a
hierarchical configuration management that loads and activates configu-
rations on demand.

2.3.6 Configuration Architecture

The configuration architecture of Zippy is similar to the configuration
architecture of fine-grained FPGAs. The configurations are stored in the
configuration memory (SRAM) and determine the function of the cells
and the IO controllers, and configure the interconnection network. If
the active configuration is switched, e. g., by the context sequencer, the
configurations of all cells change at once.

The configuration bitstream is uploaded from the CPU to the RPU via
the register interface. The RPU supports the download of full and partial
configurations for any of the contexts. A partial reconfiguration can be
used to make small changes to a configuration and prevents the overhead
of loading a full configuration.

The size of a configuration depends on the architecture parameters,
e. g., the size of the array, the bit-width, the size of the on-chip memory
blocks, etc. Given an array instance with 4 × 4 cells, a data-width of 24
bits, 2 horizontal north buses, 2 horizontal south buses, 2 vertical east
buses and a 128x24bit ROM per row, the configuration size of a context is
1784 bytes.

32 Chapter 2. Dynamically Reconfigurable Processor Architecture

parameter description typical value

DATAWIDTH width of the data-path 24bit
FIFODEPTH depth of the FIFOs 4096 words
N_CONTEXTS number of contexts 8
N_ROWS number of rows 4
N_COLS number of columns (cells per row) 4
N_IOP number of input and output ports 2
N_HBUSN number of horizontal north buses 2
N_HBUSS number of horizontal south buses 2
N_VBUSE number of vertical east buses 2
N_MEMDEPTH depth of memory blocks 128 words
N_CELLINPS number of inputs to a cell 3
N_LOCALCON number of local connections of a cell 8

Tab. 3: Reconfigurable Processing Unit: configurable architecture parameters

2.3.7 Parameters of the Reconfigurable Processing Unit
As it has been mentioned before, the Zippy architecture is widely para-
metrized. Table 3 summarizes the configurable architecture parameters
of the RPU. Additionally to these parameters, the reconfigurable cell
can also be easily modified and extended, for example, by adding new
operators.

2.4 Summary
In this chapter we have introduced the Zippy architecture. The Zippy
architecture is a simulation model of a novel reconfigurable processor
which is specifically tailored to streaming multi-media applications in
the embedded systems domain.

We propose hardware virtualization as a promising implementation
technique for applications in embedded systems because it allows for
keeping the reconfigurable structures small while still enabling the exe-
cution of large circuits. The Zippy architecture was specifically designed
with hardware virtualization in mind. We have discussed the require-
ments for an efficient hardware virtualization implementation and we
have shown how these requirements are met in the Zippy architecture.
The new, architectural contributions to support the hardware virtualiza-
tion execution model, are the configurable IO controllers, the context
sequencers, and the input and output-register files.

We have shown that Zippy is not a single concrete architecture, but a
widely parametrized architecture model, that allows for configuring the

September 12, 2006 plessl_thesis.tex rev 563

2.4. Summary 33

architecture parameters for the CPU and the Reconfigurable Processing
Unit (RPU).

Concurrently with the hardware architecture, a set of hardware and
software design-tools, a performance evaluation framework, and a pro-
gramming model have been co-designed. These design-tools also support
the same set of parameters as the Zippy hardware architecture.

This configurability of hardware and software allows us to use Zippy
as an experimentation framework for coarse-grained reconfigurable pro-
cessors. To the best of our knowledge, Zippy is the only coarse-grained
reconfigurable architecture that provides a parametrized hardware archi-
tecture as well as parametrized design-tools.

34 Chapter 2. Dynamically Reconfigurable Processor Architecture

September 12, 2006 plessl_thesis.tex rev 563

3
Tool-Flow

This chapter presents the application implementation tool-flow for the
Zippy architecture.

Section 3.1 introduces two major approaches to a tool-flow for coarse-
grained reconfigurable processors: a high-level compilation, and a circuit-
centric tool-flow.

Section 3.2 presents the application execution model and an overview
of Zippy’s circuit-centric tool-flow.

Section 3.3 presents the hardware tool-flow in detail. We present the
application specification formalism and introduce the routing architecture
modelling. The core of the hardware tool-flow is an iterative placement
and routing process. We use a placer that uses a stochastic search method
for iteratively improving the placement. The router uses an adaption of
the Pathfinder [EMHB95] routing algorithm. The result of the hardware
tool-flow are two representations of a configuration for the Reconfig-
urable Processing Unit (RPU): a structured configuration representation
in VHDL which is used for simulation purposes, and a configuration
bitstream that is used to program the configuration memory.

The software-toolflow is introduced in Section 3.4. We introduce the
extensions that have been added to the CPU simulator to support a co-
processor interface. The software-toolflow bases on a conventional C
compilation tool-chain (GNU C compiler) which is augmented with ad-
ditional processing steps.

36 Chapter 3. Tool-Flow

3.1 Tool-Flows for Coarse-Grained Reconfigurable
Processors

In this section we discuss the two major approaches to an application
implementation tool-flow for a coarse-grained reconfigurable processor.
We introduce the high-level compilation approach and the circuit-centric
approach, which is used in the Zippy architecture.

An implementation tool-flow for a coarse-grained reconfigurable pro-
cessor transforms an application specification into an implementation
where parts of the application run on the CPU core, while the remaining
parts run on the RPU.

The challenge for a tool-flow is to provide a good compromise between
abstraction and ease of specification on the one hand, and efficiency of the
implementation on the other hand. A well-designed tool-flow enables an
application specification that fits the application domain, while it uses the
computing resources efficiently.

There are two major approaches to a tool-flow for coarse-grained re-
configurable processors:
• the compilation-centric approach which tries to derive an implemen-

tation directly from a specification in a high-level language (for
example C code), and

• the circuit-centric approach, that requires the developer to explicitly
specify a circuit and a software application which communicate by
a defined hardware-software interface.

High-Level Compilation Tool-Flow
The compilation-centric approach bases on advanced, high-level compila-
tion technology. High-level compilation for fine-grained reconfigurable
logic has been studied since the emergence of Field-Programmable Gate-
Arrays (FPGAs) [PL91, GG97, CHW00]. But compiling for FPGAs differs
significantly from compiling for coarse-grained reconfigurable architec-
tures. Since fine-grained architectures can implement virtually any cir-
cuit, the compiler has not only to extract the data-flow graph from the
application and then wire fixed arithmetic units, but the compiler must
also perform circuit generation, i. e., data-path, architecture, and control-
path synthesis.

For coarse-grained architectures, the cells of the reconfigurable array
already predetermine the set of the arithmetic units that are targeted by
the compilation process. Essentially, the compiler performs parallel com-
pilation for a multi-processor array in order to generate a set of configu-
rations for a coarse-grained array. The result of the compilation process is
comparable to a program for a Very Long Instruction Word (VLIW) pro-

September 12, 2006 plessl_thesis.tex rev 563

3.1. Tool-Flows for Coarse-Grained Reconfigurable Processors 37

cessor. Each VLIW instruction can be compared to a configuration for the
reconfigurable array. The sub-instructions within the VLIW instruction
define the function of each cell and the routing. Evidently, the peculiari-
ties of the data-transfers and the data-storage in the reconfigurable array
are different from the shared register-file found in VLIW processors.

Usually, only the runtime-intensive kernels (inner loops) of an ap-
plication are mapped to hardware. The compiler identifies the kernels,
performs hardware-software partitioning to split the hardware and soft-
ware parts of the application, and finally generates an optimized hard-
ware implementation for the kernels. Recently, a number of researchers
started investigating the use of high-level compilation for coarse-grained
reconfigurable architectures [CW02, LKD03, VNK+03].

The sole reliance on compilation makes this approach well suited for
general-purpose use, i. e., when nothing is known about the characteris-
tics of the application. The disadvantage of the compilation-centric tool-
flow is that the performance of the resulting implementation is generally
suboptimal. The high performance of hardware-accelerated computation
can be largely attributed to parallel execution, pipelining and the use
of custom data-paths [CH02]. Many application domains show regular
communication and computation patterns, but it is difficult for a com-
piler to detect and exploit this domain knowledge when compiling from
arbitrary high-level code.

So far, most high-level compilation tool-flows support only a subset
of the specification language. Hence, there are also practical limitations
of this approach and at least parts of the specification’s code have to be
adapted.

Circuit-Centric Tool-Flow
In the circuit centric tool-flow, the developer explicitly specifies the appli-
cation as a software part for execution on the CPU and a hardware circuit
for execution on the reconfigurable array. Like in the compilation-centric
approach, the initial specification is given in a high-level language. The
designer identifies the kernels of the application and performs a manual
hardware-software partitioning process.

The designer is required to generate a functional equivalent hardware
implementation (circuit) of the kernel. This circuit can be specified in any
formalism, e. g., as a netlist or in a hardware description language, and
is then implemented with conventional Computer-Aided Design (CAD)
tools. The designer needs to replace the kernel in the initial application
with calls to the kernel’s hardware implementation by using the software-
hardware communication primitives. Typically, a reconfigurable proces-
sor supports hardware-software communication patterns that are tailored

38 Chapter 3. Tool-Flow

to the characteristics of the application domain, e. g., FIFO communica-
tion channels for streaming data processing, or shared memory areas
(frame-buffers) for image processing [SLL+00].

A circuit-centric tool-flow is used for many reconfigurable computing
systems that attach a reconfigurable coprocessor to an external IO bus of
a host computer. It has been also successfully used for tightly integrated,
fine-grained and coarse-grained reconfigurable processor architectures
[MO99, SLL+00].

The prime advantage of this approach is that it allows for using con-
ventional CAD tools for circuit implementation and for reusing optimized
circuits. Reusing existing circuits is attractive because there exist opti-
mized implementations for algorithms from many application domains,
e. g., digital filters. These implementations heavily rely on parallel execu-
tion, algorithmic and arithmetic optimization and pipelining to achieve
high-throughput. It is unlikely, that a general-purpose compilation-based
approach will be able to match the performance of such an optimized im-
plementation.

The disadvantage of this approach is that the designer must provide
a hardware implementation for the kernel. There is no support for au-
tomatically generating a functionally correct but presumably suboptimal
kernel implementation.

A noteworthy difference between the circuit-centric and the compilation-
centric approach is that the circuit-centric approach does not inherently
include the notion of a reconfiguration or “instruction-sequencing”. Most
models of circuits assume that the entire circuit is continuously execut-
ing in parallel, while the compilation-centric view suggests an execution
model that provides both, parallel and sequential execution. That is,
an application is defined as a sequence of VLIW-like instructions, but
within each instruction the execution is parallel. Instructions thus rep-
resent configurations and sequencing between instructions represents a
reconfiguration process. The compilation-centric execution model hence
naturally treats the reconfigurable array as a dynamic resource, which
can also execute applications that do not fit into a single configuration.

The circuit-centric approach can also be extended to support dynamic
reconfiguration of the array, if the circuit execution model is extended with
temporal-partitioning. Temporal partitioning is a hardware virtualization
technique, that allows for executing circuits of arbitrary size. We discuss
hardware virtualization, temporal partitioning and its application to the
Zippy architecture in Chapter 5.

September 12, 2006 plessl_thesis.tex rev 563

3.2. The Zippy Tool-Flow 39

3.2 The Zippy Tool-Flow

This section presents an overview of the Zippy tool-flow and briefly
introduces the application execution model. The hardware tool-flow will
be treated in detail in Section 3.3, the software tool-flow will be discussed
in Section 3.4.

The main application domain for Zippy is streaming multi-media
signal-processing. Applications from this domain continuously process
data from a buffer and usually require only infrequent communication
between the CPU and the RPU. The Zippy architecture supports the com-
munication and computation demands of these applications by providing
FIFO buffers for intermediate storage of data-streams, low overhead con-
text sequencers for hardware execution without CPU intervention, and
a coarse-grained reconfigurable array that supports important arithmetic
operations.

We use a circuit-centric implementation tool-flow for the Zippy archi-
tecture, because it matches the intended application domain well. Most
kernels in digital-signal processing are rather small and there exist numer-
ous optimized circuits. Hence, a manual hardware-software partitioning
process to extract the rather small kernels is appropriate.

For the purpose of presenting the hardware implementation tool-flow,
we assume that circuits fit as a whole onto the reconfigurable array. We
will give up this constraint with the introduction of hardware virtualization
in Chapter 5.

Application Execution Model

The CPU core coordinates the execution of the whole reconfigurable pro-
cessor. The prime responsibility of the CPU is to execute the software
computation tasks which are integral parts of the application itself. Apart
from this computation tasks, the CPU is also responsible for a variety of
other control and communication tasks:
• The CPU initiates all data IO operations (to/from main memory and

between CPU and RPU) because the RPU is a pure communication
slave to the CPU and has no direct memory interface.

• The CPU manages the configuration of the RPU. This includes
loading the configurations to the configuration memory and pro-
gramming the context sequencers.

• The CPU handles the execution of the RPU, i. e., it transfers data
between CPU and the FIFO buffers, triggers the context sequencers
and polls the context sequencer status to detect the termination of
an execution cycle.

40 Chapter 3. Tool-Flow

The function of the reconfigurable array is determined by the con-
figuration data. The configuration also specifies the settings for the IO
controllers and the context sequencer (see Section 2.3). The IO controllers
manage the access of the reconfigurable array to the FIFOs. The context se-
quencer defines the length and—in the case of multiple configurations—
the sequence of context (configuration) executions. As soon as the CPU
triggers the context sequencer, the RPU executes the respective contexts
autonomously until completion without further CPU intervention.

The configuration for the RPU is either directly included in the soft-
ware executable for the CPU, or loaded from the main memory at appli-
cation startup. The hardware and software parts communicate via the
CPU’s coprocessor port that is attached to the RPU’s register interface.
A communication and configuration library provides the software with a
programming interface to the functions exposed by the register interface.
After a configuration has been downloaded, the CPU transfers the initial
input data to the FIFOs and programs the context sequencers appropri-
ately. During the runtime of the application the CPU is responsible for
polling the RPU for the termination of the context sequencer, for transfer-
ing input data and results between the CPU and the RPU via the FIFOs,
and for triggering new execution cycles of the context sequencer.

An application thus consists of three main components, which need
to be generated by the design-tools during the implementation tool-flow:

1. a software executable for the CPU core (uses a communication library
for communicating with the RPU),

2. configuration data (also called configuration bitstream) for the RPU
that implements the hardware part of the application, and

3. a configuration for the context sequencer of the RPUs.

Outline of the Zippy Tool-Flow
Figure 9 presents a graphical outline of the complete implementation
tool-flow. The starting point of the tool-flow is an application specifica-
tion as C source code. In a manual codesign process the application is
decomposed into a hardware and a software part and a context sequencer
configuration. The software part is specified as C source code and uses
a communication and reconfiguration library for accessing the RPU. The
hardware part is a circuit that uses the resources of the reconfigurable
array and is specified as a netlist. In the subsequent hardware implemen-
tation tool-flow, an automated placement and routing process determines
a valid implementation of the circuit on the reconfigurable array. This im-
plementation is transformed into configuration data that is downloaded
to the RPU. In a final step, the software part of the application is compiled
into an executable with a C compiler.

September 12, 2006 plessl_thesis.tex rev 563

3.3. Hardware Tool-Flow 41

application
specification

manual hw/sw
codesign
process

SW Part:
 C code for

execution on CPU

HW/SW Interface:
Library and hw
interfaces for

communication and
reconfiguration

HW Part:
 circuit netlists for

execution on
reconfigurable
processing unit

C compiler

executable for
CPU core

placement
routing

config. generation

use

given e.g. as
C source code

context
sequencer

configuration

configuration
data

(bitstreams)

specification

implementation

implementation
toolflow

Fig. 9: Outline of the application implementation tool-flow.

3.3 Hardware Tool-Flow
This section presents the hardware tool-flow which transforms the spec-
ification of a circuit to an implementation on the reconfigurable array.
The circuit is defined as a netlist of operators that can be implemented
by the cells of the reconfigurable array. The circuit’s netlist is processed
by a chain of design-tools that determine a feasible placement and rout-
ing. The routing algorithm bases on the Pathfinder algorithm [EMHB95].
The design-tools use a parametrized model of the reconfigurable CPU’s
routing architecture.

The result of the place and route process is a hierarchical configuration
description represented as a VHDL data-structure. This data-structure
defines the settings for all programmable switches and memories in the
reconfigurable architecture. In a last step, a flattened, binary representa-
tion of the configuration is generated. This representation is loaded to the
context memories to configure the function of the RPU.

3.3.1 Hardware specification
The hardware parts of applications for the Zippy architecture are specified
as netlists of coarse-grained operators and registers. We have chosen this

42 Chapter 3. Tool-Flow

in

out

*a0*a1

+

op3

op1 op2

Fig. 10: Netlist specification (signal-flow diagram) of a first order FIR filter.

specification style since application specification with a netlist of high-
level, coarse-grained computing elements is familiar to DSP algorithm
developers. In this application domain, the netlists are typically refered
to as signal-flow diagrams. A similar block-based specification approach
is also used by a number CAD tools for developing signal processing
algorithms, such as Ptolemy [Lee01], Simulink [Sim06], or the Xilinx Sys-
tem Generator [HMSS01]. These tools could be extended to support the
development of applications for the Zippy architecture.

A circuit’s netlist is a directed (possibly cyclic) graph composed of
the following elements: primary inputs, primary outputs, coarse-grained
cells, and registers. The netlist elements are connected by nets, which are
multi-terminal connections. Each net a) connects a primary input to a
cell, b) connects an output of a cell to a primary output, or c) connects
the output of a cell to the inputs other cells. If the netlist is cyclic, each
cycle must include at least one register to prevent combinational feedback
loops.

Figure 10 presents an informal graphical representation of the netlist of
a first order FIR filter. This circuit will serve as an example throughout this
section to illustrate the tool-flow from specification to implementation.
These signal-flow diagram representations of netlists are well suited to
provide humans with an intuitive overview of an application’s structure.

To provide the placement and routing tools in the hardware imple-
mentation tool-flow with a well-defined netlist specification, a textual
netlist format named Zippy Netlist Format (ZNF) has been defined.

Listing 3.1 shows the complete ZNF description for the example circuit
from Fig. 10. The ZNF file consists of three sections that define the primary
inputs and outputs, the cells, and the nets of the circuit. Lines 5 and 6
define a primary input named in and a primary output named out. Both
ports have a fixed placement (p.in0, p.out0). Lines 10–12 declare the cells
of the netlist. Each cell has a name, type, a placement constraint, and a list
of attributes. All cells in this circuit are of type std and do not have any

September 12, 2006 plessl_thesis.tex rev 563

3.3. Hardware Tool-Flow 43

1 znf 0 . 1 f i r # f i r s t o r d e r FIR f i l t e r
2

3 # d e f i n e i n p u t and out pu t p o r t s
4 # c o l 2=name , c o l 3=p l a c e m e n t (f i x e d p l a c e m e n t)
5 i in p . in0 : f
6 o out p . out0 : f
7

8 # d e f i n e c e l l s
9 # c o l 2=name , c o l 4=p lacement , c o l 5= f u n c t i o n and IO c o n f i g u r a t i o n

10 c op1 std * f=alu_multlo , i .0=noreg , i .1= const , const=32 ,o .0=noreg
11 c op2 std * f=alu_multlo , i .0=noreg , i .1= const , const=16 ,o .0=noreg
12 c op3 std * f=alu_add , i .0=noreg , i .1= reg , o .0=noreg
13

14 # d e f i n e n e t s
15 # c o l 2=netname , c o l 3=s o u r c e , c o l 4= l i s t o f s i n k s
16 n nin in op1 . i . 0 , op2 . i . 0
17 n n1 op1 . o . 0 op3 . i . 1
18 n n2 op2 . o . 0 op3 . i . 0
19 n n3 op3 . o . 0 out

Lst. 3.1: Netlist definition for the first order FIR example in Zippy Netlist Format (ZNF)
format.

placement constraint (indicated by a *). The cell’s attributes are used to
set the function of the cell and to configure its inputs and outputs. The list
of attributes can be extended arbitrarily and is handed to the placement
and routing tools for interpretation. Finally, lines 16–19 define the nets in
the circuit. Each net has a source (primary input, or the output of a cell)
and one or many sinks (primary output, input of a cell).

ZNF supports three types of placement constraints: fixed placement
(which ties cells or primary inputs/outputs to a fixed location), initial
placement (used to pass an initial placement to the placer), or free placement
(where an optimal placement is determined by the placer).

The primary input and output ports connect the circuit to the IO
controllers (see Sec. 2.3.1), for example, input port INP0 at location p.in0
is connected to the output of FIFO0.

3.3.2 Architecture modelling
Since the Zippy architecture is not a single concrete architecture but a
parametrized family of architectures, the hardware implementation tools
are also parametrized to support any instance of a Zippy architecture. To
permit the use of the same set of tools for many different architectures the
design-tools rely only on an abstract graph model of the reconfigurable
unit’s routing-architecture, the routing-resource graph. Zippy’s routing-
resource graph is generated on-the-fly during the implementation phase

44 Chapter 3. Tool-Flow

cell0

cell1

b.h00
b.h01

b.h10
b.h11

p.in0 p.in1 p.out0 p.out1

b.in0 b.in1 b.out0 b.out1

s.c1-h00
s.c1-h01

s.c1-h00
s.c1-h01

s.i000 s.i001
s.i011s.i010

s.i100
s.i110

s.i101
s.i111

s.o000 s.o001
s.o011s.o010

s.o100
s.o110

s.o101
s.o111

w.c1-c0

w.c0-c1

w.h00-c0w.h01-c0

w.h10-c0w.h11-c0

Legend
p.inx primary input b.x bus
p.outx primary output w.x wire

s.x progr. switch

Fig. 11: Simplified reconfigurable array architecture

according to the architecture parameters. This approach is also used in
the parametrized VPR design tools [BRM99].

Since the routing-resource graph for a real Zippy architecture is too
complex for illustration, we use a simplified architecture for explaining
the hardware tool-flow. Figure 11 introduces the model of a reconfig-
urable array that comprises the same resource types as the Zippy archi-
tecture (input and output ports, buses, wires, programmable switches,
and cells), but is reduced to two cells and a few buses.

The routing-resource graph model is derived from the architecture
by identifying interconnection resources of the architecture with routing-
resource nodes in the routing-resource graph. Each interconnection re-
source is modelled as a node in the routing-resource graph. The con-
nections between routing resources are modeled as directed edges in the
routing-resource graph.

Figure 12 shows the routing-resource graph for the architecture of
Fig. 11. To enhance the readability of the figure, Fig. 12 is split into two
parts that are actually connected via the nodes representing the horizontal
buses (b.h00–b.h11). The upper part of the figure illustrates the bus
interconnect and the primary inputs and outputs. The lower part of the
figure illustrates the connections between the cells and shows how the

September 12, 2006 plessl_thesis.tex rev 563

3.3. Hardware Tool-Flow 45

b.in0

p.in0

s.i000 s.i010 s.i100 s.i110 s.i001 s.i011 s.i101 s.i111

b.in1

b.h00 b.h01 b.h10 b.h11

s.o000 s.o010 s.o100 s.o110s.o001 s.o011 s.o101 s.o111

p.in1

b.out0 b.out1

p.out0 p.out1

c.0i

w.h00-c0 w.h01-c0

b.h01b.h00

s.c1_h00 s.c1_h01

c.0o

c.1i

w.h10-c1 w.h11-c1

b.h11b.h10

s.c0_h10 s.c0_h11

c.1ow.c0-c1

w.c1-c0

cell 0 cell 1

Fig. 12: Routing-resource graph for the simplified architecture from Fig. 11

46 Chapter 3. Tool-Flow

cell outputs drive the horizontal buses via switches.
The cells themselves are not actual routing-resources, because the cell

input and output are not connected. Hence, the cell’s inputs and outputs
are represented by distinct cell input nodes (c.xi) and cell output nodes
(c.xo). For the sake of simplicity, the figure shows only a single input node
per cell, a complete model would include a dedicated cell input node for
every cell input.

The routing-resource graph allows us to formulate placement and rout-
ing as graph problems. Finding a placement for a circuit corresponds to
finding a mapping from the elements of a circuit’s netlist to the primary
input/output and cell nodes in the routing-resource graph. After place-
ment, all nets of the circuit need to be routed. Finding a feasible route for
a net between between a primary input/output and a cell or between cells
corresponds to finding a directed path in this routing-resource graph.
Each routing resource can be used for only one single net, thus finding a
feasible routing for all nets in a circuit is equivalent with finding a set of
paths in the routing-architecture graph, such that each routing resource
node is used only once, i. e., all paths are disjoint.

3.3.3 Placement
The placer assigns the components of the circuits netlist (primary input-
s/outputs and cells) to concrete locations, denoted as sites, of the reconfig-
urable architecture. The netlist, the circuit’s placement, and the routing-
resource graph are the inputs of the router. Since the placement deter-
mines which routing-resources can be used, the placement and routing
processes are not independent but influence each other. Hence, placement
and routing are executed as iterative processes and are repeated until a
solution which satisfies all implementation constraints has been reached.

Initial placement

An initial placement is needed to create a starting point for the subsequent
iterative improvement process. Two algorithms for the creating an initial
placement have been devised in this work: a random placement algorithm
and a heuristic placement algorithm. The random placer starts with plac-
ing all cells and primary inputs/outputs with fixed or initial placement
constraints. Then, the remaining netlist elements are placed to a random
unused site, see Algorithm 1.

The heuristic placement algorithm aims at placing cells close to each other
if they are connected in the netlist. After placing all cells with placement
constraints, the algorithm starts exploring the netlist topology starting
from nodes that have been placed, but whose successors or predecessors

September 12, 2006 plessl_thesis.tex rev 563

3.3. Hardware Tool-Flow 47

Algorithm 1 Random placer for creating an initial placement
1: procedure RP(netlist)
2: place all cells with fixed or initial placement constraints
3: place all primary inputs/outputs with fixed or initial placement

constraints
4: while unplaced cells (or primary input/output) exist do
5: place cell (or prim. input/output) to a random unused site
6: end while
7: end procedure

Algorithm 2 Heuristic placer for creating an initial placement
1: procedure HP(netlist)
2: place primary inputs
3: place cells with fixed or initial placement constraints
4: while unplaced cells exist do
5: for each cell c that is placed but has unplaced successors or

predecessors do
6: for all unplaced sinks in sinks(c) do
7: if |sinks(op)| > 2 then
8: place sinks in the next adjacent row
9: else |sinks(op)| ≤ 2

10: place sink to prefered neighbor sites
11: end if
12: for all unplaced sources in sources(c) do
13: place source to prefered neighbor site
14: end for
15: end for
16: end for
17: end while
18: place primary outputs
19: end procedure

48 Chapter 3. Tool-Flow

have not been placed yet. The heuristic favors the use of bus interconnect
for connecting nets with many sinks (high fan-out). For nets with a fan-
out of more than 2, the sinks are placed to the next available rows and
are thus accessible via horizontal buses. Low fan-out nets are preferably
routed via local connections and are placed to a prefered neighbor site.
The placer treats all cells that can be reached with a direct connection as
prefered neighbors. If there are no unused sites in the list of prefered
neighbors, the cell is placed to a random unused site.

While random placement leads to routable initial placements of accept-
able quality for FPGA architectures [BRM99], choosing a random initial
placement on the Zippy architecture frequently leads to an unroutable
placement. This can be largely attributed to the scarceness of routing
resource on the Zippy architecture in comparison to routing-resource rich
FPGA architectures. Experiments have shown, that despite of its simplic-
ity, the heuristic placer that has been developed for the Zippy architecture
creates significantly better initial placements. This helps the subsequent
iterative placement and routing process to arrive faster at a feasible im-
plementation.

Iterative Placement

To find a routable implementation of the circuit, the initial placement is
iteratively improved with a stochastic search procedure. Since simulated-
annealing-based search algorithms have been successfully used for cell
placement in FPGAs and Application-Specific Integrated Circuits (ASICs),
we also rely on a simulated-annealing-based iterative placer.

Algorithm 3 outlines the pseudo code of the algorithm, which is based
on the generic simulated-annealing-based placer in [BRM99]. The placer
takes a reference placement P and randomly exchanges the placement of
two nodes. The quality of the new placement P′ is denoted as cost and is
determined by routing the circuit with the new placement.

Whenever the cost of the new placement is smaller than the cost of
the reference placement, the new placement becomes the new reference
placement.

To reduce the greediness of this local search strategy, and thus to allow
the algorithm to escape from local optima, the algorithm also accepts a
deterioration in solution quality with a certain probability. This accep-
tance probability is controlled by the amount of the deterioration (∆C)
and a temperature parameter T. The probability of accepting an inferior
solution decreases with lower temperature and higher cost difference ∆C.
As T is decreased (according to a function denoted as annealing schedule),
the stochastic search process becomes increasingly greedy over time. For
our iterative placer we use a simple annealing schedule that geometrically

September 12, 2006 plessl_thesis.tex rev 563

3.3. Hardware Tool-Flow 49

Algorithm 3 Simulated-Annealing-Based Iterative Placer
1: procedure PSA(P,T, λ,maxOuter,maxInner)
2: for outer← 1..maxOuter do
3: for inner← 1..maxInner do
4: P′ ← randomMove(P)
5: ∆C← cost(P′) − cost(P) . cost is determined by the router
6: return if implementation constraints satisfied
7: r← random(0, 1)
8: if r < e−∆C/T then
9: P← P′

10: end if
11: end for
12: T← λ · T
13: end for
14: end procedure

decreases T by a factor λ for every iteration of the outer loop.
Note, that in contrast to [BRM99], we do not adapt the size of a

randomMove step. Zippy arrays have typically a rather small number
of cells, for example 4 × 4 or 8 × 8 cells. We found that starting with large
step sizes (i. e., swapping multiple cells in one step) destroys much of the
structure of the initial placement, which has been created by the heuristic
placer. We have found that using a constant step size and swapping the
placement of two cells in each move leads to good results.

3.3.4 Routing
For routing we use an adaption of the Pathfinder pure congestion-based
algorithm [EMHB95] 1. The basic idea of the Pathfinder routing algorithm
is that the algorithm does not try to avoid congestion from the beginning,
but tries to resolve congestion by repeated routing and rip-up cycles.
Each routing resource in the routing-resource graph is assigned a cost
value which expresses the cost of using that resource. A net is routed
between two nodes in the routing-resource graph by finding a minimum
cost route between the source and sink nodes. If congestion occurs after
all nets have been routed, i. e., several nets use the same routing resource,
a new routing iteration is started. To avoid future congestion, the cost
of all nodes that have been overused is increased. In the next routing
iteration all nets are ripped-up one after the other and rerouted using

1Since Zippy is an architecture model and has not been implemented as a chip, we
do not have delay information. Hence we use the basic algorithm that optimizes for
routability by reducing congestion instead of the delay driven extension to the algorithm.

50 Chapter 3. Tool-Flow

i1

r1

o1

i2

r2

o2

cost=1.2

cost=1

n1 n2

congestion!
i1

r1

o1

i2

r2

o2

cost=1.2

cost=2

n1 n2

cost=0

cost=0 cost=0

cost=0 cost=0 cost=0

cost=0cost=0

(a) (b)

Fig. 13: Congestion control in the Pathfinder algorithm. The nodes are annotated with
their total cost cn.

the updated resource costs. Hence, the Pathfinder algorithm resolves
congestion by adapting the cost of routing resources based on historic
and present congestion information.

Figure 13 sketches the concept of the algorithm. Two nets n1 = (i1, o1)
and n2 = (i2, o2) have to be routed. In the initial situation (see Fig. 13(a))
both nets are routed via routing resource r1, which results in congestion of
r1. Consequently, the cost of r1 is increased. In the next routing iteration,
the congestion is resolved: n1 is routed via r1 while n2 is routed via r2 (see
Fig. 13(b)).

The Pathfinder algorithm does not only include historical cost infor-
mation, but assigns each node three cost values that are aggregated into
a total cost value cn:

cn = (bn + hn) · pn

bn is the base cost of a resource. It can be used to favor the usage of
a specific resource type, e. g., local connections or fast connections (for
delay driven routing). Since we do not have delay information, we use
bn = 1. hn is the historic congestion information. It is increased after every
routing iteration if resource n is congested. The present cost pn expresses
the current congestion of resource n. If n is not congested: pn = 1.

Algorithm 4 outlines the pseudo-code of the Pathfinder algorithm.
The minimum cost routing step in line 8 is performed with Dijkstra’s
shortest-path algorithm.

Application to the Zippy architecture

We have adapted the Pathfinder routing algorithm to the Zippy architec-
ture. In an iterative placement and routing process, the router tries to find

September 12, 2006 plessl_thesis.tex rev 563

3.3. Hardware Tool-Flow 51

Algorithm 4 Pathfinder Pure Congestion-Based Routing Algorithm
[EMHB95]

1: procedure R(circuit, routinggraph)
2: Initialize: reset routing, resource usage, and cost values
3: repeat
4: while exists congestion (overused resources) do
5: start a new routing iteration
6: for all nets ni do
7: rip-up ni and update affected pn cost
8: establish minimum cost route ri for ni in routing graph
9: update affected pn cost

10: end for
11: compute congestion
12: update historical cost hn

13: end while
14: until routed
15: end procedure

a feasible routing for the placement proposed by the placer. If the router
finds a feasible routing within a bounded number of routing iterations,
the placement and routing process is successfully completed.

If the router cannot find a feasible routing, the router computes a
cost value for the current implementation, which is used to direct the
simulated annealing process in the placer. There are two reasons, why no
feasible routing can be found for a given placement:
a) the placement is unroutable because of congestion, or
b) the placement is generally unroutable because there is no path in the

routing-resource graph for certain sources and sinks of nets
In case a) the router reports the amount of overusage of the routing-
resources, in case b) the router reports the number of unroutable nets to
the placer.

Since coarse-grained architectures like Zippy have scarcer routing re-
sources, case b) is much more likely as with routing-resource rich fine-
grained FPGA architectures. To increase routability we configure each
unused cell as feed-through cell.

For routing circuits on the Zippy architecture, we have chosen to
logarithmically increase pn with the number of nets (users) that use routing
resource n:

pn =

1 if users ≤ 1
1 + βp log(users − 1) if users > 1

At the end of each routing iteration hn is adapted with the following

52 Chapter 3. Tool-Flow

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

congestion

1!
ex
p(
!c
on
ge
st
io
n/
!
)

!=0.1
!=0.5

!=1 !=5

!=10

Fig. 14: Congestion cost in the implementation cost function

function:

hn =

hn + βh if pn > 1
hn otherwise

For providing the simulated annealing process in the iterative placer
(see Alg. 3) with a cost metric we use the following cost function to
evaluate the quality of a routing:

cost = cost_unroutability + cost_congestion

= #unroutable_nets +
(
1 − exp

(
−

total_congestion
α

))
#unroutable_nets is the number of nets that could not be routed by the

router due to unreachability. The congestion of a routing-resource is mea-
sured by the present cost pn. The total_congestion parameter sums up all
pn and is a metric for the total overusage caused by a given placement and
routing. α is a sensitivity parameter that specifies how strong resource
overusage is weighted. Since cost_congestion < 1 the cost metric always
favors implementations with fewer unrouted nets. If two implementa-
tions have the same number of unrouted nets, the implementation with
smaller congestion has smaller cost. Figure 14 illustrates the congestion
cost function in subject to parameter α. For a feasible implementation
without congestion the cost value reaches it’s optimal value of 0.

The optimal settings for the parameters of the placer and the router are
architecture and also problem dependent and have not been extensively
studied. Initial experiments have shown, that the parameter settings
given in Table 4 lead to good results.

September 12, 2006 plessl_thesis.tex rev 563

3.3. Hardware Tool-Flow 53

Placer

inner iterations maxInner 20
outer iterations maxOuter 100
initial temperature T 0.05
temperature update λ 0.95

Router

overusage sensitivity βp 0.5
historical cost update βh 0.2
congestion sensitivity α 0.5

Tab. 4: Typical parameter settings for the placement and routing algorithm (taken from
the case-study on the temporal-partitioned implementation of an ADPCM de-
coder on a 7 × 7 Zippy array, see Sec. 6.2)

3.3.5 Configuration Generation

The configuration of the reconfigurable array is determined by the results
of the placement and routing process. The placement determines the
locations to which each netlist element is mapped and the settings for the
programmable switches, multiplexers, and cell input/output blocks.

The configuration for Zippy is specified as a hierarchical VHDL data-
structure which can be directly used by the VHDL model of the Zippy
architecture. We have chosen VHDL as the native configuration format
because it is human readable and allows for manual modification. Since
VHDL does not support automated conversion of VHDL data structures
to a flattened, binary format, Zippy’s VHDL model includes methods for
converting between the structured VHDL configuration data and a com-
pact binary representation. This binary configuration data (frequently
called configuration bitstream) is the data that is finally stored in the con-
figuration memory.

Listing 3.2 presents the complete VHDL configuration data-structure
that has been generated by placing and routing the netlist of the FIR filter
example (see Fig. 10) on a 2x2 cell Zippy array. The main part of the
data-structure is a two dimensional array (gridConf) with an element for
each cell. Each array element specifies the configuration of the processing
part of a cell (procConf) and the routing connections to the buses (rout-
Conf). The data-structure specifies also the configuration for the input
and output buses, and the IO controllers.

Figure 15 presents the result of the implementation of the FIR filter
example on a 2x2 cell Zippy architecture.

54 Chapter 3. Tool-Flow

1 −− c_0_0 op3
2 c fg . gridConf (0) (0) . procConf . AluOpxS := alu_add ;
3 −− i . 0 (no r e g i s t e r , r e a d from SE n e i g h b o r)
4 c fg . gridConf (0) (0) . procConf .OpMuxS(0) := I_NOREG ;
5 c fg . gridConf (0) (0) . routConf . i (0) . LocalxE (LOCAL_SE) := ’ 1 ’ ;
6 −− i . 1 (r e g i s t e r , r e a d rom S n e i g h b o r)
7 c fg . gridConf (0) (0) . procConf .OpMuxS(1) := I_REG_CTX_THIS ;
8 c fg . gridConf (0) (0) . routConf . i (1) . LocalxE (LOCAL_S) := ’ 1 ’ ;
9 −− o . 0 (no r e g i s t e r , d r i v e ou t pu t t o b . h10)

10 c fg . gridConf (0) (0) . procConf . OutMuxS := O_NOREG;
11 c fg . gridConf (0) (0) . routConf . o . HBusNxE (0) := ’ 1 ’ ;
12

13 −− c_1_0 op1
14 c fg . gridConf (1) (0) . procConf . AluOpxS := alu_mult lo ;
15 −− i . 0 (no r e g i s t e r , r e a d from bus b . h11)
16 c fg . gridConf (1) (0) . procConf .OpMuxS(0) := I_NOREG ;
17 c fg . gridConf (1) (0) . routConf . i (0) . HBusNxE (1) := ’ 1 ’ ;
18 −− i . 1 (use c o n s t a n t i n p u t)
19 c fg . gridConf (1) (0) . procConf .OpMuxS(1) := I_CONST ;
20 c fg . gridConf (1) (0) . procConf . ConstOpxD := i 2 c f g c o n s t (3 2) ;
21 −− o . 0
22 c fg . gridConf (1) (0) . procConf . OutMuxS := O_NOREG;
23

24 −− c_1_1 op2
25 c fg . gridConf (1) (1) . procConf . AluOpxS := alu_mult lo ;
26 −− i . 0 (no r e g i s t e r , r e a d from bus b . h11)
27 c fg . gridConf (1) (1) . procConf .OpMuxS(0) := I_NOREG ;
28 c fg . gridConf (1) (1) . routConf . i (0) . HBusNxE (1) := ’ 1 ’ ;
29 −− i . 1 (use c o n s t a n t i n p u t)
30 c fg . gridConf (1) (1) . procConf .OpMuxS(1) := I_CONST ;
31 c fg . gridConf (1) (1) . procConf . ConstOpxD := i 2 c f g c o n s t (1 6) ;
32 −− o . 0
33 c fg . gridConf (1) (1) . procConf . OutMuxS := O_NOREG;
34

35 −− IO b u s e s : r o u t e INP0 t o b . h11 , and b . h10 t o OUTP0
36 c fg . inputDriverConf (0) (1) (1) := ’ 1 ’ ;
37 c fg . outputDriverConf (0) (1) (0) := ’ 1 ’ ;
38

39 −− IO p o r t c o n t r o l l e r (a lways a c t i v e)
40 c fg . inportConf (0) . LUT4FunctxD := CFG_IOPORT_ON ;
41 c fg . outportConf (0) . LUT4FunctxD := CFG_IOPORT_ON ;

Lst. 3.2: Configuration for the first order FIR filter as hierarchical VHDL data-structure

September 12, 2006 plessl_thesis.tex rev 563

3.4. Software Tool-Flow 55

M0

IN
P0

IN
P1

O
U

TP
0

O
U

TP
1

M1

op3

op2op1 out
in

c=
 a

0

c=
 a

1

f=
i.0

*c
os

t
f=

i.0
+

i.1

f=
i.0

*c
os

t

Fig. 15: Implementation of the first order FIR filter on a 2x2 reconfigurable array

3.4 Software Tool-Flow
This section introduces the software tool-flow for the Zippy architecture.
The result of the software tool-flow is the executable for the reconfigurable
processor’s CPU core. The executable incorporates the software parts of
the application, the configuration for the context sequencers, and the
configuration bitstreams that have been created by the preceding hard-
ware tool-flow. An overview of the complete application implementation
tool-flow is presented in Figure 9 on page 41.

The software tool-flow bases primarily on a standard C compilation
tool-chain. To avoid modification of the compiler and assembler, the soft-
ware tool-flow augments the compilation tool-chain with intermediate
pre and post-processing steps.

3.4.1 Hardware- Software Interface
The Zippy architecture integrates the RPU as a coprocessor to the CPU
core (as opposed to a direct integration in the CPU’s data-path). This
style of coupling is motivated by streaming signal-processing applications
where the reconfigurable coprocessor processes a whole buffer of input
data without the need for CPU intervention.

56 Chapter 3. Tool-Flow

The RPU exposes all functions (data-transfer, programming of the
configuration memory and the context sequencer, etc.) via the register
interface (see Section 2.3.3). Hence, each interaction between CPU and
RPU is actually a read or write operation on one of the coprocessor’s
registers.

3.4.2 CPU Simulator and Compilation Tool-Chain
We use the SimpleScalar [ALE02] CPU simulator for simulating the CPU
core of the Zippy architecture. Apart from the simulator itself, the
SimpleScalar tool-suite also provides a complete C compilation tool-
chain. The tool-chain bases on a GNU C cross-compiler that targets
SimpleScalar’s MIPS-like instruction set called PISA. The tool-chain fur-
ther includes an assembler and a linker based on the GNU binutils.

The software parts of an application for Zippy are obtained by a code-
sign process, which is so far performed manually by the developer. The
software part is implemented in C code, compiled, assembled and linked
with the SimpleScalar cross-compilation tool-chain.

3.4.3 Extensions to the CPU Simulator
SimpleScalar allows for easily extending and modifying the instruction
set. SimpleScalar even supports the addition of new functional units,
whereas the concept of functional units is not restricted to pure arithmetic
units. We use this flexibility in defining new functional units for adding
a coprocessor interface to the CPU core, which is not available in the
default architecture. This adds a dedicated IO interface with its own IO
address space to the CPU model and enables concurrent accesses on the
memory bus and the coprocessor interface. SimpleScalar takes care of
integrating this new functional unit correctly with the rest of the data and
control-path of the out-of-order execution, super-scalar CPU architecture.

For accessing the newly defined coprocessor interface we have added
two new instructions to the PISA instruction set, see Table 5. The RU_setreg

RU_setreg $1,$2,$3 store value in register $3 to copro-
cessor register denoted by register $2
(store optional result in register $1)

RU_getreg $1,$2 read coprocessor register denoted by
register $2 and store result in register
$1

Tab. 5: Coprocessor instructions added to SimpleScalar

and RU_getreg instructions provide the application with low-level access

September 12, 2006 plessl_thesis.tex rev 563

3.4. Software Tool-Flow 57

to the coprocessor port.
Although SimpleScalar allows for easy modification of the instruc-

tion set and the parameters of the architecture that is simulated, the
corresponding tools (compiler, assembler) cannot be generated automat-
ically from the instruction set. That is—without modification—the cross-
compiler will never issue one of the new instructions.

3.4.4 Compilation Tool-Chain
In order to access the coprocessor port but to avoid modification of the
compiler and assembler, we have decided to use the unmodified compiler
and assembler, but to augment the compilation tool-chain with additional
processing steps.

To avoid a compiler modification, we make use of the fact that the
C compiler passes arbitrary inline assembler instructions directly to the
assembler without modification. The developer can thus use the new
coprocessor instructions by using inline-assembler statements. The GNU
C compiler simplifies this task by supporting powerful inline-assembler
macros. These macros can create high-level wrappers around inline-
assembler commands that can be used like ordinary C functions. The
assembler code within these macros can interact with surrounding C
code and can access variables with their symbolic names.

The application thus never calls a coprocessor instruction directly, but
always uses the function wrappers. The function wrappers are the base of
the communication and configuration library which allows the application
to conveniently access the RPU’s functions.

While the proposed method enables the C compiler to issue the new
coprocessor instructions, the assembler still cannot process them, because
they are not part of the PISA instruction set. We solve this problem by
splitting the compilation process into two phases: the compilation phase
and the assembly phase. In an intermediate processing step (instruction
encoding) the coprocessor instructions are replaced by instructions that
are understood by the assembler.

The coprocessor instructions in the application’s assembly codes serve
as pure pseudo-instructions that cannot be directly executed. But, although
the instructions are not executable, the inline-assembler has determined
the register allocation for the instruction’s operands. The instruction en-
coding step removes these pseudo-instructions from the assembly and
replaces them with the binary instruction encoding for the instructions
and their register operands. The instruction encoding is specified with a
.word assembler directive, which can insert arbitrary data in the assembled
object code.

A similar method for code generation is used in the software tool-flow

58 Chapter 3. Tool-Flow

for the OneChip [CEC01] and, except for the function wrappers, for the
REMARC [MO99] architecture.

Figure 16 depicts the augmented software tool-flow and presents the
implementation of the function RU_readfifo which reads the contents of
a FIFO on the RPU. The communication library comlib.h defines the
RU_readfifo(x) function wrapper, which is implemented as an inline-
assembler macro. The macro translates the function-like RU_readfifo
command into the corresponding coprocessor instruction ru_readreg.

The function can be called within app.c like any ordinary C function,
but is translated by the compiler to a ru_getreg pseudo-instruction. The
compiler determines also the register allocation for the operands of the
pseudo-instruction. Before assembling the intermediate assembler file
app.i.s, the instruction encoding process replaces the pseudo-instruction
with its instruction coding, that is inserted with a .word directive. Finally,
the unmodified assembler and linker transform the resulting assembler
file (with all coprocessor instructions encoded) into an executable.

3.5 Summary
In this chapter we have introduced an application implementation tool-
flow for the Zippy architecture. We have discussed the two major tool-
flows that have been proposed for coarse-grained reconfigurable CPUs.

Zippy uses a circuit-centric tool-flow because this tool-flow matches
the characteristics of Zippy’s application domain well. The circuits are
specified with the textual ZNF netlist format.

The hardware tool-flow uses in iterative placement and routing pro-
cess, which is driven by a simulated-annealing-based stochastic search
procedure, to find a feasible circuit implementation. The routing algo-
rithm bases on the well-known Pathfinder algorithm. While starting the
placement and routing process with a random initial placement is suc-
cessful with many FPGA architectures, it leads frequently to unroutable
placements on the Zippy architecture, because the coarse-grained Zippy
architecture has only sparse routing resources. We have developed a
new heuristic placement algorithm that improves the routability of the
initial by placing adjacent cells in the netlist to adjacent sites on the re-
configurable array. The Pathfinder routing algorithm and the stochastic
search procedures have been adapted by defining architecture-specific
cost functions.

Finally, we have developed a software tool-flow based on a C com-
pilation tool-chain. We have extended the SimpleScalar CPU simulator
(which is used to simulate the CPU core) with a coprocessor interface
and corresponding coprocessor instructions. To enable the use of copro-

September 12, 2006 plessl_thesis.tex rev 563

3.5. Summary 59

5. The unmodified assembler
and linker generate the
application's executable

2. The function wrapper is
called like an ordinary C
function in the user's
application.

3. The compiler expands the
macro into a pseudo-instruction
call. The compiler also performs
register allocation.

1. Function wrappers use GCC
macros to insert inline-
assembler pseudo-instructions
into C code.

4. In a post-processing step,
the pseudo-instructions are
replaced by their instruction
coding.

app.s

app.ss

comlib.h

app.c

Compilation

Assembling / Linking

RU Instruction
Encoding

app.i.s

Include

#define RU_readfifo(x) \
 ({ int res, v = (x); \
 asm ("ru_getreg %0,%1" \
 : "=r" (res) : "r" (v)); \
 res; })

#include "macros.h"
for(i=0;i<N;i++)
 res = RU_readfifo(FIFO1);

...
lw $5,160($fp)
ru_getreg $5,$5
sw $5,156($fp)
...

...
lw $5,160($fp)
.word 0x000000b0
.word 0x05000500
...

Executable for
SimpleScalar simulation

Fig. 16: Tool-Flow for generating software executables running on the CPU

60 Chapter 3. Tool-Flow

cessor instructions but to avoid a modification of the compiler and the
assembler we have augmented the compilation process with intermediate
processing steps that perform instruction encoding. We make the copro-
cessor access functionality available to the application developer via a
convenient communication and configuration library.

The proposed implementation tool-flow allows a designer who is fa-
miliar with block-based design of streaming signal-processing algorithms
to develop an application for the Zippy architecture. The circuit cen-
tric tool-flow allows for achieving high-performance implementations
by reusing existing circuits, while the communication and configuration
process is simplified with a communication and configuration library.

September 12, 2006 plessl_thesis.tex rev 563

4
Performance

evaluation
For evaluating the performance of an instance of the Zippy reconfigurable
processor architecture we use a cycle-accurate cosimulation. To this end,
we combine the cycle-accurate SimpleScalar CPU simulator with the Mod-
elSim VHDL simulator into a system-level cosimulator for the complete
architecture. The VHDL simulator executes a cycle-accurate VHDL model
of the Zippy architecture.

Many simulators for reconfigurable processors rely on pure functional
simulation of the Reconfigurable Processing Unit (RPU) and thus fre-
quently trade reduced accuracy in timing-behavior and bit-exact compu-
tation for a decrease in simulation time. In contrast, our execution-based
cosimulation approach allows for cycle-accurate performance evaluation
on the system-level and provides bit-exact results.

Section 4.1 motivates the need for system-level performance evalua-
tion. Two approaches for performance evaluation of reconfigurable pro-
cessors are discussed and compared.

Section 4.2 introduces the execution-based performance evaluation
framework for the Zippy architecture. We discuss the modeling and
simulation of the CPU core and the RPU, and discuss the integration of
the two simulators into a common cosimulation environment.

62 Chapter 4. Performance evaluation

4.1 Performance Evaluation for Reconfigurable
Processors

In this section we discuss the challenges in building a performance evalu-
ation framework for reconfigurable processors. We compare two different
approaches and motivate our choice of an execution-based cosimulation
approach.

4.1.1 Motivation
An accurate method for performance evaluation of a reconfigurable pro-
cessor is needed for assessing the quality of a given reconfigurable proces-
sor implementation. But performance evaluation is also of interest during
the design-phase of new reconfigurable architectures. For parametrized
architectures, like the Zippy architecture, accurate performance evalua-
tion plays an important role in the design-space exploration process for
comparing design alternatives.

Performance is frequently identified with the pure computational per-
formance and is measured via the execution time of a benchmark ap-
plication. We have defined and analyzed a set of benchmark applica-
tions, called MCCmix, that are significant for our target domain [EPP+01].
This benchmark set includes a choice of multi-media, cryptography and
communications applications that are representative for handheld and
wearable computing applications.

Apart from the computational performance, there are two additional
important performance metrics: chip area and power consumption. Since
many embedded systems are cost and power sensitive, i. e., chips size
and power consumption should be minimized, these additional metrics
are also relevant for embedded systems. There is an inherent trade-off be-
tween these three performance metrics, e. g., an increase in computational
performance entails an increase in chip area or power consumptions.

While Enzler has shown in his dissertation [Enz04] that a parame-
trized chip area model for a precursor of the Zippy architecture is feasible
and power models for a parametrized CPU core have been discussed in
[BTM00, BBS+00], the derivation of a high-level power model for a com-
plete reconfigurable processor remains an open research issue. For this
work, we focus exclusively on a evaluation framework for determining
the computational performance.

4.1.2 Challenges
Determining the performance of a reconfigurable processor is difficult,
mainly due to dynamic effects in the CPU core. State-of-the-art CPU

September 12, 2006 plessl_thesis.tex rev 563

4.1. Performance Evaluation for Reconfigurable Processors 63

cores use a number of dynamic techniques to increase the performance,
for example, pipelining, caching and out-of-order execution. Since these
techniques are applied during runtime and rely on decisions based on
the execution history, the execution behavior of a program is difficult to
predict. But also the interfaces of the CPU core to its environment, i. e.,
the memory subsystem and IO buses are becoming increasingly complex
and involve varying access latencies.

Thus, cycle-accurate simulation is the only viable method for accu-
rately determining the runtime behavior of the CPU core in a reconfig-
urable processor.

Performance evaluation for the RPU requires essentially discrete event
simulation. Generally, the RPU uses less dynamic techniques than the
CPU core. Still, the design of a high-level simulation model that is
cycle-accurate and functionally equivalent (bit-exact) is a challenging task
because the RPU executes an arbitrary digital-circuit, e. g., with data-
dependent processing times, rounding effects due to fixed-point arith-
metic, etc.

4.1.3 Approaches
Two alternatives for integrating the simulation model of an RPU with a
CPU simulator have been proposed, the functional simulation approach,
and the execution-based cosimulation approach.

Functional Simulation

In the functional simulation approach the reconfigurable architecture is not
explicitly modelled, but one particular configuration of the RPU is treated
as an additional CPU instruction. A static functional and timing behavior
which is determined by the RPU configuration is assigned to this ad-
ditional instruction. For the purpose of simulation, the execution of the
RPU is replaced by a software component, that implements the functional
behavior and also accounts for the latency of the RPU execution. During
simulation, the CPU simulator schedules the RPU operations to this new
functional unit. This modelling style is frequently used for RPUs that
are tightly integrated with the processors data-path (pipeline) to form
a custom arithmetic unit, frequently called Reconfigurable Functional
Unit (RFU). It has been used for CPUs that provide fine-grained RFUs,
e. g., for the simulation of the OneChip [CEC01], Chimaera [YMHB00],
and XiRisc [LTC+03] architectures. Since the RFU gets its operands di-
rectly from the CPU’s register-file, and since the complexity and latency
of such an operation is similar to a CPU instruction, treating RFU instruc-
tions like CPU instructions is appropriate.

64 Chapter 4. Performance evaluation

Execution-Based Cosimulation

In the execution-based cosimulation approach the RPU is not abstracted and
replaced by a functional model, but forms a simulation component on its
own. A corresponding architecture cosimulator interfaces the execution-
based RPU simulator to a cycle-accurate CPU simulator.

In contrast to the functional simulation approach, which simulates
only one particular configuration of the RPU, the execution-based ap-
proach models the RPU itself. This RPU model includes the reconfig-
urable array but also the configuration and control circuitry. A particular
RPU configuration is simulated by loading the configuration into the RPU
model and executing the configuration.

This approach is useful for architectures that do not integrate the
reconfigurable structures as tightly as an RFU, but attach the RPU to
an IO or coprocessor interface. For these architectures the access to the
RPU does not occur directly within the CPU’s data-path with a fixed
delay as for fined-grained reconfigurable CPUs with RFUs. But the delay
for accessing the RPU for configuration, data-transfers and configuration
sequencing varies due to the dynamic effects in the CPU.

The advantage of this approach is, that it provides a system-level
cycle-accurate cosimulation. It also accounts for the various overheads
involved with a reconfigurable processor architecture, for example, con-
figuration upload, activation and sequencing, data-transfers, or latencies
in accessing the IO interfaces.

4.2 System-Level Cycle-Accurate Co-Simulation
for Zippy

In this section we will introduce our cosimulation framework for the
Zippy architecture which uses the execution-based cosimulation approach.
We integrate two cycle-accurate simulators into one co-simulation envi-
ronment. This allows us to perform system-level performance evaluation
and to use the appropriate simulation tool for each simulation task.

The requirements for the CPU simulator are high efficiency, cycle
accuracy, and the availability of a robust code-generation framework for
compiling benchmark applications. The requirements for the simulator
of the RPU are cycle accuracy and the possibility for specification on
different levels of abstraction, particularly on the behavioral level and the
register-transfer level.

Although it is widely recognized that the raw performance of a recon-
figurable coprocessor and the performance of the same coprocessor when
embedded in a reconfigurable processor can differ significantly, the topic

September 12, 2006 plessl_thesis.tex rev 563

4.2. System-Level Cycle-Accurate Co-Simulation for Zippy 65

L1/L2
caches

main memory

ALU FPU

re
gi

st
er

 IF

Reconfigurable
Processing Unit

Reconfigurable
Array

Ctrl

Addr

Data

co
pr

oc
es

so
r I

F

CPU core

ext memory IF

TLB

execution
control

branch
prediction

Fig. 17: System Architecture of a Generic Reconfigurable Processor

of system-level performance evaluation has not gained a lot of attention.
We have introduced our cosimulation framework first in [EPP03] and

[EPP05] and to the best of our knowledge, this is the only work that specif-
ically focuses on system-level performance evaluation for reconfigurable
processors.

4.2.1 Architectural assumptions
Our performance evaluation framework is rather general because it makes
only a few general assumptions about the system architecture:
• the reconfigurable processor consists of a CPU core and has a recon-

figurable processor attached to its coprocessor port,
• data transfers, configuration loading, and execution control (syn-

chronization of coprocessor and CPU) is performed exclusively via
the coprocessor interface,

• the CPU is simulated with the SimpleScalar CPU simulator, and
• the coprocessor is modelled with a cycle-accurate VHDL model

Figure 17 shows system architecture of a generic reconfigurable processor
as it is assumed by the cosimulation framework. Actually, the cosimula-
tion treats the RPU as a black-box and can simulate any CPU/coprocessor
system, as long as a cycle-accurate VHDL model is provided.

4.2.2 CPU Simulation Model
For the simulation of the CPU core and the memory architecture we
use the well-established SimpleScalar CPU simulator [ALE02]. We have
introduced SimpleScalar already in previous chapters of this thesis: Sec-
tion 2.2.2 presents more details on the role of SimpleScalar in the recon-

66 Chapter 4. Performance evaluation

figurable processor architecture, and section 3.4 presents the extensions
of the software generation tool-flow to support the coprocessor interface
that has been added to SimpleScalar.

SimpleScalar is an extensible, parametrized CPU simulator tool-suite
that simulates a super-scalar out-of-order CPU architecture with an ex-
tended MIPS-like instruction set named PISA. It is frequently used for
CPU architecture research since the simulator is available in C source
code and allows for modification for academic purposes. In addition to
the CPU simulator, SimpleScalar bundles also a complete set of compila-
tion tools: a GNU C compiler based C cross-compiler and a GNU binutils
based suite of assembler, linker, etc.

SimpleScalar gathers detailed, cycle-accurate execution statistics by
executing the compiled application binary on a parametrized CPU model.
The parameters for the super-scalar execution core include the number of
fixed-point and floating-point execution units, decode, issue and commit
bandwidths, and the size of the instruction fetch queue, the load-store
queue, and the register update unit. The simulator supports several kinds
of branch predictors and optional out-of-order execution. The memory
architecture can be customized by specifying up to two levels of cache.
Overall, this allows for performance evaluation of a broad spectrum of
systems, ranging from small, embedded CPUs to high-end, super-scalar
CPUs.

Since SimpleScalar is available in source code and can be easily ex-
tended with new instructions and even functional units, it is well suited
for building a functional simulation-based simulator for a reconfigurable
processor. For example, SimpleScalar has been used for building func-
tional simulators for the OneChip [CEC01] and the Chimaera [YMHB00]
architecture. Both architectures are reconfigurable processors with fine-
grained RFUs.

For the simulation of the Zippy architecture we have chosen to use
execution-based cosimulation. To this end, we have extended SimpleScalar
with a coprocessor interface, which is modeled as a functional unit, and
with instructions for accessing the coprocessor interface. For more details
on this extension and the corresponding software toolflow we refer to
Section 3.4.

Conceptually, the RPU coprocessor is attached to this coprocessor
interface. But while the coprocessor interface is modelled within Sim-
pleScalar, the RPU itself is modelled outside of SimpleScalar with a VHDL
simulator that executes a cycle-accurate VHDL model of the RPU. The
cosimulation framework takes care of bridging the coprocessor access of
SimpleScalar to the external VHDL simulator and returning results from
the VHDL simulation to SimpleScalar again.

September 12, 2006 plessl_thesis.tex rev 563

4.2. System-Level Cycle-Accurate Co-Simulation for Zippy 67

4.2.3 RPU Simulation Model
The RPU is modelled as a cycle-accurate VHDL model and is simulated
with the ModelSim simulator [Mod05]. ModelSim is a powerful, mixed-
language simulator that supports VHDL and Verilog, and it was recently
extended with SystemC support. Via an extension interface ModelSim
provides the programmer with direct access to the simulation kernel. We
use this extension interface to integrate SimpleScalar and ModelSim into
a common cosimulation environment, see section 4.2.4.

The main motivation for using VHDL for modelling the RPU is that
VHDL seamlessly supports the modeling at different levels of abstraction.
VHDL supports high-level behavioral modelling with non-synthesizable
constructs but also modelling at the Register Transfer Level (RTL) and
even at the structural level. In spite of these different levels of abstraction,
VHDL allows for retaining overall cycle accuracy, while using the expres-
siveness of behavioral modelling for parts of the model. Using a VHDL
model of the RPU enables us to use the same model for stand-alone sim-
ulation of the RPU and system-level cosimulation of the reconfigurable
processor. Potentially, the VHDL description also allows for generating a
prototype Very Large Scale Integration (VLSI) chip implementation if the
RPU model is stepwise refined to the synthesizable VHDL subset. Hence,
we can get a perfect match of the architecture simulation model and the
architecture implementation.

Another strong argument for chosing VHDL is the maturity of VHDL
development, simulation and synthesis tools. Sophisticated VHDL simu-
lators ease the development of the RPU. A conventional VHDL testbench
can be used for functional verification of the RPU. This process is sup-
ported by verification libraries, VHDL debuggers and wave form viewers.

4.2.4 Cosimulation framework
The system-level cosimulation framework for the Zippy architecture com-
bines the cycle-accurate simulation models for the CPU core and the RPU
into a common simulator.

The main result obtained from the cosimulation is the application’s ex-
ecution time measured in cycles. Since the cosimulation is execution-based,
the execution of the application includes also the process of loading the
configurations to the RPU, transfering data between CPU and RPU and
switching between configurations. Additionally, SimpleScalar collects a
multitude of execution statistics for the CPU core, for example, cycles per
instruction, cache and branch-prediction miss-rates, and dispatch rates
for the instruction fetch, load-store and register updated units. Assum-
ing a certain CPU clock rate, the CPU utilization (load) can be computed
as a derived metric. The CPU utilization is of interest for applications

68 Chapter 4. Performance evaluation

SimpleScalar

CPU simulator
extended with
coprocessor support

ModelSim

VHDL simulator
extended with inter-
process simulation
control

CPU architecture
parameters

SimpleScalar
configuration

Application
Executable

communicates with
RPU via coprocessor
instructions

RPU configurations

specify configuration
of contexts

RPU model

cycle-accurate VHDL
model of the RPU

input data, configurations, execution control

output data, RPU status

Cosimulation Framework

execution time
CPU execution statistics

CPU utilization

RPU architecture
parameters

Fig. 18: Co-simulation framework integrating the SimpleScalar and ModelSim simula-
tors

that demand for fixed-rate processing (for example real-time audio signal
processing) instead of throughput maximization.

In the cosimulation framework, both simulators run in parallel as
communicating processes. The SimpleScalar simulator acts as the master
of the simulation and has complete control over the RPU simulation.
Whenever SimpleScalar encounters a coprocessor instruction, it relays
the corresponding command to the ModelSim VHDL simulator. The
results from the RPU simulation are sent back to SimpleScalar.

Figure 18 outlines the structure of the cosimulation framework. Simple-
Scalar requires three input files: the CPU architecture parameters, the
compiled application executable, and the RPU configuration bitstreams.
The application parts that run on the CPU are implemented in C and
compiled with the GCC-based C cross-compiler provided by the Sim-
pleScalar tool suite. The application code needs to take care of download-
ing the RPU configuration bitstreams and of controlling their execution.
The coprocessor instructions, which we have added to SimpleScalar, are
accessed using pseudo-assembler instructions. A communication and
configuration library facilitates the access to these pseudo-assembler in-
structions from a C application. The library contains functions for down-
loading the configurations, switching between contexts, and for transfer-
ring data between CPU and RPU. The software tool-flow for application
implementation is presented in more detail in section 3.4.

The configuration bitstream is created with the hardware tool-flow,
which takes a netlist description of an application and runs an automated

September 12, 2006 plessl_thesis.tex rev 563

4.2. System-Level Cycle-Accurate Co-Simulation for Zippy 69

placement and routing process to find a feasible implementation. The
implementation is converted to a binary representation, denoted as con-
figuration bitstream, and is downloaded to the RPU by the application at
runtime. For more details on the hardware tool-flow we refer to section 3.3

Interfacing the CPU and the RPU Simulator

For cosimulating the complete reconfigurable processor SimpleScalar
must be able to control the RPU simulation. Technically, SimpleScalar and
ModelSim run as separate but communicating processes. The two sim-
ulation processes communicate with commands exchanged via a shared
memory area. These commands correspond to the coprocessor instruc-
tions. Communication via shared memory is an efficient inter-process
communication mechanism in Unix operating systems, but requires an
additional mechanism for synchronizing the memory access. We syn-
chronize the shared memory access with a simple handshake protocol
implemented with semaphores.

Since SimpleScalar is available in source code, the inter-process com-
munication and synchronization code for accessing ModelSim is directly
integrated into the simulator. For integrating the communication code in
ModelSim, we extend the VHDL simulator through the foreign language in-
terface [Mod04]. This extension interface allows for loading user-defined
shared libraries with access to ModelSim’s simulation kernel into the
simulator. We use this interface to expose complete control over the RPU
simulation in ModelSim to the SimpleScalar simulator.

Algorithms 5 and 6 present pseudo-code for the handshake and com-
munication protocol that synchronizes the access to the shared memory
area (SMA). Two binary semaphores (ReqPendingSem, and ReqServed-
Sem) are used. ReqPendingSem is signaled by the SimpleScalar to inform
ModelSim that a new coprocessor command is ready to be processed.
After running the RPU simulation for one cycle, ModelSim signals the
end of the processing with the ReqServedSem semaphore.

Keeping the simulation of SimpleScalar and ModelSim strictly syn-
chronized suggests to communicate in every cycle. But although the
shared memory data-transfers and the synchronization with semaphores
is rather fast, excessive communication slows down the cosimulation un-
necessarily. For performance reasons we allow the simulation time in
the VHDL simulator to lag behind the CPU simulation time. Since syn-
chronization of the CPU and the RPU is only required at the time of
communication through a coprocessor instruction, we re-synchronize the
simulation times of CPU and RPU only at communication events and at
the end of the simulation. The pseudo-code in Alg. 5 shows this time-
lag mechanism in more detail. A lag counter is incremented for every

70 Chapter 4. Performance evaluation

Algorithm 5 Inter-Process Communication and Synchronization for Sim-
pleScalar

1: lag← 0
2: while not(application finished) do
3: if instruction = coprocessor instruction then
4: if lag > 0 then
5: write command to SMA (cmd=catchup(lag))
6: signal(ReqPendingSem)
7: wait(ReqServedSem)
8: lag← 0
9: end if

10: write command to SMA (cmd=coproc instruction)
11: signal(ReqPendingSem)
12: wait(ReqServedSem)
13: read results from SMA
14: else
15: lag← lag + 1
16: end if
17: end while
18: if lag > 0 then
19: write command to SMA (cmd=catchup(lag))
20: signal(RedPendingSem)
21: wait(ReqServedSem)
22: write command terminate to SMA
23: signal(ReqPendingSem)
24: end if

Algorithm 6 Inter-Process Communication and Synchronization for Mod-
elSim

1: while true do
2: wait(ReqPendingSem)
3: read command from SMA
4: if command = terminate then
5: terminate simulation
6: else if command = catchup then
7: run simulation for tcycle · lag
8: else
9: run simulation for tcycle

10: write results to SMA
11: end if
12: signal(ReqServedSem)
13: end while

September 12, 2006 plessl_thesis.tex rev 563

4.3. Summary 71

instruction that is no coprocessor instruction. When the next coprocessor
instruction occurs, the RPU simulation is synchronized first, before the
new command is handed to the ModelSim simulator.

Using a VHDL simulator as the base of a cosimulation framework for
a reconfigurable processor provides many advantages, mainly the reuse
of a modelling language and discrete event simulation kernel for spec-
ification, stand-alone verification, (co-)simulation and potentially also
implementation. Since there is increasing tool support for the SystemC
modeling language [Pan01, GLMS02, Ope02] we consider SystemC mod-
elling as in interesting alternative, once the tool support for SystemC is on
par with VHDL. A pure SystemC model could be implemented by mod-
elling the RPU in SystemC and by wrapping SimpleScalar in a SystemC
model. Such a plain SystemC model could be an advantage, if a closer
integration of CPU and RPU is desired, e. g., if the RPU could directly
access the main memory.

4.3 Summary
Dynamic effects in the CPU core, variable delay for communication be-
tween CPU and RPU, and possibly data-dependent processing times in
the RPU, render pure functional RPU models for the performance evalu-
ation of a reconfigurable processor inaccurate. That is, the raw (best-case)
performance of the RPU and the actual performance when integrated in
a reconfigurable processor can differ significantly.

Hence, we propose system-level performance evaluation for accu-
rately assessing the performance of a reconfigurable processor. We rely
on execution-based performance evaluation based on cosimulation. The
proposed framework combines two cycle-accurate simulators, the cycle-
accurate SimpleScalar CPU simulator and the ModelSim simulator, which
executes a cycle-accurate VHDL model of the RPU.

We argue, that using VHDL as a modeling language and thus bas-
ing the RPU simulation on a VHDL simulator is beneficial, because the
VHDL simulator serves as a solid discrete event simulator and the VHDL
language provides excellent support for modelling at different levels of
abstraction. We have introduced a performance optimization, that mini-
mizes the communication overhead between the CPU and the RPU sim-
ulator to the minimum.

The resulting cosimulation environment allows us to perform cycle-
accurate simulation of the whole architecture and is in this respect supe-
rior to many other simulation environments for reconfigurable processors
that base on functional simulation.

72 Chapter 4. Performance evaluation

September 12, 2006 plessl_thesis.tex rev 563

5
Hardware

Virtualization
In this chapter we introduce hardware virtualization. Hardware virtual-
ization denotes a number of techniques that can be used to decouple
the specification of a circuit from its execution on a reconfigurable archi-
tecture. Hardware virtualization can be an interesting implementation
technique in particular for embedded systems, when hardware applica-
tions shall be executed on a reconfigurable co-processor with only modest
hardware resources.

In Section 5.1 we define a classification of hardware virtualization
techniques for dynamically reconfigurable architectures. We define three
approaches named Temporal Partitioning, Virtualized Execution, and Virtual
Machine. For each technique we present a survey on application and
specification models, implementation architectures and runtime systems.

Section 5.2 proposes an application specification model for the Zippy
architecture, that explicitly considers the Temporal Partitioning and Vir-
tualized Execution hardware virtualization techniques. We review the
architectural requirements for these virtualization techniques and show
how the Zippy architecture supports these techniques with dedicated
hardware units.

Finally, in Section 5.3 we present a novel method and an algorithm for
optimal temporal partitioning of sequential circuits. The method treats tem-
poral partitioning as an optimization problem and presents a problem
formulation that can be solved optimally.

74 Chapter 5. Hardware Virtualization

5.1 Introduction to Hardware Virtualization
Literally, hardware virtualization means that an application executes on
virtualized hardware as opposed to physical hardware. “Virtual hard-
ware” seems to be a contradictory term because hardware is supposed to
have a physical existence. Furthermore, the terms “virtual hardware” and
“hardware virtualization” are used for different concepts in literature.

Initially, the term virtual hardware was coined to show the analogy to
virtual memory. There, pages of memory are swapped in and out a com-
puting system, allowing applications to address a much larger memory
than physically existent. In the same way, a reconfigurable computing
system can swap in and out portions of the hardware by a reconfigura-
tion process, allowing applications to use more hardware than physically
existent. Later on, the term hardware virtualization was used to describe
mapping techniques and architectures that allow for a certain degree of
independence between the mapped application and the actual capacity of
the target architecture. The most radical form of hardware virtualization
is to strive for complete independence of the hardware execution from
the actual underlying hardware.

5.1.1 Hardware Virtualization Approaches
5 So far, no general accepted taxonomy for hardware virtualization ap-
proaches has been defined. We have identified three approaches to hardware
virtualization that, although related, differ in their motivation. We define
the following classification to denote these approaches: temporal partition-
ing, virtualized execution, and virtual machine.

• Temporal Partitioning

The motivation for this virtualization approach is to enable the map-
ping of an application of arbitrary size to a reconfigurable device
with insufficient hardware capacity. Temporal partitioning splits
the application into smaller parts, each of which fits onto the device,
and runs these parts sequentially. Temporal partitioning was the
first virtualization style that has been studied. It was a necessity
when reconfigurable devices were too small for many interesting
applications, but it is still of importance with today’s multi-million
gate Field-Programmable Gate-Arrays (FPGAs)—in particular in
embedded systems—for saving chip area and thus cost.

• Virtualized Execution

The motivation for virtualized execution is to achieve a certain level
of device-independence within a device family. An application is

September 12, 2006 plessl_thesis.tex rev 563

5.1. Introduction to Hardware Virtualization 75

specified in a programming model that defines some atomic unit
of computation. This unit is commonly called a hardware page.
Hence, an application is specified as a collection of tasks (that fit
into a hardware page) and their interactions.

The execution architecture for such an application is defined as a
whole family of devices. All devices support the abstractions de-
fined by the programming model, i. e., the hardware page and the
interactions (communication channels). The members of a device
family can differ in the amount of resources they provide, e. g., the
number of hardware pages that are executing concurrently, or the
number of tasks that can be stored on-chip. Since all implementa-
tions of the execution architecture support the same programming
model, an application can run on any member of the device family
without recompilation. In this respect, this approach is compara-
ble to the device independence achieved for microprocessors by the
definition of an instruction set architecture. The resulting indepen-
dence of the device size allows the designer to trade off performance
for cost. Furthermore, the forward compatibility lets us exploit ad-
vances in technology that result in larger and faster devices.

Virtualized execution requires some form of a runtime system that
resolves resource conflicts at runtime and schedules the tasks ap-
propriately.

• Virtual Machine

The motivation for this virtualization approach is to achieve an even
higher level of device-independence. Instead of mapping an appli-
cation directly to a specific architecture, the application is mapped
to an abstract computing architecture. A hardware virtual machine
is able to execute an application which has been mapped to such an
abstract architecture.

There are two basic alternatives for constructing a hardware virtual
machine: The first approach is to remap the application from the
abstract representation to the native application code of a concrete
architecture at the startup of the application. The virtual machine
is then formally the tools for remapping the application. The other
approach is to run an “interpreter” on the concrete architecture that
allows for direct execution of the abstract application code.

This style of virtual hardware is analogous to the approach of
platform-independent software that is used for instance in the Java
virtual machine. Conceptually, a hardware virtual machine features
platform-independent mobile hardware. This might be of increas-

76 Chapter 5. Hardware Virtualization

netlist

temporal
partitioning

netlist
3

netlist
2

netlist
1

configuration data

co
nt

ro
lle

r

DFG2

DFG1

configuration data

DFG

temporal
partitioning

co
nt

ro
lle

r

DFG2

DFG1

configuration data / CPU binaries

DFG

temporal and hw/sw
partitioning

application
parts for CPU

netlist
partitioning

data-flow graph
partitioning

control data-flow
graph partitioning

Fig. 19: Approaches for temporal partitioning: netlist partitioning, data-flow graph par-
titioning, and CDFG partitioning

ing importance as most reconfigurable systems are connected to
networks.

5.1.2 Temporal Partitioning
5.1.2.1 Application Models

The conventional way of specifying an application for a reconfigurable
device is to use a hardware description language (HDL), e. g., VHDL
or Verilog. This specification is synthesized to a Register Transfer Level
(RTL) description and, finally, to a netlist of combinational and sequential
logic elements. Design implementation tools further process this netlist
and perform technology mapping, placement, and routing to generate
the configuration data for the reconfigurable device.

Alternatively, an application can be specified in a high-level program-
ming language (HLL), e. g., C/C++ or Java. A compiler builds an in-
ternal representation of the program in the form of a control data-flow
graph (CDFG). From this graph, RTL descriptions and netlists are gen-
erated. The results are further processed by the same tools as in the
HDL-based tool flow.

Temporal partitioning can be applied at different levels: at the level
of netlists, at the level of data-flow graphs, or at the level of CDFGs (see
Fig. 19).

Temporal partitioning at the netlist level operates on the netlists obtained
by synthesis or compilation tools. Netlist partitioning does not depend on

September 12, 2006 plessl_thesis.tex rev 563

5.1. Introduction to Hardware Virtualization 77

the actual implementation language that was used for application specifi-
cation. The main drawback of netlist partitioning is that one cannot make
use of application-specific knowledge. In general, it is extremely diffi-
cult to regain information about the high-level structure or even dynamic
behavior of the application from the netlist.

Data-flow graph partitioning works on operation or task graphs. Such
graphs result from HDL and HLL design flows, but are also used as
specification models in embedded systems design. An operation graph
is a directed acyclic graph (DAG), where the nodes represent operations
and the edges represent dependencies and communication.

Temporal partitioning at the CDFG level becomes possible if a high-level
language is used for application specification. The main advantage over
netlist or data-flow graph partitioning is that the CDFGs reveals informa-
tion about the control-flow, e. g., loops, conditional execution, function
calls, etc. The control-flow information defines all possible flows of com-
putations and thus can be used to divide the application into partitions
with only local computations (similar to basic blocks). A CDFG represen-
tation enables the compiler to perform high-level optimizations and trans-
formations. Common optimization techniques address runtime-intensive
loops and increase the parallelism by unrolling, software pipelining, or
pipelined vectorization.

5.1.2.2 Reconfigurable Architectures

Temporal partitioning decomposes an application into smaller parts and
executes them sequentially. Since the execution requires frequent recon-
figuration, the efficiency of the approach is largely dependent on the ratio
between a configuration’s execution time and the device reconfiguration
time. Conceptually, any reconfigurable architecture can be used for tem-
poral partitioning. However, the demand for low reconfiguration over-
heads favors advanced architectures that allow for fast reconfiguration,
e. g., multi-context FPGAs.

Temporal partitioning requires to transfer intermediate results be-
tween the partitions. While it is possible to use external memory for
storing inter-configuration data, an efficient implementation of tempo-
ral partitioning demands for fast inter-configuration communication, for
example, with a set of on-chip registers that can be accessed by all config-
urations.

All temporal partitioning approaches need a configuration controller.
Usually, this control function is mapped to a processor. The resulting
target architectures combine a processor with a reconfigurable device
either in a single chip or as a board-level system.

78 Chapter 5. Hardware Virtualization

5.1.2.3 Design Tools and Runtime System

The conventional tool-flow needs only moderate modifications to support
hardware virtualization with temporal partitioning. At some abstraction
level in the design tool flow the application is split up into a number
of smaller parts. Additionally, a configuration controller and circuitry
for inter-configuration communication is generated. The reconfigura-
tion controller implements the runtime system which executes a static
configuration schedule. The controllers for inter-configuration commu-
nication store the output data of configurations and provide subsequent
configurations with input data. Each of the resulting application parts
can be implemented with the same device-specific mapping, placement
and routing tools as in the non-virtualized case. Whenever the resulting
configuration exceeds the device capacity, the temporal partitioning step
must be iterated.

When the application is specified in an HLL, the compiler can per-
form hardware/software partitioning in addition to temporal partitioning.
Only the runtime-intensive inner loops of an application are mapped to
the reconfigurable device, while the rest of the application runs on the
CPU.

5.1.2.4 Survey of Approaches

Temporal Partitioning of Netlists

Temporal partitioning of netlists leads to graph partitioning problems
since netlists are commonly represented with graphs models. In spite of
the different motivation, these problems are similar to structural partition-
ing problems. Structural partitioning has been studied in the context of
FPGA-based emulation systems [But93]. These methods partition a large
netlist that exceeds the capacity of a single FPGA into a set of smaller
netlists for execution on a multi-FPGA emulation system. Each parti-
tion is required to fit onto a single FPGA while respecting the limited
interconnect resources between the FPGAs.

Initially, temporal partitioning and time-multiplexed execution of par-
titions has not been considered for logic emulation, because the long
reconfiguration times for conventional FPGAs would lead to excessive
overheads. With the development of multi-context FPGAs that support
fast reconfiguration temporal partitioning of netlists became realistic. In-
spired by early multi-context FPGAs like DPGA [TCE+95] and TMFPGA
[TCJW97], first studies looked at special cases of digital logic. Trim-
berger [Tri98] and DeHon [DeH96b] discuss list scheduling algorithms
for mapping finite state-machines in levelized logic form to multi-context
architectures.

September 12, 2006 plessl_thesis.tex rev 563

5.1. Introduction to Hardware Virtualization 79

FF

c

c
c

c

c c

in
pu
ts

ou
tp
ut
s

config 1 config 2 config 3

F
F

combinational transition logic

inter-configuration data
transfer for combinational signals

Fig. 20: Temporal partitioning of netlists (logic engine mode of TMFPGA, after [Tri98])

Figure 20 presents the mapping of a Finite State Machine (FSM) to
a multi-context FPGA. The combinational state transition logic is parti-
tioned into a number of configurations that form device contexts (con-
figurations 1 and 2 in Fig. 20). The state of the FSM is mapped in a
separate configuration (configuration 3 in Fig. 20). The combinational
signals crossing the configurations are held in a set of inter-context com-
munication registers that are shared among all contexts. At runtime, the
contexts are cyclically executed.

Implementing FSMs with levelized logic can lead to a large number of
intermediate signals and thus to an excessive amount of registers. There-
fore, several authors proposed improved heuristics that try to reduce
the size of the inter-context communication registers. A force-directed
scheduling based method was studied by Chang and Marek-Sadowska
[CMS97][CMS99]. Mak and Young [MY02] and Liu and Wong [LW98]
used a network-flow based method. Wu et al. presented an exact ILP
based algorithm [WLC01].

Temporal Partitioning of Operation and Task-Graphs

The approaches in this group define temporal partitioning as an opti-
mization problem over acyclic data-flow graphs. Similar to the netlist
approach, the graph is partitioned into a number of configurations such
that each single configuration does not exceed the device capacity. Fur-
ther, the construction of a feasible configuration schedule must be possi-
ble. The primary optimization objective is the minimization of the overall
execution time.

Purna and Bhatia proposed two greedy heuristics for solving this
problem with constructive algorithms named the level-based and the

80 Chapter 5. Hardware Virtualization

cluster-based partitioning algorithm [PB99] [PB98]. These methods do
not directly minimize the overall execution time, but try to minimize the
number of configurations, the configuration’s execution times and the
amount of inter-configuration data, respectively.

An exact method to solve the temporal partitioning problem was pre-
sented by Vemuri et al. [GOK+98]. The authors used a 0−1 linear pro-
gram that minimizes the overall execution time. This ILP formulation
was also extended to constrain the size of the memory for storing inter-
configuration data and to cover other system level design steps, such as
high-level synthesis [KV98] and design space exploration [SV99] [SGV01].

An approach for temporal partitioning of task graphs to partially re-
configurable devices was discussed in [FKT01] [TFS01] by Fekete et al.
The resulting problem was cast as 3D packing problem and an optimal
branch and bound procedure was given to solve it. Temporal partitioning
was also combined with the hardware/software partitioning problem by
Chatha and Vemuri [CV99]. This approach combines a greedy heuristic
partitioner with a heuristic list scheduler.

Temporal Partitioning of Control Data-Flow Graphs

The Garp project [CHW00] aims at creating a compiler that accelerates ar-
bitrary applications written in C. The target architecture features a MIPS
CPU core and a custom reconfigurable array co-processor [HW97]. The
Garp C compiler (GarpCC) performs automatic hardware/software par-
titioning and maps application kernels to the reconfigurable array. The
compiler pipelines loops and tries to find iterative schedules and uses
similar techniques as VLIW compilers use for instruction scheduling,
e. g., trace-scheduling. Garp doesn’t use a dedicated runtime system but
implicitly integrates the runtime system within the software part of the
application.

XPP-VC [CW02] is a vectorizing C compiler for the PACT XPP archi-
tecture [BEM+03]. Instead of mapping only inner loops that directly fit
onto the reconfigurable device, XPP-VC also uses temporal partitioning
within a loop. After loop unrolling and data-dependence analysis, the
compiler applies pipeline vectorization [WL01] to inner loops. Pipeline
vectorization overlaps loop iterations and executes loops in a pipelined
fashion. The XPP device implements a dedicated programmable config-
uration manager that executes the runtime system for a temporally par-
titioned execution. The configuration manager autonomously sequences
and loads the configurations. A configuration cache is used to keep the
most recently used configurations on-chip.

September 12, 2006 plessl_thesis.tex rev 563

5.1. Introduction to Hardware Virtualization 81

1

2

3

4

taskFIFO channel

outin

Fig. 21: Application specification with a process network

5.1.3 Virtualized Execution

5.1.3.1 Application Models

The use of coordination languages (or formalisms) for application modeling
is widespread in embedded systems design. Coordination languages
are semantically well-defined and usually more restricted than HLLs.
Hence, they often allow for formal analysis of system properties such as
the absence of deadlocks. Coordination languages are often tailored to
specific application domains, e. g., SDF for signal-processing applications,
or Petri-Nets for communication protocols.

In the majority of cases, coordination languages are used in combina-
tion with implementation languages. Large applications are decomposed
into smaller execution objects, usually called tasks. The interaction of
these tasks is specified using the coordination language, while the func-
tionalities of the tasks are defined with an implementation language. This
style of application modeling leads naturally to virtualized execution.
Given a suitable device and a task scheduler, the application can be ex-
ecuted on the architecture. The sequence and interaction of the tasks is
defined by the coordination language.

Figure 21 shows an example for an application specified in a coordi-
nation formalism named Kahn Process Network [Kah74]. The tasks in the
process network are connected via FIFO channels of unlimited capacity.
A task can run when input data is available on all of its input FIFOs.
Process networks model concurrency, hence tasks 2 and 3 in Fig. 21 may
execute in parallel provided that the execution architecture has sufficient
resources.

Virtualized execution can be used to implement scalable and forward
compatible systems, if the array uses fixed-size configurable operators. If
all tasks specified in the coordination model are mapped to this fixed-size
operator, the scheduler in the runtime system can map the application
either spatially or temporally, depending on the number of operators
that are available in a particular implementation of the reconfigurable
architecture.

82 Chapter 5. Hardware Virtualization

5.1.3.2 Reconfigurable Architectures

There are two basic architectural approaches to support virtualized ex-
ecution. In the first approach, the reconfigurable architecture directly
supports the programming model. As an application is decomposed
into a number of interacting tasks, the architecture needs to implement
the logic resources to execute one or several tasks concurrently and the
communication channels to implement the interaction between the tasks.
Such an architecture is composed out of atomic units (hardware pages)
that can accommodate one task.

The second approach relies on classical reconfigurable devices and
assigns the reconfigurable resources to the tasks at runtime. A task is
assigned an amount of resources that matches its demand, rather than a
fixed-size hardware page. While such a scheme complicates the runtime
system, it leads to improved device utilization.

5.1.3.3 Design Tools and Runtime System

The decomposition of an application into communicating operators, ac-
cording to the chosen coordination language, can either be done by the
programmer or by design tools. The resulting operators are implemented
by conventional synthesis and design implementation tools.

Virtualized execution requires a runtime system. For architectures
with fixed-size hardware pages, the runtime system schedules the tasks
according to the semantics of the coordination language and the avail-
able hardware resources. Additionally to scheduling, the runtime system
has to perform allocation of resources such as communication channels,
buffers and IO ports. Although computing a static schedule is possible in
general, it would diminish the benefits of device-independence. Archi-
tectures with variable-sized resource assignment require a more complex
runtime system. Before a task can be scheduled, a feasible placement on
the reconfigurable device must be found.

5.1.3.4 Survey of Approaches

The PipeRench architecture [GSB+00] focuses on the pipelined process-
ing of data-streams. PipeRench’s programming model is to decompose
the application into a sequence of pipelined operators, called stripes.
Feedback is supported only within a stripe, i. e., the execution model is
restricted to applications with forward pipelining of a fixed sequence of
operators. PipeRench uses a C compilation toolflow that transforms the
application to a data-flow language, which is the basis for the implemen-
tation tools, after all functions have been inlined and all loops have been
unrolled. Hardware virtualization is achieved by allowing an application

September 12, 2006 plessl_thesis.tex rev 563

5.1. Introduction to Hardware Virtualization 83

to use an unlimited number of virtual stripes. If the number of physically
available stripes is smaller than the number of virtual stripes required by
an application, the configurations for the stripes are loaded at runtime.
The runtime system is implemented in hardware. A hardware implemen-
tation of PipeRench with 16 physical stripes and on-chip configuration
memory for 256 virtual stripes has been presented in [SWT+02].

Caspi et al. [CCH+00] developed the SCORE model that provides both,
a specification model and a virtualized execution model for streaming
applications. An application is defined as a graph of computation nodes
(compute pages) that are connected by FIFOs of unbounded size. The
memory used by the operators is allocated in fixed-size blocks (memory
pages). The coordination of the operators is defined by the data depen-
dencies in the execution graph. The function of the operators is specified
with an RTL language with a C-like notation. So far there is no physical
device that implements the SCORE application model. The runtime sys-
tem is supposed to run on the CPU. It consists of the instantiation engine,
that interprets the compute graph and instructs the scheduler which tasks
are to be scheduled, and the scheduling engine, that manages resource
allocation, placement of operators to compute pages and routing. The
runtime system does also implement time-sharing of the compute-pages
among operators.

The WASMII or DRL architecture [XA95] is a multi-context reconfig-
urable device that is specifically tailored to virtual hardware execution.
The WASMII architecture is data-driven and allows for execution of data-
flow graphs. The application’s data-flow graph is decomposed into sub-
graphs that fit the size of a page. A page is the basic computation unit
of the device. The WASMII architecture also supports the connection of
several WASMII devices to build a multichip WASMII architecture. The
sequencing of pages is controlled by a static schedule that is generated at
compile-time with the LS-M algorithm [LA89].

Reconfigurable hardware operating systems treat reconfigurable devices
as dynamic resources that are managed at runtime. Similar to software
operating systems, these approaches introduce tasks or threads as basic
units of computation and provide various communication and synchro-
nization mechanisms. The runtime system places and schedules tasks
on the reconfigurable device in a multitasking manner and provides a
minimal programming model, although being less restrictive than coor-
dination languages.

The first description of hardware multitasking is due to Brebner [Bre96].
More recently, Wigley et al. discussed operating system functions includ-
ing device partitioning, placement and routing [WK01]. Multitasking
and task preemption was investigated in [SLM00] and [BD01], respec-
tively. Scheduling and placement techniques were devised in [WP03a]

84 Chapter 5. Hardware Virtualization

[SWPT03]. Functional prototypes that demonstrate multitasking on to-
day’s FPGA technology were also described, e. g., in [MNC+03] [WP03b].

5.1.4 Virtual Machine
Hardware virtualization with the virtual machine approach requires nei-
ther a specific application model nor a specific reconfigurable architecture.
Application specification and synthesis can be performed with conven-
tional tools, but the targeted implementation architecture is an abstract
architecture. Mapping to an abstract architecture can easily be achieved
by using generic synthesis and technology mapping libraries.

Defining an appropriate abstract architecture is vital to the virtual
machine approach. The abstract architecture has to be generic enough
to allow for an efficient remapping to different targets, but on the other
hand, the abstract architecture must be close to typical reconfigurable
architectures to exploit their performance potential. At loading time or
at runtime, the abstract description is remapped to the actual architecture
by a virtual machine. As the abstract architecture is a generalization
of the actual architecture, the remapping involves running parts of the
conventional tool flow, such as technology mapping, and place and route
[HSE+00].

Survey of Approaches

Issues of circuit portability in a networked environment were first ad-
dressed by Brebner [Bre98]. He coined the term circlets (circuits + applets)
to denote mobile circuits. There is, however, no virtual hardware ma-
chine running on the target. The concept described circlets as location-
independent circuits that are pre-synthesized, pre-placed and pre-routed
to a specific technology. The mapping to the target FPGA is performed
by a runtime system, similar to a hardware operating system.

Ha et al. [HSE+00] proposed a virtual hardware machine that executes
hardware bytecode. The hardware bytecode for a circuit is essentially
a technology-mapped, placed, and routed netlist for an abstract fine-
grained FPGA architecture [HSE+00] with symmetrical routing. The vir-
tual machine performs remapping of logic blocks and IO pins as well
as global and detailed routing to translate the hardware bytecode to the
concrete FPGA configuration. Temporal partitioning for hardware byte-
code that exceeds the FPGA capacity was not considered. The proposed
runtime system runs on the FPGA itself.

In [HVS+02], a framework was described that adapts the virtual hard-
ware machine approach to a hybrid, networked target system consisting
of a CPU and an FPGA. At design time, a hardware/software codesign en-

September 12, 2006 plessl_thesis.tex rev 563

5.2. Hardware Virtualization on the Zippy Architecture 85

vironment partitions an application into software and hardware functions
and generates the hardware and software bytecodes. A service bytecode
binder combines all bytecodes into one file that is transferred to the target.

5.1.5 Summary
Virtualization of hardware is a rather new research area. To date, three
main approaches have emerged. Each approach has its own challenges
concerning design tools and runtime systems, and sometimes also device
architectures.

Temporal partitioning was the first virtualization approach, applied
to netlists and operation graphs. In the meantime, the main focus there
has shifted to compilation from HLLs. We see the main application for
temporal partitioning in embedded systems, where saving chip area and
thus cost is an important optimization goal.

Virtualized execution comes in two varieties: approaches that compile
to architectures with a fixed-size basic hardware element and approaches
that map the atomic operator to variable-sized hardware elements at
runtime. While the variable-sized approaches lead to a potentially higher
device utilization, the algorithmic problems involved are hard and their
solutions time-consuming.

The virtual machine approach is the newest one. Although concep-
tually the most powerful virtualization approach, the practical realiza-
tion has yet to be shown. Remapping circuit descriptions at the target
involves complex design tools and requires significant runtime. Many
target systems, especially networked embedded systems, might just be
not powerful enough for that.

Reconfigurable devices deliver their peak performance when a max-
imum on low-level parallelism and specific device features are used. A
virtualization technique that sacrifices too much of this performance for
the sake of device-independence will most likely not be accepted.

5.2 Hardware Virtualization on the Zippy Ar-
chitecture

In this section, we propose an application specification model for the
Zippy architecture, that considers the “virtualized execution” and “tem-
poral partitioning” hardware virtualization techniques. Subsequently,
we will briefly review the architectural requirements for these techniques
and show how these techniques are supported with dedicated hardware
units in the Zippy architecture.

86 Chapter 5. Hardware Virtualization

5.2.1 Application Specification Model
Hardware virtualization is usually not considered in application specifi-
cation models for reconfigurable processors, since most architectures do
not provide dedicated support for hardware virtualization. For architec-
tures that support virtualized execution and temporal partitioning, such
as the Zippy architecture, we propose an application specification model
which treats the application as a collection of communicating hardware
and software tasks. The interaction of these tasks is formally specified
with a coordination model. The hardware tasks are executed on the Re-
configurable Processing Unit (RPU) and the software tasks are executed
on the CPU core.

If the hardware resource requirements for the concurrent execution of
all hardware tasks exceeds the capacity of the RPU, hardware virtualiza-
tion is used to generate a feasible implementation:
a) Virtualized execution of hardware tasks is used for tasks that are suf-

ficiently small for a direct implementation and execution.
b) If a single hardware task is too large for a direct implementation, an

attempt is made to further decompose the task into a set of smaller
hardware tasks which follow the same coordination model and can be
executed with virtualized execution.

c) It can happen, that hardware tasks cannot be further decomposed or
that the decomposition is very inefficient. This problem can arise for
example for hardware tasks whose underlying circuits have a lot of
feedback or if the circuits are densely connected. For these cases,
temporal partitioning is used for further decomposing the hardware
task.
The final application thus combines virtual execution with temporal

partitioning. A run-time system on the CPU core runs a task scheduler
that implements the coordination model that was used for the application
specification.

5.2.2 Virtualized Execution
Virtualized execution mainly asks for two architectural features: a basic
unit of computation (called operator, or hardware page), and a mechanism
for communication between these operators.

In the Zippy architecture, a configuration of the reconfigurable array
can be treated as the operator. The multi-context support can be used
to hold several operators concurrently on-chip, without reloading them.
Since each context has a dedicated set of registers, the contexts can operate
without interfering with each other.

Since all configurations have access to the FIFOs on the RPU, these
FIFOs can be used to implement the communication between the oper-

September 12, 2006 plessl_thesis.tex rev 563

5.2. Hardware Virtualization on the Zippy Architecture 87

ators. Hence, the Zippy architecture is appropriate to implement appli-
cations that use a coordination model based on tasks communicating via
FIFOs, for example, applications specified as process network (compare
Sec. 5.1.3).

Virtualized execution works at the task level and sequencing between
configurations is required rather infrequently. Thus, context switching
and sequencing performance is less critical as in the case of temporal
partitioning where a context switch is required in every cycle. Hence, the
runtime system can be implemented in software on the CPU core and a
dedicated context sequencer is not strictly required.

5.2.3 Temporal Partitioning
An efficient implementation of temporal partitioned circuits demands for
a modified hardware implementation tool-flow and for additional ded-
icated hardware. The key requirements are: 1) fast switching between
configurations, 2) fast cyclic sequencing of a pre-defined sequence of con-
figurations, and 3) efficient and fast communication between contexts.
Dedicated hardware support for all of theses requirements has been in-
corporated in the Zippy architecture:

1. Fast switching between configurations is enabled by the design as a
multi-context architecture (see Section 2.3.6). Zippy allows for stor-
ing several configurations concurrently on-chip. After the configu-
rations have been downloaded once, they can be activated quickly,
within a single clock cycle.

2. The repeated cyclic sequencing of all temporal partitions is imple-
mented by the temporal partitioning sequencer (see Section 2.3.4). The
temporal partitioning sequencer allows for switching between the
individual configurations in every cycle without any time overhead.
This sequencer is essential to leverage the capability of fast contexts
switches provided by a multi-context architecture.

3. Efficient and fast communication between contexts is implemented
with the input and output register files in the cells of the recon-
figurable array (see Section 2.3.1). Each register file provides a
dedicated register per context. This register is the target for register
write operations. Read operations on an input or output register
file can access also register contents written in other contexts, hence
the register files can not only implement the actual delay registers
(flip-flops) of the circuit, but can be also used for inter-context com-
munication.

Using the register files for inter-context communications introduces
additional placement constraints which are illustrated with Figure 22:
• Figure 22(a) shows a situation where a value is generated in context

88 Chapter 5. Hardware Virtualization

r0

context 0

context 1

context 2

loc r0' = loc r0 loc r0' = loc r0
loc r1' = loc r1
loc r0 ≠ loc r1

placement
constraints

(a) (b)

r0'
loc r0' = loc r0

1

r0

r1

r0'
loc r0' = loc r0

2

r1'
loc r1' = loc r1

loc r0 loc r0

loc r1

Fig. 22: Inter-Context Communication via Register-Files in the Zippy Architecture:
Placement Constraints

September 12, 2006 plessl_thesis.tex rev 563

5.2. Hardware Virtualization on the Zippy Architecture 89

0 and is stored in register r0. Register r0 is placed to an arbitrary
location, denoted by ’loc r0’. Operator 1 in context 1 wants to read
this register. To this end, we use a register r0’ that acts as a proxy
for r0. Consequently, register r0’ must to be placed to the same
location as r0, and the corresponding route to operator 1 has to be
established.
Hence, we need a new type of placement constraint, that links the
placement of registers in context 1 to the placement in context 0. The
constraint loc r0’ = loc r0 expresses that r0 can be placed arbitrarily,
but r0’ must be placed to the same location.

• Figure 22(b) illustrates that an additional constraint is needed if an
operator read registers from more than one context. Operator 2 in
context 2 reads values that have been generated in context 0 and
context 1. The placement constraints for r0’ and r1’ are analogous
to the situation in Fig. 22(a), but an additional constraint on the
placement of r0 and r1 is generated. Since both, r0’ and r1’ must
be accessed in context 2, they cannot be stored in the same output
register file, because only one output register can be read concur-
rently. Hence, we need to prevent that r0’ and r1’ (and consequently
r0 and r1) are mapped to the same output register file. Adding an
additional placement constraint loc r0 , loc r1 avoids this situation.

These new placement constraints fundamentally differ from the exist-
ing placement constraints, since they apply not to a single context. The
new constraints link the placement of the whole set of contexts, thus the
placement in one context affects the placement in all other contexts.

For supporting these new placement constraints, the placement and
routing process needs to be extended to work on a set of contexts instead
of a single context only. A feasible implementation for all configurations
can be found for example with backtracking search. After placement and
routing of a randomly chosen start configuration, the implied placement
constraints are propagated to the other configurations, which are subse-
quently implemented one by one. If no feasible implementation can be
found, the search backtracks and a new search iteration is started.

We have not extended the Zippy toolflow to support these additional
constraints yet. For the case-study on temporal partitioning (see Sec. 6.2)
we have manually specified a fixed placement for the inter-context com-
munication registers.

90 Chapter 5. Hardware Virtualization

5.3 A Novel Method for Optimal Temporal Par-
titioning

This section presents a novel method for temporal partitioning of sequen-
tial circuits on reconfigurable architectures. To this end, we formally
define temporal partitioning as an optimization problem. An optimal
solution to the temporal partitioning problem maximizes the circuit’s
performance during execution while restricting the size of the partitions
to respect the resource constraints of the reconfigurable architecture.

We adopt an architecture model which is compatible to the architecture
models used in related work on temporal partitioning for fine-grained
reconfigurable multi-context architectures. The results of this work can
be directly applied not only to coarse-grained but also to fine-grained
architectures.

5.3.1 Outline of the Method
Our method uses two digital design techniques known as slowdown and
retiming for generating temporal partitions. Figure 23 illustrates the basic
idea of the method with an example in which a circuit is partitioned
into two partitions. Fig. 23(a) illustrates the implementation of a generic
synchronous circuit in a single partition. All signals originate at a register
and propagate through purely combinational logic that computes the new
contents of the registers. We assume that the inputs and outputs of the
circuit are registered and treat reading a primary input as reading from
an input register. Writing a primary output is treated as writing to the
output register.

Fig. 23(b) illustrates how a 2-slow transformation of the initial circuit
is obtained by replacing each register with a sequence of two registers. A
2-slow circuit performs the same operation as the initial circuit, but works
at 1/2 of the data-rate, that is, each operator works only in every 2nd clock
cycle. We interpret this 2-slow circuit as a special case of a partitioning
into 2 partitions, where partition 0 is empty. The data-transfer between
partitions is implemented with registers. Since partition 0 is empty, it
simply forwards the unmodified register contents.

To balance the size of the partitions we use retiming. Retiming re-
distributes registers in a sequential circuit such that the critical path is
minimized while the circuit’s functionality is preserved. Fig. 23(c) illus-
trates how the combinational logic is distributed into two partitions. We
apply additional constraints to the retiming process, to ensure that the
partitions satisfy the resource constraints of the architecture.

The resulting circuit partitions are executed on a reconfigurable archi-
tecture in a time-multiplexed way and perform the same function as the

September 12, 2006 plessl_thesis.tex rev 563

5.3. A Novel Method for Optimal Temporal Partitioning 91

combinational
logic

(a)

pa
rti

tio
n

0

comb. logic 1

comb. logic 0

(c)

pa
rti

tio
n

0
pa

rti
tio

n
1combinational

logic

(b)

pa
rti

tio
n

0
pa

rti
tio

n
1

Fig. 23: Concept of Temporal Partitioning with Slowdown and Retiming

92 Chapter 5. Hardware Virtualization

initial circuit (at 1/2 of the data-rate). After executing the first partition
for a single cycle, the other partition is executed for a single cycle, and
this schedule is continuously repeated. The frequent reconfigurations
demand for a reconfigurable architecture with fast reconfiguration, for
example, a multi-context architecture.

5.3.2 Models
In this section we introduce the architecture and circuit models this work
bases on.

Architecture model

We use an architecture model that is an abstract variant of Trimberg-
ers time-multiplexed FPGA (TMFPGA) architecture [Tri98]. TMFPGA
is one of the first multi-context FPGA architectures and its architecture
is the basis for many papers studying temporal partitioning on multi-
context FPGAs (see Section 5.3.8). Although Zippy is a coarse-grained
architecture, its reconfigurable array bears sufficient similarities with the
TMFPGA architecture to use the same architecture model.

Our architecture model makes the following key assumptions:

1. Array model: The model assumes a reconfigurable architecture with
an array of uniform reconfigurable cells. The cells are connected by
a programmable interconnection network which approximates full
crossbar connectivity sufficiently well, such that any circuit of inter-
est can be implemented without placement and routing congestion
problems1. A schematic drawing of the architecture is presented in
Fig. 24

The architecture is a multi-context architecture, i.e., several config-
urations can be stored on-chip concurrently. Switching from one
configuration to another happens without latency (single-cycle con-
text switch) and is controlled by a context sequencer. At runtime,
the context sequencer activates each context, executes it for a single
cycle, and then proceeds to the next context in the sequence. This
schedule is cyclically repeated.

2. Cell model: We assume that a cell of the reconfigurable array is
composed of two main components: the combinational operator,
and the output register-file. A schematic view of a cell is shown in
Figure 25.

1If the implementation on a concrete architecture with sparse routing resources leads
to congestion, the maximum allowable cell utilization can be reduced from 100% to a
smaller value to reduce routing congestion.

September 12, 2006 plessl_thesis.tex rev 563

5.3. A Novel Method for Optimal Temporal Partitioning 93

i1

i2

i3

i4

c1

c4

c2

c5

c3

c6

c7 c8 c9

o1

o2

o3

o4

Fig. 24: Array Model for Temporal Partitioning. The illustration shows an architecture
with 3 × 3 cells, 4 input ports, and 4 output ports.

inputs reg0
reg1
reg2
reg3

comb.
operator

cf
g1

cf
g0

cf
g3

cf
g2

context

configuration
for context

registered
output

combinational
output

configuration
memory

output register-file

wr enable

Fig. 25: Schematic of the cell model. The illustration shows a 3 input cell in a 4 context
architecture.

.

94 Chapter 5. Hardware Virtualization

The number of cell inputs is not restricted. The operator can perform
an arbitrary combinational function on the inputs. The function
of the cell is determined by the configuration memory. Since the
architecture is a multi-context device, the relevant configuration is
selected according to the currently activated context, which is an
additional input signal to the cell.

The cell’s storage element is implemented in the output register
file. This register file is modelled after the storage element of the
TMFPGA architecture [Tri98] and provides a dedicated register per
context. The association of context and register is hardwired and
the output of the operator block is stored in the associated register
(if the register’s write enable is asserted).

The cell has two outputs that can be read via the interconnection
network. The combinational output provides direct access to output
of the operator block. The registered output provides access to
the content of one of the registers in the output register file. The
selection of the output register is programmable and is part of the
configuration.

The registered output allows for reading the register contents stored
during the execution of a different context and hence enables inter-
context communication. We use this communication mechanism for
implementing the communication between the temporal partitions.

3. Input/Output model: We assume each access of the reconfigurable
array to the physical inputs and outputs is registered. A config-
urable write enable signal determines, when the register contents is
updated, see Fig. 26. Registered inputs and outputs are essential for
temporal partitioned execution: The registers are used for holding
the inputs and outputs of the array constant during each iteration
while all partitions are executed once.

Circuit model

The input to the temporal partitioning algorithm is a synchronous digital
circuit. The circuit is specified as a netlist consisting of combinational
operators, registers, primary inputs and primary outputs. We assume
that the netlist is technology mapped, i. e., all operators can be directly
implemented by a cell of the reconfigurable array. Since the circuit is
synchronous each cycle must contain at least one register.

September 12, 2006 plessl_thesis.tex rev 563

5.3. A Novel Method for Optimal Temporal Partitioning 95

cf
g1

cf
g0

cf
g3

cf
g2

input port

configuration
memory

primary input
to array

cf
g1

cf
g0

cf
g3

cf
g2

primary output
from array

configuration
memory

output port

o

(a) access to primary inputs (b) access to primary outputs

wrEnable wrEnable

i

context context

Fig. 26: Registered access to the physical input and output ports of the reconfigurable
array. The illustration shows the input and output ports in a 4 context architec-
ture.

5.3.3 Basic Problem Formulation
This work is founded on two digital design techniques called retiming and
slowdown which have been introduced by Leiserson and Saxe in [LS91].

Retiming optimizes the placement of registers in a circuit to minimize
the length of the critical path.

The second fundamental technique used in this work is called slow-
down. A P-slow implementation of a circuit is obtained by replacing each
register in the initial circuit with a sequence of P registers. The most
interesting property for the purpose of temporal partitioning is that the
P-slow transformation decomposes the circuit into P completely indepen-
dent partitions. Each operators needs to run only every P-th cycle and
the inputs and outputs are evaluated also only every P-th cycle. These
properties are also preserved if the slowed down circuit is additionally
retimed to minimize the critical path.

We use this combination of slowdown and retiming to generate op-
timal temporal partitions of a sequential circuit: First, we partition the
initial circuit into P partitions with a P-slow transformation. In a subse-
quent step, we redistribute the circuit’s registers with a modified retiming
process that creates partitions while respecting the resource constraints of
the architecture and optimizing the critical path of all partitions concur-
rently. Additional constraints model the increased resource demand due
to temporal partitioning, e. g., inter-context communication resources.

Retiming

Retiming [LS91] minimizes the critical path in a digital circuit by adding
and removing registers while it ensures that the functional behavior of the

96 Chapter 5. Hardware Virtualization

circuit is preserved. Retiming uses a graph representation of the circuit’s
netlist. A circuit G = (V,E,w, d) consists of a set of vertices V and a set
of edges E. The vertices v ∈ V model the operators in the circuit. Each
operator performs a combinational function and is annotated with its
propagation delay d(v). Directed edges model the connections between
operators. We use the notation u e

−→ v to denote an edge e that connects
operators u and v. Each edge is weighted with its register count w(e)
which represents the number of registers along this path in the circuit.
The graph is a multi-graph, i. e., two vertices can be connected by several
edges with different weights. Primary inputs and outputs are modeled
as ordinary vertices with a propagation delay of 0.

A simple path p in graph G is defined as a sequence of vertices con-
nected by edges, such that no vertex is contained twice:

p = v0
e0
−→ v1

e1
−→ . . .

ek−1
−−→ vk

The path weight w(p) is defined as the total number of registers along
a path p:

w(p) =
k−1∑
i=0

w(ei) (5.1)

Similarly, the path delay d(p) is defined as the sum of the propagation
delays of all operators along a path p:

d(p) =
k∑

i=0

d(vi) (5.2)

To restrict the set of graphs to graphs which have a physical implemen-
tation as synchronous digital circuits, we require that the propagation
delay of all nodes is non-negative (d(v) ≥ 0) and that the edge-weight is
also non-negative (w(e) ≥ 0). Further, combinational feedback loops are
prohibited, i. e., the path weight of any cycle in G is strictly positive.

The minimum feasible clock period is a metric for the performance of
a circuit and is bounded by the longest purely combinational path in the
circuit, which is denoted as critical path Φ(G):

Φ(G) = max
{
d(p) | w(p) = 0

}
(5.3)

Retiming computes a vertex labeling that assigns each vertex vi a retiming
value r(vi). The retimed circuit has the same structure as the original
circuit, but the edges u e

−→ v have a different weight wr(e) which is defined
as:

wr(e) = w(e) + r(u) − r(v) (5.4)

September 12, 2006 plessl_thesis.tex rev 563

5.3. A Novel Method for Optimal Temporal Partitioning 97

Let cmax be a positive real number that represents an upper bound on the
length of the critical path of the retimed circuit. For example, cmax can be
set to the length of the critical path of the initial circuit. Leiserson and
Saxe show [LS91], that there exists a retiming Gr of G such that the critical
path Φ(Gr) ≤ c if and only if the Mixed-Integer Linear Program (MILP)
given in Equations 5.5–5.8 has a solution. The variables s(v) are auxiliary
variables. For all operators v ∈ V and edges (u e

−→ v) ∈ E, minimize c such
that:

r(u) − r(v) ≤ w(e) · P (5.5)
s(v) ≥ d(v) (5.6)
s(v) ≤ c (5.7)

r(u) − r(v) +
s(u) − s(v)

cmax
≤ P · w(e) −

d(v)
cmax

(5.8)

where:

s(v) ∈ R, 0 < s(v) < cmax, r(v) ∈ {0, . . . ,P − 1}

We treat c as the optimization objective that is minimized. The solution
to the optimization problem defined by Equations 5.5–5.8 is a circuit
implementation that maximizes performance, i. e., the critical path length
is minimal: Φ(Gr) = c.

Slowdown

In a P-slow circuit each register is replaced by a sequence of P registers.
Hence a P-slow transformation of G(V,E,w, d) is obtained by multiplying
the edge weights by P, i. e., Gs = G(V,E,P · w, d). The most interesting
property for the purpose of temporal partitioning is that the P-slow trans-
formation decomposes the circuit into P completely independent parti-
tions. Each operator needs to run only every P-th cycle and the inputs
and outputs are evaluated also only every P-th cycle. These properties
are also preserved if the slowed-down circuit is additionally retimed to
minimize the critical path.

We have extended the Mixed Integer Linear Program (MILP) formu-
lation of retiming to support combined slowdown and retiming by multi-
plying the edge weight with the slowdown factor P in Equations 5.5 and
5.8, respectively.

Partitioned Execution and Performance

The temporal partitioning process defines the mapping of operators to
individual partitions. The partition to which a node v is mapped directly

98 Chapter 5. Hardware Virtualization

corresponds to the node’s retiming value r(v), as determined by the retim-
ing process. While the unconstrained retiming process (Equations ??–5.8)
maximizes performance, it does not consider resource constraints. We ap-
ply further constraints to the r(v) values to limit the number of operators
that can be mapped to a particular partition and to model resource re-
quirements imposed by inter-partition communication. These additional
constraints are discussed in Sec. 5.3.4.

All operators in the same partition define a sub-netlist which is im-
plemented in one configuration of the reconfigurable architecture. At
runtime, these contexts are executed in the order c0, c1, . . . , cP−1, each for
a single cycle.

Since the temporal partitioned circuit is P-slow, all P contexts must
be executed once to perform the same computation as the initial circuit
computes in a single cycle. Consequently, the performance of the tempo-
ral partitioned circuit is lower than the performance of the initial circuit.
Practical considerations demand that each context is executed for the
same cycle time, that is bounded by the critical path Φ(Gr) = c of the
retimed circuit. The performance of the temporally partitioned execution
relative to the execution of the initial circuit is thus given as:

rel. performance =
Φ(G)
Φ(Gr) · P

(5.9)

Since Φ(G) can be considered a constant property of the initial circuit,
optimal temporal partitioning should thus minimize the nominator of
Equation 5.9.

The objective function Φ(Gr) · P is non-linear in P and hence cannot
be directly optimized by an MILP solver. But since P is bounded by the
number of physical contexts in a concrete reconfigurable architecture, an
optimal value for P can be determined by exhaustive or binary search,
i. e., solving the MILP for all possible values of P.

5.3.4 Resource Constraints
This section introduces the resources constraints of the execution archi-
tecture and their mathematical modelling.

The solution to the MILP optimization problem defined by Eq. 5.5–
5.8 determines the optimal partitioning of a circuit, but doesn’t consider
any resource constraint. For finding an implementation that satisfies
the resource constraints of the execution architecture while concurrently
maximizing the performance, we need to model the resource demand.

We introduce a binary variable xi,p per operator and partition to for-

September 12, 2006 plessl_thesis.tex rev 563

5.3. A Novel Method for Optimal Temporal Partitioning 99

mulate mapping, capacity and communication constraints:

xi,p =

1 if node vi is mapped to partition p
0 otherwise

Eq. 5.10 defines that each operator must be mapped to exactly one parti-
tion, and the set of partitions to which an operator can be mapped to is
restricted to ri ∈ {0, . . . ,P − 1} in Eq. 5.11. The value ri denotes, to which
partition an operator is mapped.

P−1∑
p=0

xi,p = 1, ∀vi ∈ V (5.10)

ri =

P−1∑
p=0

p · xi,p = 1, ∀vi ∈ V (5.11)

xi,p ∈ {0, 1}, ri ∈ {0, . . . ,P − 1}

The implementation of a partition in a context of the architecture requires
resources for implementing the operator nodes and additional resources
for inter-context communication. We account for these costs by defining
two cost variables: nodecost and comcost.

While we treat combinational operators the same as primary inputs
and outputs in the retiming process, we need to differentiate between
them for computing the resource demand. We divide the set of operators
into three subsets that represent the combinational operators (Vop), the
primary inputs (Vpi), and the primary outputs (Vpo).

Operator Resource Demand

We define nodecosti,p as the resource demand caused in partition p by the
operator vi. For this work, we assume unit cost, i. e., the implementation
of each combination operator causes a resource demand of resopi = 1:

nodecosti,p = resopi · xi,p = xi,p ∀v ∈ Vop (5.12)

We assume, that there are sufficient primary input and output nodes.
Since these dedicated nodes are distinct from the cells and thus do not
reduce the capacity for implementing combinational operators they do
not cause any cost:

nodecosti,p = 0 ∀v ∈ {Vpi ∪ Vpo} (5.13)

We assume, that the reconfigurable architecture provides K cells and
thus can accommodate K combinational operators. We limit the number

100 Chapter 5. Hardware Virtualization

of combinational operators mapped to each partition with the following
constraint:

∀p ∈ {0, . . . ,P − 1} :
∑
∀vi∈V

nodecosti,p ≤ K (5.14)

Inter-Context Communication Resource Demand

The cell’s output register-files are used for inter-context communication.
Since each cell has a dedicated register-file, the combinational output of a
cell can be stored in the associated register without affecting the resource
supply of the array.

Assume operator v1 is mapped to partition p1 and its output defines the
value of net n1. If operator v2 wants to read net n1 from a different partition,
it needs to access the output register file of v1 where the intermediate
value is stored. Since only one register of the register-file can be read at
once, the number of intermediate signals that can be read in a context
is bounded by the number of cells. This forms a resource constraint.
Additionally, the data transfers via the register-files also introduce cell
placement constraints which have been discussed in Section 5.2.3.

As soon as an operator in a context reads an output register, the register
content becomes local to the partition and no additional resources are
required if other operators in the same partition read the same register
too. Hence, at most one communication register is inserted per net and
partition.

Figure 27 illustrates the use of inter-context communication resources
for a simple circuit of 3 nodes. No communication resources are re-
quired, if all operators are mapped to the same partition, see Fig. ??(a). In
Fig. 27(b) a communication resource r1 is used in partition 1 to allow op-
erator 3 reading the net defined by node 1 in partition 0. Fig. 27(c) shows
that several operators can read the same net. A communication resource
is needed in each partition that reads a net defined in a different partition,
hence in Fig. 27(d) a communication resource is required in partition 1
and in partition 2.

We denote the communication resource cost that is caused in partition
p due to accessing net i (defined by operator vi) as comcosti,p ∈ N0.

For modelling comcosti,p we introduce two binary decision variables
defined and used. Each net ni is defined by its source vi. Thus, definedi,p is

September 12, 2006 plessl_thesis.tex rev 563

5.3. A Novel Method for Optimal Temporal Partitioning 101

1

2 3

1

2

3

r1

1

2 3

1

2

3

r1 r1

r1

(a) (b) (c) (d)

pa
rti

tio
n

0
pa

rti
tio

n
1

pa
rti

tio
n

2

Fig. 27: Communication registers for inter-context communication

identical with xi,p:

definedi,p = xi,p =

1 if net ni is defined in partition p
0 otherwise

usedi,p =

1 if net ni is used in partition p
0 otherwise

For determining the variable used, we define an auxiliary variable netusesi,p

(Eq. 5.15) that sums up how many times net ni is used in partition p. The
index of the summation runs over all sinks of net ni.

netusesi,p =
∑

j∈sinks(vi)

x j,p (5.15)

Now we can define used with the following non-linear comparison:

usedi,p =

1 if netusesi,p > 0
0 otherwise

(5.16)

Using standard linearization techniques, the expression of Eq. 5.16 is
translated to the linear constraints shown in Eq. 5.17–5.18.

netusesi,p − usedi,p · Gmax ≤ 0 (5.17)
−netusesi,p − (1 − usedi,p) · Gmax < 0 (5.18)

102 Chapter 5. Hardware Virtualization

netusesi,p ∈ {0, . . . ,Gmax},usedi,p ∈ {0, 1}

Eq. 5.17–5.18 need an upper bound for netuses for which we use the
maximum degree of the circuit’s graph Gmax:

Gmax = max
∀vi∈V
|sinks(vi)| (5.19)

Using the used and defined variables we can now define a lower bound on
comcosti,p as follows:

comcosti,p ≥ usedi,p − definedi,p ∀vi ∈ Vop (5.20)

comcosti,p = 0 ∀vi ∈ {Vpi ∪ Vpo} (5.21)

Since the reconfigurable architecture provides K cells, a partition can read
at most K output register-files. We formulate the resource constraint on
the communication resources as:

∀p ∈ {0, . . . ,P − 1} :
∑
∀vi∈V

comcosti,p ≤ K (5.22)

Note, that comcosti,p as defined by Eq. 5.20 is a lower bound on the com-
munication resource cost, rather than the actual cost. We prefer this ap-
proach, since formulating the variable comcosti,p as lower bound is easier
than computing the actual cost, but serves the MILP problem formulation
equally well.

Consider the example from Fig. 27(b):
• Eq. 5.20 defines comcost1,0 ≥ −1, but since comcost is non-negative,

the MILP solver will use the solution comcost1,0 = 0.
• Actually, only one communication resource is required for access-

ing net 1 in partition 1. But Eq. 5.20 defines: comcost1,1 ≥ 1, thus
comcost is not bounded. However, due to the resource constraint in
Eq. 5.22 an excessive usage of communication resources will prohibit
a successful implementation of the circuit. Hence, the optimization
process will push comcost towards the lower bound and the MILP
solver will use the solution comcost1,1 = 1 if resources are becoming
scarce in the optimization process.

Delay Register Nodes

Slowdown and retiming can generate edges with more than P registers.
Applying a straight-forward assignment of operators to partitions can
lead to inefficient mappings for such cases. As an optimization step, we
introduce delay registers which, in turn, need to be included in the cost
model. We illustrate the need for delay registers with the example of
Fig. 28.

September 12, 2006 plessl_thesis.tex rev 563

5.3. A Novel Method for Optimal Temporal Partitioning 103

u

v

u

v

(a)
initial
circuit

(b)
2-slow and

retimed

r(u)=0

r(v)=0

u v

r1 r3

(c)
non optimized

id2

part0

r2 r4

r1

r2
id1

id2

id3 id1 id3

(d)
optimized (shaded:
delay register node)

u v

r1 r3

id2

r3

r4

part1 part1

part0

Fig. 28: Delay Register Nodes

Suppose the circuit in Fig. 28(a) is part of a larger circuit, that is par-
titioned into two partitions. The circuit comprises two operators con-
nected by two registers. Applying 2-slowdown and retiming transfor-
mations to the overall circuit maps nodes u and v to the same partition
(r(u) = r(v) = 0) and increases the number of registers between u and v
to 4. Fig. 28(b) explicitly shows identity operators (id1,id2,id3) between
the registers to illustrate, that the registers are always coupled with an
operator in our cell model. According to our execution model, each
register marks the boundary of a partition. Fig. 28(c) illustrates the non-
optimized implementation on a two context architecture. The identity
operator nodes pass the unmodified values to the output registers, which
are then used for inter-context communication. This implementation is
suboptimal, since the cells in partition 1 do not implement any function.
Note, that registers r2 and r4 do not introduce additional delay, but only
route the outputs of r1/r3 to partition 1 and back again.

An optimized implementation is presented in Fig. 28(d). The cells in
partition 1 have been removed and the output of register r1 is directly fed
to the cell that implements (id2/r3) and finally to operator v. We denote
the cell that implements (id2/r3) as delay register node. This optimization
is applicable whenever the circuit has edges with more than P registers
(after slowdown and retiming).

We can handle delay registers in the MILP formulation in two ways:

104 Chapter 5. Hardware Virtualization

Either the use of delay register nodes is avoided by adding further con-
straints to the MILP, or the demand for delay registers is explicitly mod-
elled and the resource constraints are extended to incorporate the delay
register resource demand.

Delay register nodes can be avoided by restricting the number of
registers on any edge to a maximum of P registers. The number of
registers on an edge e = (u e

−→ v) in the partitioned circuit is computed as
reg(e) = P ·w(e)+ r(v)− r(u). Hence, delay registers are avoided by adding
the following constraint to the MILP:

∀e = (u e
−→ v) ∈ E : P · w(e) + r(v) − r(u) ≤ P (5.23)

To ensure, that solutions without delay register exists, we replace
any edge e = (u e

−→ v) in the initial circuit that has more then 1 register
(w(e) > 1) with a sequence of w(e) identity operators, each followed by a
single register. This transformation ensures at least one solution without
delay registers exists, namely, mapping all operators to a single partition.

The drawback of using this additional constraint is that it constrains
the solution space for the temporal partitioning problem, which could
result in sub-optimal performance.

If we allow the use of delay registers, the number of delay registers
due to an edge u e

−→ v, r(u) = r(v) = p in partition p is given as :

delayreg =
⌊P · w(e) + r(v) − r(u)

P

⌋
(5.24)

Hence, we can define the delay register node cost in partition p due to
accessing net ni (defined by operator vi) as:

∀ edges u e
−→ v,∀p = 0, . . . ,P − 1 :

dregcosti,p ≥

(P · w(e) + r(v) − r(u)
P

− 1
)

︸ ︷︷ ︸
delayreg

−(1 − x j,p) ·Dmax

We convert the non-linear truncating operation in Eq. 5.24 to a linear
constraint by using a lower bound on delayreg. The second term ensures,
that dregcosti,p is only attributed to partition p if the sink v j of net ni is
mapped to partition p. Otherwise, a large constant Dmax is subtracted and
makes the constraint non-binding.

To account for the delay register resource demand, Eq. 5.14 must
be extended to include dregcosti,p. Since the delay registers may also
require communication resources, the communication resource constraint
(Eq. 5.22) must be adapted accordingly.

September 12, 2006 plessl_thesis.tex rev 563

5.3. A Novel Method for Optimal Temporal Partitioning 105

5.3.5 Solving the Temporal Partitioning MILP
We have implemented a tool flow that generates the MILP formulation
for the temporal partitioning problem from the circuit’s netlist and the
architecture parameters (number of partitions, context capacity). The
resulting MILP problem is solved with the CPLEX [CPL] optimizer.

The resulting temporal partitions are implemented on the reconfig-
urable architecture using the architecture specific placement and routing
tools. As shown in Sec. 5.2.3 inter-context communication implies place-
ment constraints for the circuits in the individual context. While we have
automated the generation of the temporal partitions, we have not auto-
mated the placement constraint generation and implementation process
yet.

5.3.6 Extension to Functional Pipelining
Constraints Eq. 5.10 and Eq. 5.11 restrict the partition to which an operator
can be mapped to the interval r(v) ∈ {0, . . . ,P−1}. This restriction ensures,
that retiming does not change the delay of the circuit’s outputs relative to
the inputs. If we allow for introducing additional delay, the same retiming
formalism can be also used to compute a circuit implementation that uses
functional pipelining with a potentially even shorter critical path.

To this end, we can extend the MILP for optimal temporal partitioning
analogously to the formulation used by De Micheli for scheduling cyclic
sequencing graphs with functional pipelining (cf. Sec. 5.6.2 in [DM94]).
With this extension, the operator’s retiming values r(v) are not restricted
to the number of partitions anymore, but are bounded by a delay bound
L, i. e., r(v) ∈ {0, . . . ,L}. The mapping constraints Eq. 5.10 and Eq. 5.11
need to be adapted accordingly.

The partition p(v) to which an operator v is mapped is defined as
p(v) = r(v) mod P. Partition p(v) thus implements all operators with
retiming values r(v) = i + k · P | 0 ≤ i + k · P ≤ L, k ∈ N0, and the capacity
constraints Eq. 5.14 and Eq. 5.22 must be extended accordingly.

5.3.7 Example
We illustrate our optimal temporal partitioning technique with the exam-
ple of a 2nd-order Infinite Impulse Response (IIR) filter. IIR filters are basic
building blocks in many digital signal-processing applications. Fig. 29(a)
shows the schematics of the IIR2 circuit after a 2-slow transformation.
The circuit is composed of 10 combinational operators (op1,. . . ,op10) and
5 × 2 registers. The arithmetic functions of the operators are irrelevant
for the temporal partitioning process and are thus not further detailed
in the figure. We preprocess the circuit’s netlist by replacing edges with

106 Chapter 5. Hardware Virtualization

o

i

1

2 6 10 5

9
8

4

7

3

(a)
2-slow IIR2 circuit

o

i

1

2 6 10 5

9
8

4

7

3

(b)
2-slow and retimed IIR2 circuit

[0]

[1]

[1]

[1]

[0] [0] [0]

[0]

[0]

[0]

[0]

i

o

6 105 98

4 7

1

2

3

(c)
temporal partitioned IIR2 circuit

pa
rti

tio
n

0
pa

rti
tio

n
1

Fig. 29: Temporal Partitioning: Case Study IIR2 Filter

September 12, 2006 plessl_thesis.tex rev 563

5.3. A Novel Method for Optimal Temporal Partitioning 107

multiple registers by a sequence pass-through operators followed by sin-
gle registers and we avoid delay registers by employing the constraints
defined in Eq. 5.23.

We solve the MILP defined in Sec. 5.3.3 and Sec. 5.3.4 with the fol-
lowing parameters: context capacity K = 8, number of partitions P = 2,
and upper bound for the clock period cmax = 10. Solving the MILP with
CPLEX takes less than 1ms on a 900 MHz SunFire280R machine. The
retiming values for the nodes are annotated in brackets in Fig. ??(b). The
registers in this figure already reflect the modified register placement due
to retiming. The temporally partitioned implementation on a two context
architecture is shown in Fig. 29(c).

5.3.8 Related Work and Discussion
In this section we will discuss related work in temporal partition of se-
quential circuits and we will compare these approaches to our approach.

Related Work

The development of multi-context FPGAs, such as [TCJW97, DeH94] en-
abled rapid dynamic reconfiguration which is a requirement for efficient
temporal partitioning. Initial work on temporal partitioning for sequen-
tial circuits on time-multiplexed FPGAs was published Chang and Marek-
Sadowska and Trimberger.

Chang and Marek-Sadowska present extensive work on temporal
partitioning of sequential circuits on time-multiplexed FPGAs. The al-
gorithm in [CMS97] bases on critical path scheduling, a variant of list-
scheduling. After list-scheduling, the schedule is iteratively optimized by
local optimizations. In later work [CMS98, CMS99] the authors presents a
generic model for time-multiplexed communicating logic and introduce
a scheduling algorithm based on force-directed scheduling. All three pa-
pers strongly focus on minimizing the buffers needed for inter-context
communication. The need for minimizing the buffers is motivated by
targeting the Dharma and DPGA architectures, where inter-context com-
munication is expensive.

Trimberger proposes a list-scheduling based method [Tri98] for tempo-
ral partitioning of circuits for the execution on his TMFPGA architecture
[TCJW97]. Unlike to the work of Chang and Marek-Sadowska, the re-
duction of inter-context communication resources is not that important
in the TMFPGA architecture, because each reconfigurable cell contains a
dedicated inter-context communication register-file. After publication of
Trimberger’s papers, most authors started to adopt the TMFPGA archi-
tecture as the standard architecture model for further work on temporal

108 Chapter 5. Hardware Virtualization

partitioning.
Trimberger’s list-scheduling algorithm computes the ASAP and ALAP

scheduling times for all operators. The algorithms schedules the nodes
such that their ASAP/ALAP constraints and the precedence constraints
are satisfied. If several operators can be scheduled in one step, a set of
heuristics is used to select an operator. The method assumes, that each
partition contains only one level of logic, which implicitly maximizes the
performance. If the length of the critical path exceeds the number of
configurations, more than one logic level is packed into a context. After
an initial schedule is obtained, the schedule is optimized by pairwise
exchange of operators.

Liu and Wong [LW98] reformulated the precedence constrained schedul-
ing problem as a network-flow problem. The authors present a technique
for modeling nets in combinational and sequential circuits as network
flows. The objective of the proposed algorithm is to find a temporal parti-
tioning, such that the inter-context communication demand is minimized
while the size of the partitions is well balanced. The problem is solved by
iteratively computing minimal cuts using the max-flow min-cut theorem.

Wu et al. present an Integer Linear Program (ILP) formulation for the
multistage precedence-constrained partitioning problem [WLC01]. This
method outperforms other methods since it allows for a globally optimal
solution of the problem, while most alternative approaches perform only
local optimization and use heuristics. The problem formulation is exactly
the same as in [LW98], but is exactly solved with an ILP. The solution
minimizes the amount of inter-context communication resources while
balancing the size of the partitions.

Discussion

Since we use a TMFPGA-like architecture model, our work can be directly
compared to related work on temporal partitioning of sequential circuits
for time-multiplexed FPGAs.

A common characteristic of all related approaches is, that no method
treats temporal partitioning as optimization of a defined performance
metric. In contrary, the approaches try to implicitly optimize multiple,
potentially contradicting, optimization goals concurrently, such as bal-
ancing the size of the partitions and minimizing the demand for inter-
context communication resources. Our method conceptually differs from
the other approaches, because it defines a performance metric and uses
this metric as the only optimization objective. All implementation related
constraints as explicitly formulated as constraints.

Another commonality of the related approaches is the treatment of
temporal partitioning as a precedence constrained scheduling problem

September 12, 2006 plessl_thesis.tex rev 563

5.3. A Novel Method for Optimal Temporal Partitioning 109

for an acyclic data-dependency graph. This data-dependency graph is
defined by the circuit’s netlist. The proposed methods treat the data-
dependency graph as statically given, disregarding that it originates from
a digital circuit, which can be modified with function preserving trans-
formations. Excluding transformations of the circuit’s data-dependency
graph generally leads to suboptimal performance of the temporal parti-
tioned implementation. In our approach, we allow for structural circuit
modifications with retiming to maximize the circuit’s performance in the
optimization process.

Summarizing, our method has the following advantages over related
work:

1. Optimizing for Performance The performance of the temporal parti-
tioned circuit implementation is determined by the longest critical
path in all partitions. Our problem formulation optimizes exclusively
for performance. The resource constraints of the implementation ar-
chitecture are explicitly formulated as constraints, but not optimized
as secondary goals.

2. Structural Modifications Retiming changes the structure of the circuit
by moving the circuits registers to optimize the performance. These
structural modification increases the solution space, and, in general,
leads to better solutions.

3. Exact method The method bases on a strict mathematical problem
formulation that can be solved exactly. In contrast to the majority
of related approaches that use heuristic methods, we can guarantee
that the result is a globally optimal solution (within the scope of the
model).

4. Extensibility The MILP formulation can be easily extended with vari-
able operator delay, variable operator cost, variable context capacity,
etc. The problem can still be solved optimally under these exten-
sions.

5. Automated Pipelining Retiming can be also used to find optimally
pipelined circuit implementations. Hence, the problem formulation
for temporal partitioning can be extended to allow for automated
pipelining. Pipelining can further increase the performance of the
temporal partitioned circuit at the expense of additional delay (see
Sec. 5.3.6).

Using an MILP problem formulation for solving the temporal parti-
tioning problem has two main drawbacks:

1. The MILP formalism requires that any extension to the problem is
also a linear constraint. Some non-linear constraints can be con-
verted to linear constraints, but, in general, including non-linear
constraints in heuristic partitioning algorithms may be easier.

2. In the worst case, the time for solving a MILP grows exponentially

110 Chapter 5. Hardware Virtualization

with the problem size. While in practice many large MILP problems
can be efficiently solved, there may exist large instances of the tem-
poral partitioning problem that cannot be solved in a reasonable
amount of time. Further experimentation with large benchmarks
will be required to see, whether this theoretical limitation is relevant
for the application to a rather small, coarse-grained reconfigurable
CPU architecture.

5.4 Summary
In this chapter we defined a classification of hardware virtualization tech-
niques for dynamically reconfigurable architectures. We denote the ap-
proaches as temporal partitioning, virtualized execution, and virtual ma-
chine. For each technique, we have presented a survey on application
models, implementation architectures and algorithms.

We have introduced an application specification model for the Zippy
architecture that explicitly includes hardware virtualization and we have
shown, how temporal partitioning and virtualized execution are sup-
ported by the Zippy architecture with dedicated hardware resources.
With two case-studies we have demonstrated the application of virtual-
ized execution and temporal partitioning on the Zippy architecture.

Finally, we have presented a novel method for temporal partitioning
of sequential circuits. The method treats temporal partitioning as an
application of slowdown and retiming and formulates optimal temporal
partitioning as an optimization problem. We present an MILP formulation
of the problem that can be solved optimally.

September 12, 2006 plessl_thesis.tex rev 563

6
Experimental Results

In this chapter, we present experimental results for two case studies that
have been performed. The case studies illustrate the application of hard-
ware virtualization techniques on the Zippy architecture. The case stud-
ies are implemented with the implementation tool-flow, that has been
introduced in Chapter 3, and are simulated with the co-simulation frame-
work, that has been introduced in Chapter 4. The case studies hence
exercise the complete hardware and software implementation tool-flow
and the co-simulation framework and demonstrate that the tool-flow and
co-simulation can handle real-world examples.

The case study in Section 6.1 presents an application of the virtual-
ized execution virtualization technique, that has been introduced in Sec-
tion 5.1.3. We investigate the trade-offs in performance and utilization
for three different implementations of the same application: a pure CPU
implementation, an implementation on a single-context Reconfigurable
Processing Unit (RPU), and an implementation on an 8-context RPU.

In the case study in Section 6.2 we present an application of temporal
partitioning, which has been introduced in Section 5.1.2. The example
compares the execution of the application on a large instance of the Zippy
architecture to the temporal partitioned execution of the same application
on a small Zippy instance.

6.1 Virtualized Execution of a Digital Filter
In this case we study an application of hardware virtualization by virtual-
ized execution on the Zippy architecture. Virtualized execution is suited

112 Chapter 6. Experimental Results

for data streaming applications that map well to (macro-)pipelines where
each pipeline stage is implemented by one configuration of the recon-
figurable array. Hence, the basic unit of computation (hardware page)
in this example is a 4 × 4 instance of the Zippy reconfigurable array.
Macro-pipelining is a special case of virtualized execution and restricts
the communication between the subcircuits to forward pipelining, hence
feedback exists only within a subcircuit.

As an example, we present the partitioning and mapping of Finite Im-
pulse Response (FIR) filters [OS99] which are important building blocks
in many digital signal-processing applications. We show how FIR fil-
ters of arbitrary order—that are too large to fit entirely into an RPU
configuration—can be implemented with virtualized execution. We con-
sider the implementation on three architectural variants of the Zippy ar-
chitecture: an implementation that uses only the CPU core, an implemen-
tation on a single-context RPU, and an implementation on a multi-context
RPU with 8 contexts.

6.1.1 FIR Filter Partitioning and Mapping
Macro-pipelined virtualized execution requires that the application is
split into a sequence of operators with forward-pipelining between oper-
ators only. For FIR filters it’s possible to split a large filter into a sequence
of communicating subfilters with algebraic manipulations of the transfer
function. The answer Y(z) of an FIR filter, given by its transfer function
H(z), to an input signal X(z) can be computed as Y(z) = H(z) · X(z). H(z)
is defined as a polynomial in z−1:

H(z) = h0 + h1z−1 + · · · + hmz−m =

m∑
i=0

hi · z−i,

and can be factorized into smaller polynomials Hi(z), i. e., H(z) = H1(z) ·
H2(z) · · · · · Hl(z). Each of these polynomials represents an FIR filter of
smaller order. Hence, this algebraic manipulation splits up the initial
FIR filter into a cascade of FIR filters (subfilters), where each subfilter
implements a part of the factorized transfer function. If the input data-
stream is filtered through a cascade of these subfilters, the initial FIR filter
function is computed.

In this case-study we implement a 56th-order FIR filter as a cascade of
eight 7th-order filter stages. Each stage is implemented in the so-called
’transposed direct form’. Figure 30 shows a simplified schematic of the
mapping of one of these stages onto the reconfigurable array1. The filter
coefficients are part of the configurations and are computed by factorizing

1In fact, this case study uses a predecessor [Enz04] of the Zippy RPU architecture.

September 12, 2006 plessl_thesis.tex rev 563

6.1. Virtualized Execution of a Digital Filter 113

IP
0

IP
1

O
P

0

O
P

1

x h3

x h7

x h1x h0 x h2

x h6x h5x h4

O
P

1

IP
0

Fig. 30: One 8-tap FIR filter stage mapped to the reconfigurable array

the initial transfer function of the filter. Each FIR subfilter comprises delay
registers (see Fig. 30), which form the state of the RPU context. At the
next invocation of the context, the subfilter requires that the state, i. e.,
the register contents, are restored before the context is executed again.
Figure 31 illustrates the execution schedule for the application on the
single-context and the 8-context implementation.

In the single-context implementation, each execution of a subfilter is
preceded by a configuration load, switch (activation), and restore phase.
The execution phase can run for an arbitrary number of cycles. The output
of a subfilter is intermediately stored in a FIFO of the RPU and constitutes
the input data for the subsequent subfilter. The length of an execution
phase is bounded by the size of the FIFOs.

The restore phase restores the delay registers to their values at the end

But since this predecessor architecture implements a true subset of the functionality of
the latest Zippy architecture (cf. Chapter 2.3) the architectural differences do not matter
for this case-study.

114 Chapter 6. Experimental Results

(a) Execution schedule for the single-context implementation

(b) Execution schedule for the 8-context implementation

LD
1

SW
1

RS
1

EX
1

LD
2

SW
2

RS
2

LD
1

SW
1

RS
1

EX
1

...EX
2

...

LD
1

LD
2

LD
8

... SW
1

SW
2

SW
1

...EX
2

EX
1

EX
1

...

LD x Load context x RS x Restore state of context x
SW x Switch to context x EX x Execute context x

Fig. 31: Execution schedule for the virtualized FIR Filter implementation

of the last execution. The restore phase is needed, since the single-context
architecture provides only a single set of registers whose contents are
overwritten if a different configuration is executed. We implement the
restore operation by overlapping subsequent data blocks [OS99], which
results in an execution overhead. In the case of the 8-context implemen-
tation the state is preserved automatically and no overlapping of data
blocks is required since each context has a dedicated set of registers.

6.1.2 Experimental Setup

In total, we process 64k samples organized in data blocks in each sim-
ulation run. The size of the data blocks is a simulation parameter and
corresponds to the depth of the FIFO buffers available on the RPU. We
vary the depth of the FIFOs between 128 and 4k words. A data block
is written to the RPU, processed sequentially by the eight FIR subfilter
stages, and finally the result is read back from the RPU.

A control task running on the CPU core controls the loading and
activation of contexts according to Fig. 31. In the case of the 8-context
implementation, each context is loaded only once at initialization. In the
single-context implementation the configurations must be loaded at each
invocation of a context. Further, the delay registers of the context are
restored by overlapping the data-blocks by 57 samples (filter taps of the
non-virtualized FIR filter).

The RPU architecture in this example features a 4 × 4 instance of the
Zippy architecture with 2 horizontal north buses, 1 horizontal south bus
and no vertical east buses. The parameters of the CPU core correspond to
our “embedded CPU configuration” (see Section 2.2.2) and are summa-
rized in Tab. 6.

September 12, 2006 plessl_thesis.tex rev 563

6.1. Virtualized Execution of a Digital Filter 115

Architecture Parameter Embedded CPU

Integer units 1 ALU, 1 mult.
Floating point units 1 ALU, 1 mult.
L1 I-cache 32-way 16k
L1 D-cache 32-way 16k
L2 cache none
Memory bus width / ports 32 bit / 1
IFQ / RUU / LSQ sizes 1 / 4 / 4 instr.
Decode / issue / commit 1 / 2 / 2 instr.
bandwidth
Execution order in-order
Branch prediction static

Tab. 6: Configurations of the embedded CPU model

6.1.3 Results and Discussion
The simulation results, that depend on the implementation architecture
and of the FIFO buffer size, are presented in Table 7 and Figure 32.

Table 7 shows the execution time in cycles for the various architectures.
For comparing the performance of the implementation, the table also
shows the execution time normalized to cycles/(tap·sample). The execution
time of the filter for the pure CPU implementation varies only slightly
with the block size and amounts to 110.65 million cycles on average.
Figure 32(a) shows the speedups relative to this execution time.

Fig. 32(b) presents the CPU load on the CPU core for the different
architectures. For computing the CPU load, we assume a real-time sys-
tem that filters blocks of data samples at a given rate. When the filter
computation is moved from the CPU to the reconfigurable array, the CPU
is relieved from these operations and can use this capacity for running
other tasks. However, the CPU still has to transfer data to and from the
FIFOs, load the configurations to the RPU on demand, and control the
context switches. The load given in Fig. 32(b) determines the spent CPU
cycles normalized to the CPU only system.

This case study shows, that we can not only implement the large FIR
filter, but also achieve two main benefits over a pure CPU implementation:
First, the computation is accelerated, and secondly, the CPU is relieved
from some operations and can devote the free capacity to other functions.

We point out the following observations:

• Using an RPU we achieve significant speedups, ranging from a
factor of 2.4 for a 128 word FIFO single-context device up to a factor
of 9.5 for an 8-context RPU with a 4096 word buffer.

116 Chapter 6. Experimental Results

Architecture Buffer Execution time Norm. Performance
[words] [cycles] [cyc/(tap · sample)]

CPU only 4096 110672354 29.63
2048 110654459 29.61
1024 110646831 29.62
512 110643416 29.62
256 110643924 29.62
128 110650685 29.62

single-context 4096 14325169 3.83
2048 14923289 3.99
1024 16147674 4.32
512 18778091 5.02
256 25163909 6.74
128 45520990 12.12

8-context 4096 11669279 3.12
2048 11687130 3.13
1024 11730940 3.14
512 11801405 3.16
256 12014197 3.22
128 12368245 3.31

Tab. 7: Execution time and efficiency for virtualized execution case-study

September 12, 2006 plessl_thesis.tex rev 563

6.1. Virtualized Execution of a Digital Filter 117

0

2

4

6

8

10
Performance comparison of FIR filters of order 56

Sp
ee

du
p

re
la

tiv
e

to
 p

ur
e

CP
U

im
pl

em
en

ta
tio

n

CPU only single!context RPU 8!context RPU

Reference
FIFO 128
FIFO 256
FIFO 512
FIFO 1k
FIFO 2k
FIFO 4k

(a) Relative speedup of reconfigurable processor implementation

0

5

10

15

20

25

30
CPU load (relative to pure CPU implementation)

R
el

at
iv

e
C

P
U

 lo
ad

 [%
]

single−context RPU 8−context RPU

FIFO 128

FIFO 256

FIFO 512

FIFO 1k

FIFO 2k

FIFO 4k

(b) Relative CPU load of reconfigurable processor implementation

Fig. 32: Results of virtualized execution case-study

118 Chapter 6. Experimental Results

• The system performance in terms of speedup and CPU load depends
on the length of the FIFO buffers. Enlarging the FIFOs increases the
performance but also the filter delay. For instance, a single-context
RPU using a FIFO with 1k words instead of 128 words improves the
speedup from 2.43x to 6.85x (factor 2.82) and reduces the CPU load
from 28.4% to 6.4% (factor 4.43). But at the same time, the latency
is increased by a factor of 8. Practical applications, e. g., real-time
signal processing, could limit these potential gains by imposing
delay constraints.

• Figure 32 shows, that also a single-context implementation can pro-
vide decent speedups and CPU load reduction, if the application
is not delay sensitive and large FIFO buffers are used. But if an 8-
context implementation is used, the context loading and switching
overheads are largely reduced and the performance becomes almost
independent of the FIFO size. Hence, an 8-context implementation
allows for low-latency processing.

• With increasing FIFO size, speedup and CPU load reach an asymp-
totic value of about 9.5x for the speedup, and 4.7% for the CPU load.
For these asymptotic cases, the execution time is dominated by the
data-transfers from the CPU to the RPU’s FIFO and vice versa.

This case study shows, that virtualized execution is a useful technique
for implementing a macro-pipelined application on the Zippy architec-
ture. We have shown, that a large FIR filter can be partitioned and ex-
ecuted on the Zippy architecture. One configuration for the RPU corre-
sponds to the hardware page required for virtual execution. The hardware
pages communicate via the on-chip FIFOs that are accessible from all con-
texts. The runtime system for sequencing the contexts is implemented by
the CPU core.

The results of the case study emphasize the importance of the system-
level cycle-accurate simulation for architectural evaluation and optimiza-
tion. Only a system-level evaluation approach allows us to accurately
quantify the design trade-offs.

6.2 Temporal Partitioning of an ADPCM De-
coder

This case study illustrates hardware virtualization by temporal partitioning
on the Zippy architecture. We compare the execution of an ADPCM ap-
plication on a large instance of the Zippy architecture with the execution

September 12, 2006 plessl_thesis.tex rev 563

6.2. Temporal Partitioning of an ADPCM Decoder 119

on a smaller instance of the same architecture. The large instance requires
more area but allows to map the complete application into one config-
uration. The smaller instance requires temporal partitioning to run the
application. For reference, we compare both implementations to a pure
software implementation of the application running on the same CPU
core.

6.2.1 Application
Adaptive Differential Pulse Code Modulation (ADPCM), also known as
ITU-T G.721, is a well established speech coding algorithm. ADPCM
compresses the data rate by a factor of 4 while providing acceptable
quality for voice signals. The decoder uses a simple predictor that predicts
the next 16bit output value as the sum of the current output value and an
increment. The increment is adapted based on a 4bit input signal using
a non-linear function, which is defined by two look-up tables. Listing 6.1
presents the C code for the ITU’s reference implementation of the ADPCM
decoder.

Based on the reference implementation, we have designed a hardware
implementation of the ADPCM decoder which is shown in Figure 33.
ADPCM uses 31 combinational operators (that can be directly imple-
mented by a cell), 3 dedicated registers, 1 input, and 1 output port. The
dedicated registers can be implemented within the input register files of
the Zippy cells, cf. Fig. 6 on page 23. Thus the hardware implementation
requires an execution architecture with at least 31 cells.

6.2.2 Experiments
We perform three experiments:

A) For the non-virtualized implementation, we have chosen a reconfig-
urable array of size 7 × 7. Although a 6 × 6 array would provide
a sufficient number of cells, the dense interconnect structure of the
ADPCM netlist leads easily to congestion and makes placement and
routing on a 6 × 6 array rather difficult. Using a 7 × 7 array relaxes
the implementation constraints and allows the tools to quickly find a
routable implementation.

B) For the virtualized implementation the full netlist has been manually
partitioned into three smaller sub-netlists, such that each of them fits
onto an array of size 4 × 4. Figure 33 presents the division of the
initial netlist into three contexts. As explained in Section 5.2.3, we
use the output register files of the cells for inter-context communica-
tion. To simplify the hardware implementation process for this case

120 Chapter 6. Experimental Results

1 s t a t i c i n t indexTable [1 6] = {
2 −1 , −1 , −1 , −1 , 2 , 4 , 6 , 8 , . . . } ;
3 s t a t i c i n t s t e p s i z e T a b l e [8 9] = {
4 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 16 , 1 7 , . . . } ;
5

6 void
7 adpcm_decoder (char indata [] , short outdata [] , i n t len ,
8 s t r u c t adpcm_state * s t a t e) {
9 signed char * inp ; short * outp ;

10 i n t sign , del ta , step , valpred , vpdif f , index ;
11 i n t inputbuffer , b u f f e r s t e p ;
12

13 outp = outdata ; inp = (signed char *) indata ;
14 valpred = s t a t e −>valprev ; index = s t a t e −>index ;
15 s tep = s t e p s i z e T a b l e [index] ; b u f f e r s t e p = 0 ;
16

17 for (; len > 0 ; len−−) {
18 i f (b u f f e r s t e p) {
19 d e l t a = inputb uf fe r & 0 xf ;
20 } e lse {
21 inputb uf fe r = * inp++;
22 d e l t a = (inputbuf fe r >> 4) & 0 xf ;
23 }
24 b u f f e r s t e p = ! b u f f e r s t e p ;
25 index += indexTable [d e l t a] ;
26 i f (index < 0) index = 0 ;
27 i f (index > 88) index = 8 8 ;
28 s ign = d e l t a & 8 ;
29 d e l t a = d e l t a & 7 ;
30 vpdi f f = s tep >> 3 ;
31 i f (d e l t a & 4) vpdi f f += s tep ;
32 i f (d e l t a & 2) vpdi f f += step >>1;
33 i f (d e l t a & 1) vpdi f f += step >>2;
34 i f (s ign)
35 valpred −= vpdi f f ;
36 e lse
37 valpred += vpdi f f ;
38 i f (valpred > 32767)
39 valpred = 32767 ;
40 e lse i f (valpred < −32768)
41 valpred = −32768;
42 s tep = s t e p s i z e T a b l e [index] ;
43 * outp++ = valpred ;
44 }
45 s t a t e −>valprev = valpred ; s t a t e −>index = index ;
46 }

Lst. 6.1: C-Code for the ADPCM Decoder (Excerpt from the Reference Implementation)

September 12, 2006 plessl_thesis.tex rev 563

6.2. Temporal Partitioning of an ADPCM Decoder 121

12 0

op0
rom
indexTbl

12 0

op1
add

12 0

op2
gt
c: i1=88

12 0

op4a
mux
c: i0=88

12 0

op4b
mux
c: i1=0

12 0
op4c
mux

12 0

op19
rom
stepSzTbl

i

o

index

step

t_120

12 0

op11
srl
c: i1=1

12 0

op12
srl
c: i1=3

12 0

op6
and
c: i1=7

12 0

op10
srl
c: i1=2

12 0
op13
add

12 0

op7
tstbitat1
c: i1=4

12 0
op14
mux

12 0
op15
add

12 0
op16
mux

12 0
op17
add

12 0

op9
tstbitat1
c:i1=1

12 0

op8
tstbitat1
c: i1=2

valpred

12 0
op18
mux

t_230 t_231 t_232

12 0
op20
add

12 0
op21
sub

12 0

op5
tstbitat1
c: i1=8

12 0
op22
mux

12 0

op24
lt
c: -32768

12 0

op23
gt
c: i1=32767

12 0

op25a
mux
c: i0=-32767

12 0

op25b
mux
c: i1=32768

12 0
op25c
mux

12 0
obuf
pass0

12 0

op3
lt
c: i1=0

context 0 context 1

context 2

Fig. 33: ADPCM: application netlist

122 Chapter 6. Experimental Results

Architecture No RPU, Large RPU Small RPU
CPU only without TP with TP

Implementation results

total cycles [k cycles] 39260 23941 24896
cycles/ sample [cycles] 157.0 95.8 99.6
rel. speedup 1 1.64 1.58
array size [cells] 0 49 16

Co-simulation results

simulation time [s] 177 3767 15210
instruction rate [inst/s] 121543 3687 942
rel. simulation time 1 21.3 85.9
rel. instr. rate 1 0.0303 0.00775

Tab. 8: Simulation Results for the ADPCM Decoder Case-Study

study, we used dedicated cells with fixed placement as virtualization
registers (denoted by t_x_y). For each sub-netlist a configuration is
generated using the Zippy hardware implementation tool-flow. The
constraints for the fixed placement of the virtualization registers have
been manually added to the sub-circuit’s netlists.

Figure 33 shows that for this temporal partitioned implementation of
the ADPCM algorithm all feedback paths of the circuit stay within a
single context. It must be emphasized that this is not a requirement
for hardware virtualization by temporal partitioning. Thanks to the
virtualization registers, arbitrary feedback cycles between contexts
are possible.

C) The pure software implementation uses the C source code of the AD-
PCM reference implementation. The code has been compiled with
SimpleScalar’s GNU C compiler.

6.2.3 Experimental Setup and Results
We have evaluated the performance of these three implementations using
our system-level co-simulation framework (see Chapter 4). We use the
embedded CPU configuration, see Tab. 1 on page 18. For the RPU configu-
ration we use the parameters shown in Tab. 3 on page 32, the size of the
array is set to 4 × 4 and 7 × 7, respectively.

We have used the software toolflow (see Section 3.4) for creating the
applications binaries. Since using memory-mapped IO for accessing the

September 12, 2006 plessl_thesis.tex rev 563

6.2. Temporal Partitioning of an ADPCM Decoder 123

RPU requires to strictly retain the order of instructions, we have turned
off compiler optimization for all three experiments to prevent any disar-
ranging of instructions.

For performance evaluation we determine the execution time for de-
coding 250’000 ADPCM samples, processed as 250 blocks of 1000 samples
each. By averaging over 250 iterations we try to approximate the sus-
tained application performance and to reduce the effect of the application
setup phase.

The execution time are cycle-accurate on the system-level. That is,
the execution time includes all overheads, such as reading the input data
from memory, transferring data between CPU and RPU and vice versa,
downloading the configurations, etc.

Table 8 summarizes the results of the case study and demonstrates the
trade-off involved in hardware virtualization with temporal partitioning.
We point out the following observations:

• Using a reconfigurable co-processor yields a speedup over the pure
CPU implementation of 1.64 when using the large reconfigurable ar-
ray without temporal partitioning, and a slightly reduced speedup
of 1.58 for the temporal partitioned implementation. The rather
small difference of 6% in the speedups for the temporal partitioned
and the non-partitioned case suggests, that the zero-overhead tem-
poral partitioning sequencer (see Section 2.3.4) handles the context
sequencing efficiently.

• Comparing only the raw performance of the hardware accelerated
kernel can be seriously misleading. The non-partitioned ADPCM
decoder decodes 1 sample per cycle, while the temporal partitioned
implementation is 3 times slower (3 cycles per sample). While this
large difference of raw-speedups (factor of 3) could lead to the ex-
pectation that the implementation without temporal partitioning
performs significantly better, system-level simulation reveals, that
the actual performance gain is merely 6%.

This observation strongly supports our claim that system-level per-
formance analysis is a necessity for an accurate performance assess-
ment of a reconfigurable processor application.

• The example also shows the trade-off between chip size and perfor-
mance. In his dissertation [Enz04] Enzler estimates that adding a 4
context Zippy RPU with a 4×4 reconfigurable array to an embedded
CPU core increases the chip area by about 25%. Hence with 25%
increased chip area, the performance is increase by a factor of 1.58
when temporal partitioning is used. Without temporal partition-

124 Chapter 6. Experimental Results

ing, the hardware size for the RPU would be significantly larger (49
vs. 16 cells) while the performance gain is only 6%.

• Table 8 presents also data about the performance of the simulation
environment. The total simulation time increases a consequence of
the additional RPU simulation by a factor of 21 for the experiment
without temporal partitioning, and a factor of 86 for the tempo-
ral partitioned implementation. The temporal partitioning case is
slower, since changing the active configuration of the RPU in every
cycle leads to more signal transitions and the computational effort
of discrete event simulation correlates with the number of signal
changes.

With this case study we have demonstrated that hardware virtualiza-
tion with temporal partitioning is feasible. We have studied the trade-
offs between execution time and hardware requirements. We conclude
that temporal partitioning offers a sensible approach to reduce the hard-
ware requirements while still making use of the high performance of
application-specific accelerator circuits. The reduction in hardware re-
quirements is in particular attractive for embedded systems, where chip
area is scarce due to cost constraints.

6.3 Summary
In this chapter we have demonstrated with two case studies that hardware
virtualization can be applied to the Zippy architecture. We have shown
that the parametrized software and hardware implementation tool-flows
are capable to implement real world examples.

We have used the system-level performance evaluation framework to
obtain cycle-accurate performance data. The parametrized architecture
model enables us to compare the performance of a variety of different
instances of the Zippy architecture.

The case studies have shown, that hardware virtualization allows us
to successfully trade-off RPU chip area for performance. This trade-
off is important for applying reconfigurable processors in cost sensitive
embedded systems.

September 12, 2006 plessl_thesis.tex rev 563

7
Conclusions

In this chapter we will summarize the contributions of this work, draw
conclusions and outline directions for future work.

7.1 Contributions
In this work, we have made the following contributions to the state of the
art in coarse-grained reconfigurable processor architectures for embedded
systems:

• Reconfigurable processor architecture

We have designed a new coarse-grained reconfigurable processor
architecture named Zippy. Zippy is not a single concrete architec-
ture, but a widely parametrized architecture and simulation model,
which defines a whole family of architectures. The architecture has
been co-designed with a corresponding design tool-flow, a simu-
lation environment and an application specification model. Zippy
is tailored to digital-signal processing of data streams in embed-
ded systems and provides dedicated hardware units to efficiently
support hardware virtualization techniques.

• Hardware Virtualization

We propose to use hardware virtualization in embedded systems
when executing applications on reconfigurable processors. We have
defined a classification of hardware virtualization techniques for dy-
namically reconfigurable architectures and have discussed their ap-
plication to the Zippy architecture. Hardware virtualization enables

126 Chapter 7. Conclusions

us to execute applications that exceed the capacity of the Reconfig-
urable Processing Unit (RPU) and allows us to trade-off area for
performance. With two case-studies we have demonstrated that
hardware virtualization is feasible on the Zippy architecture and
that the area-performance trade-off due to hardware virtualization
can be exploited for finding cost-effective implementations in em-
bedded systems.

• Application specification model

We have described an application specification model that is suited
to specify streaming data processing applications that are executed
on a reconfigurable processor. The specification model decomposes
the application into a set of communicating tasks whose interactions
are specified with a coordination model. This kind of application
specification is suitable to be mapped to a reconfigurable execution
architecture that uses hardware virtualization.

• Design Tools and Performance Evaluation

We have developed a hardware and software implementation tool-
flow that generates an implementation from the application’s speci-
fication. To cope with the parametrized nature of the Zippy architec-
ture, the design tools are also parametrized to support all variants
of the Zippy architecture.

We advocate system-level cosimulation as the appropriate perfor-
mance evaluation method for a reconfigurable processor. We have
presented a corresponding co-simulation environment, which com-
bines a cycle-accurate CPU simulator with a cycle-accurate RPU
model into system-level, bit-exact and cycle-true performance eval-
uation framework. This allows us to perform design-space explo-
ration for the whole family of Zippy architectures.

• Novel method for optimal temporal partitioning

We have developed a novel method for optimal temporal partition-
ing of sequential circuits. The method bases on a Mixed Integer Lin-
ear Program (MILP) problem formulation and solves the problem
optimally, while most related approaches use heuristic approxima-
tions. In contrast to related work, our approach directly optimizes
the performance of the partitioned circuit and allows for function-
preserving structural modifications of the circuit.

September 12, 2006 plessl_thesis.tex rev 563

7.2. Conclusions 127

7.2 Conclusions

In this work we have studied dynamic reconfiguration of a reconfigurable
processor in the context of embedded systems. Related work proposes
to use dynamic reconfiguration to increase the utilization of the reconfig-
urable resource and to implement “multi-tasking” of circuits. In contrast,
we have focused on using dynamic reconfiguration to implement hard-
ware virtualization techniques in order to mitigate the effect of limited
hardware resources. With two case studies we have shown that hardware
virtualization is feasible in practice, and that it also creates interesting
area vs. performance trade-offs. Thus, hardware virtualization on re-
configurable processors could have interesting applications in embedded
systems with constrained reconfigurable resources.

We have built our architecture simulation environment on existing
work. To this end, we have extended the SimpleScalar CPU simulator and
integrated it with the ModelSim VHDL simulator into a cycle-accurate
co-simulation environment. Reusing these existing simulators allowed
us to reuse the solid simulator and the compilation tool-chain for the
CPU and to model the reconfigurable array in VHDL. Using VHDL as
modelling language proved very effective, since it allowed us to model
the architecture at different levels of abstraction while retaining overall
cycle-accuracy.

We have argued, that neglecting communication, configuration and
control overheads can lead to distorted performance estimations for the
reconfigurable processor. Hence, we have advocated to use cycle-accurate,
system-level co-simulation for performance evaluation. Our case stud-
ies confirm, that a system-level performance evaluation is effectively of
great importance. For example, in the FIR case study the use of a the
reconfigurable co-processor yields a significant speedup of up to a factor
of 10. In contrast, the speedups obtained in the ADPCM case studies
are rather modest (approximately 60%). This result may seem surpris-
ing, given that the ADPCM decoder core has a high raw-speedup (i. e.,
if communication and control-overheads are neglected) of about 160x.
In this specific application, the communication overheads are significant
and limit the obtainable performance. We conclude, that evaluating the
effective performance of an application running on a reconfigurable pro-
cessor requires a detailed analysis of the communication and computation
patterns, which is enabled by system-level co-simulation.

We use a netlist-based design entry for application specification. Since
the architecture is based on coarse-grained computing elements, a netlist
is essentially equivalent to a signal-flow diagram. Our experience with
implementing stream-processing applications from the digital signal-
processing domain shows, that specifying an application as a netlist of

128 Chapter 7. Conclusions

coarse-grained operators is feasible and convenient. An advantage of the
netlist-based design entry is that the netlists can be used directly in the
subsequent placement and routing process.

For placement and routing of circuits on the Zippy architecture, we
have adapted algorithms from the FPGA domain. We noticed, that the
placement and routing can take excessively long, if we are solely using a
simple placement algorithm, that iteratively improves an initial, random
placement using stochastic optimization. We attribute this fact to the
sparseness of routing resources in the coarse-grained Zippy architecture,
which causes the placer to generate many placements with infeasible
routing. While stochastic optimization is still valuable for optimizing
a placement, the sparse interconnect in coarse-grained architectures de-
mands for novel methods to generate initial placements, which account
for the structure of the interconnect. We have developed a placement
heuristic that favors local interconnect for connecting neighboring cells
and uses buses for high fan-out nets.

For the case studies, we have performed the required application-
partitioning step by hand. This task is tedious and error-prone and is
hence only feasible for small applications. Further, in general, manual par-
titioning leads to implementations with sub-optimal performance. This
has motivated us, to find a way for automated application partitioning.
Our novel temporal partitioning algorithm can serve as a mathematical
foundation of performance-optimal application partitioning. Once the
method is fully integrated into the hardware tool-flow, it will allow the
designer to specify and to implement applications of arbitrary size, with-
out considering the resource limitations of the execution architecture.

7.3 Future Directions
In the following, we will briefly outline three possible directions for fur-
ther research:

• A main obstacle for research in reconfigurable architectures is the
lack of design implementation and evaluation tools for newly de-
fined architectures. This work has shown that parametrized archi-
tecture models and parametrized design-tools are feasible. While
the VHDL model of the RPU and the routing architecture graph
(used by the placer and router) represent largely the same infor-
mation, the corresponding models have been created separately by
hand. An interesting generalization of the Zippy design and simula-
tion tools would be to further separate the architecture-independent
parts of the tools from the architecture-dependent parts. This would

September 12, 2006 plessl_thesis.tex rev 563

7.3. Future Directions 129

allow us to build a framework that automatically generates design
and simulation tools from a common, formal architecture descrip-
tion. Such a framework could significantly speed up the design and
evaluation process for new reconfigurable processor architectures.

• Another direction for future work is to elaborate the design-flow for
hardware virtualization. While we have proposed a specification
model for streaming data-processing applications that are executed
with hardware virtualization, the corresponding implementation
tool-flow is not fully automated. Creating an automated end-to-end
tool-flow would be a big step towards the acceptance of hardware
virtualization in embedded applications. Designing such a tool-
flow bears a number of challenges, such as, dividing the application
specification graph into partitions, performing automated temporal
partitioning for tasks that exceed the resource supply of the RPU, or
finding deadlock-free context schedules.

• Finally, our work on the novel method for optimal temporal parti-
tioning of sequential circuits could be extended. We have already
mentioned, that adding functional pipelining could further improve
performance of the partitioned circuits. Another direction is to ap-
ply the method to a concrete architecture, i. e., the Zippy architec-
ture. It will be interesting to study, to what extent the idealized
architectural assumptions of the method impact the applicability to
a concrete architecture and whether the runtime of the MILP solver
is acceptable for practical applications.

130 Chapter 7. Conclusions

September 12, 2006 plessl_thesis.tex rev 563

A
Acronyms

FPGA Field-Programmable Gate-Array

ASIC Application-Specific Integrated Circuit

PDA Personal Digital Assistant

RPU Reconfigurable Processing Unit

LUT look-up table

ZNF Zippy Netlist Format

CAD Computer-Aided Design

VLIW Very Long Instruction Word

RFU Reconfigurable Functional Unit

RTL Register Transfer Level

VLSI Very Large Scale Integration

ADPCM Adaptive Differential Pulse Code Modulation

CDFG control data-flow graph

HLL high-level programming language

HDL hardware description language

DAG directed acyclic graph

132 Appendix A. Acronyms

FIR Finite Impulse Response

ILP Integer Linear Program

MILP Mixed Integer Linear Program

IIR Infinite Impulse Response

FSM Finite State Machine

September 12, 2006 plessl_thesis.tex rev 563

Bibliography

[ALE02] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastruc-
ture for computer system modeling. IEEE Computer, 35(2):59–
67, February 2002.

[Alt02] Altera. Altera Excalibur Devices: Hardware Reference Manual,
v3.1 edition, November 2002.

[ASI+98] A. Abnous, K. Seno, Y. Ichikawa, M. Wan, and J. Rabaey. Evalu-
ation of a low-power reconfigurable DSP architecture. In Proc.
5th Reconfigurable Architectures Workshop (RAW), volume 1388
of Lecture Notes in Computer Science, pages 55–60. Springer-
Verlag, 1998.

[Atm05] Atmel. Atmel FPSLIC: AT94K05/10/40AL Datasheet, 1138h-fpsli-
6/05 edition, June 2005.

[BBS+00] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva,
A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and
P. W. Cook. Power-aware microarchitecture: Design and mod-
eling challenges for next-generation microprocessors. IEEE
Micro, 20(6):26–44, November/December 2000.

[BD01] Gordon Brebner and Oliver Diessel. Chip-based reconfig-
urable task management. In Proc. 11th Int. Conf. on Field
Programmable Logic and Applications (FPL), pages 182–191.
Springer-Verlag, 2001.

[BEM+03] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and
M. Weinhardt. PACT XPP – a self-reconfigurable data pro-
cessing architecture. Journal of Supercomputing, 26(2):167–184,
September 2003.

[BMN+01] V. Baumgarte, F. May, A. Nückel, M. Vorbach, and M. Wein-
hardt. PACT XPP – a self-reconfigurable data processing ar-
chitecture. In Proc. 1st Int. Conf. on Engineering of Reconfigurable

134 Bibliography

Systems and Algorithms (ERSA), pages 64–70. CSREA Press,
2001.

[Bre96] Gordon Brebner. A virtual hardware operating system for the
Xilinx XC6200. In Proc. 6th Int. Workshop on Field Programmable
Logic and Applications (FPL), pages 327–336. Springer-Verlag,
1996.

[Bre98] G. Brebner. Circlets: Circuits as applets. In Proc. 6th IEEE Symp.
on Field-Programmable Custom Computing Machines (FCCM),
pages 300–301. IEEE Computer Society, 1998.

[BRM99] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for
Deep-Submicron FPGAs. Kluwer Academic Publishers, 1999.

[BTM00] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. In
Proc. 27th Int. Symp. on Computer Architecture (ISCA), pages
83–94, 2000.

[But93] Mike Butts. Tutorial: FPGAs in logic emulation. In Proc.
IEEE/ACM Int. Conf. on Computer Aided Design (ICCAD). ACM,
November 1993.

[CCH+00] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. De-
Hon. Stream computations organized for reconfigurable exe-
cution (SCORE). In Proc. 10th Int. Conf. on Field Programmable
Logic and Applications (FPL), volume 1896 of Lecture Notes in
Computer Science, pages 605–614. Springer-Verlag, 2000.

[CEC01] J. E. Carrillo Esparza and P. Chow. The effect of reconfigurable
units in superscalar processors. In Proc. 9th ACM Int. Symp. on
Field-Programmable Gate Arrays (FPGA), pages 141–150, 2001.

[CH02] K. Compton and S. Hauck. Reconfigurable computing: A
survey of systems and software. ACM Computing Surveys,
34(2):171–210, June 2002.

[Cha00] Chameleon Systems. Wireless base station design using re-
configurable communications processors. White Paper, V1.0,
2000.

[CHW00] T. J. Callahan, J. R. Hauser, and J. Wawrzynek. The Garp
architecture and C compiler. IEEE Computer, 33(4):62–69, April
2000.

September 12, 2006 plessl_thesis.tex rev 563

Bibliography 135

[CMS97] Douglas Chang and Malgorzata Marek-Sadowska. Buffer
minimization and time-multiplexed I/O on dynamically re-
configurable FPGAs. In Proc. 5th ACM Int. Symp. on Field-
Programmable Gate Arrays (FPGA), pages 142–148. ACM, 1997.

[CMS98] Douglas Chang and Malgorzata Marek-Sadowska. Partition-
ing sequential circuits on dynamically reconfigurable FPGAs.
In Proc. 6th ACM Int. Symp. on Field-Programmable Gate Arrays
(FPGA), pages 161–167. ACM, 1998.

[CMS99] Douglas Chang and Malgorzata Marek-Sadowska. Partition-
ing sequential circuits on dynamically reconfigurable FPGAs.
IEEE Trans. on Computers, 48(6):565–578, June 1999.

[CPL] CPLEX optimizer. http://www.cplex.com/.

[CV99] K.S. Chatka and R. Vemuri. Hardware-software codesign for
dynamically reconfigurable architectures. In Proc. 9th Int.
Workshop on Field Programmable Logic and Applications (FPL),
pages 175–184. Springer-Verlag, 1999.

[CW02] Joao M. P. Cardoso and Markus Weinhardt. XPP-VC: A C
compiler with temporal partitioning for the PACT-XPP archi-
tecture. In M. Renovell M. Glesner, P. Zipf, editor, Proc. 12th Int.
Conf. on Field Programmable Logic and Applications (FPL), num-
ber 2438 in Lecture Notes in Computer Science, pages 864–874.
Springer-Verlag, August 2002.

[DeH94] A. DeHon. DPGA-coupled microprocessors: Commodity ICs
for the early 21st century. In Proc. 2nd IEEE Workshop on FPGAs
for Custom Computing Machines (FCCM), pages 31–39, 1994.

[DeH96a] A. DeHon. DPGA utilization and application. In Proc. 4th ACM
Int. Symp. on Field-Programmable Gate Arrays (FPGA), pages
115–121, 1996.

[DeH96b] A. DeHon. Reconfigurable Architectures for General-Purpose Com-
puting. PhD thesis, Massachusetts Institute of Technology,
1996.

[DM94] G. De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[DPP02] Matthias Dyer, Christian Plessl, and Marco Platzner. Partially
reconfigurable cores for xilinx virtex. In Proc. 12th Int. Conf. on
Field Programmable Logic and Applications (FPL), volume 2438

136 Bibliography

of Lecture Notes in Computer Science, pages 292–301. Springer-
Verlag, 2002.

[EMHB95] Carl Ebeling, Larry McMurchie, Scott Hauck, and Steven
Burns. Placement and routing tools for the Triptych FPGA.
IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
3(4):473–482, December 1995.

[Enz04] Rolf Enzler. Architectural Trade-offs in Dynamically Reconfig-
urable Processors. PhD thesis, Diss. ETH No. 15423, Swiss Fed-
eral Institute of Technology (ETH) Zurich, 2004.

[EPP+01] R. Enzler, M. Platzner, C. Plessl, L. Thiele, and G. Tröster.
Reconfigurable processors for handhelds and wearables: Ap-
plication analysis. In Reconfigurable Technology: FPGAs and
Reconfigurable Processors for Computing and Communications III,
volume 4525 of Proceedings of SPIE, pages 135–146, 2001.

[EPP03] Rolf Enzler, Christian Plessl, and Marco Platzner. Co-
simulation of a hybrid multi-context architecture. In Proc. 3rd
Int. Conf. on Engineering of Reconfigurable Systems and Algorithms
(ERSA), pages 174–180. CSREA Press, 2003.

[EPP05] R. Enzler, C. Plessl, and M. Platzner. System-level performance
evaluation of reconfigurable processors. Microprocessors and
Microsystems, 29(issues 2–3):63–73, April 2005.

[FFM+99] T. Fujii, K.-i. Furuta, M. Motomura, M. Nomura, M. Mizuno,
K.-i. Anjo, K. Wakabayashi, Y. Hirota, Y.-e. Nakazawa, H. Itoh,
and M. Yamashina. A dynamically reconfigurable logic engine
with a multi-context/multi-mode unified-cell architecture. In
46th IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Pa-
pers, pages 364–365, 1999.

[FKT01] S.P. Fekete, E. Köhler, and J. Teich. Optimal fpga module place-
ment with temporal precedence constraints. In Proc. Design,
Automation and Test in Europe Conf. (DATE), pages 658–665.
IEEE Computer Society, 2001.

[GG97] M. Gokhale and D. Gemersall. High level compilation for fine
grained FPGAs. In Proc. 5th IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), pages 165–173. IEEE
Computer Society, 1997.

[GLMS02] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan.
System Design with SystemC. Kluwer Academic Publishers,
May 2002.

September 12, 2006 plessl_thesis.tex rev 563

Bibliography 137

[GOK+98] S. Govindarajan, I. Ouaiss, M. Kaul, V. Srinivasan, and R. Ve-
muri. An effective design system for dynamically recon-
figurable architectures. In Proc. 6th IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), pages 312–
313. IEEE Computer Society, 1998.

[GSB+00] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,
and R. R. Taylor. PipeRench: A reconfigurable architecture
and compiler. IEEE Computer, 33(4):70–77, April 2000.

[Hau97] J. R. Hauser. The Garp architecture. Technical report, UC
Berkeley, CA, USA, October 1997.

[HMSS01] James Hwang, Brent Milne, Nabeel Shirazi, and Jeffrey D.
Stroomer. System level tools for DSP in FPGAs. In Proc. 11th
Int. Conf. on Field Programmable Logic and Applications (FPL),
volume 2147 of Lecture Notes in Computer Science, pages 534–
543. Springer-Verlag, August 2001.

[HSE+00] Yajun Ha, Patrick Schaumont, Marc Engels, Serge Vernalde,
Freddy Potargent, Luc Rijnders, and Hugo De Man. A hard-
ware virtual machine for the networked reconfiguration. In
Proc. 11th IEEE Int. Workshop on Rapid System Prototyping (RSP),
pages 194–199, 2000.

[HVS+02] Y. Ha, S. Vernalde, P. Schaumont, M. Engels, R. Lauwereins,
and H. De Man. Building a virtual framework for networked
reconfigurable hardware and software objects. Journal of Su-
percomputing, 21(2):131–144, February 2002.

[HW97] J. R. Hauser and J. Wawrzynek. Garp: A MIPS processor
with a reconfigurable coprocessor. In Proc. 5th IEEE Symp. on
Field-Programmable Custom Computing Machines (FCCM), pages
12–21, 1997.

[Kah74] G. Kahn. The semantics of a simple language for parallel
programming. In J.L. Rosenfeld, editor, Information Process-
ing, pages 471–475. Ed. North-Holland Publishing Co., August
1974.

[KV98] M. Kaul and R. Vemuri. Optimal temporal partitioning and
synthesis for reconfigurable architectures. In Proc. Design, Au-
tomation and Test in Europe Conf. (DATE), pages 389–396. IEEE
Computer Society, 1998.

138 Bibliography

[LA89] X.-P. Ling and H. Amano. A static scheduling system for a
parallel machine (SM)2-II. In Proc. 2nd Parallel Architectures and
Languages, Europe, LNCS 365, pages 118–135. Springer-Verlag,
June 1989.

[Lee01] Edward A. Lee. Overview of the Ptolemy Project. Technical
Memorandum UCB/ERL M01/11, Electronics Research Lab,
Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley California, Berkeley, CA
94720, USA, March 2001.

[LKD03] Jong-eun Lee, Choi Kiyoung, and Nikil D. Dutt. Compila-
tion approach for coarse-grained reconfigurable architectures.
IEEE Design & Test of Computers, 20(1):26–33, January–February
2003. 10.1109/MDT.2003.1173050.

[LS91] Charles E. Leiserson and James B. Saxe. Retiming synchronous
circuitry. Algorithmica, 6(1):5–35, 1991.

[LTC+03] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and
R. Guerrieri. A VLIW processor with reconfigurable instruc-
tion set for embedded applications. IEEE Journal of Solid-State
Circuits, 38(11):1876–1886, November 2003.

[LW98] Huiqun Liu and D.F. Wong. Network flow based circuit par-
titioning for time-multiplexed FPGAs. In Proc. IEEE/ACM Int.
Conf. on Computer Aided Design (ICCAD), pages 497–504. ACM,
November 1998.

[MMF98] O. Mencer, M. Morf, and M. J. Flynn. PAM-Blox: High per-
formance FPGA design for adaptive computing. In Proc. 6th
IEEE Symp. on Field-Programmable Custom Computing Machines
(FCCM), pages 167–174, 1998.

[MNC+03] J-Y. Mignolet, P. Nollet, P. Coene, D. Verkest, S. Vernalde, and
L. Lauwereins. Infrastructure for design and menagement of
relocatable tasks in a heterogeneous reconfigurable system-
on-chip. In Proc. Design, Automation and Test in Europe Conf.
(DATE), pages 989–991. IEEE Computer Society, March 2003.

[MO99] T. Miyamori and K. Olukotun. REMARC: Reconfigurable mul-
timedia array coprocessor. IEICE Trans. on Information and Sys-
tems, E82-D(2):389–397, February 1999.

[Mod04] Model Technology Inc. ModelSim SE Foreign Language Interface,
version 6.0c edition, November 2004. http://www.model.com.

September 12, 2006 plessl_thesis.tex rev 563

http://www.model.com

Bibliography 139

[Mod05] Model Technology Inc. ModelSim SE User Manual, version 6.0c
edition, January 2005. http://www.model.com.

[MY02] Wai-Kei Mak and Evangeline F.Y. Young. Temporal logic repli-
cation for dynamically reconfigurable FPGA partitioning. In
Proc. ACM Int. Symp. on Physical Design (ISPD), pages 190–195.
ACM, April 2002.

[Ope02] Open SystemC Initiative (OSCI). SystemC 2.0 User’s Guide,
2002. http://www.systemc.org/.

[OS99] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Sig-
nal Processing. Prentice Hall, 2nd edition, 1999.

[Pan01] P. R. Panda. SystemC: A modeling platform supporting mul-
tiple design abstractions. In Proc. 14th Int. Symp. on Systems
Synthesis (ISSS), pages 75–80, 2001.

[PB98] K. M. G. Purna and D. Bhatia. Temporal partitioning
and scheduling for reconfigurable computing. In Proc. 6th
IEEE Symp. on Field-Programmable Custom Computing Machines
(FCCM), pages 329–330. IEEE Computer Society, 1998.

[PB99] K. M. G. Purna and D. Bhatia. Temporal partitioning and
scheduling data flow graphs for reconfigurable computers.
IEEE Trans. on Computers, 48(6):579–590, June 1999.

[PEW+02] Christian Plessl, Rolf Enzler, Herbert Walder, Jan Beutel, Marco
Platzner, and Lothar Thiele. Reconfigurable hardware in wear-
able computing nodes. In Proc. 6th Int. Symp. on Wearable Com-
puters (ISWC), pages 215–222, 2002.

[PEW+03] Christian Plessl, Rolf Enzler, Herbert Walder, Jan Beutel, Marco
Platzner, Lothar Thiele, and Gerhard Tröster. The case for
reconfigurable hardware in wearable computing. Personal and
Ubiquitous Computing, 7(5):299–308, October 2003.

[PL91] Ian Page and Wayne Luk. Compiling OCCAM into FPGAs. In
Proc. 11th Int. Conf. on Field Programmable Logic and Applications
(FPL), pages 271–283. Abingdon EE&CS Books, 1991.

[Ple01] Christian Plessl. Reconfigurable accelerators for minimum
covering. Master’s thesis, ETH Zurich, Computer Engineering
and Networks Lab, March 2001.

http://www.model.com
http://www.systemc.org/

140 Bibliography

[PP01] Christian Plessl and Marco Platzner. Instance-specific accelera-
tors for minimum covering. In Proc. 1st Int. Conf. on Engineering
of Reconfigurable Systems and Algorithms (ERSA), pages 85–91,
Las Vegas, Nevada, USA, June 2001. CSREA Press.

[PP02] Christian Plessl and Marco Platzner. Custom computing ma-
chines for the set covering problem. In Proc. 10th IEEE Symp. on
Field-Programmable Custom Computing Machines (FCCM), pages
163–172, Napa, USA, April 2002. IEEE Computer Society.

[PP03a] Christian Plessl and Marco Platzner. Instance-specific accel-
erators for minimum covering. Journal of Supercomputing,
26(2):109–129, September 2003.

[PP03b] Christian Plessl and Marco Platzner. TKDM - a reconfigurable
co-processor in a pc’s memory slot. In Proc. 2nd Int. Conf. on
Field Programmable Technology (FPT)., pages 252–259, Tokyo,
Japan, December 2003. IEEE Computer Society.

[SC01] B. Salefski and L. Caglar. Re-configurable computing in wire-
less. In Proc. 38th Design Automation Conf. (DAC), pages 178–
183, 2001.

[SGV01] V. Srinivasan, S. Govindarajan, and R. Vemuri. Fine-grained
and coarse-grained behavioral partitioning with effective uti-
lization of memory and design space exploration for Multi-
FPGA architectures. IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, 9(1):140–158, February 2001.

[Sim06] The MathWorks, Inc., Natick MA, USA. Simulink Simulation
and Model-Based Design, version 6 edition, 2006.

[SLL+00] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and
E. M. Chaves Filho. MorphoSys: An integrated reconfigurable
system for data-parallel and computation-intensive applica-
tions. IEEE Trans. on Computers, 49(5):465–481, May 2000.

[SLM00] H. Simmler, L. Levinson, and R. Männer. Multitasking on
FPGA coprocessors. In Proc. 10th Int. Conf. on Field Program-
mable Logic and Applications (FPL), pages 121–130. Springer-
Verlag, 2000.

[SUA+00] Y. Shibata, M. Uno, H. Amano, K. Furuta, T. Fujii, and M. Mo-
tomura. A virtual hardware system on a dynamically re-
configurable logic device. In Proc. 8th IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), pages 295–
296, 2000.

September 12, 2006 plessl_thesis.tex rev 563

Bibliography 141

[SV98] S. M. Scalera and J. R. Vázquez. The design and implementa-
tion of a context switching FPGA. In Proc. 6th IEEE Symp. on
Field-Programmable Custom Computing Machines (FCCM), pages
78–85, 1998.

[SV99] V. Srinivasan and R. Vemuri. Task-level partitioning and RTL
design space exploration for Multi-FPGA architectures. In
Proc. 7th IEEE Symp. on Field-Programmable Custom Comput-
ing Machines (FCCM), pages 272–273. IEEE Computer Society,
1999.

[SWPT03] Christoph Steiger, Herbert Walder, Marco Platzner, and Lothar
Thiele. Online scheduling and placement of real-time tasks
to partially reconfigurable devices. In Proceedings of the 24th
International Real-Time Systems Symposium (RTSS), pages 224–
235. IEEE Computer Society, December 2003.

[SWT+02] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R.
Taylor. PipeRench: A virtualized programmable datapath in
0.18 micron technology. In Proc. 24th IEEE Custom Integrated
Circuits Conf. (CICC), pages 63–66, 2002.

[TCE+95] E. Tau, D. Chen, I. Eslick, J. Brown, and A. DeHon. A first
generation DPGA implementation. In Canadian Workshop on
Field-Programmable Devices (FPD), pages 138–143, 1995.

[TCJW97] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A
time-multiplexed FPGA. In Proc. 5th IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), pages 22–
28, 1997.

[TFS01] J. Teich, S.P. Fekete, and J. Schepers. Optimization of dy-
namic hardware reconfigurations. Journal of Supercomputing,
19(1):57–75, May 2001.

[Tri98] Steve Trimberger. Scheduling designs into a time-multiplexed
FPGA. In Proc. 6th ACM Int. Symp. on Field-Programmable Gate
Arrays (FPGA), pages 153–159. ACM, 1998.

[VNK+03] G. Venkataramani, W. Najjar, F. Kurdahi, N. Bagherzadeh,
W. Bohm, and J. Hammes. Automatic compilation to a coarse-
grained reconfigurable system-on-chip. ACM Trans. on Embed-
ded Computing Systems, 2(4):560–589, November 2003.

[WC96] R. D. Wittig and P. Chow. OneChip: An FPGA processor with
reconfigurable logic. In Proc. 4th IEEE Symp. on FPGAs for
Custom Computing Machines (FCCM), pages 126–135, 1996.

142 Bibliography

[WK01] Grant Wigley and David Kearney. The development of an
operating system for reconfigurable computing. In Proc. 9th
IEEE Symp. on Field-Programmable Custom Computing Machines
(FCCM). IEEE Computer Society, April 2001.

[WL01] M. Weinhardt and W. Luk. Pipeline vectorization. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems,
20(2):234–248, February 2001.

[WLC01] Guang-Ming Wu, Jai-Ming Lin, and Yao-Wen Chang. Generic
ILP-based approaches for time-multiplexed FPGA partition-
ing. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 20(10):1266–1274, October 2001.

[WP03a] Herbert Walder and Marco Platzner. Online scheduling for
block-partitioned reconfigurable devices. In Proc. Design, Au-
tomation and Test in Europe Conf. (DATE), pages 290–295. IEEE
Computer Society, March 2003.

[WP03b] Herbert Walder and Marco Platzner. Reconfigurable hardware
operating systems: From design concepts to realizations. In
Proc. 3rd Int. Conf. on Engineering of Reconfigurable Systems and
Algorithms (ERSA), pages 284–287. CSREA Press, June 2003.

[XA95] Xiaoping Ling and H. Amano. WASMII: An MPLD with data-
driven control on a virtual hardware. Journal of Supercomputing,
9(3):253–276, 1995.

[Xil05] Xilinx. Xilinx Virtex-II Pro and Virtex-II Pro X Platform FPGAs:
Complete Data Sheet, v4.5 edition, October 2005.

[YMHB00] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHI-
MAERA: A high-performance architecture with a tightly-
coupled reconfigurable functional unit. In Proc. 27th Int. Symp.
on Computer Architecture (ISCA), pages 225–235, 2000.

September 12, 2006 plessl_thesis.tex rev 563

	Contents
	1 Introduction
	1.1 Research Topics in Reconfigurable Architectures for Embedded Systems
	1.2 Contributions
	1.3 Application Specification and Execution on the Zippy Architecture
	1.4 Preliminary Work at ETH
	1.5 Thesis outline

	2 Dynamically Reconfigurable Processor Architecture
	2.1 Design Objectives
	2.2 System Architecture
	2.2.1 Structure
	2.2.2 Embedded CPU core
	2.2.3 Reconfigurable Processing Unit

	2.3 Reconfigurable Processing Unit Architecture
	2.3.1 Reconfigurable Array
	2.3.2 FIFOs
	2.3.3 Register Interface
	2.3.4 Context Sequencer and Synchronization
	2.3.5 Multi-Context Architecture
	2.3.6 Configuration Architecture
	2.3.7 Parameters of the Reconfigurable Processing Unit

	2.4 Summary

	3 Tool-Flow
	3.1 Tool-Flows for Coarse-Grained Reconfigurable Processors
	3.2 The Zippy Tool-Flow
	3.3 Hardware Tool-Flow
	3.3.1 Hardware specification
	3.3.2 Architecture modelling
	3.3.3 Placement
	3.3.4 Routing
	3.3.5 Configuration Generation

	3.4 Software Tool-Flow
	3.4.1 Hardware- Software Interface
	3.4.2 CPU Simulator and Compilation Tool-Chain
	3.4.3 Extensions to the CPU Simulator
	3.4.4 Compilation Tool-Chain

	3.5 Summary

	4 Performance evaluation
	4.1 Performance Evaluation for Reconfigurable Processors
	4.1.1 Motivation
	4.1.2 Challenges
	4.1.3 Approaches

	4.2 System-Level Cycle-Accurate Co-Simulation for Zippy
	4.2.1 Architectural assumptions
	4.2.2 CPU Simulation Model
	4.2.3 RPU Simulation Model
	4.2.4 Cosimulation framework

	4.3 Summary

	5 Hardware Virtualization
	5.1 Introduction to Hardware Virtualization
	5.1.1 Hardware Virtualization Approaches
	5.1.2 Temporal Partitioning
	5.1.3 Virtualized Execution
	5.1.4 Virtual Machine
	5.1.5 Summary

	5.2 Hardware Virtualization on the Zippy Architecture
	5.2.1 Application Specification Model
	5.2.2 Virtualized Execution
	5.2.3 Temporal Partitioning

	5.3 A Novel Method for Optimal Temporal Partitioning
	5.3.1 Outline of the Method
	5.3.2 Models
	5.3.3 Basic Problem Formulation
	5.3.4 Resource Constraints
	5.3.5 Solving the Temporal Partitioning MILP
	5.3.6 Extension to Functional Pipelining
	5.3.7 Example
	5.3.8 Related Work and Discussion

	5.4 Summary

	6 Experimental Results
	6.1 Virtualized Execution of a Digital Filter
	6.1.1 FIR Filter Partitioning and Mapping
	6.1.2 Experimental Setup
	6.1.3 Results and Discussion

	6.2 Temporal Partitioning of an ADPCM Decoder
	6.2.1 Application
	6.2.2 Experiments
	6.2.3 Experimental Setup and Results

	6.3 Summary

	7 Conclusions
	7.1 Contributions
	7.2 Conclusions
	7.3 Future Directions

	A Acronyms
	Bibliography

