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Abstract

Deep neural networks (DNNs) have succeeded in many different
perception tasks, e.g., computer vision, natural language processing,
reinforcement learning, etc. The high-performed DNNs heavily rely on
intensive resource consumption. For example, training a DNN requires
high dynamic memory, a large-scale dataset, and a large number of
computations (a long training time); even inference with a DNN also
demands a large amount of static storage, computations (a long inference
time), and energy. Therefore, state-of-the-art DNNs are often deployed on
a cloud server with alarge number of super-computers, a high-bandwidth
communication bus, a shared storage infrastructure, and a high power
supplement.

Recently, some new emerging intelligent applications, e.g., AR/VR,
mobile assistants, Internet of Things, require us to deploy DNNs on
resource-constrained edge devices. Compare to a cloud server, edge
devices often have a rather small amount of resources. To deploy DNNs
onedge devices, we need to reduce the size of DNNSs, i.e., we target a better
trade-off between the resource consumption and the model accuracy.

In this thesis, we study four edge intelligent scenarios and develop
different methodologies to enable deep learning in each scenario. Since
current DNNs are often over-parameterized, our goal is to find and to
reduce the redundancy of the DNNSs in each scenario. We summarize the
four studied scenarios as follows,

e Inference on Edge Devices. Firstly, we enable efficient inference
of DNNs given the fixed resource constraints on edge devices.
Compared to cloud inference, inference on edge devices avoids
transmitting the data to the cloud server, which can achieve a
more stable, fast, and energy-efficient inference. Regarding the
main resource constraints from storing a large number of weights
and computation during inference, we proposed an Adaptive
Loss-aware Quantization (ALQ) for multi-bit networks. ALQ
reduces the redundancy on the quantization bitwidth. The direct
optimization objective (i.e., the loss) and the learned adaptive
bitwidth assignment allow ALQ to acquire extremely low-bit
networks with an average bitwidth below 1-bit while yielding a
higher accuracy than state-of-the-art binary networks.

e Adaptation on Edge Devices. Secondly, we enable efficient
adaptation of DNNs when the resource constraints on the target
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edge devices dynamically change during runtime, e.g., the allowed
execution time and the allocatable RAM. To maximize the model
accuracy during on-device inference, we develop a new synthesis
approach, Dynamic REal-time Sparse Subnets (DRESS) that can
sample and execute sub-networks with different resource demands
from a backbone network. DRESS reduces the redundancy among
multiple sub-networks by weight sharing and architecture sharing,
resulting in storage efficiency and re-configuration efficiency,
respectively. The generated sub-networks have different sparsity,
and thus can be fetched to infer under varying resource constraints
by utilizing sparse tensor computations.

Learning on Edge Devices. Thirdly, we enable efficient learning
of DNNs when facing unseen environments or users on edge
devices. On-device learning requires both data- and memory-
efficiency. We thus propose a new meta learning method p-Meta to
enable memory-efficient learning with only a few samples of unseen
tasks. p-Meta reduces the updating redundancy by identifying
and updating structurewise adaptation-critical weights only, which
saves the necessary memory consumption for the updated weights.

Edge-Server System. Finally, we enable efficient inference and
efficient updating on edge-server systems. In an edge-server
system, several resource-constrained edge devices are connected to
a resource-sufficient server with a constrained communication bus.
Due to the limited relevant training data beforehand, pretrained
DNNs may be significantly improved after the initial deployment.
On such an edge-server system, on-device inference is preferred
over cloud inference, since it can achieve a fast and stable inference
with less energy consumption. Yet retraining on the cloud server
is preferred over on-device retraining (or federated learning) due
to the limited memory and computing power on edge devices.
We proposed a novel pipeline Deep Partial Updating (DPU) to
iteratively update the deployed inference model. Particularly, when
newly collected data samples from edge devices or from other
sources are available at the server, the server smartly selects only a
subset of critical weights to update and send to each edge device.
This weightwise partial updating reduces the redundant updating
by reusing the pretrained weights, which achieves a similar accuracy
as full updating yet with a significantly lower communication cost.



Zusammenfassung

Deep Neural Networks (DNNs) haben sich bei vielen verschiedenen
Wahrnehmungsaufgaben bewéhrt, z. B. Computer Vision, Verarbeitung
nattirlicher Sprache, Verstarkungslernen usw. Die leistungsstarken DNNs
sind stark auf einen intensiven Ressourcenverbrauch angewiesen.
Beispielsweise erfordert das Training eines DNN einen hohen dy-
namischen Speicher, einen grofien Datensatz und eine grofie Anzahl
von Berechnungen (eine lange Trainingszeit); Selbst die Inferenz mit
einem DNN erfordert auch eine grofie Menge an statischem Speicher,
Berechnungen (eine lange Inferenzzeit) und Energie. Daher werden
moderne DNNs hdufig auf einem Cloud-Server mit einer grofien
Anzahl von Supercomputern, einem Kommunikationsbus mit hoher
Bandbreite, einer gemeinsam genutzten Speicherinfrastruktur und einem
Hochleistungszusatz eingesetzt.

In letzter Zeit erfordern einige neu entstehende intelligente An-
wendungen, z. B. AR/VR, mobile Assistenten, Internet of Things,
den Einsatz von DNNs auf ressourcenbeschrankten Edge-Gerdten. Im
Vergleich zu einem Cloud-Server verfiigen Edge-Gerite oft {iber eine eher
geringe Menge an Ressourcen. Um DNNs auf Edge-Geréten einzusetzen,
missen wir die Grofle von DNNs reduzieren, d. h. wir streben einen
besseren Kompromiss zwischen dem Ressourcenverbrauch und der
Modellgenauigkeit an.

In dieser Doktorarbeit untersuchen wir vier intelligente Edge-
Szenarien und entwickeln verschiedene Methoden, um Deep Learning in
jedem Szenario zu ermdglichen. Da aktuelle DNNSs oft {iberparametrisiert
sind, ist unser Ziel, die Redundanz der DNNss in jedem Szenario zu finden
und zu reduzieren. Wir fassen die vier untersuchten Szenarien wie folgt
zusammen,

¢ Inferenz auf Edge-Geriten. Erstens ermoglichen wir eine effiziente
Inferenz von DNNs angesichts der festen Ressourcenbeschrankun-
gen auf Edge-Gerdten. Im Vergleich zur Cloud-Inferenz wird bei
der Inferenz auf Edge-Geriten die Ubertragung der Daten an den
Cloud-Server vermieden, wodurch eine stabilere, schnellere und
energieeffizientere Inferenz erreicht werden kann. In Bezug auf
die wichtigsten Ressourcenbeschrankungen, die sich aus der Spei-
cherung einer grofien Anzahl von Gewichten und Berechnungen
wiahrend der Inferenz ergeben, haben wir eine Adaptive Loss-
aware Quantization (ALQ) fiir Multibit-Netzwerke vorgeschlagen.
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ALQ reduziert die Redundanz in der Quantisierungsbitbreite.
Das direkte Optimierungsziel (d. h. der Verlust) und die erlernte
adaptive Bitbreitenzuweisung ermoglichen es ALQ, Netze mit
extrem niedrigen Bits mit einer durchschnittlichen Bitbreite unter
1-Bit zu erfassen und gleichzeitig eine hohere Genauigkeit als
moderne binédre Netze zu erzielen.

Anpassung auf Edge-Gerditen. Zweitens ermoglichen wir eine
effiziente Anpassung von DNNs, wenn sich die Ressourcenbe-
schrankungen auf den Zielgerdten wahrend der Laufzeit dynamisch
andern, z. B. die erlaubte Ausfiithrungszeit und der zuweisbare
RAM. Um die Modellgenauigkeit wahrend der Inferenz auf dem
Geridt zu maximieren, entwickeln wir einen neuen Syntheseansatz,
Dynamic REal-time Sparse Subnets (DRESS), der Subnetze mit
unterschiedlichen Ressourcenanforderungen von einem Backbone-
Netz abtasten und ausfiihren kann. DRESS reduziert die Redundanz
in mehreren Subnetzen durch gemeinsame Nutzung von Gewicht
und Architektur, was zu Speichereffizienz bzw. Rekonfigurations-
effizienz fiihrt. Die erzeugten Subnetze weisen unterschiedliche
Sparsamkeit auf und kénnen daher abgerufen werden, um unter
variierenden Ressourcenbeschrankungen durch Verwendung von
spérliche Tensorberechnungen zu folgern.

Lernen auf Edge-Geriten. Drittens ermoglichen wir ein effizientes
Lernen von DNNSs, wenn Sie mit unsichtbaren Umgebungen oder
Benutzern auf Edge-Gerdten konfrontiert sind. Lernen auf dem
Edge-Gerit erfordert sowohl Dateneffizienz als auch Speicheref-
tizienz. Wir schlagen daher eine neue Meta-Lernmethode p-Meta
vor, die speichereffizientes Lernen mit nur wenigen Datenbeispielen
von unbekannten Aufgaben ermoglicht. p-Meta reduziert die
Aktualisierungsredundanz, indem es nur strukturweise anpas-
sungskritischen Gewichte identifiziert und aktualisiert, wodurch
der notwendige Speicherverbrauch fiir die aktualisierten Gewichte
eingespart wird.

Edge-Server-System. Schliefflich ermoglichen wir effiziente In-
ferenz und effiziente Aktualisierung auf Edge-Server-Systemen.
In einem Edge-Server-System sind mehrere ressourcenbeschrank-
te Edge-Gerdte mit einem ressourcenstarken Server mit einem
eingeschrankten Kommunikationsbus verbunden. Aufgrund der
begrenzten Anzahl relevanter Trainingsdaten im Voraus kénnen
vortrainierte DNNs nach dem anfinglichen Einsatz erheblich
verbessert werden. In einem solchen Edge-Server-System wird die
Inferenz auf dem Gerit der Inferenz in der Cloud vorgezogen, da
sie eine schnelle und stabile Inferenz mit weniger Energieverbrauch



erreichen kann. Aufgrund des begrenzten Speichers und der
begrenzten Rechenleistung auf Edge-Gerédten wird jedoch die Re-
Training in der Cloud gegeniiber der Re-Training auf dem Gerit
(oder foderiertem Lernen) bevorzugt. Wir haben eine neuartige
Pipeline, Deep Partial Updating (DPU) vorgeschlagen, um das
eingesetzte Inferenzmodell iterativ zu aktualisieren. Insbesondere,
wenn neu gesammelte Datenbeispielen von Edge-Gerédten oder
aus anderen Quellen auf dem Cloud-Server verfiigbar sind,
wihlt der Server intelligenterweise nur eine Teilmenge kritischer
Gewichte aus, um sie zu aktualisieren und an jedes Edge-Gerit
zu senden. Diese gewichtsméfliige Teilaktualisierung reduziert
die redundante Aktualisierung durch Wiederverwendung der
vortrainierten Gewichtungen, wodurch eine dhnliche Genauigkeit
wie bei der vollstandigen Aktualisierung erreicht wird, jedoch mit
deutlich geringeren Kommunikationskosten.
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Introduction

Deep learning is a new disruptive technology that extremely drives the
development of artificial intelligence. Deep neural networks (DNNSs) are
widely used in deep learning, which can make predictions according to
the given inputs. A DNN consists of a large number of cascaded layers,
where each layer often comprises (i) trainable weights that can perform
matrix multiplication on the layer’s input to output extracted features,
(i) a non-linear function that can bring non-linear behaviors. DNNs can
often achieve superior performance than prior computational models or
even human beings in many areas, e.g., computer vision, natural language
processing, mathematics, biochemistry, etc.

In image classification, AlexNet [KSH12] automatically learns the
features by training a deep convolutional neural network with GPUs,
and the competition results on ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) show that AlexNet surpasses the prior classifiers
that are built based on hand-crafted features e.g., random forest and
support vector machine, by a large margin (over 10% accuracy gain).
AlphaGo Zero [SHM™16] reinforce-learns a deep policy model to predict
the movement on the Go board via playing games against itself, and
the learned model can even defeat a human world champion of Go
games. BERT [DCLI19] pretrains deep bidirectional representations
from unlabeled text and then fine-tunes the pretrained model, which
exhibits a better performance in language understanding on SQuAD test
than humans. Recently, graph convolutional neural networks [EAGT19]
have also been applied to many biological and chemical problems e.g.,
predicting protein function, predicting binarized gene expression, etc. As
aresult, DNNsnot only can conduct some intelligent tasks that previously
must rely on cumbersome human efforts in our daily life, but also may
bring new scientific inspirations that are less explored in the long-term
human history.
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1.1 High Resource Demands of DNNs

The high performance of state-of-the-art DNNs benefits from the intensive
resource consumption during both the training phase and the inference
phase.

During the training phase, current DNNs are often optimized on
high-performance cloud servers with a large-scale dataset over a long
time, which may take (i) many human labor resources to prepare the
dataset or the training implementation, (ii) a large amount of time and
money cost, (iif) a remarkable CO2 emission [CGW™20]. For example, the
widely-used DNN ResNet50 [HZRS16] needs to be trained with ImageNet
dataset which contains 1.2 million well-labeled internet images collected
from 1000 balanced fine classes; the GPT-3 model published by OpenAl
[BMR*20] takes 3.14 x 10 floating-point multiply-accumulate operations
(FLOPs) for a single training run, which equivalent to 355 GPU-years
and 4.6M US dollars, according to the theoretical 2.8 x 10'® FLOPs of
high-performed Nvidia V100 GPU and the lowest 3-year reserved cloud
pricing we could find [Ope20].

Even during the inference phase, the pretrained DNNSs still demand
a rather significant amount of computing resources from e.g., memory,
computation, latency, and energy. For example, the Faster-RCNN model
[RHGS15] requires several hundreds of GFLOPs for a single inference,
thus can only achieve around 5 frames per second for object detection
on a state-of-the-art GPU; the current language models [BMR*20] contain
billions of parameters which often require several GPUs with GB-level
memory on a cloud server with high-bandwidth communication bus for
the parallelism during inference. Note that the state-of-the-art GPU often
has a minimal operation power requirement of around 500W [Nvi22]. All
the examples mentioned above indicate the inherent resource-intensive
characteristics of DNN.

However, the resource demands of DNNs still keep growing. Asnoted
in [BSH*21]], although the state-of-the-art DNNs continuously improve
the accuracy level, the number of parameters (as well as the number
of FLOPs) in these DNNs also increases along the years, even with an
exponential increasing rate, as shown in Figure On the other hand,
the research and development of hardware often require a long cycle
and a high investment. As a result, the growth rate of the model size
is far larger than the growth rate of the computing power of the state-
of-the-art high-performance computers, e.g., GPUs. For example, the
number of parameters has increased more than 2000 times from AlexNet
in 2012 [KSH12] to GPT-3 in 2020 [BMR*20], whereas at the same time, the
memory of Nvidia GPU has only increased 22 times from Geforce GTX
660 to Geforce RTX 3090, and the computing power (FLOPs/second) has
increased around 17 times [Wik22e].
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Figure 1.1: The number of parameters in different DNNSs is exponentially
increased along the years. Note that the two outlying nodes (pink) are
AlexNet and VGG16, now considered over-parameterized. The figure is
originally from [BSH*21].

1.2 Cloud Intelligence

As mentioned above, there exists a large gap between the computing
power of available hardware and the resource demands of DNNs. The
common solution to such a conflict is to gather multiple high-performance
computers and build a cluster-based server in the cloud, also known as
cloud computing [Wik22b]. A cloud server is a group of two or more
computers that can share the computing resource, communicate with
others and distribute the workload of the same task according to the
predefined scheduling system [Cap20]. Some commercial cloud servers
include Amazon Web Services (AWS), Google Cloud, Microsoft Azure,
etc. These cloud servers may contain high-performance computers of
CPUs, GPUs, TPUs, the communication bus with a high bandwidth,
the on-demand shared storage infrastructures, and the high power
supplement.

Particularly,a DNN can be deployed on a cloud server to perform some
resource-intensive intelligent applications e.g., gradient-based training,
machine translation, question answering systems, etc. The high resource
demands from these applications can be delegated to multiple computers,
and if necessary the results from these computers are aggregated
afterwards. Cloud intelligence has become a prevailing solution for
many intelligent services, which require a large amount of resources (e.g.,
memory, computation) whereas a single computer is often not unable to
meet these requirements.
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Figure 1.2: Example edge intelligence applications. From Left to
Right: Augmented/Virtual Reality, Mobile Assistants, Internet of Things,
Autonomous Driving. The images are from Google.

1.3 Edge Intelligence

In addition to cloud intelligence, some new emerging edge intelligent
applications further require us to deploy DNNs on edge devices. The term
edge refers to an entry point [Wik22c]. Accordingly, the collected data
(at the entry point) are processed by DNNSs locally, i.e., on devices. Edge
devices have a large variety, including mobile phones, wearable devices,
sensor nodes, etc. Some example edge intelligent applications (see in
Figure [1.2) include but are not limited to,

e Augmented/Virtual Reality. Augmented/Virtual reality (AR/VR)
can visualize the digital information as the real world via wearable
devices, e.g., glasses Wik22h]. To bridge the gap between
the physical world and the virtual environment, many AR/VR tasks,
e.g., hand detection, eye tracking, digital humans, require deep
learning methods to provide high-quality interaction.

e Mobile Assistants. Mobile assistants are software agents that can
perform tasks or services on mobile platforms for an individual
based on commands or questions [Wik22g]. Individual users
can input voice, images, or text to mobile assistants. Given the
inputs from users, DNNs are utilized to recognize, understand, and
communicate with users.

e Internet of Things. Internet of Things (IoT) describes physical
objects with sensors, processing ability, software, and other
technologies that connect with other devices over communication
networks [Wik22d]. IoT applications use DNNs for automatic
sensing and reasoning, e.g., detecting intruders in a “smart home”
monitor system.

e Autonomous Driving. Autonomous cars can sense their surround-
ings and move safely with little or no human inputs [Wik22f].
Thanks to the rapid development of deep learning, many DNN5s
in computer vision tasks, e.g., object detection, 3D localization,
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Figure 1.3: Comparison between deep learning on cloud and deep
learning on edge. The figure is originally from [Sor21].

semantic segmentation, have been widely adopted to interpret
sensory information and identify appropriate navigation paths.

In comparison to cloud intelligent applications, edge intelligent
applications have the following advantages, (i) it does not encounter
privacy issues and can be used on sensitive/confidential data, as the
data are processed locally; (ii) it reduces the reliance on the cloud
server, and can achieve a stable inference even with congested/interrupted
communication channels; (iii) it can realize a real-time inference if the
communication bandwidth is limited; (iv) it can save energy by avoiding
to transfer data to the cloud server which often costs significant amounts
of energy than sensing and computation [PW19, Guo18, LCI"19].

Unfortunately, deploying DNNs on edge devices is not trivial, as
current DNN5s contradict the resource-constrained nature of edge devices.
Unlike plenty of high-performance computers (e.g., GPUs and TPUs) in
the cloud server, the processors on edge devices are commonly mobile
SoCs, NPUs, or even MCUs, which have a rather small amount of
resources and limited scalability. We compare the difference between
deep learning on the cloud server and deep learning on edge devices
in Figure The edge devices often use battery-driven energy and
have only several KB to MB allocatable RAM. Their parallel computing
capabilities are also relatively low due to the small number of computing
cores. In addition, the number of user data collected on edge devices
is also limited in comparison to the large-scale datasets used in cloud
training. To deploy DNNs on these edge devices, the complexity of
DNNs needs to be trimmed down to fit the limited resource budget.
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1.4 Thesis Outline

In this thesis, we will study how to enable deep learning on edge devices
in different scenarios. Deploying DNNs on edge devices always targets
a trade-off between the resource demands and the model accuracy. Since
DNNs often consume a large amount of resources, we hypothesize that
there exists redundancy in the DNNs. Our goal is to identify and reduce
the redundancy according to the main resource constraints in different
scenarios. This thesis is partitioned into four separate scenarios. In each
scenario, we will (i) analyze its main resource constraints, (ii) review the
drawbacks in the currently available solutions, (iii) propose our solution
to reduce the redundancy in the DNNs; (iv) verify the effectiveness of our
solution experimentally or theoretically. The four studied scenarios are
summarized as follows.

1.4.1 Inference on Edge Devices (Chapter[2)

Scenario. We first enable an efficient inference on edge devices. Inference
on edge devices does not rely on the connection to the cloud server, thus
it is especially preferred if the communication is highly constrained, or
a stable and fast inference is required. The main resource constraints
of inference on edge devices are the limited static storage and the
limited computational ability, as DNNs often contain a large number
of parameters to be stored and require a large number of FLOPs for
inference. In this scenario, according to the given resource constraints
on edge devices, we train a compressed DNN on a cloud server with a
large-scale dataset collected beforehand. The well-trained compressed
network is then deployed on the edge devices and is able to conduct
inference with limited resources.

Related Work. To reduce the storage cost and the computation cost,
plenty of works propose to (i) design efficient network architectures
manually [HZC™17, SHZ"18] or automatically using neural architecture
search methods [CGW™20, YH19a| YJL*20]; (i7) quantize weights into
lower bitwidth to use cheaper operations and reduce the storage
consumption [CBD15, RORF16, ZYYH18]; (iii) structured [LMZ*19,
LWST20]/unstructured [HMD16, REC20, EGM™21] pruning unimportant
weights as zeros to reduce the number of operations and the number of
nonzero weights. We focus on quantizing a pretrained DNN into multi-
bit form among others for the following reasons, (i) it utilizes the cheaper
operations of bitwise xnor and popcount to replace expensive FLOPs;
(if) it achieves a high compression ratio without introducing irregular
computations; (iii) it explores the lower bound of quantized networks.
The state-of-the-art multi-bit networks [GLYB14, GYZC17, HWC1S,
LZP17, XYL"18,ZYYH]18] first assign an empirical global bitwidth across
layers and then are optimized by minimizing the reconstruction error to
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the full precision weights, which often results in a subpar performance.

Our Solution. To resolve the above drawbacks, we propose an adaptive
loss-aware trained quantizer for multi-bit quantization, that (i) allocates
an adaptive bitwidth to different weights w.r.t. the loss, (ii) optimizes the
multi-bit quantizer by directly minimizing the loss. We aim at reducing
the redundant quantization bitwidth of the weights that are less critical to
the loss, to achieve a better trade-off between the model accuracy and the
resource demands.

1.4.2 Adaptation on Edge Devices (Chapter[3)

Scenario. The compressed DNNs trained with the methods in Chapter
can achieve an efficient inference, if the available resources on edge
devices are fixed and provided before training on the cloud server.
However, the resource constraints on the target edge devices may
dynamically change during runtime e.g., the allowed execution time,
the allocatable RAM, and the battery energy. To maximize the model
accuracy during on-device inference, the deployed DNN should maintain
a dynamic capacity, such that the DNN can be adapted and executed
under varying resource constraints. In order to quantify the varying
resource constraints mentioned earlier, we choose two proxies, (i) the
storage of weights, which affects the amount of memory fetching and
static memory consumption, and (i7) the number of operations for
inference, which is relevant to the computing energy and the inference
latency.

Related Work. The most straightforward solution could be for example
deploying multiple individual compressed DNNs with different resource
demands on edge devices, yet it consumes several times more storage
than a single DNN. Some prior works [HCL™18, HDHB17, YYX"19,
YH19b|, CGW 20, [LN20] proposed to optimize a backbone network (a.k.a.
supernet), such that different candidate sub-networks can be sampled
from the backbone network while reaching a similar accuracy level as
training them individually. However, these works often sample sub-
networks along hand-crafted structured dimensions, e.g., kernel size,
width, depth, thus the generated sub-networks have different network
architectures. This not only results in a sub-optimal performance but also
leads to extra re-configuration overhead for storing multiple compiled
network architectures.

Our Solution. We overcome the above disadvantages through sampling
sub-networks in a row-based unstructured manner, and propose a novel
compressed sparse row (CSR) format to efficiently execute different
sub-networks on edge devices. Our solution reduces the architecture
redundancy by reusing a single compiled network architecture among
multiple sparse sub-networks, achieving re-configuration efficiency. In
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addition, we also reduce the weight redundancy by imposing nonzero
weight sharing among sub-networks, achieving storage efficiency.

1.4.3 Learning on Edge Devices (Chapter[)

Scenario. In Chapter 2|and Chapter 3, we train a compressed DNN on a
cloud server with a large number of available data samples, such that this
pretrained DNN can be deployed on edge devices to conduct inference
under fixed and varying resource constraints, respectively. However,
the pretrained DNN may not achieve satisfactory performance when
the inference environments on edge devices have a large variance in
comparison to the prior environments used to collect data samples for
cloud training. In other words, when facing unseen environments or
users on edge devices, it is crucial to adapt the pretrained DNN to
deliver consistent performance and customized services. New data
samples collected by edge devices are often private and have a large
diversity across users/devices. Hence, on-device learning is preferred
over uploading the data to cloud server. Compared to the number of
data samples used in cloud training, the number of collected data on
each edge device is significantly smaller (a.k.a. few-shot) due to the
limited labor resources. Furthermore, training a DNN, i.e., optimizing
its weights, requires storing all the intermediate values of each layer,
which often consumes several orders of magnitude more peak memory
than inference. Thus, in this scenario, we target memory-efficient and
data-efficient on-device learning.

Related Work. Meta learning is a prevailing solution to few-shot learning
[HAMS20], where the meta-trained model can learn an unseen task from
a few training samples, i.e., data-efficient learning. However, most meta
learning algorithms [AES19, FAL17, VOZK*21|] optimize the backbone
network for better generalization yet ignore the workload if the meta-
trained backbone is deployed on low-resource edge platforms for few-
shot learning. Existing memory-efficient training schemes include for
example, low-precision training [CBG*20, WCB*18|, trading memory
with computation [CXZG16, GMD™16]. However, they are mainly
designed for high-throughput cloud training on large-scale datasets,
which are not suitable for on-device learning with only a few data
samples.

Our Solution. We ground our work (i.e., memory-efficient few-shot
learning) on gradient-based meta learning methods for their wide
applicability in various tasks. To avoid the high dynamic memory cost
in few-shot learning, we focus on reducing the updating redundancy. In
other words, we think not all weights in the learner are equally critical
for adaptation. Thus, we propose to meta-train a selection mechanism,
which can identify and update adaptation-critical weights only during
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few-shot learning. This way, only the relevant subset of the intermediate
values needs to be stored, leading to memory efficiency.

1.4.4 Edge-Server-System (Chapter|[5)

Scenario. In Chapter [2, Chapter 3|and Chapter @ we explored enabling
deep learning on a single edge platform in three different scenarios. In
addition to a single edge device, edge-server system is another commonly
used infrastructure for edge intelligent applications. In edge-server
system, several edge devices are connected to a remote server, and
some information is allowed to be communicated between edge devices
and the server. In Chapter 5, we design a new pipeline to enable
efficient inference and efficient updating for edge-server system. On
such an edge-server system, on-device inference is preferred over cloud
inference, since it can achieve a fast and stable inference with less energy
consumption. Due to a possible lack of relevant training data at the initial
deployment, pretrained DNNs may either fail to perform satisfactorily
or be significantly improved after the initial deployment. However, the
resources on edge devices are often limited e.g., memory, computing
power, and energy; the wireless communication is also constrained,
e.g., limited bandwidth. An efficient updating/learning that satisfies the
resource constraints mentioned above is needed.

Related Work. Communication-efficient federated learning [LHM™18,
KMA™19, [LSW720] studies how to compress multiple gradients (to be
communicated to the server) calculated on different sets of non-i.i.d. local
data, such that the aggregation of these (compressed) gradients could
result in a similar convergence performance as centralized training on all
data. However, federated learning (as well as other on-device retraining
methods) has the following main shortages, (i) it conducts resource-
intensive gradient calculation on edge devices; (ii) the collected data are
continuously accumulated on memory-constrained edge devices; (iii) it
needs to label a large number of samples on edge devices.

Our Solution. We propose a two-stage iterative process for a continuous
improvement of the deployed model’s accuracy, (i) at each round, edge
devices collect new data samples and send them to the server, and (ii)
the server retrains the network using all collected data, and then sends
the updates to each edge device. An essential challenge herein is that the
transmissions in the server-to-edge stage are highly constrained by the
limited communication resource (e.g., bandwidth, energy) in comparison
to the edge-to-server stage for the following reasons. (i) A batch of
samples that can lead to reasonable updates is relatively smaller in size
than the DNN model, especially for the low-resource data type used on
edge devices; (ii) the server may also receive data from other sources, e.g.,
through data augmentation or new data collection campaigns. We reduce
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the communication cost in the server-to-edge stage by distinguishing the
redundant updated weights given newly collected samples. In our proposed
solution, the server only selects and updates a small subset of critical
weights that have a large contribution to the loss reduction during the
retraining.

In the rest of this thesis, we first present our four scenarios of enabling
deep learning on edge devices, i.e., inference on edge devices in Chapter[2)
adaptation on edge devices in Chapter |3, learning on edge devices in
Chapter[d] edge-server-system in Chapter[5} respectively; finally conclude
and discuss the future work in Chapter|6]



Inference on Edge Devices

We attempt to enable an efficient inference of DNNs on resource-
constrained edge devices in this chapter. Particularly, we focus on
quantizing a pretrained DNN to fit the given resource constraints on
edge devices while with the minimal accuracy drop.

Main Resource Constraints. State-of-the-art DNNSs often contain a large
number of floating-point weights and require a significant amount of
floating-point multiply-accumulate operations, which are essential for
conducting accurate inference. However, edge devices have neither
powerful computational ability nor enormous storage. Thus, for inference
on edge devices, we consider that the main resource constraints are the
limited static storage and the limited computing power.

Principles. Unlike prior quantized networks that (i) often assign
an empirical global bitwidth across layers, (ii) train the quantizer
by minimizing the reconstruction error to the full precision weights,
we propose an adaptive loss-aware trained quantizer for multi-bit
quantization, that (i) allocates an adaptive bitwidth to different weights
w.r.t. theloss, (i7) optimizes the multi-bit quantizer by minimizing the loss.
The adaptive bitwidth assignment and the direct optimization objective
allow our methods to find and remove more redundant bitwidth, thus
achieving both storage efficiency and computation efficiency.

The contents of this chapter are established mainly based on the
paper “Adaptive Loss-aware Quantization for Multi-bit Networks” that
is published on IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.
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2.1 Introduction

To take advantage of the various pretrained models for efficient
inference on resource-constrained edge devices, it is common to
compress the pretrained models via pruning [HMD16], quantization
[GLYB14, GYZC17, [LZP17, XYL*18| ZYYH18], among others. We focus
on quantization, especially quantizing both the full precision weights
and activations of a deep neural network into binary encodes and
the corresponding scaling factors [CBD15, IRORF16], which are also
interpreted as binary basis vectors and floating-point coordinates in
a geometry viewpoint [GYZC17]. Neural networks quantized with
binary encodes replace expensive floating-point operations by bitwise
operations, which are supported even by microprocessors and often result
in small memory footprints [MNCM18]. Since the space spanned by
only one-bit binary basis and one coordinate is too sparse to optimize,
many researchers suggest a multi-bit network (MBN) [GLYB14, GYZC17,
HWC18| LZP17, XYL*18, ZYYH18], which allows to obtain a small size
without notable accuracy loss and still leverages bitwise operations.
An MBN is usually obtained via quantization-aware training. Recent
studies [PIT18] leverage bit-packing and bitwise computations for
efficient deploying binary networks on a wide range of general devices,
which also provides more flexibility to design multi-bit/binary networks.

Challenges. Most MBN quantization schemes [GLYB14, IGYZC17,
HWC18, [LZP17, XYL*18, ZYYH18] predetermine a global bitwidth, and
learn a quantizer to transform the full precision parameters into binary
bases and coordinates such that the quantized models do not incur a
significant accuracy loss. However, these approaches have the following
drawbacks:

o A global bitwidth may be sub-optimal. Recent studies on fixed-point
quantization [KL18, LTA16] show that the optimal bitwidth varies
across layers.

e Previous efforts [LZP17,XYL*18,ZYYH18| retain inference accuracy
by minimizing the weight reconstruction error rather than the loss
function. Such an indirect optimization objective may lead to a
notable loss in accuracy. Furthermore, they rely on approximated
gradients, e.g., straight-through estimators (STE) to propagate
gradients through quantization functions during training.

e Many quantization schemes [RORF16, ZYYHI18] keep the first
and last layer in full precision empirically, because quantizing these
layers to low bitwidth tends to dramatically decrease the inference
accuracy [WSL*18, MM18]. However, these two full precision
layers can be a significant storage overhead compared to other low-
bit layers (see Section 2.6.5.3). Also, floating-point operations in
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both layers can take up the majority of computation in quantized
networks [LRB19].

We overcome the above challenges and drawbacks via a novel
Adaptive Loss-aware Quantization scheme (ALQ). Instead of using a
uniform bitwidth, ALQ assigns an adaptive different bitwidth to each
group of weights. More importantly, ALQ directly minimizes the loss
function w.r.t. the quantized weights, by iteratively learning a quantizer
that (/) smoothly reduces the number of binary bases (also the quantization
bitwidth) and (ii) alternatively optimizes the remaining binary bases and
the corresponding coordinates.

2.2 Related Work

ALQ follows the trend to quantize the DNNs using discrete bases
with lower bitwidth to reduce expensive floating-point operations as
well as the static storage consumption. Commonly used bases include
tixed-point [ZWN*16], power of two [HCS*17, ZYG*17], and {-1,0, +1}
[CBD15, RORF16]. We focus on quantization with binary bases i.e.,
{=1, +1} among others for the following considerations. (i) If both weights
and activations are quantized with the same binary basis, it is possible to
evaluate 32 floating-point multiply-accumulate operations (FLOPs) with
only 3 instructions on a 32-bit microprocessor, i.e., bitwise xnor, popcount,
and accumulation. This will significantly speed up the conv operations
[HCST17,[PTT18]. (i) Multi-bit quantization can be considered as the non-
uniform counter-part of fixed-point (integer) quantization. A network
quantized to fixed-point requires specialized integer arithmetic units
and/or specialized integer storage units with various bitwidth for efficient
computing [ADJ 717, KL18], whereas a network quantized with multiple
binary bases adopts the same operations mentioned before as binary
networks. Therefore, multi-bit networks may also achieve a hardware
efficiency than fixed-point network in adaptive bitwidth quantization.
Popular networks quantized with binary bases include Binary Networks
and Multi-bit Networks.

2.21 Quantization for Binary Networks

BNN [CBD15] is the first network with both binarized weights and
activations. It dramatically reduces the memory and computation
but often with notable accuracy loss. To resume the accuracy
degradation from binarization, XNOR-Net [RORF16] introduces a
layerwise full precision scaling factor into BNN. However, XNOR-Net
leaves the first and last layers unquantized, which consumes more
memory. SYQ [FEBL18] studies the efficiency of different structures
during binarization/ternarization. LAB [HYK17] is the first loss-aware
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quantization scheme which optimizes the weights by directly minimizing
the loss function.

ALQ is inspired by recent loss-aware binary networks such as LAB
[HYK17]. Loss-aware quantization has also been extended to fixed-point
networks in [HK18]. However, existing loss-aware quantization schemes
proposed for binary and ternary networks [HYK17, HK18|, ZYWC18]| are
inapplicable for MBNs. This is because multiple binary bases dramatically
extend the optimization space with the same bitwidth (i.e., an optimal set
of binary bases rather than a single basis), which may be intractable. Some
proposals [HYK17, HK18| ZYWC18] still require full-precision weights
and gradient approximation (backward STE and forward loss-aware
projection), introducing undesirable errors when minimizing the loss.
In contrast, ALQ is free from gradient approximation.

2.2.2 Quantization for Multi-bit Networks

MBNss denote networks that use multiple binary bases to trade-off storage
and accuracy. Gong et al. propose a residual quantization process,
which greedily searches the next binary basis by minimizing the residual
reconstruction error [GLYB14]. Guo et al. improve the greedy search
with a least square refinement [GYZC17]. Xu et al. [XYL"18|] separate
this search into two alternating steps, fixing coordinates then exhausted
searching for optimal bases, and fixing the bases then refining the
coordinates using the method in [GYZC17]. LQ-Net [ZYYH18] extends
the scheme of [XYL"18] with a moving average updating, which jointly
quantizes weights and activations. However, similar to XNOR-Net
[RORF16], LQ-Net [ZYYH18] does not quantize the first and last layers.
ABC-Net [LZP17] leverages the statistical information of all weights to
construct the binary bases as a whole for all layers.

All the state-of-the-art MBN quantization schemes minimize the
weight reconstruction error rather than the loss function of the network.
They also rely on the gradient approximation such as STE when back
propagating the quantization function. In addition, they all predetermine
a uniform bitwidth for all parameters. The indirect objective, the
approximated gradient, and the global bitwidth lead to a sub-optimal
quantization. ALQ is the first scheme to explicitly optimize the loss
function and incrementally train an adaptive bitwidth while without
gradient approximation.

2.3 Preliminaries and Notations

We aim at multi-bit quantization with an adaptive bitwidth on a DNN
consisting of L convolutional (conv) layers or fully connected (fc) layers.
To simplify the notation, we start the discussion with a single layer and
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extend to the entire network with L layers in the implementation section
Section2.4.4]

For a conv/fc layer, its weights dominate the resource consumption
of storage and computation than other parameters, e.g., bias, batch
normalization. We thus judiciously focus on quantizing the weight tensor
of the conv/fc layer I. To allow an adaptive bitwidth, we structure the
weight tensor of the layer [ in disjoint groups. The weights in a single
group will be quantized into the same bitwidth, whereas different group
may have an adaptive different bitwidth. Specifically, for the vectorized
weight tensor w; € RN of layer I, we divide w; into G disjoint groups.
For simplicity, we omit the subscript [ in the following discussion. Each
group of weights is denoted by w,, where w, € R* and N = n X G. In
other words, the overall N weights in layer [ are evenly partitioned into G
groups, see more details in Section Then the multi-bit quantized
weights b, of group ¢ are formulated as,

I‘Z

S

e = ) i} = Byoyg @.1)

i=1

where 3; € {-1,+1}"! and o; € R, are the i-th binary basis and the
corresponding coordinate; I, represents the quantization bitwidth, i.e.,

the number of binary bases, of group g. B, € {-1,+1}": and o, € ]R{le
are the matrix forms of the binary bases and the coordinates. We further
denote o = a1 as vectorized coordinates o of all weight groups, and
B = B as concatenated binary bases B, of all weight groups. A layer
quantized as above yields an average bitwidth

1 G
I= Z I, (2.2)
g=1

Ql

2.4 Adaptive Loss-Aware Quantization

241 Weight Quantization Overview

Problem Formulation. ALQ quantizes weights by directly minimizing
the loss function rather than the reconstruction error. For layer /, the
process can be formulated as the following optimization problem.

min £ (1) (2.3)
w1.G
18
st g=) af= By Vgel,.,G 2.4)

i=1

card(a) = I X G < Ipyin X G (2.5)
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Figure 2.1: The figure depicts the overall approach of ALQ. In
Initialization Step, the pretrained full precision weights are separated
into disjoint groups and then are quantized into an 8-bit multi-bit form.
In Pruning Step, we search an adaptive different bitwidth for each group
of weights by removing the unimportant a’s w.r.t. the loss. Based on the
searched bitwidth assignment, we further conduct an Optimization step
to train the remaining binary bases B, and coordinates c;. Both Pruning
Step and Optimization Step are conducted iteratively.

min { ()

s.t. card(a) < Iiyin x G

Pruning Step

where ¢ is the loss; card(.) denotes the cardinality of the set, i.e., the total
number of elements in o; Inin is the desirable average bitwidth, which is
determined by the storage constraints on edge devices. Since the group
size n is the same in one layer, card(a) is proportional to the storage
consumption.

Solution Pipeline. The constrained domain of Eq. and Eq.
are both discrete and non-convex. Directly conducting an exhaustive
searching is NP-hard and infeasible on current DNNs. Therefore, we
propose to narrow down the search space and disentangle the constraints
into two sub-problems. Particularly, our ALQ solves the optimization
problem in Eq. (2.3)-Eq. by three steps. The overall approach is
shown in Figure The pseudocode of the entire pipeline is illustrated

in Algorithm [2.5/in Section2.4.4.4

e Initialization Step: Structured Sketching (Section [2.4.4.1). In this

step, we adapt the network sketching in [GYZC17], and propose
a structured sketching algorithm. It first partitions the pretrained
full precision weights w into G groups; then quantizes each w, into
its 8-bit multi-bit form 0, by greedily searching the optimal binary
basis vector 3; and the optimal scaling factor «;. This step not only
provides a good initial point for the following steps, but also restricts
each group to a maximal 8-bit to reduce the search space.

e Pruning Step: Pruning in a Domain (Section m and Sec-
tion 2.4.4.2). This step starts from the initialized 8-bit network
obtained in Initialization Step, and then progressively reduces the
average bitwidth I by pruning the least important (w.r.t. the loss)
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coordinates in o domain. Note that removing an element «a; will
also lead to the removal of the binary basis 3;, which in effect results
in a smaller bitwidth I, for group g¢. This way, no sparse tensor is
introduced. Note that sparse tensors could lead to a detrimental
irregular computation. Since the importance of each weight group
differs, the resulting I, varies across groups, and thus contributes
to an adaptive bitwidth I, for each group. In this step, we only set
some elements of o to zero (also remove them from « leading to
a reduced [,) without changing the others. The sub-problem for
Pruning Step is:

min £ (a) (2.6)
s.t.  card(a) < Ihin X G (2.7)

e Optimization Step: Optimizing Binary Bases B, and Coordinates
o (Section 2.4.3] and Section 2.44.3). In this step, we retrain
the remaining binary bases and coordinates to recover the
accuracy degradation induced by the bitwidth reduction. Similar
to [XYL"18], we take an alternative approach for better accuracy
recovery. Specifically, we first search for a new set of binary
bases w.r.t. the loss given fixed coordinates. Then we optimize
the coordinates by fixing the binary bases. The sub-problem for

Optimization Step is:
min £ (i) 2.8)
w1:G6
18
st bg=Y af=Beg Vgel,.,G 2.9)

i=1

For a higher accuracy, state-of-the-art unstructured pruning methods
[HMD16| [FC19] often conduct pruning and sparse fine-tuning iteratively
rather than the one-shot manner. Similarly, we also conduct our Pruning
Step and our Optimization Step iteratively until the average bitwidth
reaches the desired bitwidth. Namely, the original problem of Eq. (2.3)-

Eq. is decoupled into two sub-problems of Eq. (2.6)-Eq. and
Eq. 2.8)-Eq. (2.9), and the two sub-problems are solved iteratively.

Optimizer Framework. We consider both Pruning Step and Optimization
Step above as an optimization problem with domain constraints, and solve
them using the same optimization framework: subgradient methods with
projection update [DHS11].

The optimization problem in Eq. (2.8)-Eq. imposes domain
constraints on B, because they can only be discrete binary bases. The
optimization problem in Eq. (2.6)-Eq. can be considered as with a
trivial domain constraint: the output a should be a subset (subvector)
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of the input a. Furthermore, the feasible sets for both B, and « are
bounded.

Subgradient methods with projection update are effective to solve
problems in the form of ming(€(0)) s.t. 6 € © [DHS11]. We apply
AMSGrad [RKK18], an adaptive stochastic subgradient method with
projection update, as the common optimizer framework in Pruning Step
and Optimization Step. At training iteration s, AMSGrad generates the
next update as,

05+1 = H@ \/5(95 - llsms/ \/5)

= argmin ||( VV*)"%(0 — (6° —
oo Vo

where IT is a projection operator; © is the feasible domain of 8; 4° is the
learning rate; m’° is the (unbiased) first momentum; ¥° is the (unbiased)
maximum second momentum; and V* is the diagonal matrix of ¥°.

In our context, Eq. can be written as,

(2.10)

w3 = aggr;‘}\i/n 1o (wy,) (2.11)
fo=@m?)! (w; — y) + wg — )" VVs(awg - W3) (2.12)

where W is the feasible domain of W.

Pruning Step and Optimization Step have different feasible domains
of W according to their objective (see details in Section and Sec-
tion 2.4.3). Eq. approximates the loss increment incurred by ,
around the current point wy; as a quadratic model function under domain
constraints [DAVB15, DHS11| RKK18]. For simplicity, we replace a°*m’

with g° and replace \/% with H®. g° and H* are updated by the loss
gradient of ;. Thus, the required input of each AMSGrad step is 9(°/dy;.
It can be directly obtained during the backward, since wy; is used as an
intermediate value during the forward, .

2.4.2 Pruning in a Domain

As introduced in Section we reduce the average bitwidth I by
pruning the elements in o w.r.t. the resulting loss. If one element «;
in o is pruned, the corresponding dimension g; is also removed from B.
Now we explain how to instantiate the optimizer in Eq. to solve
Eq. (2.6)-Eq. of Pruning Step.

As discussed above, pruning in o domain is regarded as an
optimization problem solved in multiple training iterations. Thus, the
cardinality of the chosen subset (i.e., the average bitwidth) is uniformly
reduced over training iterations. For example, assume there are T training
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iterations in total, the initial average bitwidth is I° and the desired
average bitwidth after T iterations I” is I,. Then at each iteration f,
(M, = (I° = Iwin) X G/T) of a!’s are pruned. This way, the cardinality after
T iterations will be smaller than I,;, X G.

When pruning in the o domain, B is considered as invariant. Hence

Eq. (2.11) and Eq. (2.12) become,

o' = argmin f! () (2.13)
acA
fi= (@l (e~ ') + 50— o) Hi (e~ o) 2.14)

where ¢!, and H! are similar to the ones in Eq. but are in the
o domain. If a! is pruned, the i-th element in « is set to 0 in the
above Eq. and Eq. (2.14). Thus, the constrained domain A is taken
as all possible vectors with M, zero elements in o'.

AMSGrad uses a diagonal matrix of H, in the quadratic model
function, which decouples each element in . This means the loss
increment caused by several &} equals the sum of the increments caused
by them individually, which are calculated as,

1
i = &b+ 5 HL () (2.15)

2 o,ii
All items of f/ . are sorted in ascending. Then the first M, items (a}) in
the sorted list are removed from o, and results in a smaller cardinality

I' X G. The input of the AMSGrad step in & domain is the loss gradient of
t

o, which can be computed with the chain rule,
ot T ol
— = — (2.16)
8atg g 9'w§
~t _ ot ot
w, = Ba, (2.17)

Our pipeline allows to reduce the bitwidth smoothly, since the
average bitwidth can be floating-point. In ALQ, since different layers
have a similar group size (see in Section [2.6.2.1), the loss increment
caused by pruning is sorted among all layers, such that only a global
pruning number needs to be determined. More details are explained
in Section This Pruning Step not only provides a loss-aware
adaptive bitwidth, but also seeks a better initialization for the successive
Optimization Step, since low-bit quantized weights may be relatively far
from their original full precision values.

2.4.3 Optimizing Binary Bases and Coordinates

After pruning, the loss degradation needs to be recovered. Follow-
ing Eq. (2.11), the objective in Optimization Step is
W3 = argmin f°(wy) (2.18)
wWeeW
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The constrained domain W is decided by, both binary bases and full
precision coordinates. Hence directly searching for the optimal w, is
NP-hard. Instead, we optimize B, and c, in an alternative manner, as
prior multi-bit quantization works [XYL*18| ZYYH18] that minimize the
reconstruction error.

Optimizing B,. We directly search for the optimal bases with AMSGrad.
In each training iteration g, we fix a}, and update B. We find the optimal
increment for each group of weights, such that it converts to a new set of
binary bases, Bg”. This Optimization Step searches a new space spanned

by B(ZJr1 based on the loss reduction, which prevents the pruned space to
be always a subspace of the previous one.
According to Eq. and Eq. (2.12), the optimal B; w.r.t. the loss is
updated by,
B!" = argmin fi(B,) (2.19)
Bge{-1,+1}"™18

. 1 . .
f1= (gq)T(BgaZ - wg) + E(BSO‘Z — wZ)TH”’(BgaZ - 'wZ,) (2.20)

~0 _ i,
where Wy = Bgag.

Recall that Bg € {-1,+1}"™%. Since H is diagonal in AMSGrad, each
row vector in BZ+1 can be independently determined. For example, the
j-th row is computed as,

Bg;l = argmin ||Bg,]-az — (ZT)Z,,]. - g‘}/H?j)H, jel, ., n (2.21)

8]

Since in general n >> I, to reduce the computation complexity, we firstly
compute all 2's possible values of

b'al

1, ble(-1,+1)% (2.22)

Then each row vector Bg;l can be directly substituted with the optimal
b through an exhaustive searching in 2's values.

Optimizing a;. The above obtained set of binary bases B, spans a new
I,-dim linear space, which is a subspace of original n-dim full space. The
current a, is unlikely to be the optimal point in this I,-dim space, so now
we optimize a,. Since oy is in full precision, ie., a; € R there is
no domain constraint and thus no need for projection updating. Similar
to optimizing full precision w,, conventional training strategies can be
directly used to optimize c,.

Similar to Eq. and Eq. (2.14), we use AMSGrad optimizer in «
domain without projection updating, for each group in the p-th training
iteration as,

p+1 p p

o, =g — al,ml, | | DL, (2.23)
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We also add an L2-norm regularization on a, to enforce unimportant
coordinates to zero. If there is a negative value in «, the corresponding
basis is set to its negative complement, to keep a, semi-positive definite.
Optimizing B, and o, does not influence the number of binary bases I,.

Optimization Speedup. Since o is full precision, updating az, is much
cheaper than exhaustively search Bgﬂ. Even if the main purpose of

the first step in Optimization Step is optimizing bases, we also add an

updating process for oy in each training iteration .

We fix BgH, and update «f. The overall increment of quantized
weights from both updating processes is,

’LBZ;H B ﬁ’g _ Bg+1aqg+1 _ Bgai (2.24)
Substituting Eq. (2.24) into Eq. (2.11) and Eq. (2.12), we have,
o = ~(By ) H'BY) x (B (¢' - H'Byo)  (225)

To ensure the inverse in Eq. (2.25) exists, we add a small diagonal matrix
Al 'to Eq. (2.25),

ol = ~((BIYTHIBI™ + Al x (BI) (g7 - H'Blad))  (2.26)

where A = 107°.

2.4.4 Implementation

In this section, we discuss the detailed implementation of ALQ. We
elaborate the pseudocodes of three steps and analyze their complexity.
Note that the discussion in this section is extended to the entire networks
with L layers, thus we reintroduce the layer index ! for clarity reasons.

2.4.4.1 Implementation of Initialization Step

We adapt the network sketching in [GYZC17], and propose a structured
sketching algorithm for Initialization Step, see Algorithm This
algorithm partitions the pretrained full precision weights w; of the I-
th layer into G; groups. We study the different structures of grouping in
Section The vectorized weights w;, of each group are quantized
with [}, linear independent binary bases (i.e., column vectors in B;,) and
corresponding coordinates cy, to minimize the reconstruction error. This
algorithm initializes the matrix of binary bases B; 4, the vector of floating-
point coordinates ¢, and the scalar of integer bitwidth I, in each group
across layers. The initial reconstruction error is upper bounded by a
threshold ¢. In addition, a maximum bitwidth of each group is defined
as Imax. Both of these two parameters determine the initial bitwidth I; .
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Algorithm 2.1: Structured sketching of weights
Input: wi.r, Gir, Imax, 0
Output: {{cy, Big, Il,g}g’: i

1 for/ < 1toL do

2 for g < 1to G;do
3 Fetch and vectorize wj ¢ from w;;
4 Initialize € = w4, i = 0;
5 Bl,g = [ ];
6 while |le @ wy,ll} > 0 and i < .y do
7 i=i+1;
8 Bi = sign(e);
9 B, = [B,, Bil;
/* Find the optimal point spanned by B, */
10 Qe = (ngBl,g)_lngwl,g,'
/* Update the residual reconstruction error */
11 € =w, — Bigaug;
12 L =1;

We discuss the choice of group size 1, and the maximum bitwidth I,,,« in
Section

Theorem 2.1. The column vectors in B4 are linear independent.

Proof. The instruction oy, = (ngBllg)‘lBnglrg ensures a, is the optimal
pointin span(B; ) regarding the least square reconstruction error €. Thus,
€ is orthogonal to span(B;). The new basis is computed from the next
iteration by 3; = sign(e). Since sign(e) - € > 0,Ve # 0, we have 3; ¢
span(B,). Thus, the iteratively generated column vectors in B, are
linear independent. This also means the square matrix of ngBl,g is
invertible. 0

2.4.4.2 Implementation of Pruning Step

As discussed in Section [2.4.2} a;’s are pruned iteratively in mini-batches.
During each Pruning Step, for example, 30% of «;’s are iteratively pruned
in one epoch. Due to the high complexity of sorting all f,; sorting is
tirstly executed in each layer, and the top-k% f,,; of the I-th layer are
selected to resort again for pruning. Recall that [ stands for the layer
index. kis generally small, e.g., 1 or 0.5, which ensures that the pruned
@;’s in one iteration do not always come from a single layer. There are
n; weights in each group, and G; groups in the I-th layer. The sorting

ICircled operation in Algorithm means elementwise operations.
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Algorithm 2.2: Pruning in « domain
Input: T MT, k, {{azg, Blg/ Ilg}
Output: {{a;,, By, Ilg}q 1}1 1

1 Compute M, with Eq. .2'2? );

2 Compute the pruning number per iteration M, = round(

3 fort < 1to T do

4 forl(—ltoLdo

5 Update @, = B o ;

6 Forward propagate

o '}, training dataset

Mo—M
OT T);

7 Compute the loss ¢';
8 for/ — Ltoldo

9 Backward propagate gradient 9('/dw, o
10 Compute c%’t/&a with Eq. (2.16);
11 Update momentums of AMSGrad in o domain;
12 for o, in o] do
13 | Compute fi,; with Eq. (2.15 -,
14 Sort and select Top-k% fl i in ascending order;

15 | Resort the selected {f!, ] Ji-, in ascending order;
16 Remove Top-M, at and their binary bases;

v | Update {{a!*! B{?,If;l}gcll}f ¥

complexity mainly depends on the sorting in the most critical layer that
has the largest card(a;).

The Pruning Step is elaborated in Algorithm Here, assume that
there are altogether T pruning (training) iterations in each execution
of Pruning Step; the total number of a;’s across all layers is M, before
pruning, i.e.,

M, = chard(al,g) (2.27)
I g

and the desired total number of «;’s after pruning is Mr.

24.4.3 Implementation of Optimization Step

Optimization Step is also executed in batch training. Since « is
floating-point value, the complexity of optimizing « is the same as the
conventional optimization (see Algorithm 2.3). Assume that there are
altogether P training iterations. It is worth noting that both the bitwidth
I;; and the binary bases B; ; donot change in this step; only the coordinates
o, are updated over P iterations.

Optimizing B, with speedup is presented in Algorithm Assume
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Algorithm 2.3: Optimizing o,

Input: P, {{aug, Big, IS
Output {{alg/ Bl .87 Ilg}
1 forp < 1to P do
2 for/ — 1to L do
3 Update ] .= Byaf o
Forward propagate;

Je- '}, training dataset

gl}ll

5 | Compute the loss &7;
6 | forl<—Ltoldo

7 Backward propagate gradient 9¢7/ 8w

8 Compute J¢¥ /804 with Eq. (2.16);

9 Update momentums of AMSGrad in o domain;
10 for g < 1to G;do

1 | Update o} with Eq. (2.23);

Algorithm 2.4: Optimizing B, with speedup
Input: Q, {{ay,, By, Izg}
Output: {{a,, Big, 11}

1 forg — 1toQdo
2 for/ < 1toL do

- ' )i, training dataset

gl}ll

3 Update wq qug Ly

4 | Forward propagate

5 Compute the loss ¢ ;

6 | forl—Lto1ldo

7 Backward propagate gradient d¢7/ 8'Li:zg,
8 Update momentums of AMSGrad;
9 for g < 1to G;do

10 Compute all values of Eq. (2.22);
11 forj<—1ton1do

12 t Update B W1th Eq. (2.21);
13 Update alg w1th Eq. (2.26);

that there are altogether Q training iterations. It is worth noting that the
bitwidth I; ; does not change in this step; only the binary bases B, and
the coordinates v, are updated over Q iterations.

The extra complexity related to the original AMSGrad mainly comes
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from two parts, Eq. (2.21) and Eq. (2.26). Eq. (2.21) is also the most

resource-hungry step of the whole pipeline, since it requires an exhaustive
search. For each group, Eq. takes both time and storage complexities
of O(n - 2), and in general n >> I, > 1. Since H" is a diagonal matrix,
most of the matrix-matrix multiplications in Eq. is avoided through
matrix-vector multiplication and matrix-diagonalmatrix multiplication.
Thus, the time complexity trims down to O(nl, + nl; + I3 + nly +n+n +

nlg +I3) = O(n(I; + 3I, + 2)).

2.4.4.4 Implementation of the Pipeline

The entire pipeline of ALQ is demonstrated in Algorithm For
Initialization Step, the pretrained full precision weights w;.;, are required.
Then, we need to specify the structure used in each layer, i.e., the structure
of grouping Gi.;. In addition, a maximum bitwidth I, and a threshold o
for the residual reconstruction error also need to be determined (see more
details in Section 2.4.4.1). After initialization, we might need to retrain
the model with several epochs of Algorithm [2.4]to recover the accuracy
degradation caused by the initialization.

Then, we need to determine the number of outer iterations R, i.e., how
many times the Pruning Step is executed. A pruning schedule M'® is also
required. M’ determines the total number of remaining a;’s (across all
layers) after the r-th Pruning Step, which is also taken as the input Mt in
Algorithm For example, we can build this schedule by pruning 30%
of a;’s during each execution of Pruning Step, as,

M =M x (1-03) (2.28)

withre€0,1,2,..,R-1. M° represents the total number of «;’s (across all
layers) after initialization.

For Pruning Step, other individual inputs include the total number of
iterations T, and the selected percentages k for sorting (see Algorithm[2.2).
For Optimization Step, the individual inputs includes the total number of
iterations Q in optimizing B, (see Algorithm 2.4), and the total number
of iterations P in optimizing a, (see Algorithm 2.3).

2.5 Activation Quantization

To leverage bitwise operations for speedup, the inputs of each layer (i.e.,
the activation output of the last layer) also need to be quantized into the
multi-bit form. We quantize activations with the same binary basis (i.e.,
{=1, +1}) as the aforementioned weight quantization.

Our activation quantization follows the idea proposed in [CWV™18],
i.e., a parameterized clipping for fixed-point activation quantization, but
it is adapted to the multi-bit form. Specially, we replace ReLU with a
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Algorithm 2.5: Adaptive Loss-aware Quantization for multi-bit
networks
Input: Pretrained full precision weights w;.;, structures Gi.., Imax,
o, T, pruning schedule MR, k, P, Q, R, training dataset
Output: {{cy g, By, Il,g};f;l}lgl
/* Initialization Step: */
1 Initialize {{ay g, By, Il,g}?: -, with Algorithm
2 forr < 1to R do
/* Pruning Step: */
3 | Assign M to the input Mt of Algorithm
4 Prune in o domain with Algorithm
/* Optimization Step: */
5 | Optimize binary bases with Algorithm 2.4
6 Optimize coordinates with Algorithm 2.3

step activation function. The vectorized activation x of the I-th layer is
quantized as,
T=E =Xt + Dy =D~ (2.29)

where D € {1, +1}N, and v € R}, 4’ is a column vector formed by
[Xrer, ¥']"; D’ is a matrix formed by [1V¥*!, D]. N, is the dimension of x,
and I, is the quantization bitwidth for activations. x is the introduced
layerwise (positive floating-point) reference to fit the output range of
ReLU. During inference, x. is convoluted with the weights of the next
layer and added to the bias. Hence the introduction of x,.f does not lead
to extra computations. The output of the last layer is not quantized, as it
does not involve computations anymore. For other settings, we mainly
follow the ones used in [ZYYH18]. =~ and x. are updated during the
forward propagation with a running average to minimize the squared
reconstruction error as,

Yoew = (D"D')' D" (2.30)

v =099 + (1 - 099w (2.31)

The (quantized) weights are also further fine-tuned with our optimizer
to resume the accuracy drop. Here, we only set a global bitwidth for all
layers in activation quantization.

2.6 Experiments

In this section, we implement ALQ with Pytorch [PGC*17], and
evaluate its performance on MNIST [LC10], CIFAR10 [KNHQ9], and
ImageNet [RDS™15] using LeNet5 [LBB*98], VGGNet [HYK17, RORF16],
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and ResNetl18/34 [HZRS16], respectively. The Top-1 test accuracy
is reported, when the validation dataset has the highest accuracy
during training. We first conduct the experiments on Initialization
Step (Section [2.6.2), Pruning Step (Section and Optimization Step
(Section individually to study their impacts. Then, we benchmark
ALQ on different datasets and compare ALQ with different state-of-the-
art network compression methods.

2.6.1 Benchmarking Details

LeNet5 on MNIST. The MNIST dataset [LC10] consists of 28 x 28 gray
scale images from 10 digit classes. We use 50000 samples in the training
set for training, the rest 10000 for validation, and the 10000 samples in
the test set for testing. We use a mini-batch with size of 128. We use
the default hyperparameters proposed in [Pyt19a] to train LeNet5 for 100
epochs as the baseline of full precision version. The network architecture
is presented as, 20C5 - MP2 - 50C5 - MP2 - 500FC - 10SVM.

VGGNet on CIFAR10. The CIFAR-10 dataset [KNHQ9] consists of 60000
32 x 32 color images in 10 object classes. We use 45000 samples in the
training set for training, the rest 5000 for validation, and the 10000 samples
in the test set for testing. We use a mini-batch with size of 128. We use
the default Adam optimizer provided by Pytorch to train full precision
parameters for 200 epochs as the baseline of the full precision version.
The initial learning rate is 0.01, and it decays with 0.2 every 30 epochs.
The network architecture is presented as, 2x128C3 - MP2 - 2x256C3 - MP2
- 2x512C3 - MP2 - 2x1024FC - 10SVM.

ResNet18/34 on ImageNet. The ImageNet dataset [RDS™15] consists of
1.28 million high-resolution images for classifying in 1000 object classes.
The validation set contains 50k images, which are used to report the
accuracy level. We use mini-batch with size of 256. The used ResNet18/34
is from [HZRS16]. We use the ResNet18/34 provided by Pytorch as the
baseline of full precision version. The network architecture is the same as
"resnet18/resnet34" in [Pyt19Db].

2.6.2 Experiments on Initialization

As mentioned in Section [2.4.4.1) we propose a structured sketching for
Initialization Step. Some important parameters in Algorithm are
discussed as below.

2.6.2.1 Group Size n

Researchers propose different structures e.g., layerwise, channelwise, to
partition weights, and then quantize the weights in one structured group
with the same bitwidth. To explore the redundancy among weights, we
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conduct experiments on the different structures of grouping. Certainly,
the weights in one layer can be arbitrarily selected to gather a group.
However, due to the extra indexing cost, the weights are often sliced
along the tensor dimensions and uniformly grouped.

According to [GYZC17], the squared reconstruction error of a single
group decays with Eq. (2.32), where A > 0.

1

— A)fx (2.32)

2 2
llell; < llwgll5(1 -

If full precision values are stored in floating-point, i.e., 32-bit, the storage
compression ratio in one layer can be written as,

N x 32
e =
IXN+Ix32xH¥

(2.33)

where N is the total number of weights in one layer; n is the number
of weights in each group, i.e,, n = N/G; I is the average bitwidth, I =
LYC I,

We analyse the trade-off between the reconstruction error and the
storage compression ratio of different group size n. We choose the
pretrained AlexNet [KSH12] and VGGNet [SZ£15], and plot the curves
of the average (per weight) reconstruction error related to the storage
compression ratio of each layer under different sliced structures. We
also randomly shuffle the weights in each layer, then partition them into
groups with different sizes. We select one example plot which comes from
the last conv layer (256 X 256 x 3 x 3) of AlexNet [KSH12] (see Figure[2.2).
The pretrained full precision weights are provided by Pytorch [PGC*17].

We found that there is not a significant difference between random
groups and sliced groups along tensor dimensions. Only the group
size influences the trade-off. We think the reason is that one layer
always contains thousands of groups, such that the points presented
by these groups are roughly scattered in the n-dim space. Furthermore,
regarding the deployment on a 32-bit general microprocessor, the group
size should be larger than 32 for efficient computation. In short, a group
size from 32 to 512 achieves relatively good trade-off between the weight
reconstruction error and the storage compression ratio. Accordingly,
pointwise (w..;») appears to be appropriate. Channelwise w,, and
subchannelwise w44+, grouping are suited for fc layers. For example,
if each channel is sliced into 2 groups with the same size, we denote it
as subchannelwise(2). In addition, the most frequently used structures in
this chapter are pointwise (conv layers) and (sub)channelwise (fc layers),
which align with the bit-packing approach in [PIT18], and could result
in a more efficient deployment. Since many network architectures choose
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Figure 2.2: The curves about the logarithmic L2-norm of the average
reconstruction error log(llell%) related to the reciprocal of the storage
compression ratio 1/7,. The pretrained full precision weights are from the
last conv layer of AlexNet. The legend demonstrates the corresponding
group sizes. 'k’ stands for kernelwise; ‘p” stands for pointwise; ‘c’ stands
for channelwise.

an integer multiple of 32 as the number of output channels in each layer,
pointwise and (sub)channelwise are also efficient for the current storage
format in 32-bit microprocessors.

2.6.2.2 Maximum Bitwidth I,

The initial I, is decided by a predefined initial reconstruction precision or
a maximum bitwidth. We notice that the accuracy degradation caused by
the initialization can be fully recovered after several optimization epochs
of Algorithm if the maximum bitwidth is 8. For example, ResNet18
on ImageNet after such an initialization can be retrained to a Top-1/5
accuracy of 70.3%/89.4%, even higher than its full precision counterpart
(69.8%/89.1%). For smaller networks, e.g., VGGNet on CIFARI10, a
maximum bitwidth of 6 is already sufficient.

2.6.3 Convergence Analysis of Optimization Step

In this section, we conduct the ablation studies on our Optimization
Step in Section We show the advantages of our optimizer in
terms of convergence. We mainly studied the convergence performance
of Algorithm (i.e., optimizing B, with speedup) for two reasons,
(1) it involves the domain constraints of binarization and takes the
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majority of computation complexity; (ii) it conducts a similar alternative
process as prior works [XYL"18, [ZYYH18]. Recall that our optimizer
in Algorithm (1) has no gradient approximation and (ii) directly
minimizes the loss. We developed the following two baselines for
comparison.

e STE with rec. error: This baseline quantizes the maintained full
precision weights by minimizing the reconstruction error (rather
than the loss) during forward and approximates gradients via STE
during backward. This approach is adopted in some of the best-
performing quantization schemes such as LQ-Net [ZYYH18].

o STE with loss-aware: This baseline approximates gradients via STE
but performs a loss-aware projection updating (adapted from our
ALQ). It can be considered as a multi-bit extension of prior loss-
aware quantizers for binary and ternary networks [HYK17, HK18].
See Section [2.6.3.T|below for more details.

2.6.3.1 The Optimizer of “STE with Loss-Aware”

In this section, we provide the details of the proposed STE with loss-
aware optimizer. The training scheme of STE with loss-aware is similar to
Algorithm 2.4} except that it maintains the full precision weights w,. See
the pseudocode of STE with loss-aware in Algorithm

For the layer I, the quantized weights , is used during forward
propagation. During backward propagation, the loss gradients to the full
precision weights d¢/dw, are directly approximated with d¢/dg, i.e., via
STE in the g-th training iteration as,

o _ ot
owl I

(2.34)

Then the first and second momentums in AMSGrad are updated with

9" /dw]. Accordingly, the loss increment around wj is modeled as,

1
Ste (gq)T(wg —w ) + (wg — wg)THq(wg — wz,) (2.35)
Since wy, is full precision, wg " canbe directly obtained through the above
AMSGrad step without projection updating,
wi = wl - (H)'g" = w] - a'mf/ Vir (2.36)
Similarly, the loss increment caused by B, (see Eq. (2.19) and Eq. (2.20))
is formulated as,

ste B

1
= (9" (B,ad — wy) + E(Bgag - wh H(Bya] — w)) (2.37)
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Algorithm 2.6: STE with loss-aware

Input: Q, {{au, B, Iz,g}g': I, training dataset
Output: {{cy, Big, Ilrg}G’ o

g=1
1 forg —1toQdo

2 for/ < 1toL do

3 Update usjg = qu,ga?,g;

4 Forward propagate;

5 | Compute the loss ¢7;

6 | forl—Lto1ldo

7 Backward propagate gradient d¢7/ 811)Zg;
8 Directly approximate 9¢7/dw] , with 97/0w] ;
9 Update momentums of AMSGrad;
10 for g «— 1to G;do

11 Update wz; with Eq. (2.36);

12 Compute all values of Eq. (2.22);

13 for j < 1ton; do

14 t Update B?; with Eq. (2.38);
15 Update o' with Eq. (2.39);

Thus, the j-th row in B{"" is updated by,
+1 .
Bg,]. = ar%rmn |1 Bg,jox — (w;]. — gj /H;?].)n (2.38)
&1

In addition, the speedup of Eq. (2.26) is changed accordingly as,
ol = ~((BIYTH'BI™ + A7 x (BI) (g7 - Hw})) (2.39)
So far, the quantized weights are updated in a loss-aware manner as,

W] = Bl'al" (2.40)

2.6.3.2 Ablation Results

Settings. To show the convergence performance of our Optimization
Step, we compare Algorithm 2.4 with the above two baselines STE with
rec. error and STE with loss-aware mentioned above. The three optimizers
are used to train the networks quantized with a uniform bitwidth. We use
AMSGradﬂ as the optimization framework for all optimizers and adopt a
learning rate of 0.001.

2AMSGrad can also optimize full precision parameters.
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Figure 2.3: Validation accuracy trained with ALQ and other STE-based
baselines along the training epochs.

Method Iy Top-1

Baseline VGGNet (uniform) 1 91.8%
ALQ VGGNet 0.66 92.0%
Baseline ResNet18 (uniform) 2  66.2%
ALQ ResNet18 2.00 68.9%

Table 2.1: Comparison between uniform bitwidth and adaptive bitwidth
in ALQ.

Results. Figure shows the Top-1 validation accuracy of different
optimizers, with increasing epochs on uniform bitwidth MBNs. ALQ
exhibits not only a more stable and faster convergence, but also a higher
accuracy. The exception is 2-bit ResNetl8. ALQ converges faster, but
the validation accuracy trained with STE gradually exceeds ALQ after
about 20 epochs. For training a large network with < 2 bitwidth, the
positive effect brought from the high precision trace may compensate
certain negative effects caused by gradient approximation. In this case,
keeping full precision parameters will help calibrate some aggressive
steps of quantization, resulting in a slow oscillating convergence to a
better local optimum. This also encourages us to add several epochs
of STE based optimization (e.g., STE with loss-aware) after low bitwidth
quantization to further regain the accuracy.
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Figure 2.4: Distribution of the average bitwidth and the number of
weights across layers.

2.6.4 Ablation Studies on Adaptive Bitwidth

Settings. This experiment demonstrates the performance of incre-
mentally trained adaptive bitwidth in ALQ, i.e., our Pruning Step
in Section Uniform bitwidth quantization (an equal bitwidth
allocation across all groups in all layers) is taken as the baseline. The
baseline is trained with the same number of epochs as the sum of all
epochs during the bitwidth reduction. Both ALQ and the baseline are
trained with the same learning rate decay schedule.

Results. Table2.1|shows that there is a large Top-1 accuracy gap between
an adaptive bitwidth trained with ALQ and a uniform bitwidth. In
addition to the overall average bitwidth, we also plot the distribution
of the average bitwidth and the number of weights across layers (both
models in Table 2.1) in Figure 2.4 Generally, the first several layers and
the last layer are more sensitive to the loss, thus require a higher bitwidth.
The shortcut layers in ResNet architecture (e.g., the 8-th, 13, 18-th layers
in ResNet18) also need a higher bitwidth. We think this is due to the fact
that the shortcut pass helps the information forward/backward propagate
through the blocks. Since the average of adaptive bitwidth can have a
decimal part, ALQ can achieve a compression ratio with a much higher
resolution than a uniform bitwidth, which not only controls a more precise
trade-off between storage and accuracy, but also benefits our incremental
bitwidth reduction scheme.

It is worth noting that both the Optimization Step and the Pruning
Step in ALQ follow the same metric, i.e., the loss increment modeled by
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a quadratic function, allowing them to work in synergy. We replace the
step of optimizing B, in ALQ with an STE step (with the reconstruction
forward, see in Section [2.6.3), and keep other steps unchanged in the
pipeline. When the VGGNet model is reduced to an average bitwidth of
0.66-bit, the simple combination of an STE step with our Pruning Step can
only reach 90.7% Top-1 accuracy, which is significantly worse than ALQ’s
92.0%.

2.6.5 Comparison with State-of-the-Art Methods
2.6.5.1 Unstructured Pruning on MNIST

Settings. Since ALQ can be considered a structured pruning scheme
(i.e., pruning in a domain), we first compare ALQ with two widely
used unstructured pruning schemes: Deep Compression (DC) [HMD16]
and ADMM-Pruning (ADMM) [Z2YZ"18], i.e., pruning in the original w
domain. For a fair comparison, we implement a modified LeNet5 model
as in [HMD16, Z2YZ"18] on MNIST dataset [LC10] and compare the Top-1
prediction accuracy and the compression ratio.

The structures of each layer chosen for ALQ are kernelwise,
kernelwise, subchannelwise(2), channelwise, respectively. After each
pruning, the network is retrained to recover the accuracy degradation
with 20 epochs of optimizing B, and 10 epochs of optimizing . The
pruning ratio is 80%, and 4 times of Pruning Step are executed after
initialization in the reported experiment in Table After the last
Pruning Step, we conduct 50 epochs of Optimizing Step to further increase
the final accuracy (also applied in the following experiments of VGGNet
and ResNet18/34).

ALQ can fast converge in the training. However, we observed
that even after the convergence, the accuracy still continues increasing
slowly along the training, which is similar to the behavior of STE-based
optimizer. During the Optimization Step after each Pruning Step, as long
as the training loss is almost converged with a few epochs, we can further
proceed the next Pruning Step. We found that the final accuracy level is
approximately the same whether we add plenty of epochs each time to
slowly recover the accuracy to the original level or not. Thus, we choose
a fixed modest number of retraining epochs after each Pruning Step to
save the overall training time. In fact, this benefits from the feature of
ALQ, which leverages the true gradient w.r.t. the loss to result in a fast
and stable convergence. The final added 50 training epochs aim to further
slowly regain the final accuracy level, where we use a gradually decayed
learning rate, e.g., 10~* decays with 0.98 in each epoch.

Note that the storage consumption only counts the weights, since the
weights take the most majority of the storage (even after quantization) in
comparison to others, e.g., bias, activation quantizer, batch normalization,
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Method Weights (CR)  Top-1

FP 1720KB (1x)  99.19%

DC [HMD16] 44.0KB (39%)  99.26%
ADMM [Z2YZ718] 24.2KB (71x) 99.20%
ALQ 22.7KB (76 x) 99.12%

Table 2.2: Comparison with state-of-the-art unstructured pruning
methods (LeNet5 on MNIST). “FP” denotes the full precision baseline.
“CR” denotes the compression ratio related to full precision.

etc. The storage consumption of weights in ALQ includes the look-up-
table for the resulting I, in each group.

Results. ALQ shows the highest compression ratio (76 X ) while keeping
acceptable Top-1 accuracy compared to the two other pruning methods
(see Table 2.2). FP stands for full precision, and the weights in the
original full precision LeNet5 consume 1720KB [HMD16]. CR denotes
the compression ratio of static weight storage.

Note that both DC [HMD16] and ADMM [ZYZ"18] rely on sparse
tensors, which need special libraries or hardwares for efficient execution
[LKD*17]. Their operands (the shared quantized values) are still floating-
point. Hence they hardly utilize bitwise operations for speedup. In
contrast, ALQ achieves a higher compression ratio without sparse tensors,
which is more suited for general off-the-shelf platforms.

The average bitwidth of ALQ is below 1.0-bit (1.0-bit corresponds
to a compression ratio slightly below 32), indicating some groups are
fully removed. In fact, this process leads to a new network architecture
containing less output channels of each layer, and thus the corresponding
input channels of the next layers can be safely removed. The original
configuration 20 — 50 — 500 — 10 is now 18 — 45 — 231 - 10.

2.6.5.2 Binary Networks on CIFAR10

Settings. In this experiment, we compare the performance of ALQ with
state-of-the-art binary networks [CBD15, RORF16, HYK17]. A binary
network is an MBN with the lowest bitwidth, i.e., single-bit. Thus, the
storage consumption of a binary network can be regarded as the lower
bound of a (uniform) quantized network. We implement a small version
of VGGNet from [SZ15] on CIFAR10 dataset [KNH09], as in many state-
of-the-art binary networks [CBD15, HYK17, RORF16].

The structures of each layer chosen for ALQ are channelwise, point-
wise, pointwise, pointwise, pointwise, pointwise, subchannelwise(16),
subchannelwise(2), subchannelwise(2) respectively. After each pruning,
the network is retrained to recover the accuracy degradation with 20
epochs of optimizing B, and 10 epochs of optimizing a,. The pruning
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Method Iw  Weights (CR) Top-1

FP 32 56.09MB (1x) 92.8%

BC [CBD15] 1 1.75MB(32x) 90.1%
BWN [RORFI6]* 1  1.82MB (31x) 90.1%
LAB [HYK17] 1 1.77MB (32x) 89.5%
AQIKLI8] 027 1.60MB (35x) 90.9%
ALQ 0.66 1.29MB (43x) 92.0%

ALQ 0.40 0.82MB (68%) 90.9%

*: both first and last layers are unquantized.

Table 2.3: Comparison with state-of-the-art binary networks (VGGNet
on CIFAR10). “FP” denotes the full precision baseline. “CR” denotes
the compression ratio related to full precision. I, denotes the average
bitwidth of weights.

ratio is 40%, and 5 or 6 times of Pruning Step are executed after
initialization in the reported experiment (Table 2.3).

Results. Table 2.3|shows the performance comparison to popular binary
networks. Iy stands for the quantization bitwidth for weights. Since ALQ
has an adaptive quantization bitwidth, the reported bitwidth of ALQ is
an average bitwidth of all weights.

ALQ allows to compress the network to under 1-bit, which remarkably
reduces the storage and computation. ALQ achieves the smallest weight
storage and the highest accuracy compared to all weights binarization
methods BC [CBD15]], BWN [RORF16], LAB [HYK1Z7]. Similar to results
on LeNet5, ALQ generates a new network architecture with fewer output
channels per layer, which further reduces our models in Table to
1.01MB (0.66-bit) or even 0.62MB (0.40-bit). The computation and the
run-time memory can also decrease.

Furthermore, we also compare with AQ [KL18], the state-of-the-art
adaptive fixed-point quantizer. It assigns a different bitwidth for each
parameter based on its sensitivity, and also realizes a pruning for 0-bit
parameters. Our ALQ not only consumes less storage, but also acquires a
higher accuracy than AQ [KL18]. Besides, the non-standard quantization
bitwidth in AQ cannot efficiently run on general hardware due to the
irregularity [KL18|], which is not the case for ALQ.

In order to demonstrate the affects from different steps in ALQ,
we plot the training loss curve of quantizing VGGNet on CIFARI10
with ALQ. Different steps in ALQ are marked with different colors,
see Figure The results show that (i) Initialization Step does not bring
any performance drop; (i) Optimization Step can fast converge in a few
epochs and may recover the performance drop from Pruning Step as long
as the average bitwidth is not extremely low.
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Figure 2.5: The training loss curves of different steps in ALQ (VGGNet
on CIFAR10). "Magenta’ stands for Initialization Step; ‘Green” stands
for optimizing B, with speedup; 'Blue’ stands for optimizing a,; 'Red’
stands for Pruning Step. Please see this figure in color.

2.6.5.3 MBNs on ImageNet

Settings. = We quantize both the weights and the activations of
ResNet18/34 [HZRS16] with a low bitwidth (< 2-bit) on ImageNet
dataset [RDS715], and compare our results with state-of-the-art multi-
bit networks. The results for the full precision version are provided by
Pytorch [PGC*17]. We choose ResNet18, as it is a popular model on
ImageNet used in the previous quantization schemes. ResNet34 is a
deeper network used more in recent quantization papers.

The structures of each layer chosen for ALQ are all pointwise except
for the first layer (kernelwise) and the last layer (subchannelwise(2)).
After each pruning, the network is retrained to recover the accuracy
degradation with 10 epochs of optimizing B, and 5 epochs of optimizing
a,. The pruning ratio is 15%.

Results. Table shows that ALQ obtains the highest accuracy with
the smallest network size on ResNet18/34, in comparison with other
weight and weight+activation quantization approaches. Iy and I are
the quantization bitwidth for weights and activations respectively.

Several schemes (marked with *) are not able to quantize the first
and last layers, since quantizing both layers as other layers will cause
a huge accuracy degradation [WSL*18, MM18]. It is worth noting that
the first and last layers with floating-point values occupy 2.09MB storage
in ResNet18/34, which is still a significant storage consumption on such
a low-bit network. We can simply observe this enormous difference
between TWN [LZL16] and LQ-Net [ZYYH18] in Table for example.
The evolved floating-point computations in both layers can hardly be
accelerated with bitwise operations either.

For reported ALQ models in Table as several layers have already
been pruned to an average bitwidth below 1.0-bit (e.g., see in Figure[2.4),
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Method Iw/la  Weights Top-1
ResNet18

- FP[PGC*17]  ° 32/32  46.72MB  69.8%
TWN [LZL16] 2/32 297MB  61.8%
LR [SLF18] 2/32 4.84MB  63.5%
LQ [ZYYH18]* 2/32 491IMB  68.0%
QIL [JSL*19))* 2/32 4.88MB  68.1%
INQ [Z2YG*17] 3/32 438MB  68.1%
ABC [LZP17] 5/32 741MB  68.3%
ALQ 2.00/32 3.44MB  68.9%
ALQ*® 2.00/32 3.44MB 70.0%
BWN [RORF16]* 1/32 350MB  60.8%
LR [SLF18]J* 1/32 348MB  59.9%
DSQ [GLJ*19]J* 1/32 348MB  63.7%
ALQ 1.01/32 1.77MB  65.6%
ALQ® 1.01/32 1.77MB  67.7%
LQ [ZYYHI18]* 2/2 491MB  64.9%
PACT [CWV*18||* 2/2 4.88MB  64.4%
QIL [JSL*19)* 2/2 4.88MB  65.7%
DSQ [GLJ*19]J* 2/2 4.88MB  65.2%
GroupNet [ZST*19]]* 4/1 7.67MB  66.3%
RQ [LRB*19] 4/4 593MB  62.5%
ABC [LZP17] 5/5 741IMB  65.0%
ALQ 2.00/2 3.44MB  66.4%
SYQ [FFBL18]* 1/8 348MB  62.9%
LQ [ZYYH18]* 1/2 350MB  62.6%
PACT [CWV18]* 1/2 348MB  62.9%
ALQ 1.01/2 1.77MB  63.2%

ResNet34

- FP[PGC*17]  ° 32/32  87.12MB  73.3%
ALQ® 2.00/32 6.37MB  73.6%
ALQ*® 1.00/32 3.29MB 72.5%
LQ [ZYYH18]* 2/2 747MB  69.8%
QIL [JSL*19)* 2/2 740MB  70.6%
DSQ [GLJ"19]* 2/2 740MB  70.0%
GroupNet [ZST*19]* 5/1 12.7IMB  70.5%
ABC [LZP17] 5/5 13.80MB  68.4%
ALQ 2.002 637MB  71.0%
TBN [WSL*18]* 1/2 4.78MB  58.2%
LQ [ZYYH18]* 1/2 4.78MB  66.6%
ALQ 1.00/2 3.29MB  67.4%

*: both first and last layers are unquantized.
¢: adding extra epochs of STE with loss-aware in the end.

Table 2.4: Comparison with state-of-the-art quantized networks
(ResNet18/34 on ImageNet). “FP” denotes the full precision baseline.
“CR” denotes the compression ratio related to full precision. I, denotes
the average bitwidth of weights. I, denotes the bitwidth of activations.
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we add extra 50 epochs of our STE with loss-aware in the end as discussed
in Section The learning rate is 10, and gradually decays with 0.98
per epoch. The final accuracy is further boosted by around 1% ~ 2%,
see the results marked with €. With such an extremely low bitwidth,
maintained full precision weights help to calibrate some aggressive steps
of quantization, which slowly converges to a local optimum with a higher
accuracy for a large network. Recall that maintaining full precision
parameters means STE is required to approximate the gradients, since
the true-gradients only relate to the quantized parameters used in the
forward propagation. However, for the quantization bitwidth higher
than two (> 2.0-bit), the quantizer can take smooth steps, and the gradient
approximation due to STE damages the training inevitably. Thus in this
case, the true-gradient optimizer, i.e., Algorithm can converge to a
better local optimum, faster and more stable.

ALQ can quantize ResNet18/34 with 2.00-bit (across all layers) without
any accuracy loss. To the best of our knowledge, this is the first time that
the 2-bit weight-quantized ResNet18/34 can achieve the accuracy level
of its full precision version, even if some prior schemes keep the first
and last layers unquantized. These results further demonstrate the high-
performance of the pipeline in ALQ.

2.7 Summary

In this chapter, we propose ALQ, an adaptive loss-aware trained quantizer
for multi-bit networks. ALQ enables efficient inference on edge devices.
ALQ tries to reduce the redundancy on the quantization bitwidth to
achieve both storage efficiency and computation efficiency. Unlike prior
quantized networks that (i) often assign an empirical global bitwidth
across layers, (ii) train the quantizer by minimizing the reconstruction
error to the full precision weights, ALQ (i) allocates an adaptive bitwidth
to different weights w.r.t. the loss, (ii) optimizes the multi-bit quantizer
by minimizing the loss as well. The adaptive bitwidth assignment
and the direct optimization objective allow ALQ to find and remove
more redundant bitwidth, thus achieving a better trade-off between the
resource constraints and the model accuracy. The main contributions are
summarized as follows,

e ALQ introduces a multi-bit network with adaptive quantization
bitwidth across different groups of weights. Such an adaptive multi-
bit network not only achieves a high compression ratio on static
weight storage by only assigning a high bitwidth to loss-critical
weights, but also replaces the expensive floating-point operations
with a single set of cheaper operations from xnor, popcount and
accumulations.
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e ALQ trains the multi-bit quantized weights by directly minimizing
the loss function. This loss-aware quantization results in a
faster convergence rate as well as a higher final accuracy than
state-of-the-art STE-based quantization training that minimizes the
reconstruction error.

e Via entirely pruned groups (i.e., 0-bit weights in some groups), ALQ
enables extremely low-bit networks with an average bitwidth below
1-bit yet with dense tensor form. It breaks the traditional lower bound
of the quantized network, i.e., binary network, thus providing more
visions and possibilities for the network compression. Experiments
on CIFAR10 show that ALQ can compress VGGNet to an average
bitwidth of 0.4-bit, while yielding a higher accuracy than other
binary networks [RORF16,/(CBD15].

e ALQ is the first loss-aware quantization scheme for multi-bit
networks and eliminates the need for approximating gradients and
retaining full precision weights. ALQ is also able to quantize the
tirst and last layers without incurring a notable accuracy loss.

This chapter studied how to compress the network for efficient
inference given the fixed on-device resource constraints. In the next
chapter, we will further study how to adapt the network on edge devices
when the resource constraint is varied along the lifetime. Although we
may deploy multiple ALQ-quantized multi-bit networks with different
average bitwidth to execute under different resource budgets, this naive
solution can only result in a subpar performance, as it requires several
times more storage consumption in comparison to a single (multi-bit)
network. However, the solution proposed in the next chapter can meet the
varying resource constraints without incurring extra storage overhead.



Adaptation on Edge Devices

In Chapter[2, we explored how DNNs can be compressed while respecting
resource constraints. However, the resource constraints on the target edge
devices may change dynamically during runtime. To maximize model
accuracy during on-device inference, in this chapter we deploy a DNN
that can adapt to the different resource constraints on the edge device]

Main Resource Constraints. The different resource constraints during on-
device inference may be due to for example the available battery power
or the allowed inference time. Similar to Chapter 2, we mainly adopt two
widely used proxies to quantify the (varying) resource consumption, (i)
the storage of weights, which affects the amount of memory fetching and
static memory consumption, and (ii) the number of operations for inference,
which is relevant to the computing energy and the inference latency.

Principles. Faced with the varying resource constraints on edge devices,
existing synthesis methods require either deploying multiple individual
networks with different resource demands or sampling sub-networks
along structured dimensions, which leads to poor performance. However,
we propose to sample sub-networks from the backbone network through
row-based unstructured sparsity, and propose a novel compressed
sparse row (CSR) format for efficient sparse inference. Our synthesis
methods reduce redundancy among multiple sub-networks through
weight sharing and architecture sharing, resulting in storage efficiency
and re-configuration efficiency.

The contents of this chapter are established mainly based on the
paper “DRESS: Dynamic REal-time Sparse Subnets” that is published
on Efficient Deep Learning for Computer Vision CVPRWorkshop (ECV),
2022. This work is collaborated with the colleagues at Meta Reality Labs
Research.

This work was done when Zhongnan Qu was a research intern at Meta.
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3.1 Introduction

Extensive synthesis works [HMD16, RORF16, SMNP21, OSKY21] have
proposed to first compress a pretrained model according to the given
resource constraints, and then compile the compressed model to deploy
on target edge devices. However, the time constraints of many practical
embedded systems may dynamically change at run-time. For example,
when detecting hand positions on a workbench in real-time, the allowed
inference time varies during the entire manipulation. In comparison
to general movement, engineers will slow down the hand movement if
performing some critical tasks, e.g., grasping objects, which gives DNNs a
longer execution time when requiring higher perceptive precision. Some
similar scenarios also include autonomous vehicles’ reaction time on city
roads and highways due to different operating speeds. On the other hand,
the available resources on the target edge device may also vary along the
lifetime, e.g., the battery energy, the allocatable RAM. All considerations
mentioned above indicate that the deployed inference model should
maintain a dynamic capacity, such that the model can be adapted and
executed under different resource constraints.

Challenges. Making DNNs adaptable on resource-constrained devices
is even more challenging. Existing synthesis methods either fail to
compile DNNs that can adapt to varying resource constraints, or result in
subpar performance. Traditional compression techniques, e.g., pruning,
quantization, only result in a static inference model. Although the
compressed model is mapped onto target devices, it can not meet various
resource requirements. As an alternative, we may compile for example
multiple networks with different sparsity levels, which however need
several times more storage consumption in comparison to a single sparse
network. Recent works [YYX*19,ICGW™20] show that sub-networks from
a pretrained backbone network can reach a decent performance compared
to the sub-networks trained individually from scratch. Nevertheless, they
only sample sub-network architectures along hand-crafted structured
dimensions, e.g., width, kernel size, which leads to sub-optimal results.
Switching among multiple compiled architectures on edge devices may
also cause extra re-configuration overhead.

In this chapter, we propose a novel synthesis technique, Dynamic
REal-time Sparse Subnets (DRESS). DRESS samples sub-networks from
the backbone network through row-based unstructured sparsity, while
ensuring that nonzero weights of the higher sparsity networks are
reused by the lower sparsity networks. This way, the overall memory
consumption is bounded by the network with the lowest sparsity and
does not depend on the number of networks, resulting in memory efficiency;
all sparse sub-networks leverage the same architecture as the backbone
network, leading to re-configuration efficiency. The sub-network with a
higher sparsity (i.e., fewer nonzero weights) needs a smaller amount
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of on-device memory fetching and fewer FLOPs, thus shall be adopted
to inference under more severe resource constraints, e.g., lower energy
budget, limited inference time. Specifically, we (i) sample weights w.r.t.
their magnitudes in a row-based unstructured manner; (ii) train all
sampled sparse sub-networks with weighted loss in parallel; (iii) further
fine-tune batch normalization for each sub-network individually.

3.2 Related Work

3.2.1 Network Compression & Deployment

Network compression focuses on trimming down the DNN model size
with negligible performance degradation. Commonly used compression
techniques can be divided into three categories, (i) designing efficient
network architectures manually [HZC*17, SHZ"18] or automatically
using neural architecture search [CGW*20, [YH19a| YJL*20, MKH21]; (i7)
quantizing weight values into lower bitwidth to use cheaper operations
and reduce the storage consumption [RORF16, YLDM19, SMNP21];
(7ii) structured [LWST20, LMW*20, WWSH20]/unstructured [HMD16,
REC20, EGM*21, PIVA21, IOSKY21, |AAH™20] pruning unimportant
weights as zeros to reduce the number of operations and the number
of nonzero weights. The compressed model is further optimized by
some compilation libraries in order to speed up inference on target edge
platforms, e.g., CMSIS-NN for Arm Cortex-M CPUs [LSC18]], XNNPACK
for Arm64 and ArmV7 CPUs [Gool9|], Vela for Ethos-U NPU [Vel20].
Note that the compiled model often only supports a static computation
graph due to the limited resources on edge devices [LSC18,/Goo19, Vel20].
In this chapter, we focus on unstructured pruning among others, since (i)
it often yields a high compression ratio [REFC20]; (i7) the networks with
different unstructured sparsity may share the same network architecture,
i.e., the same compiled computation graph. Furthermore, some recent
libraries e.g., XNNPACK include fast kernels for sparse matrix-dense
matrix multiplication, which enables sparse DNN acceleration on edge
platforms [EDGS20, LLM™20].

3.2.2 Dynamic Networks

Dynamic networks aim at a better trade-off between inference accuracy
and average inference efficiency, by adapting network structures or
network parameters according to the inputs during inference [HHS'21].
Among them, some works propose allocating less computation on those
canonical data samples, through skipping layers [HCL"18], pruning
unimportant channels [LWW™21, WWSH20], selecting a subset of salience
pixels [VI20]. Although these sample-wise dynamic networks may
achieve a smaller inference cost averaged over different samples, they
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cannot adapt the model to fit different resource budgets. In addition,
to achieve data-dependent adaptiveness, they often bring additional
computation burden, e.g., hard attention, gater, etc. [HHS"21]

3.2.3 Anytime Networks (Sub-networks)

Anytime networks refer to the network whose sub-networks can be
executed separately with less resource consumption while achieving a
satisfactory performance. DRESS falls into the same scope of anytime
networks. MSDNet [HCL"18|] densely connects multiple convolutional
layers in both depth direction and scale direction, such that the
computation can be saved by early-exiting from a certain layer. [HDHB17]
introduces an adaptive weighted loss to optimize the network with
various depths. Slimmable networks [YYX*19, YH19b] propose to train a
single model which supports multiple width multipliers (i.e., number
of channels) in each layer. [CGWT'20] suggests to search network
architectures with different kernel size, depth, and width, in a single
pretrained once-for-all network. Subflow [LN20] executes only a sub-
graph of the full DNN by activating partial neurons given the varying
time constraints. State-of-the-art anytime networks always sample sub-
networks from the backbone network along hand-crafted structured
dimensions, e.g., depth, width, kernel size, neuron. As zero weights
have no effects on the calculation, anytime networks actually perform
structured pruning on the backbone network, which could yield a subpar
performance in comparison to unstructured sampling. In addition,
resulted sub-networks often have different network architectures, e.g.,
different kernel sizes. When adopting these sub-networks on edge
devices, the re-configuration of the computation graph may bring extra
overhead. On the other hand, SP-Net [GZRD20] suggests adjusting the
quantization bitwidth on demand, which however requires specialized
integer arithmetic units for efficient computing.

3.2.4 Weight Sharing

Sub-networks rely on weight reusing (sharing). Except for sub-networks,
weight sharing among different networks is also widely used in other
settings. Multi-task learning [SK18] reuses partial weights of networks
performing diverse tasks to reduce memory consumption. However,
these methods are inapplicable in our scenarios, which target a single
task with varying resource constraints. Neural architecture search (NAS)
applied in [CGW™20, [YH19a| YJL*20, [CZX21] maintains a single set
of shared weights (also known as supernet) when searching different
architectures to reduce the training effort. Note that NAS is orthogonal
to our method since the searched optimal architecture can be used as our
backbone network.
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3.3 Dynamic Real-time Sparse Subnets

3.3.1 Problem Definition

We aim at sampling multiple subnets from a backbone network. The
backbone network is a conventional DNN consisting of L convolutional
(conv) layers or fully connected (fc) layers. These subnets have
different resource demands and thus can be adapted to different resource
availabilities. ~Since the subnets have the same architecture as the
backbone network, they can share a single compiled architecture to
achieve re-configuration efficiency; the nonzero weights of the subnet
with a higher sparsity are reused by the subnet with a lower sparsity
to achieve memory efficiency. This way, we only need to store a table
for the lowest sparsity network, including its nonzero weights sorted
w.rt. importance and corresponding indices. Accordingly, the other
networks can be build from the top important weights through a pre-
defined sparsity together with the compiled architecture. Assume that
we sample K sparse subnets, then the preliminary problem is defined as,

min {(w © my) Vkel,.. K (3.1)
w,my

st. lmyllo=1-s)-1 Vkel,..K (3.2)

m;Om;=m; V1<i<j<K (3.3)

where w stands for the weights of the (dense) backbone network; my
stands for the binary mask of the k-th subnet; s, stands for the pre-defined
sparsity level. £(.) denotes the loss function, ||.|| denotes the LO-norm, ©®
denotes the element-wise multiplication. Note that w € R/, m; € {0,1}/,
where [ is the total number of weights. Clearly, we have 0 <51 <5, < ... <
sk < 1, i.e,, the first subnet bounds the overall static storage consumption.
wy is denoted as nonzero weights of the k-th sparse subnet, i.e., wy =
w O My.

In the following sections, we detail how to solve Eq. (3.1)-Eq. in
our DRESS synthesis approach. DRESS consists of three training stages
as discussed below. The overall pipeline is shown in Algorithm 3.1}

e Dense Pre-Training: The backbone network is trained from scratch

with a traditional optimizer to provide a good initialization for the
following sparse training.

e DRESS Training: The multiple sparse subnets are sampled from

the backbone network (Section Section [3.3.4) and are jointly
trained in parallel with weighted loss (Section 3.3.3).

e Post-Training on Batch Normalization: Batch normalization (BN)

layers are further optimized individually for each subnet to better
reveal the statistical information (Section [3.3.5).



46  Chapter 3. Adaptation on Edge Devices

Algorithm 3.1: Dynamic REal-time Sparse Subnets

Input: Initial random weights w, training dataset Dy, validation

K

11, hormalized loss

dataset Dy, overall sparsity {si}

weights {rti}y
Output: Optimized weights w, binary masks {rmy};_,
/* Dense pre-training

1 Train dense network w with traditional optimizer;
/* DRESS training

2 Allocate layer-wise sparsity {sy,};_, for each s;;

3 Initiate w’ = w;

forg < 1toQdo

'

// The g-th training iteration

5 Fetch mini-batch from D,

6 Initialize backbone-net gradient g(w’™!) = 0;

7 | fork < 1toKdo

8 Sample a subnet with sparsity {s,};, and get its mask 1

9 Get sparse subnet wz_l = wT ' Omy;

. - ol(w!™
10 Back-propagate subnet gradient g(w] Y =m- % ;
Wi
1 Accumulate backbone-net gradient
g™ =g + glw] ) O g

12 Compute optimization step Aw? with g(w’™1);
13 | Update w? = w'! + Aw?;
14 | if Higher average epoch accuracy on Dy, then
15 | Save w = w'and {my}X_;
16 else
17 L Re-allocate layer-wise sparsity {si;})-, for each s;;

/¥ Post-training on batch normalization (BN)
18 fork < 1to K do
19 L Load w and my;

20 Fine-tune BN layers of subnet w © my;

3.3.2 How to Sample Sparse Subnets

Unlike traditional anytime networks that sample subnets along structured
dimensions, DRESS samples subnets weight-wise which extremely
enlarges the sampling space. Recall that we introduce K binary masks
mqx to indicate if the weight is selected in each subnet. The naive
approach could be iterative sampling K subnets where each iteration
exhaustively searches the best-performed subnet inside the current
subnet. Yet this naive approach can be either conducted rarely or

infeasible due to the high complexity.
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Figure 3.1: The computation graph used in parallel training multiple
subnets. The orange block stand for the leaf variable to be optimized; the
blue block stand for the intermediate variable; the green block stand for
the computation unit.
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Figure 3.2: The cosine similarity between the loss gradients of 5 subnets
(with sparsity 0.8,0.9,0.95,0.98,0.99) and that of the lowest sparsity subnet
(with sparsity 0.8) along the training iterations. We show two typical
layers in ResNet20, the last conv layer of the first block and the fc layer

To reduce the complexity, we propose to greedily sample the subnet
based on the importance of weights. Following the prior pruning works
RFC20], the importance is measured by the weight
magnitudes. Given an overall sparsity level s, the (1 —si) - I weights with
the largest magnitudes will be sampled and are used to build the subnet.
However, it is still infeasible to conduct such a global sorting across all
layers in each training iteration. Instead, the weights are only sorted and
sampled inside each layer according to a layer-wise sparsity si;, where
I denotes the layer index. The global sorting, also the (re-)allocation of
layer-wise sparsity, is conducted only if the average accuracy of subnets
does not improve anymore, see in Algorithm During (re-)allocation,
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the weights of all conv and fc layers with the largest magnitudes will
be selected in sequence until reaching the overall sparsity s, and the
layer-wise sparsity can be then calculated accordingly.

Note that the (dense) backbone network is maintained and contin-
uously updated when training sampled subnets. In comparison to
traditional pruning, where only the nonzero weights at fixed locations
are fine-tuned, our sparse subnets are re-sampled from the backbone
network in each training iteration. This flexible mechanism is crucial
to acquire multiple high-performed subnets, see the ablation results in

Section

3.3.3 How to Optimize Subnets

With sampled binary masks, we can now build and train the subnets. Our
concept for optimizing subnets is based on the key insight: in comparison
to iterative training of subnets in progressively decreasedfincreased sparsity,
parallel training allows multiple subnets to be sampled and optimized jointly
thus yields higher performance.

Experimental results in Section show that parallel training
multiple subnets always yields a higher prediction accuracy than iterative
training. As a possible explanation, the optimizer may be stuck into a
bad local optimum around the previous subnet during iterative training,
whereas parallel training searches multiple subnets jointly. We thus adopt
parallel training in DRESS as in Algorithm

In parallel training, Eq. can be re-written as,

K
min T - C(w © my) (3.4)

w,m,
-

where 711, is the normalized scale (}:szl 1 = 1) used to weight K loss items,
which will be discussed later. In fact, this process determines a threshold ¢,
for the k-th sparsity level, the mask value my; = 1if abs(w;) > ti, otherwise
0,Viel,..,I tis set to the value such that (1 — s;) of weights have a
larger absolute value than t;. Clearly, we have t; < t, < ... < tx due to
the constraints of Eq. (3.2)-Eq. (3.3). In each training iteration, we sample
K sparse subnets wy.x from the backbone network w. Each subnet’s loss
function is weighted by 7, and summed together. This weighted sum is
to be minimized and thus is used to compute the gradients of w, see the
optimization graph in Figure

When parallel training multiple subnets, the gradients of the backbone
network is accumulated by the (weighted) loss gradients back-propagated
through all K sparse subnets, as,

K

k=1
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We parallelly train 5 subnets of ResNet20 [HZRS16] with sparsity
s1.5 = 0.8,0.9,0.95,0.98,0.99 on CIFAR10, and let the 5 loss items weighted
equally, i.e., 5 = 0.2. We plot the cosine similarity between the loss
gradients of 5 subnets (i.e., (€(wy)/dwi) ©m with k =1, ..., 5) and that of
the lowest sparsity subnet (i.e., (9€(w1)/dw;)©m,) along with the training
iterations, see in Figure It shows that the loss gradients of different
subnets are always positively correlated with each other. The results also
verify that multiple subnets are jointly trained towards the optimal point
in the loss landscape. Because of Eq. (3.3), the nonzero weights in higher
sparsity subnets (e.g., ws) are also selected by other subnets, which means
these weights are optimized with a larger step size than other weights. To
balance the step size, the subnet with a higher sparsity (fewer trainable
weights) shall be assigned to a smaller weight r; on its loss. We propose to
weight the loss items by the ratio of trainable weights (i.e., 1 —si) together
with a correction factor y.

a = (1—sp) (3.6)
K

T = i/ Z Qg (3.7)
k=1

The normalized weights 7, provide control over the significance of
subnets in parallel training. = 0 means weighting loss items equally.
Experimentally, we find that € [0.5,1] often yields a satisfactory

performance, see in Section (3.4.2.4

3.3.4 How to Store Subnets

To realize efficient storage and computation, current compilation libraries
often encode sparse tensors in compressed sparse row (CSR) format
(or some similar formats e.g., Block-CSR) [Goo19, EDGS20, ILLM*20].
An example CSR format of sparse tensor for a conv layer is depicted
in Figure When adopting traditional CSR format to store subnets
generated by DRESS, we need to store (i) the subnet with the lowest
sparsity including the row indices, the column indices, and the nonzero
values, (ii) K threshold values t;.x. However, when selecting the k-th
subnet for inference, all nonzero weights need to be fetched and compared
with t;. Although we may build specialized indexing for every subnet
individually, it in turn results in more memory cost depending on the
number of subnets.

To achieve an efficient inference on different sparse subnets while
without extra memory overhead, we adopt a row-based unstructured
sparsity (a.k.a. N:M fine-grained structure sparsity [ZMZ*21, HCI*21,
SZ5721]), where different rows leverage the same sparsity level. We
denote N as the row size, also the number of weights in each row.
Especially, for sparsity s, all rows have exactly (1-si)-N nonzero weights.
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Figure 3.3: Traditional CSR format of unstructured sparse tensor. The
example weight tensor is from a 1 X 1 conv layer with 8 input channels
and 4 output channels. The sparse tensor has a row dimension along
each output channel, i.e., each conv filter. There are 3 sparse subnets with
sparsity 0.5, 0.75, and 0.875. Each subnet corresponds to a threshold value
of 0.7, 1.3, and 1.7, respectively.

In comparison to conventional unstructured sparsity, this kind of sparsity
can also be accelerated with sparse tensor cores of Nvidia A100 GPUs
[MLP"21] for both training and inference, and thus becomes prevailing
recently. To our best knowledge, this is the first work that builds multiple sub-
networks via fine-grained structure of weight sharing. The column indices are
stored according to the descending order of the importance (also weight
magnitudes) in a two-dimensional table. The nonzero weights are stored
in another table with the same order as the column indices. This DRESS
CSR format needs to store (i) the subnet with the lowest sparsity including
the table of the column indices and the table of nonzero weights, (ii) K
integers {(1—sx) - N}&_,. It has overall a similar memory cost as traditional
CSR format. When adopting the k-th subnet, we fetch the first (1 —s;) - N
columns from both tables as shown in Figure The row indices can
be built with (1 — s¢) - N. Note that all fetched subnets follow the CSR
format and utilize the same compiled network architecture, which allows
us to leverage available libraries to achieve a fast inference without re-
configuration overhead.

To obtain DRESS CSR format, the sampling process needs to be
adjusted accordingly. Especially, for layer I, we first pre-define a row
size N; and reshape the weight tensor into rows. For example, each
conv filter corresponds to one row in accordance with the compilation
libraries [Gool9, EDGS20]. When sampling a subnet in layer I, we
conduct unstructured sampling in each row individually, while each row
has the same sparsity si; as in Figure Note that when N; equals
the total number of weights, i.e., a single row in DRESS CSR, it turns
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Figure 3.4: DRESS CSR format of row-based unstructured sparse tensor.
The example weight tensor has the same size as Figure[3.3} Each row has
8 weights in total, also the row size N = 8. There are 3 sparse subnets
with sparsity 0.5, 0.75, and 0.875, as Figure @ Each subnet has 4, 2, and
1 nonzero weights per row, respectively.

Algorithm 3.2: Row-based unstructured sampling

Input: Weight tensor w € R“N, row size N, sparsity {s¢};_,
Output: Binary masks {rmy}5

1 fork < 1to K do

2 | Initiate binary mask my = 0°*V;

3 | Get the number of nonzero weights per row N* = N - (1 — sy);

4 forg — 1toGdo

5 | Sort the weight magnitudes of row w, . in descending order;
6 fork < 1to K do

7 L Set the mask values of my ;. as 1 for Top-N;* indices;

back into the original unstructured sampling discussed in Section [3.3.2]
In this case, unstructured sampling is conducted in the entire tensor.
Although the resulted sparse tensor can still be stored in the traditional
CSR format as Figure it can not perform an efficient inference due to
extra comparison computation discussed above.

We present our algorithm of row-based unstructured sampling in
Algorithm We focus on sampling in a weight tensor w with a
predefined row size N. Note that N must be divisible by the total number
of weights in w. The weight tensor w is then reshaped into the form of
RSN je,N weights per row and G rows in total. Given K sparsity levels
s1:.x, Kbinary masks with the form of {0, 1 16XN are generated. Binary masks
can be reshaped into the original form of the weight tensor accordingly.

3.3.5 How to Further Boost Subnets

Batch normalization (BN) layers are critical for the stable training of state-
of-the-art DNNs. Previous synthesis works [YYX"19, [YH19b] find that
subnets with different width may cause an accumulated error on batch
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statistics, and propose to switch BN layers for different subnets. Multiple
subnets in DRESS share a single architecture, and thus are capable of being
optimized in synergy with a shared BN layer. However, post-training
BN layers for each subnet can better calibrate the running statistics,
which in turn increases the accuracy. As BN layers often only require
a rather smaller amount of memory and computation in comparison to
conv/fc layers, we propose to further fine-tune BN layers for each subnet
individually after parallel training, as shown in Algorithm

3.4 Evaluation

With our design-flow mentioned above, we are now synthesizing the
algorithm to map onto resource-constrained edge platforms. To better
understand the effectiveness of our algorithm, we first evaluate our
algorithm on widely used vision benchmarks in this section. Then,
we compile and deploy the generated subnets on an edge platform in
Section [3.5/to see the actual performance of the entire synthesis.

3.4.1 Benchmarking Details

We implement our algorithm with Pytorch [PGC*17], and evaluate
on image classification and object detection/instance segmentation
tasks. As prior works [HCL*18| YYX™19, YH19b, REC20, PIVA21,
/ZMZ721, 525721], for image classification, we benchmark VGGNet
[SZ15] and ResNet20 [HZRS16] on CIFAR10 [KNHO09], and benchmark
ResNet50 [HZRS16] and MobileNetV1/V2 [HZC*17, SHZ*18] on Im-
ageNet [RDS™15]; for object detection, we benchmark Faster-RCNN
with ResNet50-FPN on COCO [LMB*15]]; for instance segmentation, we
benchmark Mask-RCNN with ResNet50-FPN on COCO [LMB*15]]. We
use Nesterov SGD optimizer with the cosine schedule for learning rate
decay. We report the Top-1 test accuracy for the subnets of the epoch
when the validation dataset achieves the highest average accuracy over
all subnets. For all pre-processing and random initialization, we apply
the tools provided in Pytorch.

In our experiments, the row-based unstructured sampling is con-
ducted in all conv/fc layers, except for the depthwise conv layers in
MobileNetV1/V2. We found that sparse depthwise conv layers lead to
substantially lower accuracy. As depthwise conv layers only consume
a rather small amount of memory and computation [EGM*21, [Cho21]],
different subnets share the same dense depthwise conv layers in DRESS.
In addition, we keep BN layers dense as in [YYX"19, [YH19b]. We set
the overall sparsity levels s;5 = 0.95,0.98,0.99,0.995,0.998 for VGGNet,
si5 = 0.8,0.9,095,098,099 for ResNet20, s;4 = 0.5,0.8,0.9,095 for
ResNet50 and MobileNetV1/V2. The sparsity levels are averaged over
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all conv/fc layers.

3.4.1.1 VGGNet/ResNet20 on CIFAR10

CIFAR10 [KNHO09] is an image classification dataset, which consists of
32 x 32 color images in 10 object classes. We use the original training
dataset with 50000 samples for training, and randomly select 2000 samples
in the original test dataset (10000 samples in total) for validation, and the
rest 8000 samples for testing. We train on 1 Nvidia V100 GPU with a batch
size of 128.

VGGNet. The used VGGNet is widely adopted in many previous
compression works [CBD15, [HYK17, RORF16], which is a modified
version of the original VGG [SZ15]. The used VGGNet architecture is
presented as, 2x128C3 - MP2 - 2x256C3 - MP2 - 2x512C3 - MP2 - 2x1024FC
- 105VM/100SVM. The initial learning rate is set as 0.1; the momentum is
set as 0.9; the weight decay is set as 0.0005; the number of training epochs
is set as 100. Note that we use the same training hyperparameters for
all three stages in Algorithm This also holds true for the following
experiments.

ResNet20. The network architecture is the same as ResNet-20 in the
original paper [HZRS16]. The initial learning rate is set as 0.1; the
momentum is set as 0.9; the weight decay is set as 0.0005; the number
of training epochs is set as 100.

3.4.1.2 ResNet50/MobileNetV1/MobileNetV2 on ImageNet

ImageNet [RDS™15] is a large-scale image classification dataset, which
consists of high-resolution color images in 1000 object classes. We use
the original training dataset with 1.28 million samples for training, and
randomly select 10000 samples in the original validation dataset (50000
samples in total) for validation, and the rest 40000 samples for testing.
We train on 4 Nvidia V100 GPUs with a batch size of 1024.

ResNet50. We use pytorch-style ResNet50, which is slightly different
than the original Resnet-50 [HZRS16]. The down-sampling (stride=2) is
conducted in 3 X 3 conv layer instead of 1 X 1 conv layer. The network
architecture is the same as “resnet50” in [Pyt19b]. The initial learning rate
is set as 0.5; the momentum is set as 0.9; the weight decay is set as 0.0001;
the number of training epochs is set as 100.

MobileNetV1. The network architecture is the same as 1.0x MobileNet-
224 in the original paper [HZC"17]. The initial learning rate is set as 0.5;
the momentum is set as 0.9; the weight decay is set as 0.00001; the number
of training epochs is set as 150.

MobileNetV2. The network architecture is the same as 1.0x MobileNetV?2
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in the original paper [SHZ"18]. The initial learning rate is set as 0.1; the
momentum is set as 0.9; the weight decay is set as 0.00004; the number of
training epochs is set as 300.

3.4.1.3 ResNet50-FPN on COCO

MS COCO [LMBT15] is object detection, segmentation, key-point
detection, and captioning dataset. We use COCO 2017 dataset, which
consists of high-resolution annotated images in 80 object classes. It
contains a training dataset with 118000 annotated samples, and a
validation dataset with 5000 data samples. We focus on object detection
and instance segmentation. We report the standard COCO metrics,
average precision (AP), which is averaged over Intersection-over-Union
(IoU) thresholds € 0.5 : 0.05 : 0.95. The bounding box level AP and
the mask level AP are adopted in object detection and the instance
segmentation, respectively. We follow the official reference training
scripts provided by Pytorch [Pyt21] to set up our experiments. We
distributed train on 8 Nvidia V100 GPUs with a batch size of 16 (2 per
GPU). The final AP is reported on the validation dataset after the entire
training.

ResNet50-FPN. We adopt Faster-RCNN [RHGS15] in object detection
and Mask-RCNN [HGDGI17] in instance segmentation. The overall
network architecture consists of two parts, the basic networ and the
head architecture. We use ResNet50 pretrained on ImageNet dataset as
the basic network. As suggested by [HGDG17], the feature extractor,
tfeature pyramid network (FPN) [LDG™17], is connected to ResNet50 in
lateral. The bounding-box head and the mask head will then use the
extracted feature to detect objects and segment instances. Especially, our
network architectures are the same as the ones provided in the Pytorch
reference training scripts [Pyt21]]. As the batch size used in Faster-RCNN
training and Mask-RCNN training is relatively small, we freeze the BN
layers of ResNet50 as in [HGDG17, GRG"18].

Following [YYX*19], we first pretrain ResNet50 with Algorithm[3.Tjon
ImageNet, i.e., obtain 4 subnets of ResNet50 with sparsity 0.5, 0.8,0.9,0.95
as in Figure The lateral FPN and the head architecture are added into
ResNet50. We then train the overall network on COCO dataset with
Algorithm B.T|while fixing BN layers for each subnet.

3.4.2 Ablation Studies

We first implement a set of ablation experiments to study the effect of
different components/parameters in DRESS. The ablation experiments

1'To avoid confusion, we use the basic model to refer to the backbone network mentioned in
the Faster-RCNN and Mask-RCNN papers [RHGS15|[HGDG17]. The backbone network
only stands for the original dense network in DRESS in this chapter.
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Figure 3.5: Ablation studies on different row sizes. “BN” means further
fine-tuning BN layers for each subnet.

are mainly conducted with ResNet20 on CIFAR10 and MobileNetV1 on
ImageNet.

3.4.271 Row Size N

Settings. In Section[3.3.4] we restrict different rows in a CSR sparse tensor
to have the same number of nonzero weights, and subnets are sampled in
a row-based unstructured manner. To study the impact of row size N, we
select three methodical ways to reshape the weight tensor for row-based
sampling, (i) unstructured, where unstructured sampling is conducted
in the entire weight tensor, i.e., each layer only contains a single row in
DRESS CSR format as discussed in Section (i1) filterwise, where
unstructured sampling is conducted in each filter for conv layers or in
each output-neuron for fc layers; (iii) 256, where each row contains 256
elements in a conv filter, or the entire filter if the filter has less than 256
weights. y is set as 1 in these experiments. The row size N used in CSR
format is tightly related to the memory cost to store the column indices
of nonzero weights, e.g., 256 means 8-bit for each column index.

Results. The results in Figure [3.5/show that when choosing a relatively
large row size e.g., filterwise or 256, our proposed row-based unstructured
sampling can yield a similar accuracy as totally unstructured sampling
in the entire tensor. Especially, for both ResNet20 and MobileNteV1,
the accuracy difference between “Unstructured” and “Filterwise” is less
than 0.5% on average. In the following experiments, we mainly adopt
tilterwise unstructured sampling due to its high accuracy and efficient
DRESS CSR format. The dashed curves and the solid curves with the
same marker in Figure (3.5 can be viewed as the ablation study of the
third training stage, i.e., further fine-tuning BN layers for each subnet (see
Section[3.3.5). Particularly, fine-tuning BN layers can calibrate the statistic
discrepancy between different subnets and thus consistently improves the
performance of subnets.
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Figure 3.6: The BN statistics of different subnets across layers. The subnets
of MobileNetV1 with different sparsity levels are plotted with different
colors.

The BN statistic information of 4 subnets of MobileNetV1 is shown
in Figure For each layer in subnets, we plot the average value
of “running mean”, “running variance”, “weight”, and “bias” over all
channels after the third training stage. The results show that the BN
statistic information is closed among different subnets, which allows
multiple subnets to be optimized in synergy in the second training stage
(DRESS training) of Algorithm On the other hand, the third training
stage can calibrate the small discrepancy between different subnets, which

in turn improves the accuracy of each subnet.

3.4.2.2 With/Without Sampling

Settings. To explore the efficacy of our sampling process, we compare
DRESS with sampling (i.e., Algorithm 3.T) and DRESS without sampling.
DRESS without sampling has a similar process as traditional unstructured
magnitude pruning [HMD16, RFC20], where K binary masks are built
after the dense pre-training and then are fixed, and only the nonzero
weights (with mask value equals 1) are sparsely fine-tuned. In other
words, the subnets will not be re-sampled in the DRESS training stage of
Algorithm We set y as 1 and use filterwise unstructured sampling in
these experiments.
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Figure 3.7: Comparison between DRESS with sampling and DRESS
without sampling.

Results. As shown in Figure our (re-)sampling process improves the
accuracy of subnets by a large margin than without sampling, especially
under a high sparsity, e.g., increasing by around 7.4% on average (up
to 16.1%) on MobileNetV1. Re-sampling provides more flexibility to re-
select the sparse subnets that are abandoned before the parallel training.

3.4.2.3 [Iterative vs. Parallel

In this part, we compare DRESS (parallel training) with iterative training
multiple subnets. We first elaborate the iterative training methods with
progressively increased/decreased sparsity mentioned in Section[3.3.3]
Recall that there are K sparsity levels, and 0 < 51 <5, < ... <sg < L.
In iterative training, each subnet is optimized separately, also altogether
K iterations. In each iteration, we mainly adopt the idea of traditional
unstructured pruning [RFC20], which is the current best-performed
pruning method aiming at the trade-off between the model accuracy
and the number of zero’s weights. [RFC20] conducts iterative pruning
with a pruning scheduler p'f. The network progressively reaches
the desired sparsity s until the R-th pruning iteration. We choose
p'® = 0.5,0.8,0.9,0.95,1, i.e., the sparsity is set to 0.5s,0.8s,0.9s,0.95s, s
in 5 pruning iterations, respectively. During each pruning iteration, the
network is pruned with the corresponding sparsity, and the remaining
nonzero weights are sparsely fine-tuned with learning rate rewinding.
The pseudocode of training subnets iteratively with increased sparsity
is shown in Algorithm With progressively increased sparsity (from s;
to sk), the first optimized subnet of w®m, already contains all subsequent
subnets with higher sparsity due to Eq. (3.3). The first sparse subnet
wOm, is trained by unstructured pruning [RFC20] as discussed above. In
the following iteration k (k € 2, ..., K), the subnet with sparsity s is directly
sampled from the previous subnet without any retraining regarding the

constraint of Eq. (3.3).
The pseudocode of training multiple subnets iteratively with
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Algorithm 3.3: Iterative training with increased sparsity

Input: Initial random weights w, training dataset Dy, validation

dataset Dy, sparsity {si}k_,, pruning scheduler {p"}% |
Output: Optimized weights w, binary masks {rmy};_,
/* Dense pre-training */
1 Train dense network w with traditional optimizer;
/* Traditional pruning, also k=1 */

2 forr < 1toR do
// The r-th pruning iteration
3 | Prune with sparsity s; - p" and get mask m;
4 | Sparsely fine-tune nonzero weights w © m| on Dy;

5 Get mask m; = m¥%;

/* Iterative (training) */
6 fork < 2to K do
7 Get the previous subnet wy_; = w © my_y;
8 Sample a subnet from wy_; with sparsity s, and get mask my;
// Note that no training here.

decreased sparsity is shown in Algorithm[3.4 For progressively decreased
sparsity (from sk to s;), the sampling and training process only happen
in the complementary part of the previous subnet due to Eq. (3.3).
Particularly, in iteration k (k € K,...,1), we should (i) sample the new
subnet from the backbone network with sparsity s; that contains the
subnet of w © my,q; (ii) freeze the subnet of w © my,1 and only update
the other weights. We still adopt the iterative pruning when training
each subnet, i.e., the sparsity of the k-th subnet gradually approaches the
target sparsity s;. Note that the dense backbone network is maintained
and updated during the training. Note that the (re-)sampling process is
only conduct in each pruning iteration instead of each training iteration.

Settings.  We implement the two iterative training methods of
Algorithm 3.3/ and Algorithm The loss of each subnet is optimized
separately in iterative training. Thus for a fair comparison, we do not
re-weight loss in the parallel training of DRESS, i.e.,, y = 0. Also in all
experiments, we conduct unstructured sampling in the entire tensor, and
allow BN layers to be fine-tuned individually for each subnet to avoid
other side effects.

Results. The comparison results are plotted in Figure 3.8 Left. Parallel
training substantially outperforms iterative training. Iterating over
increased sparsity does not provide any space to optimize subnets with
higher sparsity. Therefore, the accuracy drops quickly along iterations.
Although iterating over decreased sparsity may yield a well-performed
high sparsity network, the accuracy does not improve significantly
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Algorithm 3.4: Iterative training with decreased spa

rsity

Input: Initial random weights w, training dataset Dy, validation

dataset Dy, sparsity {si}5_,, pruning scheduler {p"}% |
Output: Optimized weights w, binary masks {rmy};_,
/* Dense pre-training
1 Train dense network w with traditional optimizer;
/* Iterative training
2 Set sgy1 = 1 and mg, = 0;
3 fork — Kto1do
4 Get the complementary subnet w* = w © (1 — My1);
5 forr — 1toR do
// The r-th pruning iteration
6 Sample a subnet from w* with sparsity (1 — (sx41 — k) - "
and get mask m,”";
7 Merge mask m;| = myyq + m>”’;
8 Initiate w° = w;
9 forg < 1toQdo
// The g-th training iteration
10 Fetch mini-batch from Dy
11 Get sparse subnet w;’q_l =w o my;
rg-1
12 Back-propagate subnet gradient g('w;q_l) = % ;
k
13 Compute optimization step Aw? with g(w]:’q_l) om.”’;
14 Update w = wi™! + Aw?;
15 Save w = w®
16 | Save mask my = m;
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Figure 3.8: Left: Comparing parallel training with iterative training.
Right: Ablation studies on the correction factor y.

afterwards. We argue this is due to the fact that iterative training causes
the optimizer to end in a hard to escape region around the previous subnet
in the loss landscape. On the contrary, parallel training allows multiple
subnets to be sampled and optimized jointly, which may especially benefit
highly sparse networks, see Figure 3.8| Left.

3.4.2.4 Correction Factor y

Settings. The loss weights 71, used in the parallel training may influence
the final accuracy of different subnets. In Section we introduce a
correction factor y to control 7, (see Eq. and Eq. (3.7)). We thus
conduct a set of experiments with different y. y = 0 means all loss
items are weighted equally; > 0 means the loss of the lower sparsity
subnetsis weighted larger, and vice versa. For example, for ResNet20 with
s15 = 0.8,0.9,0.95,0.98,0.99, when y = 0.5, m15 = 0.36,0.26,0.18,0.12, 0.08;
y =-1.0, 715 = 0.03,0.05,0.11,0.27, 0.54.

Results. The results in Figure Right show that the high sparsity
subnets generally yield a higher final accuracy with a smaller y. This is
intuitive since a smaller y assigns a larger weight on the high sparsity
subnets. However, the downside is that the most powerful subnet
(with the lowest sparsity) can not reach its top accuracy. Note that
the most powerful subnet is often adopted either under the critical
case requiring high accuracy or in the commonly used scenario with
standard resource constraints, see in Section Also as discussed in
Section low sparsity subnets should be weighted more, since they
are implicitly optimized with a smaller step size. Experimentally, we find
that y € [0.5,1] in parallel training allows us to train a group of subnets
where the most powerful subnet can reach a similar accuracy as training
in separately. We set y = 0.5 in the following experiments.
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Figure 3.9: Comparing DRESS with other baselines on image
classification. The methods that do not involve weight sharing among
different networks are plotted with dotted curves. The memory cost and
the number of MFLOPs of the original backbone networks are reported in
the parentheses in titles; their accuracy is shown as red horizontal lines.
The sparsity levels of DRESS and “Pruning” are the same as the ones

discussed in Section



62  Chapter 3. Adaptation on Edge Devices

Average Accuracy Overall Storage (MB)  Average MFLOPs

Model
DRESS Pruning DRESS  Pruning  DRESS Pruning
VGGNet 91.4% 91.1% 3.54 6.27 32 33
ResNet20 86.1% 85.9% 0.28 0.55 4 4
ResNet50 74.5% 74.6% 63.97 109.25 887 994
MobileNetV1l  65.6% 65.9% 10.72 18.96 146 152
MobileNetV2  61.5% 62.4% 8.98 16.32 95 101

Table 3.1: The average test accuracy over all sub-networks, the theoretical
storage (MB) required by all sub-networks and the average number of
theoretical MFLOPs over all sub-networks.

3.4.3 Evaluation on Image Classification

Settings. In this section, we benchmark DRESS on public image
classification datasets including CIFAR10 and ImageNet with different
backbone networks discussed earlier in Section We compare the
performance of the subnets generated by DRESS with various methods,
including (i) anytime networks [HCL™18, YYX"19, YH19b], where the
sub-networks with different width or depth can be cropped from the
backbone network; (i7) unstructured pruning [RFC20, PIVA21], where
[REC20] is re-implemented under our settings for a fair comparison; (iii)
N:M fine-grained structure pruning [ZMZ721} 5Z521]. We choose two
metrics for comparison, the memory cost of parameters and the number
of MFLOPs (10° FLOPs). Both metrics are widely used proxies of resource
consumption. FLOPs dominate in the entire computation burden, thus
tewer FLOPs can (but does not necessarily) result in a smaller computation
time. The memory cost of parameters not only represents the static
storage consumption but also relates to the amount of memory fetching
when on-device inference with different (sub-)networks [AAH"20]. Note
that memory access often consumes more time and more energy than
computation [Hor14]. Assume thateach parameter uses 32-bit for floating
point values. DRESS, (ii), and (iii) generate sparse tensors, thus their
memory cost also includes the indices of nonzero weights. Following
the suggestions of [ABC*16, (Goo19], each index of nonzero weights is
encoded into 8-bit in DRESS and (i7), whereas the binary mask is stored
for indexing in [ZMZ21, 5257 21].

Results. The results are plotted in Figure In comparison to other
anytime networks, the subnets generated by DRESS require a significantly
lower memory cost and fewer FLOPs under the same accuracy level. In
addition, the sub-networks of conventional anytime networks [HCL"18,
YYX™19, YH19b|] have different network architectures, while current
compilation libraries (e.g., TensorFlowLite) may not support to adopt a
dynamic architecture on-device. The extra re-configuration overhead e.g.,
storing various compiled architectures could be necessary for on-device
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inference. However, this is avoided in DRESS, since different subnets
of DRESS leverage the same architecture as the backbone network. Like
traditional unstructured pruning, DRESS does not explicitly reduce the
number of operations, i.e., the networks with the same sparsity can
require different numbers of FLOPs to perform inference as shown in
Figure Thanks to the weight sharing, the static storage is only
determined by the largest network for both DRESS and anytime networks
[HCL™18,[YYX"19,[YH19b]. The methods of (ii)-(iii) do not involve weight
sharing, thus they need more memory to store all networks separately.

We further compare DRESS with the unstructured pruning method
[REC20], in terms of the test accuracy, the theoretical storage, and the
theoretical FLOPs, see Table DRESS reaches a similar average
accuracy and computation complexity while only requiring 50%-60% of
storage as pruning.

3.4.4 Evaluation on Object Detection/Instance Segmentation

Settings. To show the versatility of our synthesis technique, we further
benchmark DRESS on other vision tasks, object detection and instance
segmentation. We compare DRESS with other baselines mentioned in
Section on MS COCO 2017 dataset. We adopt Faster-RCNN with
ResNet50-FPN [RHGS15]] in object detection and Mask-RCNN [HGDG17]]
with ResNet50-FPN in instance segmentation.

Results. Since the number of FLOPs for Faster-RCNN and Mask-RCNN
depends on the number of proposals in each image [CMS*20], we report
the average number of FLOPS for the randomly selected 100 images in
COCO 2017 validation dataset. We compute the FLOPS with the tool
flop count operators from Detectron2 [WKM™19]. For Faster-RCNN, we
report its bounding box AP; for Mask-RCNN, we report its bounding
box AP and its mask AP. The results are plotted in Figure Similar
to the results in Figure the subnets generated by DRESS require a
significantly lower memory cost and fewer GFLOPs (10° FLOPs) than
other anytime networks [YYX"19]. In addition, in comparison to the
unstructured pruning [REC20] that does not involve weight sharing,
DRESS can also achieve a similar precision level.

3.4.5 Sparsity across Layers

To further explore the different impact from DRESS and traditional
pruning, we compare their layerwise sparsity. Recall that the main
differences between DRESS and traditional pruning are, (i) the nonzero
weights of the higher sparsity subnets are reused by the lower
sparsity subnets in DRESS, whereas different sparse networks generated
by traditional pruning are independent; (ii) DRESS maintains an
unstructured sparse pattern in a row-based manner (i.e., fine-grained
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Figure 3.10: Comparing DRESS with other baselines on object detection
and instance segmentation. The methods that do not involve weight
sharing among different networks are plotted with dotted curves. The
memory cost and the number of GFLOPs of the original backbone
networks are reported in the parentheses in titles; their average precision
is shown as red horizontal lines.
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Sparsity MobileNetV1 MobileNetV2
Model Dense Dense
Time (ms) 0% 83 52
~ Model DRESS Pruning DRESS Pruning
50% 77 80 47 48
Time (ms) 80% 45 55 36 41
90% 31 35 29 32
95% 25 27 26 26

Table 3.2: The average inference time (ms) on RaspberryPi 4.

structure sparsity [ZMZ21, HCI"21, SZ5721]]), whereas traditional
pruning yields an unstructured sparse pattern in the entire tensor.

We plot the layerwise sparsity of the sparse (sub-)networks generated
by DRESS and traditional pruning [REC20], for ResNet20 on CIFAR10 in
Figure and for MobileNetV2 on ImageNet in Figure In general,
both methods have a similar layerwise sparsity in each subplot. However,
there exists a diversity under a low sparsity level, e.g., MobileNetV2 with
sparsity 0.5. Jointly training with weight sharing in DRESS enforces
the low sparsity network to be optimized towards a certain region that
has been less explored in the individual training of pruning, as the low
sparsity network often has relatively looser constraints.

3.5 Deployments

To measure actual performance and compare it to the benchmark
evaluation, we used DRESS-generated subnets on a RaspberryPi 4
edge platform (with off-the-shelf Arm Cortex-A72 quad-core CPUs)
for on-device inference. The optimized Pytorch model is compiled
by TensorFlow Lite [ABCT16] with XNNPACK [Gool9] delegate for
deployment. We use multi-threading with 4 threads for acceleration.

The inference latency when adopting different subnets of Mo-
bileNetV1 and MobileNetV2 on RaspberryPi 4 is reported in Table
The original dense models and the sparse models generated from
unstructured pruning methods [RFC20] are also added in Table for
comparison. The reported latency is averaged over 100 randomly selected
samples from ImageNet dataset. By using the fast kernels for sparse
matrix-dense matrix multiplication provided by XNNPACK, DRESS can
dynamically select its subnets to satisfy the various inference latency
constraints. Note that the sparse (sub-)networks of DRESS and pruning
[REC20] have a similar number of theoretical FLOPs (see Figure and
Table[.T), yet DRESS often yields a lower inference time. This is due to the
fact that row-based unstructured sparsity leads to regular computation
among different rows, which speeds up inference [ZMZ*21].

Note also that although the inference time decreases when adopting
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the subnets with a higher sparsity, the realistic speedup of sparse inference
is not proportional to the reduction in theoretical FLOPs. For example, the
theoretical FLOPs decrease by a factor of 6.4 when the sparsity of DRESS
MobileNetV1 subnets increases from 50% to 95%, while the inference
is only accelerated by a factor of 3.1. A similar phenomenon can also be
observed in MobileNetV2 and pruned models. We suspect that the reason
is that sparse computational cores of XNNPACK have a larger fraction of
cache miss at a higher sparsity level, see also in [EDGS20].

3.6 Summary

This chapter develops a novel synthesis approach DRESS that can
adapt the sub-networks for on-device inference to maximize the model
performance with different resource budgets. DRESS enables efficient
adaptation on edge devices under varying resource constraints. Prior
synthesis methods either require deploying multiple individual net-
works, or sample sub-network architectures along structured dimensions
leading to subpar performance. However, DRESS utilizes nonzero-
weight sharing and architecture sharing to reduce the redundancy among
multiple unstructured sub-networks, resulting in both storage efficiency
and re-configuration efficiency. The main contributions of DRESS are
summarized as follows,

e DRESS can adapt different sub-networks sampled from the
backbone network on edge devices. These optimized sub-networks
have different sparsity, and thus can infer under various resource
constraints, e.g., the inference latency, and the battery energy.

e DRESS samples sub-networks in a row-based unstructured sparsity
(a.k.a. fine-grained structure sparsity) and introduces a novel
compressed sparse row (CSR) format for storing the sub-networks.
This way, multiple sub-networks can be efficiently fetched and
executed for on-device inference, by using the fast kernels of sparse
tensor computation provided by recent compilation libraries. To
our best knowledge, this is the first work that builds multiple sub-
networks via a fine-grained structure of weight sharing.

e DRESS enables weight sharing and architecture sharing among
multiple sub-networks, resulting in (static) storage efficiency and
re-configuration efficiency, respectively.

e Experimental results show DRESS reaches a similar accuracy while
only requiring 50%-60% of static storage as unstructured pruned
networks, and can result in various distinct inference latency on
off-the-shelf edge platforms according to different sparsity levels.
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This chapter studied how to adapt the network on edge devices to
maximize the inference accuracy under varying resource constraints. In
the next chapter, we will study how to conduct learning on edge devices
given a few data samples of new tasks. The different sub-networks
generated by DRESS are used for the same inference task, thus DRESS is
inapplicable to adapt its network given a new task.
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Figure 3.11: Comparing DRESS with traditional pruning on ResNet20
(CIFAR10) in terms of the layerwise sparsity. The (sub-)networks with
different overall sparsity levels (0.8,0.9,0.95,0.98,0.99) are plotted in
different subplots.
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Learning on Edge Devices

In Chapter 2| and Chapter |3, we studied how to compress a pretrained
DNN for on-device inference under fixed and varying resource constraints.
However, when facing unseen environments, users, or tasks, it is crucial
to adap the pretrained DNN to deliver consistent performance and
customized services. Sometimes, data collected by edge devices are
private and have a large diversity across users/devices. Hence, on-
device learning is preferred over uploading the data to cloud servers for
adaptation.

Main Resource Constraints. For on-device learning, neither abundant
user data nor computing resources are applicable. On the one hand, the
amount of user data collected on a single edge device is rather small due
to the limited labor resources. On the other hand, edge devices often have
a small amount of available resources from memory and computation.

Principles. Existing memory-efficient training approaches are not able to
optimize a DNN given only a few training samples, whereas current meta
learning methods require a significant amount of dynamic memory to
few-shot learn unseen tasks. Therefore, we introduce a memory-efficient
on-device few-shot learning setting, and propose a novel meta learning
scheme that can (i) fast learn new unseen tasks given a few training
samples, resulting in data efficiency, (ii) avoid redundant training by
distinguishing and learning adaptation-critical weights only, leading to
memory efficiency.

The contents of this chapter are established mainly based on the
paper “p-Meta: Towards On-device Deep Model Adaptation” that is
published on ACM Conference on Knowledge Discovery and Data
Mining (SIGKDD), 2022.

!In this chapter, the adaptation is referred to as (re-)training on new data samples.
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Meta-Train on Cloud FSL on loT Device

LR

Task 3 Task 2 Unseen Task

Figure 4.1: Meta learning and few-shot learning (FSL) in the context of
on-device learning. The backbone F(w) is meta-trained into F(w™*?) on
the cloud and is deployed to IoT devices to learn unseen tasks as F(w"")
via FSL.

4.1 Introduction

The excellent accuracy of contemporary DNNs is attributed to training
with high-performance computers on large-scale datasets [GBCB16].
For example, it takes 29 hours to complete a 90-epoch ResNet50
[HZRS16] training on ImageNet (1.28 million training images) [RDS*15]
with 8 Nvidia Tesla P100 GPUs [GDG*17]. However, on-device
learning/adaptation of a DNN demands both data efficiency and memory
efficiency. A personal voice assistant, for example, may learn to adapt
to users” accent and dialect within a few sentences, while a home robot
should learn to recognize new object categories with few labelled images
to navigate in new environments. Furthermore, such learning is expected
tobe conducted onlow-resource platforms such as smart portable devices,
home hubs, and other IoT devices, with only several KB to MB memory.

For data-efficient DNN training, we resort to meta learning, a paradigm
that learns to fast generalize to unseen tasks [HAMS20]. Of our particular
interest is gradient-based meta learning [AES19|[FAL17,[RRBV20, OYKY21]
for its wide applicability in classification, regression and reinforcement
learning, as well as the availability of gradient-based training frameworks
for low-resource devices, e.g., TensorFlow Lite [Ien]. Figure 4.1|explains
major terminologies in the context of on-device learning. Given a
backbone, its weights are meta-trained on many tasks, to output a model
that is expected to fast learn new unseen tasks. The process of learning
is also known as few-shot learning, where the meta-trained model is
further retrained by standard stochastic gradient decent (SGD) on few
new samples only.

However, existing gradient-based meta learning schemes [AES19,
FAL17, RRBV20, IOYKY21] fail to support memory-efficient training.
Although meta training is conducted in the cloud, few-shot learning of the
meta-trained model is performed on IoT devices. Consider to retrain a
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common backbone ResNet12 in a 5-way (5 new classes) 5-shot (5 samples
per class) scenario. One round of SGD consumes 370.44MB peak dynamic
memory, since the inputs of all layers must be stored to compute the
gradients of these layers” weights in the backward path. In comparison,
inference only needs 3.61MB. The necessary dynamic memory is a key
bottleneck for on-device learning due to cost and power constraints, even
though the meta-trained model only needs to be retrained with a few
data.

Prior efficient DNN training solutions mainly focus on parallel and
distributed training on data centers [CXZG16, CLP*21, (GSS17, GMD™16,
RA20]. On-device training has been explored for vanilla supervised training
[GSZ720, MBdG™21}ILN19], where training and testing are performed on
the same task. A pioneer study [CGZH20] investigated on-device learning
to new tasks via memory-efficient transfer learning. Yet transfer learning
is prone to overfitting when only a few samples are available [FAL17].

In this paper, we propose p-Meta, a new meta learning method for
data- and memory-efficient DNN training. The key idea is to enforce
structured partial parameter updates while ensuring fast generalization to
unseen tasks. The idea is inspired by recent advances in understanding
gradient-based meta learning [OYKY21, RRBV20]. Empirical evidence
shows that only the head (the last output layer) of a DNN needs to be
updated to achieve reasonable few-shot classification accuracy [RRBV20]
whereas the body (the layers closed to the input) needs to be updated
for cross-domain few-shot classification [OYKY21]]. These studies imply
that certain weights are more important than others when generalizing
to unseen tasks. Hence, we propose to automatically identify these
adaptation-critical weights to minimize the memory demand in few-shot
learning.

Particularly, the critical weights are determined in two structured
dimensionalities as, (i) layer-wise: we meta-train a layer-by-layer learning
rate that enables a static selection of critical layers for updating; (ii)
channel-wise: we introduce meta attention modules in each layer to
select critical channels dynamically, i.e., depending on samples from
new tasks. Partial updating of weights means that (structurally) sparse
gradients are generated, reducing memory requirements to those for
computing nonzero gradients. In addition, the computation demand
for calculating zero gradients can be also saved. To further reduce the
memory, we utilize gradient accumulation in few-shot learning and group
normalization in the backbone. Although weight importance metrics
and SGD with sparse gradients have been explored in vanilla training
[RA20, DLH*20, IGSZ720, HMD16], it is unknown (i) how to identify
adaptation-critical weights and (ii)) whether meta learning is robust to
sparse gradients, where the objective is to fast learn unseen tasks.
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4.2 Related Work

4.21 Meta Learning for Few-Shot Learning

Meta learning is a prevailing solution to few-shot learning [HAMS20],
where the meta-trained model can learn an unseen task from a few
training samples, i.e.,, data-efficient training. The majority of meta
learning methods can be divided into two categories, (i) embedding-
based methods [VBL*16, [S5Z17, SYZ"18] that learn an embedding for
classification tasks to map the query samples onto the classes of labeled
support samples, (ii) gradient-based methods [AES19, [FAL17, RRBV20,
OYKY?21, VOZK*21] that learn an initial model (and/or optimizer
parameters) such that it can be trained with gradient information
calculated on the new few samples. Among them, we focus on gradient-
based meta learning methods for their applicability in various learning
tasks and the availability of gradient-based training frameworks for low-
resource devices [Ien].

Particularly, we aim at meta training a DNN that allows fast
learning on memory-constrained devices. Most meta learning algorithms
[AES19, [FAL17, VOZK*21] optimize the backbone network for better
generalization yet ignore the workload if the meta-trained backbone is
deployed on low-resource platforms for few-shot learning. Manually
fixing certain layers during on-device few-shot learning [RRBV20,
OYKY21), SLQ*21] may also reduce memory and computation, but to
a much lesser extent as shown in our evaluations.

4.2.2 Efficient DNN Training

Existing efficient training schemes are mainly designed for high-
throughput GPU training on large-scale datasets. [CBG*20, WCB*18]
conduct 8-bit floating point low precision training which requires
specialized hardware for efficient execution. A general strategy is to
trade memory with computation [CXZ2G16, GMD™16], which is unfit for
IoT device with a limited computation capability. An alternative is to
sparsify the computational graphs in backpropagation [RA20]. Yetitrelies
on massive training iterations on large-scale datasets. Other techniques
include layer-wise local training [GSS17] and reversible residual module
[GRUG17], but they often incur notable accuracy drops.

There are a few studies on DNN training on low-resource platforms,
such as updating the last several layers only [MBdG*21], reducing batch
sizes [LN19]], and gradient approximation [GSZ720]. However, they are
designed for vanilla supervised training, i.e., train and test on the same
task. One recent study proposes to update the bias parameters only
for memory-efficient transfer learning [CGZH20], yet transfer learning is
prone to overfitting when trained with limited data [FAL17].
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4.3 Preliminaries and Challenges

In this section, we first motivate on-device few-shot learning via example
applications, then provide the basics on meta learning for few-shot
learning and highlight the challenges to enable on-device learning.

4.3.1 Example Application Scenarios

On-device few-shot learning is essential for model adaptation in some
intelligent applications, when the new data collected on edge devices
tend to relate to personal habits and lifestyle. For instance, activity
recognition with smartphone sensors should adapt to countless walking
patterns and sensor orientation [GKSL19]. Gaze tracking with smart
glasses requires calibration to personal gaze conditions for cognitive
context recognition [LHSG20]. Human motion prediction with home
robots needs fast learning of unseen poses for seamless human-robot
interaction [GWRM18]. We detail two representative applications below
and summarize their resource utilization in Table

Home Surveillance Customization. Household camera systems are
pervasively deployed to detect intruders and monitor pets, where
suspicious images are uploaded to a smart gateway for further
investigation such as object classification. Due to the countless object
classes of interest across individuals, the image classification model needs
post-deployment customization. Fast model adaptation (e.g., pre-trained
on dog breeds such as Komondor, Poodle and Saluki, and re-trained
to recognize Malamute) at the smart gateway delivers more targeted
surveillance services without leaking images of family members or
private locations.

Robot Locomotion Control. Robots that walk and run as humans have
been a long-standing challenge in robotics [ITE*21]. Deep reinforcement
learning (DRL) advances the development of naturally behaved robots
for new applications such as police robotic dogs and unmanned last-
mile delivery [HLD*19]. It is important that the robots fast learn their
locomotion policies to new goals and environments since there is often
a gap between the training and deployment environments. Naive DRL
can take millions of data samples to learn meaningful locomotion gaits
[ITE*21]. Conversely, on-robot few-shot DRL enables rapid control policy
acquisition with few new experience.

4.3.2 Meta Learning for Few-Shot Learning

Meta learning is a prevailing solution to adapt a DNN to unseen tasks with
limited training samples, i.e., few-shot learning [HAMS20]. We ground
our work on model-agnostic meta learning (MAML) [FAL17], a generic
meta learning framework which supports classification, regression and
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reinforcement learning. Table |4.1]lists the major notations.

Notation Description

! Layer index, /1 €1,2,...,.L

T1, Wi, Y Input, weight, and intermediate tensors

C, H, W, Output channel number, height and width

xzr, = F(w; x) A model (backbone) with parameter w, its input and output
T Sampled task i from distribution p(T) during meta training
D ={S,Q} Dataset with support set S’ and query set @ for task T’

Tnew New unseen task during on-device few-shot learning

Dataset for unseen task T""
8" for few-shot learning and Q™" for evaluation

z)new — {SI’IQWI Qnew}

{(w; D) loss function over model F(w) and dataset D

wme, g parameters after meta training and few-shot learning
w'* model parameters w' at step k on task i in inner loop
a,f inner and outer step size

g(-) the loss gradients w.r.t. the given tensor

o), o’(?) Non-linear function and its derivative

m(-) memory consumption of the given tensor in words

Table 4.1: Summary of major notations.

Given the dataset D = {S,Q} of an unseen few-shot task, where S
(support set) and Q (query set) are for training and testing, MAML trains
a model F(w) with weights w such that it yields high accuracy on Q
even when S only contains a few samples. This is enabled by simulating
the few-shot learning experiences over abundant few-shot tasks sampled
from a task distribution p(T). Specifically, it meta-trains a backbone F
over few-shot tasks T' ~ p(T), where each T' has dataset D' = (S, @},
and then generates F(w™®?), an initialization for the unseen few-shot task
TreW with dataset D" = {S"W, Q"*"}. Training from F(w™®) over SV
is expected to achieve a high test accuracy on Q™"

MAML achieves fast learning via two-tier optimization. In the inner
loop, a task T' and its dataset 9’ are sampled. The weights w are updated
to w' on support dataset S’ via K gradient descent steps, where K is
usually small, compared to vanilla training:

w” = w1 - v, (w1 S) fork=1,..,K (4.1)

where w'* are the weights at step k in the inner loop, and « is the inner
step size. Note that w'"? = w and w' = w'K. {(w; D) is the loss function
on dataset D. In the outer loop, the weights are optimized to minimize
the sum of loss at w' on query dataset Q' across tasks. The gradients to
update weights in the outer loop are calculated w.r.t. the starting point w
of the inner loop.

w — w — VY, Z é’(wi; Qi) 4.2)

where f is the outer step size.
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Benchmark 4Conv ResNet12 MLP
MinilmageNet MinilmageNet MuJoCo

Model Static Storage (MB) 0.13 32.0 0.05
Sample Static Storage (MB) 0.53 0.53 0.016(0.00008)

" Inference Peak Memory (MB) 090 361 0.08(0.0004)
Training Peak Memory (MB) 48.33 370.44 3.72

" Inference GFLOPs 072 6208 005
Training GFLOPs 1.96 185.42 0.15

Table 4.2: Memory and total computation (GFLOPs = 10°FLOPs)
of inference and training in example few-shot learning. For
image classification (“4Conv on MinilmageNet” and “ResNetl2 on
MinilmageNet”), we use batch size = 25, i.e., 5-way 5-shot. For robot
locomotion (“MLP” on MuJoCo), we use rollouts = 20, horizon = 200;
each sample corresponds to a rollouted episode, and the case for an
observation is reported in brackets. The calculation is based on Section[4.5]

The meta-trained weights w™*" are then used as initialization for few-
shot learning into w"*" by K gradient descent steps over $"¢. Finally we
assess the accuracy of F(w"") on Q™".

4.3.3 Memory Bottleneck of On-Device Learning

As mentioned above, the meta-trained model F(w™*?) can learn unseen
tasks via K gradient descent steps. Each step is the same as the inner loop
of meta-training Eq. (4.1), but on dataset S™".

WMV = urewk-1 _ AV ynew g(,wnew,k—l; Snew) (4.3)

where w™"? = w™®  For brevity, we omit the superscripts of model
adaption in Eq. and use g(-) as the loss gradients w.r.t. the given
tensor. Hence, without ambiguity, we simplify the notations of Eq.
as follows:

w — w — ag(w) (4.4)

Let us now understand where the main memory cost for iterating
Eq. comes from. For the sake of clarity, we focus on a feed forward
DNNss that consist of L convolutional (conv) layers or fully-connected
(fc) layers. A typical layer (see Figure consists of two operations:
(i) a linear operation with trainable parameters, e.g., convolution or
affine; (i7) a parameter-free non-linear operation, where we consider max-
pooling or ReLU-styled (ReLU, LeakyReLU) activation functions in this
paper. Note that the non-linear operation unit may not exist in some
layers; some layers may also have more than one non-linear units (e.g.,
both max-pooling and ReLU activation function), and all corresponding
intermediate tensors should be stored.
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Figure 4.2: A typical layer [ in DNNs. x;_; is the input tensor; x; is the
output tensor, also the input tensor of layer [ + 1; y; is the intermediate
tensor; wy is the weight tensor.

Take a network consisting of conv layers only as an example. The
memory requirements for storing the activations x; € RH>Wi ag well
as the convolution weights w; € RG*C-1*5%% of layer [ in words can be
determined as

m(z)) = CHW,, m(w) = CICi1S;

where C;_;, C;, H;, and W stand for input channel number, output channel
number, height and width of layer I, respectively; S; stands for the
kernel size. The detailed memory and computation demand analysis as
provided in Section[4.5|reveals that the by far largest memory requirement
is neither attributed to determining the activations «; in the forward path
nor to determining the gradients of the activations g(x;) in the backward
path. Instead, the memory bottleneck lies in the computation of the
weight gradients g(w;), which requires the availability of the activations
x;1 from the forward path. Following Eq. in Section the

necessary memory in words is
Y mi) (4.5)

Table 4.2l summarizes the peak memory and the total computation of
the commonly used few-shot learning backbone models [FAL17, ORL18].
The requirements are based on the detailed analysis in Section We
can draw two intermediate conclusions.

e The total computation of training is approximately 2.7x to 3X larger
compared to inference. Yet the peak memory of training is far larger,
47x to 103x over inference.

e To enable training on memory-constrained IoT devices, we need
to find some way of getting rid of the major dynamic memory
contribution in Eq. (4.5)).

4.4 p-Meta

This section presents p-Meta, a new meta learning scheme that enables
memory-efficient few-shot learning on unseen tasks. p-Meta is a novel
meta training algorithm that not only learns the weights of the initialized
backbone but also learns to identify adaptation-critical weights for
memory-efficient few-shot learning.
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441 p-Meta Overview

We first provide an overview of p-Meta and introduce its main concepts,
namely selecting critical gradients, using a hierarchical approach to
determine adaption-critical layers and channels, and using a mixture of
static and dynamic selection mechanisms.

We impose structured sparsity on the gradients g(w;) such that the
corresponding tensor dimensions of x; do not need to be saved. There are
other options to reduce the dominant memory demand in Eq. #.5). They
are inapplicable for the reasons below.

e One may trade-off computation and memory by recomputing
activations x;-; when needed for determining wj, see for example
[CXZG16, GMD*16]. Due to the limited processing abilities of IoT
devices, we exclude this option.

e It is also possible to prune activations x;_;. Yet based on
our experimental results in Table {.7, imposing sparsity on x;_;
hugely degrades few-shot learning accuracy as this causes error
accumulation along the propagation, see also [RA20].

e Note that unstructured  sparsity, as proposed in
[GHZ™21, VOZK™21], does not in general lead to memory
savings, since there is a very small probability that all weight
gradients for which an element of x;; is necessary have been
pruned. Furthermore, their weight selection is fixed after meta
training, whereas p-Meta allows dynamic weight selection when
few-shot learning on different tasks. Such runtime weight selection
is essential for few-shot model training.

We impose sparsity on the gradients in a hierarchical manner.

e Selecting Adaption-Critical Layers: We first impose layer-by-layer

sparsity on g(w;). It is motivated by previous results showing
that manual freezing of certain layers does no harm to few-shot
learning accuracy [RRBV20, OYKY21]]. Layer-wise sparsity reduces
the number of layers whose weights need to be updated. We
determine the adaptation-critical layers from the meta-trained layer-
wise sparse learning rates.

e Selecting Adaption-Critical Channels: In addition to imposing

layer-wise sparsity of weight gradients, We further reduce the
memory demand by imposing sparsity on g(w;) within each layer.
Noting that calculating g(w;) needs both the input channels x;_;
and the output channels g(y;), we enforce sparsity on both of
them. Input channel sparsity decreases memory and computation
overhead, whereas output channel sparsity improves few-shot
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learning accuracy and reduces computation. We design a novel
meta attention mechanism to dynamically determine adaptation-critical
channels. They take as inputs x;-; and g(y;) and determine
adaptation-critical channels during few-shot learning, based on the
given data samples from new unseen tasks. Dynamic channel-
wise learning rates as determined by meta attention yield a
significant higher accuracy than static channel-wise learning rate
(see Section [4.6.5).

Memory Reduction. The reduced memory demand due to our
hierarchical approach can be seen in Eq. (4.20) in Section

Yl m(ai) (4.6)

1<I<L

where &, € {0,1} is the mask from the static selection of critical layers and
0 < pi" <1 denotes the relative amount of dynamically chosen input
channels.

Next, we explain how p-Meta selects adaptation-critical layers
(Section and channels within layers (Section as well as the

deployment optimizations (Section 4.4.4) for memory-efficient training.

4.4.2 Selecting Adaption-Critical Layers by Learning Sparse Inner
Step Sizes

This subsection introduces how p-Meta meta-learns adaptation-critical
layers to reduce the number of updated layers during few-shot learning.
Particularly, instead of manual configuration as in [OYKY21|[RRBV20], we
propose to automate the layer selection process. During meta training, we
identify adaptation-critical layers by learning layer-wise sparse inner step
sizes (Section £.4.2.1). Only these critical layers with nonzero step sizes
will be updated during on-device learning to new tasks (Section 4.4.2.2).

4.4.21 Learning Sparse Inner Step Sizes in Meta Training

Prior work [AES19] suggests that instead of a global fixed inner step size
@, learning the inner step sizes o for each layer and each gradient descent
step improves the generalization of meta learning, where o = a7 > 0.
We utilize such learned inner step sizes to infer layer 1mportance for
adaptation. We learn the inner step sizes a in the outer loop of meta-
training while fixing them in the inner loop.

Learning Layer-wise Inner Step Sizes. We change the inner loop of
Eq. (4.1) to incorporate the per-layer inner step sizes:

wi = w = of v, £(w;S) (4.7)
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where w;’k is the weights of layer [ at step k optimized on task i (dataset
S'). In the outer loop, weights w are still optimized as

w — w — BV, Z f(wi; Qi) (4.8)

K — LK

where w' = w"® = wy;, which is a function of a.. The inner step sizes «

are then optimized as

a—a-fBV, Z f(wi; Qi) 4.9)

Imposing Sparsity on Inner Step Sizes. To facilitate layer selection, we
enforce sparsity in o, i.e., encouraging a subset of layers to be selected
for updating. Specifically, we add a Lasso regularization term in the loss
function of Eq. when optimizing o«. Hence, the final optimization of
o in the outer loop is formulated as

e a- ﬁva(z (w'; @)+ A Z m(@_y) - o)) (4.10)
i Lk

where A is a positive scalar to control the ratio between two terms in the
loss function. We empirically set A = 0.001. |af| is re-weighted by m(x;_1),
which denotes the necessary memory in Eq. if only updating the
weights in layer [.

4.4.2.2 Exploiting Sparse Inner Step Sizes for on-device learning

We now explain how to apply the learned « to save memory during on-
device learning. After deploying the meta-trained model to IoT devices
for few-shot learning, at updating step k, for layers with af = 0, the
activations (i.e., their inputs) x;_; need not be stored, see Eq. and
Eq. in Section In addition, we do not need to calculate the
corresponding weight gradients g(w;), which saves computation, see

Eq. (4.21) in Section [4.5]

4.4.3 Selecting Adaption-Critical Channels within Layers via Sparse
Meta Attention

This subsection explains how p-Meta learns a novel meta attention
mechanism in each layer to dynamically select adaptation-critical
channels for further memory saving in few-shot learning. Despite the
widespread adoption of channel-wise attention for inference [HSS18,
CDL720], we make the first attempt to use attention for memory-efficient
training (few-shot learning in our case). For each layer, its meta attention
outputs a dynamic channel-wise sparse attention score based on the
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Figure 4.3: Meta attention of layer | during meta-training. The blue blocks
correspond to tensors; the orange blocks correspond to computation units
with parameters, and the green ones without. Each column of a tensor
corresponds to one channel. The input tensor «;_; has 4 channels; the
output tensor y; has 6 channels. The other dimensions (e.g., height,
width and batch) are omitted here. The green block with * stands for the
operations involved to compute g(w;). In order to compute the gradients
of the parameters in meta attention, i.e., wlfw and w}’w, the full dense
gradients g(w;) are computed during meta-training, and then are masked
by 7. An example meta attention module for a conv layer is shown in the
upper part. B denotes the batch size. The newly added blocks related to
the inference attention in [CDL"20] are marked with solid lines.

samples from new tasks. The sparse attention score is used to re-
weight (also sparsify) the weight gradients. Therefore, by calculating
only the nonzero gradients of critical weights within a layer, we can
save both memory and computation. We first present our meta attention
mechanism during meta training (Section[4.4.3.1) and then show its usage
for on-device model training (Section [4.4.3.2).

4.4.3.1 Learning Sparse Meta Attention in Meta Training

Since mainstream backbones in meta learning use small kernel sizes (1
or 3), we design the meta attention mechanism channel-wise. Figure
illustrates the attention design during meta-training.

Learning Meta Attention. The attention mechanism is as follows.

e We assign an attention score to the weight gradients of layer / in the
inner loop of meta training. The attention scores are expected to
indicate which weights/channels are important and thus should be
updated in layer /.
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e The attention score is obtained from two attention modules: one
taking x;_; as input in the forward pass, and the other taking g(y;)
as input during the backward pass. We use x;_; and g(y;) to calculate
the attention scores because they are used to compute the weight
gradients g(wy).

Concretely, we define the forward and backward attention scores for a
conv layer as,
'ylfw = h('wlfw; x_1) € RO-1x1 (4.11)

W = h(w?™; g(y) € R (4.12)

where h(:; -) stands for the meta attention module, and wlfw and w}’w are the
parameters of the meta attention modules. The overall (sparse) attention
scores v, € RE*C-X1x1 and is computed as,

Vipall = )/f;vu ')/EZVH (4.13)

In the inner loop, for layer I, step k and task i, +; is (broadcasting)
multiplied with the dense weight gradients to get the sparse ones,

VO Vy, t(wlh;S) (4.14)
The weights are then updated by,
w = w/ - af (v O Vy, £(wi;S) (4.15)

bw)L

Let all attention parameters be w*" = {w™, w The attention

1Y =
parameters w?te gre optimized in the outer loop as,

W — @t _ BV, Z t(w'; @) (4.16)

Note that we use a dense forward path and a dense backward path in
both meta-training and on-device learning, as shown in Figure That
is, the attention scores 'ylfw and 'ylbw are only calculated locally and will
not affect y; during forward and g(x;-) during backward. Based on our
experimental results in Table 4.7} using either sparse x;_; during forward
or sparse g(y;) during backward will cause a dramatic performance
degradation.

Meta Attention Module Design. Figure (upper part) shows an
example meta attention module. We adapt the inference attention
modules used in [HSS18,I[CDL20], yet with the following modifications.

¢ Unlike inference attention that applies to a single sample, training
may calculate the averaged loss gradients based on a batch of
samples. Since g(w;) does not have a batch dimension, the input
to softmax function is first averaged over the batch data, see in

Figure
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Algorithm 4.1: Clip and normalization

Input: softmax output (normalized) = € R, clip ratio p
Output: sparse v

1 Sort 7 in ascending order and get sorted indices d;.c;

2 Find the smallest c such that Y ;_; 74, > p;

3 Set 14,4, as0; // if p=0, do nothing
4 Normalize v = w/ ), =;

5 Re-scaley =~-C; // keeping step sizes’ magnitude

Algorithm 4.2: p-Meta

Input: meta-training task distribution p(T), backbone F with
initial weights w, meta attention parameters w*"", inner
step sizes «, outer step sizes 8
Output: meta-trained weights w™*"?, meta attention parameters
w", sparse inner step sizes «
1 while not done do
2 | Sample a batch of I tasks T' ~ p(T);
3 fori — 1toldo
4 L Update w' in K gradient descent steps with ;

5 | Update w with ;
6 Update inner step sizes o with (4.10);
7 | Update attention parameters w*"*™ with Eq. (4.16);

e We enforce sparsity on the meta attention scores such that they can
be utilized to save memory and computation in few-shot learning.
The original attention in [HSS18, ICDL*20] outputs normalized
scales in [0, 1] from softmax. We clip the output with a clip ratio
p € [0,1] to create zeros in . This way, our meta attention
modules yield batch-averaged sparse attention scores v/ and ™.

Algorithm shows this clipping and re-normalization process.

Note that Algorithm is not differentiable. Hence we use the

straight-through-estimator for its backward propagation in meta

training.

Algorithm 4.2/ shows the overall process of p-Meta during meta training.

4.4.3.2 Exploiting Meta Attention for on-device learning

We now explain how to apply the meta attention to save memory during
on-device few-shot learning. Note that the parameters in the meta
attention modules are fixed during few-shot learning. Assume that at
step k, layer I has a nonzero step size a}. In the forward pass, we only
store a sparse tensor '7lfw - -1, i.e., its channels are stored only if they
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Figure 4.4: Meta attention of layer / during on-device few-shot learning.
Note that “Forward” part and “Backward” part are the same as Figure[4.3}
which are omitted for simplicity. Meta attention modules are not
optimized during few-shot learning, thus are expressed as parameter-
free functions h™ and h°¥. The input x;_; stored during forward path is a
sparse re-weighted tensor.

correspond to nonzero entries in 4. This reduces memory consumption
as shown in Eq. in Section Similarly, in the backward pass, we
get a channel-wise sparse tensor 'ylbw - g(y;). Since both sparse tensors
are used to calculate the corresponding nonzero gradients in g(wy), the
computation cost is also reduced, see Eq. in Section[4.5, We plot the
meta attention during on-device learning in Figure

4.4.4 Deployment Optimization

To further reduce the memory during few-shot learning, we propose
gradient accumulation during backpropagation and replace batch
normalization in the backbone with group normalization.

44.4.1 Gradient Accumulation

In standard few-shot learning, all the new samples (e.g., 25 for 5-way
5-shot) are fed into the model as one batch. To reduce the peak memory
due to large batch sizes, we conduct few-shot learning with gradient
accumulation (GA).

GA is a technique that (i) breaks a large batch into smaller partial
batches; (ii) sequentially forward/backward propagates each partial
batches through the model; (iii) accumulates the loss gradients of each
partial batch and get the final averaged gradients of the full batch.
Note that GA does not increase computation, which is desired for low-
resource platforms with constrained memory and limited parallelism.
Accordingly, our meta attention module should be also modified.
Particularly, the input to the softmax is averaged over all samples in the
batch (see Figure , ie., 7{“’ and 'ylbw are the batch-averaged scores. We
evaluate the impact of different sample batch sizes in GA in Section[4.6.7]
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4.4.4.2 Group Normalization

Mainstream backbones in meta learning typically adopt batch nor-
malization layers. Batch normalization layers compute the statistical
information in each batch, which is dependent on the sample batch size.
When using GA with different sample batch sizes, the inaccurate batch
statistics can degrade the training performance (see Section [4.6.6). As
a remedy, we use group normalization [WHI18], which does not rely
on batch statistics (i.e., independent of the sample batch size). We also
apply meta attention on group normalization layers when updating their
weights. The only difference w.r.t. conv and fc layers is that the stored
input tensor (also the one used for the meta attention) is not x;_;, but its
normalized version.

4.5 Theoretical Analysis on Memory and Computation

In this section, we derive the memory requirement and computation
workload for inference and training. We further analyze the reduced
consumption of memory and computation due to p-Meta.

Recall that we focus on a feed forward DNN that consists of L
convolutional (conv) layers or fully-connected (fc) layers. Note that our
analysis focuses on 2D conv layers but can apply to other conv layer types
as well. We assume the ReLU activation function for all layers, denoted
as o(-). For simplicity, we omit the bias, normalization layers, pooling
or strides. We use the notation m(x) to denote the memory demand in
words to store tensor . The wordlength is denoted as T.

For representing indexed summations we use the Einstein notation. If
index variables appear in a term on the right hand side of an equation and
are not otherwise defined (free indices), it implies summation of that term
over the range of the free indices. If indices of involved tensor elements
are out of range, the values of these elements are assumed to be 0.

4.5.1 Single Layer

We start with a single layer and accumulate the memory and computation
for networks with several layers afterwards. Assume the input tensor of a
layer is «, the weight tensor is w, the result after the linear transformation
is y, and the layer output after the non-linear operator is z which is also
the input to the next layer.

For convolutional layers, we have = € REXHXWr and elements Xcijs
where C;, H;, and W; denote the number of input channels, height
and width, respectively. In a similar way, we have z € RCoxHoxWo
with elements x;; where Cp, Hp, and Wy denote the number of output
channels, height and width, respectively. Moreover, w € R©0X*5%5 with
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elements wy,,. Therefore,
m(x) = CHW;, m(y) =m(z) = CoHoWo , m(w) = CoC;S?

For fully connected layers we have z € RY, y, z € R, and w € R“*¢
with memory demand

m(zx) = Cr, m(y) =m(z) =Co, m(w)=CoC;

4.5.1.1 Fully Connected Layer

For inference we derive the relations ys = wx. and zy = o(yy) for all
admissible indices f € [1, Co]. The necessary dynamic memory has a size
of about m(x) + m(y) words and we need about m(w) FLOPs.
For training, we suppose that g—i is already provided from the next
1 if Yi > 0
0 ify <0
x

5 = Wit ‘%] The necessary dynamic memory is about m(x) +m(y)- (1 + T)

layer. We find 5- = o’(y;) - 2 with o'(y)) = { which leads to

words, where the last term comes from storing o’(y;) single bits from the
forward path. We need about m(w) FLOPs.

According to the approach descr1bed in the paper we are only
interested in the partial derivatives a_ if « > 0 for this layer, and if
scales y?w > 0 and & > 0 for indices f, c. To simplify the notation, let us
define the critical ratios

number of nonzero elements of ¥

fw — 4.17
H c (4.17)
number of nonzero elements of )/?W
pt = c (4.18)
)

which are 1 if all channels are determined to be critical for weight
adaptation, and 0 if none of them.

We find »}v 322 yEo= O a"y‘; ) - x).  Therefore, we need

™ uPVm(w) + pm(x) words dynamic memory if @ > 0 where the latter
term considers the information needed from the forward path. We require
about ™" u®¥m(w) FLOPs if & > 0.

4.5.1.2 Convolutional Layer

The memory analysis for a convolutional layer is very similar, just
replacing matrix multiplication by convolution. For inference we find
Yfij = WeemnXeirm—1,4n-1 and zg; = o(ysi;) for all admissible indices f, i,
j. The necessary dynamic memory has a size of about max{m(x), m(y)}
words when using memory sharing between input and output tensors.
We need about HoWy, - m(w) FLOPs.
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For training, we again suppose that i is provided from the next
,,

layer. We find aif = o' (yyij) - 8zf and get 3x] = Wemn * W. The

necessary memory is about max{m(x), m(y)} + m(y) words, where the last
term comes from storing o’(yy;;) single bits from the forward path. We
need about H;W; - m(w) multiply and accumulate operations.

. . . o _ o
For determining the weight gradients we find T =y Xeitmojen-1-

When considering the scales for filtering, we yield y?w 8wifmn7/c =
o

0% A ) - (VX ivm-1,jen-1). As a result, we need u™puPVm(w) + u™m(x)
words of dynamic memory if @ > 0 where the latter term considers
the information needed from the forward path. We require about
p™ uP" HoWom(w) FLOPs if a > 0.

Finally, let us determine the required memory and computation to
determine the scales ™ and y?w. According to Figure we find as an
upper bound for the memory B (C; + Cop) and (C;H;W; +2C? + CoHoWo +
2C%) FLOPs.

4.5.2 All Layers

The above relations are valid for a single layer. The following relations
hold for the overall network. In order to simplify the notation, we consider
a network that consists of convolution layers only. Extensions to mixed
layers can simply be done.

We suppose L layers with sizes C;, H;, W; and S; for the number
of output channels, output width, output height and kernel size,
respectively. We assume that the step-sizes a; for some iteration of the
training are given. The memory requirement in words is

m(z;) = CHW, , m(w;) = C,Ci1S;

1 if a; >0
0 if a;=0
the mask that determines whether the weight adaptation for this layer is
necessary or not.

Let us first look at the forward path. The necessary dynamic memory is
about maxo< < {m(x;)} words. The number of FLOPs is } .., H/W;m(w;).

The backward path needs only to be evaluated until we reach the first
layer where we require the computation of the gradients. We define
lmin = min{l|@, = 1}. For the calculation of the partial derivatives
of the activations we need dynamic memory of max;,, <<.{m(x;)} +
Ty 1. <1<L M(x1) words where the last term is due to storing the derivatives
of the ReLU operations. We need about }; . ;< Hi-1W;_1m(w;) FLOPs.

The second contribution of the backward path is for computing
the weight gradients. The memory and computation demand
of the scales will be neglected as they are much smaller than

and the word-length is again denoted as T. We defineas &; =
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other contributions. We can determine the necessary dynamic
memory as maxy << {@ " uVm(w)} + X1 uim(x;_), and we need
lelsL ézl‘uf‘”‘ull”WHlWZm(wl) FLOPs.

Considering all necessary dynamic memory with memory reuse for a
gradient-based training step, we get an estimation of memory in words

1
max{m(z;)} + Z am(w,) + Z dpm(@i) + Z m(z) (4.19)
O<l<L <=L <=L Ln<I<L

if we accumulate the weight gradients before doing an SGD step and re-
use some memory during back-propagation. More elaborate memory
re-use can be used to slightly sharpen the bounds without a major
improvement. For conventional training, each parameter is in 32-bit
floating point format, i.e., one word corresponds to 32-bit. As discussed in
Section we only consider max-pooling and ReLU-styled activation
as the ¢ function. The wordlength T in Eq. is set as 16 for max-
pooling , and 32 for ReLU-styled activation. One can see that under
the typical assumptions for network parameters, the above memory
requirement in words is dominated by

Y, i m(@) (4.20)
1<I<L

The necessary storage between the forward and backward path is reduced
proportionally to " with factor m(w;_1).
Finally, the amount of FLOPs can be estimated as

D HiWim(w)(1+a* ) + ) HaWiam(w) — (@21)

1<I<L Lin<I<L

while neglecting lower order terms. Here it is important to note that
all terms are of similar order. The approach used in the paper does not
determine a trade-off between computation and memory, but reduces the
amount of FLOPs. This reduction is less than the reduction in required
dynamic memory.

4.6 Experiments

This section presents the evaluations of p-Meta on standard few-shot
image classification and reinforcement learning benchmarks.

4.6.1 General Experimental Settings

Compared Methods. We test the meta learning algorithms below.

e MAML [FAL17]: the original model-agnostic meta learning.
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e ANIL [RRBV20]: update the last layer only in few-shot learning.
e BOIL [OYKY21]: update the body except the last layer.
e MAML++ [AES19]: learn a per-step per-layer step sizes c.

e p-Meta (4.4.2): can be regarded as a sparse version of MAML++,
since it learns a sparse o with our methods in Section [4.4.2]

o p-Meta (4.4.2+4.4.3): the full version of our methods which include
the meta attention modules in Section

For fair comparison, all the algorithms are re-implemented with the
deployment optimization in Section

Implementation. The experiments are conducted with tools provided by
TorchMeta [DWS™19, Del18]]. Particularly, the backbone is meta-trained
with full sample batch size (e.g., 25 for 5-way 5-shot) on meta training
dataset. After each meta training epoch, the model is tested (i.e., few-
shot learned) on meta validation dataset. The model with the highest
validation performance is used to report the final few-shot learning results
on meta test dataset. We follow the same process as TorchMeta [DWS™19,
Del18] to build the dataset. During few-shot learning, we adopt a sample
batch size of 1 to verify the model performance under the most strict
memory constraints.

In p-Meta, meta attention is applied to all conv, fc, and group
normalization layers, expect the last output layer, because (i) we find
modifying the last layer’s gradients may decrease accuracy; (ii) the final
output is often rather small in size, resulting in little memory saving even
if imposing sparsity on the last layer. Without further notations, we set
p = 0.3 in forward attention, and p = 0 in backward attention across all
layers, as the sparsity of 47" almost has no effect on the memory saving.

Metrics. We compare the peak memory and FLOPs of different
algorithms. Note that the reported peak memory and FLOPs for p-Meta
also include the consumption from meta attention, although they are
rather small related to the backward propagation.

4.6.2 Benchmarking Details
4.6.2.1 4Conv/ResNetl12 on MinilmageNet/TieredImageNet/CUB

MinilmageNet [VBL"16] is an image classification dataset from ImageNet
dataset [RDS*15|], which consists of 84 x 84 color images in 100 classes.
Following the splitting in [VBL"16], 64 classes are used for meta-training,
16 classes are used for meta-validation, and the rest 20 classes are used
as unseen tasks for meta-testing (i.e., few-shot learning). We train on 1
Nvidia V100 GPU. We experiment in both 5-way 1-shot and 5-way 5-shot
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settings. The task batch size is set to 4 in general, except for ResNet12
under 5-way 5-shot settings where we use 2.

TieredImageNet [RIR"18] is an image classification dataset from
ImageNet dataset [RDS™15], which consists of 84 x 84 color images in 34
categories (608 classes). Following the splitting in [RIR"18]], 20 categories
(351 classes) are used for meta-training, 6 categories (97 classes) are used
for meta-validation, and the rest 8 categories (160 classes) are used as
unseen tasks for meta-testing (i.e., few-shot learning).

CUB [WBM~*10] is an image classification dataset, which consists of
84 x 84 color images of bird species in 200 classes. Following the splitting
in [DWS*19], 100 classes are used for meta-training, 50 classes are used
for meta-validation, and the rest 50 classes are used as unseen tasks for
meta-testing (i.e., few-shot learning).

4Conv. The “4Conv” [FAL17] backbone has 4 conv blocks. Each conv
block includes a conv layer with 32 channels, a group normalization layer
(as discussed in Section 4.4.4.2), a ReLU activation, and a max-pooling
with stride 2.

ResNet12. The “ResNet12” [ORL18]] backbone has 4 residual blocks with
{64,128, 256,512} channels in each block respectively. Each residual block
consists of 3 conv blocks followed by max-pooling with stride 2. Each
conv layer is followed by a group normalization layer and a LeakyReLU
activation with slope 0.1. Refer to [ORL18] for more detailed structure.

4.6.2.2 MLP on MujJoCo

MuJoCo is an advanced simulator for multi-body dynamics with contact.
For all experiments, we mainly adopt the experimental setup in [FAL1Z,
Dell8]. We run the MuJoCo environment as well as the policy model
training on 8 CPUs.

MLP. We use a neural network as the policy model. The neural network
is a MLP with two hidden fc layers of size 100 and the ReLU activation.

4.6.3 Experiments on Image Classification

Settings. We test on standard few-shot image classification tasks (both in-
domain and cross-domain). We adopt two common backbones “4Conv”
[FAL17] and “ResNet12” [ORL18]. The batch normalization layers are
replaced with group normalization layers, as discussed in Section
We train the model on MinilmageNet [VBL"16] (both meta training and
meta validation dataset) with 100 meta epochs. In each meta epoch, 1000
random tasks are drawn from the task distribution.

The model is updated with 5 gradient steps (i.e., K = 5) in both
inner loop of meta-training and few-shot learning. We use Adam
optimizer with cosine learning rate scheduling as [AES19] for all outer
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5-Way 1-Shot Accuracy GFLOPs Memory
Benchmarks Mini Tiered CUB Mini Mini
MAML [FAL17] 46.2% 51.4% 39.7% 0.39 2.06
ANIL [RRBV20] 46.4% 51.5% 39.2% 0.14 0.92
ACon BOIL [OYKY21] 44.7% 51.3% 42.3% 0.39 2.05
onv MAML++ [AES19] 482% 53.2% 43.2% 0.39 2.06
p-Meta (4.4.2 471% 52.3% 41.8% 0.16 1.00
p-Meta (4.4.2114.4.3) 48.8% 53.9% 42.6%  0.15 0.99
MAML [FAL17] 51.7% 57.4% 41.3%  37.08 54.69
ANIL [RRBV20] 50.3% 56.7%  40.6% 12.42 3.62
ResNet12 BOIL [OYKY21] 42.7% 47.7% 442%  37.08 54.69
MAML++ [AES19] 53.1% 58.6% 45.1%  37.08 54.69
p-Meta (4.4.2 51.8% 58.3% 40.6% 25.84 17.66

p-Meta (4.4.2114.4.3) 53.6% 59.4% 454%  24.02 16.01

Table 4.3: 5-Way 1-shot few-shot image classification results on 4Conv and
ResNet12. All methods are meta-trained on MinilmageNet, and are few-
shot learned on the reported datasets: MinilmageNet, TieredImageNet,
and CUB (denoted by Mini, Tiered, and CUB in the table). The total
computation (# GFLOPs) and the peak memory (MB) during few-shot
learning are reported based on the theoretical analysis in Section[4.5|

5-Way 5-Shot Accuracy GFLOPs Memory
Benchmarks Mini Tiered CUB Mini Mini
MAML [FAL17] 614% 665% 55.6%  1.96 2.06
ANIL [RRBV20] 60.6% 645% 542%  0.72 0.92
ACon BOIL [OYKY2T] 60.5% 653% 583%  1.96 2.05
onv MAML++ [AEST9]  63.7% 685% 59.1%  1.96 2.06
p-Meta (4.4.2 62.9% 683% 59.3%  1.34 1.09
p-Meta (4.42+4.43) 65.0% 685% 60.2%  1.11 1.04
MAML [FAL17] 64.7% 69.6% 53.8%  185.42 54.69
ANIL [RRBV20] 62.3% 68.7% 54.0%  62.08 3.62
ResNet1z  BOIL [OYKY21] 53.6% 59.8% 53.7%  185.42 54.69
esiNe MAML++ [AEST9] 68.6% 73.4% 639%  185.42 54.69
p-Meta (4.4.2 68.8% 72.6% 659%  124.15 18.95

p-Meta (4421143) 69.7% 73.3% 66.6% 11679 1717

Table 4.4: 5-Way 5-shot few-shot image classification results on 4Conv and
ResNet12. All methods are meta-trained on MinilmageNet, and are few-
shot learned on the reported datasets: MinilmageNet, TieredImageNet,
and CUB (denoted by Mini, Tiered, and CUB in the table). The total
computation (# GFLOPs) and the peak memory (MB) during few-shot
learning are reported based on the theoretical analysis in Section 4.5

loop updating. The (initial) inner step size « is set to 0.01. The meta-
trained model is then tested on three datasets MinilmageNet [VBL"16],
TieredImageNet [RTR*18], and CUB [WBM™10] to verify both in-domain
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20 Rollouts Half-Cheetah Velocity 2D Navigation
Benchmarks Return GFLOPs Memory Return GFLOPs Memory
MAML [FAL17] -82.2 0.15 0.24 -13.3 0.12 0.21
ANIL [RRBV20] -78.8 0.06 0.09 -13.8 0.04 0.08
BOIL [OYKY21] -76.4 0.15 0.23 -12.4 0.12 0.21
MAML++ [AES19] -69.6 0.15 0.24 -17.6 0.12 0.21
p-Meta (4.4.2 -65.5 0.11 0.12 -11.2 0.09 0.09
p-Meta (4.4.21H4.4.3)  -64.0 0.11 0.11 -11.8 0.09 0.09

Table 4.5: Few-shot reinforcement learning results on 2D navigation
and robot locomotion tasks (larger return means better). A MLP with
two hidden layers of size 100 is used as the policy model. The total
computation (# GFLOPs) and the peak memory (MB) during few-shot
learning are reported based on the theoretical analysis in Section[4.5|

and cross-domain performance.

Results. Table |4.3|and Table 4.4/ show the accuracy of few-shot learned
models for 5-way 1-shot and 5-way 5-shot scenarios respectively. The
reported accuracy is averaged over 5000 new unseen tasks randomly
drawn from the meta test dataset We also report the average number of
GFLOPs and the average peak memory per task according to Section [4.5|
Clearly, p-Meta almost always yields the highest accuracy in all settings.
Note that the comparison between “p-Meta (4.4.2)” and “MAML++" can
be considered as the ablation studies on learning sparse layer-wise inner
step sizes proposed in Section Thanks to the imposed sparsity on
o, “p-Meta (£.4.2)” significantly reduces the peak memory (2.5X saving
on average and up to 3.1X) and the computation burden (1.7X saving
on average and up to 2.4X) over “MAML++". Note that the imposed
sparsity also cause a moderate accuracy drop. However, with the meta
attention, “p-Meta (4.4.244.4.3)” not only notably improves the accuracy
but also further reduces the peak memory (2.7X saving on average and
up to 3.4X) and computation (1.9x saving on average and up to 2.6X) over
“MAML++". Note that “ANIL” only updates the last layer, and therefore
consumes less memory but also yields a substantially lower accuracy.

4.6.4 Experiments on Reinforcement Learning

Settings. To show the versatility of p-Meta, we experiment with two few-
shot reinforcement learning problems: 2D navigation and Half-Cheetah
robot locomotion simulated with MuJoCo library [TET12]. We adopt
vanilla policy gradient [Wil92] for the inner loop and trust-region policy
optimization [SLM15] for the outer loop. During the inner loop as well
as few-shot learning, the agents rollout 20 episodes with a horizon size of
200 and are updated for one gradient step. The policy model is trained
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for 500 meta epochs, and the model with the best average return during
training is used for evaluation. The task batch size is set to 20 for 2D
navigation, and 40 for robot locomotion. The (initial) inner step size o
is set to 0.1. Each episode is considered as a data sample, and thus the
gradients are accumulated 20 times for a gradient step.

Results. Table |4.5|lists the average return averaged over 400 new unseen
tasks randomly drawn from simulated environments. We also report
the average number of GFLOPs and the average peak memory per task
according to Section Note that the reported computation and peak
memory do not include the estimations of the advantage [DCH"16], as
they are relatively small and could be done during the rollout. p-Meta
consumes a rather small amount of memory and computation, while often
obtains the highest return in comparison to others. Therefore, p-Meta can
fast adapt its policy to reach the new goal in the environment with less
on-device resource demand.

4.6.5 Ablation Studies on Meta Attention

We study the effectiveness of our meta attention via the following two
ablation studies. The experiments are conducted on “4Conv” in both
5-way 1-shot and 5-way 5-shot as Section

Sparsity in Meta Attention. Table 4.6/ shows the few-shot classification
accuracy with different sparsity settings in the meta attention.

We first do not impose sparsity on v/ and 4™ (i.e., set both p’s
as 0), and adopt forward attention and backward attention separately.
In comparison to no meta attention at all, enabling either forward or
backward attention improves accuracy. With both attention enabled, the
model achieves the best performance.

We then test the effects when imposing sparsity on v/ or v/ (i.e., set
p > 0). We use the same p for all layers. We observe a sparse 47 often
cause a larger accuracy drop than a sparse 4. Since a sparse v™ does
not bring substantial memory or computation saving (see Section 4.5),
we use p = 0 for backward attention and p = 0.3 for forward attention.
Note that p = 1 means that the resulted ~; are all zeros and the layers are
not updated, which can be realized by imposing sparsity on layerwise
learning rate in Section

Attention scores 7, introduce a dynamic channel-wise learning rate
according to the new data samples. We further compare meta attention
with a static channel-wise learning rate, where the channel-wise learning
rate a" is meta-trained as the layer-wise inner step sizes in Section
while without imposing sparsity. By comparing “a“"” with “0, 0” in
Table[.6] we conclude that the dynamic channel-wise learning rate yields
a significantly higher accuracy.

Layer-wise Updating Ratios. To study the resulted updating ratios across
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P 5-way 1-shot 5-way 5-shot
fw bw Mini Tiered CUB Mini Tiered CUB

471% 52.3% 41.8% 62.9% 68.3% 59.3%
48.1% 53.2% 41.7% 64.1% 68.4% 59.0%
47.8% 53.1% 409% 63.9% 68.5% 60.0%
49.0% 54.2% 431% 64.5% 69.2% 60.2%

03 485% 53.4% 422% 64.7% 682% 59.3%
03 0 488% 539% 42.6% 65.0% 685% 60.2%
03 03 48.7% 53.7% 423% 645% 68.3% 59.5%
05 05 482% 534% 42.7% 64.8% 68.1% 59.1%
ath 47.8% 52.8% 41.0% 63.6% 68.1% 58.1%

x: no forward/backward meta attention, i.e., 'ylf

oM introduce an input- and output-channel inner step sizes " per layer. We use

o - o™ as inner step sizes. ! is meta-trained as o while without sparsity.

S O X O X
O O X X

W=Tlory™ =1

Table 4.6: Ablation results of meta attention on 4Conv.

layers, i.e., the layer-wise sparsity of weight gradients, we randomly select
100 new tasks and plot the layer-wise updating ratios, see Figure The
“4Conv” backbone has 9 layers (L = 9), i.e., 8 alternates of conv and
group normalization layers, and an fc output layer. As mentioned in
Section we do not apply meta attention to the output layer, i.e.,
9 = 1. The used backbone is updated with 5 gradient steps (K = 5).
We use p = 0.3 for forward attention, and p = 0 for backward. Note
that Algorithm (4.1 adaptively determines the sparsity of ~;, which also
means different samples may result in different updating ratios even with
the same p (see Figure . The size of x;_; often decreases along the
layers in current DNNs. As expected, the latter layers are preferred to be
updated more, since they need a smaller amount of memory for updating.
Interestingly, even if with a small p(= 0.3), the ratio of updated weights
is rather small, e.g., smaller than 0.2 in step 3 of 5-way 5-shot. It implies
that the outputs of softmax have a large discrepancy, i.e., only a few
channels are adaptation-critical for each sample, which in turn verifies
the effectiveness of our meta attention mechanism.

We also randomly pair data samples and compute the cosine similarity
between their attention scores ;. We plot the cosine similarity of step 1in
Figure The results show that there may exist a considerable variation
on the adaptation-critical weights selected by different samples, which is
consistent with our observation in Table i.e., dynamic learning rate
outperforms the static one.

Sparse x and Sparse g(y). Our meta attention modules take x;_; and g(y;)
as inputs, and output attention scores which are used to create sparse
g(w;). However, applying the resulted sparse attention scores on x;_; and
g(y;) can also bring memory and computation benefits, as discussed in
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Figure 4.5: Layer-wise updating ratios (mean + standard deviation) in
each updating step. Note that the ratio of updated weights is determined
by both static layer-wise inner step sizes aj} and the dynamic meta
attention scores ~;;. The layer with an updating ratio of 0 means its
a=0.
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Figure 4.6: Cosine similarity (mean + standard deviation) of ., between
random pair of data samples. The results are reported in step 1, because
all samples are fed into the same initial model in step 1.

Section We conduct the ablations when multiplying attention scores
'ylfw and " on g(wy) (also the one used in the main text), or on x;_; and
g(y;) respectively. The results in Tableshow that a channel-wise sparse
x;-1 hugely degrades the performance, in comparison to only imposing
sparsity on g(w;) while using a dense x;_; in the forward pass. In addition,
directly adopting a sparse g(y;) in backpropagation may even cause non-
convergence in few-shot learning. We think this is due to the fact that the
error accumulates along the propagation when imposing sparsity on x;_

or g(y).

4.6.6 Ablation Studies on Pooling & Normalization Layers

In this section, we test the backbone network with different types of
pooling and normalization. Without further notations in the following
experiments, we meta-train our “4Conv” backbone on MinilmageNet
with full batch sizes, and conduct few-shot learning with gradient
accumulation with a batch size of 1, as in Section4.6.1} Here, we report the
results with the original “MAML"” method [FAL17] in Table Clearly,
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p=03 5-way 1-shot 5-way 5-shot
fw bw  Mini Tiered CUB Mini Tiered CUB
X X 471% 52.3% 41.8% 62.9% 68.3% 59.3%

glw) x  482% 53.6% 412% 63.6% 69.0% 59.0%
1 X  374% 37.9% 354% 479% 49.3% 42.5%
x  glw) 48.0% 53.0% 42.6% 64.0% 67.8% 59.9%
x  g(y) 228% 21.1% 20.6% 20.7% 21.0% 20.4%

x: no forward/backward (sparse) meta attention, i.e., 7{"" =1lor 'ylbw =1

Table 4.7: Ablation results of sparse x;_; and sparse g(y;).

4Conv 5-way 1-shot

Pooling Normalization Mini Tiered CUB

Average-pooling  Batch normalization 25.3% 27.2% 26.1%
Average-pooling Group normalization 45.8% 50.3% 40.2%
Max-pooling Batch normalization 27.6% 28.9% 26.5%
Max-pooling Group normalization 46.2% 51.4% 39.9%

Table 4.8: Comparison between different pooling and normalization
layers.

the discrepancy of batch statistics between meta-training phase and few-
shot learning phase causes a large accuracy loss in batch normalization
layers. Batch normalization works only if few-shot learning uses full
batch sizes, i.e., without gradient accumulation, which however does not
fit in our memory-constrained scenarios (see Section[4.4.4.1). In addition,
max-pooling performs better than average-pooling. We thus use group
normalization and max-pooling in our backbone model, see Section4.6.1]

4.6.7 Ablation Studies on Sample Batch Size

In this section, we show the effects brought from different sample
batch sizes. As the setting mentioned in Section the full batch
sizes is adopted in meta-training phase with our p-Meta. During
the few-shot learning phase, gradient accumulation is applied to fit
different on-device memory constraints. We report the accuracy when
adopting different sample batch sizes in gradientaccumulation. Although
group normalization eliminates the variance of batch statistics, adopting
different batch sizes may still result in diverse performance due to the
batch-averaged scores in meta attention. The results in Table 4.9 show
that different batch sizes yield a similar accuracy level, which indicates
that our meta attention module is relatively robust to batch sizes.



98  Chapter 4. Learning on Edge Devices

5-way 1-shot 5-way 5-shot
Batch Size 1 2 5 1 5 25
Mini 48.8% 48.7% 483% 65.0% 65.1% 64.7%
Tiered 53.9% 53.6% 54.3% 68.5% 689% 68.1%
CUB 42.6% 42.1% 42.4% 60.2% 59.5% 60.6%

Table 4.9: Ablation results of sample batch sizes.

4.7 Summary

In this chapter, we propose a new meta learning method p-Meta for
memory-efficient few-shot learning on unseen tasks. p-Meta enables
efficient learning on edge devices. On-device learning of a DNN requires
both data efficiency and memory efficiency. However, on the one hand,
existing low memory training methods fail to learn a DNN given only
a few training samples; on the other hand, current few-shot learning
methods require a significant amount of dynamic memory. p-Meta
addresses these challenges by (i) meta-training an initial backbone that
can fast adapt to unseen tasks with only a few samples, (ii) meta-training
a selection mechanism that can identify structurewise adaptation-critical
weights to reduce the training memory. The main contributions of DRESS
are summarized as follows,

e p-Meta enables data- and memory-efficient DNN (re-)training given
new unseen tasks. p-Meta utilizes gradient-based model adap-
tation, and thus is applicable to various tasks, e.g., classification,
regression, and reinforcement learning.

e p-Meta adopts structured partial parameter updates for low-
memory training, which is realized by automatically identifying
adaptation-critical weights both layer-wise and channel-wise. This
hierarchical approach combines static selection of layers and
dynamic selection of channels whose weights are critical for few-
shot learning on the given new task, and avoids the redundant
updating of non-critical weights. This way, the necessary memory
consumption required for optimizing adaptation-critical weights
decreases. To the best of our knowledge, p-Meta is the first meta
learning method designed for on-device few-shot learning.

e Evaluations on few-shot image classification and reinforcement
learning show that p-Meta not only improves the accuracy but also
reduces the peak dynamic memory by a factor of 2.5 on average
over the state-of-the-art few-shot learning methods. p-Meta can
also simultaneously reduce the computation by a factor of 1.7 on
average.
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This chapter studied how to conduct learning on edge devices
with limited dynamic memory and limited training data. = Note
that the methods proposed in the previous chapters solely target the
application scenarios on a single edge platform. Edge-server-system is
another common scenario of edge intelligence, where multiple resource-
constrained edge nodes are remotely connected with a resource-sufficient
central server. In the next chapter, we will study how to deploy DNNs
on edge-server-system to achieve an efficient inference and an efficient

updating.
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Edge-Server System

In Chapter 2, Chapter 3] and Chapter 4, we studied how to conduct
inference, adaptation, and learning on a single edge device, respectively.
Edge-server system is another commonly used infrastructure for edge
intelligent applications. In edge-server system, several resource-
constrained edge devices are connected to a remote server with sufficient
resources, and some public information is allowed to be communicated
between edge devices and the server. In this chapter, we design a new
pipeline to enable efficient inference and efficient updating for edge-
server system.

Main Resource Constraints. The main resource constraints on edge-
server system comprise two aspects, (i) the limited resources on edge
devices e.g., from memory, computing power, and energy, as discussed
in Chapter[2Jand Chapter[3} (if) the limited communication resources e.g.,
from bandwidth.

Principles. On-device inference is preferred over cloud inference,
since it can achieve a fast and stable inference with less energy
consumption. Due to a possible lack of relevant training data at the initial
deployment, pretrained DNNs may either fail to perform satisfactorily or
be significantly improved after the initial deployment. On such an edge-
server system, the remote server retrains the DNNs with newly collected
data from edge devices or from other sources and sends the updates to the
edge deviceis preferred over on-device re-training (or federated learning),
because of the limited memory and computing power on edge devices.
To reduce the communication cost for sending the updated models, we
propose a deep partial updating paradigm, where the server only selects
and sends a small subset of critical weights that have a large contribution
to the loss reduction during the retraining.

The contents of this chapter are established mainly based on the paper
“Deep Partial Updating: towards Communication Efficient Updating
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for On-Device Inference” that is submitted to European Conference on
Computer Vision (ECCV), 2022.

5.1 Introduction

Compared to cloud inference, on-device inference is subject to severe
limitations in terms of storage, energy, computing power and commu-
nication. On the other hand, it has many advantages, e.g., it enables
fast and stable inference even with low communication bandwidth or
interrupted communication, and can save energy by avoiding the transfer
of data to the cloud, which often costs significant amounts of energy
than sensing and computation [PW19, Guol8, LCI"19]. To deploy deep
neural networks (DNNs) on resource-constrained edge devices, extensive
research has been done to compress a well pretrained model via pruning
[HMD16, FC19, RFC20] and quantization [CBD15, RORF16]. During
on-device inference, compression may achieve a good balance between
model performance and resource demand.

However, due to a possible lack of relevant training data at the
time of initial deployment or due to an unknown sensing environment,
pretrained DNN models may either fail to perform satisfactorily or be
significantly improved after the initial deployment. In other words,
retraining the models by using newly collected data (from edge devices
or other sources) is typically required to achieve the desired performance
during the lifetime of devices. More samples can better reveal the data
distribution, even if new samples follow the same distribution. Thus, the
model trained with more data yields a better generalization.

Due to the resource-constrained nature of edge devices in terms
of memory and computing power, on-device re-training (or federated
learning) is typically restricted to tiny batch size, small inference (sub-
)networks or limited optimization steps, all resulting in a performance
degradation. Instead, retraining often occurs on a remote server with
sufficient resources. One possible strategy to allow for a continuous
improvement of the model performance on edge devices is a two-stage
iterative process: (i) at each round, edge devices collect new data samples
and send them to the server, and (ii) the server retrains the network using
all collected data, and then sends the updates to each edge device [BS06].
The first stage may even not be necessary if new training data is collected
in other ways and made directly available to the server.

Example Scenarios. Example application scenarios of relevance include
vision robotic sensing in an unknown environment (e.g., Mars) [MQC*17]],
local translators of low-resource languages on mobile phones [BSK™19,
WKMR20], and sensor networks mounted in alpine areas [MEFCP"19],
automatic wildlife monitoring [SWP*18]. We detail two specific scenarios.
Hazard alarming on mountains: ~ Researchers in [MFCP*19] mounted
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Figure 5.1: The iterative process for updating the deployed inference
model on edge devices via a wireless communication. Edge-to-server
communication: edge devices collect new data samples and send them to
the server. Server-to-edge communication: the server retrains the model
and then sends the updates to each edge device. The edge-to-server
communication may not be necessary if new training data is collected
from other sources and made directly available to the server.

tens of sensors nodes at different scarps in high alpine areas with
cameras, geophones and high-precision GPS. The purpose is to achieve
fast, stable, and energy-efficient hazard monitoring for early warning to
protect people and infrastructure. To this end, a deep neural model is
deployed on each node to on-device detect rockfalls and debris flows.
The nodes regularly collect and send data to the server for labeling and
retraining, and the server sends the updated model back through a low-
power wireless network. Retraining during deployment is essential for a
highly reliable hazard warning. Endangered species monitoring: To detect
endangered species, researchers often deploy some audio or image sensor
nodes in virgin rainforests [SWP*18]. Edge nodes are supposed to classify
the potential signal from endangered species and send these relevant data
to the server. Due to the limited prior information from environments
and species, retraining the initially classifier with received data or data
from other sources (e.g., other areas) is necessary.

Challenges. An essential challenge herein is that the transmissions in the
server-to-edge stage are highly constrained by the limited communication
resource (e.g., bandwidth, energy) in comparison to the edge-to-server
stage, if necessary at all. Typically, state-of-the-art DNN models often
require tens or even hundreds of mega-Bytes (MB) to store parameters,
whereas a single batch of data samples (a number of samples that lead to
reasonable updates in batch training) needs a relatively smaller amount
of data. For example, for CIFAR10 dataset [KNHO09], the weights of a
popular VGGNet require 56.09MB storage, while one batch of 128 samples
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only uses around 0.40MB [SZ15| RORF16]. As an alternative approach,
the server sends a full update of the inference network once or rarely. But
in this case, every node will suffer from a low performance until such
an update occurs. Besides, edge devices could decide on and send only
critical samples by using active learning schemes [AZK*20]. The server
may also receive data from other sources, e.g., through data augmentation
based on the data collected in previous rounds or new data collection
campaigns. These considerations indicate that the updated weights that
are sent to edge devices by the server become a major bottleneck.

Facing the above challenges, we ask the following question: Is it
possible to update only a small subset of weights while reaching a similar
performance as updating all weights?  Doing such a partial updating
can significantly reduce the server-to-edge communication overhead.
Furthermore, fewer parameter updates also lead to less memory access
on edge devices, which in turn results in smaller energy consumption
than full updating [Hor14].

Why Partial Updating Works. Since the network deployed on edge
devices is trained with the data collected beforehand, some learned
knowledge can be reused. In other words, we only need to distinguish
and update the weights which are critical to the newly collected data.

How to Select Weights. Our key concept for partial updating is based
on the hypothesis, that a weight shall be updated only if it has a large
contribution to the loss reduction during the retraining given newly collected
data samples. Specially, we define a binary mask m to describe which
weights are subject to update, i.e., m; = 1 implies updating this weight
and m; = 0 implies fixing the weight to its initial value (also reusing
the weight). For any m, we establish the analytical upper bound on the
difference between the loss value under partial updating and that under
full updating. We determine an optimized mask m by combining two
different view points: (i) measuring each weight’s “global contribution”
to the upper bound through computing the Euclidean distance, and (ii)
measuring each weight’s “local contribution” to the upper bound using
gradient-related information. The weights to be updated according to
m will be further sparsely fine-tuned while the remaining weights are
rewound to their initial values.

5.2 Related Work
5.2.1 Partial Updating

Although partial updating has been adopted in some prior works, it is
conducted in a fairly coarse-grained manner, e.g., layer-wise or neuron-
wise, and targets at completely different objectives. Especially, under
continual learning settings, [YYLH18, JACM20] propose to freeze all



5.2. Related Work 105

weights related to the neurons which are more critical in performing
prior tasks than new ones, to preserve existing knowledge. Under
adversarial attack settings, [SS15] updates the weights in the first several
layers only, which yield a dominating impact on the extracted features,
for better attack efficacy. Under architecture generalization settings,
[CNS20] studies the generalization performance through the resulting
loss degradation when rewinding the weights of each individual layer
to their initial values. Under meta learning settings, [RRBV20, SLQ*21]
reuse learned representations by only updating a subset of layers for
efficiently learning new tasks. Unfortunately, such techniques do not
focus on reducing the number of updated weights, and thus cannot be
applied in our problem setting.

5.2.2 Federated Learning

Communication-efficient federated learning (distributed training)
[LHM™18, KMA™19, LSW™20] studies how to compress multiple
gradients calculated on different sets of non-i.i.d. local data, such that
the aggregation of these (compressed) gradients could result in a similar
convergence performance as centralized training on all data. Such
compressed updates are fundamentally different from our setting, where
(1) updates are not transmitted in each optimization step; (ii) training
data are incrementally collected; (iii) centralized training is conducted.
Our typical scenarios focus on the outdoor, wilderness, or extreme areas,
which generally do not involve data privacy issues, since these collected
data are not personal data. In comparison to federated learning (local
training), our proposed paradigm has the following advantages: (i)
we do not conduct resource-intensive gradient calculation (backward
propagation) on edge devices; (ii) the collected data do not need to be
continuously accumulated and stored on memory-constrained edge
nodes; (iii) we also avoid the difficult but necessary labeling process on
each edge node in supervised learning tasks; (iv) when few events occur
on some nodes in some rounds, the centralized training may avoid some
degraded updates in local training, e.g., batch normalization.

5.2.3 Compression

The communication cost could also be reduced through some compres-
sion techniques, e.g., quantizing/encoding the updated weights and the
transmission signal. But note that these techniques are orthogonal to our
approach and could be applied in addition. Following the compression
pipeline in [HMD16], the resulted sparse updating from our methods
could be further quantized and Huffman-encoded.
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5.2.4 Unstructured Pruning

Deep partial updating is inspired by recent unstructured pruning
methods, e.g., [HMD16, FC19, RFC20, EGM™21, PIVA21]. Traditional
pruning methods aim at reducing the number of operations and storage
consumption by setting some weights to zero. Sending a pruned network
with only non-zero’s weights may also reduce the communication cost,
but to a much lesser extent as shown in the experimental results,
see Section Since our objective namely reducing the server-to-
edge communication cost when updating the deployed networks is
fundamentally different from pruning, we can leverage some learned
knowledge by retaining weights (partial updating) instead of zero-outing
weights (pruning).

5.2.5 Domain Adaptation

Domain adaptation targets reducing domain shift to transfer knowledge
into new learning tasks [ZQD"19]. This chapter mainly considers the
scenario where the inference task is not explicitly changed along the
rounds, i.e., the overall data distribution maintains the same along the
data collection rounds. Thus, selecting critical weights (features) by
measuring their impact on domain distribution discrepancy is invalid
herein. Applying deep partial updating on streaming tasks where the
data distribution varies along the rounds would be also worth studying,
and we leave it for future works.

5.3 Notations and Settings

In this section, we define the notations used throughout this chapter,
and provide a formalized problem setting, i.e., deep partial updating.
We consider a set of remote edge devices that implement on-device
inference. They are connected to a host server that is able to perform
network training and retraining. We consider the necessary amount of
information that needs to be communicated to each edge device to update
its inference network.

Assume there are in total R rounds of network updates. The network
deployed in the r-th round is represented with its weight vector w’. The
training data used to update the network for the r-th round is represented
as D' = 6D U D1 Also, newly collected data samples 6D’ are made
available to the server in round r — 1.

To reduce the amount of information that needs to be sent to edge
devices, only partial weights of w'™! shall be updated when determining
w’. The overall optimization problem for weight-wise partial updating
in round r — 1 is thus,
min ¢ (wr_l + ow’; Z)’) (5.1)

ow’”
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1/ Aw? = w? — wi !
W - Swh = w' —w
w+ (w' —w)om ow=w—w

Figure 5.2: The figure depicts the overall approach that consists of two
steps. The first step is depicted with dotted arrows and starts from the
deployed network w. In Q optimization steps, all weights are trained
to the optimum w. Based on the collected information, a binary mask
m is determined that characterizes the set of weights that are rewound
to the ones of w. Therefore, the second step (solid arrows) starts from
w + dw' ® m. According to the mask, this initial solution is sparsely

fine-tuned to the final weights w, i.e., dw has only non-zero values where
the mask value is 1

st [low |y <k-I (5.2)

where ¢ denotes the loss function, .|| denotes the LO-norm, k denotes
the updating ratio that is determined by the communication constraints
in practical scenarios, and 6w" denotes the increment of w'™'. Note that
both w'! and dw" are drawn from R!, where I is the total number of
weights.

In this case, only a fraction of k - I weights and the corresponding
index information need to be communicated to each edge device for
updating the network in round 7, namely the partial updates 6w’ It
is worth noting that the index information is relatively small in size
compared to the partially updated weights (see Section [5.5/0). On each
edge device, the weight vector is updated as w” = w™! + dw’. To simplify
the notation, we will only consider a single update, i.e., from weight
vector w (corresponding to w'™!) to weight vector w (corresponding to

w") with w = w + dw.

5.4 Deep Partial Updating

We develop a two-step approach for resolving the partial updating
optimization problem in Eq. (5.I)-Eq. (5.2). The final experimental
implementation in Section [5.5| contains some minor adaptations that do
not change the main principles as explained next. The overall approach
is depicted in Figure
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o The First Step: Full Updating and Rewinding. The first step not
only determines the subset of weights that are allowed to change
their values, but also computes the initial values for the second step.
In particular, we first optimize the loss function Eq. by updating
all weights from the initialization w with a standard optimizer, e.g.,

SGD or its variants. We thus obtain the minimized loss ¢ ('wf) with

w! = w + dw', where the superscript f denotes “full updating”. To

consider the constraint of Eq. (5.2), the information gathered during
this optimization is used to determine the subset of weights that
will be changed, also that are communicated to the edge devices.
In the explanation of the method in Section we use the mask
m with m € {0, 1}! to describe which weights are subject to change
and which ones are not. The weights with m; = 1 are trainable,
whereas the weights with m; = 0 will be rewound from the values
in w' to their initial values in w, i.e., unchanged. Obviously, we find
Imllo = X;m; =k- 1

e The Second Step: Sparse Fine-Tuning. In the second step we start

a sparse fine-tuning from a network with k - I weights from the
optimized network w' and (1 — k) -  weights from the previous, still
deployed network w. In other words, the initial weights for the
second step are w + dw' ® m, where © denotes an element-wise

multiplication. To determine the final solution w = w + 570, we
conduct a sparse fine-tuning (still with a standard optimizer), i.e.,
we keep all weights with m; = 0 constant during the optimization.

Therefore, 6w is zero wherever m; = 0, and only weights where
m; = 1 are updated.

5.4.1 Metrics for Rewinding

We will now describe a new metric that allows us to determine the weights
that should be kept constant, i.e., those whose masks satisfy m; = 0. Like
most learning methods, we focus on minimizing a loss function. The
two-step approach relies on the following assumption: the better the loss
{(w + dSw’ © m) of the initial solution for the second step, the better the
final performance. Therefore, the first step in the method should select a
mask m such that the loss difference £(w + Sw' ® m) — £(w’) is as small as
possible.

To determine an optimized mask m, we propose to upper-bound the
above loss difference in two view points, and measure each weight’s
contribution to the bounds. The “global contribution” uses information
contained in the difference dw’ between the initial weights w and the
optimized weights w' by full updating, namely the norm of incremental
weights. The “local contribution” takes into account the gradient-based
information that is gathered during the optimization in the first step,



5.4. Deep Partial Updating 109

i.e., in the path from w to w!. Both contributions will be combined to

determine an optimized mask m.

The two view points are based on the concept of smooth differentiable
functions, see for example [Nes98]. A function f(x) with f : R* - R
is called L-smooth if it has a Lipschitz continuous gradient g(x): [|g(x) —
g2 < Lllx — ylI for all x, y. Note that Lipschitz continuity of a gradient
is essential to ensuring convergence of many gradient-based algorithms.

Under such a condition, one can derive the following bounds, see also
[Nes98]:

lf(y) = f(x) =g - (y—x) <L/2-|ly—xll; Vx,y (5.3)

This basic relation is used to justify the global and the local contributions,
i.e., the rewinding metrics.

Global Contribution. Following some state-of-the-art pruning methods,
one would argue that a large absolute value in dw' = w' — w indicates
that this weight has moved far from its initial value in w, and thus
should not be rewound. This motivates us to adopt the widely used
unstructured magnitude pruning to solve the problem of determining
an optimized mask m. Magnitude pruning prunes the weights with the
lowest magnitudes, which is the current best-performed pruning method
aiming at the trade-off between the model accuracy and the number of
zero’s weights [RFC20].

Using a — b < |a — |, Eq. (6.3) can be reformulated as f(y) — f(x) —
gy —x) < If(y) — f(x) - g(x ( —x)| < L/2-|ly — x|l3. Thus, we can

bound the relevant difference in the loss {(w + dw' © m) — €(w') > 0 as
{(w+dw om)—Lf(w') < g(wf)T~(5wf o (m - 1))+L/z-||5wf@(m—1)||§ (5.4)

where g(w’) denotes the gradient of the loss function at wf, and 1 is
a vector whose elements are all 1. As the loss is optimized at w', ie.,
g(w’) ~ 0, we can assume that the gradient term is much smaller than
the norm of the weight differences in Eq. (5.4). Therefore, we obtain
approximately

{(w + 6wt O m) — L(w') S L/2-|[6w' © (1 —m)|}2 (5.5)

The right hand side is clearly minimized if m; = 1 for the largest absolute
values of Sw'. As 1T-(cg1°bal o - m)) = [|6w'©(1—m)|3, this information
is captured in the contribution vector

e8P = 5t @ sw! (5.6)

The k - I weights with the largest values in ¢8°° are assigned to mask
values 1 and are further fine-tuned in the second step, whereas all others
are rewound to their initial values in w. Algorithm |5.1| shows this first
approach.
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Algorithm 5.1: Global Contribution Partial Updating (Prune
Incremental Weights)

Q

Input: Weights w, updating ratio k, learning rate {05‘7}qz1

Output: Weights w

/% The first step: full updating and rewinding */
1 Initiate w° = w;
2 forg «— 1toQdo
3 | Compute the loss gradient g(w™!) = df(w’™')/dw™};
Compute the optimization step with learning rate a? as Aw?;
Update w' = wi™! + Aw¥;

6 Set w' = w? andgetéw = w' — w;

7 Compute 8 = $wf © sw' and sort in descending order;
8 Create binary masks m with 1 for Top-(k - I) indices, O for others;
/* The second step: sparse fine-tuning */

g1

9 Initiate dw = 6w’ ®@m and @ = w + ow;
10 forg — 1toQdo
1 L Compute the optlmlzatlon step with learnlng rate a7 as Aw’;

Update dw = 6w + AW ©m and @ = w + dw;

Local Contribution.  As experiments show, one can do better when
leveraging in addition some gradient-based information gathered during
the first step, i.e.,, optimizing the initial weights w in Q traditional
optimization steps, w = w’ > -+ s> Wil 5wl - - 5w =wh

Using —a + b < |a - b|, Eq. can be reformulated as f(x) — f(y) +
g) (v —x) < If(y) — f(x) — g()"(y — %)l < L/2 - |ly — x|3. This leads us to

bound each optimization step as
L(wT™) — O(w) < —g(wT™) - Aw’ + L/2 - ||Aw’|]; (5.7)

where Aw’ = w’ — w’™!. For a conventional gradient descent optimizer
with a small learning rate we can use the approximation |g(w™!)"-Aw| >
lAw’||? and obtain £(w7™) — {(w?) S —g(w'™")" - Aw’. Summing up over
all optimization iterations yields approximately

Q
{(w' — dw') — b(w') < — Z gw™™HT - Aw" (5.8)
g=1

Note that we have w = wf—6w’and 6w’ = Z?zl Aw?'. Therefore, withm ~

0 we can reformulate Eq. 1i as? (w +owf o m) —{(w') < U(m) with the
upper bound U(m) = — Zzl g(w™HT- (Aw’® (1 —m)) where we suppose
that the gradients are approximately constant for small m. Therefore,
an approximate incremental contribution of each weight dimension to
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the upper bound on the loss difference ¢ (w +owf o m) — {(wf) can be
determined by the negative gradient vector at m = 0, denoted as

_dU(m) _

local — —
om

Q
-Y g o Aw' (5.9)
g=1

which models the accumulated contribution to the overall loss reduction.

Combining Global and Local Contribution. So far, we independently
calculate the global and local contributions ¢8'°° and ¢!, respectively.
To avoid the impact due to the scale, we first normalize each contribution
by its significance in its own set (either global contribution set or
local contribution set). We investigate the impacts and the different
combination of both normalized contributions, see results in Section5.5.4
Interestingly, the most straightforward combination (i.e., the sum of
both normalized metrics) yields a better and more stable performance.
Intuitively, local contribution can better identify critical weights w.r.t. the
loss during training, while global contribution may be more robust for a
highly non-convex loss landscape. Both metrics may be necessary when
selecting weights to rewind. Therefore, the combined contribution is
computed as

1 1
global +

_ local
c= 1T . cglobal 1T. clocalc (510)

and m; = 1 for the k - I largest values of ¢ and m; = 0 otherwise.
The pseudocode of Deep Partial Updating (DPU), ie. rewinding
according to the combined contribution to the loss reduction, is shown in
Algorithm[5.2]

We further analyze the complexity of Algorithm Recall that the
dimensionality of the weights vector is denoted as I. In Q optimization
iterations during the first step, Algorithm introduces an extra time
complexity of O(QI), and an extra space complexity of O(I) related to the
original optimizer. The rest of the first step takes a time complexity
of O(I - log(l)) and a space complexity of O(I), (e.g., using heap sort
or quick sort). In Q optimization iterations during the second step,
Algorithm 5.2/ introduces an extra time complexity of O(QI), and an extra
space complexity of O(I) related to the original optimizer. Thus, a total
extra time complexity is O(2QI+I-log(I)) and a total extra space complexity
is O(I).

5.4.2 (Re-)Initialization of Weights

In this section, we discuss the initialization of our method. D' denotes
the initial dataset used to train the network w' from a randomly
initialized network w®. D! corresponds to the available dataset before
deployment, or collected in the 0-th round if there are no data available
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Algorithm 5.2: Deep Partial Updating

Input: Weights w, updating ratio k, learning rate {aﬂ}qQ:1

Output: Weights w
/% The first step: full updating and rewinding */
1 Initiate w® = w and €°! = 0;
forg < 1toQdo
Compute the loss gradient g(w’™) = d€(w™!)/dwi™!;
Compute the optimization step with learning rate a? as Aw?;
Update w’ = wi™! + Aw¥;
Update Clocal — clocal _ g(wq—l) 0) Awq;

7 Set w' —wQandgetéw = w' — w;

s Compute c8°P = 6w O dw;
9 Compute c as Eq. (5.10) and sort in descending order;
10 Create binary masks m with 1 for Top-(k - I) indices, O for others;
/* The second step: sparse fine-tuning */

SN U e W N

11 Initiate 6w = 6wf ©m and w = w + dw;
12 forg < 1to Q do
13 L Compute the optimization step with learnmg rate a7 as Aw’;

14 Update (Sw 6w +AwiOmand w = w + 6w

before deployment. {69'}®, denotes newly collected samples in each
subsequent round.

Experimental results show (see Section that training from a
randomly initialized network can yield a higher accuracy after a large
number of rounds, compared to always training from the last round with
weights w'™!. As a possible explanation, the optimizer could end in
a hard to escape region of the search space if always trained from the
last round for a long sequence of rounds. Thus, we propose to re-
initialize the weights after a certain number of rounds. In such a case,
Algorithm does not start from the previous weights w'™! but from
randomly initialized weights. The randomly re-initialized network can
be efficiently sent to the edge devices via a single random seed. The
device can determine the weights by means of a random generator.
This process realizes a random shift in the search space, which is a
communication-efficient way in comparison to other alternatives, such
as learning to increase the loss or using the (averaged) weights in the
previous rounds, as these fully changed weights still need to be sent
to each node. Each time the network is randomly re-initialized, the
new partially updated network might suffer from an accuracy drop in
a few rounds. However, we can simply avoid such an accuracy drop
by not updating the network if the validation accuracy does not increase
compared to the last round, see in Section Note that the learned
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knowledge thrown away by re-initialization can be re-learned afterwards,
since all collected samples are continuously stored and accumulated in
the server. This also makes our setting different from continual learning,
that aims at avoiding catastrophic forgetting without accessing old data.

To determine after how many rounds the network should be
re-initialized, we conduct extensive experiments on different partial
updating settings, see more discussions and results in Section In
conclusion, the network is randomly re-initialized as long as the number
of total newly collected data samples exceeds the number of samples
when the network was re-initialized last time. For example, assume that
at round r the model is randomly (re-)initialized and partially updated
from this random network on dataset 9. Then, the model will be re-
initialized again at round r + n, if [D"™"| > 2 - |2)|, where |.| denotes the
number of samples in the dataset.

5.5 Evaluation

In this section, we experimentally show that through updating a
small subset of weights, DPU can reach a similar accuracy as
full updating while requiring a significantly lower communication
cost. We implement DPU with Pytorch [PGC*17], and evaluate on
public vision datasets, including MNIST [LC10], CIFAR10 [KNHO09],
CIFAR100 [KNHOQ9], ImageNet [RDS"15], using multilayer perceptron
(MLP), VGGNet [CBD15, RORF16|], ResNet56 [HZRS16], MobileNetV1
[HZC17], respectively. Particularly, we partition the experiments into
multi-round updating and single-round updating.

Multi-Round Updating. We consider there are limited (or even zero)
samples before the initial deployment, and data samples are continuously
collected and sent from edge devices over a long period (the event rate
is often low in real cases [MFCP*19]). The server retrains the model
and sends the updates to each device in multiple rounds. Regarding the
highly-constrained communication resources, we choose low resolution
image datasets (MNIST [LC10] and CIFAR10/100 [KNHO09]) to evaluate
multi-round updating. We conduct one-shot rewinding in multi-round
DPU, i.e., rewinding is executed only once to achieve the desired updating
ratio at each round (as in Algorithm [5.2), which avoids hand-tuning
hyperparameters (e.g., updating ratio schedule) frequently over a large
number of rounds.

Single-Round Updating. The deployed model is updated once via
server-to-edge communication when new data from other sources become
available on the server after some time, e.g., releasing a new version of
mobile applications based on newly retrieved internet data. Although
DPU is elaborated under multi-round updating settings, it can be applied
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directly during single-round updating. Since transmission from edge
devices may be even not necessary, we evaluate single-round DPU on the
large scale dataset ImageNet. Iterative rewinding is adopted here due to
its better performance. Particularly, we alternatively perform rewinding
20% of the remaining trainable weights according to Eq. and sparse
fine-tuning until reaching the desired updating ratio.

General Settings. Let {|{D!],|62|} represent the available data samples
along rounds, where [690| is supposed to be constant along rounds. Both
D' and 69" are randomly drawn from the original training dataset to
simulate the data collection. In each round, the test accuracy is reported,
when the validation dataset achieves the highest Top-1 accuracy during
retraining. When the validation accuracy does not increase compared to
the previous round, the models are not updated to reduce communication
overhead. This strategy is also applied to other baselines to enable a
fair comparison. We use the average cross-entropy as the loss function,
and use Adam variant of SGD for MLP and VGGNet, Nesterov SGD for
ResNet56 and MobileNetV1. More implementation details are provided
in Section

Indexing. DPU generates a sparse tensor. In addition to the updated
weights, the indices of these weights also need to be sent to each edge
device. A simple implementation is to send the mask m, i.e., a binary
vector of I elements. Let S, denote the bitwidth of each single weight,
and S, denote the bitwidth of each index. Directly sending m yields
an overall communication costof [ - k-S, +1-S, with S, = 1. To save
the communication cost on indexing, we further encode m. Suppose
that m is a random binary vector with a probability of k to contain 1.
The optimal encoding scheme according to Shannon yields S.(k) = k -
log(1/k) + (1 = k) - log(1/(1 — k)). Coding schemes such as Huffman block
coding can come close to this bound. Partial updating results in a smaller
communication data size than full updating, if S;, - I > S, - k- I + Sy(k) - L.
Under the worst case for indexing cost, i.e., Sy(k = 0.5) = 1, as long as
k < (32-1)/32 = 0.97, partial updating can yield a smaller communication
data size with S, = 32-bit weights. We use S;,-k-1+S.(k)-I to report the size
of data transmitted from server to each node at each round, contributed by
the partially updated weights plus the encoded indices of these weights.

5.5.1 Benchmarking Details
5.5.1.1 MLP on MNIST

The MNIST dataset [LC10] consists of 28 X 28 gray scale images in 10 digit
classes. It contains a training dataset with 60000 data samples, and a test
dataset with 10000 data samples. We use the original training dataset for
training; and randomly select 3000 samples in the original test dataset for
validation, and the rest 7000 samples for testing. We use a mini-batch with
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size of 128 training on 1 GeForce RTX 3090 GPU. The number of training
epochs is chosen as 60 at each round. We use Adam variant of SGD as
the optimizer, and use all default parameters provided by Pytorch. The
initial learning rate is 0.05, and it decays with a factor of 0.1 every 20
epochs. For fair comparison, we adopt the same learning rate for other
baseline methods. The used MLP contains two hidden layers, and each
hidden layer contains 512 hidden units. The input is a 784-dim tensor of
all pixel values for each image. All weights in MLP need around 2.67MB.
Each data sample needs 0.784KB. The size of MLP equals around 3400
data samples. The used MLP architecture is presented as,

2x512FC - 10SVM.

5.5.1.2 VGGNet on CIFAR10

The CIFAR10 dataset [KNHO09] consists of 32 x 32 color images in 10 object
classes. It contains a training dataset with 50000 data samples, and a test
dataset with 10000 data samples. We use the original training dataset for
training; and randomly select 3000 samples in the original test dataset for
validation, and the rest 7000 samples for testing. We use a mini-batch
with size of 128 training on 1 GeForce RTX 3090 GPU. The number of
training epochs is chosen as 60 at each round. We use Adam variant
of SGD as the optimizer, and use all default parameters provided by
Pytorch. The initial learning rate is 0.05, and it decays with a factor of 0.2
every 20 epochs. The used VGGNet is widely adopted in many previous
compression works [CBD15, RORF16], which is a modified version of the
original VGG [SZ15]. All weights in VGGNet need around 56.09MB. Each
data sample needs 3.072KB. The size of VGGNet equals around 18200 data
samples. The used VGGNet architecture is presented as,

2x128C3 - MP2 - 2x256C3 - MP2 - 2x512C3 - MP2 - 2x1024FC - 10SVM.

5.5.1.3 ResNet56 on CIFAR100

Similar to CIFAR10, the CIFAR100 dataset [KNHO09] consists of 32 x 32
color images in 100 object classes. It contains a training dataset with
50000 data samples, and a test dataset with 10000 data samples. We
use the original training dataset for training; and randomly select 3000
samples in the original test dataset for validation, and the rest 7000
samples for testing. We use a mini-batch with size of 128 training on
1 GeForce RTX 3090 GPU. The number of training epochs is chosen as
100 at each round. We use Nesterov SGD with weight decay 0.0001 as the
optimizer. The initial learning rate is 0.1, and it decays with the cosine
annealing schedule. The ResNet56 used in our experiments is proposed
in [HZRS16]. All weights in ResNet56 need around 3.44MB. Each data
sample needs 3.072KB. The size of ResNet56 equals around 1100 data
samples.
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5.5.1.4 MobileNetV1 on ImageNet

The ImageNet dataset [RDS™15] consists of high-resolution color images
in 1000 object classes. It contains a training dataset with 1.28 million data
samples, and a validation dataset with 50000 data samples. Following the
commonly used pre-processing [Pyt19b], each sample (single image) is
randomly resized and cropped into a 224 x 224 color image. We use
the original training dataset for training; and randomly select 15000
samples in the original validation dataset for validation, and the rest
35000 samples for testing. We use a mini-batch with size of 1024 training
on 4 GeForce RTX 3090 GPUs. The number of training epochs is chosen
as 100 at each round. We use Nesterov SGD with weight decay 0.0001
as the optimizer. The initial learning rate is 0.5, and it decays with the
cosine annealing schedule. The MobileNetV1 used in our experiments
is proposed in [HZC*17]. All weights in MobileNetV1 need around
16.93MB. Each data sample needs 150.528KB. The size of MobileNetV1
equals around 340 data samples.

5.5.2 Ablation Studies on Full Updating

Settings. In this section, we compare full updating with different
initialization at each round to confirm the best-performed full updating
baseline. The compared full updating methods include, (i) the network
is trained from a random initialization at each round; (ii) the network is
trained from a same random initialization at each round, i.e., with a same
random seed; (iii) the network is trained from the weights w’™! of the last
round at each round. The experiments are conducted on VGGNet using
CIFAR10 dataset with different amounts of training samples {|D'], [6D"}.
Each experiment runs for three times using random data samples and
different random seeds.

Results. We report the mean and the standard deviation of test accuracy
(over three runs) under different initialization in Figure The results
show that training from a same random initialization yields a similar
accuracy level while sometimes also a lower variance, as training from a
(different) random initialization at each round. In comparison to training
from scratch (i.e., random initialization), training from w'™' may yield
a higher accuracy in the first few rounds; yet training from scratch can
always outperform after a large number of rounds. Thus, in this chapter,
we adopt training from a same random initialization at each round, i.e.,
(ii), as the baseline of full updating.

5.5.3 Number of Rounds for Re-Initialization

Settings. In these experiments, we re-initialize the network every n
rounds under different partial updating settings to determine a heuristic
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Figure 5.3: Comparing full updating methods with different initialization
methods at each round.

rule to set the number of rounds for re-initialization. We conduct
experiments on VGGNet using CIFAR10 dataset, with different amounts
of training samples {|D!|, [62'|} and different updating ratios k. Every n
rounds, the network is (re-)initialized again from a same random network
(as mentioned in[5.5.2), then partially updated in the next n rounds with
Algorithm We choose n = 1,5, 10, 20. Specially, n = 1 means that the
network is partially updated from the same random network every round,
i.e., without reusing the learned knowledge at all. Each experiment runs
three times using random data samples.

Results. We plot the mean test accuracy along rounds in Figure
By comparing n = 1 with other settings, we can conclude that within a
certain number of rounds, the current deployed network w'™! (i.e., the
network from the last round) is a better starting point for Algorithm
than a randomly initialized network, i.e., partially updating from the
last round may yield a higher accuracy than partially updating from
a random network. This is straightforward, since such a network is
already pretrained on a subset of the currently available data samples, and
the previous learned knowledge could help in the new training process.
Since any newly collected samples are continuously stored in the server,
complete information about all past data samples is available. This also
makes our setting different from continual learning setting, which aims
at avoiding catastrophic forgetting without accessing (at least not all) old
data.

Each time the network is re-initialized, the new partially updated
network might suffer from an accuracy drop in a few rounds. Although
this accuracy drop may be relieved if we carefully tune the partial
updating training scheme every time, this is not feasible regarding the
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large number of updating rounds. However, we can simply avoid such
an accuracy drop by not updating the network if the validation accuracy
does not increase compared to the last round (as discussed in Section 5.5).
Note that in this situation, the partially updated weights (as well as the
random seed for re-initialization) still need to be sent to the edge devices,
since this is an on-going training process.

After implementing the above strategy, we plot the mean accuracy in
Figure In addition, we also add the related results on full updating
in Figure where the network is re-initialized every n rounds from
a same random network. Note that full updating with re-initialization
every round (n = 1) is exactly the same as “same rand init.” in Figure 5.3
in From Figure we can conclude that the network needs to
be re-initialized more frequently in the first several rounds than in the
following rounds to achieve a higher accuracy level. The network also
needs to be re-initialized more frequently with a large partial updating
ratio k. Particularly, the ratio between the number of current data samples
and the number of following collected data samples has a larger impact
than the updating ratio.

Thus, we propose to re-initialize the network as long as the number of
total newly collected data samples exceeds the number of samples when
the network is re-initialized last time. For example, assume that at round
r the model is randomly (re-)initialized and partially updated from this
random network on dataset ". Then, the model will be re-initialized at
round r + n, if |D™"| > 2 - |D'|.

5.5.4 Impacts from Global/Local Contributions
5.5.4.1 Balancing between Global and Local Contributions

Settings. In Eq. (5.10), the combined contribution is calculated by adding
both normalized contributions together. However, both normalized
contributions may have different importance when determining the
critical weights. In order to investigate which one plays a more essential
role in the combined contribution, we introduce another hyper-parameter
A to tune the proportion of both normalized contributions as

1 1

lobal local
T (=) e (5.11)

€1 = A ) T. clocal

Note that the combined contribution c used in the previous experiments
is the same as ¢, when A = 0.5, since only the order matters when
determining the critical weights. We implement partial updating methods
with the rewinding metric ¢, under different values of A. We compare
these methods under updating ratios k = 0.01,0.05,0.1 and different
{IDY,16D']} settings on VGGNet using CIFAR10 dataset, and with the
re-initialization scheme described in Section Each experiment runs
three times using random data samples.
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Figure 5.4: Comparison w.rt. the mean accuracy when DPU is re-
initialized every n rounds (n = 1,5,10,20) under different {|DY, 16D}
and updating ratio (k = 0.01,0.05, 0.1) settings.

Results. To clearly illustrate the impact of A, we compare the difference
between the accuracy under partial updating methods with various A and
that under full updating. The mean accuracy difference (over three runs)
are plotted in Figure As seen in Figure A = 0.5 always obtains the
best performance in general, especially when the updating ratio is small.
Thus, in the following experiments, we fix this hyper-parameter A as 0.5.
In other words, the combined contribution is chosen as

1 1
ci(A =05) =05 ————c81 4+ 05

local
1T. cglobal 1T . clocalC (512)

which has exactly the same functionality as Eq. (5.10). Note that it may
be possible to manually find another hyper-parameter A that achieves
better performance in certain cases. However, setting A as 0.5 already
yields a satisfactory performance in general, and can avoid meticulous
and computationally expensive hyper-parameter tuning.

5.5.4.2 Ablation Study of Rewinding Metrics

Settings. We conduct a set of ablation experiments regarding different
rewinding metrics discussed in Section We compare the influence
of the local and global contributions as well as their combination, in terms
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Figure 5.5: Comparison w.r.t. the mean accuracy when DPU is re-
initialized every n rounds (n = 1,5,10,20) under different {|D'|,|6D’|}
and updating ratio (k = 0.01,0.05,0.1 and full updating k = 1) settings.
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Figure 5.6: Comparison w.r.t. the mean accuracy difference (full
updating as the reference) under A = 0.5,0.1,0.3,0.7,0.9. The
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Training loss at w + Sw' ©m  (Test accuracy at w)

k Global Local Combined

001 3.04=007 (55.0+0.1%) 2.59 +0.08 (55.6 = 0.1%) 2.66 % 0.09 (56.5 = 0.0%)
005 2.51+0.06(57.3+02%) 1.80+0.10(57.8+0.1%) 1.67 +0.06 (58.2 +0.1%)
0.1 2.03+0.05(583+0.0%) 1.34+0.08(59.0+0.1%) 0.99+0.03 (59.0 = 0.1%)
02 1.20+0.05(59.0+0.1%) 0.74+0.03 (59.6 £ 0.2%)  0.42 + 0.01 (60.1 = 0.2%)

Table 5.1: Comparing training loss after rewinding and the final test
accuracy under different metrics.

of the training loss after the rewinding and the final test accuracy. We
conduct single-round updating on VGGNet. The initial model are fully
trained on a randomly selected dataset of 10° samples. After adding
10° new randomly selected samples, we conduct the first step of our
approach with all three rewinding metrics, i.e., global contribution, local
contribution, and combined contribution. Accordingly, the second step
(sparse fine-tuning) is executed. The experiment is executed over five
runs with different random seeds.

Results. The training loss after rewinding (i.e., f(w + dw’ ® m)) and
the final test accuracy after sparse fine-tuning (i.e., at w) are reported
in Table 5.1l We use the form of mean + standard deviation. As seen
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in the table, the combined contribution always yields a lower or similar
training loss after rewinding compared to the other two metrics. The
smaller deviation also indicates that adopting the combined contribution
yields more robust results. This demonstrates the effectiveness of our
proposed metric, i.e., the combined contribution to the analytical upper
bound on loss reduction. Rewinding with the combined contribution also
acquires a higher final accuracy, which in turn verifies the hypothesis we
made for partial updating, a weight shall be updated only if it has a large
contribution to the loss reduction.

5.5.4.3 Number of Updated Weights across Layers under Different
Rewinding Metrics

Settings. To further study the impact of adopting different rewinding
metrics, we show the distribution of updated weights across layers
in this section. We implement partial updating methods with three
rewinding metrics (i.e., global contribution, local contribution, and
combined contribution, see in Section on VGGNet using CIFAR10
dataset. We compare these methods with different updating ratios k under
{IDY, 16D} = {1000,1000}. To study the distribution of updated weights
along all rounds, we let the network partially updated in every round
even if the validation accuracy may not increase compared to the last
round. All methods start from the same randomly initialized network,
and are re-initialized with this random network according to the proposed

scheme in Section

Results. We plot the number of updated weights across all layers
along rounds, under updating ratio k = 0.01,0.05,0.1 in Figure
Figure and Figure respectively. We also plot the corresponding
test accuracy along rounds in Figure Generally, the metric of local
contribution updates more weights in the first several layers and the
last layer while with a large variance along rounds. On the contrary,
global contribution selects more weights in the last several layers (until
the penultimate layer) to update. Combined contribution (the sum
of normalized local/global contribution) achieves a more robust and
balanced distribution of updated weights across layers than the other
contributions. It also results in the highest accuracy level especially under
a small updating ratio. Intuitively, local contribution can better identify
critical weights w.r.t. the loss during training, while global contribution
may be more robust for a highly non-convex loss landscape. Both metrics
may be necessary when selecting weights to rewind. Note that the
proposed combined contribution is not the simple averaging of both local
and global contribution. For example, in “layer 6” of Figure the
number of updated weights by combined contribution already exceeds
the other two metrics.
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Figure 5.7: Number of updated weights across all layers (VGGNet) when
adopting different rewinding metrics (updating ratio k = 0.01).
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Figure 5.8: Number of updated weights across all layers (VGGNet) when
adopting different rewinding metrics (updating ratio k = 0.05).
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benchmarks in terms of the test accuracy during multi-round updating.

5.5.5 Benchmarking Multi-Round Updating

Settings. To the best of our knowledge, this is the first work on studying
weight-wise partial updating a network using newly collected data in
iterative rounds. Therefore, we developed three baselines for comparison,
including (i) full updating (FU), where at each round the network is fully
updated with a random initialization (i.e., training from scratch, which
yields a better performance as discussed in Section ; (ii) random
partial updating (RPU), where the network is trained from w"~!, while we
randomly fix each layer’s weights with a ratio of (1 — k) and sparsely fine-
tune the rest; (iii) global contribution partial updating (GCPU), where the
network is trained with Algorithm [5.Tjwithout re-initialization described
in Section (iv) a state-of-the-art unstructured pruning method
[REC20], where the network is first trained from a random initialization
at each round, then conducts one-shot magnitude pruning, and finally is
sparsely fine-tuned with learning rate rewinding. The ratio of nonzero
weights in pruning is set to the same as the updating ratio k to ensure the
same communication cost. The experiments are conducted on different
benchmarks as mentioned earlier.

Results. We report the test accuracy of the network w" along rounds in
Figure All methods start from the same w°, an entirely randomly
initialized network. As seen in this figure, DPU clearly yields the highest
accuracy in comparison to the other partial updating schemes on different
benchmarks. For example, DPU can yield a final Top-1 accuracy of
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Method Average accuracy difference Ratio of communication cost
MLP VGGNet ResNets6  MLP  VGGNet ResNet56
DPU —0.17% +40.33% —0.23% 0.0071  0.0183 0.1147
GCPU -0.72%  -151%  -1.67% 0.0058  0.0198 0.1274
RPU -4.04% -11.35% -6.81% 0.0096  0.0167 0.1274

Pruning [REC20] -1.45%  —4.35% -2.25%  0.0106  0.0141 0.1274

Table 5.2: The average accuracy difference over all rounds and the ratio
of communication cost over all rounds related to full updating.
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Figure 5.12: The ratio, between the total communication cost (over all
rounds) under DPU and that under full updating, varies with the number
of nodes N.

92.85% on VGGNet, even exceeds the accuracy (92.73%) of full updating,
while GCPU, RPU, and Pruning only acquire 91.11%, 82.21%, and 87.62%
respectively. In addition, we compare three partial updating schemes in
terms of the accuracy difference related to full updating averaged over all
rounds, and the ratio of the communication cost over all rounds related
to full updating in Table As seen in the table, DPU reaches a similar
accuracy as full updating, while incurring significantly fewer transmitted
data sent from the server to each edge node. Specially, DPU saves
around 99.3%, 98.2% and 88.5% of transmitted data on MLP, VGGNet,
and ResNet56, respectively (95.3% in average). The communication cost
ratios shown in Table 5.2| differ a little even for the same updating ratio.
This is because if the validation accuracy does not increase compared
to the previous round, the model will not be updated to reduce the
communication overhead (as discussed in Section [5.5). The horizontal
straight line segments in Figure represent those non-updated rounds
under each method.

5.5.5.1 Experiments on Total Communication Cost Reduction

Settings. In this section, we show the benefit due to DPU in terms of
the total communication cost reduction, as DPU has no impact on the edge-
to-server communication which may involve sending newly collected
data samples on nodes. The total communication cost includes both
edge-to-server communication and server-to-edge communication. This
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experimental setup assumes that all data samples in 6" are collected by N
edge nodes during all rounds and sent to the server on a per-round basis.
In other words, the first stage (see in Section is anyway necessary for
sending new training data to the server. For clarity, let S; denote the data
size of each training sample. During round r, we define the per-node
total communication cost under DPU as S; - |0D|/N + (S, - k- I + Sy(k) - I).
Similarly, the per-node total communication cost under full updating is
defined as S; - |[6D"|/N + Sy, - L.

In order to simplify the demonstration, we consider the scenario where
N nodes send a certain amount of data samples to the server in R — 1
rounds, namely Zf:z 00| (see Section . Thus, the average data size
transmitted from each node to the server in all rounds is Zf:z Sq-10D"|/N.
A larger N implies a fewer amount of transmitted data from each node to
the server.

Results. We report the ratio of the total communication cost over all
rounds required by DPU related to full updating, when DPU achieves a
similar accuracy level as full updating (corresponding to three evaluations
in Figure . The ratio clearly depends on Zf:z Sq - [0D|/N, i.e., the
number of nodes N. The relation between the ratio and N is plotted in
Figure

We observe that DPU can still achieve a significant reduction on
the total communication cost, e.g., reducing up to 88.2% even for the
worst case (a single node). Single node corresponds to the largest
data size during edge-to-serve transmission per node, i.e., the worst
case. Moreover, DPU tends to be more beneficial when the size of data
transmitted by each node to the server becomes smaller. This is intuitive
because in this case the server-to-edge communication (thus the reduction
due to DPU) dominants in the entire communication.

5.5.6 Different Number of Data Samples and Updating Ratios

Settings. In this section, we show that DPU outperforms other baselines
under varying number of training samples and updating ratios in
multi-round updating. We also conduct ablations concerning the re-
initialization of weights discussed in Section We implement
DPU with and without re-initialization, GCPU with and without re-
initialization, RPU, and Pruning [REC20] (see more details in Section[5.5.5)
on VGGNet using CIFAR10 dataset. We compare these methods with
different amounts of samples {|{D'|,[62’|} and different updating ratios
k. Without further notations, each experiment runs three times using
random data samples.

Results. We compare the difference between the accuracy under each
partial updating method and that under full updating. The mean
accuracy difference (over three runs) is plotted in Figure In
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addition, we also plot the mean and standard deviation of the absolute
accuracy of these methods in respectively. As seen in Figure DPU
(with re-initialization) always achieves the highest accuracy. DPU also
significantly outperforms the pruning method, especially under a small
updating ratio. Note that we preferred a smaller updating ratio in our
context because it explores the limits of the approach and it indicates that
we can improve the deployed network more frequently with the same
accumulated server-to-edge communication cost. The dashed curves and
the solid curves with the same color can be viewed as the ablation study of
our re-initialization scheme. Particularly given a large number of rounds,
it is critical to re-initialize the start point w™™! after several rounds (as
discussed in Section[5.4.2)).

In the first few rounds, partial updating methods almost always yield
a higher test accuracy than full updating, i.e., the curves are above zero.
This is due to the fact that the amount of available samples is rather small,
and partial updating may avoid some co-adaptation in full updating, thus
results in a higher test accuracy. Three partial updating methods perform
almost randomly in the first round compared to each other, because the
limited data are not sufficient to distinguish critical weights from the
random initialization w". This also motivates us to (partially) update the
deployed model when new samples are available.

Pruning Weights vs. Pruning Incremental Weights. One of our chosen
baselines, global contribution partial updating (GCPU, Algorithm [5.1),
could be viewed as a counterpart of the pruning method [REC20], i.e.,
pruning the incremental weights with the least magnitudes. Specially,
the elements with the smallest absolute values in dw’ are set to zero (also
rewinding), while the remaining weights are further sparsely fine-tuned
with the same learning rate schedule as training w'. In comparison to
traditional pruning on weights [REC20], pruning on incremental weights
has a different start point. Traditional pruning on weights first trains
randomly initialized weights (a zero-initialized network cannotbe trained
due to the symmetry), and then prunes the weights with the smallest
magnitudes. However, the increment of weights dw' is initialized with
zero in Algorithm since the first step starts from w. By comparing
GCPU (with or without re-initialization) with “Pruning”, we conclude
that retaining previous weights yields better performance than zero-
outing the weights.

5.5.7 Benchmarking Single-Round Updating

Settings. To show the versatility of our methods, we test single-
round updating on large-scale dataset ImageNet [RDS*15] with iterative
rewinding. Single-round DPU is conducted on different (initial) deployed
models (MobileNetV1 [HZC"17] as the backbone), including a floating-
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#Samples {8 x10°,4.8 X 10°}

Initial Vanilla-update Dru
FP32 Dense  68.5% 70.7% (1) 71.1% (0.22)
50%-Sparse  68.1%  70.5% (0.53)  70.8% (0.22)
INT8 68.4%  70.6% (0.25)  70.6% (0.07)

Table 5.3: The test accuracy of single-round updating on different initial
deployed models (MobileNetV1 on ImageNet). The updating ratio k is
set to 0.2 in DPU. The ratio of communication cost related to full updating
is reported in brackets.

point (FP32) dense model and two compressed models, i.e., a 50%-sparse
model and an INT8 quantized model. The sparse model is trained with a
state-of-the-art dynamic pruning method [PIVA21]]; the quantized model
is trained with straight-through-estimator with a output-channel-wise
floating point scaling factors similar to [RORF16]. To maintain the same
on-device inference cost, partial updating is only applied on nonzero
values of sparse models; for quantized models, the updated weights are
still in INT8 format. Note that We do not impose sparsity or quantization
on batch normalization and bias.

Results. We compare DPU with the vanilla-updates, i.e., the models
are trained from scratch with the corresponding methods on all
available samples. The test accuracy and the ratio of (server-to-edge)
communication cost related to full updating on FP32 dense model are
reported in Table Results show DPU often yields a higher accuracy
than vanilla updating while requiring substantially lower communication
cost.

5.6 Summary

In this chapter, we propose a novel pipeline DPU for edge-server system.
DPU enables deep learning on edge-server system that has limited on-
device resources and limited communication resources. Particularly,
when newly collected data samples from edge devices or from other
sources are available at the server, the server smartly selects only a
subset of critical weights to update at the server-to-edge communication
round. This partial updating scheme reduces the redundant updating
by reusing the pretrained weights, i.e., the learned knowledge on prior
data, which achieves a similar performance as full updating yet with a
significantly lower communication cost. The main contributions of DPU
are summarized as follows,

e We formalize the deep partial updating paradigm, i.e., how to
iteratively perform weight-wise partial updating of the inference
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models on remote edge devices, if newly collected training
samples are available at the server. This substantially reduces the
computation and communication demand on edge devices.

We propose a novel approach that determines the optimized subset
of weights that shall be selected for partial updating, through
measuring each weight’s contribution to the analytical upper bound
on the loss reduction. This simple yet effective metric can be applied
to any models that are trained with gradient-based optimizers.

Experimental results on public vision datasets show that, under the
similar accuracy level along the rounds, our approach can reduce
the size of the transmitted data by 95.3% on average (up to 99.3%),
namely can update the model averagely 21 times more frequent
than full updating.
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Conclusion

State-of-the-art DNNs achieve excellent prediction accuracy in many
perception tasks, e.g., computer vision, natural language processing,
reinforcement learning, etc. However, a large amount of resources is
essential in both the inference phase and the training phase to ensure
the high performance of DNNs. Due to the intensive resource demands,
DNNs are often deployed on a cloud server with plenty of high-performed
computers and shared storage infrastructures.

On the other hand, there is a growing interest to deploy DNNs on
edge devices to enable new edge intelligent applications, e.g., AR/VR,
mobile assistants, IoT, autonomous driving, etc. In comparison to a
cloud server, edge devices have a rather small amount of resources
from memory, computation, and energy, and often also a limited
scalability. Conventional DNNs need to be compressed in order to fit
the resource constraints on edge devices. As DNNs are prone to be over-
parameterized, this thesis focuses on reducing the redundancy of DNNs
to achieve a better trade-off between resource consumption and model
accuracy.

In this thesis, we studied how to enable deep learning on edge
devices in four different scenarios. Especially, we studied (i) efficient
inference on edge devices given fixed resource constraints in Chapter[2) (i)
efficient adaptation on edge devices under varying resource constraints
in Chapter 3} (iii) efficient learning on edge devices with a few training
samples of unseen tasks in Chapter 4, and (iv) efficient inference and
updating on edge-server systems with a constrained communication
bus in Chapter Note that different scenarios may have different
main resource constraints that hinder us from deploying DNNSs on edge
devices. According to the main resource constraints in these scenarios, we
developed different methodologies to remove the redundant components,
such that the compressed DNNs require a lower resource demand while
reaching a similar accuracy level as the original ones.
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In the following sections of this chapter, we will first summarize our
main contributions in each scenario, then discuss the potential directions
for future work.

6.1 Contributions

This section summarizes the main contributions of our work in each
scenario.

6.1.1 Inference on Edge Devices (Chapter[2)

In Chapter[2] we enabled an efficient inference of DNNss on edge devices.
In comparison to cloud inference, inference on edge devices does not need
to upload the input data to the cloud server, which can achieve a more
stable, fast, and energy-efficient inference, especially with a constrained
communication bus. Regarding the main resource constraints from
storing a large number of weights and computation during inference,
we proposed ALQ, an adaptive loss-aware trained quantizer for multi-bit
networks. ALQ reduces the redundancy on the quantization bitwidth.

Unlike prior multi-bit quantization that often assigns an empirical
uniform bitwidth, ALQ learns an adaptive bitwidth assignment across
different groups of weights according to their loss criticality. ALQ
also proposes to optimize the multi-bit quantized weights by directly
minimizing the loss function rather than the reconstruction error to the
full precision weights. The multi-bit quantized network uses cheaper
operations from xnor and popcount to replace the expensive FLOPs,
achieving computation efficiency; the learned adaptive bitwidth yields
a smaller average bitwidth by only allocating a high bitwidth to the
loss-critical weights, achieving storage efficiency; the direct optimization
objective (i.e., the loss) allows us to acquire a quantized network with
higher prediction accuracy. In addition, ALQ also enables extremely low-
bit networks with an average bitwidth below 1-bit by entirely pruned
groups (i.e., 0-bit weights in some groups).

6.1.2 Adaptation on Edge Devices (Chapter [3)

The methods proposed in Chapter 2| are able to compress DNNs for
efficient inference if the amount of available resources on edge devices is
fixed and known beforehand. However, the resource constraints on the
target edge devices may dynamically change during runtime, e.g., the
allowed execution time, the allocatable RAM, and the battery energy. To
maximize the model accuracy during on-device inference, in Chapter
we enabled a DNN with dynamic capacity, such that the DNN can be
adapted and executed under varying resource constraints. Particularly,
we developed a new synthesis approach DRESS that can sample and
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execute sub-networks with different resource demands from a backbone
network for on-device inference. DRESS reduces the redundancy among
multiple sub-networks by weight sharing and architecture sharing.

DRESS samples sub-networks in a row-based unstructured manner
(a.k.a. fine-grained structure sparsity) from the backbone network, and
introduces a novel compressed sparse row (CSR) format to utilize sparse
tensor computation provided by recent compilation libraries. In DRESS,
the nonzero weights of the higher sparsity sub-networks are reused by
the lower sparsity sub-networks, achieving memory efficiency; all sparse
sub-networks leverage the same architecture as the backbone network,
achieving re-configuration efficiency. The sub-networks have different
sparsity, and thus can be fetched and executed under various resource
constraints.

6.1.3 Learning on Edge Devices (Chapter[)

In Chapter 2| and Chapter we compressed DNNs to realize an
efficient on-device inference under fixed and varying resource constraints,
respectively. However, when facing unseen environments or users on
edge devices, it is crucial to retrain the DNN with newly collected data
samples to deliver consistent performance and customized services. On
the one hand, data samples collected by edge devices are often private and
limited; on the other hand, training a DNN often consumes several orders
of magnitude more peak memory than inference. Hence, in Chapter [}
we proposed a new meta learning method p-Meta to enable memory-
efficient few-shot learning on unseen tasks. p-Meta reduces the updating
redundancy by fixing some weights during few-shot learning, which
saves the memory consumption that is necessary for the updated weights.

p-Meta enables both data- and memory-efficient on-device learning
given unseen tasks, which is realized by automatically identifying
adaptation-critical weights during few-shot learning via a meta-trained
selection mechanism. p-Meta adopts a hierarchical approach that
combines a static selection on adaptation-critical layers and a dynamic
selection on adaptation-critical channels. To the best of our knowledge,
p-Meta is the first meta learning method designed for on-device few-shot
learning. Evaluations on few-shot image classification and reinforcement
learning show that p-Meta not only improves the accuracy but also
reduces the peak dynamic memory by a factor of 2.5 on average over
the state-of-the-art few-shot learning methods.

6.1.4 Edge-Server-System (Chapter|5)

In Chapter 2} Chapter 3| and Chapter 4, we enabled deep learning on
a single edge platform in three different scenarios. In Chapter |5, we
designed a new pipeline DPU to enable efficient inference and efficient
updating for edge-server system. In edge-server system, a set of resource-
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constrained edge devices are connected to a remote server with sufficient
resources, and some information is allowed to be communicated between
edge devices and the server. Due to the limited relevant training data
beforehand, pretrained DNNs may be significantly improved after the
initial deployment. On such an edge-server system, on-device inference
is preferred over cloud inference, since it can achieve a fast and stable
inference with less energy consumption. Yetretraining on the cloud server
is preferred over on-device retraining (or federated learning) due to the
limited memory and computing power on edge devices. Therefore, we
proposed a two-stage iterative process to update the deployed inference
models, (i) at each round, edge devices collect new data samples and
send them to the server, and (ii) the server retrains the network using
collected data, and then sends the updates to each edge device. In
comparison to the edge-to-server stage, the transmissions in the server-
to-edge stage are highly constrained by the limited communication
resource (e.g., bandwidth, energy). Our DPU reduces the server-to-edge
communication cost by distinguishing the redundant updating given
newly collected samples.

Particularly, DPU studied how to iteratively perform weight-wise
partial updating of inference models on remote edge devices, if newly
collected training samples are available at the server. In each round,
DPU smartly selects and updates a small subset of critical weights that
have a large contribution to the loss reduction during the retraining.
Experimental results show that DPU can reach a similar accuracy level as
full updating yet with a significantly lower communication cost.

6.2 Potential Future Directions

In this section, we discuss some potential directions for the future
work. These potential future directions are either some extensions or
complementaries of the works presented in the main chapters, or some
other edge intelligence scenarios that have not been studied yet due to
the time limitation.

6.2.1 Hardware Accelerators of ALQ

ALQ exhibits a high compression ratio on the benchmark evaluations in
Chapter 2] without introducing sparse tensor computation. To deploy the
multi-bit networks generated by ALQ, the target hardware must support
bitwise xnor and popcount operations for efficient execution. However,
the current Arm Cortex CPUs [Arm22] do not include the computation
units of popcount. Although some software libraries may provide
functions for popcount, they are less efficient in pipelined computation.
Designing some hardware accelerators e.g., with FPGA that can support
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bitwise xnor, popcount and accumulation operations is a promising
direction to enable efficient inference with multi-bit networks.

6.2.2 Quantized DRESS

Current DRESS samples sub-networks from a floating-point backbone
network. Applying DRESS on a quantized backbone network (e.g., 8-
bit integer network) is also worth studying. Especially, the sampled
quantized sub-networks can be further accelerated by the fast kernels
of sparse quantized computation. For example, CMSIS-NN [LSC18] can
achieve a 4X acceleration on 8-bit integer quantized networks compared
to 32-bit floating-point networks on a 32-bit Arm Cortex-M CPUs. In
addition, it would be also interesting to explore the possibility of applying
DRESS on multi-bit quantized networks, i.e., the combination of ALQ and
DRESS.

6.2.3 Latency-Aware DRESS

Note also that current DRESS requires predefined sparsity levels.
However, a higher sparsity level, i.e.,, a smaller number of nonzero
weights, does not always result in a shorter inference latency [RFC20].
In the future, we encourage the following researchers to build a direct
relation between sparsity and inference latency (or energy consumption).
This can be realized by (i) measuring the inference latency with some
hardware simulators, (ii) leveraging some real-time models to bound the
computation time theoretically. The latency-aware DRESS that does not
rely on proxies may fill the gap between the realistic speedup and the
theoretical reduction of FLOPs mentioned in Section

6.2.4 Low-Precision Few-Shot Learning

In Chapter |4} we introduced p-Meta, a hierarchical structured partial
updating on meta-trained models when only a few training samples of
new unseen tasks are given. Although p-Meta can dramatically reduce
the peak dynamic memory as well as the computation burden during few-
shot learning, it still needs full-precision calculation during the backward
propagation. As noted in prior works [RA20, CBG™20, WCB™18],
adopting a low-precision backward propagation can bring a similar
performance as its full-precision versions in the vanilla training. A
straightforward future direction is to apply low-precision training on
few-shot learning scenarios, where weights, activation, and gradients are
all presented in low-precision formats, e.g., 8-bit integer. The step size
of 8-bit integer training could be the number of bit shifting, which may
be also meta-trained in a per layer per step manner. Conducting 8-bit
integer few-shot learning on edge devices can not only further reduce
the peak memory consumption, but also speedup the training process in
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WRN-28-2 [ZK16] WRN-28-2 [ZK16]

Benchmark CIFARI0 SVHN
Static Storage of Model (MB) 6.02 6.02
Static Storage of Samples (MB) 184.32 305.02

Table 6.1: Static memory of the model and the training samples in example
self-supervised learning.

comparison to 32-bit floating-point training.

6.2.5 Streaming Self-Supervised Learning

In Chapter 4, we studied efficient few-shot learning on edge devices,
where only a few training samples are given. In some other cases of
on-device learning, although the labeled samples are limited due to
the limited labor resources, it might be easy to collect a large number
of unlabeled samples. Learning a DNN with a small number of
labeled samples and a large number of unlabeled samples is known
as self-supervised learning (or semi-supervised learning). Current self-
supervised learning methods [BCG™19, SBL"20] often need to maintain
all unlabeled samples. Even if on small-scale datasets, the static memory
for storing samples is much larger than that for storing the self-supervised
model. We summarize the static memory consumption for training
samples and the self-supervised DNNs in two sample applications in
Table

We consider that the unlabeled samples are collected in a round-based
streaming manner, and during the collection we can query the user for
labeling. In this scenario, the main resource constraints are (i) the limited
number of querying labels, (i}) the memory consumption for storing
data samples, particularly unlabeled samples. We focus on reducing the
redundancy of data samples. We will only select a coreset of unconfident
samples to label and a coreset of representative samples to store [KZCI21].
The problem in round r is defined as follows.

Inputs. We have the current optimized model, and the stored datasets
from the last round, which contain labeled set Z)g‘l and unlabeled set
Dit. We also receive some new unlabeled samples in 62"

Outputs. We are expected to output the updated model according to
newly collected data. We also need to update the datasets. Because of the
limited memory and limited querying number, we update the datasets
based on two selected coresets Cs and Cy. Both coresets are selected from
all available unlabeled samples, i.e., Cs,Cy C D' U 6D

Methods. In order to select two coresets, we use a confidence score
. Dr—l 04
a to weight each unlabeled samples, where o € 1R|+ o T A larger



6.2. Potential Future Directions 141

a means the sample can better match the learned likelihood, whereas
a smaller alpha means the model has less confidence on that sample.
Similar to [SBL*20, KZCI21], we also conduct a two-level minmax
optimization. Particularly, in the inner loop, the binarized o is used
to weight the unsupervised loss, and the model will be then trained
with semi-supervised loss. In the outer loop, the confidence score « is
optimized on the current labeled dataset D' with the optimized model.
Both loops are conducted alternatively in several iterations. Then, the
current unlabeled samples in D} USD" are selected to build two coresets
Cs and Cy according to the optimized score a. Note that both coresets
Cs and Cy have a constrained cardinality due to the limited querying
number and the limited memory, respectively. The samples in Cs will
be further queried for labeling. The labeled dataset is then updated as
D = Z)g‘l U Cs, and the unlabeled dataset is updated as Dy = Cu.
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This concludes my thesis.
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