
Diss. ETH № 22718

Devendra Rai

Temperature Aware Multiprocessing with
Reliability Considerations

Diss. ETH No. 22718

Temperature Aware Multiprocessing withReliability Considerations

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zürich

(Dr. sc. ETH Zürich)

presented by

Devendra Rai

M.Sc. University of Virginia, USA

born on 06.04.1981

citizen of India

accepted on the recommendation of

Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Jörg Henkel, co-examiner

2015

Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 152

Devendra Rai

Temperature Aware Multiprocessing withReliability Considerations

A dissertation submitted to

ETH Zürich

for the degree of Doctor of Sciences

Diss. ETH No. 22718

Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Jörg Henkel, co-examiner

Examination date: May 29, 2015

i

To my wife, Shilpi.

You made this possible.

Our parents.

For your love, trust, and unconditional support.

My former German colleagues for the inspiration.

Elke Wilke, Ralf Rehbach, Andreas Goeckede, Georg Zöller, Jens Rudolph.

ii

The greatest danger for most of us is not that our aim is too high and we

miss it, but that it is too low and we reach it.

Attributed to Michelangelo in The Element (2009) by Ken Robinson

Abstract
With the proliferation of many and multicore processors in servers,

desktops, laptops, and even mobile devices, we have become accustomed

to expect ever greater computational performance from each new genera-

tion of such devices. For instance, as users of recent generation of mobile

phones, we can now play games with rich graphics, enjoy rich multimedia,

navigate the world, create and edit movies, none of which was possible on-

ly a few years ago. Similarly, our notebook computers are now as powerful

as desktops of yesterday, allowing us to work effectively on the move.

The primary reason for such impressive growth in the power of compu-

ters has been continuous reduction in the size of the transistor, specifically

its feature size. Transistors are fundamental building blocks of the state-

of-the-art processors, and with smaller transistors, it is possible to pack

more cores into the same die, resulting a multi- or a many-core processor.

However, such a high level of integration is not without its own challenges.

Themost significant challenge is the increased likelihood that such pro-

cessors will overheat. This is primarily because the voltages required to

operate such transistors have not reduced in the same proportion as the

size of transistors used to build state-of-the-art processors. As a result, such

processors can experience very high power densities, leading to tempera-

ture hotspots, with consequences both in the short and long terms.

In the short term, processors which run too hot automatically trigger

built-in thermal protection mechanisms which slow the processor down.

This causes unplanned, discernible, and in some cases, unacceptable de-

gradation in the system performance. In the long term, rapid fluctuations

in the temperature of the processor in time or in space may reduce its re-

liability.

In this thesis, we focus on overcoming reliability and performance

challenges posed by state-of-the-art processors. In particular, design tech-

niques are presented which can be used to avoid, tolerate, and recover

from thermally induced faults. All concepts proposed in this thesis have

been specifically designed for time and resource constrained systems, and

therefore can be applied to designing reliable embedded and signal pro-

cessing systems. In brief, major topics covered in this thesis are:

• A technique to avoid thermally induced faults by estimating offline,

the temperature of the processor when it executes a given set of app-

lications. Furthermore, an analytical technique to estimate the worst

case temperature of the processor is also presented, which may be

iv ABSTRACT

used to quickly eliminate those use-cases (i.e., combinations of appli-

cations and corresponding schedules) that may overheat the proces-

sor.

• A technique to tolerate (or mask) permanent faults in a manner

which enables the system to continue to satisfy functional and timing

requirements even after it has experienced one or more faults, and

• A technique to recover from faults in a manner which allows an app-

lication to migrate from a faulty processor (core) to a fault-free loca-

tion, alongwith its context. Subsequent to migration, the application

can continue to compute from the instant in time when the fault was

detected. The secondary objective is to use this technique for dyna-

mic load balancing across the available processors, which also helps

avoid faults.

In practice, designing reliablemultiprocessing systemsmay require the

application of all three approaches simultaneously. Whereas the proposed

fault avoidance technique is specific to thermally induced faults, propo-

sed approaches for fault tolerance and recovery are comparatively gene-

ral, and can be applied to protect a system from a broader class of faults. A

highlight of this thesis is that all concepts have been validated through pro-

totyping and extensive tests on multiple state-of-the-art multi- and many-

core processors, such as the Intel Xeon family, Intel i7 family, and the Intel

Single Chip Cloud (SCC) many-core processor.

Zusammenfassung
Mit der wachsenden Verbreitung von Viel- und Mehrkernprozessoren

– sei es in Servern, Desktops, Laptops, ja sogar Smartphones – ist für uns

ein Zuwachs an Rechenleistung mit jeder neuen Generation dieser Gerä-

te selbstverständlich geworden. Als Nutzer der jüngsten Generation von

Mobiltelefonen, zum Beispiel, können wir jetzt Spiele mit opulenter Grafik

spielen, Multimedia in hoher Qualität genießen, rund um den Globus navi-

gieren oder Filme erstellen und bearbeiten, was alles vor wenigen Jahren

noch unmöglich war. Ebenso sind unsere Notebooks jetzt so leistungsfä-

hig wie Desktops von gestern und erlauben uns so ein effektives Arbeiten

auch unterwegs.

Der Hauptgrund für diese eindrucksvolle Steigerung der Leistungsfä-

higkeit von Computern ist die kontinuierliche Verringerung der Größe der

Transistoren, genauer gesagt, ihrer Gatterlängen. Transistoren sind die

grundlegenden Bausteine moderner Prozessoren, undmit kleineren Tran-

sistoren kann man mehr Prozessorkerne in den gleichen Chip packen und

erhält so Mehr- oder Vielkernprozessoren. Eine solch hohe Integrations-

dichte bringt jedoch ganz neue Herausforderungen mit sich.

Die bedeutendste Herausforderung ist hierbei die erhöhteWahrschein-

lichkeit einer Überhitzung der Prozessoren. Diese rührt daher, dass die

benötigte Versorgungsspannung sich nicht im selben Maße reduziert wie

die Größe der verwendeten Transistoren. Dadurch können in solchen Pro-

zessoren sehr hohe Leistungsdichten auftreten, was zu lokal konzentrier-

ten Hitzepunkten («Hotspots») führt, die wiederum kurz- und langfristige

Konsequenzen haben.

Kurzfristig lösen zu hohe Prozessortemperaturen durch in den Chip

eingebaute Schutzmechanismen eine Verlangsamung des Prozessors aus.

Dies führt ungeplant zu einer wahrnehmbaren, in einigen Fällen inakzep-

tablen Verschlechterung des Systemverhaltens. Langfristig können schnel-

le Fluktuationen – sowohl zeitlich als auch räumlich – der Temperatur ei-

nes Prozessors dessen Zuverlässigkeit beeinträchtigen.

Die vorliegende Dissertation widmet sich der Bewältigung der genann-

ten Herausforderungen bei Zuverlässigkeit und Leistung auf aktuellen

Prozessoren. Insbesondere werden Konstruktionsverfahren vorgestellt,

die angewendet werden können, um temperaturbedingte Störungen zu

Thanks a lot to Bernhard Buchli and Andreas Tretter for helping with the translation.

vi ZUSAMMENFASSUNG

vermeiden, zu tolerieren und zu beseitigen. Alle in dieser Arbeit vorge-

schlagenen Konzepte wurden speziell für zeitkritische und ressourcenbe-

schränkte Systeme entwickelt und können daher zur Entwicklung verläs-

slicher eingebetteter Systeme und verlässlicher Signalverarbeitungssyste-

me verwendet werden. Zusammengefasst sind die Hauptthemen dieser

Arbeit:

• Ein Verfahren für die Vermeidung thermisch induzierter Störungen

durch eine vorgängige Abschätzung der erwarteten Prozessortempe-

ratur bei der Ausführung einer bestimmten Gruppe von Anwendun-

gen. Zusätzlich wird eine analytische Methode zur Abschätzung der

Worst-Case-Temperatur des Prozessors vorgestellt, welche angewen-

det werden kann, um die Anwendungsfälle (d.h. Kombinationen von

Anwendungen und deren Ausführungszeitplänen), die den Prozessor

überhitzen können, schnell zu verwerfen.

• Eine Methode, um dauerhafte Störungen so zu tolerieren (oder zu

verbergen), dass das System weiterhin alle funktionalen und zeitli-

chen Anforderungen erfüllt, selbst nachdem ein odermehrere Fehler

aufgetreten sind.

• Eine Methode zur Störungsbeseitigung, indem eine Anwendung –

zusammen mit ihrem Ausführungskontext – von einem fehlerhaf-

ten Prozessor(-kern) auf einen fehlerfreien umgesiedelt wird. Im An-

schluss an die Migration kann die Anwendung an dem Punkt fortge-

setzt werden, an dem die Störung erkannt wurde. Ein zweites Ziel ist

es, diese Technik für eine dynamische Lastverteilung über alle ver-

fügbaren Prozessoren anzuwenden, was wiederum Störungen ver-

meidet.

In der Praxis wird es manchmal notwendig sein, alle drei Ansätze

gleichzeitig zur Anwendung zu bringen, um zuverlässige Multiprozessor-

systeme zu erhalten.Während das vorgestellte Verfahren zur Störungsver-

meidung speziell thermische induzierte Störungen betrifft, sind die vor-

geschlagenen Konzepte für Fehlertoleranz und Störungsbeseitigung ver-

gleichsweise allgemein und können für ein breiteres Spektrum von Stö-

rungen eingesetzt werden. Eine besondere Stärke dieser Arbeit ist, dass

alle Konzepte durch Prototyping und umfangreiche Tests auf mehreren

aktuellen Mehr- und Vielkernprozessoren validiert wurden, so z.B. der

Intel-Xeon-Familie, der Intel-i7-Familie und dem Intel-Single-Chip-Cloud-

Vielkernprozessor (SCC).

Acknowledgement
This thesis would not have been possible without the support of Prof.

Lothar Thiele, who guided my efforts with his brilliance, time, patience,

and generosity. I would also like to thank Prof. Jörg Henkel, the co-

examiner for this thesis, for his time and constructive feedback.

I owe a lot to my colleagues, past and present, for supporting me in my

work, and for the patience they have shown to me over the years. It has

been a privilege to work with such bright colleagues at such a prestigious

university. The most important lesson I take from here is of humility and

pride, with pride stemming from the knowledge that I was always sur-

rounded by brilliant but unassuming people, and humility because I am

aware that I may never equal my colleagues in terms of excellence.

Most importantly, I am deeply indebted to my wife, Shilpi for her un-

conditional love and support during my time as a doctoral student. She

encouraged me when I found it difficult to carry on, gave me hope when I

was depressed, and for showing patience when I spent entire days, nights,

and weekends working on a paper, a piece of software, or an experiment.

She made it all possible. I am thankful to our parents for their patience,

trust, and unequivocal support without which I would not have finished

this thesis.

I would like to thank my former German colleagues with whom I

worked during my times as an automotive embedded software engineer.

It was here that I experienced excellence at work, which inspired me to

return to the university to improve my skills.

Settling down in the German speaking city of Zürich, navigating legal

regulations, and finding an apartment would not have been possible for

an outsider like me without the support of Monica Fricker, a now-retired

administrative assistant, and Beat Futterknecht, the current head of ad-

ministration of the department.

The experiments reported in this work would not have been possible

without the cooperation of our IT support staff, Thomas Steingruber, and

Benny Gächter.

Finally, I would like to thank Tanja Lantz and Friederike Brütsch for

helping me stay organized with administrative matters.

viii ACKNOWLEDGEMENT

Contents
Abstract iii
Zusammenfassung v
Acknowledgement vii
1 Introduction 1
1.1 The Other Side of Technology Scaling 2

1.2 The State-of-the-Art . 3

1.3 Challenges . 3

1.4 Problem Statement and Contribution 10

1.5 Thesis Overview and Contributions 11

2 Theoretical Foundation: Construction of Thermal Models 17
2.1 Introduction . 17

2.2 The Problem and Related Work 18

2.3 A New Approach . 23

2.4 Setup and Notations . 24

2.5 Constructing the Thermal Model 25

2.6 Temperature Aware Design Space Exploration 34

2.7 Experiments and Results . 38

2.8 Variations and Optimizations 42

2.9 Closing Remarks . 44

3 Thermal Models for State-of-the-Art Processors 47
3.1 Introduction . 47

3.2 Brief Problem Statement and Related Work 49

3.3 Overview of the Approach . 50

3.4 Setup and Notation . 51

3.5 Constructing the Thermal Model 51

3.6 Experiments and Results . 58

3.7 Closing Remarks . 64

x CONTENTS

4 Incorporating the Processor Cooling System into the Model 65
4.1 Introduction . 65

4.2 Setup and Notation . 68

4.3 Computing the Thermal Model of the Fan 69

4.4 Experiments and Results . 73

4.5 Closing Remarks . 79

5 Estimating the Peak Temperature 81
5.1 Introduction . 81

5.2 Simple Example . 84

5.3 Related Work . 86

5.4 System Model . 87

5.5 Thermal Analysis . 92

5.6 Experimental Analysis . 103

5.7 Closing Remarks . 113

6 Tolerating Faults in Time Constrained Systems 115
6.1 Introduction . 115

6.2 Motivational Example . 118

6.3 Notations and Model . 120

6.4 Proposed Solution . 120

6.5 Tolerating n Simultaneous Timing Faults 127
6.6 Experiments and Results . 129

6.7 Closing Remarks . 135

7 Recovering from Faults in Process Networks 137
7.1 Introduction . 137

7.2 Related Work . 139

7.3 Motivational Examples . 140

7.4 Model and Definitions . 142

7.5 Proposed Technique . 143

7.6 Stabilizing Individual Processes 149

7.7 Implementing a Prototype . 149

7.8 Experiments . 153

7.9 Closing Remarks . 159

8 Closing Remarks 161
8.1 Overall Summary . 161

8.2 Open Research Challenges . 163

A Real Time Computing on the Intel SCC 167
A.1 Introduction . 167

A.2 Related Work . 168

A.3 Background . 169

A.4 Achieving Predictable Timing Characteristics 171

A.5 Experiments and Results . 174

A.6 Summary . 179

CONTENTS xi

Bibliography 181
List of Publications 195
Curriculum Vitæ 197

xii CONTENTS

1
Introduction

This thesis presents techniques to avoid, tolerate, and recover from faults

in resource- and time- constrained systems. The focus is on thermal faults,

which are increasingly likely in state-of-the-art processors. In order to

avoid thermal faults, a calibration based approach for constructing the

thermal model of the given processor is presented. The thermal model is

then utilized to estimate apriori the temperature experienced by the pro-
cessor when it executes a given set of tasks. With the thermal model avail-

able, we follow up with an analytical technique to estimate the peak tem-

perature that may be experienced by the processor, given an abstract de-

scription of the workload to be executed. Together, the thermal model and

the peak temperature estimation technique are used to predict whether or

not the processor will ever be in the danger of overheating and suffering
from a thermal fault.

Next, in order to prevent any interruption in tasks and services in

case a fault does occur, a fault detection and tolerance technique inspired

by N-version programming is proposed. As several relatively mature ap-
proaches are available for detecting and tolerating value faults, this work

focusses on detecting and tolerating timing faults in resource- and time-

constrained systems. The proposed approach is specifically designed for

process networks: a popular model of computation for tasks which oper-

ate on streaming data.

Finally, the problem of recovering from faults by task migration is con-

sidered. Again, the focus is on process networks and the challenge lies

in correctly computing the context of processes which must migrate. In

the context of resource- and time- constrained systems executing process

networks, a new approach is presented wherein a process can guide itself

2 CHAPTER 1. INTRODUCTION

into a so-called stable state in which its own context can be correctly col-
lected. Post migration, the process can restore its context and continue

computation at a new fault-free location.

The next section (i.e., Section 1.1) presents a background discussion on

the causes and consequences of faults specifically considered in this the-

sis. Subsequently, we identify main challenges which must be addressed

in order to achieve a reliable system in Section 1.3. The overall problem

statement and a brief list of contributions made through this thesis is pre-

sented in Section 1.4, which is followed by a detailed plan of the thesis in

Section 1.5.

1.1 The Other Side of Technology Scaling
It is widely acknowledged that steady improvements in the capability of

processors have been driven largely by shrinking device geometries, also

referred to as technology scaling. However, the voltages required to oper-

ate these devices have not scaled at the same pace as device geometries,

in what is known as non-ideal CMOS scaling. A consequence of non-ideal

scaling has been that the state-of-the-art processors can attain very high

power densities and generate large amounts of heat which is difficult to

dissipate using traditional cooling approaches such as a fan. As a result,

it is increasingly likely that these state-of-the-art processors may experi-

ence very high operating temperatures, often near the critical tempera-

ture. Furthermore, data provided by Intel and the International Technol-

ogy Roadmap for Semiconductors (ITRS) point to a future wherein it may

not even be possible to execute applications on all the cores simultane-

ously due to the danger of fatally overheating the processor, an observa-

tion commonly known as Dark Silicon, see [EBSA+11, HFFA11, SGM+14].

In the long term, processors which either run too hot or experience

rapid changes in temperature have reduced reliability as compared to the

processors whose operating temperature has been carefully controlled. In

the short term, the performance of tasks and services executing on a hot

processor may deteriorate to an unacceptable level, and in extreme cases,

hosted tasks and services may become unavailable if the processor shuts

itself down to avoid any thermally induced damage. This inability of the

processor to provide the expected computing performance specifically due

to temperature issues described above is referred to as a thermal fault,
which if not mitigatedmay cause the failure of the entire system executing

tasks and services.

Another consequence of technology scaling has been to make proces-

sors more vulnerable to faults which may be triggered simply by expo-

sure to the physical environment. That is, elements usually present in the

environment such as cosmic particles and electromagnetic radiations are

more likely to cause faults leading to errors in state-of-the-art processors.

However, in contrast to faults caused by an overheated processor, these

1.2. THE STATE-OF-THE-ART 3

faults cannot be anticipated for, or avoided without significant and costly

changes to the given hardware (e.g., radiation hardened processors).

1.2 The State-of-the-Art
The computing community along with the hardware vendors have at-

tempted to mitigate the processor overheating problem using a combina-

tion of hardware and software approaches.

Software approaches attempt to control temperature by carefully con-

trolling the workload being executed by the processor, either by shap-

ing the incoming workload (e.g., by buffering some tasks), or by means

of scheduling, see [KT11, FCWT09]. A more recent software oriented ap-

proach relies on selectively using cores in the given multi- or many-core

processor which have special spatial characteristics, e.g., ensuring that no

heat dissipating core (i.e., a hot core) has a hot neighbor, in what is known
as Dark Silicon Patterning, see [SGHM14]. Yet another method is to mi-
grate tasks between a set of similar processing elements in order to avoid

overheating any given element, see [EAH12].

Hardware oriented solutions include capping of clock frequencies and

integration of sophisticated power and temperaturemanagement features

into the processor. However, in a bid to ensure that the every new gener-

ation of the processor performs better than the previous one (e.g., higher

number of instructions per second, IPS), hardware vendors continue to

pack increasing number of cores, which in turn increases the likeliness

that the processor may overheat. As a result, processor architectures fea-

turing novel devices, such as Steep Slope Devices, e.g., the Interband Tun-
nel FET (TFET) are being proposed. These devices can operate at voltages

considerably lower than the CMOS transistors currently found in the state-

of-the-art processors. Steep Slope Devices feature relatively low leakage

currents, lower power densities, and also do not dissipate as much heat.

Since the computational capacity of processing elements (e.g., cores) built

out of such devices are expected is expected to be relatively limited as

compared to CMOS based devices, researchers recommend heterogeneous

processor architectures featuring processing elements that are built using

conventional CMOS process, as well as TFET technology, on the same die,

see [KSS+12]. An operating system may dynamically choose the type of

processing element to use (e.g., CMOS or TFET) depending upon applica-

tion requirements, see [HNPT13].

1.3 Challenges
In general, techniques are already available that can be used to avoid, tol-

erate, and finally recover from such faults. However, the available ap-

proaches are limited in either one or more of the following aspects:

4 CHAPTER 1. INTRODUCTION

• The available approaches are not specifically designed for resource-

and time- constrained systems, the class of systems which are specif-

ically considered in this thesis; or

• The approaches seek to utilize processor architectures which are not

yet mainstream, e.g., processor constructed out of Steep Slope De-

vices; or

• Solutions which seek to mitigate thermally induced faults rely on

thermal models which are either too abstract to be reasonably ac-

curate (e.g., lumped models) or are limited to dated processor archi-

tectures (e.g., hotspot simulator with the DEC-Alpha processor).

A wide class of automotive and medical electronics systems are

resource- and time- constrained in nature. Specific examples systems

which operate of streams of data (e.g., sensor values), such as infotain-

ment systems, (automotive) collision avoidance systems, automotive en-

gine management systems. Such systems are usually characterized by lim-

ited compute, network, and memory resources, but are expected to be re-

liable and provide services under tight timing bounds. For such systems,

approaches formitigating thermally induced faults such as thosewhich re-

quire buffering tasks, or modifying application schedules may not be fea-

sible. Tasks operating over streaming data aremost commonlymodeled as

dataflow process networks (e.g., Kahn Process Networks) as these are sim-

ple to implement, self-scheduled, and provide natural support for express-

ing parallelism. However, as process networks feature asynchronously

and autonomously executing processes, these present a significant chal-

lenge in the design of fault tolerance and recovery solutions.

Furthermore, this thesis considers commercially available state-of-the-

art processors in order to develop fault tolerance, avoidance, and recov-

ery solutions, with an emphasis on thermally faults. Therefore, the pro-

posed solutions must be easily implementable on commercial state-of-the-

art processors, with a specific focus on resource constrained systems. To

this end, we exploit the difference in mechanics of thermal faults as com-

pared to those faults which are hard to anticipate, and may lead to sudden

loss of functionality of the processor, e.g., faults induced by radiation. In

general, it is possible to anticipate and avoid thermal faults if a thermal
model of the given processor can be so constructed that it allows apriori es-

timation of temperature traces on a given state-of-the-art processor when
it executes a given set of tasks, in a reasonable time and with reasonable

accuracy. The strength of this approach is that it does not depend on a yet-

experimental new device technology (e.g., TFET), or require specifically

designed processors (e.g., processors with fluid-based cooling), and hence

is widely applicable. Faults which are difficult to anticipate (e.g., those

induced by radiation) are tolerated, and finally can be recovered from.

The following sections present more details on the challenges associ-

ated with avoiding, tolerating and recovering from faults, in the context

1.3. CHALLENGES 5

of resource- and time- constrained systems. Specifically, three main chal-

lenges have been identifiedwhichmotivate the work presented in this the-

sis:

1.3.1 Avoiding Thermal Faults
Limitations of Current Solutions
In general, techniques to prevent processor overheating are already avail-

able, and some of these solutions are already found in the commercial

state-of-the-art processors. One popular technique is to dynamically lower

the processor’s clock speed and/or voltages (DVFS) as the processor gets

too hot. This has the effect of slowing down the processor which also low-

ers its temperature. However, this approach is usually reactive in nature

resulting in an unforeseen and unplanned loss of performance. If the sys-

tem operates under tight timing constraints, any performance degradation

may have serious consequences on the overall reliability of the system.

For instance, an automotive engine management computer may be pro-

cessing several live streams of sensor data for computing critical operat-

ing parameters (e.g., when to fire a given spark plug). Obviously, there are

timing constraints under which the streams must be processed and there-

fore, any unforeseen degradation in the available computing capacity may

not be acceptable due to performance and safety considerations. In ad-

dition, if the system uses a resource-constrained processor, the additional

compute burden imposed by dynamic temperaturemanagement solutions

may be unacceptable. In addition, approaches relying on buffering tasks

for limiting processor temperature may not be feasible.

In contrast, if it is possible to accurately estimate at design time how the
temperature of the processor will evolve when it will execute a given set of

tasks, then it may be possible to develop thermally-optimized task binding

(i.e., mapping of tasks to cores, their respective schedules, processor clock

frequency, and required cooling) options which ensure that the processornever overheats at runtime, in turn avoiding any unforeseen performance
losses. As indicated earlier, solutions which rely on scheduling decisions

to avoid processor overheating are already available, but often rely on ab-

stract, or dated thermal models. This design-time search for optimal task

bindings is referred to as Design Space Exploration (DSE). Since the ap-

proach obviates the need for any runtime thermal management, it does

not add any computational burden on an already time- and resource- con-

strained system.

Challenges in Offline Estimation of Temperature Traces
In general, estimating the time-trace of temperature of a given processor

at design time is a complex problem as it requires accurately accounting

for all the factors which influence the overall temperature of the proces-

sor, such as the technology node, available cooling, number of cores, tasks,

6 CHAPTER 1. INTRODUCTION

processor housing and the ambient temperature. A wide spectrum of ap-

proaches are available, each differing from the other in the amount of

information required for computing temperature traces, associated accu-

racy, and the speed of computation. On one end of the spectrum we have

so called lumpedmodelswhich approximate the entire processor as a point
source of heat. The high level of abstraction makes such models computa-

tionally fast on one hand, and erroneous on the other. The other end of the

spectrum consists of fine-grained numerical simulators, such as Hotspot.

These simulators require lot of details to be known about the processor

(e.g., exact floor-plan, power trace for each micro-architectural unit inside

the processor, coolingmodel to name a few) and are considered to be accu-

rate. However, numerical simulators are computationally intensive, and

computing each new temperature data point requires solving large num-

ber of system equations. In case of a state-of-the-art processor with multi-

ple cores, the time required to compute a temperature trace consisting of

thousands of data points may be simply too long to be feasible in a prac-

tical Design Space Exploration use case wherein hundreds of temperature

traces may need to be computed in search for an appropriate solution.

A New Approach: Calibration based Thermal Models
We propose a middle ground between highly coarse-grained lumped mod-

els, and highly fine-grained numerical simulators. We build a thermal

model of the given processor by a sequence of calibration experiments

conducted on the processor of interest. The proposed technique does not

require the system designer to have accurate knowledge of possibly sev-

eral hard to get parameters, which are otherwise critically required by nu-

merical simulators such as Hotspot. Many of these parameters are rarely

known with sufficient accuracy to anyone except the vendor itself, mak-

ing it difficult to use numerical simulators for building thermal models of

state-of-the-art processors. An additional advantage of the proposed ap-

proach is that the time required to compute several thousands of temper-

ature data points is in the order of seconds, which may be considered ac-

ceptable for Design Space Exploration. The temperature traces computed

using the new approach are also accurate. Experimental results show that

the error in the estimated traces is in the same order as the noise in the

temperature sensors.

1.3.2 Fault Tolerance in Resource Constrained Systems
Limitations of Current Solutions
As expected, several general approaches for tolerating faults are already

available, which include transparently masking faults at the hardware

level, or by hardening processors (e.g., radiation hardened processors),

see [HBZ+14] for a discussion on various techniques available to improve

reliability of a computer-based system.

1.3. CHALLENGES 7

Software oriented solutions include generation of multiple executable

copies (henceforth referred to succinctly as replicas) of the same applica-
tion but with design diversity to be executed simultaneously on the pro-

cessor, a technique known as N-version programming. Such executables
avoid common-mode faults. Compilers can also be used to generate dif-

ferent executables that execute on different elements of the processor,

thereby ensuring that failure of one (or more) processing elements does

not affect all copies of the application.

In case a fault causes a replica to output incorrect results, it may be nec-

essary to detect such a fault in order to isolate the faulty replica to prevent

the system from producing incorrect results. Various mechanisms have

been proposed to detect a potential value fault in one or more of the repli-

cas, and also to arbitrate between their respective outputs for computing

the final output. The simplest of the arbitration schemes is the majority

voting, whereas more sophisticated approaches may combine probabilis-

tic and heuristic analysis in order to compute the final output.

In systems where timing is critical, replicas may exhibit both timing as
well as value faults. Timing faults are observed when a replica provides

the correct output in terms of value but not in terms of timing, i.e., the out-

put is not computed within the required time bounds. If the task exhibits

simple timing properties, such as periodicity, then simple timer based fault

detection approaches may be used, e.g., watchdogs. Detection of timing

faults is much more challenging if tasks operate under more complex tim-

ing patterns. Various approaches to detect timing faults under such condi-

tions have been proposed. One may use a set of timers which timeout at

different intervals, and an indication of a timing fault may be construed

from the state of the selected timers. However, solutions which depend

on several alarms are not scalable in terms of resources used, especially

when the timing complexity and the number of tasks to be monitored are

significant. One may also detect timing faults based on the analysis the

timestamps of data packets (or tokens) received within some limited time-

window in the immediate past. Based on a set of high-level timing prop-

erties supplied by the designer, the approach checks the conformance of

timestamps of the received packets to the given properties. Accordingly,

the approach requires at least one system timer, dedicated memory for
storing timestamps, as well as computational resources for runtime timing

analysis. More complex approaches based on a system of state observers

have also been proposed. However, such approachesmay be infeasible for

use in time- and resource- constrained systems due to their high resource

demands, and also require specifically crafted tasks that support such a

system of state-observers.

8 CHAPTER 1. INTRODUCTION

Challenges in Detecting and Tolerating Timing Faults in ConstrainedSystems
Timing jitters and occasionally bursty outputs are a common character-

istic of process networks. In case of an automotive engine management

system, jitters and bursts may be rare (and may be the consequence of a

fault), whereas in multimedia process networks, these are expected, and

normal. Detecting and tolerating timing faults is especially challenging in

such cases as any feasible solution must be able to distinguish between

between normal and tolerable timing variations and those which indicate

a fault. Furthermore, it is usually the case that a fault tolerant system re-

quires tasks be specifically written to support the chosen fault detection

and tolerance strategy. For instance, it is common practice that tasks must

reset a watchdog at regular intervals as a demonstration of their fault-free

status. However, in cases of legacy and/or complex process networks, a

redesign to suit the chosen fault detection and tolerance strategy may not

be feasible. In summary, detection and tolerance of timing faults in time-

and resource- constrained systems remains an open challenge.

ANewApproach: Using FIFO buffers for Detecting and Tolerating Tim-ing Faults
We propose to use network and real time calculus to translate the difficult

problem of detecting timing faults into a much easier problem of counting

the number of data tokens in a set of carefully designed FIFO buffers. In

addition, we derive a fault tolerance solution at no extra cost to the system

resources. Since the approach involves merely counting, the overall solu-

tion is lightweight both in memory and computational overhead imposed

on the system. The proposed technique requires abstract information on

the expected interface-level timing properties under which the system op-

erates, which are usually available at design time, and therefore, does not

impose any additional burden on the system designer. Lastly, the pro-

posed approach treats the given process network as a black-box, does not

require any modifications to their design, thereby making the proposed

approach applicable for use with large, complex, and legacy tasks.

1.3.3 Fault Recovery and Load Balancing
Limitations of Current Solutions
Both fault recovery and load balancing may require that tasks be moved

between the processor(s). In one use-case, tasks may be moved to differ-

ent processor (cores) in order to load-balance the processor, or to ensure

that the no part of the processor gets too hot. Another use-case is recover-

ing from faults, wherein a task may need to be moved to a new fault-free

core (or a processor) so that computation can continue. Most current ap-

proaches for moving tasks (or, task migration) are either resource heavy,

1.3. CHALLENGES 9

restricted to shared memory systems, or require tasks and the operating

system to explicitly support migration. For instance, task migration re-

quires that the context of the affected task be collected, which is then re-

stored to it post-migration. A possible solution is to design tasks which

store their context into a remote memory location at regular intervals (i.e.,

checkpointing), although itmay be possible that the operating system takes

over the burden of checkpointing tasks. Thus, it is feasible to migrate tasks

using a custom operating system, it is nonetheless restricted to processors

which have enough resources to support such an operating system. It is

also easy to see that checkpointing may consume significant compute, net-

work, and memory resources if tasks have significant amount of context

data to be stored (e.g., tasks are data intensive, and/or have deep states).

In contrast, time- and resource- constrained systems seldomhave spare

memory, compute capacity, or network bandwidth to support regular

checkpointing. Also, such constrained systems feature lean operating sys-

tems (e.g., microkernels) which may not capable of supporting task migra-

tion.

Challenges in Task Migration Under Resource Constraints
As previously pointed out, a custom operating system based approach to

task migration is restricted to systems which can support such an operat-

ing system. A major challenge in designing a solution for task migration

specific to process networks stems from the nature of the process network

itself: processes execute autonomously and asynchronously with no clear

"master" or "controller" process. In such cases, the context of each process

continues to change not only as the it executes, but also as it exchanges

data between its parents and children. Therefore, in order to correctly

collect the context of a process, all the parents must be notified of an im-

pending migration of their child so that parents do not transmit new data

to the affected process. The execution of process(es) to be migrated must

be suspended, and all data transmitted by their respective parents must be

accounted for in the context. In summary, the set of processes designated

for migration must be guided into a stable state in which their respective
contexts will not change any further. The asynchronous nature of the pro-

cess network makes it difficult to estimate a bound on the delay that a pro-

cess may experience before it has received all packets transmitted to it.

Process networks implemented on a distributed memory system further

complicate this problem, as in this case, a process may need to addition-

ally account for network delays to receive any in-flight packets before it

can store its context. As already discussed, processes can checkpoint them-

selves at regular intervals so that context information is readily available

if migration is required, but such an approachmay impose severememory

and computational overhead for complex process networks.

10 CHAPTER 1. INTRODUCTION

A New Approach: Stabilizing Process Networks Under Resource Con-straints
Much of the compute and memory overhead associated with task migra-

tion is due to the implicit assumption that a faults can lead to abrupt loss

of functionality, and hence the need for expensive and regular checkpoint-

ing. However, thermal faults need not be sudden: a system can be de-

signed to allow an advanced warning as the temperature of the system

crosses a pre-determined threshold but has not yet overheated, and hence

the system functionality is available, at least for a limited time. It is only

when the overheat warning is received, task migration procedure can be

triggered, thus avoiding costly checkpointing when the system operates

within normal conditions. In addition, the structure of dataflow process

networks offers further cost optimization opportunities in terms of mem-

ory: a process is normally required to buffer input data before processing.

When the process context needs to be computed, these input buffers and

the data contained therein can be simply moved into the collected context.

Furthermore, keeping with the asynchronous and autonomous character

of process networks, we propose an approach in which each process can

autonomously decide to migrate, and subsequently stabilizes itself in a lo-

cal co-ordination with its parents and children. The emphasis is placed

on an efficient stabilization procedure, whereas the required memory and

compute efficiency flows from the architecture of the process network it-

self. The proposed approach is correct, i.e., the functionality of the pro-

cess network before and after stabilization is preserved. Furthermore, the

proposed stabilization procedure is independent of any delay, either in the

operating system, the processor, the memory, or the network.

1.4 Problem Statement and Contribution
Brief Problem Statement
Following the discussion, the problem solved in this thesis can be briefly

summarized as:

Given a processor susceptible to thermal faults with possibly many cores,design a system which avoids, tolerates and recover from faults such thatthe given resource- constrained system keeps operating within the specifiedtiming constraints.

Brief Summary of Contributions
Specifically for process networks executing on time- and resource- con-

strained systems, this thesis makes the following contributions to the state-

of-the-art:

1.5. THESIS OVERVIEW AND CONTRIBUTIONS 11

• A new calibration based technique for constructing an accurate and

computationally efficient thermal model of the given processor to be

utilized for designing systems that avoid thermal faults;

• A new formal analytical technique to estimate peak temperature of

the processor given any task and the associated workload descrip-

tion, again to be used for avoiding thermal faults;

• A new computationally efficient fault-tolerance technique;

• A new event triggered technique which prepares an executing pro-
cess network for migration from a faulty processor to a non-faulty

one, thereby enabling a given system to recover from faults; and

• All presented techniques have been validated by extensive experi-

ments on a variety of state-of-the-art processors.

1.5 Thesis Overview and Contributions
Fault ToleranceFault Avoidance

Thermal Model of the Processor

• Frequency
• Tasks
• Binding

• Fan

N-version
programming for

constrained systems

Chapter 2 Chapter 3

Peak Temperature
Analysis

Chapter 5 Chapter 6

Fault Recovery

Stabilizing
Process Networks

Chapter 7

• Theoretical
Foundation

Chapter 4

Figure 1.1:Organization of this thesis.
In the context of thermal faults, this thesis presents new techniques to

avoid, tolerate and recover from such faults. All techniques presented in

this thesis have been developed specifically for time- and resource- con-

strained systems. The organization of this thesis is summarized in Figure

1.1, whereas detailed contributions of each chapter are presented next:

Chapter 2
This chapter presents the models and methods used for constructing the

thermal model of a given processor. The proposed method exploits the

predictable runtime behavior of tasks designed for embedded systems

(succinctly, embedded tasks) for constructing the thermal model of the sys-
tem. The proposed approach does not require any hard-to-get information

such as the processor floorplan, or detailed power traces. These models

12 CHAPTER 1. INTRODUCTION

and methods are later exploited in chapters 3 and 4 for constructing ther-

mal models for state-of-the-art systems. Specifically, this chapter builds on

the following ideas:

1. We show that the runtime behavior of embedded tasks is (often) de-

terministic in the following sense: when the given task executes,

then the sequence of instructions executed, and their relative pro-

portion remain similar (i.e., the same order) irrespective of inputs,

and across different invocations of the given task;

2. As a result, the total power consumed by a given embedded task is

(approximately) constant over time, and is largely determined by the

task itself. Furthermore, the distribution of the total power between

different micro-architectural entities of the processor (core) is also

(approximately) constant;

3. This consistency in the runtime behavior of tasks causes predictable

changes in the temperature of the processor which can be captured

with sufficient accuracy into a thermal model;

4. It is possible to correctly estimate the temperature trace of a proces-

sor from the estimated thermal model together with the task bind-

ing information (i.e., its schedule, mapping to core, processor clock

speed, cooling applied); and

5. Construction of the thermal model does not require any hard-to-

get information about the processor such as the detailed proces-

sor floorplan, or accurate power traces at the granularity of micro-

architectural units, which have traditionally been considered a criti-

cal pre-requisite.

Chapter 3
This chapter uses principles presented in chapter 2 in order to construct a

thermal model for a state-of-the-art Xeon 8-core processor. Also proposed

is a method to account for the effect of temperature and power manage-

ment algorithms found in the processor.

The chapter makes the following contributions to the state-of-the-art:

1. A calibration based technique for constructing a thermal model of a

given state-of-the-art processor;

• Only on-board temperature sensors are used,

• The influence of on-chip temperature and power management

algorithms on the temperature of the processor is also also con-

sidered.

1.5. THESIS OVERVIEW AND CONTRIBUTIONS 13

2. Extensive experiment on the Intel Xeon 8-core processor show that

the error in the temperature traces computed using the model is no

greater that the quantization error in the on-chip temperature sen-

sors.

This, the results presented in this chapter may be viewed as a (partial)

validation of the techniques proposed in Chapter 2.

Chapter 4
This chapters presents a calibration based technique to incorporate the

effect of the system fan into the thermal model of the processor. The result

is a thermal model of the system fan which can be cascaded to already

available fan-unaware system thermal models. To this end, the chapter

presents the following main concepts:

1. A calibration based technique for constructing a cascadable thermal

model of the system fan;

• The model is constructed solely from the data obtained during

calibration experiments,

• The technique obviates the need for detailed power traces tradi-

tionally considered critical for constructing the thermal model

of a fan.

2. The resulting thermal model of the fan depends only upon the speed

of the fan and is independent of all other factors;

3. Extensive experiments on a state-of-the-art notebook computer

demonstrate the accuracy of the thermal model.

Together with Chapter 3, this chapter fully validates the ideas proposed

in Chapter 2, i.e., it is possible to construct an accurate and computation-

ally efficient thermalmodel of the complete computer system from observ-
ing temperature traces when the processor executes a set of calibration

experiments. Though the proposed approach is restricted to tasks which

have deterministic runtime characteristics, it is nevertheless applicable to

a broad class of embedded and signal processing systems. The same ap-

proach has been successfully applied to estimate the thermal model of the

fan, but the result is more general: the thermal model of the fan holds ir-

respective of the class (or type) of tasks that may execute on the processor.

14 CHAPTER 1. INTRODUCTION

Chapter 5
This chapter presents a formal method based on network and real time

calculus for estimating the worst case temperature of a processor, given

the thermal model of the processor and information about the workload.

It is known that even exhaustive simulations may not be able to accurately

yield such worst case estimates making the formal approach cost efficient.

The worst case temperature estimates may then be used to design better

binding solutions, or to configure the system for tolerating and recovering

from any inevitable thermal faults. This chapter covers the following new

concepts:

1. A formal method based on network and real time calculus is used

to estimate worst case temperature of a processor, given a thermal

model and a description of the workload;

2. It is shown that the obtained estimates are tight; and

3. A method to compute the associated worst case workload (trace) is

also presented.

Chapter 6
This chapter presents an N-version programming technique which is
adapted for detecting and tolerating timing faults time- and resource- con-

strained systems. The proposed approach does not require the use of any

timer resources, and is thus scalable. Fundamentally, it is shown that for-

malisms of network and real time calculus can be used to convert the diffi-

cult timing fault detection problem into amuch simpler counting problem.

This chapter covers the following items:

1. The design of the replicator and the selector processes which are

used for implementing the fault tolerant system;

2. Concepts from network and real time calculus that are exploited

which allow detection of timing faults from observing fill level of var-

ious first in, first out (FIFO) buffers; and

3. Experimental results of a prototype implemented on the Intel Single

Chip Cloud (SCC) processor confirm the scalability and resource effi-

ciency of the proposed fault detection technique.

1.5. THESIS OVERVIEW AND CONTRIBUTIONS 15

Chapter 7
This chapter focuses on a major problem encountered when attempting to

migrate asynchronous process networks: upon receiving an event trigger,

guide a set of asynchronously and autonomously executing processes into

a stable state so that their contexts can be collected. In contrast to earlier

results which have either discussed the problem of task migration from a

theoretical standpoint or under simplifying assumptions, this chapter also

discusses the implementation and results of the proposed technique on a

state-of-the-art Intel SCC processor.

The focus of this chapter is on the following:

1. An event-triggered mechanism which guides a set of processes into a

stable state wherein the associated contexts can be computed;

• The presented technique is fully event driven and is therefore

immune to various delays, jitters and other timing variations

commonly observed when an asynchronous process network

executes on a system-on-chip,

• The computation and subsequent restore of the context to the

processes is based on a prototype implemented using pro-

tothreads,

• Case studies using the Intel SCC processor confirm both the cor-

rectness and the resource efficiency of this technique.

16 CHAPTER 1. INTRODUCTION

2
Theoretical Foundation:Construction of ThermalModels

Summary
This chapter presents methods andmodels to construct the thermal model

of a given processor. The proposed approach does not require the system

designer to know hard-to-get parameters about the processor of interest.

Instead, a sequence of calibration experiments on the processor extracts

all the parameters necessary for constructing an accurate and computa-

tionally efficient thermal model. The approach requires access to on-chip

temperature sensors for calibration experiments. Furthermore, the pro-

posed approach does not require any physical access to the processor of

interest, which can be exploited for commercial applications.

2.1 Introduction
The most effective measure for avoiding thermal faults is to know apriori

whether or not a given processor will overheat when it executes a known

set of applications. Answering this question requires the capability to ac-

curately estimate how the temperature of the processor will evolve at run-

time when it executes the given set of applications. Thus, the fundamental

18 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

requirement for avoiding thermal faults is an accurate and computation-ally efficient thermal model of the given processor. In addition to answer-
ing the aforementioned question, the thermal model can also be used to

explore design solutions which meet a set of thermal constraints, e.g., how

should the applications be mapped to the processor, how should their re-

spective schedules be designed. Such thermal constraints may range from

simple to complex. A simple thermal constraint may require the tempera-

ture of the processor to be always below a pre-defined threshold, whereas

more complex constraints may limit the frequency and amplitude of ther-

mal variations experienced by the processor.

However, constructing an efficient and accurate thermal model of the

processor remains a challenge asmany factors which influence the overall

temperature of the processor have to be accurately accounted for. Some

of these factors are cooling, processor clock speed, the given application

set, mapping of applications to the processor, their respective scheduling

information, technology node, processor floorplan, and system chassis.

Though some of these parameters are easy to acquire, certain other in-

formation such as the detailed processor floorplan is rarely available. This

chapter shows that if it is possible to restrict the class of applications to the
embedded type, then it is possible to construct an accurate and computa-

tionally efficient thermal model relatively easily. The approach relies on

access to on-board temperature sensors, and does not require the knowl-

edge of any other hard-to-get information. A specially designed set of cal-

ibration experiments automatically extracts all the parameters necessary

for the thermal model. An added benefit of the proposed approach is the

possibility of constructing a thermal model of the given processor with-out requiring physical access to it, which may be exploited for commercial
applications.

2.2 The Problem and Related Work
Several approaches are already available for constructing the thermal

model of the processor, each differing from the other in accuracy as well

as the speed at which the temperature traces (i.e., time ordered sequence

of temperature measurements or estimates) can be computed. These ap-

proaches fall between two extremes: very accurate but computationally

intensive numerical simulators on one hand, and abstract but computa-

tionally efficient models on the other.

2.2.1 Temperature Estimation Using a Simulator
One example of a state-of-the-art thermal simulator is Hotspot, see

[HSS+04]. Hotspot considers processors with traditional cooling systems

(i.e., with or without a fan), whereas more recent thermal simulators are

able to account for fluid cooling inside a processor, see [SVAB13]. Such

2.2. THE PROBLEM AND RELATED WORK 19

simulators can be very accurate if all the necessary parameters can be

supplied with high accuracy. Whereas some of the parameters (e.g., the

application set, mapping of applications to cores, associated schedules,

processor clock speed) may be easy to find, certain other details such

as the detailed processor floorplan, power model or traces at the micro-

architectural granularity, details of the cooling solution used, or the ther-

mal characteristics of the processor may not be readily available and may

even be very difficult to acquire. In case several processor architectures

have to be investigated, the challenge in acquiring all relevant parameters

for each architecturemay quickly become overwhelming. Another (lesser)

challenge is that numerical simulators estimate temperature traces by

solving a large number of system equations, which may lead to significant

computing times especially when dealing with state-of-the-art multicore

processors. Thus, the difficulty in acquiring all the necessary parameters

together with the compute intensive nature of numerical simulators make

them infeasible in certain use cases (e.g., Design Space Exploration, DSE)

wherein a hundreds, if not thousands of different thermal simulations

may have to be performed, for each architecture under investigation.

Various approaches to overcome some of these challenges have been

proposed. One approach is to restrict the processor under investigation to

(an old) DEC Alpha 21264 model. The exact floorplan of this processor is

widely available, and is also distributed with the Hotspot simulator pack-

age. The required power trace information is extracted from the Wattch

simulator, thus completing all the necessary requirements for estimating

temperature traces using Hotspot, see [BTM00]. A synthetic multicore pro-

cessor constructed by scaling and tiling the original Alpha 21264 processor

flooplan is already available for use with Hotspot, see [RV09]. An obvious

restriction of this approach is that it is fundamentally limited to a dated

processor model.

There have been attempts to acquire some of the hard-to-get parame-

ters using indirect means. One approach proposes capturing heat maps

from the silicon layer of the processor as it executes instructions, and

subsequently use heuristic algorithms to back-estimate the detailed power

model from captured heat maps. The estimated power model is then used

with Hotspot for thermal simulations, see [MMNBR07]. However, the de-

tails of the processor floorplanmust still be guessed, which in itself is a sig-

nificant challenge as floorplans of the state-of-the-art processors are quite

complex. Furthermore, the approach requires peeling off the packaging of

the processor which may significantly alter its thermal properties. There-

fore, it is not clear whether the technique and any of the associated results

may be applicable to processors of the same make, but which retain their

original packaging.

Another approach is to use event-counters as a proxy for power dis-

sipation at the core level, see [CS06]. The associated power traces for use

withHotspot are computed using a simple polynomial in the selected event

20 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

counters. The polynomial function itself is estimated by regression anal-

ysis of the observed temperature traces and the selected event-counters.

The reported approach is simple, fast, and is able to compute correct

steady-state temperatures, but shows significant inaccuracy in estimating

the transients, specifically at the task-scheduling boundaries. In addition,

the proposed approach requires processors which feature event or perfor-

mance counters.

2.2.2 Temperature Estimation Using Lumped Models
One may get around the problem of having to acquire the knowledge

of so many details about the processor by using so-called lumped ther-mal models. These models usually assume that the entire processor

is a point source of heat, and in case of a multicore processor, cores

are connected to each other via a simple resistor-capacitor network, see

[WR10, GD05, RU08]. Lumped models are computationally efficient (i.e.,

can compute temperature traces very quickly) but may be very erroneous

as lot of factors which impact the temperature of the processor are ab-

stracted out, e.g., the effect of non uniform power distribution within the

processor.

1 2

3 4

FFT

C

P

Icache Dcache

Bpred_0 Bpred_1 Bpred_2 DTB_0 DTB_1 DTB_2

FPAdd_0 FPAdd_1

FPReg_0FPReg_1FPReg_2FPReg_3

FPMul_0 FPMul_1

FPMap_1 IntMap IntQ
IntReg_0 IntReg_1

IntExec

FPQ LdStQ

ITB_0 ITB_1

FPMap_0

Caches

Registers

ALU Fetch
&

Dispatch

Icache Dcache

Bpred_0 Bpred_1 Bpred_2 DTB_0 DTB_1 DTB_2

FPAdd_0 FPAdd_1

FPReg_0FPReg_1FPReg_2FPReg_3

FPMul_0 FPMul_1

FPMap_1 IntMap IntQ
IntReg_0 IntReg_1

IntExec

FPQ LdStQ

ITB_0 ITB_1

FPMap_0

Caches

Registers

ALU Fetch
&

Dispatch

Figure 2.1:Producer (P), FFT and Consumer (C) applications run on a CMP. The power density
distribution in micro-architectural components of the cores 1 and 2 is shown,

where lighter shades show areas with higher power consumption.

As a specific example, consider a synthetic four-core chip-

multiprocessor (CMP) executing three applications: producer, FFT
and consumer, see Figure 2.1. The producer is in charge of creating data
for the FFT application, which in turn supplies the results to the consumer
application for display. The producer and consumer are I/O intensive
applications, and it can be expected that a considerable amount of power

is consumed in data caches. On the other hand, FFT is a compute-intensive
application and the ALU will dominate the power consumption of the

corresponding processor core. All three applications consume the same

total power. The floorplan on the left shows the power density due to

the FFT application executing on core 2, whereas the floorplan on the

right shows the power density due to the producer and the consumer

applications executing on cores 1 and 4. The temperature sensor is located

near the upper left corner of the processor. hence, it is more sensitive to

the heat generated by the computational units of the processor.

2.2. THE PROBLEM AND RELATED WORK 21

According to frequently used coarse grained temperature estimation

techniques using lumped thermal models, the temperature of a core i is
estimated as a function F of the total power consumed by the cores on the
processor:

Ti(t) = Fi (P1(t), . . . ,Pn(t)) (2.1)

where Pi(t) denotes the trace of total power consumption of a core i
in the CMP, recorded at some given time resolution ts from time 0 to t.
In other words, lumped models ignore the spatial distribution of power

within a core of the processor. We emulate the lumped model using the

Hotspot simulator as follows: First, extract the detailed power trace infor-

mation for each application by using the Wattch/Simplescalar tool chain,

see [BTM00]. We assume a 4-core synthetic multicore processor based on

the Alpha 21264, which is also supported by Hotspot, see [RV09]. Next,

from the available detailed power trace information, we compute the trace

of total power consumed by a given application, and distribute this uni-

formly between all the micro-architectural elements in the core which ex-

ecutes the given application. The resulting temperature traces for cores

1, 2, and 4 are shown in Figure 2.2. Temperature influence from cores

to their neighbors has been accounted for. All applications run according

the same schedule: tasks execute in lock-step, i.e. cores 1, 2, and 4 have the

same total power trace over time. Communication between cores is imple-

mented using FIFO buffers. Notice that the temperature traces for cores

look similar, with core 2 showing a slightly higher temperature which can

be attributed to having two hot neighboring cores.

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60
Producer FFT Consumer

Figure 2.2:Estimated temperature traces on cores 1, 2, and 4 due to Producer, Consumer and
FFT applications. Power is uniformly distributed between all micro-architectural
elements in the respective cores to simulate a lumped model.

The experiment was repeated, but this time, the distribution of total

power to the micro-architectural elements in the processor was made ac-

cording to the results reported by the SimpleScalar andWattch simulators.

22 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

In other words, the power distribution supplied to the Hotspot simulator

for computing temperature traces is realistic. The resulting temperature

traces are shown in Figure 2.3. Notice the difference in the temperature

for cores which run the applications. Specifically, compared to traces in

Figure 2.2, core 2 shows a significantly higher temperature as the FFT

stresses the ALU of the processor which is nearer to the temperature sen-

sor. The temperature for cores 1 and 3 is comparatively lower as most of

the power is consumed in large caches which are further away from the

temperature sensor as compared to the ALU region.

Producer FFT Consumer

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

Figure 2.3:Estimated temperature traces on cores 1, 2, and 4 due to Producer, Consumer
and FFT applications. Corresponding power distribution is as reported by Sim-
pleScalar and Wattch.

The presented example assumes that the location of the temperature

sensor is carefully selected by the vendor of the processor, and the temper-

ature readouts provided by the sensors can be taken as a representative

temperature of the core. Implicitly, the location of the thermal sensors sug-

gests the regions of the processor which may be more vulnerable to tem-

perature hotspots, and therefore, must be monitored more closely. How-

ever, lumped models abstract out spatial distribution of the total power

in the core of the processor, which may lead to large errors in the tem-

perature estimates as compared to the temperature reported by on-board

sensors. Again, we assume that the temperature sensed by each sensor

represents the true temperature of the core associated to it. We close with

a note that the details of how the power is distributed inside the processor

depends on the application being executed, and is difficult to obtain with

sufficient accuracy for any state-of-the-art processor.

2.3. A NEW APPROACH 23

2.3 A New Approach
Simulators such as Hotspot are designed to be generic in order to support

widest possible range of applications, use cases and processor models. As

noted earlier, a side effect of such generality is that the system designer

is burdened with specifying all the necessary information related to the

processor and the runtime environment.

As a specific example, such simulators do not assume any properties

about the application set to be executed, and therefore require detailed

power trace (or model) information at the micro-architectural granularity

to be provided by the system designer. However, if one restricts the appli-

cation set such that the applications are deterministic, then it is possible

to construct an accurate and computationally efficient thermal simulator

which exploits the deterministic property of the application set. The im-

mediate benefit of such an approach is that fewer parameters are required

to be supplied by the system designer.

In the current context, we say that an application is deterministic in the

following sense:

• The total power consumed by a given application is constant over

time, and is determined by the application itself; and

• The distribution of the total power between the micro-architectural

elements in the core is also constant.

Of course, an application may never be truly deterministic, as the total

power consumption and its distribution in the core will depend many fac-

tors, such as the input to the application, hardware architecture, hardware

state (e.g., cache eviction), and even temperature of the core. We show that

these conditions are satisfied to a high degree by embedded and signal pro-

cessing applications. As a result, when such a deterministic application ex-

ecutes, it leads to predictable and consistent changes in the temperature

of the processor. This enables the resulting changes in temperature to be

computedwith sufficient accuracy (i.e., <5oC of error in a dynamic range of

80oC) by knowing just the application and its scheduling details. In other

words, an embedded or a signal processing application has a thermal fin-gerprint, enabling quick and accurate estimation of temperature from the
knowledge of only a few parameters.

It must be reiterated that avoiding thermal faults requires investigating

several (possibly hundreds) of different design choices (i.e., how the given

applications be mapped to the available cores, how to design schedules to

meet performance objectives, to name a few), which requires computa-

tional efficiency. To this end, we say that a thermal simulator (or a model)

is computationally efficient if it can compute several thousand new tem-

perature data points in the order of seconds or less. In this chapter, we

say that a thermal simulator (or a model) is accurate if the error in the es-

timated temperature traces is less than 5oC in the dynamic range of 80oC.

24 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

In summary, the problem to be solved in this chapter is:

Given a possibly heterogeneous chip multiprocessor system S and a setof applications A: estimate the temperature trace on all cores of S withsufficient speed and accuracy as required for design space exploration.The method should not depend on prior availability of power, layout,physical and thermal models of the hardware platform.
In order to solve the problem, a technique to construct the thermal

model of the processor based on the concept of thermal fingerprints is

proposed. The proposed approach requires access to temperature sen-

sors on-board the processor. All parameters necessary for constructing

the thermal model are automatically extracted by running a sequence of

calibration experiments on the processor of interest. This model is then

combined with mapping and scheduling information for estimating the

desired temperature traces.

Furthermore, the proposed thermal model:

• Does not depend on the prior knowledge of details about the hard-

ware platform, or the knowledge of power traces. The proposed ap-

proach can also be applied in case the givenmultiprocessor is hetero-

geneous;

• Can model and evaluate thermal effects of various mapping policies

in terms of peak temperature experienced by processor cores, as well

as changes in temperature of the processor over time and across

cores;

• Can correctly determine a temperature trace even when two appli-

cations running on a chip multiprocessor (CMP) consume the same

total power but result in different power density in the processor;

and

• Allows for fast and accurate temperature estimation to be reliably

used in DSE loops.

2.4 Setup and Notations
We consider a chip multiprocessor P with a set C of cores. For simplicity
and without any loss of generality, we restrict the processor to operate at a

single clock speed. The cores may be heterogeneous, i.e., a given core may

belong to one of the types given in the set V = {GPU,FPU,RISC, ...}. A
set of embedded applications A is available for execution on the processor
P. We assume that a set S of temperature sensors, and a set W of power

sensors are available on the chip. Again, for simplicity, we assume that the

sensors are noise-free. The restriction on the processor clock speed and

2.5. CONSTRUCTING THE THERMAL MODEL 25

the sensor noise will be relaxed in the subsequent chapters. During the

construction of the thermal model, on-chip sensors are sampled periodi-

cally with a period ts. Therefore, the construction of the model and subse-
quent estimation of temperature traces is done for discrete time instants

t ∈ Z≥0. The temperature trace sampled from a given sensor is denoted as

a tuple τ = 〈τ0, τ1, · · · 〉 ∈ T where τi is the temperature at the time instant
t = i. Likewise, the power trace sampled from a given power sensor is
denoted as a tuple ρ = 〈ρ0, ρ1, · · · 〉 ∈ π where ρi is the total power at the
time instant t = i. A given application a ∈ A may or may not execute at a
given time instant t, which is denoted by the associated utilization trace,
u = 〈u0, u1, · · · 〉 ∈ U, with ui ∈ {0, 1}, and ui = 0 indicates that the applica-
tion does not execute at time instant t = i. A core executing an application
at a given time instant is considered to be active at that instant, else, it is

considered to be inactive. Usually, u ∈ U is generated from a scheduling
algorithm (e.g., round-robin). A binding b = 〈a ∈ A, u ∈ U, c ∈ C〉 ∈ B indi-
cates that an application a executes according to a utilization trace u on a
core c. Given a binding b, the helper function a : B → A returns the appli-
cation, the function c : B → C returns the core, and the function v : B → V
returns the core-type. The function ν : C → V provides the core-type for a
given core. The function d : C× C→ R≥0 computes the Euclidean distance

between two cores with respect to the layout of the multicore processor.

We also define the severity of thermal cycles experienced by the chip

multiprocessor. Thermal cycles are periodic changes in temperature expe-

rienced by a core c, when a given subset A′ ⊆ A of applications execute on
it. Large and rapid variations in the temperature of a processor degrades

its reliability. To this end, we suppose that the processor is designed to

withstand a certain maximum number of such temperature cycles before

it fails, see [KBSM06]. Based on this concept, we define a simple metric E
that measures the severity of thermal cycles experienced by the processor

as under:

E =
∑
c∈C

σ(Tc) (2.2)

σ(Tc) denotes the standard deviation of the temperature traces on the core
c ∈ C. A binding with a smaller E is preferable.

2.5 Constructing the Thermal Model
This section describes the construction of the thermal model M of chip

multiprocessor P, given a set of deterministic applications, A. We call this
technique "application fingerprinting", and it is based on two assumptions:

1. Linearity of the Thermal Model: This assumption is based on two
counts: (i) the state-of-the-art numerical simulator Hotspot models a

processor as a mesh of resistors and capacitors, and it is known that

any mesh consisting of such passive electrical components forms a

26 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

linear circuit1, see [Zum08, HoMAECE07], and (ii) the experimental

results indicate that a linear thermal model can estimate the temper-

ature traces with sufficient precision.

2. Deterministic Runtime Behavior of Applications: We assume that
a given application a ∈ A is deterministic, i.e., it causes a con-
stant total power consumption in a core it executes on, and further-

more, the distribution of this total power between the core’s micro-

architectural units is also constant. As a result, the changes in tem-

perature of the core due to the application a is also deterministic,
i.e., the changes in temperature are similar irrespective of the inputs

presented to the application. Furthermore, we assume that the ob-

served thermal changes are simple enough to be captured with suf-

ficient precision into a thermal model. In other words, we suppose

that each application a ∈ A has a "thermal fingerprint", which can be
captured into a thermal model.

The overall procedure consists of two phases: (i) a calibration (or ap-

plication fingerprinting) phase resulting in the required thermal modelM,
and (ii) a validation phase which tests the accuracy of the temperature

traces estimated using the modelM.

2.5.1 Application Fingerprinting
The goal of this stage is to compute a thermal model M which is a set of
individual models m ∈ M. A model m is derived such that it is possible
to estimate the temperature trace at a distance d from an active core of
type v executing an application awith the binding b. In particular, a model
m belongs to the family of autoregressive moving average (ARMA) class

of models, and has the form m = B(z)
F (z) where B(z) and F (z) are polyno-

mials in z−1, the discrete time delay operator, see [DL80]. The function

m : A× V × R≥0 → M provides a model m ∈ M to compute the change in
temperature at the distance d due to a core executing a binding b with an
application a(b), on the core type v(b).

Subsequently, the temperature trace on a core c due to exactly one bind-
ing b is estimated as:

τ c = m(a(b),v(b),d(c(b), c)) ⊗ u(b) (2.3)

where⊗ is the convolution operator. Notice that in contrast to the conven-
tional approaches, power traces are not required in estimating the tem-

perature trace, τ c.

1
Under the assumption that thermal resistance of silicon does not vary significantly with

temperature.

2.5. CONSTRUCTING THE THERMAL MODEL 27

The overall temperature due to a set of bindings B′ ⊆ B simultaneously
executing on P is then given by a simple superposition:

τ c =
∑
b∈B′
{m(a(b),v(b),d(c(b), c)) ⊗ u(b)} (2.4)

Presented below are two claims that enable the calculation of accurate

temperature traces, without requiring any knowledge of the power den-

sity distribution in a core, or its power trace. Data extracted from the Sim-

plescalar/Wattch simulator is used to support the claims being made on

the relationships between total power, temperature and power-densities,

due to an application a(b).

2.5.1.1 Non-Unique Relationship between Total Power Trace andTemperature Trace
A given total power trace associated with an application a executing on
a core c of the processor P does not automatically imply a unique tem-
perature trace. Instead, the distribution of total power (or power density)

in the core determines the net flow of heat between various parts of the

core, and hence, the overall temperature trace. Multiple applications can

have the same total power consumption, but different power density dis-

tributions, causing a different overall temperature trace as observed at the

temperature sensor. An example was presented in section 2.2.2. Thus, a

correct thermal model must not calculate temperature traces solely as a

function of total power traces, but must also consider how the power is

distributed inside the processor.

2.5.1.2 Unique Relationship between application and Relative PowerDistribution
Given a binding b, a deterministic application a(b) that executes
on the core c(b) consumes a constant total instantaneous power,
ρ
a(b),v(b)
i = ρ

a(b),v(b)
j , i 6= j at time instants i, j provided ui = uj = 1.

Furthermore, the distribution of this total power within the core is deter-

mined by the application a(b) itself. We show that such an assumption is a
reasonable abstraction. To this end, we suppose that a particular applica-

tion, such as a 16-point FFT will run through the same sequence of steps,

irrespective of the inputs. In case the input to this application varies, these

sequence of steps are repeated, and the number of accesses to each micro-

architectural unit in the core also scales appropriately. Consequently, the

total energy consumed by the application a(b) scales, but the total power
and its distribution remains unchanged.

This claim was validated using several benchmarks from the MiBench

Embedded Systems benchmarks suite, see [GRE+01b]. The results for se-

lected benchmarks are presented in Table 2.1. These benchmarks were

run with varying inputs, which is reflected in the number of instructions

28 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

S.No Application #Runs ∆Pmax Instructions Executed

1 FFT 10 4%
64, 892
354, 675

2 I-JPEG 10 2.7%
6.2× 106

119.6× 106

3 Matrix-

Multiplication

10 1.2%
85, 910

107.6× 106

4 GSM-Encoder

(“toast”)

10 0.8%
5.6× 106

19.6× 106

Table 2.1: Power distribution statistics of selected benchmarks.
executed (column 5, minimum number of instructions vs maximum num-

ber of instructions executed). The variation in instantaneous total power

consumption of an application executing under varying inputs is minimal.

For instance, the maximum variation for the FFT application was only 4%,
with inputs ranging from single-digit values to six-digit values. Similar re-

sults are obtained for other benchmarks.

In addition, power consumption in each micro-architectural unit for

each of these benchmarks was also evaluated after making suitable mod-

ifications to the Wattch simulator. The results for FFT and GSM-Encoder

(“toast”) application are shown in Figure 2.4. The same conclusions apply

for other applications. It can be seen from the figure that the mean power

consumption in all micro-architectural units in the core remains almost

constant even under significant input variations. Almost all the difference

in any total power consumption can be attributed to the variation in power

consumed by the clock. Statistical parameters such as mode, median and

standard-deviation are also shown in Figure 2.4. It can be observed that

these statistical parameters also remain relatively unchanged.

From the preceding discussion, the following conclusions can be

drawn:

1. Given a binding b, the instantaneous total power consumption of an
application a(b) executing on a core of type v(b) at time t = i is deter-
mined by the application itself:{

ρ
a(b),v(b)
i = ρ

a(b),v(b)
j : ui = uj = 1

0 : ui = 0
(2.5)

2. The power trace ρb (note the absence of a subscript) of an application
a(b) is completely determined by the associated binding b. Specifi-
cally:

ρb = k(a(b),v(b)) × u(b) (2.6)

where k(a(b),v(b)) is a scalar constant determined by the application a and
the core type v; × is a multiplication operator, and u(b) is the utilization
trace associated with the binding b.

2.5. CONSTRUCTING THE THERMAL MODEL 29

0

1

2

3
Po

we
r(W

)
4

5

6

7

7

8

0

1

2

3

4

5

6

Po
we

r(W
)

0

1

2

3

4

5

6

Po
we

r(W
)

A
LU

B
P
re
d

cl
o
ck

D
-c
a
ch
e
-2

D
-c
a
ch
e

I-
ca
ch
e

LS
Q

R
e
g
Fi
le

R
e
n
a
m
e

R
e
su
lt
B
u
s

W
in
d
o
w

Mean (FFT)
10 Runs

solid traces

Power Statistics
Mean (toast)

10 Runs
broken traces

(toast)

(FFT)

10 Runs

10 Runs

Mode
Median
std.deviation

Mode
Median
std.deviation

Figure 2.4:Statistics on power consumption for major micro-architectural units. Mean

power consumption for 10 benchmarks (top), and main statistical parameters

power consumption for the same runs (bottom).

3. Consider a binding b which executes on a core c(b). Assume that
the associated power trace is ρb, and the corresponding temperature
trace τ c has been observed on a core c ∈ C. Now, consider a thermal
modelm(a(b),v(b),d(c(b), c)) such that:

τ c = ρb ⊗m(a(b),v(b),d(c(b), c)) (2.7)

Now, consider another thermal model m(a(b),v(b),d(c(b), c)) which
only requires the knowledge of τ c and the utilization trace u(b) such

30 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

that the following relationship holds:

τ c = u(b)⊗m(a(b),v(b),d(c(b), c)) (2.8)

Requiring that the temperature traces calculated using either model

be equal:

u(b)⊗m(a(b),v(b),d(c(b), c)) = ρb ⊗m(a(b),v(b),d(c(b), c))

= {k(a(b),v(b)) × u(b)} ⊗m(a(b),v(b),d(c(b), c))

= u(b)⊗ {k(a(b),v(b))×m(a(b),v(b),d(c(b), c))} (2.9)

Therefore, we conclude:

m(a(b),v(b),d(c(b), c)) = k(a(b),v(b))×m(a(b),v(b),d(c(b), c) (2.10)

In addition, we find:

τ c = ρb ⊗m(a(b),v(b),d(c(b), c))

= u(b)⊗ {k(a(b),v(b))×m(a(b),v(b),d(c(b), c))} (2.11)

In other words, (2.6) through (2.11) show that the thermal modelm(a(b),v(b),d(c(b), c)) constructed using the temperature trace τ c and the
utilization trace, u(b) can be used to estimate correct temperature traces,
without requiring any power trace information.

We conclude the discussion with the following note: given a binding

b = 〈a, u, c〉 (where a is a deterministic application) it is possible to directly
compute the temperature trace τ c for any core c of the processor. How-
ever, the reverse may not be possible, i.e., given a temperature trace τ c

observed on the core c, it may not be possible to deterministically deter-
mine the binding b.

2.5.1.3 Constructing the Thermal Model
Figure 2.5 shows the overview of the application fingerprinting technique.

The procedure starts with the design of a special utilization trace u∗ to-
gether with an optimal set of calibration experiments.

2.5. CONSTRUCTING THE THERMAL MODEL 31

application

calibration
trace

Temperature
trace

(all cores)

loop for
all applications

3-dimensional
 matrix

M
od

el
 E

st
im

at
io

n

Figure 2.5:Construction of the thermal modelM.

Calibration Experiments
We exploit the thermal fingerprint property of embedded and signal pro-

cessing applications. The purpose of the calibration experiment is to cap-

ture this thermal fingerprint as a thermal model of each embedded appli-

cation. Each experiment measures the change in temperature on the set

C′ ⊆ C of cores caused by exactly one application a ∈ A executing on the
processor P with the associated binding b. Thus, a calibration experiment
is determined by (i) the application a, (ii) the associated binding b, and (iii)
the set of cores C′ ⊆ C from which the temperature traces are recorded.
The observed changes are then captured into a thermal model m ∈ M. In
principle, a separate experiment is required for each unique combination

of application, core-type, and distance. In practice, the total number of

calibration experiments may be less as the influence of a hot core on the

temperature of other cores reduces significantly with distance due to high

silicon thermal resistivity.

The Special Utilization Trace u∗
The purpose of this trace is to execute an application a ∈ A in a manner
such that both the transient and steady-state thermal characteristics of the

application can be accurately captured. Thus, the utilization trace consists

of at least two distinct segments:

1. Dynamics Segment. This section of the calibration trace rapidly

switches on and off the application (i.e., schedules the application in

and out rapidly) in order to accurately capture the resulting transient

changes in temperature; and

2. Statics Segment. This section of the calibration trace executes the
application uninterrupted until all cores attain a steady state tem-

perature. The application is then switched off until all cores again

32 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

reach a steady state temperature. This part of the calibration trace is

designed to capture the steady state temperature change due to the

application a.

The details are presented in Algorithm 1, in which an empty binding

b is initialized, see line 1. Next, for every core type v ∈ V, a host core
c∗ = c(b) is chosen to execute the application a(b) such that the resulting
change in temperature over different distances can be observed in a sin-

gle experiment, see line 4. The calibration experiment is performed for

every unique core type v ∈ V, and application a ∈ A, see lines 2, 5, and 9.
If there are multiples cores at a given distance d from c(a), then the aver-
age of the observations are taken, see line 19. This is done to mitigate er-

rors due to asymmetrically located temperature hotspots. In other words,

two temperature sensors at an equidistant location from a given hot core

may sense slightly different temperature values as the hot core may not

heat symmetrically with respect to the sensors. Thereafter, a model is es-

timated from the given calibration trace and the observed temperature

trace (line 20), see [DL80].

The complexity of the assumed model may be varied by changing the

number of poles (nf), the number of zeros (nb), and the initial discrete time
delay (nk). The search for the best fitting model is an iterative procedure,
gradually increasing the complexity of the model, see lines 26 - 41. The

system designer may choose to restrict the maximum complexity of the

temperature models by restricting the maximum number of poles, zeros

and delay to MAXPOLES, MAXZEROS and MAXDELAY respectively. Between
iterations, a new model is judged better than a previously computed one

if the fit value of the new model exceeds that of the old one, see line 31.
It must be re-iterated that the proposed calibration basedmethod is dif-

ferent from the traditional power-trace based approaches for constructing

the thermal model of the processor, see [LTT08]. Instead, the proposed ap-

proach exploits the deterministic runtime behavior of embedded and sig-

nal processing applications to compute a thermal model from observing

temperature changes as the given processor executes carefully designed

bindings during the calibration phase.

2.5.2 Estimating Temperature Traces using the Thermal Model
The linearity property of the thermal model of M allows us to use the su-
perposition principle for determining the overall temperature trace due

a given set of bindings, B′ ⊆ B. The procedure for calculating detailed
temperature traces is given in Algorithm 2.

The estimation procedure requires the set of bindings B′ together with
the associated thermal model M. Each binding b ∈ B′ is evaluated to es-
timate the changes in the temperature of all cores c ∈ C, see line 2. The
changes in the temperature of a core c due to bindings in B′ are super-
posed (i.e., element-wise addition of traces) in order to compute the final

temperature trace.

2.5. CONSTRUCTING THE THERMAL MODEL 33

Input: Applications A, Processor POutput: Thermal ModelMData: ts ← Discrete Sampling Interval;Data: Tc,obs, Td,obs, dmax ← 0, d,H ← 0, u∗; // local variables
1 b← 〈φ, φ, φ, φ〉 // Initial binding, all empty
2 foreach Core type v ∈ V do
3 dmax ← 0, H ← 0 ;
4 Choose host core c(b) = c∗ | d(c∗, ci) ≥ d(cj , ck), ν(c∗) = v; ci, cj , ck ∈ C ;
5 foreach application a ∈ A do
6 Design the calibration trace u∗ ∈ U ;
7 Td,obs ← 0, ∀d ;
8 Execute a according to binding b = 〈a, u∗, c∗〉;

// u∗(b) = u∗,a(b) = a
9 foreach core c ∈ C do
10 d← d(c, c∗);
11 Tc,obs ← Observed temperature trace from core c ;12 Td,obs ← Td,obs + Tc,obs ;13 H[d]← H[d] + 1; // # cores at distance d from c∗.
14 if d > dmax then
15 dmax ← d ;
16 end
17 end
18 for d = 0 : dmax do
19 Td,obs ← Td,obs/H[d]; // Mean change at distance d
20 m(a, v, d) =EstimateModel (Td,obs, u∗, ts);

// Store the model;
21 end
22 end
23 end
2525 Function EstimateModel(T̂ , u∗, ts)

// T̂: Observed temperature trace. Û: Calibration traceData: fit← −1, fit′ ← −1;
// fitness of the estimated model, Maximum: 100%.Data: [nb, nf, nk]← [2, 2, 1] ;

// Initial order of model as vector [nb, nf, nk]
// nb-1: number of zeros in the model
// nf: number of poles in the model

// nk: discrete time delay (number of samples)Data: System Constraint: MAXPOLES, MAXZEROS, MAXDELAY;
Data: m: Computed temperature model of type B(z)

F (z)
;

26 for nk = 1:MAXDELAY do
27 for nb = 1:MAXZEROS do
28 for nf = 1:MAXPOLES do
29 Compute modelm′ =

B(z)
F (z)

| u∗ ⊗m′ + e ≈ T̂ // see [DL80]
30 where e is the assumed error model;

// e.g., zero mean white noise
31 if fit > fit′ then
32 fit← ComputeFit(T̂ , u∗ ⊗m′);
33 fit

′ ← fit ;
34 m← m′ ;

// the best model so far.
35 if fit = 100 then
36 returnm; // perfect model.
37 end
38 end
39 end
40 end
41 end
42 returnm;
4444 Function ComputeFit(T̂ , T̂ ∗)
45 return 100×

{
1− ‖T̂

∗−T̂‖
‖T̂−T̂‖

}
;

// Normalized Root Mean Square Error estimate. T̂: Mean value of T̂.

Algorithm 1: Calibration based algorithm to compute the temperature
modelM.

34 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

Input: Bindings B′, Thermal ModelMOutput: Estimated Temperature Trace τc for c ∈ CData: ts ← Discrete Sampling Interval;Data: ∀c ∈ C : τc = � // Initalize all traces to empty.
1 foreach b ∈ B′ do

// Iterate over all bindings
2 foreach c ∈ C do
3 τc = τc + {u(b)⊗m(a(b),v(b),d(c(b), c))} ; // Temperature trace due to this

binding on core c

4 end
5 endAlgorithm 2: Estimating Temperature Traces from a set of bindings B′

2.6 Temperature Aware Design Space Exploration
Once the thermal model M is available, design space exploration can be
performed to evaluate the effect of various bindings on the temperature

profile over the chip multiprocessor, P. Currently available DSE tools can
assist the system designer investigate various bindings, subject to a set of

constraints and objectives, see [TCGK02]. These tools usually require the

knowledge of the set of applications to be executed on the processor, and

the knowledge of abstract hardware properties (number of cores, type of

cores etc, but not the detailed floorplan) to be specified by the designer.

One may integrate either a thermal simulator (e.g., Hotspot) or a lumped

model into the selected DSE tool for thermal aware Design Space Explo-

ration. As already pointed out, temperature estimation using a simulator

requires the knowledge of hard to acquire parameters, whereas lumped

models may not be sufficiently accurate. Instead, the thermal model con-

structed according to the propose approach can be easily integrated into

the current tools to achieve the same objectives. A use case of a thermally

aware DSE is shown in Figure 2.6. The DSE tool accepts the following pa-

rameters:

1. Abstract architectural properties: available computing resources,

their types etc;

2. Set of binding constraints and objectives;

3. Set of applications, A; and

4. Feedback from the temperature evaluation framework which eval-

uates each binding for temperature characteristics (e.g., peak value,

thermal cycles).

A candidate binding generated by the DSE tool is evaluated using the tem-

perature evaluation component. Based on the feedback of the tempera-

ture evaluation component, the DSE tool may modify its internal parame-

ters to rule out combinations that lead to unacceptable temperature pro-

files on P. Or, the DSE tool may successively refine bindings that are
deemed to be favorable in terms of temperature. A simple approach used

2.6. TEMPERATURE AWARE DESIGN SPACE EXPLORATION 35

in successive refinement of bindings is simulated annealing. In this ap-

proach, starting from an initial binding b, applications are moved between
cores, and temperature traces are re-calculated. The DSE tool also eval-

uates different scheduling policies for each core. The process continues

till the required thermal constraints are satisfied (e.g., reduction in peak

temperature and/or thermal cycles below a specified threshold).

Temperature
for all cores

Mapping
Constraints

A
bstract

A
rchitecture
P
roperties

Design Space
Exploration

Temperature
Evaluation

binding

Application Set feedback

Figure 2.6:Temperature aware DSE Loop.

2.6.1 Sources of Inaccuracies
2.6.1.1 Inexact Thermal Model
Estimation of a thermal model m from a calibration trace and an asso-
ciated temperature trace measurement is often an approximate process.

Further, the order of the thermal model of m is limited to avoid dealing
with overly complex impulse responses, thereby saving some computa-

tional effort. In this work, the accuracy of the thermal modelm is specified
with Normalized Root Mean Square Error (or simply fit) defined as:

fitm = 100

[
1− ||τ

∗c − τ c||2
||τ∗c − τ∗c||2

]
[%] (2.12)

Where:

||x||2 : The l2 norm of the vector x
τ c : Temperature trace on core c estimated using the model
τ∗c : Temperature trace observed on core c
τ∗c : Mean value of temperature trace observed on core c

(2.13)

A fit of 100% indicates a perfect model, and depends on the applica-
tion, distance from the hot core at which the temperature is to be esti-

mated, the type of the hot core, and also the utilization trace. Since the

maximum complexity of the model has been capped, the accuracy of the

model is relatively less when the utilization trace may result in tempera-

ture transients. The fit reported in the experiments section is the worst cal-
culated over several randomly generated utilization traces, ranging from

36 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

u = [1, 1...1] (application is always executing) to u = [1, 0, 1, 0...] (start-stop
execution of application at time interval of ts).

2.6.1.2 Under-estimating the impact of a hot core on a distant neigh-bor
It can be shown analytically, as well as from results published in recent

literature that the thermal impact of a hot core drops rapidly with the dis-

tance from the thermal hotspot, see [WH11]. This is attributed to high

lateral thermal resistance of silicon. The observations made during the

calibration experiments can be used to estimate the distance d from the
hot core beyond which one may choose to ignore the effect of heat trans-

fer from the hot core.

One approach to choose d is described in the Algorithm 3. The distance
d depends both on the application and the core-type, and therefore, the
Algorithm investigates all core-types in the set V and all the applications in
the set A. The input to the algorithm is the processor P, the application set
A, as well as a parameter K chosen by the system designer. The meaning
of the parameter K can be explained as follows:

1. Suppose that a hot core c∗ executing an application has a thermal
dynamic range δc

∗
;

2. Let δc represent the thermal dynamic range observed on a core c ∈ C
due to the hot core c∗; and

3. Then K selects the subset of cores C′ ⊆ C on which the following

condition is satisfied:
δc
∗

δc′
≥ K. In other words, C′ ⊆ C represents the

set of cores on which the observed thermal effect of a hot core c∗ has
attenuated by a factor of at least K.

In order to achieve maximum thermal dynamic range for each applica-

tion, a special utilization trace u∗ is designed such that the processor can
reach a steady state temperature when it executes an application under

test, see line 1. Next, for each core-type, a core c∗ belonging to the same
type, and located as close to the center of the processor is selected, see line

4. Next, each application a ∈ A is executed on this core, and temperature
traces from all cores are collected. Specifically, τ c represents the tempera-
ture trace from core c, see line 6. The thermal dynamic range δc

∗
observed

on the host core c∗ is then evaluated, see line 7. We now find the set of
cores C′ ⊆ C such that the observed thermal dynamic range δc

′
for each

core c′ ∈ C′ satisfies δ
c∗

δc′
≥ K, see line 8. For the considered core-type and

application, the distances d(c∗, c′) | c′ ∈ C′ are computed, and a minimum
of these distances d′ is then stored, see line 10. At each evaluation, the in-
formation about the hottest application a∗ encountered thus far, and the
corresponding core type is recorded, see lines 13 and 14. The algorithm

repeats for each application a ∈ A and core-type v ∈ V to yield the final

2.6. TEMPERATURE AWARE DESIGN SPACE EXPLORATION 37

value of dout, the sought distance. The algorithm also provides aout and cout

to be used in computing the related worst case error, see Algorithm 4.

Input: Application Set A, Processor P, ParameterKOutput: d: Distance beyond which the effect of a hot core may be ignoredOutput: cout: The host core to be used in Algorithm 4Output: aout: The application to be used in Algorithm 4Data: ∀c ∈ C : τc ← �, d′ ← 0, d←∞, δold ← 0 // Variables
1 Construct the utilization trace u∗ = [1, 1, . . .]; // Long enough for the processor

temperature to reach the steady state
2 foreach v ∈ V do

// Iterate over all core types
3 foreach a ∈ A do

// Iterate over all core applications
4 Choose a core c∗ | v(c∗) = v and c∗ is located (approximately) at the center of P;
5 Construct the binding b = 〈a, u∗, c∗〉 and execute on P;
6 ∀c ∈ C, τc: temperature trace for core c; // Observe temperature traces
7 δc

∗ ←max(τc
∗
)− τc∗0 ; // δc

∗: thermal dynamic range observed on c∗

8 C′ ← {c ∈ C | δ
c∗

δc
≥ K}; // δc: thermal dynamic range observed on c

9 D← {d(c∗, c′) | c′ ∈ C′}; // the set of (positive) euclidean distances
10 d′ ←min(D);

11 end
12 if δc∗ > δold then
13 aout ← a; // aout is the hottest application so far
14 cout ← c∗; // cout is the corresponding core
15 d← d′; // Hottest application will also largest thermal influence on

other cores
16 δold ← δc

∗
; // Update

17 end
18 end Algorithm 3: Estimation of the distance d

Input: Application Set A, Thermal ModelM, Processor PInput: Distance d, application aout, and core cout from Algorithm 3Output: Worst Case Error E due to a Distance Limited ModelM
Data: τcout,obs

∞ ← �, τc
out,mdodel
∞ ← � // Local variablesData: ts : Discrete Sampling IntervalData: E ← 0 // Initalize.

1 Construct the utilization trace u∗ = [1, 1, . . .]; // Long enough for the processor
temperature to reach the steady state

2 C∗ ←
{
c : d(c, cout) ≥ d

}
// set of cores at a distance d or greater from cout ;

3 B∗ ← {〈aout, c∗, u∗〉 | c∗ ∈ C∗};
4 τc

out,obs
∞ ← Observed steady state temperature on the core cout when bindings B∗ are
executed on P

5 τc
out,model
∞ ← Estimated steady state temperature on the core cout when bindings B∗ are
executed on P

6 E = |τc
out,obs
∞ − τc

out,model
∞ |Algorithm 4:Worst Case Error Estimate

Ignoring the thermal influence of a hot core beyond a distance d re-
duces the computational effort for the computation of temperature traces,

but at the cost of accuracy. In this case, the maximum possible error that

can be incurred in temperature calculations must be determined. Assum-

ing that we would like to ignore the temperature affects due to an active

core beyond a distance d > 0, the resulting worst case error in the temper-
ature estimates due to such an assumption must be calculated as shown in

38 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

Algorithm 4. The algorithm accepts aout and cout generated by Algorithm
3. The overall idea is to estimate the steady state temperature on core

cout when the processor executes aout on all cores which are at a distance
d or greater from cout, and evaluate the corresponding error from mea-
surement. The result is the required worst case error. The algorithm is

self-explanatory, and the details are presented in Algorithm 4.

0 1 2 3 4 5 6 7 8 9 100

5

10

15

20

25

30

35

40

Figure 2.7:Maximum error in temperature estimate at cout in a model M limited to distance
d beyond which the system designer chooses to ignore the thermal effect of a hot

core.

The values of E with respect to euclidean distance are shown in Fig-
ure 2.7. The plot was generated by varying the value of 1 ≤ K ≤ 8 and
extrapolating the results forK > 8. The application chosen was susan, ex-
ecuting on a 64-core Alpha 21264 processor supported by Hotspot, see Sec-

tion 2.7 for further details. Though the error estimates presented in Fig-

ure 2.7 are specific to our experimental platform, the nature of the curve

is expected to remain the same for any chip-multiprocessor platform. The

results clearly show the risk associated withmaking any uncalculated sim-

plifications on the impact of a hot core on its neighbors.

2.7 Experiments and Results
The approach presented in this chapter was validated using Hotspot. For

this purpose, the specification of P was taken from the Magma project,
which provides a variety of multicore floorplans consisting of 2 core-

through 64 core- layouts, see [RV09]. Each core is an appropriately scaled

version of the Alpha 21264 processor. The knowledge of physical arrange-

ment of cores on the chip multiprocessor is required only if the user in-

tends to apply approximations discussed in the Section 2.6.1.2. Such ap-

proximations were not made in our experiments. Although our technique

does not require that all cores of P be homogeneous, the floorplans avail-
able in theMagma project consist of only homogeneous cores, and thus we

2.7. EXPERIMENTS AND RESULTS 39

Application 0-hop 1-hop 2-hop 3-hop > 3
hops

splitstream* 99 99 95 89 83

splitframe* 99 99 94 84 84

iqzigzagidct* 99 99 92 89 83

mergestream* 99 99 91 90 85

mergeframe* 99 98 94 85 82

Trigger* 99 98 91 91 86

susan† 99 99 95 88 84

qsort† 98 94 85 84 81

toast† 99 98 95 85 84

untoast† 99 99 96 90 87

FFT† 99 98 95 90 86

bitcount† 99 98 94 87 82

basicmath† 99 98 92 88 84

adpcm† 99 99 94 90 85

LAME† 99 99 95 87 83

Matrix
Multiplication‡

99 98 90 89 83

Producer‡ 98 98 92 87 80

Table 2.2: Fit of the estimated thermal model m ∈ M. ∗: Motion-JPEG application split in 6

sub-applications[BBB+11], †: MiBench Embedded Benchmark [GRE+01b], ‡: In-

ternal benchmark.

report results for a multiprocessor system with homogeneous cores. Fur-

thermore, no power traces were used, neither in the estimation of impulse

responses, nor in the calculation of any temperature traces. To demon-

strate scalability of our technique, a large floorplan consisting of an 8x8

arrangement of cores was chosen. The following sections describe results

relating to the fit of estimated impulse responses, as well as the accuracy
of estimated temperature traces. Speedup due to our model as compared

to Hotspot is also presented. The time resolution ts is 1 ms.

2.7.1 Accuracy of Estimated Impulse Responses
The order of the thermal model was limited to 10, at which the fit achieved
was greater than 90%. Further gains in fitwith increase in the order of the
model were insignificant (< 0.1%). However, due to high lateral thermal
resistance, the absolute error in temperature estimates small (5oC). The
results are summarized in Table 2.2. Only the worst fit per hop is reported
for summary.

2.7.2 Speedup
A total of sixty bindings were evaluated, using applications from Table

2.2. The scheduling policy used on each core was varied between Earliest

Deadline First (EDF), Least Laxity First (LLF), Rate Monotonic (RM), and

Round Robin (RR). For each binding, temperature traces were calculated

using our model, as well as Hotspot. The average time taken for such cal-

culations using our model was 24.9 seconds, whereas Hotspot averaged

40 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

about 6 hours. The summary is provided in Table 2.3. Further speedup is

expected upon porting our algorithms to C/C++ from current Matlab/Java

based environment.

Parameter(↓) Our Model Hotspot Speedup

Mean Time (s) 24.853 29517 1187x

Maximum Time (s) 24.984 30057 1203x

Minimum Time (s) 24.795 27525 1110x

Standard Deviation (s) 0.054 547

Table 2.3: Speedup achieved using the proposed approach as compared to Hotspot.

2.7.3 Accuracy of Estimation
We consider a special binding in which all applications are bound to cores

located in a close spatial neighborhood. The temperature of each active

core in this neighborhood is significantly influenced by all other active

cores. Further, all active cores in this binding are scheduled according to

round-robin (1-ms quantum) policy, where possible, leading to significant

number of context switches, and thus causing rapid variations in tempera-

ture over time. Such a binding provides a good test for demonstrating the

accuracy of temperature traces estimated using our technique.

The binding is shown in figure 2.8. Taking the core with <5,5> as the

center, applications are mapped on the immediate 1-hop neighborhood,

totaling 9 heat generating cores. All other cores in this case are idle. The

results are shown is shown in Figures 2.9. It is clear that the binding in Fig-

ure 2.8 leads to significant thermal cycles on almost all active cores. Fur-

thermore, our thermal model was able to calculate correct temperature

traces for all cores, well within the accuracy goal set up in the introduc-

tory section of this chapter, see Figure 2.11.

In section 2.2.2, the applications producer and FFT consume the same
total power, but differ in their respective power density distributions.

Both these applications were mapped onto core <4,4>, see Figure 2.8. It

can be seen from temperature trace for core <4,4> in Figure 2.9 that pro-

ducer and FFT applications produce distinctly different temperature af-

fects. Our model was able to accurately capture the effect of differences in

power density distribution between producer and FFT. Figure 2.10 shows
a section of temperature trace for core <4,4> from Figure 2.9 for more clar-

ity.

Other bindings in which active cores are not immediate neighbors

were also evaluated, and the prediction error was lower than what is re-

ported in Figure 2.11. This is because an active core was not significantly

influenced by its neighbors. Under these circumstances, estimation errors

due to relatively lower fit were limited by high thermal resistance, see Ta-
ble 2.2.

A thermal aware DSE use-case may be to reduce the thermal cycles ex-

perienced by the processor, given a set of applications to be executed, and

2.7. EXPERIMENTS AND RESULTS 41

Time(s)
0 10 20 30 40

susan6,6 Policy: RR P=12ms

splitframe5,6 Policy: RR P=15msuntoast

mergeframe4,6 Policy: RR P=15ms

splitstream6,5 Policy: RR P=15msmergestream

qsort5,5 Policy: RR P=10ms

LAME4,5 Policy: RR P=15msadpcm

MatrixMultiplication6,4 Policy: LFF P=30ms

basicmath

toast

bitcount5,4 Policy: RR P= 2msiqzigzagidct

Producer4,4 Policy: RR P= 10msFFT

Figure 2.8:Schedule for nine cores. Time scale (ms) is indicated. Letter ’P’ shows the period
of each schedule. Scheduling policy for each core is also indicated.

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

0.02 0.04 0.06 0.08 0.1

20

80

120

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

5,54,4 5,55,4 5,56,4

5,54,5 5,55,5 5,56,5

5,54,6 5,55,6 5,56,6

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Figure 2.9:Measured temperature vs estimated temperature for nine active cores. Horizon-
tal axes is time in seconds, vertical axes is ∆T (oC). E = 47.7.

their respective schedules. Specifically, a feasible solution must ensure

that all applications are schedulable, whereas the thermal cycles are min-

imized. In this case, the DSE tool may investigate several application-to-

core mapping options till a suitable design solution is found, i.e., a new

42 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

(Distance between the combined trace from the Producer
and FFT temperature traces artificially increased for clarity)

Figure 2.10:Section of temperature trace on core <4,4>. Both FFT and Producer applications
have the same total power consumption, but lead to different temperature traces.

solution which results in a lower E is admitted if all applications can be
executed as per the provided schedules. An example is presented in Fig-

ure 2.12. Notice that the total work done by each application remains un-

changed. For instance, LAME executes for a total of 6ms, with a period

of 15ms in both bindings. Also, a scheduling policy which minimized the

number of context switches was chosen. See Figures 2.12 and 2.13. The

overall error in estimated temperature is similar to the result shown in

Figure 2.11; with the maximum error being 4.7oC. It is not always possi-
ble to reduce thermal cycles by changing the bindings of applications, for

a feasible scheduling policy for all cores may not exist. When estimating

temperature traces, the thermal influence of each hot core was evaluated

across the entire platform (i.e., the distance d←∞, see Section 2.6.1.2).

2.8 Variations and Optimizations
It may be possible to reduce the number of thermal models to be estimated

if the given systems has thermal symmetry. In this case, all cores are first

classified into a set of thermally different locations (TDLs), see [CM10].

During the calibration step, applications need to be executed on only one

distinguished core in each TDL. In the estimation stage, the calculation of

thermal effect of an active core c on core c′ proceeds in two steps. First, a
sequence of transformations is determined which translates c to a core in
one of the TDLs. Next, the same sequence of transformations is applied to

core c′. This preserves the relative location of cores c and c′. Temperature
trace calculation can now proceed normally. Thermal symmetry reduces

the memory space required to compute and store the thermal model M.

2.8. VARIATIONS AND OPTIMIZATIONS 43

0

2

4

6

8

0

2

4

6

8
0

2

4

6

X location

Y
location

E
rr

o
r,

o
C

Figure 2.11:Maximum error in prediction over entire P. Errors in absolute values.

Time(s)
0 10 20 30 40

susan6,6 Policy: EDF P=12ms

qsort5,6 Policy: EDF P=10msbitcount

mergestream4,6 Policy: EDF P=15ms

untoast6,5 Policy: EDF P=15mssplitframe

mergeframe5,5 Policy: EDF P=15ms

splitstream4,5 Policy: EDF P=15msadpcm

MatrixMultiplication6,4 Policy: EDF P=10ms

FFT5,4 Policy: EDF P=10msbasicmath

Producer4,4 Policy: RR P= 10msTrigger

LAME

toast

iqzigzagidct

Figure 2.12:New binding derived from the one in Figure 2.8.

The computational load for estimating the temperature trace for a given

binding may not change much, if large errors in temperature estimation

are to be avoided, see section 2.6.1.2.

44 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

0 0.05 0.1
0

50

100

0 0.02 0.04 0.06 0.08

20

40

60

80

100

120

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

0 0.05 0.1
0

50

100

5,54,4 5,55,4 5,56,4

5,54,5 5,55,5 5,56,5

5,54,6 5,55,6 5,56,6
Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Measured (Hotspot)
Model

Figure 2.13:Reduction of thermal cycles by changing the bindings of applications. Horizontal
axes is time in seconds, vertical axes is ∆T (oC). E = 25.1

2.9 Closing Remarks
The chapter presented a new calibration based approach for constructing

an accurate and computationally efficient thermal model of the given pro-

cessor. Using a set of specifically designed calibration experiments and

observations from on-board temperature sensors, the approach is able to

extract all the parameters necessary for constructing the thermal model.

The speed and accuracy of the proposed approach enables the exploration

of a large set of candidate bindings using the design space exploration

loop. The highlight of the proposed approach is that it does not require

any power-trace information, or the hard-to-obtain details about hard-

ware, such as the detailed floorplan. The proposed technique can also

account for differences in power densities on a core due to an application,

even when the total power consumed by two or more applications is the

same. This makes our technique applicable to any given set of embedded

applications and hardware.

Conventional power-trace based approaches require physical access to

the processor in order to construct the thermal model. Often, this is in

order to instrument the processor for accessing power traces and other

necessary parameters about the processor. In contrast, the proposed tech-

nique does not require physical access to the processor, which can be ex-

ploited by system designers to construct and recalibrate system thermal

models in-situ. It is known that physical properties of processors from the
same family (and even from the same die) differ from each other due to

small variations in the manufacturing process. The thermal characteris-

tics of the processor are also influenced by its packaging, casing, and other

2.9. CLOSING REMARKS 45

environmental factors (e.g., field conditions). As a result, each computer

system’s thermal model is unique. It follows that if the system-level tem-

peraturemanagement algorithms are to work effectively, then the thermal

model of each individual systemmust accurately capture its thermal char-

acteristics. The capability to construct and update the thermal model of

each system purely by software means, without requiring physical access

to the system can be exploited by system vendors to ensure that each sys-

tem’s temperature management algorithms are working as effectively as

intended, irrespective of the difference in the overall thermal properties

between individual systems. The system thermal model can be automati-

cally, and even remotely upgraded if the system components are changed

(e.g., new cooling system, new case etc) ensuring that the temperature con-

trol algorithms are always precise over the lifetime of the device.

46 CHAPTER 2. THEORETICAL FOUNDATION: CONSTRUCTION OF THERMAL MODELS

3
Thermal Models forState-of-the-Art Processors

Summary
This chapter adapts the methods proposed in Chapter 2 for constructing

thermal models for state-of-the-art processors. Furthermore, some restric-

tions from Chapter 2 are also relaxed, making the adapted methods ap-

plicable to processors which can operate at several clock speeds, featur-

ing noisy temperature sensors, and processors which implement on-chip

power and temperaturemanagement functions. The newmethods are val-

idated against the latest Intel Xeon 8-core processor. Extensive experimen-

tal results presented in this chapter suggest that the methods proposed in

Chapter 2 are fundamentally sound, and the proposed scheme can be used

to estimate temperature traces of state-of-the-art processors with reason-

able accuracy, and with limited computational effort.

3.1 Introduction
The previous chapter presented a calibration based technique for con-

structing a thermal model of a given processor, without requiring the

knowledge of hard-to-get system parameters such as the detailed proces-

sor floorplan. Succinctly, a sequence of carefully constructed calibration

experiments are executed on the processor for which a thermal model is

desired. The resulting temperature traces are then analyzed to extract the

parameters necessary for the required thermal model.

48 CHAPTER 3. THERMAL MODELS FOR STATE-OF-THE-ART PROCESSORS

The proposed approachwasmotivated by the challenges faced by a sys-

tem designer in using the currently available thermal models. Specifically,

high accuracy thermal simulators such as Hotspot require the designer to

have an accurate knowledge of several system parameters, some of which

may be difficult to acquire with sufficient precision, e.g., processor floor-

plan. On the other hand, lumpedmodels abstract away lot of processor de-

tails (e.g., power distribution in the core) and therefore require relatively

fewer parameters to be supplied. However, lumpedmodels also tend to be

less accurate as compared to numerical simulators, making them unsuited

in certain use-cases, such as Design Space Exploration on state-of-the-art

multicore processors. The approach proposed in Chapter 2 is able to over-

come these challenges by extracting the parameters required for a thermal

model by observing the temperature traces when the processor executes a

sequence of carefully planned calibration experiments.

It must be pointed out that the resulting model cannot be compared

directly to other solutions, such as the Hotspot numerical simulator. The

Hotspot simulator is generic, and has been designed to support as many

processor models, applications, and use-cases as possible. In contrast, the

calibration based technique proposed in the previous chapter results in aset of thermal models, wherein each individual model is specific to a given
application, processor clock speed, core-type, and of course, the processor

model. Furthermore, the proposed methods in Chapter 2 for constructing

the thermal model of a processor are restricted to embedded or signal pro-

cessing applications which are deterministic in the following sense: (i) the

total power consumed by a given application is determined by the appli-

cation itself, and is also constant over time, and (ii) the distribution of the

total power between the micro-architectural elements in the core is also

constant. As argued in Chapter 2, it is understood that practical applica-

tions may not be strictly deterministic, since the total power consumption

and its distribution in the core will depend onmany factors, such as the in-

put to the application, hardware architecture, hardware state (e.g., cache

eviction), and even the temperature of the core on which the application

executes. However, it was shown in Chapter 2 that the conditions above

are satisfied to a high degree by embedded and signal processing applica-

tions. As a result, when such a deterministic application executes, it leads

to predictable and consistent changes in the temperature of the processor,

making is possible to estimate temperature traces from the knowledge of

just the application and the corresponding scheduling information.

The previous chapter also made a few simplifying assumptions, such

as the absence of noise in the temperature sensors, and restricting the

processor to operate at a single clock speed. In addition, estimating the

temperature trace on a given core when more than one core executes ap-

plications required only a simple superposition of traces, see Algorithm 2.

This chapter focuses on constructing thermal models for state-of-the-

art processors. Accordingly, the algorithms proposed in Chapter 2 are

adapted to allow:

3.2. BRIEF PROBLEM STATEMENT AND RELATED WORK 49

• Noise in the temperature sensors on-board the processor;

• A set of discrete clock speeds at which the given processor can oper-

ate; and

• Power and temperature management algorithms which are common

in state-of-the-art processors.

This chapter assumes that the processor is cooled at a constant rate, e.g., in

the case of a fan, it is set to a constant speed. The next chapter will present

a method to include the effect on the system fan into the thermal model.

3.2 Brief Problem Statement and Related Work
As noted earlier, the focus of this chapter is to adapt the methods pre-

sented in Chapter 2 for constructing a thermal model for a state-of-the-art

processor. The overall challenge remains similar as before: we seek a

method to construct the thermal model of the given processor which is

not dependent on the system designer’s knowledge of the properties of the

system, and can instead extract the parameters necessary by observing the

system of interest.

Specifically, the problem statement considered in this chapter can be

summarized as:

Given a processor Pwith a set of on-chip temperature sensors S and a setof embedded applications A, construct an accurate and fast thermal model
M of the processor Pwithout requiring access to any hard-to-get parameterssuch as detailed power trace(s) or the floorplan of the processor.
The model M is said to be accurate if the error in the estimated traces

always remains less or comparable to the noise in the on-chip temperature

sensors on the processor P; and is said to be fast if it takes an order of
seconds to compute few tens of thousands of data points.

The approach proposed in this chapter uses temperature sensors on-

board the given state-of-the-art processor for constructing and validating

the thermal model. It is assumed that the sensors are reliable and a read-

out from a given sensor can be taken as the representative temperature

of the location where the sensor is placed. Specifically, in the case of a

multicore system featuring one sensor per core, the readout from a given

sensor is taken to be the true (or representative) temperature of the asso-

ciated core. Consequently, if the temperature traces computed using our

thermal model agree with the readouts from the sensors, then the valida-

tion is taken to be correct and complete. A direct comparison of our results

against a corresponding Hotspot thermal model (which does not yet exist)

is infeasible due to significant challenges involved in accurately construct-

ing such a model, as already pointed out.

50 CHAPTER 3. THERMAL MODELS FOR STATE-OF-THE-ART PROCESSORS

Temperature
Traces

Calibration Phase

Estimated
Temperature

Traces

Design Space Exploration

Test bindings

Manually generated by
the system designer or

automatically by algorithms
(e.g., genetic algorithms)

Special bindings

See Section 3.4

DSE
LoopProcessor

Application
 Set

Thermal
ModelEstimate

Figure 3.1:Overview of the approach.
Contribution
The chapter makes two contributions to the state-of-the-art:

1. Suitable adaptations to methods proposed in Chapter 2 in order to

target state-of-the-art processors which can (i) operate at multiple

clock speeds, (ii) feature power and temperature management algo-

rithms implemented in hardware, and (iii) possess noisy on-chip tem-

perature sensors;

2. Validation of the model by extensive experiments on a state-of-the-

art multicore processor, i.e., the Intel Xeon 8-core processor.

3.3 Overview of the Approach
Construction of the thermal model requires (i) access to the multiproces-

sor P, (ii) the set of embedded applications A which will be executed on P,
and (iii) a special set of bindings to be used for calibration experiments.

See Figure 3.1.

During the calibration phase, the applications from the set A are exe-
cuted as per specifically designed bindings on the processor and the result-

ing temperature traces collected. We exploit the deterministic property

of embedded and signal processing applications, and estimate a transfer

function between the application bindings and the observed changes in
the temperature of the processor P, see Section 2.3 for the discussion on
the assumed deterministic properties, and Section 3.4 for the definition of

bindings. Thus, in contrast to current approaches wherein constructing

a thermal model requires access to hard-to-get parameters, the proposed

calibration experiments are designed to extract all the necessary param-
eters required by the thermal model. During the DSE phase, the system

designer may explore arbitrary bindings of the applications in A until a so-
lution satisfying the given set of temperature and performance constraints

is discovered. It must be pointed out that though the same application set A
is used during model construction (i.e., calibration) and DSE, the bindings

used in these two phases may be completely unrelated.

3.4. SETUP AND NOTATION 51

3.4 Setup and Notation
We consider a chip multiprocessor P with a set C of cores. Each core
can operate at set of discrete clock speeds in the set F. The cores may
be heterogeneous, i.e., a given core may belong to one of the types given

in the set V = {GPU,FPU,RISC, ...}. A set of embedded applications A
are available for execution on the processor P. During the construction
of the thermal model, on-chip temperature sensors are sampled periodi-

cally with a period ts. Therefore, the construction of the model and subse-
quent estimation of temperature traces is done for discrete time instants

t ∈ Z≥0. The temperature trace sampled from a sensor is denoted as a tu-

ple τ = 〈τ0, τ1, · · · 〉 ∈ Twhere τi is the temperature at the time instant t = i.
A given application a ∈ A may or may not execute at a given time instant
t, which is denoted by the associated utilization trace, u = 〈u0, u1, · · · 〉 ∈ U,
with ui ∈ {0, 1}, and ui = 0 indicates that the application does not execute
at time instant t = i. A core executing an application at a given time in-
stant is considered to be active at that time instant, else, it is considered

to be inactive. Usually, U is generated from a scheduling algorithm (e.g.,
round-robin). We assume that a set S of temperature sensors are avail-
able on the chip. A binding b = 〈a ∈ A, u ∈ U, c ∈ C, f ∈ F〉 ∈ B indicates
that an application a executes according to a utilization trace u on a core c
which operates at a clock speed f . Given a binding b, the helper function
a : B → A returns the application, the function c : B → C returns the core,
the function f : B→ F returns the operating clock speed of the core, and the
function v : B → V returns the core-type. The function ν : C → V provides
the core-type for a given core. The ith binding from the set B is denoted as
bi. The function d : C× C→ R≥0 computes the Euclidean distance between

two cores with respect to the layout of the multicore processor.

3.5 Constructing the Thermal Model
Overview
The overall procedure consists of a calibration phase with two parts:

(i) construction of a thermal model M and a function g which is used to
compute the change in the temperature of a core c due to exactly one ap-
plication a ∈ A executing on the processor P with the binding b ∈ B, and
(ii) construction of the function h which together with M and g is used to
compute the overall change in the temperature of a core c ∈ C due to mul-
tiple applications executing on the processor, each with its own binding.

The function h also captures the thermal effect of the power and/or tem-
perature management algorithms implemented in the processor.

52 CHAPTER 3. THERMAL MODELS FOR STATE-OF-THE-ART PROCESSORS

3.5.1 The Thermal Model M
The notations used in this section are similar to those used in the previ-

ous chapter, see Section 2.5.1, and are being repeated here for the conve-

nience of the reader. The thermal model is a set M of individual models
m ∈ M. A model m is derived such that it is possible to estimate the tem-
perature trace at the distance d from an active core of type v executing
an application a with the binding b. In particular, m ∈ M is an output-
error (OE) model from the autoregressive moving average (ARMA) family

of models, and has the form m = B(z)
F (z) where B(z) and F (z) are polyno-

mials in z−1, the discrete time delay operator, see [DL80]. The function

m : A × V × R≥0 × F → M provides a model m ∈ M to compute the change
in temperature at the distance d due to a core executing a binding b with
an application a(b), on the core type v(b), and at clock speed f(b). Notice
that this chapter has relaxed one of the constraints in the previous chap-

ter by explicitly allowing for the processor to operate at a discrete clock

speed in the set F. The construction of the thermal model requires design-
ing a special utilization trace u∗ together with an optimal set of calibration
experiments as follows:

The Calibration Experiments
We exploit the observation that a given embedded application exercises

the processor in a well defined manner consistent across invocations

and inputs, resulting in temperature changes on the processor which is

uniquely related to the given embedded application itself, also referred to

as the thermal fingerprint, see Chapter 2. Therefore, the purpose of the
calibration experiment is to capture the thermal impulse response of each
embedded application. Each experiment measures the change in temper-

ature on the set C′ ⊆ C of cores caused by exactly one application a ∈ A
executing on the processor P with the associated binding b. Thus, a cali-
bration experiment is determined by (i) the application a, (ii) the associ-
ated binding b, and (iii) the set of cores C′ ⊆ C from which the temperature
traces are recorded. The observed changes are then captured into a ther-

mal modelm ∈ M. In principle, a separate experiment is required for each
unique combination of application, core-type, distance and clock speed of

the core. In practice, the total number of calibration experiments are less

due to two factors:

1. The influence of a hot core on the temperature of other cores re-

duces significantly with distance due to high silicon thermal resistiv-

ity, which in the presence of sensor noise may deteriorate the signal-

to-noise (SNR) to the extent that constructing a model may be infea-

sible; and

3.5. CONSTRUCTING THE THERMAL MODEL 53

2. It may be possible to group applications based on similarities in their

thermal impulse responses. However, we do not explore this possi-

bility in the current thesis.

The Special Utilization Trace u∗
The purpose of this trace is to execute an application a ∈ A in a manner
such that both the transient and steady-state thermal characteristics of the

application can be accurately captured. This special utilization trace (also

the calibration trace) consists of a dynamics segment, meant capture the
transient thermal impact of an application, and a statics segment, meant to

capture the steady-state thermal behavior of the same application. Details

were presented in previous chapter, and therefore, we do not repeat them

once again, see Section 2.5.1.3.

The details are presented in Algorithm 5. Note the similarity with Al-

gorithm 1, except for an additional variable f indicating processor clock
speed, see line 9. In order to avoid unnecessary repetition, we skip a de-

tailed discussion on the mechanics of the algorithm. However, it must

be reiterated that a model is separately computed for each discrete clock

speed f ∈ F since the thermal properties of the systemmay change consid-
erably with clock speed. In other words, it may not be possible to simply

scale a given model derived at one clock speed and use it at a different

clock speed. If this is not the case, an additional optimization step may be

performed to remove redundant models.

The Function g
Given the thermal model M, the change in temperature on the core c due
to exactly one binding b being executed on the processor can be computed
using the function g:

τ = g(b,M, c)
def
= m(a,v(b),d(c(b), c), f(b))⊗ u(b) (3.1)

Where⊗ is the convolution operator and τ is the temperature trace. Notice
the underlying assumption that the thermal model M is linear. Therefore,
if a core dynamically switches between operating clock speed and tasks,

separate temperature traces are computed for each task-clock speed con-

figuration and added point-wise to yield the final temperature trace.

The Function h
The superposition function computes the final temperature trace for each

core when multiple cores simultaneously execute a set of bindings B. Due
to power and/or temperaturemanagement algorithms implemented in the

54 CHAPTER 3. THERMAL MODELS FOR STATE-OF-THE-ART PROCESSORS

Input: Applications A, Processor POutput: Thermal ModelMData: ts ← Discrete Sampling Interval;Data: Tc,raw, Td,obs, dmax ← 0, d,H ← 0, u∗; // local variables
1 b← 〈φ, φ, φ, φ〉 // Initial binding, all empty
2 foreach Core type v ∈ V do
3 dmax ← 0, H ← 0 ;
4 Choose host core c(b) = c∗ | d(c∗, ci) > d(cj , ck), ν(c∗) = v; ci, cj , ck ∈ C ;
5 foreach application a ∈ A do
6 foreach clock speed f ∈ F do
7 Design the calibration trace u∗ ∈ U ;
8 Td,obs ← 0, ∀d ;
9 Execute a according to binding b = 〈a, u∗, c∗, f〉;

// u∗(b) = u∗,a(b) = a
10 foreach core c ∈ C do
11 d← d(c, c∗);
12 Tc,raw ← Observed temperature trace from core c ;
13 Td,obs ← Td,obs+ Denoise (Tc,raw) ;
14 H[d]← H[d] + 1; // # cores at distance d from c∗.
15 if d > dmax then
16 dmax ← d ;
17 end
18 end
19 for d = 0 : dmax do
20 Td,obs ← Td,obs/H[d]; // Mean change at distance d
21 m(a, v, d, f) =EstimateModel (Td,obs, u∗, ts);

// Store the model;
22 end
23 end
24 end
25 end
2727 Function EstimateModel(T̂ , u∗, ts)

// T̂: Observed temperature trace. u∗: Calibration trace
// ts: Sampling intervalData: fit← −1, fit′ ← −1;

// fitness of the estimated model, Maximum: 100%.Data: [nb, nf, nk]← [2, 2, 1] ;
// Initial order of model as vector [#zeros+1, #poles, #delay(samples)]Data: System Constraint: MAXPOLES, MAXZEROS, MAXDELAY;
Data: m: Computed temperature model of type B(z)

F (z)
;

28 for nk = 1:MAXDELAY do
29 for nb = 1:MAXZEROS do
30 for nf = 1:MAXPOLES do
31 Compute modelm′ =

B(z)
F (z)

| ts, u∗ ⊗m′ + e ≈ T̂ // see [DL80]
32 where e is the assumed error model;

// e.g., zero mean white noise
33 if fit > fit′ then
34 fit← ComputeFit(T̂ , u∗ ⊗m′ + e);
35 fit

′ ← fit ;
36 m← m′ ;

// the best model so far.
37 if fit = 100 then
38 returnm; // perfect model.
39 end
40 end
41 end
42 end
43 end
44 returnm;
4646 Function ComputeFit(T̂ , T̂ ∗)
47 return 100×

{
1− ‖T̂

∗−T̂‖
‖T̂−T̂‖

}
;

// Normalized Root Mean Square Error estimate. T̂: Mean value of T̂.
4949 Function Denoise(Traw)

// Remove noise from the input trace using edge-preserving algorithms,
e.g., Daubechies wavelets.

50 return Denoised temperature trace;Algorithm 5: Calibration based algorithm to compute the temperature
model M. Similar to Algorithm 1, except for an additional variable f
indicating processor clock speed.

3.5. CONSTRUCTING THE THERMAL MODEL 55

processor, the final temperature trace τ for the core cmay not be a simple
superposition of temperature traces, also see Figure 3.5.

τ 6=
∑
b∈B

g(b,M, c) (3.2)

The exact thermal impact of such algorithmswill vary between the proces-

sors. However, from the observations on the Intel Xeon processor, it is suf-

ficient to use an application specific damping function s : A×V→ R>0 (de-

tails in the following paragraph). The final temperature trace for the core

c is then computed by combining the dominating T d(t) and non-dominating
components, Tnd(t) as follows:

τ = h(g(b1,M, c), · · ·g(bn,M, c))
def
= T d + Tnd (3.3)

with:

B = {b1, · · · , bn}
T d(t) = max

b∈B
(g(b,M, c)(t))

Tnd(t) =
∑
b∈B′

(s(a(b),v(b))× g(b,M, c)(t))

B′ = B \
{
b | g(b,M, c)(t) == T d(t)

}
where g(b,M, c)(t) is the value of temperature trace g(b,M, c) at time in-

stant t,× is the scalarmultiplication operator, and+ is the point-wise addi-
tion operator. The proposed structure of (3.3) is justified by the following

observations:

1. The temperature of an active core c is largely determined by the ap-
plication executing on itself, dominating the observed temperature

changes for that core;

2. If the core c is inactive, the temperature change on it cannot be lower
than the maximum change in the temperature of c due to all other
active cores acting individually;

3. The flow of heat between a pair of cores is proportional to the tem-

perature difference between them; and

4. A certain power and temperature penalty is incurred when the first

resource intensive application mapped to the processor invokes the

on-board resource (e.g., power and temperature) management in-

frastructure. The penalty is amortized as more applications are

mapped to the processor. This results in a large temperature change

due to the first application, whereas further rise in temperature

is relatively modest as more resource intensive applications are

mapped to the processor, see Figure 3.2. This behavior is captured

by the damping function s.

56 CHAPTER 3. THERMAL MODELS FOR STATE-OF-THE-ART PROCESSORS

87654321
Number of simultaneously executing instances of CPUBurn-in

0100

M
ea

su
re

d
To

ta
l P

ow
er

 (
W

)

110

120

130

140

150

160
1.2GHz 2.4GHz 2.9GHz

Figure 3.2:Measured power when increasing number of instances of the CPUBurn-in ap-
plication are executed on the processor. Notice that the largest increase in the

measured power consumption is due to the first instance.

Though (3.3) and its justification is based on the observations made

on the Intel Xeon processor, the structure of (3.3) is expected to remain

the same across multicore platforms. Specifically, observations 1, 2 and 3

listed above are due to thermal properties of silicon, independent of the

processor make. Observation 4 is relevant for state-of-the-art processors

which implement power and/or temperature management schemes. In

case of a processor which does not implement such power and/or temper-

ature management schemes, (3.3) can still be used (e.g., in an automated

work-flow), as the damping function s will always return 1.

The Damping Function s

The damping function s(a, v) is also determined using a sequence of cal-
ibration experiments as shown in Algorithm 6. The damping function is

determined separately for each core type and application. The overall ap-

proach is to execute an application a ∈ A on a core type v located at the
approximate center of the distribution of cores of the same type (line 2). A

binding b is constructed in order to execute a at the highest possible oper-
ating clock speed f∗ with the utilization trace u∗ developed earlier (line 5).
Selection of the highest clock speed improves the signal-to-noise (SNR) ra-

tio permitting accurate estimates of the damping function. Next, the same

application a is executed on all the cores of the similar type as per the
same utilization trace u∗ as before (line 10). The change in temperature on
c∗ is measured and compared against the expected change in temperature
using the thermal modelM yielding the damping ratio (line 15).

3.5. CONSTRUCTING THE THERMAL MODEL 57

3.5.2 Limitations to the Accuracy of the Thermal Model
The accuracy of the thermal model and therefore the temperature traces

may be limited due to the following factors:

1. The noise in the temperature sensors used during the calibration

phase;

2. If the processor has a limited set of temperature sensors (e.g., less

number of sensors than the number of cores) then there will be a

few cores for which the true estimate of the temperature will not

be available, also restricting the accuracy of the resulting thermal

model;

3. If the designer chooses to trade-off the complexity of the model for

speed, then the resulting model may not faithfully reproduce tem-

perature traces, especially transients; and

4. Two temperature sensors located at an equal distance d from an ac-
tive core c may not sense the same change in temperature as a tem-
perature hotspot on c may not be symmetrically located. Algorithm
5 does not consider such asymmetry in order to keep the procedure

and the model simple. However, should it be necessary, removing

this inaccuracy from the model is straightforward.

Input: Applications A, Processor P, Thermal ModelMOutput: Damping Ratios s(a, v),∀a ∈ A, ∀v ∈ VData: f∗ ← max(F); // Choose highest operating clock speedData: ts ← Discrete Sampling Interval;Data: τraw, τbase, τobs: Variables;1 b← 〈φ, φ, φ, φ〉; // Initial binding, all empty
2 foreach core type v ∈ V do
3 Choose host core c∗|ν(c∗) = v s.t. c∗ is at the center of distribution of cores of similar type;
4 foreach application a ∈ A do
5 b = 〈a, u∗, c∗, f∗〉; // reuse u∗from Algorithm 5
6 Execute the binding b;
7 Traw ← Observed temperature trace from core c∗;
8 Tbase ← Denoise (Traw); // Baseline
9 C∗ ← {c | c ∈ C, ν(c) = v};

// Set of all cores of type v ∈ V including c∗;
10 B′ ← {〈a, u∗, c, f∗〉 | c ∈ C∗};

// A set of bindings for all cores c ∈ C∗

11 Execute the set of bindings B′ ;
12 Execute the binding b; // See line 6;
13 Traw ← Observed temperature trace from core c∗ ;
14 Tobs ← Denoise (Traw) ;
15 s(a, v) = Tobs−Tbase∑

(g(b1,M,c∗),··· ,g(bn,M,c∗)) ;

// {b1, · · · , bn} = B′

16 end
17 end
1919 Function Denoise(Traw)

// See Algorithm 5, line 49
20 return Denoised temperature trace;Algorithm 6: Algorithm to compute the damping function.

58 CHAPTER 3. THERMAL MODELS FOR STATE-OF-THE-ART PROCESSORS

Abstract hardware layout of the system

8 9 10 11 12 13 14 15

L1
L2

L1
L2

L1
L2

L1
L2

L1
L2

L1
L2

L1
L2

L1
L2

L3

0 1 2 3 4 5 6 7

L1
L2

L1
L2

L1
L2

L1
L2

L1
L2

L1
L2

L1
L2

L1
L2

L3

C
om

m
u

n
ic

at
io

n
 I

n
te

fa
ce

s

64GB RAM

64GB RAM
Processor 1

Processor 2

Hardware Infomation

• Available Clock Speeds (GHz): 1.2, 1.4, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.3, 2.4, 2.5, 2.7, 2.8, 2.9
• Fan Speed: 15,000 RPM, constant • Number of temperature sensors: 1 per core
• Resolution of Temperature sensors: • Noise: zero mean, peak-to-peak amplitude:

Operating System and Framework

• OS: OpenSUSE • Kernel: 3.11 • 64 bits • Preemtible
• Cores 0-14 isolated (cpusets) • Applications execute on cores 0-7 • Observer on core 13
• Threading: pthreads • Priority: Real time • Temperature sampling interval: 2ms

Applications

• CPUBurn-in • H.263 Encoder • RSA Decryption (1024 bit) • BASICMATH • Bitcount
• ADPCM • Quicksort • FFT

System Information

Figure 3.3:Hardware and software environment
Experimental results show that the actual loss of accuracy due to such

factors is limited. Specifically, experimental results indicate that tempera-

ture traces estimated using the model M indicate an error which is of the
same order as the quantization error in the on-chip temperature sensors.

However, the error due to asymmetrically located hotspot with respect to

temperature sensorsmay be observable (factor 4), specially whenmultiple

applications execute simultaneously, see Figure 3.6.

3.6 Experiments and Results
Hardware Environment
Though the proposed approach for constructing the thermal model is ver-

satile and largely independent of any specific hardware architecture, we

particularly target a state-of-the-art processor featuring power and tem-

perature management algorithms. Accordingly, a commercially available

blade server consisting of two Intel Xeon E5-2690 8-core processors shar-

ing 128GB RAM was selected. The selected processor is not specifically

designed for embedded applications, however, it is representative for

the trend in using multicore and multiprocessor architectures in high-

performance embedded applications. In the available system, cores 0-7

belong to processor with ID 1, whereas cores 8-15 belong to the processor

with ID 2, see Figure 3.3. Though processors 1 and 2 share the same hous-

ing, experiments show that the heat flow between the processors is lim-

ited, unless processor(s) are generating significant amounts of heat (e.g.,

all the cores of the hot processor(s) are executing some computationally

intensive application). Usually, this is not the case, and given that the tem-

perature sensors are noisy, the thermal effect of a processor on the other

is difficult to detect. Therefore, in this chapter, we assume that the pro-

cessors are thermally isolated from each other. The automatic on-demand

clock speed increase (i.e., the Intel turbo boost) was disabled in order to
prevent any unplanned operating clock speed changes. All cores within

3.6. EXPERIMENTS AND RESULTS 59

each processor can operate only at a single common clock speed in the
range 1.2GHz - 2.9GHz. Precise control over the system fans is not possi-

ble, therefore, in order to avoid any errors due to unforeseen variation fan

speeds, all fans operate at a constant full speed of 15,000 RPM. The proces-

sor features 1 temperature sensor per core with a resolution of 1oC and
error of ±1oC.

Software Environment
The operating system (OS) is a preemptible Linux kernel 3.11, contained

to core 15 using cpusets, see [DJL+04]. All non-essential kernel services

are stopped in order to prevent any unexpected variations in temperature

or resource availability during the experiments. A dedicated observer on

core 13 utilizes a modified coretempmodule for reading temperature sen-
sors every 1 ms, which represents the common tick interval in modern

systems. Each application executes with real-time priority according to a

precomputed binding. All algorithms are implemented inMatlab (R2013b)

and the system identification toolbox is used to construct the thermal

model (line 31, Algorithm 5). A mix of eight applications CPUBurn-in,
H.263 Encoder, Basicmath, RSA Decoder, Bitcount, ADPCM, Quick-
sort and FFT were carefully selected in order to represent a wide variety
of embedded applications, see [Mic12, LPMS97, Off13, GRE+01a].

The Results
The validity of the proposed approach is justified by the following results:

1. Accuracy: The error in the temperature traces estimated using the
thermal model M is less than 2oC (the overall error in the tempera-
ture sensors) for all tested bindings, including those in which a core

switches between applications and clock speeds at runtime. This can

be verified from the reported values of mean squared errors (MSE);

2. Use case: An example of temperature aware DSE in order to reduce
the thermal cycles experienced by a given core; and

3. Efficiency: Memory and computational complexity of computing tem-
perature traces at the DSE stage showing the resource efficiency of

the developed thermal model.

Accuracy
Due to the combination of sensor noise and high thermal resistivity of sili-

con, we restricted the distance dmax from the hot core upto which the cor-
responding thermal effects are measured, i.e., dmax = 3, see Section 3.5.1

60 CHAPTER 3. THERMAL MODELS FOR STATE-OF-THE-ART PROCESSORS

Observed Model

Core 0: FFT

MSE: 0.39

0
1
2
3
4
5
6
7
8
9

Core 1: Bitcount

Observed Model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

MSE: 0.27

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
1
2
3
4
5
6
7
8
9 Observed Model

MSE: 0.66

Core 3: FFT

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
1
2
3
4
5
6
7
8
9 Observed Model

MSE: 0.46

Core 4: Basicmath

Observed Model
MSE: 0.89

Core 5: CPUBurn-in0
1
2
3
4
5
6
7
8
9

Observed Model

Core 6: Quicksort
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
1
2
3
4
5
6
7
8
9 Observed Model

Core 7: RSA Decoder

0
1
2
3
4
5
6
7
8
9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Observed Model
MSE: 0.92

Core 2: ADPCM

0
1
2
3
4
5
6
7
8
9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
1
2
3
4
5
6
7
8
9

MSE: 0.94 MSE: 1.26

Figure 3.4:Accuracy of the thermal model when each core executes an application according
to a predefined binding.See Figure 3.6 for more details. Clock speed: 2.9GHz.

Horizontal axis: time in seconds; Vertical axis: Change in temperature, oC.

and Algorithm 5. This also reduced the number of experiments while re-

taining the required accuracy during the calibration and validation exper-

iments. Three types of experiments were carried out:

1. Multiple applications: 64 experiments were designed, out of which
the first 23 experiments required all the cores in the range 0-7 to ex-

ecute a mutually unique application from the set A. For the next 41
experiments, a randomly chosen subset of cores execute randomly

3.6. EXPERIMENTS AND RESULTS 61

Time(s)

Ch
an

ge
 in

 T
em

pe
ra

tu
re

,

0
5

10
15
20
25
30
35
40

0 50 100 150 200 250

Core 3, 2.9GHz

Better Model (this chapter, Mean Absolute Error: 0.4)
Observed

Naive Superposition (Mean Absolute Error: 17.9)

Figure 3.5:Long term accuracy of the thermal model when all cores execute a different ap-
plication from the set A. Note that the metric used is Mean Absolute Error.

0

0

0.2

0.4

0.6

0.8

1.0

1.2

10
Experiment Number

5 15 20 23 30 35 40 45 50 55 60 64

M
ea

n
M

SE
 o

ve
r

co
re

s
0-

7,
 (

)
M

ea
n

M
SE

 o
ve

r
co

re
s

0-
7,

 (

)

M
ea

n
M

SE
 o

ve
r

co
re

s
0-

7,
 (

)

0

0.2

0.4

0.6

0.8

1.0

1.2

0

0.2

0.4

0.6

0.8

1.0

1.2

2.9GHz

2.4GHz

1.2GHz

Figure 3.6:Summary of 64 experiments for each processor clock speed in 2.9GHz, 2.4GHz,
and 1.2GHz. Each experiment from 1-23 requires all 8 cores to execute amutually

unique application. Each experiment from 24-64 selects a random set of cores and

applications. Applications do not share cores.

62 CHAPTER 3. THERMAL MODELS FOR STATE-OF-THE-ART PROCESSORS

selected applications. Applications do not share cores. The associ-

ated utilization traces were constructed such that the continuous ex-

ecution time of the corresponding task was a random variable in the

range 100-180,000 ms. The experiments were repeated for processor

clock speeds in the set {2.9GHz, 2.4GHz, 1.2GHz}.

2. Dynamic task and clock speed switching: a core multitasks between
applications and simultaneously cycles between operating clock

speed in the set {2.9GHz, 2.4GHz, 1.2GHz}.

3. Long Range: Cores 0-7 executes a randomly drawn application from
the set A for 200s.

Detailed temperature trace comparisons are provided for a subset of re-

sults, whereas a full summary is presented in Figure 3.6.

The mean squared error (MSE) in the temperature traces computed

using the model remains less than 1.5oC, which approximates the uncer-

tainty level in the temperature sensors, even when the temperature traces

have significant transients, see Figure 3.4. Notice that the continuous ex-

ecution time of tasks in Figure 3.4 is restricted in order to present suf-

ficient visual details on the accuracy of the thermal model in estimating

temperature transients. As a consequence, the dynamic range of the ob-

served temperature traces is less than 10oC. Finally, the mean absolute

error in the estimated temperature trace when each core (0-7) executes

0.50 1 1.5 2 2.5 3 3.5 4 0.50 1 1.5 2 2.5 3 3.5 4
0
1

2

3

4

5

6

7

0
1

2

3

4

5

6

7

Core 2: CPU Burn-in Core 3: RSA Decoder

Observed Model
MSE: 0.28 MSE: 0.26

Observed ModelA B

0.50 1 1.5 2 2.5 3 3.5 4
0
1

2

3

4

5

6

7

0
1

2

3

4

5

6

7

0.50 1 1.5 2 2.5 3 3.5 4

CPUBurn-in
RSA
H.263

Core 4: H.263 Encoder Core 3: Multitasking
MSE: 0.19
Observed Model

MSE: 0.18
Observed Model C D

Figure 3.7:Thermally-aware DSE: Figure A-C show thermal cycles experienced by the pro-
cessor for a naive binding. Figure D shows an optimized binding which reduces

thermal cycles. The total work done by the three tasks remains the same. Hori-

zontal axis: time(s); Vertical axis: Change in temperature, oC.

3.6. EXPERIMENTS AND RESULTS 63

MSE: 0.39

Figure 3.8:Estimated vs. observed temperature for a core with dynamic clock speed and
application switching.

a randomly drawn application from the set A for hundreds of seconds
remains small (< 1oC), see Figure 3.5. For reference, the error due to a

(naïve) lumped thermal model is also shown. The correlation between er-

rors across different clock speeds is due to an error in estimated thermal

model for the BASICMATH application due to the asymmetrically located
temperature hotspot, as discussed in Section 3.5.2, see Figure 3.6. The tem-

perature traces estimated using the model are accurate even when a core

dynamically changes between clock speed and tasks, with the observed

mean squared error being 0.4oC, see Figure 3.8.

Use Case for Temperature Aware DSE
Reducing thermal cycles experienced by the processor may be one of the

constraints which must be met by a feasible solution. Consider the case

wherein three tasks execute on different cores with given schedules, but

result in significant thermal cycles, see Figure 3.7 (A-C). This may be com-

mon when the tasks are periodic in nature, and their average utilization

of the given core is less than 100%. A temperature-aware DSE can be used

to explore better bindings which can significantly decrease thermal cycles

experienced by the cores in the processor, see Figure 3.7 (D). Notice that

the total amount of work done by each application in Figures 3.7 (A-C) is

exactly the same as in Figure 3.7 (D). In the presented example, the new

binding was obtained as follows:

• Pick an initial hot core c which features a low utilization, u < 1;

• Move an application to the core c from another hot core c′ with the
utilization u′ if the following relationship is satisfied: u+ u′ ≤ 1; and

• Repeat until no more applications can be moved to c.

If u < 1 after the procedure, then the thermal cycle on core c may be fur-
ther reduced by lowering the clock speed of the core in order to bring core

64 CHAPTER 3. THERMAL MODELS FOR STATE-OF-THE-ART PROCESSORS

c’s utilization as close to 100% as possible. However, this step was not per-
formed in the presented use-case, as the new binding had a utilization of

100% on core 3, see see Figure 3.7 (D).

Memory and Computational Costs for DSE
The memory and computational requirements for estimating the temper-

ature traces directly depend on the complexity of the assumed thermal

model. For the complexity of [nb = 5, nf = 5, nk = 2] used in this work, the

corresponding fit obtained was 88%. Each new temperature data point re-
quires (nb+nf) multiplications, 1 division and (nb+nf) additions, with the
associated storage requirements for (nb+nf) coefficients and (nk+nb− 1)
data points for the delay operator. Therefore, it can be concluded that the

memory and compute costs incurred in using the thermal model during

DSE with state-of-the-art processors is insignificant.

3.7 Closing Remarks
This chapter presented a calibration based technique to construct a fast

and accurate thermal model for a state-of-the-art multicore processor,

without requiring any auxiliary information such as the processor floor-

plan, or detailed power traces, making the proposed technique applicable

to any processor. Extensive experiments on an Intel Xeon 8-core processor

with 8 applications validate both the accuracy and the speed of the pro-

posed technique. Specifically, it was shown that the error in the estimated

temperature traces using the proposed technique is within the noise enve-

lope of the on-chip temperature sensors used during the calibration phase,

for all tested bindings, including those in which all cores of the processor

execute a different application. A use-case was presented in which the

thermal model M of the processor is used to obtain thermally favorable
bindings allowing the processor to run without any danger of experienc-

ing thermally induced faults or unforeseen performance losses.

Furthermore, all the calibration experiments can be performed with-

out requiring any physical access to the processor, and without the need

for any external instrumentation. Therefore, it is possible to generate the

thermal model of systems (i.e., servers, notebooks, mobile, and even em-

bedded devices) remotely, or on the field. Such a capability can be ex-

ploited by system vendors to generate accurate thermal models of their

systems post-production, in order to account for the inevitable differences

in thermal properties between the processors owing to design, manufac-

turing and other variations. Remote generation and recalibration of ther-

mal models can also be used to continuously update the thermal models

of the system when the field environment changes (e.g., upgrades to the

system chassis), so that the thermal management algorithms can continue

to operate effectively over the entire lifespan of the system.

4
Incorporating the ProcessorCooling System into the Model

Summary
This chapter presents a method to construct fan-aware system thermal

models for air-cooled state-of-the-art systems. Previous chapters have con-

sidered processors which are cooled at some constant rate. However,

instead of constructing a completely new, monolithic fan-aware thermal

model for the complete system, we take divide-and-conquer approach of

proposing a thermal model of only the system fan, which can be cascaded
to models obtained in the previous chapters. In line with the theme of

previous chapters, the proposed method does not require any power trace

information, nor the knowledge of physical properties of the system fan,

and also does not require physical access to the system.

4.1 Introduction
Thus far, this thesis has presented a calibration based technique for con-

structing a thermal model for a given state-of-the-art processor which fea-

tures one or more on-chip temperature sensors. Furthermore, previous

chapters have only implicitly considered the presence of system fan(s) by

assuming some constant rate at which the processor is cooled. Whereas

one or more system fans in a server or a notebook computer is normal,

recent mobile and high performance systems with ever more powerful

processors have also started to feature a system fan in order to keep the

66 CHAPTER 4. INCORPORATING THE PROCESSOR COOLING SYSTEM INTO THE MODEL

system temperature within safe limits. One example is the Parallella mul-

tiprocessor, which was originally shipped without a fan, but is usually

retrofitted with it, see [And13]. Another example is the Microsoft Surface

Pro series of tablet computers featuring the Intel Core-i7 processor and a

system fan, see [Jar14]. Even in traditionally fan-less systems, such as the

automotive Electronic Control Units (ECUs), a fan may become mandatory

to cool the processor as more compute intensive functions (e.g., vision,

radar, collision avoidance, multimedia) are packed into a given system,

see [PSHA03].

Given that these systems are constrained either by the available en-

ergy source (i.e., a battery) or the available computational capacity, sys-

tem designers may use Design Space Exploration (DSE) tools to determine

the best application mappings, scheduling, processor speed scaling, and

cooling options (together, binding) for meeting the performance objectives
while satisfying temperature and energy constraints. To this end, the se-

lected DSE tool must be fan-aware. In other words, the thermal model of
the system fan (succinctly, the fan thermal model) must be included with
the temperature estimation algorithm(s) used.

Fan thermal models have commonly been used for designing power

efficient cooling solutions for server class systems. Accordingly, most ap-

proaches are specifically designed for such systems, and require detailed

system power traces which are obtainable via onboard power sensors, or

external instrumentation. However, in contrast to server class systems,

notebooks, mobile and high performance embedded systems do not usu-

ally feature power sensors, thus ruling out power trace based approaches

for constructing fan thermal models. Although it is possible to collect

power traces and other relevant information by instrumenting a disas-

sembled device, the corresponding thermal properties may vary signifi-

cantly from the original, resulting in an invalid thermal model. Mobile

devices featuring a smart battery interface may provide access to system

level power traces, but unless the portion of total power consumed by

the CPU, the dominant heat generating component, can be accurately es-

timated, any thermal modeling approach relying on power trace informa-

tion may not be sufficiently accurate, see [DZ11]. In principle, one may

use the Hotspot thermal simulator which supports modeling the system

fan, see [SSS+04a]. However, it requires access to information which may

not be readily available, e.g., floorplan of the processor, detailed power

traces and knowledge of the physical properties of the system fan.

In order to overcome these challenges, a calibration based method to

construct the fan thermal model is proposed, which differs from the state-

of-the-art in three important aspects:

1. We acknowledge that developing a holistic fan-aware thermal model

of the systemmay be infeasible as all the factors influencing the over-

all temperature of the system (e.g., applications, associatedmappings

and schedules, processor clock speeds, fan speed) must be accurately

4.1. INTRODUCTION 67

accounted for. Instead, we follow the idea of separation of concerns,

and take the simpler approach of constructing the fan thermal model

which can be cascaded to the existing fan unaware thermal models
available in the current DSE tools;

2. By utilizing onboard temperature sensors, we eliminate the need

to acquire power traces, thermal properties of the heatsink, or the

knowledge of the physical properties of the system fan; and

3. Lastly, since the proposed approach is purely software driven, it is

feasible to (re)construct the fan thermal model in-situ for a device
(e.g., a tablet computer such as the Microsoft Surface Pro) in the field,

or even automatically when hardware upgrades (e.g., new fans) are

carried out.

Accordingly, the fan aware thermal model is obtained as follows:

1. Use a fan-unaware thermal model which estimates temperature

traces Tnofan; and

2. Cascade the fan unaware thermal model with thermal model of only
the fan. The latter accepts Tnofan and fan speed s as inputs, and com-
putes temperature traces which include the effect of the system fan.

Here, a temperature trace refers to a time-ordered sequence of tem-
perature measurements or estimates at some time resolution ts.

In line with the previous chapters, the strength of the approach is

the ability to estimate the fan thermal model without requiring detailed

knowledge of system parameters. Additionally, a cascadable fan thermal

model is relatively simpler to construct as compared to a monolithic fan

aware system thermal model. We show that such separation of concerns

is indeed feasible (see Figure 4.1 for the physical interpretation), and the

individual solutions can be combined to yield an accurate fan aware ther-

mal model of the system.

Statement of the Problem
The problem solved in this chapter can be summarized as:

Given:

1. A computer system with at least one temperature sensor and a user

controllable fan;

2. Temperature traces Tnofan computed by a fan-unaware temperature
estimation method.

68 CHAPTER 4. INCORPORATING THE PROCESSOR COOLING SYSTEM INTO THE MODEL

Estimate: The thermal model of the fan h(s) such that the temperature
trace Tfan incorporating the effect of the fan can be computed as follows:

Tfan = Tnofan ⊗ h(s) (4.1)

where ⊗ is the standard convolution operator, and h(s) is the proposed
thermal model of the fan as a function of fan speed s. We assume that
the fan can be modeled as (an approximately) linear thermal system. The

justification comes from observing the effect of the fan on the tempera-

ture traces during the calibration step (see Section 4.3.3), and is confirmed

during experiments where it is shown that a linear fan thermal model es-

timates the temperature traces with sufficient precision (see Section 4.4).

The proposed thermal model of the fan is agnostic to the internal de-

tails of the fan-unaware thermal model, but in the specific case wherein

the system does not provide information such as detailed power traces

conventionally considered critical for a fan-unaware thermal model, we

assume the availability of a power-agnostic, fan-unaware thermal model

which can compute Tnofan without requiring the knowledge of system
power traces or any physical parameters, relying solely on the given map-

ping information associated with each candidate solution, see Chapters 2

and 3.

4.2 Setup and Notation

Fan

CPU

Observation Point

Figure 4.1:The equivalent RC-style model of the fan
In the interest of brevity, the following terms are carried over from

previous chapters, and will not be redefined: (i) chip muliprocessor P,
(ii) set of processor clock speeds F, (iii) processor core types V, (iv) set of
applications A, (v) sampling time interval ts, and (vi) utilization traceU. We
also assume that a set O of temperature sensors are available on the chip.
A temperature trace generated by the sensor o ∈ O is denoted as a tuple
To = 〈τ0, τ1, · · · , τi, · · · 〉o where τi represents the temperature sample at the
time instant t = i. Accordingly, a fan-unaware thermal model estimates
the temperature trace Tnofan = {T0, · · · , T|S|−1} for each candidate solution

4.3. COMPUTING THE THERMAL MODEL OF THE FAN 69

to the given a set of bindings. A single system fan which can operate at

a user-determined speed s from a set of possible discrete speeds S, i.e.,
s ∈ S is available to cool the system. The binding has a new variable, the
fan speed s, with a binding b = 〈a ∈ A, u ∈ U, c ∈ C, f ∈ F, s ∈ S〉 ∈ B
indicating that an application a executes according to a utilization trace u
on a core cwhich operates at a frequency f , with the system fan operating
at a constant speed s.

Keeping with the convention used in the literature, we suppose that

the thermalmodel of the system fan h(s) can be represented as several cas-
caded RC sections, whose response can be described by an n order transfer
function, see 4.1. The speed of the fan influences the rate of flow of heat

from the processor, and is modeled by variable resistors, R1 . . . Rm. The
thermal capacitance of the processor is determined by its physical pack-

age and remains unchanged. Finally, given a binding b, the temperature
traces Tnofan computed by the fan-unaware thermal model are assumed
equivalent to the temperature traces observed when the processor P exe-
cutes b with fan speed set to s0. In principle, s0 can take any value in S. In
the current chapter, we take s0 = 0 RPM.

4.3 Computing the Thermal Model of the Fan
Calibration Bindings

Fan Unaware
Thermal Model

Fan Thermal
Model

Input for calibration
experiments. See Section 4.3.2.

Assumed available.

Temperature traces with fan
speedset to . Or, Computed by
fan-unaware thermal model.

Cascadable fan thermal model
(this chapter, See Sections 4.3.3, 4.3.4.)

Temperature traces at system
fan speed s.

Execute on
processor
Fan speed:

Execute on
processor
Fan speed:

approximate

Figure 4.2:Overview of the approach.

4.3.1 Overview of the Approach
The fan thermal model h(s) computes the temperature traces accounting
for the effect of the fan operating at a known speed s, given the temper-
ature traces Tnofan computed by a fan-unaware thermal model. In partic-
ular, h(s) is a linear n-order discrete time transfer function of the form
N(z−1)
D(z−1)

where N(z−1) and D(z−1) are polynomials in z−1, the discrete time

delay operator.

The procedure to compute the thermal model of the fan proceeds as

follows:

70 CHAPTER 4. INCORPORATING THE PROCESSOR COOLING SYSTEM INTO THE MODEL

1. Design a calibration trace u∗ ∈ U and a set of special bindings B∗ ⊂ B;

2. Obtain the associated temperature traces Tnofan which do not account
for the system fan:

(a) Either execute B∗ on the processor Pwith the fan speed set to s0,or
(b) Obtain Tnofan from the fan-unaware thermal model by supplying
it with B∗;

3. Obtain Tfan by executing B
∗ on the processor Pwith the fan speed set

to s ∈ S;

4. Find h(s) : Tfan ≈ Tnofan ⊗ h(s), see (4.1). The approximate rela-
tionship relaxes the constraints on h(s) by requiring that the traces
computed using h(s) approximate Tfan, instead of strict equality;

5. Reduce the order of the model h(s).

4.3.2 The Calibration Trace, u∗
The design of the calibration trace is similar to the design proposed in

the previous chapter, with the exception of a new Bias Segment, see Sec-
tion 3.5.1. Thus the calibration trace consists of three segments: the BiasSegment, theDynamics Segment, and the Statics Segment. The Bias Segment
is the first section of the calibration trace in which the application does notexecute. The purpose of this section is to observe the ambient temperatureinside the system which is significantly influenced by the fan speed. The
notions of Dynamics and the Statics segments are similar to the proposal
in Chapter 3, and are not being repeated again.

4.3.3 Computing the n-order Transfer Function
Based on the separation of concerns principle followed in this work, the

thermal model of the fan must be solely a function of the fan speed, and
therefore, any set of bindings can be used in order to obtain Tnofan. How-
ever, as the temperature sensors on-board any practical system are usu-

ally noisy, the accuracy of the model is improved by using a set of specif-

ically designed set of bindings which maximize the signal-to-noise (SNR)

ratio available as an input to the model estimation step. Hence an appli-

cation a∗ ∈ A is chosen which leads to the highest peak temperature on
the given processor P, and is executed at the highest operating frequency
f∗ = max(F). The SNR improves even further if all cores dissipate heat.
Therefore, for each fan speed s, the specifically designed set of bindings
B∗ = {b|b = 〈a∗, u∗, c, f∗, s〉,∀c ∈ C} ⊂ B is executed in parallel on the pro-
cessor. Here, an instance of the application a∗ executes according to the
utilization trace u∗ at the highest possible frequency f∗ on each core c of
the processor with the fan speed set at a constant speed s.

4.3. COMPUTING THE THERMAL MODEL OF THE FAN 71

The algorithm is similar to the one proposed in Chapter 3, see Algo-

rithm 5. However, the EstimateModel function takes an additional pa-
rameter bias, which is used to compute an offset to be applied to the esti-
mated temperature traces. The bias is a function of system fan speed, see
line 10. Further details are presented in Algorithm 7.

Referring to Algorithm 7, the estimation of the model (lines 13 - 29) be-

gins with computing the initial bias in the observed traces as compared to

the baseline, see line 5. This bias is the difference in the ambient temper-

ature as recorded by on-board sensors when the fan operates at a speed s
as compared to the baseline (i.e., when the fan operates at the speed s0).

Next, the baseline trace Tbase is collected by executing the binding B
∗ on the

processor P∗ with system fan speed set at s0. The traces are then denoised

using edge-preserving algorithms (e.g., Daubechies wavelets, [HG08]), see

line 40. Next, for each fan speed s ∈ S\s0, the same set of bindings B∗ is exe-
cuted. The collected trace is denoised, and then the tuple 〈Tobs, Tnofan, ts, u∗〉
is used to compute the fan thermal model for the fan speed s ∈ S \ s0. The

description of the EstimateModel function is similar to the description
provided in Chapter 3, Algorithm 5, and is therefore not being repeated

here. However, do notice the additional parameter biaswhich is applied to
the estimated temperature traces. Note that the computed n-order models
can be mapped to the conventional RC style structure shown in the Figure

4.1.

4.3.4 Model Order Reduction
Since the fan dissipates heat preventing the processor from heating up as

much as it would in the absence of it, the fan is equivalent to a large ther-

mal capacitor attached to the processor via a variable resistor, see Figure

4.1. This conclusion is supported by the analysis of the thermal models

h ∈ H obtained from the calibration experiments, see Algorithm 7. Specif-
ically, it was found that for each thermal model h, a single pole dominates
the overall response of the given model. Therefore, by trading off some

accuracy, the n-order models computed in Algorithm 7 can be reduced to a
single pole model by discarding non-dominating poles. The parameters of

the simplified single-pole model (specifically, the scalar constant and the

dominant pole position) are then tuned to require the response of the sim-

plifiedmodel approximate that of the original higher ordermodel. Several

algorithms to achieve such a transformation are available, and we skip

a detailed discussion in this chapter, see [SMD14, HG08]. The proposed

model order reduction step does not significantly deteriorate the accuracy

of the model, with the worst case mean-squared-error (MSE) in the com-

puted Tfan being less than 1oC in our validation experiments, see Section
4.4 for further details.

72 CHAPTER 4. INCORPORATING THE PROCESSOR COOLING SYSTEM INTO THE MODEL

Input: Processor P, Binding B∗Output: Thermal ModelHData: ts ← Discrete Sampling Interval;Data: Traw = Tobs ← 0, bias = 0; // local variables
1 Tnofan ← temperature traces when P executes B∗ at fan speed s0;

// Or, computed by fan-unaware thermal model, given B∗

2 Tnofan ← Denoise (Tnofan); // Remove noise from observations
3 ;
4 foreach fan speed s ∈ S \ s0 do
5 bias← GetBias (s) // The steady state bias at fan speed s.
6 h(s)← 0 ;
7 Execute B∗ at fan speed s;
8 Tobs ← Observed Temperature traces;9 Tobs ← Denoise (Tobs);10 h(s)← EstimateModel (Tobs, Tnofan, ts, bias) ;
11 end
1313 Function EstimateModel(Tobs, Tnofan, ts, bias)

// Tobs: Observed temperature trace, ts: Sampling interval
// Tnofan: temperature trace with fan speed s0, bias: bias temperature.Data: [nb, nf, nk]← [2, 2, 1] ;
// Initial order of model as vector [#zeros+1, #poles, #delay(samples)]Data: fit← −1, fit′ ← −1;

// fitness of the estimated model, Maximum: 100%.Data: System Constraint: MAXPOLES, MAXZEROS, MAXDELAY;
Data: h: Computed temperature model of type N(z−1)

D(z−1)
;

14 for nk = 1:MAXDELAY do
15 for z = 1:MAXZEROS do
16 for p = 1:MAXPOLES do
17 Compute model h′ =

N(z−1)

D(z−1)
| Tnofan ⊗ h′ + e+ bias ≈ Tobs

// ts: sampling interval, also see [HG08]
// e is the assumed noise model, e.g., zero mean white noise

18 if fit > fit′ then
19 fit← ComputeFit(Tobs, Tnofan ⊗ h′ + e+ bias);
20 fit

′ ← fit ;
21 h← h′ ;

// the best model so far.
22 if fit = 100 then
23 return [h, bias]; // perfect model.
24 end
25 end
26 end
27 end
28 end
29 return [h , bias];
3131 Function ComputeFit(T̂ , T̂ ∗)
32 return 100×

{
1− ‖T̂

∗−T̂‖
‖T̂−T̂‖

}
;

// Normalized Root Mean Square Error estimate. T̂: Mean value of T̂

3434 Function GetBias(s)
35 T1 ←mean steady-state temperature with no applications and fan speed set to s0;
36 T2 ←mean steady-state temperature with no applications and fan speed set to s;
37 bias← T2 − T1 ;
38 return bias ;

// Returns the constant bias in the initial conditions.
4040 Function Denoise(Traw)

// Remove noise from the input trace using edge-preserving algorithms,
e.g., Daubechies wavelets.

41 return Denoised temperature trace;
Algorithm 7: Calibration based algorithm to compute the thermal modelh(s). The structure of the algorithm is similar to Algorithm 5 except for
an additional bias parameter.

4.4. EXPERIMENTS AND RESULTS 73

4.3.5 Sources of Errors
Factors such as noise in the temperature sensors, limited number of sen-

sors, and capping the order of the models all affect the overall accuracy

of the estimated fan thermal model. These factors have already been dis-

cussed in Chapter 3, and are therefore not being reproduced again. Exper-

imental results show that the loss of accuracy due to such factors is limited,

with the worst case mean squared error to be about 1oC. It is important to

remember that the temperature sensors which are used to calibrate and

validate the fan thermal model themselves have a quantization error of

±1oC, limiting the maximum achievable accuracy.

4.4 Experiments and Results
The accuracy of the fan thermalmodel is validated by comparisons against

corresponding traces observed on real hardware. A comparison against

power-trace based approaches is avoided as these models are themselves

approximate, and require inputs which may not be available (e.g., power

traces for mobile devices). Instead, given that the proposed approach is

based on sampling temperature sensors onboard the given testbed, the

maximum achievable accuracy defined by the resolution and noise of the

temperature sensors used.

4.4.1 Setup
Hardware
All experiments were carried out on a commercially available notebook

computer with an Intel core-i7 processor consisting of 4 physical cores

numbered 0..3, and 16GB RAM. The physical cores are linearly laid out,

and hyper-threading allows each physical core to present two logical cores

to the software environment. Each core features one temperature sensor

with a resolution of 1oCwith an uncertainty (i.e., error) of±1oC. Therefore,
we consider our thermal model to be accurate if the computed traces are

within ±1oC of the reference observations. The processor can operate at a
range of frequencies in [0.8-2.4]GHz, and at any instant, all cores must op-

erate at one common frequency. A single system fan cools the processor,

whose speed is controlled by setting appropriate values to an 8-bit PWM

configuration register. The ambient temperature outside the notebook is

maintained at 22oC.

74 CHAPTER 4. INCORPORATING THE PROCESSOR COOLING SYSTEM INTO THE MODEL

Software
The operating system is based on a preemptible Linux kernel 3.11 operat-

ing at runlevel 1 with only the most essential services. The temperature

sensor driver (coretemp) is modified to read temperature sensors every
1ms, the most common tick-rate in the state-of-the-art systems. Cpusets
are used to isolate physical cores 1-3 from any timing disturbances result-

ing from housekeeping and kernel tasks executing on core 0, see [DJL+04].

The experimental framework is written in C which provides dedicated

temperature and fan speed logging threads. A dedicated master-slave

thread pair executes each given application as per a specified binding b.
Physical cores 2 and 3 are reserved for executing applications both for cal-

ibration and validation, whereas logger threads execute on physical core

1. All algorithms are implemented in Matlab 2013b, with the system iden-

tification toolbox used for estimating models, see Algorithm 7.

For the experiments, the input Tnofan to the fan thermal model was ob-
tained by executing a set of test bindings B′ ⊂ B with the fan speed set at
s0 = 0 RPM. The decision to obtain input traces both for calibrating and
validating the fan thermal model from observations helps avoid accruing

errors whichmay be present in the temperature traces computed by a fan-

unaware thermal model. The reference traces for validation was obtained

by re-executing B′ at fan speeds s ∈ S \ s0, see Figure 4.2. Consistency

between the traces obtained under two different fan speeds is ensured by

1. Limiting the number of simultaneously executing benchmarks on the

physical cores 2 and 3 to 3 (= 6 threads). This reduces the timing jit-

ters between master-slave thread pairs when a given experiment is

repeated with two different fan speeds. Specifically, the approach

reduces the latency between time instants at which a master thread

dispatches a signal (pause or go) and the instants when the corre-
sponding slave thread acts on it; and

2. Selecting (almost) deterministic applications.

These restrictions do not reflect any limitation of the conceptual approach,

but are due to the experimental test and observation setup followed in this

chapter.

The Application Set A
1. CPU-Burnin: Designed to stress power and thermal management so-
lutions found in the x86 systems, see [Mic12];

2. H.263 Encoder: The encoder accepts input in a Quarter Common In-
termediate (QCIF) format and produces an output stream at ∼ 30 fps.
The encoder loops through 8 input files ranging from 8MB to 80MB

in size, see [Mar14, LPMS97];

4.4. EXPERIMENTS AND RESULTS 75

3. RSA Decoder: Built using the PolarSSL library, the decoder decrypts a
text-stream originally encrypted with a 1024 bit key, see [Off13];

4. ADPCM: The modified application encoder-decoder chain processes
one packet every ∼ 4ms. The encoded packet is 4:1 compressed and
is 4KB in size, see [LPMS97];

5. Blackscholes: From the Parsec benchmark suite, see [Bie11].

4.4.2 Results
In order to validate the proposed approach, the following results are pre-

sented:

1. Observations of bias values at different fan speed settings;

2. Accuracy of the simplified single-pole model for short and long

time test windows, with the associated mean-squared-errors (MSE).

Results for short-time window experiments demonstrate the accu-

racy of the thermal model in estimating the transients, whereas the

steady-state accuracy of the model is demonstrated by long-time win-

dow experiments;

3. Statistical summary of over 30 random experiments each for long

and short time test windows, with the associated mean-squared-

errors(MSE); and

4. Memory and runtime overhead.

Since the system fan cools the entire processor uniformly, and in order

to present sufficiently detailed results, we specifically report the temper-

ature traces for physical core 3 which runs the calibration and validation

experiments (along with physical core 2). All conclusions apply equally to

the temperature of all cores.

Ambient (or bias) Temperature
Fan Speed (RPM)

0 50 100 150 200 250 300Sy
st

em
 F

an
 S

pe
ed

 (
R
PM

)

30
34
38
42
46
50

B
ia

s
Te

m
pe

ra
tu

re
,

Applied PWM [0:255]

5000

4000

3000

2000

1000

54

 0

Figure 4.3:System Fan Speed vs Bias Temperature

76 CHAPTER 4. INCORPORATING THE PROCESSOR COOLING SYSTEM INTO THE MODEL

Fan Speed and Bias Temperature
As expected, the speed of the fan significantly influences the ambient in-side the system, see Figure 4.3. With the fan switched off, the ambient
inside the system may reach as high as 54oC, as compared to a relatively

mild 34oC when the fan operates at full speed. Also notice that the fan

speed is not a smooth function of the applied PWM. The relationship be-

tween the applied PWMand the system fan speed is governed by hardware

electronics and physical properties of the fan motor. As expected, the bias

temperature is independent of the core operating frequency since cores do

not compute when bias temperature observations are recorded, see Algo-

rithm 7. Once the fan turns on, any further reduction in the ambient due

to an increase in the fan speed is relatively modest.

Accuracy of the Simplified Single Pole Model
In order to demonstrate that the thermal model of the fan is indeed inde-

pendent of any application, the model estimation algorithm uses only the
CPU-Burnin application for calibration, see Algorithm 7. The validation
experiments use one or more applications from A with bindings carefully
constructed to test the accuracy of the model both at long time scales (sev-

eral hundreds of seconds) and short time scales (several seconds).

Fan: 0 RPM
0 0.5 1 1.5 2 2.5 3 3.5 4 4.554

Model ObservedMSE: 0.34

56

58

60

Fan: 3070 RPM

Model ObservedMSE: 0.15

38

40

42

44

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Model ObservedMSE: 0.25

Fan: 3500 RPM37

39

41

43

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Model ObservedMSE: 0.19

Fan: 3836 RPM36

38

40

42

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Model ObservedMSE: 0.25

Fan: 4478 RPM36

38

40

42

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Model ObservedMSE: 0.08

Fan: 4780 RPM34

36

38

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Figure 4.4:Accuracy of the fan thermal model with H.263 Encoder, Blackscholes and AD-
PCM mapped to cores 2 and 3. Horizontal axis: time(s), Vertical axis: Observed
temperature (core 3), oC. All cores operate at 2.4GHz. Same experiment repeated

for 6 fan speeds. Dynamic range is limited due to small window size. Note initial

temperature.

Though the fan significantly influences the ambient temperature inside

the system, the dynamic range of temperature experienced by the pro-

cessor executing a given mapping remains relatively unaffected, at least

when the task execution times are not very long, see Figure 4.4.

The impact of the fan on the dynamic temperature range experienced

by the processor is clearer when the tasks have relatively longer run times

(e.g., order of hundred of seconds), see Figure 4.5. For the shown example,

the temperature change experienced by the processor is about 15oC when

the fan is operating at full speed, whereas when the fan is switched off,

the change in temperature is about 25oC. Also note that the temperature

4.4. EXPERIMENTS AND RESULTS 77

Fan: 0 RPM
49

54

59

64

69

74

79

0 20 40 60 80 100 120 140 160 180 200

Model Observed

MSE: 1.1

0 20 40 60 80 100 120 140 160 180 200
34

39

44

49

54
MSE: 0.9

Fan: 4780 RPM Model Observed

Figure 4.5:Accuracy of the fan thermal model vs the observed for long execution times of
tasks mapped to the processor. Horizontal axis: time(s), Vertical axis: Observed

temperature (core 3), oC. All cores operate at 2.4GHz. Notice the initial tempera-

ture which is significantly affected by the fan speed.

Figure 4.6:Accuracy of the fan thermal model when multiple tasks are mapped onto the
processor under dynamic frequency switching. Horizontal axis: time(s), vertical

axis: (top row): temperature,oC; (bottom row): core frequency (GHz.)

in the former case can be seen as approaching an equilibrium, whereas in

the latter case, the temperature will rise further before reaching a steady-

state. The estimated thermal model of the fan is accurate to within the

error in the temperature sensors, even when the processor dynamically

changes its operating frequency, or when multiple tasks are mapped, thus

validating the approach of the chapter, see Figure 4.6. Note that it was

possible to execute the RSA Decoder and the H.263 Encoder on core 3
as hyper-threading was enabled.

Statistical Summary
Each point in each statistical summary table represents 3 experiments, see

Tables 4.1 and 4.2. For each experiment, three applicationswere randomly

drawn from the set A and pinned to physical cores 2 and 3. For long time
window experiments, the schedule of each application is designed to en-

sure at least one continuous execution window of 200s. For short time

window experiments, the continuous execution time of each application is

a random variable between 20ms and 20s. All experiments were repeated

for three processor clock frequencies and 6 discrete fan speeds (c.f., Figure
4.3). The accuracy of both order-2 and order-1 fan thermal models are pre-

sented for each experiment. Gains in the accuracy with higher order mod-

els were not significant, and are therefore not presented. In general, and

78 CHAPTER 4. INCORPORATING THE PROCESSOR COOLING SYSTEM INTO THE MODEL

Short Time Window Error Statistics: Average MSE for Order 2 model ()
Fan Speed (RPM)

Clock Frequency (GHz)
0 3070 3500 3836 4478 4780

0.8
1.6
2.4

0.64 0.44 0.12 0.2 0.18 0.52
0.56 0.56 0.2 0.51 0.61 0.72
0.67 0.46 0.56 0.52 0.63 0.73

Short Time Window Error Statistics: Average MSE for Order 1 model ()
Fan Speed (RPM)

Clock Frequency (GHz)
0 3070 3500 3836 4478 4780

0.8
1.6
2.4

0.32 0.3 0.37 0.27 0.24 0.33
0.35 0.6 0.36 0.49 0.58 0.64
0.38 0.92 0.73 0.91 0.64 0.97

Table 4.1: Statistical Summary: Short Time Windows

Long Time Window Error Statistics: Average MSE for Order 2 model ()
Fan Speed (RPM)

Clock Frequency (GHz)
0 3070 3500 3836 4478 4780

0.8
1.6
2.4

0.32 0.3 0.25 0.2 0.19 0.4
0.35 0.56 0.21 0.5 0.61 0.72
0.52 0.58 0.49 0.69 0.63 0.85

Long Time Window Error Statistics: Average MSE for Order 1 model ()
Fan Speed (RPM)

Clock Frequency (GHz)
0 3070 3500 3836 4478 4780

0.8
1.6
2.4

0.44 0.12 0.37 0.27 0.24 0.44
0.56 0.6 0.11 0.49 0.58 0.68
0.76 0.68 0.84 0.71 0.81 0.73

Table 4.2: Statistical Summary: Long Time Windows

4.5. CLOSING REMARKS 79

as expected, a higher order model is relatively more accurate. The differ-

ence in accuracy is more pronounced at higher clock frequencies (2.4GHz)

as there sharper transients where a higher order model performs better.

The SNR deteriorates with lower clock frequencies which also nullifies the

relative accuracy of a higher order model. However, for both long and

short time window experiments, the average MSE remains below 1oC, con-

firming the accuracy of both order-2 and order-1 models.

Compute and Memory Costs during DSE Exercise
Each single-pole model requires at most four values to be stored in mem-

ory: the positions of a pole and a zero, a scalar constant, and a bias value.

Therefore, for a total of |S| distinct fan-speeds, the total memory overhead
is 4 × |S| variables. During DSE, computation of each temperature data
point requires at most 3 multiplies and 3 additions, and storage space for

two variables. It is important to note that even with such meager compute

andmemory overhead, it is possible to compute temperature traces due to

the fan with a reasonable accuracy (i.e., MSE< 1oC).

4.5 Closing Remarks
This chapter presented a new calibration-based approach to constructing a

thermal model of the given system fan without requiring access to power

traces, or any physical information about the system of interest. In or-

der to limit the overall complexity of the full fan-aware system thermal

model, the proposed thermal model of the fan is designed to be cascaded

to the already existing fan-unaware thermal model(s) in the current DSE

tools. As expected, the thermal model of the fan is dependent solely on the

fan speed and computes accurate temperature traces for all possible bind-

ings of applications, core frequencies, schedules and fan speeds. The tem-

perature traces computed by the model are accurate, with mean-squared-

errors always less than 1oC, noting that the quantization error in the tem-

perature sensors is ±1oC. Furthermore, we showed that the memory and
compute costs incurred during the use of the fan model during DSE is in-

deed insignificant. Since the approach is purely software driven, the fan

thermal model for a device can be (re)constructed on the field, such as

when hardware upgrades are performed.

80 CHAPTER 4. INCORPORATING THE PROCESSOR COOLING SYSTEM INTO THE MODEL

5
Estimating the PeakTemperature

Summary
This chapter presents an analytical approach to the estimate worst case

peak temperature that may be experienced by a given processor. The ap-

proach requires an abstract description of the workload (e.g., applications,

corresponding schedules), and abstract thermal properties of the proces-

sor which is to be used for executing the applications. The knowledge of

the worst case peak temperature may be useful during design space explo-

ration for eliminating those solutions (e.g., specific application and their

corresponding scheduling combinations) whichmay lead to an overheated

processor. It is common knowledge that even exhaustive simulations may

not be sufficient to extract such worst case peak temperatures, except for

trivially simple systems (e.g., the processor executes a single application

continuously).

5.1 Introduction
Having obtained a thermal model of the processor, a system designer may

wish to estimate the peak (or the worst case) temperature that may be ex-

perienced by the processor when it executes a given set of applications.

For some of the simplest use-case scenarios, such as when the given pro-

cessor executes a single application continuously, estimating the worst

case temperature is trivial, and can be estimated directly by computing the

82 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

step response of the models estimated in the previous chapters. However,

inmost practical use cases, an application’s execution pattern ismore com-

plex, and may also include some timing uncertainties. Such execution pat-

terns are abstractly described using the period (P), jitter (J), and minimuminter-arrival distance (D)model, with the interpretation as follows. An ap-
plication is expected to execute periodically with a period P , i.e., it is ex-
pected to execute at time instants t, t + P, t + 2P, · · · . However, the actual
time instants at which the application executes may vary upto within a

time window J units wide, centered at the expected execution time. Fur-
thermore, the same application may occasionally execute in a burst, in

which case,the minimum time separation between two consecutive exe-

cutions of the application is bounded by D. It must be pointed out that
a given 〈P, J,D〉 tuple leads to a set of feasible execution patterns of the
given application.

Clearly, estimating the worst case peak temperature for complex exe-

cution patterns asmentioned above remains challenging as all possible ex-

ecution patterns may need to be explored. Of course, one option is to run

exhaustive simulations in order to discover worst case peak temperature

by simulating all possible execution patterns for each given binding (i.e.,

mapping between applications and cores, their corresponding schedules,

processor clock speed, and if available, fan speed). It is clear that for most

practical use case scenarios, the required number of simulations for may

be intractable. Consequently, the system designer may choose to limit the

number of simulations, risking the possibility that corner cases resulting

in worst case peak temperatures are missed. Therefore, in this chapter,

we turn to an analytical approach which can be used to quickly estimate

the sought after worst case temperature of the processor, given an abstract

description (e.g., task or application1 execution times, task invocation pe-

riods, jitter in task arrivals, and resource availability) of the workload that

is executed by it. The analytical method can be used to quickly eliminate

those bindings which contain execution patterns that may overheat the

processor. One may then proceed to use the remaining binding options

together with the thermal model for an in-depth thermal investigation.

Therefore, this chapter attempts to answer the following question:What is the worst-case peak temperature of a real-time embedded systemunder all feasible scenarios of task arrivals? A new thermal-aware ana-

lytic framework is proposed that combines a general event/resourcemodel

based on network and real-time calculus with system thermal equations.

This analysis framework has the capability to handle a broad range of un-

certainties in terms of task execution times, task invocation periods, jitter

in task arrivals, and resource availability.

We assume a simple, single pole thermal model for analysis: one which

assumes that the entire processor is a point source of heat, i.e., a lumped

1
This chapter uses the terms application" and "task" interchangeably.

5.1. INTRODUCTION 83

thermal model. One may derive a single pole model by reducing the or-

der of models obtained in the previous chapters, albeit incurring some er-

rors. As an example, consider the thermal model derived for Xeon proces-

sor running the ADPCM application, with the processor clocked at 2.9GHz,

with 3 poles and 3 zeros. It was possible to convert the given model to

a continuous time model using zero-order hold approximation, and then

to reduce the order of the model to contain only a single pole, making it

suited to techniques discussed in this chapter, see Figure 5.1.

0 0.2 0.4 0.6 0.8 1.0 1.2
Time (s)

0
1
2
3
4
5
6
7

Observations Model (derived from previous chapters) Single Pole Approximation

Figure 5.1:Approximation of a higher order discrete time model from previous chap-

ters to a single pole continuous time model. Application: ADPCM, Processor:

Xeon, Clock Speed: 2.9GHz. The original model describes a single application, i.e.,

ADPCM, executing on the processor.

The advantage of using the lumped thermal model is the possibil-

ity of obtaining a closed form solution to the thermal equation which

is amenable to further analysis, see (5.9). Therefore, the simple model

presents an opportunity to understand the fundamentals of interactions

between discrete processes (e.g., discrete event arrivals) and continuous

processes, such as temperature. The model considered in this chapter

takes both dynamic and leakage power as well as thermal dependent con-

ductivity into consideration. Though the assumedmodel is not in the form

used in the previous chapters, as long as the adopted model is represen-

tative of the physics of heat transfer, theory developed in this chapter re-

mains applicable when other thermal models are used, such as those ob-

tained in the previous chapters.

Estimating worst case peak temperature in amanner that does not lead

to significant overestimation is not trivial, except for very simple systems.

For example, traditional real-time schedulability analysis is based on the

critical instant of task releases to offer timing guarantees. However, for

thermal investigations, even for simple arrival patterns such as periodic

with jitter there is a lack of results about the critical instant which leads to

the maximum peak temperature.

84 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

5.2 Simple Example
We illustrate the complexity of the above fundamental question by means

of a simple example. Let us assume that we have a work-conserving com-

ponent which processes just a single event stream which is periodic with

jitter: period 120 ms, jitter 240 ms, computing time 30 ms, minimal inter-

arrival time 30 ms. The thermal model of the processing component is

equivalent to that used in Section 5.6. In order to explain the problem we

are going to solve, let us compare five simple methods for computing the

temperature:

1. We use the average workload of the tasks, i.e., utilization U = 0.25,
and compute the corresponding average power of utilization 0.25 ac-

cording to (5.6). The resulting steady state temperature T is 335.08
K.

2. We use a set of traces with random jitter that comply to the specifi-

cation. For 100 independent runs with 1.2s trace length we find an
average, standard deviation and maximum temperature of 350.98 K,

1.75 K and 354.46 K, respectively.

3. We use the well known critical instant, i.e., starting from an arbitrary

but fixed time all task instances are released as early as possible. The

peak temperature observed in this method is 351.63 K with a trace

length of 1.2s.

4. We try to construct a reasonable critical instance as follows: We sup-

pose that for an unlimited time, the task is periodic. At some time,

the task shows its maximal jitter, i.e., a maximally dense workload

pattern. In this case, the simulation shows a maximal temperature of

355.62 K.

5. We use the method developed in this chapter and get a tight bound

on the maximal temperature of 359.22 K with a trace length of 1.2s.

It appears that none of the obvious methods is able to determine the max-

imal temperature even for such a very simple workload. The following

Figure 5.2 illustrates the workload traces corresponding to options 4) and

5) as well as the corresponding temperature traces with an initial temper-

ature of 319.31 K.

This chapter proposes an accurate system-level analytic technique

which offers temperature-guarantees for real-time systems. When no in-

formation of the workload is given, the worst-case temperature can only

be predicted assuming a fully stressed case, which results in theworst-case

estimate of 402.33K. This is clearly too pessimistic and far from tight esti-
mation. Information on the workload enables a tight peak temperature

estimation as will be shown in what follows. We consider general event

arrivals modeled by arrival curves in Real-Time Calculus [TCN00] and Net-

work Calculus [LBT01a]. An arrival curve provides an upper bound (and a

5.2. SIMPLE EXAMPLE 85

0.6 0.7 0.8 0.9 1.0 1.1 1.2
Time (s)

Te
m

pe
ra

tu
re

 (K
)

325

330

335

340

345

350

355

360

Figure 5.2:Simple example that shows (a) the worst case workload trace and (b) a con-
structed workload trace as well as the corresponding temperature changes.

lower bound) on the workload that might arrive to the system in any inter-

val lengths. Usually, these curves can be derived by profiling sufficiently

representative traces or by analyzing the specification of an application.

Even though arrival curves constrain the possible workload injected to

the system, there are infinitely many traces that comply to the provided

bound on the workload, in terms of initial phase, jitter, or burstiness.

Another uncertainty we have in the system is the availability of the

computing resource. A processor is not always completely available for

computation in modern embedded systems due to dynamic resource man-

agement like dynamic frequency modulation. The same is true if active-

idle schemes are used in order to reduce its peak temperature, i.e., switch-

ing the processor on and off using a predefined pattern. Thus, the comput-

ing resource provided by a processor within a given time interval can also

be constrained by an upper and lower bound, denoted as service curve. An

exhaustive search to check all possible combinations of workload traces

and computation availabilities to determine the peak temperature of the

system is infeasible.

As inmost studies related to temperature analysis and simulation, cool-

ing and heating of the system ismodeled bymeans of Fourier’s law, i.e., the

law of heat conduction modeled by a linear differential equation.

The thermal behavior of processing architectures is usually modeled

by considering heat conductances and capacitances of micro-architectural

86 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

elements. It is also known that leakage power and thermal conductances

are temperature dependent. In contrast to Fourier’s law on cooling and

heating, the resulting differential equation is no longer linear. Based on

this generalized and more accurate thermal model, we use the technique

proposed in this chapter to analyze the maximum peak temperature for

given characterizations of the workload and the available computing re-

source under workload-conserving real-time scheduling algorithms, such
as earliest-deadline-first (EDF), rate-monotonic (RM), deadline-monotonic

(DM). The schedulability of a system can also be analyzed in the proposed

technique in combination with existing Real-Time Calculus based schedu-

lability analysis techniques [TCN00].

The contributions of this chapter can be summarized as follows:

• Based on a characterization of the task arrival variability as well as

the availability of the computation resource, an upper bound on the

peak temperature for anyworkload-conserving scheduling discipline

is determined.

• The peak temperature analysis is applied to three commonly used

power and temperature models that consider temperature depen-

dent leakage and conductances into account.

• Extensive experimental studies validate the proposed analysis

framework and show its applicability.

5.3 Related Work
Literature is available which explores the possibilities to reduce the peak

temperature to meet performance constraints [BP05, CHK07, FCWT09],

or maximizing performance under given peak temperature constraints,

[BM01]. Approaches are also available which explore thermal control by

applying control theory for system adaption [FWP09, FKC+10, WMW09].

In general, none of the approaches which combine temperature and per-

formance aspects explicitly estimate the worst case peak temperature that

may be experienced by the processor.

First order linear differential equations have been traditionally used

for thermalmodeling of integrated circuits see Section 5.4.3 and [MMA+07,

WB06a, WB06b, WB08, ZC07]. This traditional model is simple, though

inaccurate, as some parameters are vary with temperature which affects

the accuracy of results significantly in deep sub-micron technology, see

[LDSY07]. There are two temperature dependent parameters in themodel:

leakage power and thermal conductance, and it has been shown that both

parameters have a quadratic dependency on the temperature of the pro-

cessor, see [LHL05, LDSY07]. However, within the operating temperature

ranges of current circuits, the leakage power can be accurately estimated

by a linear model approximation also used in this chapter, see [LDSY07].

5.4. SYSTEM MODEL 87

On the other hand, the variable thermal conductance makes thermal dif-

ferential equation more complicated. This chapter includes temperature

dependent leakage and conductance in system level temperature analysis.

Using the principles outlined in this chapter, an extension of the presented

worst case peak temperature analysis to multicore systems has been pro-

posed, see [SBYT12]. Furthermore, traffic shaping techniques utilizing the

proposed thermal model for designing temperature constrained systems

have also been proposed, see [KT11].

5.4 System Model
We start with a simple lumped thermal model wherein leakage and ther-

mal conductance parameters are held constant, and then include an ad-

vanced model which takes into account temperature dependent leakage

and conductance parameters. Both models consider variability in the task

arrivals, workloads, and computing resources.

5.4.1 Computational Model
The computational model of a processing component follows the ideas of

network and real-time calculus. We suppose that the component receives

in time interval [s, t) a cumulative workload of W (s, t) time units, e.g., in
[s, t) tasks with a total workload of W (s, t) arrive. W (s, t) is a stair case
function for any fixed s, i.e., it has slope 0 almost everywhere and when a
task arrives it jumps by its computation time. Similarly, the component is

characterized by the availability of its computing resource, i.e.,R(s, t) time
units are available for task processing in time interval [s, t).

Incoming task workloads are stored in a queue until they are processed

by the computing resource. If there are no waiting or arriving tasks in

[s, t), then the available resource R(s, t) is wasted. Otherwise, it is used
to process incoming and waiting tasks. For example, a component can

process for R(s, t) time units in time interval [s, t).

According to the above explanation, the processing semantics is work

conserving, i.e., the processing component has to process available tasks

if it has resources available. There are no further assumptions on

the scheduling (queuing) discipline, i.e., it may be preemptive, non-

preemptive, EDF, fixed priority, or any combination thereof. It can eas-

ily be verified, that the above requirement of work conservation leads to

the following accumulated processing time Q(s, t) in interval [s, t), i.e., the
accumulated time a component is spending to operate on incoming (and

queued) workload

Q(s, t) = inf
s≤u≤t

{R(s, t)−R(s, u) +W (s, u)} (5.1)

88 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

where we suppose that at time s there are no buffered tasks, see also
[LBT01a, TCN00].

We are interested in determining the upper bound on the temperature

under any possible workload that is bounded by some event stream char-

acteristics, e.g., periodic with arbitrary initial phase, periodic with jitter,

sporadic, or bursty. To this end, we suppose that the cumulative workload

W is upper bounded using the concept of an arrival curve

W (s, t) ≤ α(t− s) ∀s < t (5.2)

where α(0) = 0, see for example [LBT01a]. A tight upper arrival curve
is a monotonically increasing staircase function, i.e., it has slope 0 almost

everywhere. Furthermore, it is sub-additive, i.e., it satisfies α(a) + α(b) ≥
α(a + b) for all a, b ≥ 0. Note that in case of several independent workload
functions Wi that are bounded individually by arrival curves αi and that
need to be concurrently processed in a single component, the accumulated

workload can be bounded by

W (s, t) ≤
∑
(i)

αi(t− s)

As a consequence, the results in this chapter will hold for components with

several event inputs as well.

In a similar way, the resource availability R can be upper and lower
bounded using a pair of upper and lower service curves

βl(t− s) ≤ R(s, t) ≤ βu(t− s) ∀s < t (5.3)

where βl(0) = βu(0) = 0.
We can now determine an upper bound on the accumulated computing

time according to [LBT01a, WMT06] by using (5.2) and (5.3)

Q(t−∆, t) ≤ γ(∆) = min{(α⊗ βu)� βl, βu} (5.4)

where (f⊗g)(∆) = inf0≤λ≤∆{f(∆−λ)+g(λ)} and (f�g)(∆) = supλ≥0{f(∆+
λ)− g(λ)}.
Narratively speaking, themaximumamount of theworkload processed

during the time interval ∆ is bounded by γ(∆). When there is more
workload available than the provided resource during the interval, it is

bounded by the maximum available resource (min{..., βu}). If not, γ(∆)
is determined by considering the combination of workload and resource

((α ⊗ βu) � βl). The accumulated workload (that is not processed previ-
ously) does affect γ and this is bounded by the minimum resource avail-
ability (βl) This is also the motivation for assuming a work conserving se-
mantics in this chapter. Without this work-conserving assumption, arbi-

trarily many workload can be delayed and accumulated regardless of re-

source availability making γ unbounded. In case of full resource availabil-
ity, this γ is known to be α ⊗ βu according to the Real-Time and Network
Calculus[LBT01a, WMT06].

5.4. SYSTEM MODEL 89

Because of (5.1) and (5.4), the accumulated computing time Q(s, t) for
any fixed s as well as its upper bound γ(t−s) aremonotonically increasing.
We now can define the rate function S(t) which represents the rate (in
workload per time unit) by which the computing resource is processing:

S(t) =
dQ(s, t)

dt
(5.5)

If the computing resource is always fully available, then we find

R(s, t) = βu(t − s) = βl(t − s) = t − s as in any time interval of length t − s
the computing resource can fully operate on available tasks. In this case,

Q(s, t) always has either slope 1 or 0. In other words, the rate function
satisfies S(t) ∈ {0, 1}, i.e., S(t) = 1 and S(t) = 0 denote that the processing
component is in ’active’ and ’idle’ mode at time t, respectively. 2 However,
such a simplified ’active/idle’ mode classification is no longer valid if we

allow for general resource availabilities. In this case, the rate function can

take any value 0 ≤ S(t) ≤ 1.

Now, we need to characterize the mapping of the operation modes to

the corresponding power consumption.

5.4.2 Power Models
A well accepted model for the frequency and voltage dependency of the

dynamic power consumption P is P ∝ v%f where v denotes the supply
voltage, % ≥ 2 models the superlinear dependence of power on the given
supply voltage, and f denotes operating frequency in CMOS circuits, re-
spectively. That is, the dynamic power consumption of a single operation

mode is determined by the combination of v and f which may be chosen
dynamically at run-time in modern processor architectures. The proces-

sor frequency f is proportional to the execution rate S(t).

For the sake of simplicity, the supply voltage v is assumed to be constant
in the following discussions and therefore, the dynamic power P depends
linearly on f which is proportional to the rate function S(t).

In addition, we may model the temperature dependence of leakage

power by means of a linear approximation [YCTK10b, LDSY07], which fi-

nally yields

P (t) = φT + ρS(t) + ψ (5.6)

Where φT + ψ and ρ are the leakage and dynamic power, respectively.
That is, φ is a temperature-dependent coefficient for the leakage, while the
dynamic power in the active status is ρ.

We also will consider a different, well accepted model which applies to

the case where S(t) ∈ {0, 1}. If S(t) = 0, then the processor is in ’idle’ mode

2
As S(t) implies an operating mode at moment t, it is not a continuous function.

90 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

with power P i, if S(t) = 1, then the processor is in the ’active’ mode with
power P a:

P (t) =

{
P i if S(t) = 0
P a if S(t) = 1

with P i = φiT + ψi, P a = φaT + ψa (5.7)

5.4.3 Thermal Models
In order to show the versatility of our approach, we will consider three

well accepted power-temperaturemodels based on various forms of linear

and quadratic differential equations, see also [MMA+07, WB06a, WB06b,

WB08, ZC07].

The first two models we consider are based on the following differen-

tial equation

C
dT

dt
= P −G · (T − Tamb) (5.8)

where C, P , G and Tamb denote the thermal capacity, the generated power,
the thermal conductance, and the ambient temperature, respectively.

Active/Idle Model:
In this case, the system is either in active or idle mode based on the rate

S(t), i.e., P (t) ∈ {P i, P a}, see (5.7).
The steady-state temperatures with rates S(t) = 0 and S(t) = 1 can be

determined as

T∞0 =
GTamb + ψi

G− φi
, T∞1 =

GTamb + ψa

G− φa

A closed-form solution of (5.8) yields

T (t) = T∞ + (T (t0)− T∞) · e−
G−φ
C
·(t−t0)

(5.9)

as long as the system is in a constant mode (active or idle) for t ≥ t0 and
T∞ is the corresponding steady-state temperature.

Continuous Mode Model:
Considering the continuous power model (5.6), we derive from (5.8) the

differential equation

C
dT

dt
= (φT + ρS(t) + ψ)−G(T − Tamb) (5.10)

In addition, we consider an additional temperature-dependent parameter,

namely the thermal conductance of silicon. It is reported that the ther-

mal resistance (reciprocal of conductance) can be linearly approximated

5.4. SYSTEM MODEL 91

[WSMM01a], thus the temperature-dependent conductance can be mod-

eled as follows:

G(T) =
1

R0 +R1T
(5.11)

Combining (5.10) and (5.11), we derive the following differential equation

dT

dt
=
Tamb − T
L0 + L1T

+MT +N (5.12)

where L0 = CR0, L1 = CR1,M = φ/C, and N = (ρS(t) + ψ)/C.

Linear Model:
Often, the physical computing device contains several interacting thermal

layers such as silicon and copper. In this case, linear models based on ma-

trix linear differential equations are well established, see e.g., [SSS+04b,

HSG+09]. Based on the physical structure of the device, one can derive the

corresponding impulse response function h(t) which leads to the closed-
form solution

T (t) = T∞0 +

∫ t

0
S(u) · h(t− u)du (5.13)

where T∞0 denotes the steady-state temperature at constant rate S = 0.
Note again, that S(t) could be replaced in some monotonic power function
P (S(t)).

5.4.4 Soundness of Models
An active/idle model is called proper if it satisfies the following two proper-
ties:

• In order to guarantee a stable thermal model, we require that G > φi

and G > φa.

• We also require that the steady-state temperature in the active mode

is larger than that in the idle mode, i.e.,
GTamb+ψ

i

G−φi < GTamb+ψ
a

G−φa .

We call a continuous mode model proper, if the temperature converges
to a certain value for constant execution rate S(t). We can determine po-
tential steady-state temperatures under constant rate S(t) by setting dTdt = 0
in (5.12) as

1

2L1M

(
1− L0M − L1N ±

√
(L0M + L1N − 1)2 − 4L1M(L0N + Tamb)

)
As a consequence, the following condition needs to hold for a proper con-tinuous mode model:

(L0M + L1N − 1)2 ≥ 4L1M(L0N + Tamb) (5.14)

92 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

More precise insight on the proper continuous mode model is given in
Figure 5.3. From the two real potential steady-state temperatures only

the lower one is stable. Therefore, we can conclude that the steady-state

temperature for a constant rate S(t) is

T∞ =
1

2L1M

(
1− L0M − L1N −

√
(L0M + L1N − 1)2 − 4L1M(L0N + Tamb)

)
.

(5.15)

Figure 5.3: Illustration of dT
dt in (5.12) for a constant operation mode.

Finally, we call a linear model proper, if the corresponding impulse re-
sponse function h(t) is strictly monotonically decreasing, i.e., h(s) > h(t)
for all s > t.

5.4.5 Problem Definition
Now, we can formulate the worst-case peak temperature analysis prob-

lem:

Given is a work-conserving component characterized by a proper ther-mal model. The objective is to determine the peak temperature T ∗ forany cumulative workload W that complies to a given sub-additive ar-rival curve α and any resource availability R bounded by the wide-sense increasing service curves βu and βl, with βu(0) = βl(0) = 0.
The requirement that the arrival curve be sub-additive ensures tight-

ness of bounds, and the results obtained are also tight, see [LBT01b].

Specifically, we say that an arrival curve α is sub-additive if it satisfies
(5.16):

∀δ1, δ2 ≥ 0 : α(δ1) + α(δ2) ≥ α(δ1 + δ2), (5.16)

The most naive solution to this problem is to state that T ∗ is upper-
bounded by T∞1 in a fully-utilized mode with S(t) = 1, which simply ig-
nores the arrival/service curve by assuming the component is always fully

utilized and the computing resource is fully available. However, this is far

5.5. THERMAL ANALYSIS 93

beyond acceptable when the utilization is low. Therefore, we would like

to determine a tight upper bound on T ∗, and if possible, even determine
a workload trace W and a resource availability R that leads to the peak
temperature T ∗.

5.5 Thermal Analysis
In order to determine such an upper bound on the peak temperature T ∗,
we will at first show how to construct a worst case computing time se-

quence. This result will then be used to determine the desired upper

bound. Finally, we will discuss the tightness of this bound and compu-

tational aspects.

5.5.1 Worst-Case Computing Time
As a main prerequisite for constructing the peak temperature, we need

two properties of the underlying power and thermal models, namelymonotonicity and shift. These two properties will be shown based on the
generic form of the thermal differential equation

dT

dt
= H(S, T) (5.17)

where the dependence ofH(S, T) on the execution rate S reflects the time-
varying power consumption. In other words, H already incorporates the
power generation sequence.

We will now show that the generic thermal models as defined above

satisfy the thermalmonotonicity property.
Lem. 5.1. (Monotonicity) Suppose we consider two solutions of (5.17) withdifferent initial temperatures T0 at time s. Then the solution T (t) with thehigher initial temperature will at no time t ≥ s be smaller than the solutionwith lower initial temperature.
Proof. Let us suppose that the above theorem is false. Then the temper-
ature trace with the higher initial temperature at s has the lower temper-
ature at some time t. As a consequence, the two temperature traces cross
in between, i.e. there exists a time s < t0 ≤ t where the temperatures of
the two sequences are equal. As the two sequences have equal derivative

H(S, T) for equal temperatures, their temperature at twill be equal, which
contradicts the assumption.

�
In terms of the various thermal models that have been described in

the previous section, one can interpret the above lemma as follows: If the

power traces are the same, then a higher initial temperature does not lead

to a smaller final temperature.

94 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

As the next prerequisite in constructing an upper bound on the tem-

perature, we will show in lemma 5.2 under what conditions a time shift of

the rate function S leads to temperature increase.

Lem. 5.2. (Shifting) Given is a differential equation of the form (5.17).We consider two different execution rate traces in the time interval [0, 2δ),namely
S(t) =

{
S1 if 0 ≤ t < δ
S2 if δ ≤ t < 2δ

S(t) =

{
S1 − σ if 0 ≤ t < δ
S2 + σ if δ ≤ t < 2δ

for some rate shift σ ≥ 0. Then the corresponding temperature traces T (t)and T (t) satisfy
T (2δ) > T (2δ)

for T (0) = T (0) = T0 and δ → 0 if either
H(S1 − σ, T0) +H(S2 + σ, T0) > H(S1, T0) +H(S2, T0) (5.18)

or
H(S1 − σ, T0) +H(S2 + σ, T0) = H(S1, T0) +H(S2, T0) ∧

H(S1 − σ, T0) · ∂H(S2 + σ, T)

∂T
(T0) > H(S1, T0) · ∂H(S2, T)

∂T
(T0) (5.19)

Proof. Neglecting higher order terms in δ, we can write
T (2δ) = T0 + δ[H(S1, T0) +H(S2, T0 + δH(S1, T0))]

T (2δ) = T0 + δ[H(S1 − σ, T0) +H(S2 + σ, T0 + δH(S1 − σ, T0))]

The condition T (2δ) > T (2δ) is satisfied if

H(S1 − σ, T0) +H(S2 + σ, T0 + δH(S1 − σ, T0)) > H(S1, T0) +H(S2, T0 + δH(S1, T0))

This condition directly leads to (5.18,5.19) if we use the following relations

H(S2, T0 + δH(S1, T0)) = H(S2, T0) + δH(S1, T0)
∂H(S2, T)

∂T
(T0)

H(S2 + σ, T0 + δH(S1 − σ, T0) = H(S2 + σ, T0) + δH(S1 − σ, T0)
∂H(S2 + σ, T)

∂T
(T0)

which hold for δ → 0.
�
Based on this lemma, we will show later that the temperature at some

measuring time gets larger if we ’shift’ some ’execution rate’ σ towards
it. The lemma itself uses two execution rate traces S(t) and S(t). These
two cases correspond to the above mentioned ’shift’ towards larger time

instances. If (5.18) and (5.19) are satisfied, then we have a higher tempera-

ture at somemeasuring time after we shift the execution rate σ closer to it.
We now show that the shift lemma holds for the simple active/idle mode.

5.5. THERMAL ANALYSIS 95

Lem. 5.3. Suppose that we consider the active/idle model according to (5.7),(5.8) with
H(0, T) = P i −G · (T − Tamb) , H(1, T) = P a −G · (T − Tamb)

Then with S1 = 1, S2 = 0 and σ = 1, the condition (5.19) in lemma 5.2 issatisfied if the model is proper.
Proof. Condition (5.19) is equivalent to

H(0, T0) +H(1, T0) = H(1, T0) +H(0, T0) ∧

H(0, T0)
∂H(1, T)

∂T
(T0) > H(1, T0)

∂H(0, T)

∂T
(T0)

which is equivalent to

(φiT0 + ψi −G · (T0 − Tamb))(G− φa) < (φaT0 + ψa −G · (T0 − Tamb))(G− φi)⇔
ψi +GTamb
G− φi

<
ψa +GTamb
G− φa

if the model is proper. The last relation is true as the active/idle model is

proper.

�

From the above lemma, we can conclude that the shift lemma holds for

the active/idle model if it is proper. In other words, exchanging active and
idle modes such that the active mode gets closer to the measurement time

increases the temperature.

Now, we will show a similar condition for the more complex continu-

ous mode model.

Lem. 5.4. Suppose that we consider the continuous model according to(5.12) with
H(S, T) =

Tamb − T
L0 + L1T

+MT +N(S)

Then the condition (5.19) in lemma 5.2 is satisfied if
σ > 0 ∧ T0 < T∞

Proof.
Due to the linearity of N(S), we have H(S1 − σ, T0) + H(S2 + σ, T0) =

H(S1, T0) +H(S2, T0). Then we find that (5.19) is equivalent to

(
Tamb − T
L0 + L1T

+MT +N(S1 − σ)) · ς > (
Tamb − T
L0 + L1T

+MT +N(S1)) · ς

Where ς = −L0−L1Tamb
(L0+L1T)2

.

96 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

If T0 < Tmin = M/2L then this condition is equivalent to

Tamb − T
L0 + L1T

+MT +N(S1 − σ) <
Tamb − T
L0 + L1T

+MT +N(S1)⇔

N(S1 − σ) < N(S1) ⇔ σ > 0

�

In summary, the above lemma states that one gets a higher temperature

if we shift the rate σ towards the measuring time in case of the continuous
model.

Finally, we show that the shift-property as defined in lemma 5.2 also

holds for the linear model.

Lem. 5.5. (Shift) Given is a linear temperature model of the form (5.13).We consider two different execution rate traces in the time interval [0, 2δ),namely
S(t) =

{
S1 if s ≤ t < s+ δ
S2 if s+ δ ≤ t < s+ 2δ

S(t) =

{
S1 − σ if s ≤ t < s+ δ
S2 + σ if s+ δ ≤ t < s+ 2δ

for some rate shift σ > 0. It the model is proper, then the correspondingtemperature traces T (t) and T (t) satisfy
T (s+ 2δ) > T (s+ 2δ)

for T (s) = T (s) and δ → 0.
Proof. From (5.13) we can derive by simple algebraic transformations

T (s+ 2δ)− T (s+ 2δ) = σ

(∫ s+δ

s
h(t− u)du−

∫ s+2δ

s+δ
h(t− u)du

)
Therefore, T (s+ 2δ) > T (s+ 2δ) is equivalent to∫ δ

0
h((t− s)− u)du >

∫ δ

0
h((t− s)− δ − u)du

which is satisfied if h(t) > h(t− δ) for all δ, i.e., if the model is proper.
�

The next lemma shows for all considered power and temperature mod-

els, that we obtain a higher temperature at some time τ if in any interval
ending at τ the component has larger accumulated computing time. This
lemma provides the foundation for the main theorem of this Section.

5.5. THERMAL ANALYSIS 97

Lem. 5.6. (Worst-case Computing Time) Given is a proper thermal model,i.e., a model that satisfies the shift condition as defined in lemmata 5.2 and5.5, as well as some time instance τ . In addition, we consider two accumu-lated computing time functions Q and Q which satisfy
Q(τ −∆, τ) ≥ Q(τ −∆, τ)

for all 0 ≤ ∆ ≤ τ . Then, if T (0) = T (0) we have T (τ) ≥ T (τ), i.e., the tem-perature at time τ is not higher if we use the accumulated computing timefunction Q instead of Q.
Proof. First note that because of (5.5), the condition of the lemma trans-
lates equivalently to the following condition on the corresponding rate

functions S and S: ∫ τ

τ−∆
S(t) dt ≥

∫ τ

τ−∆
S(t) dt

The following algorithm performs a stepwise transformation of S(t)
into S(t) using the elementary rate shift operations in lemmata 5.2 and
5.5. As a result, we can show that in each step the temperature will in-

crease. In order to simplify the proof technicalities, we suppose discrete

time, i.e., S(t) and S(t) may change values only at multiples of δ. In other
words, S(t) and S(t) are constant for t ∈ [kδ, (k + 1)δ) for all k ≥ 0. Let us
define τ = kmaxδ. We now execute the following algorithm:

1. Determine the smallest 1 ≤ k1 ≤ kmax such that S(τ−k1δ) < S(τ−k1δ).
If there is no such k1, then S(t) = S(t) for all 0 ≤ t ≤ τ and therefore,
T (τ) = T (τ) and the algorithm stops.

2. Determine the smallest k2 with k1 < k2 ≤ kmax such that S(τ − k2δ) 6=
0. In case such a k2 does not exist, then T (τ) ≥ T (τ) holds and the
algorithm stops. Otherwise, execute the following steps:

(a) Set σ = min{S(τ − k2δ), S(τ − k1δ)− S(τ − k1δ)}.
(b) For all i starting from k2 down to k1 + 1 change S(t) as follows:

S(t) := S(t)− σ for t ∈ [τ − iδ, τ − (i− 1)δ) and S(t) := S(t) + σ for
t ∈ [τ − (i− 1)δ, τ − (i− 2)δ).

3. If S(τ − k1δ) < S(τ − k1δ) is still true, continue with step 2. Otherwise,
go to step 1.

Note that σ is always positive in step 2(a) as required in lemmas 5.3, 5.4 and
5.5. Now, we can simply prove using lemma 5.2 that after each execution

of step 2, T (τ) decreases until it reaches T (τ). Therefore, the initial T (τ)
was not larger than T (τ).
�
Based on the above lemma 5.6 we will show the first main result of

this Section. The following theorem 5.1 provides a constructive method

to determine the worst-case accumulated computing time Q∗ for a work-
conserving component.

98 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

Thm. 5.1. (Worst-case Temperature) Given a work-conserving processingcomponent with the computational model (5.1), one of the power modelsdefined in Section 5.4.2, and a thermal model as described in Section 5.4.3.The thermal model is supposed to be proper according to Section 5.4.4. Thenthe following holds:
• Suppose that the accumulated computing time function
Q∗(0,∆) = γ(τ) − γ(τ − ∆) for all 0 ≤ ∆ ≤ τ leads to tempera-ture T ∗(τ) at time τ , where γ is defined in (5.4). Then T ∗(τ) is an upperbound on the highest temperature T (τ) for all feasible workload tracesthat are bounded by the arrival curve α and service curve β accordingto (5.2) and (5.3) respectively.

• If in addition T (0) ≤ T∞0 holds, where T∞0 is a steady-state temperaturefor the constant rate function S(t) = 0, then for any feasible workloadtrace we find T ∗(τ) ≥ T (t) for all 0 ≤ t ≤ τ .
Proof. At first, we show that Q∗(0,∆) = γ(τ)− γ(τ −∆) satisfies (5.4). We
haveQ∗(t−∆, t) = Q∗(0, t)−Q∗(0, t−∆) = γ(τ)−γ(τ−t)−γ(τ)+γ(τ−t+∆) =
γ(τ−t+∆)−γ(τ−t). Therefore, we have to show that γ(τ−t+∆)−γ(τ−t) ≤
γ(∆) for all 0 ≤ t ≤ τ which is satisfied if γ(a+b) ≤ γ(a)+γ(b) for all a, b ≥ 0.

It is well known from network and real-time calculus that tight upper

arrival/service curves are sub-additive and tight lower service curves are

superadditive, i.e., they satisfy α(a)+α(b) ≥ α(a+b), βu(a)+βu(b) ≥ βu(a+b)
and βl(a)+βl(b) ≤ βl(a+b), see also [TCN00]. Using these properties in (5.4)
results in γ(a) + γ(b) ≤ γ(a+ b).

Now, we will show the first item of the theorem by contradiction. Sup-

pose that there is an accumulated computing time Q which leads to a
higher temperature T (τ) at time τ . Then according to lemma 5.6 there
exists some ∆ ≤ τ such that Q∗(τ − ∆, τ) < Q(τ − ∆, τ). As we know that
Q∗(τ −∆, τ) = γ(∆)− γ(0) = γ(∆)we can conclude that Q(τ −∆, τ) > γ(∆).
Such a computing time function Q would violate (5.4).

Now, let us prove the second item of the theorem by contradiction. To

this end, we denote as T (t) the temperature caused by some accumulated
computing time Q. Suppose now that there exists some time σ ≤ τ where
we have T (σ) > T ∗(τ). For an upper bound on T (σ), e.g., T ∗(σ) ≥ T (σ), we
also would find T ∗(σ) > T ∗(τ). Suppose that we construct such an upper
bound using the first item in the theorem, i.e., we choose as a worst case

accumulated computing time Q(σ −∆, σ) = γ(∆) for 0 ≤ ∆ ≤ σ.
AsQ∗(τ−∆, τ) = γ(∆), we can now conclude thatQ∗ shifted by τ−σ and

Q are equal, i.e., we have Q(σ−∆, σ) = Q∗(τ −∆, τ) for 0 ≤ ∆ ≤ σ. Because
of the monotonicity of the thermal model (see lemma 5.1), the assumption

T ∗(σ) > T ∗(τ) would require that the initial temperature T (0) used for the
worst case computing time Q is larger then the temperature at time τ − σ
when using computing time Q∗.

As the thermal models are supposed to be proper, temperatures in all

scenarios, i.e., with all computing time functions, are always larger or

5.5. THERMAL ANALYSIS 99

equal than the minimum of the initial temperature and T∞0 . As we have
T (0) ≤ T∞0 , temperatures are always larger or equal T (0). This contra-
dicts the above requirement that the initial temperature T (0) is larger than
some temperature that occurs using Q∗.
�
As a result of the above theorem, we can now describe a method to

determine an upper bound on the component temperature T ∗(τ) at some
time t = τ :

• We start with a given bound on the cumulative workload, i.e., the

arrival curve α, and with given upper and lower bounds on the re-
source availability βu and βl, see (5.2) and (5.3).

• We determine the upper bound on the accumulated computing time

γ based on (5.4). Using γ, we can determine the worst case comput-
ing time functionQ∗ according to theorem 5.1 and the corresponding
rate function S∗ in (5.5).

• Corresponding to the chosen power and temperaturemodel, we solve

the temperature equation (5.8), (5.10), or (5.13). The model has to sat-

isfy the conditions of the corresponding lemma 5.3, 5.4 or 5.5, i.e., the

models should be proper according to Section 5.4.4. The solutionmay

be done analytically or numerically with an appropriate initial tem-

perature T (0) according to theorem 5.1. The temperature at t = τ is
T ∗(τ).

There are still two questions that need to be answered: Under what

conditions is the above bound tight? What is a reasonable time τ such
that the upper bound T ∗(τ) holds for arbitrary long runs of the system,
i.e., T (t) ≤ T ∗(τ) for all t ≥ 0? The next two Sections will answer these
questions.

5.5.2 Tightness
Note that theorem 5.1 only provides an upper bound T ∗(τ) on the actual
worst-case temperature. In other words, there may be no single trace that
leads to the critical accumulated computing timeQ∗(0,∆) = γ(τ)−γ(τ−∆).
Now, we will show that in the case of maximal resource availability there

exists a single trace W ∗(0,∆) for 0 ≤ ∆ ≤ τ which (a) is compatible to
the given arrival curve α and (b) results in the worst case accumulated
computing timeQ∗(0,∆). Maximal resource availability results in R(s, t) =
t−s, i.e., in any time interval of length t−s the computing resource is fully
available. As a result we find βu(∆) = βl(∆) = ∆.

We first determine a continuous accumulated workload function

W ∗(0,∆), i.e., which has slopes 1 and 0. It can be interpreted as the limit
case of task arrivals with infinitesimally small inter-arrival times and in-

finitesimally small computation times.

100 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

Thm. 5.2. (Tightness) Suppose that the assumptions from theorem 5.1 holdand the resource availability satisfies R(s, t) = t − s for all t ≥ s. Then, thecontinuous workload functionW ∗(0,∆) = Q∗(0,∆) for 0 ≤ ∆ ≤ τ

• leads to the accumulated computing time Q∗(0,∆) according to thecomputational model (5.1),
• complies to the arrival curve α according to (5.2), and
• leads to the highest possible temperature T ∗(τ) ≥ T (τ) for any feasibleworkload trace.

Proof. With the condition βl(∆) = βu(∆) = ∆, the computational model
in (5.1,5.4) can be simplified to

Q(s, t) = inf
s≤u≤t

{(t− u) + α(s, u)} (5.20)

Q(t−∆, t) ≤ γ(∆) = inf
0≤u≤∆

{(∆− u) + α(u)} (5.21)

Thus, for the first item, we actually need to prove that Q∗(0,∆) =
inf0≤u≤∆{(∆ − u) + Q∗(0, u)} as W ∗(0,∆) = Q∗(0,∆). At first, we find that
there exists a u′ such that (∆ − u′) + Q∗(0, u′) = Q∗(0,∆), namely u′ = ∆.
Therefore, we only have to show that (∆ − u) + Q∗(0, u) ≥ Q∗(0,∆) for all
0 ≤ u ≤ ∆. This condition is equivalent to (∆ − u) ≥ Q∗(0,∆) − Q∗(0, u) =
Q∗(u,∆). As the accumulated processing time in interval [u,∆) can not ex-
ceed the available service ∆− u, the first item is proven.
With W ∗(0,∆) = Q∗(0,∆), Q∗(0,∆) = γ(τ) − γ(τ − ∆) and γ(∆) =

inf0≤λ≤∆{(∆− λ) + α(λ)} we find

W ∗(a, b) = γ(τ − a)− γ(τ − b)
= inf

0≤λ≤t−a
{(t− a− λ) + α(λ)} − inf

0≤η≤t−b
{(t− a− η) + α(η)}

≤ inf
0≤u≤(b−a)

{((b− a)− u) + α(u)} ≤ α(b− a)

where we use the fact that a ≤ b ≤ τ , η ≤ γ as well as the subadditivity of
α.

The third item is a simple consequence of theorem 5.1 as (a) W ∗ leads
to the accumulated computing time function Q∗ and (b) Q∗ leads to the
highest temperature T ∗(τ) ≥ T (τ).
�

As has been mentioned above, W ∗(0,∆) has slope 1 or 0 and corre-
sponds to a continuous arrival of tasks. There are many possibilities to

convert such a workload trace into one that has discrete task arrivals,

which is compliant to the provided arrival curve α and which leads to the
worst-case temperature. In the following, let us describe one of these pos-

sibilities.

5.5. THERMAL ANALYSIS 101

Lem. 5.7. (Worst-Case Workload) Let us suppose that the conditions of the-orem 5.2 hold. Furthermore, let us suppose that for some constant c thegiven arrival curve α satisfies α(∆) = c · d1
cα(∆)e for all ∆ ≥ 0, i.e., the stepsize of α(∆) is an integer multiple of c. Suppose that the observation time τis chosen such that γ(τ) according to (5.4) is a multiple of c as well. Then theworst-case accumulated workload Ŵ ∗(0,∆) = c · d1

cW
∗(0,∆)e

• is piecewise constant with a step size which is an integer multiple of c,
• complies to the arrival curve α according to (5.2) and
• leads to the highest possible temperature T ∗(τ) ≥ T (t) for all 0 ≤ t ≤ τfor any feasible workload trace.

Proof. Let us first suppose without restricting the generality that c = 1.
The first item is obvious from Ŵ ∗(0,∆) = dW ∗(0,∆)e.
The second item can be shown as R̂∗(a, b) = dR∗(0, b)e − dR∗(0, a)e ≤

dR∗(0, b)−R∗(0, a)e = dR∗(a, b)e ≤ dα(b− a)e = α(b− a) for a < b.

In order to show the third item, we start fromQ∗(0,∆) = γ(τ)−γ(τ −∆)
in theorem 5.1 and γ(∆) = inf0≤λ≤∆{(∆ − λ) + α(λ)} from (5.21). From
the last equation one can observe that γ(∆) has slope 1 or 0 and it has an
integer value if it has slope 0. Therefore, if γ(τ) is integer as well, then
we also find that Q∗(0,∆) has slope 1 or 0 and it has an integer value if
it has slope 0. If we can show that the accumulated workload function

Ŵ ∗(0,∆) = dW ∗(0,∆)e = dQ∗(0,∆)e leads to the same worst-case accumu-
lated processing time Q∗(0,∆) as W ∗(0,∆), the theorem would hold. Note
that Q∗(0,∆) = inf0≤u≤∆{(∆ − u) + Q∗(0, u)} from (5.21) in theorem 5.2.
Because of the property of C∗(0, u) mentioned before, one can easily de-
duce that inf0≤u≤∆{(∆ − u) + Q∗(0, u)} = inf0≤u≤∆{(∆ − u) + dQ∗(0, u)e} =
inf0≤u≤∆{(∆− u) + Ŵ ∗(0, u)}.
�
Note thatW ∗(0,∆) does not necessarily represent the conventional crit-

ical instant scenario that is often used in real-time analysis in order to de-

termine the worst-case timing behavior.

As a result of theorem 5.2 and lemma 5.7, the upper bound T ∗(τ) de-
termined through theorem 5.1 is proven to be tight under the conditions

mentioned in theorem 5.2, i.e., there exists a worst case workload trace

W ∗ that actually leads to T ∗(τ) when a system resource is fully available
all the time.

5.5.3 Computational Aspects
As has been mentioned already, theorem 5.1 implies a constructive

method to determine the upper bound T ∗(τ) for some time τ : Starting from
a given arrival curve α(∆) for 0 ≤ ∆ ≤ τ one can determine the function
γ(∆) for 0 ≤ ∆ ≤ τ using (5.4). With Q∗(0,∆) = γ(τ) − γ(τ − ∆) for all
0 ≤ ∆ ≤ τ and (5.5) one can determine the critical mode function S∗(t),

102 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

0 ≤ t ≤ τ . It determines the critical distribution of operating modes (5.6)
which is used to solve the thermal model, i.e., at time t = τ we find T ∗(τ).

There is one question remaining: How to choose an appropriate ob-

servation time τ such that a bound with an appropriate precision is de-
termined? For simplicity and without restricting the generality, we sup-

pose for the remainder of this section, that the initial temperature satisfies

T (0) = T∞0 , i.e. it equals the steady state temperature of an idle system
with constant rate S = 0.

As a simple approach, it is possible to determine an upper bound on

the precision, given an observation time τ . This does not solve the original
question but can be used as a basis for some heuristics, e.g. double the

observation time τ until the desired precision is guaranteed. Given τ , we
first determine the upper bound T ∗0 (τ) for initial temperature T∞0 and the

bound T ∗1 (τ) for initial temperature T∞1 , i.e. the steady state temperature
of an active system with constant rate S = 1. Due to the monotonicity
of the power/temperature mode according to lemma 5.1, we can conclude

that limt→∞ T
∗(t) ∈ [T ∗0 (τ), T ∗1 (τ)].

For the active/idle model and the continuous mode model, it is possible

to determine the observation time τ explicitly, given a desired precision.

Lem. 5.8. We are given computational, temperature and power models ac-cording to theorem 5.1 and T (0) = T∞0 , i.e., the steady state temperature forconstant rate S = 0. Then
lim
t→∞

T ∗(t) ∈ [T ∗(τ), T ∗(τ) + ∆T ∗]

where T ∗(τ) denotes the upper bound determined using theorem 5.1 and ob-servation time τ and where ∆T ∗ denotes a bound on the corresponding pre-cision. Given ∆T ∗, the following expressions provide a lower bound on theobservation time τ that achieves this precision:
τ ≥ C

G−max{φi, φa}
ln

(
T∞1 − T∞0

∆T ∗

)
(5.22)

holds for the active/idle model and
τ ≥ 1

−g
ln

(
T∞1 − T∞0

∆T ∗

)
with g =

−L0 − L1T
∞
1 + L1(Tamb − T∞1)

(L0 + L1T∞1)2
+M

(5.23)

holds for the continuous mode model where N is computed for S = 1.
Proof. At first note, that due to the monotonicity of the power/tempera-
ture mode according to lemma 5.1, we find limt→∞ T

∗(t) ∈ [T ∗0 (τ), T ∗1 (τ)]. In
order to be independent of the actual rate function S(t), we first determine
the worst case rate function, i.e., which leads to the worst precision.

5.5. THERMAL ANALYSIS 103

Suppose that we integrate (5.17) for a small time step δ and two differ-
ent initial temperatures T1 and T2. With the resulting temperatures T

′
1 and

T ′2 we obtain
T ′2 − T ′1
T2 − T1

= 1 + δ
H(S, T2)−H(S, T1)

T2 − T1

For the active/idle model, we simply find that this term is 1− δ/C · (G− φ)
where φ ∈ {φi, φa}. This term is maximal for φ = max{φi, φa}, i.e., the con-
stant rate associated to φ. For the continuous mode model we obtain the
term 1 + δ(M − L0+L1Tsmb

(L0+L1T1)(L0+L1T1)). As larger rates lead to a higher temper-

ature gradient H(S, T), the term is maximal for constant rate S = 1.
Now, let us prove (5.22). Using (5.9), we find

∆T ∗ = (T∞1 − T∞0)e
φ−G
C

τ

which directly leads to (5.22).

The proof for the continuous mode model follows. Let T (Ts, τ) be the
resulting temperature at τ with starting temperature Ts for S = 1. When
the starting temperature is T∞1 , the temperature stays at T

∞
1 . Thus,

∆T ∗ = T (T∞1 , τ)− T (T∞0 , τ) = T∞1 − T (T∞0 , τ)

As it is hard to get the closed form solution for (5.12), we approximate

T (T∞0 , τ) with an asymptotic line on dT/dt as shown in Figure 5.4. With

F = d2T
dt2
, the approximated temperature T̃ holds following:

dT̃

dt
= F (T∞1)(T̃ − T∞1)

Figure 5.4:Approximated temperature T̃ which has the same stable temperature T∞1 but con-
verges slower.

Since
dT
dt ≥

dT̃
dt for T, T̃ ≤ T∞1 , T (T∞0 , τ) ≥ T̃ (T∞0 , τ) , T̃ converges to T∞1

slower than T . Using the solution for T̃ in form of (5.9), we have

∆T ∗ ≥ T∞1 − T̃ (T∞0 , τ) = T∞1 − (T∞1 + (T∞0 − T∞1)egτ)

104 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

where g is F (T∞1). Simple algebraic transformations with

g =
−L0−L1T∞1 +L1(Tamb−T∞1)

(L0+L1T∞1)2
+M lead to (5.23).

�
Following the above lemma, we can determine a suitable observation

time τ before the worst-case temperature simulation while guaranteeing
a precision on the worst case temperature bound.

5.6 Experimental Analysis
In this section, we will compare our worst-case analysis results with a ran-

dom simulation of a basic real-time system. For simplicity, we illustrate

our techniques assuming a set of processes that are periodic with jitter.

Furthermore, we investigate the impact of different task invocation peri-

ods and jitter in task arrivals, and observe their relationship to the maxi-

mal temperature. Impact of variable resource availability on the temper-

ature is also studied by allowing different service curves.

To ensure repeatability of our experiments and further investigations,

our code has been integrated into the MPA-RTC toolbox and is available

on-line at http://www.mpa.ethz.ch/rtctoolbox.

5.6.1 Benchmarks and Basic Configuration
In addition to the simple example from Section 5.2, a multi-processing

video-conferencing system is considered, where three processes are ex-

ecuting on an ARM embedded processor. The system includes a video

codec, an audio codec, and a network process which manages the commu-

nication, and for illustration it has been configured with a period-jitter-

delay model, see [WMT06, WT06b], with parameters summarized in ta-

ble 5.1.

In the example, the video codec operates in a range varying from 12

frames per second (fps) to 50fps, being able to provide different output

video qualities. This offers us the possibility to investigate a large range

of invocation periods between 20ms and 90ms. For illustration purposes

we set the audio codec to operate at a similar sampling rate, with an invo-

cation period of 20ms, which in the real system means just pre-processing

(buffering) audio samples. Finally, the network process will be invoked as

well with a period of 20ms. We assumed the deadline of each task iden-

tical to its invocation period. For the exact meaning of all parameters in

table 5.1, please refer to [WT06b]. System parameters are summarized in

table 5.2. Coefficients for the temperature dependent thermal resistance

(R0 and R1) are taken from [WSMM01b] and properly scaled to have the

same thermal conductance as [YCTK10b] at 300K. Power parameters are

adapted from [YCTK10a] and scaled down to be proper according to (5.14).

In all our experiments we start simulations with the initial temperature

T (0) = T∞0 = 319.31K, calculated from parameters given in table 5.2 and

http://www.mpa.ethz.ch/rtctoolbox

5.6. EXPERIMENTAL ANALYSIS 105

Table 5.1: Parameters of the video conferencing application.
Video Audio Network

period [20, 90]ms 30ms 30ms

jitter [20, 90]ms 10ms 10ms

min. interarrival 1ms 1ms 1ms

execution demand 6ms 3ms 2ms

deadline [20, 90]ms 30ms 30ms

Table 5.2: Thermal and power parameters of the considered embedded system architecture.
R0 R1 C φ ρ ψ

0.052 1
W 0.0123 1

WK 0.0218 J
K 0.07WK 9.8W −17.5W

the observation time interval τ = 1.2s, see lemma 5.8. For the power mode
in equation (5.6) and the continuous thermal model in equation (5.12)

have been used for the simulation.

Te
m

pe
ra

tu
re

 (K
)

315

325

335

345

355

360

time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6

0

5

10

15

20

[x
10

 m
s]

Figure 5.5:Relevant analysis quantities related to the simple example from Section 5.2.

106 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

5.6.2 Peak Temperature Analysis
At first, let us look again at the simple example from Section 5.2, i.e., asingle task stream with period 120ms, jitter 240ms, computation time 30ms
and minimal inter-arrival time 30ms on the fully serviced processor. The
following Figure 5.5 shows all relevant quantities, i.e., α(∆) according to
(5.2), γ(∆) according to (5.4), the worst-case accumulated computing time
Q∗(0,∆) from theorem 5.1 and the observation interval length τ = 0.6s. It
is intuitively shown that the workload is placed as late as possible upto τ
causing the bursty shot at the end. A part of the corresponding tempera-

ture trace and workload according to lemma 5.7 has already been shown

in Figure 5.2, but using the observation interval τ = 1.2s.

The video conferencing example described in table 5.1 is also analyzed

in terms of peak temperature. The invocation period of video task is fixed

to 50ms in this experiment. For the comparison to a temperature simula-
tion of random traces, we use 100 randomly generated task arrivals that

conform to the workload specification. Figure 5.6 shows the correctness

of the computed upper bound according to theorem 5.1 and the limited

coverage of random simulations. A similar experiment, but using reduced

order models derived from the previous chapters is shown in Figure 5.7.

Five different transient temperatures in the interval [0s, 1.2s) are
drawn in Figure 5.6: (a) the time critical instance (the workload trace that

fits to the critical instant for timing analysis by releasing the workload as

early as possible at the beginning), (b) the thermal critical instance with

constant G, (c) the thermal critical instance (generated by Theorem 5.1)

with variable G of (5.11), (d) the thermal critical instance with varying

G and infinitesimally small period/jitter, and (e) 100 randomly generated

workload traces. All traces start from the stead-state idle temperature

T∞0 = 319.49K. For (d), we change the period and jitter infinitesimally small
while keeping the utilization the same.

The time critical instance has higher transient temperature before its

first idle time than other traces. However, its temperature starts to de-

crease after thatmoment, and does not lead to theworst-case peak temper-

ature. The highest temperature observed is 350.721K. In contrast, the 100
random simulations might keep the system at higher temperature later

on, but still does not capture the worst-case peak temperature. The high-

est peak temperature is 354.4K for random simulations. As shown in Fig-
ure 5.5, the thermal critical trace first warms up the system with periodic

arrivals and then heats up the system with burst arrivals and jitters at the

end around τ and the resultant worst-case transient temperature 355.652K
in Figure 5.6.

The effect of a burst on system temperature is illustrated in Fig-

ure 5.6(d). Wemake the period and jitter value infinitesimally small in (d),

while keeping the total utilization of workload as the same as others. This

eventually makes the trace equivalent to the average workload removing

5.6. EXPERIMENTAL ANALYSIS 107

0

Time (s)

315

Te
m

pe
ra

tu
re

 (K
)

320
325
330
335
340
345
350
355
360

315
320
325
330
335
340
345
350
355
360

0.05 0.10 0.15 0.20 1.0 1.05 1.10 1.15 1.20
315
320
325
330
335
340
345
350
355
360

0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 5.6:Comparison between worst-case temperature estimate and other traces: (a) time
critical instance, (b) thermal critical instance with temperature dependent ther-

mal conductivity, (c) thermal critical instance with constant conductivity, (d) ther-

mal critical instance with infinitesimally small period/jitter (varying conductiv-

ity), and (e) 100 random simulations.

the bursty shot at the end. This can be seen from the temperature trajec-

tory in Figure 5.6(d) resulting in the worst-case temperature of 353.862K.

The effect of temperature variant thermal conductivity is presented in

the difference between (b) and (c). Note that we take the mean value of

varying G as a constant value using Gconst =
G(Tamb)+G(T∞1)

2 and (5.10) is

used to calculate the transient temperature. In case of constant conductiv-

ity, the worst-case temperature is far underestimated as 354.03K.

The worst-case temperature T ∗(τ), however, only gives the peak tem-
perature of a feasible trace. As shown in lemma 5.8, for estimating the

worst-case peak temperature T ∗, we also need the peak temperature at
time τ , by starting at the possible highest temperature T∞l=1 for the same

trace. Table 5.3 demonstrates the temperature bound [T ∗0 (τ), T ∗1 (τ)] by
varying τ from 0.3s to 2.0s when task video task period and jitter are both
20ms. Note that, for different values of τ , the worst-case traces are also dif-
ferent. When τ is small, the bound is not precise. For instance, the bound

108 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

0 0.5 1.0 1.5 2.5 3.0 3.5 4.02.0

Time critical Random Thermal critical

319

Te
m

pe
ra

tu
re

, K

320

321

322

323

324

325

324.1 K

3.92

321.0

3.94 3.96 3.98 4.00

321.5

322.0

322.5

323.0

323.5

324.0

0.070.060.050.040.030.020.010.00

324.0

323.0

322.0

321.0

320.0

Time (s)

324.1 K

Figure 5.7:An experiment similar to the one shown in Figure 5.6 but using the single pole
ADPCM model derived from the previous chapters. The overall results match

that of Figure 5.6: a thermal critical instance will lead to the peak worst case

temperature.

Table 5.3: Bounds on worst-case peak temperature analysis for different τ values.
τ 0.3s 0.6s 0.9s 1.2s 2.0s

Tl=0(τ) 350.794K 354.853K 355.535K 355.652K 355.681K

Tl=1(τ) 366.318K 357.573K 356.004K 355.732K 355.681K

is [354.853K,357.573K] in case of τ = 0.6s. However, when τ is getting
larger, the bound tends to converge, with the precision of the 4th digit of

decimal point, i.e., 355.6810K. As a result, we can conclude that the worst-
case peak temperature is 355.6810K for the invocation period of the video
task of 20ms and when the initial temperature is not more than T∞0 .

5.6. EXPERIMENTAL ANALYSIS 109

5.6.3 Worst-Case Temperature Analysis under Scheduling Non-determinism
In this subsection, we we analyze the effect of changes in invocation peri-

ods and jitter on the maximal temperature. In addition, we provide hints

on how to design a system which is schedulable and meets temperature

constraints at the same time. As the maximal temperature depends on

task arrivals but not on the scheduling policy, e.g., earliest deadline first

(EDF), fixed priority, preemptive or non-preemptive, we restrict ourselves

to EDF in the reminder of this section. Note that τ = 1.2s is carefully chosen
to make precision loss less than 0.1K according to lemma 5.8.

5.6.3.1 Temperature-Aware QoS Optimization
The proposed analytic framework can be used to study the influence of

critical design parameters at early design stages. As an example, for the

video codec in Table 5.1, a shorter task period provides a higher quality

of service (more frames per second). But, in general, shorter periods also

lead to higher peak temperature as shown in the results in Figure 5.8. De-

signers can quickly investigate the effect of such parameter changes by the

proposed analysis framework and check if the current system configura-

tion violates temperature constraints. In Figure 5.8, an invocation period

of 20ms for instance would imply a peak temperature of 360.18K when the
maximum jitter is 60ms. For an invocation period of 40ms, for instance,
the video quality will be lower, but also the peak temperature will be as

low as 346.09K with the same jitter bound.

5.6.3.2 Changing Task Jitter
Besides varying the invocation period, we vary the maximal jitter in task

arrivals. As shown in Figure 5.8, we observe that a large jitter will in-

crease the worst-case temperature. This is an expected qualitative behav-

ior, since a large jitter increases the size of a burst of active modes in the

power profile, thus inducing a higher temperature. If such a jitter leads to

an unacceptable temperature, designers can redesign the system such at it

reduces the jitter by introducing traffic shapers or other resource servers,

see e.g., [WMT06].

5.6.4 Schedulability Analysis
In addition, we run an EDF schedulability test by means of the RTC

toolbox [WT06b]. It verifies that all output arrival curves satisfy the

deadline, i.e.,
∑

i α(∆− di) ≤ β(∆), ∀∆, with di the relative deadline, see
e.g., [WT06a].

Figure 5.8 includes the results of such a schedulability test . For in-

stance, for periods of more than 30ms, independent of jitter, the system is

110 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

20
40

60
80

2030405060708090

335

340

345

350

355

360

365

Period [ms]
Jitter [ms]

Te
m

pe
ra

tu
re

 [K
]

Non-schedulable
Temperature violation

Figure 5.8:Worst-case temperature function of both task invocation period and jitter. Star
markers represent non-schedulable sequences, while circle markers highlight the

cases that violate the temperature constraint of 350K.

schedulable. When the video task has the period of 30ms, it is only schedu-
lable when the maximum jitter is less than or equal to 50ms, but only for
very small jitter. Note that with a maximum acceptable temperature of

350K, temperature constraints are met for all schedulable systems. All

other configurations are not schedulable and they violate the temperature

bound of 350K.

For illustration, Figure 5.9 provides an example of a demand bound

function for the case where the system is schedulable, i.e., the sum of ar-

rival curves shifted by the corresponding deadlines is smaller that the unit

function∆. Therefore, our analysis can be used as a tool to design systems
which are at the same time schedulable and in a temperature-safe region.

5.6.5 General Resource Availability
The proposed technique can be also applied to more general systemwhere

the resource may not be always completely available for computation.
Most modern embedded processors, for instance, support several opera-

tion frequencies and deep power down modes for power efficiency. In

this subsection, we analyze the effect of different resource availabilities

on the worst-case temperature.

Resource availability can be described using service curves as ex-
plained already in Section 5.4.1. Figure 5.10 shows several service curves

as used in the experiments. The full service model (βu(∆) = βl(∆) = ∆)
as well as two lower resource availability curves (β(∆) = 0.67 or 0.33 · ∆)
are shown on the left-hand side. These service curves may correspond to

5.6. EXPERIMENTAL ANALYSIS 111

0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

interval (x10ms)

re
so

ur
ce

 a
va

ila
bi

lit
y/

de
m

an
d

(x
10

m
s)

non−schedulable demand

availability

schedulable demand

Figure 5.9:Two examples of system traces and schedulability tests. Thin solid line repre-
sents a non-schedulable sequence that crosses the availability line at the location

indicated by the circle. The thick solid line corresponds to a system which is

schedulable.

0

Re
so

ur
ce

 A
va

ila
bi
lit
y

(s
)

Re
so

ur
ce

 A
va

ila
bi
lit
y

(m
s)

Interval (s) Interval (ms)
0.2 0.4 0.6 0.8 1.0 0 50 100 150 200

0

50

100

150

200

0

0.2

0.4

0.6

0.8

1.0

Figure 5.10:Various resource availabilities: Frequency modulated processors (left) and
TDMA(right).

operation frequencies of 100%, 67%, and 33%, respectively. They may also
be interpreted as the result of a general processor sharing (GPS) scheme

where the processing resource is multiplexed between several consumers.

The right hand side of Figure 5.10 represents the service curve of a TDMA

(time division multiple access) scheduling discipline. A TDMA resource

is characterized by two variables: cycle length C and slot length S. For
the service curve in the figure, for instance, we chose C = 100ms and
S = 80ms, i.e., the processor is available for consecutive time units of 80ms

112 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

during every cycle of 100ms.

For this set of computational models, we use the video conferencing ex-

ample again, but with a different configuration. The period andmaximum

jitter of the video task are 60ms and 20ms, respectively. The observation
time τ is set to 1.2s. It is worth noting that the same supplied voltage is
assumed for all resource availability configurations.

Time (s)
0 0.2 0.4 0.6 0.8 1.0 1.2

310
315
320
325
330
335
340
345
350

Te
m

pe
ra

tu
re

 (K
)

Te
m

pe
ra

tu
re

 (K
)

315

325
330

320

335
340
345
350

0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 5.11:Transient temperature changes of the video conferencing example. Period and
maximum jitter are set to 60ms and 20ms, respectively.

The first graph of Figure 5.11 provides the comparison of the full

service model to the partially utilized ones (67% and 33%). The steady-
state temperatures in case of arbitrarily high workload are as follows:

T∞ = 402.37K for S = 1, T∞ = 367.76K for S = 0.67, and T∞ = 340.63K
for S = 0.33. On the other hand, peak temperatures for the corresponding
three service curves are 341.05K, 339.54K, and 338.15K, respectively. The
differences in the peak temperatures are not significant compared to that

of the steady-state temperatures. When the resource is not sufficient to

process the injected workload, the remaining workload is buffered in the

waiting queue for further service. This buffering, in turn, causes a per-

vasive distribution of workload. In contrast, we have some idle intervals
to cool down the system in case of a high processing rate. Moreover, the

5.7. CLOSING REMARKS 113

schedulability test fails in case of 33%maximal frequency.

Supposing we must prevent the system temperature from exceeding

the critical temperature 340K. In this case, the naive pessimistic analy-
sis drives us to have a dynamic thermal management technique enabled

without guaranteeing the real-timeliness. It has also been shown that

none of the frequency modulation down to 33% and 67% guarantees the
safe peak temperature. On the other hand, the estimates out of the pro-

posed technique confirm that 66% resource availability is a good compro-
mise between the real-time and the peak temperature guarantees. In case

of the critical temperature of 350K, no thermal management technique is

needed.

The bottom part of Figure 5.11 shows the transient temperature

changes when the TDMA scheduling discipline is adopted. We test two

configurations: TDMA1 with C = 100ms S = 80ms and TDMA2 with
C = 50ms,S = 40ms, i.e., half the cycle length but the same utilization.
In both cases, only 80% of the processing resource is consumed for pro-
cessing the workload. Intuitively, the TDMA schemes may lead to a lower

peak temperature in comparison to a full resource availability. However,

TDMA1 not only shows a higher peak temperature (346.32K) than the full
service model but also fails to pass the schedulability test. Again, this is

due to the previously mentioned buffering effect. During the idle service

interval, the arrived workload is buffered in the queue causing a bursty

resource utilization later on. If we reduce the idle service interval as in

TDMA2, the peak temperature is reduced to 342.45K and the system be-
comes schedulable.

In summary, two resource variations are analyzed in terms of peak

temperature: reduce the rate of the resource and place idle service inter-
vals properly (TDMA). The analysis framework presented in the chapter

can be used as a tool to choose proper resource parameters while guaran-

teeing schedulability and temperature bounds.

5.7 Closing Remarks
The chapter presented an analytical approach to determine the worst case

temperature for any given work-conserving real-time systemwith general

resource availability. We considered several power-temperature models

that consider temperature dependent power consumption, leakage and

thermal conductivity. These lead to non-linear differential equations that

describe the relation between power consumption and temperature. The

analysis method is able to deal with static and dynamic power consump-

tion and takes into account its temperature dependence. The accumulated

workload arriving from all task invocations is characterized by an arrival

curve, i.e. by an upper bound on the sum of task execution times arriving

in any time interval. Analogously to the workload, the resource availabil-

ity is modeled by service curves.

114 CHAPTER 5. ESTIMATING THE PEAK TEMPERATURE

The complexity of the analysis comes from the fact that task arrivals

and resource availability may be non-deterministic, i.e., due to unknown

initial phases, jitter, burst, and provided computation. It is shown that

the method proposed in this chapter (a) gives tight upper bounds on the

maximal temperature, (b) is constructive in the sense that the worst case

arrival of tasks can be determined and (c) provides bounds on the length

of the observation interval for a given precision.

Overall, the proposed analysis method can be used during design time

to estimate the worst-case peak temperature that may be experienced by

the given system. As a result, it may be possible to avoid those design

solutions which will cause the processor to overheat and trigger reactive

control mechanisms inside the processor (e.g., DVFS) which cause unfore-

seen loss in performance of the system. If required, the system designer

may proceed to investigate the remaining feasible solutions in greater de-

tail using the thermal models obtained in the previous chapters.

One must keep in mind that this chapter uses a higher level of abstrac-

tion as compared to previous chapters. As an example, the approach in

the previous chapters require discrete time utilization trace(s) both for es-

timating and constructing the models; whereas this chapter uses abstract

interval domain representations ofworkloads and available computing re-

sources. Thus, given a set of applications and their corresponding sched-

ules, the techniques presented in this chapter require reasonable abstrac-

tions from traces to interval domain curves. Additionally, although the

current chapter uses simple single pole models in order to keep the anal-

ysis tractable, thermal simulations do not necessarily require such simpli-

fied models, and models derived from the previous chapters can be used

instead.

6
Tolerating Faults in TimeConstrained Systems

Summary
This chapter proposes a new technique to transparently tolerate faults in a

given multiprocessing system. The emphasis is on designing a fault toler-

ant real time systemwhich can continue to operate correctly, both in terms

of value and timing properties associated with its output(s), even when

one (or more) faults have been experienced by the given system. The nov-

elty of the approach lies in detecting and tolerating faults, without using
any timer resources. Furthermore, the proposed approach only requires
the knowledge of interface level timing properties of applications, making

it applicable to complex, and even legacy applications. Therefore, the tech-

nique can also be applied to safety critical applications which have already

been certified, but are not fault tolerant; or those applications wherein any

modifications of the software is not feasible.

6.1 Introduction
Even after adequate design measures have been taken, a system may still

suffer from a fault, leading to a failure, either because of one or more

design assumptions have been violated (e.g., the load on the processor ex-

ceeds the bounds assumed for analysis, see Chapter 5), or the model(s)

(e.g., thermal model) on which the design analysis was based may be too

erroneous. Furthermore, discussions in the previous chapters focused on

116 CHAPTER 6. TOLERATING FAULTS IN TIME CONSTRAINED SYSTEMS

the problem of avoiding thermal faults, whereas in practical use cases, a

system may experience a fault due to a myriad of other factors, such as

cosmic particles, hardware errors, or even software bugs.

Accordingly, this chapter presents a new fault tolerance technique

specifically targeted to time constrained systems (e.g., real time systems),

enabling such systems to tolerate faults while simultaneously meeting all

performance requirements. Specifically, using the technique proposed in

this chapter, a system can tolerate faults transparently to the observer,

while continuing to compute outputs which are correct in value, and also

conform to the expected timing properties, such as throughput or dead-

lines.

We assume that a given system (e.g., a function, an application, or even

a complete network) to bemade fault tolerant fails silently. In other words,
we assume that the given vulnerable system possesses the following prop-

erties: (i) in the fault-free scenario, the system computes the correct out-
put, both in value and timing properties, which can be (optionally) verified

by independent observers, and (ii) in the case of a fault, it ceases to pro-
duce any outputs, see [HSS96].

The assumption of the fail silent system property is not unusual. In fact,

modern safety critical systems are often designed to be fail silent. Com-

mon examples are the FlexCAN, and the Time Triggered Protocol Class

C (TTP/C) communication architectures, see [Ber06, KB03]. Therefore, a

number of techniques already exist, both at the application level and at

the hardware level, which ensure that all faults are exhibited solely as

timing faults. Brasileiro et. al. describe the construction of a fail-silent
system at the application level, whereas a patent provides an example

of how processors are now designed to enforce fail-silent behavior, see

[HSL78, Mil98] for references.

Since we assume a fail silent system, the overall problem of fault detec-

tion and tolerance reduces to detecting and tolerating timing faults. Specif-

ically, a system (or a part of it) exhibits a timing fault when one or more

of its inputs or outputs fail to meet the desired timing properties, such as

rates, or deadlines. However, efficiently detecting and tolerating timing
fault remains a major challenge.

In cases where applications exhibit simple timing behavior, (e.g.,

strictly periodic applications), timeout (e.g., watchdog) based solutions

may be used. Such simple approaches are not effective for applications

based on general dataflow process networks, which are usually asyn-

chronous and can have bursty timing characteristics. Such process net-

works are generally used to design and implement streaming applications

(e.g., multimedia). Detecting timing faults is particularly difficult in such

process networks, since data packets (or tokens) produced by the given

fault free-system may show some legitimate burstiness (i.e., more than

normal amount of data tokens are received in a given time window) or

jitter (i.e., a data token either arrives earlier or later than expected).

6.1. INTRODUCTION 117

A few approaches for detecting timing faults under such circumstances

have been proposed. One approach is to use a set of timers for monitoring

one or more timing properties of each input or output stream produced by

the given vulnerable system, e.g., inter-arrival times of between consecu-

tive data tokens, or throughput, see [HCBK12]. In principle, this approach

can be applied for detecting timing faults in systems with complex timing

behavior. However, such an approach does not scale with the complexity

of the timing patterns to be monitored for a fault, in terms of the number

of timer resources andmonitoring effort required. Another approach is to

use l-distance functions in which the time-separation between (l + 1) con-
secutive events is monitored. Reduction in the number of timer, computa-

tional, and memory resources required is accomplished by approximating

timing curves (e.g., arrival curves) into a more restrictive minimum dis-tance function, which also carries with it a possibility of false positives, see
[NMA+12]. Another solution is to design the system in which processes

share their internal states with each other, and fault detection strategy is

based on continuously monitoring the internal states of one or more pro-

cesses, see [GDJ12]. A major drawback of this approach is the additional

requirement that a system be specifically designed (or modified) such that

its internal states are observable. Additionally, there may be heavy com-

putational burden involved in concluding the fault status of the applica-

tion based on observing several states. Therefore, it is not clear how the

approach scales with the number of processes in the application.

With a focus on process networks with timing constraints, this chapter

takes a new approach to detecting and tolerating timing faults. We treat
the given vulnerable system as a black-box, whose interface-level timing

models are either available, or can be generated quickly from calibrations.

This makes the proposed approach applicable to large and complex sys-

tems, and also does not impose any special design requirements (such as

observability of internal states) to be met by a system in order to be com-

patible with the proposed approach.

Succinctly, we assume that we have two (or more) functionally equiv-

alent versions (henceforth, replicas1) of the vulnerable system, with suffi-
cient design diversity to avoid common model faults. These replicas exe-

cute in parallel, operating on the data provided by a common set of input

stream(s), with their respective outputs being merged (details follow) into
final output stream(s).

In contrast to the conventional approach of monitoring the timing

properties of input and output streams, wemonitor the number of data to-

kens in the input and output FIFO buffers of each replica. Using the avail-

able timing models, we can compute the expected bounds on the number

of tokens in each of these input and output FIFO buffers, under the as-

sumption that both replicas are fault-free. Subsequently, assuming only a

1
The term is slightly abused here. For this chapter, two or more replicas only indicate

functional and timing equivalence between them. However, each replica may have a

different implementation, and therefore, replicas are not necessarily bit-identical.

118 CHAPTER 6. TOLERATING FAULTS IN TIME CONSTRAINED SYSTEMS

single permanent timing fault, we compare the number of tokens in corre-

sponding FIFO buffers at the inputs as well as the outputs of the replicas.

Since the replicas are functionally equivalent, and must also satisfy a com-

mon set of timing properties at their respective interfaces, the difference

in between number of tokens in the corresponding FIFO buffers of each

replica must remain within pre-computed bounds. Therefore, the difficult

problems of detecting a timing fault can be reduced to simply deciding

whether the difference in the number of tokes in the corresponding FIFO

buffers exceeds a pre-computed threshold.

For further discussion, we first define the problem considered in this

chapter:

Provide a provably correct and efficient mechanism for detecting and tol-erating single timing faults in real-time process networks.
As hinted earlier, we use active replication for tolerating timing faults,

and for simplicity, we focus on tolerating at most one permanent timing

fault, using only two replicas of a given real time data flow process net-

work. This restriction can be easily relaxed by adding more replicas to the

system. Themain contributions of this chapter are summarized as follows:

1. Design and analysis of arbitration mechanisms for a duplicated real-

time process network such that single timing faults can be efficiently

tolerated, and

2. Memory and time efficient fault detection algorithms developed from

timing models which do not require any runtime timekeeping or sig-

nificant computations.

The proposed approach differs from the l-distance based technique in
two aspects: (i) no use of any timer resources, and (ii) no false positives
since the approach does not make any over-approximations (such as the

restrictive distance function technique).

6.2 Motivational Example
It has already been discussed that detecting timing faults by present meth-

ods is hard. We now show that even transparently tolerating timing faults

is also not trivial. Consider a simple process network shown on the top

side of Figure 6.1 that contains processes and communication channels

with FIFO semantics.

A portion of the process network, called the critical subnetwork is dupli-
cated (i.e., two replicas are created) for fault-tolerance. The set of producer

process(es), P , provide data tokens to the critical subnetwork(s), and the
consumer process(es), C, consume tokens from this subnetwork. A repli-cator channel duplicates the same stream from a producer to each replica,

6.2. MOTIVATIONAL EXAMPLE 119

whereas a selector channel combines the streams from the replicas into a
single input stream for a consumer. In the chapter, we refer to the process

network with un-replicated critical subnetwork as reference, and to the
process network with two replicas of its critical subnetwork as duplicated.
Transparent fault tolerance requires that both the reference and du-

plicated process networks behave equivalently when observed at their re-

spective input and output interfaces, even when one of the replicas suf-

fers from a single permanent timing fault. We assume that the sequence

of data tokens produced by a process and the process network is indepen-

dent of the timing of the network (e.g., following the Kahn Process Net-

work semantics). All FIFO buffers have bounded capacities, and processes

have blocking semantics. Therefore, a process attempting to write tokens

to a full output FIFO buffer, or attempting to read tokens from an empty

input FIFO buffer will block, until the said operation can be successfully

completed. For simplicity, assume that only the critical subnetwork may

suffer from a permanent timing fault.

Arbitration (or Merging) Streams at a Selector Channel
With only two replicas, arbitration by majority voting is ruled out. An op-

tion is to have a dedicated fault detection mechanism which informs the

selector of any fault in either replica, allowing the selector to block all out-

puts from the faulty replica from reaching the consumer. However, this

option places additional constraints on the system, requiring a dedicated

and reliable monitor(s). It is therefore desirable that the selector can au-

tonomously and efficiently detect timing faults in the replicas. Notice that
asynchronous and bursty characteristics of the process network makes it

very difficult to apply naive timeout (e.g., watchdog) based approaches to

fault detection.

Deadlocked Non-Faulty Replicas
Assume that the selector has detected a timing fault in the top replica by

somemechanism. Suppose that as a result, the selector stops destructively

reading tokens from this subnetwork, which in turn may stop reading to-

kens from its input, causing the FIFO buffer at the output replicator to

fill up, eventually causing one or more producers to block. This in turn

starves the lower (correctly working) subnetwork from processing further

tokens, causing the selector to flag this subnetwork also as faulty, compro-

mising the reliability of the entire system. A simple solution to this prob-

lem is to have the selector (or some monitor) inform the replicator about

the fault status of the replicas within a bounded time, but then, as pointed

out earlier, this imposes additional constraints on the system. Alterna-

tively, the replicator could allow for a non-blocking write by the producer

process P , but this solution requires the replicator channel to potentially
be able to store an unbounded number of tokens.

120 CHAPTER 6. TOLERATING FAULTS IN TIME CONSTRAINED SYSTEMS

6.3 Notations and Model
For simplicity, we consider a simple dataflow process network with one

critical subnetwork connected to a single producer and a single consumer

via a FIFO buffer on either side, see Figure 6.1. All presented discussion

and analysis is equally applicable to a general model with the critical sub-

network having multiple input and output channels. The input and out-

put ports of the critical subnetwork are denoted by I and O, respectively.
Communication between processes is done via read and write operations

on FIFO channels with finite capacities; and the processes have blocking

semantics. The capacity of a FIFO buffer Fi is denoted by |Fi|. We require
that a timing fault does not lead to wrong data (value of a token) in the

application, and hence we assume that the process network is determi-nate, i.e., the sequence of tokens and their values produced by a process
network is dependent only upon the sequence of input tokens, and not

upon the timing of token availability. The producer, the consumer, and

the reference and duplicated process networks have associated real time

properties. Their timing properties can be, for example, specified in terms

of arrival curves or any other real-time model. Details on arrival curves
are presented in Section 6.4, and can also be found in [CLS+06].

The fault tolerant system is constructed by duplicating the critical sub-

network, into replicas R1 and R2, along with necessary FIFO buffers and

channels. A special replicator channel duplicates the stream from the

producer process to the corresponding input ports of the replicas, I1 and

I2, respectively. Similarly, a selector channel arbitrates (merges) the data
streams from the output ports of the replicas, i.e., O1, and O2 and provides

the resulting stream to a system output process C. A token produced by
a replica Rk on its output channel is denoted as Tk[j], where j ∈ N+ is the

monotonically increasing sequence number of the said token. A function
t : N+ × N+ → R≥0 provides the timestamp of a token Tk[j], given as t(k, j),
indicating the time instant when the token was produced.

We assume that owing to hardware costs, only a part of the system

can be made reliable, see [TGC+06]. Thus, only processes and channels

within replicas R1 and R2 are considered to be unreliable, whereas the

rest of the system is assumed to execute on reliable hardware. We also

assume that the system can experience at most a single timing fault, which

is eventually observed when the faulty replica either stops producing (or

consuming) tokens, or does so at a rate lower than expected.

6.4 Proposed Solution
Section 6.4.1 proposes the design of the replicator and the selector pro-

cesses to be used for constructing a duplicated process network equivalent

to the reference process network, both in functionality and timing (Section

6.4.2). Section 6.4.3 discusses fault-detection mechanisms in the replicator

6.4. PROPOSED SOLUTION 121

process

Replicator Selector

process

FIFO queue

Reference Process Network

Duplicated Process Network

FIFO queue

critical subnetwork

channelsystem

P

input
process critical subnetwork

P

input
process

C

output
process

system

C

output
process

system

Figure 6.1:The reference and duplicated process networks. For simplicity, the critical sub-
network has only one input and output channel(s).

and the selector, also extending the discussion to a bounded memory sys-

tem. Finally, Section 6.4.4 presents necessary mathematical details.

6.4.1 Replicator and Selector
We assume all read and write operations to the replicator and the selector

channels to be atomic. A replicator channel R has two reading interfaces
and a single writing interface, and is described by the following rules:

1. It contains two FIFO buffers of sizes |R1| and |R2| respectively, one
for each reading interface. Each buffer has a space and fill vari-

able which are initially set to fill1 = fill2 = 0 and space1 = |R1|,
space2 = |R2|.

2. Each reading interface of the replicator has a destructive and block-

ing read access to the corresponding buffer. A read event increments
the corresponding space variable and decrements the corresponding

fill variable.

3. If min{space1, space2} > 0, then a write event to the write interface
buffers a token to both FIFO buffers, decrements space1 and space2,

and increments fill1 and fill2, else the write to the replicator is
blocked.

In other words, the replicator channel duplicates every input token to

both FIFO buffers, each one linked to a read interface. More efficientmem-

orymanagement schemes are possible, but we retain the simple design for

the present discussion.

A selector channel S has two writing interfaces and a single reading
interface and is described by the following rules:

122 CHAPTER 6. TOLERATING FAULTS IN TIME CONSTRAINED SYSTEMS

1. There are two space variables space1, space2 and a single variable

fill associated with the buffer. Initially, we have fill = 0 and
space1 = |S1|, space2 = |S2|. The selector maintains only a single FIFO
buffer for the channel, with size given by |S| =max{|S1|, |S2|}.

2. The reading interface of the selector has a destructive and blocking

read access to the buffer. A read event increments all space variables
and decrements the fill variable.

3. A write event to a write interface such as interface 1 blocks if
space1 = 0. Suppose now that space1 > 0. If space1 ≤ space2, then the

token to be written by interface 1 is buffered in the FIFO, fill is incre-
mented and space1 is decremented. If space1 > space2 with space2 = 0,
then just space1 is decremented, leaving space2 unmodified. Further-

more, the corresponding late arriving token to write interface 2 is

dropped.

In other words, the selector contains two virtual buffers, one for eachwrit-

ing interface. Under fault-free conditions, both replicas provide the same

sequence of tokens to the selector, and selector must buffer a token from

a write interface which provides the first token of each duplicate pair.

Therefore, the selector buffers a token from interface 1 if space1 ≤ space2,

else it buffers from interface 2. A process can successfully read from the

selector FIFO if fill > 0. It must be noted that under no-fault conditions,
the FIFO buffers are sized such that the following always holds: space1 > 0
and space2 > 0. The details of achieving the required buffer dimensions
follow in this chapter.

6.4.2 Equivalence
We show that if the FIFO buffers in the replicator are unbounded, the du-

plicated process network is equivalent to the reference process network,

both in functionality and timing, even if one replica suffers a single timing

fault. First, we present necessary definitions and a lemma.

A sequence of tokens produced by replica Rk is denoted as

Qk = 〈Tk[1], Tk[2], Tk[3], · · · 〉. Prefix ordering between sequences is denoted
as Q′k v Qk. The sequence of timestamps associated with Qk is given by
t(Qk) = 〈t(k, 1), t(k, 2), t(k, 3), · · ·)〉.
The consumer process expects the input stream(s) to satisfy one or

more timing constraints at its input interface, such as token inter-arrival

timings. In practice, this imposes certain conditions on timestamps asso-

ciated with each data token in the input stream to the consumer. Assume

that all sequences of timestamps associated with Qk satisfying the timing
requirements of the consumer are represented by the set TC of sequence
of timestamps, i.e., t(Qk) ∈ TC . We assume that if a sequence Qk with
timestamps t1(Qk) satisfies the requirements of the consumer, t1(Qk) ∈ TC ,
then the same sequence with different timestamps t2(Qk) also satisfies the

6.4. PROPOSED SOLUTION 123

requirements of the consumer if some of the tokens arrive earlier, i.e.,
t2(Qk) ∈ TC , where:

∀t1(k, j) ∈ t1(Qk), ∀t2(k, j) ∈ t2(Qk) | t2(k, j) ≤ t1(k, j) (6.1)

We also assume that replicas must satisfy the timing characteristics of

the consumer. Therefore, in a duplicated process network, timestamps

t(Q1) and t(Q2) produced by replicas R1 and R2, respectively, must satisfy

t(Q1) ∈ TC and t(Q2) ∈ TC .
A pre-requisite to equivalence between the duplicated and the refer-

ence process networks is that the selector isolates the replicas from each
other:

Lem. 6.1. The selector prevents the output of one replica from affecting theoutput of the other, both in value and time.
Proof. From the properties of the process network, and those of the se-
lector, a replica, say R2 can only delay the tokens from the replica R1. This

delay would be due to any back-pressure caused by R2, which is experi-

enced by R1. However, from rule 3 of the selector, the only variable that

governs the back-pressure felt by R1 is space1. From the construction of

the selector, the space1 variable is never modified by write interface 2 (and

vice versa), and hence, the back-pressure felt by R1 is never caused (or

contributed to) by R2. The lemma follows. �
The functional and timing equivalence between the duplicated and ref-

erence process network is shown next:

Thm. 6.1. If the replicator has unbounded FIFO buffers, then a sequenceQPwith timestamps t(QP) provided to the reference and duplicated process net-works results in the same output sequence QC from both the reference andduplicated networks, even if the duplicated process network suffers a singletiming fault. Furthermore, if the timestamps of the sequence generated bythe reference process network t(QC) ∈ TC , then the sequence of timestamps
t′(QC) generated by the duplicated process network is also in TC .
Proof. Since the replicator FIFO buffers are unbounded,

min{space1, space2} > 0 (rule 3 of the replicator) is always true, and con-
sequently, a replicator channel always duplicates each token to both input

ports I1 and I2 of the replicas. Furthermore, the replicator does not change

the timestamp of a token when it inserts it into both FIFO buffers. Thus,

a sequence QP with timestamps t(QP) at the write interface of the replica
always results in the same sequence QP , with the same timestamps, at I1

and I2.

Under no fault conditions, the replicas are determinate but non-

deterministic in timing characteristics, therefore, given the same input se-

quence QP with timestamps t(QP), the replicas produce at their output
ports output sequences Q1 = Q2, with non-equal sequences of timestamps

t(Q1) 6= t(Q2) respectively.

124 CHAPTER 6. TOLERATING FAULTS IN TIME CONSTRAINED SYSTEMS

Next, the selector evaluates which replica has provided themost recent

token of a duplicate pair, by evaluating space1 ≤ space2. If space1 ≤ space2,

then the replica R1 has provided the first token of the most recent dupli-

cate pair, which is buffered into the FIFO, and the selector simply discards

the corresponding late arriving token from R2. In other words, the se-

lector buffers the earlier arriving token from each duplicate pair into its

FIFO, resulting in a sequence QC = Q1 = Q2 with timestamps t(QC). Since
t(Q1) ∈ TC and t(Q2) ∈ TC , then as in (6.1), we have t(QC) ∈ TC (also see
Lemma 6.1).

If a replica R1 experiences a timing fault at any instant t, then eventu-
ally, we have Q1 v Q2 and space2 ≤ space1, and the selector simply buffers

the tokens from the replica R2. The timestamp of a token missing in Q1

but with a corresponding token in Q2 is taken to be infinity, and therefore

timestamps of the tokens produced by the selector subsequent to a fault

correspond to those from R2.

For comparison, given QP , the reference process network produces a
sequence QC = Q2, which is the same output as the non-faulty replica R2

produces (since the replicas are determinate and are derived from the ref-

erence process network). Furthermore, if the reference process network
meets the timing requirements of the consumer, then t(QC) ∈ TC . �

6.4.3 Fault Tolerance with Bounded Memory
Thus far, we discussed the operation of the selector and the replictor chan-

nels without considering any limits of the FIFO buffers associated with

these entities. In order to be practically useful, we will now describe fault

tolerance with bounded memory. We assume that the reference process

network has been designed correctly, i.e., all FIFO buffers have been sized

appropriately such that a producer does not block on a full FIFO buffer,

and a consumer does not stall on an empty FIFO buffer. Under this as-

sumption, this section describes fault detection assuming bounded FIFO

buffers inside the replicator and the selector channels. We follow up with

the approach that can be used to compute the minimum FIFO buffer size

required for the selector and the replicator channels.

Since the replicator channel is transparent to both replicas, and the se-

lector channel decouples replicas from their output sides, it follows that

if in the reference process network R0 requires an input FIFO buffer of

capacity |FP |, then the FIFO buffer R1 in the replicator channel requires a

capacity |R1| = |FP | forR1 = R0 (and similarly for the selector FIFO buffer),

see Figure 6.1. Furthermore, if in the reference process network the pro-

ducer does not block on full FIFO buffer(s), the same producer will also not

block on a full replicator FIFO buffer, as long as the replicas are not faulty

(and similarly for the consumer). Therefore, in order to ensure that the

reference process network and the duplicated process network are equiv-

alent even when the latter experiences a single timing fault, it is required

that in the duplicated process network, the producer never blocks on a full

6.4. PROPOSED SOLUTION 125

replicator FIFO buffer associated with the faulty replica (the selector chan-

nel already has bounded memory). It follows that functional and timing

equivalence between duplicated and reference process network requires

that the replicator channel be able to autonomously detect a timing fault.

Once the replicator detects a timing fault, it can "shut down" the faulty

replica simply by stopping any further writes to the corresponding write

interface. This prevents the replicator from blocking at any of its write in-

terface(s), and in turn prevents the producer process from blocking at its

output FIFO buffer.

Though fault detection at the selector channel is not strictly necessary,

we nevertheless describe a way to autonomously detect a timing fault at

the selector channel. The capability of the selector and the replicator chan-

nels to autonomously detect a timing fault can be leveraged to quickly

spread the information about the fault status of the system using multi-

ple sources.

Fault Detection at the Replicator Channel
First note that the replicator FIFO buffers with capacities |R1| and |R2|
should never overflow under fault free conditions. Therefore, a replica,

say R1 is deemed faulty if the actual number of tokens in the associated

FIFO exceeds |R1|, causing the producer to block on the full FIFO. In other
words, if space1 = 0when the producer attempts to write a token, then the
replica R1 is faulty. Similar arguments also apply to the case with replica

R2. We introduce variables fault1 and fault2 for the replicator channels,
each initialized to FALSE. If space1 = 0 when the producer writes a new
token to the replicator, then fault1 = TRUE, and the replicator does not
insert new tokens into this FIFO (and similarly for fault2 and space2)

Fault Detection at the Selector Channel
There are two methods for detecting a fault at the selector. The first

method is simple: the replica R1 may stall the consumer (and is hence

faulty) if space1 > |S1|, and similarly for R2. The second approach is

based on the intuition that if both replicas serve and satisfy timing bounds

imposed by a common consumer, then the outputs from both replicas

must not diverge too much from each other. The divergence is quanti-

fied by the difference in total number of tokens received by the selector

over both input channels. Therefore, the selector monitors the difference

|space1−space2| and if the difference exceeds a thresholdD, then the replica
R1 is faulty if space1 > space2, else R2 is faulty. The details will be elabo-

rated in the next section. The rule 3 of the selector can be easily modified

to include fault detection at the selector channel.

126 CHAPTER 6. TOLERATING FAULTS IN TIME CONSTRAINED SYSTEMS

6.4.4 FIFO Conditions and Threshold Calculations
FIFO Capacities and Initial Fill Conditions
Let GP [s, t) denote the total number of tokens generated by a producer in
the interval [s, t). Then, the upper and lower arrival curves, [αuP , αlP] denote
the maximum andminimum number of tokens generated by the producer

in any time interval4, see [CLS+06]:

αlP (t− s) ≤ GP [s, t) ≤ αuP (t− s) ∀s < t (6.2)

Equation (6.2) is either provided as a part of the timingmodel, or is derived

from calibration experiments. Let [αui,in, α
l
i,in] be the maximum and mini-

mum number of tokens consumed by a replica Ri | i ∈ {1, 2} in any time
interval 4. We require that the producer never blocks on its output FIFO,
i.e., FP in reference network, and equivalently, FIFO buffers R1 and R2 in

the replicator channel. The required size of the FIFO |FP | (equivalently,
the capacities |R1| and |R2|) which ensures this is:

αuP (4) ≤ αli,in(4) + |FP | ∀4 ≥ 0 (6.3)

Notice that it is acceptable that the replica(s) may stall on empty FIFO
buffersR1 andR2 as long as the consumer does not stall on its empty input
FIFO buffer. That the consumer does not stall on its empty FIFO buffer, i.e.,

FC in the reference network, and S1, S2 in the duplicated process network,

requires an initial number of tokens, FC,0:

αli,out(4) ≥ αuC(4)− FC,0 ∀4 ≥ 0 (6.4)

where αli,out(4) is the minimum number of tokens produced by the replica
Ri in any time interval 4, and αuC(4) denotes the maximum number of
tokens consumed by the consumer process in any time interval4.

Threshold Calculations
We present the calculations only for the selector channel. The correspond-

ing computations for the replicator channel are analogous. We compute

the maximum difference in the total number of tokens received from both

replicas, D over any time interval4. The threshold, D, which is then used
to indicate a faulty replica, is the smallest integer satisfying:

D > sup
∀i,j,λ≥0

{αui,out(λ)− αlj,out(λ)}
(6.5)

where sup is the supremum of a set. The equation can be easily verified
by applying the definition of arrival curves. Notice that (6.5) guarantees

that there are no false-positives.

6.5. TOLERATING N SIMULTANEOUS TIMING FAULTS 127

Fault Detection Times
A replica is considered to have suffered a timing fault when it fails to meet

the expected timing properties at its interfaces, and not when a particular
node(s) inside the replica may have experienced a fault. Suppose that at

time s, R1 and R2 have produced a total of T and T − (D − 1) tokens re-
spectively, when R1 suffers a timing fault. Subsequently, R2 must produce

a (D − 1) +D = 2D − 1 tokens more than R1 before the selector can detect

a fault. Let the fault be detected at time t. For maximum fault detection
time, let the replica R2 supply tokens at the lowest possible rate, i.e., its ar-

rival curve subsequent to the fault is αl2. Let αu1 indicate the upper arrival
curve of R1 subsequent to the fault, which still fails to meet the required
real time constraints. The maximum time4 to detect the fault satisfies:

inf{4 | (αl2 − αu1)(4) ≥ (2D − 1)} (6.6)

where inf is the infimum of a set. Generalizing, the maximum fault de-
tection time is:

max
∀i,j,i6=j

{inf{4 | (αli − αuj)(4) ≥ (2D − 1)}} (6.7)

For the case when the faulty replica stops producing any tokens altogether,

(6.7) can be simplified to:

max
∀i
{inf{4 | (αli)(4) ≥ (2D − 1)}} (6.8)

6.5 Tolerating n Simultaneous Timing Faults
In order to tolerate upto n timing faults simultaneously, we require at least
n+ 1 fail-silent replicas of the given application. In the further discussion,
we assume n′ ≥ n+ 1 replicas. The replicator and the selector components
will change only slightly in order to accommodate the new fault-tolerant

requirement.

The Replicator Channel
The replicator channel has 1 writing interface, n′ reading interfaces, n′

FIFO buffers of capacities |R1| . . . |Rn′ |. The associated space and fill vari-
ables for read interface i are set as: spacei = Ri and filli = |Ri|. If
min
∀i
{spacei} > 0, then the write event buffers a new token into all FIFO

buffers, decrementing the associated space and fill variables appropri-
ately. However, as before, if ∃i :min{spacei} ≤ 0, the write to the replicator
is blocked.

128 CHAPTER 6. TOLERATING FAULTS IN TIME CONSTRAINED SYSTEMS

The Selector Channel
The modifications to the design of the selector channel are also similar.

The selector channel has n′ writing interfaces, 1 reading interface and a
single FIFO buffer. There are n′ space variables: spacei . . . spacen′ , and a
single fill variable. Initially, the variables are set to fill = 0 and spacei =
|Si|. The actual capacity of the FIFO channel in the selector is max

∀i
{spacei}.

As before, the reading interface of the selector has a destructive blocking

access to the buffer, and the read event increments all space variables and
decrements the fill variable. The write event to an interface i blocks if
spacei = 0, and as before, the selector inserts the first arriving token from
n′ duplicates into its FIFO buffer.

Equivalence
Similar to the arguments presented in Section 6.4.2, it is straightforward to

see that the new process network constructed out of n′ replicas is equiva-
lent to the reference process network, in terms of timing and functionality.

Fault Tolerance with Bounded Memory
Similar to Section 6.4.3, we assume that the reference process network

has been designed correctly. The capacity of the FIFO buffer Ri (from
which tokens are read by the replica Ri) in the replicator channel is
|Ri| = |FP |. Here FP is computed from the reference process network by
setting R0 = Ri. The computations for |Si| are also similar.

Furthermore, calculations in (6.3), (6.4) and (6.5) are performed sepa-

rately for each replica, and are therefore independent of the number of

replicas in the fault-tolerant process network.

Similar to the duplicated process network, the replicator channel con-

siders that the replica Ri has suffered a timing fault if spacei = 0. Ob-
serving from the selector channel, a replica is considered faulty if it can

stall the consumer. Therefore, if the selector detects that for a replica Ri,
the associated space variable satisfies spacei > |S1|, then the replica Ri is
considered faulty. It is also possible to monitor the difference in the to-

tal number of tokens received from all replicas in order to determine the

fault status of replica Ri. Therefore, the selector evaluates the condition
max
∀j 6=i
{spacej − spacei} > D, where D is the threshold computed from (6.5).

If the condition evaluates to true, the replica Ri is declared faulty.

6.6. EXPERIMENTS AND RESULTS 129

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

R R R R R R

R R R R R R

R R R R R R

R R R R R R

M
em

o
ry

 C
n

tr
.

M
em

o
ry

 C
n

tr
.

M
em

o
ry

 C
n

tr
.

M
em

o
ry

 C
n

tr
.

L2$1

L2$0

IA-32

Core 1

IA-32
Core 0

Router MPB

Figure 6.2:Schematic representation of Intel’s SCC processor [H+10a].

6.6 Experiments and Results
Hardware Platform
We used Intel’s 48-core Single Chip Cloud Computer (SCC) for experi-

ments. The SCC is a prototype of future embedded on-chip many-core

platforms [H+10a]. The processor consists of 24 tiles that are organized
into a 4× 6 grid and linked by a 2D mesh on-chip network. A tile contains
a pair of P54C processor cores, a router, and a 16 KB block of SRAM. Each
core runs at 533 MHz and each router runs at 800 MHz. The on-tile SRAM
block is also called “message passing buffer” (MPB) as it enables the ex-

change of information between cores in the form of messages. Figure 6.2

schematically outlines the SCC processor.

The SCC was configured with the following parameters: tile clock

speed: 533MHz, Router clock speed (all routers): 800MHz, DDR3 Memory
clock speed: 800MHz, see [H+10b]. The clocks on all cores were synchro-

nized at bootup for consistent timing observations. Real time performance

was achieved by executing applications on the baremetal (i.e., no oper-

ating system on the cores) SCC, switching off all L2-caches, disabling in-

terrupts, and mapping one process per tile to reduce cross traffic at the
routers, see [Z+12, ZM12]. The iRCCE non-blocking communication library

was used, and all data was sent/received in chunk sizes not exceeding 3KB,

ensuring that all messages are routed exclusively via the message passing

buffers, see [RSS+13, CLRB11]. The fast on-chip communication does not

significantly influence FIFO sizes or fault detection timings.

Applications
Three representative real time process network based applications were

used for experiments: (i) a Motion JPEG (MJPEG) decoder, (ii) an

adaptive differential pulse code modulation (ADPCM) application (en-

coder+decoder), and (iii) an H.264 encoder, see Figure 6.3 for de-

tails. The design diversity in the replicas is represented by different

jitter values, see Figure 6.4. All timing parameters are reported as

<period, jitter, minimum inter-arrival distance> tuple, also known as the

130 CHAPTER 6. TOLERATING FAULTS IN TIME CONSTRAINED SYSTEMS

Bytes sent/received every time the
communication interface is called

MJPEG Decoder

ADPCM

Replicator(System)

003K

750B

750B

3K
3K

02

12
Encoder

04

14
Decoder

Selector

16

(System)

4

64
7.68K

(System sending
encoded frame)

02
Replicator

04

28

splitstream

06

splitframe

30

18

iqzigzagidct

42

20

mergeframe

44

22

Selector (Display)
10K

4

4

307.2K

64
4

8

76.8K

76.8K

8

7.68K

8
10K
10K

10K

3KSCC Core where process in
Replica 1 is mapped02 SCC Core where process in

Replica 2 is mapped12

8
10K

3K 3K
3K

307.2K

H.264 Encoder

(System sending
QCIF frame)

24
Replicator

26

12

ME

28

Encode

14

40

02

34
Selector

(Encoded
Stream)

Deblock

32

20

VLC

Figure 6.3:The MJPEG Decoder (top) and ADPCM Application (middle), and the H.264 appli-
cations.

<P,J,D> model, commonly used in real time systems. In case of a fault,
the faulty replica stops producing (or consuming) tokens altogether.

The MJPEG Decoder
For the fault tolerant MJPEG decoder, the input to the replicas is an en-

coded frame (∼ 30 fps). The replicator channel duplicates each token and
provides it to the splitstream process in each replica. The mergeframe

process(s) provides decoded frames to the selector, 320x240 pixels each.

A token at the replicator and the selector channel is one encoded and de-

coded frame of sizes 10KB and 76.8 KB respectively. Note that it is possi-

ble to reduce token sizes by restructuring the application: i.e., split input

frames into parts, and split decoded frames into parts. However, such

adjustments depend on the application and the fault-detection latency re-

quirements and are independent of the fault tolerance framework itself.

After 18,000 frames, timing faults were introduced into the duplicated net-

work and fault detection times are reported over 20 such runs.

The ADPCM Application
The system provides one data sample to the replicator every of 3KB every

∼ 6.3ms. Note that the decoder rate is specifically tuned for the SCC. The
encoder performs a 4:1 compression, which is reverted by the decoder. A

6.6. EXPERIMENTS AND RESULTS 131

Figure 6.4:Parameters for Fault Tolerance Experiments

token at both the selector and the replicator is one data sample of size 3KB.

After 20,000 samples, faults were introduced in the ADPCM network, and

fault detection times for 20 such runs are summarized.

The H.264 Encoder
The input to the H.264 fault tolerant encoder is amedia stream in theQuar-ter Common Intermediate Format (QCIF) implementing the Baseline Profile

132 CHAPTER 6. TOLERATING FAULTS IN TIME CONSTRAINED SYSTEMS

with a resolution of 176x144 pixels, see [Kat13]. The encoder outputs the

4:1 compressed bitstream into Network Abstraction Layer (NAL) units. A
token at the replicator is of size 840 bytes, whereas a token at the selector

is 3KB in size. Note that the encoded NAL unit is not always 3KB is size,

in which case the selector must first completely receive the full NAL unit

from the given VLC replica. This is also the reason that performance at the

selector is measured in terms of inter-token arrival times, as opposed to

measuring encoded inter-frame timings. After 20,000 frames, faults were

introduced in the H.264 encoder, and fault detection times while encoding

10 different inputs files are summarized.

6.6.1 Evaluation of the Framework
The framework described in this chapter is evaluated on the basis of (a)

runtime overhead of the framework, (b) memory overhead of the frame-

work (c) fault detection latencies and (d) comparison to distance function

fault detection approach, see [NMA+12].

Results
For all duplicated process networks, results in Table 6.5 show that under

fault free conditions, the observed maximum number of tokens in vari-
ous FIFO buffers is below theoretically computed capacities (TheoreticalCapacity vs. Max. Observed Fill) validating the calculations presented in
Section 6.4.4. The framework is extremely light, in both runtime andmem-

ory overhead. For example, the memory overhead in the case of the du-

plicated MJPEG decoder is 0.7% and 0.5% of the application code at the

replicator and the selector channel respectively (excluding token storage,

which depends on the application). The corresponding time overhead is

at most 0.02% of the decoder inter-frame period. The overhead is found
to be practically small enough that the duplicated and reference process

networks can provide similar runtime performance. For example, for the

MJPEG decoder, the decoded frame rate is almost identical (differences

due to runtime overhead are in the order of microseconds) for both the

reference and the duplicated process networks. Similar results hold for

other applications. The framework detects faults within the bounds com-

puted in Section 6.4.4, as can be seen by comparing fault detection latency

statistics for each application vs. the computed upper bound. For instance,

for the MJPEG decoder, the maximum latency for detecting a fault was

found to be 103ms at the replicator channel, well within the computed up-

per bound of 180ms. Similarly, the maximum fault detection latency at the

selector channel was found to be 102ms against the expected upper bound

of 180ms. Notice that the in practical situations (i.e., in the experiments),

the actual faults are detected much faster than the computed worst case

bounds, since worst cases are only rarely encountered. Notice that the up-

per bounds for fault detection latency are not always symmetrical (e.g.,

6.6. EXPERIMENTS AND RESULTS 133

Figure 6.5:Results for the MJPEG, ADPCM, and H.264 Applications
the H.264 application). Also note that the selector and the replicator canindependently detect faulty replicas as proposed in the chapter.
Brief Comparison to the State-of-the-Art
Since the distance function approach is superior than simple watchdog

approach, we restrict our comparison to distance function approach in

this chapter. Distance functions monitor the fault status of an input (or

output) stream by verifying whether or not the timestamps of received

tokens fit an expected distance function. Since in our framework both the

replicator and the selector can monitor faults in the replicas, we modify

the distance function such that:

134 CHAPTER 6. TOLERATING FAULTS IN TIME CONSTRAINED SYSTEMS

Table 6.1: Comparison of our proposed approach with distance function approach.

• The modified distance function can monitor faults at the replicatoras well as the selector, and
• The modified distance function can operate with the fail-silent fault

model assumed in this chapter

In order to avoid any false positives from the l distance approach, the tim-
ing variations from the replicas are minimized, allowing the expected dis-

tance function to be constructed with l = 1. This way, we compare themin-imum fault detection timings from both approaches. The fault detector at
the replicator observes the timings at which the replicas consume the to-

kens by monitoring the respective FIFO buffers at the replicator channel.

To this end, a 1ms timer was introduced, one for each replica (as described

in the original distance function chapter) which allows the detector to

monitor the status of both FIFO buffers with a resolution of 1ms. Since

the baremetal SCC environment does not provide any threading support,

we used the iRCCE non-blocking communication library in order to ensure

that the fault detector itself does not block when the replicator blocks on

the FIFO read or write interface, see [RSS+13]. To this end, the replica-

tor channel was modified to poll both FIFO buffers every 1ms, using the

threading technique developed for the baremetal Intel SCC, see [RSS+13].

The choice of 1ms polling interval reflects the standard tick resolution on

most *nix based computers. This setup allows the observer to declare the

replica as faulty when it (a) slows down beyond the acceptable rate, and

(b) stops silently.

Furthermore, for a fair comparison, all applications were tuned so that

jitter and variable delays wereminimized asmuch as possible. This avoids

the necessity of first approximating the distance function to an l-repetitive
distance function, which may lead to false positives.

The results comparing fault detection latencies at the replicator are

summarized in Table 6.1. The fault detection latencies at the selector are

similar, and therefore, are not shown.

6.7. CLOSING REMARKS 135

Brief Discussion
Note that the fault detection latencies using the detection approach is al-

ways greater than our method. This is solely due to the choice of having

a 1ms polling interval and having non-integer application periods (e.g.,

6.3ms for the ADPCM application). In principle, it is possible to set the

polling interval at a finer granularity, but at the cost higher resource over-

head. In summary, compared to the proposed technique, the obvious ad-

ditional expenses imposed by the l distance approach are the timer re-
sources. Furthermore, the l-distance function approach is limited to a sub-
set of general <P,J,D>model, and optimizations for compute andmemory
resources requires further approximation of the distance function, raising

the possibility of false positives. However, in many use cases, such ap-

proximations can be safely done, in which case, the l distance approach
is equivalent in performance to the proposed approach, except for addi-

tional requirement on timer resources.

6.7 Closing Remarks
The overall vision is that the system designer takes a multi-pronged ap-

proach to the design and implementation of a reliablemultiprocessing sys-

tem. First, the system is designed in order to avoid one or more class of

faults (e.g., thermal faults). Incorporating appropriate design measures

to avoid a wide class of faults may be expensive, in terms of design and

analysis effort required, or resources required to implement such a de-

sign. Therefore, it may be more attractive in terms of the overall resource

efficiency to simply tolerate other faults, which can be done based on the

technique presented in this chapter.

To this end, this chapter presented an efficient (i.e., memory and run-

time overhead) arbitration logic (the selector and the replicator channels)

together with simple timing fault-detection strategies to construct a fault-

tolerant real time process network. It was shown that the fault tolerant

network is equivalent in functionality and timing to the original process

network it was derived from. The proposed approach relies only on the

timing properties of the interfaces of various components (e.g., replicator,

selector, and the vulnerable system) thus making it appropriate for use

with complex or safety critical applications wherein a re-design of the ap-

plication may not be feasible. Experiments on the state-of-the-art many

core Intel SCC processor validate the proposed technique and efficiency

claims.

136 CHAPTER 6. TOLERATING FAULTS IN TIME CONSTRAINED SYSTEMS

7
Recovering from Faults inProcess Networks

Summary
This chapter presents a new technique to recover from faults in a multi-

processing system. The technique proposed in this chapter is restricted to

scenarios in which a system does not fail immediately after having experi-

enced a fault. Furthermore, the proposed fault recovery technique can be

used alongside fault tolerance technique proposed in the previous chapter,

thereby potentially achieving better resource efficiency while providing a

reliable system.

7.1 Introduction
This chapter presents a new technique that can be used to recover from

faults in a multiprocessing system. The fault recovery mechanism pro-

posed here complements the fault tolerance approach described in the

previous chapter. The overall idea is to design a system which is able

to avoid specific class(es) of faults, such as thermally induced faults, but

has the capability to tolerate a broad class of faults, such as those caused

by hardware malfunction. The previous chapter proposed a minimum of

n = 2 simultaneously executing replicas of the critical application (i.e., the
application, or part thereof which must be made fault tolerant) which can

tolerate atmost n−1 permanent faults at a time, see Chapter 6. In principle,
one may implement a system with a very large number of simultaneously

executing replicas of the critical application (i.e., n >> 1) which will be

138 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

able to tolerate an arbitrarily large number of faults. However, this may

not necessarily be the best technique. In fact, such an approach maymake

the system more vulnerable to faults as compared the system which exe-

cutes n = 1 replicas of the critical application. For example, if the critical
application is compute intensive, and therefore, heats the core on which it

executes, then having toomany replicas of the same applicationmay cause

the processor to overheat, reducing the reliability of the system. Based on

the expected arrival rate of faults into the system, it may be better to have

only a few (e.g., n = 2) simultaneously executing replicas of the critical ap-
plication, and should a fault occur, recover from the fault transparently to

the observer. The fault recovery happens in parallel to fault tolerance, and

therefore, can achieve better efficiency in terms of resource usage while

still ensuring a reliable system.

The fault recovery technique proposed in this chapter is restricted to

those classes of faults wherein the system does not fail immediately after

having experienced a fault. An example is a thermal fault, wherein a sys-

tem (e.g., a core in a multiprocessor) is said to have experienced a thermal

fault if the temperature of that core exceeds a pre-determined threshold,

but the core remains operational until its temperature exceeds the criti-

cal temperature. The limited time between the instants when the system

experiences a fault and ultimately fails is utilized to migrate the critical

application from a faulty (e.g., overheated core) to a new, cooler location.

Beyond fault tolerance, the technique proposed in this chapter can also

be used for dynamically balance workload in a multicore or a many-core

processor.

Migration requires that upon detecting an event, an application can be

brought to a stable state where all processes involved in migration have
stopped executing, collected all data packets sent to them, do not send any

new data, and all local variables have been saved, including the program

counters. Only when such a state is reached, contexts can be saved cor-

rectly, applications (or parts of them) can bemigrated, and safely restarted

from the point where these had been interrupted.

Bringing an application (or parts of it) to a stable state is not trivial

when the application is distributed, composed of many asynchronously

executing processes which do not share clocks or memory, with possibly

asynchronous communication, and no prior knowledge of the amount of

data being produced (or consumed) by a process in any given interval

of time, e.g., applications following Kahn Process Network semantics.The

model is quite often used for specification and design of control and signal-

processing applications which are ubiquitous today.

Before proceeding, we summarize the problem considered in this chap-

ter:

Given a process network executing on a distributed memory system,upon the detection of an event, the process network needs to be brought to

7.2. RELATED WORK 139

a stable state which is suitable for the migrating all or part of the given pro-cess network. The technique should be lightweight, safe, correct, and workindependently of the timing properties of the system or the topology of theprocess network.
To this end, this chapter proposes a technique which efficiently and

correctly brings a process network executing on a distributed system to

a known stable state. The correctness of the technique is independent of
the temporal characteristics of the system and the topology of the process

network. The required modifications of a process network are lightweight

and preserve its original functionality. A model characterizing the timing

properties of the technique is provided. The feasibility and efficiency of

the proposed approach and the respective model are validated with ex-

perimental results on Intel’s SCC platform.

7.2 Related Work
Lots of research results have been published on process migration tech-

niques, see e.g. [LKP+10, B+06, A+09, A+08], however, these usually target

shared memory systems or do not provide any details on how to guide

a general process network to a stable state where contexts can be saved

correctly. Moreover, timing models are rarely provided or discussed. Sim-

ilarly, this is the case for load-balancing literature [LL94, RW89, SW92].

A process migration technique for Polyhedral Process Networks (PPNs)

has been proposed in [C+12]. PPNs are a restricted form of KPNs since all

loop bounds, array indices, and index expressions must be affine expres-

sions and a process cannot change these parameters at run-time. There-

fore, the technique targeting PPNs is not applicable to general KPNs. In the

proposed technique, a process execution can be stopped at any time. How-

ever, thismay require re-execution of the same code aftermigrationwhich

is in contrast to the proposed solution that does not require re-executions.

Moreover, the PPN approach relies on a complex middle-ware system that

continues to run on the processing node even if the application is migrated

making the technique unsuitable in cases the reason for migration is high

temperature. In contrast, in our approach, the affected core can com-

pletely stop after a known time, called the stabilization time. This is in
contrast to the PPN work which does not discuss memory requirements,

timing properties, or the correctness of the proposed stabilization tech-

nique.

Kernel-based approaches for process migration usually require the us-

age of specific features of an operating system or modifications to the OS

kernel making them non-portable, e.g. [MC02, C+06]. In this chapter, we

focus on solutions that work in user-space which do not depend on any

specific operating system features, guaranteeing the portability of the so-

lution.

140 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

Checkpointing provides a means to manage the context of a migrat-

ing process, e.g., the Berkeley Labs Checkpointing and Restore (BLCR) al-

gorithm [S+05]. However, checkpointing requires a fairly complex book-

keeping process where all processes must log all incoming tokens, all cal-

culations, and all output tokens between each checkpoint. Thus, check-

pointing can easily overwhelm the computational capabilities of a typical

embedded system [W+10]. In this chapter, we focus on a lightweight ap-
proach which avoids rolling back, but is able to bring the process network

to a stable state which is ready for migration.

Chandy and Lamport [Cha85] have proposed an approach to taking

snapshots of a process network on a distributed system which is similar

to the stabilization problem that we handle. However, they restrict them-

selves to (theoretical) systems with infinite FIFO channels and rule out the

possibility that a process may block when attempting to write on a full out-

put channel. In contrast, our technique is applicable to practical systems

with bounded FIFO channels. Furthermore, we provide an implementa-

tion and a timing model which are validated with experiments.

7.3 Motivational Examples
In this section, we illustrate the challenges involved in the stabilization of a

process network executing on a distributed memory system by using two

simple examples. As is usually assumed in the case of general dataflow

process networks, and specifically Kahn Process Networks [Kah74], pro-

cesses have blocking semantics, i.e., a process attempting to read from an

empty input FIFO buffer will block. Likewise, a process which attempts to

write data tokens to a full output FIFO buffer will also block. The overall

challenge is the complexity involved in getting a process, or a set of pro-

cesses to suspend their usual computation activities, stop transmitting any

new data to other processes, and also ensure that each process collects all

the tokens which have already been transmitted to it by other processes.

Furthermore, a process must enter the stable state, i.e., suspend its com-

putation and communication activities, on a cue, such as reception of a

distinguished signalExample 1: Decentralized Stabilization. Consider the process net-
work shown in Figure 7.1(a), with three processes v1, v2, and v3 and the

possibility that v1 and v2 must enter the stable state in order to migrate.

In this example, assume that a process can autonomously decide whether

or not it must prepare to migrate (i.e., enter the stable state) by sensing its

environment.

Assume that v1 is successful in suspending its computation, and there-

fore stops transmitting any data to v3. However, v3 has not yet decided to

enter the stable state, and continues to expect data tokens from v1. Since

v1 has stopped sending data tokens to v3, the latter will eventually block

when it attempts to read from the input FIFO F(v3, 1) due to insufficient

7.3. MOTIVATIONAL EXAMPLES 141

1 2

(a) (b)

3

3

3

Figure 7.1:Motivation examples. Left: fully distributed stabilization approach. Right: Fully
centralized stabilization approach.

number of tokens. Since v3 is now blocked, it ceases to read any tokens

from the FIFO F(v3, 2), which causes it to fill up. Thus, when v2 attempts

to write a new token to the full FIFO buffer F(v3, 2), it gets blocked. The
entire system is now deadlocked. Consequently, should v2 now decide to

enter the stable state, it will not be able to do so. In principle, the process v3

can be unblocked when the process v1 resumes normal operation after mi-

gration, allowing v2 to enter the stable state. However, such an approach

requires a external entity (such as a master process) to co-ordinate migra-
tion procedure of each process in the network. The master process must

carefully analyze dependencies (i.e., determine each process’ parents and

children), and use this information to schedule each process’ progress into

the stable state.Example 2: Coordinated Stabilization. For this example, assume that
a separate master process is connected to all processes via event channels.

The master process initiates the stabilization of the processes by sending a

stop event. Consider the producer (v1) and consumer (v2) process network

shown in Figure 7.1(b). Once the affected processes receive the stop event,

they can start the stabilization procedure.

Suppose that the master sends the stop event to both v1 and v2. Let v2

receive the event before v1. Stabilization requires that v2 has received all

the data tokens which have been transmitted to it by its parents, includ-

ing all those tokens which may be in flight. Furthermore, v2 must cease all

computational activities, andmust not transmit anymore data tokens to its

children. Although v2 has received the stop event, it cannot simply cease

operating since it has no way of determining whether all tokens transmit-

ted to it by v1 have been received. On the other hand, v1 is unaware that

v2 will be entering the stable state, and keeps transmitting new data to it,

thus preventing v2 from stabilizing. Furthermore, should v2 simply cease

to read data tokens from its input FIFO buffer, it will eventually fill up,

causing v1 to block. Also, if v2 drops any data tokens which continuously

arrive over its input channels, then the execution context for v2 cannot be

calculated correctly and tokens may be lost.

The example shows that simply having a master process which tries

to bring all processes to a stable state is not sufficient. Due to different

142 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

network latencies, processes may go into stable states at different times.

Therefore, the correctness of the coordination technique needs to be time

insensitive. Further, a mechanism is needed which indicates when all pro-

cesses have stopped and special tokens have to be sent to child processes

to notify that the last data token has arrived.

7.4 Model and Definitions
A process network N is defined as the tuple N = (V,C, I,O, F, i , o, c, f),
where V is a set of processes, C is a set of data channels, I is a set of input
ports, O is a set of output ports, and F is a set of bounded first-in first-
out (FIFO) buffers. The function i : V → P(I) maps a process to a set of
input ports, where P(S) denotes the power set of a set S. The function
o : V → P(O) maps a process to a set of output ports. Processes cannot
share input or output ports, i.e., i(vk) ∩ i(vj) = � and o(vk) ∩ o(vj) = � for
all vk, vj ∈ V, vk 6= vj . A process v ∈ V reads data tokens from its input
ports i(v) and writes data tokens to its output ports o(v). The function
c : U → C, where U = {(a, b) : a ∈ o(vk), b ∈ i(vj), vk, vj ∈ V, vk 6= vj}, maps
pairs of output and input ports, belonging to different processes, to a data

channel.

The function par : V → P(V) returns the set of parent processes for
a given process, and the function ch : V → P(V) returns the set of child
processes for a given process.

The function f : V × I → F provides a FIFO buffer F(v,m) to an input
port m of a process v. The buffer has a finite size denoted as |F(v,m)|.
A process attempting to write to an output port connected to an input

port with a full FIFO will block until there is sufficient space available.

Similarly, a process attempting to read data tokens from an input port

with an empty FIFO will block until there are sufficient tokens avail-

able. Conventionally, KPNs [Kah74] assume unbounded FIFOs, however,

practical systems with finite resources impose maximum sizes on the FI-

FOs [N+08, H+09, GB10]. Therefore, the notation adheres more closely to

the typical implementation of a process network.

Bringing a process network N into a state that is ready for migration
requires that each process v ∈ V reaches a stable state which is defined as
follows:

Def. 7.1. (STABLE STATE) A process v ∈ V enters a stable state if it does notperform any more computations, parents par(v) do not send any new datatokens, v does not send any new data tokens to its children ch(v), and it hasreceived all data tokens already sent by its parents par(v).
Once such a stable state has been reached, the context of each process

can be saved and migrated. The context of a process includes all unread

7.5. PROPOSED TECHNIQUE 143

tokens (all not yet processed input tokens), all produced but unsent to-

kens, and the program state. Given this context, a process can be safely

restarted.

Having the ability to bring each process to a stable state may re-

quire that the original processes are slightly modified. Such modifications

should preserve the correct functionality of the network. Thus, it must be

ensured that the original process network N is functionally equivalent to
the modified process network N ′. In other words, the solution must com-
ply with the notion of Correctness defined as:
Def. 7.2. (CORRECTNESS) Given two process networks N and N ′, where N ′is a modified version of N such that it has mechanisms to be brought to astable state. We say that N ′ is correct, if for any process v′ ∈ V ′ of N ′ whichcorresponds to process v ∈ V of N , for any vector of input sequences of datatokens In, the following relationship holds:

In −−−−→
(v∈V)

Out =⇒ In −−−−−→
(v′∈V ′)

Out (7.1)

where In −−−−→
(v∈V)

Out means that process v produces the vector of output
sequences of data tokens Out, when provided with the vector of input se-quences of data tokens In.
Thus, the overall problem of this chapter can be summarized as: Ex-

tend the process network N to N ′, such that:

1. N ′ is functionally equivalent to N ;

2. N ′ can be brought into a stable state independent of computation or
communication delays.

7.5 Proposed Technique
Interruption of the normal execution of a process network is initialized

and coordinated by a central authority, which can be either an external

process, a process of the existing network, including the process which

requires migration. Without loss of generality, we assume that the central

authority is an external process called the "master".

We start by defining a set of coordination events which will be used

by the master for the communication with all processes. The set of coor-

dination events E contains the stop event: a process receiving this event
will eventually stop any computations and data transmissions to children,
and must then acknowledge the reception of the event; and the proceed

event: a process receiving this event must proceed to collect its context.

The master sends the proceed event only when it has received all acknowl-

edgments for the stop events.

144 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

M

event channel

acknowledgment channel
(implicit)

shared variable

the master process

1

2

1

2

data channel

output port fifo user-space signal channel
(implicit)

Figure 7.2: Process, companion process, master, event channel, and signal.
In this chapter we focus on stabilizing the entire process network,

therefore, the master process always broadcasts the stop event to all pro-

cesses in the network. However, the algorithm can be easily extended to

stop only specific processes in the network, see Section 7.6. Furthermore,

a prototype implementation of the proposed stabilization technique is dis-

cussed in Section 7.7.

The master uses a (bidirectional) event channel ej ∈ E to communi-
cate with process vj . If the process is blocked because of reading from
an empty FIFO or writing to a full FIFO, it will not be able to detect (and

process) events from the master, therefore the event channel ej ∈ E is
not directly connected to process vj , but to a companion process compj , as
shown in Figure 7.2. The companion process compj is very lightweight. It
only receives and processes events from themaster andmakes them avail-

able to its process via a shared variable shared. When compj receives the
stop event, it sets the shared variable shared to stop and sends a signal

unblock_process to vj that cancels any blocking read or write of process vj .

Process vj checks the variable shared at the beginning of each commu-
nication primitive (a read or write statement) and exits normal execution

if shared is set to stop. If process vj is blocked and receives the signal
unblock_process, it also exits normal execution, otherwise the signal has

no effect. Once the process exits execution, it sets the shared variable

shared to done, and then, the companion process can send an acknowl-

edgment back to the master.

The above mechanism is only a conceptual description of our tech-

nique. The actual implementation of a separate companion process or

unblocking signals will depend on the underlying platform.

7.5.1 Collecting Data Tokens
When a process exits normal execution, it executes a special function

called Wrapup. Here no more data transmissions or computations are
performed. First, the function waits until the process has received the

7.5. PROPOSED TECHNIQUE 145

proceed event from the master, i.e., meaning that all processes have sus-

pended their normal computational activity. Then, it collects the process

context and performs any other housekeeping steps such as returning any

allocated memory.

During the collection of the context, a process must collect all tokens

that are sent by its parents. If these tokens are not collected, the data to-

kens are "lost", which leads to incorrect behavior. This is further compli-

cated by the fact that there might be a number of tokens arriving late due

to late arrival of stop events in parent processes. Therefore, it must be

ensured that there are no data tokens which are "in flight", i.e., written by

a parent process but not yet received in the local FIFO of the child process.

Otherwise, the technique would not be delay-independent.

In order to remedy this problem, in theWrapup function, each process,
after receiving the proceed event, sends an end-of-stream (EOS) token to all

its children. Thus, a process must continue to collect late arriving tokens

from its input channels until the EOS marker has been received on each

channel.

7.5.2 Bounding the Size of Contexts
For the purpose of discussion, the FIFO Fv(m) for an input port m of pro-
cess v is divided into two FIFOs: Mv(m) and Lv(m). The size of Fv(m) is
the sum of sizes ofMv(m) and Lv(m). Tokens move fromMv(m) to Lv(m)
when there is sufficient space in Lv(m). The separation is made in order
to reflect more closely real implementations of process networks, where

Mv(m) refers to buffers of the interprocess communication layers and the
capacity of communication links, while Lv(m) refers to the FIFO local to a
process. The process has only the knowledge of the current status of L but
not ofM.
We assume that the number of late-arriving tokens to each process can

be bounded. This is the case for any NoC-based communication where the

network capacity can be statically calculated (or at least upper bounded)

by analyzing its topology, and it is the case for many communication li-

braries where the buffer sizes of data links are finite.

The memory space to absorb all late-arriving tokens is provided by a

statically allocated set of "backup FIFOs" B, in particular, one for each in-
put port FIFO. Themaximumnumber of late arriving tokens that a process

v must absorb on each input port m and store in a backup FIFO is upper
bounded by: |Bv(m)| = |Mv(m)| + |EOS| where |Mv(m)| denotes the size of
FIFOMv(m), and |EOS| denotes the size of the EOS marker. The bound is
correct even if the local FIFO Lv(m) is full, since tokens in the input FIFOs
are not considered as late arriving tokens and therefore not saved in the

backup FIFOs. The backup FIFOs B are not available during the normal
course of operation. Upon reception of the proceed event and before send-

ing the EOS tokens, a process vj swaps all regular FIFOs Lvj (m) with the
corresponding backup FIFOs Bvj (m).

146 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

Consequently, an upper bound on the size of the context of process v is:

D∗v =
∑
∀j
{|Lv(j)|+ |Bv(j)|}+ |LN|+ |LV| (7.2)

where |LN| is the memory space required to store the line number of the
program when v exited the normal execution, and |LV| is the memory
space required to store all local variables (loop indexes, unsent tokens,

etc.).

Note that many existing solutions for migration do not rely on backup

FIFOs but simply use a constantly running middle-ware system that will

re-direct any late arriving data, no matter how late it is. However, such

solutions are not always feasible if, for example, a processing node is close

to reaching peak temperature and any processing activity on it needs to be

stopped after a certain time.

7.5.3 Timing Analysis
The proposed algorithm to stabilize a process network is delay-

independent. However, in case that themaximum time to transmit a token

between two processing nodes and themaximum time that a process is ex-

ecuting without calling a communication primitive are known, an upper

bound on the overall stabilization time for a process network can be calcu-

lated. Such timing parameters can be obtained eitherwith formal analysis,

in which case the computed bounds would be hard real-time ones, or by

measurements (or simulations), which leads to soft real-time bounds.

In order to analyze the timing, we consider two phases of the algo-

rithm. In the first one (denoted as phase1), the master (denoted as M)
broadcasts the stop token to all processes and waits for all acknowledg-

ments. In the second one (denoted as phase2), it broadcasts the proceed

token and then each process will simply absorb all data tokens from its

parents until it receives an EOSmarker on all its input ports.

The maximum time between the time instant when the master broad-

casts the stop token and the instance it receives the acknowledgment from

process v is composed of four time periods: (i) the maximum time t∗M→v
for the stop token to travel from the processing node of the master to the

one of process v, (ii) the maximum time t∗read,v|write,v that process v requires

to perform a single read or write of a data packet of maximum size, (iii) the

maximum time t∗c,v that process v is executing without calling a communi-
cation primitive, and (iv) the maximum time t∗v→M for the ack token to

travel from the processing node of process v to the one of the master.

In other words, the master receives the acknowledgement from pro-

cess v no later than after the following time period:

t∗phase1,v = t∗M→v + t∗read,v|write,v + t∗c,v + t∗v→M (7.3)

7.5. PROPOSED TECHNIQUE 147

and can broadcast the proceed token no later than after the following time

period:

t∗phase1,N = max
v∈V

{
t∗phase1,v

}
. (7.4)

Afterwards, each process waits until it receives the proceed token,

swaps all regular FIFOs with the backup FIFOs, and waits until it receives

an EOS marker on each of its input ports. The amount of time between

the instant when the master broadcasts the proceed token and the instant

when the all targeted processes have entered the stable state is upper

bounded by t∗phase2,v, see (7.5). The bound t
∗
phase2,v is dependent on two

scenarios: (i) a process v receives the proceed token before its parent(s)
u ∈ par(v) have received it, and therefore, must absorb all data tokens ar-
riving at its input interface(s) until it has received the EOS marker from

all its parents, or (ii) the parent(s) u ∈ par(v) of a process v receive the
proceed token before any of their children. In this case, a child v of umust
continue to absorb all data tokens at its inputs1 till it has received the EOS

token from all its parents. It may be possible that v receives the proceed
from the master after it has received the EOS from its parents, and there-
fore, in this scenario, the worst case time bound is independent of the time

instant v receives the proceed token. In both cases, a process v must wait
for the EOS token from all its parents, which makes it possible to derive a

simple timing bound t∗phase2,v in (7.5).

t∗phase2,v = max
∀u∈par(v)

{t∗M→u + t∗u→v} (7.5)

where t∗u→v is the maximum time for the EOS marker to travel from the

parent process u to the one of its children, v. Note that this already includes
the time required for all tokens transmitted by u to travel to v.
Finally, the stabilization time of process v and process network N is

upper bounded by:

t∗stab,v = t∗phase1,N + t∗phase2,v (7.6)

t∗stab,N = t∗phase1,N + max
v∈V

{
t∗phase2,v

}
. (7.7)

It can be seen from (7.7) that the overall stabilization time depends on

the time it takes for phase 1 and phase 2 to complete. The length of phase 1
is dominated by the maximum process compute time. The length of phase
2 is dominated by network speed, with time taken to swap FIFO being neg-

ligible. Furthermore, the stabilization time is (largely) independent of the

amount of data being read or written by a processor, since blocking reads

and writes activities of a process are canceled with immediate effect by a

signal from the companion process, also see Algorithm 9, lines 16 - 19. The

network speed accounts for a small part in the overall duration of the sta-

bilization time, since a maximum of |Mv(m)| tokens need to be collected
in phase 2 before the stabilization is complete.

1
Do recall that this process has already stopped computing and transmitting data tokens.

148 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

Do notice that (7.5) does not consider the |EOS| send and receive times
by a process individually. This is because the time it takes for a process v
to receive the |EOS| token from its parent already covers the time it takes
for v’s parent to send the |EOS| tokens (plus a small communication time),
and thus the use of t∗u→v.

The property of Correctness. The proposed technique requires three
modifications of the process network, namely the addition of a compan-

ion process, a Wrapup function, and a conditional check before proceed-
ing with a blocking read or write. The addition of the companion pro-

cess compj to process vj does not change the order of any tokens in any
channel for any process. It only retains the information that an event

{stop, proceed} ∈ E was dispatched from the master. The Wrapup func-
tion simply stores late-arriving tokens in backup FIFOs, maintaining the

relative order of arrival of tokens. Finally, the conditional check before

proceeding with a blocking read or write does not interfere with compu-

tations or the tokens that are already read or need to be written. Thus,

all three modifications preserve the original functionality of the process

network and the correctness property is satisfied.

7.5.4 Summary of Distributed Process Network StabilizationApproach
A short summary of the approach is presented here:

1. The algorithm stabilizes the distributed process network correctly,
i.e., no tokens are lost, and relative ordering amongst tokens in each

channel is maintained. All tokens not consumed by a process v are
stored in the process context in the correct order.

2. The stabilization procedure is composed of two phases, phase 1 andphase 2.
• Phase 1 brings all processes in the process network into a known
state. The completion of phase 1 guarantees that no process in

the network performs any further compute, write, or read steps.

The length of phase 1 is dominated by process compute times.
• Phase 2 required each process to swap local FIFO with backup

FIFOs. The backup FIFOs are sized appropriately in order to

accommodate all possible in-flight tokens from each of process’

parents, plus the |EOS| token. Phase 2 is determined by the com-
munication times, and hence dependent upon the network char-

acteristics.

3. The algorithm is independent of the size of local FIFOs, and is the

same as in the original process network. The size of backup FIFOs

are statically determined.

7.6. STABILIZING INDIVIDUAL PROCESSES 149

7.6 Stabilizing Individual Processes
Our main section introduced an approach in which the entire process net-

work was stabilized. However, the same principles can be applied to sta-

bilize a part of the process network. Consider a process v ∈ V , which must
stabilized. Therefore, all parents of v are informed of the stabilization of v,
and as a result, process v receives the EOS from all its parents. The process
v must also send EOS to all its children, so that v’s children do not continue
to expect tokens from the previous location of v. Once process v stabilizes,
it can migrate. Subsequently, new channels must be established between

the parents of v and v’s children. Since the network structure is statically
known, recreating channels is straightforward.

7.7 Implementing a Prototype
We now briefly outline a prototype implementation for the proposed sta-

bilization mechanism. First, we start with the description of the structure

of a process in the network (Section 7.7.1), which is expanded and adapted

to enable a process to act on signals from its associated companion pro-

cess (Section 7.7.2). The design of the companion process is described next

(Section 7.7.3). We then follow up with the design of theWrapup function
which is responsible for computing the context of the associated process

(Section 7.7.4). The section concludes with a brief note which describesonemethodwhich can be used to unblock a process based on a signal from
the associated companion process, see Section 7.7.5.

7.7.1 Process Structure
We start with illustrating a high-level API for specifying process networks.

A process v ∈ V starts executing by first initializing itself at Line 2 in the
Algorithm 8, and then repeatedly invokes the Fire function at Line 4. The
Fire function implements the functionality of the given process, and can
consist of any number of data-token read/write steps, and compute steps

(e.g. branches, loops, assignments, etc.). Furthermore, the communication

and computation steps can occur in any order in the Fire function.

1 start process v
2 Init () ; // Initialization
3 while true do
4 Fire () ; // Communication and Computation
5 end
6 end Algorithm 8: Basic structure of a process v ∈ V .

150 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

7.7.2 Integrating the Stabilization Mechanism
Wenow expand and adapt the structure of the process in Algorithm 8 to in-

tegrate the stabilizationmechanism. To this end, we seekminimal changes

to the original structure of the process so that a process gains the ability to

go into the stable state and collect its context. The modifications discussed

in Section 7.5 are incorporated into the pseudo-code shown in Algorithm

9. Line 11 checks for the stop event before starting a potentially block-
ing data token read or write step. If no event has been posted, the process

starts the data-token read or write step. If the process is blocking on a read

or write step while the stop event from the master is received, the signal

unblock_process will unblock the process.

1 start process vj
2 Init (); // Initialization
3 while !cancelled do // Until the stop event cancels further execution
4
5 cancelled← Fire (); // Communication and Computation
6 end
7 Wrapup (); // Call the Wrapup function to finish stabilization
99 Function Fire()
10 · · ·
11 if shared == stop then // Do not start read/write step if shared is stop

12
13 shared← done;
14 return (cancelled← true);
15 else
16 Start a blocking R/W step;

17 if unblocked by signal then
18 shared← done;
19 return (cancelled← true);
20 end
21 end
22 · · ·
23 end Algorithm 9: New structure of a process vj .
Unblocking upon reception of an event is easily accomplished by us-

ing user-space signals from threading libraries such as the POSIX library.

Thus, the reception of the stop event by a process effectively cancels the

currently blocked token-write or token-read operation.

7.7.3 The Companion Process
The companion process compj of process vj is responsible for the commu-
nication of process vj with the master process. Algorithm 10 describes the
companion process compj , which is executed independently of process vj .
The design implements a handshake between a companion process and

the master In particular, the companion process waits for an event of the

master. If it finds a stop event, it updates the shared variable and waits
until the variable is set to done. Afterwards, it sends an acknowledgement

to the master and waits until it receives the proceed event.

7.7. IMPLEMENTING A PROTOTYPE 151

1 start process compj2 while true do // Run as a separate concurrent process
3
4 Read event from event channel;

5 if found stop then
6 shared← stop;
7 end
8 Sleep on the shared variable until it is changed to done;
9 Send acknowledgment tomaster;
10 Read event from event channel;

11 if found proceed then
12 shared← proceed;
13 end
14 end
15 endAlgorithm 10: Pseudo-code illustrating the functionality of the compan-
ion process compj .

It is possible to optimize this structure such that not every process in

the process network has a companion process, but instead a group of pro-

cesses residing on one processing element share a companion process.

However, in the interest of simplicity, we do not explore such options in

this chapter.

As a process vj might be blocked because of reading from an empty
FIFO or writing to a full FIFO channel, the companion process compj has
to be implemented as an additional object that is running in parallel to

process vj and just shares a single variable with process vj . In case the
platform supports multi-threading, the companion process compj can be
implemented as an additional thread. Otherwise, one can use stack-less

threads as described in section 7.7.5. As the companion process is in a

known state when the stabilization is completed, the companion process

is not part of the context of process vj , but can be re-initialized after mi-
gration.

7.7.4 The Wrapup Function
22 Function Wrapup()
3 Wait-to-Proceed (); // Wait for proceed event from master
4 Switch L(vj , k) with B(vj , k);
5 Forward-EOS () ; // Forward EOS token to all children
6 Collect-Tokens (); // Collect "late-arriving" tokens
7 Cleanup (); // Return memory to the system, etc.Algorithm 11: Basic structure of theWrapup function.

TheWrapup function was first introduced in Section 7.5.1. Pseudo-code
illustrating the function is given in the Algorithm 11. First, in Line 3, it

waits until it receives the proceed event from the master. It swaps all regu-

lar FIFOs L(vj ,m) with the corresponding backup FIFOs B(vj ,m) in Line 4.
Afterwards, it sends an end-of-stream (EOS) token to all its children and

waits in Line 6 until it receives an EOS marker from all its parents. Finally,

152 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

some cleanup operations are performed to return the memory to the sys-

tem.

Notice that swapping of the local FIFO L(vj ,m) with the backup FIFO
B(vj ,m) preserves the correctness of the process network. This is because:

• A backup FIFO is brought online only after reception of the proceed
signal. Note that a companion process transmits the acknowledge-

ment only when the process changes the shared variable to done.
Thereafter, the algorithm guarantees that the process will not trans-

mit any more tokens. Therefore, in the worst case, the backup FIFO

must be able to accommodate the tokens which are still in flight,

which are upper bounded to |M(m)|+ |EOS|.

• The only token that a process transmits post-reception of the pro-
ceed event is the EOSmarker, which is accommodated in the backup
FIFO.

Therefore, it can be seen that (assuming that the communication net-

work is lossless), none of the data tokens are lost in the process of stabi-

lization. Further, the FIFO data structure maintains the relative ordering

on the tokens on each channel.

7.7.5 Process Unblocking and User Space Context Management
The core problem at hand is to get the process to act on a message (or an

event) immediately, which may require it to suspend its normal activity.

There are two general approaches which are available to achieve such a

behavior from the process. One approach requires that the process polls

the event channel for a message (in this case, from the companion pro-

cess), which can be easily implemented, but imposes a significant comput-

ing overhead as a process needs to check frequently for a rare event. The

other approach is based on dispatching an unblocking signal to the pro-

cess. This approach is also simple to implement, and usually requires the

support of an operating system. Much of the complexity (e.g., dispatching

a signal, waking up a process which receives the signal) is hidden from

the user, and is managed by the operating system itself. Therefore, the ac-

tual solution used depends on a lot of factors, such as whether or not an

operating system is available for use on the processor.

Irrespective of how a process is unblocked, it must then proceed to col-

lect its context. This is a difficult problem, usually requiring interrupts

and special operating systems, and may also also require specialized pro-

cessors. In this chapter, we use stackless threads, such as protothreads for

the purpose. Protothreads do not require any special operating system or

hardware, and work completely in user space, see [DSVA06]. Protothreads

have already been successfully applied to KPNs to provide lightweight

scheduling [H+09]. The functionality of protothreads is implemented as

a set of macros that enclose the communication calls. The embedding of

7.8. EXPERIMENTS 153

a KPN process into a protothread process can also be automated at the

software synthesis step.

In a protothread, a control structure is used to store the local data of

a process together with a variable that represents the line number of the

process. Whenever the process exits the Fire function, it updates this vari-
able either to the current line number or, if the process has reached the

end of the Fire function, to the beginning of the Fire function. On the
other hand, at the beginning of the Fire function, the line number vari-
able of the control structure is read and the program counter jumps to this

line. In order to extend the protothread library with the unblocking func-

tionality, we change the process structure in two ways: First, we extend

the PT_WAIT_UNTIL macro of protothreads with the abilities to check for

the shared variable and to be unblocked by the unblock_process signal, as
outlined in Algorithm 9. Originally, the PT_WAIT_UNTIL macro just blocked

a process until the read or write is successful. Second, we enclose each

communication call with the extended PT_WAIT_UNTIL macro to obtain the

functionality described in Algorithm 9.

7.8 Experiments
7.8.1 Overview
The feasibility and efficiency of the proposed stabilization technique are

validated using two representative multiprocessing benchmarks: Demo-

saicing and a distributed Motion-JPEG (MJPEG) decoder algorithm, de-

tailed in Section 7.8.4. Specifically, we measure the time required to bring

the given applications into the stable state, and then compare the mea-

surements with the corresponding theoretical upper bounds, see Section

6.6.

In order to achieve our goal, i.e., to compare the observed stabilization

time with its upper bound, we proceed in three steps:

1. Calibration experiments are performed to derive a communication

model of the target platform and to obtain the characteristics of the

benchmark applications, see Section 7.8.3. As a result of this step, we

calculate the upper bounds t∗phase1,v, t
∗
phase2,v, D

∗
v for each process v,

and t∗stab,N for the network, see Section 7.5.

2. Stabilization experiments with the benchmarks are executed to ob-

serve the actual time taken by a process v to complete phase1 and
phase2, the time tstab,v to stabilize, and the context size Dv.

3. The observed values are compared with the bounds calculated in

Step 1.

154 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

7.8.2 Hardware Platform
For the experiments, we have used the Intel Single Chip Cloud (SCC) com-

puter, with basic technical details having already presented in Section 6.6.

In the context of this chapter, both benchmarks execute in the bare-metal

configuration (i.e., no operating system on the processor) to reduce timing

jitters. Cache-related timing variations are reduced by hosting one pro-

cess per tile. Since the SCC implements a deterministic X-Y routing, timing

variations due to router contention are reduced by carefully binding the

processes onto the tiles. Inter-process communication is implemented us-

ing the iRCCE library [C+11]. For timing measurements, all tiles establish a

common time reference when they boot using the barrier operation avail-

able in the communication library. L2 caches and interrupts are disabled

on all tiles. Data messages are at most of size 3 KB each (longer ones are
split) and control tokens are of size 16 B. The master process was placed
on a separate tile so that it does not interfere with the application.

7.8.3 Calibration
The communication model was derived by observing the time taken to de-

liver a packet with size ranging from 4 B through 3 KB over hop distances
ranging from one through eight. A total of 585 observations were made.
The communication latency under high cross-traffic between any two pro-

cesses u and v (including the master) mapped onto different tiles, was ob-
served to be upper bounded by:

t∗u→v = 5.182|P |+ 9935 (cl.cycles) (7.8)

where |P | is the size of the payload in bytes. Because of the high cross-
traffic, a dependency on the number of hops between the processing nodes

of the communicating processes is not observed.

The calibration experiments indicate that the communication latency

under high cross-traffic between any two processes u and v can be upper
bounded. In particular, we have seen that the latency is independent of

the number of hops between the processing nodes of the communicating

processes. In addition, we observed the communication latency under low

data traffic conditions, which is bounded by:

tlow trafficu→v = 5.182|P |+ 307.4H + 531 (clock cycles) (7.9)

Here, the latency depends on the number of hops H between the nodes of
the communicating processes. However, this model cannot be used as an

upper bound as it considers only low data traffic in the network.

Another set of calibration experiments was performed in order to ob-

tain the maximum computation time t∗c,v for each process. The detailed
results of all calibration experiments are reported together with the de-

tailed description of each benchmark in the following sections.

7.8. EXPERIMENTS 155

load image

pre-processing

pre-demosaicing

demosaicing(0)

demosaicing(1)

demosaicing(2)

demosaicing(3)

post-demosaicing

post-processing

write-result

Figure 7.3:The Demosaicing application.
7.8.4 Benchmark Applications
Demosaicing. Demosaicing [Li05a] is both a compute and data intensive
application consisting of 10 processes, see Figure 7.3. Tomeasure the stabi-
lization times, the experiment was repeated 20 times with different inputs
and randomly varying the instants at which the master starts a stop to-

ken broadcast. Both the average and maximum values of the 20 runs are
reported.

Table 7.1 summarizes the characteristics of the Demosaicing applica-

tion obtained when measuring the computation and read/write times of

the individual processes. The Demosaicing applicationwas executed using

five RAW images of different sizes, and the execution time for each differ-

ent image was measured. The maximum execution time corresponds to

the maximum time that a process executes without calling a communica-

tion primitive for each input RAW image. Finally, the maximum amount

of data that is transmitted per outgoing channel and iteration is reported.

The values given in Table 7.1 have been used in Table 7.2 to calculate the

upper bounds on the stabilization times.

Table 7.2 compares the measured stabilization time tstab,v with the cal-
culated upper bound t∗stab,v. It can be seen that all processes did indeed
stabilize before the expected time bounds. For some of the processes, the

observedmeasurements are very close to the expected upper bounds. This

means that the estimated bounds are indeed tight. The gaps between ob-

served values and bounds are explained by the fact that t∗stab,v is mainly
composed of the time the master waits until it receives all acknowledg-

ments, and considers that a process can be in its longest computation sec-

tion t∗c,v. As shown in Table 7.2, t
∗
c,v is particularly large for the post pro-

cessing process.

The overall context sizes reported in Table 7.2 is the sum of:

• The space required to store the line number (in order to restore the

context), local variables (except those which store unsent output data

tokens, and unread input data tokens), denoted as S1.

• The space required for storing unsent output data tokens, and unread

input data tokens, denoted as S2.

156 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

Therefore, all parents of v are informed of the stabilization
of v, and as a result, process v receives the EOS from all its
parents. The process v must also send EOS to all its chil-
dren, so that v’s children do not continue to expect tokens
from the previous location of v. Once process v stabilizes,
it can migrate. Subsequently, new channels must be estab-
lished between the parents of v and v’s children. Since the
network structure is statically known, recreating channels is
straightforward.

C. ADDITIONAL EXPERIMENTAL RE-
SULTS

In addition to the results presented in Section 6, we sum-
marize the Intel SCC platform and other experimental re-
sults in this section.

C.1 Intel Single-Chip Cloud Computer
The Intel Single-chip Cloud Computer (SCC) is a proto-

type of future embedded on-chip many-core platforms [3].
The processor consists of 24 tiles that are organized into a
4 × 6 grid and linked by a 2D mesh on-chip network. A
tile contains a pair of P54C processor cores, a router, and a
16 KB block of SRAM. Each core runs at 533 MHz and each
router runs at 800 MHz. The on-tile SRAM block is also
called “message passing buffer” (MPB) as it enables the ex-
change of information between cores in the form of messages.
Figure 6 schematically outlines the SCC processor.

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

R R R R R R

R R R R R R

R R R R R R

R R R R R R

M
em

o
ry

 C
n

tr
.

M
em

o
ry

 C
n

tr
.

M
em

o
ry

 C
n

tr
.

M
em

o
ry

 C
n

tr
.

L 2$1

L 2$0

IA-32

Core 1

IA-32
Core 0

R outer MPB

Figure 6: Schematic representation of Intel’s SCC
processor [3].

C.2 Additional Calibration Results
In Section 6, we have shown that the communication la-

tency under high cross-traffic between any two processes u
and v can be upper bounded. In particular, we have seen
that the latency is independent of the number of hops be-
tween the processing nodes of the communicating processes.
In addition, we observed the communication latency under
low data traffic conditions, which is bounded by:

tlow traffic
u→v = 5.182|P | + 307.4H + 531 (cl.cycles) (9)

Here, the latency depends on the number of hops H between
the nodes of the communicating processes. However, this
model cannot be used as an upper bound as it considers
only low data traffic in the network.

C.3 The Demosaicing Benchmark: Addi-
tional Results

Table 4 summarizes the characteristics of the Demosaic-
ing application obtained when measuring the computation
and read/write times of the individual processes. The bind-
ing reports the identification number of the SCC core, on
which the process is executed. The maximum execution

Table 4: Characteristics of the Demosaicing appli-
cation.
process bind- max. exec- port max. data /

ing ution time iteration

load image 26 0.13 s 0 618KB

pre processing 12 0.13 s 0 618KB

pre demosaicing 14 0.4 ms

1 160KB
2 2B
3 160KB
4 2B
5 160KB
6 2B
7 160KB
8 2B

demosaicing 0 28 1.05 s
2 160KB
3 471KB

demosaicing 1 18 1.07 s
2 160KB
3 471KB

demosaicing 2 02 1.07 s
2 160KB
3 471KB

demosaicing 3 40 1.05 s
2 160KB
3 471KB

post demosaicing 30 2.4 s
8 618KB
9 618KB

post processing 20 4.2 s 2 618KB

write result 22 0.5 ms

time corresponds to the maximum time that a process is
executing without calling a communication primitive and is
calculated when the Demosaicing application was executed
under five RAW images of different sizes. Finally, the maxi-
mum amount of data that is transmitted per outgoing chan-
nel and iteration is reported. The values given in Table 4
have been used in Table 1 to calculate the upper bounds on
the stabilization times.

Context Sizes: More Details.
The overall context sizes reported in Table 1 is the sum

of:

• The space required to store the line number (in order to
restore the context), local variables (except those which
store unsent output data tokens, and unread input data
tokens), denoted as S1.

• The space required for storing unsent output data to-
kens, and unread input data tokens, denoted as S2.

Therefore, S2 can be considered as the application-
dependent context storage requirement, while S1 is largely
independent of the application. The contribution due to S1

in the overall context sizes reported in Table 1 is presented
in Table 5. It is clear from Table 5 that the total size of the
context is dominated by the nature of the application itself.

C.4 The MJPEG Benchmark: Additional Re-
sults

Next, the characteristics of the MJPEG decoder appli-
cation are summarized in Table 6. The following values are
shown: The identification number of the SCC core, on which
the process is executed; the maximum time that a process
is executing without calling a communication primitive; and
the maximum amount of data that is transmitted per outgo-
ing channel and iteration. The time of the longest compute
segment was measured over each frame of an example video
with resolution 320 × 240 pixels.

Table 7.1: Characteristics of the Demosaicing application. Binding refers to the core of the
SCC on which the process executes.

Therefore, S2 can be considered as the application-dependent context stor-

age requirement, while S1 is largely independent of the application. The

contribution due to S1 in the overall context sizes reported in Table 7.2 is

presented in Table 7.3. It is clear from Table 7.3 that the total size of the

context is dominated by the nature of the application itself.

In addition, themaximummeasured size of the contextDv is compared

in Table 7.2 with its upper boundD∗v calculated using (7.2). For some of the
processes, the observed measurements are equal to the estimated upper

bounds indicating that (7.2) is tight. For some processes, the theoretical

upper bound on the context size is about three times larger than the mea-

sured maximum size. The former assumes that all FIFO channels are full

when the context is calculated, but in practice, some of the channels are

only partly filled.

MJPEG Decoder. The second example is a parallelized version of the
MJPEG decoder application taken from the benchmark suite of the Artist

Network of Excellence [Art08]. The application consists of six processes

and its structure is outlined in Figure 7.4.

Next, the characteristics of the MJPEG decoder application are sum-

marized in Table 7.5. The following values are shown: The identification

number of the SCC core, on which the process is executed; the maximum

7.8. EXPERIMENTS 157

process tphase1,v t∗phase1,v tphase2,v t∗phase2,v tstab,v t∗stab,v Dv D∗
v

avg max avg max avg max max

load image 0.024 s 0.13 s 0.13 s 19.46 μs 21.39 μs 29.33 μs 0.77 s 3.26 s 4.20 s 52 B 52B
pre processing 0.042 s 0.16 s 0.16 s 40.80 μs 44.39 μs 48.12 μs 0.77 s 3.26 s 4.20 s 632472 B 632472 B
pre demosaicing 0.32ms 0.55ms 0.55ms 77.07 μs 78.03 μs 79.74 μs 0.77 s 3.26 s 4.20 s 36 B 632484 B
demosaicing 0 0.41 s 1.04 s 1.05 s 60.58 μs 61.54 μs 66.91 μs 0.77 s 3.26 s 4.20 s 157704 B 163370 B
demosaicing 1 0.53 s 1.05 s 1.07 s 60.30 μs 62.63 μs 66.91 μs 0.77 s 3.26 s 4.20 s 160296 B 163370 B
demosaicing 2 0.61 s 1.04 s 1.07 s 58.70 μs 60.98 μs 66.91 μs 0.77 s 3.26 s 4.20 s 160296 B 163370 B
demosaicing 3 0.60 s 1.05 s 1.05 s 58.86 μs 61.32 μs 66.91 μs 0.77 s 3.26 s 4.20 s 157704 B 163370 B
post demosaicing 0.70 s 2.28 s 2.40 s 149.09 μs 159.04 μs 179.65 μs 0.77 s 3.26 s 4.20 s 338964 B 2538900 B
post processing 0.77 s 3.26 s 4.20 s 73.63 μs 76.26 μs 80.43 μs 0.77 s 3.26 s 4.20 s 620750 B 1255992 B
write result 0.36ms 0.53ms 0.57ms 37.02 μs 37.32 μs 56.37 μs 0.77 s 3.26 s 4.20 s 368 B 623460 B

process network 3.26 s 4.20 s 159.04 μs 179.65 μs 3.26 s 4.20 s 2176.4KB 6188.3 KB

Table 7.2: Measured stabilization time tstab,v vs. its upper bound t∗stab,v for each process of
the Demosaicing application. In addition, the maximum context size Dv is com-

pared to its upper bound D∗v . Notice that tstab,v and t
∗
stab,v are dominated by worst

case values of tphase1,v and t
∗
phase1,v respectively. The correlation is purely inciden-

tal, and does not hold for all use cases, see Table 7.6.

Table 5: Context size exclusively due to S1.

process context size for S1

load image 48

pre processing 24

pre demosaicing 36

demosaicing 0 72

demosaicing 1 72

demosaicing 2 72

demosaicing 3 72

post demosaicing 84

post processing 152

write result 68

Table 6: Characteristics of the MJPEG decoder ap-
plication.

process binding max. exec- port max. data /
ution time iteration

trigger 02 58 µs 0 4B

splitstream 04 167 µs
0 4B
1 10KB

splitframe 06 98 µs

2 307.2KB
3 64B
4 4B
5 8B

iqzigzagidct 18 875 µs 3 76.8KB

mergeframe 20 116 µs
2 7.68KB
3 8B

mergestream 22 114 µs

D. REFERENCES
[1] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali.

Protothreads: Simplifying Event-Driven Programming
of Memory-Constrained Embedded Systems. In Proc.
SenSys, pages 29–42, 2006.

[2] W. Haid et al. Efficient Execution of Kahn Process
Networks on Multi-Processor Systems Using
Protothreads and Windowed FIFOs. In Proc.
ESTIMedia, pages 35–44, 2009.

[3] J. Howard et al. A 48-Core IA-32 Message-Passing
Processor with DVFS in 45nm CMOS. In Proc. ISSCC,
pages 108–109, 2010.

Table 7.3: Context size exclusively due to S1.

time that a process is executing without calling a communication primi-

tive; and the maximum amount of data that is transmitted per outgoing

channel and iteration. The time of the longest compute segment was mea-

sured over each frame of an example videowith resolution 320×240 pixels.

trigger

splitstream

splitframe

iqzigzagidct

mergeframe

mergestream

Figure 7.4:The MJPEG application.
Similar to the first benchmark example, we compare the measured sta-

bilization time tstab,v of each process v with its upper bound t∗stab,v, see
Table 7.6. The experiment was repeated 20 times and the average and
maximum results are reported in Table 7.6. The results confirm the trend

observed with the Demosaicing application. In particular, all processes

158 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

Table 5: Context size exclusively due to S1.

process context size for S1

load image 48

pre processing 24

pre demosaicing 36

demosaicing 0 72

demosaicing 1 72

demosaicing 2 72

demosaicing 3 72

post demosaicing 84

post processing 152

write result 68

Table 6: Characteristics of the MJPEG decoder ap-
plication.

process binding max. exec- port max. data /
ution time iteration

trigger 02 58 µs 0 4B

splitstream 04 167 µs
0 4B
1 10KB

splitframe 06 98 µs

2 307.2KB
3 64B
4 4B
5 8B

iqzigzagidct 18 875 µs 3 76.8KB

mergeframe 20 116 µs
2 7.68KB
3 8B

mergestream 22 114 µs

D. REFERENCES
[1] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali.

Protothreads: Simplifying Event-Driven Programming
of Memory-Constrained Embedded Systems. In Proc.
SenSys, pages 29–42, 2006.

[2] W. Haid et al. Efficient Execution of Kahn Process
Networks on Multi-Processor Systems Using
Protothreads and Windowed FIFOs. In Proc.
ESTIMedia, pages 35–44, 2009.

[3] J. Howard et al. A 48-Core IA-32 Message-Passing
Processor with DVFS in 45nm CMOS. In Proc. ISSCC,
pages 108–109, 2010.

Figure 7.5:Characteristics of theMJPEG decoder application. Binding refers to the core of the
SCC on which the process executes.

process tphase1,v t∗phase1,v tphase2,v t∗phase2,v tstab,v t∗stab,v
avg max avg max avg max

trigger 55.5μs 129μs 155μs 20.1μs 23.7μs 24.1μs 401μs 671μs 899μs
splitstream 102μs 157μs 167μs 31.1μs 44.8μs 47.7μs 412μs 698μs 923μs
splitframe 48.8μs 96.6μs 98.9μs 49.4μs 76.4μs 77.5μs 430μs 699μs 952μs
iqzigzagidct 380μs 653μs 875μs 47.5μs 74.2μs 78.4μs 428μs 716μs 953μs
mergeframe 71.1μs 116μs 116μs 43.1μs 65.1μs 66.9μs 424μs 683μs 942μs
mergestream 53.8μs 107μs 114μs 24.7μs 37.2μs 37.6μs 405μs 687μs 913μs

process network 653μs 875μs 76.4μs 78.4μs 699μs 953μs

Figure 7.6:Measured stabilization time tstab,v vs. its upper bound t∗stab,v for each process of
the MJPEG decoder.

stabilized before the expected time bounds. In many cases, the bounds

are actually very accurate. For the MJPEG decoder application, the up-

per bound is mainly composed of the maximum execution time t∗c,v of the
iqzigzagidct process.

Time and Memory Overheads. The time and memory overhead gen-
erated by the additional code required to accomplish process network sta-

bilization is presented in Fig. 7.7. The time overhead is mainly due to the

additional logic to check for the stop token from the master and related

housekeeping activities. In particular, an individual checking for the stop

token has taken on average 43.01µs.

Table 2: Measured stabilization time tstab,v vs. its upper bound t∗stab,v for each process of the MJPEG decoder.

process tphase1,v t∗phase1,v tphase2,v t∗phase2,v tstab,v t∗stab,v
avg max avg max avg max

trigger 55.5µs 129µs 155 µs 20.1µs 23.7µs 24.1µs 401 µs 671 µs 899 µs
splitstream 102µs 157µs 167 µs 31.1µs 44.8µs 47.7µs 412 µs 698 µs 923 µs
splitframe 48.8µs 96.6µs 98.9µs 49.4µs 76.4µs 77.5µs 430 µs 699 µs 952 µs
iqzigzagidct 380µs 653µs 875 µs 47.5µs 74.2µs 78.4µs 428 µs 716 µs 953 µs
mergeframe 71.1µs 116µs 116 µs 43.1µs 65.1µs 66.9µs 424 µs 683 µs 942 µs
mergestream 53.8µs 107µs 114 µs 24.7µs 37.2µs 37.6µs 405 µs 687 µs 913 µs

process network 653µs 875 µs 76.4µs 78.4µs 699 µs 953 µs

Table 3: Overhead in terms of execution time and
binary code size for adding the ability to stabilize
compared to the original implementation.

application memory overhead time overhead

Demosaicing 8624 B 43.01 µs(< 0.05%)
MJPEG decoder 7104 B 43.01 µs(< 0.05%)

The application consists of six processes and its structure is
outlined in Fig. 5.

Similar to the first benchmark example, we compare the
measured stabilization time tstab,v of each process v with
its upper bound t∗stab,v, see Table 2. The experiment was
repeated 20 times and the average and maximum results
are reported in Table 2. The results confirm the trend ob-
served with the Demosaicing application. In particular, all
processes stabilized before the expected time bounds. In
many cases, the bounds are actually very accurate. For
the MJPEG decoder application, the upper bound is mainly
composed of the maximum execution time t∗c,v of the iqzigza-
gidct process.

Time and Memory Overheads. The time and mem-
ory overhead generated by the additional code required to
accomplish process network stabilization is presented in Ta-
ble 3. The time overhead is mainly due to the additional
logic to check for the stop token from the master and re-
lated housekeeping activities. In particular, an individual
checking for the stop token has taken on average 43.01 µs.

Summary. Using realistic applications, it has been
shown that the proposed technique can bring a process net-
work to a stable state. Performance metrics such as upper
bounds on the maximum stabilization time and maximum
context sizes are also presented. The maximum stabilization
time is dominated by the maximum time a process can exe-
cute without calling any communication primitive, i.e., pro-
cess compute time. It may be possible to further reduce the
stabilization time by inserting additional checks for events
in the process’ compute segments. Finally, detailed results
from experiments on the Intel SCC baremetal platform were
presented, validating the ideas presented in this paper.

7. CONCLUSION
The paper presented a technique to bring a process net-

work executing on a distributed system into a stable state,
suitable for migration. The proposed technique has been
shown to be lightweight, and preserves the original function-
ality of the network. The correctness of the technique has
been shown to be independent of the temporal characteris-
tics of the system and the topology. We have shown that
if the token communication time and process compute time

trigger

splitstream

splitframe

iqzigzagidct

mergeframe

mergestream

Figure 5: The MJPEG application.

are upper bounded, then an upper bound on the overall sta-
bilization time can be calculated. Finally, we validated the
feasibility and efficiency of the proposed approach and the
respective timing models with representative experiments on
Intel’s SCC platform.

8. REFERENCES
[1] A. Acquaviva et al. Assessing Task Migration Impact on

Embedded Soft Real-Time Streaming Multimedia Applications.
EURASIP J. Embedded Syst., pages 9:1–9:15, 2008.

[2] G. M. Almeida et al. An Adaptive Message Passing MPSoC
Framework. Int’l J. of Reconfigurable Computing, 2009.

[3] Artist. Benchmarks. http://www.artist-embedded.org/artist/
Benchmarks.html, 2008.

[4] S. Bertozzi et al. Supporting Task Migration in Multi-Processor
Systems-on-Chip: A Feasibility Study. In Proc. DATE, pages
15–20, 2006.

[5] E. Cannella et al. Adaptivity Support for MPSoCs Based on
Process Migration in Polyhedral Process Networks. VLSI
Design, pages 2:2–2:17, 2012.

[6] S. Chakravorty et al. Proactive Fault Tolerance in MPI
Applications via Task Migration. In Proc. HPC, pages 485–496,
2006.

[7] K. M. Chandy. Distributed Snapshots: Determining Global
States of Distributed Systems. ACM Trans. on Computer
Systems, 3:63–75, 1985.

[8] C. Clauss et al. iRCCE: A Non-Blocking Communication
Extension to the RCCE Communication Library for the Intel
Single-chip Cloud Computer. Technical report, RWTH Aachen,
2011.

[9] M. Geilen and T. Basten. Kahn Process Networks and a
Reactive Extension. In Handbook of Signal Processing
Systems, pages 967–1006. Springer, 2010.

[10] W. Haid et al. Efficient Execution of Kahn Process Networks
on Multi-Processor Systems Using Protothreads and Windowed
FIFOs. In Proc. ESTIMedia, pages 35–44, 2009.

[11] J. Howard et al. A 48-Core IA-32 Message-Passing Processor
with DVFS in 45nm CMOS. In Proc. ISSCC, pages 108–109,
2010.

[12] G. Kahn. The Semantics of a Simple Language for Parallel
Programming. In Proc. IFIP Congress, pages 471–475, 1974.

[13] C. Lee, H. Kim, H.-W. Park, S. Kim, H. Oh, and S. Ha. A Task
Remapping Technique for Reliable Multi-Core Embedded
Systems. In Proc. CODES/ISSS, pages 307–316, 2010.

[14] X. Li. Demosaicing by successive approximation. Trans. Img.
Proc., 14(3):370–379, 2005.

[15] C. Lu and S.-M. Lau. A Performance Study on Load Balancing
Algorithms with Task Migration. In Proc. TENCON, pages
357–364, 1994.

[16] D. F. Mark Claypool. Transparent Process Migration for
Distributed Applications in a Beowulf Cluster. In Proc. INC,
pages 459–466, 2002.

[17] H. Nikolov et al. Systematic and Automated Multiprocessor
System Design, Programming, and Implementation. IEEE
Trans. Comput. Aided Design, 27(3):542–555, 2008.

[18] J.-C. Ryou and J. Wong. A Task Migration Algorithm for Load
Balancing in a Distributed System. In Proc. System Sciences,
pages 1041–1048, 1989.

[19] S. Sankaran et al. The LAM/MPI Checkpoint/Restart
Framework: System-Initiated Checkpointing. Journal of High
Performance Computing Applications, 19(4):479–493, 2005.

[20] T. Suen and J. Wong. Efficient Task Migration Algorithm for
Distributed Systems. IEEE Trans. on Parallel and Distributed
Systems, 3:488–499, 1992.

[21] C. Wang et al. Hybrid Checkpointing for MPI Jobs in HPC
Environments. In Proc. ICPADS, pages 524–533, 2010.

Figure 7.7:Overhead in terms of execution time and binary code size for adding the ability
to stabilize compared to the original implementation.

7.9. CLOSING REMARKS 159

7.9 Closing Remarks
With this chapter, this thesis has covered three important approaches

to building a reliable multiprocessing system. This chapter proposed a

new technique to recover from a fault, targeted to multiprocessing appli-

cations modeled after general data-flow process networks, such as Kahn

Process Networks. Specifically, this chapter covers the challenges asso-

ciated with stabilizing a general data-flow process network, which is a

pre-requisite for a correct migration of the given process network. The

proposed technique has been shown to be lightweight, and preserves the

original functionality of the network. The correctness of the technique

has been shown to be independent of the temporal characteristics of the

system and the topology. We have shown that if the token communica-

tion time and process compute time are upper bounded, then an upper
bound on the overall stabilization time can be calculated. Furthermore,

this chapter provides simple mathematical expressions for estimating up-

per bounds on the maximum stabilization time and corresponding max-

imum context sizes for individual processes, and also the entire process

network. These expressions can be used to make a decision as to whether

it is feasible to attempt recovering from a fault in scenarios wherein the

system does not fail immediately after experiencing a fault. We noted that

owing to Intel SCC’s high speed on-chip network, the maximum stabiliza-

tion time is dominated by the maximum time a process can execute with-

out calling any communication primitive, i.e., process compute time. The
system designer may choose to reduce the stabilization time by inserting

additional checks for events in the process’ compute segments. Finally, de-

tailed results from experiments on the Intel SCC baremetal platform and

two realistic multiprocessing applications were presented, validating the

ideas presented in this chapter.

160 CHAPTER 7. RECOVERING FROM FAULTS IN PROCESS NETWORKS

8
Closing Remarks

8.1 Overall Summary
This thesis presented techniques useful for building a reliable system us-

ing three mutually orthogonal design pillars:

1. Start by analyzing the runtime environment in order to eliminate

those use-caseswhich can cause (thermal) faults, i.e., fault avoidance,

2. Incorporate into the design, the capability to tolerate faults transpar-

ently to the observer, i.e., fault tolerance, and

3. Recover from faults transparently to the observer, i.e., fault recovery.

Though this thesis focuses on thermally induced faults (or simply, ther-

mal faults), the ideas can be applied to other classes of faults as well. All

concepts proposed in this thesis were tailored to time and resource con-

strained systems, and were validated on state-of-the-art systems.

Fault Avoidance
Avoiding thermal faults requires an accurate model of the system, specif-

ically, a thermal model of the processor. The thermal model is then used

to simulate offline, the temperature of the processor, given necessary in-

formation about the runtime environment, e.g., set of applications, corre-

sponding time-schedule, and the mapping between applications and cores

of the processor. This information is then used to decide apriori whether

the system is in the danger of overheating at runtime, and hence effective

for avoiding thermally induced faults. To this end, this thesis described

162 CHAPTER 8. CLOSING REMARKS

a procedure to construct a thermal model for any processor which fea-

tures at least one temperature sensor. Furthermore, we also described a

calibration based method to account for the thermal effect of active cool-

ing packages mounted on the processor (e.g, a system fan). The strength

of the proposed approach lies in the minimal information necessary for

constructing the thermal model of the given processor. All the necessary

information required for realizing a thermal model is automatically ex-

tracted from the processor by a series of calibration experiments. Thus,

the entire procedure for constructing the model can be fully automated,

only requiring access to the physical processor for completing the calibra-

tion (and optionally, validation) steps. The thermal model construction

approach proposed in this thesis is in sharp contrast to the state-of-the-

art simulator based approaches such as Hotspot, which require extensive

knowledge of the physical properties of the target system (e.g., floorplan

of the processor, detailed power model, thermal properties of materials in

order to obtain accurate simulation results.

We then proceeded to use the thermal model for estimating the worst

case peak temperature of the processor, using abstract information about

the system, such as a simplified thermal model, and arrival curves indi-

cating the workload. Though the worst case peak temperature estimation

is based on (significantly) simpler single pole thermal models, we showed

that all conclusions apply equally when the thermal model used in com-

plex.

Fault Tolerance
Fault tolerance was achieved using an adaptation of the well known

N -version programming approach. The original N -version programming
approach was modified to detect and tolerate faults requiring only two

replicas of the application which execute in parallel to each other. We

assume that the application to be made fault tolerant fails-silently, a re-

quirement in many safety critical engineering domains, such as automo-

tive electronics. This assumption also simplifies the problem from general

purpose fault detection to detection of timing faults. The proposed ap-

proach is able to detect faults by simply observing the fill levels of selected

FIFO buffers in the system, and thus avoids the use of any timer resources.

This is in contrast tomost other approaches for detecting faults in real time

systems which depend on a series of timers, making such approaches dif-

ficult to scale with the size and timing complexity of applications.

Fault Recovery
Finally, we proposed a technique to recover from faults wherein the sys-

tem does not immediately fail after having experienced a fault. Thus, the

proposed approach is especially suited to recovering from thermal faults,

8.2. OPEN RESEARCH CHALLENGES 163

wherein the system is said of have experienced a thermal fault if its tem-

perature exceeds a pre-set threshold smaller than the critical temperature.

The system continues to be available until its temperature has exceeded

the critical temperature. This limited time can be used to migrate an appli-

cation from a faulty location (e.g., an overheated core) to a new, fault-free

location. The pre-requisite for correct migration is that the context of the

application be stored correctly, and this in turn requires that a technique

be devised which can guide application(s) to a stable statewherein the ap-
plication context ceases to change any further. The proposed technique is

specifically designed to be used with applications modeled after general

dataflow process networks, and is therefore applicable to a large class of

multiprocessing applications. Unlikemost other approaches, the proposed

solution does not require any special operating system or hardware.

8.2 Open Research Challenges
Improving Thermal Models
The thermal models proposed in this thesis are built using minimal infor-

mation and assumptions necessary. For instance, it is assumed that the

processor for which the thermal model is required features only one or

more temperature sensors. However, modern embedded and mobile pro-

cessors increasingly feature performance and energy counters, whichmay

be used instead of utilization traces to generate more accurate models, see

[SS13]. Furthermore, estimation of temperature traces is currently lim-

ited to those use cases wherein the set of applications to be executed on

the processor have a corresponding thermal model. It may be possible to

generalize the approach by constructing thermalmodel for a class of appli-
cations, rather than on a per application basis. Specifically, one may try to

categorize applications based on how these affect the temperature of the

processor. One approach may be to classify all compute intensive appli-

cations into one class, whereas all cache intensive applications belong to

another class. Thermal models are then derived on a per-class basis. For

estimating temperature traces, an application will need to be first classi-

fied into one of the available classes, and the corresponding thermalmodel

used. Another possible approach is to classify individual thermal models,

based on similarities in the impulse and step responses, and then choose

(or derive) a single thermal model for each class.

Reducing Thermal Stress in the Processor
It is known that the reliability of the processor decreases if it experiences

rapid changes in its temperature over time (i.e., temporal thermal gra-

dients) In addition, for the case of a multicore processor, differences in

the temperature across neighboring cores (i.e., spatial thermal gradients)

164 CHAPTER 8. CLOSING REMARKS

are also known to reduce reliability, see [Cle03, BSBN14]. To this end,

approaches have already been proposed which can statically determine

an optimal computing strategy (e.g., mapping between applications and

cores, corresponding schedules, etc), see [CRWG08]. However, for some

use cases, such as the case of a server servicing a variety of requests from

users, it may not be feasible to determine any solution offline. This sce-

nario requires the development of an online control engine which lever-

ages the speed and accuracy of the thermal models, in order to continu-

ously refine the computing strategy. To this end, the control engine may

utilize the following knobs: migrate applications, change processor clock
speeds, modify time schedules, and even adjust cooling as and when re-

quired. An early investigation into the topic revealed that whereas simple

solutions based on heuristics can be designed, a search for an optimal solu-

tion is still open. As an example, we have attempted the problem by using

the concept of per-core thermal bins as follows: First, we co-schedule a
subset of applications with similar steady-state temperatures onto a single

core, provided none of the applicationsmiss their deadlines. Furthermore,

any time-slack wherein the core is idle is removed by scaling down the

processor clock speed appropriately. Thus, the chosen strategy minimizes

temporal thermal cycles, see [Mü15]. Reduction in spatial thermal cycles

can be ensured by placing thermal bins with similar mean temperatures

in vicinity. This approach presents promising results, but as indicated be-

fore, a search for an optimal solution is still open.

Computer Security
Recent research trends in the area of computer security indicate a grow-

ing interest in understanding temperature based covert side channels, see

[BDK+09]. The underlying idea is to observe the changes in tempera-

ture of a core as it executes applications in order to derive useful infor-

mation, such as messages. Conventionally, reducing information leakage

(or exfiltration) has been achieved by partitioning computer resources.

That is, each security critical application executes on a dedicated core, ac-

cesses dedicated memory, and may even use dedicated communication re-

sources. However, these techniques do not work when the covert channel

used for leaking information is based onmodulating the temperature of (a

core of) a processor, since all the computation and communication units

are fabricated on the same silicon die. We have attempted to explore the

rate at which two colluding applications (e.g., a sender and a receiver),

isolated from each other using resource partitioning approaches, are able

to communicate to each other, see [MRR+15] The communication rate de-

pends on several factors, such as the background noise in the system, the

physical distance separating the two colluding parties, cooling, and also

how the colluding applications are designed. The communication rate in-

creases when the sender executes compute intensive instructions, spiking

the temperature of its core rapidly. These temperature changes are sensed

8.2. OPEN RESEARCH CHALLENGES 165

by the receiver, and converted to useful information. Furthermore, due

to high thermal resistivity of silicon, the communication rate increases if

the colluding parties are physically close, with the optimal being that the

colluding parties execute on the same core, of course, partitioned in time.

Our approach has thus far been exploratory in nature, trying out different

combinations of applications, separation distances, processor clock speeds

and the like. However, derivation of an upper bound on the maximum

possible communication rate, as a function of above discussed factors will

be a useful contribution to the scientific community. The thermal models

derived in this thesis may be a good starting point for such an endeavor as

these models already contain expressions to estimate the temperature of

the processor accounting for the factors discussed above.

166 CHAPTER 8. CLOSING REMARKS

A
Real Time Computing on theIntel SCC

Summary
This chapter describes the experience in using the Intel Single Chip Cloud

Computer (SCC) for real time applications. Chapters 6 and 7 of this the-

sis use the concepts described in this chapter. At the time the author

worked on this thesis, Intel SCC was the only many-core platform capa-

ble of supporting real time computation, and also had an outstanding

community support. Specifically, this chapter proposes design strategies

which enable high performance multiprocessing applications to achieve

predictable communication latencies, computation times and reaction la-tencies over on-chip many-core platforms, such as the Intel SCC. The ideas
presented in this chapter can be easily applied to other similar platforms,

notably the Kalray MPPA-256 processor, see [de 13].

A.1 Introduction
Mostmulti- andmany-core systems available today are primarily designed

to support high performance computing, rather than real time perfor-

mance. Common examples of such systems are the Intel Xeon Phi co-

processor, the Intel SCC co-processor, the Parallella co-processor, and the

P2012 co-processor see [JR13, MRL+10, VEMR14, BFFM12]. However, some

co-processors, such as the Intel SCC, and the more recent Kalray MPPA-256

processor also support low latency and low jitter performance, which can

be used for implementing real time applications. Specifically for the case

168 APPENDIX A. REAL TIME COMPUTING ON THE INTEL SCC

of the Intel SCC, the reduction in latency and jitter comes from simpler

P54C architecture in the cores combined with a high bandwidth and de-

terministic on-chip communication network. Recent trends indicate that

processors will continue to feature increasing number of cores, since such

processors allow the developers implement truly parallel applications. In

addition, the availability of multiple cores in a processor offers an oppor-

tunity to optimize power costs by shutting down cores which are not used.

This chapter presents design ideas which can be used to implement ap-

plications that require predictable performance characteristics when exe-

cuting on state-of-the-art many-core (co-) processors. Succinctly, an appli-

cation is said to have predictable performance characteristics if the time

required by the application to react to events, compute, and communicate

can be statically estimated and bounded, see Section A.4. Moreover, it may

be required that a given multiprocessing application react to events (e.g.,

control messages) in a bounded time. With this motivation, this chapter

proposes software design architecture with the following objectives:

1. Enable an application to execute with a predictable timing perfor-

mance, and

2. Enable an application to react to control messages in a predictable

time-frame (henceforth, bounded reaction latency).
The proposed approach does not assume any special operating system fea-

tures or services, and is therefore portable across platforms. We assume

a general data-flow process network model of computation, which is ex-

tensively used to design and implement streaming applications (e.g., med-

ical ultrasound). All proposed design concepts have been validated on

the Intel SCC operating in the baremetal configuration (i.e., no operating

system is used). It must be emphasized that merely using the SCC in the

baremetal configuration does not automatically lead to predictable timing
performance.

A.2 Related Work
Although it is possible to port one of several multiprocessor real-time op-

erating systems (RTOS) to the Intel SCC, an RTOS may consume a signifi-

cant portion of the available computing resources on the chip, thus mo-

tivating the need for a baremetal (i.e., without any operating system on

the processor) solution, see [Åk02]. As a result, C-language based pro-

gramming frameworks such as BareMetalC and BareMichael are available

which allow the applications to run directly on the SCC cores, without the

need of an operating system, see [MRL+10, Z+12]. In addition, baremetal-

compatible communication libraries such as RCCE, iRCCE provide intra-

and inter core communication, see [vdWMH11, C+11]. Puffitsch et. al.
use the baremetal approach to execute task-sets in real time on the SCC,

A.3. BACKGROUND 169

(a) A Data flow Process
Network. (b) Structure of a Process.

Figure A.1:Structure of the process network (left), and a process (right).
but their approach is restricted to periodic tasks with no pre-emption, and

tasks are not required to respond to events within a bounded latency, see

[PNP13]. In contrast, this chapter assumes general data-flow process net-

works, which must react to events within a statically bounded time.

A.3 Background
A.3.1 The Intel SCC Processor
The SCC processor is a 48-core experimental processor from Intel, featur-
ing 24 organized into a 4×6 grid and linked by a 2Dmesh on-chip network.
A tile contains a pair of P54C processor cores, a router, and a 16 KB block
of SRAM, which is used for message passing. Each core has L1 instruction

and data caches (16KB each) and a unified level 2 (L2) cache (256KB), see

[MRL+10] . Also see Section 6.6 for further details.

A.3.2 Data Flow Process Network Model of Computation
We assume a set of concurrently executing deterministic processes, com-

municating with each other in a point-to-pointmanner, via bounded FIFO
buffers. A process attempting to read (write) an empty (full) FIFO buffer

blocks (or stalls) till the read (write) operation can be successfully com-

pleted. A process can only execute (fire) when it has acquired sufficient
data to proceed with its computation. Process networks have natural sup-

port for parallelism making them an attractive model for describing mul-

tiprocessing systems, specially digital signal processing systems.

A.3.2.1 Structure of the Process
The functionality of each process in a network is split into three parts:initialization, execution and cleanup, with each part executed by a call to
a pre-defined function, see Figure A.1. The initialization function (init)
prepares a process for execution, by initializing variables, and allocating

170 APPENDIX A. REAL TIME COMPUTING ON THE INTEL SCC

memory, if necessary. The main functionality of the process is encapsu-

lated in the fire function, and runs as long as necessary, continuously
reading data from input channels, computing, and writing results to one

ormore output channels. The fire function therefore, consists of compute
segments, surrounded by channel read and/or channel write segments.

The compute segments involve purely processing of already acquired data,

and the time to execute each of these segments depends on the nature of

acquired data. The segment with the longest computing time is called thedominating segment. The cleanup function is called once the process ter-
minates its core functionality, and is used for returning resources to the

system, or gathering performance statistics.

A.3.2.2 TheMaster Process and the Modified Process Structure
Controlling the behavior of the application at runtime is achieved via a

special process, called the master process, which can send appropriate
control messages to the application at runtime. For brevity, we only dis-

cuss the stop control message, which is used to indicate to a process that it
must exit its fire function and proceed to execute the cleanup function.
Its structure follows the layout of the process in Figure A.1b.

Master

Read environment

Determine if a threshold exceeded

Temperature, voltages, power etc.

Temperature exceeds a predefined limit

Determine location information
Which core is too hot to continue?

Send a control message
Stop the process to cool down the core

loop

A B

C

D

Process

FIFO

fire()

Figure A.2:An example of themaster process. Additional control channels are also shown.
Further, in order that a process can react to control messages, its struc-

ture has been modified as shown in Figure A.3. After every call to Read
(or Write) function, the process checks for the control message (for ex-
ample, stop), and takes appropriate action. Inserting a check for control
message after every call to Read or Write is automatically done at the pre-
compilation stage. In the rest of this chapter, the process from the original

network is denoted simply as a process in order to distinguish it from themaster process.

A.4 Achieving Predictable Timing Characteristics
A.4.1 Definitions
For the purpose of this chapter, predictable timing characteristics consists
of three parts: (i) observed time to execute any given compute segment

A.4. ACHIEVING PREDICTABLE TIMING CHARACTERISTICS 171

Figure A.3:Modified process structure.
with an application is within a known bound, (ii) observed time for an ap-

plication to successfully transmit a fixed size message is within a known

bound, and (iii) observed time for an application to react to a control mes-

sage from the master is within a known bound.

We define reaction time of a process as:

Rp = tp,C∗ − tm,C∗ (A.1)

where Rp is the reaction time of a process p, tp,C∗ is the time when a pro-
cess receives the control message, and tm,C∗ is the time when the master
queues a control message for transmission (i.e., when a non-blocking call
to transmit the message from the master to the process is issued)

A.4.2 Proposed Solution
The proposed solution has been divided into the following sections:

1. A new communication interface such that for any process, the delay

in receiving a control message is independent of the size of data mes-

sages being exchanged between processes, thus ensuring bounded

reaction times;

2. Mapping between processes and cores which reduces uncertainties

in communication times between processes;

3. Eliminating factors that may lead to unpredictable compute segment

times.

A.4.3 A New Communication Interface
We do not place any limit on the length of data messages exchanged be-

tween processes. However, arbitrarily long messages lead to arbitrarily

long communication times, leading to unpredictable delays in reading a

control message from the master. Clearly, in order to ensure bounded

reaction times, the control message communication must be decoupled

172 APPENDIX A. REAL TIME COMPUTING ON THE INTEL SCC

from normal data communication. In addition, as per the assumed model

of computation, it must be ensured that a process attempting to read a

channel with insufficient data must not proceed further as long as all data

has not been acquired. Therefore, we propose a Read1 function, which is
called by the process to acquire data with the application programming

interface (API) as follows:

ControlMessage = Read (ID, *buffer, size, source);

The function returns ControlMessage holding the value of any control

message, if received. Here, ID is the identifier of the request, useful when

requests may be queued, ∗buffer is the memory location where the re-
ceived message will be saved, size is the length in bytes of the message to

expect, and source is the identifier of the core from which to receive the

message. The structure of the Read API closely resembles standard devel-

oper APIs found in commonly used communication libraries, such as the

RCCE, or the iRCCE, see [C+11, CLRB11]. In order to decouple data mes-

sages from control messages, the Read function:

1. Receives an arbitrary sized message in chunks not exceeding a fixed

size;

2. Intersperses checking for a control message from the master with

reading data messages;

As indicated earlier, if a process receives a control message (e.g. stop), the
process exits its fire function and proceeds to cleanup, see Figure A.3.
In order to ensure that the MPB has guaranteed space for holding con-

trol messages, we require that:

CHUNK_SIZE + |C∗| ≤ |MPB| (A.2)

Where |C∗| is the maximum size of the control message, CHUNK_SIZE is
the maximum chunk size of the data message, and |MPB| is the size of the
MPB on each tile of the Intel SCC. Very small values of chunk size results

in a large number of calls to the communication library, leading to inef-

ficiency, but also decrease the latency with which a process checks for a

control message. Thus, the choice of chunk size reflects a trade-off made

by the designer at design time. It is clear that the sender process must co-

operate with the receiver process for this technique to work. Specifically,

the sender splits an arbitrarily large messages into chunks not exceeding

CHUNK_SIZE, with chunks being transmitted (and received) in the correct
order. The receiver must then assemble chunks in the correct order to

receive the complete message. The above discussion is summarized in

Figure A.4. Referring to Figure A.4, the receiver process expects n bytes
from the sender, and therefore calls its Read function. The communica-
tion interface reads the message in chunks, interleaving with reading (if

1
The discussion for the corresponding Write function is analogous.

A.4. ACHIEVING PREDICTABLE TIMING CHARACTERISTICS 173

time

check
control

message

Master

Receiver Process

Communication Interface

check
control

message

receive
chunk

check
control

message

check
control

message

Read m bytes
from Sender

compute

Full message
received

stop

Send n bytes
to Receiver

Full message
sent

chunk
not available
! receive

chunk

check
control

message

compute

check
control

message

Send m bytes
to Receiver

stop

check
control

message

receive
chunk

chunk
not available
! chunk

not available
!

check
control

message

Communication Interface

Sender Process

Read n bytes
from Sender

sender process exits fire()

Figure A.4:Timeline of two communicating processes along with a master.

any) control message from the master. Notice that all processes (includ-

ing the master) are asynchronous, and there may be instants when the

receiver expects to receive a data chunk from the sender, but is not suc-

cessful. In such situations, the communication interface must not block,

and must proceed to checking for the control messages from the master.

In order to ensure that the communication interface does not return to the

caller without having acquired sufficient data, the communication inter-

face keeps a running count of total message size received with each new

chunk. Such non-blocking receive for data messages justifies the use of

non-blocking communication library, such as the iRCCE.

Timing Bounds
The worst case reaction time of a process is defined as follows:

R∗p = t∗read|write + S∗p + t∗m,C∗ (A.3)

where R∗p is the worst case reaction time of process p, t
∗
read|write is the maxi-

mum time to completely receive (or send) one CHUNK_SIZE of message, S∗p
is the length of dominating computation segment of process p, and t∗m,C∗
is the maximum time to transport the control message from the master to

process p.

A.4.4 Process-to-Core Mapping
The mapping of processes to cores impacts timing properties of an appli-

cation due to at least two factors:

174 APPENDIX A. REAL TIME COMPUTING ON THE INTEL SCC

Process Interference
Unless carefully scheduled, two or more processes sharing the same core

result in non-deterministic demands on the available computing resources

(such as MPB, tile router), thereby causing non-real time behavior. The

timing performance of the application is improved by mapping only one

process to a tile (and switching off the unused core).

Communication Traffic Interference
If message streams between more than one pair of sender-receiver pro-

cesses contend at an intermediate router, then, timing disturbance due to

such cross traffic may be observed at both pairs of processes. Therefore,

processes must be mapped in a manner that minimizes cross traffic at all

active routers on the chip, see [ZM12].

A.4.5 Eliminating other interferences
Timing predictability of an application is further improved by disabling all

interrupts and L2-caches, which is a common practice in the design of real

time systems.

A.5 Experiments and Results2
A.5.1 Methodology
Since reaction time (see (A.3)) is influenced by dominating segments as

well as communication, the overall objective of this section is to show

that R∗ computed using (A.3) upper bounds all values of reaction times
observed when running real applications. In order to determine represen-

tative values for t∗read|write, S
∗
p and t

∗
m,C∗ , a series of calibration experiments

are performed on the Intel SCC:

A.5.1.1 Message Read-Write Timings
A simple producer process was mapped to core 0 and a simple consumer

process was mapped at hop distances of 1,2,3 and 4 from the producer.

The message size transmitted by the producer ranged from 32 bytes to

3KB. Timings were recorded under ideal and noisy conditions, and were

measured with reference to the core’s local time-stamp counter (TSC). In

order to ensure that the reported timings are correct, the sender and re-

ceiver clocks were first synchronized using a barrier, and then, the sender

transmitted its local time stamp to the receiver. The receiver computed

the message travel time by referencing the received time-stamp with its

own on-core time stamp counter, and thereby avoiding costly accesses to

2
Experiments were performed on a remote SCC operating in the baremetal configuration.

A.5. EXPERIMENTS AND RESULTS 175

the global time-stamp counter. In the first set of experiments, only the

producer-consumer pair was active on the chip, and the observed timing

model is summarized in (A.4). The reported model matches well with the

timings reported in [Mat13].

tp→p′(clock cycles) = 5.289|P |+ 57.53|H|+ 894.4 (A.4)

Where t∗p→p′ is the worst-case time in delivery a given message, |P | is the
packet size of the message in bytes, and |H| is the hop-distance between
the sender and the receiver (measured along themessage transport route).

Next, one traffic generator process was mapped onto one core in each tile

of the SCC, with the objective of creating heavy traffic at each router of the

SCC. The producer and consumer processes did not shared any core with

the traffic generators. The corresponding worst case time is presented in

(A.5).

t∗p→p′(clock cycles) = 4.908|P |+ 9921 (A.5)

Notice that the worst case time is independent of the hop distance be-

tween cores. Each model was derived out of a total of 800 observations.

Note that the reported times include both the message transmission time,and the time to read the full message by the consumer.

A.5.1.2 Dominating Segments
Dominating segments were evaluated by carefully isolating computing

segments from communicating segments in each process of the selected

application. Next, the application was run with an input known to lead

to high compute times. For signal processing application, these inputs are

known in advance. For instance, for Demosaicing, an input image with

lot of high-frequency components will lead to high compute times. From

the calibration runs, the dominating segment of each process is calculated.

Once all calibration runs are complete, the upper bound on reaction times

(R∗) is calculated using (A.3).

A.5.2 Results
For experiments, two large applications, the Demosaicing [Li05b], and themotion-JPEG (MJPEG) decoder are selected. The SCC was booted with
the following parameters: tile clock: 533MHz, router: 800MHz, DDR3:

800MHz, with L2-caches disabled. The size of control messages was set to

32 bytes, and CHUNK_SIZE was set to 3KB. Both applications are compute
and communication intensive.

176 APPENDIX A. REAL TIME COMPUTING ON THE INTEL SCC

Figure A.5:The Demosaicing application with the mapping details. Size of data messages
exchanged between processes is also shown. Master process was mapped to core

24.

Load Image

Pre Processing

Pre Demosaicing

Demosaicing(0)

Demosaicing(1)

Demosaicing(2)

Demosaicing(3)

Post Demosaicing

Post Processing

Write Result

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
(seconds)

Jitter

Figure A.6:Lengths of dominating segments for each process in the Demosaicing application.

Reaction Times for the Demosaicing Application.

The Demosaicing process network is shown in Figure A.5. Notice that the

process-to-core mapping ensures that one tile does not host more than one

process, and cross traffic at routers is minimized. Reaction times for each

process in the Demosaicing application are shown in Figure A.7, with lines

representing observed values from experiments, while the bars represent

the bounds computed during calibration runs. Notice that the bounds are

tight.

A.5. EXPERIMENTS AND RESULTS 177

Figure A.7:Reaction Times for the Demosaicing application for 10 observations. Lines show
observed timings during experiments.

Reaction Times for the Motion-JPEG Decoder.
The MJPEG decoder process network is shown in Figure A.8. The split-

stream and splitframe processes search for certainmarkers in the encoded

image. The amount of time spent in searching for the marker depends on

the frame itself, and hence, the dominating compute segments in these

processes show large variations. Consequently, for calculating worst case

reaction time R∗p, the maximum size of corresponding dominating seg-

ments is used.

Figure A.8:The Motion JPEG decoder. Master process was mapped to core 16.

Figure A.9 shows the lengths of dominating segments for the MJPEG

application, while Figure A.10 compares the predicted value of reaction

times to those observed over 10 experiments involving 30 frames each.

Notice that unlike the Demosaicing application, reaction times in MJPEG

application are not determined solely by the dominating segments, but

are also influenced by communication times. Also notice that the iqzigza-gidct process communicates messages of size 76.8KB, which according to
(A.5) would take 725µs. Unless the entire message was communicated in

178 APPENDIX A. REAL TIME COMPUTING ON THE INTEL SCC

Figure A.9:Size of dominating segments for the MJPEG decoder.

Figure A.10:Reaction Times for the MJPEG decoder for 10 observations.

chunks, the reaction times would have been an order of magnitude more

than what is reported in Figure A.10.

A.5.3 Overhead
The definition of the new communication interface was common to both

applications, and the additional logic for chunk-based message commu-

nication resulted in a mere 528 byte overhead. The chunk-based mes-

sage communication improved the timing efficiency of message commu-
nication, leading to a 4.7% improvement in per-frame timing for MJPEG
decoder. This is because chunk-based communication mitigated the num-

ber of times shared memory was accessed during message passing, which

more than compensated for larger number rounds required to send the

complete message. Any time overhead for the Demosaicing application

was negligible since timings in this case are determined by dominating

compute segments.

A.6. SUMMARY 179

A.6 Summary
This chapter demonstrated that it is indeed possible to achieve predictable

runtime performance, and bounded reaction time of applications on the

Intel SCC processor. To this end, a non-blocking communication strat-

egy was proposed which interleaves data and control communication,

and also complies with the execution semantics of general data flow pro-

cess networks. This strategy enables a process (or an entire process net-

work) to react to events with a bounded and predictable latency. Fur-

thermore, the above-mentioned strategy was encapsulated in an RCCE- (or

MPI-) like communication API, making it possible to easily incorporate the

proposed strategy into existing multi- and many-core application design

frameworks. Experiments involving two representative applications vali-

date the proposed technique and show that predictable performance, in-

cluding bounded reaction latencies can be achieved easily on baremetal

SCC, and indeed on any many-core processor. Last, the techniques applied

in the chapter for achieving predictable runtime performance are generic,

and can therefore be applied to other many-core processors, such as the

Kalray MPPA-256, or the Parallella processor.

180 APPENDIX A. REAL TIME COMPUTING ON THE INTEL SCC

Bibliography
[A+08] Andrea Acquaviva et al. Assessing Task Migration Impact

on Embedded Soft Real-Time Streaming Multimedia Appli-

cations. EURASIP J. Embedded Syst., pages 9:1–9:15, 2008.
[A+09] Gabriel Marchesan Almeida et al. An Adaptive Message

Passing MPSoC Framework. Int’l J. of Reconfigurable Com-puting, 2009.
[And13] Andreas Olofsson. tinyurl.com/kre2k5z, 2013.

[Art08] Artist. Benchmarks. http://www.artist-embedded.
org/artist/Benchmarks.html, 2008.

[B+06] Stefano Bertozzi et al. Supporting Task Migration in Multi-

Processor Systems-on-Chip: A Feasibility Study. In Proc.DATE, pages 15–20, 2006.
[BBB+11] P. Bourgos, A. Basu, M. Bozga, S. Bensalem, J. Sifakis, and

K. Huang. Rigorous system level modeling and analysis of

mixed hw/sw systems. In Formal Methods and Models forCodesign (MEMOCODE), 2011 9th IEEE/ACM InternationalConference on, pages 11 –20, july 2011.
[BDK+09] Julien Brouchier, Nora Dabbous, Tom Kean, Carol Marsh,

and David Naccache. Thermocommunication, 2009.

david.naccache@ens.fr 14242 received 29 Dec 2008.

[Ber06] Bertoluzzo, M. and Buja, G. and Pimentel, J. Design of

a Safety-Critical Drive-By-Wire System using FlexCAN. InSAE Technical Paper 2006-01-1026, SAEWorld Congress, De-
troit, MI, USA, 2006.

[BFFM12] L. Benini, E. Flamand, D. Fuin, and D. Melpignano. P2012:

Building an ecosystem for a scalable, modular and high-

efficiency embedded computing accelerator. In Design, Au-tomation Test in Europe Conference Exhibition (DATE), 2012,
pages 983–987, March 2012.

http://www.artist-embedded.org/artist/Benchmarks.html
http://www.artist-embedded.org/artist/Benchmarks.html

182 BIBLIOGRAPHY

[Bie11] Christian Bienia. Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, January 2011.

[BM01] D. Brooks and M. Martonosi. Dynamic thermal manage-

ment for high-performance microprocessors. In High-Performance Computer Architecture, 2001. HPCA. The Sev-enth International Symposium on, pages 171–182, 2001.
[BP05] Nikhil Bansal and Kirk Pruhs. Speed scaling to manage

temperature. In STACS, 2005.
[BSBN14] M. Becker, K. Sandstrom, M. Behnam, and T. Nolte. Lim-

iting temperature gradients on many-cores by adaptive re-

allocation of real-time workloads. In Emerging Technologyand Factory Automation (ETFA), 2014 IEEE, pages 1–8, Sept
2014.

[BTM00] David Brooks, Vivek Tiwari, and Margaret Martonosi.

Wattch: a framework for architectural-level power analy-

sis and optimizations. In Proceedings of the 27th annual in-ternational symposium on Computer architecture, ISCA ’00,
pages 83–94, New York, NY, USA, 2000. ACM.

[C+06] Sayantan Chakravorty et al. Proactive Fault Tolerance in

MPI Applications via Task Migration. In Proc. HPC, pages
485–496, 2006.

[C+11] C. Clauss et al. iRCCE: A Non-Blocking Communication

Extension to the RCCE Communication Library for the In-

tel Single-chip Cloud Computer. Technical report, RWTH

Aachen, 2011.

[C+12] Emanuele Cannella et al. Adaptivity Support for MPSoCs

Based on Process Migration in Polyhedral Process Net-

works. VLSI Design, pages 2:2–2:17, 2012.
[Cha85] K. Mani Chandy. Distributed Snapshots: Determining

Global States of Distributed Systems. ACM Trans. on Com-puter Systems, 3:63–75, 1985.
[CHK07] Jian-Jia Chen, Chia-Mei Hung, and Tei-Wei Kuo. On themin-

imization of the instantaneous temperature for periodic

real-time tasks. In IEEE Real-Time and Embedded Technol-ogy and Applications Symposium, 2007.
[Cle03] Clemens J.M. Lasance. Thermally driven reliability issues

in microelectronic systems: status-quo and challenges. Mi-croelectronics Reliability, 43(12):1969 – 1974, 2003.

BIBLIOGRAPHY 183

[CLRB11] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl. Evaluation

and improvements of programmingmodels for the intel scc

many-core processor. In High Performance Computing andSimulation (HPCS), 2011., pages 525–532, 2011.
[CLS+06] S. Chakraborty, Yanhong Liu, N. Stoimenov, L. Thiele, and

E. Wandeler. Interface-based rate analysis of embedded

systems. In Real-Time Systems Symposium, 2006. RTSS ’06.27th IEEE International, pages 25–34, 2006.
[CM10] Jin Cui and D.L. Maskell. High level event driven thermal

estimation for thermal aware task allocation and schedul-

ing. In Design Automation Conference (ASP-DAC), 2010 15thAsia and South Pacific, pages 793 –798, jan. 2010.
[CRWG08] A.K. Coskun, T.S. Rosing, K.A. Whisnant, and K.C. Gross.

Static and dynamic temperature-aware scheduling formul-

tiprocessor socs. Very Large Scale Integration (VLSI) Sys-tems, IEEE Transactions on, 16(9):1127–1140, Sept 2008.
[CS06] Sung Woo Chung and K. Skadron. Using On-Chip Event

Counters For High-Resolution, Real-Time Temperature

Measurement. In Thermal and Thermomechanical Phenom-ena in Electronics Systems, ITHERM, pages 114–120, 2006.
[de 13] de Dinechin, B.D. and Ayrignac, R. and Beaucamps, P.-E.

and Couvert, P. and Ganne, B. and de Massas, P.G. and

Jacquet, F. and Jones, S. and Chaisemartin, N.M. and Riss,

F. and Strudel, T. A clustered manycore processor architec-

ture for embedded and accelerated applications. In HighPerformance Extreme Computing Conference (HPEC), 2013IEEE, pages 1–6, Sept 2013.
[DJL+04] Simon Derr, P Jackson, C Lameter, P Menage, and H Seto.

Cpusets, 2004.

[DL80] L. Dugard and I. D. Landau. Recursive Output Error Iden-

tification Algorithms Theory and Evaluation. Automatica,
16(5):443–462, 1980.

[DSVA06] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb

Ali. Protothreads: Simplifying Event-Driven Programming

of Memory-Constrained Embedded Systems. In Proc. Sen-Sys, pages 29–42, 2006.
[DZ11] Mian Dong and Lin Zhong. Self-constructive high-rate sys-

tem energy modeling for battery-powered mobile systems.

In Proceedings of the 9th International Conference on Mo-bile Systems, Applications, and Services, MobiSys ’11, pages
335–348, New York, NY, USA, 2011. ACM.

184 BIBLIOGRAPHY

[EAH12] Thomas Ebi, Hussam Amrouch, and Jörg Henkel. Cool:

Control-based optimization of load-balancing for thermal

behavior. In Proceedings of the Eighth IEEE/ACM/IFIP In-ternational Conference on Hardware/Software Codesign andSystem Synthesis, CODES+ISSS ’12, pages 255–264, New
York, NY, USA, 2012. ACM.

[EBSA+11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant,

Karthikeyan Sankaralingam, and Doug Burger. Dark Sili-

con and the End of Multicore Scaling. In Proceedings of the38th Annual International Symposium on Computer Archi-tecture, ISCA ’11, pages 365–376, New York, NY, USA, 2011.
ACM.

[FCWT09] Nathan Fisher, Jian-Jia Chen, ShengquanWang, and Lothar

Thiele. Thermal-aware global real-time scheduling onmul-

ticore systems. In RTAS, 2009.
[FKC+10] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. Koutsoukos, and

H. Wang. Feedback thermal control for real-time systems.

In RTAS, 2010.
[FWP09] Xing Fu, Xiaorui Wang, and Eric Puster. Dynamic thermal

and timeliness guarantees for distributed real-time embed-

ded systems. In RTCSA, pages 403–412, 2009.
[GB10] Marc Geilen and Twan Basten. Kahn Process Networks and

a Reactive Extension. InHandbook of Signal Processing Sys-tems, pages 967–1006. Springer, 2010.
[GD05] D. Gerling and G. Dajaku. Novel lumped-parameter ther-

mal model for electrical systems. In Power Electronics andApplications, 2005 European Conference on, pages 10 pp.–
P.10, 2005.

[GDJ12] Meng Guo, D.V. Dimarogonas, and K.H. Johansson. Dis-

tributed real-time fault detection and isolation for cooper-

ative multi-agent systems. In American Control Conference(ACC), 2012, pages 5270–5275, 2012.
[GRE+01a] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, and R. B. Brown. Mibench: A free, commercially

representative embedded benchmark suite. In Proceedingsof the Workload Characterization., WWC ’01, pages 3–14,
2001.

[GRE+01b] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin,

T. Mudge, and R.B. Brown. Mibench: A free, commercially

representative embedded benchmark suite. In Workload

BIBLIOGRAPHY 185

Characterization, 2001. WWC-4. 2001 IEEE InternationalWorkshop on, pages 3–14, Dec 2001.
[H+09] Wolfgang Haid et al. Efficient Execution of Kahn Process

Networks on Multi-Processor Systems Using Protothreads

and Windowed FIFOs. In Proc. ESTIMedia, pages 35–44,
2009.

[H+10a] J. Howard et al. A 48-Core IA-32 Message-Passing Processor

with DVFS in 45nm CMOS. In Proc. ISSCC, pages 108–109,
2010.

[H+10b] J. Howard et al. A 48-Core IA-32 Message-Passing Processor

with DVFS in 45nm CMOS. In Proc. ISSCC, pages 108–109,
2010.

[HBZ+14] J. Henkel, L. Bauer, Hongyan Zhang, S. Rehman, and

M. Shafique. Multi-layer dependability: From microarchi-

tecture to application level. In Design Automation Con-ference (DAC), 2014 51st ACM/EDAC/IEEE, pages 1–6, June
2014.

[HCBK12] Kai Huang, Gang Chen, C. Buckl, and A. Knoll. Conform-

ing the runtime inputs for hard real-time embedded sys-

tems. In Design Automation Conference (DAC), 2012 49thACM/EDAC/IEEE, pages 430–436, June 2012.
[HFFA11] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.

Toward Dark Silicon in Servers. Micro, IEEE, 31(4):6–15,
July 2011.

[HG08] Liuping Wang Hugues Garnier, editor. Identification ofContinuous-time Models from Sampled Data, volume XXVI
of Advances in Industrial Control. Springer, 2008.

[HNPT13] J. Henkel, V. Narayanan, S. Parameswaran, and J. Te-

ich. Run-time adaption for highly-complex multi-core sys-

tems. In Hardware/Software Codesign and System Synthesis(CODES+ISSS), 2013 International Conference on, pages 1–8,
Sept 2013.

[HoMAECE07] Y. Han and University of Massachusetts Amherst. Electrical

& Computer Engineering. Temperature Aware Techniquesfor Design, Simulation and Measurement in Microproces-sors. University of Massachusetts Amherst, 2007.
[HSG+09] Wei Huang, Kevin Skadron, Sudhanva Gurumurthi,

Robert J. Ribando, and Mircea R. Stan. Differentiating the

roles of IR measurement and simulation for power and

temperature-aware design. In ISPASS, pages 1–10, 2009.

186 BIBLIOGRAPHY

[HSL78] Jr. Hopkins, A.L., III Smith, T.B., and J.H. Lala. A highly

reliable fault-tolerant multiprocess for aircraft. Proc. IEEE,
pages 1221–1239, 1978.

[HSS96] A. Hlawiczka, J.G.S. Silva, and L. Simoncini. DependableComputing - EDCC-2: Second European Dependable Com-puting Conference. Lecture Notes in Artificial Intelligence.
Springer, 1996.

[HSS+04] Wei Huang, M.R. Stan, K. Skadron, K. Sankaranarayanan,

S. Ghosh, and S. Velusamy. Compact thermal modeling for

temperature-aware design. In Design Automation Confer-ence, 2004. Proceedings. 41st, pages 878 –883, july 2004.
[Jar14] Jarem Archer. tinyurl.com/lsp456h, 2014.

[JR13] James Jeffers and James Reinders. Intel Xeon Phi Copro-cessor High Performance Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 2013.

[Kah74] Gilles Kahn. The Semantics of a Simple Language for Par-

allel Programming. In Proc. IFIP Congress, pages 471–475,
1974.

[Kat13] Georgios Kathareios. Towards Exploiting Intra-Application

Dynamism using an H.264 Codec. Master’s thesis, ETH

Zurich, Zurich, Switzerland, 2013.

[KB03] Hermann Kopetz and G. Bauer. The time-triggered archi-

tecture. Proceedings of the IEEE, 91(1):112–126, Jan 2003.
[KBSM06] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge. Reliabil-

itymodeling andmanagement in dynamicmicroprocessor-

based systems. InDesign Automation Conference, 2006 43rdACM/IEEE, pages 1057 –1060, 0-0 2006.
[KSS+12] Emre Kultursay, Karthik Swaminathan, Vinay Saripalli, Vi-

jaykrishnan Narayanan, Mahmut T. Kandemir, and Suman

Datta. Performance Enhancement Under Power Con-

straints Using Heterogeneous CMOS-TFET Multicores. InProceedings of the Eighth IEEE/ACM/IFIP International Con-ference on Hardware/Software Codesign and System Synthe-sis, CODES+ISSS ’12, pages 245–254, New York, NY, USA,
2012. ACM.

[KT11] P. Kumar and L. Thiele. Cool shapers: Shaping real-time

tasks for improved thermal guarantees. In Design Automa-tion Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages
468–473, June 2011.

BIBLIOGRAPHY 187

[LBT01a] Jean-Yves Le Boudec and Patrick Thiran. Network Calcu-lus — A Theory of Deterministic Queuing Systems for the In-ternet, volume 2050 of Lecture Notes in Computer Science.
Springer Verlag, 2001.

[LBT01b] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus:A Theory of Deterministic Queuing Systems for the Internet.
Springer-Verlag, Berlin, Heidelberg, 2001.

[LDSY07] Yongpan Liu, Robert P. Dick, Li Shang, and Huazhong Yang.

Accurate temperature-dependent integrated circuit leak-

age power estimation is easy. In DATE, pages 1526–1531,
San Jose, CA, USA, 2007. EDA Consortium.

[LHL05] Weiping Liao, Lei He, and Kevin Lepak. Temperature and

supply voltage aware performance and power modeling at

microarchitecture level. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, volume
Volume 24, Issue 7, pages 1042 – 1053. ACM, July 2005.

[Li05a] Xin Li. Demosaicing by successive approximation. Trans.Img. Proc., 14(3):370–379, 2005.
[Li05b] Xin Li. Demosaicing by successive approximation. Im-age Processing, IEEE Transactions on, 14(3):370–379, March

2005.

[LKP+10] Chanhee Lee, Hokeun Kim, Hae-Woo Park, Sungchan Kim,

Hyunok Oh, and Soonhoi Ha. A Task Remapping Tech-

nique for Reliable Multi-Core Embedded Systems. In Proc.CODES/ISSS, pages 307–316, 2010.
[LL94] Chin Lu and Sau-Ming Lau. A Performance Study on Load

Balancing Algorithms with Task Migration. In Proc. TEN-CON, pages 357–364, 1994.
[LPMS97] Chunho Lee, M. Potkonjak, and W.H. Mangione-Smith. Me-

diaBench: a tool for evaluating and synthesizing multi-

media and communications systems. In EEE/ACM Inter-national Symposium on Microarchitecture., pages 330–335,
Dec 1997.

[LTT08] Duo Li, Sheldon X.-D. Tan, and Murli Tirumala.

Architecture-level thermal behavioral characterization

for multi-core microprocessors. In Proceedings of the2008 Asia and South Pacific Design Automation Conference,
ASP-DAC ’08, pages 456–461, Los Alamitos, CA, USA, 2008.

IEEE Computer Society Press.

[Mar14] Martin Reisslein et. al., 2014.

188 BIBLIOGRAPHY

[Mat13] Mattson, T.G. Using Intel’s Single-Chip Cloud Computer

(SCC). http://communities.intel.com/docs/DOC-19269, 2013.

[MC02] David Finkel Mark Claypool. Transparent Process Migra-

tion for Distributed Applications in a Beowulf Cluster. InProc. INC, pages 459–466, 2002.
[Mic12] Michal Mienik, 2012.

[Mil98] Blair D. Milburn. Apparatus and method for initializing a

master/checker fault detecting microprocessor, 1998.

[MMA+07] Srinivasan Murali, Almir Mutapcic, David Atienza, Ra-

jesh Gupta, Stephen Boyd, and Giovanni De Micheli.

Temperature-aware processor frequency assignment for

mpsocs using convex optimization. In CODES/ISSS, 2007.
[MMNBR07] Francisco Javier Mesa-Martinez, Joseph Nayfach-Battilana,

and Jose Renau. Power Model Validation Through Thermal

Measurements. In Proceedings of the 34th Annual Inter-national Symposium on Computer Architecture, ISCA, pages
302–311, 2007.

[MRL+10] Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul

Brett, Werner Haas, Patrick Kennedy, Jason Howard, Sri-

ram Vangal, Nitin Borkar, Greg Ruhl, and Saurabh Dighe.

The 48-core scc processor: The programmer’s view. InProceedings of the 2010 ACM/IEEE International Conferencefor High Performance Computing, Networking, Storage andAnalysis, SC ’10, pages 1–11, Washington, DC, USA, 2010.
IEEE Computer Society.

[MRR+15] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ran-

ganathan, Christian Müller, Lothar Thiele, and Srdjan Cap-

kun. Thermal covert channels on multi-core platforms.

In 24th USENIX Security Symposium (USENIX Security 15),
Washington, D.C., 2015. USENIX Association.

[Mü15] Christian Müller. A Framework for End-to-End Thermal

Modeling and Control. Master’s thesis, ETH Zurich, Zurich,

Switzerland, 2015.

[N+08] Hristo Nikolov et al. Systematic and Automated Multipro-

cessor System Design, Programming, and Implementation.IEEE Trans. Comput. Aided Design, 27(3):542–555, 2008.
[NMA+12] M. Neukirchner, T. Michaels, P. Axer, S. Quinton, and

R. Ernst. Monitoring arbitrary activation patterns in real-

time systems. In Real-Time Systems Symposium (RTSS), 2012IEEE 33rd, pages 293–302, Dec 2012.

BIBLIOGRAPHY 189

[Off13] BV Offspark. Polarssl. ht tps://polarssl. org/, last access,
2013.

[PNP13] W. Puffitsch, E. Noulard, and C. Pagetti. Mapping a multi-

rate synchronous language to a many-core processor. InReal-Time and Embedded Technology and Applications Sym-posium (RTAS), 2013 IEEE 19th, pages 293–302, April 2013.
[PSHA03] J.J. Purcell, P. Sowerby, E.P. Hodzen, and E.B. Andrews.

ECU temperature control, December 2 2003. US Patent

6,655,326.

[RSS+13] Devendra Rai, Lars Schor, Nikolay Stoimenov, Iuliana Baci-

varov, and Lothar Thiele. Designing Applications with Pre-

dictable Runtime Characteristics for the Baremetal Intel

SCC. Runtime and Operating Systems for the Many-core Era(ROME), 2013.
[RU08] R. Rao and Arizona State University. Fast and AccurateTechniques for Early Design Space Exploration and DynamicThermal Management of Multi-core Processors. Arizona

State University, 2008.

[RV09] Ravishankar Rao and Sarma Vrudhula. Fast and accurate

prediction of the steady-state throughput of multicore pro-

cessors under thermal constraints. Trans. Comp.-Aided Des.Integ. Cir. Sys., 28(10):1559–1572, October 2009.
[RW89] J.-C. Ryou and J.S.K. Wong. A Task Migration Algorithm for

Load Balancing in a Distributed System. In Proc. SystemSciences, pages 1041–1048, 1989.
[S+05] S. Sankaran et al. The LAM/MPI Checkpoint/Restart Frame-

work: System-Initiated Checkpointing. Journal of High Per-formance Computing Applications, 19(4):479–493, 2005.
[SBYT12] Lars Schor, I. Bacivarov, Hoeseok Yang, and L. Thiele. Fast

worst-case peak temperature evaluation for real-time ap-

plications onmulti-core systems. In TestWorkshop (LATW),2012 13th Latin American, pages 1–6, April 2012.
[SGHM14] Muhammad Shafique, Siddharth Garg, Jörg Henkel, and Di-

ana Marculescu. The EDA Challenges in the Dark Silicon

Era: Temperature, Reliability, and Variability Perspectives.

In Proceedings of the 51st Annual Design Automation Con-ference, DAC ’14, pages 185:1–185:6, New York, NY, USA,
2014. ACM.

190 BIBLIOGRAPHY

[SGM+14] Muhammad Shafique, Siddharth Garg, Tulika Mitra, Sri

Parameswaran, and Jörg Henkel. Dark Silicon As a Chal-

lenge for Hardware/Software Co-design: Invited Special

Session Paper. In Proceedings of the 2014 International Con-ference on Hardware/Software Codesign and System Synthe-sis, CODES ’14, pages 13:1–13:10, New York, NY, USA, 2014.
ACM.

[SMD14] Maryam Saadvandi, Karl Meerbergen, and Wim Desmet.

Parametric dominant pole algorithm for parametric model

order reduction. Journal of Computational and AppliedMathematics, 259, Part A:259 – 280, 2014.
[SS13] S. Sankaran and R. Sridhar. Energy modeling for mo-

bile devices using performance counters. In Circuits andSystems (MWSCAS), 2013 IEEE 56th International MidwestSymposium on, pages 441–444, Aug 2013.
[SSS+04a] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan,

Wei Huang, Sivakumar Velusamy, and David Tarjan.

Temperature-aware microarchitecture: Modeling and im-

plementation. ACM Trans. Archit. Code Optim., 1(1):94–125,
March 2004.

[SSS+04b] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan,

Wei Huang, Sivakumar Velusamy, and David Tarjan.

Temperature-aware microarchitecture: Modeling and im-

plementation. ACM Trans. Archit. Code Optim., 1(1):94–125,
2004.

[SVAB13] Arvind Sridhar, Alessandro Vincenzi, David Atienza, and

Thomas Brunschwiler. 3d-ice: A compact thermal model

for early-stage design of liquid-cooled ics. IEEE Transac-tions on Computers, 99(PrePrints):1, 2013.
[SW92] T.T.Y. Suen and J.S.K. Wong. Efficient Task Migration Algo-

rithm for Distributed Systems. IEEE Trans. on Parallel andDistributed Systems, 3:488–499, 1992.
[TCGK02] Lothar Thiele, Samarjit Chakraborty, Matthias Gries, and

Simon Künzli. Design space exploration of network proces-

sor architectures. In FirstWorkshop on Network Processorsat the 8th International Symposium on High-PerformanceComputer Architecture (HPCA8), pages 30–41, Cambridge
MA, USA, 2002.

[TCN00] L. Thiele, S. Chakraborty, and M. Naedele. Real-time cal-

culus for scheduling hard real-time systems. ISCAS, 4:101–
104, 2000.

BIBLIOGRAPHY 191

[TGC+06] Ian A. Troxel, Eric Grobelny, Grzegorz Cieslewski, John Cur-

reri, Mike Fischer, and Alan D. George. Reliable manage-

ment services for cots-based space systems and applica-

tions. In Proc. International Conference on Embedded Sys-tems &Applications, pages 169–175, 2006.
[vdWMH11] Rob F. van der Wijngaart, Timothy G. Mattson, andWerner

Haas. Light-weight communications on intel’s single-

chip cloud computer processor. SIGOPS Oper. Syst. Rev.,
45(1):73–83, February 2011.

[VEMR14] Anish Varghese, Bob Edwards, Gaurav Mitra, and Alis-

tair P. Rendell. Programming the adapteva epiphany 64-

core network-on-chip coprocessor. In Proceedings of the2014 IEEE International Parallel & Distributed ProcessingSymposium Workshops, IPDPSW ’14, pages 984–992, Wash-

ington, DC, USA, 2014. IEEE Computer Society.

[W+10] ChaoWang et al. Hybrid Checkpointing forMPI Jobs in HPC

Environments. In Proc. ICPADS, pages 524–533, 2010.
[WB06a] S. Wang and R. Bettati. Delay analysis in temperature-

constrained hard real-time systems with general task ar-

rivals. In RTSS, 2006.
[WB06b] S. Wang and R. Bettati. Reactive speed control in

temperature-constrained real-time systems. In EuromicroConference on Real-Time Systems, 2006.
[WB08] S. Wang and R. Bettati. Reactive speed control in

temperature-constrained real-time systems. Real-Time Sys-tems Journal, 39(1-3):658–671, 2008.
[WH11] Jian Wang and Fu-yuan Hu. Thermal hotspots in cpu die

and its future architecture. In Ran Chen, editor, IntelligentComputing and Information Science, volume 134 of Commu-nications in Computer and Information Science, pages 180–
185. Springer Berlin Heidelberg, 2011.

[WMT06] Ernesto Wandeler, Alexandre Maxiaguine, and Lothar

Thiele. Performance analysis of greedy shapers in real-

time systems. In DATE, pages 444–449, 2006.
[WMW09] Yefu Wang, Kai Ma, and Xiaorui Wang. Temperature-

constrained power control for chip multiprocessors with

online model estimation. In ISCA, pages 314–324, 2009.
[WR10] ZheWang and S. Ranka. A simple thermal model for multi-

core processors and its application to slack allocation. In

192 BIBLIOGRAPHY

Parallel Distributed Processing (IPDPS), 2010 IEEE Interna-tional Symposium on, pages 1 –11, april 2010.
[WSMM01a] D.J. Walkey, T.J. Smy, T. MacElwee, and M. Maliepaard.

Linear models for temperature and power dependence of

thermal resistance in si, inp and gaas substrate devices.

In Semiconductor Thermal Measurement and Management,2001. Seventeenth Annual IEEE Symposium, pages 228 –232,
2001.

[WSMM01b] D.J. Walkey, T.J. Smy, T. MacElwee, and M. Maliepaard.

Linear models for temperature and power dependence of

thermal resistance in si, inp and gaas substrate devices.

In Semiconductor Thermal Measurement and Management,2001. Seventeenth Annual IEEE Symposium, pages 228 –232,
2001.

[WT06a] Ernesto Wandeler and Lothar Thiele. Interface-based de-

sign of real-time systems with hierarchical scheduling. InRTAS ’06: Proceedings of the 12th IEEE Real-Time and Em-bedded Technology and Applications Symposium, pages 243–
252, Washington, DC, USA, 2006. IEEE Computer Society.

[WT06b] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus

(RTC) Toolbox. http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[YCTK10a] Chuan-Yue Yang, Jian-Jia Chen, L. Thiele, and Tei-Wei

Kuo. Energy-efficient real-time task scheduling with

temperature-dependent leakage. In Design, AutomationTest in Europe Conference Exhibition (DATE), 2010, pages 9–
14, March 2010.

[YCTK10b] Chuan-Yue Yang, Jian-Jia Chen, Lothar Thiele, and Tei-

Wei Kuo. Energy-efficient real-time task scheduling with

temperature-dependent leakage. In ACM/IEEE Conferenceof Design, Automation, and Test in Europe (DATE), 2010.
[Z+12] Michael Ziwisky et al. BareMichael: A Minimalistic Bare-

Metal Framework for the Intel SCC. In Proc. MARC, pages
66–71, 2012.

[ZC07] Sushu Zhang and Karam S. Chatha. Approximation algo-

rithm for the temperature-aware scheduling problem. InICCAD, 2007.
[ZM12] C. Zimmer and F. Mueller. Low contention mapping of

real-time tasks onto tilepro 64 core processors. In Proc.Real-Time and Embedded Technology and Applications Sym-posium, pages 131–140, 2012.

BIBLIOGRAPHY 193

[Zum08] Hank Zumbahlen, editor. Linear circuit design handbook.
Newnes, 2008.

[Åk02] Åkerholm, M. and Samuelsson, T. Design and Benchmark-

ing of Real-Time Multiprocessor Operating System Kernels.

Master’s thesis, Mälardalen University, Västerås, Sweden,

2002.

194 BIBLIOGRAPHY

List of Publications
The following list includes publications that form the basis of this thesis.

The corresponding chapters are indicated in parentheses.

D. Rai, H. Yang, I. Bacivarov, L. Thiele. Power agnostic techniquefor efficient temperature estimation of multicore embedded systems.
In Proceedings of the 2012 international conference on Compilers, Architec-tures and Synthesis for Embedded systems. Tampere, Finland. (Chapter 2)
D. Rai and L. Thiele. A Calibration Based Thermal Modeling Techniquefor Complex Multicore Systems. In Proceedings of the 2015 Design, Au-tomation & Test in Europe Conference & Exhibition, DATE 2015. Grenoble,
France. (Chapter 3)

D. Rai, H. Yang, I. Bacivarov, J. J. Chen, L. Thiele. Worst-Case Tem-perature Analysis for Real-Time Systems. In Proceedings of the 2011Design, Automation & Test in Europe Conference & Exhibition, DATE 2011.
Grenoble, France. (Chapter 5)

H. Yang, I. Bacivarov, D. Rai, J. . Chen, L. Thiele. Real-time worst-case temperature analysis with temperature-dependent parameters.
In Real-Time Systems. 2013. (Chapter 5)
D. Rai, P. Huang, N. Stoimenov, L. Thiele. An Efficient Real TimeFault Detection and Tolerance Framework Validated on the IntelSCC Processor. In Proceedings of the 51st Annual Design AutomationConference. San Francisco, CA, USA. (Chapter 6)
D. Rai, P. Huang, N. Stoimenov, L. Thiele. Distributed Stable Statesfor Process Networks - Algorithm, Analysis, and Experiments on IntelSCC. In Proceedings of the 50th Annual Design Automation Conference.
San Francisco, CA, USA. (Chapter 7)

D. Rai, L. Schor, N. Stoimenov, I. Bacivarov, L. Thiele. DistributedStable States for Process Networks - Algorithm, Analysis, and Exper-iments on Intel SCC. In Euro-Par 2013: Parallel Processing Workshops.
Aachen, Germany. (Appendix A)

196 LIST OF PUBLICATIONS

The following list includes publications that are not part of this thesis.

R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, S. Capkun.Thermal Covert Channels on Multi-core Platforms. In The 24th USENIXSecurity Symposium (USENIX Security ’15). Washington D.C, USA.

L. Schor, I. Bacivarov, L. G. Murillo, P. S. Paolucci, F. Rousseau,

A. El Antably, R. Buecs, N. Fournel, R. Leupers, D. Rai, L. Thiele, L. Toso-

ratto, P. Vicini, J. Weinstock. EURETILE Design Flow: Dynamic and FaultTolerant Mapping of Multiple Applications Onto Many-Tile Systems.
In Proceedings of the 2014 IEEE International Symposium on Parallel andDistributed Processing with Applications (ISPA). Milan, Italy.

L. Schor, I. Bacivarov, D. Rai, H. Yang, S. H. Kang, L. Thiele. Scenario-based Design Flow for Mapping Streaming Applications Onto On-chipMany-core Systems. In Proceedings of the 2012 International Conferenceon Compilers, Architectures and Synthesis for Embedded Systems. Tampere,
Finland.

Curriculum Vitæ
Personal Data
Name Devendra Rai

Date of Birth April 6, 1981

Citizenship Indian

Education
2010–2015 ETH Zurich

Computer Engineering and Networks Laboratory

Ph.D. under the supervision of Prof. Dr. Lothar Thiele

2007–2009 University of Virginia, USA

Master of Science in Computer Engineering

2000–2004 National Institute of Technology, Surathkal, India.

Bachelor of Technology in Electronics and Communication

Engineering

Professional Experience
2009–2010 Peri Software Solutions, USA

Technology Consulant

2004–2007 Delphi Automotive Systems, India/Germany

Model Based Design and Engineering

Software Engineer

Today, we expect that each new generation of computer processors
delivers higher computational performance as compared to its
predecessor. Thus, as users of recent generation of mobile phones, we
can now play games with rich graphics, enjoy rich multimedia, navigate
the world, create and edit movies, none of which was possible only a few
years ago. Similarly, our notebook computers are now as powerful as
desktops of yesterday, allowing us to work effectively on the move.

However, the impressive computational performance of state-of-the-art
processors is not without its own design challenges, which must be
properly understood and overcome. Specifically, such processors are
increasingly vulnerable to overheating, due to non ideal technology
scaling. In the long term, processors which either run too hot or
experience rapid changes in temperature have reduced reliability as
compared to the processors whose operating temperature has been
carefully controlled. In the short term, the performance of tasks and
services executing on a hot processor may deteriorate to an unacceptable
level, and in extreme cases, hosted tasks and services may become
unavailable if the processor shuts itself down to avoid any thermally
induced damage.

This thesis presents three mutually orthogonal and complementary
approaches to improving the reliability of systems and services which are
based on state-of-the-art processors. Specifically, this thesis presents
design tools and techniques which can be used to avoid thermally
induced faults, tolerate them, and also recover from faults. Fault
tolerance and recovery approaches have been specifically developed in
the context of time and resource constrained systems. All approaches
presented in this thesis have been tested by prototyping on state-of-
the-art multi and many core processors, such as the Intel Single Chip
Cloud Computer, Intel Xeon processor, and the Intel i7 mobile processor.

	Titlepage
	Abstract
	Zusammenfassung
	Acknowledgement
	Contents
	1 Introduction
	1.1 The Other Side of Technology Scaling
	1.2 The State-of-the-Art
	1.3 Challenges
	1.4 Problem Statement and Contribution
	1.5 Thesis Overview and Contributions

	2 Theoretical Foundation: Construction of Thermal Models
	2.1 Introduction
	2.2 The Problem and Related Work
	2.3 A New Approach
	2.4 Setup and Notations
	2.5 Constructing the Thermal Model
	2.6 Temperature Aware Design Space Exploration
	2.7 Experiments and Results
	2.8 Variations and Optimizations
	2.9 Closing Remarks

	3 Thermal Models for State-of-the-Art Processors
	3.1 Introduction
	3.2 Brief Problem Statement and Related Work
	3.3 Overview of the Approach
	3.4 Setup and Notation
	3.5 Constructing the Thermal Model
	3.6 Experiments and Results
	3.7 Closing Remarks

	4 Incorporating the Processor Cooling System into the Model
	4.1 Introduction
	4.2 Setup and Notation
	4.3 Computing the Thermal Model of the Fan
	4.4 Experiments and Results
	4.5 Closing Remarks

	5 Estimating the Peak Temperature
	5.1 Introduction
	5.2 Simple Example
	5.3 Related Work
	5.4 System Model
	5.5 Thermal Analysis
	5.6 Experimental Analysis
	5.7 Closing Remarks

	6 Tolerating Faults in Time Constrained Systems
	6.1 Introduction
	6.2 Motivational Example
	6.3 Notations and Model
	6.4 Proposed Solution
	6.5 Tolerating n Simultaneous Timing Faults
	6.6 Experiments and Results
	6.7 Closing Remarks

	7 Recovering from Faults in Process Networks
	7.1 Introduction
	7.2 Related Work
	7.3 Motivational Examples
	7.4 Model and Definitions
	7.5 Proposed Technique
	7.6 Stabilizing Individual Processes
	7.7 Implementing a Prototype
	7.8 Experiments
	7.9 Closing Remarks

	8 Closing Remarks
	8.1 Overall Summary
	8.2 Open Research Challenges

	A Real Time Computing on the Intel SCC
	A.1 Introduction
	A.2 Related Work
	A.3 Background
	A.4 Achieving Predictable Timing Characteristics
	A.5 Experiments and Results
	A.6 Summary

	Bibliography
	List of Publications
	Curriculum Vitæ

