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Abstract

The conversion of mixed-lingual texts, i.e., texts that contain inclusions
of multiple other languages in form of phrases, words, or even parts of
words, into artificial speech signals poses several problems to today’s
text-to-speech synthesis systems.

This thesis describes a new polyglot text-to-speech synthesis system
that presents a solution to these problems. Concretely, new approaches
to mixed-lingual text analysis, to mixed-lingual phonological process-
ing, and to polyglot prosody control are presented in detail.

This system, as intended for the multilingual setting of Switzerland,
is currently able to analyze text of any mixture of English, French, Ger-
man, and Italian, and to generate artificial, polyglot speech signals in
these languages with polyglot prosody consisting of French and Ger-
man parts. In order not to restrict this polyglot text-to-speech synthesis
system to a certain multilingual setting, strong emphasis is put on a
modular system architecture. This architecture allows the construction
of a polyglot synthesis system by combining independent, monolingual
resources.

The first part of this thesis describes the implementation of the
morphological and syntactic analysis of mixed-lingual text, in which
an extended definite clause grammar formalism is applied. This mixed-
lingual analyzer achieves both, precise language identification and ac-
curate morphological and syntactic structure determination. A special
architecture of this analyzer makes it possible to construct the mixed-
lingual analyzer by combining several independent, monolingual analyz-
ers. This approach has been the worldwide first mixed-lingual analyzer
applied in text-to-speech synthesis.
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14

A mixed-lingual phonological processing component, that is also
constructed from independent monolingual resources, provides mixed-
lingual prosodic phrasing, sentence accentuation, and phonological
transformations.

In the second part of this thesis, a new approach to prosody mod-
eling is presented. This approach applies weighted ensembles of neural
networks with optimized input factor sets. A perceptual evaluation ver-
ifies that these ensembles of neural networks are able to generate nat-
ural sounding fundamental frequency contours and segment duration
sequences, even when trained on automatically segmented prosody cor-
pora. About 90% of 80 different test sentences having synthetic prosody
were judged indistinguishable from the corresponding original record-
ings with human prosody.

Finally, a new approach to polyglot prosody control is presented.
This approach allows switching between monolingual prosody models
without audible rhythmic or melodic discontinuities. To the author’s
knowledge, this is the worldwide first polyglot prosody control applied
in speech synthesis. A perceptual evaluation provides evidence that the
synthetic polyglot prosody sounds for about 82% of the test sentences
as natural as human prosody.



Kurzfassung

Die Umwandlung von gemischtsprachigen Texten, damit sind Texte
gemeint, die Einschliisse von mehreren anderen Sprachen, in Form
von Gliedsatzen, Wortern oder sogar Wortteilen beinhalten, in ein
kiinstliches Sprachsignal bereitet heutigen Sprachsynthesesysteme ver-
schiedene Probleme.

Diese Arbeit beschreibt ein neuartiges, polyglottes Sprachsynthese-
system, das eine Losung fiir diese Probleme bietet. Konkret werden neue
Ansétze fiir eine gemischtsprachige Textanalyse, eine gemischtsprachige
phonologische Verarbeitung und eine polyglotte Prosodiesteuerung im
Einzelnen vorgestellt.

Da dieses System fiir die mehrsprachige Umgebung der Schweiz
gedacht ist, ist es zur Zeit in der Lage, Texte mit einer beliebigen Misch-
ung aus Englisch, Franzosisch, Deutsch und Italienisch zu analysieren
und kiinstliche, polyglotte Sprachsignale in diesen Sprachen mit poly-
glotter Prosodie, bestehend aus franzosischen und deutschen Teilen, zu
erzeugen. Um dieses polyglotte Sprachsynthesesystem nicht auf eine
bestimmte, mehrsprachige Umgebung zu beschrinken, wurde beson-
deres Augenmerk auf eine modulare Systemarchitektur gelegt. Diese
Architektur erlaubt die Konstruktion eines polyglotten Sprachsynthese-
systems durch die Kombination von unabhéngigen, einsprachigen
Ressourcen.

Der erste Teil der Arbeit beschreibt die Implementation der
morphologischen und syntaktischen Analyse von gemischtsprachigem
Text, wobei ein erweiterter Definite-clause-grammar-Formalismus
eingesetzt wird. Diese gemischtsprachige Analyseroutine erzielt sowohl
eine prézise Identifikation der Sprache, wie auch eine genaue Bestim-
mung der morphologischen und syntaktischen Struktur. Die besondere
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Architektur dieses Analyseverfahrens erlaubt die Konstruktion eines
gemischtsprachigen Analysemoduls durch Kombination von mehreren
unabhéngigen, einsprachigen Analysemoduln. Dieser Ansatz war das
weltweit erste, gemischtsprachige Analyseverfahren fiir Sprachsynthese-
systeme.

Eine gemischtsprachige, phonologische Verarbeitungskompo-
nente, die ebenfalls aus unabhingigen, einsprachigen Ressourcen
zusammengestellt wird, ermoglicht gemischtsprachige Phrasierung,
Akzentverteilung und die Anwendung von phonologischen Transfor-
mationen.

Im zweiten Teil der Arbeit wird ein neuer Ansatz zur Prosodie-
modellierung vorgestellt. Dieser Ansatz verwendet gewichtete En-
sembles aus neuronalen Netzen mit einer optimalen Eingangsfaktoren-
auswahl. Ein Hortest bestatigt, dass diese Ensembles aus neuronalen
Netzen in der Lage sind, natiirlich klingende Grundfrequenzkonturen
und Lautdauersequenzen zu erzeugen. Und das sogar, wenn sie auf auto-
matisch segmentierten Prosodiekorpora trainiert wurden. Etwa 90%
von 80 verschiedenen Testsatzen mit kiinstlich erzeugter Prosodie kon-
nen nicht von den entsprechenden Originalaufnahmen mit natiirlicher
Prosodie unterschieden werden.

Ein neuer Ansatz zur polyglotten Prosodiesteuerung wird am Ende
der Arbeit vorgestellt. Dieser Ansatz erlaubt es, ohne horbare, rhyth-
mische oder melodische Stérungen zwischen mehreren einsprachigen
Prosodiemodellen zu wechseln. Soweit der Autor informiert ist, ist
dies die weltweit erste, polyglotte Prosodiesteuerung in einem Sprach-
synthesesystem. Ein Hortest zeigt, dass die so erzeugte polyglotte
Prosodie fiir etwa 82% der Testsdtze so natiirlich wie menschliche
Prosodie klingt.



Chapter 1

Introduction

1.1 Purpose and Scope of this Thesis

A text-to-speech (T'TS) synthesis system converts written orthographic
text (in computer readable form) into corresponding artificial speech
signals. Research in T'TS synthesis has concentrated in the last decade
on two main fields: improving the speech quality of the artificial speech
signal in terms of segmental quality and speech prosody, and mak-
ing T'TS synthesis systems multilingual, i.e., processing texts in one of
multiple possible languages using the same TTS synthesis system, cf.
[vSSM 97, Spr97, SKO06].

In multilingual countries, however, texts become more and more
mized-lingual, i.e., texts that contain inclusions of multiple other lan-
guages in form of phrases, words, or even parts of words. In such multi-
lingual cultural settings, listeners expect a high-quality TTS synthesis
system to read such texts in a polyglot manner, i.e., in such a way that
the origin of the inclusions is heard, by using correct language spe-
cific pronunciation and prosody. Multilingual TTS synthesis systems,
however, are unable to correctly convert such mixed-lingual texts into
polyglot speech signals.

This thesis presents a report on the work done by the author to
construct a polyglot T'TS synthesis system that is able to convert such
mixed-lingual texts into artificial, polyglot speech signals. This system

17



18 Chapter 1. Introduction

is able to analyze mixed-lingual texts having English, French, German,
or Italian words or parts of words, and it is able to generate polyglot
prosody consisting of French or German parts. The primary goal of this
work was to explore and prove new concepts for

e construction of a mixed-lingual text analyzer from a combination
of monolingual text analyzers, and

e construction of a polyglot prosody control from monolingual
prosody controls, that are trained on automatically segmented
natural speech data of the same speaker.

A second goal of this thesis was to reuse as much as possible of the
formalisms and algorithms of the existing, monolingual German TTS
system SVOX that has been developed at ETH Ziirich. And a third
goal consisted in designing the architecture of the new polyglot system
in a way that allows an easy integration of new, additional languages.

As the polyglot TTS system reuses a lot of the formalisms for lex-
icon and grammar entries, for two-level rules, and for the annotation
of speech corpora and some of the basic algorithms for text analy-
sis and diphone concatenation of the original SVOX system, the new,
polyglot system was termed “polySVOX”. The original formalisms and
algorithms are very well described in [Tra95|. Therefore, this thesis con-
centrates on the description of the new system architecture and the new
algorithms for mixed-lingual text analysis, for mixed-lingual phonolog-
ical processing, and for polyglot prosody control.

1.2 Scientific Contribution

A new algorithm for morpho-syntactic analysis of mixed-lingual texts
is presented, that achieves both, precise language identification and
accurate morphological and syntactic structure determination, while
maintaining a strict separation of the linguistic databases for each lan-
guage. An experiment gives evidence of the high language identification
performance of the algorithm. This approach, first presented in [PR03],
was the worldwide first mixed-lingual text analysis applied in TTS syn-
thesis, see, e.g., [BLO4].
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A new formalism and new algorithms for mixed-lingual phonologi-
cal processing are described that allow sentence accentuation, prosodic
phrasing, and the application of phonological transformation on poly-
glot utterances.

A new approach to prosody modeling is investigated. This approach
applies weighted ensembles of neural networks with optimized input
factor sets for fundamental frequency control and segment duration
control. A perceptual evaluation verifies that this approach enables net-
works trained on automatically segmented prosody corpora to generate
natural sounding speech prosody.

Finally, a new approach to polyglot prosody modeling is presented,
that allows switching between monolingual prosody models without
audible rhythmic or melodic discontinuities. To the author’s knowledge
this is also the worldwide first approach to polyglot prosody modeling.
A perceptual evaluation provides evidence that the synthetic polyglot
prosody sounds as natural as the prosody of the original recordings.

1.3 TTS System Contribution

It is necessary here to clearly state what the author’s own contributions
were to the realization of the polyglot TTS system described in this
thesis, as several people have contributed to the design and realization
of the monolingual SVOX system.

The author’s own contributions include a complete redesign and
re-implementation of the overall TTS system architecture (cf. Sec-
tion 1.5) that was originally designed and implemented by Christof
Traber [Tra95]. The new architecture also includes the addition of a
component for phonological processing (cf. Chapter 3).

The analysis of mixed-lingual texts required also a complete redesign
and re-implementation of the syntactic and morphological analysis (cf.
Chapter 2) that was originally realized by Thomas Russi [Rus90] and
later extended for the use in the SVOX system by Christof Traber
[Tra95]. However, the basic formalisms and algorithms for DCG-based
bottom-up parsing and for the application of two-level rules were reused
from [Tra95|.

The author reused and extended the existing German lexicon of the
SVOX system. However, he had to rewrite German word and sentence
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grammar from scratch in order to meet the requirements of mixed-
lingual text analysis. Word and sentence grammars of English, French,
and Italian, as well as the inclusion grammars were finally all written
by the author. The construction of the English and French lexica was
accomplished with the help of linguist experts. The still rather small
Italian lexicon was set up by the author.

Monolingual prosody control is completely replaced by the polyglot
prosody control described in the Chapters 6 and 7. However, the au-
thor drew a lot of inspiration from the fundamental frequency control
realized by Christof Traber [Tra95| and from both versions of dura-
tion controls implemented by Marcel Riedi [Rie98] and by Karl Huber
[Hub91].

The recording, segmentation, and labeling of the quadrilingual di-
phone corpus and the recording of the bilingual prosody corpus was
done in the POSSY project, cf. [HPT98, THN199|. The segmentation
and labeling of the bilingual prosody corpus used in this thesis, how-
ever, was done by the author.

Diphone-based speech signal generation of the SVOX system was
extended by the author to enable polyglot diphone synthesis and to
support multilingual diphone corpora. This TD-PSOLA based speech
signal generation is not presented in this thesis. [Tra95| presents a good
description of this concatenation algorithm.

1.4 Linguistic Terminology

This section introduces in alphabetic order the most important linguis-
tic terms used throughout this thesis. More specific linguistic terms will
be introduced when needed in later chapters.

Accent, stress: Accent or stress denotes prominence of an uttered
syllable over other syllables. Several levels of prominence can be
differentiated.

Foot: The term “foot” is mainly used in the context of rhythm and
timing of speech. A foot basically consists of one accented syllable
and all unaccented syllables to the right (left-headed foot) or to
the left (right-headed foot) until the next accented syllable or until
a sentence or phrase boundary.
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Grapheme, graph: A grapheme is the smallest unit of written text
that is capable of distinguishing different words. A graph is the
individual realization of a grapheme. Graphemes and grapheme
sequences are written between ( ). Graphs and graph sequences,
or text, is denoted between “ 7.

Morpheme, morph: The morpheme is the smallest unit of a lan-
guage that is capable of carrying a meaning. A morpheme is either
a word or part of a word. The actual realization of a morpheme
is called a morph.

Morphology: The description of the structure of morphemes and how
words can be built from morphemes.

Phoneme, phone: A phoneme is the smallest unit of the spoken lan-
guage that distinguishes different meanings of utterances. The set
of possible phonemes is language-dependent. In the speech signal,
a phone is one particular realization of a phoneme and forms the
minimal segment of an utterance. Phones and phone sequences
are denoted by phonetic symbols between | |. Phonemes are repre-
sented by phonemic symbols between / /. To illustrate incorrect
phone sequences, they are written between | |.

Phonetic transcription: A phonetic transcription is a standardized,
canonical description of the pronunciation of words as found in
phonetic dictionaries. The phonetic dictionaries used in this the-
sis were for English [JRHS03|, for French [War96], for German
[Dud05], and for Italian [Pon95].

Phonetics: The investigation of the production and perception of
phones in spoken utterances in terms of acoustic, articulatory,
and perceptual parameters.

Phonological representation: In this thesis, a phonological repre-
sentation denotes a minimal, voice-independent abstract descrip-
tion of an utterance, that includes the phonetic symbols and an
abstract description of the prosody of the utterance. The phono-
logical representation will be described in detail in Section 3.2.1.

Phonology: The investigation and treatment of minimal necessary
distinctions that separate two spoken utterances with different
meaning from one another.
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Phrase, prosodic phrase: A phrase is a part of an utterance which
in general consists of one or more words that are uttered as rhyth-
mic and/or melodic unit. The boundaries between phrases may be
indicated by pauses, by lengthening of the final syllable(s) before
the boundary, or by certain melodic patterns. The term “prosodic
phrase” is used to distinguish the phrase in the prosodic sense
from the phrase in the syntactic sense (as, e.g., in “noun phrase”).

Pragmatics: The investigation of the intentions and meanings that
speech units (words, sentences, and texts) have in a particular
context in which they are uttered. Of special interests are the
intentions and communicative functions of these units in a dis-
course.

Prosody: The manner of articulation of a speech sound sequence in
terms on intonation, rhythm, and loudness.

Semantics: The semantic level of description deals with the meaning
of words and sentences.

Sentence: A sentence is a sequence of words forming a syntactically
and semantically closed statement or question. In this thesis, the
term “sentence” refers to a sentence in its orthographic form,

[T

which is usually terminated by a punctuation symbol, like “.”,
“!77’ or 46?77-

Syllable: A syllable is a unit of the spoken language that contains a
voiced center, the so-called syllabic nucleus (a vowel, a diphthong,
or a syllabic consonant), and one or more optional consonants
preceding or following the nucleus. The preceding consonants are
called the onset, the following consonants the coda of the syllable.

Syntax: The description of well-formed sentence structures of a lan-
guage.

Word: A morphologically and semantically closed unit that denotes a
specific item (object, action, property) of the world. Distinctions
are often drawn between an orthographic word, a grammatical
word, and a phonological word: an orthographic word is a graph
sequence in written language delimited by white spaces. A gram-
matical word (or syntactic word) is the terminal element of syntax
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analysis and forms the interface between morphology and syntax.
A phonological word is a unit of spoken language defined by lan-
guage specific, phonological criteria. In English, e.g., such a cri-
terion is that a phonological word contains only one main stress.
For example, the English sequence “the people’ll have” consists
of three orthographic, four grammatical, and two phonological
words.

1.5 The polySVOX Architecture

A polyglot TTS system transforms a mixed-lingual text given as a
sequence of graphemes into a speech signal. In order to cope with the
high complexity of polyglot TTS synthesis, the polySVOX system was
constructed from independent monolingual systems. This approach is
feasible provided the architecture of the monolingual systems has been
chosen suitably.

The polySVOX architecture strictly separates language-
independent algorithms from language-dependent linguistic and
acoustic data. Furthermore, following the linguistic view adopted as a
basis for the ETH T'TS project, a voice-independent part is separated
from a voice-dependent part. The voice-independent part, termed
transcription, includes text analysis and phonological processing. It
maps (or transcribes) the input text onto an abstract intermediate
representation, the phonological representation. The voice-dependent
part, the so-called phono-acoustical model, comprises prosody control
and speech signal generation. It produces from the phonological
representation the speech signal.

The polySVOX system transforms a text paragraph by paragraph
in four steps into a speech signal. Figure 1.1 illustrates these steps. The
applied methods of the four corresponding system components are as
follows:

e Text analysis derives the morphological structure of the words
and the syntactic structure of the sentences, and delivers the pho-
netic transcription and the language identification of each mor-
pheme. For text analysis, strictly rule-based processing is applied,
i.e., a chart parser, which uses word, sentence, and paragraph
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Transcription
Voice-independent

Phono-acoustical Model

Voice-dependent

grammars and two-level rules for lexicon-to-surface mapping im-
plemented as finite state transducers.

Phonological processing applies phonological transformations,
like schwa elision, French liaison, or English linking-r, which are
formulated using so-called multi-context rules. It also assigns sen-
tence accentuation and prosodic phrase boundaries based on the
syntactic structure of a sentence. This abstract prosodic descrip-
tion, together with the phonetic transcription of each word, con-
stitutes the phonological representation.

Prosody control generates from the phonological representation

the physical prosodic parameters. These are the duration values

Language-independent Language-dependent

I
Text |
I

!

/ Italian

) | German a
Text Analysis French
(Morphological & Syntactic Analysis) English 2
| Grammars & Lexica
I
¥ | / Italian
. . | German S
Phonological Processing French s
English
I Phonological Rules
Phonological Representation

/ ltalian
| German
Prosody Control French
( Fundamental Frequency / Duration / Intensity ) English
| Prosody Models
I
| / Italian
. ] German
Speech Signal Generation French
English
l | Speech Units
I

Speech Signal

Figure 1.1: The overall structure of the polySVOX TTS system.
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of all phones and pauses and the fundamental frequency con-
tour of an utterance. Phone duration and fundamental frequency
control are realized by means of trainable statistical models (ar-
tificial neural networks), which directly map the symbols of the
phonological representation onto phone duration and fundamen-
tal frequency values.

e Speech signal generation is based on concatenation of diphone
units extracted from natural speech. Prior to concatenation the
diphones have to be prosodically modified such that they match
the specified phone duration and fundamental frequency values.

This architecture suits monolingual as well as polyglot TTS synthe-
sis. Basically, the linguistic and acoustic data define the set of lan-
guages that can be processed. Thus, the current set of languages of the
polySVOX system can easily be expanded to new languages.

1.6 Outline of this Thesis

Chapter 2 identifies requirements and consequences for mixed-lingual
text analysis and presents the polySVOX approach to mixed-lingual
text analysis using several examples of mixed-lingual texts. An experi-
ment measures the performance on language identification on a publicly
available text corpus. Chapter 3 introduces a new rule formalism for
describing phonological transformations and presents mixed-lingual ap-
proaches to sentence accentuation, prosodic phrasing, and phonological
transformations. This chapter closes with a definition of the phonolog-
ical representation. Chapter 4 surveys different existing approaches to
speech prosody modeling and gives a definition of multilingual and poly-
glot prosody modeling. Chapter 5 describes setup, automatic segmenta-
tion, and labeling of the natural speech data used for the construction
of the prosody models. The weighted neural network ensembles applied
in Chapter 6 allow to generate natural sounding speech prosody using
models trained on these automatically segmented prosody corpora. The
ensemble-based prosody models are applied in the approach to polyglot
prosody modeling presented in Chapter 7. A comparison to the prosody
models applied in the SVOX system and a perceptual evaluation of the
polyglot prosody control closes this chapter. Chapter 8 concludes the
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thesis by reviewing its goals and by summarizing the major results. The
appendix contains the ASCII representation of the phonetic symbols for
all languages used in polySVOX, the grammars and lexica applied for
the description of mixed-lingual text analysis, a list of all input factors
for duration control and fundamental frequency control, and all test
sentences that were used for perceptual evaluation.



Chapter 2

Mixed-lingual Text
Analysis

2.1 Introduction

Text analysis in a TTS synthesis system is a combination of the analysis
of the morphological structure of the words of a sentence and of the
analysis of the syntactic structure of the sentence:

e Morphological analysis is used to obtain the correct pronuncia-
tion of the whole word from the pronunciation of the morphemes
of which the word is composed, and to extract the structure of
compounds and inflected forms in order to derive the correct word
category.

e Syntax analysis serves several purposes. Beside of the determi-
nation of the syntactic structure of a sentence, which is highly
relevant for the derivation of accentuation and prosodic phrasing
of the sentence, it resolves ambiguities between homographs to
derive their correct pronunciation, and it may serve as basis for
a future semantic analysis of sentences.

The task of mixed-lingual text analysis in a polyglot T'TS synthesis
system additionally includes language identification on syntactic and

27
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morphological level in order to apply the correct language specific pro-
nunciation, accentuation, and prosodic phrasing. As this task is much
more complex than monolingual text analysis, a detailed review of the
requirements and the consequences for mixed-lingual text analysis is
given.

2.1.1 Requirements for Mixed-lingual Text Analy-
sis

The requirements for text analysis in a polyglot TTS synthesis arise
from the texts, which have to be converted into speech, and from phono-
logical and prosodic requirements of the subsequent synthesis steps. To
illustrate these requirements, Table 2.1 lists some mixed-lingual ex-
ample sentences with various foreign inclusions, as they can be found
in Swiss newspapers or on Swiss web pages. The inclusions are put
in parentheses and are indexed according to their language either as
(zEnglish), ([French), (,German), or (Italian). The sentences them-
selves are also put in parentheses to indicate the sentence’s base lan-
guage.

In the following, language mixing phenomena typically encountered
in published texts are illustrated first, then follow phonological and
prosodic requirements:

Language Mixing Phenomena

The mixed-lingual sentences in Table 2.1 illustrate basically three major
types of foreign inclusions:

Mixed-lingual words that are produced from a foreign stem by
means of base language declension or conjugation or by means of
compound word formation together with a base language word.
Examples for such mixed-lingual words in Table 2.1 are

o “(,(;up)ge(,dat)et)” in sentences 11 and 15: some German
past participle construction of the English verb “to update”.

o “(,(;Musical)programm)” in sentence 11: a German com-
pound noun construction of the English noun “musical” and
the German noun “Programm”.
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. “(E(Fcuisine)’s)” in sentence 2: an English s-genitive construc-
tion of a French noun.
1. ((Asia welcomes (;bon ami Chirac).)

2. (;One of French ( nouvelle cuisine)’s objectives is to cook foods lightly.)

3. (;She’s not really (au fait) with my ideas.)

4. (FA la mi-mars, le (Tokyo Game Show) sera l'occasion de nouvelles annonces
pour ces “(;world game companies)”.)

5. (;Comment avez-vous osé vous attaquer a I’Adagio d’(,Hammerklavier)!)

6. (,Wird das (,Café) nicht von Ihren ( Fans) belagert?)

7. ((In 50 m nach links in die (;Avenue de I'église) abbiegen!)

8. (;Die (;Femme fatale) ist die zentrale Frauenfigur des ( Film noir).)

9. ( Tessiner Stddte im ( Italianita) (_Rating).)

10. (,Die (,Greatest Nation) hat die (,Grande Nation) als tonangebende Nation
abgelost.)

11. (,Das (;Musical)programm ( New York’s) wurde ( en passant) (;up)ge( dat)et.)

12. (,(;Lobbying) ( a discrétion) vor der Vergabe der Olympischen Spiele von 2012
in Singapur.)

13. (,Geniessen Sie einen ( Caffé Latte) oder eine feine italienische Spezialitdt im
(zSalon Rouge) des Landesmuseums. )

14. ( GBis Ende Maérz will sich der Koélner Konzern entscheiden, wie es mit dem
(zDiscounter), der Bestandteil der Schweizer Tochter (Bon appétit) (.Group)
ist, weitergehen soll.)

15. (,(;Peu & peu) wird der ( High Performance) ( Fonds) vom ( Fonds)( manager)
(zup)ge( dat)et.)

16. (Der ( Teammanager) ( Luigi Riva) sieht im hoheren Altersdurchschnitt der
(zEquipe Tricolore) keinen Vorteil fiir die (Squadra Azzurra).)

17. (,Die (Air Force 1) landet in Frankfurt.)

18. ( Kunstvolles Dekor im ( Louis XIV) Stil.)

19. ( Ich (dat)e das System (jup).)

20. ( (,General Motors) paghera a Fiat 1,55 miliardi di euro per risolvere il (_Master

Agreement), inclusa la cancellazione della (_put option).)

Table 2.1: Examples of mized-lingual sentences with various foreign
wnclustons. The inclusions and the sentences are put in parentheses and
are indexed according to their language.
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Full foreign words that are embedded in a base language context.
These word forms follow foreign morphology, but possibly dis-
agree syntactically with the base language context. Examples in
Table 2.1 are

o “(,das (,Café))” in sentence 6: a French masculine noun em-
bedded as a German neuter noun.

e “(.della (_put option))” in sentence 20: an English neuter
compound noun embedded as an Italian feminine noun.

Foreign multi-word inclusions, which are syntactically correct for-
eign constituents. These foreign constituents are embedded within
the base language context according to the base language’s syn-
tax. Table 2.1 also contains examples of this inclusion type, like:

o “(;New York’s)” in sentence 11: an English s-genitive con-
struction, which is embedded in the German sentence, ac-
cording to the German syntax, after the referent.

9

o “( Avenue de I'église)” in sentence 7: a French noun phrase
embedded in the German sentence in place of a German
noun.

e “(_Lobbying) ( & discrétion)” in sentence 12: a mixed-lingual
multi-word inclusion, which consists of an English noun and
a French prepositional phrase, embedded as a German noun
phrase.

Phonologic and Prosodic Requirements

Multilingual listeners expect mixed-lingual sentences to be read in a
way that the origin of foreign inclusions is heard. Particularly, a poly-
glot T'T'S synthesis system must generate the correct language specific
sequence of phones with appropriate prosody. This means that polyglot
TTS synthesis must comply with the following phonologic and prosodic
requirements:

e Language specific pronunciation: foreign inclusions must be
pronounced in a language specific manner. E.g., in Switzerland
the French noun “Avenue” in the German sentence 7 of Table 2.1
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must be pronounced [av(o)ny]| using French phones (and not in a
German fashion *[avemua]).

e Language specific word stress: the word stress of foreign in-
clusions must follow language specific rules; thus, French nouns in
German sentences, like “Avenue” [av(o)ny]|, are end-stressed, even
if German nouns are generally front-stressed. Applying a German
word stress pattern, e.g., *['av(o)ny|, makes the word difficult to
understand.

e Language specific phonological phenomena: phonological
transformations within longer foreign inclusions follow the phono-
logical rules of the inclusion language. E.g., the application of
German phonological rules onto the French noun phrase “Bon
appétit” in the German sentence 14 of Table 2.1 produces the
incorrect transcription x|[bo.?a.pe.ti]. This pronunciation sounds
strange to Swiss listeners, as it lacks the French liaison consonant
and has a German glottal stop inserted (as it is usually done in
German sentences before a vowel starting a word). In contrast,
the application of French phonological rules, like denasalization
and liaison, results in the correct transcription [bo.na.pe.ti|.

e Language specific sentence accentuation: the intonation of
larger, multi-word foreign inclusions, like “world game compa-
nies” in sentence 4 of Table 2.1, follows the foreign sentence ac-
centuation patterns. Thus, “world game companies”’ is accented
[[2]w3:ld.[1]gem.[3]kam.pa.niz]! according to English accentua-
tion, and not according to the accentuation of the sentence’s base
language, French: *[[2]w3:ld.gemm.[3|kam.po.|1]|niz|.

e Language specific phrasing: placement of phrase boundaries
within foreign inclusions disobeys in general the base language’s
phrasing rules; the phrasing rules of the inclusion language specify
their correct placement. E.g., in German and English sentences
nouns are followed by potential phrase boundaries; in the French
inclusion “Salon Rouge” in the German sentence 13 of Table 2.1,
however, no phrase boundary may be placed after the noun “Sa-
lon”, as the subsequent adjective “Rouge” is part of the French
noun phrase.

1[1] denotes the main phrase accent; [2] and [3] denote weaker accents.
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2.1.2 Consequences for Mixed-lingual Text Analy-
sis

Text analysis of a TTS synthesis system that has to pronounce sen-
tences like the ones of Table 2.1 and thereby meet the requirements
given in Section 2.1.1 must fulfill three basic tasks:

e language identification,
e language-dependent phonetic transcription, and

e language-dependent syntactic structure analysis.

The following sections describe these tasks in more detail.

Language Identification and Language-dependent Transcrip-
tion

First of all, mixed-lingual text analysis must be capable to identify the
correct language of each portion of the input text. This is necessary in
order to transcribe these text portions according to their languages and
in order to apply appropriate word stress. The size of such portions, as
shown in Table 2.1, varies from single morphemes to complete sentences.
Interlingual homographs, i.e., words of different languages with the
same graphemic sequence but with different pronunciations, make the
task of language identification of a given portion of text even more
complex. For example, “hat” is an English noun as well as a German
verb, or “die”, which is an English verb as well as a German determiner.
Certain types of interlingual homographs, like loanwords, logograms,
abbreviations, or acronyms, are especially difficult to disambiguate:

e Loanwords are strongly assimilated to the base language, not
only in morpho-syntactic terms, but also with respect to the pro-
nunciation. Loanwords in mixed-lingual text may, however, raise
an additional issue concerning homographs in places where their
pronunciation depends on the language context. Consider, e.g.,
the word “Nation” in sentence 10 of Table 2.1, which is first pro-
nounced in English as [netfon|, then in French as |na'sj3] and
finally in German as |[na'tsiom].
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e Logograms like numbers, Roman numerals, currency units, or
special symbols (“%”, “&”, etc.) are also a form of interlingual
homographs. The correct pronunciation of these logograms de-
pends on the language context. E.g., the two sentences, “(GDie
(zAir Force 1) landet in Frankfurt.)” and “( Kunstvolles Dekor im
(zLouis XIV) Stil.)”, contain examples of logograms that are part
of foreign inclusions and that are therefore pronounced according
to their inclusion languages.

e Abbreviations are short forms of words with or without final
period, which are pronounced as the full form they represent.
Common abbreviations are often graphemically identical across
multiple languages, but are pronounced differently. For example,
the abbreviation “dr” is pronounced in English as |'dpkto(r)], in
French as [dok'tce:r|, in German as [doktore| and in Italian as
[dot'torre].

e Acronyms are short forms of words or phrases, which are either
spelled or pronounced. Acronyms are usually composed of the
initial letters of the words they symbolize. There exist a lot of
graphemically identical acronyms across multiple languages. The
rules of pronunciation, however, vary a lot depending on the lan-
guage: in Italian most acronyms are read, in German and English
they are normally spelled, and in French, according to [BAMF01],
approximately half of the acronyms are read and half are spelled.
As an example consider “IRA”, which is read in French [i'ra] and
Italian [iiral, but spelt in English [ara:r'er] and German [irer'az|.

Language-dependent Syntactic Structure Analysis

The analysis of the mixed-lingual syntactic structure of the input sen-
tence forms the basis for subsequent language-dependent phonological
processing. A prerequisite for such a mixed-lingual syntactic analysis
is the correct identification of syntactic word and sentence boundaries.
Syntactic words are the terminal elements of syntactic analysis. In con-
trast to orthographic words, which are delimited by blank characters
and which are therefore easily identified by text preprocessing, syntac-
tic words are more difficult to identify and do not always correspond
to orthographic words due to different graphemic phenomena:
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e Word contractions, e.g., English “he’s”, “Mary’s”, German “das

ist’s” (that’s it), or Italian “po’d’acqua” (some water).

e Multi-word lexemes, i.e., word forms spanning multiple ortho-
graphic words, like English “in fine” (adverb) or French “est-ce
que” (interrogative particle).

e Ambiguous punctuation symbols, e.g., a period at the end of
an abbreviation may at the same time be a full stop to indicate
the end of the sentence.

e Cross-line hyphenation of words at line breaks, e.g., consider
English “in-<LF>put” vs. “in-<LF>and output” (‘<LF>’ is the line
end symbol).

e Missing designated word separation symbols in languages
like Chinese or Japanese. E.g., [SCGC96]| give a good overview of
the problems text analysis for Chinese is confronted with.

Section 2.2 describes the overall architecture and key aspects of the
approach to mixed-lingual morpho-syntactic analysis as implemented
in the polySVOX TTS synthesis system. Section 2.3 explains the text
analysis procedure in detail and illustrates syntactic word and sentence
boundary identification. The subsequent Sections 2.4 and 2.5 present
solutions for all types of language mixing phenomena listed above by
applying the polySVOX mixed-lingual text analysis. This text analysis
also allows the disambiguation of interlingual homographs, as shown
in Section 2.6, and a grapheme-to-phoneme conversion of unknown
words in mixed-lingual sentences, illustrated in Section 2.7. Finally,
Section 2.8 presents the results of a language identification experiment.
Appendix B provides a format specification of lexicon entries and gram-
mar rules, and lists excerpts of the lexica and grammars for English,
French, German, and Italian.

2.2 Mixed-lingual Morpho-Syntactic Anal-
ysis

The polySVOX approach to mixed-lingual text analysis simultaneously
solves all three tasks given in Section 2.1.2: language identification,
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language-dependent phonetic transcription, and language-dependent
syntactic structure analysis. In order to compare this approach quali-
tatively with other approaches to language identification, a survey of
other algorithms for language identification is given first.

2.2.1 Language Identification

Language identification from written text is important in different ap-
plication areas, including mixed-lingual TTS synthesis, multilingual
speech recognition, e.g., [THRJ02], and document classification, e.g.,
[CT94]. Therefore, numerous approaches towards this task exist. The
majority of them is based on statistical information about word and
character sequences of the languages in question. These approaches
usually apply a character context window of a fixed length onto the in-
put character sequence; an often used window contains three characters
in front of and three after the character in question. The most likely
language for a given word or a sentence is then calculated employing
methods like n-grams [Sch91, Gre95|, neural networks [T'S04], decision
trees [HT01], or some combination of them. Some approaches also make
use of basic linguistic knowledge, e.g., in form of a heuristic method us-
ing language specific character frequencies plus language specific lists
of function words and word endings [Gig95]. Common to all of these
approaches is that the granularity of language identification is either a
sentence or at most a word.

As can be verified by the examples of Table 2.1, language identifi-
cation on word level is not accurate enough for a polyglot TTS system.
Foreign inclusions in mixed-lingual words can be very short, as the En-
glish inclusions in the German verb “( (;up)ge( dat)et)” demonstrate.
Such mixed-lingual words require language identification to be applied
on morpheme level. As typical character context windows are larger
than these inclusions, it is difficult for statistical approaches based on
character context windows to correctly identify the language of foreign
inclusions in mixed-lingual words.

Additionally, a mixed-lingual sentence, like “( (.Peu & peu)
wird der (High Performance) (/Fonds) vom ( Fonds)(;manager)
(zup)ge(.dat)et.)”, demonstrates that there exist words with a major-
ity of characters not belonging to the word’s base language, as well as
sentences, in which the sentence’s base language is not the language
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with the maximum number of words of this sentence. Considering this,
simple statistical approaches for identifying the base language of a word
or a sentence are too unreliable for language identification in mixed-
lingual sentences.

2.2.2 The polySVOX Approach

Investigations of mixed-lingual texts showed two central findings:

1. Inclusions of foreign constituents into a context of another lan-
guage can be described by specific bilingual morphological and syn-
tactic rules. As an example, consider the following mixed-lingual
German verbs containing English verb stems:

“(;(zupdat)en)”  [ap'dertn]
“(4(gbrows)en)”
“((gscann)en)

[ brayzn|

” |'skeenon]

These verbs contain the present tense form of English verb stems
(without silent “e”, but with optional consonant doubling) and
follow weak German conjugation. English verb prefixes are bound
to the English verb stem.

The mixed-lingual German past participle form consists of the
German past participle prefix “ge” followed either by the present
tense form of the English verb stem plus a German past participle
ending or by the complete English past participle. A possible
English verb prefix may optionally be separated from the English
verb stem and be included in front of the German past participle
prefix “ge”. As examples consider the following, equally frequently
used mixed-lingual German forms of “updated”:

“(¢(zup) ge(Edat)et)’:, [:?Apga dertot]
J(zup)ge(.dated))”  [?apgo dertid]
ge(zupdat)et)” |[go?ap'dertot]
ge(yupdated))” |[go?ap'dertid]

14

G
«

(
(
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(s

2. Within foreign constituents only foreign monolingual morpholog-
ical and syntactic rules are relevant. This can be illustrated by
the mixed-lingual German sentence
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“(Die (;Femme fatale) ist die zentrale
Frauenfigur des ( Film noir).)”

As German syntax does not allow adjectives to be placed after
the corresponding noun, the syntactic structure of this sentence
can only be correctly analyzed if French syntactic rules are ap-
plied within the two French noun phrase inclusions. The French
noun phrases are then included as noun phrase constituents in
the German sentence.

2.2.3 Architecture Overview

The polySVOX system follows a modular approach to mixed-lingual
text analysis and strictly separates monolingual analyzers from bilin-
gual inclusion grammars, cf. [RP07]|. Each monolingual analyzer con-
tains a monolingual morpheme lexicon as well as a word, a sentence, and
a paragraph grammar. A bilingual inclusion grammar contains bilin-
gual grammar rules that describe, which foreign constituents can be
mapped as foreign inclusions onto corresponding constituents of the
base language. Thus, monolingual grammars need not be modified at
all when including new languages. Only small bilingual inclusion gram-
mars are necessary, which are loaded together with the corresponding
monolingual grammars. The size of such an inclusion grammar is nor-
mally less than five percent of the size of monolingual grammars (e.g.,
18 inclusion grammar rules specifying English inclusions in German
compared to 797 monolingual German grammar rules).

Figure 2.1 illustrates the modular architecture of the polySVOX
morphological and syntactic text analysis. It is realized as a bottom-up
chart parser for penalty-extended definite clause grammars (DCGs).
An input scanner normalizes the graphemic input text character by
character in a stream-like fashion, cf. [RP06]. For this normalized char-
acter stream, a contiguous sequence of matching lexemes is looked up
in all monolingual morpheme lexica. The chart parser itself operates on
three different levels: a word, a sentence, and a paragraph level. Each
level is provided with a set of separate monolingual grammars, which
are joined by a set of bilingual inclusion grammars. The input scanner
triggers word analysis at unambiguous word boundaries in the input
stream. Likewise, word analysis starts sentence analysis at un-



Trigger Trigger Trigger
Word Analysis Sentence Analysis Paragraph Analysis
E i E i E ¢
Input - Word - Sentence [ Paragraph
Input Scanner Morphemes Analysis Word Analysis Sentence Analysis  |syntax
|
Text /Two-Level Rules | Structure Structure Tree
I
) N/ ) "W/ ) \Y/ ;
English French English French English French English French
Morpheme Morpheme Word Word Sentence Sentence Paragraph Paragraph
Lexicon Lexicon Grammar Grammar Grammar Grammar Grammar Grammar
) GEF GEG GEI GFE C;FG C;FI GEF GEG GEI GFE GFG GFI GEF GEG C;EI C;FE GFG GFI
AV4 \
German ltalian German Italian German Italian German Italian
Morpheme Morpheme Word Word Sentence Sentence Paragraph Paragraph
Lexicon Lexicon Grammar Grammar Grammar Grammar Grammar Grammar
JAN ) GGE GGF GGI GIE GIF GIG GGE GGF GGI GIE GIF GIG GGE GGF GGI GIE GIF GIG
N\ AN ) AN /

Figure 2.1: Architecture of morphological and syntactic analysis of the polySVOX TTS synthesis system.
The notation G;; specifies an inclusion grammar that describes inclusions of language j in language i. E,
F, G, and I are abbreviations of English, French, German, and Italian, respectively.

8¢

SISATRUY )Xo, [enSul[-paxI|N g Iordey)



2.2. Mixed-lingual Morpho-Syntactic Analysis 39

ambiguous sentence boundaries. And sentence analysis finally triggers
paragraph analysis at unambiguous paragraph boundaries.

The DCG formalism is a natural extension of context-free gram-
mars. This extension is done by augmenting the context-free produc-
tion rule skeleton with feature terms and the term unification opera-
tion. Theoretically, DCGs have the power of a Turing machine, and in
that sense are as general as they can be, cf. [PW80]. In the polySVOX
system, DCG rules have additionally got a penalty value in order to se-
lect the optimal solution among several ambiguous solutions, and they
have got optional keywords for controlling the building of parse trees,
cf. [Tra95|, and for identifying syntactic word and sentence boundaries.

2.2.4 Inclusion Grammars

An inclusion grammar consists of bilingual grammar rules that specify
mappings from foreign constituents and their feature terms to corre-
sponding constituents of the base language. Examples of such inclusion
grammar rules for English, French, German and Italian are given in
Appendix B.

Inclusion grammar rules allow to formulate constraints on including
foreign constituents using two basic concepts: constituent mapping re-
strictions and inclusion penalties. Both are specified using the extended
DCG formalism.

Constituent mapping restrictions allow to map a specific foreign
constituent to a base language constituent. E.g., the verb stem
inclusion rule R84 in Appendix B.3 specifies that only the present
tense form of English verb stems VS_E, indicated by the feature
value ‘pres’, may be included as German verb stem VS_G that
must additionally follow weak German conjugation.

Inclusion penalties allow to disambiguate interlingual ambiguities.
These penalty values are set manually by a linguistic expert ac-
cording to following guidelines:

e The penalty values of inclusion rules for a given constituent
must be generally higher than the overall penalty values of
any monolingual analysis of this constituent.
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e The penalty values of larger inclusions, e.g., noun phrases,
shall be typically lower than the penalty values of smaller
inclusions, e.g., nouns or adjectives.

e The penalty values of all inclusion rules for the same con-
stituent must be harmonized across all inclusion languages.

These inclusion grammar rules provide a very accurate description of
how foreign inclusions are analyzed in the base language context. The
strictly bilingual definition of these rules makes it possible to construct
a modular and flexible morphological and syntactic grammar for any
desired language combination.

2.2.5 Language Switching Flag

Inclusion grammars are loaded together with their monolingual gram-
mars. If inclusion grammars of several languages are loaded, cyclic de-
pendencies in bottom-up chart parsing and incorrect analysis results are
inevitable. Cyclic dependencies arise from loading inclusion grammars
of two languages specifying inclusions of each other. E.g., simultaneous
loading of the following two inclusion grammar rules (rules R47 and
R87 of Appendix B) will obviously result in a cyclic dependency when
parsing English or German nouns:

N_E (?NR,7?,?7) ==> N_G (?NR,7,7) * 100
N_G (?NR,?,7) ==> N_E (7NR,7,7) * 100

Incorrect analysis results emerge, if certain morphological or syntac-
tic structures that are valid for one language are forbidden in another
language, and if inclusion grammar rules exist that specify appropriate
mappings between these languages. E.g., the positioning of an adjec-
tive after an noun in a French noun phrase, as for example in “le film
noir”, is forbidden in German noun phrases. The sequence *x“der Film
schwarze” must therefore not be analyzed as a German noun phrase.
However, applying French-German inclusion grammar rules R68 and
R69 of Appendix B, and using French sentence grammar rule R64,
x“Film schwarze” is analyzed as a French noun phrase that contains
two German inclusions. The German-French inclusion grammar rule
R101 maps this French noun phrase back to a German noun phrase
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nucleus. Applying the German sentence grammar rule R79 would re-
sult in the incorrect analysis of *“der Film schwarze” as a German noun
phrase.

In order to prevent cyclic dependencies in bottom-up chart parsing
and incorrect analysis results, all but the first application of inclu-
sion grammar rules for every single lexeme must be inhibited. This is
achieved using a so-called language switching flag that prevents inclu-
sions of foreign constituents that already contain a foreign inclusion
themselves. The flag is basically a Boolean feature term implemented
using the DCG formalism. It is therefore completely transparent to the
parsing algorithm.

Table 2.2 shows the application of the language switching flag to
the grammar rules which are necessary to analyze the above exam-
ple noun phrase. Each constituent obtains an additional feature term,
which represents the language switching flag. This feature term either
has the value true or false, or is a variable named LSF1, LSF2, and
so forth. Each monolingual grammar rule evaluates this feature by ap-

BOOL_OR (false,false,false) ==> x 0 :INV
BOOL_OR (true, true, false) ==> x 0 :INV
BOOL_OR (true, false,true) ==> x 0 :INV
BOOL_OR (true, true, true) ==> x 0 :INV
[R64] NP_F (7?N,?P,?G,?LSF3) ==> N_F (?N,?P,?G,?LSF1)

ADJF (n,?N,?G,?LSF2)
BOOL_OR (7LSF3,7LSF1,7LSF2) *

[R68] N_F (?NR,?,true) ==> N_G (?NR,7,7,false) * 100
[R69] ADJF (?,7N,?,true) ==> ADJ.G (?,7N,?,?,7,false) * 100
[R79] NP_G (?C,?NR,?P,?G,?NT,?LSF3) ==> DET_.G (?C,?NR,?G,?F,?TYP,?LSF1)

NPNUC_G (7C,?NR,?P,?G,?TYP,?NT, ?LSF2)
BOOL_OR (?7LSF3,7LSF1,?7LSF2) *
[R101] NPNUCG (?7,7NR,pers3,?,?,7,true) ==> NP_F (7NR,7,7,false) * 90

Table 2.2: French and German sentence grammar rules showing fea-
ture variables LSF1, LSF2, and LSF3 as language switching flags. Lan-
guage switching flag features are written in bold. Boolean or is imple-
mented by additional BOOL_OR rules. Bilingual inclusion grammar rules
toggle the value of the language switching flag feature from false to
true. Monolingual rules evaluate the language switching flags of their
subconstituents using the BOOL_OR rules. The rule numbers indicate the
equivalent grammar rules of Appendix B.
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plying Boolean OR to the language switching flags of the constituents
of the rule body (cf. the BOOL_OR rules, rule R64, and rule R79 in
Table 2.2). Each inclusion grammar rule requires the language switch-
ing flag of the foreign constituent to be false, and sets the language
switching flag of the base language’s constituent to true (cf. inclusion
rules R68, R69, or R101). Thus, the language switching flags of a con-
stituent that contains a foreign inclusion and all constituents derived
from it are always set to true. Additionally, no inclusion grammar rule
can be applied to such a constituent anymore, as this would require
their language switching flags to be false.

The language switching flag prevents cyclic dependencies in bottom-
up chart parsing due to inclusion grammar rules, as it stops possible
cycles after the first application of an inclusion grammar rule. The flag
also prevents incorrect analysis results like the one illustrated above,
as it allows only direct foreign inclusions. The polySVOX system auto-
matically extends grammar rules by the necessary BOOL_OR rules and
language switching flag features when loading the grammars. There-
fore, the grammar rules listed in Appendix B do not contain language
switching flag features or grammar rule extensions.

2.3 Word and Sentence Boundary Identifi-
cation

In order to correctly identify syntactic words within a graphemic input
text, morphological and syntactic knowledge is necessary. Therefore, it
is unreasonable to do this identification in some text preprocessing step.
We better integrate identification of syntactic words into morphological
and syntactic text analysis.

Figure 2.2 illustrates word and sentence boundary identification of
polySVOX with a morpho-syntactic analysis of the English sentence:
“It’s in St. Mary’s St.” The correct pronunciation of this sentence
[1ts m sont meoriz striit] requires to identify the period in the first
“St.” as part of the abbreviation and the period in the second “St.” as
a period terminating the sentence. This can be achieved by syntactic

Ya7?

means, which have to provide the correct analysis of “It’s” as a per-

Ya2?

sonal pronoun followed by a contracted verb form and of “Mary’s” as
possessive form of a noun.
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The application of the main processing steps of the polySVOX text
analysis (cf. Figure 2.1) to this example sentence are described in the

following:
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Figure 2.2: Representation of the simplified chart resulting from mor-
phological and syntactic analysis of the sentence “It’s in St. Mary’s St.”
At the bottom the normalized input character sequence is shown. Fdges
are drawn without constituent feature values. If a set of edges with the
same associated constituent but different feature values span the same
vertices, only one of these edges is shown here. Important penalty val-
ues of edges are shown in parentheses. The “lexicon lookup” section con-
tains edges associated with the lexemes found during lexicon lookup. The
“word analysis”, “sentence analysis”, and “paragraph analysis” sections
contain edges associated with constituents resulting from the respective
analysis levels. An arrow with a dashed line tagged with WA, SA, or PA
indicates a word, sentence, or paragraph analysis trigger event, resp.
The constituents of the final syntactic parse tree are shown with grey

background.
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Text normalization generates out of the graphemic input sequence a
well-defined character stream. Note that also punctuation charac-
ters, the blank character, carriage return, the newline character,
and other special characters are included as separate tokens. Text
normalization primarily takes care that all capital letters are con-
verted to lowercase letters, that all sequences of contiguous space
characters are reduced to one space character, and that all input
characters not defined in one of the language specific sets of legal
input characters are deleted from the character stream. Addition-
ally, a paragraph boundary symbol "<PB>" is inserted at the end
of a paragraph and at the end of the stream.

Lexicon lookup looks for all possible decompositions of the character
stream into lexemes of the morpheme lexicon. For each matching
lexeme, a corresponding edge is inserted into the chart. These
edges are shown in the “lexicon lookup” section in Figure 2.2.
In the morpheme lexicon the keyword ¢:WORD_END’ indicates a
possible word boundary after the lexeme, as can be seen, e.g., in
the lexicon entries L1, L2, L3, or L4 in Appendix B.1.

Word analysis is started only at unambiguous word boundaries in
order to prevent incorrect analysis results. A chart vertex is an
unambiguous word boundary if the associated lexemes of all edges
ending in this vertex are tagged by the keyword ¢:WORD_END’,
and no edge is crossing this vertex. The character token sequence
starting form the previous unambiguous word boundary up to the
current one is then parsed for all contiguous sequences of words
that are morphologically correct as defined by a word grammar,
see, e.g., Appendix B.1. The word analysis results are inserted into
the chart. These constituents are shown in the “word analysis”
section in Figure 2.2.

Sentence analysis is designed similar to word analysis. Terminal ele-
ments are the word constituents of word analysis. Sentence anal-
ysis is started only at an unambiguous sentence boundary. This is
at the next chart vertex where the associated word constituents
of all edges ending in this vertex are tagged by the keyword
¢ :SENT_END’ and no edge is crossing this vertex. This keyword
is set by word grammar rules, as shown, e.g., in the grammar
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rules R1 or R2 in Appendix B.1. Sentence analysis is needed to
disambiguate morphologically ambiguous words. The results of
sentence analysis are all possible syntactically correct sequences
of sentences, as defined by a sentence grammar. These results
are again inserted into the chart as shown in section “sentence
analysis” in Figure 2.2.

Paragraph analysis is started at an unambiguous paragraph bound-
ary. This is at the next chart vertex where the associated sentence
constituents of all edges ending in this vertex are tagged by the
keyword ¢:PARA_END’ and no edge is crossing this vertex. This
keyword is set by sentence grammar rules, cf. grammar rule R25
in Appendix B.1. The sentence constituents serve as terminal el-
ements for syntactic analysis of the paragraph. Out of the set of
possible sentence sequences, paragraph analysis returns the sen-
tence sequence with minimal total penalty.

2.3.1 Contracted Word Forms

The approach presented here allows to correctly analyze ambiguous
contracted word forms. The basic idea is to include in morphological
analysis beside of blank characters also empty characters as word de-
limiters. E.g., for English, these delimiters are listed as TRM_E in the
morpheme lexicon in Appendix B.1 and are used in the word grammar
rules in Appendix B.1 to terminate each word constituent. Thus, joint
orthographic words can be split into a sequence of syntactic words. In
order to prevent incorrect word splits, the empty word delimiter has
a higher penalty, cf. lexicon entry L5. Additionally, specific word cate-
gories like abbreviations can use separate empty word delimiters with
a lower penalty value, e.g., lexicon entry L6. These empty word delim-
iters are without a ¢ :WORD_END’ tag, so word analysis is triggered only
at the unambiguous ends of orthographic words.

The use of empty word delimiters for the analysis of contracted
word forms is illustrated by the token sequence "’s" in the sentence
in Figure 2.2. "?s" can be a contracted form of a verb, a contracted
personal pronoun or the suffix of a noun in possessive form. As illus-
trated, four different lexemes, L10, L33, L39, and L40 match "’s" and
are inserted into the chart. For "it’s." word analysis returns only
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three morphologically correct sequences of syntactic words: a personal
pronoun PERS_E followed by either the contracted form of the personal
pronoun “us” (PERS_E) or of the auxiliaries “be” (AUXB_E) or “have”
(AUXH_E). For "mary’s." the word grammar rule R5 additionally al-
lows a morphological analysis of the complete orthographic word as
possessive form of a proper noun NPR_E.

As can be verified in Figure 2.2, this input sequence can also be
analyzed as a sequence of two English sentences. Doing so, the first
"st." would be incorrectly analyzed as abbreviation of “street”, and
the second "’s", also incorrectly, as an auxiliary “be”.

Paragraph grammar rules, as shown for English in Appendix B.1,
that define a paragraph as a sequence of sentences, prevent that incor-
rect analysis result. As the penalty values of grammar rule production
and of the rule subconstituents are added up to form the penalty value
of the rule head, the penalty value of a paragraph consisting of the two
short sentences is higher (7 + 59 + 67) than the penalty value of a
paragraph consisting only of the longer sentence (2 + 70).

2.3.2 Multi-word Lexemes

The approach presented here is also well-suited for multi-word lexemes.
E.g., consider the preposition “in front of”. As blank characters are
processed like other characters, lexicon lookup treats multi-word lex-
emes like any other lexeme. Additionally, word analysis is started only
at the end of such a multi-word lexeme, because the associated chart
edge spans the whole multi-word lexeme including the blank characters.
Thus, word analysis is not triggered after “in” and “front”.

To describe “in front of” as a multi-word lexeme is convenient for
syntactic analysis, whereas it is irrelevant for pronunciation. For other
word forms, like the adverb “in fine”, pronounced as [m ’fami], multi-
word analysis is a necessity to disambiguate it from the preposition “in”
[m] followed by the adjective “fine” [fam]. E.g., consider the sentence
“He’s in fine condition in fine.”. Using multi-word lexemes, the final “in
fine” is correctly analyzed as an adverb.
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2.3.3 Sentence End Identification

The correct identification of the end of a sentence in case of ambigu-
ous punctuation symbols is an important issue in TTS synthesis, as
sentence end is a necessary feature in prosody generation. Therefore,
numerous approaches have already been presented, including simple
heuristics such as detecting capitalized words following periods, cf.
[McA89, Dut93, LC91|, probabilistic ones, e.g., [Ril89], and an elab-
orated, morphology based approach presented by [Tra95|. All of these
approaches, however, are applied in a preprocessing step and therefore
lack syntactic disambiguation capabilities.

Similar to the identification of syntactic words, the identification of
sentence ends also requires morphological and syntactic knowledge. In
polySVOX, sentence end identification is integrated into morphologi-
cal and syntactic analysis and punctuation symbols are analyzed as a
special form of syntactic words. The following points summarize the
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Figure 2.3: For the input text “Street. ” word analysis returns a noun
N_E followed by an unambiguous sentence end PCT_E. Thus, sentence
analysis is started at chart vertex 9. In case of the input text “St. ” the
pertod is ambiguous. It is either a punctuation symbol PCT_E, a part of
a noun N_E, or a noun title NT_E. Therefore sentence analysis is not
triggered at vertex 5.
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central ideas in sentence end identification:

e In case of unambiguous sentence-final punctuation symbols, sen-
tence analysis is started immediately. This is done at chart ver-
tices where all word category edges that end in this vertex are
tagged with the keyword ¢ :SENT_END’.

e For ambiguous punctuation symbols, all alternative word cate-
gories containing the punctuation symbol are inserted into the
chart. Sentence analysis is started only at the next unambiguous
sentence end.

e At the end of a paragraph, indicated by the paragraph boundary
symbol "<PB>", sentence analysis is always started.

Figure 2.3 illustrates the first two situations: In case of "street..",
as presented on the left side, word analysis returns an English noun
N_E, which contains an empty noun ending NE_E and an empty word
delimiter TRM_E. This noun is followed by an unambiguous sentence
end PCT_E, which spans the period and the blank character. The cor-
responding morpheme lexicon entries are listed in Appendix B.1.

In contrast to this, the right side of Figure 2.3 shows word analysis
results in case of an ambiguous sentence end. The period in the input
sequence "st.." may be a full stop indicating the sentence end as
well as the termination of the abbreviation of “street” or “Saint”. Word
analysis therefore produces four different word sequences for this input:
a noun N_E or a noun title NT_E, or a sequence of a noun or a noun
title followed by a punctuation symbol PCT_E.

These alternative word sequences can be disambiguated by subse-
quent syntactic analysis. Figure 2.2 illustrates such a disambiguation.
As sentence end decision in chart vertex 13 is ambiguous (two word
category edges without ¢:SENT_END’ keyword end in this vertex), sen-
tence analysis is started only after the final paragraph boundary symbol
"<PB>" has been reached. Sentence analysis produces two different sen-
tence sequences containing two different readings of the first period,
i.e., a full stop or part of an abbreviation. Subsequent paragraph anal-
ysis finally disambiguates the category of this punctuation symbol by
selecting the sentence sequence with minimal total penalty, as described
in Section 2.3.1.
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2.4 Mixed-lingual Morphological Analysis

Mixed-lingual word analysis applies separate monolingual lexica and
separate monolingual word grammars plus additional bilingual word in-
clusion grammars in parallel to parse a given graphemic input sequence
morphologically. Appendix B contains example lexica and grammars for
the languages English, French, German, and Italian. The central idea
when analyzing mixed-lingual input text is to favor always monolingual
analysis results over mixed-lingual ones. This is achieved by setting the
penalty values of inclusion rules for a given constituent higher than
the overall penalty values of any monolingual analysis result of this
constituent.

Figure 2.4 illustrates on the left side the morphological analysis of
the mixed-lingual German word

“(¢(zup)ge( dat)et)” (updated)

and on the right side the morphological analysis of the monolingual
German word

“((datiert)” (dated).

The stem “dat” is highly ambiguous. It can be an English verb stem
VS_E (cf. lexicon entry L34), an English noun stem NS_E (L.19), a French
verb stem VS_F (L86), or an Italian adjective stem AS_I (L168). Addi-
tionally, “datiert” can be analyzed using the German verb stem VS_G
“datier” (L127), and “upgedatet” using the French noun stem NS_F
“date” (L76).

“upgedatet” on the left side of Figure 2.4 demonstrates how lan-
guage mapping restrictions using inclusion grammar rules are applied
in practice. The English and French verb stems can be both analyzed as
foreign German verb stems using the inclusion rules of Appendix B.3.
Inclusion grammar rule R84 maps the English verb stem to a German
verb stem with verb class feature value v1. Inclusion grammar rule R86
includes the French verb stem using feature value v12. Another inclu-
sion grammar rule, R85, maps the English prefix “up” to a German pre-
fix. As the verb class feature value of the German past participle ending
P2E_G “et” is v1, only the embedded English verb stem can be unified
with this ending using the German word grammar rule R75. Thus, the
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only word constituent, that can be analyzed using word grammar rules,
is a German past participle P2_G with two English inclusions. This is
in fact the desired analysis of “(,(;up)ge(.dat)et)”.

“datiert” on the right side of Figure 2.4 shows how inclusion rule
penalty values are used to disambiguate the correct analysis result of
multiple possible results. The German verb stem VS_G “datier” together
with the German past participle ending P2E_G “t” forms a monolingual
German past participle P2_G with an overall penalty value of 4. Also,
all multilingual variants of the stem “dat” are inserted into the chart.
The French verb stem VS_F is mapped to a German verb stem with the
verb class feature value v12. Using German word grammar rule R76
this stem can be unified with the German past participle ending “iert”
to a German past participle with an overall penalty value of 163. As
both P2_G constituents are grammatically equal, subsequent sentence
analysis will choose the one with the lower penalty value. So, “( Gdatiert)”
is correctly analyzed as a monolingual German word.
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Figure 2.4: Representations of the simplified charts resulting from
morphological analysis of the mixed-lingual German word “upgedatet ”
(updated) and the monolingual German word “datiert ” (dated). An ar-
row with bold line tagged with a penalty value denotes the application of
an inclusion grammar rule. The constituents of the final morphological
parse tree are shown with grey background.
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2.5 Mixed-lingual Syntactic Analysis

The polySVOX system accomplishes syntactic analysis in two steps: a
sentence analysis step and a paragraph analysis step. Similar to mixed-
lingual word analysis, separate monolingual sentence and paragraph
grammars plus additional bilingual sentence and paragraph inclusion
grammars are applied for mixed-lingual syntactic analysis. The result of
syntactic analysis is a mixed-lingual morpho-syntactic parse tree, which
describes the syntactic structure of the sentences and the morphological
structure of the words. Foreign inclusions are easily identified within
this parse tree, as each constituent is tagged by a suffix indicating the
language.

Figure 2.5 demonstrates how polySVOX analyzes the mixed-lingual
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Figure 2.5: Representation of the simplified chart resulting from mor-
phological and syntactic analysis of the mized-lingual English sentence
“Asia welcomes bon ami Chirac.” The bottom line of constituents com-
prises word constituents resulting from mized-lingual word analysis. The
“sentence analysis” section contains edges associated with constituents
resulting from sentence analysis.




52 Chapter 2. Mixed-lingual Text Analysis

English sentence
“(zAsia welcomes (;bon ami Chirac.))”

that contains a majority of French words. In this sentence it is also im-
portant to correctly analyze the French noun phrase, as this information
is necessary for subsequent phonological processing, like the application
of French liaison rules, and the generation of a proper prosody. Three
different syntactic analysis results are discussed, which are illustrated
in Figure 2.5:

e S_E (350): Word analysis returns “bon” as French adjective
ADJ_F, “ami” as French noun N_F, and “Chirac” as French proper
noun PRN_F. These French constituents are mapped onto corre-
sponding English constituents using the inclusion grammar rules
R40, R41, and R42 of Appendix B.1. Their inclusion penalties
sum to 300. Applying monolingual English sentence grammar
rules these embedded French inclusions can be analyzed as an
English noun phrase NP_E with an overall penalty value of 316.
With this English noun phrase the analysis as an English sentence
gets an overall penalty value of 350.

e S_E (128): The French adjective, noun, and proper noun can
also be analyzed as a French noun phrase NP_F. This French noun
phrase is then mapped to an English noun phrase with an overall
penalty value of 94 using inclusion grammar rule R43. In this
case, the inclusion penalty is only 80. The analysis as an English
sentence with this embedded French noun phrase results in an
overall sentence penalty value of only 128.

e S_F (316): Also, it is possible to analyze the English proper
noun “Asia” and the English verb “welcomes” as foreign inclusions
within a French sentence. These English constituents are mapped
to French constituents using French inclusion rules R66 and R67
of Appendix B.2. The summed inclusion penalty is 280. As the
inclusion of an English verb within a French sentence is more un-
likely, the inclusion grammar rule R67 has a higher penalty value.
Overall sentence penalty value of the so analyzed French sentence
S_F is 316.
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Of these three results of sentence analysis, the one with the lowest over-
all penalty is finally chosen. This is the English sentence including the
complete French noun phrase NP_F as a foreign inclusion. The resulting
morpho-syntactic parse tree contains the correct identification of the
sentence base language and of the language of the foreign multi-word
inclusion, the correct mixed-lingual phone sequence, and the correct
syntactic structure of the foreign multi-word inclusion.

Figure 2.5 shows how mixed-lingual syntactic analysis correctly an-
alyzes the syntactic structure of foreign inclusions. This is achieved
inherently by choosing the result with minimal overall penalty, as the
inclusion of larger constituent structures adds up fewer inclusion penal-
ties to the overall penalty. The constraints set by monolingual sentence
grammars and bilingual sentence inclusion grammars additionally spec-
ify how larger foreign inclusions are syntactically analyzed, and restrict
thereby the number of possible solutions. The specification of differ-
ent inclusion penalty values allows to distinguish between common and
uncommon foreign inclusions.

Treatment of Unparsable Sentences

If a sentence cannot be analyzed using the given sentence grammar
rules, an artificial parse tree is created by finding the way through the
chart with minimal total penalty, cf. [Tra95]. This is done by applying a
dynamic programming technique. All constituents of this minimal path
are then interpreted as direct descendants of an artificially generated,
language-independent sentence constituent NOSYNS. An additional edge
penalty leads to the preference of higher constituents over the combina-
tion of lower constituents. If, e.g., no sentence constituents S_E or S_F
exist in the chart of Figure 2.5 after parsing, the constituent NOSYNS
will be inserted into the chart having the constituents of the minimal
path, i.e., the sequence of NP_E, VP_E, and PCT_E, as direct descendants.

2.6 Disambiguation of Interlingual Homo-
graphs

Interlingual homographs, as outlined in Section 2.1.2, are a major prob-
lem to language identification. Figure 2.6 illustrates by means of the
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mixed-lingual German sentence

“(Die (;Greatest Nation) hat die ((Grande Nation) als
tonangebende Nation abgelost.)”

(The Greatest Nation replaced the Grande Nation as
leading nation),

how mixed-lingual syntactic analysis of the polySVOX system disam-
biguates such interlingual homographs.

In this sentence the first instance of “nation” is English, the sec-
ond one is French, and the final one is German. The disambiguation
of these homographs alone is impossible, as they all have the same
syntactic function (all are singular nouns). For correct disambiguation
the language of the neighboring words of these nouns must be consid-
ered additionally. The English adjective “greatest” produces an English
noun phrase NP_E with the English variant of “nation”. Likewise, the
French adjective “grande” forms a French noun phrase NP_F with the
French variant of “nation”, and the German adjective “tonangebende”
a German noun phrase NP_G with the German variant of “nation”. The
English and French noun phrases are finally included as foreign noun
phrase inclusions within the German sentence.

An alternative analysis of this sentence includes the English and
French adjectives as foreign adjective inclusions within German noun
phrases. But, as the inclusion of a complete noun phrase is less pe-
nalized than the inclusion of a separate adjective (see, e.g., inclusion
rules R91 and R92 in Appendix B.3), the analysis with complete for-
eign noun phrase inclusions is preferred. E.g., by including “greatest
nation” as a foreign noun phrase the first German noun phrase (NP_G)
in Figure 2.6 gets an overall penalty of 111 compared to 169 if only the
English adjective “greatest” would have been included as foreign inclu-
sion. Likewise, the final German noun phrase gets an overall penalty of
132 when including the complete French noun phrase “grande nation”
versus an overall penalty of 143 in case of including only the French
adjective “grande”.

Figure 2.6 also shows two other interlingual homographs that do
not arise from loanwords: one is “hat”, which is an English noun as well
as a German verb. The other one is “die”, which is an English verb
as well as a German determiner. These interlingual homographs are
disambiguated by syntactic means: Using the German variants of
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Figure 2.6: Representation of the simplified chart resulting from morphological and syntactic analysis of
the mized-lingual German sentence “Die Greatest Nation hat die Grande Nation als tonangebende Nation
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these homographs a correct German sentence can be analyzed. With
the English variants no syntactically correct sentence is possible.

2.7 Unknown Words in Mixed-lingual Sen-
tences

TTS synthesis systems are expected to read any text, even if these
texts contain words that are not parseable by word analysis, either
as one or more morphemes are missing in the lexicon, or as they are
simply misspelled. Such words are often referred to as “unknown” words.
Concerning missing lexicon entries, their number can be reduced by
utilization of large lexica. Nevertheless, there will always be a remainder
of words (especially proper nouns) that are not covered even by very
large lexica, cf. [CCL90|. Concerning misspelled words, listing them in
lexica is obviously impossible.

Monolingual TTS synthesis systems usually incorporate some form
of a rule-based grapheme-to-phoneme mapping by which a monolingual
pronunciation of any unknown word is derived in the system’s language.

In mixed-lingual sentences unknown words may additionally be full
foreign words or even mixed-lingual words. However, unknown mixed-
lingual words occur very seldom, as mixed-lingual words are typically
built using common foreign stems, which are anyway included in a rea-
sonably sized lexicon. In order to derive the correct pronunciation of un-
known foreign words, polyglot TTS synthesis systems need to comprise
a mixed-lingual text analysis component that is able to identify the
correct language of unknown words and provide language-dependent
grapheme-to-phoneme mappings. The following mixed-lingual sentence
illustrates an example of an unknown English proper noun, which is
embedded in a German sentence. The unknown word is noted in ital-
ics:

“(Er lebt in ( British Columbia).)”

The correct pronunciation of this sentence requires the unknown word
to be analyzed by the English grapheme-to-phoneme conversion and
not, e.g., the one of the sentence’s base language.
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The following assumptions served as a basis for the design of the
polySVOX mixed-lingual grapheme-to-phoneme conversion:

e Closed word categories, like prepositions, conjunctions, determin-
ers, or pronouns, of each language of the system are supposed to
be completely listed in the respective monolingual lexica. Thus,
the only possible word categories for an unknown word are the
open word categories, i.e., nouns, verbs, adjectives, and adverbs.

e An unknown word is analyzed as monolingual word in each of the
system’s languages in parallel using the respective monolingual
grapheme-to-phoneme conversion algorithms.

e Mixed-lingual syntactic analysis finally disambiguates all avail-
able multilingual pronunciations of an unknown word by the word
categories.

The polySVOX system applies for all four languages the same algorithm
to unknown word analysis. This algorithm is based on chart parsing
using penalty extended DCG rules. It implements for each language a
separate, monolingual word stem analysis, which decomposes unknown
words into unknown word stems and known inflectional endings, pre-
fixes, and suffixes, which are part of the monolingual morpheme lexica.
Special word grammar rules describe the syllabic structure, word stress
assignment, and pronunciation of unknown word stems. For unknown
English stems, e.g., these rules define stressed versus unstressed and
long versus short pronunciation of vowels, and word initial, word final,
and word central pronunciation of consonant clusters. Appendix B.1
lists some of the English unknown stem analysis rules (rules R12 to
R24).

In addition to the morpheme lexica a separate, monolingual lexicon
of grapheme clusters, the so-called submorphemic lexicon, is loaded for
each monolingual unknown word analysis. Each submorphemic lexicon
contains all possible syllable onsets, codas, and nuclei together with
their pronunciation variants of the respective language. Appendix B.1
shows some entries of the English submorphemic lexicon. Given spe-
cific inflectional endings and suffixes it is possible to make assumptions
about the syntactic categories of unknown words and to provide appro-
priate pronunciations and word stress assignments. [Tra95| describes in
detail this stem analysis for unknown German words.
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Figure 2.7 shows the morpho-syntactic tree resulting from polySVOX
morpho-syntactic analysis of the mixed-lingual example sentence *“( BT
lebt in ( British Columbia).)”. As the English proper noun “Columbia”
is unknown, grapheme-to-phoneme mappings in English, French, Ger-
man, and Italian are applied to this word. Each of these mono-
lingual grapheme-to-phoneme conversions derives pronunciations of
“Columbia” for one or more word categories. Of these alternatives
mixed-lingual sentence analysis selects the English noun category N_E,
as this word category fits best the syntactic structure of the remaining
sentence.

2.8 Language Identification Experiments
and Discussion

2.8.1 Mixed-lingual Sentence Corpus

For the evaluation of language identification accuracy of the polySVOX
system, the author collected and manually tagged a test corpus of 612
mixed-lingual sentences. The majority of these sentences comes from
Swiss newspapers in German (“Neue Ziircher Zeitung”, “Blick”, and “20
Minuten”) and in French (“Le Matin” and “Iribune de Genéve”). Addi-
tionally, the example sentences of Table 2.1 were included in the corpus.
Some of the English sentences, finally, were taken from articles found
on the internet.

This test corpus contains 36 English, 35 French, and 541 German
mixed-lingual sentences, which together comprise 8511 words. Punctu-
ation symbols are not counted. Table 2.3 shows detailed word number
statistics of the corpus. 1903 (22.4%) of all words are foreign inclusions.
These inclusions consist of 1593 full foreign words and 310 mixed-lingual
words.

2.8.2 Sentence Base Language Identification

All sentences of the mixed-lingual corpus have been separately ana-
lyzed without any context sentences. Still, the base language of all 612
sentences but one was correctly identified. This one German mixed-
lingual sentence, “Weltcup-Leader Simon Schoch out” - a heading in a



60 Chapter 2. Mixed-lingual Text Analysis
Sent. | Word | Base Lang. Full Incl. Mixed Incl. Sum
ENG | 410 (30) | - 3 (0) | 43  (33)
FRE - 58 3 0 58 3
ENG | GER | - 12 Eo% 0 12 Eog
ITA | - 28 (0) | 0 28 (0)
Sum | 410 (30) | 98  (3) | 3 (0) || 1L  (33)
ENG | - 109 (13) | 0 109 (13
FRE | 412 (34) | - 0 412 (34)
FRE\ opr |- 6 (7 | 0 6 (7)
ITA | - 13 (1) | o 13 (1)
Sum | 412 (34) | 138 (21) | 0 (0) || 550 (55
ENG | - 861 (117) | 0 861 (117)
cEr | FRE | - 420 (53) | 0 420 (53)
GER | 5786 (327) | - 307 (28) | 6093 (355)
ITA | - 6 (17) | 0 6 (17)
Sum | 5786 (327) | 1357 (187) | 307  (28) | 7450 (542)
[ Sum | 6608 (391) | 1593 (211) | 310 (28) || 8511 (630) |

Table 2.3: Number of words of the mixed-lingual sentence corpus. This
corpus contains 36 FEnglish, 35 French, and 541 German sentences
with English, French, German, and Italian inclusions. The numbers are
grouped row-wise according to the base language of the sentence (Sent.)
and the language of the words (Word). The columns contain the num-
bers of monolingual words of the sentence base language (Base Lang.),
of full foreign inclusions (Full Incl.), and of mized-lingual words (Mixed
Incl.). For every category, the number of unknown words is given in
parentheses beside the number of all words.

Swiss German newspaper, was analyzed as an English mixed-lingual
sentence.

As “Schoch” is an unknown word in the T'TS system and “Simon”
is an English as well as a German forename, the analysis as an English
sentence, “(_(,Welt)cup-Leader Simon Schoch out)”, with only one for-
eign inclusion gets lower penalty than the analysis as a German sen-
tence, “( Welt(_cup)-( Leader) Simon Schoch (jout))”, containing three
foreign inclusions. However, as this sentence is the heading of a Ger-
man article, paragraph analysis would finally chose the correct German
reading of this sentence.
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2.8.3 Language Identification of Words

Table 2.4 shows the word language confusion matrix grouped by the
sentence base languages. From this table one can easily verify that the
language of 8314 of all 8511 words (97.7%) was correctly identified.
However, this number is not really representative, as it largely depends
on the rate of sentence base language words. Therefore, separate num-
bers for word language identification of sentence base language words
and of foreign inclusions are presented.

Table 2.5 gives detailed word language identification results in terms
of precision and recall for sentence base language words and full foreign
inclusions grouped by the sentence base languages and in total for the
whole mixed-lingual corpus. In total, the language of full foreign inclu-
sions was identified with a balanced F-score of 95.5%. The language of
sentence base language words was identified with an F-score of 98.7%.

F-scores for language identification of foreign inclusions within the
English and French sentences sets separately are even higher, i.e., 98.0%

Sent. | Word | ENG FRE GER ITA
ENG 412 1 0 0
FRE 3 55 0 0
ENG GER 0 0 12 0
ITA 0 0 0 28
ENG 105 3 1 0
FRE 2 409 1 0
FRE GER 0 0 16 0
ITA 0 0 0 13
ENG Q01 2 58 0
FRE 17 379 24 0
GER GER 54 19 6017 3
ITA 0 0 9 67

Table 2.4: Word language confusion matrixz of English, French, and
German mized-lingual sentences. The rows show the reference lan-

guage of a word, the columns show the language assigned to a word
by polySVOX.
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and 97.1% resp. The language of words of the sentence base language
was identified with F-scores of 99.6% for English and 99.3% for French
mixed-lingual sentences. These results verify the authors’ experience
that foreign inclusions can easier be identified in English or French
sentences than in German ones. However, the results for English and
French sentences alone must be read with some care as the number of
English and French sentences is rather limited (i.e., 36 English and 35
French sentences).

2.8.4 Inclusions in Mixed-lingual Words

Mixed-lingual words are mainly found in German sentences. Table 2.3
shows that 307 of 1664 foreign inclusion (18.4%) in the German sen-
tences are mixed-lingual words. In the English test sentences only 3
mixed-lingual words were found. These are actually full foreign inclu-
sions with English plural or s-Genitive suffixes, i.e., “(Icappucino)s”,
“(;lasagna)s”, and “(_cuisine)’s”. In the French test sentences no mixed-
lingual words exist.

All English mixed-lingual words and 260 of the 307 German mixed-

Word Language Base Foreign

ENG FRE GER ITA Language

ENG Precision | 99.3 982 100 100 | 99.3 99.0
Recall 99.8 94.8 100 100 | 99.8 96.9

FRE Precision | 98.1 99.3 889 100 | 99.3 97.1
Recall 96.3 99.3 100 100 | 99.3 97.1

GER Precision | 91.9 94.8 98.5 95.7 | 98.5 95.6
Recall 93.0 90.2 98.8 88.2 | 98.8 94.9

Total Precision | 95.3 97.1 985 97.3 | 98.6 95.8
Recall 94.6 94.7 98.8 923 | 98.8 95.1

Table 2.5: Precision and recall results of word language identifica-
tion giwen in percent for English, French, and German mixed-lingual
sentences separately and for the mized-lingual corpus in total. To the
right, precision and recall results for word language identification of full
foreign inclusions and of sentence base language words are shown.
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lingual words, 84.8% of the mixed-lingual words in total, are correctly
analyzed. The erroneous analyses of German mixed-lingual words orig-
inate from four main sources:

1. Analysis as a full foreign word: the polySVOX analysis prefers
full, foreign monolingual noun inclusions that syntactically agree
over mixed-lingual inclusions. Therefore, a mixed-lingual word
that contains a German word part which is ambiguous to a word
of the inclusion language is analyzed as a monolingual foreign
word (cf. the examples in Table 2.6). This is the most common
error of mixed-lingual word analysis.

2. Analysis as monolingual base language word: as our analysis
prefers monolingual words of the sentence base language over any
foreign inclusion, every mixed-lingual word containing a foreign
inclusion that is ambiguous to a base language morpheme is al-
ways analyzed as monolingual word in the sentence base language.

3. Ambiguous base language and foreign morphemes: the polySVOX
analysis prefers ambiguous base language morphemes that accord
with the morphological rules over foreign morphemes. Exceptions
are incorrectly analyzed, as shown in Table 2.6.

Reference analysis Analysis by polySVOX

1| (,(;Gourmet)-(_Festival)) (;Gourmet-Festival)
(¢(;Bluetooth)-System) (;Bluetooth-System)
(;Index( fonds)) (;Indexfonds)
((Auto(rowdy)) (zAutorowdy)
(¢(;Lifestyle)-Hotel) (Lifestyle-Hotel)

2 | (,(Hacker)attacken) (,Hackerattacken)

3 | ( Firmen-(,Website)) ((Firmen-Web( site))
((;All-In-One)-Navigationsgeriit) | ( All-In-(_One)-Navigationsgeréit)

4 | ( Feinschmecker-( Restaurants)) | ( Feinschmecker-(_Restaurants))
(((zAmateur)truppe) (;(zfAmateur)truppe)
(,Viertel( final)) (,Viertel( final))

Table 2.6: Examples of incorrectly analyzed mized-lingual words of the
test corpus. The number in the left column indicates the description
number in Section 2.8.4.
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4. Ambiguous foreign morphemes of multiple languages: ambiguous
English and French morphemes are very common in German
mixed-lingual words. As English morphemes are more often used
in the German speaking part of Switzerland, the polySVOX text
analysis prefers English morphemes over ambiguous French mor-
phemes. Table 2.6 shows exceptions, in which the French pronun-
ciation is more common. These are incorrectly analyzed using the
English pronunciation.

2.8.5 Language Identification of Unknown Words

239 (12.6%) of the foreign inclusions and 391 (5,9%) of the sentence base
language words are unknown (cf. Table 2.3). This means, they must be
analyzed using unknown word analysis described in Section 2.7. Note,
that the strict morphological analysis of words reduces the number
of unknown words already considerably when compared to full form
lexicon lookup.

Table 2.7 shows the word language identification results of unknown
words and the inclusion language identification results of unknown
mixed-lingual words. The polySVOX system assigns the correct lan-
guage to 95.1% of the unknown words in the sentence base language,
and to 72.5% of the unknown foreign inclusions.

As the polySVOX system analyzes unknown words in a monolingual
fashion (cf. Section 2.7), unknown mixed-lingual words are analyzed in-

Unknown Words | Correct | Correct (%)
Base Lang. 391 372 95.1
Full Incl. 211 153 72.5
Mixed Incl. 28 11 39.3
Total 630 536 85.1

Table 2.7: Results of language identification of unknown words. The
rows show the total number of words, and the number and percentage
of correctly identified words of unknown words of the sentence base lan-
guage (Base Lang. ), of unknown full foreign inclusions (Full Incl.),
and of unknown mized-lingual words (Mixed Incl. ).
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correctly by default. However, unknown mixed-lingual hyphenated com-
pounds are analyzed as a sequence of hyphenated monolingual words.
Thus, polySVOX is still able to identify the correct inclusion languages
within 11 of 28 (39.3%) unknown mixed-lingual words. In total, the
language of 85.1% of 630 unknown words was correctly identified.






Chapter 3

Mixed-lingual
Phonological Processing

3.1 Introduction

In the polySVOX system, syllabification, accentuation, prosodic phras-
ing and various phonological transformations are done in the so-called
phonological processing component. This component processes the syn-
tax tree of the morpho-syntactic analysis and generates the phonologi-
cal representation. The sequence of processing steps is as follows:

Word syllabification
Word accentuation
Prosodic phrasing
Sentence accentuation

Phonological transformations

A

Sentence re-syllabification

The following sections explain, after a description of the phonological
representation and the multi-context rule formalism, each processing
step in detail.

67
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3.2 Formalism of Phonological Processing

3.2.1 Phonological Representation

The phonological representation contains the phonetic transcription of
the words to be uttered, the position of language switches, the accen-
tuation level of syllables, the position and type of phrase boundaries,
the indicator of phrase types, and the indicator of the base language of
the utterance. For the sentence

“Le monde a l’envers, ein franzosischer Film, war ein sehr guter,
bekannter Film.”

(Le monde a ’envers, a French movie, was a very good, well known
movie.)

the following phonological representation is obtained in the current
polySVOX system:

#{P:G:0} \F\lo- m[2]5:-d a- 1 a-v[1]emw #{P:1} \G\?ain- fran-
ts[2] gr-z1-fe- f[1]1lm #{P:1} v[2]are- Pain- z[1]lewr- g[2]u:-te
#{T:1} bo-k[2]an-te- f[1]1lm

In addition to the phone symbols, the following special symbols appear
in the phonological representation:

\L\ indicates a language switch. All phones following this switch up
to the next language switch are produced using language L. Cur-
rently, the languages English, French, German, and Italian are
supported. These are denoted by \E\, \F\, \G\, and \I\, resp.

- marks the boundary between two adjacent syllables. Also word fi-
nal syllable boundaries are denoted, since in some languages, like
French, word boundaries are no mandatory syllable boundaries. A
word boundary can optionally be indicated by a blank character.

[A] denotes the accentuation level A of the syllable. It is placed before
the syllable nucleus. The accentuation levels are interpreted as
follows:

[1] denotes the main accent of an intonational phrase. This is
the anchor point of the phrase intonation pattern.
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[2] denotes a pitch accent, i.e., an accent with a major pitch
movement and a lengthened syllable duration.

[3] denotes a non-pitch accent on the main stress syllable of a
word, i.e., an accent with a lengthened syllable duration, but
without a major pitch movement.

[4] denotes a syllable with secondary or tertiary word stress.

[0] denotes an unaccented syllable. This level is set for all sylla-
bles without explicit accent mark.

[E] denotes an emphatic accent. An emphatic accent is charac-
terized by a major pitch movement that normally exceeds
standard pitch accents, a lengthened syllable duration, and
an increased syllable signal energy. No further distinction
between different types of emphatic accents is made.

#{T:L:B} indicates a phrase boundary, where T indicates the type of
the following phrase, L the base language of the following phrase,
and B the type of the phrase boundary.

The classification of phrase types is based on the distinction made
in [Dud84]| and [vE56]. They classify phrases according to the final
part of their intonation contour into phrases with

terminal intonation pattern (“Vollschluss” in German), i.e., a
complete fall of the phrase final intonation contour,

semi-terminal intonation pattern (“Halbschluss”), having a
non-complete fall of the phrase final intonation contour,

progredient intonation pattern (“Schwebekadenz”, also referred
to as continuation rise), with no or only a slight rise of the
phrase final intonation contour, and

interrogative intonation pattern (“Steigkadenz”), i.e., a high
rise of the phrase final intonation contour.

The following phrase types are currently defined:

T denotes a phrase with terminal intonation pattern and a low
overall tone range.
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E denotes a phrase with terminal or semi-terminal intonation
pattern, a high overall tone range, and a high overall signal
intensity.

S denotes a phrase with terminal or semi-terminal intonation
pattern and an overall tone range that lies between the tone
ranges of T and of E phrase types.

P denotes a phrase with progredient intonation pattern.
Y denotes a phrase with interrogative intonation pattern.

YC denotes a phrase with interrogative intonation pattern for con-
firmation. The intonation contour has a short final fall after
the rise.

The base language indicator of a phrase is optional except for the
first phrase of an utterance. If the base language indicator is not
present, the language of the preceding phrase is taken. The same
languages as for language switches are possible: an English base
language is denoted by E, French by F, German by G, and Italian
by I.

The following phrase boundary types are defined:

0 indicates a sentence-final phrase boundary with a pause.
1 indicates a sentence-internal phrase boundary with a pause.

2 indicates a sentence-internal phrase boundary without a
pause.

3.2.2 Multi-context Rules

A rule formalism that is flexible enough to describe all possible context
restrictions of phonological transformations was introduced in [RP04,
RPBO05|. This so-called multi-context rule formalism allows to define
phonological transformations which are restricted by specific syntactic,
graphemic and /or phonological contexts. Formally, a multi-context rule
consists of a subtree pattern, the separation symbol ’:” and an associated
phonological transformation:

SubtreePattern : Transformation ;
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Transformations are specified in the form: o/p < L _ R. These
context-dependent rewrite rules are similar to the well-known two-level
rules (see e.g. [Kos83, Rus90, Rus92|), but have been extended here to
operate on all types of symbols, i.e., graphemic and phonological ones at
the same time. The polySVOX system accepts these two-level rules only
in the form of finite state transducers (FSTs). The formalisms of two-
level rules and of FSTs used in this thesis are presented in [Tra95]. The
rule-to-FST conversion was done using software described in [Tra97].

The subtree pattern specifies the syntactic context and defines for
each constituent whether the graphemic and/or phonological termi-
nals are subject to the phonological transformation defined by the rule.
These patterns are represented as strings and may be specified using
constituent symbols plus additional wild-card symbols as listed in Ta-
ble 3.1. The application of the associated transformation gets triggered
whenever the subtree pattern can be matched with a part of the syn-
tax tree. The following examples of such subtree patterns, also shown
in Figure 3.1, are used in the current polySVOX system:

NP_F ( x ADJ_F {} [1 N_F [1 * )
NP_F ( * N_F <NR=PL> {} [] ADJ_F [] * )

The first pattern (pattern a) specifies the syntactic context of French
mandatory liaison between a noun and a preceding adjective within a
French noun phrase. The operator '[]1’ selects the phonological termi-
nals of both constituents for application by the associated phonological

* any sequence (0...n) of constituents
including their (possibly empty) subtrees
? any constituent (exactly one)

including its (possibly empty) subtree

(...) | syntax hierarchy marker
<...> | feature specification
(] phonological representation operator

{} graphemic representation operator
%id | set identifier

Table 3.1: Wild-card and special symbols used within multi-context
rules.
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a) b)
NP_F NP_F

| |
| | | | | | | |
* ADJF NF * * N_F<NR=PL> ADJ F *
| | | |
{}[] [] {}(] []

Figure 3.1: Examples of subtree patterns for use in the polySVOX
phonological transformation step.

rule. Analogously, the operator '{}’ selects the graphemic terminals of
the first constituent. The second pattern (pattern b) specifies the syn-
tactic context of French optional liaison between a plural noun and a
subsequent adjective. The pattern specifies the noun with an additional
feature-value pair <NR=PL>, i.e., to select only plural nouns.

3.3 Syllabification

The syllabification of the phonetic transcription, i.e., the assignment
of a syllable boundary between each pair of neighboring syllable nuclei
(vowels, diphthongs, or syllabic consonants), is an important prepara-
tory step for all subsequent phonological and prosodic processing. Be-
fore any other phonological transformation, syllabification is applied on
the phonetic sequence of each word. At the end of phonological pro-
cessing, the phonetic sequence of the whole sentence is (re-)syllabified,
in order to correct syllable boundaries in case of phone elisions or in-
sertions generated by phonological transformations.

Some morphologically motivated syllable boundaries are already set
by the morpho-syntactic analysis, e.g., obligatory syllable boundaries
before stems or after prefixes. The remaining boundaries must be as-
signed according to language specific, phonetic criteria. As references
for such phonetic criteria, the author used for English [JRHSO03|, for
French [War96|, for German [Dud05], and for Italian [Pon95|.

Mized-lingual syllabification in the polySVOX system applies DCG-
based bottom-up parsing using language specific, phonetic lexica of on-
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set and coda consonant clusters. An additional, language-independent
lexicon contains all syllable nuclei, all individual consonants, and all
symbols for syllable language, syllable boundary, and phrase bound-
ary. Small, language specific grammars describe the syllable structure
of each language. The language tag associated with every syllable nu-
clei constrains parsing to the grammar rules of the corresponding lan-
guage. A language-independent grammar finally describes the phonetic
sequence of a word or a sentence as a sequence of syllables. Consonant
sequences, that do not conform with any consonant cluster of the lan-
guage specific lexica, are analyzed using the individual consonants of
the language-independent lexicon.

An appropriate setting of the grammar rule weights makes the re-
sult of parsing follow the “onset maximalization” principle, cf. [Kah76],
constrained by language specific onset and coda consonant clusters, and
information about the morphological structure of words.

For example, mixed-lingual morpho-syntactic analysis will analyze
“downgeloadet” (downloaded) as a sequence of two verb prefixes, an
English one and a German one, followed by an English verb stem and
a German verb ending. To indicate morphological constraints to syl-
labification, both verb prefixes are already terminated by a syllable
boundary marker:

[d\E\Vayn-| - [g\G\e-|  [\EVoud|  [\G\at].

Mixed-lingual syllabification would then syllabify this input as
[\E\d'ayn-\G\go-\E\l'ou-\G\dot| which is the correct syllabification
in this case. Accent markers that occur in the phonetic transcription
are ignored. The English [d]| is moved to the German syllable [dot| and
thereby transformed into a German [d]. This conforms well with the
assumption that syllables are always uttered using only one language.

3.4 Word Accentuation

For each word in the syntax tree, language specific word accentuation
rules are applied. While the positions of primary and secondary word
accents of English, German, and Italian lexemes are already set in the
lexicon, French lexicon entries do not contain stress markers. For French
words, a multi-context rule is applied that sets the primary word accent



74 Chapter 3. Mixed-lingual Phonological Processing

on the last syllable whose nucleus is not a schwa. French inclusions in
English, German, or Italian words also receive a primary word accent
on the last non-schwa syllable.

If there is more than one primary word accent in the word, all
but one of the primary accents are reduced to secondary word ac-
cents. French and Italian words are generally right-accented, this means,
the most right primary word accent remains whereas other primary
accents are changed to secondary word accent. English and German
words, in contrast, are normally left-accented, i.e., the most left pri-
mary word accent remains. These default word accent patterns are
implemented using the following multi-context rules, that match all ac-
centuable word categories of a language and apply left-accentuation or
right-accentuation on the phonetic sequence of the word:

%AccCons_F [] : "2>m / mw v <=> _ 7 non
%AccCons_I [] : ">m / m v <=> _ 7 non

%AccCons_E [] : "om / n nm g=> mon 2 .
%AccCons_G [] : ">" / " v <=> mwonm 2 .

In these rules, %AccCons_x* specifies for each language a set of all ac-
centuable word categories. The phonological transformations reduce all
primary accents except the last or the first one, resp., to secondary
accents.

The following examples illustrate this default word accentuation on
English, French, German, and Italian word, resp.:

“typewriter” [t'arp] + [r'arto(r)] = [t'aip.r ar.to(r)]
“homme-orchestre” [9.m(o)] + [or.k'es.tr(0)] = [0.mor.k'es.tr(0)]
“Biirgermeister”  [b'vr.ge| + [m'ai.ste] = |b'yr.ge.m ai.ste]
“millecento” [m'il.le] + [t['en.to] = [mil.le.t['en.to]

In contrast to the default word accentuation, certain English and Ger-
man words may have quite complex word accent patterns that depend
on the morphological structure of the words. In the following, some of
the word accentuation phenomena, for which multi-context rules have
been implemented in the polySVOX system, are presented:

German verb prefixes can be separated into three groups with re-
spect to word accentuation:



3.4. Word Accentuation 75

P1 Unaccented verb prefix. E.g., the prefix “ge” in “geleiten” (to
accompany) is pronounced as [go.l'ai.ton].

P2 Verb prefix with primary word accent, that is removed if a
stressed syllable follows: e.g., the prefix “miss” is unstressed
in “missleiten” (to mislead) [mis.l'ai.ton|, but it carries word
primary stress in “missgeleitet” (misled) [m's.go.l ai.tot].

P3 Verb prefix with primary word accent, that reduces the
verb stem accent: e.g., the prefix “hinunter” in “hinunter-
leiten” (to lead downwards) is stressed as [hr.n'vn.te.l ai.ton].
Also foreign verb prefixes in mixed-lingual German verbs
belong to this category. For example, the word accent pat-
tern of “downgeloadet” (downloaded) is correctly analyzed

as [\E\d'ayn.\G\go.\E\l 0u.\G\dot].

Verb prefix entries in the morpheme lexicon have got an addi-
tional feature indicating the group they belong to: P1, P2, or P3.
Verb prefixes of the first group (P1) do not require any mod-
ifications of word accent pattern. Word accentuation for verbs
having a prefix of the third group (P3) follows the default left-
accentuation of German words. Verb prefixes of the second group
(P2), however, require a special multi-context rule:

V_G ( *x PREF_G <TYPE=P2> [] 7 [] * )
noyn / Q <=> _ ? 7] [7 { %C } non ;

In this rule, %C specify the set of all consonants. >] [’ indicates
the boundary between the phonetic sequences of the prefix and
any subsequent constituent. Figure 3.2 shows the subtree pattern
of this rule.

Applying this multi-context rule on the morphological structure
of “missleiten” [m's-| [l'ait] [on] gives the following transformation

[m's-] [lait] == [mis-| [lait]

and results in [mrs.l'ai.ton].

Applying this rule on “missgeleitet” [m'is-| [go-] [l'ait]| [ot] gives

[m's-| [go-] = [m's-] [go-]
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V. G

|
| | ]
* PREF_G<TYPE=P2> ? *
| |
[] []

Figure 3.2: Subtree pattern for German word accentuation: the sub-
tree pattern matches a prefix of type P2 and any subsequent constituent
within a German verb. The operator ’[1° selects the phonological termi-
nals of both constituents for application by the associated phonological
rule. The phonological rule will remove the primary word stress of the
prefix, in case the subsequent morpheme has a primary word accent on
the first syllable.

and German left-accentuation results in [m's.go.l ai.tot].

British English compound words are right-accented if the com-
pound functions as verb, adjective, or adverb. This is accom-
plished using multi-context rules that apply right-accentuation
on the corresponding English word constituents, i.e., ADJ_E, V_E,
and ADV_E:

ADJ_E [] ;o Mon /o ,Tk=> 7 mo
VE[] : "o/ mm<=> _ 7 " .
ADV_E [] : "o /o ,Nk=> 7 o

These rules, for example, generate the correct word accent pat-
tern for the adjective “bad-tempered” as |b &d.t'em.pod|, for the
adverb “headfirst” as [h ed.f'3:st|, and for the verb “downgrade” as
|[d avn.grerd|.

3.5 Prosodic Phrasing

Prosodic phrasing is the division of an utterance into several speech
groups, or phrases. Depending on the language, prosodic phrases either
depend more on syntactic constraints, as, e.g., in German utterances,
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or more on rhythmic constraints, as, e.g., in French utterances. Mixed-
lingual prosodic phrasing must therefore provide a language-dependent
combination of both constraints.

Prosodic phrasing in the polySVOX system is based on the algo-
rithm given by Bierwisch in [Bie66]. This algorithm was implemented
in the German SVOX system by Traber, who describes the algorithm
very detailed in [Tra95|. Therefore, only an overview of the phrasing
algorithm itself is given here.

In contrast to the monolingual German phrasing of the SVOX sys-
tem, the mixed-lingual prosodic phrasing is applied after word accentu-
ation, but before sentence accentuation, as French sentence accentua-
tion relies on the position of phrase boundaries. The phrasing procedure
has the following steps:

e For each word in the syntax tree, a numeric word accent pattern
is extracted from its phonetic representation. The primary word
stress () is therefore converted into a primary accent (1), and
each secondary word stress (,) into a secondary word accent (4).
Unstressed syllables are assigned 0. Some word categories (such
as articles, prepositions, personal pronouns, coordination parti-
cles, and others) are declared to be unstressed. The primary word
stress of these words is assigned a special, very weak accent level
(99), and a secondary word stress becomes 102. For French words,
all non-accentuable syllables, i.e., syllables containing schwa [o] or
optional schwa [(o)], are indicated by a negative accent value (-1).

e Initial phrase boundaries are set between each pair of adjacent
syntactic words according to the level of the closest common an-
cestor node of the two words in the syntax tree. The level of the
root of the syntax tree is defined to be 3, and the level number is
increased by 1 with each new tree level. Syntactically closely con-
nected words are therefore separated by a weaker initial boundary
than loosely connected words. A weaker boundary is indicated by
a larger boundary value.

Punctuation symbols, like periods or commas, are analyzed as
word constituents by syntax analysis, and initial phrase bound-
aries are also set at their boundaries. To strengthen punctuation
boundaries, their boundary values are reduced by 3. As punctua-
tion symbols of clauses and subordinate clauses are in the current
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syntax grammar near to the root level of the syntax tree, they get
strong initial boundaries. Commas as part of a list, however, get
weaker initial boundaries. This results in the desired effect, that
clause boundaries are realized with strong phrase boundaries and
short list items may have a weaker or even no phrase boundary
at all between them.

Phonological word formation combines all unaccented (clitic)
words with the syntactically closer accented neighboring word
to an initial phrase, that is often called a phonological word, cf.
[BF90]. This initial phrase is thereby assigned the language of the
first constituent of the syntax tree, form a bottom-up perspective,
that spans all syllables of the phrase. These initial phrases also
form the basis in the phrasing algorithm for English in [BF90|
and for French in [Mer99|.

Prosodic phrase formation finds the final prosodic phrases by
cyclic deletion of some of the intermediate phrase boundaries with
a boundary value larger than some predefined threshold (cur-
rently 3). The criterion for deletion of intermediate boundaries
is language-dependent. Two types of phrase boundaries are dis-
tinguished: Monolingual phrase boundaries separate phonological
words of the same language. Mixed-lingual phrase boundaries sep-
arate phonological words of different languages.

For monolingual English, German, or Italian phrase boundaries,
the criterion described in [Tra95] is applied in cyclic fashion start-
ing with the weakest boundary: a phrase boundary is deleted, if
its boundary value is larger or equal to both neighboring bound-
ary values, and if the number of accented syllables between this
boundary and the boundary to the right or to the left is smaller
than a threshold ¢, where

p+1 : nsyl <2
g=< p D 2<nsyl <5H
p—1 : nsyl>5

with nsyl specifying the number of syllables between this bound-
ary and the boundary to the right or to the left, resp. p is a
parameter defining the desired degree of phrasing. Usually, p = 1
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or p = 2 is appropriate. Higher values of p delete more, lower
values delete fewer boundaries.

Monolingual French phrase boundaries are deleted in such a way,
that the number of syllables of the resulting prosodic phrases is
as near as possible to a predefined parameter, that defines the
desired degree of phrasing. This parameter is currently set to 6.

For the deletion of mixed-lingual phrase boundaries, the criterion
according to the sentence’s base language is applied.

The values of the resulting phrase boundaries are finally normal-
ized to match the phrase boundary types defined in Section 3.2.1.
In the current system, the phrase boundary value 0 is assigned
the phrase boundary type #{*:0}, values of 1 or 2 are assigned
#{*:1}, and any value larger than 2 the boundary type #{*:2}.
The wildcard * denotes phrase type information.

Phrase Type Assignment

Phrases are assigned phrase types with respect to the modality of the
sentence. Syntactic analysis of the polySVOX system is currently able
to distinguish between statements, commands, exclamations, requests,
wh-questions, yes/no-questions, and alternative questions. Table 3.2
shows the heuristic that is applied for phrase type assignment, given
the sentence type, the number of phrases in the sentence, and the punc-
tuation constituents.

For example, the phrase in a German statement having only one
phrase receives the phrase type S, the phrases in a German statement
with 5 phrases are assigned the phrase type sequence P P P P T, and
the phrases in a French wh-question with 4 phrases the phrase types
YC P P Y. The French alternative question

“Tu veux du café, de la biére, du vin ou du coca?”
(Do you want coffee, beer, wine, or coke?)

consists of 4 phrases which are assigned the phrase type sequence
YCYCYCT.
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sentence English, German,

) French
base language or Italian
number of phrases 1| > 2 1| > 2
statement S PT T S PT T
command, rfequest, E P+ T E Pt S
or exclamation
wh-question Y PT T Y YCP*Y
yes,/no-question Y| (PPYC,)"P*Y ||Y | (P*YC,)"P*Y
alternative question (P*YC ,& )T P*T (P*YC & )T P*T

Table 3.2: Phrase type assignment with respect to sentence type, the
number of phrases, and punctuation constituents. ‘*’ denotes 0 to n
repetitions. ‘+’ indicates 1 to n repetitions. ‘,” represents a punctuation
constituent at the phrase boundary. ‘&’ indicates a punctuation or a
disjunctive conjunction constituent at the phrase boundary.

Example of Mixed-lingual Phrasing

Figure 3.3 shows the syntax tree, that is generated by the current
polySVOX system for the mixed-lingual German sentence “Le monde
a l'envers, ein franzosischer Film, war ein sehr guter, bekannter Film”.

The phrasing algorithm of polySVOX first extracts the numeric
word accent patterns and sets initial phrase boundaries between
words and punctuation symbols according to the syntactic connection
strengths (Phrase boundaries are represented by *#n’. Words are de-
noted by word accent patterns in angular brackets):

#0 <-1> #6 <1 -1> #6 <99> #7 <> #8 <0 1> #2 <> #3 <99> #7
<01 0 0> #7 <1> #3 <> #1 <1> #4 <99> #5 <1> #6 <1 0> #3
<> #3 <0 1 0> #5 <1> #0 <> #0

Then, unaccented words are combined with the syntactically closest
accented neighboring word to form phonological words:

#0 <-1> <1 -1> #6 <99> <> <0 1> #2 <> <99>
<01 0 0> #7 <1> <> #1 <1> #4 <99> <1> #6 <1 0>
<> #3 <0 1 0> #5 <1> <> #0

French prosodic phrase formation removes the boundary between the
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3 4 5 6 7 8

+- GS_G
O
} l— NP_G
l— NP_F
| l— ARTDEF_F  "le" "l1e"
I l- N_F  "monde" "m~0:d4(@)"
: l— PP_F
: l— PREP_F  "a" "a"
L e
I : : l— ARTDEF_F "1’" "
I I I l— N_F "envers" "~AvE:R"
I : l— APPOS_G
I : l— puNnctr ", " n
I i l— NP_G
I I I l— ARTINDEF_G "ein" "’?a_in"
I I I l— ADJ_G  "franzdsischer" "fran’t_s2
I : I l— N_G "film" " fIlm"
I I l— PUNCT ", e
l- VPFIN_G "war" "ya:r"
l— NP_G
l— ARTINDEF_G "ein" "’?a_in"
I l- ADJP_G
I l- GRADPART_G "sehr" "ze:r"
: l— ADJ_G  "guter" "gu:tQr"
} = l— punct ", " no
I : l- ADJ_G  "bekannter" "b@’kant@r"
I l— N_.G "film" " fI1m"
l— PUNCT  "." "

:zISor"

Figure 3.3: Syntax tree generated by polySVOX for the sentence “Le
monde a l’envers, ein franzosischer Film, war ein sehr guter, bekannter
Film”. The tree s shown in a simplified indentation form down to the
full-word level and without features. The levels in this tree structure,
which are indicated at the top, are the basis of the phrasing algorithm.
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two short French phrases:

#0 <-1> <1 -1> <99> <> <0 1> #2 <> <99>
<01 0 0> #7 <1> <> #1 <1> #4 <99> <1> #6 <1 0>
<> #3 <0 1 0> #5 <1> <> #0

German prosodic phrase formation results in:

#0 <-1> <1 -1> <99> <> <0 1> #2 <> <99>
<01 0 0> <1> <> #1 <1> <99> <1> <1 0>
<> #3 <01 O> <1> <> #0

After final normalization of phrase boundaries and phrase type assign-
ment, the result is (the final sentence boundary is not shown):

#{P:0} Le monde a l’envers #{P:1} , ein franzodsischer
Film, #{P:1} war ein sehr guter, #{T:2} bekannter Film.

Remarks

Prosodic phrasing, as described above, is still a rather ad-hoc solution.
Correct phrasing is closely connected to a correct syntactic analysis
and a well-formed syntax tree, which requires some “skill” of the gram-
mar designer. In order to make phrasing more independent of syntactic
analysis and thereby more robust, a hybrid, statistical and rule-based
phrasing algorithm, as the Hybrid ¢-Model for Phrase Break Prediction
presented in [Att05], may be applied in future. However, such an algo-
rithm requires for each language large, prosodically annotated sentence
corpora, that were not available for the present work.

3.6 Sentence Accentuation

3.6.1 Accentuation Principles

Mixed-lingual sentence accentuation in the polySVOX system combines
two different approaches:

e The accentuation of English, German, and Italian constituents
follows the syntax-based algorithm of Kiparsky presented in
|[Kip66]. This algorithm determines in cyclic fashion, i.e., from
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the leaves of the morpho-syntactic tree to the sentence node, ac-
centuation patterns within a constituent according to two rules:
the nuclear stress rule, due to which the nucleus of a constituent
remains primary accented, whereas all other accents are reduced,
and the rhythmic stress shift rule, which changes some accent
patterns due to rhythmic constraints.

e The accentuation of French phrases bases on Selkirk’s notion of
the prosodic structure of an utterance, cf. [Sel81|. This prosodic
structure consists of a hierarchical organization of prosodic cate-
gories. The number of layers and the names of the categories in
the prosodic hierarchy vary throughout the literature, but there is
little disagreement on the higher levels of this hierarchy, i.e., the
levels of phonological words, of intonational phrases, and of ut-
terances. French accentuation follows the algorithm described in,
e.g., [HDC84, DCDCV97|. This algorithm also operates in cyclic
fashion, i.e., from the leaves of the prosodic structure to the ut-
terance node. It assigns according to the accentual bipolarisation
principle an initial and a final accent to phonological words and
to prosodic phrases, and according to a dominance principle, at
each level of the prosodic structure a higher level of prominence
to the final accent than to the initial one.

The prosodic structure of an utterance consists in the polySVOX sys-
tem, from a bottom-up perspective, of phonological words, of prosodic
phrases bounded by weak or strong phrase boundaries, and of the ut-
terance. A prosodic constituent is assigned the language of the first
syntactic constituent of the syntax tree, again form a bottom-up per-
spective, that spans all syllables of the phrase. Figure 3.4 shows the
prosodic structure of the sentence presented in Figure 3.3.

3.6.2 Mixed-lingual Accentuation Algorithm

The mixed-lingual accentuation algorithm is based on the algorithm
implemented for the monolingual German SVOX system in [Tra95|.
This algorithm applies a set of accentuation patterns on a modified
syntax tree, in which the leaves, i.e., the graphemic/phonemic repre-
sentation of words, are initially replaced by the corresponding numeric
word accentuation, that has been extracted in the first step of phrasing.
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Utt G
Phr_F Phr_G Phr_G Phr_G
W F W F W G WG WG WG WG WG WG

A

Le monde & l’envers ein franzosischer Film war  ein sehr guter bekannter Film

Figure 3.4: The prosodic structure of the mized-lingual German sen-
tence “Le monde a l’envers, ein franzésischer Film, war ein sehr guter,
bekannter Film” whose syntax tree is shown in Figure 3.3. The lan-
gquage of each prosodic constituent is indicated by language suffizes, e.g.,

a ' F’ suffiz for French and a °_ G’ suffiz for German constituents.

Phonological words are denoted by W', prosodic phrases are denoted
by ’Phr’. "Utt’ specifies the utterance.

The accentuation patterns all specify a possible subtree of the mod-
ified syntax tree and an action to be carried out if the pattern matches
the given syntax tree. Due to the language suffix of the constituent
types, it is possible to specify language specific and even mixed-lingual
accentuation patterns. Accentuation patterns have the structure of or-
dinary syntax trees, but additionally, wildcard symbols may be used.
Table 3.3 presents a list of all wildcard and special symbols that can
currently be specified in accentuation patterns.

For each constituent type, a collection of accentuation patterns may

* any sequence (0...n) of constituents including their
(possibly empty) subtrees

*% like ‘*’, but is stronger if it occurs together with ‘*’,
in that it matches as many constituents as possible.
? any constituent (exactly one) including its (possibly
empty) subtree

(...) | syntax hierarchy marker

Table 3.3: Wildcard and special symbols used within accentuation pat-
terns.
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be specified, which are compared with the syntax tree in order of dec-
laration. If a pattern matches the syntax tree, the corresponding action
is carried out, and no other patterns are applied any more for the same
constituent.

The integration of prosodic structure-based accentuation into this
algorithm is achieved by using a modified prosodic structure, in which
the corresponding numeric accentuation sequence is assigned to each
phonological word, as shown in Figure 3.5. Changes in this numeric ac-
centuation sequence are synchronized with the numeric word accentua-
tion of the modified syntax tree. Accent values in this modified prosodic
structure are changed by traversing the structure from the leaves to the
root and by applying a set of accentuation patterns. These accentuation
patterns are similar to the ones used for syntax-based accentuation. All
patterns specify a possible substructure of the prosodic structure and
an action to be carried out if the pattern matches the given prosodic
structure.

In the present accentuation algorithm, the following three actions
can be specified:

accl, m, acc2: matches an accent value ‘accl’ and assigns it the new
value ‘acc2’.

accl, nsr, acc2: matches an accent value ‘accl’ and marks it with
the new value ‘acc2’. This action triggers the application of the
stress reduction principle of the nuclear stress rule according to

Utt_G
Phr F Phr G Phr G Phr G
W_F W_F W_G W G W.G W.G W.G W_G WG

<-11-1> <9901> <990100> <1> <1> <991> <10> <010> <1>

Figure 3.5: Initial modified prosodic structure of the mized-lingual
German sentence “Le monde a [’envers, ein franzosischer Film, war
ein sehr guter, bekannter Film”.
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|Kip66]|: If a marked accent is set to the new value ‘acc2’, all other
accents of level ‘acc2’ within the same constituent are numerically
increased by 1. This is repeated for all accents of level ‘acc2’ + 1,
‘acc2’ + 2, etc., until a gap in this sequence of accent levels is
encountered.

acci, abp, accf: shifts the final accent within the matched constituent
to the last accentuable syllable (having a non-negative accent
value) and marks it with the value ‘accf’. All other accent values
within the same constituent are reduced according to the stress
reduction principle of the nuclear stress rule (see above). If the
constituent has more than one accent, the initial accent is shifted
to the first syllable with a non-negative accent value smaller than
the special level for unaccented words (99), and it is assigned the
accent value ‘acci’.

Examples of accentuation patterns are shown in Figure 3.6. The first
pattern realizes left-accentuation within English compound nouns. The
second and the third pattern specify accentuation within French phono-
logical words (‘W_G’) and prosodic phrases (‘Phr_F’), resp. The fourth
pattern states that within a German noun phrase (‘NP_G’), the primary
accent remains on the rightmost noun (‘N_G’) and all other accents will
be reduced. The fifth pattern states that within a German statement
(‘GS_G’), the rightmost noun phrase before the finite verb phrase will
receive the sentence accent. The last pattern specifies default right-
accentuation within German constituents.

At the end of each accentuation cycle, the rhythmic stress shift rule

NP_E W_F Phr_F NP_G GS G ? G
ﬁ'ﬁ | | | | |
2,abp1 2abp1 || | | | | | | |
* NE * * NG * * NP_G VPFING * ** 1nsr1 *
' L
1,nsr,1 1,nsr,1
**1,nsr,1 *

Figure 3.6: Examples of subtree patterns used in the polySVOX sen-
tence accentuation algorithm.
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is applied for all constituents except for some constituent types given
in a special list. This list currently contains all main and subordinate
clause constituents. The rhythmic stress shift rule changes the following
accent constellations to new ones:

321 —-231
221 —-231
123 —-132
122 —-132

In these patterns, weaker accents (value 0 or greater than 3) may in-
tervene, which remain unchanged.

Postcyclic Accentuation Rules

Some accent rules are executed after the traversal of the syntax tree.
These postcyclic rules are again given as accentuation patterns.

In the polySVOX system, postcyclic patterns are currently used
to correct the accent strength on finite verbs. These are usually too
strongly accented by the application of the nuclear stress rule, because
in the syntactic structure the finite verb phrase is a direct descendent of
the sentence node. For example, the following postcyclic accentuation
rules change accent values of 2 and 3 on all finite verbs below main
clause constituents to a value of 4:

GS G (* VPFIN_G ( ** (2,m,4) * ) * )
GS G ( * VPFIN G ( ** (3,m,4) * ) *)

Accent Normalization

The accentuation algorithm described above may lead to a large num-
ber of different accent levels. The accentuation levels are normalized
such, that within each phrase, the rightmost accent of the strongest
level within the phrase is defined as phrase accent and therefore set to
level 1. All other accents are strengthened as much as possible while
maintaining their relative prominences within the phrase. The accent
levels are then further restricted to the phonological interpretable levels
1 to 4 and 0. All remaining weaker accents in the range from 5 up to
the special level for unaccented words (99) are also set to level 4. All
levels larger or equal to 99 are set to 0.
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Example of Mixed-lingual Accentuation

For the mixed-lingual German sentence “Le monde & l'envers, ein
franzosischer Film, war ein sehr guter, bekannter Film”, the word ac-
centuation and phrase boundary sequence generated by polySVOX are
(Phrase boundaries are represented by #n’. Word accent patterns are
enclosed in angular brackets):

#0 <-1> <1 -1> <99> <0 1> #1 <99> <0 1 0 0> <1> #1 <1>
<99> <1> <1 0> #2 <0 1 0> <1> #0

The application of prosodic-structure-based accentuation patterns for
French phonological words generates no changes. The application of the
patterns for French prosodic phrases changes the accentuation to

#0 <-1> <2 -1> <99> <0 1> #1 <99> <0 1 0 0> <1> #1 <1>
<99> <1> <1 0> #2 <0 1 0> <1> #0

The application of the right-accented NP_G pattern on the first German
noun phrase changes the accentuation to

#0O <-1> <2 -1> <99> <0 1> #1 <99> <0 2 0 0> <1> #1 <1>
<99> <1> <1 0> #2 <0 1 0> <1> #0

The default right-accentuation pattern applied on the German adjective
phrase (ADJP_G) and subsequent rhythmic stress shift gives

#0 <-1> <2 -1> <99> <0 1> #1 <99> <0 2 0 0> <1> #1 <1>
<99> <2> <3 0> #2 <0 1 0> 1> #0

The application of the right-accented NP_G pattern on the mixed-lingual
German noun phrase changes the accentuation to

#0 <-1> <3 -1> <99> <0 2> #1 <99> <0 3 0 0> <1> #1 <1>
<99> 2> <3 0> #2 <0 1 0> <1> #0

The application of the right-accented NP_G pattern on the final German
noun phrase gives

#0 <-1> <3 -1> <99> <0 2> #1 <99> <0 3 0 0> <1> #1 <1>
<99> <3> <4 0> #2 <0 2 0> <1> #0

The application of default right-accentuation on the German sentence
changes the accentuation to

#0 <-1> <4 -1> <99> <0 3> #1 <99> <0 4 0 0> <2> #1
<2><99> <4> <5 0> #2 <0 3 0> <1> #0

Postcyclic accent reduction on verb VPFIN_G changes
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#0 <-1> <4 -1> <99> <0 3> #1 <99> <0 4 0 0> <2> #1 <4>
<99> <4> <5 0> #2 <0 3 0> <1> #0

Final accent normalization results in

#0 <0> <2 0> <0> <0 1> #1 <0> <0 2 0 0> <1> #1 <2> <0> <1>
<2 0> #2 <0 2 0> <1> #0

3.7 Phonological Transformations

The correct pronunciation of mixed-lingual text requires the application
of a number of phonological transformations that comprise segmental
assimilation, reduction, and insertion phenomena of each language in-
volved. Some of these phenomena are mandatory, like French liaison or
German terminal devoicing, others depend on the speaking style and
speech rate. In addition to monolingual phenomena, also some mixed-
lingual phenomena must be considered. The following examples present
some of the monolingual and mixed-lingual phenomena currently com-
prised in the polySVOX system:

German aspiration: In word-initial position, the German unvoiced
plosives [p], [t] and [k| preceding a vowel are aspirated, denoted
as [p"], [t"] and [k"], resp. They are also aspirated in word-final
position before a break.

German terminal devoicing: All voiced plosives (obstruents) be-
fore a morpheme or word boundary are devoiced.

French liaison: In French noun groups, liaison is forbidden between
a singular noun and the consecutive adjective, e.g., “un bruit ef-
froyable” [ce.bryi.e.frwa.jabl];
between a plural noun and the following adjective it is optional,
e.g., “les amis agréables” [le.za.mi.(z)a.gre.abl|;
liaison is mandatory between the preceding adjective and a noun,
e.g., “un bon ami” [é.bo.na.mil.

Liaison is generally avoided between a singular noun and the fol-
lowing verb, e.g., “I’étudiant entend” [le.ty.dja.a.tal;

it is optional between a plural noun and the following verb, e.g.,
“les étudiants entendons” [le.ze.ty.dja.(z)a.ta.d3];
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but liaison is mandatory between a clitic personal pronoun and
the following verb, e.g., “on entend” [5.na.ta].

French liaison consonant realization: The phonetic liaison conso-
nant can be directly derived from the corresponding graphemic
consonant: e.g., “s”, “x” or “z” result in [z]; or “c”, “q” or “g” in [K].

French optional schwa elision: Word-final optional schwa [(9)] in
French is not pronounced, if the following word begins with a
vowel or an “h muet”. In front of a word beginning with an
“h aspiré”, final [(0)] is pronounced. E.g., “une bonne hache”
[yn.bo.no.?af].

English linking “r”: Word-final “r” is usually only pronounced, if the
following word begins with a vowel, e.g., “four eggs” [foir.egz| but
“four pounds” [for.paundz|.

English plosive elision: In clusters of three plosives or two plosives
and a fricative, the middle plosive may disappear, cf. [Roa91].
E.g., “act badly” [ek.beaed.li].

Italian raddoppiamento fonosintattico: Word-initial Italian con-
sonants are lengthened when following a poly-syllabic Italian
word with final stress. E.g., the initial consonant of the Italian
word “latte” |l'atte] is pronounced in “caffe latte” as [kaff'e ll'atte].

Cross-lingual assimilations in German words: Foreign in-
clusions in mixed-lingual German words virtually keep the
pronunciation prescribed by the originating language. The
syllable onset and coda near the language switching position,
however, may be weakly assimilated to the base language.

In a word like “Dufourstrasse”, which is composed from the French
proper name “Dufour” and the German noun “Strasse” (street),
the French [r] has to be replaced by the German [r|. It would
sound rather affected to pronounce [dv.fur.[trar.so| instead of
[dy.fur.ftraz.so.

These examples show that the phonological phenomena depend on vari-
ous contexts, like phonetic, graphemic, syntactic, and language context
as well as contextual information about accentuation and phrasing.
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In the polySVOX system, all phenomena were implemented using the
multi-context rule formalism presented in Section 3.2.2.

Example of Phonological Transformations

Within the example sentence “Le monde & I'envers, ein franzosischer
Film, war ein sehr guter, bekannter Film.” the phonological transfor-
mations remove the optional schwa of “monde” [m5:d(9)|. After sentence
re-syllabification, the following phonological representation is finally ob-
tained:

#{P:G:0} \F\lo- m[2]5:-d a- 1 a-v[1]lemw #{P:1} \G\?ain- fran-
ts[2] gr-z1-Je- f[1]1dm #{P:1} v[2]ame- Tain- z[1]ewr- g[2]u:-te
#{T:1} bo-k[2]an-te- f[1]1lm






Chapter 4

Speech Prosody Modeling

This chapter describes speech prosody modeling in general. After an
introduction to general prosodic phenomena, a review of state-of-the-
art approaches to Iy and segment duration modeling applied in TTS
synthesis. This chapter concludes with a definition of multilingual and
of polyglot prosody modeling.

4.1 Introduction

The prosody of a speech signal can be described at the perceptual level
in terms of pitch, (sentence) melody, (speech) rhythm, and loudness.
The physically measurable quantities by which speech segments can
be modified are the acoustic parameters fundamental frequency (Fy),
segment duration, and signal intensity. Fy correlates with pitch and
sentence melody, segment duration correlates with speech rhythm, and
signal intensity correlates with loudness. Intonation refers to the rise
and fall of Fy of the voice in speech.

The prosody control component must generate these physical pa-
rameters to drive the speech generation component. The parameters are
influenced by various factors, that depend on the roles prosody plays
in human communication. The linguistic literature on these different
roles of prosody is vast. E.g., [Cry69, Bol89, Lav94, Tra05| provide an
overview. [Tra95, vSMKOS]| discuss the roles of prosody with respect to
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TTS synthesis.

|Tra05| distinguishes perspectival (indicates distance and location
of a speaker), organic (indicates age, sex, and health of a speaker),
expressive (indicates emotions and attitudes of a speaker) and linguis-
tic aspects of speech that influences speech prosody. The influences, or
factors, of the first three aspects basically characterize a specific speak-
ing environment, a particular speaker, and a certain speaking style.
Most TTS systems keep perspectival, organic, and expressive factors
constant by recording the voice of a given speaker with a “neutral”
information communication speaking style in a well-defined studio en-
vironment. In the last decade, however, an own branch of TTS re-
search, so-called “emotional TTS”, started to explore expressive factors
in speech prosody, see [Sch01, Sch08] for an overview.

In the polySVOX system presented in this thesis, the aim was to
model linguistic factors of polyglot speech prosody and to keep perspec-
tival, organic, and expressive factors as constant as possible. Therefore,
the voice of a single, polyglot speaker with a “neutral” speaking style
was recorded in several languages.

4.2 Linguistic Factors of Speech Prosody

The linguistic factors of speech prosody vary with each utterance
and are furthermore language specific. From the linguistic perspective,
speech prosody may be used for:

e Distinguishing different meanings of a word: In tone languages,
such as Chinese, Vietnamese, Thai, or Swedish, the type of
Fy movement within certain syllables may distinguish different
meanings of a word. In languages that have long and short phones,
such as English, French, German, or Italian, different phone du-
ration patterns are used to distinguish different meanings of a
word. These tonal movement types and these temporal patterns
are therefore of phonemic nature, but they must be treated in
prosody control in close connection with other melodic and rhyth-
mic contributions rather than with the sound segment production.

e Semantic structuring of utterances, that is used to group words,
that belong together semantically, in one rhythmic and melodic
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group, a so-called (prosodic) phrase, and to indicate relation-
ships between these phrases. The linguistic notion therefore is
(prosodic) phrasing. Prosodic phrasing may also be used to dis-
ambiguate different semantic contents of an utterance. In the ut-
terance “Charles the first king of England”, the semantic contents
define whether the correct grouping is “(Charles the first) (king
of England)” or “(Charles) (the first king of England)”.

Emphasizing of words for distinguishing semantically more impor-
tant words from less important ones. The linguistic term therefore
is (sentence) accentuation. In many languages, sentence accentua-
tion is used to highlight so-called content words, like nouns, verbs,
adjectives, or adverbs. Stronger emphasizing of words may also
be used for rational highlighting and expression of contrast, or for
amplifying their importance. [Koh06| refers to these phenomena
as emphasis for focus and emphasis for intensity.

The usage of emphasis to indicate semantic focus, however, varies
among different languages. In German and in English utterances,
semantic focus on certain words is expressed by emphasizing
them, like in “Thr wollt morgen abreisen?” and “You want to leave
tomorrow?”. In French, this semantic focus is expressed without
any emphasis using a syntactic construct called mise en relief:
“C’est demain que vous voulez partir?”.

The acoustic realizations of sentence accents also vary among dif-
ferent languages. While Germanic languages, like German or En-
glish, highlight words within phrases mainly by means of pitch
inflection and lengthening of syllabic nucleus and coda, this high-
lighting is achieved in French mainly by the so-called accent
d’insistance (force accent), cf. [Koh06], which relies on initial con-
sonant lengthening and an increase of signal intensity. In French,
pitch inflection mainly signals prosodic phrase boundaries.

Indication of sentence modality to communicate the intent of an
utterance to the listener. In most languages, sentence modalities,
like statement, exclamation, total (yes/no) question, partial (wh-)
question, or parenthesis, are distinguished using different prosodic
patterns. These patterns are mainly characterized by different
intonation patterns, but also by different signal intensity patterns.
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4.3 Approaches to Prosody Modeling

In the last decades, various approaches to model the acoustic param-
eters of speech prosody by computational means have been proposed.
The advance in computer processing power and storage capacity re-
sulted in a constantly increasing quality of these models. Starting with
rule-based models in the seventies and eighties, prosodic modeling ad-
vanced over pattern concatenation models and statistical models in
the nineties, to so-called “using as-is” prosody models in unit selection
TTS, that are currently state-of-the-art. [vSMKO8| provide an overview
of the history of prosody models, including a brief introduction of the
most influential models.

A further increase in quality of “using as-is” prosody models is re-
stricted by the finding, “that even small text samples of a few sen-
tences were virtually certain to contain (linguistic factor) vectors that
occurred only once in the entire analysis (of 22 million phonetic seg-
ments)”, cf. [vS93]. These vector frequency distributions belong to the
Large Number of Rare Events (LNRE) class of distributions, introduced
in [Khm87], for which the law of large numbers does not hold and that
have the property of extremely uneven frequency distributions. See
[vS97, M&b01] for a more detailed discussion of LNRE distributions
in TTS synthesis.

Due to the LNRE property, it is almost impossible to record a
speech database by the same speaker within a reasonable period of time,
that contains all possible linguistic factor combinations. This is one of
the constraints that restrict high-quality, unit-selection T'TS to close-
domain applications, cf. [vS97, Bla02|. Therefore, the focus of speech
prosody research is currently moving back to pattern concatenation
models and to statistical models.

The different approaches to speech prosody modeling can be char-
acterized in terms of the acoustic parameter(s) they model, in terms
of their input representation of prosodic events, like prosodic phrase
boundaries or sentence accents, in terms of their output representation
of the acoustic parameter(s), and in terms of their method to generate
the output representation from the input representation, as shown in
Figure 4.1.
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Figure 4.1: General structure of speech prosody models.

4.3.1 Acoustic Parameters

Most prosody models are designed to model one specific acoustic pa-
rameter only. Prosody research has concentrated thereby on modeling
fundamental frequency and segmental duration, as these two acoustic
parameters are generally considered to be much more important for the
naturalness of synthetic speech than signal intensity, as confirmed by
several studies, e.g., in [TBNA9S8|. However, given nearly perfect funda-
mental frequency and segment duration control, a very good intensity
control would also become necessary, in order to model all sentence
modalities and to further improve naturalness of synthetic speech.

4.3.2 Representations of Prosodic Events

The input representations of prosodic events mainly differ in how de-
tailed prosodic events are described. They can be grouped into the
following classes:

e Abstract phonological descriptions of prosodic events, e.g., the
phonological representation used in polySVOX, that is described
in Section 3.2.1.

e Qualitative phonetic descriptions of alignment and type of
prosodic events. These descriptions can be rather coarse, as the
distinction between high (H) and low (L) tones in the model of
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Pierrehumbert [Pie80| and in the subsequent tones and break in-
dices (ToBI) definition [SBP192|, or the qualitative description
can be more detailed, like the international transcription sys-

tem for intonation (INTSINT) [HDCEO00] with eight discrete tone
symbols.

e Quantitative phonetic descriptions of time alignment and size of
prosodic events, as found, e.g., in the T'ilt model [TB94, Tay00], in
the linear alignment model [vSMO00], or in the phrase and accent
command models [Ohm67, Fuj81, Fuj83|.

4.3.3 Representations of Acoustic Parameters

The various output representations of acoustic parameters can be sep-
arated into two major classes:

e Direct representations that directly derive the value of the acous-
tic parameter from the output of the model. The majority of
prosody models, especially segment duration and signal intensity
models, use this type of representation.

e Superpositional representations that form the value of the acous-
tic parameter as a superposition of several, hierarchical model
outputs. This hierarchy often reflects linguistic structures, as sen-
tence, phrase, syllable, and segment levels. A well-known exam-
ple of a superpositional segment duration model is the syllable-
based model of Campbell [Cam89, Cam92|, that predicts syl-
lable durations first and then fits segment durations to the
syllables. Superpositional fundamental frequency models con-
struct Fy values as a combination of different Fy components,
like sentence, phrase, accent, or perturbation curves. Some in-
fluential models are the phrase and accent command models
[Ohm67, Fuj81, MPHO93|, the superposition of functional contours
(SFC) model [Aub93, HB00, BHO05|, the linear alignment model
[vSMO00], or the multi-level unit sequence model [vSKKMO5].

Output representations of fundamental frequency additionally differ in
how detailed the course of fundamental frequency values over time, the
so-called fundamental frequency contour, is approximated:
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e Early models predicted one value per prosodic event, e.g., per
stressed syllable or per phrase boundary, like the model of Pier-
rehumbert |Pie81]|, or the phrase and accent command models
[Ohm67, Fuj81], and roughly interpolated the course of Fy be-
tween these events.

e Later approaches modeled the rises and falls of the Fy contour
and interpolated between them. Examples are the IPO approach
|Col91] or the rise/fall/connection (RFC) model based on the T'lt
model [TB94, Tay94, Tay00].

e Other models approximated the course of F; much more accu-
rately by predicting several values for each syllable, e.g., [Tra95|
used 5 values per syllable in the Fy model of the SVOX system.

e Some approaches, finally, apply the original Fy contours of
recorded speech signals, like unit selection approaches, -cf.
[Cam94, CB95, BC95, HBI6|, that implicitly use the original Fj
contour of the selected speech unit, or approaches that combine
stored parts of original Fy contours, like the Fjy pattern concate-

nation approach reported in [Tra90, Tra92| or the multi-level unit
sequence model [vSKKMO05].

4.3.4 Generation Methods

The method to generate the output representation from the input rep-
resentation is probably the most characterizing attribute of a prosody
model. The numerous existing methods can be divided into the three
following classes:

Knowledge-based or Rule-based Methods

Knowledge-based or rule-based methods are mainly found in early TTS
systems. Explicit knowledge of linguistic experts is often modeled in
form of a linear model.

Probably the most influential rule-based duration model is the
Klatt duration model [Kla73, Kla79] that is part of the MITalk sys-
tem [AHKS7|. Other rule-based duration models are described, e.g., for
English in [CUB73|, for German in [Koh88§|, and for French in [O‘S84].
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Well-known, rule-based fundamental frequency models include Pier-
rehumbert’s model [Pie81|, the IPO approach |Col91], the Kiel Intona-
tion Model (KIM), a rule-based Fy model for German, established by
Kohler [Koh90, Koh91]|, and the phrase and accent command models
presented by Ohman and Fujisaki [Ohm67, Fuj8l|, that generate Fy
contours by means of impulse and step responses of second-order linear
systems, which are driven by “accent” and “phrase” commands.

Data-based, Statistical Methods

Data-based, statistical methods apply machine learning techniques to
automatically estimate the unknown parameters of the model from
recorded speech data. Depending on the type of parameters being ad-
justed, two categories of statistical methods can be distinguished:

e Early statistical models applied parametric estimation methods in
which a specific functional form for the model is assumed and the
parameters of the model are then optimized by fitting the model
to the data set.

e Most current statistical models apply non-parametric estimation
methods in which no particular functional form is assumed and
which allow the form for the model to be determined entirely by
the data. Non-parametric methods that are commonly used for
prosody models include decision trees in form of binary regression
trees, so-called classification and regression trees (CART) that
are described in [BFOS84|, artificial neural networks (ANN), see
[Lip87, Bis95| for a description, multivariate adaptive regression
splines (MARS) introduced in [Fri91], and hidden Markov models
(HMM) for which [Rab89] is a good introduction.

Statistical duration models based on parametric estimation meth-
ods include the French duration model by [KZ96] based on a linear
model, the German duration model by [Hub90, Hub91|, who applied a
generalized linear model (GLM)or the sums-of-products approach pre-
sented in [vS92, vS93, vS94| for English duration prediction. The sums-
of-products approach was later applied to German duration modeling

[MvS96], and integrated as the first multilingual duration model into
the Bell Labs multilingual TTS synthesis system [vSSM*97].
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CART-based statistical duration models were first presented by
[Ril89, Ril92] for English segment duration prediction. This model was
later applied for various languages, e.g., for Italian [MQ95], for German
[Tra96], or for French [MDM98].

Duration models using ANNs were first reported by [Cam89,
Cam92| for English syllable-based duration prediction. ANN-based seg-
ment duration models are presented by [Rie95| for German and by
[MQ95] for Italian. [FVMVC99| present a comparison of CART- and
ANN-based duration models for six languages, that shows for the ANN-
based models smaller prediction errors in all six languages.

A MARS-based duration model for German segment duration pre-
diction is presented in [Rie97]. A comparison of CART-, ANN- and
MARS-based duration models for German in [Rie98] shows that MARS-
based models have slightly smaller prediction errors than ANN-based
models. And both types of models have significantly smaller prediction
errors than CART-based duration models. However, MARS prediction
errors turned out to be much more unevenly distributed than ANN pre-
diction errors. Friedman pointed out in [Fri01], that MARS predictions
tend to be either very close to, or far from, the target values.

Statistical fundamental frequency models based on paramet-
ric estimation methods are not so frequent. [BH96]| present a statistical
fundamental frequency model that applies a linear model for regression
to generate Fy contours from ToBI labels.

Non-parametric statistical fundamental frequency models include
the Tilt-specification based RFC intonation model, developed by Taylor
and Black [TB94, Tay94, Tay00|, who applied a CART learning method
to train a decision tree for every Tilt parameter of the model. This
model was later also used for other languages, like, e.g., Italian [MQ95|.

An early attempt to model Fj using HMMs can be found in [LF86].
[YTMT99] describe the prosody model of the HMM-based speech syn-
thesis system HTS, that was introduced in [MTKI96|. In the HTS sys-
tem, the spectral shape, F, and segment duration are simultaneously

modeled in a unified framework using so-called multi-space probability
distribution HMMSs, which are described in [TMMKO02].

ANN-based Fy models were already reported in [SG89, Sag90]. A
very well-known, ANN-based Fy model is the recurrent neural network
(RNN)-based model of Traber [Tra90, Tra92, Tra95| that reached a
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new level of naturalness in speech prosody. This model predicts 5 Fj
values per syllable directly from the phonological representation. It is
applied in the SVOX system for German. [MJ01| present an integrated
model (IGM) for German, that is based on Fujisaki’s phrase and accent
command model. They apply an ANN to estimate the parameters of
the model. The superposition of functional contours (SFC) model for
French, initiated in [Aub92, Aub93| and finally presented in [HBOO,
BHO05|, applies ANNs as generators of hierarchical Fjy contours that are
superposed to form the F{y contour of an utterance.

Data-based, Concatenative Methods

Data-based, concatenative methods apply the prosody of stored, natu-
ral speech units to synthesize the prosodic contours of new utterances.

An approach for German concatenative Fy modeling has been de-
scribed by Traber in [Tra90, Tra92|, in which averaged natural Fy pat-
terns were concatenated in such a way that they formed the Fy contour
of a new utterance according to their phonological representation. This
method is somewhat similar to the superpositional approach taken by
Aubergé in [Aub90, Aub92, Aub93| for French. In this approach, hier-
archical, mean contours taken from natural Fy contours are superposed
and concatenated to form the Fy contour of an utterance. The multi-
level unit sequence approach, introduced by van Santen in [vSKKMO05],
also applies a superpositional, concatenative method to generate the
Fy contour of a new utterance. Instead of averaged F\y patterns, this
approach superposes natural phrase, accent and residual F{; contour
components taken from a much larger prosody database.

Unit-selection TTS synthesis systems, introduced in [Cam94, CB95,
BC95, HB96|, also apply a concatenative method for prosody genera-
tion. This method implicitly concatenates natural prosodic patterns
containing all three acoustic parameters of speech prosody (Fp, seg-
ment duration, and signal intensity) by concatenation of natural speech
units without any or only slight prosodic modification. The quality of
the generated prosodic contours is generally very high and obviously fits
perfectly the speech signal. However, due to the LNRE property such

prosody generation is restricted to close-domain applications only, cf.
[vS97, Bla02].
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4.4 Multilingual Prosody Modeling

All existing approaches for modeling prosody of multiple languages for
speech synthesis have been concentrated so far on making the prosody
models “language-independent”, as it was formulated by van Santen in
[vSSM™97]: to be language-independent, a prosody model

e must use the same executable for all languages, and

e it must be possible to model a new language by largely deriving
language specific model parameters automatically from a speech
database. The construction of a prosody model for a new language
should not require modifications of other parts of the T'TS system.

This language-independence is the main characteristic of multilingual
prosody models. A multilingual prosody model is able to generate the
prosodic contour for multiple languages, but in general not by the same
voice. Switching between languages is only possible at sentence bound-
aries and is usually accompanied by voice switching. Seamless language
switching and correct prosody modeling of foreign word or word group
inclusions is therefore not possible.

The first multilingual duration model, a multilingual sums-of-
products model, was presented in [vSSM 97| as part of the Bell Labs
multilingual text-to-speech synthesis system [Spr97]. In the following
years, the prosody models of other, mostly commercial TTS synthe-
sis systems were extended to support multiple languages, like the
Lernout&Hauspie TTS synthesis system in [FVMVC99, FVG*02], who
compared CART-based with ANN-based prosody models for six differ-
ent languages, or the unit selection based, multilingual IBM TTS syn-
thesis system in [OFWRO05], who tested English-German and English-
Spanish unit selection TTS synthesis.

4.5 Polyglot Prosody Modeling

The limitations of multilingual prosody models restrict the usability
of T'TS synthesis systems to monolingual texts. The generation of an
adequate prosody for mixed-lingual texts, sentences, or even words, re-
quires a polyglot prosody model that is able to seamlessly switch between
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languages and that applies the same voice for all languages. Listening
experiments verified this finding. E.g., [OBKO06] demonstrated the need
of English prosody for the English inclusions in German sentences.

The requirements of a polyglot prosody model for polyglot TTS syn-
thesis can be summarized as follows:

e First, for a prosody model to be polyglot,

— the generation of prosodic contours must be done with
prosody models of the same speaker for all languages, and

— seamless switching between languages must be possible such
that no rhythmic or melodic discontinuity is audible.

e And second, the model must be language-independent as defined
in Section 4.4. E.g., it must be possible to extend a polyglot
prosody model to cover an additional language without modifica-
tions of the model parameters for already supported languages.

Additionally, like any other prosody model, a polyglot prosody model
should generate prosodic contours, that are

e as natural sounding as possible. Even for mixed-lingual text, the
generated prosody should ideally be indistinguishable from natu-
ral prosody,

e and robust to linguistic factor vectors that are not covered by
the speech database. As pointed out in Section 4.3, it is gener-
ally not feasible to record speech for all possible linguistic factor
combinations. This is especially true for mixed-lingual texts.



Chapter 5

Natural Speech Data

This chapter describes the setup and the automatic segmentation and
labeling of the natural speech corpora recorded from professional speak-
ers: one bilingual natural speech corpus in German and in French that
was used for the creation of the polyglot prosody control. And one
monolingual German corpus that was already used in earlier works.
This corpus was used for performance comparisons.

5.1 Introduction

The use of statistical models for monolingual speech prosody prediction
requires the recording and careful annotation of natural speech data of
this language. The annotation process includes transcription of the text
to obtain the phonological representation of the utterances, and accu-
rate phone segmentation, fundamental frequency (Fj) extraction, and
signal intensity estimation of the speech data to obtain the physical
prosodic parameters of the utterances. This set of phonological repre-
sentations of the utterances as the input of speech prosody prediction
and associated physical prosodic parameters as the desired output is
termed “prosody corpus”.

Polyglot speech prosody prediction must additionally be able to
predict the physical prosodic parameters for all possible combinations
of language mixtures. Following the traditional approach, a statistical
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model for polyglot speech prosody prediction would require a polyglot
prosody corpus whose size grows exponentially with the number of
languages. Thus, the creation of a polyglot prosody corpus following
this standard approach would become infeasible already for a decent
number of languages.

The approach to polyglot speech prosody prediction presented in
this thesis requires only monolingual prosody corpora. The size of the
complete prosody corpus needed grows therefore only linearly with the
number of languages.

5.2 Text Material and Recordings

The central intention behind the production of this polyglot prosody
corpus was the creation of a polyglot speech prosody prediction for
non-affective speech for the main languages spoken in Switzerland.

Therefore, two monolingual natural speech data sets, a German one
and a French one, were recorded under studio conditions. The same pro-
fessional, quadrilingual female speaker, who was chosen for the record-
ing of the quadrilingual, single-speaker diphone inventory [THNT99],
read about 1470 monolingual German sentences and about 1400 mono-
lingual French sentences in a “neutral” style. In about 16 percent of the
sentences the speaker was advised to emphasize a predefined word, but
no further distinction of the type of emphasis, as, e.g., in [Koh06]|, was
made. For test purposes, 77 mixed-lingual German sentences with En-
glish, French, or Italian inclusions, as well as 45 mixed-lingual French
sentences with English, German, or Italian inclusions were additionally
recorded.

The sentences were selected from different texts in such a way
that they cover a large variety of sentence modalities (statements,
wh-questions, yes/no-questions, declarative questions, alternative ques-
tions, and exclamations), several syntactic constructions with specific
prosodic patterns (e.g., sentences including a parenthesis and sentences
including a list of items), and different sentence lengths (single-word
sentences, single-phrase sentences, and multi-phrase sentences). Thus,
these sentences should include all necessary prosodic phenomena to
construct a speech prosody prediction that is adequate for producing
non-affective German and French prosody, cp. [vSMKOS].
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From each of the two monolingual natural speech data sets, the au-
thor finally selected 400 sentences to construct a German and a French
monolingual speech prosody corpus. The selection criterion was a good
coverage of the different sentence types. Table 5.1 shows a detailed de-
scription of the sentence type distributions for the German and for the
French speech prosody corpus.

From the 400 sentences of the German speech prosody corpus, a
set of 44 sentences was separated for testing speech prosody prediction.
This set covers all sentence types of the German corpus. Out of the 400
sentences of the French speech prosody corpus, a test set of 48 sentences
was selected, covering all sentence types of the French corpus. Table 5.2
lists the sentence types of the German and French test sets.

Additionally, a polyglot test set was constructed by selecting all
mixed-lingual German sentences with French inclusions (20 sentences)
and all mixed-lingual French sentences with German inclusions (8 sen-
tences) from the recorded mixed-lingual sentences. All 120 utterances of
these test sets were manually segmented and annotated by the author.
The other 708 utterances of the German and the French corpora were
automatically segmented and annotated, see Section 5.5. The combina-
tion of the monolingual German and monolingual French corpora and

German French

short | long | short | long
statement 33 90 30 108
statement with parenthesis 0 39 0 29
statement with list of items 0 21 0 30
wh-question 5 37 3 39
yes/no-question 13 34 0 24
question without inversion 15 32 8 22
alternative question 7 10 10 22
exclamation 23 41 12 63

Table 5.1: Sentence type and sentence length distribution of the Ger-
man and of the French prosody corpora. Single-word sentences are de-
noted as ’‘short’, single-phrase and multi-phrase sentences are grouped
as ‘long’.
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the polyglot test set will be referred to as polyglot prosody corpus.

The reasons for restricting the polyglot prosody corpus to only 400
sentences of each language were twofold. First, the length of natural
speech data recordings in each language is then approximately equiv-
alent to the length of the recordings done for a former monolingual
German speech prosody corpus used in [Tra95, Rie98|. Thus, it is pos-
sible to compare the quality of speech prosody prediction for the dif-
ferent corpora. Second, since the author had to manually correct the
phonological representations of the complete corpus and to manually
segment and annotate the test sets, a larger corpus would simply have
been impossible to construct in a reasonable amount of time.

The former monolingual German speech prosody corpus was
recorded, manually transcribed, segmented, and annotated within the
SVOX project, cp. [Tra95, Rie98|. The corpus contains 186 sentences
spoken by a professional male speaker in a “neutral” news-reader style.
The sentences were taken from different texts from newspapers. All
sentences are statements. From these 186 sentences, a test set of 55
sentences was separated. Table 5.3 displays the sentence length distri-
bution of the complete corpus and of the test set.

German French
short | long | short | long
statement 4 ) 2 12
statement with parenthesis 0 2 0 2
statement with list of items 0 2 0 7
wh-question 4 2 3 3
yes/no-question 4 3 0 2
question without inversion 4 2 2 3
alternative question 4 2 3 2
exclamation 4 2 3 4

Table 5.2: Sentence type and sentence length distribution of the Ger-
man and of the French test sets for speech prosody prediction. Single-
word sentences are denoted as ’short’, single-phrase and multi-phrase
sentences are grouped as ’‘long’.
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Complete corpus Test set
short long short | long
statement 19 167 3 52

Table 5.3: Sentence length distribution of the monolingual, German
male corpus for speech prosody prediction, and of the test set taken from
this corpus. Single-word sentences are denoted as ’short’, single-phrase
and multi-phrase sentences are grouped as ’long’.

5.3 Fundamental Frequency Extraction

Fy values of the natural speech data of the prosody corpora were com-
puted every 5 ms using a pitch detection program developed by the
ETH speech processing group. This pitch detection is based on com-
bined information taken from the cepstrogram, from the spectrogram,
and from the autocorrelation function of the speech signal. Signal sec-
tions judged as unvoiced by the algorithm are assigned virtual F{y values
by linear interpolation between neighboring voiced sections.

5.4 Transcription

The input to speech prosody prediction is the phonological representa-
tion (cp. Section 3.2.1) of the sentence to be uttered. Initial phonolog-
ical representations of the sentences in the prosody corpora were ob-
tained applying the transcription component of the polySVOX system
to the text data of the corpora. These initial phonological representa-
tions contain the standard phonetic transcription, also called canonical
phonetic transcription, of the sentences. The phonological information,
i.e., phrase type, phrase boundary, and sentence accentuation, of these
automatically generated representations was then manually corrected
by the author to correspond to the recorded speech signals. This man-
ual correction was done solely by the author in order to guarantee
consistency over all corpora.

To speed up manual correction, the author implemented together

with master students neural network based algorithms for automatic
phrase type, phrase boundary, and syllable accent identification. These
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algorithms were used to make a first correction of the phonological rep-
resentations given the speech signals and the automatically generated
phonological representations as inputs. Detailed information on this
automatic identification procedure can be found, e.g., in [BS07].

5.4.1 Language Information

Four types of language switch were used: a language switch to English
was denoted as \E\ in the phonological transcription, a switch to French
as \F\, a switch to German as \G\, and a switch to Italian as \I\.

5.4.2 Sentence Accentuation Information

Three types of accent were distinguished:

Emphatic accents (accents associated with a very high pitch move-
ment, lengthened syllable duration, and higher acoustic energy) were
generally denoted as [E]. No further distinction between different types
of emphasis, e.g., into emphasis for focus or emphasis for intensity as
in |[Koh06], was done.

A pitch accent (accents associated primarily with a major pitch
movement and an optional lengthening of syllable duration) in the main
accent position of a phrase was denoted as [1]. Other pitch accents
within the phrase were marked as [2].

Non-pitch accents (accents associated mainly with a lengthened syl-
labic nucleus and coda, so-called duration accents, or with a lengthened
syllabic onset and higher acoustic energy, so-called force accents or ac-
cents d’insistance in French, cf. [Koh03, Koh06]) on the main stress
position of words were denoted as [3]. While the main stress posi-
tion of words in English, German, and Italian is lexically specified, the
main stress position of words in French depends on rhythmic criteria,
cf. [Del66, Mer93, DC98, Mer99]. Non-pitch accents on other than the
main stress position of words, and secondary and tertiary word accents
were denoted as [4], and all unaccented syllables as [0].

5.4.3 Phrasing Information

Three types of phrase boundary were transcribed: one for sentence-
final pauses (denoted as #{*:0} in the phrase boundary tag of the
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phonological representation), that was placed before and after each
sentence. The wildcard * stands for phrase type information. One for
sentence-internal pauses (denoted as #{*:1}). And one for all other
perceived sentence-internal phrase boundaries (denoted as #{*:2}). No
distinction was made between breath-pauses (pauses with the speaker
breathing) and non-breath-pauses.

Six different phrase types were transcribed. The distinction of phrase
types was done with respect to the phrase final intonation contour, cf.
[Dud84, Pie80, Del66, vE56], to the overall tone range of the intonation
contour, and to overall acoustic energy: Phrases with a complete fall of
the phrase final intonation contour and a low overall tone range were
transcribed as #{T:*}. The wildcard * indicates the phrase boundary
value. Phrases with a non-complete to complete fall of the phrase final
intonation contour and medium overall tone range were transcribed as
#{S:*}, or in case of a high overall tone range and high overall acoustic
energy as #{E:*}. Phrases with a progredient phrase final intonation
contour were transcribed as #{P:*}. Phrases with a rising phrase final
intonation contour were transcribed as #{Y:*}, or in case of a short
final fall after the rise as #{YC: *}.

Figure 5.4 and Figure 5.5 show on the left side the median, the 25,
and the 75 percentiles of the time-normalized, linearized Fy contours
of all T, S, and E phrases and of all P, Y, and YC phrases, resp.,
of the German prosody corpus. On the right side, one characteristic
Fy contour is shown for each of these phrase types. Figure 5.6 and
Figure 5.7 display the same information for the French prosody corpus.

The median intonation contour of a phrase type can be interpreted
as a basis pattern for this phrase type, comparable with the so-called
phrase curves of superpositional Fy models [Fuj81, vSKKMO05|. Fig-
ures 5.4, 5.5, 5.6, and 5.7 show that the six phrase types can be very
well discriminated using the shape of the median intonation contour and
overall tone range of the intonation contour indicated by the 25 and 75
percentiles. They also show that the intonation contours of German Y
and YC phrases have in general a higher final rise than their French
counterparts. French P phrases show a somewhat more pronounced
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Phrase type T Phrase type T
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Table 5.4: German phrase types T, S, and E: Median, the 25, and the
75 percentiles of the time-normalized, linearized Fy contours of all T,
S, and E phrases of the German prosody corpus are shown on the left
side. On the right side, one characteristic Fy contour is shown for each
of these phrase types.
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Phrase type P Phrase type P
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Table 5.5: German phrase types P, Y, and YC: Median, the 25, and
the 75 percentiles of the time-normalized, linearized Fy contours of all
P, Y, and YC phrases of the German prosody corpus are shown on the
left side. On the right side, one characteristic Fy contour is shown for

each of these phrase types.
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Phrase type T
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Table 5.6: French phrase types T, S,
75 percentiles of the time-normalized,

Phrase type T
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Phrase type S
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and E: Median, the 25, and the
linearized Fy contours of all T,

S, and E phrases of the French prosody corpus are shown on the left
side. On the right side, one characteristic Fy contour is shown for each

of these phrase types.
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Table 5.7: French phrase types P, Y, and YC: Median, the 25, and
the 75 percentiles of the time-normalized, linearized Fy contours of all
P, Y, and YC phrases of the French prosody corpus are shown on the
left side. On the right side, one characteristic Fy contour is shown for

each of these phrase types.
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initial and final pitch raising than German P phrases. A little more
pronounced initial pitch raising is also observed in French T and S
phrases when compared to German T and S phrases. The intonation
contours of exclamation phrases seem to be in general quite similar.

5.5 Segmentation and Labeling

An accurate extraction of phone and speech pause durations requires
an exact segmentation of the natural speech data of the prosody corpus
into adjacent, non-overlapping speech or pause segments, and a correct
assignment of labels to these segments indicating the segment type.
This assignment is commonly termed “labeling”.

Since the phonological representation contains the standard pho-
netic transcription of an utterance (see Section 5.4), it is convenient to
use this standard transcription for automatically segmentation and la-
beling. However, several authors reported, e.g., [Rie98, vSSM197|, that
statistical models for segment duration prediction, that were derived
from automatically generated segmentations using the standard pho-
netic transcription, performed poorly. This was also the author’s own
experience in first experiments.

A close phonetic transcription, also referred to as matched pho-
netic transcription, that indicates pronunciation variants made by the
speaker, results in a much better segmentation and labeling. Thus, a
common practice to improve the quality of segment duration prediction
models is to use manually segmented and labeled natural speech data,
as it was done, e.g., in [MvS96] or in [Rie98].

5.5.1 Segment Types

Segment types correspond to the phone types determined in the tran-
scription with two additions: plosives were segmented into their hold
and burst parts that were labeled separately. While the burst part of a
plosive is denoted by the same symbol used for the plosive phone type,
a “>” denotes the preplosive pause. Speech pauses that correspond to
phrase boundaries marked as #{*:0} or #{*:1} in the phonological
representation of the utterances were labeled with the symbol “/”. For
a plosive following a speech pause, no preplosive pause was segmented.
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German French
lilryyivuwuu |[lliyyruuw
e el g oro ol e @ @1 0 or

vowels 9 )
€eroeo € er€eEroe el eOelDOlD Il
aarem® aaraaaa:

diphthongs | ai au oy
pp'btt"dkk®g? | pbtdkg?

mmnni mnni
consonants | r R
fvsz[¢xh fvsz[3h
J Juw
11 1
affricates pf ts tJ
pauses > / >/

Table 5.8: Phone and speech pause segment types used for transcription
of the natural speech data of the German and of the French monolingual
prosody corpora.

Table 5.8 lists all segment types used for transcription of the natural
speech data of the German and of the French prosody corpora.

5.5.2 Automatic Segmentation Procedure

Manual transcription and segmentation of the polyglot prosody corpus
would have taken too much time. However, most existing automatic
segmentation procedures are too inaccurate or they require already a
close phonetic transcription as input. Therefore, the author developed a
new automatic segmentation procedure for polyglot natural speech data
that simultaneously delivers an highly accurate phonetic segmentation
and a close phonetic transcription.

This segmentation procedure relies on iterative Viterbi search for
best-matching pronunciation variants and on iterative retraining of
phone hidden Markov models (HMMs). In contrast to existing, high-
accuracy automatic segmentation procedures, e.g., [vSS99, Hos00] that



118 Chapter 5. Natural Speech Data

are two of the most accurate state-of-the-art segmentation systems, this
procedure does not require very elaborate features, but only “standard”
mel-frequency cepstral coefficients (MFCCs) and voicing information.

The segmentation procedure consists of two stages: First, context-
independent three-state left-to-right phone HMMs with 8 Gaussian
mixtures per state are trained on the natural speech data of the polyglot
prosody corpus using the standard phonetic transcription of the utter-
ances by applying a so-called “flat start” initialization, cf. [YEH'02].

For the second stage, a small set of language-dependent and speaker-
dependent pronunciation variation rules is applied to the canonical
transcriptions and a recognition network is generated for each utter-
ance. Such a network includes all pronunciations allowed by the rules.

Then a Viterbi search determines the most likely path through the
networks and thus delivers an adapted phonetic transcription of each
utterance. These new transcriptions are used to retrain the HMMs that
are in turn used in the next iteration for the Viterbi search. The proce-
dure stops when the number of insertions, deletions, and replacements
of phones between the current and the previous adapted transcriptions
falls below some predefined threshold. Details on this segmentation pro-
cedure can be found in [RP05].

Since the length of the analysis window restricts the accuracy of
boundary detection of certain segments, e.g., preplosive pauses, a post-
processing was added to the second stage, that corrects segment bound-
ary placement of specific segment classes based on the speech signal
amplitude and voicing information.

The accuracy of automatic segmentation and labeling of the poly-
glot prosody corpus was evaluated on the 92 manually segmented sen-
tences of the monolingual prosody test sets. These sentences contain
altogether about 3680 segments. The deviation of the automatically
generated segment boundary positions from the manual positions was
less than 2 ms for 49%, less than 5 ms for 73%, less than 10 ms for 84%,
and less than 20 ms for 93% of all segment boundaries. The length of
47% of the segments deviated less than 5% of their original length, 64%
of the segments less than 10%, and 79% of the segments less than 20%.
About 10% of the uttered phones did not correspond to the standard
phonetic transcription of the utterances. The segmentation procedure
automatically corrected approximately 40% of these pronunciation vari-
ations.
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Weighted ANN Ensembles
for Prosody Modeling

6.1 Introduction

The requirements to a polyglot prosody model listed in Section 4.5 make
data-driven, statistical generation methods the first choice for model-
ing polyglot prosody. Given prosody corpora of limited size, however,
the statistical models that are applied in current T'TS synthesis sys-
tems, like CART-, MARS-, HMM-, or ANN-based generation models,
cf. Section 4.3, have one or more of the following disadvantages: their
prediction accuracy is too low to achieve natural sounding prosody.
Their generalization capability for input factor combinations that are
not covered by the prosody corpora is not good enough. Or they are
not robust enough against outliers of acoustic parameters due to errors
in the segmentation, in the labeling, or in Fjy extraction of the prosody
corpora.

A comparison of these models in [Rie98| showed that CART-based
models are too inaccurate. MARS-based models achieve good accuracy,
but have, according to [Fri0l], a lower generalization capability and
are sensitive to outliers. ANN-based models show good generalization
capabilities and also good accuracy, but need in general more training
data than the other methods to reach equal accuracy and are, in case

119



120 Chapter 6. Weighted ANN Ensembles for Prosody Modeling

of limited training data, also sensitive to outliers that can result in
unsteady output contours. E.g., [Tra95| reports that the RNN-based
Model for Fy generation needs a moving average filter to smooth the
somewhat noisy network output F{y contours.

Recent advances in machine learning show that weighted ensembles
of ANNs for regression can significantly improve prediction accuracy,
generalization capability, and robustness against outliers when com-
pared to single networks, cf. [GVCO05].

Factor relevance determination procedures can be used to remove
(or “prune”) less relevant input factors. Thus, the problem of small
prosody corpora is less critical, and certain statistical models, like
ANNSs, also gain interpretability, as irrelevant input factors are removed.

6.2 Prediction Error Measures

The comparison of different prosody models, that are optimized on in-
dividual prosody corpora, requires some sort of error measure that ap-
praises both the performance of the model and the relative complexity
of the different regression tasks.

An error measure, that fulfills these requirements (cp. [GVCO05]),

and that is used here for all experiments, is the normalized mean squared
error (NMSE)

. MSET (y)

NMSEp(y) = ——12 (6.1)

%D
The NMSE is defined as the mean squared error of the predictor y on
the test set T' divided by the variance 0% of the complete data set D.
The mean squared error (MSE) is defined as

3 (- y()? (62

=1

MSET (y) =

with a test set T' consisting of N input/target value pairs {x;, t;}.

The NMSE calculates the relative performance of the predictor y
with respect to the complexity of the regression task, expressed by
0%,. The NMSE is always non-negative. A NMSE = 1 corresponds to
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constant prediction of the data average. Predictors that perform better
than constant prediction of the data average have a NMSE less than 1.

6.3 Weighted Neural Network Ensembles

A weighted ensemble is a set of independently trained statistical mod-
els, that are then often called base learners. The prediction output of
the ensemble is a linear combination of the prediction outputs of the
individual models

Yar(x) = wnym(x) (6.3)

where M is the number of individual models, y,,, is the prediction out-
put of the m-th member, and w,, is a decreasing function of the predic-
tion error of the m-th member over the whole training set. Thus, each
ensemble member is weighted according to its individual performance.

6.3.1 Base Learners

As base learners, the author applied feed-forward ANNs for segment
duration prediction, and recurrent ANNs (RNNs) for predicting F{y con-
tours. A feed-forward neural network, also known as multilayer percep-
tron (MLP), can be described as a series of functional transformations
that are represented in case of two layers of weights by the network
function

M D
yr(x, W) =g Zw,(fj)h (Z wj(i)xz> (6.4)
§=0 i=0
and in case of three layers of weights by the network function

M

N D
yr(x, W) =g Zw,(g)h Z wg-)h <Z wj(i):m) : (6.5)
r=0 1=0

J=0
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where the set of all weight and bias parameters have been grouped to-
gether into a vector w. w§é>, w,(j)), wg)), and w,f(’)) represent the bias
parameters of the individual weight layers. h(-) is a differentiable, non-
linear activation function of the hidden units. g(-) is a differentiable
activation function of the output units. The network function can be

represented in form of a network diagram as shown in Figure 6.1.

In all experiments, h = tanh was used as hidden unit activation
function for all networks. The output unit activation function g(-) was
the identity function. The author also tested tanh as output unit activa-
tion function, as it was done in [Tra95| and [Rie98|. tanh would prevent
over-shooting of the prediction outputs. However, the identity function
provides better approximation of extrema and a lower prediction error.
Using ensemble models, no over-shooting was observed anyway.

Input and output values are rescaled by applying a linear normal-
ization using mean and variance calculated with respect to the training

one step

L yK

outputs

—y,

Figure 6.1: Network diagrams for the feed-forward neural network with
two layers of weights corresponding to (6.4) on the left and for a two-
layer recurrent neural network with all output nodes fed back to the in-
put layer of nodes on the right. The input, hidden, and output variables
are represented by nodes, and the weight parameters are represented by
links between the nodes. Bias weights are denoted by links coming from
additional variables represented by filled nodes.
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set. Thus, the transformed variables have zero mean and unit standard
deviation. The linear rescaling makes it possible to initialize network
weights by random selection from a zero mean, unit variance isotropic
Gaussian where the variance is scaled by the fan-in of the units as
appropriate. Network weights of feed-forward ANNs are trained using
the well-known error back-propagation procedure of [RHWS&6, Lip87].
RNNs are trained using error back-propagation for sequences, as de-
scribed, e.g., in [Wer90]. Error back-propagation for sequences treats
RNNs as feed-forward ANNs by “unfolding” them in time. Thus, the
recurrent network architecture is equivalent to a feed-forward network
with many sets of weights constrained to be the same. In both proce-
dures, the scaled conjugate gradient algorithm introduced in [Mgl93] is
applied for optimization using a sum-of-squares error function of net-
work outputs. These settings allow a very efficient training of the neural
networks. [Bis95| provides a good introduction to feed-forward neural
networks and a detailed description of the algorithms applied here.

6.3.2 Weighting Functions

As weighting functions, the author tested an exponential (6.6) and a
potential weighting function (6.7), that were suggested in [GVCO05], and
for comparison also the arithmetic mean (6.8)

exp(—ae;)

wi = — , (6.6)
>ty exp(—ae;)
wi = —— (6.7)
Zj:l €;
= (6.8)
w; = VR .

where e; is the prediction error of the i-th model. M is the number of
individual models in the ensemble. « is a weighting coefficient. Setting
a = 0 results in the arithmetic mean for both weighting functions.

As an example for the influence of the weighting function on pre-
diction error, Figure 6.2 shows the normalized mean squared error as a
function of the weighting coefficient for German and for French segment
duration prediction. Applying exponential or potential weighting result
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Prediction error of a German duration ensemble model
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Figure 6.2: Normalized mean squared error as a function of the weight-
ing coefficient o using arithmetic mean, potential weighting, and expo-
nential weighting function for German (above) and for French (below)
segment duration prediction. The German model is an ensemble of 9
ANNs having 114 input factors each. The French model is an ensemble
of 11 ANNs, each with 68 input factors.

in nearly identical ensemble prediction errors and produce for small to
medium values of « slightly better results than using the arithmetic
mean. For large values of «, overfitting is observed, since only a few
particular networks contribute to the ensemble output. Exponential
weighting results in more robust error curves than potential weighting.
Therefore, exponential weighting with a weighting coefficient a = 80
was used for German and for French ensemble construction in all ex-
periments.
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6.3.3 Network Aggregation

[GVCO05] present an evaluation of aggregation methods for ANN ensem-
bles on several standard regression problems. The tested aggregation
methods base either on Boosting, that was introduced for classification
problems in [Sch90], and later extended for regression problems, e.g.,
in [Dru97] and in [Fri01], or they base on Bagging (short for “bootstrap
aggregation”), which was introduced in [Bre96]. A Weighted Bagging
algorithm (W-Bagging) and the so-called Weighted Stepwise Ensemble
Construction Algorithm (W-SECA), another bagging-like algorithm,
both introduced in [GVNCO02]|, were among the top performers in nearly
all test cases. These weighted bagging-based algorithms outperformed
the boosting methods and also other regression methods that based,
e.g., on Support Vector Machines (SVMs), which were introduced in
[Vap95], or on Boosting using Radial Basis Functions (RBF) networks,
which are described, e.g., in [RDB02]. For aggregation to be effective,
however, the individual networks of the ensemble must be both accurate
and diverse.

Diverse individual networks can be obtained, e.g., by varying the
internal network structures or by using different adequately-chosen sub-
sets of the training set to optimize the parameters of the individual
networks. A vital element of success when using different subsets is
the instability of the learning algorithm, cf. [Bre96]. ANNs are there-
fore well suited, as this instability comes naturally from the inherent
randomness of the training algorithms of ANNs.

Network accuracy can be increased, e.g., by fitting the complexity
of the network and the size of the training set optimally to each other.
However, increasing the size of a prosody corpus is very elaborate and
often not possible. Reducing the network complexity either requires to
reduce (or “prune”) the number of nodes or weights in the hidden layers,
which means to reduce also the expressive power of the network, or to
reduce the number of input nodes. This network pruning is described
in details in Section 6.4.

For the ensemble construction of the prosody models, the author
tested the W-SECA and the W-Bagging aggregation method. For W-
Bagging, 6-fold cross validation was used instead of bootstrapping to
obtain six different subsets of the training data. On each of these sub-
sets, ANNs with eight different internal network structures, having one
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Network Nr. | 1 | 2 | 3 | 4 | 5 |6 | 7|8 |9 ]|10]|11
Layer 1 | 20 | 15 | 15 | 20 | 20 | 20 | 15| 20 | 14 | 14 | 15
Layer 2 | 10 | 15 | 15 | 5 10115 5 | 20| 20| 15

Table 6.1: Network structure of each ANN member of the best ensemble
shown in Fig 6.3. For each ensemble member, the number of nodes of
the first and of the second hidden layer is given. Fach ANN has 68
mput nodes.

or two layers of hidden nodes and different number of nodes, were
trained; thus, in total, 48 ANNs were trained, that differ in the training
data and in the internal network structure.

Figure 6.3 shows as a typical example the construction of the French

Evolution of NMSE during ensemble construction
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Figure 6.3: Normalized mean squared error as a function of the num-
ber of ensemble members during ensemble construction. As a typical
example, the construction of the French duration model is shown. Each
ANN of the ensemble has 68 input factors. The best ensemble consists
of 11 ANNs and its NMSE is denoted by a star. The ensemble with
only 1 ANN is identical with the best single ANN-based model.
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duration model with 68 input factors using W-Bagging aggregation.
The evolution of the NMSE of the ensemble on the test set is shown
as a function of the number of ensemble members. The best ensemble
consists of 11 ANNs. Table 6.1 shows the network structure of the
individual ANNs. The prediction error of this ensemble-based duration
model is 13% smaller than the prediction error of the best single ANN-
based model, identical to the ensemble with only one ANN member in
Figure 6.3. For German duration prediction, the improvement is about
than 15%. W-SECA performed for the tested prosody corpora very
similar to W-Bagging. As W-Bagging is less computational expensive
than W-SECA, this method was finally applied.

6.4 Factor Relevance Determination

The optimal network structure for ANN-based prosody models is con-
strained by the following considerations:

e In ANN-based prosody models, the relevance of an individual in-
put factor and the complexity of the regression problem is in gen-
eral unknown. Therefore, most prosody models comprise a large
number of input factors that might be somehow relevant. How-
ever, the inclusion of many input factors has a lot of drawbacks:
e.g., the interpretation of the model is more difficult, irrelevant
input factors may act as input noise, the generalization capabil-
ity of the model is worsened, and the demand of training samples
grows exponentially with the dimensionality of the factor space.
This limitation is called the “curse of dimensionality”, cf. [Bel61].

e Neural networks having a finite number of hidden units will ap-
proximate a given function with a residual error. [Jon92| has
shown that this error decreases as the number of hidden units
is increased. However, given a training set of finite size, the to-
tal number of network weights should be roughly % of the total
number of training points, cf. [DHS01]. A traditional method for
optimizing the network structure is to initially train the network
with a large number of hidden nodes and later prune irrelevant
weights. Because of the limited size of the prosody corpora and
the large number of input factors, the number of hidden nodes of
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ANN-based prosodic models is in general very small. Therefore,
traditional network pruning is not useful for ANN-based prosody
models.

The key idea for optimizing the network structure of ANN-based
prosody models is to find a trade-off between these two constraints:
therefore, an initial model with a very large number of all possible in-
put factors is trained. From this initial model, the input nodes of the
least relevant factors, as determined by a factor relevance algorithm,
are iteratively removed and simultaneously the number of hidden nodes
is increased until the expressive power of the network optimally fits the
evaluation data.

For factor relevance determination, the author applied an extension
of the so-called “optimal brain surgeon” (OBS) algorithm introduced in
[HSW93|. OBS is specially designed for pruning of ANNs and uses infor-
mation from the Hessian to perform network pruning. The extension
of OBS, the Unit-OBS algorithm, cf. [SR96|, considers the outgoing
weights of one node (unit) as a group of candidate weights: when all
the weights of an unit can be deleted, the unit itself can be pruned.
After pruning of an unit, the weights of the other units are corrected.
To determine the relevance of the input factors, all input units are
iteratively removed.

Factor relevance determination of RNNs is not defined by the OBS
or by the Unit-OBS algorithms. If “unfolded” in time, a RNN can be
trained similarly to an ANN. However, calculation of the inverse Hes-
sian of such an unfolded RNN with about 50 000 input nodes was
computationally not feasible. Therefore, an approximation was made
by training the RNN to local minimum error first, and then, after re-
moving the feed-back connections, applying Unit-OBS to the left over,
feed-forward ANN structure of the RNN. The input nodes of the feed-
back connections are not considered in factor relevance determination.

6.5 Prosody Ensemble Construction

The individual networks of an ensemble must be as accurate and as
diverse as possible. Therefore, the ensembles for prosody control are
finally constructed from individual networks, where each has a specific
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set of input factors, a specific network structure, a specific network size,
and is optimized on a specific training set.

This construction procedure of ANN- or RNN-based ensembles for
prosody control can be summarized by the following steps:

1.
2.

Train a network with all input factors to local minimum error.

Determine the relevance of all input factors by applying the Unit-
OBS algorithm on this network.

. Train a set of networks for different numbers of the most relevant

input factors. For each set of input factors, construct networks
with a varying number of hidden layers and a varying number of
hidden nodes, and train these networks by n-fold cross-validation
on different training sets.

Aggregate individual networks to ensembles by testing all possible
combinations of individual networks.

. Select ensemble with lowest prediction error.

This construction procedure is completely automatic and was applied
for the construction of Fy and of duration ensemble models used for
German and French prosody control.






Chapter 7

Polyglot Prosody Control

7.1 Model Architecture

The polyglot prosody model consists of independent F control and
segment duration control modules that generate from the phonologi-
cal representation of an utterance the corresponding Fj; and segment
duration values. Figure 7.1 displays a schematic overview of this model.

A factor encoding component converts the phonological representa-
tion into a language-independent input representation. An output de-
coding component converts the language-independent output represen-
tation into the actual acoustic parameter. These language-independent
representations enable language switching between monolingual models
and make it possible to add new models for others languages without
requiring to modify the existing models. Language switching itself is
triggered by the language tags of the phonological representation.

The polyglot Fy control is described in Section 7.2 and the polyglot
segment duration control in Section 7.3. Section 7.4 finally presents
a perceptual evaluation experiment using the polyglot prosody model
and a discussion of the results.

131
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Phonological
Representation
Polyglot Polyglot
F, control Duration control
Y Y
F, factor encoding Duration factor encoding
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F, model F, model Duration Duration
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T (language,) | "*"| (language,)
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L Language switching L Language switching
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F,output decoding Duration output decoding
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Figure 7.1: Schematic representation of the polyglot prosody model:
independent Fy control and segment duration control modules generate
from the phonological representation of an utterance the corresponding
Fo and segment duration values. Language-independent input and out-
put representations, as output of factor encoding and as input to output
decoding, resp., enable seamless language switching and make it possible
to add new models for Fy and segment duration generation for other
languages without modifying the existing models.

7.2 Fundamental Frequency Control

The polyglot Fy control processes the phonological representation of a
polyglot utterance as a sequence of syllable and boundary symbols. For
each symbol, it generates a Fy contour by applying the monolingual Fj
model that corresponds to the symbol’s language.
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7.2.1 Model Architecture

The polyglot Fy control consists of a language-independent input fac-
tor representation, that is described in Section 7.2.3, a language and
time independent Fjy output representation, which is presented in Sec-
tion 7.2.4, and an independent, monolingual F model for each indi-
vidual language. In order to provide language switching between the
individual monolingual models, the Fj outputs of the preceding sylla-
ble are fed back to the inputs of the monolingual models. Figure 7.2

#{P:G:0}\G\di- fast- gl[2]a_iC-t_sa_i-tIC- ?Im- \F\kR[1]~A-

Shift Phonological
Representation
Polyglot Y Y
F, Control Factor Encoding Langue_nge
Switching
I
Monolingual Monolingual
F, Model, F, Model,
Feed-back
Connections Y \
Shit / vV )Y

Syllable-wise
FO Contour

Figure 7.2: Schematic representation of the polyglot Fy model: for
each syllable and for each boundary symbol of the phonological repre-
sentation, a set of language independent input factors is extracted and
encoded. The language information of the phonological representation
selects the corresponding monolingual Fy model to generate the Fy out-
put values. For language switching, the Fy output values of the last
syllable are fed back to the input of the monolingual models.
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gives a schematic overview of the polyglot Fy model.

FEach monolingual Fy model is a weighted RNN ensemble that is
constructed using the procedure presented in Section 6.5. Figure 7.3
displays a schematic representation of such a monolingual Fy model.
Each RNN has its own input factor selection that chooses the optimal
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Figure 7.3: Schematic representation of a monolingual Fy model as
a weighted RNN ensemble: each RNN member of the ensemble has its
own input factor selection that chooses the optimal set of input factors
for this network. Each RNN uses its own output as feed-back. These
feed-back connections can be set to some external Fyy values in order to
wmatialize the RNN at the start of an utterance or to set the general Fy
level, if it is used in the polyglot Fy model.
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set of input factors for this network. The basic RNN structure is similar
to the RNN-based Fy model presented in [Tra95|. The network setup
of the RNN ensemble members of the German and of the French Fj
models is given in Table 7.3.

7.2.2 Language Switching

The feed-back connections from the last hidden layer in the RNN-based
Iy model of Traber mainly serve to control the general level of Fj
whereas the more local phenomena are controlled by the direct input to
the network, cf. [Tra95]. In order to enable language switching without
audible melodic discontinuities, the feed-back connections of the RNN
model of the preceding language can be used to initialize the recurrent
input of the RNN model of the new language. Thus, the model for the
new language continues at the same general level of Fy as defined by
the model of the preceding language.

The feed-back from the last hidden layer of the RNN, however,
would make it impossible to switch between individual networks as the
hidden layer outputs of individual networks are in general very different.
Therefore, the author tested two different network configurations: the
first configuration completely avoids feed-back connections and uses
relative syllable position information within phrases as input instead.
The second configuration feeds the final Fy outputs of the network back
to the input layer. As long as all networks are optimized on the same
training set, both configurations make it possible to switch between
networks without discontinuities in the intonation contours.

An experiment done by the author has shown that the feed-back
of Fy output values results in only slightly higher prediction errors
than using the outputs of the last hidden layer. The use of relative
position information instead of feed-back connections, however, results
in seriously larger prediction errors.

In another experiment, the relevance of the relative position infor-
mation factors was determined for two identical networks trained with
and without feed-back connections: while these factors were in the top
ten relevant factors for the feed-forward network, the relevance of these
factors for the recurrent network was only mediocre. This result indi-
cates that by using feed-back connections, additional information about
the syllable position within an utterance is superfluous.
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The finally used ensemble models for German and for French Fj
modeling therefore apply feed-back connections from the Fy outputs
and omit any position information factors. Each RNN member uses its
own Fj outputs as feed-back, as it is shown in Figure 7.3. These feed-
back connections can be set to some external Fy values: either to zero,
in order to initialize the RNN at the start of an utterance, or to the Fj
values of the preceding syllable, in order to set the general Fy level for
language switching.

7.2.3 Input Representation

The phonological representation of an utterance is processed as a se-
quence of syllable and boundary symbols. Each input symbol is repre-
sented by a vector of 910 elements. All elements of this vector are set
to zero by default. The values of ordinal factors are directly set in the
vector. For categorical factors, a 1-out-of-n encoding is applied such,
that each categorical factor is represented by n binary factors.

It is generally acknowledged, that the Fy contour of a syllable de-
pends on a relatively wide phonological context as far as accentuation
and phrasing information is concerned, whereas the influence of seg-
mental properties on the Fjy contour of a syllable is much more local.
However, the correct size of these contexts for the different factors is
unknown and depends on the prosodic phenomena to be modeled. The
author therefore applied a context of & preceding and 6 subsequent sym-
bols for accentuation and phrasing information (equal to the context
used in [Tra95|), and a context of 2 preceding and 2 subsequent sym-
bols for segmental properties. Starting with this large, initial factor
set, the ensemble construction procedure of Section 6.5 was applied to
automatically select the most relevant input factors and thereby the
optimal context size of each factor.

For polyglot F{y control, this input representation must be language
independent. This means that no language specific segment types or
phrase types can be used, but the language-independent description
of manner and place of articulation of phones of the IPA and a basic,
language-independent set of phrase types, as listed in Section 3.2.1.
Also, information about syllable language or language switching posi-
tion may not be part of the factor set. Language information is only
used to switch between the monolingual Fy models.
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Factors describing accentuation and phrasing, syllable structure and
segmental information, and sentence length and syllable position have
been selected. For each of these categories, in the following all factors
and their values are described.

Accentuation and Phrasing Factors

The factors for phrasing describe a phrase by boundary strength, by
type, by length, and by its position within a sentence. The factors de-
scribing accentuation are the syllable stress levels. As very short phrases
show a typical F{y contour, in addition to “phrase length” a binary factor
“short phrase” for phrases shorter than 4 syllables was used.

Accentuation and phrasing factor values
syllable stress [(E], [1]1, [2], [3], [4], unstressed
phrase boundary | 0, 1, 2
phrase type P,T,S,Y,E YCF
phrase length number of syllables
short phrase binary
first phrase binary

For boundary symbols, only phrase boundary and phrase type factors
are used. All other factor values are set to zero. For syllable symbols, all
factors except phrase boundary factors are set. For accentuation and
phrasing factors, a context of 3 preceding and 6 subsequent symbols is
applied. Thus, in total, 190 input factors ((3 + 1+ 6) * 19) are used.

Syllable Structure and Segmental Factors

The factors for syllable structure describe for each syllable of how many
segments syllable onset, nucleus, and coda are built.

Syllable structure factor values
nucleus has 1 phone binary
nucleus has 2 phones binary
nucleus has more than 2 phones | binary
onset size number of phones
coda size number of phones
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Front(closing) Central | Back(closing)
Close lrlalyyiry U uuuau
Close-mid e er g g1y 9 0 o:
Open-mid | € €1 € € e cer e Ce: D010 0!
Open a a 'R aa:da

Table 7.1: IPA representation of vowels and diphthongs that are used
in the polyglot prosody model. Fach segment is described by a tuple of
vowel height and vowel backness: e.q., [d] is referred to as {Close-mid,
Front}.

Segmental factors differ between factors for consonants in syllable onset
or coda, and factors for the segments in syllable nucleus. The nucleus
is here defined as the sequence of vowels, semi-vowels, and syllabic
consonants within one syllable. Diphthongs or triphthongs are split into
the corresponding monophthongs, e.g., [ai] is split into [ai]. Aspirated
plosives are split into the corresponding plosive followed by [h].

For the first and the second phone of the nucleus, the following seg-
mental factors are used:

Nucleus factor values
long vowel binary
nasal vowel binary
first formant position low, middle, high
vowel characterization tuple from Table 7.1
semi-vowel characterization | tuple from Table 7.2

The first and the last phone of onset and coda are described by the
following segmental factors:

Onset /coda factor values
segment type consonant, glottal closure
affricate, preplosive pause
voiced segment binary
strong consonant binary
consonant characterization | tuple from Table 7.2




Bilabial |Labiodental |Dental Alveolar Postalveolar |Retroflex|Palatal|Velar | Uvular|Pharyngeal |Glottal
Plosive pb t d kg ?
Nasal m m nn n 1
Trill r R
Tap
Fricative fv 00 S Z S ¢ X h
Lateral
fricative
Approximant ] w
Lateral 11
approximant '
Affricate pt ts tf

Table 7.2: IPA representation of consonants, syllabic consonants, semi-vowels, and affricates that are
used n the polyglot prosody model. Each segment is described by a tuple of manner of articulation and
place of articulation: e.g., [p] is referred to as {Velar, Nasal}.
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Segmental factors are only set for syllable symbols. For these factors, a
context of 2 preceding and 2 subsequent symbols is used. This results,
in total, in 715 segmental input factors (5% (5 + 19 % 2 + 25 x 4)).

Sentence Length and Syllable Position Factors

In addition to phrase length, also factors describing sentence length
are included. For testing feed-forward ANNs for Fy modeling, three
additional factors describing relative syllable position within phrase
boundaries in the range [0..1] were included.

Sentence length & syllable position factor values
sentence length number of syllables
short sentence (less than 5 syllables) | binary
syllable position within 0 boundaries | position € [0..1]
syllable position within 1 boundaries | position € [0..1]
syllable position within 2 boundaries | position € [0..1]

For sentence length and syllable position information, no context is
needed. Thus, this information is described by 5 input factors.

Using the Unit-OBS procedure described in Section 6.4, the rele-
vance of these 910 input factors (190 + 715 4 5) was determined for
German and for French F{; modeling separately. Appendix C lists the
complete ranking of all input factors for German and for French Fj
modeling.

7.2.4 QOutput Representation

In order to make F{y control independent from duration control, a time-
independent representation of the Fjy contour is necessary. This can be
achieved by applying a linear approximation of the original, linearized
Fy contour using a constant number of equidistant Fy samples for each
syllable.

The syllable-wise, ANN-based F{y generation predicts such a con-
stant number of Fy samples per syllable that corresponds to the number
of output nodes of the ANNs. The author tried various representations
of the Fy contour: a first experiment compared linear approximations of
the Fy contour using 5 (similar to the representation applied in [Tra95]),
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11, and 17 equidistant Fy samples for each syllable. This experiment
showed that the use of 17 Fy samples per syllable results in predicted
Fy contours that approximate the original Fy contours more accurate
than using representations with a fewer number of Fjy samples. The use
of 17 Fy samples also allows the generation of more natural sounding
synthetic speech.

However, empirical findings concerning the timing of F{ peaks
within syllables due to segmental constraints [vSH94, vS02] or semantic
constraints [Koh03| show that certain anchor points for positioning Fy
peaks within a syllable are necessary. A manual inspection of the Fjy
contours of the syllables of the prosody corpora revealed for identical
vowels roughly similar patterns in the nucleus part of the Fy contours.
Figure 7.4 shows the Fy contours of the syllables [glai¢] and [bai] of
the German prosody corpus. While the overall Fjy contours of these
two syllables look rather different, the nucleus parts of both syllable
have more similar F{y patterns. To incorporate these findings into the
Fy model, the author introduced a “sub-syllabic” representation of the
Fy contour.

This sub-syllabic representation bases on a segmentation of each
syllable into onset, nucleus, and coda. Onset and coda parts of the Fj
contour are each linearly approximated using 5 equidistant Fy samples,
the nucleus part of the Fy contour is modeled by 9 equidistant Fjy
samples. Fy samples at onset-nucleus and nucleus-coda boundaries are
identical. Thus, this representation also uses 17 F{; samples in total. In
case of an absent onset or coda, the respective 5 Fjy samples have the
same value and lie upon each other. Figure 7.4 displays the application
of this Fj contour modeling on two accented syllables of the German
prosody corpus.

Another experiment compared the sub-syllabic representation with
the equidistant, linear approximation of the syllable Fy contour, both
using 17 Fy samples per syllable. This comparison showed that the use
of the sub-syllabic representation improves the prediction accuracy of
the Fp model considerably. This sub-syllabic representation also con-
forms very well to the requirements concerning the timing of Fy peaks
within syllables due to segmental constraints [vSH94, vS02| and seman-
tic constraints [Koh03].

For neural network processing, the absolute Fy values were linearly
normalized to zero mean and a standard deviation of 0.33. This is
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not really necessary, as the output nodes of the neural networks have
a linear activation function. However, having target values with zero
mean and having the majority of target values within the range of -1
to 1 speeds up convergence of neural network training.

For training the model, the F{y values of syllable symbols correspond
to the Fy samples extracted for each syllable from the F, contour.
Boundary input symbols have dummy F{ values from a linear connec-
tion between the last value of the preceding syllable and the first value
of the subsequent syllable.

k=— onset —+—— nucleus —* coda ~ = onset »=—— nucleus ——
syllable : k——— syllable ———

Figure 7.4: Modeling of the original, linearized Fy contour (thin line)
of each of the syllables [glai¢] (left contour) and [bai] (right contour) by
17 Fy values (indicated as circles): Fach syllable is segmented into on-
set, nucleus, and coda. Onset and coda parts of the Fy contour are each
linearly approximated (thick line) using 5 equidistant Fy samples, the
nucleus part of the Fy contour is modeled by 9 equidistant Fy samples.
Fy samples at onset-nucleus and nucleus-coda boundaries are identical.
In case of an absent onset or coda, the respective 5 Fy samples have the
same value and lie upon each other, as indicated for the missing coda
of the right syllable.
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7.2.5 [y Ensemble Construction
Factor Relevance Determination

The first steps of Fy ensemble construction are the determination of
factor relevance and the training of individual networks having differ-
ent network configurations and different number of input factors. Fig-
ure 7.5 shows the NMSE as a function of the number of input factors
for German and for French Fjy ensemble models. For this comparison,
all members of an ensemble use the same number of input factors. The
sequence of input factors starts with the most relevant to the left, and
is different for German and French. The best German Fj; models have
between 180 to 380 input factors, as shown in Figure 7.5. The best
French Fy models have about 440 to 550 input factors.

In both diagrams, it is clearly visible that the use of too few or
of too many input factors generally results in higher prediction errors.
This demonstrates the influences of the two considerations given above:
a prosody model with too few input factors can only poorly describe
the complexity of the problem. For French Fy prediction, even a kind
of “cut-oft” point of about 220 input factors is observed, below that
prediction error drastically increases. Too many input factors, however,
result in too many weight parameters for the given size of the training
set.

In order to look up, which input factors are used by the individual
models, Appendix C provides a list of all input factors used for Fjy
control together with their rank of relevance.

Network Aggregation

In the final step of Fjy ensemble construction, the best ensemble of
all individual networks is determined for increasing ensemble size. The
evolution of NMSE during ensemble construction for German and for
French Fj modeling is presented in Figure 7.6. The best German Fjy
ensemble with RNNs with individual input factor sets has 8 network
members. The best French F ensemble consists of 9 RNNs. The net-
work structures and the input factor sizes of these networks are given in
Table 7.3. The best German Fj ensemble achieves a NMSE of 0.2613,
which is an improvement of about 7% compared to the best German Fj
ensemble with a fixed number of input factors, as shown in Figure 7.5.
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The best French Fjy ensemble has a NMSE of 0.3148 and about 5%
improvement compared to the best French Fy ensemble with a fixed
number of input factors.

Prediction error of German FO ensemble models
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Figure 7.5: NMSFE of Fy prediction models as a function of the num-
ber of input factors. The upper diagram displays prediction errors of
German Fy models, the lower one of French Fy models. The sequence
of input factors starts with the most relevant to the left, and is different
for German and French. For each number of input factors, the predic-
tion error of the best ensemble model is indicated by a cross. The best
German Fy prediction ensemble has 380 input factors. The best ensem-
ble for French Fy prediction uses 447 input factors. Both are indicated
by a dotted line. For both languages, the number of ensemble member
varies between 5 and 28.
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German Fj ensemble

Network Nr. 1 2 3 4 5 6 7 8
Factors | 170 | 380 | 350 | 352 | 160 | 270 | 290 | 370
Layer 1 | 28 15 14 17 | 24 | 22 21 15
Layer 2 | 27 | 22 22 27

French Fy ensemble

Network Nr. 1 2 3 4 5 6 7 8 9
Factors | 455 | 342 | 616 | 560 | 447 | 547 | 453 | 547 | 447
Layer 1 | 11 18 10 11 14 12 14 12 14
Layer 2

Table 7.3: Network structure of each RNN member of the best ensem-
ble for German and for French Fy control shown in Fig 7.6. For each
ensemble member, the number of input factors and the number of nodes
of the first and of an optional second hidden layer is given.

Evolution of NMSE during German FO ensemble construction
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Figure 7.6: Normalized mean squared error as a function of the num-
ber of ensemble members during Fy ensemble construction. The en-
semble model with lowest prediction error is indicated by a star. The
best ensemble for German Fy prediction consists of 8 RNNs. The best
French Fy ensemble model has 9 RNN members.
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7.3 Segment Duration Control

The polyglot segment duration control of the polySVOX system gen-
erates for each phone and for each pause of the phonological repre-
sentation of a polyglot utterance the corresponding duration value. For
each phone, it applies the appropriate monolingual duration model that
corresponds to the language of the phone.

7.3.1 Model Architecture

Figure 7.7 shows an schematic overview of the polyglot segment dura-
tion control: it consists of a factor encoding module, that generates for
each phone or pause of the phonological representation of a polyglot

#{P:G:0} \G\di- fast- gl[2]a_iC-t_sa_i-tIC- ?Im- \F\KR[1]~A-

Shift Phonological
Speech Rate Representation
Y Y Polyglot
Lan_gugge Factor Encoding| Duration
Switching Control

Monolingual
Duration
Model,

Monolingual
Duration
Model,

A

Segment Duration Value

Figure 7.7: Schematic representation of the polyglot duration model:
for each phone or pause of the phonological representation, the cor-
responding input factors are extracted and encoded. The language in-
formation of the phonological representation selects the corresponding
monolingual duration model to generate the segment duration output
value. An additional input specifies the speech rate of the utterance.
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utterance a language-independent input factor representation, that is
described in Section 7.3.4. A language switching component selects the
appropriate model from a set of independent, monolingual segment du-
ration models and sets the appropriate speech rate. The selected mono-
lingual duration model finally generates the segment duration values.
The normalization and encoding of the segment duration values is pre-
sented in Section 7.3.5.

Each monolingual duration model is a weighted ANN ensemble that
is constructed using the procedure presented in Section 6.5. Figure 7.8
displays a schematic representation of such a monolingual duration
model. Each ANN has its own input factor selection that chooses the
optimal set of input factors for this network. The network setup of the
ANN ensemble members of the German and of the French duration

#{P:G:0} \G\di- fast- gl[2]a_iC-t_sa_i-tIC-
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Monolingual
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Duration
Factor Factor Model
Selection,| ... [Selection ode
ANN, / - \ ANN{
y A
Ensemble Weighting

Segment DurationValue

Figure 7.8: Schematic representation of a monolingual duration model
as a weighted ANN ensemble: each ANN member of the ensemble has its
own input factor selection that chooses the optimal set of input factors
for this network.



148 Chapter 7. Polyglot Prosody Control

models is given in Table 7.5.

7.3.2 Language Switching

Language switching within polyglot utterances must not result in au-
dible rhythmic discontinuities. This requires that the general speech
rates of both language specific duration models are similar. This could
be achieved by recording prosody corpora of each language with simi-
lar, relatively constant speech rates having small variances. The speech
rate of the German male prosody corpus displayed in Figure 7.9, e.g.,
exhibits such a “constant” speech rate with small variance (at least for
longer utterances). However, as also visible in Figure 7.9, the variances
of speech rate of the German and of the French female prosody corpora
are considerable and much larger than of the male corpus. In first ex-
periments, switching between a German and a French duration model
trained on these two corpora resulted therefore most of the time in an
audible change of speech rate.

In order to cope with the large variances in speech rate, the speech
rate and the number of syllables of a sentence were provided as ad-
ditional input factors to the ANNs. Doing so, also improved duration
prediction performance of the individual networks considerably. And,
the additional speech rate input made it possible to smoothly switch
between the individual, monolingual duration models, simply by setting
the same speech rate value as input for both duration models.

The speech rate input also makes it possible to speed up or slow
down the tempo of synthesized speech by naturally lengthening or
shortening the predicted duration values (at least for speech rates
within the range of speech rate values of the prosody corpus). This
is a nice improvement compared to state-of-the-art duration models
with an implicit speech rate, where changes in tempo are done by a
multiplication of the predicted duration values with a given factor.

7.3.3 Speech Pauses

Pauses within the speech signal can be classified into intra-segmental
pauses that occur in connection with a phone, like preplosive pauses or
glottal closures, and inter-lexical pauses or simply speech pauses that
appear between words, cf. [Zel94]. Inter-lexical pauses can further be
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Figure 7.9: Speech rate of the utterances of the French (top) and the
German (center) female prosody corpora, and of the German male (bot-
tom) prosody corpus as a function of the number of syllables of an ut-
terance. The speech rate is calculated as average number of phones per
second (pps). The number of syllables is given in logarithmic scale.

subclassified into end-pauses, that mark the end of an utterance, and
non-end-pauses, which occur inside utterances, cf. [Hub91].

The duration of an intra-segmental pause is influenced by the same
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factors as the durations of phones. Duration control therefore treats
preplosive pauses and glottal closures like standard phone segments.

The duration of an inter-lexical pause, however, depends on other
factors. Beside of pragmatic, semantic, and rhythmic factors also the
breathing requirements of the speaker must be considered. As the
prosody corpora used here contain only utterances of single sentences
and do not contain any longer paragraphs, no data for end-pauses was
available. Also, similar to the investigations described in [Hub91| or in
[Rie98], no relevant factors influencing the duration of non-end-pauses
were found, beside of having the speaker breathing or not. Therefore,
as it was also done in [Rie98|, non-end-pauses were further subclassified
into pauses with and without the speaker breathing. These are referred
to as breath-pauses and non-breath-pauses, resp.

As there are no relevant factors, end-pauses and non-end-pauses are
normally assigned a constant value, as it was done, e.g., in the duration
models of Klatt [Kla79|, of Huber [Hub91], or of Riedi [Rie98|. The
polyglot duration control uses the same speech pause duration values
for all languages. End-pauses and breath-pauses are assigned a constant
duration value of 320 ms, which is roughly the mean value of all breath-
pauses found in the German and in the French prosody corpora. Non-
breath pauses are set to a constant duration value of 90 ms, again
roughly the mean of all non-breath-pauses found in both corpora. The
assignment of pause types to the phrase boundaries of the phonological
representation is done similar to the procedure described in [Rie98].

7.3.4 Input Representation

From the phonological representation of an utterance, a sequence of
phone and pause segments is extracted. The hold (preplosive pause) and
the burst part of plosives are hereby treated as two separate segments.
For plosives after a speech pause, no preplosive pause is extracted.
Diphthongs, triphthongs, and affricates are each treated as one segment.
Each of these segments is represented by a vector of 349 elements.
Similar to F{ control, all elements of this vector are set to zero by
default. The values of ordinal factors are directly set in the vector.
For categorical factors, a 1-out-of-n encoding is applied such, that each
categorical factor is represented by n binary input factors.

Segment duration depends on a relatively local segmental context as
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far as segment type information is concerned, as shown, e.g., in [Rie98].
The influence of accentuation and phrasing information, however, is
wider. Similar to Fyp modeling, the correct size of the contexts for the
different factors is unknown and depends on the prosodic phenomena
to be modeled. Therefore a context of 2 preceding and 2 subsequent
segments is applied for segmental information. For accentuation and
phrasing information, a context of 2 preceding and 2 subsequent sylla-
bles is used. Starting with this large, initial factor set, the ensemble
construction procedure of Section 6.5 is applied to automatically select
the most relevant input factors and thereby the optimal context size of
each factor.

For polyglot duration control, this input representation must be
language-independent. Thus, no language specific segment types or
phrase types are used, but the language-independent description of
manner and place of articulation of phones of the IPA and a basic,
language-independent set of phrase types, as given in Section 3.2.1.
Also, information about syllable language or about language switching
position may not be included in the factor set. Language information
is only used to switch between the individual monolingual duration
models.

Beside of segmental factors and factors describing accentuation and
phrasing, additional factors of the syllable, foot, phrase, and sentence
level have been selected. For each of these categories, in the following
all factors and their values are described.

Segmental Factors

These factors describe the characteristics of a segment. They consist of
a gross specification of the segment type and a detailed characterization
of the articulation of vowels and of consonants according to the TPA
specification given in Table 7.1 and in Table 7.2, resp. Additional infor-
mation concerns lengthening, voicing, and the first formant position of
the segment, and whether the segment is part of the syllable nucleus.



152 Chapter 7. Polyglot Prosody Control

Segmental factor values

segment type vowel, gliding vowel, triphthong,
consonant, affricate, glottal closure
preplosive pause, speech pause

vowel characterization tuple from Table 7.1

consonant characterization | tuple from Table 7.2

long segment binary

voiced segment binary

syllabic segment binary

first formant position low, middle, high

For the segmental factors, a context of 2 preceding and 2 subsequent
segments is applied. This results in 200 input factors ((2 + 1 + 2) * 40)
in total.

Accentuation, Phrasing, and Syllable Length Factors

These factors describe accentuation and phrasing information as well as
the length of the syllable the segment is part of. The factors include the
syllable stress level, the type of phrase boundary after the syllable, and
the phrase type of the current phrase. Two additional factors describe
the length of short and of long syllables separately, as in the German
prosody corpus, a dependency of segment durations on syllable length
is only visible in syllables with more than four phones.

Accentuation, phrasing, and
syllable length factor values

syllable stress (E], [1], [2], [3], [4], unstressed
phrase boundary 0, 1, 2, no boundary
phrase type P, T,S,Y,E YCF

short syllable length | number of phones (if number < 5)
long syllable length | number of phones (if number > 4)

For accentuation, phrasing, and syllable length factors, a context of 2
preceding and 2 subsequent syllables is applied. For the current syllable
and the four context syllables, 95 input factors ((2 + 1 4 2) % 19) are
used in total.
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Syllable Level Factors

These factors describe the position of the segment within the syllable
and whether the segment is in the onset, the nucleus, or the coda of
the syllable. No context is applied. Therefore, 5 input factors are used
in total.

Syllable level factor values
first phone in syllable binary
phone position in syllable | phone number
syllable structure onset, nucleus, coda

Foot Level Factors

A foot basically consists of one salient syllable and all non-salient syl-
lables to the right (left-headed foot) or to the left (right-headed foot)
until the next salient syllable or until a sentence or phrase boundary.
A salient syllable is an accented syllable that carries at least word
main stress, i.e., one of the accentuation levels [E], [1], [2], or [3] in
the phonological representation. Left-headed foots starting and right-
headed foots ending at sentence or phrase boundaries may also have no
salient syllable.

German speech rhythm is said to depend on left-headed foots, while
French speech rhythm should base on right-headed foots. Thus, input
factors for both foot types on the foot, the phrase, and the sentence
level are included. As no context is applied, 26 input factors are used
in total.

Foot level factor values
syllable position in L-headed foot | salient syllable,
1.,2.,3.,4.,5.,6., 7.,
8., >8. non-salient syllable
syllable position in R-headed foot | salient syllable,
1.,2.,3.,4.,5.,6., 7.,
8., >8. non-salient syllable
length of L-headed foot one syllable, short, long
length of R-headed foot one syllable, short, long
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Phrase Level Factors

These factors describe the phrase length in number of syllables and in
number of foots, and the foot position within the phrase. No context is
applied. In total, 7 input factors are used.

Phrase level factor values
first L-headed foot binary
L-headed foot position | foot number
first R-headed foot binary
R-headed foot position | foot number
phrase length number of syllables
phrase length number of L.-headed foots
phrase length number of R-headed foots

Sentence Level Factors

On the sentence level, the input factors describe sentence length in
number of syllables and in number of foots, and the foot position within
a sentence. Additionally, the speech rate specified as phones per second
averaged over the complete utterance is selected. In total, as no context
is applied, 16 input factors are used.

Sentence level factor values
L-headed foot position | sentence initial, sentence final,
phrase initial, phrase central,
phrase final, phrase with one foot
R-headed foot position | sentence initial, sentence final,
phrase initial, phrase central,
phrase final, phrase with one foot

sentence length number of syllables
sentence length number of L-headed foots
sentence length number of R-headed foots
sentence speech rate phones per second [pps]

The relevance of all 349 input factors (200 4+ 95+ 5+ 26+ 7 + 16) was
determined for German and for French segment duration modeling sep-
arately by applying the Unit-OBS procedure described in Section 6.4.
Appendix C provides the complete relevance ranking of all input factors
for German and for French duration modeling.
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7.3.5 Output Representation

Neural networks, that are trained using the sum-of-squares error mea-
sure, achieve lowest prediction error if the target data is normally dis-
tributed, cf. [Bis95|. Therefore, the typical log-normal-like distribution
of segment durations, as shown on the left side of Figure 7.10, is first
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Figure 7.10: Normalized histograms of segment durations of the Ger-
man and the French female, and the German male prosody corpora. On
the left side, the original segment durations are shown. On the right
side, the transformed and normalized segment durations are displayed.
The dashed line additionally indicates the corresponding normal distri-
bution.



156 Chapter 7. Polyglot Prosody Control

A 14 S

French female 0.3208 | 9.326 | 10.029
German female | 0.3881 | 10.605 | 13.356
German male 0.3030 | 7.922 8.712

Table 7.4: Parameters of segment duration transformation and nor-
malization for the German and the French female, and the German
male prosody corpus.

transformed into a normal distribution using the Box-Cox transfor-
mation, cf. [BC64|, and then linearly normalized to zero mean and a
standard deviation of 0.25 using

with y as original and ¢ as transformed and normalized segment dura-
tion value. Appropriate values for the parameters A, y, and s are given
in Table 7.4 for all three prosody corpora.

After applying the transformation (7.1), all target values have zero
mean and are within the range of -1 to 1, as it is displayed on the right
side of Figure 7.10. Doing so, speeds up neural network training and
optimizes prediction error, as experiments with different distribution
transformations have verified. Also, it is possible to compare linear and
tanh output activation functions using the same target data. Similar
to Fy modeling, a linear output activation function resulted in a lower
prediction error.

7.3.6 Duration Ensemble Construction
Factor Relevance Determination

The first steps of duration ensemble construction are the determina-
tion of factor relevance and the training of individual networks having
different network configurations and different number of input factors.
Figure 7.11 shows the NMSE on the test set as a function of the number
of input factors for German and for French duration ensemble models.
For this comparison, all members of an ensemble use the same number
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of input factors. The sequence of input factors starts with the most
relevant to the left, and is different between German and French. The
best German duration models were found with 110 to 118 input factors,
as shown in Figure 7.11. The best French duration models have about
55 to 70 input factors and provide in general a lower prediction error
than the German models.
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Figure 7.11: NMSFE of duration prediction models as a function of the
number of input factors. The upper diagram displays prediction errors
of German duration models, the lower one of French duration models.
The sequence of input factors starts with the most relevant to the left,
and is different between German and French. For each number of input
factors, the prediction error of the best ensemble model is indicated by
a cross. The best German duration prediction ensemble has 112 input
factors. The best ensemble for French duration prediction uses 60 input
factors. Both are indicated by a dotted line. For both languages, the
number of ensemble member varies between 5 and 28.
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Similar to Fy prediction, cp. Section 7.2.5, it is clearly visible in
both diagrams, that the use of too few or of too many input factors
generally results in higher prediction errors. In order to look up, which
input factors are used by the individual models, Appendix C provides
a list of all input factors used for duration control together with their
rank of relevance.

Network Aggregation

In the final step of duration ensemble construction, the best ensemble
of all individual networks is determined for increasing ensemble size.
The evolution of NMSE during ensemble construction for German and
for French duration modeling is presented in Figure 7.12.

The best German duration ensemble with individual input factor
sets consists of 55 ANNs. The best French duration ensemble has 8
members. The network structures and the input factor sizes of the first
ten German networks and of all French networks are given in Table 7.5.
The best German duration ensemble has a NMSE of 0.2310 and slightly
improves the best German duration ensemble with a fixed number of
input factors by about 3%. The best French duration ensemble achieves

German duration ensemble
Network Nr. | 1 2 3 4 5 6 7|8 9 10
Factors | 55 | 60 | 60 | 61 | 55 | 61 | 67 | 66 | 108 | 114
Layer 1 | 30 | 25 | 30 | 25 | 30 | 23 | 50 | 50 | 50 50
Layer 2 5)

French duration ensemble
Network Nr. | 1 2 3 4 5) 6 7 8
Factors | 80 | 70 | 60 | 60 | 58 | 56 | 68 | 60
Layer 1 | 20 | 15 | 16 | 20 | 16 | 20 | 14 | 17
Layer 2 15120 10|20 |10 | 20| 15

Table 7.5: Network structure of each ANN member of the best ensemble
for German and for French duration control shown in Fig 7.12. For each
ensemble member, the number of input factors and the number of nodes
of the first and of an optional second hidden layer is given.
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Evolution of NMSE during German duration ensemble construction
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Figure 7.12: Normalized mean squared error as a function of the num-
ber of ensemble members during duration ensemble construction. The
ensemble model with lowest prediction error is indicated by a star. The
best ensemble for German duration prediction consists of 55 ANNs. The
best French duration ensemble model has 8 ANN members.

a NMSE of 0.2141, which is also a slight improvement of about 3%.
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7.4 Experiments and Discussion

7.4.1 Comparison with RNN- and MARS-based
Prosody Models

For a comparison of the performance of ensemble prosody models with
the performance of the RNN-based Fy model (cf. [Tra92, Tra95|) and
of the MARS-based duration model (see [Rie98|) that are currently
applied in the German SVOX system, F{y and duration ensemble models
were trained on the same German male prosody corpus, cf. Section 5.2,
as the reference models. For training, the identical setup of the training
set and of the test set was used as reported for the reference models.
Figure 7.13 shows the prediction error of Fyy and of duration ensemble
models as a function of the number of input factors.

The best ANN-based ensemble model for duration prediction with
11 ANN members, each of them having 160 input factors, has a NMSE
of 0.1866. This is about 12% improvement compared to the NMSE
of 0.2108 of the best MARS-based duration model and about 16%
improvement compared to the best ANN-based duration model, both
presented in [Rie98|. The best RNN-based ensemble model for Fy pre-
diction consists of 4 RNN members, each using 356 input factors. This
model has a NMSE of 0.3457 that corresponds to the root of the mean
squared error (RMS) of 7.05 Hz. This is about 24% improvement com-
pared to the RMS of 9.2 Hz of the best RNN-based Fjy model reported in
[Tra95]. The RMS of the ensemble is now also below an “upper bound”
of very good acoustic quality reported in [Tra92|, where he states “that
for our corpus sentences, a RMS prediction error of less than 8 Hz for
a single sentence corresponds to a very good acoustic quality.”

7.4.2 Perceptual Evaluation

The NMSE measure used to optimize Fy and duration control of the
polyglot T'TS system not necessarily correlates with the subjective qual-
ity judgment of a human. Also, the Fy and the duration models were
optimized independently of each other, and if applied together in the
TTS system, their deficiencies still may cumulate and thus impair the
quality of the synthetic speech. In order to evaluate the quality of the
complete polyglot prosody control, a small listening experiment was
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Figure 7.13: NMSFE of duration and of Fy prediction models for the
monolingual German male prosody corpus as a function of the number
of input factors. The upper diagram displays the prediction errors of
duration models, the lower one of Fy models. The sequence of input
factors starts with the most relevant to the left. The best ensemble for
duration prediction uses 160 input factors and has 15 ANN members.

The best ensemble for Fy prediction has 356 input factors and consists
of 4 RNN members.

conducted with naive subjects and with members of the speech pro-
cessing group.
Experiment Setup

The subjects were presented a total of 160 sentences. These sentences
consisted of 40 German and 40 French sentences, each one with its
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natural prosody and with the synthetic prosody predicted by the poly-
glot prosody control. The sentences were presented in random order.
It was made sure that the natural and the synthetic versions of a sen-
tence did not directly follow each other. The subjects had to indicate,
whether they believe to have heard a sentence with synthetic or with
natural prosody. All subjects are German native speakers with a good
knowledge of French. Two of the subjects speak fluently French and
German.

20 of the German sentences and 8 of the French sentences were taken
from the polyglot test set. These mixed-lingual sentences contained ei-
ther English, French or German foreign inclusions. The other sentences
were taken from the German and from the French monolingual test sets
(see Appendix D).

Prosody prediction started from the manual phonological transcrip-
tions of the natural sentences, cf. Section 5.4. Doing so, the experiment
tested prosody prediction alone, without possible errors in the phono-
logical transcription that may be produced by text analysis. The pre-
dicted Fy contour and the segment duration values of a sentence were
transferred onto the natural speech signal using a TD-PSOLA-based
analysis-synthesis procedure implemented by the author. Further de-
tails on this procedure can be found, e.g., in [MC90].

The subjects were instructed to especially pay attention to sentence
melody and speech rhythm. Before starting the experiment, they lis-
tened to some sentences of the same type as the ones included in the
experiments, in order to become familiar with the speaker’s voice.

The experiment was carried out in one session. A simple computer
program enabled the subjects to start the play back of a stimulus by
pressing a button and to decide afterwards whether the heard sentence
has natural prosody or not. Then, the program proceeded to the next
sentence. No repetition of a sentence was possible. The stimuli were
played back over a loud-speaker in a middle-sized room.

Results and Discussion

Table 7.6 shows the confusion matrices and the “recognition rates”, i.e.,
the percentage of correct answers, of the individual subjects for all
German and for all French sentences separately. Table 7.7 shows the
results if only the mixed-lingual sentences of each language are consid-
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ered. Similar to the listening experiments for the evaluation of German
Fy prediction described in [Tra95] and for the evaluation of German
duration prediction presented in [Rie98], the experiment was designed
such that completely random answers would result in a recognition rate

of 50%.

In contrast to both former experiments, where the prediction of only
one acoustic parameter was tested, the current experiment tested the
prediction of Fy contour and segment duration values simultaneously,
which is a much more difficult task for prosody prediction, as already
an error in only one of the predicted acoustic parameters will reveal
the prosody contour as synthetic.

Following the interpretation in [Tra95|, the best recognition rate
of all German sentences of 56.25% suggests that about 2 x (100% —

German French Recogn. Rate [%]

Subject | Naive
o N nat. synt. | nat. synt. || German | French

6. | 28 12 | 26 14
1 na 46.2 43.
RO synt. | 31 9 31 9 6.25 3.75

9 no nat. 22 18 23 17 195 50.0

synt. | 28 12 | 23 17

nat. 30 10 28 12
3 no synt. 99 1 99 1 51.25 48.75

t. | 27 13 | 21 19
4 na . 49.
O synt. | 27 13 | 27 13 500 g

nat. 26 14 20 20
5 no synt. | 21 19 91 19 56.25 48.75

nat. | 25 15 | 25 15
42. 1.2
0 Y Nsynt. | 31 9 | 24 16 5| oL

nat. 27 13 26 14
7 yes synt. | 28 19 53 17 48.75 53.75

nat. | 185 95 | 169 111
total synt. | 195 85 | 178 102 48.21 | 48.39

Table 7.6: Confusion matrices and recognition rates of subjects in the
experiment for the evaluation of the quality of combined Fy and duration
prediction for all German and all French sentences (mono- and mized-
lingual). Random answers correspond to a recognition rate of 50%.
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56.25%) = 87.5% of all (monolingual and polyglot) synthetic Ger-
man prosody contours sound natural if presented in isolation. The best
recognition rate of all French sentences of 53.75% indicates that about
92.5% of all synthetic French prosody contours sound natural if pre-
sented in isolation. Considering only the mixed-lingual sentences, this
is the case for about 80% of the mixed-lingual German sentences and
for about 87.5% of the mixed-lingual French sentences. These results
compare well with about 30% natural sounding, synthetic German Fj
contours predicted by the best ANN-based Fjy model reported in [Tra95|
and with about 70% natural sounding, synthetic German duration se-
quences predicted by the best MARS-based model presented in [Rie98].
In those experiments, only one prosodic parameter (Fy or segment du-
ration) was predicted.

An interesting detail in Table 7.6 is that in total 69.6% of all syn-
thetic and only 66.1% of all natural German prosody contours were

Subject | Naive German French Recogn. Rate [%]
nat. synt. | nat. synt. || German | French
1 no gﬁ. 13 ;1 g ; 60.0 | 56.25
2 no Sr;itt'. 182 182 2 g 0.0 | 375
3 no J;itg. ﬁ 2 (75 ? 45.0 | 4375
EE N P N L
5 no Sr;?ft'. 2 g ? S 55.0 | 56.25
6 yes Sl;ar“ft'. ﬁ 2 Z Z 125 | 43.75
7 yes Sr;ar“ltt'. 1431 (73 Z i 50.0 | 43.75
fotal Sl;itt‘. Sé 22 ?13 32 49.29 | 47.32

Table 7.7: Confusion matrices and recognition rates in the experiment
for the mixed-lingual German and the mixed-lingual French sentences
alone.
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judged to sound natural. Similar, 63.6% of all synthetic and only 60.4%
of all natural French prosody contours were judged as sounding natu-
ral. These numbers would indicate that the synthetic prosody contours
predicted by the polyglot prosody control would sound in general more
pleasant to humans than the natural prosody contours. However, the
differences between the rates of synthetic and of natural prosody con-
tours are statistically not significant.

These results show that it is possible to simultaneously produce
natural sounding Fj contours and segment duration values from ab-
stract phonological information by means of the weighted RNN- and
ANN-based ensembles. The synthetic prosody is nearly indistinguish-
able from natural prosody.

The results for the mixed-lingual sentences alone indicate that the
polyglot prosody control presented in this chapter is able to produce
natural sounding, polyglot prosody contours for sentences with for-
eign inclusions. They also indicate that it is possible to switch between
monolingual prosody models at language boundaries without audible
rhythmic or melodic discontinuities.






Chapter 8

Conclusions

8.1 Discussion

The first aim of this thesis was the creation of a modular TTS sys-
tem architecture, that can be configured with an arbitrary number of
independent, monolingual resources in order to form a polyglot TTS
synthesis system. This aim has been achieved by building a linguisti-
cally motivated system architecture and applying general approaches
to the different, language specific problems occurring in T'TS synthesis.
This architecture thereby strictly separates language-independent algo-
rithms from language-dependent linguistic and acoustic data. Further-
more, following the linguistic view adopted as a basis for the ETH T'TS
project, a voice-independent part is separated from a voice-dependent
part. The resulting polyglot TTS synthesis system, polySVOX, pre-
sented in this thesis consists of relatively simple, language-independent
building blocks, that can each be configured with an arbitrary set of
monolingual resources. The polySVOX system is, to the author’s knowl-
edge, the worldwide first “true” polyglot TTS synthesis system that
comprises a complete mixed-lingual transcription stage and a complete
polyglot phono-acoustical model.

The architecture of the individual building blocks bases on the ar-
chitecture of the monolingual German TTS system SVOX presented in
[Tra95]. Thus, also the second goal of this thesis, the reuse of the for-
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malisms and algorithms of the SVOX system, was reached. However,
morphological and syntactic analysis needed a complete redesign in
order to support mixed-lingual input text. The formalisms of morpho-
syntactic analysis were thereby taken from the SVOX system or ex-
tended, when necessary. Phonological processing and prosody control
are completely new. Here, the formalisms of sentence accentuation were
reused. Speech signal generation needed only minor modifications to
support polyglot acoustic resources. The individual building blocks will
be briefly discussed in the following sections.

Mixed-lingual Text Analysis

Mixed-lingual text analysis, presented in Chapter 2, provides a very
detailed morphological and syntactic structure determination of mixed-
lingual words and sentences. This includes the disambiguation of inter-
lingual homographs, the grapheme-to-phoneme conversion of unknown
words, of numbers, and of abbreviations in mixed-lingual sentences, and
the identification of word and sentence boundaries, without extend-
ing the formalism and without adding new parsing methods. Whereas
other systems apply an explicit preprocessing stage with, e.g., a sep-
arate language identification procedure, a separate word and sentence
boundary identification procedure, or separate conversion procedures
for grapheme-to-phoneme mapping problems, the polySVOX system
integrates the entire text analysis within morpho-syntactic analysis.

The polySVOX text analysis was the worldwide first mixed-lingual
text analysis applied in text-to-speech synthesis, cf. [BL04]. With a lan-
guage identification rate of words of about 97.7%, this rule-based ap-
proach outperforms statistical approaches that are specially designed
for the language identification task. E.g., [THRJO02| report for their neu-
ral network based algorithm a language identification rate of words of
86.6%. Very important for mixed-lingual text analysis is, however, the
correct identification of foreign inclusions within mixed-lingual words,
which is impossible for current statistical language identification ap-
proaches.

This mixed-lingual text analysis was tested with lexica and gram-
mars that contain currently about 12 000 German, 6 500 English, 5 000
French, and 3 500 Italian lexicon entries, and about 1 900 German,
1 200 English, 1 300 French, and 800 Italian grammar rules. These
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monolingual linguistic resources are completely independent. For each
language, only about 20 grammar rules, so-called “inclusion grammar
rules”, are necessary to specify foreign inclusions of another language.
Currently, about 240 inclusion grammar rules are used in total. Thus,
the integration of linguistic resources of a new language, the third aim
of this thesis, is very simple.

Mixed-lingual Phonological Processing

Mixed-lingual phonological processing, as described in Chapter 3,
is strongly based on works in generative phonology. Mixed-lingual
prosodic phrasing uses phonological words as minimal phrasing entities
and builds larger phrases from smaller temporary phrases according to
language-dependent constraints. These constraints comprise the syn-
tactic structure of a sentence, the minimum length of an independent
phrase, based on accent and syllable counts, and the balanced lengths
of all independent phrases of a sentence. Mixed-lingual sentence ac-
centuation is build on the following language-dependent principles: the
nuclear stress rule, the rhythmic stress shift rule, and the accentual
bipolarisation principle together with a dominance principle. The appli-
cation of phonological transformations is based on language-dependent
multi-context rules that specify phonological transformations within
a syntactically constrained part of a sentence. The formalisms of the
rules and patterns applied in phonological processing use the language
information provided by morpho-syntactic analysis. This allows an easy
integration of additional rules and patterns for a new language.

Polyglot Prosody Control

Polyglot prosody control described in Chapters 6 and 7 generates from
the phonological representation of an utterance the corresponding fun-
damental frequency contour and segment duration sequence. For Fy
generation, a polyglot Fy control is applied that comprises independent
monolingual Fy models. And for segment duration generation, a poly-
glot duration control is used that also contains independent monolin-
gual duration models. All monolingual models use weighted ensembles
of neural networks with an optimized set of input factors. This new ap-
proach to prosody control achieves impressive improvements even when
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compared to the monolingual SVOX system that was regarded as one
of the best TTS systems for German, cf. [Tra95|. For duration control,
an improvement of the prediction error of about 12% compared to the
best MARS-based duration model of [Rie98] was achieved, and for Fy
control, a prediction error improvement of about 24% compared to the
best RNN-based Fy model of [Tra95] was reached. These improvements
made it possible, that in a perceptual evaluation about 90% of 80 dif-
ferent monolingual and mixed-lingual test sentences having synthetic
prosody were judged indistinguishable from the corresponding origi-
nal recordings with human prosody. These results also show that it is
possible to switch between monolingual prosody models at language
boundaries without audible rhythmic or melodic discontinuities.
Currently, prosody models for French and German are available.
The integration of a prosody model for a new language is very simple
and does not affect the existing prosody models. However, the prosody
models must be trained on speech data recorded by the same speaker.

8.2 Outlook

The results achieved so far with the polySVOX TTS system are very
convincing. But, of course, all parts of the system could be further
improved. This includes the extension of the existing linguistic knowl-
edge bases and the integration of additional linguistic resources for new
languages.

The RNN- and ANN-based weighted ensemble models for prosody
control provide impressive prediction results, even when optimized on
a rather small prosody corpus. Optimizing them on larger prosody cor-
pora could further improve the quality of prosody prediction.

The requirement of recording all monolingual prosody corpora by
the same speaker restricts polyglot prosody control to a few languages
that can be applied simultaneously. Therefore, a method to combine
prosody models trained on speech data recorded from different speakers
might be necessary in future.

Finally, a future application of the polySVOX system to a tone
language could reveal the generality and the limitations of the language-
independent architecture of the polySVOX system.



Appendix A

ASCII-Representation of
IPA Symbols

The polySVOX system uses an ASCII representation - the ETH com-
puter phonetic alphabet (ETHPA) - of the IPA (International Phonetic
Association) phonetic symbols in order to process phonetic transcrip-
tions. For readability reasons, the ETHPA symbols are defined to be as
similar as possible to the IPA symbols. IPA symbols as well as ETHPA
symbols can be put in strings. Such strings can unambiguously be split
into phones again. These ETHPA forms occur in the main part of this
thesis, and are also used in the phonetic sequence of lexical entries.

The following sections list the IPA symbols and the corresponding
ETHPA symbols for English, French, German, and Italian. Each phone
or diphthong is illustrated with some examples in graphemic and pho-
netic form, as given in the respective reference phonetic dictionary. As
reference phonetic dictionaries, the author used for British and Amer-
ican English [JRHS03|, for French [War96|, for German [Dud05], and
for Italian [Pon95|.

171



172

Appendix A. ASCII-Representation of IPA Symbols

A.1 English IPA Symbols

IPA

a8gevc

(& (=

ETHPA

o
o H

>0 0 0 ©

|
G H

N

H & K

@

=

I P RO HHP H-B50Q HO 0O WWOD O QO P pp <0

=2 1 B B
= —

Example

another
another
nose

hat

cars

pot

pot

cut, much
buy
house

bin

din

gin

this, breathe
pet

bird, furs
bird, furs
there

bay

fat

give, bag
hit

happy
ease

pit

here
youth, yes
skat

key

life, whale
bottle
map

nap
vision
thing

[onadel *
[onade]| 2
[novz| !

[haet|

[kPaz| 1, [kPamrz] 2

[pazt] 2
[pot] *

[ kP at], ['nmxt\ﬂ
| bai]

| haus|

[Dimn|

['dmn]

[d3m]

[d1s], [bri:d|
[phet]

['bs:d|, [f3:z] !
['bsud|, [f3uz] 2
[t"eo] !

| bet

['feet]

[grv], [beeg]
[hrt]

| heepi]

[1:z]

[ phit]

['hug] *

[ju:6], [Jes]
['ska:t]

[khi]

|ar], [wedl]
[bot]] 1, [bazt]] 2
['meep]

[naep]

[vi3n]

01y



Al

English TPA Symbols

173

e =8 5
>

=

+ s wm o= oS

W N K4 e g R DT

! British English

ETHPA

|
H G

=

wn s

@

NNMXM S e e dAcd o tnnn OO OO O

Example

core
nose

boy

speed

pin

ring, stress
sip, mouse
ship, brush
street

time

chin

thin, breath
influential
lose

put, book
durable
vat

well

loch

zip, fees
vision

2 American English
% Scottish

[kho:] 1, [kPour] 2
[noyz]

| bot]

['spixd]
['p"m]

[Tiy], ['stres]
['sip], [maus|
[J1p], [Dra]]
['strizt|
['t"arm]
[t/

[0m], [bred]
| mflu'ent[l]
[Tuzz|
[pwt], [buk]
|'djuorebl]] *
['veet]

['wel]

[Tox] 2

|'z1p], [fi:z]
[vizn]
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A.2 French IPA Symbols

IPA

—

g&gzozgo’qodsg'—‘wﬁu':"ﬂ'b‘@ '—hggznggmma_.wpzpzppggga/q-)\w

ETHPA

Example

Q fortement
petit

a tabac, patte
a: bagage

A bat, pate
A: bagare
A temps
“A: ange

b bon, robe

d dans, chaude
e ému, Oté

E perdu

E treize

"E matin

“E: linge

feu, chef
gare, bague
halte, hop

lit, ami

lige

yeux, paille
agneau, vigne
carte, barque
long, bal
madame, femme
nous, bonne
camping
beau, galop
chaude
obstacle
corps

bon

ronde

deux

creuse

P OO0 0 =28 B HX GL. B b 50k

NN

[fortomd|
[p(o)ti] *

[tabal, [pat(o)]
[baga:3(s)]

[bal, [pat(s)]
[baga:r(o)]

|t

|3

[b3], [rRob(0)]
[da], [fo:d(e)]
[emy], [ote]
[perdy]
[tre:z(0)]

[maté|

[1€:3]

o], [Jef]
lga:r(e)], [bag(o)]
[halt ()], [hop| 2
[li], [ami]
[liz3(0)]

ljo], [pazj(e)]
lanol, [vin(e)]
[kart(a)], [bark(o)]
[15], [bal]
[madam(o)], [fam(o)]
[nu], [bon(e)]
[képiy|

[bol, [galo]
|Jo:d(a)]
[opstakl(o)]
[kor]

[b3]

[r3:d(0)]

|do]

[kr@:z(0)]
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&
>

O
O .-

VW N D9 g < g e oD IT QR R

N NNIOD<S < £ 9 6 6 e ™T

optional schwa

Example

neuf
peur

lundi, parfum

patte, cap
rue, venir
soeur, passe
chat, poche
téte, net
roue

ajour

vent, réve
oui, nouer
élu, punir
pur

huile, nuire
Z€ro, rose
jardin, piége
les haricots

? within interjections

[noef]

[pae:r|

[ledi], [parfce]
[pat(o)], [kap]
[ry], [v(o)ni:g]
[sce:r], [pas(o)]
[fal, [pof(o)]
[tet(a)], [net]
|ru]

l[azur|

[vadl, [rewv(o)]
[?wi], [nwe]
lely], [pyni:r]
[py:R]

[uil(e)], [nyir(o)]
|zero|, [rO:z(0)]
[3ardE],[pjes(o)]
[le ?ariko]
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A.3 German IPA Symbols

IPA

[ — e = (e Dpde e e
S8 B8 - il (g = FRe e e n@ao@a oEEs sy e

ETHPA Example

a

> O P
I O .o

SR

N

H

)I—'-I—'-D"?QO'Q HemMmMEHO OO QAL QT PP
(0]

e e
Q)

=

nH ® & @ H P

[

hat
Bahn
Ober
Uhr
weit
Haut
Ball

ich
dann
Gin
Methan
Beet
Frey
hatte
wahle
halte
Fass
Gast
Riiegger
hat
vital
viel
Studie
Dietikon
bist

ja
Skandal
kalt
Last
Nabel
Mast
grossem
Naht
baden
lang

[hat|
[ba:m]
[?o:be]
[Pure]
[vai
[haut]
[Dal

[ ?g)
['dan]
[d5m)
[me'tam]
[Dert|
[frer] *
[heto]
['ve:lo]
[halto]
['fas]
[gast]
[ryaggor] *
[hat]
[vi'ta:l]

[ fi:]]
[[tu:die]
[disti kom]| 1
[Dist]
[Ja:]
[skan'da:]]
[kPalt]
[last|
[nabl]
['mast|
[grozsm]
[na:t]
[baidn]
[Tay]
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IPA

'Uw@h'cgg&(@ ©>0 O O

(r'-r'-
n =

“R e K4 (g S EE B R

'—OCNN»<E\G<)

ETHPA Example

o
o -

b

|
<

o
[= )

(o]

C)ciclld'ld'ld'd'mmHH"d"d"d O© NN OO
(e nn o

@

Ty d M gace

« ..
@

N NN <<

Moral
Boot
loyal
Post
Heu
Okonom
Ol
gottlich
Spatz
Pfahl
Pakt
Rast
Karren
Hast
Schal
Stier
Tal
Zahl
Matsch
kulant
Hut
aktuell
pfui
Pult
Ruedi
was
Bach
Mykene
Riibe
Etui
Bliiemlisalp
fullt
Hase
Genie
beamtet

[mora:l]
[bort]
[loa'jal]
['post]
'hoy]

| ?gkonom|
[?0:1]
['geetli]
[ [pats]|
[pfal]
['p"akt]
[rast]
[karron]
[hast|
[fazl]
['[tir]
[thazl]

| tsal]
[mat]
[ku'lant]
[huzt|
lak'tuel]
| pfui]
[p"ult]
[Tuadi] *
['vas|
[bax]
[my kemo|
[Ty:bo]
[Pe'tyiz

[ blyomlis'alp]| *

['fylt]
['ha:zo]
[3e'ni:]
[bo'?amtot]
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! Swiss German diphthong

? strong Swiss German [g]
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A.4 Italian IPA Symbols

IPA

CD(Q-(Q-(Q- Q-(Q- Q-(U' oY oo
AN N(%E%Q on >

. Qom0
(’ég (== ™ &

° = s(g g(i%(:’—‘(gw(gﬁ”‘“ﬁ"“

ETHPA

o

|
|
N N

NN Q& Qo QA

Hh

>I—'~I—'~(IJ'QO'Q Hh H M EOo o0 Q0 00 0 0 o0 T P e
(0]

He ..

(-

o

-

[

B

(o]

o= B BB CLHHFHKRKROGU

Example

parete
pane
bambina
repubblica
ladina
freddezza
mezzi
oggi
zona
Genova
terreno
nero
mezzo
bene
fumo
caffe
gondola
aggressivo
bilancio
lira
inizio
gnocco
prognosi
vacanza
bocconi
lama
midollo
figlio
bottiglia
menu
mamma
Napoli
nonno
banca
posata

[pa're:te]
[pame]
[bam biinal
[re pubblikal
[la'diinal
[fre'ddettsal
[meddzi]
[>ddsi]
|dzomal
['dzemoval
[terremo]
[ne:ro]
[meddzol
[beme]
[fumo]
ket
['gondolal
laggre'ssizvol
[bilant/o]
[lizra] —
imittsio
[olko)

[ proppozi|
[va'kantsal
[bo'kko:nil
[laimal
[mi'dollo]
['fiz£o]
[bo'tti.csa
[menul

[ mammal
[nazpoli]
[nonno
[bankal
[po'zaztal
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IPA ETHPA Example

o) o: volo ['vo:lo]

2 0 ricordo [ri'kordo]

o1 0: cosa ['ko:zal

p p presto [presto]

p pP_p scialuppa [faTuppa]
r r Rimini |'rizmini]

T r_r carro [karrol

S S salsa ['salsal

ss S_s deflusso |de'flusso|
J S scena ['[ema]

[f S_S riuscita [riu'[[ita]
t t cantata [kanta:tal
ts t_s zitto ['tsitto]

tf t_S cena ['tfemal]

it t_t viadotto [via'dotto]
tts  t_t_s merluzzo [merTuttso]
ttf  t_t_s nocciola [no'tt/o:lal
u u lumaca [lu'ma:kal
u u: luna [Tuina)

u “u acqua ['akkua]

v v vivace [vi'va:tfe]
VvV v_V provvidenza [provvidentsal
z z sbarra ['zbarral
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A.5 Suprasegmental Symbols

In addition to the phonetic symbols, the following ETHPA symbols of
suprasegmentals occur in the lexicas and the phonetic word transcrip-
tions. These are common for all languages.

IPA ETHPA

' ’ (apostrophe) Primary stress
, (comma) Secondary stress
- Syllable boundary
() Optional phone markers






Appendix B

Grammars and Lexica

A grammar is a collection of grammar rules. Each grammar rule consists
of a head, which denotes a constituent, the production symbol ‘==>7
and a body, which denotes a list of subconstituents.

headcons ==> [ { subcons } ] * [ penalty ] [ { keywords } ]

An empty subconstituent list denotes the empty production. The body
is terminated by the ‘*’ symbol. A grammar rule can optionally be
followed by an integer penalty value. If this penalty value is missing, a
default value of 1 is assumed. These penalty values are added during
rule application in the parser and are used to select the optimal solution
out of a number of ambiguous solutions.

The keywords ¢:INV’, ¢:WORD_END’, ¢:SENT_END’, and
‘:PARA_END’ may optionally be set after the penalty value or
the ¢x’ sign, if the penalty value is missing. ¢:INV’ makes the
corresponding node of a rule invisible in the resulting syntax tree.
¢ :WORD_END’, ¢:SENT_END’, and ¢:PARA_END’ are used for the
identification of syntactic word, sentence, and paragraph boundaries,
respectively, as explained in Section 2.3.

Each constituent is composed of a constituent identifier and a list of
feature terms associated with the constituent. Language specific con-
stituent identifiers have got the suffix ¢_E’, ¢ _F?, ‘_G’, or ‘_I’ that
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stands for English, French, German, or Italian, resp. Feature terms
can be atoms or variables. Variables start with a ‘7’ followed by an
identifier. The variable ‘7 itself is the “anonymous variable”, which is
usually applied as a “don’t care” marker. Atoms are constants, whose
identifiers must not start with a ¢7’. Term unification operates on all
variables with identical identifiers within one grammar rule.

A lexicon is a collection of so-called preterminal constituents to-
gether with their associated terminal elements (i.e., the individual
words or morphemes). Each lexicon entry consists of a constituent name
followed by the graphemic and phonemic representation of the terminal
element, and optionally followed by a penalty value and keywords:

cons "graphem_repr" "phonem_repr" [ penalty ] [ { keywords } ]

The following subsections list all English, French, German and Italian
grammar rules and lexicon entries that are necessary to understand
the examples given in this article. The grammars as well as the lexica
presented here are by far not complete. The complete, quadrilingual set
of all grammars and lexica of the polySVOX system comprises currently
about 3 700 grammar rules and about 27 000 lexicon entries.

B.1 English lexicon and grammars

English lexicon

[L1] PRGTRM () "<PB>" " 0 :WORD_END
[L2] PCT_E (f,s) "." " :WORD_END
[L3] PCT_E (f,s) ". " " :WORD_END
[L4] TRM_E (7) " " 0 :WORD_END
[L5] TRM_E (7) " " 100

[L6] TRM_E (abbr) "" nn
[L7] HYP_E () n_n nn

[L8] HYP_E () noon "o :WORD_END

[L9] PERSS_E (sg,p3,n,s) "ig" RENR AL
[L10] PERSS_E (pl,pl,n,o0) nogn "z
[L11] PREPS_E () "in" "’In"
[L12] PREF_E Q) "in+" "IIn-+"
[L13] PREF_E () "yp+" " Vp-+"
[L14] NTS_E (ntcll) "saint" "s’@nt+"

[L15] NTS_E (abbr) "st" "s’@nt+"
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[L16]
[L17]
[L18]

[L19]
[L20]
[L21]
[L22]
[L23]
[L24]
[L25]
[L26]
[L27]
[L28]
[L29]
[L30]
[L31]
[L32]
[L33]

[L34]
[L35]
[L36]
[L37]
[L38]
[L39]
[L40]
[L41]
[L42]
[L43]

[L44]
(L45]
(L46]
[L47]

NTE_E (ntcll)
NTE_E (abbr)
NTE_E (abbr)

NS_E (ncl7,sgenl,n)
NS_E (nclil,sgenl,n)
NS_E (nclil,sgenl,n)
NS_E (nclil,sgenl,n)
NS_E (nclil,sgenl,n)
NS_E (abbr,nosgen,n)
NPRS_E (nclil,sgenl,n)
NPRS_E (nclil,sgenl,f)
NE_E (ncli,sg)

NE_E (ncli,pl)

NE_E (ncl7,sg)

NE_E (ncl7,pl)

NE_E (abbr,sg)

NE_E (abbr,sg)

NGE_E (sgenl,sg)

VS_E (emutel,pres)

VS_E (emutel,pres)

VS_E (s,pres)

VS_E (s,pres)

VS_E (emutel,pres)

AUXBS_E (sg,p3,ind,pres,yes)
AUXHS_E (sg,p3,ind,pres,yes)

VE_E (emutel,pres,ind,pres,sg,pl)
VE_E (emutel,pres,ind,pres,sg,p2)
VE_E (emutel,pres,ind,pres,sg,p3)

AS_E (asl)

ASE_E (asi,pos)
ASE_E (as1,comp)
ASE_E (as1,sup)

"dat+"
Ilhat+ll
"input+"
"nation+"
"street+"
n St n
"asia+"
Ilmary+ n
nn

n s n

Ilell

Iles n
nn

Il)sll

n dat_'_ n

n di+ n
"input+"
n put+ n

"welcom+"
Il,sll

n 7Sll
Ilell
Ilell
"eS"

Ilgreat n
nn

n erll
Ilest n

English submorphemic lexicon

[L48]
[L49]
[L50]
[L51]
[L52]
[L53]
[L54]
[L55]
[L56]
[L57]
[L58]
[L59]
[L60]

OCONS_E (s,?) "b"  "b"
OCONS_E (s,7?) "c" o "k"
OCONS_E (s,7) LN UL R
OCONS_E (s,7?) "m" "m"
CCONS_E (s,7?) "b"  "b"
CCONS_E (s,7?) "m" "m"
CCONS_E (m,nf) "mb" "mb"
CCONS_E (s,f) "mb" "m"
SVOW_E (1n,?) "a" "le_I"
SVOW_E (sh,?) "a" "2q"
SVOW_E (1n,7?) "im "og_I"
SVOW_E (sh,?) L
SVOW_E (1n,?) o" "2@_U"

"d’e_Tt+"
llh b qt+ll
nos InpUt+ll

"n’e_IS(@)n+"

"stri’i:t+"
"strii:t+"
"re_ISE@+"

"m’e_Qri+"

n s n
nn

n s n
nn

IIZII

"d’e_It+"
Ild) a_I+II
no InpUt+ll
np 7Ut+n
"w’elk@m+"
Hzll

llzll
nn

nn
"z"

ngr ‘e _It"

n@ (r) "
"@st"
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[L61] SVOW_E (sh,?) not  moQe

[L62] SVOW_E (1n,?) gt v§ou:t

[L63] SVOW_E (sh,?) gty

[L64] UVOW_E O ngn Q"

[L65] UVOW_E () mim e

[L66] UVOW_E () nom  n@"

[L67] UVOW_E (O "u"  "je"

[L68] UNSUFF_E (n,p,nf) "ia" "Ie@"

English word grammar

[R1] PRGTRM () ==> PRGTRM () * :SENT_END
[R2] PCT_E (?F,?T) ==> PCT_E (?F,?T) * :SENT_END
[R3] N_E (?N,?G,7?SG) ==> NOUN_E (?N,?G,?SG,?NCL)
NGE_OPT_E (7SG,?N)
TRM_E (?NCL) *
[R4] NOUN_E (?N,?G,?SG,?NCL) ==> NS_E (?NCL,?SG,?G)
NE_E (?NCL,?N) * :INV
[R5] NPR_E (?7N,?7G,7?SG) ==> NPRS_E (?NCL,?SG,?G)
NE_E (?NCL,?N)
NGE_OPT_E (?7SG,?N)
TRM_E (?NCL) *
[R6] NGE_OPT_E (?7SG,?N) ==> x 0 :INV
[R7] NGE_OPT_E (?7SG,?N) ==> NGE_E (7SG,?N) * O :INV
[R8] NT_E Q) ==> NTS_E (?NTCL)
NTE_E (?NTCL)
TRM_E (?NTCL) =*
[R9]  AUXB_E (?N,?P,?M,?T,?P0S) ==> AUXBS_E (7?N,?P,?M,?T,?P0S)
TRM_E (std) *
[R10] AUXH_E (?N,?P,?M,?T,?P0S) ==> AUXHS_E (7?N,?P,?M,?T,?P0S)
TRM_E (std) *
[R11] PERS_E (?NR,?P,?G,?C) ==> PERSS_E (7?NR,?P,?G,?C)
TRM_E (std) * O
[R12] NS_E (ncli1,?,7?) ==> ESTEM_E (n) *
[R13] ESTEM_E (n) ==> CSYL_E (?,m,sh,r,i,nf)
UNSUFF_E (n,p,nf) *
[R14] CSYL_E (70,7?C,?PR,r,?IP,?FP) ==> SYLL_E (?0,n,ln,u,?IP,nf)
SYLL_E (s,?C,?PR,s,ni,?FP) =
[R15] SYLL_E (70,7C,?PR,s,?IP,?FP) ==> ONSCL_E (70,7IP)
SVOW_E (?PR,?FP)
CODCL_E (7C,7FP) =*
[R16] SYLL_E (70,7C,?PR,u,?IP,?FP) ==> ONSCL_E (?70,7IP)
UVOW_E ()
CODCL_E (7C,7FP) =*
[R17] ONSCL_E (n,?) ==> x 1 :INV
[R18] ONSCL_E (s,?P) ==> OCONS_E (s,?P) * 1 :INV
[R19] ONSCL_E (d,?P) ==> OCONS_E (d,?P) * 1 :INV
[R20] ONSCL_E (m,?P) ==> OCONS_E (m,?P) * 2 :INV

[R21] CODCL_E (n,?) * 0 :INV
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[R22] CODCL_E (s,?P) ==> CCONS_E (s,?P) * 2 :INV
[R23] CODCL_E (4,7P) ==> CCONS_E (d,?P) * 2 :INV
[R24] CODCL_E (m,?P) ==> CCONS_E (m,?P) * 2 :INV

English sentence grammar

[R25] PRGTRM () ==> PRGTRM () * :PARA_END
[R26] S_E (?T) ==> PERS_E (?N,?P,7,s)
VP_E (ind,?T,?N,?P,?,fin)
PP_.E (O
PCT_E (f,s) *
[R27] S_E (?T) ==> NP_E (?N,7G)
VP_E (ind,?T,?N,?P,?,fin)
NP_E (7,7)

PCT_E (f,s) *
[R28] VP_E (inf,?T,?N,?P,?,?) ==> AUXB_E (?N,?P,inf,?T,pos) *

[R29] PP_E () ==> PREP_E (7)

NP_E (7,7) =*
[R30] NP_E (?N,?G) ==> NPRP_E (7,7)

N_REP_E (?N,?G) *
[R31] N_REP_E (?N,7G) ==> N_E (?N,?G,?) * :INV
[R32] N_REP_E (?N,7?G) ==> N_E (7,7,7)

N_REP_E (7N,7?7G) * :INV
[R33] NPRP_E (?N,?G) ==> NT_E (?)

NPR_REP_E (7?N,7?G) * :INV
[R34] NPR_REP_E (?N,7?7G) ==> NPR_E (?N,?G,?) * :INV
[R35] NPR_REP_E (?N,7?7G) ==> NPR_E (7,7,7)

NPR_REP_E (7N,?7G) * :INV

English paragraph grammar
[R36] P_E O ==> S_REP_E () PRGTRM () *
[R37] S_REP_E () ==> S_E (?7) * :INV

[R38] S_REP_E () ==> S_E (7)
S_REP_.E () * 5 :INV

English inclusion grammars

[R39] NOUN_E (?NR,?,7,7) ==> NOUN_F (?NR,?) * 150

[R40] N_E (?NR,?,7) ==> N_F (?NR,?) * 100
[R41] NPR_E (?7,7,7) ==> PRN_F () * 100

[R42] ADJ_E (?) ==> ADJ_F (7,7,7) * 100
[R43] NP_E (?NR,?G) ==> NP_F (?NR,?,7G) * 80
[R44] NP_E (?NR,7) ==> NP_F (?NR,?,?) * 90
[R45] N_E (7,7,7) ==> NP_F (?7,7,?) * 90

[R46] NOUN_E (?NR,?,?,?7) ==> NOUN_G (?,7?NR,?) * 120
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[R47] N_E (7NR,?,7) ==> N_G (?NR,?,?) * 100

[R48] NPR_E (?7,7,7) ==> PRN_G (?,7,?7) * 100

[R49] NPR_E (?7,7,7) ==> NP_G (7,7,7,7,7) * 110

[R50] ADJ_E (?) ==> ADJ_G (?,7,7,7,7) * 110

[R51] NP_E (7,7) ==> NP_G (?,7,7?,7,7) * 90

[R52] N_E (7,7,7) ==> NP_G (7,7,7,7,7) * 90

B.2 French lexicon and grammars

French lexicon

[L69] PRGTRM () "<pPB>" "o 0 :WORD_END
[L70] PCT_F (f,s) "." "o :WORD_END
[L71] PCT_F (f,s) ". " "o :WORD_END
[L72] TRM_F (?) " "o 0 :WORD_END
[L73] TRM_F (?) " "o 100

[L74] TRM_F (abbr) "" "o 1

[L75] NS_F (sgml,sgfl,plml,plfl) "ami+"  "ami+"
[L76] NS_F (non,sgf2,non,plfl) "date+" "dat (@) +"
[L77] NS_F (non,sgf2,non,plfl) "femme+" "fam+"
[L78] NS_F (sgmil,non,plml,non) "film+" "film+"
[L79] NS_F (non,sgf2,non,plfl) "nation+" "nasj~o+"
[LL80] PRNS_F () "chirac+" "SiRak+"
[L81] NESG_F (m,sgml) " "

[L82] NESG_F (f,sgfl) "e! "

[L83] NESG_F (f,sgf2) "o i

[L84] NEPL_F (m,plmil) "st "o

[L85] NEPL_F (f,plfl) "s" "

[L86] VS_F (gl,sclla,nonrefl,?,non) "dat+" "dat+"
[L87] VE_F (gl,sclla,ind,pres,sg,persl) "e" "(@"
[L88] VE_F (gl,sclla,ind,pres,sg,pers2) "es" "@)"
[L89] VE_F (gl,sclla,ind,pres,sg,pers3) "e" "@)"
[L90] VE_F (gl,sclla,ind,pres,pl,persl) "ons" "ot
[L91] VE_F (gl,sclla,ind,pres,pl,pers2) "ez" "e"
[L92] VE_F (gl,sclla,ind,pres,pl,pers3) "ent" "@)"
[L93] AS_F (v,sgml,sgf7,plml,plfli,non) "bont+" "b~o+"
[L94] AS_F (n,sgml,sgfl,plml,plfl,advl) "fatal+" "fatal+"
[L95] AS_F (a,sgml,sgf3,plml,plfl,non) "grand+" "gR"at+"
[Lo6] AS_F (n,sgml,sgfl,plml,plfi,non) "noir+" "nwaR+"
[L97] AE_F (sg,m,sgml) e "

[L98] AE_F (sg,f,sgfl) "e! "e)"
[L99] AE_F (sg,f,sgf3) "e! "d(e)"
[L100] AE_F (sg,f,sgf7) "ne" "n(@)"
[L101] AE_F (pl,m,plml) "gt "o
[L102] AE_F (pl,f,plf1) "s" "o
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French word grammar

[R53]
[R54]
[R55]

[R56]
[R57]

[R58]

[R59]

[R60]

[R61]

[R62]

[R63]

PRGTRM ()
PCT_F (?F,?T)
N_F (?NR,?G)

NOUN_F (sg,?G)
NOUN_F (sg,?G)

NOUN_F (p1,?G)

NOUN_F (pl,7?G)

ADJ_F (7P0S,7?N,7G)

ADJ_F (7P0S,7N,7G)

ADJ_F (7P0S,7N,7G)

ADJ_F (7P0S,7N,7G)

==>

==>

PRGTRM () * :SENT_END
PCT_F (?F,?T) * :SENT_END
NOUN_F (?NR,?G)

TRM_F (?) =*

NS_F (?SGM,7?,7,7)

NESG_F (?G,?SGM) * :INV
NS_F (?,7SGF,?,?)

NESG_F (?G,?SGF) * :INV
NS_F (?SGM,?,7PLM,?)
NESG_F (?G,?SGM)

NEPL_F (?G,?PLM) * :INV
NS_F (?,7?SGF,?,?PLF)
NESG_F (?G,?7SGF)

NEPL_F (?G,?PLF) * :INV
AS_F (?P0S,7SGM,?,7,7,7)
AE_F (?N,7?G,?SGM)

TRM_F (?7) x

AS_F (?P0S,7,7SGF,?,7,7)
AE_F (7?N,?G,?SGF)

TRM_F (?) *

AS_F (?P0S,?7SGM,?,?PLM,?,7)
AE_F (?7,7G,7SGM)

AE_F (7N,7?G,?PLM)

TRM_F (?7) *

AS_F (?P0S,?,?SGF,?,?PLF,?)
AE_F (7,7G,7SGF)

AE_F (7?N,7?G,?PLF)

TRM_F (?) =*

French sentence grammar

[R64]

NP_F (?N,7P,7G) ==> N_F (?N,7P,7G)
ADJ_F (n,?N,7G) *

French inclusion grammars

[R65]
[R66]
[R67]
[R68]
[R69]

ADJ_F (7,7,7)
PRN_F (O

V_F (?,?,7NR,?P,?7,7,non) ==> V_E (7,7,7NR,7P) * 180

N_F (7NR,?)
ADJ_F (?,7N,?)

==> ADJ_E (?) * 100
==> NPR_E (7,7,7) * 100

==> N_G (7NR,?,7) * 100

==> ADJ_G (?7,7N,7,7,7) * 100
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B.3 German lexicon and grammars

German lexicon

[L103] PRGTRM () "<PB>" " 0 :WORD_END

[L104] PCT_G (£f,s) "." "o :WORD_END

[L105] PCT_G (£f,s) ". " "o :WORD_END

[L106] TRM_G (?) "o e 0 :WORD_END

[L107] TRM_G (7?) nmn "o 100

[L108] TRM_G (abbr) "" "o 1

[L109] NS_G (sk3,pk7,m) "film+" "I fTIm+"
[L110] NS_G (ski1,pk4,f) "nation+" "na’t_s"io:n+"
[L111] NS_G (sk2,non,m) "ton+" "to:n+"

[L112] NES_G (sk1,?) o o
[L113] NES_G (sk2,n) o no
[L114] NES_G (sk2,g) ngn ngn
[L115] NES_G (sk2,d) o o
[L116] NES_G (sk2,a) o o
[L117] NES_G (sk3,n) o o

[L118] NES_G (sk3,g) "es" "@s"
[L119] NES_G (sk3,d) "o "o
[L120] NES_G (sk3,d) "e! "@"
[L121] NES_G (sk3,a) " "
[L122] NEP_G (pk4,7?7) "en" "@n"
[L123] NEP_G (pk7,n) "e! "@"
[L124] NEP_G (pk7,g) "e" "@"
[L125] NEP_G (pk7,d) "en" "@n"
[L126] NEP_G (pk7,a) "e! "@"
[L127] VS_G (v1,a,v,non) "datier+" "da’ti:r+"
[L128] VS_G (v7,a,v,non) "geb+" "ge:b+"
[L129] VS_G (v6,a,auxh,non) "hab+" "Jha:b+"
[L130] VS_G (v6,b,auxh,non) "ha+" "ha+"
[L131] VS_G (v1,a,v,a) "16s+" "12:z+"
[L132] VE_G (vl,a,ind,pres,sg,persl) "e" "e"
[L133] VE_G (vl,a,ind,pres,sg,pers2) "st" "st"
[L134] VE_G (vl,a,ind,pres,sg,pers3) "t" g
[L135] VE_G (v6,a,ind,pres,sg,persl) "e" "@"
[L136] VE_G (v6,b,ind,pres,sg,pers2) "st" "t
[L137] VE_G (v6,b,ind,pres,sg,pers3) "t" g
[L138] VE_G (v12,a,ind,pres,sg,persl) "iere" "j:r@"
[L139] VE_G (v12,a,ind,pres,sg,pers2) "ierst" ")i:rst"
[L140] VE_G (v12,a,ind,pres,sg,pers3) "iert" "jrt"
[L.141] P1SUFF_G () "end+" "@nd+"
[L142] P2PREF_G () "get+" "g@+"
[L143] P2E_G (v1) "et" "et"
[L144] P2E_G (v1) "t "g"
[L145] P2E_G (v12) "jert" "i:rt"
[L146] AS_G (pos,non,non) "schwarz+" "’Svart_s+"

[L147] AE_G (typ2,n,sg,f) ng ngn
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[L148] AE_G (typ2,g,sg,f) "en" "@n"
[L149] AE_G (typ2,d,sg,f) "en" "On"
[L150] AE_G (typ2,a,sg,f) nen nQn
[L151] ARTDEFS_G (n,sg,m) "der" "Ide:r"
[L152] ARTDEFS_G (n,sg,f) "die" "rgqi:"
[L153] PREF_G (v,p3,sep) "ab+" " ?ap+"
[L154] PREF_G (v,p3,sep) "an+" "> 7an+"
[L155] CONJS_G (sub,front,c) "als" "1?3ls"

German word grammar

[R70] PRGTRM () ==> PRGTRM () * :SENT_END
[R71] PCT_G (?F,?T) ==> PCT_G (7F,?T) * :SENT_END
[R72] N_G (?C,?NR,?G) ==> NOUN_G (7?C,?NR,?G)

TRM_G (7) *
[R73] NOUN_G (?C,sg,?G) ==> NS_G (?SGCL,?,7G)

NES_G (?SGCL,?C) * :INV
[R74] NOUN_G (?C,pl,?G) ==> NS_G (?,?7PLCL,?G)

NEP_G (?PLCL,?C) * :INV
[R75] P2_G (7,7) ==> PREF_OPT_G (v,?,7)

P2PREF_G ()

VS_G (?VCL,?,v,?)
P2E_G (?VCL)
TRM_G (?) *
[R76] P2_G (7,7) ==> PREF_OPT_G (v,7,7)
VS_G (?VCL,?,v,?)
P2E_G (?VCL)
TRM_G (?) *
[R77] PREF_OPT_G (?U,?T,?S) ==> * 0 :INV
[R78] PREF_OPT_G (?U,?T,?S) ==> PREF_G (?U,?T,?S) * 0 :INV

German sentence gramimar

[R79] NP_G (7C,7?NR,?P,?G,?NT) ==> DET_G (?C,?NR,?G,?F,?TYP)
NPNUC_G (7C,?7NR,?7P,?G,7TYP,?NT) *
[R80] NP_G (?C,?NR,?P,?G,?NT) ==> DET_G (?7C,?NR,?G,?F,?TYP)
ADJ_G (7C,?NR,?G,?GR,?TYP)
NPNUC_G (7C,?7NR,?7P,7G,7TYP,7NT) *

German inclusion grammars

[R81] AS_G (p) ==> AS_E (?,pos) * 150
[R82] NS_G (sk2,pkl,?) ==> NS_E (?7,7,?) * 150
[R83] NS_G (sk2,pk2,?) ==> NS_E (?,7,?) * 150

[R84] VS_G (vi,a,v,?) ==> VS_E (?7,pres) * 150
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[R85] PREF_G (7,p3,sep) ==> PREF_E () * 100
[R86] VS_G (v12,a,v,?REF) ==> VS_F (?,7?,7REF,?,non) * 160
[R87] N_G (?NR,?,7) ==> N_E (?NR,?7,7) * 100
[R88] PRN_G (?7,7,7) ==> NPR_E (?7,7,?) * 100
[R89] PRN_G (?,7?NR,7?) ==> NP_E (?NR,?) * 110
[R90] V_G (7,7,7,7,7) ==> V_E (?,7,7,7) * 100
[RO1] ADJ_G (?7,7,7,7,7) ==> ADJ_E (?7) * 110
[R92] NP_G (?7,7NR,7,7,7) ==> NP_E (?NR,?) * 80
[R93] NPNUC_G (?,?NR,pers3,?,?,?) ==> NP_E (?NR,?) * 90
[R94] PP_G (?7,7,7,7) ==> PP_E () * 100

[R95] N_G (?NR,?,7) ==> N_F (?NR,?) * 110
[R96] PRN_G (7,7,7) ==> PRN_F () * 110

[R97] PRN_G (?7,7NR,?) ==> NP_F (?NR,?,?) * 110
[R98] V_G (?7,7,7,7,7) ==> V_F (?,7,?NR,?,7,7,n0on) * 120
[R99] ADJ_G (?,7,7,7,7) ==> ADJ_F (?7,7,7) * 110
[R100] NP_G (?,?NR,?,?,7) ==> NP_F (?NR,?,7) * 90
[R101] NPNUC_G (?,?NR,pers3,?,?,?) ==> NP_F (?NR,?,?) * 90
[R102] PP_G (?,?NR,?,7) ==> PP_F (?NR,?) * 110
[R103] N_G (7,7,7) ==> N_I (7,?) * 110
[R104] PRN_G (?C,?NR,?G) ==> NPR_I (?) * 110
[R105] PRN_G (?,?NR,7?) ==> NP_I (?NR,?,?) * 110
[R106] ADJ_G (?,7,7,7,7) ==> ADJ_I (?7,7) * 110

B.4 Italian lexicon and grammars

Italian lexicon

[L156] PRGTRM () "<pPB>" "o 0 :WORD_END
[L157] PCT_I (f,s) "." "o :WORD_END
[L158] PCT_I (f,s) ". " "o :WORD_END
[L159] TRM_I (?) " "o 0 :WORD_END
[L160] TRM_I (7) nmn "o 100

[L161] TRM_I (abbr) "" "o 1

[L162] NS_I (null,m) "caff‘e+" "kaf_ f’E+"

[L163] NS_I (e,m) "latt+" "1’2at_t+"

[L164] NE_I (e,sg,m) "e" "e"

[L165] NE_I (e,pl,m) "y "in

[L166] NE_I (null’sg’m) nn nn
[L167] NE_I (null,pl,m) "" "o

[L168] AS_I (o) "dat+" "d’a:t+"
[L169] AE_I (o,sg,m) "o" "o"
[L170] AE_I (o,pl,m) "i" it

[L171] AE_I (O,Sg,f) ngn ngn
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[L172] AE_I (O,pl,f) ngn ngt

Italian word grammar

[(R107] PRGTRM () ==> PRGTRM () * :SENT_END
[(R108] PCT_I (?F,?T) ==> PCT_I (?7F,?T) * :SENT_END
[(R109] N_I (7N,?G)  ==> NOUN_I (?N,?G)

TRM_I (7) *

[R110] NOUN_I (?N,?G)==> NS_I (?CL,7G)

NE_I (?CL,?N,?G) * :INV
[R111] ADJ_I (?N,?G) ==> AS_I (?CL)

AE_I (7CL,7N,7G)

TRM_I (?) =*






Appendix C

Input Factors for Prosody
Control

C.1 Input Factors for Duration Control

The following tables list all 349 input factors extracted for segment du-
ration modeling. The individual factors are described in Section 7.3.4.
The tables contain the rank of each input factor, as estimated by fac-
tor relevance determination. The table entry of a factor that did not
exist in the prosody corpus is left empty. The rank of a factor used by
all duration models of a specific language has a dark grey background,

e.g., 10 . The rank of a factor used at least by one duration model is

indicated with a light grey background, e.g., 66 .
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German Factor French
phone phone
21012 2[-1]0]1]2
139 | 107 | 53 | 167 | 87 vowel 171 8 | 1 |165 (197
218 | 52 |44 | 28 | 148 | gliding vowel |131|118]|272 152 |271

triphthong
106 | 215 |49 | 189 | 76 consonant 202 (215 | 51 | 50 (166
151 [ 39 | 66 | 104 | 296 affricate 148 | 275 | 300 | 299 295

48 | 255 |14 | 267 | 277 glottal closure |273|279 |282 | 140 287
220 | 172 {1791 30 | 36 preplosive pause | 106 | 216 | 269 | 164 170

176 | 102 41 | 82 speech pause 203 | 20 6 |124
298 |10 |20 | 304 | 19 voiced 65 | 31 | 23 | 297 |301
245 | 97 | 2 | 226 | 269 long 278139 | 7 | 60 |276
300 [ 29 |45 | 11 | 121 syllabic 168 | 204 | 213 | 142 172
262 | 32 | 1 | 147 | 136 plosive 41 | 286 | 144 | 308 289
156 | 111 | 78 | 72 | 265 nasal 40 126 | 4 |47 |291
193 | 77 | 6 | 94 | 69 trill 224 | 296 | 105 | 283 |306
tap
241 | 99 | 74| 24 | 187 fricative 63 |22 | 2 | 90 |290
lateralfricative

197 | 229 169 | 133 | 276 approximant 293126 | 9 | 97 (159
181 | 86 | 5 | 141 | 261 |lateralapproximant|292 | 127|307 | 285 |103

Table C.1: Segmental input factors for segment duration control.
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German Factor French
phone phone

2 |-1]0]1]2 2[-1]0]1]2
223 | 152 | 65 | 170 | 248 bilabial 201 17 104 | 192 | 122
126 | 109 | 15 | 84 | 154 labiodental 66 |16 | 12 | 49 | 120
dental
71 | 127 ] 12 | 108 | 230 alveolar 64|13 |44 | 48 | 123
213 | 110 | 242 | 163 | 249 postalveolar 246 21 |43 | 91 | 121
retroflex
153 {114 | 16 | 59 | 250 palatal 96 | 25 | 158 [ 52 | 212
309 | 57 | 228 | 51 | 103 velar 116| 24 [ 267 | 53 | 210
219 | 201 [ 129 | 37 | 180 uvular 247110 268 | 46 | 38
pharyngeal
157 | 135 9 | 171 | 207 glottal 13518 | 19 | 27 | 211
146 | 27 | 7 | 164 | 211 [front / frontclosing|113| 93 | 15 | 209 | 100
143 | 25 | 8 | 61 | 79 |central / centring | 167|229 | 266 | 114 | 205
125 | 256 | 202 | 160 | 144 |back / backclosing|112| 67 | 14 | 208 | 99
93 | 274 | 58 | 47 | 210 close 132259 | 257 | 227 | 101
174 |21 | 17 | 216 | 306 close-mid 176|128 [ 217 | 225 | 62
209 | 252 | 13 | 100 | 206 open—mid 175( 151 | 258 | 228 | 98
134 | 22 | 183 | 234 | 200 open 177|150 | 56 | 226 | 102
132 | 62 | 18 | 26 | 227 low F1 133|149 | 33 | 180 | 139
221 | 43 | 38 | 119 | 188 middle F1 17321935 | 119 | 129
64 | 67 | 68 | 42 | 185 high F1 174|218 | 34 | 181 | 270

Table C.2: Segmental input factors for segment duration control.
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German Factor French

syllable syllable
2-1]0|1]2 21012
145 | 80 | 4 | 85 [ 131 unstressed 262 (187 11 | 88 |190
140 | 246 | 23 | 50 | 101 stress [1] 264 |84 195 | 141 | 189
116 | 253 | 60 | 123 | 63 stress [2] 265 |86 | 193 | 238 182
175 {120 | 124 | 128 | 73 stress [3] 83 |130| 196 | 89 |183
158 | 222 | 833 | 81 | 118 stress [4] 263 |188[ 194 | 239 | 191
199 | 196 | 91 | 98 | 88 stress [E] 11587 | 36 | 241 | 61

54 | 96 | 191 | phrase boundary 0 |157|153| 214 | 240 | 109
137|232 | 55 | 113 | 192 | phrase boundary 1 |221(186| 30 | 237 | 68
208 | 89 | 75 | 70 | 112 | phrase boundary 2 |220|161| 95 | 236 | 108
105 95 | 31 | 34 | 35 |no phrase boundary| 81 (185 3 | 28 | 69
194 | 168 | 190 | 235 | 117 | phrase type P 77 1253| 73 | 76 |117
161 | 90 | 239 | 238 | 263 | phrase type S | 79 [254| 178 | 243 | 260
243 | 231 | 173 | 251 | 268 phrase type T | 78 (162 74 | 75 |125
177 | 182 | 186 | 236 | 275 phrase type E 223|256 137 | 136 | 94
259 | 204 | 212 | 244 | 214 | phrase type Y | 80 [143| 163 | 242 | 261
278 | 254 | 237 | 198 | 162 | phrase type YC |[222255(179 | 72 |111
307 | 83 | 165 | 283 | 302 syllen: short 138 298| 57 | 54 | 110
299 | 155 | 46 | 224 | 297 syllen: long 288284/ 29 | 55 | 134

Table C.3: Accentuation, phrasing, and syllable length input factors
for segment duration control.
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German| Factor [(French
291  |phone pos| 302
92 |first phone| 32
40 onset 245
130 nucleus 169
260 coda 244

Table C.4: Syllable level input factors for segment duration control.
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German Factor French
233 L-headed syl pos: salient syl of a foot 234
159 L-headed syl pos: 1. non-salient syl of foot 85
166 L-headed syl pos: 2. non-salient syl of foot 233
225 L-headed syl pos: 3. non-salient syl of foot 154
282 L-headed syl pos: 4. non-salient syl of foot 156
280 L-headed syl pos: 5. non-salient syl of foot 198
279 L-headed syl pos: 6. non-salient syl of foot 232
281 L-headed syl pos: 7. non-salient syl of foot 235

272 L-headed syl pos: 8. non-salient syl of foot
L-headed syl pos: > 8. non-salient syl of foot
195 |L-headed foot length: only one salient syl in foot| 280
301 L-headed foot length: short 147
290 L-headed foot length: long 231
203 R-headed syl pos: salient syl of a foot 207
178 R-headed syl pos: 1. non-salient syl of foot 37
217 R-headed syl pos: 2. non-salient syl of foot 42
305 R-headed syl pos: 3. non-salient syl of foot 155
257 R-headed syl pos: 4. non-salient syl of foot 200
240 R-headed syl pos: 5. non-salient syl of foot 184
142 R-headed syl pos: 6. non-salient syl of foot 206
270 R-headed syl pos: 7. non-salient syl of foot 199
308 R-headed syl pos: 8. non-salient syl of foot
R-headed syl pos: > 8. non-salient syl of foot
122 |R-headed foot length: only one salient syl in foot| 146
292 R-headed foot length: short 145
284 R-headed foot length: long 294

Table C.5: Foot level input factors for segment duration control.
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German Factor French
56 L-headed foot nr: first foot of phrase 251
288 L-headed foot nr: foot nr in phrase 305

247 | L-headed foot pos: sentence initial foot | 277
149 L-headed foot pos: sentence final foot | 107
115 L-headed foot pos: phrase initial foot | 230
205 L-headed foot pos: phrase final foot 250
184 | L-headed foot pos: phrase central foot | 252
150 |L-headed foot pos: phrase with one foot| 304
286 R-headed foot nr: first foot of phrase | 249
258 R-headed foot nr: foot nr in phrase 281
287 | R-headed foot pos: sentence initial foot| 160
285 R-headed foot pos: sentence final foot 92
289 R-headed foot pos: phrase initial foot 82
294 R-headed foot pos: phrase final foot 303
295 | R-headed foot pos: phrase central foot | 248
293  |R-headed foot pos: phrase with one foot| 274

271 phrase length [syl] 59
266 phrase length [L-foot] 71
303 phrase length [R-foot] 58
138 sentence length [syl] 45
264 sentence length [L-foot] 70
273 sentence length [R-foot] 309
3 speech rate [pps] 5

Table C.6: Phrase and sentence level input factors for segment dura-
tion control.
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C.2 Input Factors for F{ Control

The following tables list all 910 input factors extracted for Fy model-
ing. The individual factors are described in Section 7.2.3. The tables
contain the rank of each input factor, as estimated by factor relevance
determination. The table entry of a factor that did not exist in the
prosody corpus is left empty. The rank of a factor used by all duration

models of a specific language has a dark grey background, e.g., 10 .
The rank of a factor used at least by one duration model is indicated

with a light grey background, e.g., 66 .

syllable Factor

B3l 21|01 ]2]3]4]5]6
242 | 568 | 248 | 411 | 527 | 333 | 492 | 472 | 646 | 652 phrase boundary 0
513 | 213 | 477 | 352 [ 102 | 143 | 511 | 363 | 318 | 440 |phrase boundary 1
570 | 359 | 172 | 293 | 234 | 188 | 398 | 223 | 315 | 100 |phrase boundary 2
76 | 20 | 49 | 422 |136| 99 | 279 | 129 | 316 | 504 | phrase type P
15 | 260 | 81 | 111 | 19 | 481 | 134 | 238 | 167 | 565 | phrase type T
36 | 32 |11 | 13 | 12 | 78 | 18 | 292 | 210 | 384 | phrase type S
10 | 26 | 5 3 1 9 | 27 | 16 | 47 | 348 | phrase type Y
253139 |355| 51 | 55 | 219 | 538 | 551 | 651 | 299 | phrase type E
96 | 84 | 73 | 28 | 25 | 64 | 59 | 89 | 66 | 335 | phrase type YC

201 | 523 | 325 | 496 | 463 | 643 | 654 | phrase type F
31 | 286 |173| 33 | 79 | 17 | 186 | 337 | 82 | 237 first phrase
351 | 40 | 217|169 |147| 62 | 52 | 39 | 322|120 |phrase length [syl]
88 | 601 | 553 | 69 | 229 | 214 | 58 | 189 | 369 | 447 short phrase
60 | 54 | 14 | 4 | 368 | 524 | 529 | 525 | 639 | 473 stress |E]
575 | 271 | 57 | 8 | 43 | 420 | 311 | 350 | 382 | 598 stress [1]
526 | 240 | 85 | 35 122 | 409 | 613 | 367 | 517 | 413 stress [2]
433 | 434 {302 | 157 | 609 | 399 | 468 | 174 | 332 | 695 stress 3]
277|262 | 203 | 23 | 465 | 190 | 403 | 679 | 376 | 421 stress [4]
600 | 170 | 92 | 7 | 184 | 393 | 336 | 341 | 540 | 478 unstressed

Table C.7: Input factors for German Fy control.
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syllable Factor
B3l 2101 ]2]3]4]5]6€6
130|192 | 32 | 67 | 162 | 463 | 504 | 559 | 649 | 350 |phrase boundary 0
403 (242 | 44 | 12 | 14 | 481 | 90 [ 154 | 614 | 336 |phrase boundary 1
104|108 | 466 | 86 | 172|180 | 65 | 91 | 455 | 365 |phrase boundary 2
57 [166 | 405 | 194 | 22 | 185 | 589 | 650 | 437 {126 | phrase type P
158 |105| 39 | 56 | 148 | 63 |112 306|132 | 41 phrase type T
114 | 74 (134 | 26 | 23 | 280 (264|115 | 460 | 260 | phrase type S
43 | 10 1 6 8 | 36 [174| 16 |143 | 252 | phrase type Y
116 | 62 |111 | 15 | 11 | 48 | 64 | 46 | 439 | 390 | phrase type E
82 | 20 | 88 | 19 | 30 | 37 |300| 68 | 29 | 178 | phrase type YC
110 | 99 | 433 | 519 | 574 | 602 | 339 | phrase type F
377 | 81 | 24 | 2 |159 | 33 | 343 | 387 | 488 | 532 first phrase
190|137 | 358 | 61 | 28 | 42 (156 [ 113 | 181 | 97 |phrase length [syl]
319|474 | 72 |106 | 142 | 21 (234 | 59 | 276 | 98 short phrase
381 | 25 | 147 | 40 | 71 | 472 | 393 | 216 | 291 | 183 stress |E]
256 198 | 7 5 | 54 | 583 |179 | 182|203 | 616 stress [1]
327 (151 | 92 | 27 | 51 | 294 | 432 | 421 | 478 | 207 stress [2]
5731349 | 76 | 38 | 186 | 512 | 233 | 352 | 217 | 314 stress [3|
375 | 489 | 103 | 454 | 435 | 124 | 431 | 580 | 499 | 531 stress [4]
258 (312 | 18 | 9 | 94 | 282|263 | 544 | 341 | 457 unstressed
Table C.8: Input factors for French Fy control.
German Factor French
syllable syllable
2-1]0] 1] 2 2110 1] 2
561 | 510 | 437 | 346 | 258 | nucleus 1 phone | 646 | 534|131 | 528 | 571
628 | 563 | B3 | 547 | 135 | nucleus 2 phones | 553 | 380 | 442 | 520 | 523
nucleus >2 phones
295|115 | 206 | 128 | 41 onset size 80 | 464|340 | 395 | 315
235|130 90 | 83 | 77 coda size 30253 | 77 | 96 | 152

Table C.9: Input factors for German and for French Fy control.
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German Factor French
syllable syllable
2|-1]0]1]2 2| -1]0 ]| 1]2
429 | 297 | 207 | 168 | 485 Nuc|[1] long 269 | 73 | 160 | 386 | 309
566 | 689 | 587 | 701 | 653 Nuc|[1] nasal 146 | 58 | 424 | 100 | 219
Nuc|1] trill

500 | 655 | 623 | 691 | 669 |  Nuc[l] approximant | 587 | 599 | 576 | 548 | 620
597 | 438 | 602 | 686 | 615 |Nuc[l] lateralapproximant

607 | 678 | 644 | 692 | 554 Nuc|[1] bilabial
584 | 664 | 519 | 626 | 690 Nuc|[1] alveolar
484 | 650 | 618 | 675 | 668 Nuc[1] palatal 550 | 493 | 630 | 586 | 506
706 | 704 | 705 | 680 | 707 Nuc|1] velar 461 | 537 | 444 | 382 | 313

537 | 498 | 257|212 | 358 | Nuc[l] front(closing) | 482 | 303 | 144 | 320 | 533
665 | 501 | 631 | 670 | 619 | Nuc[l] central/centring | 615 | 565 | 222 | 335 | 485
548 343165 | 166|199 | Nuc|[1] back(closing) | 299|167 | 274|155 | 561

555 | 280 | 404 | 415 | 245 Nuc[1] close 490 | 357 | 149 | 645 | 278
546 | 585 | 567 | 684 | 632 Nuc[1] close-mid 401 | 170 | 244 | 266 | 427
424 | 405 | 274 | 160 | 252 Nuc|1] open-mid 250 (295 | 436 | 176 | 332
457 | 195 | 183 | 423 | 442 Nucl[1] open 353 | 245 | 125 | 187 | 447
595 | 256 | 505 | 608 | 560 Nuc[1] low F1 402 | 285 | 66 | 633 | 289
194 | 408 | 208 | 272 | 361 Nuc|1] middle F1 215|471 | 268 | 206 | 161
379 | 381 | 356 | 416 | 458 Nuc|1] high F1 95 | 347 | 275|129 | 326
443 | 310 | 314 | 392 | 386 Nuc[2] long 257 118 | 60 | 522 | 229
573 | 685 | 583 | 700 | 648 Nuc|2| nasal 430 | 45 | 17 | 70 | 52
Nuc[2] trill

Nuc|2] approximant 675 | 564 | 657 | 562 | 658
596 | 445 | 610 | 681 | 617 |Nuc|2] lateralapproximant

611 | 677 | 634 | 694 | 564 Nuc[2] bilabial
578 | 662 | 518 | 630 | 696 Nuc|2]| alveolar
Nuc[2| palatal 665 | 578 | 652 | 568 | 660

Nuc|2| velar
606 | 395 | 687 | 470 | 414 |  Nuc|2| front(closing) | 345 | 366 | 85 | 169 | 473
649 | 489 | 621 | 666 | 579 | Nuc|2] central/centring | 592 | 535 | 195 | 308 | 396
449 | 275|495 | 187 (222 | Nuc|2] back(closing) | 479 | 378 | 136 | 249 | 230

Table C.10: Input factors for German and for French Fy control.
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German Factor French
syllable syllable

2| -1]0 [ 1 ]2 2 -1 ] 0| 1] 2
572 | 645 | 198 | 480 | 227 Nuc[2] close 541 | 487 | 359 | 452 | 356
676 | 200 | 338 | 674 | 569 Nuc|2| close-mid 486 | 492 | 101 | 141 | 293
276 | 107 | 284 | 467 | 91 Nuc|2| open-mid 582 | 448 | 317 | 364 | 605
431 | 254 | 127 | 588 | 574 Nuc|2]| open 138 | 119 | 413 | 469 | 189
702 | 391 | 385 | 400 | 558 Nuc|2| low F1 558 | 238 | 292 | 368 | 497
232 (131 | 461 | 417 | 418 Nuc|2] middle F1 235 | 529 | 164 | 451 | 329
599 | 171 | 471 | 699 | 535 Nuc|2| high F1 397 | 399 | 383 | 267 | 637
660 | 557 | 116 | 539 | 594 Onset[1] consonant 549 | 539 | 165 | 232 | 634
233 | 661 | 226 | 592 | 562 Onset|[1] affricate 683 | 678 | 687 | 679 | 670
331 | 406 | 624 | 545 | 300 | Onset[1] glottal closure | 659 | 668 | 262 | 627 | 636
119 | 144 | 530 | 95 | 247 | Onset[1] preplosive pause | 385 | 394 | 213 | 87 | 498
106 | 46 | 2 6 |211 Onset[1] voiced 202 47 | 4 3 | 121
714 | 713 | 715 | 716 | 711 Onset|[1] strong

441 | 372 | 342 | 74 | 97 Onset[1] plosive 196 | 328 | 316 | 243 | 598
380 | 534 | 436 | 142|324 Onset|1] nasal 468 | 426 | 456 | 225 | 606
298 | 121 | 371 | 353 | 340 Onset[1] trill 411 | 354 | 342 | 304 | 556

Onset|1] tap
612 | 290 | 330 | 251 | 215 Onset|[1] fricative 123 | 406 | 310 | 369 | 551
Onset|1] lateralfricative
Onset[1] approximant
75 | 138 (103 | 72 | 191 [Onset|1] lateralapproximant| 184 | 370 | 157 | 279 | 484
37 | 202 | 479 | 482 | 506 Onset|1] bilabial 283 [ 208 | 360 | 362 | 445
321 {105 | 193 | 29 | 486 Onset[1] labiodental 231 (128 | 117 | 205 | 588
Onset|1] dental
265 | 113 | 151 | 464 | 487 Onset[1] alveolar 517 | 480 | 197 | 428 | 572
282 | 533 | 67 | 178 | 571 Onset|1] postalveolar 494 | 458 | 603 | 527 | 577
Onset[1] retroflex

663 | 521 | 688 | 366 | 580 Onset[1] palatal 673 | 626 | 638 | 656 | 621
590 | 373 | 164 | 402 | 531 Onset[1] velar 50 | 410 | 78 | 241 | 434

Table C.11: Input factors for German and for French Fy control.




206

Appendix C. Input Factors for Prosody Control

German Factor French
syllable syllable
210 |1 ]2 210 | 1] 2
659 | 460 | 673 | 698 | 637 Onset[1] uvular 557 | 495 | 418 | 322 | 552
Onset|1] pharyngeal
466 | 364 | 476 | 419 | 544 Onset|1] glottal 674 | 667 | 239 | 651 | 639
124 | 216 | 494 | 320 | 528 Onset|end| consonant 570 | 419 | 188 | 459 | 503
577 | 158 | 270 | 140 | 347 Onset|end| affricate 682 | 681 | 686 | 680 | 666
301 | 287 | 145 | 425 | 490 | Onset[end| glottal closure | 661 | 663 | 240 | 618 | 632
Onset|end| preplosive pause
153 | 454 | 42 | 133 | 231 Onset|end] voiced 305| 83 | 13 | 153|150
712 | 709 | 710 | 717 | 708 Onsetlend] strong 676 | 669 | 684 | 677 | 685
589 | 428 | 192 | 509 | 246 Onset|end] plosive 324 | 255 | 423 | 247 | 542
98 | 288 | 182 | 410 | 536 Onset|end| nasal 422 | 415 | 443 | 351 | 566
86 | 205 | 255 | 175 | 155 Onset|end| trill 524 | 361 | 273 | 510 | 288
Onset[end] tap
532 | 328 | 181 | 126 | 278 Onset|end| fricative 163 | 475 | 139 | 270 | 470
Onset|end| lateralfricative
Onset|end| approximant
502 | 266 | 304 | 48 | 604 |Onset[end| lateralapproximant| 400 | 177 | 84 | 330 | 404
123 | 112 | 586 | 549 | 132 Onset|end] bilabial 223 | 507 | 173|210 | 333
452 | 149 | 394 | 30 | 614 Onset|end| labiodental 193 | 311|290 | 281|107
Onset|end| dental
196 | 249 | 264 | 522 | 177 Onset|end| alveolar 284 | 514 | 211 | 168 | 441
273 |137| 239 | 22 | 281 Onset|end| postalveolar 467 | 540 | 591 | 429 | 516
Onset|end] retroflex
640 | 389 | 642 | 455 | 581 Onset[end] palatal 671 | 619 | 644 | 655 | 622
349 | 427 | 603 | 236 | 493 Onset|end] velar 584 | 227 | 75 | 120|214
667 | 450 | 672 | 697 | 635 Onset|end] uvular 554 | 237 | 412 | 543 | 286
Onset|end] pharyngeal
426 | 469 | 334 | 309 | 520 Onsetlend| glottal 672 | 664 | 248 | 654 | 643
543 | 497 | 499 | 412 | 627 Coda|l| consonant 641 | 538 | 593 | 648 | 505
Coda|l] affricate
Coda|l] glottal closure
439 | 228 | 141 | 294 | 629 Coda|l] preplosive pause | 501 | 79 | 199 | 376 | 337
110 | 94 | 323 | 163 | 456 Coda|l] voiced 109 102|140 69 | 175
Table C.12: Input factors for German and for French Fy control.
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German Factor French
syllable syllable
2|-1]0]1]2 2| -1]0 ] 1]2
Coda|l]| strong
244 | 541 | 446 | 430 | 483 Codal1] plosive 384 1191|272 | 511 | 204
383 | 387 | 161 | 362 | 345 Coda|l]| nasal 253 | 597 | 297 | 133 | 246
582 | 459 | 306 | 104 | 475 Coda[l] trill 236 | 594 | 224 | 560 | 555
Coda|l] tap
658 | 197 | 283 | 50 | 474 Codal|l] fricative 030 | 617 | 355 | 440 | 515
Codall] lateralfricative
Coda|l]| approximant
515 | 296 | 313 | 230 | 357 | Codall] lateralapproximant | 628 | 135 | 228 | 218 | 226
241 | 268 | 390 [ 117 | 605 Coda|l] bilabial 251 | 49 | 388 | 579 | 277
550 | 365 | 451 | 71 | 388 Coda|l] labiodental 425 | 4141 389 | 379 | 595
Codal1] dental
305 | 360 | 401 | 370 | 657 Codall] alveolar 416 | 301 | 502 | 496 | 374
552 | 622 | 682 | 625 | 693 Codal1] postalveolar 408 | 265 | 398 | 372 | 221
Codal1] retroflex
444|114 | 576 | 204 | 93 Codal1] palatal 625 | 653 | 612 | 607 | 631
503 [ 148 | 38 | 647 | 267 Codal[1] velar 635 | 590 | 611 | 296 | 604
285|152 (108 | 146 | 109 Codall] uvular 613 | 547 | 420 | 477 | 508
Coda|l]| pharyngeal
Codal1] glottal
432 | 329 | 462 | 263 | 491 Codalend| consonant 662 | 629 | 600 | 601 | 483
225 | 176 | 516 | 542 | 620 Codalend| affricate
Codalend] glottal closure
683 | 638 | 636 | 503 | 508 | Codalend| preplosive pause | 575 | 624 | 640 | 585 | 563
291 34 | 65 | 209 | 87 Codalend] voiced 3731 89 | 35 | 93 | 31
Codalend| strong
308 | 374 | 339 | 154 | 250 Codalend] plosive 500 | 325 | 338 | 259 | 407
375|101 | 377 | 435 | 556 Codalend] nasal 209 | 567 | 521 | 331 | 449
591 (159 | 259 | 21 | 453 Codalend| trill 018 | 323 | 438 | 391 | 298
Codalend] tap
488 | 317 | 303 | 162 | 378 Codalend] fricative 287 | 392 | 236 | 409 | 569
Codalend| lateralfricative
Codalend] approximant
185 | 243 | 220 | 507 | 118 |Codalend] lateralapproximant| 526 | 476 [ 321 | 509 | 465
Table C.13: Input factors for German and for French Fy control.
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German Factor French
syllable syllable
2 |-1]0]1]2 2| -1]0 1|2

326 | 56 | 327 | 261 | 559 | Codalend| bilabial |261 171|271 |212|307
150 | 224 | 641 | 514 | 396 | Codalend| labiodental | 462 | 346 | 446 | 334 | 581
Codalend| dental
407 | 269 | 354 | 307 | 512 | Codalend| alveolar | 453 [254 | 201 | 609 | 513
656 | 671 | 633 | 616 | 703 |Codalend| postalveolar| 546 | 200 | 220 | 596 | 363
Codalend] retroflex
289 | 61 | 344 | 448 | 319 | Codalend| palatal | 642 | 647 | 610 | 608 | 623
221 [ 179|125 | 80 | 397 Codalend] velar 367 | 371 | 348 | 417 | 491
312 | 44 | 156 | 70 | 63 | Codalend| uvular | 545 | 450 | 344 | 525 | 318
Codalend| pharyngeal
Codalend] glottal

Table C.14: Input factors for German and for French Fy control.

German Factor French
180 sentence length [syl] | 122
24 short sentence 55

68  |pos within 0 boundaries| 127
45  |pos within 1 boundaries| 34

218 |pos within 2 boundaries| 145

Table C.15: Input factors for German and for French Fy control.
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Perceptual Evaluation
Test Sentences

In the following, the 40 German and the 40 French sentences used for
the perceptual evaluation described in Section 7.4.2 are listed. In this
list, foreign inclusions are bounded by brackets and are indexed accord-
ing to their language either as (_English), (_French), or (,German).

D.1 German Test Sentences

1. Wir wollen (EManager) an der Spitze, die Ideen haben, Mut und
Freude.

Ich hitte ([Laurence Cote) beneiden konnen.
Die Reise fiihrte iiber ([Lyon) nach ( Vézelay).
“(FLe monde a l’envers)” war ein sehr guter Film.
Ist dir der Name “(_Antoine Duplan)” bekannt?
Wann kommt ( Isabelle Candelier) denn endlich?

Hast du dich iiber das Konzert von ( Céline Dion) gefreut?

©® N o ol W N

Sie kennt die Werke von (FMarcel Pagnol) sehr gut.

209
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9. Im Kino lauft heute Abend “(.Chat noir, chat blanc)”.

10. Ich verstehe die Idee von (FJean-Claude Longet) nicht.

11. Ich habe “(_ L’éternité et un jour)” bestellt.

12. Nachdem im “(_Grand Hotel de 'Opéra)” keine Plitze mehr frei
waren, wurden wir vorlaufig in der Pension “(FL’Auberge des Mon-
tagnes)” untergebracht.

13. Schon zum zweiten mal organisierte er eine “(FSoirée Ameéri-
caine)”.

14. Erst letzte Woche sei dies bekannt geworden, meldete darauf das
Magazin “(_Facts)”; und selbst die angesehene Tageszeitung “( Le
Monde)” (_parl)ierte vom “(_premiere fois)”.

15. “(FA la recherche du temps perdu)” von (;Marcel Proust) ist stel-
lenweise etwas langatmig, aber trotzdem sollte man es gelesen
haben.

16. Ich hatte mich verlaufen und war statt im (FBoulevard du
Theatre) in der (Avenue de St-Paul) gelandet.

17. Wenn ihr mit uns zusammen “(_Le jardin de Célibidache)” an-
schauen wiirdet, wiirde uns das sehr freuen.

18. Der Weg fiihrte wie letztes Jahr durch “(_Saint Jean pied de
port)”.

19. Schon der zweite Teil von “( La cage aux folles)” war viel
schlechter als der Originalfilm, aber der dritte war wirklich mis-
erabel.

20. Nach einer langeren Rundreise in der (FBretagne) fuhren wir von
(FNantes) aus den (FLoire)—SChléssern entlang Richtung Stiden
und dann ganz nach Osten.

21. Kommt jemand, um den Ehemann abzuholen?

22. Peking.

23. Verwandlungen?
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24.
25.
26.
27.
28.
29.
30.

31.

32.
33.

34.
35.
36.
37.

38.
39.
40.

D.2

1.

Aber nein, man schafft dieses Interesse mit den Medien.
Gehen oder kommen?

Vermittlung?

Nett ist hier niemand.

Bewunderung oder Vergessenheit?

Bedauernswert.

Weiss.

Trinkst du nach dem Essen am liebsten eine Tasse Tee, einen
Branntwein oder einen starken Kaffee?

Konnen wir noch feststellen, wo sich das Grab Alexanders befand?

Lassen Sie Threr Fantasie freien Lauf und begeistern Sie sich fiir
Ihre Ideen!

Dimmlich?
Beladen!
Die Tiirkei auf dem Weg zur neuen Regionalmacht?

Anderseits, muss Sport letztlich padagogisch motiviert sein, um
sinnvoll zu sein?

Vertiefungen?
Drittens.

Letztere wurden dann mit Fett, speziell Talg, zu Seife verkocht.

French Test Sentences

A Zurich, le ( GKunsthaus) recéle bien des trésors du Moyen Age et

présente les différents courants artistiques d’Europe et des Etats-
Unis du vingtiéme siécle.
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2. A la mi-mars, le (zTokyo Game Show) sera 'occasion de nouvelles
annonces pour ces “(Eworld game companies)”.

3. Avec trois mois de retard, les troupes viennent de recevoir une
lettre signée Martine (GBrunschwig Graf), conseillére d’Etat, re-
sponsable du DIP.

4. Le cinéma demeure, au pays de ( LTtz Lang) et de ( GFassbinder),
une variante un peu archaique de ’audiovisuel, sauf s’il s’agit de
productions hollywoodiennes.

5. Parmi ces musiciens travaillent Jacques (GWildberger), (GKlaus
Huber), ( Jiirg Wyttenbach), (,Rudolf Kelterborn) et ( Ernst
Pfiffner).

6. A ( (Buch am Irchel), dans le canton de Zurich, on ressent encore
les liens avec la terre, mais aussi la liberté des grands espaces.

7. Au cas ou cela se produirait, tout le monde déménagerait de bon
coeur a la (GPotSdamer Platz), 'an prochain, pour célébrer le
cinquantiéme Festival de Berlin.

8. C’est dans ce climat quont émergé (,Max Frisch) et ( Friedrich
Diirrenmatt) qui, par la force de leur interrogations, ont marqué
pour longtemps le théatre de leur temps.

9. Toutes les voies convergent vers le Vieux Port, point de ralliement
obligé des visiteurs ou se pressent cafés et restaurants proposant
bouillabaisse et autres spécialités de poisson.

10. Mange!

11. L’abonnement mensuel est particuliérement avantageux.
12. Maman a préparé une galette pour jeudi.

13. Qui peut répondre a cette demande urgente?

14. Son maitre saisit un baton.

15. Cinq, quatre, trois, deux, un, zéro.

16. La jeune fille se peigne devant sa glace.
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17. Signe.

18. Oui?

19. Je n’en veux aucun!

20. Il est désormais accablé par son travail.

21. C’est pas trop tot!

22. Une derniére nouvelle?

23. Bleu ou blanc?

24. Est-ce pour toi une question de principe ou d’habitude?

25. Les soldats recoivent une instruction militaire, ils font I’exercice,
ils font aussi des manoeuvres, ils montent la garde.

26. Elle ou lui?

27. Connaissez-vous ce rapport et ne pensez-vous pas qu’il serait in-
téressant de le consulter?

28. Le soir et le week-end, le centre est déserté.

29. J’aimerais bien vous y voir!

30. La modestie n’est pas la moindre de mes qualités.

31. A New York, vous n’avez pas encore de la neige en ce moment?

32. Vous pourriez me dire ce qu’il y a a la télévision ce soir?

33. Quand?

34. “Proposez-vous des spécialités cruelles telles que cuisses de
grenouille, foie gras, potage aux ailerons de requin, crustacés et
truites gardées en bassin?” leur a-t-il demandé.

35. En épidémiologie, par exemple, on commence a s’apercevoir que,

faute d’avoir expérimenté certains médicaments sur les femmes,
on est parfois arrivé a des résultats aberrants.
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36. A lissue d’un processus de quelques mois, le pouvoir nigérian
revient aux civils.

37. Philosophie.

38. Aprés ce que tu as vécu récemment, considéres-tu le mariage
comme encore possible ou as-tu abandonné tout espoir?

39. Pour la premiére fois & Genéve depuis 1990, aucune troupe de
théatre, danse ou musique n’a été choisie pour recevoir une aide
du canton.

40. Puisqu’il nous dérange, offrons-lui un trone!
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