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Abstract

Many-core Systems-on-Chip (SoCs) are of increasing significance in the
domain of high-performance embedded computing systems where high
performance requirements meet stringent timing constraints. The high
computing power offered by many-core SoCs, however, does not nec-
essarily translate into high performance. On the one hand, the use of
deep submicrometer process technology to fabricate SoCs imposes a ma-
jor rise in the power consumption per unit area so that many-core SoCs
face various thermal issues. On the other hand, many-core SoCs are often
not capable of fully exploiting the provided hardware parallelism due to
runtime variations of executing applications.

In this thesis, we focus on the system-level design of streaming-
oriented embedded systems. We tackle the above described challenges
by proposing a model-driven development approach for many-core SoCs.
The developed high-level programming model specifies an application
as a network of autonomous processes that can only communicate over
point-to-point First-In First-Out (FIFO) channels. We show that the prop-
erties of the proposed programming model can be leveraged to develop
a design, optimization, and synthesis process for embedded many-core
SoCs that enables the system to utilize its computing power efficiently.

Specifically, the following contributions are presented in this thesis:

• A scenario-based design flow for mapping a set of dynamically
interacting streaming applications onto a heterogeneous many-core
SoC is described.

• A novel semantics for specifying streaming applications is intro-
duced that abstracts several possible application granularities in a
single high-level specification.

• A systematic approach to exploit the multi-level parallelism of het-
erogeneous many-core architectures is proposed and applied to de-
velop a general code synthesis framework to execute streaming
applications on heterogeneous systems.

• A high-level optimization framework for mapping streaming ap-
plications onto embedded many-core architectures and optimizing
a system design with respect to both performance and worst-case
chip temperature is proposed.
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Zusammenfassung

Vielkernprozessorsysteme gewinnen im Bereich der eingebetteten Hoch-
leistungs-Rechensysteme vermehrt an Bedeutung, da diese Systeme
gleichzeitig hohe Rechenanforderungen und strikte Echtzeitbedingungen
einhalten müssen. Vielkernprozessorsysteme können jedoch die vorhan-
dene Rechenleistung oftmals nicht ausnutzen. Einerseits treten aufgrund
der hohen Leistungsdichte verschiedene Temperatur bezogene Probleme
auf. Anderseits ist das System oftmals nicht in der Lage die vorhandene
Hardware-Parallelität auszunutzen, da das System beispielsweise nicht
auf Veränderungen zu reagieren vermag, welche während der Laufzeit
auftreten.

Die vorliegende Dissertation befasst sich mit der Entwicklung von
eingebetteten Systemen für Streaming Anwendungen. Die oben genann-
ten Schwierigkeiten werden mit Hilfe eines neu entwickelten modell-
getriebenen Entwicklungsansatzes für Vielkernprozessorsysteme behan-
delt. Das dabei benutzte Programmiermodel spezifiziert jede Applikation
als ein Netzwerk von unabhängigen Prozessen, welche ausschliesslich
über gerichtete Kanäle kommunizieren können. Es wird gezeigt, wie
man die fundamentalen Eigenschaften des vorgeschlagenen Program-
miermodelles ausnutzen kann, um einen Entwurfs-, Optimierungs- und
Code-Generierungsprozess zu entwickeln, welcher die Rechenleistung
von Vielkernprozessorsystemen effektiv und effizient ausnützt.

Dabei werden die folgenden Resultate in dieser Dissertation präsen-
tiert:

• Ein auf Systemzustände basierender Entwurfsablauf für die Aus-
führung von mehreren dynamisch interagierenden Streaming Ap-
plikationen auf Vielkernprozessorsystemen wird präsentiert.

• Eine neue Semantik für die Spezifikationen von Streaming Applika-
tionen wird eingeführt. Die neue Semantik abstrahiert verschiedene
Granularitäten in einer einzelnen Applikationsspezifikation.

• Ein systematischer Ansatz, um die mehrstufige Hardware-Paral-
lelität von heterogenen Vielkernarchitekturen auszunützen, wird
vorgeschlagen. Der Ansatz wird verwendet, um eine Laufzeitum-
gebung zu entwickeln, welche Streaming Applikationen auf hete-
rogenen Systemen ausführen kann.
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• Eine Berechnungsmethodik für die Zuweisung von Streaming Ap-
plikationen auf eingebettete Vielkernarchitekturen wird vorgeschla-
gen, welche das System sowohl hinsichtlich seiner Performanz als
auch seiner maximalen Temperatur optimiert.
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1
Introduction

This thesis presents novel techniques for the design and analysis of future
many-core Systems-on-Chip (SoCs). Many-core SoCs are massively paral-
lel systems that integrate hundreds to thousands of cores of different types
on a single chip [Bor07]. Many-core SoCs are of increasing significance in
the domain of high-performance embedded computing systems [Wol14]
where high performance requirements meet stringent timing constraints.
An example of this trend is the automotive industry, where computing
systems embedded into autonomous cars must solve multi-sensorial data
fusion and artificial intelligent problems in real-time [KRJ13].

However, the available computing power does not necessarily trans-
late into high performance as many-core SoCs face thermal issues or do
not fully exploit the provided hardware parallelism. As a result, new de-
sign and analysis techniques must be developed that tackle the challenges
arising when designing many-core SoCs. First, one of the most significant
barriers towards high performance systems is the thermal wall [HFFA11].
The increased performance, coupled with a technology reduction, im-
poses a major rise in the power consumption per unit area so that the
reliability of the system is threatened by various thermal issues including
high chip temperatures. Second, the offered computing power can only
be exploited if the system reacts to runtime variations by dynamically re-
configuring the applications and if the system leverages the peculiarities
of the individual processing cores.

This thesis proposes a systematic approach to design reliable and
efficient many-core SoCs. The contributions include a design flow for
mapping dynamically interacting streaming applications onto many-core



2 CHAPTER 1. INTRODUCTION

SoCs, techniques to efficiently exploit the multi-level hardware paral-
lelism of heterogeneous many-core SoCs, and thermal-aware optimiza-
tion strategies.

We continue this chapter with a review of the current trends in em-
bedded software and hardware. In Section 1.2, we discuss the benefits of
using a model-driven development approach to design embedded sys-
tems. Afterwards, in Section 1.3, we list the challenges that have to be
mastered in the design of reliable and efficient many-core SoCs. In Sec-
tion 1.4, we state the aim of this thesis. Finally, in Section 1.5, we give the
outline and summarize the contributions of the thesis.

1.1 Trends in Embedded Systems
In order to meet the performance requirements of the next generation
embedded applications, embedded hardware is currently undergoing a
major change from uni-core processors to many-core SoCs. In this section,
we review this evolution by discussing the current trends in embedded
software and hardware separately.

1.1.1 Embedded Software
In recent years, embedded systems entered new fields of applications that
are often centered around the processing of data streams [TKA02, GBC06,
KBC09, Thi09, Hai10, MC14]. Examples include real-time speech recogni-
tion, embedded computer vision, and all kinds of advanced features that
are nowadays ubiquitous in cars as, for instance, the anti-lock braking
system, electronic stability control, or adaptive cruise control [CLB+12].
Moreover, with autonomous cars on the horizon, embedded systems must
soon be able to solve a multitude of computer vision and artificial intelli-
gent problems in real-time [KRJ13].

Usually, such streaming applications are repeatedly reading, process-
ing, and writing out individual stream objects. A key characteristic is that
the data processing can be split up into almost independent processing
stages that operate on single data items such as bits, audio frames, or
video frames. Due to this characteristic, streaming applications are well-
suited for execution on massively parallel platforms. Even though some
of the concepts proposed in this thesis might be applied to other classes
of applications, we are targeting the domain of streaming applications in
this thesis.

Besides entering new fields of applications, embedded systems are
also becoming multi-functional, e.g., by featuring multiple applications
that share the system. Smartphones, for instance, are not only used to
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make phone calls anymore, but provide almost the same possibilities as
general-purpose computing systems. As the functionality of the system
can change over time, embedded systems must be able to deal with com-
plex dynamic interactions between the applications. Moreover, with each
application having its own real-time constraints and quality of service
requirements, the system designer has to make sure that each application
meets its individual requirements independently of other applications.

1.1.2 Embedded Hardware
The computational demand of modern embedded applications cannot be
fulfilled anymore by uni-core processors without expensive cooling sys-
tems. As a result, embedded system designers started to use Multipro-
cessor Systems-on-Chip (MPSoCs) that addressed this challenge partially
by spreading the workload over multiple processors. By increasing the
number of processors or processing cores rather than the clock frequency,
the performance gain was translated into a slower growth in power con-
sumption.

Nonetheless, MPSoCs are only an interim solution for embedded sys-
tems as the computational demand of future embedded applications is
far beyond the potential of state-of-the-art embedded MPSoCs [WJM08].
A promising solution is the use of many-core SoCs where the workload
is spread over hundreds of cores [MGC08]. First prototypes of such
platforms have been announced in 2010. The Intel Single-chip Cloud
Computer (SCC) processor [HDH+10], for instance, consists of 24 tiles,
each with two cores, that are organized into a 4 × 6 grid and linked by
a 2D mesh on-chip network. Figure 1.1a shows the schematic outline of
the processor. Another example of such a processor is the TILERA TILE-
Gx100 [Ram11] that integrates 100 general-purpose processing cores into
a single chip.

While the first generation of these many-core systems was not suited
for mobile embedded applications due to power consumption in the order
of a few tens of watts, the next generation is already much more power
efficient. The STMicroelectronics P2012 platform [BFFM12, MBF+12] is
a massively parallel processor that can be powered by a battery. Its
first silicon implementation integrates 64 cores that are organized in four
clusters and each cluster has a worst-case power consumption of about
400 mW. While the first silicon implementation of the P2012 platform
just integrated general-purpose processing cores, a recent extension, the
He-P2012 platform [CPMB14], augments the clusters with a set of hard-
ware accelerators that communicate with the general-purpose cores over
a shared scratchpad. Toshiba recently announced a low-power many-
core SoC with two 32-core clusters [XTU+12, MXK+13] that are connected
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Fig. 1.1: Schematic outline of the Intel SCC processor [HDH+10] and the Nvidia Tegra K1
mobile processor [NVI14]. The Intel SCC processor is used as target platform
in various case studies in this thesis and its architectural design is detailed in
Section 2.6.

by a tree-based Network on Chip (NoC) communication architecture.
Each core is running at 333 MHz, resulting in a power consumption per
cluster of less than 1 W. Finally, the KALRAY MPPA MANYCORE proces-
sor [DGL+13] is a programmable many-core processor that is composed
of an array of clusters whereby each cluster is composed of 16 processing
cores. The first implementation of the KALRAY MPPA MANYCORE pro-
cessor is composed of 16 clusters thereby integrating 256 cores on a single
chip. Current predictions expect the first KALRAY MPPA MANYCORE
processor with more than 1000 cores to be released by 2015 [KAL14].

Besides the general trend to move to processors with hundreds of
cores, processors in the embedded domain are predicted to become het-
erogeneous [CFGK13], aiming to achieve significant speedups and higher
energy-efficiency. Typically, such heterogeneous many-core SoC plat-
forms consist of a host processor that is coupled with various hardware
accelerators [SABC10]. In fact, Graphics Processing Units (GPUs)-like
accelerators are increasingly used in mobile embedded systems to offload
data-intensive computational kernels. Recent studies have reported that
significant speed-ups can be achieved by executing part of the application
on the GPU [GCC+14].

Such accelerator-based SoCs are already widely used in mobile de-
vices like smartphones or tablet computers. However, they have re-
cently undergone a steep increase in the number of integrated processing
cores [Cas13]. To illustrate the concept of such accelerator-based SoCs,
we consider two state-of-the-art mobile processors. The Qualcomm first
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octa-core SoC, the Snapdragon 615 [Qua14b], integrates an octa-core ARM
Cortex A53 Central Processing Unit (CPU) and an Adreno 405 GPU. It is
worth to note that four cores of the CPU are clocked at 1.8 GHz and the re-
maining cores are only clocked at 1.0 GHz. Nvidia’s next generation Tegra
processor K1 [NVI14], schematically outlined in Fig. 1.1b, integrates a 4-
plus-1 quad-core ARM Cortex A15 CPU and a Kepler GPU with 192 cores.
Each core of the CPU can be enabled and disabled independently for max-
imum performance and energy efficiency. However, like any streaming
processor, the GPU can only be fully exploited if all cores perform the
same operation simultaneously on multiple data sources.

In summary, we can observe that embedded hardware is currently
undergoing a major change. Embedded processors will soon integrate
hundreds of cores that are split into clusters and connected by a hier-
archically organized communication architecture. To meet the stringent
energy requirements of mobile devices, the cores will not be of the same
type and some processing cores can only be fully exploited if the same
instructions are applied concurrently to multiple data sources.

1.2 Model-Driven Development
A recently advocated strategy to design reliable and efficient systems is
to restrict the application to a certain (high-level) programming model.
This enables the automatic generation and optimization of the platform-
dependent implementation by leveraging properties of the programming
model. Such a strategy is commonly referred to as model-driven software
development [Sel03]. In this section, we review recent efforts towards the
model-driven development of embedded systems.

1.2.1 Y-Chart Paradigm
The Y-chart paradigm [KDVvdW97] is a design flow model that imple-
ments the ideas of a model-driven software development. It is based on
the orthogonalization of concern [KNRSV00], which proposes to master
the complexity of embedded systems by separating parts of the design
process. The basic idea of the Y-chart paradigm, schematically outlined
in Fig. 1.2, is to separate the specification of the application, architecture,
and mapping, whereby the mapping specification describes how the ap-
plication is executed spatially and temporally on the architecture. During
the design process, the application, architecture, and mapping specifica-
tions are iteratively refined until the quality of service requirements and
the real-time constraints of the system are fulfilled.
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Fig. 1.2: Y-chart paradigm [KDVvdW97] to design embedded systems.

Due to the popularity of streaming applications, various models of
computation to specify streaming applications have been proposed in the
past few years. Most of these models have in common that they split the
streaming application into autonomous processes and their interconnec-
tions. Kahn Process Networks (KPNs) [Kah74], for instance, specify an
application as a set of autonomous processes that communicate through
point-to-point First-In First-Out (FIFO) channels. In the context of KPNs,
each process basically represents a monotonic mapping of one or more
input streams to one or more output streams whereby monotonicity is
obtained by having blocking and destructive read access to the channels.
The Synchronous Dataflow (SDF) [LM87] model of computation is a re-
stricted version of KPNs. It enables static scheduling analysis at compile
time by restricting each process to produce and consume a fixed number
of tokens in every iteration. Note that in the context of SDF, processes are
commonly referred to as actors.

1.2.2 Design Flows for Mapping Streaming Applications
onto Parallel Systems

The KPN and SDF models of computation have been the basis for var-
ious high-level embedded system design flows for mapping streaming
applications onto parallel systems, see [BHHT10] for an overview. In the
following, we review some of them in alphabetic order, with emphasis
being given to the programming model and the considered optimization
strategies.
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CA-MPSoC [SKS+10] is an automated design flow for mapping multi-
ple applications onto communication assist multi-processor systems. Ap-
plications are specified as SDF graphs and the dynamic behavior of the
system is modeled as a set of use-cases, whereby each use-case represents
a combination of concurrently executing applications.

The CompSOC [GAC+13] platform and its associated design flow
map multiple concurrent applications onto multi-processor systems by
assigning each application its virtual execution platform. Applications
are therefore completely isolated, which enables the independent design
and verification of each application. The design flow has been automated
for real-time Cycle-Static Dataflow (CSDF) applications and the integra-
tion of other models of computation has been investigated theoretically.

The DAEDALUS design flow [NSD08] enables the automated map-
ping of multimedia applications onto embedded MPSoCs and includes
design space exploration, system-level synthesis and system prototyping.
Its input is a static affine nested loop program, which is automatically
converted to a KPN using the KPNgen tool [VNS07]. Multi-application
support has been added to DAEDALUS [BZNS12] by using real-time
scheduling algorithms to temporally isolate the applications.

The Distributed Operation Layer (DOL) framework [TBHH07] maps
a parallel application specified as a KPN onto tiled MPSoCs. During de-
sign space exploration, the Modular Performance Analysis (MPA) frame-
work [WTVL06] is used to analyse the performance of the system. The
MPA framework uses real-time calculus [TCN00] to reason about timing
properties of data flows in queuing networks, thereby providing worst-
case timing guarantees for all processes running on the system. The DOL
framework is also the starting point of this thesis.

Koski [KKO+06] is a design flow for MPSoCs that uses the Unified
Modeling Language (UML) to specify KPNs. For performance analysis,
Koski uses simulation that can be calibrated automatically based on the
profiling of a small set of calibration implementations. The architecture
exploration is based on the composition of subsystems and each subsys-
tem is optimized separately for a particular objective.

The MAPS design flow [CCS+08] maps dataflow applications onto MP-
SoCs. The design flow’s input are a set of sequential programs written in
a variant of C called C for Process Networks (CPN). After parallelizing
these programs, the MAPS design flow generates performance analysis
models based on KPNs and uses a simulation-based composability anal-
ysis to provide performance guarantees on the target platform. Multi-
application support is provided in MAPS [CVS+10, CLA13] by specifying
use-cases, i.e., subsets of running applications, and analyzing all use-cases
individually.
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The PeaCE framework [HKL+07] is an integrated hardware/software
co-design framework for embedded multimedia systems. In order to
specify the system behavior, a combination of three models of computa-
tion is employed. The Synchronous Piggybacked Dataflow (SPDF) model
is used for computation tasks, an extended finite state machine model for
control tasks, and a task model to describe the interactions between the
tasks. System verification and optimization is conducted by simulating
the system on a virtual prototyping environment. Recently, the frame-
work has been extended into an integrated embedded system design
environment called HOPES [JLK+14].

SHIM [ET06] is a design flow targeting reconfigurable hardware and
multi-processors. Applications are specified in a domain-specific lan-
guage that is basically a restriction of KPNs. In particular, a rendezvous
communication protocol [Hoa85] that allows two communicating pro-
cesses to advance only when they are synchronized, is elaborated.

The StreamIt design flow [TKA02] is facilitate to map large stream-
ing applications onto various target platforms ranging from MPSoCs to
clusters of workstations. It uses the SDF model of computation for ap-
plication specification so that a wide range of optimization techniques
can be applied to the application (e.g., [SGA+13]). Over the past years,
a large benchmark suite for StreamIt has been developed that has been
used by the embedded system community to characterize the challenges
of designing and implementing streaming applications [GTA06, TA10].

Although a huge amount of work has been devoted into developing
efficient design flows for multi-core platforms, these techniques will not
necessarily be able to exploit the massive parallelism of future many-core
SoCs [Vaj11]. Consequently, in this thesis, we try to tackle the challenges
that arise when a set of dynamically interacting streaming applications is
executed on massively parallel hardware platforms.

1.3 Challenges in the Design of Many-Core
Systems-on-Chip

Designing reliable embedded many-core SoCs is difficult. The system
designer has not only to cope with new challenges that arise from the
massive computational demand of future embedded applications, but
also with the hardware parallelism of many-core SoCs. In particular, the
following challenges are addressed within this thesis.
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1.3.1 Multi-Functional Embedded Systems
Embedded systems are becoming multi-functional. Multiple applica-
tions, which appear and disappear dynamically over time, are concur-
rently executed on the same system. For instance, an intelligent parking
assistant application of a semi-autonomous vehicle is executed on the
same system as other safety-critical applications are executed and the
parking assistant application must only be executed when the vehicle is
being parked. To efficiently exploit the offered computing power, the
system must react to runtime variations by adapting the mapping of the
applications onto the architecture.

As a result, the resources available to a single application can change
over time, which in turn complicates the selection of the right degree
of application parallelism at the time that the application is specified.
On the one hand, programming the application with too many parallel
processes might result in inefficient implementations of the application
due to overheads in scheduling and inter-process communication. On
the other hand, setting the number of parallel processes too small limits
the number of cores that the application can use at once. Therefore,
the optimal degree of application parallelism for maximum performance
depends on the available computing resources and may change over time.

The first challenge tackled in this thesis is the extension of the design
process of embedded systems to support multiple applications. Thus, the
question is:

How to design dynamic multi-functional embedded many-core systems so
that reasoning about correctness and performance is enabled at design time
and the hardware resources are efficiently exploited?

To this end, we introduce a design flow for mapping multiple streaming
applications onto many-core SoCs in Chapter 2. Afterwards, we extend
this formalism and propose in Chapter 3 a streaming programming model
that abstracts several possible application granularities in a single specifi-
cation enabling the selection of the best degree of application parallelism
at runtime.

1.3.2 Multi-Level Hardware Parallelism
Future many-core SoCs are predicted to become heterogeneous. Such
systems consist of a wide variety of different processing cores includ-
ing general-purpose processing units, GPUs, or accelerators. Many of
these processing cores are able to process multiple threads in parallel and
some of them are only able to fully exploit their performance if the same
instruction is applied simultaneously to multiple data sources.
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Exploiting this multi-level parallelism is challenging, in particular if
the application specification does not coincide with the available hard-
ware parallelism. Moreover, the final performance of the system is of-
ten reliant on many low-level implementation details, which makes pro-
gramming heterogeneous systems difficult and error-prone. Inter-process
communication, for instance, can drastically reduce the performance if
the memory location is not carefully selected. Consequently, the sec-
ond challenge tackled in this thesis covers the hardware parallelism of
heterogeneous many-core SoCs, thereby asking the following question:

How to efficiently utilize the multi-level parallelism of heterogeneous
many-core SoCs with a high-level programming model?

Chapter 4 tackles this challenge by describing a design flow that system-
atically leverages different kinds of application parallelism to exploit the
different levels of hardware parallelism.

1.3.3 Temperature-Aware System Design
Nowadays, the thermal wall is recognized as one of the most significant
barriers towards high performance systems [HFFA11]. In particular, the
demand for increased performance, the technology reduction, and the
reduced sizes impose a major rise in the power consumption per unit
area so that many-core SoCs face various thermal issues including high
chip temperatures.

Reactive thermal management techniques, which are considered as
efficient tools for temperature control in general-purpose computing sys-
tems, keep the maximum temperature under a given threshold by stalling
or slowing down the processor [DM06, KSPJ06]. However, causing a
significant performance degradation, reactive thermal management tech-
niques are often undesirable in embedded systems, in particular when
real-time constraints are tackled. Therefore, providing guarantees on
maximum temperature is as important as functional correctness and time-
liness when designing embedded many-core SoCs. A viable approach to
provide such guarantees is to adopt system-level mechanisms, and in-
clude thermal analysis techniques already at design time. The question
hereby is:

How to rule out system designs that do not conform to peak temperature
requirements already in early design stages of embedded many-core SoCs?

We will tackle this challenge in Chapter 5 by exploring thermal-aware
optimization strategies for embedded many-core SoCs.
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1.4 Aim of this Thesis
With this work, we aim to defend the following thesis:

The offered computing power of many-core SoCs does not necessarily trans-
late into high performance as the system hits the thermal wall or does not
fully exploit the provided hardware parallelism. It is possible to utilize the
properties of streaming programming models to improve the design, opti-
mization, and synthesis process of embedded systems so that the computing
power of many-core SoCs is efficiently exploited.

1.5 Thesis Outline and Contributions
This thesis proposes a model-driven development approach to design
reliable and efficient many-core SoCs. We target the domain of streaming
applications and employ process networks as model of computation. The
resulting design flow is illustrated in Fig. 1.3. In this view, the design flow
can be considered as a multi-application extension of the Y-chart design
paradigm [KDVvdW97] introduced in Section 1.2.

Major contributions of this thesis are to be found in the application
specification, the application and mapping optimization, and the perfor-
mance analysis. It provides, on the one hand, a set of novel techniques
for the design of future many-core SoCs tackling the challenges described
in Section 1.3. On the other hand, the thesis demonstrates how the pro-
posed techniques can be integrated seamlessly into the overall design
flow. Specifically, Chapter 2 introduces the overall design flow for map-
ping multiple streaming applications onto many-core SoCs. Chapter 3
proposes a technique to find the optimal degree of application parallelism
for maximum performance. Chapter 4 demonstrates how the multi-level
hardware parallelism of many-core SoCs can systematically be exploited.
Finally, Chapter 5 introduces the temperature as an additional evalua-
tion metric in the optimization process of an embedded system. The
contributions of this thesis are summarized as follows:

Chapter 2: Scenario-Based System Design
A design flow for mapping multiple streaming applications onto many-
core SoCs has to provide three key features to the system designer. First,
a high-level specification model that hides unnecessary implementation
details but provides enough flexibility to specify the dynamic interactions
between applications. Second, a tool to calculate an optimal mapping of
the applications onto the system in a transparent manner. Third, runtime
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Fig. 1.3: Design flow to develop reliable and efficient many-core SoCs. The main contri-
butions of this thesis are listed on the left side of the figure.

support to dynamically change the functionality of the system. The first
chapter of this thesis proposes such a design flow. Multi-application sup-
port is provided by representing predefined sets of running applications
as execution scenarios [GPH+09, SGB10, CLA13] and specifying the inter-
actions between the applications. The proposed design flow contributes
to the state-of-the-art in the following ways:

• A scenario-based model of computation for streaming applications
is formally described. While each application is separately speci-
fied as a KPN, a finite state machine is elaborated to describe the
interactions between the different applications.

• We propose a novel hybrid design time and runtime strategy
for mapping multiple applications specified by the scenario-based
model of computation onto heterogeneous many-core SoCs. We
prove that the approach leads to a scalable mapping solution suited
for the design of complex embedded systems.
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• We formally describe a hierarchically organized runtime manager
that is able to handle behavioral and architectural dynamism of
many-core SoCs. Failures of the platform are handled by allocating
spare cores at design time. We show that this approach is able to
tolerate faulty cores without additional design time analysis such
that a high responsiveness to faults is achieved.

Chapter 3: Expandable Process Networks
In Chapter 3, we argue that for a certain class of applications, namely
applications that are specified as process networks, the application can
be specified in a manner that enables automatic exploration of task, data,
and pipeline parallelism [GTA06, YH09]. To this end, we propose a formal
extension for streaming programming models called Expandable Process
Networks (EPNs) that abstracts several possible granularities in a single
specification. The EPN semantics facilitates the synthesis of multiple
design implementations that are all derived from the same high-level
specification. This enables the runtime manager to select the best fitting
implementation for the given computing resources thereby minimizing
inter-process communication and scheduling overheads. More detailed,
the contributions of Chapter 3 are as follows:

• We formally describe the proposed semantics of EPNs. In fact, an
application specified as an EPN has a top-level process network that
can be refined by hierarchically replacing stateful processes by other
process networks.

• We show that the semantics of EPNs enables the automatic explo-
ration of task, data, and pipeline parallelism by means of two de-
sign transformations, namely replication and unfolding. Replicating
processes increases data parallelism and structural unfolding of a
process increases the task and pipeline parallelism by hierarchically
instantiating more processes in the process network. A particu-
lar highlight of the proposed semantics is the ability to implicitly
specify recursive dependencies.

• An analytic performance model to analyze applications specified
as EPNs is proposed and employed to explore different degrees of
parallelism.

• In order to react to runtime resource variations, we propose a novel
technique to transform an application from one design implementa-
tion into an alternative design implementation without discarding
the program state of the application.
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Chapter 4: Exploiting Multi-Level Hardware Parallelism
Chapter 4 proposes an approach to leverage the different kinds of appli-
cation parallelism to efficiently exploit the different levels of hardware
parallelism offered by heterogeneous many-core SoCs. Pipeline and task
parallelism are used to distribute the application to the different process-
ing cores and data parallelism is used to exploit the parallelism offered
by an individual core. In order to demonstrate the proposed approach,
we extend the previously proposed design flow with the ability to run
applications on top of Open Computing Language (OpenCL)-capable
platforms. The contributions of this chapter are as follows:

• A systematic approach to exploit the different levels of hardware
parallelism offered by heterogeneous many-core systems is de-
scribed. In particular, the multi-level parallelism offered by an
individual core is exploited by executing independent sequential
process iterations simultaneously and by calculating independent
output tokens in parallel, thereby achieving Single Instruction, Mul-
tiple Data (SIMD) parallelism.

• The high-level specification described in Chapter 2 is refined to
explicitly specify different kinds of application parallelism. Based
on that, a software synthesis tool is implemented to automatically
generate OpenCL-capable code.

• A highly efficient runtime-system to execute streaming applications
on OpenCL-capable platforms is described. The runtime-system op-
timizes memory transfers between different cores, thereby reducing
the communication overhead automatically. Seamless integration
of input/output operations is provided by the ability to execute in-
dividual processes as native threads in the context of the operating
system.

Chapter 5: Thermal-Aware System Design
Chapter 5 explores thermal-aware optimization strategies to optimize a
system design with respect to both performance and temperature, leading
to major benefits in terms of a guaranteed and predictable high perfor-
mance. The timing and thermal characteristics of mapping candidates are
evaluated by means of formal worst-case real-time analysis methods to
provide safe bounds on the execution time and the maximum chip tem-
perature. The proposed methods are implemented as an extension of the
MPA framework [WTVL06] and integrated into the previously proposed
design flow to automatically analyze the system in terms of temperature.
The contributions of this chapter are as follows:
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• A novel technique to calculate a non-trivial upper bound on the
peak temperature of a many-core SoC is formally derived and ap-
plied to generate a unique thermal-aware optimization framework
for many-core SoCs. The aim of the optimization framework is
to minimize the worst-case chip temperature of the system while
guaranteeing the system’s real-time requirements by optimizing the
assignment of processes to cores.

• A two-step approach to integrate the proposed formal timing and
thermal analysis methods into design space exploration is described.
First, the considered timing and thermal analysis models are gen-
erated from the same set of specifications as used for software syn-
thesis. Afterwards, the analysis models are calibrated with per-
formance data reflecting the execution of the system on the target
platform.

• The viability of the thermal-aware optimization framework is
demonstrated by integrating it into the proposed design flow for
mapping streaming applications onto many-core SoCs. We validate
the proposed techniques in various case studies targeting the Mul-
tiprocessor ARM (MPARM) virtual platform [BBB+05]. We demon-
strate that there is no single solution that maximizes the performance
and minimizes the peak temperature of the system.
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2
Scenario-Based System Design

2.1 Introduction
Embedded systems are becoming multi-functional by running multiple
applications in parallel. Computing systems embedded in autonomous
cars, for instance, will have to solve a multitude of multi-sensorial data
fusion and artificial intelligent problems in parallel. Moreover, the func-
tionality of the system can change over time so that embedded systems
must be able to deal with complex dynamic interactions between the
applications.

Fortunately, by the nature of embedded systems, the use cases of
a system, and thus also the applications that may run on the system,
are known at design time so that the multi-functional behavior can be
modeled as a set of execution scenarios. In fact, each execution scenario
then represents a certain use case of the system and is characterized
by a set of concurrently running or paused applications. Furthermore,
the interactions between the applications can be specified by transitions
between the execution scenarios.

To efficiently utilize massively parallel many-core architectures, the
system must be able to exploit the available computing resources in each
execution scenario separately. However, as state-of-the-art design flows
for parallel embedded systems assign the computing resources statically
to the applications, they can deal with dynamic behavior only by over-
provisioning the system. Therefore, a design flow for mapping dynami-
cally interacting applications onto many-core systems must provide three
key features to the system designer:
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1. A high-level specification model that hides unnecessary implemen-
tation details, but provides enough flexibility to specify dynamic
interactions between applications.

2. A tool to calculate an optimal mapping of the applications onto the
architecture in a transparent manner.

3. Runtime support to change the functionality of the system.

This chapter proposes the Distributed Application Layer (DAL), a
scenario-based design flow for the model-driven development [Sel03] of
heterogeneous many-core SoCs. It supports the design, the optimiza-
tion, and the simultaneous execution of multiple dynamically interacting
streaming applications on heterogeneous many-core SoCs. DAL itself
is available online for download at http://www.dal.ethz.ch and is the
basis of this thesis. The methods proposed in conjunction with this thesis
are integrated into this design flow.

The DAL design flow has been applied successfully in various projects
at ETH Zurich. For instance, in the context of the EU FP 7 project “Eu-
ropean Reference Tiled Architecture Experiment” (EURETILE) [PBG+13],
which deals with the design and implementation of fault-tolerant many-
tile systems, the DAL design flow has been used as front-end to design
and optimize many-tile systems with up to 200 tiles.

Overview

The overall structure of the DAL design flow is illustrated in Fig. 2.1.
The design flow’s input consists of a set of applications, the execution
scenarios, and an abstract specification of the architecture. Applications
are specified as Kahn Process Networks (KPNs) [Kah74]. As KPNs are
determinate, provide asynchronous execution, and are capable to describe
data-dependent behavior, they are well suited as basis for a high-level
programming model. In case a higher predictability is required, the
application model can be restricted, e.g., to Synchronous Dataflow (SDF)
graphs [LM87]. To represent the interactions between the applications,
a finite state machine is used, where each scenario is represented by a
state. Transitions between scenarios are triggered by behavioral events
generated by either running applications or the runtime-system.

During design time analysis, a set of optimal mappings is calculated.
At runtime, the runtime manager monitors behavioral events, and applies
the pre-calculated mappings to start, stop, resume, and pause applications
according to the finite state machine. As the number of execution sce-
narios is restricted, an optimal mapping can be calculated for each execu-
tion scenario. However, assigning each execution scenario an individual

http://www.dal.ethz.ch
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Fig. 2.1: Overall structure of the Distributed Application Layer (DAL) design flow.

mapping might lead to bad performance due to runtime reconfiguration
overhead. Therefore, processes are assumed resident, i.e., an application
has the same mapping in two connected execution scenarios. The result
of this approach is a scalable mapping solution where each application
has assigned a set of mappings and each mapping is individually valid
for a subset of execution scenarios.

The runtime manager is made up of hierarchically organized con-
trollers that follow the architecture structure and handle the behavioral
and architectural dynamism. In particular, behavioral dynamism leads
to transitions between execution scenarios and architectural dynamism
is caused by temporary or permanent failures on the hardware platform.
The controllers monitor behavioral events, change the current execution
scenario, and start, stop, resume, or pause certain applications. When-
ever they start an application, they select the mapping assigned to the
new execution scenario. To handle failures of the platform, spare cores
are allocated at design time so that the runtime manager has the ability
to move all processes assigned to a faulty physical core to a spare core.
As no additional design time analysis is necessary, the approach leads to
a high responsiveness to faults.

Outline

The remainder of the chapter is organized as follows: First, related work
is discussed. Afterwards, the considered class of many-core SoC plat-
forms is discussed in Section 2.3. In Section 2.4, the proposed model
of computation is detailed. In Section 2.5, the hybrid design time and
runtime mapping optimization strategy is proposed. In Section 2.6, an
exemplified implementation of DAL targeting Intel’s Single-chip Cloud
Computer (SCC) processor [HDH+10] is described. Finally, in Section 2.7,
case studies are shown to illustrate the presented concepts.
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2.2 Related Work
Programming paradigms for many-core systems have to tackle various
new challenges. Techniques that worked well for systems with just a
few cores will become the bottleneck in the next few years [Vaj11]. First
case studies about programming many-core systems have shown that
productive parallel programming is possible when advanced commu-
nication protocols are used [vdWMH11] and the platform is abstracted
as a parallel computer architecture with distributed memory [MCP+12].
This motivates the use of a disciplined design methodology to program
concurrent applications on complex many-core SoCs. In this section, we
discuss various approaches to design multi-functional embedded sys-
tems. For an overview of embedded system design flows using the KPN
or SDF model of computation, we refer to Section 1.2.

To capture the increasing dynamism in future embedded systems,
mapping strategies that generate a set of mappings at design time have
been proposed, e.g., in [GPH+09, MAV+10, SGB10]. Then, a runtime
mechanism selects the best fitting mapping depending on the actual re-
source requirements of all active applications. In [GPH+09], the concept
of system scenarios is introduced, which divides the system behavior
into groups that are similar from a cost perspective. It has been applied
in [SGB10] to comprehend the dynamic behavior of an application as a set
of scenarios. However, each scenario is specified as a single SDF [LM87]
graph. In contrast, our work just specifies the running and paused ap-
plications per scenario, and each application is specified as a separate
KPN. We think that the KPN model of computation is better suited for
high-level programming models and the individual specification of each
application enables a better resource usage. Finally, the approach pro-
posed in [MAV+10] generates multiple mappings, which differ from each
other in terms of power consumption and performance, at design time.
However, the approach is not scalable due to the centralized runtime
manager.

The concept of hybrid mapping strategies has already been investi-
gated in various other works. In [BBM08], it is proposed to compute
various system configurations and to calculate an optimal task allocation
and scheduling for each of them. At runtime, the decision whether a tran-
sition between allocations is feasible, is based on pre-calculated migration
costs. In our work, we assume that processes are resident. This makes
design time analysis more complex, but eliminates undesired disruption
caused by process migration. Similarly, process migration is prohibited
in [SCT10]. They use statistical methods to compute different mappings
for different interconnected usage-scenarios. As the approach evaluates a
large number of mappings, it might not scale with the size of the platform.
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In [SKS11], a hybrid mapping strategy, which calculates several resource-
throughput trade-off points at design time, is proposed. At runtime, it
selects the best point with respect to the available resources. However, the
approach is restricted to homogeneous platforms and the schedulability
of the system is only known at runtime.

In order to tolerate runtime processor failures, a multi-step mapping
strategy is proposed in [LKP+10]. After calculating a static mapping for all
possible failure scenarios, a processor-to-processor mapping is performed
at runtime. As analyzing and storing a mapping scenario for each failure
scenario is not scalable in general, we allocate spare architectural units
at design time and use them as target for process migration after the
occurrence of a fault. This allows us to limit the number of possible
failure scenarios so that all of them can be evaluated during design space
exploration.

Various options to design a runtime manager have been discussed in
literature. On the one hand, a fully centralized approach can be seen as a
broker running on its own core. While centralized approaches are widely
used in multi-core systems [SLS07, MAV+10], they impose a performance
bottleneck on many-core systems. On the other hand, a fully distributed
approach [CJS+02, KBL+11] leads to a high complexity. Therefore, we
propose a hierarchical centralized approach, that takes system scalability
into account at a low complexity.

The KPN model of computation has been extended in [GB04] with the
ability to support sporadic control events. However, the proposed Reac-
tive Process Network (RPN) model of computation does neither include
a concrete execution semantics nor mapping strategies. By specifying
the execution scenarios as a finite state machine, we are able to formally
define an execution semantics and to propose a hybrid design time and
runtime mapping strategy to efficiently execute multiple dynamically in-
teracting KPNs on a many-core platform. Finally, we define the semantics
of a scenario change and propose a high-level programming interface for
behavioral and fault events.

2.3 Architecture Model
The input to the DAL design flow is a set of applications and an ab-
stract specification of the architecture. In this section, we discuss the
abstract representation of the architecture used to specify many-core SoC
platforms in DAL.

We start with the formal definition of the architecture, which we rep-
resent as a set of processing cores that are connected by a hierarchically
organized set of networks.
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Fig. 2.2: Sketch of a hierarchically organized many-core SoC platform.

Def. 2.1: (Hierarchically Organized Many-Core Architecture) A hierarchically or-
ganized many-core architecture A = 〈C,D,N(1), . . . ,N(η), z〉 is defined as a set
of cores C, a set of core types D, η sets of networks N(1) to N(η), and a function
z : C→ D that assigns each core c ∈ C its type z(c) ∈ D.

The set of core types might be used to differ between Digital Signal
Processor (DSP) and Reduced Instruction Set Computer (RISC) compo-
nents or to distinguish between different operation frequencies. Each set
of networks corresponds to a communication layer so that the architec-
ture consists of η communication layers. A network n(k)

∈ N(k) is defined
as a subset of C. In particular, each network n(1)

∈ N(1) represents the
intra-core communication, i.e., |N(1)

|=|C|, and for each c ∈ C, there is a
network n(1)

∈ N(1) with n(1) = {c}. The second set of networks N(2) par-
titions the cores into tiles so that each core is assigned to exactly one
tile, i.e., we have

⋃
n(2)∈N(2) = C and n(2)

i ∩ n(2)
j = ∅ for all n(2)

i ,n
(2)
j ∈ N(2)

and i , j. Similarly, every other set of networks N(k) partitions the cores
so that each network n(k)

∈ N(k) contains multiple subordinate networks,
i.e., there exists a network n(k)

∈ N(k) with n(k−1)
⊆ n(k) for all n(k−1)

∈ N(k−1),⋃
n(k)∈N(k) = C, and n(k)

i ∩ n(k)
j = ∅ for all n(k)

i ,n
(k)
j ∈ N(k) and i , j. Finally,

N(η) = {n(η)
} contains a single network hierarchically connecting all pro-

cessing cores, i.e., n(η) = C. For notation simplicity, we define the type of
a network as the concatenation of all core types of the network.

The hierarchical representation of the architecture is a generalization of
the well-known tile-based multiprocessor model [CSG99] that has been
applied successfully in academia and industry (e.g., [PJL+06, SBGC07,
HGBH09]). First prototypes of future many-core SoCs typically consist
of three sets of networks, i.e., η = 3. These sets then correspond to the
three communication layers intra-core, intra-tile, and inter-tile commu-
nication [VHR+08, HDH+10, MBF+12]. A shared bus is often used for
intra-tile communication and a NoC for inter-tile communication. Fig-
ure 2.2 sketches a typical many-core SoC platform with η = 3 and its
abstract representation is illustrated in Fig. 2.3.
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Fig. 2.3: Abstract representation of the hierarchically organized many-core SoC platform
sketched in Fig. 2.2.

Due to high power densities, many-core SoCs are prone to various
kinds of failures. In this chapter, we restrict ourselves to a failure of a core
or a router. In particular, in case that a router fails, we assume that the tile
is not anymore available. In any case, we suppose that either the failed
component or any other component detects the failure and sends a fault
event to the runtime manager. For instance, as part of the EURETILE
project, a novel hardware design paradigm named LO|FA|MO [ABF+13]
has been developed, which adds an additional fault monitor to each
tile. The basic idea of the LO|FA|MO fault detection mechanism is that
a software component running on the tile must periodically update its
watchdog register. In case the software component misses to update its
watchdog register, e.g., due to a fault, the hardware-based fault monitor
on the same tile becomes aware of the fault and stops sending diagnostic
messages via the network towards its neighbors. When the neighbors
do not retrieve these messages anymore, they propagate the information
about the faulty tile along the system hierarchy to the runtime manager.

To include the evaluation of all possible failure scenarios in the design
time analysis, spare cores and tiles are allocated at design time. We call
the abstract representation of the architecture without spare cores and
tiles virtual architecture.

Def. 2.2: (Virtual Architecture) A virtual architectureVA = 〈VC,D,VN(1), . . . ,VN(η), Vz〉
consists of the set of virtual cores VC, the set of core types D of architectureA, η
sets of virtual networksVN(1) toVN(η), and function Vz. The function Vz : VC→ D
assigns each core Vc ∈ VC its type Vz(Vc) ∈ D.

Typically, it is the task of the system designer to specify the spare
components. One possibility to generate V

A is to remove from each
network n(i)

∈ N(i) one subordinate network n(i−1)
∈ N(i−1) per network

type so that each network is able to handle one failure. Finally, each
virtual network Vn(i−i) can be mapped onto any physical network n(i−1)

that belongs to the same superior network n(i) and has the same type as



24 CHAPTER 2. SCENARIO-BASED SYSTEM DESIGN

Vn(i−1). For notation simplicity, we will call a physical network with no
corresponding virtual representation a spare network and we will use the
expression spare network instead of spare core and tile.

Ex. 2.1: Consider the system illustrated in Fig. 2.3. Suppose that all cores are of the same
type and the system designer selects n(1)

3 as spare network of n(2)
1 . Then the virtual

networks Vn(1)
1 and Vn(1)

2 can be mapped onto the physical networks n(1)
1 , n(1)

2 , and
n(1)

3 , but not on n(1)
4 as it belongs to a different tile.

2.4 Scenario-Based Model of Computation
In this section, we formally define the scenario-based model of computa-
tion for streaming applications. We first discuss the specification of the
individual applications as KPNs. Afterwards, we formalize the dynamic
behavior of the system by a set of execution scenarios. Finally, we discuss
the execution semantics of the system.

2.4.1 Application Specification
The KPN [Kah74] model of computation is considered to specify the
application behavior. In the following, we formally specify an application
as a KPN.

Def. 2.3: (Kahn Process Network) A Kahn Process Network (KPN) p = 〈V,Q〉 consists
of a set of autonomous processes v ∈ V that communicate through unbounded
point-to-point FIFO channels q ∈ Q by reading tokens from an input channel
or writing tokens to an output channel. Each process v ∈ V represents a
monotonic and determinate mapping F from one (or more) input streams to one
(or more) output streams whereby monotonicity is obtained by having blocking
and destructive read access to the channels.

Figure 2.4 shows a KPN with four processes and four FIFO channels.
As every process v ∈ V is monotonic and determinate, there is no notion
of time and the output just depends on the sequence of tokens in the indi-
vidual input streams [GB03]. In other words, the output stream [y1, y2, . . .]
can be constructed by iteratively applying mapping F to subsequent parts
of the corresponding input stream(s) [x1, x2, . . .], and concatenating the re-
sults: Y = F(X) : [y1, y2, . . .] = [F(x1),F(x2), . . .].

A KPN assumes unbounded point-to-point FIFO channels even
though such FIFO channels cannot be realized in a physical implemen-
tation. Still, an implementation with the same semantics can represent
channels with finite capacity that are accessed using blocking read and
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Fig. 2.4: Example of a KPN p = 〈V,Q〉with four processes v1, v2, v3, and v4 and four FIFO
channels q1, q2, q3, and q4.

write functions [BH01, GB03]. Blocking means that a process stalls if it
attempts to write to a full FIFO channel or read from an empty FIFO
channel.

Conceptually, a KPN is non-terminating, i.e., once the process network
has started it does not stop running. However, in order to specify an
application that can possibly stop or pause as a KPN, we extend the
definition of a KPN with the ability to terminate and pause. To this end,
we first propose the high-level Application-Programming Interface (API)
illustrated in Listing 2.1 to specify KPN processes. Roughly speaking, the
init procedure is responsible for the initialization and is executed once at
the startup of the application. Afterwards, the execution of a process is
split into individual executions of the imperative fire procedure, which is
repeatedly invoked. Once an application is stopped, the finish procedure
is called for cleanup. Communication is enabled by calling high-level
read and write procedures and each process has the ability to request a
scenario change by calling the send_event procedure. Each process has
an internal state (represented by the ProcessData structure), which can be
used to preserve data among multiple executions of the fireprocedure. In
addition to the functionality of the individual processes, which is specified
in C or C++, the topology of the KPN is specified in an XML format, see
Listing 2.2.

Now, we are able to introduce and specify the four generic actions
start, stop, pause, and resume of a KPN p = 〈V,Q〉. The semantic of those
four actions is summarized in Table 2.1. As stopping an application p
might be problematic, the fire procedure of all processes v ∈ V is aborted
at predefined points only, such as when process v is calling read orwrite,
or when the execution of the fire procedure is finished. In the case that
a process is blocked, i.e., the process attempts to read from an empty
channel, the blocking is resolved before the fire procedure is aborted.
Finally, the finish procedure is executed to perform cleanup operations
including reading the left over content from the incoming channels or
finishing input and output operations.
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List. 2.1: Implementation of a KPN process using the proposed API. Note that no assump-
tions are made regarding the sequence of read and write operations.

01 void in i t ( ProcessData *p ) { / / process i n i t i a l i z a t i o n
02 i n i t i a l i z e ( ) ;
03 }
04

05 void f i re ( ProcessData *p ) { / / process execut ion
06 read ( PORT_in , buffer , s i z e ) ; / / read from f i f o
07 i f ( b u f f e r [ 0 ] == eventkey ) {
08 send_event ( e ) ; / / send event e to runtime manager
09 }
10 manipulate ( ) ;
11 write ( PORT_out , buffer , s i z e ) ; / / write to f i f o
12 }
13

14 void f in i sh ( ProcessData *p ) { / / process cleanup
15 cleanup ( ) ;
16 }

List. 2.2: Specification of a KPN with two processes and one channel.

01 <processnetwork>
02

03 <!−− s p e c i f i c a t i o n of the processes −−>
04 <process name=" producer ">
05 <port type=" output " name=" out " />
06 <source type=" c " l o c a t i o n=" producer . c " />
07 </ process>
08

09 <process name=" consumer ">
10 <port type=" input " name=" in " />
11 <source type=" c " l o c a t i o n=" consumer . c " />
12 </ process>
13

14 <!−− s p e c i f i c a t i o n of the channels −−>
15 <channel c a p a c i t y=" 8 " name=" channel ">
16 <sender process=" producer " port=" out " />
17 <r e c e i v e r process=" consumer " port=" in " />
18 </channel>
19

20 </processnetwork>
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Tab. 2.1: Description of the four generic action types of a KPN p = 〈V,Q〉.

action description

start All processes v ∈ V and all FIFO channels q ∈ Q are installed, and the
init procedure of all processes v ∈ V is executed once. Afterwards,
all processes v ∈ V are started and the fireprocedure is continuously
called by the system scheduler.

stop The fire procedure of all processes v ∈ V is aborted and the fin-
ish procedure of all processes v ∈ V is executed. Afterwards, all
processes v ∈ V and all FIFO channels q ∈ Q are removed.

pause The fire procedure of all precesses v ∈ V is interrupted and all
processes v ∈ V are temporary detached from the system scheduler.

resume All processes v ∈ V are restarted and the fire procedure is continu-
ously called by the system scheduler.

2.4.2 Execution Scenario Specification
The dynamic behavior of the system is captured by a set of execution sce-
narios. Each execution scenario represents a set of concurrently running
or paused applications. Execution scenario transitions are triggered by
behavioral events generated by either running applications, the runtime-
system, or the operating system.

Ex. 2.2: Consider the (simplified) car entertainment system shown in Fig. 2.5. The system
has five execution scenarios with one to three applications. After startup, the
system enters the ‘map’ scenario where the MAP application is running and
displaying the current position of the car on a map. Depending on the situation,
the execution scenario might change. For example, the driver starts to drive
backwards so that the parking assistant is started (scenario ‘parking’), the voice
navigation notifies the driver to take the next exit (scenario ‘nav’), or the driver
starts listening to some music (scenario ‘map and music’). In addition, the
voice navigation might notify the driver to change the driving direction while
listening to music. To this end, the system switches to scenario ‘nav and music’,
and pauses the MP3 application.

In the following, we formally specify the above described dynamic
behavior of a many-core system by a finite state machine.

Def. 2.4: (Dynamic System Behavior) The dynamic behavior of a many-core system is
represented by a finite state machine F = 〈S,E,T,P, s0, a, r, h〉 that consists of
the set of execution scenarios S, the set of events E, the set of directed transitions
T ∈ S×S, the set of applications P, an initial execution scenario s0 ∈ S, and three
functions a, r, and h. The function a : T → E maps a transition t ∈ T to a set
of triggering events a(t) ⊆ E for all t ∈ T. The function r : S → P assigns each
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Fig. 2.5: Exemplified specification of a (simplified) car entertainment system that consists
of five execution scenarios with one to three applications.

execution scenario s ∈ S a set of running applications r(s) ⊆ P and the function
h : S → P assigns each execution scenario s ∈ S a set of paused applications
h(s) ⊆ P. We suppose that there is only one instance of an application so that
r(s) ∩ h(s) = ∅ for all s ∈ S.

Ex. 2.3: Figure 2.6 presents an example of a finite state machineF = 〈S,T,E,P, s0, a, r, h〉
with four execution scenarios s0, s1, s2, and s3 among which s0 is initially active.
The execution scenarios are linked by the set of transitions T = {t1, t2, t3, t4, t5}

such that t1 = 〈s0, s1〉, t2 = 〈s1, s2〉, t3 = 〈s2, s3〉, t4 = 〈s3, s1〉, and t5 = 〈s3, s0〉.
Function a assigns each transition its triggering events. For example, transition
t2 from execution scenario s1 to execution scenario s2 happens when the events
e2 or e3 are detected in execution scenario s1. Finally, functions r and h assign
each execution scenario a list of running and paused applications.

2.4.3 Execution Semantics

The above introduced model of a finite state machine F is a Moore ma-
chine [Moo56], i.e., each execution scenario has a list of running and
paused applications, and each transition between execution scenarios has
a set of events that trigger the transition. However, in terms of execution,
each transition is associated with a set of actions. For example, transition
t1 of the finite state machine F illustrated in Fig. 2.6 is associated with the
action {pause application p1}, and transition t4 is associated with the actions
{stop application p3, start application p2}.

Therefore, in terms of execution, we map the system evolution to a
Mealy machine [Mea55] and transform F into a new finite state machine.
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Fig. 2.6: Example of a finite state machine F = 〈S,T,E,P, s0, a, r, h〉.

Def. 2.5: (Execution Semantics) The execution semantics of a many-core SoC is repre-
sented by the finite state machine F̃ = 〈S,E, T̃,P, t0, a,us,ut,up,ur

〉 that consists
of the set of execution scenarios S, the set of events E, the set of directed transitions
T̃ ∈ S×S, the set of applications P, an initial transition t0 ∈ T, and six functions
a, us, ut, up, and ur. S, E, P, and a : T → E are defined as in Definition 2.4 and
T̃ = T∪ t0. The functions us, ut, up, and ur assign each transition t ∈ T̃ the set of
applications to be started, stopped, paused, and resumed. In particular, suppose
that transition t = 〈sx, sy〉, then us(t), ut(t), up(t), and ur(t) are defined by:

start: us(t) = r(sy) \ (r(sx) ∪ h(sx)) ⊆ P
stop: ut(t) = (r(sx) ∪ h(sx)) \ (r(sy) ∪ h(sy)) ⊆ P
pause: up(t) = h(sy) ∩ r(sx) ⊆ P
resume: ur(t) = r(sy) ∩ h(sx) ⊆ P

In other words, whenever transition t ∈ T̃ is triggered, all applica-
tions p ∈ us(t) are started, all applications p ∈ ut(t) are stopped, all appli-
cations p ∈ up(t) are paused, and all applications p ∈ ur(t) are resumed.

In terms of execution, the initial transition t0 takes place after startup
so that the finite state machine enters execution scenario s0. Whenever
an event e ∈ E that corresponds to one of the outgoing transitions of the
current execution scenario, is received, the transition takes place. In other
words, an event e ∈ E triggers a transition t ∈ T if and only if e ∈ a(t),
t = 〈sx, sy〉, and sx is the current execution scenario of the finite state
machine.

Conceptually, the reaction of the system to an event is immediate,
i.e., the actions listed in Table 2.1 are performed in zero time. However,
as the production and execution of these actions take a certain amount
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of time, we have to come up with additional rules, which preserve the
described semantics. In particular, we insist that a transition is only
triggered if the system is in a stable scenario. A stable scenario is reached
if the executions of all actions that have been triggered by the previous
transition, are completed. This rule is required as events might arrive
faster than they can be processed. If the system is not yet in a stable
scenario, the execution of new actions might cause the system to move to
an unknown or wrong execution scenario. Practically, this requirement
can be realized by saving all incoming events in a FIFO queue so that
the events are processed in a First-Come-First-Served (FCFS) manner. If
the current execution scenario has an outgoing transition that is sensitive
to the head event of the FIFO queue, the transition takes place and the
event is removed from the FIFO queue. Otherwise, the event is removed
without changing the active execution scenario.

2.5 Hybrid Mapping Optimization
In this section, we present a hybrid design time and runtime strategy for
mapping streaming applications onto many-core SoC platforms. The de-
sign time component calculates an optimal mapping for each application
and execution scenario where the application is either running or paused.
At runtime, the dynamic mapping of the applications onto the architec-
ture is controlled by a runtime manager, which monitors events, chooses
an appropriate mapping, and finally executes the required actions, see
Fig. 2.7.

2.5.1 Design Time Analysis and Optimization
In this subsection, we introduce the proposed approach for design time
optimization. We minimize the maximum utilization of each core subject
to utilization and communication constraints so that we obtain a system
with a balanced workload. Minimizing the maximum core utilization
enables us to reduce the operation frequency, thereby saving energy, or to
increase the invocation interval of the applications to increase the overall
throughput.

In order to maximize the performance, a different mapping should
be assigned to each execution scenario. However, changing the process-
to-core assignment with each scenario transition might lead to bad per-
formance due to reconfiguration overhead. Therefore, the approach pro-
posed in this chapter assumes that processes are resident, i.e., once a
process starts its execution on a certain core, it will not be remapped to
another core. In other words, if an application is active in two connected
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Fig. 2.7: Overall hybrid mapping optimization approach with a design time and a runtime
component.

execution scenarios, it has the same mapping in both execution scenar-
ios. We think that this restriction is well suited for embedded systems
where process migration leads to non-negligible costs in terms of time
and system overhead.

Ex. 2.4: Consider again the car entertainment system outlined in Fig. 2.5. The MAP ap-
plication will have the same mapping in all active execution scenarios. However,
the mapping of the NAV application might be different in scenario ‘nav’ and sce-
nario ‘nav and music’ as they are not connected by a direct transition. The
runtime manager selects the appropriate mapping for the NAV application when
the application is started depending on the current execution scenario.

Mapping Specification

The design time component calculates an optimal mapping for each ap-
plication and execution scenario where the application is either running
or paused. Thus, the output of the design time analysis is a collection M
of optimal mappings and exactly one mapping m ∈ M is valid for a pair
of application and execution scenario. Formally, we define a mapping as
follows.

Def. 2.6: (Mapping) A mapping m ∈ M is a triple 〈p,Sm,Bm
〉 where p is an application,

Sm
⊆ S is a subset of execution scenarios, and Bm

∈ V ×VC is the set of binding
relations. Sm denotes the set of execution scenarios for which mapping m is valid.
As processes are resident, the same mapping might be valid for more than one
execution scenario. Finally, a binding relation 〈v, Vc〉 ∈ Bm specifies that process
v is bound to virtual core Vc.
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In the following, we propose a two-step procedure to calculate map-
pings m ∈M. First, we calculate which pairs of application and execution
scenario must use the same mapping so that no process migration is re-
quired. At the end of the first step, we allocate one mapping m ∈ M
for each of these pairs. Afterwards, in a second step, we calculate for
each mapping m ∈ M a set of optimized binding relations so that the
objective function is minimized and additional architectural constraints
are fulfilled.

Mapping Generation

First, we calculate pairs 〈p,Sm
〉of an application p and a subset of execution

scenarios Sm so that the size of each subset is minimized and additional
constraints are fulfilled. The additional constraints are designed to ensure
that process migration is not required, i.e., they guarantee that application
p has the same mapping in all execution scenarios s ∈ Sm. In particular,
we can identify the following three constraints:
Constraint 1: Each application is mapped:

p ∈ (r(s) ∪ h(s)) ⇒ ∃ m = 〈p,Sm,Bm
〉 ∈M : s ∈ Sm. (2.1)

Constraint 2: Two mappings do not overlap:

m1 = 〈p,Sm1 ,Bm1〉 and m2 = 〈p,Sm2 ,Bm2〉 ⇒ Sm1 ∩ Sm2 = ∅. (2.2)

Constraint 3: Process migration is not allowed:

p ∈ ((r(s1) ∪ h(s1)) ∩ (r(s2) ∪ h(s2))) and t = 〈s1, s2〉 ∈ T
⇒ ∃ m = 〈p,Sm,Bm

〉 ∈M : s1, s2 ∈ Sm.
(2.3)

The mapping generation problem can be solved by calculating for
each application p the maximally connected components of a subgraph
that just contains all execution scenarios where p is either running or
paused. Then, we can generate a new pair 〈p,Sm

〉 for each component of
this subgraph. Algorithm 2.1 presents the pseudo code to calculate all
pairs 〈p,Sm

〉. The algorithm generates the pairs 〈p,Sm
〉 by sequentially

analyzing all applications. First, a subgraph G = 〈Ssub,Tsub
〉 is deter-

mined by removing all execution scenarios s ∈ S in which application p
is neither running nor paused. Then, the maximally connected compo-
nents Gconn

i = 〈Sconn
i ,Tconn

i 〉 ∈ G
conn of subgraph G are determined. In other

words, the execution scenarios are partitioned into non-overlapping sets
such that there is no transition between nodes in different subsets Gconn

i
and the subsets are as large as possible. Finally, a new pair 〈p,Sconn

i 〉

is generated for each maximally connected component of a subgraph
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Algorithm 2.1 Pseudo code to generate all pairs 〈p,Sm
〉 of an application

p and a subset of execution scenarios Sm so that the number of elements
per subset is minimized and the constraints specified by Eqs. (2.1) to (2.3)
are fulfilled.
Input: finite state machine F = 〈S,T,E,P, s0, a, r, h〉
Output: set of pairs 〈p,Sm

〉

01 for all applications p ∈ P do
02 Ssub

← (s ∈ S|p ∈ (r(s) ∪ h(s))).
.all scenarios where p is running or paused

03 Tsub
← (t = 〈s1, s2〉 ∈ T|p ∈ (r(s1) ∪ h(s1)) and p ∈ (r(s2) ∪ h(s2)))

.all transitions that affect p
04 G ← 〈Ssub,Tsub

〉

05 G
conn
← set of all maximally connected components of G

06 for all Gconn
i ∈ G

conn do .generate pairs for each component
07 add 〈p,Sconn

i 〉 .add the new pair to the set of pairs
08 end for
09 end for

G. By relying on a breadth-first search algorithm to calculate the set of
all maximally connected components, the calculation of all pairs has a
computational complexity of O (|P| · (|T| + |S|)). In order words, the com-
plexity to calculate all pairs scales linearly with the number of processes
and with the total number of execution scenarios and transitions. Typi-
cally, the limiting factor is the number of transitions, which can be up to
2 · |S|2.

Finally, as application p uses the same mapping in all execution sce-
narios s ∈ Sm, we allocate a mapping m = 〈p,Sm, ·〉 ∈ M for each pair
〈p,Sm

〉.

Mapping Optimization

In the second step, we calculate for each mapping m ∈M the set of binding
relations Bm so that the objective function, i.e., the maximum core utiliza-
tion, is minimized and predefined architectural constraints are fulfilled.
Later, we will use an extended version of the PISA framework [BLTZ03]
to solve the considered mapping problem. In particular, the PISA frame-
work uses an Evolutionary Algorithm (EA) to solve the optimization
problem.

The number of firings per time unit of process v is f (v) and the max-
imum execution time of process v on a core of type d is w(v, d). Further-
more, Ms

⊆ M denotes the subset of all mappings with s ∈ S and p ∈ r(s),
i.e., Ms = {〈p,Sm,Bm

〉 ∈ M|p ∈ r(s) and s ∈ Sm
}. The binding relations Bm
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are calculated so that the maximum core utilization is minimized, and
the utilization and communication constraints are met in each execution
scenario.

Objective function: The optimization goal of this problem is to minimize
the maximum core utilization. In order to incorporate the different exe-
cution scenarios into a single objective function, we assign each execution
scenario s ∈ S a weight χs [SCT10] so that the object function can formally
be stated as:

min

max
Vc∈VC

∑
{s∈S}

∑
{m∈Ms}

∑
{v∈V:〈v,Vc〉∈Bm}

χs · f (v) · w(v, Vz(Vc))

 . (2.4)

The weight of an execution scenario may represent an importance weight-
ing or an execution probability and can be based on the characteristics of
the applications or on historic data.

Constraint 4: In order to make sure that the cores are able to handle the
processing load, the following relation has to be satisfied for all cores
Vc ∈ VC and states s ∈ S of finite state machine F :∑

{m∈Ms}

∑
{v∈V:〈v,Vc〉∈Bm}

f (v) · w(v, Vz(Vc)) ≤ 1. (2.5)

Constraint 5: Similarly, we can formulate the bandwidth requirement for
each network by adding the data volume per time unit of each channel.
Then, the aggregated data volume for each network n must be smaller
than its supported rate. As the applications are mapped onto a virtual
architecture, all possible separations between the processes must be con-
sidered. However, due to the hierarchical structure of the architecture, a
virtual network is only mapped onto a physical network within the same
superior network so that the maximum separation is bounded.

In case that the system can be divided into multiple parts that are
behavioral independent, each part can be optimized individually as the
following example shows.

Ex. 2.5: Consider again the car entertainment system illustrated in Fig. 2.5. As scenario
‘parking’ is behavioral independent of all other scenarios, it can be optimized
separately.
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2.5.2 Runtime Manager
In this subsection, we discuss the required runtime support to execute a
set of applications P on a many-core architectureA. The required runtime
support is provided by a runtime manager that has the task to generate
commands towards the runtime-system so that the execution semantics
described in Section 2.4.3 is ensured. An exemplified runtime-system
that provides this functionality for the Intel SCC processor [HDH+10] is
described in the next section.

Traditionally, runtime managers are either centralized or distributed.
However, as a centralized approach comes with a performance bottleneck
and a distributed approach leads to a high complexity, both approaches
are not suited for embedded many-core systems. In this thesis, we pro-
pose to split the workload among hierarchically organized controllers. In
the following, we first discuss the general ideas of a hierarchical control
mechanism. Afterwards, we describe the functionalities of the different
controllers.

Hierarchical Control Mechanism

The general idea of the hierarchical control mechanism is to assign each
network n ∈ {N(2), . . . ,N(η)

} its own controller vc
∈ Vc that handles all intra-

network dynamism. In particular, the controller assigned to network n ∈
N(2) monitors for behavioral and fault events. Whenever such a controller
receives an event, it handles the event if it only affects the network of
the controller, and otherwise, it sends the event to the controller of its
superior network.

By modeling the communication medium between the controllers as
FIFO channels, the hierarchical control mechanism can be represented as
a process network pc = 〈Vc,Qc

〉. To provide bidirectional communication,
two FIFO channels are allocated between a controller and its superior
controller. Algorithm 2.2 shows the pseudo code to generate process
network pc for an architectureA.

Figure 2.8 shows the process network pc for the exemplified archi-
tecture shown in Fig. 2.3. Following the hierarchical structure of the
considered many-core SoC architectures, we categorize the controllers
into three different types:

• A slave controller is responsible for a tile, i.e., for a network
n(2)
∈ N(2). All architectural units in network n(2) and all processes

v assigned to a core c ∈ n(2) are able to send events to the slave
controller. In addition, a slave controller is able to send commands
to the runtime-system of its tile.



36 CHAPTER 2. SCENARIO-BASED SYSTEM DESIGN

Algorithm 2.2 Pseudo code to calculate process network pc of the hierar-
chical control mechanism.
01 function ComputeController( arch. A, total number of layers η )
02 V ← master

.initial set of controllers that consists of the master controller
03 Q← ∅ .initial set of FIFO channels connecting the controllers
04 ComputeLayer( master, η − 1,A, V, Q )
05 pc = 〈V,Q〉
06 return pc

07 end function
08
09 function ComputeLayer( superior controller vp, layer l,

architectureA, set of processes V, set of FIFO channels Q )
10 for all n ∈ N(l) do
11 if l == 2 then
12 V ← V∪ slave .add slave controller
13 else
14 V ← V∪ interlayer .add interlayer controller
15 ComputeLayer( v, l − 1,A, V, Q )
16 end if
17 Q← Q ∪ 〈v, vp

〉 ∪ 〈vp, v〉 .add channels between controllers
18 end for
19 end function

• An interlayer controller is responsible for a network n(i)
∈ N(i)

with i = [3, η − 1] and η the number of communication layers. It
receives all events that cannot be handled by its subordinates. The
interlayer controller processes an event if it only affects its own
network. Otherwise, it sends the event to its superior controller.

• The master controller is responsible for network n(η)
∈ N(η). It

processes all events that cannot be handled by any other controller.

Nowadays, all cores of a tile have typically a common operating sys-
tem so that one slave controller can dynamically allocate processes on all
cores of the tile. However, in case that each core has its dedicated runtime-
system, we assign a slave controller to each core so that the interaction
between the control mechanism and the runtime-system is ensured.

Hierarchical Event Processing

A controller of the hierarchical control mechanism handles the events that
only affect the network of the controller. Otherwise, the controller sends
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the event to the controller of its superior network. In the following, we
detail this procedure for an interlayer controller.

So far, we have seen that events can be categorized into two groups
that cause different behavior. The first group contains the behavioral
events and the second group contains the fault events.

Def. 2.7: (Behavioral Event) A behavioral event triggers a transition between two exe-
cution scenarios and is generated by either running applications or the runtime-
system.

Def. 2.8: (Fault Event) A fault event is triggered in the case that a hardware failure
occurs. It is of the form 〈tag,n〉 whereby tag denotes the fault type and n denotes
the affected network.

Fault events only change the mapping of the virtual architecture VA
onto the physical architectureA, but not the mapping of the applications
onto the virtual architecture VA. Consequently, each controller consists
of two components, see Fig. 2.7. The first component is responsible to
handle behavioral events and ensures the execution semantics. It is just
aware of the virtual architecture VA, i.e., it generates commands towards
V
A. The second component processes the fault events and redirects the

commands to the corresponding physical network.
Next, we will detail the procedure of an interlayer controller when it

receives a fault event. To this end, we suppose that controller vc belongs
to network n(k). Once it receives a fault event of the form 〈 f ault,n(l)

〉, it
executes the procedure outlined in Algorithm 2.3. If n(l) is not a sub-
ordinate network of n(k), i.e., l , k − 1, vc has to reinstall the affected
channels (Lines 9–11). Otherwise, if n(l) is a subordinate network of n(k),
i.e., l = k− 1, vc has to handle the fault by migrating all processes mapped
onto the faulty network n(l) to a spare physical network (Lines 2–8).
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Algorithm 2.3 Pseudo code to handle a fault event 〈 f ault,n(l)
〉 under the

assumption that controller vc belongs to network n(k).

Input: fault event 〈 f ault,n(l)
〉

01 Vn← virtual network mapped onto n(l)

02 if l == k − 1 then .n(l) is subordinate of n(k)

03 if n(k) has spare subordinate network n(l)
s of

the same type as n(l) then .vc handles the fault
04 migrate Vn to n(l)

s
05 else .vc is unable to handle the fault and reports n(k) as faulty
06 send 〈 f ault,n(k)

〉 to superior network and return
07 end if
08 end if
09 for all q ∈ Q that connect a process v1 mapped onto Vn with a process

v2 mapped onto a physical core c ∈ n(k) and c < n(l) do
10 reinstall q
11 end for
12 if ∃q ∈ Q that connects a process v1 mapped onto Vn with a process v2

mapped onto a physical core c < n(k) then
13 send 〈 f ault,n(l)

〉 to superior network
14 end if

Since a fault can be handled without additional mapping optimization,
the system has a high responsiveness to faults. In case that network n(l) is
not anymore faulty, it sends a reintegration event of the form 〈available,n(l)

〉

to the controller, which marks n(l) as a spare network.

2.6 Exemplified Implementation Targeting the
Intel SCC Processor

In the previous sections, the basic concepts to execute multiple stream-
ing applications simultaneously on a many-core system have been pre-
sented. To demonstrate the viability of these concepts, a prototype im-
plementation of DAL has been developed targeting Intel’s SCC proces-
sor [HDH+10]. Even though this section focuses on the SCC, the same
concepts can be applied to port DAL to any other platform that is running
a Linux-based operating system.

Executing applications specified according to the previously proposed
scenario-based model of computation on Intel’s SCC processor requires a
runtime-system and a program synthesis back-end. While the runtime-
system provides an implementation of the API, the program synthesis
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back-end creates the required components to execute the applications on
top of the runtime-system. In the following, we first give a high-level
overview of the Intel SCC processor. Then, we individually describe the
proposed runtime-system and program synthesis back-end.

2.6.1 Intel Single-chip Cloud Computer Processor

The Intel SCC processor [HDH+10] consists of 24 tiles that are organized
into a 4×6 grid and linked by a 2D mesh on-chip network. A tile contains
a pair of P54C processor cores, a router, and a 16 KB block of SRAM. Each
core has an independent L1 and L2 cache. The on-tile SRAM block is
also called Message Passing Buffer (MPB) as it enables the exchange of
information between cores in the form of messages. The SCC processor
is schematically outlined in Fig. 1.1a.

Intel’s SCC processor has three communication layers. The first layer
is the intra-core communication. The second layer is the intra-tile com-
munication, i.e., every intra-tile network n(2)

∈ N(2) consists of two cores
that communicate without using the on-chip network. Finally, the 24
n(2) networks communicate via the 2D mesh on-chip network and form
network n(3). As each tile is only composed of two cores, it might not be
appropriate to allocate spare cores, but to reserve one or two tiles as spare
tiles.

In terms of programmability, the most commonly used software plat-
form for Intel’s SCC processor is to run a Linux kernel on each core.
For communication purpose, various message passing libraries have
been developed including RCCE [vdWMH11], iRCCE [CLRB11], and
RCKMPI [URK11]. Instead of implementing our own software platform,
we run our runtime-system on top of the Linux kernel. This enables us to
use the basic multi-threading mechanisms provided by the Linux kernel.

2.6.2 Runtime-System

The task of the runtime-system is to provide services for inter-process
communication and a mechanism to iteratively execute processes by call-
ing their fire procedure. Furthermore, the runtime-system must be able
to receive and process the commands of the runtime manager, i.e., it must
provide services to manage processes and channels at runtime. In the
following, we discuss each of these tasks individually.
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Fig. 2.9: Example of intra- and inter-core communication on the Intel SCC processor.
Process ‘P’ and process ‘W’ communicate over shared memory and process ‘W’
and process ‘C’ communicate over distributed memory. The virtual FIFO and
the listener threads are illustrated in grey.

Inter-Process Communication

To be efficient, the runtime-system has to differ between communica-
tion over shared and distributed memory, see Fig. 2.9. While ring
buffers in private memory are used for intra-core communication, an
advanced architecture-dependent FIFO implementation is required for
efficient inter-core communication.

In general, FIFO channels might be implemented in private mem-
ory of the sender process or receiver process, or in shared memory. We
persistently implement the FIFO channels in the private memory of the
receiver and use the RCKMPI library [URK11] for inter-core communica-
tion. The RCKMPI library is an implementation of the Message Passing
Interface (MPI) [Pac96] for the Intel SCC processor. It automatically takes
the memory organization of the SCC into account and uses the MPB, if
appropriate. As no Direct Memory Access (DMA) controller is available
on the SCC for inter-core communication, we launch a listener thread on
each core. The listener thread is responsible for handling all incoming
traffic and writing the data to the correct FIFO channel. To keep the lis-
tener thread lightweight, it uses the memory of the local FIFO channel
as receive buffer for data transfer, thereby avoiding expensive allocation
and copy operations. Due to the fact that the RCKMPI library is basically
a standard implementation of MPI, the discussed implementation of DAL
can be ported with low effort to any other Linux platform that supports
MPI.

To avoid deadlocks, the listener thread must not be blocked at any
time, i.e., we have to ensure that a data transfer is only initialized if the
receiver has enough space available to store the data. This is ensured
by a virtual FIFO at the sender. The virtual FIFO has the same metadata
(amount of free space) as the actual FIFO, but if a process attempts to write,
either the data is directly transferred or the calling process is blocked as
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Fig. 2.10: Inter-process communication protocol between processes located on different
cores as employed on Intel’s SCC processor. Besides the sender and receiver
processes, the listener threads of the sender and receiver cores are shown.

long as the receiver has not enough space to store the data. The disad-
vantage of this approach is that the virtual FIFO has to know when the
receiver process has consumed data, thereby requiring synchronization
between sender and receiver process. In our implementation, this syn-
chronization is ensured by a signal that is sent by the receiver process
when it has consumed data. The inter-process communication protocol
is sketched in Fig. 2.10.

Multi-Processing

As our runtime-system runs on top of a Linux kernel, we use the multi-
processing features provided by the operating system to run multiple
processes in a quasi-parallel fashion on a single core. In particular, pro-
cesses are mapped onto Portable Operating System Interface (POSIX)
threads and scheduled by the operating system’s scheduler. When a pro-
cess is blocked due to empty input or full output channels, the scheduler
automatically selects a different process to execute. Instead of POSIX
threads, any other thread implementation could have been used for this
task. An overview of possible thread implementations for KPNs is given
in [HSH+09].
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Process and Channel Management

In order to process the commands of the runtime manager, the runtime-
system has to provide services to install, uninstall, start, and stop pro-
cesses, as well as to create and destroy FIFO channels.

Since the memory footprint of the system is reduced by storing the
individual processes as dynamic libraries, the runtime-system must load
the dynamic libraries when the application is started. Thus, installing
a process involves loading and dynamically linking the corresponding
library, and then executing its init procedure. Similarly, uninstalling a
process involves executing the finish procedure and unloading the dy-
namic library. The procedure to create a channel depends on the mapping
of the sender and receiver. If both processes are mapped onto the same
core, a local FIFO channel is instantiated. Otherwise, a virtual FIFO chan-
nel and a local FIFO channel are instantiated at the sender and receiver,
respectively. Afterwards, virtual and local FIFO channels are registered
at the corresponding listener thread. A FIFO channel is destroyed by
deregistering it at the listener thread and freeing the memory buffer.
Finally, a process is started by registering the thread at the scheduler,
and stopped by aborting the fire procedure and deregistering it from the
scheduler.

2.6.3 Program Synthesis Back-end

The program synthesis back-end is the second component required to
execute KPNs on top of Intel’s SCC processor. The task of the back-end
is to create the runtime manager, to embed each process into a POSIX
thread, and to create a main function for each core, see Fig. 2.11.

Runtime Manager Synthesis

The task of the runtime manager synthesis is to automatically construct
the runtime manager according to the concepts described in Section 2.5.2.
With respect to Intel’s SCC processor, the result of this step is a process
network with onemaster controller and one slave controller per core. The
master controller manages the dynamic execution of the system and the
slave controllers are responsible for the management of the processes and
FIFO channels. Thus, the master controller distributes the actual compu-
tation to the slave controllers. Once the slave controllers performed their
work, they go to sleep until the master controller sends them a new job.
This makes the proposed runtime manager very lightweight in the sense
that it does not affect the execution of the process network.
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Fig. 2.11: Program synthesis flow to generate the source code of the runtime manager and
the process wrappers.

Process Network Synthesis

Finally, the process network synthesis step embeds each process into a
POSIX thread and creates a main function for each core. Embedding
each process into a POSIX thread is achieved by a process wrapper that
repeatedly calls the fire procedure of the process. The process definition
is then stored together with the process wrapper as a dynamic library in
the file system so that it can be loaded on request of a slave controller. The
main function has two tasks. First, it starts the listener thread. Then, it
initializes the processes and channels of the runtime manager and turns
the control of the system over to the master controller.

2.7 Evaluation
In this section, we provide evaluation results by means of a prototype
implementation of DAL demonstrating the capabilities of the proposed
scenario-based design flow. The goal is to answer the following ques-
tions. a) What are the limitations of the hierarchical control mechanism?
b) What is the overhead of an optimized software stack generated by the
proposed design flow? c) Does the proposed design flow provide enough
flexibility to design complex and efficient embedded systems? To answer
these questions, we evaluate the performance of synthetic and real-world
benchmarks on a quad-core processor and on the SCC.



44 CHAPTER 2. SCENARIO-BASED SYSTEM DESIGN

2.7.1 Experimental Setup
Intel Quad-Core Processor

The considered workstation has a quad-core Intel i7-2720QM processor
clocked at 2.2 GHz (hyper-threading is deactivated) and 8 GBytes of mem-
ory. DAL runs on top of Linux and uses the POSIX library to execute
multiple processes in parallel. Processes are stored as dynamic libraries,
which are loaded and dynamically linked when the process is started.
The used compiler is G++-4.5.3 with optimization level O2.

Intel SCC Processor

The prototype implementation of DAL presented in Section 2.6 has been
used to execute KPNs on the Intel SCC processor [HDH+10]. The con-
sidered processor is configured to run the cores at 533 MHz and both the
routers and the DDR3 RAM at 800 MHz. A Linux image with kernel 2.6.32
has been loaded onto each core and the RCKMPI library [URK11] has been
configured to use the default channel implementation, i.e., the SCCMPB
channel. In all experiments, the compiler is icc 8.1 with optimization
level O2.

2.7.2 Control Mechanism
To measure the overhead of the hierarchical control mechanism, multi-
ple streaming applications have been executed concurrently on the Intel
i7-2720QM processor. We configured DAL to consider the processor as
an architecture with three communication layers whereby the inter-tile
communication layer just consists of one tile with four cores. The work-
load is then split between two controllers. Themaster controller is aware
of the applications and the slave controller is responsible for installing
and removing processes and FIFO channels. As there is only one slave
controller in the system, basically, this one would be able to also process
the tasks that are assigned to themaster controller. However, we selected
this configuration as it enables us, on the one hand, to simulate the general
case of having more than one slave controller and, on the other hand, to
measure separately the overhead generated by the behavioral dynamism
and by the interactions with the operating system.

The application set consists of two single-process applications, namely
the fullload application and the pulse application. The fullload appli-
cation computes a predefined set of operations before stopping. There-
fore, its execution time only depends on the other processes that are
running on the same core. The pulse application sleeps for a certain
time interval, the so-called switching time. Then it sends an event to the
runtime manager that tells the controller to stop and restart the pulse
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Fig. 2.12: Comparison of the time to execute the fullload application in different mapping
configurations. The different mapping configurations are detailed in Table 2.2.

application. The overhead of the control mechanism is estimated by
comparing the absolute execution times of the fullload application for
different mappings, see Table 2.2 for the detailed mapping configurations.

Tab. 2.2: Mapping configurations to measure the overhead of the hierarchical control
mechanism.

core 0 core 1 core 2 core 3

Mapping A master slave fullload pulse
Mapping B master slave, fullload - pulse
Mapping C master, fullload slave - pulse
Mapping D master, slave,

fullload
- - pulse

In Fig. 2.12, the absolute time to execute the fullload application is
compared for the four mapping configurations and different switching
times. The switching time is the time interval between two scenario
change requests. As the fullload application runs in all scenarios, it is
not directly affected by the scenario changes and its absolute execution
time depends only on the workload of the other processes that are running
on the same core. Therefore, we can use the absolute execution time of
the fullload application as an indicator for the overhead generated by
the controllers.

While the master controller generates no overhead, running the
fullload application on the same core as the slave controller increases
the absolute execution time of the fullload application. If the slave
controller and the fullload application are running on the same core,
the execution time of the fullload application increases by 1.3 % for a
switching time of 64 ms and by 8.1 % for a switching time of 1 ms.

Overall, the results show that the interactions with the operating sys-
tem are considerably more expensive than the management of the be-
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havioral dynamism. This supports our decision to use a hierarchically
organized runtime manager where multiple controllers are simultane-
ously interacting with the different operating systems.

2.7.3 System Specification and Optimization
Next, we show that the proposed design flow provides enough flexility
to design complex embedded systems and we evaluate the performance
of the proposed optimization strategy. For this purpose, we first design a
multistage Picture-in-Picture (PiP) benchmark for embedded video pro-
cessing systems. Afterwards, we compare the performance of different
mapping strategies when mapping the PiP benchmark onto Intel’s SCC
processor.

Picture-in-Picture Benchmark

We extend the Eclipse SDK with an editor called DALipse1 to design
benchmarks for the proposed design flow. DALipse enables the sys-
tem designer to visually specify finite state machines, process networks,
and abstract models of many-core SoC platforms. Figure 2.13 shows a
screenshot of DALipse with the finite state machine of the considered
PiP benchmark. The benchmark is composed of eight scenarios and three
different video decoder applications. The HD, SD, and VCD applications pro-
cess high-definition, standard-definition, and low-resolution video data,
respectively. The benchmark has two major execution modes, namely
watching high-definition (scenario ‘HD’) or standard-definition videos
(scenario ‘SD’). In addition, the user can pause the video or watch a pre-
view of another video by activating the PiP mode (i.e., starting the VCD
application). Due to resource restrictions, the user is only able to activate
the PiP mode when the SD application is running or paused, or the HD
application is paused.

For illustration purpose, we use different implementations of a Motion
JPEG (MJPEG) decoder as applications. The MJPEG standard [Wal92] is a
video compression format in which each video frame is separately com-
pressed as a JPEG image. The process network of the VCD application is
depicted in Fig. 2.14 and the three different video decoder applications are
summarized in Table 2.3. The MJPEG decoder is able to decode a certain
number of frames in parallel. In particular, the ‘ss’ (“split stream”) process
reads the video stream from a playout buffer and dispatches single video
frames to subsequent processes. The ‘sf’ (“split frame”) process unpacks
and predicts DCT coefficients so that the ‘dec’ (“decode”) process can
decode one DCT block per activation. Finally, the ‘mf’ (“merge frame”)

1DALipse is also available online for download at http://www.dal.ethz.ch.

http://www.dal.ethz.ch
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Fig. 2.13: Screenshot of DALipse with the finite state machine of the PiP benchmark con-
sidered in Section 2.7.3. Paused applications are indicated by a (p) following the
name of the application. For instance, scenario ‘HD(p)/VCD’ refers to the state
where the application processing the high-definition video stream is paused and
the application processing low-resolution video data is running.

Fig. 2.14: Screenshot of DALipse with the process network of the VCD application.

process collects the DCT blocks, and the ‘ms’ (“merge stream”) process
collects the decoded frames. All three video decoders read their playout
buffers at a constant rate of 25 frames/second. The maximum execution
time of a process as well as the data volume per time unit and channel has
been measured by executing the applications on Intel’s SCC processor.

Mapping Optimization

Next, we study the performance of the hybrid mapping optimization
strategy by comparing it with the performance of other mapping strate-
gies.

For this purpose, we extend the PISA framework [BLTZ03] to solve
the mapping optimization problem stated in Section 2.5.1. In particular,
PISA is extended to calculate the collection M of optimal mappings so
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Tab. 2.3: Configuration of the three considered video decoder applications of the PiP
benchmark.

application resolution pixels / frame # processes # channels

HD 1′280 × 720 921′600 98 128
SD 720 × 576 414′720 50 64
VCD 320 × 240 76′800 11 12

that exactly one mapping m of this collection is valid for each pair of ap-
plication and scenario. Violations of bandwidth constraints are avoided
by imposing a penalty on the maximum utilization. PISA solves the
mapping optimization problem by either generating 1′000 random solu-
tions and selecting the best of them as overall solution, or using the EA
SPEA2 [ZLT01].

We compare the performance of four different mapping strategies
when minimizing the maximum core utilization for different numbers of
available cores on Intel’s SCC processor:

• The dynamic-optimal mapping strategy represents the hybrid de-
sign time and runtime mapping optimization strategy solved using
the EA SPEA2.

• The dynamic-random mapping strategy represents the hybrid de-
sign time and runtime mapping optimization strategy solved by
selecting the best of 1′000 random solutions.

• The global-static mapping strategy calculates a single static map-
ping for the system, i.e., it does not make use of the different exe-
cution scenarios. The global-static strategy is solved using the EA
SPEA2.

• The local-staticmapping strategy calculates a single mapping for
each scenario. Calculating a single mapping for each scenario indi-
vidually might lead to the situation that an application has a differ-
ent mapping in two connected scenarios. Therefore, the runtime-
system must support process migration if the local-static strategy
is used. The EA SPEA2 is used to solve the local-static strategy.

The results of this comparison are plotted in Fig. 2.15 for scenario ‘SD
/ VCD’ and scenario ‘HD’. Utilizations larger than one imply that the
mapping strategy is unable to find a valid mapping for the considered
number of available cores.

As expected, the local-static mapping strategy reduces the maxi-
mum utilization the most as it calculates the local optimal mapping for
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Fig. 2.15: Comparison of the maximum core utilization for different numbers of avail-
able cores and different optimization strategies. The dynamic optimal mapping
strategy represents the hybrid scenario-based mapping optimization strategy
proposed in Section 2.5.1. Utilizations larger than one imply that the mapping
strategy is unable to find a valid mapping for the considered number of available
cores.

just one scenario. However, the unavoidable runtime support for pro-
cess migration leads to non-negligible costs in terms of time and system
overhead. The hybrid design time and runtime mapping optimization
strategy, i.e., the dynamic-optimal mapping strategy, results in a uti-
lization that is on average 0.01 (for scenario ‘SD / VCD’) and 0.05 (for
scenario ‘HD’) larger than the utilization calculated by the local-static
mapping strategy.

PISA is unable to find a valid mapping for the ‘HD’ scenario when
the global-static mapping strategy is used and less than 39 cores are
available. However, PISA is able to find a valid mapping for 30 cores
and the ‘HD’ scenario if the dynamic-optimal mapping strategy is used.
Compared to the global-static mapping strategy, the dynamic-optimal
mapping strategy reduces the utilization on average by 0.51 for the ‘SD /
VCD’ scenario and 0.16 for the ‘HD’ scenario.

As the dynamic-optimal mapping strategy does not only optimize a
single scenario, its utilization may increase with number of available cores
for certain execution scenarios. For example, the maximum utilization of
execution scenario ‘HD’ is slightly increased when moving from 32 to 33
available cores. Note that the selection of the solver has a high influence
on the performance of the hybrid design time and runtime mapping
optimization strategy. Selecting the best of 1′000 random solutions may
result in a performance that is even worse than the global-staticmapping
strategy.
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Overall, we have shown that the proposed design flow provides
enough flexility to design complex embedded systems with reasonable
effort. Furthermore, the proposed hybrid mapping strategy has been
proven to be a scalable mapping strategy suited for the model-driven
development of complex multi-functional embedded systems.

2.7.4 System Characterization
Next, we quantify the overhead of an optimized software stack that is
generated by the DAL design flow. For this purpose, we execute synthetic
and real-world applications that have been specified by the API proposed
in Section 2.4, the on the Intel SCC processor.

Data Transfer Rate

A synthetic application consisting of two processes and one FIFO channel
has been designed to measure the data transfer rate between two cores.
The application executes 100′000 iterations and in one iteration, the source
process writes one token to the FIFO channel and the sink process reads
the token from the FIFO channel. No other processes except the runtime
manager are running on the SCC. The mappings are selected so that
the source process and the sink process are assigned to either cores on
the same tile or to cores that are a certain number of hops2 apart from
each other. Figure 2.16 shows the data transfer rate between two cores
whereby the token size is varied between 32 bytes and 16′384 bytes. The
experiment has been repeated for two capacities of the FIFO channel and
three different mappings.

The observed peak data transfer rate is 11 Mbytes/s. While mapping
and capacity have small influence on the data transfer rate, the data
transfer rate significantly increases with the size of a single token. This
might be as the used software stack is the bottleneck of the considered
communication infrastructure.

Runtime-System Overhead

As the runtime manager is idle after performing some work, the overhead
of the runtime-system can mainly be assigned to the listener thread that
periodically checks if new data is available. To measure this overhead,
we use a sequential implementation of the MJPEG decoder. Decoding
5′000 frames takes about 162.0 s if the MJPEG decoder is executed in
parallel to the listener thread and 158.9 s if it is executed as an individual

2A hop represents the path between two neighboring tiles.
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Fig. 2.16: Data transfer rate between two cores on Intel’s SCC processor for three different
mappings.

application. Thus, the measured overhead of the considered software
stack is less than two percent.

Context Switching Overhead

To characterize the effect of multi-processing on a single core, we consider
a distributed implementation of the MJPEG decoder, see Fig. 2.17a for the
process network. The network has multiple ‘decode frame’ processes and
each process decodes one frame per iteration. In Fig. 2.17b, the decoded
frames per second using the MJPEG algorithm are compared for imple-
mentations mapping a different number of ‘decode frame’ processes onto
one core. Furthermore, the graph differs between three configurations.
First, only one core, then both cores of a tile, and finally two cores of dif-
ferent tiles are used to execute the ‘decode frame’ processes. It shows that
the frame rate significantly increases if two processes are mapped onto
the same core as communication and computation can partially overlap.
This is also illustrated in Fig. 2.10. While one process is waiting until the
write operation is completed, other processes can execute on the same
core. Furthermore, the frame rate does not decrease even if five processes
are mapped onto each core indicating that the MJPEG decoder application
has a low multi-processing overhead.

Overall, the overhead introduced by the software stack for executing
DAL benchmarks on Intel’s SCC processor is reasonable small. In fact,
the application-independent parts, namely the implementation of FIFO
channel communication and the synchronization of the processes running
on the same core, can be implemented once and reused in any applica-
tion so that the optimization effort must be conducted only once for all
applications.
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Fig. 2.17: Evaluation of the context switching overhead using a distributed implementation
of the MJPEG decoder.

2.7.5 Speed-up due to Parallelism
Finally, we evaluate the speed-up due to the available number of cores
for three different applications. Besides the previously introduced dis-
tributed implementation of the MJPEG decoder, a ray-tracing algorithm,
and an MPEG-2 decoder are studied. The ray-tracing algorithm generates
an image of 100 × 100 pixels and can analyze multiple rays concurrently.
We map either one or two such processes onto one core. The MPEG-2 de-
coder decodes multiple macroblocks concurrently. We again map either
one or two such processes onto one core.

In Fig. 2.18, the speed-up is compared for implementations running on
a different number of cores. The speed-up is calculated with respect to an
implementation running on a single core. The maximum speed-up that
can be achieved is 20.7 for the MJPEG decoder application. As MJPEG
is an intraframe-only compression scheme, the frames can be decoded in
parallel on different cores. The ray-tracing algorithm achieves a speed-up
of almost 20 on 24 cores. As each ray can be analyzed individually, the
ray-tracing algorithm is well-suited for parallelization. The speed-ups
achieved with the MPEG-2 application are much smaller than with the
previous applications. Due to data-dependencies between the frames, the
MPEG-2 application only achieves a speed-up of about 4.1. The speed-
up increases linearly for a small number of cores before collecting and
distributing frames become the bottleneck for higher parallelization.

Overall, the results demonstrate that the proposed design flow en-
ables system designers to efficiently exploit the hardware parallelism of
many-core platforms. The previous evaluation has also shown that the
maximum achievable performance depends on the application structure.
On the one hand, if the number of parallel processes is selected too small,
not all cores can be utilized. On the other hand, the results observed for
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Fig. 2.18: Speed-ups of three benchmarks for a varying number of cores on Intel’s SCC
processor.

the ray-tracing algorithm show that mapping too many processes onto
one core can result in inefficient implementations. The Expandable Pro-
cess Network (EPN) semantics, which will be the topic of the next chapter,
will tackle this issue by automatically selecting the best degree of task,
data, and pipeline parallelism.

2.8 Summary
Modern embedded systems are becoming multi-functional by featuring
multiple applications that are running simultaneously in different combi-
nations at different moments in time. Only if the system is able to react to
runtime variations by reconfiguring the mapping of the applications onto
the architecture, the computing power offered by future many-core SoC
platforms can be exploited efficiently. Moreover, with each application
having its own performance constraints, it must be guaranteed that each
application meets its constraints independently of the other applications.

In this chapter, it has been shown that these goals can be met simulta-
neously using hybrid design time and runtime mapping strategies. For
this purpose, a scenario-based design flow (the DAL design flow) for
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the model-driven development of heterogeneous embedded many-core
SoCs has been proposed. The DAL design flow supports the design, the
optimization, and the simultaneous execution of multiple streaming ap-
plications. Its input is a set of applications, each specified as a KPN, and a
finite state machine specifying the interactions between the applications.
Each state of the finite state machine represents an execution scenario,
i.e., a certain use case of the system with a predefined set of running
or paused applications. The proposed hybrid design time and runtime
mapping optimization strategy consists of two components. At design
time, each application is assigned a set of optimized mappings and each
mapping is individually valid for a subset of execution scenarios. At
runtime, hierarchically organized controllers monitor the system and use
the pre-calculated mappings to start and stop applications according to
the finite state machine. To include the evaluation of all possible failure
scenarios in the design time analysis, spare cores and tiles are allocated
during design time optimization and used by the runtime manager as
target for process migration. As no additional design time analysis is
required, the proposed approach leads to a high responsiveness to faults.

Based on a prototype implementation of DAL targeting Intel’s SCC
processor, we have demonstrated that complex multi-functional embed-
ded systems can be designed in DAL with reasonable effort. DAL is
freely available for download at http://www.dal.ethz.ch and has been
successfully applied in several academic projects both as front-end and
back-end. For instance, in the context of the EU FP 7 project EURETILE,
DAL is used as front-end to design and optimize many-tile systems with
up to 200 tiles. On the other hand, the Orcc compiler [SWNR10] has
been extended to use the DAL design flow as back-end [Bou14] to ex-
ecute applications written in the RVC-CAL actor language [MAR10] on
heterogeneous many-core systems.

http://www.dal.ethz.ch


3
Expandable Process Networks

3.1 Introduction
As discussed in the previous chapter, the functionality of a modern em-
bedded system can change over time. In this thesis, we model such a
multi-functional behavior by a set of execution scenarios. Each execution
scenario represents a different set of running or paused applications and
a runtime manager is in charge of managing the computing power as well
as allocating resources to each application.

In order to exploit the available resources efficiently, the amount of
computing power available to a single application may vary between ex-
ecution scenarios. In particular, we assume that the number of processing
cores available to an application can change over time. For instance, the
set of computing resources available to a certain application may con-
tain many slow processing cores in one execution scenario and just a few
fast processing cores in another execution scenario. Even though such a
dynamic resource allocation leads to a high resource utilization, the draw-
back is that the system designer does not know the available computing
resources anymore when specifying and programming the application.

This challenge can be tackled by considering the parallelism provided
by the application. However, if the application is specified statically, the
maximum number of cores that an application can utilize simultaneously
is limited to the number of processes. On the other hand, having too many
parallel processes might result in inefficient implementations of the appli-
cation due to overheads in scheduling and inter-process communication.
To overcome these limitations, the application’s degree of parallelism
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must be adapted so that it matches with the available resources. In fact,
previous work has already shown that large performance gains in terms
of throughput [CLS+12, SLA12, ZBS13] or energy consumption [BL13] can
be obtained if the application’s degree of parallelism is refined before the
execution. However, these approaches are limited to either programming
models with statically specified data production and consumption rates
or the replication of stateless processes.

Overview

In this chapter, we argue that for a certain class of applications, namely
applications that are specified as process networks, the application can be
specified in a manner that enables the automatic exploration of task, data,
and pipeline parallelism [GTA06, YH09]. Task parallelism is achieved by
executing different processes on different cores. In contrast, data paral-
lelism refers to creating multiple instances of a process that perform the
same task on different pieces of distributed data. Finally, pipeline paral-
lelism is achieved by splitting a process into stages and assigning each
stage to a different processing core.

We call the proposed model of computation Expandable Process Net-
work (EPN). The EPNs model of computation extends conventional
streaming programming models by abstracting several possible granu-
larities in a single specification. To this end, it specifies an application as a
top-level process network that can be refined by hierarchically replacing
individual processes. This enables the automatic exploration of task, data,
and pipeline parallelism by two refinement strategies, namely replication
and unfolding. Replicating processes increases data parallelism and struc-
tural unfolding of a process increases the task and pipeline parallelism
by hierarchically instantiating more processes in the process network.
Furthermore, as recursive algorithms are commonly used in mathemati-
cal [AOB93] and multimedia [BSP06] applications, we study the recursive
description of processes as a structural unfolding method.

For illustration purpose, we apply the proposed semantics of EPNs
to Kahn Process Networks (KPNs) [Kah74]. We will show that the EPN
specification can be used to synthesize multiple instances of the same
application, each optimized for a different execution scenario or differ-
ent resource availabilities, automatically. In order to react to changes in
the available resources, we propose a novel technique that transparently
transforms the application from one instance into an alternative instance
without discarding its program state. The results of the conducted eval-
uations on two many-core platforms show that having an abstract ap-
plication specification clearly outperforms a static specification when the
available computing resources are not known at design time.
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Outline

The remainder of the chapter is organized as follows: We review related
work in the next section. In Section 3.3, the proposed concepts are inte-
grated into the Distributed Application Layer (DAL) design flow, which
has been described in the previous chapter. In Section 3.4, the proposed
semantics of EPNs is described formally and the concepts of replication
and unfolding are detailed. In Section 3.5, the optimization problem
for parallelizing and mapping applications specified as EPNs is formu-
lated and solved using a novel optimization heuristic. In Section 3.6, a
technique to transform an application transparently into an alternative
process network is described. Finally, the results of the performed case
studies are presented in Section 3.7.

3.2 Related Work
In this section, we review recent efforts to adapt the degree of parallelism
of a streaming application. First, we summarize the basic ideas of various
transformation techniques proposed to refine the degree of parallelism
of a streaming application. Afterwards, we review efforts to achieve
dynamic load balancing at runtime.

Techniques to Refine an Application at Design Time

In the last few years, various models of computation for specifying signal
processing and streaming multimedia applications have been proposed,
which have different characteristics in terms of decidability and expres-
siveness, see, e.g., [Bam14] for an overview. Applications specified as
KPN [Kah74], for instance, are determinate, provide asynchronous exe-
cution, and are capable to describe data-dependent behavior. The Syn-
chronous Dataflow (SDF) model of computation [LM87] restricts each
process to produce and consume a fixed number of tokens in every it-
eration so that the application is amenable to design time scheduling
techniques. As the SDF model has limited expressiveness, several ex-
tensions have been proposed that offer the ability to specify flexible and
dynamic behavior and still preserve the capability to analyze the appli-
cation statically. For instance, the Synchronous Piggybacked Dataflow
(SPDF) model of computation [PJH02] enables i f − else and f or clauses
in SDFs. Hierarchical representations of process networks are allowed
in some design frameworks, e.g., [BLL+05], but they are semantically
equivalent to basic process networks, as they can be flattened at design
time. However, none of these extensions bring any benefit in terms of
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parallelism, as they keep the process network topology unchanged. Dy-
namic representations such as Reactive Process Networks (RPNs) [GB04]
offer the possibility to capture runtime topology changes by deactivating
and activating independent parts of the process network. Even though
the topology of active process networks is no longer static, the degree of
parallelism is still statically determined at specification time.

Formal design and program transformations are considered to be
an efficient approach to optimize an application towards the final ar-
chitecture. A survey of existing transformation methods for functional
programs is given, e.g., in [PP96]. The previously discussed models of
computation have in common that they specify the application in a high
abstraction level suitable for design transformation. However, due to
simplicity, most design transformation strategies focus on applications
modeled as SDF graphs. In [ML94], successive iterations of an SDF graph
are considered as a block enabling the concurrent execution of multiple
instances of a single process. Our approach, in contrast, uses replication
to execute multiple instances of a single process concurrently. In [PL95],
a clustering technique for SDF graphs is proposed that unfolds the graph
completely, and then uses clustering techniques to reduce the number of
processes per processing core to optimize scheduling. On the other hand,
our technique only unfolds a graph if a performance gain is achieved
by the additional parallelism. Various transformation rules to balance a
network are presented in the context of the ForSyDe methodology [SJ04],
a synchronous computational model. In contrast, our technique is based
on KPNs and achieves a finer granularity by applying the proposed se-
mantics to individual processes.

More design transformation and refinement strategies are presented,
e.g., in [GTA06, SLA12, ZBS13]. They use the concept of fusion and fission
operators to change the number of replicas of stateless processes at the
mapping stage. In particular, fusion is used to coarsen the SDF granularity
to increase the computation to communication ratio and fission is used to
distribute data parallel tasks to multiple cores. However, in contrast to
our approach, structural expansions have not been considered in these
works. Therefore, the maximum degree of task and pipeline parallelism
is still upper bounded by the number of processes.

Another difference to the above described techniques is that our ap-
proach enables the specification of recursive behavior as a structural un-
folding method. Recursion is a procedure that repeatedly calls itself,
and is typically used in programming to divide a problem into multi-
ple subproblems with the same repetitive behavior. In case of a huge
amount of independent data that needs to be processed in a similar man-
ner, recursive implementations are of practical use due to their simplicity.
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There is a wide range of mathematical algorithms that can be imple-
mented recursively [CLR+01] and even multimedia applications, such as
ray-tracing [BSP06], can be specified as recursive algorithms.

In summary, conventional process networks or dataflow models are
too static and monolithic to explore different application structures at
design time. Moreover, they cannot represent recursive dependencies,
which are necessary to describe certain classes of applications effectively.
The proposed EPN semantics extends conventional models of compu-
tation to specify streaming applications. It enables the exploration of
an efficient application structure by exploiting task, data, and pipeline
parallelism.

Techniques to Adapt an Application at Runtime

When the available resources may change at runtime, programming mod-
els and techniques are required that can adapt the application’s degree of
parallelism. Flextream [HCK+09], for instance, is a flexible compilation
framework to adapt the mapping of a streaming application dynamically.
It refines the process network at design time by replicating stateless pro-
cesses and using the largest possible resource allocation as target platform.
At runtime, it assigns the processes that have been assigned to cores that
are not available originally, to the remaining cores. However, the mem-
ory usage of the application is virtually independent of the available
cores and the application might have a considerable scheduling overhead
on a single core. In contrast, our work proposes to synthesize multiple
instances of the same application automatically and each instance is op-
timized for a different number of available cores. In order to transform
the application from one instance into an alternative instance, we pro-
pose a transformation technique that adapts the application’s degree of
parallelism without discarding its program state. Runtime task duplica-
tion is used in [CLS+12] to maximize the application’s throughput. The
technique replaces stateless processes by a master thread that distributes
the actual work among its sibling threads. When the available processing
cores are changed, the number of sibling threads is increased or decreased
to improve the throughput. In contrast, our work proposes structural un-
folding of processes by process networks as a mechanism to also refine
stateful processes.

A dynamic scheduling approach for streaming applications specified
as SDF graphs is proposed in [LCC12]. The approach uses the fusion and
fission operators to generate a schedule that maximizes the throughput of
the application for the available amount of resources. StreaMorph [BL13]
is a technique to adapt SDF graphs at runtime by performing a reverse
sequence of executions to bring the graph into a known state. In contrast



60 CHAPTER 3. EXPANDABLE PROCESS NETWORKS

to the previous two approaches, our technique does not assume a static
schedule and is therefore applicable to more complex models of compu-
tation than SDF graphs. Furthermore, our approach supports stateful
processes, a key characteristic of general process networks that is not
supported by the previously discussed techniques.

Finally, a different approach to achieve dynamic load balancing, the
overall goal of the proposed approach, is the concept of task steal-
ing [BL99]. Even though efficient implementations for shared-memory
systems have been presented (e.g., [LPCZN13]), task stealing approaches
still suffer from communication overheads, in particular on distributed
memory systems [LHCZ13]. However, this overhead can be reduced if
tasks are assigned to specific processing cores. In addition, task stealing
provides only limited options to exploit pipeline parallelism. In contrast,
our technique uses pipeline parallelism to split large (stateful) tasks into
sub-tasks.

3.3 System Design
To include the proposed concepts in the system design, we extend the
DAL design flow shown in Fig. 1.3 with an additional step called design
transformation. The part of the design flow that is responsible to automati-
cally synthesize multiple instances of an application is detailed in Fig. 3.1.
The concepts proposed in this chapter will be integrated into this design
flow.

The inputs to the design flow shown in Fig. 3.1 are an application
specified as an EPN and an abstract specification of the target architecture
that follows the specification proposed in Section 2.3. In a first step,
possible sub-architectures are identified. A sub-architecture contains only
a subset of all cores of the target architecture. It is used to represent the fact
that the runtime manager might not assign all available processing cores
to an application, but only a subset of them. Particularly with regard to the
DAL design flow, one sub-architecture is allocated per execution scenario
that contains the application. In case of no predefined execution scenarios,
the set of sub-architectures generated for a given architecture should
cover the variety of processing core subsets that the runtime manager
can assign to an application. For a homogeneous platform, such as the
Intel Single-chip Cloud Computer (SCC) processor, each sub-architecture
might only differ in the number of processing cores. In case that the target
architecture is heterogeneous, the number of possible sub-architectures
might be larger. However, the number can be reduced by considering the
symmetry of the architecture or by selecting only a subset of all possible
sub-architectures and ignoring sub-architectures with similar computing
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Fig. 3.1: Part of the modified DAL design flow to synthesize multiple instances of an EPN
application automatically. Each instance has a different degree of parallelism and
is optimized for a different resource availability.

power. Even more, the set of valid sub-architectures might be reduced
if the application has specific performance requirements that can only be
met if the sub-architecture provides a minimum amount of computing
power.

The structure and the mapping of the application are optimized sep-
arately for each sub-architecture, aiming to maximize the throughput of
the application. Note that the concepts proposed in this chapter are not
restricted to the maximization of the throughput, but can also be applied
to optimize other performance metrics such as the energy consumption.
The optimization stage consists of the design transformation, the map-
ping, and the performance analysis. In the design transformation step,
replication and unfolding are used to explore the parallelism. We will de-
tail these refinement strategies later in Section 3.4. Afterwards, a mapping
is calculated and the throughput of the application is evaluated. The de-
sign transformation and mapping optimization steps are repeated until a
degree of parallelism is found that fulfills the performance requirements
of the system. Based on the information obtained in the optimization
steps, a concrete (replicated and unfolded) process network is generated
during synthesis. Finally, the description of the sub-architecture is stored
in a database together with the synthesized process network and the
respective mapping information.
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The runtime manager uses the database to select an optimized im-
plementation based on the available computing resources. In case the
computing resources available to a certain application change at runtime,
e.g., as other applications are started or stopped, the runtime manager
must transform the application into an alternative process network with-
out discarding the program state of the application.

3.4 The Semantics of Expandable Process Net-
works

EPNs extend conventional streaming programming models in the sense
that several possible granularities are abstracted in a single specification.
In other words, an application specified as an EPN has a top-level process
network defining the initial network. The initial network can be refined
by replicating processes or by replacing processes by other process net-
works. We call the first refinement strategy replication and the second one
unfolding.

In this section, we formally specify the application model. First, we
discuss the semantics of EPNs. Then, we describe the concepts of repli-
cation and unfolding. Finally, we propose a high-level API for EPNs.

3.4.1 Application Specification
The proposed semantics of EPNs is applied to the KPN [Kah74] model of
computation that has been discussed in Section 2.4. To repeat, a process
network is a tuple p = 〈V,Q〉with the set of processes V and the set of FIFO
channels Q ⊆ V × V, see Definition 2.3. However, as the functionality of
an EPN process may not only be specified in a high-level programming
language, but also as another process network, we extend the definition
of a process, as follows.

Def. 3.1: (EPN Process) An EPN process v is a tuple v = 〈name, type, replicable, in, out〉,
where name is a unique string identifier, type ∈ {behav, struct} describes the type
of the instantiated process, replicable ∈ { f alse, true} indicates if a process can be
replicated, in ⊆ Q denotes the set of incoming channels of process v, and out ⊆ Q
denotes outgoing channels.

Except the elements type and replicable, the proposed process descrip-
tion is identical to the specification of a KPN process as described in
Definition 2.3. The type identifier reveals that some processes do not only
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have a behavioral, but also a structural description. The type struct spec-
ifies that the process has a behavioral and a structural description, while
the type behav specifies that the process has only a behavioral description.

The behavioral description of a process v specifies the functionality of
process v in the DAL programming language described in Section 2.4. The
structural description of a process v defines the functionality of process
v as another process network, i.e., as a set of processes and channels.
Both the behavioral and structural descriptions have to be functionally
equivalent in the sense that, for a given sequence of input tokens, they
produce the same sequence of output tokens.

An EPN abstracts several possible granularities in a single specifica-
tion. More detailed, an EPN is specified as a top-level process network
and the processes of the top-level process network can be replicated or
replaced by other process networks (so-called refinement networks).

Def. 3.2: (Expandable Process Network) An Expandable Process Network (EPN) is
a tuple e = 〈P,u, l, porg〉, where P is a set of process networks, u and l are
transformation functions, and porg is the top-level process network from which
processes may be further replicated or structurally unfolded.

The top-level process network is the most coarsened process network
abstraction of the application; it might even consist of only one process.
In order to specify functions u and l, we define the set of all processes of
EPN e as Ve =

⋃
p=〈V,Q〉∈P V and the set of all channels of EPN e as Qe =⋃

p=〈V,Q〉∈P Q. Function u : Ve
→ P maps a process v to a corresponding

refinement network p = u(v). In other words, u(v) represents the structural
specification of process v. Function l : Qe

→ Qe maps a channel q to a
corresponding channel l(q) representing the match between the input and
output channels of process v and the input and output channels of the
structural specification u(v) of v.

Ex. 3.1: Consider the example specification shown in Fig. 3.2. The EPN e =
〈{porg, pv2}, l,u, porg〉 has the top-level process network porg = 〈{v1, v2, v3},
{q1, q2}〉. v1 = 〈‘v1’, behav, f alse, ∅, {q1}〉 and v3 = 〈‘v3’, behav, f alse, {q2}, ∅〉
are ordinary processes which have no further unfolding capabilities. v2 = 〈‘v2’,
struct, true, {q1}, {q2}〉 is a process of type struct, which has both a behavioral
and a structural description. The structural description of v2 is the refinement
network pv2 = 〈{v2, v4, v5, v6}, {q3, q4, q5, q6, q7, q8}〉. Note that process v2 appears
in both porg and pv2 enabling recursive unfolding. As v2 is the only process of
type struct, u returns null for all inputs except v2 and u(v2) = pv2 . Similarly,
function l returns null for all inputs except the input and output channels of v2.
However, as v2 occurs in both porg and pv2 , function l contains four assignments,
namely l(q1) = q3, l(q2) = q8, l(q4) = q3, and l(q6) = q8.
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Fig. 3.2: Exemplified specification of an EPN e = 〈{porg, pv2}, l,u, porg〉.

3.4.2 Refinement Strategies

EPNs enable an efficient, architecture independent specification of pro-
cess networks. In fact, the top-level process network porg of an EPN
e = 〈P,u, l, porg〉 can be refined by applying the replication and unfold-
ing concepts. Each process refinement results in a new process network
pa = 〈Ve

a,Qe
a〉 that has the same functionality as the top-level network. In

the following, we will detail the concepts of replication and unfolding.

Replication

Handling parallelism inside a process is typically difficult because a pro-
cess is mapped as a whole onto a single processing core. Artificially
parallelizing the process using conventional parallel processing APIs
(e.g., MPI [Pac96] or OpenMP [CJVDP07]) is undesirable as the implicit
parallelism makes design time analysis impossible. Exposing this in-
formation at the process network level is more beneficial as it results in
higher predictability and better mapping decisions.

In the EPN semantics, the step of handling parallelism inside a process
is called replication. Replication is particularly applicable to algorithms
that have a high data level parallelism, as it is often the case with algo-
rithms optimized for SIMD processors. Typical examples are deinterlac-
ing algorithms used to convert interlaced videos, image noise reduction
algorithms, or video decompression and compression algorithms. Con-
sider, for example, a video decoder that uses intraframe-compression.
As there is no relation between the frames, multiple frames might be
processed in parallel on different cores. Furthermore, various video com-
pression algorithms support the segmentation of a frame into macroblocks
and these macroblocks can be processed simultaneously.

The concept of replication has already been widely used to improve
the performance of process networks (e.g., [GTA06, TBHH07]). Typically,
the bottleneck process has been replicated to improve the overall perfor-
mance. However, in contrast to all these concepts, we do not propose to
define the number of replicas statically at specification level, but we argue
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Algorithm 3.1 Replicate process v = 〈name, type, replicable, in, out〉 ∈ V of
process network p = 〈V,Q〉 χ times.

01 V ← V − {v} .remove process v

02 for i = 1→ χ do .generate a replicated process
03 vi ← 〈name{i}, type, f alse, ∅, ∅〉
04 V ← V ∪ {vi}

05 end for
.for each incoming channel

06 for all q = 〈vsrc, vdst〉 ∈ Q s.t. vdst = v and vsrc <> v do
07 Q← Q − {q} .remove channel q
08 for i = 1→ χ do
09 qi ← 〈vsrc, vi〉 .add a replicated channel
10 Q← Q ∪ {qi}

11 in of vi← in of vi ∪ {qi}

12 end for
13 end for

.for each outgoing channel
14 for all q = 〈vsrc, vdst〉 ∈ Q s.t. vsrc = v and vdst <> v do
15 replace q with the set of replicated channels
16 end for

.for each self-loop channel
17 for all q = 〈vsrc, vdst〉 ∈ Q s.t. vsrc = v and vdst = v do
18 Q← Q − {q} .remove channel q
19 for i = 1→ χ do
20 qi ← 〈vi, v{(i+1) modχ}〉 .circular connection
21 Q← Q ∪ {qi}

22 out of vi← out of vi ∪ {qi}

23 in of v{(i+1) modχ}← in of v{(i+1) modχ} ∪ {qi}

24 end for
25 end for

that it is the task of the optimizer to find a good degree of parallelism that
maximizes the performance.

Algorithm 3.1 illustrates the steps to modify the topology of process
network p = 〈V,Q〉 so that process v = 〈name, type, replicable, in, out〉 is
χ times replicated. First, it removes process v and adds the replicated
clones vi = 〈name{i}, type, f alse, ∅, ∅〉 with i ∈ {1 . . . χ}. Then, each incoming
channel q = 〈vsrc, v〉 of v is replaced by a set of replicated channels with
qi = 〈vsrc, vi〉. Similarly, each outgoing channel of v is replaced by a set
of replicated channels. Self-loop channels, i.e., channels that connect v
with itself, are handled last. For each self-loop channel, a new chain
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{2} v3
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{1}
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Fig. 3.3: The process network shown in Fig. 3.2a after replicating process v2 three times.

of channels is introduced with one channel connecting vi with vi+1. As
such a chain of channels introduces a circular dependency between the
processes, it typically limits the maximum speed-up that can be obtained
by replication. For instance, no speed-up can be achieved if v is reading
from the self-loop channel at the beginning of the fire procedure and
writing to it at the end of the fire procedure. In all other situations, the
replicated copies of the process can still partly overlap their execution so
that the system will achieve a speed-up higher than one.

Ex. 3.2: Consider the EPN shown in Fig. 3.2. By replicating process v2, it will be replaced
by multiple instances of v2. Figure 3.3 illustrates the process network if process
v2 has been replicated three times.

Replicating processes with an internal state is supported by adding
a self-loop channel representing the state of the process. Replicating
two consecutive processes in a row is not allowed in order to prohibit
complex communication behavior. If consecutive replication is needed
for optimized performance, consecutive processes should be specified as
a structural description, and then replicated altogether.

Unfolding

The EPN specification abstracts several possible granularities in a single
specification. The step of exploring different degrees of task and pipeline
parallelism by hierarchically instantiating more processes is called unfold-
ing and is explained next.

Given an application specified as an EPN, a process of type struct can
be unfolded by exposing internal parallelism at process network level.
In other words, unfolding merely replaces the behavioral description of
process v with its structural description u(v). In addition, unfolding en-
ables recursion as the structural representation u(v) of process v may have
process v as an internal process. In contrast to all previously proposed
models, the maximum number of tasks is not statically determined. Gen-
eral instructions to unfold a process v ∈ V of process network p = 〈V,C〉



3.4. THE SEMANTICS OF EXPANDABLE PROCESS NETWORKS 67

Algorithm 3.2 Unfold process v ∈ V of process network p = 〈V,Q〉 with
refinement network pv = 〈Vv,Qv〉.

01 for all vi ∈ Vv do .prefix v to all names of vi ∈ Vv

02 vi.name← v.name + vi.name
03 end for

04 for all qi = 〈srci, dsti〉 ∈ Qv do .prefix v to all names of qi ∈ Qv

05 srci ← v.name + srci

06 dsti ← v.name + dsti

07 end for

08 V ← (V − {v}) ∪ Vv .remove v, add unfolded processes
09 Q← Q ∪Qv .add unfolded channels

10 for all q = 〈src, dst〉 s.t. dst = v do .for each incoming channel
11 for all qi = 〈srci, dsti〉 ∈ Qv do
12 if l(q) = qi then .find a match
13 srci ← q.src .adjust src of qi

14 Q = Q − {q} .remove the unused channel
15 break
16 end if
17 end for
18 end for

19 for all q = 〈src, dst〉 s.t. src = v do .for each outgoing channel
20 remove all outgoing channels of v
21 end for

with refinement network pv are given in Algorithm 3.2. First, the al-
gorithm prefixes the name of process v to all unfolded processes and
channels to keep them unique after design transformation. Afterwards, it
removes process v and adds network pv. Finally, it replaces each incoming
and outgoing channel of v by the corresponding match in Qv.

Ex. 3.3: Consider again the EPN shown in Fig. 3.2. Process v2 is of type struct, which
means that it has a behavioral and a structural description. By recursively un-
folding v2, it will be replaced several times by refinement network pv2 . Figure 3.4
illustrates the process network if process v2 has been unfolded twice.

Typically, the input of a process network limits the number of times
that a process can be instantiated recursively. For instance, if recursively
unfolding means that an array is split into two smaller arrays, the maxi-
mum recursion depth is defined by the length of the input array. In order
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v2v5
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v2v2v5
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Fig. 3.4: A transformed process network of the EPN specified in Fig. 3.2. In particular,
process v2 has been unfolded twice.

to avoid deadlocks, the system designer has to either specify a termination
condition for recursive unfolding (e.g., by knowing the minimum length
of the array in the previous example) or guarantee that the application is
not blocked if the input prohibits further recursion. The latter might be
achieved by forwarding either the result or a predefined ‘empty’ string.
In case the maximum recursion depth is known, the unfolding method
can use this information to avoid blocking.

In summary, starting with the top-level process network, which is the
most coarsened process network abstraction, all possible abstractions can
be explored by applying the concepts of replication and unfolding.

Correctness

Next, we will show that the proposed refinement strategies preserve the
correctness of the underlying model of computation if the conditions that
are described in the following, are fulfilled.

Formally, the proposed refinement strategies transform the top-level
process network porg of EPN e = 〈P,u, l, porg〉 into KPN pa = 〈Ve

a,Qe
a〉 with

Ve
a the set of processes of pa and Qe

a the corresponding set of channels. A
refinement strategy preserves correctness if, for a given input sequence,
the refined process network pa produces the same output sequence as the
top-level process network porg. Clearly, a first requirement for correctness
is that each refinement network p ∈ P is a valid KPN in the sense that it
does not cause deadlocks.

Suppose now that the top-level process network porg = 〈{v1, v2,
v3}, {q1, q2}〉 shown in Fig. 3.2a is given. To show that replication pre-
serves correctness, process v2 = 〈v2, behav, true, {q1}, {q2}〉 is replicated χ
times. Thus, channel q1 is replaced by a set of channels {q{1}1 , . . . , q

{χ}
1 },

and channel q2 is replaced by a set of channels {q{1}2 , . . . , q
{χ}
2 }. If v3 reads

the incoming channels {q{1}2 , . . . , q
{χ}
2 } in the same order as v1 writes to the

channels {q{1}1 , . . . , q
{χ}
1 }, the concatenation of all incoming tokens of v3 is
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the same for both the refined process network pa and the top-level pro-
cess network porg. Thus, replication preserves the correctness under the
described condition.

The correctness of unfolding is shown by considering EPN e =
〈P,u, l, porg〉. First, we suppose that function l contains all possible channel
matches and that all structural expansions defined by function u preserve
the input to output relation. In other words, we suppose that function u
defines the structural expansion u(v) = p of process v with p ∈ P. Then,
process v has the same amount of input and output channels as refinement
network p and applying the same input sequence to v and p produces the
same output sequence. As unfolding merely replaces processes by their
structural description, the refined process network has still the same input
to output behavior.

3.4.3 High-Level API
After describing the basic concepts of EPNs and defining the conditions
when replication and unfolding preserve the correctness, we are able to
extend the DAL programming language API to also support EPNs.

The topology specification of an EPN is composed of the topology of
multiple process networks, each specified by the API shown in Listing 2.2.
The process element is extended with the attributes type and replicable as
described in Definition 3.1. In addition to the specification of the process
networks, the transformation functions u and l have to be defined within
the specification of the EPN.

The functionality of the individual processes is described in separate
description files written in the high-level programming language illus-
trated in Listing 2.1. As the structural expansion of a process with a
process network does not change the external interface, i.e., the incoming
and outgoing channels, the structural expansion is completely transpar-
ent towards the functionality of the other processes. However, in case
of replication, the actual processes and FIFO channels are not known at
specification time. Thus, the source processes of a replicated process have
to write to a FIFO channel that is not known when the application is spec-
ified and similarly, the sink processes of a replicated process have to read
from a FIFO channel that is not known when the application is specified.
For this purpose, we propose the API outlined in Listing 3.1 to iterate over
all possible FIFO channels. The basic idea is that, per iteration, the source
process still writes to and the sink process still reads from one instance
of the replicated FIFO channel. We propose that the FIFO channels are
addressed by their basename, i.e., the name of the channel before being
replicated, and a counter, which is stored in the state of the process. The
number of replicas per channel can be obtained from a global variable
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List. 3.1: Pseudo code of a process sending data to a replicated FIFO channel (addressed
by the output port “out”) in order to illustrate the proposed extension of the
DAL programming language API to specify EPNs.

01 i n t f i re ( ProcessData *p ) {
02 . . .
03 port_basename = “out” ;
04 port = c r e a t e p o r t ( port_basename , p−> f i f o c o u n t e r ) ;
05 write ( port , buffer , s i z e ) ;
06 p−> f i f o c o u n t e r = ( p−> f i f o c o u n t e r + 1) % REPLICATIONS_Q1 ;
07 . . .
08 }

that is set automatically during the synthesis step. In Listing 3.1, the syn-
thesizer sets the variable REPLICATIONS_Q1 to the number of replicas of
FIFO channel “q1”. In the DAL design flow, the code shown in Listing 3.1
is created by an automated source-to-source code transformation during
software synthesis.

Ex. 3.4: Consider the process network outlined in Fig. 3.3, which has been obtained by
replicating process v2 three times. At specification time, process v1 writes to
FIFO channel q1, which does not exist anymore in the refined process network.
Instead, v1 has three output FIFO channels q{1}1 , q{2}1 , and q{3}1 . The API outlined
in Listing 3.1 hides the transformation details from the system designer who can
still use FIFO channel q1.

In case the functionality of a process is given only by either a behavioral
or a structural description, one might obtain the other description by a
transformation. For instance, a behavioral description can be obtained
from a structural one by implementing the channels as shared variables.
Conversely, one might use the techniques described in [KRD00, VNS07]
to obtain a structural description out of a behavioral one.

3.5 Application and Mapping Optimization
In this section, we introduce a novel performance analysis model for ap-
plications specified as EPNs and introduce a novel optimization heuris-
tic to determine a good abstraction of the EPN application for a given
(sub-)architecture. The aim of the heuristic is to identify which appli-
cation structure and mapping lead to the highest throughput. To this
end, we minimize the maximum core utilization for a given invocation
interval of the source process. The invocation interval is then adjusted
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so that the maximum core utilization becomes 100 %. Finally, the new
invocation interval is used to calculate the maximum throughput of the
EPN application.

3.5.1 Preliminaries and Notation
The target architecture of the considered optimization problem is a sub-
architecture, which is formally defined as follows.

Def. 3.3: (Sub-Architecture) A sub-architectureAs = 〈C,n〉 consists of a set of cores C
that are connected by a communication network n, e.g., a bus or a NoC. A core
c ∈ C is characterized by the cycle time t0

c .

Furthermore, the binding of processes to processing cores is defined
by the assignment function Γ.

Def. 3.4: (Assignment Function) Suppose that KPN pa = 〈Ve
a,Qe

a〉 is a valid refinement
of the top-level process network porg of EPN e. Then, the mapping of pa onto sub-
architecture As = 〈C,n〉 is defined by the assignment function Γ(v, c) ∈ {0, 1}
that is 1 if and only if process v ∈ Ve

a is mapped onto core c ∈ C:

Γ(v, c) =

1 if v is mapped onto core c,
0 otherwise.

(3.1)

In order to guarantee that each task is assigned to exactly one core, the
following equation has to be fulfilled for all processes v ∈ Ve

a:∑
c∈C

Γ(v, c) = 1 ∀v ∈ Ve
a (3.2)

with C the set of processing cores of the considered sub-architectureAs =
〈C,n〉.

3.5.2 Performance Model
Next, we describe a novel performance model that is used in the design
space exploration to analyze a candidate network pa = 〈Ve

a,Qe
a〉. The

performance model aims to provide a metric for the average utilization
of a core so that the maximum average core utilization can be minimized.
Table 3.1 summaries the most important performance parameters that are
used in the following.

The iterative execution of a behavioral process v is characterized (per
invocation of the fire procedure) by the number of computation cycles
nco

v , the number of read cycles nre
i,λ per input channel i ∈ in, and the
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Tab. 3.1: List of parameters that are used in the performance model.

param. description

Γ(v, c) assignment function (1 if and only if process v is mapped onto core
c, otherwise 0)

t0
c cycle time on core c

nco
v number of computation cycles of process v

nre
i,λ number of cycles to read from channel i for communication mode λ

nwr
o,λ number of cycles to write to channel o for communication mode λ

nv total number of cycles per execution of the fireprocedure of process v
f rel
v,p relative execution rate of process v in process network p

f abs
v absolute execution rate of process v
ηre

i number of readings from channel i per execution of the fire proce-
dure

ηwr
o number of writings to channel o per execution of the fire procedure
γc context overhead per time instance on core c
Tcont

c context switch time on core c
νco

v relative number of computation cycles of process v when it is recur-
sively unfolded

νre
i relative number of cycles that process v has to read from channel i

when it is recursively unfolded
νwr

o relative number of cycles that process v has to write to channel o
when it is recursively unfolded

number of write cycles nwr
o,λ per output channel o ∈ out. The number of

read and write cycles depends on the data-volume, thus the average size
of the packets and the number of packets that are read or written per
execution of the fire procedure. The factor λ indicates the dependency of
the read and write instructions on the channel’s location. For simplicity,
we just differ between inter-core and intra-core communication, thus λ ∈
{inter-core, intra-core}. However, the concept can be extended to more
complex communication topologies, e.g., by differentiating between the
number of hops it takes to transmit a packet from source to destination.
Therefore, the average number of cycles that process v performs in one
invocation of the fire procedure is:

nv = nco
v +

∑
i∈in

nre
i,λ +

∑
o∈out

nwr
o,λ. (3.3)

The average utilization of a core also depends on the average execution
rates of all processes v ∈ Ve

a. First, we note that the absolute execution
rate of process v cannot be specified in advance as it depends on the
execution rate of the processes that v has replaced. However, the latter
might be known only after the design transformation. Second, we note
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that a process can occur in multiple process network specifications and
that its execution rate might be different for every process network p that
v can occur in. Thus, at specification time, we characterize process v by
a set of relative execution rates f rel

v,p with one execution rate per process
network p that v can occur in. In addition, one process ṽ of the top-level
process network porg is characterized by an absolute execution rate f abs

ṽ .
This enables us to calculate the absolute execution rates f abs

v of all processes
v ∈ Ve

a after the design transformation step. Later, we use these absolute
execution rates to calculate the average utilization of a core. The absolute
execution rates can be calculated in a top-down approach following the
performed design transformations. The algorithm starts with process ṽ
and applies the following rules for any process v:

1. If v belongs to porg, then f abs
v = f rel

v,p · f abs
ṽ .

2. If v belongs to p ∈ {P\porg} and replaces process v̂, then f abs
v = f rel

v,p · f abs
v̂ .

3. If v is instantiated by replicating v̂ χ times, then f abs
v = 1

χ · f abs
v̂ .

If multiple processes share the same resource, the synchronization
and scheduling overhead might affect the overall performance. In this
work, we differ between event-triggered and time-triggered scheduling
policies. Typically, time-triggered scheduling policies cause a constant
overhead [HHB+12], while the overhead caused by an event-triggered
scheduling policy depends on the workload. Suppose that multiple pro-
cesses v = 〈name, type, replicable, in, out〉 share the same processing core.
A process can become blocked when reading from an empty input FIFO
i ∈ in or writing to a full output FIFO o ∈ out. A pessimistic assump-
tion for a non-preemptive scheduling policy is that the process is always
blocked when reading from and writing to a FIFO channel. Thus, the
total average context overhead per time instance on core c is given by:

γc =

∑
v∈Ve

a

Γ(v, c) · f abs
v ·

∑
i∈in

ηre
i +

∑
o∈out

ηwr
o


 · Tcont

c , (3.4)

where Tcont
c is the context switch time on core c, ηre

i is the average number
of readings from channel i per execution of the fire procedure, and ηwr

o
is the average number of writings to channel o per execution of the fire
procedure. Clearly, if only one process is mapped onto core c, there is no
context switching overhead and γc = 0.

If a process v is recursively instantiated, the execution time might be
reduced with every recursion step. In order to model this reduction in
the performance model, a recursive process v is annotated by a relative
number of computation cycles νco

v , a relative number of read cycles νre
i
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per input channel i ∈ in, and a relative number of write cycles νwr
o per

output channel o ∈ out. If process v is recursively unfolded, its number
of computation cycles is reduced to νco

v · nco
v cycles in every recursion step.

Similarly, if the execution time does not change, νco
v = 1.

Finally, note that the performance analysis model is not restricted to
the maximization of the throughput, but can also be applied to optimize
other performance metrics such as the energy consumption. In this case,
the invocation interval might be fixed and the utilization of the individual
cores is used to calculate the average expected energy consumption of the
system.

3.5.3 Alternative Process Network Calculation
The goal of the optimization step is to find a process network and a
corresponding mapping that maximize the application’s throughput on
a given sub-architecture. As previously discussed, this is equivalent
to minimizing the maximum core utilization. Therefore, the objective
function can be stated formally as follows:

min

max
c∈C

γc +
∑
v∈Ve

a

Γ(v, c) · f v,pa
a · nv · t0

c


 , (3.5)

where γc is defined as in Eq. (3.4). Γ(v, c) has to fulfill the constraint
specified by Eq. (3.2) and pa = 〈Ve

a,Qe
a〉 is a valid refinement of the top-

level process network of EPN e.
The EPN semantics can be applied to a wide variety of optimiza-

tion techniques including simulated annealing [KGV83] and Evolution-
ary Algorithm (EA) as, for instance, used in Chapter 2. In the follow-
ing, we discuss an alternative optimization approach that uses graph
partitioning, which was previously proposed to find good replication
degrees [HCK+09], to find a good process network instance and the cor-
responding mapping. The basic idea of Algorithm 3.3 is to balance the
workload between the available processing cores. It first identifies the
processing core with the highest utilization and its process vwork with the
largest amount of work. Then, it virtually adds process vwork to all pro-
cessing cores and selects the processing core with the lowest utilization.
It stops if the ratio between highest and lowest utilization is lower than
a predefined balance factor that is specified as an input to the algorithm.
Selecting a good balance factor might be difficult. However, our experi-
ments have shown that a balance factor of 1.2 generates good results in
general.

As extensive unfolding or replication increases communication over-
heads, Algorithm 3.3 primarily migrates processes to processing cores
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with low utilization. Process vwork is migrated to the processing core with
the lowest utilization if the maximum utilization over all processing cores
can be reduced. Otherwise, if the maximum utilization cannot be reduced
anymore by migrating processes, Algorithm 3.3 unfolds or replicates vwork,
making the largest indivisible unit of work smaller. In case a process can
be both unfolded and replicated, Algorithm 3.3 aims to increase primar-
ily the task and pipeline parallelism by unfolding the process. The new
processes are distributed between the processing core of vwork and the
processing core with the lowest utilization so that both processing cores
have a balanced workload. In case that vwork can be neither unfolded nor
replicated, the algorithm stops or, if there are further processes assigned
to the processing core of vwork, it migrates these processes to the processing
core with the lowest utilization.

The complexity of Algorithm 3.3 depends on the application and the
number of processing cores. In fact, the complexity of a single iteration
mainly depends on the total number of processing cores and the used
sorting technique (Line 3). However, as each loop iteration only changes
the utilization of two processing cores, the sorting algorithm can use the
result of the previous iteration and just change the position of these two
entries. The complexity of an iteration is therefore O(|C|) with |C| the
number of processing cores of the considered sub-architecture.

3.6 Application Transformation

In the previous section, we have shown how to calculate the structure of
an EPN application so that the throughput of the application is optimized
on a given sub-architecture. Therefore, during design space exploration,
multiple instances of the same application are synthesized automatically
and each instance is optimized for a different number of available cores.
The runtime manager uses these information to select the best suited in-
stance for the available computing resources. In case that the computing
resources available to a certain application change at runtime, e.g., as other
applications are started or stopped, the runtime manager must transform
the application into another implementation without discarding the pro-
gram state of the application.

In this section, we describe a transformation technique to do so. First,
we illustrate the considered problem and the approach to solve it. Then,
we discuss the characteristics that must hold for applications that can be
transformed into an alternative instance. Finally, we detail the proposed
transformation technique.
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Algorithm 3.3 Calculating a process network and its corresponding map-
ping so that the throughput of the EPN application e = 〈P,u, l, porg〉 is
maximized on sub-architectureAs = 〈C,n〉.
Input: EPN e = 〈P,u, l, porg〉, processing cores C, balanceFactor
Output: process network and mapping
01 addAllProcessesToASingleCore(porg)
02 while True do
03 sortCoresByUtil(C) .find core with maximum utilization
04 maxCore← CoreWithMaxUtil(C)

.find process with largest computing demand
05 process← largestProcess(maxCore)

.find core with lowest utilization after adding process
06 minCore← CoreWithMinUtilAfterAdding(c, process)

.check the overall balance of the system
07 if util(maxCore) < util(minCore) ∗ balanceFactor then
08 finish()
09 end if

.migrate process to minCore or refine the process
10 if utilAfterAdding(minCore, process) < util(maxCore) then
11 addTo(process, minCore) .migrate process
12 removeFrom(process, maxCore)
13 else if process can be refined then .refine process and . . .

.. . . distribute processes uniformly to maxCore, minCore
14 removeFrom(process, maxCore)
15 subProcesses← refine(process) .unfold or replicate process
16 distributeAndAdd(subProcesses, maxCore, minCore)
17 else if process is the only process assigned to maxCore then
18 finish() .no more refinements are possible
19 else .migrate remaining processes of maxCore to minCore
20 remaining← removeAllExceptOneFrom(process, maxCore)
21 addTo(remaining, minCore)
22 end if
23 end while

3.6.1 Problem Description

Transforming a stateful application from one process network into an-
other process network requires the specification of how the application’s
state is transferred from one implementation into another one. This is
usually not trivial, as the following example shows.
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Ex. 3.5: Assume that an application has two implementations with different degrees of
parallelism. Implementation 1 consists of process v1 and implementation 2 con-
sists of processes v2 and v3 that are connected by a FIFO channel q. Suppose now
that the application is transformed from implementation 1 to implementation 2.
One possible way to do so is as follows: v1 is stopped immediately and the new
processes and channels are installed. To maintain the program state, a transfor-
mation procedure would be used that takes as input the program counter and all
variables of v1 and generates the program counters and the variables of v2 and
v3, as well as the content of channel q. Once variables and program counters
have been assigned, v2 and v3 are started. Programming such a procedure is
typically complicated and it is even more laborious to derive a procedure that
performs the opposite operation, i.e., generates the variables and the program
counter of v1. However, such a procedure is needed to transform the application
back to implementation 1, e.g., if the system enters again the previous execution
scenario.

In the following, we only consider the case where a process network
has been obtained by using the refinement strategy unfolding. In other
words, the top-level process network of an EPN can be refined only by
replacing processes by their refinement network. However, in the case we
are now considering, replication can be modeled by replacing the process
by a refinement network that consists of a fork process, multiple replicas
of the process, and a join process.

To tackle the previously describe challenge, we propose the follow-
ing solution to transform an application from a process network into an
alternative process network:

• We transform the application stepwise into the alternative process
network. In each step, either we refine a process, i.e., we replace it
by its refinement network, or we replace the processes and channels
of a refinement network by their origin process. We call the first
operation expansion and the second one contraction.

• We restrict the points in time for expansion and contraction: A
process / refinement network must reach a normal state in order to
be expanded / contracted.

• We describe a scheduling strategy that brings a process or refinement
network to a normal state.

• We extend the API proposed in Section 3.4 by two procedures that
transform the state of a process into the state of its refinement net-
work, and vice versa. Due to these procedures, a stateful process
can be replaced transparently by its refinement network.
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3.6.2 Execution Model
The goal is to come up with an execution model that requires the system
designer to specify only two additional transformation functions, namely
one for the expansion and one for the contraction. However, the system
designer should not have to deal with program counters and implicit state
that is on the stack when designing the transformation functions. There-
fore, we restrict the points in time for the expansion and the contraction:
A process can only be expanded if it has finished its fire procedure and
a process network can only be contracted if all of its processes have fin-
ished their fire procedure and if its internal channels contain a statically
specified number of tokens.

In the following, we discuss the considered execution model individ-
ually for channels, processes, and refinement networks. Based on that,
we define the characteristics that must hold for processes that can be
refined by a refinement network and for process networks that act as re-
finement networks so that the above stated goal can be achieved. This
forms the basis for a novel transformation technique that is proposed
in Section 3.6.3 and transforms a process network transparently into an
alternative process network.

Channel

A channel q of network p contains valued tokens that are read and written
in FIFO order. The number and values of the tokens determine the state
πq ∈ Πq of channel q whereby Πq is the set of channel states of q that are
admissible in any correct execution trace of p.

Process

During the execution of its fire procedure, process v reads tokens from
its input channels and writes tokens to its output channels, thereby mod-
ifying its state πv taken from the set of admissible states Πv of v. As
previously motivated, v can only be expanded if its fire procedure has
reached its end and is not yet re-started. We call any admissible state of v
where v has finished its fire procedure a normal state of v.

Def. 3.5: Assume that process v is a node of a process network pa and v either is part of
a refinement network or can be replaced by a refinement network. Then, the
following characteristics must hold for v and pa:

1. (Boundedness) Assume that the input channels of v contain a finite
number of tokens. Then, the execution of v is finite, i.e., after a bounded
number of executions, its fire procedure is blocked on reading from an
empty channel.
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2. (Termination) There exists a constant L such that for any admissible
state of v and for any admissible states of the input channels of v with L
tokens each, the fire procedure terminates, i.e., it reaches its end.

3. (Deadlock free) v can infinitely often execute its fire procedure, i.e., net-
work pa does not contain a deadlock concerning v.

4. (Nodead input channel) During each correct execution trace of network
pa of infinite length, an unbounded number of tokens is written into each
input channel of v.

Note that the first two conditions guarantee that the fire procedure
never runs into an infinite execution, i.e., the fireprocedure is not allowed
to enter an infinite loop.

Refinement Network

A refinement network p has a stateπp, which consists of the states of all its
processes and internal channels. A stateπp ∈ Πp is admissible if it appears
with a legal input sequence of p, whereby Πp is the set of admissible states
of p.

Refinement network p can only be contracted by its origin process if all
of its processes have finished their fire procedure and each of its internal
channels contains a statically specified number of tokens. We call these
numbers the normal token distribution of p and any state of p that fulfills
the above stated conditions a normal state of p.

In order to replace a process v transparently by its refinement network
p = u(v) (and vice versa), the system designer has to define how the state
is passed from v to p and from p to v. She does that by specifying the two
transformation functions expand and contract. The expand function Ev

maps any normal state πv of v to a normal state πp = Ev(πv) of p. The
contract function Cp maps any normal state πp of p to a normal state
πv = Cv(πp) of v. Using the above notation, we can define the required
characteristics of a refinement network.

Def. 3.6: The following characteristics must hold for a refinement network p = u(v) of
process v:

1. (Boundedness) Assume that the input channels of p contain a finite
number of tokens. Then, the execution of p is finite, i.e., after executing
the fire procedures of its processes a bounded number of times, each of its
fire procedures is blocked on reading from an empty channel.

2. (Syntactical equivalence) For each input and output channel of v, there
is a corresponding input and output channel of p.
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3. (Functional equivalence) Assume that the input channels of v and p
have the same channel state, i.e., the same finite number of tokens with the
same values.

• If v is initially in a normal stateπv (i.e., the fire procedure reached its
end, but is not yet re-started), if the state of p initially satisfies πp =
Ev(πv), and if v and all processes of p then execute their fire procedure
iteratively until being blocked on reading from an empty channel, the
sequences of tokens written by v and p to the corresponding output
channels are the same.

• If p is initially in a normal state πp (i.e., the fire procedures of all
its processes are finished and each of its internal channels contains
a statically specified number of tokens), if the state of v initially
satisfies πv = Cv(πp), and if v and all processes of p then execute
their fire procedure iteratively until being blocked on reading from
an empty channel, the sequences of tokens written by v and p to the
corresponding output channels are the same.

4. (Reachability) There exists a constant K such that for any normal state
of p and for any admissible state of the input channels of p with K tokens
each, there exists an ordering of complete executions of the fire procedures1

of the processes of p such that p has again a normal token distribution.
Furthermore, the fire procedure of every process in p is executed at least
once in such an ordering.

These conditions guarantee that both the expansion of process v by re-
finement network p = u(v) and the contraction of p by v do not change the
functionality of the whole process network. Furthermore, the reachability
condition states that there is at least one schedule that brings network p
from a normal state to another normal state.

In many situations, the above stated conditions do not impose severe
restrictions. Consider, for example, a process of a video processing ap-
plication. Its functionality can often be split into sub-steps or rewritten
such that it first splits large data blocks into smaller data blocks and then
operates on these tokens. Both described refinements do not modify the
functionality, the execution is still bounded, and, if enough tokens are
available in their input channels, the refinement networks can be sched-
uled so that they enter a normal state. Finally, note that the discussed
model of computation is still more general than the SDF [LM87] model
of computation that has been applied in previous works to adapt the
application structure.

1The execution of a single fire procedure does not have to be atomic; it can be interrupted by another fire
procedure at any time.
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Extension of the High-Level API for EPNs

Based on the above discussed considerations, we propose the following
extension of the high-level API described in Section 3.4 to specify the
additional transformation functions. For each process that can be refined,
the system designer has to specify the procedures expand and contract.
Listing 3.2 illustrates the proposed extension. On the one hand, procedure
expand implements function Ev and generates the state of the refinement
network. On the other hand, procedure contract implements function
Cv. It reads the remaining tokens from all internal channels of the refine-
ment network (the number of tokens is statically specified by the normal
token distribution). Then, it generates the process state. It is the sys-
tem designer’s responsibility to ensure that the characteristics stated in
Definitions 3.5 and 3.6 hold for all processes and refinement networks.

List. 3.2: Example of an implementation of the procedures expand and contract for pro-
cess v1, which has the refinement network p = 〈V = {v2, v3},Q = {q1}〉.

01 / / generate process s t a t e of v2 and v3 , and wri te i n i t i a l
tokens

02 void expand ( StateV1 ∗V1 , StateV2 ∗V2 , StateV3 ∗V3 ,
03 Channel ∗Q1) {
04 V2 = generateStateOfV2 ( V1 ) ;
05 V3 = generateStateOfV3 ( V1 ) ;
06 w r i t e I n i t i a l T o k e n s (Q1 , V1 ) ;
07 }
08

09 / / generate process s t a t e of v1
10 void c o n t r a c t ( StateV1 ∗V1 , StateV2 ∗V2 , StateV3 ∗V3 ,
11 Channel ∗Q1) {
12 channe lS ta te = readChannelState (Q1) ;
13 V1 = generateStateOfV1 ( V2 , V3 , channe lS ta te ) ;
14 }

3.6.3 Transformation Technique

So far, we have defined the characteristics that must hold for processes
that can be refined and for process networks that can act as refinement
network. Next, we detail the actual transformation technique.

The basic idea of the transformation technique is to transform an
application stepwise into an alternative process network. In each step, it
either expands or contracts one process. In the following, we will discuss
first the case of expanding a process and then the case of contracting a
process.
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Expanding a Process

Assume that process v is a node of network pa. It follows from Defini-
tion 3.6 that the expansion of v by the refinement network p = u(v) does
not change the functionality of pa if v is expanded after finishing its fire
procedure and if the state of p is initially πp = Ev(πv), whereby πv is the
state of v after finishing the fire procedure. Therefore, a prerequisite for
the expansion is that v finishes its fire procedure. However, it follows
from the characteristics stated in Definition 3.5 that v will do that if pa is
executed long enough. Algorithm 3.4 summarizes the steps to expand a
process.

Algorithm 3.4 (expansion) Replace process v by its refinement network
p = u(v).

01 install all processes and channels of p
02 connect the channels of p to the corresponding processes of p
03 stop process v at the end of its fire procedure
04 use the expand procedure of process v to generate the process states

of all processes of p and the initial tokens of all channels of p
05 connect incoming and outgoing channels of v to the corresponding

processes of p
06 start all processes of p and remove process v

Contracting a Process

Assume again that process v is a node of process network pa and that v
has the refinement network p = u(v). It follows from Definition 3.6 that
contracting the refinement network p = u(v) by v does not change the
functionality of pa if p is stopped in a normal state πp and if the state
of v is initially πv = Cv(πp). p is in a normal state if all of its processes
have finished their fire procedure and if each internal channel contains
a statically specified number of tokens, also known as the normal token
distribution.

Therefore, a prerequisite for the contraction is that the refinement
network p is in a normal state. However, if the fire procedures of its
processes are executed iteratively in a greedy manner, p might never enter
such a state. Thus, in the following, we will first describe a scheduling
strategy that executes the processes of network pa such that the refinement
network p enters a normal state. The basic idea of the scheduling strategy
shown in Algorithm 3.5 is that each process of the refinement network
observes the number of tokens in its input and output channels and only
starts its fire procedure if certain conditions are fulfilled. In fact, if a
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Algorithm 3.5 Scheduling strategy to bring a refinement network p being
part of process network pa to a normal state.

01 execute all processes of pa except those of p in a greedy manner,
i.e., execute their fire procedures iteratively

02 execute all processes of p in a greedy manner. However, do only
restart the fire procedure of a process v in p if at least one of the
following conditions holds:

03 • v has an internal input channel that contains more tokens than its
normal number of tokens,

04 • v has an internal output channel that contains less tokens than its
normal number of tokens, or,

05 • the fire procedure of another process in p is directly or indirectly
blocked on an output channel q of v. A process is directly blocked
on q if the process is the reader process of q. A process is indirectly
blocked on q if the process is blocked on an input channel of p
whose writer process itself is blocked by some other process and if
this chain finally ends in q

06 stop if all processes of p have finished their fire procedures and no
fire procedure can be restarted

channel has more tokens than its normal number of tokens (defined by
the normal token distribution), the reader process continues its execution.
The writer process continues its execution if a channel has less tokens than
its normal number of tokens.

Note that the strategy of Algorithm 3.5 must only be used to schedule
the network when a particular refinement network is supposed to be
contracted. Example 3.6 emphasizes the role of Line 5, which is used
to resolve deadlocks that are imposed by the scheduling strategy (the
processes of the refinement network might be blocked artificially, i.e., they
cannot necessarily restart their fire procedure).

Ex. 3.6: Assume that process ṽ of refinement network p must restart its fire procedure
as either the rule on Line 3 or the one on Line 4 holds for one of its input or
output channels. Then, ṽ may block on reading from another input channel that
does not contain enough tokens and whose writer process is also blocked. If the
writer process is also in p, the fire procedure of ṽ is directly blocked on an output
channel of some process v in p. On the other hand, if the writer process is not in
p, it must again be blocked by some other process as only processes in p can be
blocked artificially. In fact, the thereby created chain must end at some process v
in p so that ṽ is indirectly blocked on an output channel of v and the block can
only be resolved if v restarts its fire procedure.
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Thm. 3.1: Assume that network p is a refinement of process v, part of process network pa,
and the characteristics stated in Definitions 3.5 and 3.6 hold for v, p, and pa. After
executing the fire procedures of its processes for a finite number of times, network
pa including p is scheduled according to the rules stated in Algorithm 3.5. Then,
p will eventually enter a normal state.

Proof. We know that we originally replaced in network pa process v by
a correct refinement network p = u(v). Due to Definitions 3.5 and 3.6,
replacing v by p did not change the functionality of pa so that no deadlock
can occur in p if the fire procedures of all processes of pa are executed
iteratively. Given this property, the basic idea of the proof is to observe
the sequences of tokens in the input channels of v in the origin network pa

with v instead of p. Then, we use these sequences to determine a schedule
for the processes of p. Unless this schedule leads to a deadlock, p can be
executed according to this schedule even if p is embedded into pa.

Let us first consider the point in time when we started to schedule
pa by Algorithm 3.5. Assume that the highest number of executions of a
fire procedure in any process of p was f , i.e., no process in p executed the
fire procedure more than f times. As all processes of pa are deterministic,
the sequences of tokens in the input channels of p are independent of the
execution order of the processes. Due to the functional equivalence of
the expansion, the sequences are the same as that of the origin network
pa with v instead of p. Let us observe the input channels of v and the
corresponding sequences that would have occurred if we had not done
the expansion, starting from the instance of the expansion. As v has no
dead input channels (see Definition 3.5), we stop the observation if each
sequence contains at least f · K tokens whereby K is defined as in the
reachability condition of Definition 3.6.

Let us go back to the refined network. We know from the reachability
condition in Definition 3.6 that starting from any normal state of p, there
exists an ordering of complete executions of the fire procedures of the
processes of p such that p is again in a normal state. In such a sequence,
each process in p executes its fire procedure at least once. Now assume
that we go from one such state to the next one f times. Clearly, there
would be enough tokens in the input channels to allow for this schedule
and the fire procedure of each process in p must be executed at least f
times. As defined above, no process in p executed its fire procedure more
than f times when starting to schedule pa by Algorithm 3.5. Therefore,
in order to reach the final normal state from the current state, there are
executions of the fire procedures still left for some processes, but no
process executed its fire procedure more often than necessary in order to
reach the final normal state (after f iterations).
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As all processes of pa are deterministic, the ordering of executing the
fire procedures does not matter. In other words, if we start from any state
and execute the fire procedures by a certain scheduling method a given
number of times, then we can reach the same state by any other scheduling
method provided that we do not execute the fire procedure more often
than this number of times. However, no online scheduling strategy knows
the number of times that the fire procedures should be executed so that
network p reaches the final normal state. Therefore, in order to prove that
network p enters a normal state if pa is scheduled according to the rules of
Algorithm 3.5, we have to show that the scheduling strategy a) does not
execute the fire procedure of a process in p more often than the number of
times that is necessary to reach the final normal state and b) does not lead
to deadlocks, whereby network p initially started in a normal state and a
greedy scheduler with an upper bound on the number of fire executions
for each process in network p would enter the final normal state.

First, we show that Algorithm 3.5 only starts a fire procedure if the
greedy scheduler would also do so. Assume that an internal channel
contains a smaller number of tokens than its normal number, then the
writing process needs to execute its fire procedure at least once. Assume
that an internal channel contains a larger number of tokens than its normal
number, then the reading process needs to execute its fire procedure at
least once. If the fire procedure in one of the above mentioned cases
is blocked due to an internal input channel, the process writing to this
channel must also execute its fire procedure. Clearly, Algorithm 3.5
covers these cases.

Now, let us show that the scheduling strategy of Algorithm 3.5 does
not lead to a deadlock. Assume towards a contraction that there is a
deadlock in p, i.e., the number of tokens in the internal channels does
not yet correspond to the normal token distribution, but no process can
proceed anymore. Consequently, at least one process in p is blocked
on reading from an internal or input channel of p and the remaining
processes of p have completed their fire procedure, but are not eligible to
restart it. However, the case that a process is blocked on reading from an
internal channel is resolved as the process that causes the blocking starts
its fire procedure. In case that a process is blocked on an input channel
of p, the execution will only block forever if the writing process (which is
not part of p) is blocked itself and a process of p connected to an output
channel of p must execute its fire procedure at least once more to resolve
this blocking. However, this case is resolved as a process that causes an
indirect blocking on an output channel restarts its fire procedure. �

The steps to contract a refinement network are summarized in Algo-
rithm 3.6.



86 CHAPTER 3. EXPANDABLE PROCESS NETWORKS

Algorithm 3.6 (contraction) Replace the processes and channels of re-
finement network p = u(v) by process v.

01 install process v
02 use the strategy of Algorithm 3.5 to stop the refinement network p in

a normal state
03 use the coarsen procedure of process v to generate the process state

of v
04 connect the input and output channels of p to process v
05 remove all processes and channels of p, and start process v

Process Migration

Clearly, transforming an application into an alternative process network
might also involve the migration of some processes to different processing
cores. In the following, we summarize a technique to do so. It migrates a
process adhering to the API described in Section 3.4 from one processing
core to another one.

Algorithm 3.7 shows the pseudo-code to migrate an individual process
from one processing core to another one on a platform with distributed
memory. The basic idea of the algorithm is to have a hand-shaking pro-
tocol that informs the process to be migrated, vmig, that no more incoming
tokens are generated. Afterwards, all in-flight tokens (tokens written by
a parent process, but not yet received by the child process) are collected
so that process vmig, as well as all incoming and outgoing channels of vmig,
can be migrated.

3.7 Evaluation
In this section, we present case studies demonstrating the effectiveness
of the EPN semantics targeting two many-core platforms. In the first
two case studies, we discuss the effect of replication and unfolding on
the throughput of an application. Then, we measure the performance of
the proposed application and mapping optimization algorithm. Finally,
we evaluate the costs of transforming an application into an alternative
process network and investigate how its performance is affected during
the transformation.

3.7.1 Experimental Setup
In the following, we describe the hardware setup and the considered
benchmark applications.
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Algorithm 3.7 Pseudo-code to migrate process vmig of process network p
from processing core csrc to processing core cdst.

.stop vmig, pause parent and child processes of vmig

01 stop process vmig before it starts a new firing
02 for all q = 〈vsrc, vdst〉 s.t. vsrc <> vmig and vdst == vmig do
03 pause process vsrc

04 wait until all in-flight tokens of q arrived at destination
05 end for
06 for all q = 〈vsrc, vdst〉 s.t. vsrc == vmig and vdst <> vmig do
07 pause process vdst

08 wait until all in-flight tokens of q arrived at destination
09 end for

10 install process vmig on cdst .move process to new core
11 move process state πvmig from csrc to cdst

12 remove process vmig on csrc

.re-instantiate incoming and outgoing channels
13 for all q = 〈vsrc, vdst〉 s.t. vsrc <> vmig and vdst == vmig do
14 install channel q between cvsrc and cdst

.with cvsrc being the core of vsrc

15 transfer tokens from old to new instance of q
16 remove old instance of q
17 resume process vsrc

18 end for

19 for all q = 〈vsrc, vdst〉 s.t. vsrc == vmig and vdst <> vmig do
20 install channel q between cdst and cvdst

.with cvdst being the core of vdst

21 transfer tokens from old to new instance of q
22 remove old instance of q
23 resume process vdst

24 end for
25 start process vmig on cdst .re-start the process on target core
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Hardware Setup

In order to test the effectiveness of the EPN semantics, we extend the
prototype implementation of DAL, which is described in Section 2.6,
to also support applications specified according to the EPN model of
computation. The runtime manager described in Section 2.5.2 has been
extended with the ability to transform an application from one process
network into an alternative process network according to the technique
discussed in Section 3.6.

Two many-core architectures are used as target platforms, namely an
Intel Xeon Phi processor and an Intel SCC [HDH+10] processor. Though
not designed for embedded applications, for the purpose of the exper-
imental evaluation, they are representatives of future many-core SoC
architectures.

• The Xeon Phi has 60 physical cores (the hyper-threading capability
is not used), which are clocked at 1053 MHz, and hosts a Linux op-
erating system with kernel 2.6.38.8. In all experiments, the compiler
is icc 14.0.1 with optimization level O2.

• The Intel SCC processor is configured to run the cores at 533 MHz
and both the routers and the DDR3 RAM at 800 MHz. A Linux image
with kernel 2.6.32 has been loaded onto each core and the RCKMPI
library [URK11] has been configured to use the default channel
implementation, i.e., the SCCMPB channel. In all experiments, the
compiler is icc 8.1 with optimization level O2.

In order to identify the application structure and mapping that
maximize together the throughput of an application on a given sub-
architecture, the following approach is conducted. First, the performance
parameters listed in Table 3.1 are obtained by running benchmark con-
figurations on the target platforms. Afterwards, the application structure
and the mapping have been optimized using Algorithm 3.3. In fact, the
balance factor of Algorithm 3.3 is set to 1.2.

Benchmark Applications

In this section, we analyze the performance of four benchmarks shown in
Fig. 3.5.

• Synthetic. The synthetic application has a top-level process network
with three processes. Process ‘v2’ has a refinement network with a
variable number of processes.
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(d) Video-processing application.

Fig. 3.5: Benchmark applications to evaluate the capabilities of the EPN semantics.

• Sorting. The application uses quicksort to sort arrays of variable
length. Process ‘src’ generates the input array, process ‘sort’ sorts
the elements, and process ‘dest’ displays the output array. As the
quicksort algorithm recursively sorts the array, process ‘sort’ can be
replaced by a structural description. ‘div’ partitions the array into
two groups: the first group contains the elements that are smaller
than the median value and the second group contains the remaining
elements. The divided arrays are sent to a different instance of
the ‘sort’ process. Each ‘sort’ process sorts the received sub-array.
Finally, the sorted sub-arrays are merged into a single array.

• Ray-Tracing. The ray-tracing algorithm can have multiple ‘intersec-
tion’ processes to analyze multiple rays concurrently. In addition,
the ‘generator’ process generates the rays and the ‘summation’ pro-
cess merges the rays into a single image.
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• Video-processing. The video-processing application first decodes a
MJPEG video stream and then applies several filters to the decoded
frames. The ‘decoder’ process can be replicated, but it cannot be
unfolded. The ‘filter’ process is composed of a Gaussian blur and
a gradient magnitude calculation using Sobel filters. If unfolded,
both processes can be replicated individually. A gray scale video of
320 × 240 pixels is decoded and analyzed in all evaluations.

3.7.2 The Optimal Degree of Parallelism

In the first case study, we discuss the effect of replication on the execution
time of an application. To this end, we consider the ray-tracing algorithm
and compare the execution time of different replication degrees and map-
pings both when the execution time is estimated with the performance
model introduced in Section 3.5 and when the time is measured on Intel’s
SCC processor.

The ray-tracing algorithm is running on three cores of the Intel SCC
processor. Figure 3.6a outlines 10 different mapping and replication sce-
narios of the application. Bubbles indicate the mapping of processes onto
processing cores. For example, a bubble with a “G” on core 1 indicates
that the ‘generator’ process is mapped onto core 1. When measuring the
execution time on Intel’s SCC processor, each core has been selected from
a different tile to reduce timing variations due to the network.

To study how replication affects the execution time, the time to gen-
erate an image of 100 × 100 pixels, with 10 samples per pixel, has been
measured for the scenarios outlined in Fig. 3.6a. Figure 3.6b reports the
time that was measured when the scenarios have been executed on the
SCC and the time predicted by the performance model described in Sec-
tion 3.5. Out of all 10 scenarios, the execution time is reduced the most
in scenario h, which balances the execution time best between the cores.
Thus, in this example, the optimal degree of parallelism is achieved with
five ‘intersection’ processes. The longest execution time is observed in
scenario a, which has only two instances of the ‘intersection’ process.
The execution time of the ray-tracing algorithm in scenario h is 29.5 s on
the real platform, which corresponds to a speed-up of 2.43 compared to
scenario a, which has an execution time of 72.0 s on the real platform.

The average absolute difference between the prediction based on the
performance model and the measurement on the real platform is 0.6 s.
This indicates that the performance model is able to predict the average
execution time accurately if replication is used to improve the parallelism
of an application.
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Fig. 3.6: Execution time of the ray-tracing algorithm outlined in Fig. 3.5c for different
mapping and replication scenarios. The algorithm is running on three cores of
the Intel SCC processor.
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Fig. 3.7: Execution time of the quicksort algorithm for a varying number of available
cores and different recursion depths. No unfolding refers to the basic quicksort
algorithm, i.e., to the top-level process network. x-times unfolded refers to an
implementation where the ‘sort’ process is unfolded x times.

3.7.3 Speed-up due to Recursion

To study the effect of recursive unfolding on the execution time of an
application, we evaluate the performance of the sorting application on
Intel’s SCC processor. By unfolding the ‘sort’ process recursively, the
original topology of the sorting application can be refined to have more
tasks. As the length of the array that each ‘sort’ process has to sort is
halved in each recursion step, the execution time is reduced with each
recursion step, as well.

In Fig. 3.7, the execution time to sort 5′000 random arrays, each with
5′000 elements, is compared for a varying number of available cores
and different recursion depths. No unfolding refers to the basic quicksort
algorithm, i.e., to the top-level process network. x-times unfolded refers
to an implementation where the ‘sort’ process is unfolded x times. The
evaluation shows that the performance of the sorting algorithm highly
depends on the selected recursion depth. On the one hand, if the number
of cores is small, a low recursion depth achieves the best performance as
the switching and communication overhead is low. On the other hand, if
the number of cores is large, a high recursion depth accomplishes a lower
execution time as the array is sorted in parallel.

It is worth to note that the speed-up is much lower than the optimal
speed-up. The maximum achievable speed-up is 2.3 when using eight
cores instead of one core and 4.1 when using sixteen cores instead of one
core. This might be because additional time is spent to first split the array
into two groups and then to transmit the intermediate results between
the different cores.
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3.7.4 Application and Mapping Optimization

Next, we investigate the question whether a runtime-system that uses
the EPN model of computation outperforms a runtime-system that uses a
static model of computation in terms of throughput and memory usage.

To this end, we compare the performance of the proposed EPN ap-
proach with that of Flextream [HCK+09]. Flextream refines the process
network at compile time by using the largest possible resource allocation
as target platform. At runtime, it uses this granularity independent of
the available resources. In fact, it just assigns the processes that have
been originally assigned to cores that are not available, to the remaining
cores. For comparability, we extended Flextream’s optimization algo-
rithm to also support applications specified according to the EPNs model
of comptuation. On the other hand, the EPN approach calculates a dif-
ferent process network and mapping for all possible number of available
processing cores.

Figure 3.8 plots the performance of the video-processing application
when executing it on the Xeon Phi processor with the number of available
cores being varied from one to 56. The speed-up versus the throughput of
the top-level process network executed on one core is shown in Fig. 3.8a.
The speed-up achieved with the EPN approach is up to 10 % higher than
that achieved with Flextream. The EPN approach achieves speed-ups
close to the theoretical maximum for any investigated number of available
cores. The speed-ups achieved with Flextream can be lower than that of
the EPN approach if the processes cannot be evenly distributed among the
available cores. This effect is particularly evident for 48 cores. The EPN
approach does not suffer from this effect, as it adapts the application’s
degree of parallelism.

As the EPN approach adapts the number of processes to the number
of available cores, the average memory usage per core is almost constant
with the EPN approach, see Fig. 3.8b. It is up to 22.5 x less than with
Flextream, which uses the same process network for all possible resource
allocations.

We conclude that the EPN approach outperforms a static model of
computation in terms of throughput and memory usage when the avail-
able computing resources are not known at design time or may change
at runtime. Compared with Flextream, the EPN approach achieves up to
10 % higher throughput and has up to 22.5 x less memory usage. The EPN
approach mainly benefits from the better suited application parallelism
that reduces inter-process communication and scheduling overheads.
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Fig. 3.8: Performance of the video processing application for different resource alloca-
tions. The EPN approach calculates a different process network and mapping
for all possible number of available processing cores using Algorithm 3.3. Flex-
tream optimizes the process network for the largest possible resource allocation.
If less processing cores are available, it assigns the processes that have been
originally assigned to cores that are not available, to the remaining cores.

3.7.5 Transformation Costs

To evaluate the costs of transforming an application into an alternative
process network, we measure the time to expand and coarsen process v2

of the synthetic application that is shown in Fig. 3.5a. When measuring
the transformation time, we vary either the number of processes of the
refinement network, the capacity of the channels, or the workload of
processes v2 and v5. If not varied, the refinement network has three
processes, the channels have a capacity of five tokens, and a process just
reads one token from all of its input channels and writes one token to
all of its output channels. For brevity, we only report the results for the
Intel Xeon Phi processor; however, the results for the Intel SCC processor
exhibit similar trends.

Figure 3.9 shows the time to expand and coarsen process v2. The
reported numbers are the mean of 70 runs and the bottom and top of the
error bars are the 16-th and 84-th percentile. The time to expand process v2

increases linearly with the number of processes of the refinement network
and highly depends on the work performed per invocation of the fire
procedure. However, the time is independent of the channel capacity as
there is always only one process involved in the expansion. The time to
coarsen process v2 increases linearly with all investigated parameters. In
fact, coarsening takes up to ten times longer than expanding, mainly as
the procedure of bringing a refinement network to an admissible state
requires more steps than the procedure of bringing a single process to an
admissible state.
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Fig. 3.9: Time to expand and coarsen the process network of the synthetic application
that is shown in Fig. 3.5a.

Next, we measure the time to expand, coarsen, and replicate various
processes of the video-processing and sorting application. The maximum
and average times measured over ten repetitions are listed in Table 3.2.
The reported numbers confirm the trends observed with the synthetic
application. Moreover, if the transformation includes multiple expand
or coarsen operations, the measured transformation times are about the
same as the sum of the times to perform the individual transformations.
The results also show that installing new processes is more costly on the
SCC than on the Xeon Phi. This might be due to the framework’s ability
to load processes dynamically from the file system, which is more costly
on the SCC.

In summary, the results demonstrate that transforming an application
can take up to several hundreds of milliseconds. However, the time to
transform a process strongly depends on the granularity of the refinement
network and the work performed per invocation of the fire procedure.

3.7.6 A Runtime Scenario

The results presented so far indicate that reasonable speed-ups can be
obtained by transforming the application into an alternative network.
However, we have also seen that the transformation can take several
hundreds of milliseconds. Next, we investigate how the performance of
the application is affected during the transformation.
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Tab. 3.2: Time in milliseconds to expand, coarsen, and replicate processes of two bench-
mark applications.

bench-
transformation

Xeon Phi SCC
mark max avg max avg

vi
de

o-
pr

oc
es

si
ng

expand vdec 151 78 667 440
coarsen vdec 155 103 1′054 893
expand v f ilter 144 86 740 587
coarsen v f ilter 747 428 1′923 1′852
replicate vdec 5x 540 461 3′357 2′965
replicate vgauss 3x 205 134 5′340 5′260
replicate vsobel 3x 213 169 1′961 1′761
expand v f ilter, replicate vgauss and
vsobel 3x

855 786 8′017 7′857

coarsen vdec, expand v f ilter 275 195 1′423 1′398

so
rt

in
g expand vsort 1x 15 8 115 104

expand vsort 3x 73 61 505 470
coarsen vsort 1x 93 51 52 42
coarsen vsort 3x 596 425 795 675

For this purpose, we measure the frame rate of the video-processing
application when the available cores are changed every 40 s, see Fig. 3.10.
All resource variations except the one from four to six cores cause a
transformation into an alternative network. During the transformation,
the frame rate basically stays between the rate at the beginning and end
of the transformation. However, it can happen (e.g., when changing the
number of available cores from two to five) that several frames arrive at
the output process almost at the same time. This happens if multiple
replicas start to process simultaneously.

Transforming the application takes the most time when the available
cores are increased from six to eight (3.9 s) and reduced from eight to four
(4.2 s). In both situations, the runtime manager changes the number of
replicas of the ‘decoder’, ‘gauss’, and ‘sobel’ processes. In particular, in
the first situation, it replicates the ‘decoder’ process three times, changes
the number of replicas of the ‘gauss’ process from ten to 19, and replicates
the ‘sobel’ process two times. As the application is assigned the same pro-
cess network for four and six cores, the runtime-system just reverses the
previous transformation when the number of available cores is reduced
to four.

Overall, the results show that the proposed transformation technique
is able to transform the application into an alternative network seamlessly
so that the throughput is never lower than the throughput at the beginning
and end of the transformation.
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Fig. 3.10: Measured frames per second of the video-processing application when the num-
ber of available cores is changed every 40 s.

3.8 Summary

If multiple applications share a heterogeneous many-core SoC, the
amount of computing resources available to a single application depends
on the other applications that are running on the system and can change
over time. This, in turn, complicates the selection of the right degree of
application parallelism when specifying the application. Consequently,
to exploit the available hardware parallelism efficiently, the application’s
degree of parallelism must be refined so that inter-process communication
and scheduling overheads are minimized.

Tackling this challenge, we have shown that process networks can
be specified in a manner that enables the automatic exploration of task,
data, and pipeline parallelism. To this end, we have proposed the EPNs
semantics, which extends conventional programming models for stream-
ing applications in the sense that several process networks with different
degrees of parallelism are abstracted in a single specification. In partic-
ular, an application specified as an EPN has a top-level process network
defining the initial network. The initial network can be refined by replicat-
ing individual processes or replacing stateful processes by other process
networks. The latter enables the explicit specification of recursion, com-
monly used in mathematical and multimedia applications.

To include the proposed concepts in the system design, we extend
the DAL design flow by an additional design step, which does not only
optimize the mapping, but also the application structure to match the
available computing resources. This is particularly useful when the avail-
able computing resources are not known at design time, as it is the case
when the application is running in multiple execution scenarios and si-
multaneously with other applications. In this case, the EPN semantics
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enables the synthesis of multiple design implementations that are all de-
rived from one high-level specification. To adapt the application’s degree
of parallelism at runtime, we propose a novel technique to transform the
application transparently from one process network into an alternative
process network without discarding its program state.

Finally, extensive experiments have been carried out on two many-
core processors showing the effectiveness of the EPN semantics. Target-
ing various multimedia streaming applications, we have shown that the
execution time of the EPN implementation scales almost linearly with
the number of available cores if the proposed extension of the DAL de-
sign flow has been used to synthesize multiple implementations of the
application automatically. Moreover, we have shown that the proposed
transformation technique is able to transform the application seamlessly
into an alternative network so that the throughput is never lower than
that at the beginning and end of the transformation. This is particularly
important if the resources available to a single application can change
over time, e.g., when other applications can be started or stopped.



4
Exploiting Multi-Level

Hardware Parallelism

4.1 Introduction

As discussed in Section 1.1, future many-core SoCs are predicted to be-
come heterogeneous, thereby coupling general-purpose processors with
various hardware accelerators like, for instance, DSPs, Application-
Specific Instruction-Set processors (ASIPs), Field Programmable Gate Ar-
rays (FPGAs), or Graphics Processing Units (GPUs). In the context of this
chapter, we refer to a processor or a hardware accelerator as a device and
consider a SoC to be a set of such devices. Many of these devices are
capable to process multiple threads in parallel and some of them are only
able to fully exploit their performance if the same instruction is applied
to multiple data sources simultaneously.

Exploiting this multi-level parallelism is challenging, in particular if
the application specification does not coincide with the available hard-
ware parallelism. For instance, on a GPU, it might be advantageous to
split the workload among many small parallel tasks, while on a CPU,
it might be more appropriate to use a single task to process the whole
workload. A second challenge arises from the programmability of hetero-
geneous systems. Programming applications for heterogeneous systems
can be laborious and costly as different types of compute devices require
different code or support different low-level services.

We propose to meet this challenge by running applications on top of
the Open Computing Language (OpenCL) framework [Khr10]. OpenCL
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has been proposed to provide a common interface for programming het-
erogeneous systems. Nowadays, many hardware vendors, including
Intel, AMD, NVIDIA, and STMicroelectronics, provide native support
for OpenCL. A program following the OpenCL standard can run on any
OpenCL-capable platform that satisfies the resource requirement of the
application.

Still, system designers have to manage many low-level details includ-
ing data exchange, scheduling, or process synchronization, which makes
programming heterogeneous systems difficult and error-prone. In fact,
previous case studies have shown that OpenCL does indeed provide
code portability, but it does not necessarily provide performance porta-
bility [WGHP11]. Thus, the use of a higher level programming model to
design applications for OpenCL-capable platforms would be desirable as
significant areas of the design process could be automated, which would
make the complete design process simpler, less error-prone, and more
understandable.

Overview

Following these ideas, the contribution of this chapter is the extension
of the Distributed Application Layer (DAL) design flow to execute ap-
plications specified as process networks on heterogeneous systems using
OpenCL. The proposed extension can be considered as a general code syn-
thesis framework to execute process networks on any OpenCL-capable
platform.

To exploit the multiple levels of hardware parallelism, a systematic
use of pipeline, task, and data parallelism [GTA06, YH09] is proposed.
Pipeline and task parallelism are leveraged by distributing the applica-
tion to the different devices. Pipeline parallelism is achieved by assigning
each process of a chain to a different compute device and task parallelism
is achieved by executing independent processes on different devices. Fi-
nally, data parallelism is used to exploit the parallelism offered by the
individual devices: independent process firings are executed simulta-
neously if the device is able to process multiple threads in parallel and
multiple output tokens are calculated in a Single Instruction, Multiple
Data (SIMD) fashion [Fly72].

More detailed, we first propose an extension of the previously pro-
posed high-level API for process networks to specify the considered type
of data parallelism. To the best of our knowledge, the proposed high-
level API is the first API for process networks that enables the system
designer to specify the degree of data parallelism flexible in the sense that
the best degree of data parallelism can be selected automatically by an
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optimization framework in accordance with the available hardware par-
allelism. This extension enables DAL to benefit from target architectures
that support SIMD execution.

Afterwards, a runtime-system and program synthesis back-end is pre-
sented that enables the efficient distribution of the application among de-
vices from different types and vendors. For instance, the memory location
of the FIFO channels is automatically optimized by the runtime-system to
improve memory access latencies and end-to-end performance. Seamless
integration of input and output operations is provided by the ability to
execute processes as native POSIX threads and to transfer tokens between
them and processes running on top of OpenCL. Finally, a detailed per-
formance evaluation is carried out to support our claims. In particular,
the overhead of the runtime-system is measured, the proposed concepts
for exploiting the different levels of parallelism are compared with each
other, and the end-to-end throughput is evaluated for various systems.

As an OpenCL program must have fixed-size input and output arrays,
only processes reading and writing a fixed number of tokens in every
execution of the fire procedure are eligible to be executed on top of
OpenCL. In fact, processes that show such a characteristics are often called
Synchronous Dataflow (SDF) actors [LM87]. However, for readability, we
keep our notation and call the parallel entities of a streaming application
processes. Processes that do not have a fixed number of input and output
tokens are still supported. However, they are executed as native POSIX
threads on the CPU so that they cannot benefit from the proposed OpenCL
runtime-system.

Outline

The remainder of the chapter is organized as follows: In the next section,
related work is reviewed. In Section 4.3, a short overview on OpenCL
is given. In Section 4.4, the proposed approach is summarized. In Sec-
tion 4.5, the previously proposed high-level API for DAL is extended to
support the considered type of data parallelism. In Sections 4.6 and 4.7,
the proposed OpenCL synthesizer and the runtime-system are discussed.
Finally, experimental results are presented in Section 4.8.

4.2 Related Work
We start by reviewing other design flows and high-level frameworks for
programming heterogeneous systems, whereby special attention is given
to OpenCL-based frameworks.
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Maestro [SMV10] is an extension of OpenCL that provides automatic
data transfer between host and device as well as task decomposition
across multiple hardware devices. While simplifying the task of the pro-
grammer tremendously, Maestro introduces new restrictions. For exam-
ple, tasks have to be independent of each other. The task-level scheduling
framework detailed in [SSB+12] extends OpenCL by a task queue enabling
a task to be executed on any device in the system. Furthermore, depen-
dencies between tasks are resolved by specifying a list of tasks that have to
be completed before a new task is launched. Nonetheless, the burden of
organizing data exchange is still left to the designer and no automatic de-
sign flow is provided to design applications in a high-level programming
language.

Distributed OpenCL (dOpenCL) [KSG12] is an extension of OpenCL
to program distributed heterogeneous systems. The approach abstracts
the nodes of a distributed system as a single node, but the programmer
is still responsible for managing many low-level details of OpenCL.

The high-level compiler described in [DCR+12] generates OpenCL
code for applications specified in Lime [ABCR10], a high-level Java com-
patible language to describe streaming applications. Lime includes a task-
based data-flow programming model to express applications at task gran-
ularity, similar to process networks. The work in [DCR+12] particularly
focuses on generating optimal OpenCL code out of the given Java code. In
contrast to the high-level language based approach of Lime, we propose to
use a model-based design approach enabling process-to-device mapping
optimization and verification. Furthermore, our high-level specification
enables the use of a lightweight runtime-system without the need of a
virtual machine.

Another approach to design heterogeneous systems is to use a sepa-
rate programming language for the individual devices. In this context, the
execution of process networks on systems with CPUs and GPUs has been
studied using NVIDIA’s Compute Unified Device Architecture (CUDA)
framework [Nvi08] for executing processes on the GPU. For instance, the
multi-threaded framework proposed in [BK11a] integrates both POSIX
threads and CUDA into a single application. In contrast to our work,
the approach is primarily concerned with overlapping communication
and computation, but does not optimize the actual memory placement.
KPN2GPU, a tool to produce fine-grain data parallel CUDA kernels from
a process network specification, is described in [BK11b]. An automatic
code synthesis framework taking process networks as input and generat-
ing multi-threaded CUDA code is described in [JYH12]. However, they
assume that a separate definition of the process is given for the CPU thread
implementation and the GPU kernel implementation. In contrast, our API
abstracts low-level details enabling the same specification to be used for
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CPU and GPU devices. Furthermore, Sponge [HSW+11] is a compiler to
generate CUDA code from the StreamIt [TKA02] programming model.
Sponge only exploits the coarse-grained task parallelism of the process
network while in our approach, the firing of a process is fragmented
to fully exploit the multi-level parallelism of today’s heterogeneous sys-
tems. In addition, our approach generates OpenCL code enabling the
same framework to be used for a wider range of heterogeneous platforms
than the above described CUDA-targeting frameworks.

4.3 OpenCL Background
OpenCL defines a couple of new terms and concepts, which the reader
may be unfamiliar with. For the sake of completeness, a short overview
on these shall be given here; for a detailed documentation, however, we
refer to [Khr10].

Computational resources are organized hierarchically in OpenCL.
There are devices, which consist of several Compute Units (CUs); those
again are groups of one or more Processing Elements (PEs). As an example,
a system with one CPU and one graphics card might provide two OpenCL
devices: the CPU and the GPU of the graphics card. The different cores
of the CPU would then each be one CU basically consisting of one PE.
Each cluster of the GPU would be a CU with typically dozens of PEs. The
devices are controlled by the host, which is a native program executed on
the target machine1.

The code that runs on the PEs is referred to as kernels. Essentially,
a kernel is a function written in a C-like programming language called
OpenCL C. It should perform a specific task with a well-defined amount
of work and then return. All memory portions that a kernel can use to
communicate with the other kernels are provided as kernel arguments.
When a kernel is executed on a PE, this execution instance is called a
work-item. When the same kernel is instantiated multiple times at once
(e.g., to achieve SIMD execution on GPUs), some of these work-items
can be gathered to work-groups, which are allowed to share memory for
intermediate calculations.

There are two major classes of memory types in OpenCL: global mem-
ory and different local memory types. Global memory can be accessed by
the host as well as the devices, whereas local memory can only be used by
the work-items as an intermediary storage. Note that there is no specifi-
cation as to where the memory types are physically mapped. In case of a

1On a personal computer, this means that the CPU may represent the host and a device
at the same time; usually, this is implemented by having different operating system
threads.
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GPU, the global memory would typically reside in the graphics card DDR
memory and the local memory in the GPU’s fast scratch-pad memories,
whereas on a CPU both types just represent the RAM. All memory types
have in common that they are limited to the scope of a context, i.e., a user-
defined set of devices. If, within a context, a global memory reference is
passed from one device to another one with a different implementation
of global memory, the OpenCL framework will automatically take care
of the necessary copying. However, as this is done by the OpenCL back-
end, the driver, which is implemented by the hardware manufacturers, a
context may not contain devices of different manufacturers (e.g., an Intel
CPU and a NVIDIA graphics card).

The mapping and scheduling of the work-items are done in a semi-
automatic way. The host creates command queues for each device and on
these queues, it can place commands. A command is either the instan-
tiation of a kernel or a data transfer to or from a global memory. The
framework will decide on which PE a work-item is executed and when
it will be scheduled. The host can influence this by choosing between
in-order command queues, which execute the commands strictly in the
order in which they were enqueued, and out-of-order queues, which may
consider later commands if the first command is blocked.

While initially conceived for general purpose GPU programming,
OpenCL is supported on many more platforms nowadays. Examples
include Intel’s Xeon Phi accelerator [Int14], AMD’s Accelerated Process-
ing Unit (APU) [AMD13], STMicroelectronics’ P2012 platform [BFFM12],
and Qualcomm’s Snapdragon 805 processor [Qua14a].

4.4 Problem and Approach
In this thesis, a model-based design approach to program heterogeneous
systems in a systematic manner is considered. The approach enables
the system designer to execute process networks on OpenCL-compatible
heterogeneous systems efficiently. The goal is to maximize the end-to-
end throughput of an application by leveraging the offered hardware
parallelism. Other performance metrics like, for instance, response time,
power consumption, or real-time guarantees are not regarded.

Clearly, the goal could be achieved by compiling process networks
natively for a specific target platform without the additional layer intro-
duced by OpenCL. Even though the advantages of a model-based design
approach could be retained, such an approach would only support a small
subset of heterogeneous systems and optimizing the application might
be time-consuming. Using OpenCL and its runtime compiler enables
the application to take advantage of the latest enhancements of modern
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processors automatically to maximize the throughput. In comparison
with programming applications in OpenCL, the proposed model-based
design approach offers a way to leverage various kinds of parallelism ex-
plicitly, enables functional verification, and allows to distribute the work
efficiently between the different compute devices. Another advantage
of the proposed model-based design approach is that the application-
independent parts can be implemented once and reused by all applica-
tions.

In the following, we first discuss how the proposed design approach
exploits the multi-level hardware parallelism in general. Afterwards, we
summarize the necessary changes to the DAL design flow to execute ap-
plications specified as process networks on heterogeneous systems using
OpenCL.

4.4.1 Exploiting the Hardware Parallelism
The key to efficient program execution on heterogeneous systems is to ex-
ploit the parallelism they offer. OpenCL supports three levels of hardware
parallelism, namely different devices, CUs, and PEs. We do that by lever-
aging different kinds of application parallelism on each level of hardware
parallelism. More specifically, pipeline and task parallelism are used to
distribute the process network to the different devices. Afterwards, data
parallelism is used to exploit the parallelism offered by the individual de-
vices. Independent process firings are executed concurrently on different
CUs of the same device and, to achieve SIMD execution on different PEs,
independent output tokens are calculated in parallel. To illustrate how
data parallelism is leveraged, we take the process shown in Figure 4.1 as
an example. Per firing, it reads six tokens and writes three tokens. Output
tokens are independent of each other, although depending on the same
input tokens. In our framework, multiple firings might be executed in
parallel on different CUs and each output token is calculated on a different
PE.

This concept can be implemented in OpenCL by mapping processes,
firings, and output tokens onto equivalent OpenCL constructs. The basic
idea is that a work-item calculates one or more output tokens of a firing
so that all work-items gathered to a single work-group calculate together
all output tokens of a firing. All work-items belonging to the same work-
group have access to the same input tokens but write their output tokens
to different positions in the output stream. This allows SIMD execution.

In addition, multiple firings will be calculated in parallel by having
multiple work-groups. Thus, work-items from different work-groups
access different input tokens and write their output tokens to different
memory positions. Although this could also be achieved by replicating
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Fig. 4.1: Exemplified process behavior where the calculation of each output token is
independent of the other tokens even though three output tokens depend on the
same input data.

the process (as described in the previous chapter), the communication and
management overhead in this approach is less since multiple invocations
can be combined into one invocation. In particular, this has an impact if
certain input or output channels connect processes that are mapped onto
different devices. The memory required by all firings belonging to the
same kernel invocation is then copied between the devices as one block.
Note that the number of work-groups per kernel invocation might be
limited by the topology of the process network, e.g., if the process is part
of a cycle.

When launching a kernel, the OpenCL runtime assigns each work-
group to a CU and each work-item to a PE of its work-group’s CU. In
OpenCL, the number of work-groups and work-items is not bounded by
the number of CUs and PEs. In fact, OpenCL can handle more work-
groups than available CUs and more work-items than available PEs. The
OpenCL device might use them to improve the utilization by switching
the context if work-items of a particular work-group are stalled due to
memory contention. Figure 4.2 illustrates the different levels of hardware
and software parallelism and how they are linked.

4.4.2 Proposed Extension of the DAL Design Flow
Clearly, the hardware parallelism of heterogeneous systems can only be
exploited if appropriate design decisions are taken in all steps of the de-
sign flow. First, the application specification must be extended with the
necessary information about the output tokens. In particular, the chal-
lenge is to come up with a high-level API that enables the system designer
to specify the functionality of a process independent of the available hard-
ware parallelism so that the proposed application specification does not
only provide code portability, but also performance portability. Then,
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Fig. 4.2: Illustration of the different levels of hardware and software parallelism when
executing a process on top of an OpenCL device.

during the design space exploration, decisions must be taken about the
number of work-groups and work-items per work-group. The number of
work-groups highly depends on the characteristics of the device that the
process is going to be executed on. For instance, a loss of performance
must be expected if the number of work-groups is not a multiple of the
number of CUs. Similarly, the number of work-items might depend on
the number of available PEs.

OpenCL C-compliant processes are mapped onto OpenCL devices and
the remaining processes (e.g., processes that use file input or output, use
recursive functions, or do not read and write a fixed number of tokens in
every execution of the fire procedure) will be executed as native POSIX
threads. During software synthesis, the OpenCL kernel is synthesized
based on the previously calculated number of work-groups and work-
items and the output tokens are distributed among the work-items.

The runtime-system is in charge of launching the OpenCL kernels at
runtime. It does that by forwarding the parallelization directives to the
OpenCL framework, which builds and optimizes the kernels so that they
leverage the latest enhancements of the device. Furthermore, the runtime-
system is in charge of reducing the communication overhead. Efficiently
exploiting the hierarchical communication hierarchy of heterogeneous
OpenCL platforms is essential for performance, but not trivial as the
access to certain memories is restricted to the scope of the context, i.e., a
user-defined set of devices. Therefore, the runtime-system must reduce
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Fig. 4.3: Extension of the DAL design flow to map process networks onto heterogeneous
systems using OpenCL. The design flow is essentially composed of five parts,
namely the input specification, the design space exploration, the POSIX synthe-
sizer, the OpenCL synthesizer, and the OpenCL runtime-system.

the communication overhead by selecting an ideal memory location for
the FIFO channels and combining data transfers. Figure 4.3 summarizes
the previously discussed steps.

4.5 System Specification

In this section, we describe the high-level specification we propose for
automatic program synthesis. The challenge is to define a high-level API
that specifies the degree of data parallelism in a flexible manner so that
the best degree of data parallelism can be selected in accordance with
the available hardware parallelism during the design space exploration.
This enables the system designer to specify the functionality of a process
independent of the target platform, which in turn is the key to an appli-
cation specification that does not only provide code portability, but also
performance portability.

The proposed specification is an extension of the high-level API pro-
posed in Section 2.4 that specifies an application as a process network. As
previously discussed, only processes that produce and consume a fixed
number of tokens per firing can be executed on top of OpenCL. We call
this number the token rate. In addition, we introduce the notation of blocks.
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Def. 4.1: (Block) A block is a group of consecutive output tokens that are jointly calculated
and do not depend on any other output tokens.

In the example illustrated in Fig. 4.1, a single output token forms a
block as all output tokens are independent of each other. Clearly, all
blocks belonging to the same output port have to be of the same size and
that size must be a fraction of the port’s token rate. This last kind of frag-
mentation can typically not be leveraged if the application is specified
according to an ordinary process network or dataflow graph specifica-
tion. However, we claim that the proposed extension is natural because,
in practice, processes are often specified such that one firing calculates
multiple output tokens that require the same input data even though
they could be calculated simultaneously. The discrete Fourier and cosine
transforms, block-based video processing algorithms [MBM97], and slid-
ing window methods often used for object detection [KT10] are just a few
examples of algorithms that exhibit this property.

Based on the above discussion, we extend the XML format shown in
Listing 2.2 to specify the token rate and the size of a corresponding block,
see Listing 4.1 for an example. The field rate specifies the token rate,
i.e., the number of tokens produced or consumed per firing, and each
output port has a field blocksize specifying the size of a corresponding
block in number of tokens.

In order to exploit the considered type of data parallelism, the system
designer must use a special foreach directive to access the individual
blocks of an output port. More detailed, the high-level API illustrated
in Listing 2.1 has been extended according to Listing 4.2. Providing the
system designer the ability to write the code in C/C++ rather than in
OpenCL C has the advantage of hiding low-level details of OpenCL.
Furthermore, it provides the opportunity to not only execute the process
as an OpenCL kernel, but also as a POSIX thread.

Roughly speaking, the init procedure is responsible for the initializa-
tion and writing the initial tokens to the channels. It is executed once at
the startup of the application. Afterwards, the execution of the process is
split into individual executions of the fire procedure, which is repeatedly
invoked by the runtime-system. We leverage the concept of windowed
FIFOs [HGT07] for the FIFO channel interface. The basic idea of win-
dowed FIFOs is that processes directly access the FIFO buffer so that
expensive memory copy operations are avoided. A window for reading
is acquired by using capture, which returns a pointer to the requested
memory. Similarly, a buffer reference for writing is obtained by using
reserve, potentially together with a block identifier (blk, the default is
to use the first block). Finally, the foreach directive allows the parallel
calculation of the individual blocks of an output port. Note that, although
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List. 4.1: Specification of a process network with three processes and two channels so that
the processes can be synthesized into either OpenCL kernels or POSIX threads.
In contrast to the specification shown in Listing 2.2, the token rate and the size
of a corresponding block is specified.

01 <processnetwork>
02 <process name=" producer ">
03 <port type=" output " name=" out1 " r a t e=" 1 " b l o c k s i z e=" 1 " />
04 <source type=" c " l o c a t i o n=" producer . c " />
05 </ process>
06 <process name=" worker ">
07 <port type=" input " name=" in1 " r a t e=" 1 " />
08 <port type=" output " name=" out1 " r a t e=" 4 " b l o c k s i z e=" 2 " />
09 <source type=" c " l o c a t i o n=" worker . c " />
10 </ process>
11 <process name=" consumer ">
12 <port type=" input " name=" in1 " r a t e=" 2 " />
13 <source type=" c " l o c a t i o n=" consumer . c " />
14 </ process>
15

16 <channel c a p a c i t y=" 8 " tokens ize=" 4 " name=" channel1 ">
17 <sender process=" producer " port=" out1 " />
18 <r e c e i v e r process=" worker " port=" in1 " />
19 </channel>
20 <channel c a p a c i t y=" 32 " tokens ize=" 1 " name=" channel2 ">
21 <sender process=" worker " port=" out1 " />
22 <r e c e i v e r process=" consumer " port=" in1 " />
23 </channel>
24 </processnetwork>

List. 4.2: Implementation of the process “worker” using the proposed API.

01 void in i t ( ProcessData ∗p ) {
02 i n i t i a l i z e ( ) ;
03 foreach ( blk in PORT_out1 ) {
04 TOKEN_OUT1_t ∗wbuf = reserve ( PORT_out1 , blk ) ;
05 c r e a t e i n i t t o k e n s ( wbuf , blk ) ; / / write i n i t i a l tokens
06 }
07 }
08

09 void f i re ( ProcessData ∗p ) {
10 preparat ion ( ) ;
11 TOKEN_IN1_t ∗rbuf = capture ( PORT_in1 ) ;
12 foreach ( blk in PORT_out1 ) {
13 TOKEN_OUT1_t ∗wbuf = reserve ( PORT_out1 , blk ) ;
14 manipulate ( rbuf , wbuf , blk ) ; / / read and write
15 }
16 }
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not shown here, it is possible to include multiple ports in one foreach
statement if they all have the same number of blocks per firing. In other
words, if a process writes the same number of blocks per firing on each
of its output ports, they may be included in the same foreach statement.

Finally, the number of work-items per work-group that should be
instantiated for a process and the number of work-groups used to gather
the work-items is specified as part of the mapping specification. The
mapping may also specify a work distribution pattern for every output
port. This setting indicates how the output blocks are assigned to the
work-items for simultaneous access (consecutive blocks to the same work-
item or to different work-items).

4.6 OpenCL Synthesizer

The task of the OpenCL synthesizer is to transform OpenCL-capable
processes into OpenCL kernels by performing a source-to-source code
transformation. In the following, we illustrate this step based on the
“worker” process shown in Listing 4.2.

As described in Section 4.3, an OpenCL kernel specifies the code that
runs on one PE. Thus, the basic idea of the OpenCL synthesizer is to
replace the high-level communication procedures with OpenCL-specific
code so that the fire procedure calculates a certain number of output
blocks. The number of output blocks depends on the number of work-
items per work-group as it is specified by the mapping. When launching
the kernel, the runtime-system will specify the number of work-groups
and work-items so that one or more firings are executed concurrently by
one kernel invocation. Listing 4.3 illustrates how a process is synthesized
into an OpenCL kernel:

• The init and fire procedures are declared as kernels with one pa-
rameter per output channel being added to init and one parameter
per input and per output channel being added to fire (Lines 07
and 19 f.).

• Constant helper variables are declared for the token rate and the
block size (Lines 02 to 05).

• capture is replaced with a pointer to the head of the corresponding
FIFO channel, using the work-group id to select the correct region
(Line 25).
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List. 4.3: Embedding the process shown in Listing 4.2 into an OpenCL C kernel. Newly
added lines are marked with 00 and modified lines with 00 .

01 / / dec l are helper v a r i a b l e s
02 const i n t TOKEN_IN1_RATE = 1 ;
03 const i n t TOKEN_OUT1_RATE = 4 , BLOCK_OUT1_SIZE = 2 ;
04 const i n t BLOCK_OUT1_COUNT =
05 TOKEN_OUT1_RATE / BLOCK_OUT1_SIZE ;
06

07 __kernel void in i t ( __global TOKEN_OUT1_t ∗out1 ) {
08 i n t gid = get_group_id ( 0 ) ; / / work−group id
09 i n t l i d = g e t _ l o c a l _ i d ( 0 ) ; / / work−item id
10 i n t l s z = g e t _ l o c a l _ s i z e ( 0 ) ; / / work−item count
11 i n i t i a l i z a t i o n ( ) ;
12 for ( i n t blk= l i d ; blk<BLOCK_OUT1_COUNT; blk+= l s z ) {
13 __global TOKEN_OUT1_t ∗wbuf1 = out1 +
14 gid∗TOKEN_OUT1_RATE + blk∗BLOCK_OUT1_SIZE ;
15 c r e a t e i n i t t o k e n s ( wbuf , blk ) ; / / write i n i t i a l tokens
16 }
17 }
18

19 __kernel void f i re ( __global TOKEN_IN1_t ∗in1 ,
20 __global TOKEN_OUT1_t ∗out1 ) {
21 i n t gid = get_group_id ( 0 ) ; / / work−group id
22 i n t l i d = g e t _ l o c a l _ i d ( 0 ) ; / / work−item id
23 i n t l s z = g e t _ l o c a l _ s i z e ( 0 ) ; / / work−item count
24 preparat ion ( ) ;
25 __global TOKEN_IN1_t ∗rbuf = in1 + gid∗TOKEN_IN1_RATE ;
26 for ( i n t blk= l i d ; blk<BLOCK_OUT1_COUNT; blk+= l s z ) {
27 __global TOKEN_OUT1_t ∗wbuf1 = out1 +
28 gid∗TOKEN_OUT1_RATE + blk∗BLOCK_OUT1_SIZE ;
29 manipulate ( rbuf , wbuf , blk ) ; / / read and write
30 }
31 }
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• foreach is implemented as a loop iterating over the block identifiers
(Lines 12 and 26). For each work-item, its ID determines the iteration
that it computes. For instance, in Listing 4.3, the solution for a
strided work distribution is shown.

Note that the loop might not be executed by all work-items if the
number of work-items is larger than the number of blocks. In prac-
tice, this is the case if a process has multiple output ports with each
port having a different number of blocks.

• reserve is replaced with a pointer to the block being written in the
current iteration (Lines 13 f. and 27 f.).

4.7 Runtime-System

The runtime-system’s task is to dispatch the OpenCL kernels to the con-
nected devices, which requires two basic functionalities: a framework to
synchronize the processes and a memory-aware implementation of the
FIFO channels. The implementation of these two functionalities is the
key to an efficient execution of process networks on top of the OpenCL
framework. In particular, the runtime-system must try to maximize the
utilization of OpenCL devices and to reduce communication latencies.

However, maximizing the utilization of an OpenCL device is not triv-
ial. As an OpenCL device can only execute kernels, which should perform
a specific task and then return, the runtime-system must ensure that the
OpenCL device has always enough executable kernels in its command
queue. Another limiting factor for the performance is the memory trans-
fer times if tokens must be transferred between different devices. Here,
the challenge is to reduce the number of memory copies and to overlap
the computation and communication whenever possible.

To tackle these challenges, we leverage two properties of the OpenCL
framework:

In-order command queues. The utilization of a device can be maximized
by always having commands in the command queue. In-order com-
mand queues allow for an efficient specification of dependencies
as they guarantee a fixed execution order of work-items. Unlike
all other methods of specifying execution orders, they can be in-
terpreted by the devices autonomously without time-consuming
interventions of the host.
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Hierarchical memory system. Work-items have to use global memory
for data exchange. However, the physical location of these depends
on the devices and on the OpenCL directives used by the host. It
is therefore important to keep track of these locations and to make
sure that the best-suited memory is used whenever possible. The
objective is to keep the number of memory copy transactions as
low as possible, reducing latencies, and maximizing the end-to-end
throughput.

Based on these considerations, we describe the concept of a novel
process synchronization framework and the considered communication
services in the following.

4.7.1 Process Synchronization

As each kernel invocation executes a specific amount of work and then
returns, a mechanism is required to reinvoke the kernel repeatedly with
different input data. However, a kernel can only be invoked if enough
tokens are available on each input channel and enough space is available
on each output channel. Thus, the basic idea of the process synchro-
nization and invocation framework is to monitor the FIFO channels and,
depending on their fill level, to invoke the kernels.

Figure 4.4 illustrates the structure of the process synchronization and
invocation framework. On start-up, the host creates an in-order command
queue for each device and starts the execution-manager. The execution-
manager monitors the fill level of the FIFO channels and invokes OpenCL
kernels. Callbacks triggered by certain command execution states are
used to keep this information up to date. For instance, the completion
of a kernel triggers a callback function notifying the execution-manager
that a certain amount of tokens has been produced or consumed.

The aim of the execution-manager is to maximize the utilization of
the individual devices by avoiding empty command queues. It might
even have multiple kernel invocations of the same process simultane-
ously enqueued, in particular as long as data are available in the input
channels and buffer space is available in the output channels. Using in-
order command queues is advantageous as the execution-manager can
enqueue commands already before the completion of other commands
they depend on. For instance, if two processes with a common FIFO
channel are mapped onto the same device, the execution-manager can
update the number of available tokens of the FIFO channel immediately
after enqueuing the source process, even though no tokens have yet been
produced.
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Fig. 4.4: Structure of the process synchronization and invocation framework.

4.7.2 FIFO Communication

The communication service has two tasks to accomplish, namely data
transfer and process invocation. While data transfer happens ideally
without even involving the host, the host must know the state of the
channels, which determines whenever a process can be fired. There-
fore, a distributed FIFO channel implementation is considered where the
FIFO channel’s fill level is managed by the host and only updated by
the execution-manager. The memory buffer, on the other hand, may be
allocated in the device memory.

In the following, we discuss the FIFO communication between pro-
cesses mapped onto a single device, between processes mapped onto
different devices, and between a process running on top of OpenCL and
a process being executed as a POSIX thread.

FIFO Communication on Single Device

If both the source process and the sink process are mapped onto the same
device, a buffer is allocated in the global memory of the corresponding
device. When firing, the source and sink processes get a pointer to the
current tail and to the current head of the virtual ring buffer, respectively.
The ring buffer is implemented as a linear buffer in the device memory
and OpenCL’s sub-buffer functionality is used to split the buffer into indi-
vidual tokens. Since an in-order command queue is used, the execution-
manager can also update the tail and head pointers upon enqueuing the
kernels. The FIFO channel implementation and the communication pro-
tocol are illustrated in Fig. 4.5.



116 CHAPTER 4. EXPLOITING MULTI-LEVEL HARDWARE PARALLELISM

enqueue kernel

execute kernel

process can 
be triggered enqueue kernel

execute kernel

update tail pointer

update head 
pointer

available 
space

occupied 
space

source device sink deviceexecution-manager

Fig. 4.5: FIFO channel implementation on single devices (left) and corresponding com-
munication protocol (right).

FIFO Communication between Devices

While the FIFO communication implementation on a single device re-
quires no memory copies, it is necessary to transfer data from one device
to the other one if two processes mapped onto different devices communi-
cate with each other. In the following, we consider the general case where
Host Accessible Memory (HAM) has to be used for this data transfer. The
overall idea is to allocate the entire buffer in both global memories of the
involved devices and in the HAM. The execution-manager keeps track of
all three memories by having three tail and three head pointers. Preal-
locating the memory is particularly advantageous as expensive memory
allocation operations are avoided at runtime.

The communication protocol is illustrated in Fig. 4.6. The underly-
ing principle is that data is forwarded from the source to the sink in
packets of reasonable size as soon as possible. The protocol works as
follows: After enqueuing the command for launching the source kernel,
the execution-manager also enqueues a command for updating the host
memory with the newly written data. As in-order command-queues are
installed between host and devices, it is ensured that the memory update
command is only executed when the kernel execution has been com-
pleted. Once the memory update command is completed, a callback tells
the execution-manager to update the fill level of the FIFO channel. The
execution-manager then checks if the channel contains enough data for a
kernel invocation of the sink process. If this is the case, it enqueues a com-
mand to update the device memory with the newly available data. Once
the sink fulfills all execution conditions, i.e., there are enough tokens and
space available on each input and output channel, the execution-manager
enqueues the kernel into the command queue, which initiates a new firing
of the process. As soon as the kernel execution is completed, a callback
tells the execution-manager that the tokens have been consumed.
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Fig. 4.6: Communication protocol for data exchange between two OpenCL devices.

A special case of this situation is if one of the devices is the CPU. In
that case, the global memory of the device is identical with the HAM so
that only two buffers are needed.

FIFO Communication between Device and POSIX Thread

The situation that one of the processes is executed as a POSIX thread is
similar to the situation where one of the OpenCL kernels is executed on
the CPU device. The process executed as a POSIX thread accesses the
FIFO buffer in the HAM directly.

4.8 Evaluation
In this section, we evaluate the performance of the proposed code syn-
thesis framework. The goal is to answer the following questions. a) What
is the overhead introduced by the proposed runtime-system and can we
provide guidelines when to execute a process as an OpenCL kernel or
as a POSIX thread? b) How expensive is communication between pro-
cesses, when they are mapped onto the same device or onto different
devices? c) Does the proposed framework offer enough flexibility for the
programmer to exploit the parallelism offered by GPUs? — To answer
these questions, we evaluate the performance of synthetic and real-world
applications on two different heterogeneous platforms.
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4.8.1 Experimental Setup
The specifications of the considered target platforms are summarized in
Table 4.1. Both CPUs have hyper-threading deactivated and support
the Advanced Vector Extensions (AVX) framework. Applications benefit
from AVX in the sense that several work-items might be executed in a
lock-step via SIMD instructions. The Intel SDK for OpenCL Applications
2013 is used for Intel hardware. OpenCL support for the graphics cards
is enabled by the NVIDIA driver 319.17 and by the AMD Catalyst driver
13.1. If not specified otherwise, the used compiler is g++ 4.7.3 with
optimization level O2 and default optimizations are enabled in OpenCL.

Tab. 4.1: Platforms used to evaluate the proposed framework.
(a) Evaluation platform A (“desktop computer”).

CPU quad-core Intel Core i7-2600K at 3.4 GHz

GPU(s) NVIDIA GeForce GTX 670 AMD Radeon HD 7750
no. of CUs 7 8
no. of PEs per CU 192 64
memory bandwidth 192.2 GB/s 72.0 GB/s

operating system Arch Linux with kernel 3.7.6-1

(b) Evaluation platform B (“notebook”).

CPU quad-core Intel Core i7-2720QM at 2.2 GHz

GPU(s) NVIDIA Quadro 2000M
no. of CUs 4
no. of PEs per CU 192
memory bandwidth 28.8 GB/s

operating system Ubuntu Linux 12.04 with kernel 3.5.0-28

4.8.2 Overhead of the Runtime-system
First, we quantify the overhead caused by OpenCL and by the proposed
process synchronization and invocation mechanism. For this purpose,
we have designed a synthetic process network called producer-consumer
that consists of two processes connected by a FIFO channel. Both pro-
cesses access the FIFO channel at the same token rate. While the only
task of the sink process is to read the received tokens, the source process
first performs some calculations before writing the result to the output
channel. This result consists of multiple output tokens that can be calcu-
lated in parallel using multiple work-items. The number of calculations is



4.8. EVALUATION 119

0.125 0.25 0.5 1 2 4 8 16 32 64 128 256
0

5

10

15

unoptimized POSIX invocation period [ms]

sp
ee

d
−

u
p
 [

1
]

 

 
POSIX with O2
POSIX with O3 / march=native

OpenCL, I=1
OpenCL, I=4
OpenCL, I=5

Fig. 4.7: Speed-up of the OpenCL implementations and of the optimized POSIX im-
plementations versus the unoptimized POSIX implementation. I refers to the
number of work-items.

varied to change the execution time per firing of the source process. This
also changes the invocation period and its inverse, i.e., the invocation
frequency as the process network’s invocation interval is only limited by
the execution time of the source process. For brevity, we only report the
results for platform A. However, the results for platform B exhibit similar
trends.

Overhead of the OpenCL Framework

To quantify the overhead of the OpenCL framework, we have synthe-
sized both processes of the producer-consumer application for either
OpenCL or POSIX. When synthesizing the application for POSIX, either
no optimization, optimization level O2, or optimization level O3 with the
setting march=native is used. If march=native is set, g++ automatically
optimizes the code for the local architecture. When synthesizing the ap-
plication for OpenCL, the number of work-groups is set to one so that
each process is executed on exactly one core.

Figure 4.7 shows the speed-up of the OpenCL implementations and
of the optimized POSIX implementations versus the execution time of
the unoptimized POSIX implementation, with the number of calculations
in the source process being varied. The x-axis represents the invocation
period of the unoptimized POSIX implementation. As the kernel invoca-
tion overhead in OpenCL is nearly independent of the kernel’s amount
of work, the POSIX implementation performs better for small invoca-
tion periods. On the other hand, the overhead is less crucial for longer
invocation periods and OpenCL implementations achieve even higher
speed-ups than the optimized POSIX implementations. This may be due
to OpenCL’s ability to utilize the CPU’s vector extension so that four
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Fig. 4.8: Speed-up of the producer-consumer application when using the “manager”
mechanism relative to the execution time when using the “callback” mechanism.

work-items are executed in SIMD fashion. That assumption is supported
by the fact that the used CPU is only able to execute four work-items in
parallel. Therefore, distributing the work to five work-items is counter-
productive. Note that g++ also makes use of the AVX commands when
the corresponding option is enabled. This explains why the speed-up of
the O3 implementation is always higher than the speed-up of the OpenCL
implementation with one work-item.

Overhead of the Runtime-System

To evaluate the overhead caused by the proposed runtime-system, we
synthesize the producer-consumer application for OpenCL with one
work-item per process and measure its execution time for two differ-
ent process synchronization mechanisms. The first mechanism is called
“manager” and corresponds to the proposed process synchronization
mechanism presented in Section 4.7, i.e., an execution-manager monitors
the FIFO channels and creates new kernel instances. A larger channel
capacity allows the execution-manager to have multiple firings of the
same process enqueued in the command queue simultaneously, which
can lead to a higher utilization of the device. The second mechanism is
called “callback” and is a naive approach that uses the callback functions
of OpenCL (e.g., kernel execution finished, data transfer completed) for
enqueueing further commands.

Figure 4.8 shows the speed-up of the producer-consumer application
when using the “manager” mechanism relative to the execution time
when using the “callback” mechanism. Both processes are mapped onto
the CPU and the number of calculations in the source process is varied.
The x-axis represents the invocation frequency when using the “callback”
mechanism that, as previously described, is inversely proportional to the
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number of calculations in the source process. As expected, no speed-
up is achieved for low invocation frequencies. For higher invocation
frequencies, the “manager” mechanism is slower than the “callback”
mechanism if the FIFO channel has a capacity of one token. In this case,
both mechanisms can enqueue a new firing only if the previous firing
is completed. However, the feedback loop is larger for the “manager”
mechanism as it also includes the execution-manager. If the FIFO channel
has a capacity of more than one token, the “manager” mechanism can
enqueue a new firing in parallel to the execution of the old one so that the
“manager” mechanism is faster than the “callback” mechanism. Finally,
for very large invocation frequencies, the firing completes earlier than the
“manager” mechanism can enqueue a new firing so that the speed-up
declines again.

Overall, the results demonstrate that the proposed execution-manager
performs considerably better than a naive process invocation mechanism
performs. Furthermore, we claim that OpenCL is not only useful for
executing processes on GPUs, but also on CPUs if data parallelism can be
leveraged efficiently.

4.8.3 Intra- and Inter-Device Communication
Next, we evaluate the communication costs for different types of FIFO
channel implementations. The goal is to show that mapping the memory
buffers onto the distributed memory architecture in a sub-optimal manner
may affect the overall performance of the application.

For this purpose, we measure the data transfer rate between two pro-
cesses mapped onto either the same device or different devices. Our test
application is designed such that in each firing, the ‘producer’ process
generates one token, which it fills with a simplistic integer sequence.
Then, the ‘producer’ process sends the token to the ‘consumer’ process
that reads the values. This set-up is selected to ensure that the workload
per transmitted byte is independent of the size of a token. Figure 4.9
shows the aggregated data rate for different process mappings and chan-
nel implementations, where the size of a single token is varied between
512 bytes and 4 MBytes. The channel size is fixed to 32 MBytes.

With the first set-up, the data transfer rate between two processes
mapped onto the same device is measured for two different FIFO imple-
mentations. The results are shown in Figs. 4.9a and 4.9b for the NVIDIA
and the AMD CPU, respectively. First, we use the optimized FIFO im-
plementation, which keeps the data in the global memory of the device
(“global buf.”). Second, we used a naive FIFO implementation, which
transfers data through HAM (“HAM buf.”). The number of work-groups
(G) per process is set to the number of CUs and the number of work-items
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(a) Platform A, NVIDIA GPU.
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(b) Platform A, AMD GPU.
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(c) Platform A, AMD GPU and CPU.
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Fig. 4.9: Data rate for different process mappings and channel implementations. The
number of work-groups (G) per process is set to the number of CUs and the
number of work-items per work-group is indicated by I.

per work-group is indicated by I. Having more work-items might lead to
higher data transfer rates as more PEs can read and write concurrently.
The observed peak data rates are 20.30 GBytes/s when both processes are
mapped onto the NVIDIA GPU and 7.96 GBytes/s when both processes
are mapped onto the AMD GPU. The data transfer rate is considerably
lower if the memory buffer is allocated in the HAM. In this case, the
observed peak data rates are 1.09 GBytes/s and 1.67 GBytes/s when both
processes are mapped onto the NVIDIA GPU and both processes are
mapped onto the AMD GPU, respectively.

The data transfer rate for the case that one process is mapped onto
the CPU and the other process is mapped onto the AMD GPU is illus-
trated in Fig. 4.9c. “GPU to CPU” means that the ‘producer’ process is
mapped onto the GPU and the ‘consumer’ process is mapped onto the
CPU. For “CPU to GPU”, it is vice versa. The observed peak data rates are
1.91 GBytes/s and 2.14 GBytes/s when the ‘producer’ process is mapped
onto the GPU and the CPU, respectively.
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Fig. 4.10: Process network of the video-processing application.

Finally, Fig. 4.9d shows a summary of the data transfer rates for plat-
form B. The observed peak data rate is 3.82 GBytes/s and measured when
both processes are mapped onto the GPU.

We conclude that exploiting on-device communication without going
through HAM is essential for the performance. Yet, we think that the
communication costs still leave much room for improvement. For in-
stance, a higher data rate might be achieved by using the local memory
of a CU and by overlapping local to global memory communication with
computation.

4.8.4 Exploiting Data and Task Parallelism
The results presented so far indicate that the proposed concepts of multi-
level parallelism indeed lead to higher performance. Next, we will inves-
tigate this question further by comparing the performance of a real-world
application for different mappings and degrees of parallelism.

For this purpose, a video-processing application has been imple-
mented that decodes an MJPEG video stream and then applies a motion
detection method to the decoded video stream, see Fig. 4.10 for the pro-
cess network. The MJPEG decoder can decode multiple video frames
in parallel but cannot divide the output tokens into smaller pieces. The
motion detection method is composed of a Gaussian blur, a gradient mag-
nitude calculation using Sobel filters, and an optical flow motion analysis.
Tokens transmitted between these three components correspond to sin-
gle video frames, but in all filters, the calculation of an output pixel is
independent of the other output pixels. A gray scale video of 320 × 240
pixels is decoded and analyzed in all evaluations. If a GPU is available,
the ‘Gaussian blur’, the ‘Sobel’, and the ‘optical flow’ processes will be
mapped onto it. Otherwise, all processes will be mapped onto the CPU.

We measure the frame rate of the application for different degrees of
parallelism and different target platform configurations. The number of
work-groups of the ‘decode’ process is fixed to three and the number of
work-groups of the ‘split stream’, ‘merge stream’, and ‘output’ processes
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are fixed to one. Furthermore, the number of work-groups (G) and the
number of work-items (I) per work-group are varied for the ‘Gaussian
blur’, the ‘Sobel’, and the ‘optical flow’ processes. However, for the sake
of simplicity, all three processes have the same number of work-groups
and work-items.

Figure 4.11a shows the frame rates achieved with different configura-
tions on target platform A. The highest performance (2′347 frames/s) is
achieved with all CPU cores and a GPU device being available. In that
case, the bottleneck is not anymore the GPU, but the CPU that is not able
to decode more frames. Similarly, the CPU is mainly the bottleneck if
only one core is used to decode the frames. Mapping all processes onto
a single core of the CPU leads to a maximum frame rate of 57 frames/s.
Thus, compared to the case where all processes are mapped onto one CPU
core, a speed-up of almost 41x is achieved when all CPU cores are used
together with a GPU device. The plot also shows that the GPU can highly
benefit from a large number of work-items. Finally, note that a different
work distribution pattern is used for the calculation of the individual out-
put pixels depending on whether the ‘Gaussian blur’, the ‘Sobel’, and the
‘optical flow’ processes are mapped onto the CPU or the GPU. Mapping
consecutive blocks to the same work-item works best for the CPU while
consecutive blocks to different work-items works best for the GPU.

Figure 4.11b shows the frame rates for different configurations on
target platform B. Again, the peak performance (931 frames/s) is achieved
when all cores of the CPU and the GPU device are available. It constitutes
a speed-up of 19x compared to the case where all processes are mapped
onto one CPU core. The plot also shows that the number of work-groups
should be aligned with the available hardware. We have found that the
Intel OpenCL SDK version we used distributes the OpenCL kernels to
only three cores, which is why a higher frame rate is obtained when
executing three work-groups instead of four.

Overall, the results demonstrate that the proposed framework pro-
vides developers with the opportunity to exploit the parallelism provided
by state-of-the-art GPU and CPU systems. In particular, speed-ups of up
to 41x could be measured when outsourcing computation intensive code
to the GPU.

4.9 Summary
Many-core SoCs integrate a wide variety of processors including general-
purpose processors, GPUs, or accelerators. Many of these processors are
able to process multiple threads in parallel and some of them are only
able to fully exploit their computing power if the same instruction is
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Fig. 4.11: Frame rate of the process network outlined in Fig. 4.10 for different degrees of
parallelism and different target platform configurations.
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concurrently applied to multiple data sources. However, exploiting this
multi-level parallelism is challenging.

Yet, another challenge of heterogeneous systems is their programma-
bility. OpenCL is a first attempt to provide a common interface for
all components of a heterogeneous system. A program following the
OpenCL standard can run on any OpenCL-capable platform that satisfies
the resource requirements of the program. Still, system designers have
to manage many low-level details including data exchange, scheduling,
or process synchronization, which makes programming heterogeneous
systems difficult and error-prone.

Thus, it would be desirable to have a higher level programming inter-
face to design heterogeneous many-core SoCs as significant areas of the
design process could be automated, making the complete process sim-
pler, less error-prone, and more understandable. Tackling this issue, the
contribution of this chapter is an extension of the DAL design flow to exe-
cute process networks efficiently on any heterogeneous OpenCL-capable
platform.

The outcomes of this chapter are twofold. First, a systematic ap-
proach to exploit the multi-level parallelism of a heterogeneous system
is proposed. Task and pipeline parallelism are used by the proposed ap-
proach to distribute an application among the different compute devices.
Afterwards, the parallelism offered by the individual compute devices is
exploited by means of data parallelism. In other words, multiple firings of
a process are concurrently processed and independent output tokens are
calculated in SIMD mode. Second, a general code synthesis framework to
execute DAL applications on any OpenCL-capable platform is proposed.
In this framework, processes are automatically embedded into OpenCL
kernels and scheduled by a centralized execution-manager. FIFO chan-
nels are instantiated by the runtime-system in a way that memory access
latencies and end-to-end performance are improved.

We demonstrated the viability of our approach by running synthetic
and real-world applications on two heterogeneous systems consisting of
a multi-core CPU and multiple GPUs achieving speed-ups of up to 41x
compared to execution on a single CPU core. Furthermore, we illustrated
that OpenCL is not only useful for executing processes on GPUs, but also
on CPUs if data parallelism can be leveraged efficiently.

Even though the discussed approach is restricted to processes read-
ing and writing a fixed number of tokens in every execution of the fire
procedure, extending it to a more general process model is possible. For
instance, the approach can be extended to the case where the system only
knows the amount of tokens that it should read in the next execution of
the fire procedure. Furthermore, it is enough to know an upper bound on
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the number of tokens written in one execution of the fire procedure. Fi-
nally, we note that the extension of the framework to distributed systems
with multiple host controllers is straightforward, e.g., by connecting the
different nodes by the Message Passing Interface (MPI) communication
protocol, as discussed in Section 2.6 in the context of Intel’s Single-chip
Cloud Computer (SCC) processor.
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5
Thermal-Aware System Design

5.1 Introduction

The use of deep submicrometer process technology to fabricate SoCs has
imposed a major rise in power densities, which in turn threatens the
reliability and performance of SoCs [HFFA11]. The induced high chip
temperatures may cause long-term reliability concerns and short-term
functional errors. To make matters worse, recent studies have predicted
that three-dimensional stacking [Loh08] will magnify the problem of high
chip temperatures in the near future [ZGS+08].

To reduce device failures, the cooling system has to be designed for the
worst-case chip temperature, i.e., the maximum chip temperature under
all feasible scenarios of task arrivals, which can lead to a waste of energy
due to over-provisioning [CRWG08]. Besides improving the cooling sys-
tem, thermal and reliability issues have been tackled by reactive thermal
management techniques or thermal-aware task allocation and schedul-
ing algorithms. In particular, reactive thermal management techniques
such as Dynamic Voltage and Frequency Scaling (DVFS) keep the max-
imum temperature under a given threshold [DM06, IBC+06] by stalling
or slowing down the processor. However, the drawbacks of reactive
thermal management techniques are the unpredictable runtime overhead
and the unexpected performance degradation [BJ08, CRWG08], with the
consequence that latencies and other performance metrics depend on the
temperature. Therefore, providing guarantees on the maximum tem-
perature is as important as functional correctness and timeliness when
designing embedded real-time many-core SoCs.
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When the workload of the system is known, pro-active thermal-
aware allocation and scheduling techniques that avoid thermal emer-
gencies, and thus a reduction in performance, might be preferable over
reactive thermal management techniques. By selecting an optimal fre-
quency, voltage, and task assignment, the peak temperature can be re-
duced significantly so that latency requirements and other performance
metrics can be guaranteed at design time, independent of the temper-
ature [MMA+07, CDH08, CRWG08, FCWT09]. To this end, prior work
either lowered the average temperature or assumed deterministic work-
load where the maximum temperature of the system can be calculated
by simulating the system. However, unknown input patterns cause the
workload to be non-deterministic so that the maximum possible chip tem-
perature under all feasible scenarios of task arrivals is difficult to identify.
Only when the corner case that actually leads to the maximum tem-
perature of the system is considered, simulation-based thermal analysis
techniques do not lead to an undesired underestimation of the maximum
temperature.

Ex. 5.1: We illustrate the problem of giving guarantees on the maximum temperature
of a MPSoC or many-core SoC by means of a simple example. We assume a
system with three homogeneous work-conserving processing cores1, two of them
processing a periodic event stream with jitter, see Table 5.1 for the parameters
of the computational model. Whenever they process some events, the cores are
in ‘active’ mode and consume both dynamic and leakage power. Otherwise,
they are in ‘idle’ mode and consume only leakage power, see Section 5.8 for a
summary of the considered hardware model. Since the second processing core
has no workload assigned, it only consumes leakage power. Nonetheless, when
another core is processing, the temperature of the second core increases, as well,
due to the heat flow between neighboring components.

Now, we compare various methods to calculate the maximum temperature:

• By means of the average utilization of the cores, we can calculate the
average power consumption and find a maximum steady-state temperature
of 345.1 K.

• We find 351.3 K for the maximum temperature, when executing 40 traces
with random jitter on a thermal-aware cycle-accurate simulator consisting
of the MPARM virtual platform [BBB+05] and HotSpot [HGV+06].

• Using the method developed in this chapter, we get a tight worst-case chip
temperature of 352.0 K.

1A work-conserving core has to start processing as soon as there is an event in its ready
queue.
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Tab. 5.1: Parameters of the computational model for the motivating example.

period jitter computing time

processing core 1 240 ms 480 ms 120 ms
processing core 2 no workload
processing core 3 120 ms 240 ms 60 ms

Figure 5.1 outlines the temperature evolution of core 1 when the system
is processing the thermal critical workload trace leading to the worst-case chip
temperature together with the temperature evolution of 40 traces with random
jitter executed on the thermal-aware cycle-accurate simulator. As shown, none
of the described established methods for calculating the maximum temperature is
able to give guarantees on the worst-case chip temperature of this system.
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Fig. 5.1: Temperature evolution of processing core 1 processing the example system de-
scribed in Table 5.1.

Overview

In this chapter, we extend the Distributed Application Layer (DAL) design
flow introduced in Chapter 2 with a high-level optimization framework
for mapping real-time applications onto embedded many-core SoCs that
provides guarantees on both temporal and thermal correctness. More
specifically, the framework aims at either ruling out mapping alternatives
that do not conform to real-time and peak temperature requirements or
finding the mapping alternative that reduces the worst-case chip temper-
ature the most. The temporal and thermal characteristics of the mapping
candidates are compared by means of formal worst-case real-time analy-
sis methods so that safe bounds on the execution time and the maximum
chip temperature can be provided.
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More detailed, we first present an analytic method to calculate an up-
per bound on the maximum temperature of a many-core SoC with non-
deterministic workload. The considered thermal model is able to address
various thermal effects like heat exchange between neighboring cores and
temperature-dependent leakage power. We use the well-established stan-
dard event model [HHJ+05] to model non-determinism in the workload,
i.e., we consider periodic event streams with jitter and delay. Real-time
calculus [TCN00], a formal method for schedulability and performance
analysis of real-time systems, is applied to upper bound the workload
that might arrive in any time interval. Our method then identifies the
critical workload trace that leads to the worst-case chip temperature. The
only requirement of the method is that the real-time scheduling algo-
rithms are work-conserving. However, this applies to most of the tra-
ditional scheduling algorithms like, for example, Earliest-Deadline-First
(EDF) [XP90], Rate-Monotonic (RM) [LL73], Fixed-Priority (FP) [Ser72],
or Deadline-Monotonic (DM) [ABRW91].

Then, we integrate the proposed thermal analysis method into a
design-space exploration framework intended to optimize the process-
to-core assignment of a many-core SoC. To this end, we implement the
proposed thermal analysis method as an extension of the Modular Perfor-
mance Analysis (MPA) framework [WTVL06] so that thermal and tem-
poral analysis can be done within the same framework. To explore the
design space without user-interactions, the analysis models are automat-
ically generated from the same set of specifications as used for software
synthesis. Moreover, to increase the model accuracy, the analysis models
are calibrated with data corresponding to the target platform. The data
is obtained in an automatic manner prior to design space exploration
by either simulation on a virtual platform or execution on the real hard-
ware. Finally, we formulate the optimization problem with the objective
to minimize the worst-case chip temperature and solve the optimization
problem using simulated annealing [KGV83].

Outline

The remainder of the chapter is organized as follows: First, related work
is discussed in the next section. In Section 5.3, the mapping optimization
framework is presented. In Section 5.4, the computational and thermal
models used for formal system analysis are introduced. The thermal
analysis method is described in Section 5.5. The automated generation
and calibration of the thermal analysis models is presented in Section 5.6.
In Section 5.7, the assignment of processes to cores is formulated as an
optimization problem. Finally, case studies to highlight the viability of
our methods are presented in Section 5.8.
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5.2 Related Work

Nowadays, reactive thermal management techniques [BM01, DM06,
KSPJ06] are typically used to address thermal issues in general-purpose
computing systems. For example, multiple architectural-level techniques
for thermal management like DVFS and stop-go scheduling are evaluated
in [DM06]. However, the use of reactive thermal management techniques
often causes a significant degradation of performance [BJ08] or leads to
expensive runtime overhead and high complexity [CRWG08]. Therefore,
the use of reactive thermal management techniques is often undesirable
in today’s embedded systems, in particular when tackling real-time con-
straints. On top of that, reactive thermal management techniques become
less effective as the operation voltage is limited by saturation [WDW10].
The alternative is to adopt system-level mechanisms and address thermal
issues at design time.

Thermal-aware task allocation and scheduling algorithms for MP-
SoCs are explored in [DM06, XH06, CRW07, MMA+07, CDH08, CRWG08,
FCWT09]. For instance, thermal-aware heuristics to reduce the maximum
and average temperature are compared with power-aware heuristics to
reduce the maximum power consumption in [XH06]. Thermal manage-
ment techniques for systems with unknown workload, like load balanc-
ing or temperature aware random scheduling, are discussed in [CRW07].
The thermal-aware scheduling problem is formulated as a convex op-
timization problem in [MMA+07] and a mixed-integer linear program-
ming formulation to reduce the peak temperature of MPSoCs is proposed
in [CDH08]. In [CRWG08], a similar problem is solved to minimize the
energy consumption and to reduce thermal hot spots. Finally, a global
scheduling algorithm to reduce the peak temperature while running all
cores at their preferred speed is proposed in [FCWT09].

All these design time methods have in common that the temperature
analysis is performed by either simulation or steady-state analysis. More
detailed, evaluating the temperature characteristics is typically a two-step
process. First, the transient power dissipation of the system is determined
by means of a power-aware simulator, either software-based [BCT+10] or
hardware-based [GdVA10]. Afterwards, the measured power dissipation
is used to either calculate the average temperature based on a steady-state
analysis [YCTK10] or evaluate the transient temperature evolution in a
thermal simulator. HotSpot [SSS+04, HGV+06] and 3D-ICE [SRV+10] are
the most common examples of such thermal simulators. However, due
to the complexity of today’s systems, it is difficult to identify corner cases
that actually lead to the maximum temperature of the system under all
feasible execution traces. Consequently, simulation-based thermal analy-
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sis methods may lead to an undesired underestimation of the maximum
temperature as illustrated in Example 5.1.

In this work, we use a different approach. Similar to well-known
best-case and worst-case timing analysis methods for multiprocessor sys-
tems [HHJ+05, WTVL06], we use formal analysis methods to predict the
maximum temperature of a real-time system. A first attempt to calculate
the worst-case chip temperature of an embedded system has been pro-
posed in [RYB+11]. However, as it does not incorporate the heat transfer
among neighboring cores, the method cannot be applied to multi- and
many-core systems.

5.3 Mapping Optimization Framework
The aim of this chapter is to extend the DAL design flow with a high-
level optimization framework that maps a process network onto a many-
core SoC platform in a time and thermal optimal manner. To this end,
the proposed framework considers the optimization criteria worst-case
performance and worst-case chip temperature.

Presenting a framework for all kinds of applications and architectures
that can be specified in the context of the DAL framework is beyond the
scope of this chapter. In fact, this chapter focuses on performance anal-
ysis using MPA [WTVL06], which restricts the class of process networks
that can be analyzed automatically. In the following, we first discuss the
application, architecture, and mapping models considered in this chapter.
Afterwards, we summarize the proposed high-level optimization frame-
work. We will use the example system shown in Fig. 5.2 to illustrate the
different models and notations.

v1

v3

v2

v4

bus n

c1 c2

Γ(v1, c1) = 1

Γ(v3, c1) = 1
Γ(v2, c2) = 1 Γ(v4, c2) = 1

Fig. 5.2: Example system to illustrate the considered system specification.



5.3. MAPPING OPTIMIZATION FRAMEWORK 135

5.3.1 Application Model

In this chapter, we consider process networks that can be specified as
dataflow process networks [LP95] and whose processes have a workload
that is bounded in any time interval ∆ ≥ 0. Dataflow process networks
are a special case of Kahn Process Networks (KPNs) that execute their
fire procedures only if enough input data is available. This has the
advantage that the context switching overhead caused by the blocking
read semantics of KPNs is avoided.

These restrictions allow us to analyze the system with MPA that ab-
stracts the workload of every independent component by a so-called
arrival curve. However, even though these restrictions already limit the
set of applications that can be analyzed by the proposed mapping op-
timization framework, the following assumptions first stated in [Hai10]
have to be made in order to avoid a mismatch between high-level analysis
model and actual system behavior:

• In each execution of the fire procedure, a process first reads tokens
from its input streams, processes them, and finally writes tokens to
the output streams.

• The process network does not contain cycles and the size of the FIFO
channels are selected so that the processes are never blocked when
writing.

• The worst-case execution time of a process is independent from the
execution of other processes mapped onto the same core.

• The time that a process needs to write to and read from a FIFO
channel is constant apart from variations due to varying token sizes.

The interested reader is referred to [Hai10] for more details on how
these assumptions reduce the gap between system behavior and anal-
ysis model. Next, we formally define a dataflow process network.

Def. 5.1: (Dataflow Process Network) A dataflow process network p = 〈V,Q〉 is rep-
resented as a directed, connected graph where each node in the graph represents
a process v ∈ V. Edges represent unbounded FIFO channels q ∈ Q, which in
turn are used by processes to communicate with each other. A process v ∈ V is
blocked as long as not all of its predecessor processes have produced the number
of tokens that the process needs to be triggered.
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Abstractly, a process can be modeled as a stream of events. We suppose
that an event has to complete its execution within Dv time units after its
arrival. The separation between processes for computation and channels
for communication enables the modular generation and calibration of
analysis models from the same specification as used for actual system
synthesis. Note that processes are commonly referred to as actors in
the context of dataflow process networks. However, for readability, we
again keep our notation and call the computation entities of a streaming
application processes.

5.3.2 Architecture Model

Similar to Chapter 3, we model a heterogeneous many-core architecture
A = 〈C,n〉 as a set of cores C that are connected by a communication
network n, e.g., a bus or a NoC. However, unlike temporal analysis,
thermal analysis requires a detailed description of the architecture to
model the heat flow between neighboring cores. This is achieved by
representing the placement of the cores by a floorplan. See [ADVP+07]
for various examples of SoC floorplans.

5.3.3 Mapping Model

The mapping specification describes both the binding Γ of processes to
processing cores and their scheduling σ on shared resources.

Def. 5.2: (Binding Function) The binding of a dataflow process network p = 〈V,Q〉 onto
a many-core architectureA = 〈C,n〉 is specified by the function Γ(v, c) that is 1
if a process v is assigned to core c and 0 otherwise:

Γ(v, c) =

1 if process v executes on core c,
0 otherwise.

(5.1)

The scheduling policy is supposed to be work-conserving, i.e., the pro-
cessing component has to process as soon as there is data available. This
assumption applies to most traditional scheduling algorithms like, for
example, EDF, RM, FP, and DM. For simplicity, we neglect the mapping
of communication channels and assume that they are mapped onto the
same core as the sender process, even though the proposed framework
can deal with cases that are more general. The extension to mapping com-
munication channels is obvious and only augments the dimensionality of
the design space.
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Fig. 5.3: Overview of the proposed thermal-aware mapping optimization framework.

5.3.4 Proposed Mapping Framework

The goal of the proposed framework is to explore the optimal mapping,
i.e., the optimal binding and scheduling of a process network onto a
many-core SoC platform with respect to both worst-case performance
and worst-case chip temperature. By varying the binding of application
elements, i.e., processes v ∈ V and channels q ∈ Q, to computation and
communication resources, selected system properties are optimized. Fig-
ure 5.3 illustrates the necessary steps to calculate the optimized mapping
automatically.

The framework is composed of three major parts, namely model cali-
bration, design space exploration, and thermal and timing analysis. Dur-
ing design space exploration, the thermal and timing characteristics of
every candidate mapping 〈Γ, σ〉 are analyzed. The corresponding analy-
sis models are parameterized with precalculated model parameters that
are extracted during model calibration. The output of the considered
framework is the optimal mapping 〈Γ∗, σ∗〉 of a given process network p
onto a many-core SoC architectureA.

The acquisition of the required model parameters is denoted as model
calibration and is detailed in Section 5.6. Model calibration is performed
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based on a set of benchmark mappings prior to the analysis of the can-
didate mappings. First, a benchmark implementation is generated by
synthesizing the benchmark system composed of the application, archi-
tecture, and benchmark mapping specifications. Then, the benchmark
implementation is simulated on a virtual platform or executed on the real
hardware. The required parameters are extracted and stored in a database
for later use during thermal and timing analysis.

Once the model parameters are extracted, the design space exploration
tool can start to explore for optimal mappings by analyzing the perfor-
mance and chip temperature of various candidate mappings 〈Γ, σ〉. The
proposed design flow uses the MPA framework [WTVL06] for perfor-
mance analysis based on formal worst-case real-time analysis methods.
In order to evaluate the performance of a single candidate mapping,
the proposed mapping optimization framework performs the following
steps: First, the framework generates an abstract model out of the same set
of specifications as it is used for software synthesis, namely application,
architecture, and candidate mapping specifications. Then, in a second
step, the abstract model is examined with respect to timing and thermal
characteristics. Timing properties are analyzed with the methods de-
scribed in [HHB+12] and thermal properties with the methods proposed
in Section 5.5. We argue in this chapter that the considered mapping
optimization framework can be completely automated. In other words,
after specifying the input, i.e., the application and the architecture, the
framework calculates a good mapping 〈Γ∗, σ∗〉without user interaction.

5.4 System Model
This section introduces the formal models to analyze a streaming ap-
plication on a many-core SoC platform with respect to both timing and
temperature.

Notation: Bold characters are used for vectors and matrices and non-
bold characters for scalars. For example, H denotes a matrix whose (k, `)-
th element is denoted Hk` and T denotes a vector whose k-th element is
denoted Tk.

5.4.1 Computational Model
The computational model for timing and thermal analysis is based on
MPA [WTVL06] that uses a compositional approach to split a system
up into actors with small interference. After characterizing each actor
separately, the system is analyzed with real-time calculus [TCN00], which
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Fig. 5.4: MPA model of the exemplified system shown in Fig. 5.2. αin abstracts the
system’s input stream, β1 and β2 abstract the available resources of core c1 and
core c2. βslot1 and βslot2 abstract the resource availability of the bus.

is in turn based on network calculus [LBT01]. We define an MPA model
as follows.

Def. 5.3: (MPA Model) An MPA model is a graph M = 〈V,E〉. The set of nodes V
represents the actors and the set of edges E represents event streams, abstracted
by arrival curves α, and resource streams, abstracted by service curves β.

The data dependency between actors is given by the execution se-
quence. Communication resources are described by the same concept as
computational resources, namely by a cumulative function that defines
the number of available resources in any time interval.

Ex. 5.2: Figure 5.4 shows the MPA model of the exemplified system shown in Fig. 5.2.
For illustration, we suppose fixed priority preemptive scheduling on all cores
and Time Division Multiple Access (TDMA) scheduling on the bus even though
other policies can be modeled, as well. αin abstracts the system’s input stream,
β1 and β2 abstract the available resources of core c1 and core c2. βslot1 and βslot2

abstract the resource availability of the bus.

In the following, we will summarize the event stream and workload
models relevant to calculate the worst-case chip temperature of a many-
core SoC.

The considered model of an event stream follows the ideas of real-
time calculus. We suppose that in time interval [s, t), events with a total
workload of R`(s, t) arrive at core c`. Each event is supposed to have a
constant workload of ∆A

` . The arrival curve α` upper bounds all possible
cumulative workloads:

R`(s, t) ≤ α`(t − s) ∀s < t (5.2)
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Fig. 5.5: Illustrations of the considered computational model.

with α`(0) = 0. Fig. 5.5a illustrates the concept of arrival curves for the
widely-used standard event model where the event stream is defined
by the parametric triple 〈per`, jit`, dis`〉 with period per`, jitter jit`, and
minimum interarrival distance dis` [HHJ+05]. For the remainder of this
chapter, we assume that an event stream is always characterized by these
three parameters.

We suppose that the processing cores are work-conserving. In other
words, they will be in ‘active’ mode as long as there are events in their
ready queues. The resource availability of core c` is abstracted by ser-
vice curve β`(∆) = ∆ for all intervals of length ∆ ≥ 0. The accumu-
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lated computing time L`(s, t) describes the amount of time units that core
c` is spending to process an incoming workload of R`(s, t). Therefore,
for work-conserving scheduling algorithms, the accumulated computing
time L`(s, t) in time interval [s, t) is:

L`(s, t) = inf
s≤u≤t
{(t − u) + R`(s,u)} (5.3)

provided that there is no buffered workload in the ready queue at
time s [TCN00].

For any fixed s with s < t, the accumulated computing time L`(s, t) is
monotonically increasing and has either slope 1 or 0. Whenever the slope
is 1, the core is in ‘active’ processing mode, i.e., it is processing events.
When the core is idle, i.e., in sleep mode, the slope is 0. Thus, we can
express the processing mode by the mode function:

S`(t) =
dL`(s, t)

dt
=

1 core c` is ‘active’,
0 core c` is ‘idle’.

(5.4)

In Fig. 5.5b, the computing model is illustrated by comparing a typical
cumulated workload curve, the resulting accumulated computing time,
and the associated mode function.

Using arrival curve α`, the accumulated computing time L`(t − ∆, t)
can be upper bounded by γ`(∆) for all intervals of length ∆ < t:

L`(t − ∆, t) ≤ γ`(∆) = inf
0≤λ≤∆

{(∆ − λ) + α`(λ)} . (5.5)

We characterize the upper bound on the accumulated computing time of
core c` by the length b` of the first interval with slope 1, also called burst, the
length ∆A

` of every other interval with slope 1, and the length ∆I
` of every

interval with slope 0. While b` and ∆A
` are constant for the considered

computational model, we also assume for computational simplicity that
the upper bound on the accumulated computing time is selected so that
all intervals with slope 0 have the same length. When calculating the
critical computing time in Section 5.5, we use this simplicity to vary only
the position of the burst and the gap between burst and the first active
interval (see Algorithm 5.1). Otherwise, the positions of the additional
gaps would have to be varied, as well. As every tight upper bound
can be transformed in such an upper bound by slightly increasing the
jitter, and the length of the burst is usually much larger than the length
of a non-increasing interval, this assumption leads only to a small over-
approximation of the worst-case chip temperature. Figure 5.5c illustrates
the calculation of the upper bound on the accumulated computing time
function.
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Fig. 5.6: Example RC circuit with three cores, and therefore, 24 nodes. For clarity, the
structure is shown upside-down. Each node is connected by an additional
resistance, a capacitance, and a current source with ground (in this figure, this is
only shown for the silicon die layer).

5.4.2 Thermal Model
A well-accepted thermal model of a modern processor architecture is to
describe the temperature evolution by means of an equivalent RC cir-
cuit [Kre99, SSS+04, HGV+06, CDH08]. For instance, the HotSpot model
introduced in [SSS+04, HGV+06] uses four vertical layers, namely the
heat sink, heat spreader, thermal interface, and silicon die, to model the
thermal behavior of a processor. Each layer is divided further into a set
of blocks according to architecture-level units and additional trapezoid
blocks are introduced in the heat spreader and heat sink layer to model
the area not covered by the subjacent layer. Every block is then mapped
to a node of the thermal circuit so that the heat flow corresponds to the
current passing through a thermal resistance, which generates a temper-
ature difference analogous to a voltage. Finally, the power dissipation is
modeled by connecting a current source to every node. For the scope of
this thesis, we assume that every architectural unit is a processing core
even though the method can be applied to a finer granularity without
modifications. Figure 5.6 shows the RC circuit of a chip with three cores
and therefore 24 nodes.

The η-dimensional temperature vector T(t) at time t is therefore de-
scribed by a set of first-order differential equations:

C ·
dT(t)

dt
=

(
P(t) + K · Tamb

)
− (G + K) · T(t) (5.6)

where η is the number of nodes of the RC circuit, C is the thermal ca-
pacitance matrix, G is the thermal conductance matrix, K is the ther-
mal ground conductance matrix, P is the power dissipation vector, and
Tamb = Tamb

· [1, . . . , 1]′ is the ambient temperature vector. The initial
temperature vector is denoted by T0 and the system is assumed to start
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at time t0 = 0. C, G, and K are calculated from the floorplan and thermal
configuration of the chip. G is a non-positive matrix whose diagonal
elements are zero and K is a non-negative diagonal matrix [SSS+04].

We assume a linear dependency of power dissipation on temperature
due to leakage power [LDSY07, CDH08]. Nodes that do not correspond
to an architectural unit have zero power dissipation, i.e.,P` = 0. All other
nodes have two processing modes, namely ‘active’ if the associated core is
processing events, and ‘idle’ if the associated core is in sleep mode. If core
c` is in ‘active’ processing mode at time t, the mode function S`(t) defined
in Eq. (5.4) is 1 and otherwise, S`(t) = 0. As we suppose that the leakage
power is independent of its processing mode, the power dissipation is
given by:

P(t) = φ · T(t) +ψ(t) (5.7)

with:

P`(t) =

Pa
`(t) = φ`` · T`(t) + ψa

` if S`(t) = 1,
P

i
`(t) = φ`` · T`(t) + ψi

` if S`(t) = 0,
(5.8)

and φ being a diagonal matrix with constant coefficients and ψ being a
vector with constant coefficients.

Rewriting Eq. (5.6) with Eq. (5.7) leads to the state-space representation
of the thermal model:

dT(t)
dt

= A · T(t) + B · u(t) (5.9)

where u(t) = ψ(t) + K · Tamb is called the input vector, A = −C−1
·(

G + K −φ
)
, and B = C−1. As A and B are time-invariant, the consid-

ered thermal model represents a Linear and Time-Invariant (LTI) sys-
tem [Fri86] and consequently, for t > 0, a closed-form solution of the
temperature yields:

T(t) = eA·t
· T0 +

∫
∞

−∞

H(t − ξ) · u(ξ) dξ (5.10)

where H(t) = eA·t
·B. Hk`(t) corresponds to the impulse response between

node ` and node k. With Tinit(t) = eA·t
· T0, the temperature Tk(t) of node k

is of form:

Tk(t) = Tinit
k (t) +

η∑
`=1

Tk,`(t) (5.11)

where Tk,`(t) is the convolution between impulse response Hk` and input
u`:

Tk,`(t) =

∫ t

0
Hk`(t − ξ) · u`(ξ) dξ. (5.12)
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Fig. 5.7: Examples of two impulse responses. In general, the impulse response describes
the thermal reaction of the system over time.

By using the processing mode of processing core c`, which is associated
with node `, we can connect input u` of node ` with the workload of the
associated core:

u`(t) = S`(t) · ua
` + (1 − S`(t)) · ui

` (5.13)

where ua
` = ψa

` + K`` · Tamb and ui
` = ψi

` + K`` · Tamb.

As the impulse response describes the reaction of the system over time,
next, we will discuss its properties with respect to the considered thermal
model. First, we note that H(t) ≥ 0 for all t ≥ 0, as A is essentially non-
negative, i.e., Ak` ≥ 0 for all ` , k, which in turn leads to eA·t

≥ 0 [BV58].
The self-impulse response Hkk(t) can be calculated by Hkk(t) = e′k ·e

A·t
·ek ·Bkk,

where ek is the unit vector pointing in k direction. Therefore, Hkk(0) ≥
Hkk(t) ≥ 0 for all t ≥ 0 and dHkk(t)

dt ≤ 0 [MKK77], see Fig. 5.7a for an
illustration.

Next, based on various experiments and the self-impulse response,
we conjecture that the general impulse response Hk`(t) is a non-negative
unimodal2 function that has its maximum at time tHk`

max, i.e., dHk`(t)
dt ≥ 0 for

all 0 ≤ t ≤ tHk`
max and dHk`(t)

dt ≤ 0 for all t > tHk`
max as illustrated in Fig. 5.7b.

Intuitively, this can be motivated by the duality of a thermal network and
a grounded capacitor RC circuit. We know from [GTP97] that all impulse
responses of a stable RC tree network are unimodal. As a particular path
of a general RC network usually dominates the impulse response, we can
neglect local maximums that are caused by different paths without affect-
ing the resulting temperature significantly. In all performed experiments,
we never detected a departure from this conjecture. In summary, it can be
said that temperature rises with power on the core that produces power
without a delay and on a neighbor of the core that produces power only
after a delay.

2A function g(t) is called unimodal if and only if there exists some value t = t∗ such that
g(t) is nondecreasing for t < t∗ and nonincreasing for t > t∗.
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5.5 Peak Temperature Analysis
The framework presented in this chapter uses formal thermal analysis
methods to calculate the worst-case chip temperature, i.e., the maximum
temperature of a chip under all feasible scenarios of task arrivals.

In the following, the corresponding thermal analysis methods are in-
troduced. We start by presenting a constructive method to obtain the
critical computing time and the critical workload leading to the worst-
case chip temperature. As this method might be time-consuming and
hence not suited for design space exploration, we will derive an analyti-
cal expression for an upper bound on the worst-case chip temperature in
the second half of this section.

5.5.1 Preliminaries
The worst-case chip temperature T∗S of a many-core platform is the maxi-
mum possible temperature of all nodes:

T∗S = max
(
T∗1, . . . ,T

∗

η

)
(5.14)

where T∗k is the worst-case peak temperature of node k and η the number
of nodes. Because of non-determinism in the workload arriving at the
different processing cores, one has to identify the critical set of cumulative
workload traces R that leads to the worst-case peak temperature T∗k of
node k. We denote this critical set of cumulative workload traces by R{k}.
Note that T∗k does not only depend on the workload of core k, but also
on the workload of all other cores of the chip due to the heat exchange
between neighboring cores. In fact, because temperature rises with power
consumed at another core only after a delay and the delay is different for
every two cores, there is a different critical set of workload traces R{k} for
every node k.

In the first part of this section, we present a constructive method to
calculate R{k}. We start by calculating the critical accumulated computing
time L{k} leading to T∗k. Then, we show that R{k}` (0, t) = ∆A

` ·

⌈
L{k}` (0, t)/∆A

`

⌉
is a valid workload and R{k}(0, t) =

[
R{k}1 (0, t), . . . ,R{k}η (0, t)

]′
actually leads

to the critical accumulated computing time L{k}. Finally, the worst-case
peak temperature T∗k(τ) of node k at observation time τ is obtained by
simulating the system with workload R{k}(0, t) for all t ∈ [0, τ).

We start by constructing the accumulated computing time L{k} that
maximizes temperature Tk(τ) at a certain observation time τ > 0. In a first
step, we show that each T∗k,`(τ) defined as in Eq. (5.12) can be maximized
individually.
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Lem. 5.1: (Superposition) Suppose that T∗k,`(τ) = maxu`∈U`

(
Tk,`(τ)

)
with U` the set of

all possible inputs u`. Then, the worst-case peak temperature of node k at time τ
is:

T∗k(τ) ≤ Tinit
k +

η∑
`=1

T∗k,`(τ) (5.15)

where η is the number of nodes of the thermal RC circuit. Equality is obtained if
the workloads of all processing cores are independent of each other.

Proof. From Eq. (5.11) we obtain:

T∗k(τ) = max
u∈U

(Tk(τ)) = max
u∈U

Tinit
k +

η∑
`=1

Tk,`(τ)


≤ Tinit

k +

η∑
`=1

max
u`∈U`

(
Tk,`(τ)

)
= Tinit

k +

η∑
`=1

T∗k,`(τ).

(5.16)

With equality if u1, . . .uη are mutually independent, i.e., the workload of
all cores is independent of each other. �

Lemma 5.1 indicates that each Tk,`(τ), at a certain time instance τ > 0,
can be maximized individually. As T∗k,` only depends on L{k}` and L{k}` only
affects T∗k,`, we can calculate every L{k}` individually so that L{k}` maximizes
Tk,`(τ) at time instance τ.

5.5.2 Critical Accumulated Computing Time
Section 5.5.1 shows that each critical accumulated computing time L{k}`
can be calculated individually. In the following, we introduce a method
to do so, i.e., we present a method to construct the critical accumulated
computing time L{k}` for each individual core c`.

Suppose that tHk`
max denotes the time where Hk`(t) is maximum. First, we

will show that a higher temperature is obtained at time instance τ if the
core is in ‘active’ processing mode for a longer accumulated computing
time in any time interval starting or ending at t̃ Hk`

max = τ−tHk`
max. We will prove

this statement first for t < t̃ Hk`
max (Lemmata 5.2a and 5.3a) and afterwards

for t > t̃ Hk`
max (Lemmata 5.2b and 5.3b). Afterwards, we will refine these

properties in Lemma 5.4 for the considered model of computation. Finally,
Theorem 5.1 constructs the critical accumulated computing time L{k}` for
the considered workload model.

More detailed, Lemmata 5.2a and 5.2b support Lemmata 5.3a and 5.3b
by showing that two mode functions that are identical except in a small
interval result in different temperatures. Lemmata 5.3a and 5.3b use the
results of Lemmata 5.2a and 5.2b and define the conditions for a higher
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temperature if the mode function is different at arbitrary positions. The
mode function S`(t) = dL`(s,t)

dt of core c` is defined in as Eq. (5.4) and is the
derivation of the accumulated computing time function L`(s, t). In other
words, S`(t) = 1 if the core is in ‘active’ processing mode at time t and
S`(t) = 0 if the core is in ‘idle’ processing mode at time t.

Lem. 5.2a: (Shifting, t < t̃ Hk`
max) For any given time instance τ, we consider two mode

functions S`(t) and S`(t) defined as in Eq. (5.4) for t ∈ [0, τ). For given δ >
0, σ ≥ 0, σ + 2δ < t̃ Hk`

max, the two mode functions only differ as follows:

• S`(t) = 1 for all t ∈ [σ, σ + δ) (‘active mode’),

• S`(t) = 0 for all t ∈ [σ + δ, σ + 2δ) (‘idle mode’), and

• S`(t) = 1 − S`(t) for all t ∈ [σ, σ + 2δ).

In other words, both mode functions have the same sequence of ‘active’ and ‘idle’
modes for t ∈ [0, σ) and t ∈ [σ+ 2δ, τ). Then, Tk,`(τ) at time τ for mode function
S`(t) is not less than Tk,`(τ) at time τ for mode function S`(t), i.e., Tk,`(τ) ≥ Tk,`(τ).

Proof. Rewriting Eq. (5.12) with Eq. (5.13) leads to:

Tk,`(t) = Ψ + (ua
` − ui

`) ·
∫ t

0
S`(ξ) ·Hk`(t − ξ) dξ (5.17)

and

Tk,`(t) = Ψ + (ua
` − ui

`) ·
∫ t

0
S`(ξ) ·Hk`(t − ξ) dξ (5.18)

with Ψ = ui
` ·

∫ t

0
Hk`(t− ξ) dξ. As the mode function S`(t) only differs from

S`(t) in time interval [σ, σ + 2δ), we find:(
Tk,`(τ) − Tk,`(τ)

)
/(ua

` − ui
`)

=

∫ σ+2δ

σ

S`(t) ·Hk`(τ − ξ) dξ −
∫ σ+2δ

σ

S`(t) ·Hk`(τ − ξ) dξ.
(5.19)

As S`(t) = 1 for t ∈ [σ, σ+δ) and S`(t) = 0 for t ∈ [σ+δ, σ+2δ), and S`(t) = 0
for t ∈ [σ, σ + δ) and S`(t) = 1 for t ∈ [σ + δ, σ + 2δ), we find:(

Tk,`(τ) − Tk,`(τ)
)
/(ua

` − ui
`)

=

∫ σ+2δ

σ+δ

Hk`(τ − ξ) dξ −
∫ σ+δ

σ

Hk`(τ − ξ) dξ.
(5.20)

As Hk`(τ − t) monotonically increases from 0 to t̃ Hk`
max and ua

` ≥ ui
`, we get

Tk,`(τ) − Tk,`(τ) ≥ 0. �
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Fig. 5.8: Illustration of Lemma 5.2a for t̃ Hk`
max = τ. As the mode function S`(t) is ‘active’

later, it leads to a higher temperature.

Lem. 5.2b: (Shifting, t > t̃ Hk`
max) For any given time instance τ, we consider two mode

functions S`(t) and S`(t) defined as in Eq. (5.4) for t ∈ [0, τ). For given δ >
0, σ ≥ t̃ Hk`

max, σ + 2δ < τ, the two mode functions only differ as follows:

• S`(t) = 1 for all t ∈ [σ, σ + δ) (‘active mode’),

• S`(t) = 0 for all t ∈ [σ + δ, σ + 2δ) (‘idle mode’), and

• S`(t) = 1 − S`(t) for all t ∈ [σ, σ + 2δ).

In other words, both mode functions have the same sequence of ‘active’ and ‘idle’
modes for t ∈ [0, σ) and t ∈ [σ+ 2δ, τ). Then, Tk,`(τ) at time τ for mode function
S`(t) is not less than Tk,`(τ) at time τ for mode function S`(t), i.e., Tk,`(τ) ≥ Tk,`(τ).

Proof. We omit the proof as it is similar to the one of Lemma 5.2a �

Figure 5.8 illustrates Lemma 5.2a for t̃ Hk`
max = τ. Now, we will show that

a higher temperature at time τ is obtained if in any time interval starting
or ending at t̃ Hk`

max, the core is in ‘active’ processing mode for a longer
accumulated time. Lemmata 5.3a and 5.3b will discuss this statement for
intervals ending and starting at time t̃ Hk`

max, respectively.

Lem. 5.3a: (Mode Functions Comparison, t < t̃ Hk`
max) For any given time instance τ, we

consider two accumulated computing time functions L`, resulting from mode
function S`, and L`, resulting from mode function S`, with:

L`(t̃
Hk`
max − ∆, t̃ Hk`

max) ≥ L`(t̃
Hk`
max − ∆, t̃ Hk`

max) (5.21)

for all 0 ≤ ∆ ≤ t̃ Hk`
max and S`(t) = S`(t) for all t̃ Hk`

max < t ≤ τ. Then, Tk,`(τ) at time τ
for mode function S`(t) is not less than Tk,`(τ) at time τ for mode function S`(t).
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Proof. Equation (5.21) can be translated by means of Eq. (5.4) into∫ t̃
Hk`
max

t̃
Hk`
max−∆

S`(t) dt ≥
∫ t̃

Hk`
max

t̃
Hk`
max−∆

S`(t) dt. Then, the proof is equivalent to the proof
of Lemma 3 of [RYB+11] and is therefore omitted. In particular, Lemma 2
of [RYB+11] is replaced with Lemma 5.2a and τ by t̃ Hk`

max. �

Lem. 5.3b: (Mode Functions Comparison, t > t̃ Hk`
max) For any given time instance τ, we

consider two accumulated computing time functions L`, resulting from mode
function S`, and L`, resulting from mode function S`, with:

L`(t̃
Hk`
max,∆) ≥ L`(t̃

Hk`
max,∆) (5.22)

for all t̃ Hk`
max ≤ ∆ ≤ τ and S`(t) = S`(t) for all 0 ≤ t < t̃ Hk`

max. Then, Tk,`(τ) at time τ
for mode function S`(t) is not less than Tk,`(τ) at time τ for mode function S`(t).

Proof. We omit the proof as it is similar to the one of Lemma 5.3a. �
So far, we have shown some properties of the critical accumulated

computing time L{k}` . In particular, we have shown that a higher temper-
ature at a time instance τ is obtained, if in any time interval starting or
ending at t̃ Hk`

max, the core is in ‘active’ processing mode for a longer accumu-
lated time. Next, we will apply these properties to the considered model
of computation, i.e., to event streams specified by a period, a jitter, and a
minimum interarrival distance. We will show that a necessary condition
to maximize the temperature at time τ is that the core is in ‘active’ pro-
cessing mode during a time frame of at least b` − ∆A

` time units, where b`
and ∆A

` are defined as in Section 5.4.1 and t̃ Hk`
max is within this time frame.

Lem. 5.4: (Burst) Suppose that L{k}` (0,∆) for all 0 ≤ ∆ ≤ τ leads to an upper bound on
T∗k,`(τ) at time τ. When b` and ∆A

` are defined as in Section 5.4.1 and the scheduler
is work-conserving, then there exist t(l) and t(r) such that L{k}` (t(l), t(r)) = t(r)

− t(l) =

b` − ∆A
` and t̃ Hk`

max ∈ [t(l), t(r)].

Proof. For simplicity reasons, we only provide a visual and intuitive
proof of this lemma. Suppose that L`(0,∆) for all 0 ≤ ∆ ≤ τ resulting from
S` leads to Tk,`(τ) and does not fulfill the condition stated in Lemma 5.4.
We will transform L`(0,∆) into L`(0,∆) resulting from S`(t) that leads to
Tk,`(τ) > Tk,`(τ).

First, we note that every L`(0,∆) can be transformed into L`(0,∆) such
that there exist t and ∆ with γ`(∆) − L`(t − ∆, t) = 0, which we assume in
the following. See, e.g., [Sch11] for a proof of this proposition.

Next, we compare two processing components with the same resource
availability, namely c(γ)

` and c(ω)
` . The component c(γ)

` is processing an event
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Fig. 5.9: Upper bound on the accumulated computing time of an event stream with jitter
γ`(∆) and an event stream without jitter ω`(∆).

stream leading to an accumulated computing time that is upper bounded
by γ`(∆). c(ω)

` is processing an event stream that has the same period as
the event stream arriving at c(γ)

` but is free of jitter. We denote the upper
bound on its accumulated computing time by ω`(∆). Next, we will shift
active processing modes closer to t̃ Hk`

max if L` exceeds ω`(∆). In order to
simplify the proof technicalities, we suppose discrete time, i.e., S`(t) may
change values only at multiples of δ and is constant for t ∈ [r · δ, (r + 1) · δ)
for all r ≥ 0. Furthermore, r(m) = t̃ Hk`

max/δ and we execute the following
algorithm:

1. Determine the smallest r ∈ [1, r(m)] such that L`(r · δ−∆, r · δ) > ω`(∆)
for ∆ > 0. If there is no such r, then S`(t) = S`(t) and the algorithm
stops.

2. Determine the smallest r′ ∈ (r, r(m)] such that S`(r′ · δ) = 0. If such
r′ exists, then change S`(r · δ) from 1 to 0 and S`(r′ · δ) from 0 to 1.
Otherwise, the algorithm stops.

With the exception of the last iteration, Tk,`(τ) increases in every iter-
ation as a result of Lemma 5.3a. Fig. 5.9 illustrates that cγ` can process
b` − ∆A

` time units more in ‘active’ mode as cω` . As the algorithm only
switches the positions of these time units, Eq. (5.5) will never be violated.
A similar algorithm can be performed for t > t̃ Hk`

max, and therefore, there
exist a t(l)

≤ t̃ Hk`
max and a t(r)

≥ t̃ Hk`
max such that L`(t(l), t(r)) = t(r)

− t(l) = b` − ∆A
`

and Tk,`(τ) ≥ Tk,`(τ). �
Based on the previous lemmata, we will show the first main result of

this section. Theorem 5.1 provides a constructive algorithm to calculate
the critical accumulated computing time L{k}` (0,∆) for all 0 ≤ ∆ ≤ τ that
maximizes Tk,`(τ) at a certain observation time τ, i.e., T∗k,`(τ) ≥ Tk,`(τ). In
particular, Algorithm 5.1 calculates the critical accumulated computing
time L{k}` by varying both the position of the burst and the gap between



5.5. PEAK TEMPERATURE ANALYSIS 151

burst and the first active interval. As sketched in Fig. 5.10, the critical
accumulated computing time is the computing time that maximizes the
sum of the areas below the impulse response curve where the core is in
‘active’ processing mode. b`, ∆I

`, and ∆A
` are defined as in Section 5.4.1

and the auxiliary function ν`(t, ζ) used in Algorithm 5.1 is one for ∆A
` time

units, starting at time ζ.

Thm. 5.1: (Critical Accumulated Computing Time) Suppose that function ν`(t, ζ) is
defined as:

ν`(t, ζ) =

1 0 ≤ ζ ≤ t ≤ min(ζ + ∆A
` , τ)

0 otherwise
(5.23)

and the accumulated computing time function L{k}` (0,∆) for all 0 ≤ ∆ ≤ τ
constructed by Algorithm 5.1 leads to T∗k,`(τ) at time τ. When the scheduler is
work-conserving, T∗k,`(τ) is an upper bound on the highest value of Tk,`(τ) at time
τ, i.e., T∗k,`(τ) ≥ Tk,`(τ).

Algorithm 5.1 Calculation of the critical accumulated computing time
function L{k}` (0,∆) for all 0 ≤ ∆ ≤ τ.

Input: b`,∆I
`,∆

A
` , per`, t̃

Hk`
max, τ,Hk`

Output: L{k}` (0,∆)
01 for all t(r) in [t̃ Hk`

max, t̃
Hk`
max + b` − ∆A

` ] do .find the position of the burst
02 for all ts

∈ [0,∆I
`] do .find gap between burst and suc. active interval

03 t(l) = t(r)
− b` + ∆A

`

04 S`(t) =

1 t ∈ [t(r)
− b` + ∆A

` , t
(r))

0 otherwise

05 for i = 1 to
⌈
τ−t(r)

per`

⌉
do .make trace for t > t(r)

06 S`(t) = S`(t) + ν`
(
t, ts + t(r) + (i − 1) · per`

)
07 end for
08 for i = 1 to

⌈
t(l)

per`

⌉
do .make trace for t < t(l)

09 S`(t) = S`(t) + ν`
(
t, ts + t(l)

− i · per`
)

10 end for
11 Tk,` =

∫ t

0
S`(ϕ) ·Hk`(t − ϕ) dϕ

12 if Tk,` > T∗k,` then .Tk,` comparison
13 T∗k,` = Tk,` and S{k}` = S`
14 end if
15 end for
16 end for
17 L{k}` (0,∆) =

∫ ∆

0
S∗`(ϕ) dϕ
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Fig. 5.10: Illustration of Algorithm 5.1 to calculate the critical accumulated computing time
function L{k}

`
(0,∆).

Proof. First, we show that L{k}` (0,∆) resulting from S{k}` and constructed
by Algorithm 5.1 satisfies Eq. (5.5), i.e., it conforms to the upper bound
on the accumulated computing time. With the exception of the burst,
S{k}` (t) = 1 for ∆A

` time units in every interval of per` = ∆A
` + ∆I

` time units.
As all blocks of ‘active’ processing mode have the same offset and the
longest possible contiguous block of ‘active’ processing modes is b` time
units, L{k}` (t − ∆, t) ≤ γ`(∆).

Now, let us prove that T∗k,`(τ) ≥ Tk,`(τ). By construction, the condition
stated in Lemma 5.4, i.e., there exist t(l) and t(r) such that L∗`(t

(l), t(r)) =

t(r)
− t(l) = b` −∆A

` and t̃ Hk`
max ∈ [t(l), t(r)], is fulfilled. The remaining work is to

show that the temperature is maximized if for t < [t(l), t(r)], the processing
mode is alternately ‘active’ and ‘idle’ for ∆A

` and ∆I
` time units, respectively.

However, this is a direct consequence of Lemma 5.3a and Lemma 5.3b.
The offset ts is required to guarantee that Eq. (5.5) is never violated.
Now, L{k}` can be calculated by iterating over the offset ts of the periodic
invocation and the start positions t(r) of the burst, which in turn proves
the theorem. �

So far, we only derived the accumulated computing time that maxi-
mizes the temperature at observation time τ. However, we did not discuss
the amount of observation time τ. Next, we will show that increasing the
observation time τ will not decrease the worst-case peak temperature T∗k
if T0

≤ (T∞)i, where (T∞)i is the steady-state temperature vector if all cores
are in ‘idle’ mode.

Lem. 5.5: (Initial Temperature) Suppose that the accumulated computing time function
L{k}(0,∆) for all 0 ≤ ∆ ≤ τ from Theorem 5.1 leads to the worst-case peak
temperature T∗k(τ) at time τ. Then, T∗k(τ) ≥ Tk(t) for all 0 ≤ t ≤ τ and for any set
of feasible workload traces with the same initial temperature vector T0

≤ (T∞)i.

Proof. As Hk`(t) ≥ 0 for all t, k, and `, it follows from Eq. (5.11) that
the temperature caused by any L is never smaller than the temperature
of a system that only operates in ‘idle’ mode. As T(0) = T0

≤ (T∞)i,
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temperatures resulting from any L satisfy Tk(t) ≥ Tk(0) for 0 ≤ t ≤ τ,
which, in particular, also holds for T∗k, i.e., T∗k(t) ≥ T∗k(0) for 0 ≤ t ≤ τ.

Assume for contradiction that Tk(σ) > T∗k(τ) for σ ≤ τ. Then there exists

a ` so that Tk,`(σ) > T∗k,`(τ). According to Theorem 5.1, there exists a S
{k}
` that

maximizes Tk,`(σ). However, by the linearity of the system, S
{k}
` (t − (τ − σ))

results in Tk,`(τ) = Tk,`(σ) for T0 = (T∞)i and Tk,`(τ) ≥ Tk,`(σ) for T0 < (T∞)i,
which is a contradiction. �

5.5.3 Critical Accumulated Workload
Theorem 5.1 provides an upper bound T∗k,`(τ) on Tk,`(τ) at a certain ob-
servation time τ. However, there might be no workload trace that leads
to the critical accumulated computing time L{k}` (0,∆). In the following,
we will show that this is not the case, and R{k}` (0,∆) = ∆A

` ·

⌈
L{k}` (0,∆)/∆A

`

⌉
actually leads to the critical accumulated computing time.

Thm. 5.2: (Critical Cumulated Workload) Suppose that the accumulated computing
time function L{k}` (0,∆) for all 0 ≤ ∆ ≤ τ is defined as in Theorem 5.1. Then, the
critical workload function R{k}` (0,∆) = ∆A

` ·

⌈
L{k}` (0,∆)/∆A

`

⌉
• leads to the accumulated computing time L{k}` (0,∆), and

• complies with arrival curve α` according to Eq. (5.2).

Furthermore, the set of workload functions R{k}(0, t)

• leads to the highest possible temperature T∗k(τ) ≥ Tk(t) for all 0 ≤ t ≤ τ
and any set of feasible workload traces with the same initial temperature
vector T0

≤ (T∞)i.

Proof. Without loss of generality, we suppose that ∆A
` = 1. At first we

show that the continuous workload function R̂{k}` (0,∆) = L{k}` (0,∆) leads
to L{k}` (0,∆). As R̂{k}` (0,∆) = L{k}` (0,∆), we have to prove that L{k}` (0,∆) =

inf0≤u≤∆{(∆ − u) + L{k}` (0,u)}. Because there exists a u′ such that (∆ − u′) +

L{k}` (0,u′) = (∆ − u′) + L{k}` (0,∆), namely u′ = ∆, we only have to show
that (∆ − u) + L{k}` (0,u) ≥ L{k}` (0,∆) for all 0 ≤ u ≤ ∆. This condition is
equivalent to (∆ − u) ≥ L{k}` (0,∆) − L{k}` (0,u) = L{k}` (u,∆) and from the fact
that the accumulated computing time in interval [u,∆) cannot exceed
the available time ∆ − u follows that R̂{k}` (0,∆) leads to L{k}` (0,∆). Now,
we can show that R{k}` (0,∆) = dR̂{k}` (0,∆)e = dL{k}` (0,∆)e leads to L{k}` (0,∆).
From the specification of the accumulated computing time follows that
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γ`(∆) has either slope 1 or 0 and has an integer value if it has slope
0. As ν`(t, ts) define in Eq. (5.23) guarantees that L{k}` (0,∆) has the same
properties as γ`(∆), R{k}` (0,∆) leads to the accumulated computing time
function inf0≤u≤∆{(∆ − u) + R{k}` (0,u)} = inf0≤u≤∆{(∆ − u) + dL{k}` (0,u)e} =

inf0≤u≤∆{(∆ − u) + L{k}` (0,u)} = L{k}` (0,∆).

For the second item, we have to show that R{k}` (x, y) ≤ α`(y − x). First,
we note that γ`(∆) = inf0≤λ≤∆ {(∆ − λ) + α`(λ)} ≤ α`(∆) for ∆ > 0. Now, we
find R{k}` (x, y) = R{k}` (0, y) − R{k}` (0, x) = dL{k}` (0, y)e − dL{k}` (0, x)e ≤ dL{k}` (0, y) −
L{k}` (0, x)e = dL{k}` (x, y)e ≤ dγ`(y − x)e ≤ dα`(y − x)e = α`(y − x) for all x < y.

The third item is a simple consequence of Lemmata 5.1 and 5.5. First,
we see that R{k} leads to the accumulated computing time function L{k}

and secondly, L{k} leads to the highest temperature T∗k(τ) ≥ Tk(t) according
to Lemma 5.5. �

Suppose that the workloads of all processing cores are independent
of each other. Then, the upper bound T∗k(τ) determined by Theorem 5.2
is tight as there exists a workload that leads to the critical accumulated
computing time. Theorem 5.2 completed the derivation of the construc-
tive method to calculate the worst-case peak temperature T∗k(τ) of core
k. Starting from the set of arrival curves α(∆), we calculate γ(∆) using
Eq. (5.5). Afterwards, Algorithm 5.1 constructs L{k}` for every processing
core c`, which in turn determines the critical sequence of ‘active’ and ‘idle’
modes. Finally, T∗k(τ) can be found by solving the thermal model defined
in Eq. (5.6) at time t = τ.

The complexity of calculating the worst-case chip temperature T∗S is
O(η2

∗ ς) with η the number of nodes of the thermal RC circuit. The factor
ς reflects the time to execute Algorithm 5.1 and is inversely proportional
to the selected time step.

5.5.4 Fast Temperature Evaluation

As indicated, Algorithm 5.1 might be time-consuming and hence not
suited for design space exploration. Therefore, in the following, we will
derive an analytical expression for the accumulated computing time that
leads to a non-trivial upper bound on the peak temperature. Afterwards,
we use the obtained computing time to propose an analytical expression
for an upper bound on the worst-case peak temperature.

The next lemma simplifies Algorithm 5.1 so that it is constant in time
and the resulting upper bound at observation time τ, T̂∗k(τ), is not smaller
than the worst-case peak temperature of node k. L̂{k} denotes the critical
accumulated computing time that leads to T̂∗k(τ).
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Lem. 5.6: (Analytical Expression for the Computing Time) Suppose that the accu-
mulated computing time function L̂{k}(0,∆) =

[̂
L{k}1 (0,∆), . . . , L̂{k}η (0,∆)

]′
for all

0 ≤ ∆ ≤ τ with:

L̂{k}` (0,∆) =

γ(t̃ Hk`
max) − γ(t̃ Hk`

max − ∆) 0 ≤ ∆ < t̃ Hk`
max

γ(t̃ Hk`
max) + γ(∆ − t̃ Hk`

max) t̃ Hk`
max ≤ ∆ < τ

(5.24)

leads to T̂∗k(τ) at time τ. When the scheduler is work-conserving, T̂∗k(τ) is an
upper bound on the highest value of temperature Tk(τ) at time τ. Furthermore,
when (T∞)i is the steady-state temperature vector if all nodes are in ‘idle’ mode,
T̂∗k(τ) ≥ Tk(t) for all 0 ≤ t ≤ τ and any set of feasible workload traces with the
same initial temperature vector T0

≤ (T∞)i.

Proof. We will prove this lemma by translating L{k}` calculated with
Algorithm 5.1 into L̂{k}` calculated with Eq. (5.24) and show that the tem-
perature will not decrease in every step. To this end, we use the fact that
the temperature does not decrease if the amount of ‘active’ time units per
time interval is either increased or shifted closer to t̃ Hk`

max (Lemmata 5.2a
and 5.2b).

In the first step, the precedent and successive active intervals of the
burst are moved to the burst so that the node is continuously active for
b` + ∆A

` time units, compare Figs. 5.11a and 5.11b for an illustration. The
second step makes the search for the position of the burst obsolete. To
this end, the length of the burst is extended so that it covers all possible
positions of the burst, i.e., Ŝ`(t) = 1 for all t ∈ [t̃ Hk`

max− b` +∆A
` , t̃

Hk`
max + b`−∆A

` ],
see Fig. 5.11c for an illustration.

Algorithm 5.2 is the result of these two translations. One can read-
ily prove that in both steps, the amount of ‘active’ time units is either
increased or shifted closer to t̃ Hk`

max. Finally, we note that Eq. (5.24) is equiv-
alent to Algorithm 5.2, and therefore T̂∗k(τ) ≥ T∗k(τ). �

As the accumulated computing time function can be calculated in con-
stant time, computing an upper bound on the worst-case chip temperature
has time complexity O(η2) with η the number of nodes.

Next, we show that calculating the worst-case peak temperature can
be simplified further by running processing core c` with constant slope

δ` =
∆A
`

∆A
`

+∆I
`

for all time units except during the burst. In fact, ∆A
` is the

length of an interval with slope 1 and ∆I
` is the length of every interval

with slope 0 of the upper bound on the accumulated computing time.
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Fig. 5.11: Illustration of the steps to translate L{k}
`

into L̂{k}
`

.

Algorithm 5.2 Calculation of the critical accumulated computing time
function L̂{k}` (0,∆) for all 0 ≤ ∆ ≤ τ whereby function ν`(t, ζ) is defined as
in Eq. (5.23).

Input: b`,∆I
`,∆

A
` , per`, t̃

Hk`
max, τ

Output: L̂{k}` (0,∆)
01 t(r) = t̃ Hk`

max + b` − ∆A
` , t(l) = t̃ Hk`

max − b` + ∆A
`

02 Ŝ{k}` (t) =

1 t ∈ [t(l), t(r)]
0 otherwise

. extended burst

03 for i = 1 to
⌈
τ−t(r)

per`

⌉
do .trace for t > t(r)

04 Ŝ{k}` (t) = Ŝ{k}` (t) + ν`
(
t, t(r) + (i − 1) · per`

)
05 end for
06 for i = 1 to

⌈
t(l)

per`

⌉
do .trace for t < t(l)

07 Ŝ{k}` (t) = Ŝ{k}` (t) + ν`
(
t,∆I

` + t(l)
− i · per`

)
08 end for
09 L̂{k}` (0,∆) =

∫ ∆

0
Ŝ{k}` (ξ) dξ for all 0 ≤ ∆ ≤ τ
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Lem. 5.7: (Constant Slope Mode Function) Suppose that mode function:

S̆`(t) =

1 t̃ Hk`
max − b` ≤ t ≤ t̃ Hk`

max + b`
δ` otherwise

(5.25)

with utilization δ` =
∆A
`

∆A
`

+∆I
`

leads to temperature T̆∗k,`(τ) at time τ. When the

scheduler is work-conserving, T̆∗k,`(τ) is an upper bound on the highest value of
temperature Tk,`(τ) at time τ.

Proof. Rewriting Eq. (5.12) with Eq. (5.13) leads to:

Tk,`(t) = ui
` ·

∫ t

0
Hk`(t − ξ) dξ + (ua

` − ui
`) ·

∫ t

0
S`(ξ) ·Hk`(t − ξ) dξ. (5.26)

As we know from Lemma 5.6 that Ŝ(t) =
d̂L{k}

`
(0,∆)

dt leads to T̂k,`(τ) with
T̂k,`(τ) ≥ Tk,`(τ), we have to show that T̆k,`(τ) ≥ T̂k,`(τ):(

T̆k,`(τ) − T̂k,`(τ)
)
/
(
ua
` − ui

`

)
=

∫ τ

0
S̆`(ξ) ·Hk`(τ − ξ) dξ −

∫ τ

0
Ŝ`(ξ) ·Hk`(τ − ξ) dξ

=

∫ θ(l)

0
S̆`(ξ) ·Hk`(τ − ξ) dξ −

∫ θ(l)

0
Ŝ`(ξ) ·Hk`(τ − ξ) dξ

+

∫ τ

θ(r)
S̆`(ξ) ·Hk`(τ − ξ) dξ −

∫ τ

θ(r)
Ŝ`(ξ) ·Hk`(τ − ξ) dξ

(5.27)

where we used that S̆`(t) = Ŝ`(t) = 1 for t ∈ [θ(l), θ(r)] with θ(l) = t̃ Hk`
max − b`

and θ(r) = t̃ Hk`
max + b`. By rewriting the integral from 0 to θ(l) as a sum, we

get:

∫ θ(l)

0

(
S̆`(ξ) − Ŝ`(ξ)

)
·Hk`(τ − ξ) dξ

=

%∑
i=0

∫ θ(l)
−i·per`

θ(l)−(i+1)·per`

(
S̆`(ξ) − Ŝ`(ξ)

)
·Hk`(τ − ξ) dξ

 (5.28)

where % is an integer that is selected so that per` · (% − 1) ≤ θ(l)
≤ per` · %.

In particular, Ŝ(t) = 0 for t ∈ [θ(l)
− i · per` − ∆I

`, θ
(l)
− i · per`], Ŝ(t) = 1 for

t ∈ [θ(l)
− (i + 1) · per`, θ(l)

− (i + 1) · per` + ∆A
` ], and θ(l)

− i · per` − ∆I
` =
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Fig. 5.12: Illustration of the proof of Lemma 5.7. The impulse response function Hk`(t) is
plotted for the interval [θ(l)

− (i + 1) · per`, θ(l)
− i · per`].

θ(l)
− (i + 1) · per` + ∆A

` , see Fig. 5.12 for an illustration. Then, we find:∫ θ(l)
−i·per`

θ(l)−(i+1)·per`

(
S̆`(ξ) − Ŝ`(ξ)

)
·Hk`(τ − ξ) dξ

= δ` ·

∫ θ(l)
−i·per`

θ(l)−(i+1)·per`+∆A
`

Hk`(τ − ξ) dξ

− (1 − δ`) ·
∫ θ(l)

−i·per`−∆I
`

θ(l)−(i+1)·per`

Hk`(τ − ξ) dξ

(5.29)

where we subtracted the two integrals in the interval [θ(l)
−(i+1)·per`, θ(l)

−

i ·per`−∆I
`]. Next, we lower bound the value between θ(l)

− (i+1) ·per`+∆A
`

and θ(l)
− i · per` by means of Hk`(τ − (θ(l)

− (i + 1) · per` + ∆A
` )), and upper

bound the value between θ(l)
− (i + 1) · per` and θ(l)

− i · per` −∆I
` by means

of Hk`(τ − (θ(l)
− i · per` − ∆I

`)) = Hk`(τ − (θ(l)
− (i + 1) · per` + ∆A

` )), as well:∫ θ(l)
−i·per`

θ(l)−(i+1)·per`

(S̆`(ξ) − Ŝ`(ξ)) ·Hk`(τ − ξ) dξ

≥ δ` · ∆
I
` ·Hk`(τ − (θ(l)

− (i + 1) · per` + ∆A
` ))

− (1 − δ`) · ∆A
` ·Hk`(τ − (θ(l)

− (i + 1) · per` + ∆A
` )) = 0

(5.30)

where we used the fact that δ` =
∆A
`

∆A
`

+∆I
`

and δ` · ∆I
` − (1 − δ`) · ∆A

` = 0.
Similarly, we can show that:∫ τ

θ(r)
S̆`(ξ) ·Hk`(τ − ξ) dξ −

∫ τ

θ(r)
Ŝ`(ξ) ·Hk`(τ − ξ) dξ ≥ 0 (5.31)

and therefore, T̆k,`(τ) − T̂k,`(τ) ≥ 0.
�

Finally, we present an analytical expression to calculate a non-trivial
upper bound on the maximum temperature T̆∗k(τ) of node k. Then, an
upper bound on the worst-case chip temperature can be obtained by
calculating the maximum of all individual upper bounds.
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Thm. 5.3: (Upper Bound on the Worst-Case Peak Temperature) Suppose that Tk(t) is
the temperature of node k at time instant t for a set of workload functions R(s, t)
that are bounded by the set of arrival curves α. Furthermore, let u`(t) be the
input of node ` as defined in Eq. (5.13). When the scheduler is work-conserving,
the following statements hold:

• The temperature:

T̆∗k(τ) = Tinit
k (τ) +

η∑
`=1

T̆∗k,`(τ) (5.32)

is an upper bound on the highest temperature of node k at time τ,
i.e., T̆∗k(τ) ≥ Tk(τ), whereby:

T̆∗k,`(τ) =
(
ui
` + δ` ·

(
ua
` − ui

`

))
·

∫ τ

0
Hk`(t − ξ) dξ

+
(
ua
` − ui

`

)
· (1 − δ`) ·

∫ t̃
Hk`
max+b`

t̃
Hk`
max−b`

Hk`(t − ξ) dξ,

(5.33)

and δ` =
∆A
`

∆A
`

+∆I
`

.

• In addition, if (T∞)i is the steady-state temperature vector if all nodes are in
‘idle’ mode, T̂∗k(τ) ≥ Tk(t) for all 0 ≤ t ≤ τ and any set of feasible workload
traces with the same initial temperature vector T0

≤ (T∞)i.

Proof. First, we rewrite Eq. (5.12) with Eq. (5.25) to derive Eq. (5.33).
As Lemma 5.7 states that T̆∗k,`(τ) ≥ T̆k,`(τ) for all `, and Tk(t) = Tinit

k (t) +∑η
`=1 Tk,`(t), we get T̆∗k(τ) ≥ Tk(τ).

The second item is a simple consequence of Lemma 5.6. As T̆∗k(τ) ≥
T̂∗k(τ), T̆∗k(τ) ≥ Tk(t) for all t ≤ τ. �

Three different methods to calculate an upper bound on the maximum
temperature have been presented in this section. The first method calcu-
lates the critical accumulated computing time with Algorithm 5.1 leading
to the worst-case peak temperature T∗k of node k. The second method cal-
culates the accumulated computing time according to Eq. (5.24) leading to
T̂∗k, and the last method calculates an upper bound on the maximum tem-
perature T̆∗k of node k with the analytical expression defined in Eq. (5.32).
The relation between these three different bounds on the maximum tem-
perature is as follows:

T̆∗k(τ) ≥ T̂∗k(τ) ≥ T∗k(τ). (5.34)
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5.6 Automatic Generation and Calibration of
Analysis Models

Automation is the key for fast design space exploration. Design decisions
are taken on the basis of comparing different candidate mappings and
how well they perform with respect to both timing and temperature. In-
tegrating formal timing and thermal analysis models in the system-level
design space exploration loop requires both automatic generation of anal-
ysis models and automatic calibration of these models with performance
data reflecting the execution of the system on the target platform. For
today’s multi- and many-core platforms, the manual generation of such
analysis models and the individual calibration of all components with
platform-dependent data is a major effort, which would slow down the
entire design cycle and would be an actual source of errors.

In this section, we argue that for the considered class of systems, the
generation of formal analysis models can be fully automated and that the
thermal and timing analysis models can be parameterized from model
calibration based on a set of benchmark mappings that are executed prior
to design space exploration. In particular, we focus on the generation
and calibration of the formal thermal analysis model proposed in Sec-
tion 5.4. The generation and calibration of timing analysis models is
detailed in [HHB+12].

5.6.1 Generation of Analysis Models
The generation of a formal thermal analysis model similar to the one
introduced in Section 5.4 consists of translating system specification
S = 〈p,A, 〈Γ, σ〉〉 into the thermal analysis model Π = 〈α,Θ〉. Every ar-
rival curve α` ∈ α upper bounds the total cumulative workload of a core
c` and complies to the standard event model described in Section 5.4.1. Θ
refers to the thermal model of the platform, which is characterized by the
impulse responses (represented by matrix H) and the power consump-
tion vector P. As the processing components are supposed to be work-
conserving, the resource availability of core c` is implicitly abstracted by
the service curve β`(∆) = ∆ for all intervals of length ∆ ≥ 0.

The two-step procedure outlined in Fig. 5.13 is used to calculate the set
of arrival curves α. In a first step, the MPA modelM = 〈V,E〉 of system
S = 〈p,A, 〈Γ, σ〉〉 is generated. For each process v ∈ V of process network
p = 〈V,Q〉, an MPA Greedy Processing Component (GPC) is instantiated
and for every FIFO channel q ∈ Q, an event stream is instantiated between
the corresponding actors, by means of an MPA arrival curve. Afterwards,
binding and scheduling of processes are addressed by connecting GPCs
with corresponding resource streams. For example, preemptive fixed
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Fig. 5.13: Steps to calculate the computational demand of two processing cores. In partic-
ular, three processes v1, v2, and v3 are assigned to two cores c1 and c2.

priority scheduling can be modeled by chaining the GPCs in order of
their priority, and assigning full resource availability to the first GPC of
the chain. In Fig. 5.13, full resource availability is assigned to the GPC
corresponding to v2, and the remaining resource availability is connected
to the GPC corresponding to v3.

In the second step, the set of arrival curves α = [α1, . . . , α|C|]′ is calcu-
lated from the previously generated MPA model M = 〈V,E〉. Suppose
that actor V j represents process v j and has the arrival curve α( j). Then,
the arrival curve α` of core c` is:

α`(∆) =

|V|∑
j=1

Γ(v j, c`) · α( j)(∆). (5.35)

In case that the arrival curve α` is not complying to the standard
event model anymore, it is necessary to convert the arrival curve into the
standard event model with the method presented in [KHET07]. As the
method upper bounds the original arrival curve, the proposed thermal
analysis model still leads to a safe bound on the worst-case chip temper-
ature. Figure 5.14 illustrates this step by means of a processing core that
has three processes assigned.

The generation of the thermal model Θ follows directly from the plat-
form specification. First, the coefficientsφ, which reflect the temperature-
dependency of the leakage power, are calculated by linearizing the power
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are the arrival curves of the corresponding processes.

model described in [SSS+04]. Then, the power consumption vector P is
calculated as follows:

P(t) = φ ·
(
T(t) − Tbase

)
+Pleakage +Pdyn(t) = φ · T(t) +ψ(t) (5.36)

where Tbase is the temperature vector for which the calibration parameters
are obtained. The set of impulse responses is finally calculated with:

H(t) = eA·t
· B = e−C

−1
·(G+K−φ)·t · C−1. (5.37)

5.6.2 Calibration of Analysis Models

During model generation, the timing behavior of a system is abstracted
by arrival and service curves. The thermal behavior is abstracted by
a temperature-dependent power consumption model and a thermal RC
network. In order to obtain the required parameters for this abstraction,
the application is calibrated prior to design space exploration with data
corresponding to the target platform. Table 5.2 summarizes the required
parameters and categorizes them into two subsets, namely timing param-
eters ψtiming and thermal parameters ψthermal. While timing analysis only
depends upon the timing parametersψtiming, both subsets are required for
the calculation of the worst-case chip temperature. Timing parameters
include the worst-case and best-case execution times of a process and
the characteristics of the channels. The thermal parameters include the
power consumption and the thermal configuration of the platform.
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Tab. 5.2: Model parameters required to parameterize the thermal and timing analysis
models. The parameters are categorized into two subsets, namely timing pa-
rameters ψtiming and thermal parameters ψthermal.

entity parameter unit category

process v worst-case execution time /
best-case execution time

s / iteration time

queue q min. / max. token size bytes / access time

min. / max. write and read rate 1 time

core c clock frequency f cycles / s time

dynamic power
consumption Pdyn(c)

W thermal

leakage power
consumption Pleakage(c)

W thermal

architectureA capacitance matrix C J/K thermal

conductance matrix G /
ground conductance matrix K

W/K thermal

Both the execution time of processes and the power consumption
of the cores are associated with an uncertainty. Formal methods and
tools [WEE+08] are actually required to calculate hard bounds on the ex-
ecution time and the power consumption. However, such strict formal
methods have the disadvantage that the overall modeling effort dras-
tically increases with the complexity of the system. An alternative for
model calibration is simulation or execution on real hardware platforms.
Although safe bounds cannot be guaranteed unless exhaustive test pat-
terns are applied, they are often the only practical possibility for model
calibration. Compared to real hardware platforms, simulation has the
advantage that virtual platforms are often earlier available and allow
non-intrusive tracking of the execution. Therefore, in Section 5.8, the
prototype implementation of the mapping optimization framework uses
simulation on a cycle-accurate virtual platform to determine worst-case
execution times and power consumptions.

Time-independent parameters, i.e., the token consumption behavior
of the channels, are determined by monitoring the read and write calls
during functional simulation. Time-dependent parameters, namely the
best-case and worst-case execution times of processes are obtained by
monitoring the system in a cycle-accurate simulator. After tracking all
context switches, the individual execution times of processes are calcu-
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lated by means of a log-file analysis, where the collected information is
first decoded and then stored in a database.

In order to predict the worst-case chip temperature, thermal parame-
ters, which provide safe bounds on power dissipation, have to be deter-
mined. As described in Table 5.2, the set of thermal parameters ψthermal is
composed of two assignments:

ψthermal :

c 7→
〈

f ,Pleakage(c),Pdyn(c)
〉
∀c ∈ C

A 7→ 〈C,G,K〉.
(5.38)

A possible method to determine the maximum power consumption of
a processing core is to sum up the power dissipations of all individual
units, according to data provided by hardware designers in data sheets.
However, it is unlikely that all units are simultaneously active so that the
obtained power numbers would drastically outperform the actual power
consumption. Therefore, we use, again, a simulation-based approach to
obtain better estimates of the power consumption.

The power parameters of each processing core are obtained by moni-
toring the dynamic and leakage power dissipation separately in a cycle-
accurate simulator. As the thermal model assumes time-independent
leakage power, Pleakage(c) is set to the maximum value of the leakage
power that is observed for core c during execution. A multi-step proce-
dure is required to determine the dynamic power consumption. First, the
transient dynamic power consumption of each core is recorded as power
traces. Second, the power traces are divided into individual processes

so that the average dynamic power consumption P
v,i
dyn of process v in

iteration i is determined as:

P
v,i
dyn =

1

tv,i
end − tv,i

start

∫ tv,i
end

tv,i
start

P
v
dyn(t) dt (5.39)

where tv,i
start and tv,i

end are the start time and end time of iteration i, respec-
tively. Then, we use the maximum average value of Pdyn(t) as dynamic
power consumption Pdyn(c):

Pdyn(c) = max
∀v assigned to c

(
max
∀i

(
P

v,i
dyn

))
. (5.40)

The thermal matrices G, K, and C are computed by means of the method
described in [SSS+04]. The parameters required for this calculation, in
particular the three-dimensional floorplan and the thermal configuration
of the chip, are known from the architecture specification.
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In our mapping optimization framework, model calibration is per-
formed just once in the design flow, namely before design space explo-
ration. As all functional parameters are mapping-independent, they only
have to be obtained once for all candidate mappings. The same applies
to the thermal configuration of the platform, i.e., the G, K, and C ma-
trices. All other parameters obtained by cycle-accurate simulation vary
with each candidate mapping, but can be estimated by a set of bench-
mark mappings that covers all possible configurations. In the following
experiments, we use the MPARM [BBB+05] virtual platform for cycle-
accurate simulation. As the MPARM virtual platform is composed of
homogeneous cores and uses direct memory access controllers to reduce
the interference between computation and communication, the number
of benchmark mappings can be reduced to one.

5.7 Minimizing the Peak Temperature
So far, we have seen a method to calculate the worst-case chip temperature
and a method to generate the required formal thermal analysis model
automatically. Next, we apply these methods to calculate a process-
to-core assignment that minimizes the worst-case chip temperature and
guarantees that all real-time deadlines are met.

5.7.1 Peak Temperature Minimization Problem
In the following, we state the considered optimization problem aiming
to reduce the worst-case chip temperature. However, before being able
to state the optimization problem, we introduce the concept of a demand
bound function [BMR90] that is later used to calculate the maximum
computational demand in any time interval.

Demand Bound Function

The demand bound function [BMR90] models the maximum resource
demand of a process. More formally, the demand bound function dbfv j(∆)
of process v j upper bounds the maximum accumulated computational
demand of all events that arrive and have deadline in any interval of
length ∆. Formally, the demand bound function dbfv j(∆) is defined by:

dbfv j(∆) = α j(∆ −D j) ∀∆ ≥ 0. (5.41)

The demand bound function dbfc`(∆) of core c` depends on the
scheduling algorithm. For example, when an EDF scheduler is used
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to arbitrate between events of different processes assigned to the same
core, the demand bound function dbfc`(∆) is [BMR90]:

dbfc`(∆) =

|V|∑
j=1

Γ(v j, c`) · dbfv j(∆). (5.42)

Optimization Problem

Now, we are able to formulate the considered optimization problem:

Given a process network p = 〈V,Q〉 that is mapped onto a many-core SoC.
Then, the goal is to select a static assignment of processes to cores such that
all deadlines are met and the worst-case chip temperature T∗S is minimized.

In other words, the objective of the optimization problem is to reduce the
worst-case chip temperature:

minimize T∗S = max
(
T∗1, . . . ,T

∗

η

)
(5.43)

where T∗k is the worst-case peak temperature of node k and η is the number
of nodes of the equivalent thermal RC circuit.

In order to guarantee that the real-time deadlines of all events are met,
we have to make sure that the cumulated number of available computing
resources is in no time interval ∆ smaller than the maximum resource
demand. To this end, we use the concept of the demand bound function.
Then, the schedulability test can be written as follows:

dbfc`(∆) ≤ ∆ ∀∆ ≥ 0 and c` ∈ C. (5.44)

Finally, we have to make sure that each process is assigned to only one
core: ∑

c`∈C

Γ(v, c`) = 1 ∀v ∈ V. (5.45)

The previously stated thermal optimization problem can be solved
with a wide variety of optimization techniques including the techniques
discussed in Chapter 2. For illustration purpose, we will use simulated
annealing [KGV83] to solve the optimization problem in the following
case studies.
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5.7.2 Temperature Reduction by Voltage Scaling
In addition, the worst-case chip temperature can be reduced by assigning
each core its optimal frequency, i.e., the minimum operation frequency so
that no real-time deadlines are missed. In the following, we extend both
the system and thermal analysis model and formulate the optimization
problem to make use of voltage and frequency scaling to reduce the power
consumption and thus the worst-case chip temperature.

Each core c` has its own clock domain and executes at a static fre-
quency f` with 0 ≤ f` ≤ f max

` . We suppose that the runtime of process v
scales linearly with the operation frequency. Thus, the total accumulated
workload of c` is upper bounded by the arrival curve:

α`(∆) =
f max
`

f`
·

|V|∑
j=1

Γ(v j, c`) · α j(∆). (5.46)

Furthermore, we assume that the dynamic power consumption of core
c` grows quadratically with its supply voltage ν` and linearly with its
operation frequency f` [RCN08]:

P`,dyn(t) ∝ ν2
` · f` · S`(t). (5.47)

Similar to [MMA+07], we suppose that the square of the supply voltage
scales linearly with the operation frequency even though the results of
this section also hold for any other monotonic relation between supply
voltage and frequency. Then, the total power consumption is given by:

P(t) = φ · T(t) + ρ · diag(f)3
· S(t) +ω (5.48)

with diagonal matrix diag(f) of vector f and constant diagonal matrices ρ
and ω. As the operation frequency is statically assigned at design time,
the thermal analysis method proposed in Section 5.5 still provides an
upper bound on the maximum temperature.

In order to calculate the minimum operation frequency so that no
real-time deadlines are missed, we rewrite the demand bound function
dbfc`(∆) with the scaled operation frequency f`:

dbfc`(∆) =
f max
`

f`
·

|V|∑
j=1

Γ(v j, c`) · dbfv j,c`(∆). (5.49)

Finally, rewriting Eq. (5.44) with the above expression for the demand
bound function results in the following expression for the minimum oper-
ation frequency for a core that uses an EDF scheduler to arbitrate between
events of different processes:

f` = sup
∆≥0

 f max
` ·

∑
|V|
j=1 Γ(v j, c`) · dbfv j,c`(∆)

∆

 . (5.50)
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5.8 Evaluation
In this section, a prototype implementation of the proposed system-level
mapping optimization framework is used to explore different system
designs with respect to both worst-case latency and temperature. In the
first case study, the viability of the proposed thermal analysis methods
is discussed by comparing the maximum temperatures obtained with
four different evaluation methods. Then, in the second case study, we
evaluate the time to perform design space exploration and the quality
of the obtained temperature bounds. Finally, Pareto-optimal candidate
mappings are identified for two benchmark applications and the effect
of frequency and voltage scaling on the worst-case chip temperature is
evaluated. A mapping is considered to be Pareto-optimal if, for a given
performance, no other mapping has a lower worst-case chip temperature.

5.8.1 Experimental Setup
The target platform is the MPARM [BBB+05] cycle-accurate simulator that
emulates an ARM-based MPSoC. The reconfigurable platform is com-
posed of a variable number of identical 32-bit ARM 7 cores and shared
memories, which are connected by a shared bus. The communication
channels are implicitly assumed to be mapped onto the scratchpad of the
core of the sender process. If not stated otherwise, thermal management
methods have been deactivated, but it is assumed that the core can switch
to a power-saving mode if no process is executed. If not specified oth-
erwise, fixed priority preemptive scheduling is used on all cores while a
TDMA policy is employed on the bus.

In order to execute DAL applications on top of the MPARM virtual
platform, the DOL software synthesis back-end for the MPARM simula-
tor [HHBT09] has been ported to the DAL design flow. The proposed
thermal analysis methods have been integrated into the DAL design flow
by extending the MPA framework [WTVL06] with the ability to calculate
the worst-case chip temperature by the methods proposed in Section 5.5.

Automated model calibration is performed based on timing and power
numbers extracted from the MPARM virtual platform and thermal pa-
rameters extracted from HotSpot [HGV+06]. The considered power
model of the MPARM virtual platform is detailed in [Sch11] and the
considered thermal configuration of HotSpot is summarized in Table 5.3.
The floorplans used in all case studies are based on the examples given
in [ADVP+07], but adjusted to the MPARM virtual platform and the num-
ber of cores of the considered target architecture.

All experiments have been performed on a 3.20 GHz Intel Pentium D
machine with 2 GB of RAM.



5.8. EVALUATION 169

Tab. 5.3: Thermal configuration of HotSpot [HGV+06].

parameter symbol value

silicon thermal conductance [W/(m · K)] kchip 150
silicon specific heat [J/(m3

· K)] pchip 1.75 · 106

thickness of the chip [mm] tchip 3.5
convection resistance [K/W] rconvec 2
heatsink width [m] ssink 0.017
heatsink thickness [mm] tsink 0.01
heatsink thermal conductance [W/(m · K)] ksink 400
heatsink specific heat [J/(m3

· K)] psink 3.55 · 106

thickness of the interface material [mm] tinterface 0.04
ambient temperature [K] Tamb 300

5.8.2 Benchmark Applications
In this section, we analyze the timing and temperature behavior of four
benchmark applications:

Producer-Consumer (P-C)

The P-C benchmark is a simple application that consists of five pipelined
processes. The ‘producer’ generates a stream of floating-point numbers,
which are passed to the first ‘worker’ process. After computing a few
arithmetic operations, each ‘worker’ process forwards the floating-point
number to the next ‘worker’ process until the ‘consumer’ receives it.

MJPEG Decoder

MJPEG [Wal92] is a video compression format in which each video frame
is compressed as a JPEG image. The MPA model of the considered con-
figuration is outlined in Fig. 5.15a. The decoder’s input, abstracted by
the arrival curve αin, is a video stream. The first actor splits the video
stream into individual frames. Then, the second actor splits the frames
into macroblocks to decode each macroblock separately. Afterwards, the
decoded macroblocks are stitched together into a frame and finally into a
stream.

Fast Fourier Transform (FFT)

In order to compute an 8-point FFT, a distributed log(8)-stage butterfly
network [WC93] has been implemented. Each stage is composed of four
multiply-subtract-add modules so that the application can be split up into
twelve processes, each computing a multiply-subtract-add module.
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Fig. 5.15: Component models of the considered benchmark applications. For the sake
of simplicity, the component model of the bus is not shown. αin abstracts the
system’s input stream. β1, β2, and β3 abstract the available resources of core c1,
c2, and c3, respectively.

Matrix Multiplication

The distributed matrix multiplication application computes the product
of two N×N matrices by subdividing the matrix product into single mul-
tiplications and additions. This way, the application is split up into single
processes, each performing a multiplication followed by an addition. To
feed the structure and to retrieve the result, an input generator and an
output consumer are added. Figure 5.15b shows the MPA model of the
considered configuration for N = 2.

5.8.3 Peak Temperature Analysis
First, we study the viability of the thermal analysis methods proposed
in Section 5.5. To this end, we compare the worst-case chip temperature
that is calculated by the proposed thermal analysis methods with the
maximum temperature that is obtained by two widely used temperature
evaluation methods. Afterwards, we apply the proposed thermal analysis
methods to explore the temperature distribution on a 25-core processor.

Transient Temperature Evolution

We start by comparing the transient temperature evolution and the result-
ing maximum temperature for different evaluation methods if the target
platform is configured to consist of three processing cores. In particu-
lar, we compare the worst-case chip temperature obtained by using the
formula stated in Eq. (5.32), the temperature evolution of the thermal
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(b) Matrix multiplication, core 1.

thermal critical timing critical cycle-accurate simulation

Fig. 5.16: Temperature evolution of the node corresponding to the core with the maximum
temperature when the system is processing the MJPEG decoder application or
the matrix multiplication application.

critical instance, the temperature evolution of the timing critical instance,
and the temperature evolution of 40 workload traces simulated on a cycle-
accurate simulation tool-chain based on the MPARM virtual platform and
HotSpot. The thermal critical instance is the trace that leads to the worst-
case chip temperature and the timing critical instance is the trace that
releases the workload as early as possible. In order to stress the system,
the 40 input traces executed on the cycle-accurate simulation tool-chain
cover the whole range of possible input streams. In particular, among the
40 traces, there are input streams where the number of events arriving
concurrently equals the maximum length of the input stream’s burst.

Figure 5.16 presents the results of the transient temperature simulation
in the interval [0, 8 ]s when the observation time τ is set to eight seconds.
Even though we only show the temperature evaluation of two benchmark
applications, the findings for the other benchmark applications show
similar trends.

The maximum temperature caused by the timing critical instance is
349.8 K for the MJPEG decoder application and 347.3 K for the matrix mul-
tiplication application. As it releases the workload as early as possible, the
timing critical instance heats up the system faster than any other trace at
the beginning, but the system cools down at a later point in time. All other
traces that are recorded on the cycle-accurate simulation tool-chain heat
up the chip the most when multiple events arrive concurrently. In partic-
ular, the average maximum temperature caused by these workload traces
is 352.4 K and 346.1 K, and the highest maximum temperature is 360.1 K
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and 351.1 K for the MJPEG decoder application and the matrix multipli-
cation application, respectively. The thermal critical instance places all
bursts close to the observation time τ so that at time τ = 8 s, a maximum
temperature of 363.5 K is observed for the MJPEG decoder application.
Furthermore, Eq. (5.32) leads to an upper bound on the worst-case chip
temperature of 364.9 K for the MJPEG decoder application. The worst-
case chip temperature of the matrix multiplication application is 354.2 K
if the thermal critical workload is simulated and Eq. (5.32) leads to an
upper bound on the worst-case chip temperature of 354.6 K.

Workload traces, which have an input stream where the number of
concurrently arriving events equals the maximum length of the input
stream’s burst, lead to a high maximum temperature that might be only
a few degrees below the worst-case chip temperature. The difference
between the maximum temperature of such workload traces and the
worst-case chip temperature may be caused due to several reasons. First,
the power consumption depends on various impact factors like cache
misses and bus congestions. Second, as shown in Section 5.5, the worst-
case chip temperature occurs when all cores simultaneously process a
specific pattern, which might be different from a bursty input stream.
The small difference between calculating the worst-case chip temperature
using the formula stated in Eq. (5.32) and simulating the thermal critical
instance is mainly attributed to the fact that the heat transfer among
neighboring cores is much smaller than the effect of self-heating. For
self-heating, the length of the burst is the same for both methods as t̃ Hk`

max
(see Section 5.4.2) is equal to the observation time τ.

The average durations for simulating the transient temperature evo-
lutions are shown in Table 5.4. Simulating the temperature evolution
on the cycle-accurate simulation tool-chain is two orders of magnitude
slower than calculating the thermal critical instance and four orders of
magnitude slower than calculating an upper bound on the maximum
temperature using the formula stated in Eq. (5.32).

Tab. 5.4: Durations for simulating the transient temperature evolution for different eval-
uation methods and calculating an upper bound on the worst-case chip temper-
ature using the formula stated in Eq. (5.32).

P-C MJPEG FFT Matrix

upper bound according to Eq. (5.32) 0.43 s 0.10 s 0.56 s 0.45 s
thermal critical instance 84.8 s 94.3 s 83.0 s 90.5 s
timing critical instance 1.8 s 2.2 s 2.2 s 2.2 s
cycle-accurate simulator 24′876 s 22′428 s 22′873 s 23′372 s
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Fig. 5.17: Worst-case peak temperature distribution for a 25-core processor when executing
an MJPEG decoder application. The cores are arranged in a grid with five rows.

Temperature Distribution on a 25-Core Processor

Next, we consider a many-core platform with 25 cores executing an
MJPEG decoder with 10 processes. The cores are arranged in a grid with
five rows and the corresponding thermal model has order3 112. We will
show that the temperature distribution, and thereby the worst-case chip
temperature of the system, is affected by the process-to-core assignment.

Figure 5.17 shows the worst-case chip temperature distribution of the
system for four different mappings. Motivated by the previous results, we
calculate the worst-case chip temperature using Eq. (5.32). In Fig. 5.17a,
the processes are mapped onto cores situated in the left top corner of the
chip. Next, in Fig. 5.17b, the processes are distributed among cores in
all four corners. In Fig. 5.17c, the processes are distributed all over the
chip, and finally, in Fig. 5.17d, the processes are mapped onto cores in
the middle of the chip. The highest peak temperature occurs in Fig. 5.17a
and the lowest one in Fig. 5.17c. The difference between their worst-case
chip temperatures is of about 16 K. This shows that the worst-case chip
temperature can be reduced by spreading the workload over the chip. In
this case, intermediate cores with no workload act like a passive cooling
system and keep hot spots separated.

5.8.4 Efficiency and Quality
After discussing the viability of the thermal analysis methods, we inte-
grate them into the mapping optimization framework and measure its

3The number of nodes of the thermal model is four times the number of cores plus 12
additional nodes whereby the factor four comes from the fact that the thermal model
has four vertical layers. See Section 5.4.2 for more details.
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efficiency and quality. To this end, we first obtain the model param-
eters from executing the application with a benchmark mapping. Af-
terwards, during design space exploration, these model parameters are
used to analyze different candidate mappings, whereby the worst-case
chip temperature is obtained by simulating the thermal critical instance.
To measure the efficiency, we compare the duration of analysis model
generation, calibration, and evaluation. In order to evaluate the qual-
ity of the obtained results, the worst-case chip temperature obtained by
simulating the thermal critical instance is compared to the maximum
temperature observed on a ten seconds system simulation using the pre-
viously described cycle-accurate simulation tool-chain, and the maximum
steady-state temperature calculated out of the average power consump-
tion [SSS+04]. Both methods correspond to typical state-of-the-art ther-
mal evaluation methods that are used in thermal-aware task allocation
and scheduling framework [XH06, CDH08]. Again, we are targeting the
MPARM virtual platform with three cores.

The durations of analysis model generation, calibration, and evalua-
tion are listed in Table 5.5. First, we note that calibration is two to three
orders of magnitude slower than model generation and evaluation. Out
of the three steps to perform model calibration, cycle-accurate simulation
on MPARM is the most time consuming step. The duration of the log-file
analysis step mainly depends on the number of context switches, which
in turn depends on the number of processes. As a new log entry is created
for every context switch, the duration of the log-file analysis is long for
the FFT application, where many dependent processes are concurrently
executed. Furthermore, both the duration of model calibration and the

Tab. 5.5: Duration of analysis model generation, calibration, and evaluation. The row
“synthesis” includes the time for functional simulation and the values reported
in row “simulation” refer to the simulation on the MPARM virtual platform.

P-C MJPEG FFT Matrix

model cali- synthesis 37 s 58 s 47 s 39 s
bration (one- simulation 24′709 s 22′504 s 22′752 s 23′510 s
time effort) log-file analysis 114 s 114 s 1847 s 292 s

overall time for one
mapping

24′861 s 22675 s 24′646 s 23′842 s

design space model generation 2 s 3 s 2 s 2 s
exploration model evaluation 96 s 132 s 96 s 119 s

overall time for one
mapping

98 s 135 s 98 s 121 s
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Fig. 5.18: Comparison of the worst-case chip temperature obtained by simulating the ther-
mal critical instance, the maximum temperature observed on a ten seconds sys-
tem simulation, and the maximum steady-state temperature for six candidate
mappings per benchmark application.

accuracy of the obtained results are affected by the length of the execution
trace. In general, longer execution traces increase the calibration time but
result in better calibration data with respect to worst-case execution time
and average power consumption.

In Fig. 5.18, the worst-case chip temperature obtained by simulating
the thermal critical instance is compared with the maximum temperature
observed on a ten seconds system simulation using the cycle-accurate sim-
ulation tool-chain and with the maximum steady-state temperature. In
total, we evaluated six randomly selected candidate mappings per bench-
mark application. The values are ordered by the maximum temperature
observed by the system simulation, in descending order.

First, we note that the worst-case chip temperature always upper
bounds the maximum temperature obtained from cycle-accurate simula-
tion. As cycle-accurate simulation is several orders of magnitude slower
than formal thermal analysis, this confirms our approach to include for-
mal worst-case analysis models in the design space exploration loop and
to use cycle-accurate simulation only for model calibration. Second, one
can draw the conclusion that the steady-state temperature is no indicator
for a low worst-case chip temperature. Third, we note that a mapping
candidate with a lower maximum temperature from simulation does not
necessary have a lower worst-case chip temperature. On the one hand, the
maximum temperature of the cycle-accurate simulation underestimates
the worst-case chip temperature due to the infeasibility of an exhaustive
simulation of all system configurations. On the other hand, the proposed
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thermal analysis method does not lead to a tight bound on the maximum
temperature of the system, due to several reasons:

• The parameters modeling the power consumption are the maximum
average power consumption per iteration, thus they overestimate
the actual power consumption.

• The workload curves of the individual cores are not independent
of each other as the component model results from a single process
network.

• As not all arrival curves comply with the standard event model, the
original arrival curves have to be upper bounded.

Unlike simulation, the proposed thermal analysis method calculates a
safe bound on the maximum temperature of a candidate mapping. The
difference between the worst-case chip temperature and the maximum
temperature of the system simulation is the worst possible inaccuracy of
the formal worst-case analysis method. Nonetheless, due to the over-
approximation of a tight bound on the maximum temperature of the
system, another candidate mapping might actually have a lower maxi-
mum temperature. To avoid the selection of a wrong candidate mapping,
the designer might keep more than one mapping candidate after the first
design space exploration, and reevaluates these candidates with either a
higher accuracy or a cycle-accurate simulator.

In summary, calculating the worst-case chip temperature by means
of a formal analysis model is desirable. First, identifying the worst-
case chip temperature is notably important in real-time systems. The
functional correctness of a processor is often only given as long as a
certain critical temperature is not exceeded. Therefore, thermal-aware
mapping optimization algorithms have to include the worst-case chip
temperature in their objective function. Second, as the formal thermal
analysis method is several orders of magnitude faster than cycle-accurate
simulation, it enables a much faster and more complete exploration of the
design space.

5.8.5 Design Space Exploration

In the third case study, we apply the proposed thermal analysis methods to
explore the design space of various synthetic and real-world applications.
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Fig. 5.19: Worst-case chip temperature vs. latency for 50 random mapping configurations.

Worst-Case Chip Temperature vs. Latency

We start by comparing the temporal and thermal characteristics of two
real-world applications that are mapped onto a target platform with three
cores. To this end, we use a prototype implementation of our mapping
optimization framework to explore parts of the design space of the MJPEG
decoder application and of the matrix multiplication application. The de-
sign space is formed by two analysis metrics, namely the worst-case chip
temperature and the overall latency of the application, both calculated by
the extended MPA framework.

Figure 5.19 shows the scatter plots for the two benchmark applica-
tions having the worst-case chip temperature on the horizontal axis and
the latency on the vertical axis. Each of the 50 points refers to a different
candidate mapping. It shows that no solution is optimal with respect
to both latency and temperature. For the MJPEG decoder, the worst-
case chip temperature of the candidate mapping leading to the lowest
latency, i.e., 1.94 s, is 360.2 K and the candidate mapping leading to the
lowest worst-case chip temperature of 342.2 K has a worst-case latency of
11.7 s. Similarly, for the matrix multiplication application, the worst-case
chip temperature of the candidate mapping leading to the lowest latency
is 354.9 K, but the lowest worst-case chip temperature is just 350.6 K.
The Pareto-optimal candidates are highlighted in the figure. In particu-
lar, there are five Pareto-optimal candidates for the MJPEG decoder and
six Pareto-optimal candidates for the matrix multiplication. For exam-
ple, suppose that the target platform has a critical temperature of 355 K,
i.e., exceeding this temperature might lead to functional errors. Then, the
system designer would select the mapping with the lowest latency from
all mappings that have a worst-case chip temperature smaller than 355 K.



178 CHAPTER 5. THERMAL-AWARE SYSTEM DESIGN

Programmed to consider this temperature constraint, the mapping opti-
mization framework would select mapping (3) as the optimal mapping for
the MJPEG decoder and mapping (6) as optimal mapping for the matrix
multiplication. As the proposed algorithm offers safe bounds, the system
can execute the mapping safely without further involving other dynamic
thermal management strategies, which may lead to unpredictable behav-
ior.

To study the connection between worst-case chip temperature and
worst-case latency in greater detail, Fig. 5.20 outlines eight selected map-
ping configurations of the MJPEG decoder application together with their
worst-case chip temperature T∗S and their worst-case overall latency l∗. In
order to study the effect of the placement, we study solution pairs where
only the placement of the processing cores has changed. For example,
mappings 5.20a and 5.20b and mappings 5.20c and 5.20d are solution
pairs. It shows that the physical placement cannot be ignored in temper-
ature analysis. In particular, mappings 5.20a and 5.20b have almost the
same latency, but their peak temperatures differ by more than 8 K. There-
fore, even if the mapping is already predefined, the system designer might
reduce the temperature by selecting an appropriate physical placement.

Peak Temperature Reduction

Next, we apply the proposed temperature analysis methods to obtain the
process-to-core assignment that minimizes the worst-case chip temper-
ature the most. To this end, we solve the thermal optimization prob-
lem stated in Section 5.7 with different solvers and compare the obtained
worst-case chip temperatures. For process networks with a small number
of processes and platforms with a low number of cores, the optimization
problem can be solved exhaustively. Thus, we first compare the perfor-
mance of a heuristic solver with the optimal solution found by exploring
the design space exhaustively. The heuristic solver uses simulated an-
nealing [KGV83] to solve the thermal optimization problem. In addition,
the average peak temperature of 20 feasible, i.e., schedulable, random
process assignments is calculated.

We consider three different hardware platforms with three, four, and
six cores, respectively. Each core is running at its maximum operation
frequency, i.e., 1.6 GHz, and an EDF scheduler is running on each core to
arbitrate between events of different processes assigned to the same core.
Each process network is randomly generated so that its number of pro-
cesses is between four and six. Each process v is characterized by a period,
a jitter, and a computing demand. The period perv is uniformly chosen
from [1, 400 ]ms, the jitter is uniformly chosen from [1 ms, 2 · perv], and the
computational demand is uniformly chosen from

[
1, perv · f max/5

]
cycles
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Fig. 5.20: Eight mapping configurations of the MJPEG decoder application together with
their worst-case chip temperature T∗S and their worst-case overall latency l∗.

with f max = 1.6 GHz. Finally, the real-time deadline of a process is set to
its period.

Figure 5.21 compares the performance of the three solvers. Exhaus-
tively exploring the design space results in a process-to-core assignment
that has a worst-case chip temperature, which is, on average, only 0.37 K
smaller than the maximum temperature of the process assignment found
by simulated annealing. For comparison, the average peak temperature
of the random assignments is on average 3.6 K higher than the minimum
peak temperature. Calculating the optimal solution for the hardware plat-
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Fig. 5.21: Performance of different solvers for the temperature minimization problem.
Three different hardware platforms with a 3 × 1, 2 × 2, and 3 × 2 layout are
considered.

form with six cores takes on average 94.5 min and simulated annealing
finishes on average in 33.8 s.

Voltage and Frequency Scaling

Finally, we evaluate the effect of frequency and voltage scaling on the
worst-case chip temperature. To this end, we assume that the multi-core
ARM platform has two different modes to control the operation frequency.
Either all cores have a common clock domain or each core is supposed to
have its own clock domain whereby the maximum operation frequency
is supposed to be 1.6 GHz. Again, an EDF scheduler is running on each
core to arbitrate between events of different processes assigned to the
same core.

The mapping optimization framework is configured to calculate the
worst-case chip temperature using Eq. (5.32) and solves the optimization
problem stated in Section 5.7 for the following three configurations:

1. Maximum frequency: each core is running at its maximum frequency.

2. Single clock domain: the platform has a single clock domain for all
cores and is running at the minimum operation frequency so that
no real-time deadline is missed.

3. Separate clock domain: each core has an own clock domain and is
running at the minimum operation frequency so that no real-time
deadline is missed.

In other words, in the third configuration, each core has a separate fre-
quency that is individually calculated by Eq. (5.50). In the second config-
uration, all cores are running at the same frequency and this frequency
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(d) 4 × 4 layout.
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Fig. 5.22: Worst-case chip temperature for three different frequency configurations and
four hardware platforms. The worst-case chip temperature is calculated under
the following assumptions: a) all cores are running at maximum frequency, b)
the platform has a single clock domain, and c) each core has a separate clock
domain.

is set to the maximum frequency of all frequencies used for the third
configuration.

The layouts of the considered platforms are 3× 1, 3× 2, 3× 3, and 4× 4
with 3, 6, 9, and 16 cores, respectively. We compare eight different process
networks per platform and each process network is randomly generated
so that it has one to three times as many processes as number of cores.
We again use simulated annealing to solve the optimization problem.

In Fig. 5.22, we plot the worst-case chip temperature for the three
different frequency configurations and four hardware platforms. It shows
that the worst-case chip temperature can be reduced drastically when the
cores are running at their optimal frequency. If each core has its own
clock domain, the peak temperature is on average reduced by 24.2 K for
the 3 × 1 layout, by 17.6 K for the 3 × 2 layout, 22.5 K for the 3 × 3 layout,
and 22.8 K for the 4 × 4 layout.
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5.9 Summary

Nowadays, the thermal wall is recognized as one of the most significant
barriers towards high performance systems [HFFA11]. Reactive ther-
mal management techniques, which are considered in general-purpose
computing systems as efficient tools for temperature control, keep the
maximum temperature under a given threshold by stalling or slowing
down the processor. However, as they cause a significant performance
degradation, reactive thermal management techniques are often unde-
sirable in embedded systems, in particular when real-time constraints
are tackled. Therefore, providing guarantees on maximum temperature
is as important as functional correctness and timeliness when designing
embedded many-core SoCs.

The outcome of this chapter is a high-level optimization framework for
mapping dataflow process networks [LP95] onto embedded many-core
SoC platforms that guarantees the final performance and correct function
of the system, considering both temporal and thermal properties. In com-
parison with reactive thermal management techniques, the optimization
framework aims at identifying a mapping alternative that results in a sys-
tem that has a formally proven maximum temperature that is lower than
the critical temperature of the chip. Alternatively, the mapping optimiza-
tion framework aims at identifying a mapping candidate that minimizes
the maximum chip temperature.

To this end, a two-stage approach is applied. First, potential mapping
candidates are evaluated by means of formal worst-case analysis meth-
ods that provide safe bounds on the execution time and the maximum
chip temperature. Afterwards, mapping alternatives that do not conform
to real-time and peak temperature requirements are ruled out during de-
sign space exploration. In order to use formal timing and thermal analysis
methods during design space exploration, the analysis models are gen-
erated automatically from the same set of specifications that are used for
software synthesis. Afterwards, the analysis models are calibrated with
performance data reflecting the execution of the system on the target
platform. The performance data is obtained automatically prior to design
space exploration based on a set of benchmark mappings. The considered
thermal analysis model is able to address various thermal effects like the
heat exchange between neighboring cores and temperature-dependent
leakage power to model the thermal behavior of modern many-core SoC
platforms accurately. Real-time calculus [TCN00], a formal method for
schedulability and performance analysis of real-time systems, is applied
to upper bound the workload that might arrive in any time interval. A
novel thermal analysis method then identifies the critical workload trace
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that leads to the worst-case chip temperature, i.e., the maximum chip
temperature under all feasible scenarios of task arrivals.

Finally, based on a prototype implementation of the proposed high-
level mapping optimization framework, we have demonstrated that there
is no single optimal solution with respect to both real-time performance
and temperature, but all generated solutions are worst-case guaranteed
with respect to application behavior and impact of a non-deterministic
environment. With the proposed framework, system designers receive a
powerful tool to map applications onto many-core SoC platforms so that
the system can safely execute without involving further dynamic thermal
management strategies, which may lead to unpredictable behavior.
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6
Conclusion

In this chapter, we summarize the contributions of this thesis and discuss
potential directions for future research.

6.1 Main Results
The aim of this thesis is to show that the properties of streaming program-
ming models can be leveraged to develop a design, optimization, and
synthesis process for embedded many-core Systems-on-Chip (SoCs) that
enables the system to utilize its computing power efficiently. To this end,
the Distributed Application Layer (DAL) design flow, a model-driven
development approach to design reliable and efficient many-core SoCs,
is proposed. The DAL design flow addresses new challenges stemming
from the massive computational demand of future embedded applica-
tions and the massive hardware parallelism of many-core SoC platforms.
The main contributions are summarized in the following:

• We introduce a scenario-based design flow for mapping a set of dy-
namically interacting streaming applications onto a heterogeneous
many-core SoC. We adapt a finite state machine to specify the in-
teractions between the applications. Each state of the finite state
machine represents an execution scenario, i.e., a certain use case of
the system with a predefined set of running applications. To exploit
the available hardware resources efficiently, we propose a hybrid
design time and runtime mapping strategy. As each execution sce-
nario can be analyzed separately, reasoning about correctness and
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performance is enabled at design time. To include the evaluation of
all possible failure scenarios in the design time analysis, spare archi-
tectural units are allocated during design time optimization and are
used as target for process migration after the occurrence of a fault.
We develop a prototype implementation of DAL targeting Intel’s
Single-chip Cloud Computer (SCC) processor as a proof-of-concept
of the proposed design flow and runtime environment.

• We argue that process networks can be specified in a manner that
enables the automatic exploration of task, data, and pipeline par-
allelism. To this end, we propose the semantics of Expandable
Process Networks (EPNs), which extends conventional program-
ming models for streaming applications in the sense that several
possible granularities are abstracted in a single high-level specifica-
tion. We show that the EPN semantics facilitates the synthesis of
multiple design implementations that are all derived from the same
application specification. To include the proposed concepts in the
system design, we extend the DAL design flow by an additional
design step, which optimizes the application structure to match the
available hardware parallelism.

• We propose a systematic approach to exploit the multi-level paral-
lelism of heterogeneous systems. The basic idea of the approach is to
process multiple firings of a process concurrently and to calculate in-
dependent output tokens in parallel so that Single Instruction, Mul-
tiple Data (SIMD) execution can be achieved. As a proof-of-concept,
we developed a general code synthesis framework to execute DAL
applications on any Open Computing Language (OpenCL)-capable
platform. In contrast to previous work, our framework is capable
of embedding the parallel entities of streaming applications into
low-level OpenCL kernels automatically.

• We describe a high-level optimization framework for mapping pro-
cess networks onto embedded many-core architectures that opti-
mizes a system design with respect to both performance and tem-
perature. To evaluate the thermal characteristics of mapping candi-
dates, we propose a novel technique to calculate a non-trivial upper
bound on the peak temperature of a many-core SoC. The method
is based on real-time calculus and identifies the critical workload
trace that leads to the worst-case chip temperature. To integrate this
formal worst-case real-time analysis method seamlessly into system
design, we describe an approach to generate the underlying analy-
sis models automatically from the same set of specifications as used
for software synthesis.
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6.2 Possible Future Directions

The contributions of this thesis integrate multi-application support and
thermal analysis successfully into the design flow of embedded many-
core SoCs. Nevertheless, there exists potential for further extensions and
improvements.

The following list suggests research in several directions that bears
potential for future work.

• Handling Previously Unknown System Dynamics

Nowadays, a widely accepted assumption in the embedded system
community is that all possible use-cases of the system are known
at design time. However, this assumption is only true as long as
the system has no external communication capabilities, which allow
users to modify the original system configuration, e.g., by installing
additional applications. If unknown applications can be installed
after deployment, system analysis and mapping decisions must be
performed at runtime. However, applying the previously devel-
oped mapping and optimization strategies at runtime is a challeng-
ing task.

In the context of this thesis, three questions immediately arise. First,
how to integrate and analyze new execution scenarios at runtime
without causing long response times? Second, how to adapt the ap-
plication’s degree of parallelism at runtime, i.e., how to determine
an alternative process network and its mapping to the available
resources at runtime without interrupting the execution of the sys-
tem? Finally, how to control the on-chip temperature and reduce the
energy consumption of an embedded system efficiently if the work-
load changes dynamically? A promising approach for answering
the third question might be to predict the thermal dynamics in real
time and to trigger appropriate thermal management techniques as
proposed in [YSW13].

• Offloading Data Processing

Another advantage of the external communication capabilities is
the possibility to offload computational intensive tasks from mobile
devices to the cloud [TC13]. However, deciding which tasks should
be offloaded is a challenging problem, in particular if real-time con-
straints must be met. Besides offloading data processing tasks, one
can also think of offloading management and control tasks like run-
time mapping optimization.
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• Heterogeneous Mapping Strategies

In Chapter 4, we have shown a systematic approach to exploit the
multi-level hardware parallelism of heterogeneous systems. How-
ever, we have also observed that the performance depends on the
selected mapping of application elements onto computation and
communication resources and on the low-level configuration of
the individual compute devices. Clearly, finding a good mapping
for such a platform is considerably more difficult than finding a
good mapping for a homogeneous platform. Therefore, it would
be highly beneficial to have analysis models that incorporate the
multi-level hardware parallelism offered by future heterogeneous
systems.

• Efficient Thermal Calibration Methods

In Chapter 5, we have described a method to calibrate the consid-
ered thermal analysis models automatically. A drawback of the
proposed calibration method is that it requires detailed knowledge
of the floorplan, the electrical characteristics, and the power con-
sumption of the processors, which are typically not available for a
real hardware platform. Therefore, it would be useful to extend the
proposed calibration method to estimate the thermal characteristics
of the chip accurately, without knowing the previously mentioned
low-level information. A promising first approach towards this di-
rection has been proposed in [RYBT12], where the thermal charac-
teristics of a SoC are estimated based on a set of application-specific
calibration runs. However, it is an open question if the obtained
results can be used to estimate the worst-case chip temperature ac-
curately.

• Entering the Dark Silicon Era

It is likely that the area in future power-constrained processors can-
not be fully utilized anymore. A phenomenon that is referred to as
“dark silicon” [HFFA11, EBSA+11]. Various approaches to utilize
the available hardware efficiently have been proposed in literature,
including implementing specialized cores [Tay12] or reconfigurable
hardware [GHSV+11]. How to integrate the concept of dark silicon
into the system design process, however, is still an open question.
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Jerzy Waśniewski, editors, Parallel Processing and Applied
Mathematics, volume 7203 of Lecture Notes in Computer Sci-
ence, pages 579–588. Springer, 2012.

[Kah74] Gilles Kahn. The Semantics of a Simple Language for Par-
allel Programming. In Proc. of the IFIP Congress, volume 74,
pages 471–475, 1974.

[KAL14] KALRAY. MPPA MANYCORE. Flyer, KALRAY, Febru-
ary 2014. http://www.kalray.eu/IMG/pdf/FLYER_MPPA_
MANYCORE.pdf.
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