
Diss. ETH No.

Efficiency and predictability in
resource sharing multicore systems

A dissertation submitted to
ETH Zurich

for the degree of
Doctor of Sciences

presented by
ANDREAS SCHRANZHOFER
Dipl.-Ing., B.Sc. TU Graz
born December 23, 1980

citizen of Austria

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Marco Caccamo, co-examiner

2011

Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 123

Andreas Schranzhofer

Efficiency and predictability in
resource sharing multicore systems

A dissertation submitted to
ETH Zurich
for the degree of Doctor of Sciences

Diss. ETH No.

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Marco Caccamo, co-examiner

Examination date: March 8, 2011

to Anna,
and the little one we don’t know yet.

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

1 Introduction 1
1.1 Multicore and multiprocessor systems 2
1.2 Power efficiency and adaptivity 3
1.3 Timing predictability and adaptivity 5
1.4 Contributions and Thesis Outline 6

2 Allocation on heterogeneous MPSoCs 13
2.1 Introduction . 14
2.2 Related Work . 16
2.3 System Model . 18

2.3.1 Hardware Model . 18
2.3.2 Application and Scenario Specification 20
2.3.3 Problem Definition . 23
2.3.4 Hardness . 26

2.4 Global static power-aware mapping problem 27
2.4.1 Initial Solutions . 27
2.4.2 Task Remapping . 30
2.4.3 Complexity . 35

2.5 Dynamic power-aware scenario-mapping problem 35
2.5.1 Scenario Sequence Generation 35
2.5.2 Deriving templates and the hardware platform 36
2.5.3 Online mapping . 40
2.5.4 Templates for different probability distributions 41

2.6 Performance Evaluation . 41
2.6.1 Simulation Setup . 42
2.6.2 Global static power-aware mapping 43
2.6.3 Dynamic power-aware scenario-mapping 47

2.7 Chapter Summary . 51

3 Interference in Resource Sharing MPSoCs 53
3.1 Introduction . 54
3.2 Related Work . 57
3.3 System Model . 59

3.3.1 Superblock Models . 59
3.3.2 Resource Access Models 63
3.3.3 Model of the Shared Resource 65

3.4 Interference on shared resources 65
3.4.1 Analysis Overview . 66
3.4.2 Analysis Methodolgy . 69
3.4.3 Sequential execution of superblocks 70
3.4.4 Time-triggered execution of superblocks 76
3.4.5 Resulting arrival curve . 77

3.5 Chapter Summary . 78

4 Static arbitration on shared resources 81
4.1 Introduction . 82
4.2 Related Work . 83
4.3 System Model . 85

4.3.1 Models of Tasks and Processing Elements 85
4.3.2 Model of the Shared Resource 85

4.4 Analysis Overview . 87
4.5 Worst-Case Completion Time of A Phase 89

4.5.1 Terminologies and notations used for analysis 89
4.5.2 Worst-case completion time for a dedicated phase 91
4.5.3 Worst-case completion time for a general phase 92

4.6 Timing Analysis for Superblocks and Tasks 99
4.7 Schedulability among Models 100
4.8 Experimental Results . 102
4.9 Chapter Summary . 107

5 Hybrid arbitration on shared resources 109
5.1 Introduction . 110
5.2 Related Work . 112
5.3 System Model . 113

5.3.1 Models of Tasks and Processing Elements 113
5.3.2 Model of the Shared Resource 114

5.4 Analysis Overview . 115
5.5 Analysis Methodology . 118
5.6 Analysis for a single phase . 121

5.6.1 Initialization Stage . 122
5.6.2 Analysis Stage . 123
5.6.3 Finalization . 127

5.6.4 Complexity . 129
5.7 Analysis for Superblocks and Tasks 129
5.8 Simulations . 130
5.9 Chapter Summary . 133

6 Conclusion 135
6.1 Contribution . 135

6.1.1 Adaptive power-aware multiprocessor design 135
6.1.2 Task models and interference in resource sharing systems . 136
6.1.3 Towards timing predictability in resource sharing systems . 136

6.2 Outlook . 137
6.2.1 Reducing Interference or Controlled Interference 137
6.2.2 Massive multicore systems 138
6.2.3 Multiple shared resources 138

References 139

A Toolbox 149
A.1 Representing Interference . 149

A.1.1 Sequential execution of superblocks 150
A.1.2 Time-triggered execution of superblocks 151

A.2 Worst-Case Analysis for static arbitration 152
A.3 Worst-Case Analysis for hybrid arbitration 155
A.4 Integration with Project Partners 157

List of Publications 159

Curriculum Vitae 161

Abstract

Multiprocessor and multicore systems are of increasing importance for in-
dustrial applications in the control, automotive and avionic domain. Ap-
plications in these domains often perform mission critical functionalities.
In other words, these applications perform tasks with hard real-time con-
straints. The demand on computational resources grows with the compu-
tational complexity of these functionalities, e.g., control algorithms. Tra-
ditionally, these requirements for computational resources have been met
with higher execution frequencies and instruction level parallelism.

In order to satisfy rising computational demands, an industry wide shift
to parallel computing, and thus multicore and multiprocessor systems, has
taken place. The increased performance requirements are met by paral-
lelization of threads and tasks on multiprocessor and multicore systems.
Communication among tasks on different processing elements leads to con-
tention on the communication fabric, e.g., buses or shared memories, and
thus, to additional delays. This limits the gain that can be achieved by par-
allelization. Consider a system with multiple concurrently executing tasks
on different processing elements. Futhermore, consider that each task re-
quests access to the shared memory. Then it is clear that tasks have to wait
their turn for accessing the shared resource, and thus experience a delay.
This interdependency of tasks limits performance in general, and increases
the complexity of deriving hard real-time guarantees in particular.

In this thesis, we propose methods to design and analyze multicore sys-
tems with respect to power efficiency and timing predictability. The major
contributions are as follows:

• We propose an algorithm that optimizes the mapping of tasks to pro-
cessing elements. It can handle applications that are characterized by
multiple concurrently executing multi-mode applications. Each mode
is associated with an execution probability. The target hardware plat-
form is given as a library of processing element types. Each processing
element type is specified with power and performance characteristics.
The proposed algorithm derives mappings that minimize the average
expected power consumption. We consider systems with dynamic and
static (leakage) power consumption.

• We propose a dynamic power aware mapping approach by providing
a set of pre-computed template mappings. Template mappings are
computed offline, based on the set of feasible system states (denoted
scenarios) and are stored on the system. A manager monitors system
state transitions and chooses an appropriate template mapping to
assign new tasks to their respective processing elements.

• We propose a task model, where tasks are sequences of superblocks. A
superblock is a functional block that has a unique entry and exit point.
Superblocks are associated with worst-case execution times (WCETs)
and worst-case communication demands. We propose different re-
source access models, that exhibit differing amounts of uncertainty
with respect to the resource access pattern of a superblock.

• A worst-case analysis framework for resource sharing systems is pro-
posed that takes contention on the shared resource into account. The
framework allows to analyze systems with static or adaptive arbitra-
tion policies on the shared resource. We apply the analysis to two
protocols, namely Time Division Multiple Access (TDMA), as an ex-
ample for static arbitration, and FlexRay, as an example for adaptive
arbitration.

• We derive worst-case response time (WCRT) bounds for the proposed
resource access models and show that separating communication and
computation is advantageous to achieve timing predictable systems,
i.e., tight WCRT guarantees.

Zusammenfassung

In der Automobil-, Avionik- und Automatisierungsindustrie gewinnen Mul-
tiprozessor- und Multicoresysteme immer mehr an Bedeutung. Die An-
wendungen werden komplexer und zahlreicher, und viele führen zeitkritis-
che Funktionen aus. In anderen Worten, die Anwendungen haben strikte
Echtzeitbedingungen. Mit der Komplexität der Aufgaben steigt auch deren
Rechenintensität. Traditionellerweise begegnete man diesem Problem mit
erhöhten Ausführungsfrequenzen und der Parallelisierung von Instruktio-
nen.

Um den Anforderungen an Rechenleistung weiterhin gerecht werden zu
können wird vermehrt auf Parallelisierung, also auf Multiprozessor- und
Multicoresysteme, gesetzt. Neben Instruktionen werden auch Ausführungs-
threads und Aufgaben (Tasks) parallelisiert, was zu einer weiteren Stei-
gerung der Rechenkapazitäten führt. Kommunikation zwischen Tasks auf
verschiedenen Prozessoren führt jedoch zu Zugriffskonflikten auf der ge-
meinsam genutzten Ressource, z.B. auf Bussen oder dem Hauptspeicher.
Dieser Effekt wird als "Contention" bezeichnet und führt zu zusätzlichen
Verzögerungen bei der Ausführung von Tasks. Daraus folgt, dass die Stei-
gerung der Rechenkapazität aufgrund von Parallelisierung durch die not-
wendig werdende Kommunikation zwischen Tasks begrenzt ist. Man stelle
sich ein System mit mehreren nebenläufigen Tasks auf verschiedenen Prozes-
soren vor, wobei jeder Task auf den gemeinsamen Speicher zugreifen will.
Zugriffe der einzelnen Tasks werden der Reihe nach abgearbeitet, das heißt
die Ausführungszeiten der Speicherzugriffe eines Tasks hängen von der An-
zahl der Speicherzugriffe aller anderen Tasks ab. Diese Abhängigkeit der
Tasks limitiert die Steigerung der Rechenleistung und erhöht die Kom-
plexität von Analyseverfahren zur Bestimmung der ungünstigsten Ausführ-
ungszeit (worst case execution time).

Konkret werden in dieser Dissertation die folgenden Beiträge bezüglich
dem Entwurf und der Analyse von Multicoresystemen im Hinblick auf Ef-
fizienz und Vorhersagbarkeit des Zeitverhaltens präsentiert:

• Wir schlagen einen Algorithmus zur Zuweisung von Aufgaben (Tasks)
an Prozessorelemente vor, der mehrere nebenläufige Applikationen mit
mehreren Ausführungsmodi berücksichtigt. Jeder Modus hat eine

Ausführungswahrscheinlichkeit und die Hardware Plattform ist als
Bibliothek von Prozessortypen bekannt. Der Algorithmus minimiert
die durchschnittlich erwartete Leistungsaufnahme, unter der Annahme
dass Leistungsaufnahme aufgrund von Leckspannung nicht vernach-
lässigt werden kann.

• Wir präsentieren eine Methode um die Aufgabenzuweisung zur Lauf-
zeit zu bestimmen. Dazu werden eine Reihe von Musterzuweisungen
zur Entwurfszeit berechnet und auf dem System als Bibliothek gespe-
ichert. Die Berechnung berücksichtigt dabei verschiedene Systemzu-
stände. Zur Laufzeit wird dann eine Aufgabenzuweisung, welche dem
aktuellen Systemzustand entspricht, ausgewählt.

• Wir schlagen ein Model vor, in welchem Aufgaben als Sequenzen
von Superblöcken betrachtet werden. Superblöcke werden mit der
ungünstigsten Ausführungszeit (worst-case execution time) und der
ungünstigsten Anzahl von Ressourcenzugriffen (worst-case number
of access requests) spezifiziert. Ein Superblock ist eine funktionale
Einheit, welche eine eindeutige Eintritts- und Austrittsmarke hat.
Wir schlagen verschiedene Ressourcenzugriffsmodelle vor, welche sich
durch einen unterschiedlichen Grad an Unsicherheit in Bezug auf das
ungünstigste Verhalten von Superblocks unterscheiden. Die Mod-
elle reichen vom "dedicated model", in welchem dedizierte Phasen für
Kommunikation bzw. Berechnung reserviert sind, bis zum "general
model", in welchem Kommunikation und Berechnung zu jeder Zeit
und in jeder Reihenfolge stattfinden können.

• Wir präsentieren eine Berechnungsmethodik die das ungünstigste Sze-
nario (worst-case) berechnet. Die Methodik kann statische sowie adap-
tive Zuweisungsverfahren der gemeinsam genutzten Ressource berück-
sichtigen. Als statisches Verfahren wird Time Division Multiple Access
(TDMA), ein Multiplexverfahren mit statisch definierten Zeitscheiben,
verwendet. Das FlexRay Zuweisungsverfahren, welches vor allem in
der Automobilindustrie Anwendung findet, wird als adaptives Ver-
fahren verwendet.

• Wir berechnen die ungünstigsten Ausführungszeiten für die vorgeschla-
genen Ressourcenzugriffsmodelle und zeigen dass die Trennung von
Berechnung und Kommunikation zu den besten Ausführungszeiten
führt. Wir empfehlen das Modell DSS um im Zeitverhalten vorher-
sagbare Systeme zu entwerfen.

Acknowledgements
I would like to express my gratitude to Prof. Dr. Lothar Thiele for giving
me the opportunity to work on this thesis. Thank you for your constant
support, your patience and your indispensable advise.

Thanks to Prof. Dr. Marco Caccamo for co-examining my thesis and the
fruitful cooperation over the last years.

I would like to thank my collaborator Prof. Dr. Jian-Jia Chen, with whom I
worked very closely and who significantly contributed to the work presented
in this thesis. Thanks also to Prof. Dr. Rodolfo Pellizzoni for the successful
cooperation and our almost perfect acceptance rate.

I feel gratefulness for my colleges at TIK. I met many new friends here
and I thank you for making this time so unforgettable. Thank you for run-
ning through the woods with me, for the parties, for the "Zvieri". Simply
for all the fun we had together.

I would like to thank my parents, Andreas and Gertraud, for their never
ending support and my sister Lucia and her daughter Sophia, my little god-
daughter.

Last but not least, I would like to thank the most important person in
my life. Thank you Anna, I love you. This thesis is dedicated to you and
our unborn child.

Research presented in this thesis was funded in part by the European
Community's Seventh Framework Programme FP7/2007-2013 under grant
agreement no. 216008 project Predator.

1
Introduction
This thesis presents novel approaches to design and analyze resource sharing
real-time systems. Multicore and multiprocessor systems are of increasing
significance in the design of embedded systems for industrial applications in
general, and for the automotive and avionic industry in particular. A signif-
icant share of these systems perform safety critical functionalities, and thus
functional as well as timing constraints have to be satisfied. Traditionally,
the increased demand of computational resources was satisfied by higher
execution frequencies and instruction level parallelism. Higher frequencies
cause heat generation, and thus power dissipation. In order to satisfy rising
computational demands, an industry wide shift to parallel computing, and
thus multicore and multiprocessor systems, has taken place.

As a result, new design and analysis methods for real-time systems need
to be developed. Firstly, shared resources, such as communication buses
or shared memories, become the new performance bottleneck with respect
to timing. Multiple concurrently executing applications on different pro-
cessing elements request the same resource at the same time. This leads to
contention on the shared resource, and thus increased delays. Hence, the
response time of an application or a task might be significantly increased
compared to the execution time of the same application and task on single
processor systems. Secondly, the distribution of applications and tasks onto
a multicore and multiprocessor system has a significant influence on both,
timing behavior and efficiency (e.g., in terms of power consumption).

We propose an approach to assign applications to processing elements
of a heterogeneous multiprocessor platform. The proposed approach takes
power efficiency and utilization bounds on the processing elements into con-
sideration. Furthermore, we propose models to access shared resources and

2 Chapter 1. Introduction

analyze their behavior in terms of timing predictability for static and adap-
tive arbitration policies on the shared resource.

In Section 1.1, we present a survey of current design approaches for
multicore and multiprocessor systems, in terms of efficiency and timing
predictability. In Section 1.2 we discuss the challenges and benefits of shared
resources in terms of efficiency and adaptivity. Section 1.3 introduces the
notion of predictability and presents the associated challenges related to
resource sharing. The contributions and an outline of this thesis are given
in Section 1.4.

1.1 Multicore and multiprocessor systems
Embedded systems, such as telecommunication and multimedia applica-
tions, are deeply embedded into our society, which is often denoted as
information society. An increasing number of areas are controlled, mon-
itored or operated by embedded systems. The applications are diverse, but
can be characterized by an increasing demand on computational resource,
stringent constraints on power consumption and timing constraints. In or-
der to meet these constraints, thread- and task-level parallelism is required
in addition to instruction level parallelism. Multicore and multiprocessor
systems satisfy these demands.

In this thesis, we focus on on-chip parallelism as in Multiprocessor
Systems-on-Chip (MPSoC) and multicore architectures. In MPSoCs, mul-
tiple processing elements are on the same chip die, and are connected via an
on-chip interconnect. These systems are usually optimized for a particular
application domain, such as telecommunication or multimedia applications.
As a result, MPSoCs are often composed of heterogeneous processing ele-
ments. Each processing element in the MPSoC is optimized for a specific
functionality, and their composition is optimized towards a certain applica-
tion domain. Multicore processing elements consist of multiple computing
cores, that execute concurrently and are tightly integrated. That is, typ-
ically each core has a local memory (e.g., L1-cache), while multiple cores
share a common memory (e.g., L2-cache). This memory is local to the
multicore processing element, but shared among its individual processing
cores. Multiprocessor systems are composed of multiple central processing
units (CPU) that share a (hierarchical) communication fabric (e.g., a bus).
Cache, memory and I/O peripherals are accessed via this communication
fabric. Each processing element in this system might be a single-core or a
multicore architecture.

Multiprocessor Systems-on-Chip (MPSoCs) and multicore platforms have
been widely applied for modern computer systems for the last decade. Wolf
et al. [WJM08] give a thorough survey of MPSoC architectures. Among

1.2. Power efficiency and adaptivity 3

others, they consider the effect of architecture on ''Performance and Power
Efficieny'' and on ''Real-Time Performance''.

Multiprocessor systems for real-time systems have been studied in recent
years in great detail. One of the most influential work, by Liu et al. [LL73],
dates back as far as 1973. Several works target optimal task scheduling on
multiprocessor systems, e.g., [AE10], [LESL10] and [Raj91]. An overview of
resource access protocols in multiprocessor systems is presented by Bran-
denburg et al. [BCB+08].

1.2 Power efficiency and adaptivity
Embedded systems are often battery powered, like telecommunication hand-
sets. Increased power consumption results in increased costs and space
requirements, and thus systems in the automotive and avionic industry are
required to be as power efficient as possible. In the following, we outline a
number of parameters that influence power efficiency.

Firstly, the assignment of tasks to processing elements defines the utiliza-
tion, and thus the dynamic power consumption of the processing element.
Other parameters also influence the expected power consumption of a sys-
tem. The architecture (heterogeneous or homogeneous), the manufacturing
process (65nm, 45nm or 32nm) and the available dynamic power manage-
ment (DVS, DFS) are key parameters of the power model. In heterogeneous
multiprocessor systems, it is import to determine the type of processing ele-
ment that fits the requirements and characteristics of an application. Figure
1.1 shows an example, where a set of tasks and a library of available process-
ing unit types are given. A mapping approach needs to consider the power
model, the available dynamic power management setup and the features of
the tasks themselves in order to optimize the energy consumption. Wolf et
al. [WJM08] give an overview of the historical development of MPSoCs and
related design challenges, while Jalier et al. [JLJ+10] provide a compari-
son between homogeneous and heterogeneous multiprocessors systems for a
telecommunication application.

In addition, the manufacturing process influences the power model. The
power consumption of a processing element can be represented by (1) its dy-
namic power consumption and (2) its static, or leakage, power consumption.
Dynamic power consumption is related to the utilization of a processing el-
ement, while static power is consumed as soon as a processing element is
switched on, i.e., without performing any computation. Depending on the
manufacturing process, the dynamic or the static part is the major contrib-
utor towards the overall power consumption of a processing element. Cur-
rently the 32nm manufacturing processing is state-of-the-art, with the 22nm
technology expected to be introduced by 2015 [fS]. Chips produced with

4 Chapter 1. Introduction

1
t

2
t

3
t

4
t

5
t

6
t

7
t

Set of Tasks

PE
Type 1

PE
Type 2

PE
Type 3

PE
Type 4

Library of
Processing Element Types

task to processing element assignment

PE Type 1
Instance 1

PE Type 1
Instance 2

PE Type 3
Instance 1

PE Type 4
Instance 1

3
t

6
t

1
t

4
t

7
t

2
t

5
t

Figure 1.1: Task-to-processing element type assignment.

these manufacturing processes exhibit an increased significance of static
power, i.e., the static power consumption exceeds the dynamic power con-
sumption, even if the processor is fully utilized. Atitallah et al. give a
survey of energy estimation techniques in [ANG+06].

Therefore, mapping approaches need to be redesigned to take the re-
lation between dynamic and static power consumption into consideration.
Dynamic power management protocols, such as dynamic frequency scaling
(DFS) or dynamic voltage scaling (DVS), are used to reduce the dynamic
power consumption, see [CK07a] [CRG08] [Che08]. However, when static
power consumption cannot be neglected, techniques that switch off unused
architectural elements (such as processing elements) gain increasing inter-
est. These dynamic power management (DPM) techniques are particularly
applied to CPUs and pose complex optimizations problems. Especially if
real-time properties need to be satisfied.

1.3. Timing predictability and adaptivity 5

Secondly, the ability of reassigning tasks and applications at runtime,
to processing elements with reduced power consumption or increased com-
putational resources, allows a system to adapt to changing environmental
conditions. Adaptivity is of crucial importance for systems that exhibit
mode-changes or need to adapt to different usage patterns. For example,
mobile phones need to synchronize to base stations or fuel injection con-
trol applications need to increase their execution frequency with increasing
speed. Jalier et al. [JLS+10] investigate dynamic mapping of a software de-
fined radio (SDR) application, while Kim et al. [KSME05] consider dynamic
mapping in order to safe energy. Carvalho et al. [CMCM09] compare static
and dynamic mapping approaches with respect to expected performance.

1.3 Timing predictability and adaptivity
The introduction of distributed and parallel computing, i.e., multicore and
multiprocessor systems, yields additional challenges in terms of timing pre-
dictability. Mutually independent applications and tasks that execute con-
currently result in an increased performance. However, accessing a shared
resource, either due to necessary communication or synchronization between
tasks, yields contention on the resource and results in additional blocking
times. As a result, the available parallelism is reduced. See Figure 1.2
for an example of two multicore processors sharing a main memory. Once
one processing element gains access to this main memory, any other device
requesting access is blocked, and hence experiences a delay.

Figure 1.2: Blocking due to interference on the shared resource.

For applications in the automotive and avionic domain timely execution
of applications is of utmost importance. The response time of tasks depend
on processing capabilities of the processors and controllers, but also on
delays that result from reading or writing to memory or other peripherals.
In this thesis, we define timing predictability in relation to the worst-case
response time (WCRT) of a system.

6 Chapter 1. Introduction

• A system that allows to derive its WCRT, is considered a timing
predictable system.

• A system that allows to derive tight WCRTs is more predictable than
a system that only allows to derive an untight WCRT.

• A system that does not allow to derive a meaningful WCRT is con-
sidered to be not timing predictable.

As a result, timing predictability of a resource sharing system depends
on the protocol to access the shared resources. The amount of uncertainty
in the protocol determines the untightness of a WCRT analysis approach.
This uncertainty depends on (1) the analysis method and its underlying
abstractions and assumptions and (2) the architecture and the task model
of the system. With increasing uncertainty, the search space to find the
worst-case grows and so does the computational complexity of correspond-
ing analysis methodologies.

However, for applications in the aforementioned areas, these analysis
methodologies are of crucial importance. First, in order to to avoid costly
warranty payments and re-design efforts, and second to be able to guarantee
the correct behavior of safety critical tasks.

Thiele et al. [TW04] introduce the term timing predictability and de-
scribe some prerequisites, that are required in order to achieve a timing
predictable system. Wilhelm [Wil05] presents an approach to derive bounds
on the worst-case execution time (WCET) of complex systems with uncer-
tainty. Reineke et al. [RGBW07] analyze the timing behavior of systems
with different cache replacement policies. Edwards et al. [EKL+09] argue
that timing repeatability is more important than timing predictability.

1.4 Contributions and Thesis Outline
In this thesis, we present a set of novel approaches to design and analyze
resource sharing systems. We consider heterogeneous multiprocessor sys-
tems, where resource sharing happens on two levels. First, computational
resources are shared among tasks. As a result, the allocation of tasks onto
processing elements needs to respect utilization bounds in order to guaran-
tee that tasks behave correctly. Due to the heterogeneity of the processing
elements, it is not obvious how to place tasks on the different elements,
such that efficiency is optimized. We focus on power efficiency, since many
embedded systems are battery powered systems where life-span is an im-
portant issue.

Second, communication fabrics represent a shared resource and are re-
quested by concurrently executing tasks and applications. As a result, con-

1.4. Contributions and Thesis Outline 7

tention on the shared resource might lead to significantly increased worst-
case and average case execution times. We consider systems where an un-
served access request causes the issuing task or application to stall until
the request has been served. For example, cache requests need to be served
before the task and application can continue to execute. This results in
stall times, that are related to the contention on the shared resource, i.e.,
that are independent of the tasks or the applications themselves, but that
depend on the behavior of other actors in the system. Therefore, it is not
trivial to derive the worst-case delay that results from the interference a
task or application might suffer. We propose resource access models and
conclude that separating communication and computation is required to
achieve timing predictable resource sharing systems.

Chapter 2: Allocation on heterogeneous MPSoCs

In Chapter 2 we propose a methodology to assign tasks to the processing
elements of a heterogeneous multiprocessor platform, i.e., to share com-
putational resources. In the proposed application model, multiple appli-
cations execute concurrently on the target platform. Each application is
composed of multiple mutually exclusive execution modes, and each mode
has an execution probability. As an example, consider a Software-Defined-
Radio (SDR) platform where different applications represent different radio
standards. For example, one application implements Wireless Local Area
Network (WLAN) and another application implements Ultra-Wideband Ra-
dio (UWB). Then, each application has execution modes to synchronize to
base stations or to send and to receive data. Measurement and profiling
allows to derive average case execution frequencies for these modes. In
our optimization methodology we consider these frequencies as execution
probabilities. As a result, each application operates in a particular execu-
tion mode at any point in time. We denote the set of possible execution
mode combinations as the set of scenarios. As an example, consider a SDR
platform with two applications, namely WLAN and UWB. Furthermore,
consider each application to be composed of a synchronization and a trans-
mission mode. Then there are four possible scenarios. The transition from
one scenario to another is performed by changing the execution mode of at
least one application. A number of scenario transition is denoted scenario
sequence. We consider an application model with a finite set of possible
scenario sequences.

A library of processing element types is given, each type exhibiting differ-
ent advantages and disadvantages. In other words, each processing element
type is more suitable for a specific set of tasks, and less suitable for other
tasks. As an example, consider a digital signal processor (DSP), that is
well suited to perform matrix operations as required in telecommunication

8 Chapter 1. Introduction

applications. Performing this kind of operation on a general purpose CPU
is possible, but results in increased execution time and power consumption.
However, in some situations, it might be optimal to execute this task on
the less power efficient CPU, since the DSP is already highly utilized or
exhibits a large leakage power. This might result in an increased global
power consumption or end-to-end execution time, although a local optimal
decision has been taken. In this chapter, we present a novel approach to
solve the problem of finding a power efficient task to processing element al-
location, that respects a given utilization bound of the processing elements.
The power model considers leakage and dynamic power consumption, as ex-
hibited by chips manufactured with recent technologies, such as the 32nm
manufacturing process. The contributions described in this chapter are as
follows:

1. We show that there is no polynomial-time approximation algorithm
with constant approximation factor for the task to processing element
problem unless P = NP .

2. We propose a multiple-step approach to statically compute a task to
processing element allocation.

3. We propose a dynamic mapping process that is described by an offline
and an online part. The offline part computes template mappings for
each scenario sequence by applying the static multi-step approach.

4. We propose an online manager, that observes mode changes of ap-
plications and chooses from a repository of precomputed template
mappings at runtime.

5. Adaptivity to changing execution probabilities is introduced. Tem-
plates for different execution probabilities are computed and stored
on the system.

Chapter 3: Interference in Resource Sharing MPSoCs
In Chapter 3, we define the problem of interference on shared resources,
like shared memory. We propose a task model, where tasks are sequences
of superblocks. A superblock is a functional block that has a unique entry
and exit point. However, different execution paths inside a superblock are
possible. As a result, the sequential order of superblocks remains the same
for any execution instance of a particular task. Each superblock is associated
with its corresponding worst-case execution time (WCET) and its worst-
case number of access requests to a shared resource.

Superblocks can be further specified by phases, where phases can rep-
resent implicit communication, computation, or both. As an example, a

1.4. Contributions and Thesis Outline 9

superblock might have a dedicated phase to read or write data from the
shared memory, where no computation can be performed. These phases are
denoted acquisition or replication phase, respectively. Another phase, the
execution phase, is reserved for local computation only, i.e., no communi-
cation can happen in this phase. Hence, communication and computation
are confined to their respective dedicated phases. We denote this model as
dedicated resource access model. The execution phase is associated with the
WCET, while the acquisition and replication phases are denoted with their
respective worst-case number of access requests.

Other models proposed in Chapter 3 are the general and hybrid re-
source access model. In the general model superblocks have no phases,
i.e., communication and computation is not separated and can happen at
anytime and in any order during the active time of a superblocks. In other
words, a superblock modeled according to the general resource access model
has a single general phase. This phase is associated with the WCET and
the worst-case number of access requests. The hybrid model represents a
trade-off between the two previous models. A superblock that is modeled
according to the hybrid resource access model exhibits dedicated communi-
cation phases, where no computation can happen, i.e., an acquisition and
replication phase. However, there is no dedicated phase to perform local
computation only. Hence, these superblocks have a general phase where
communication and computation can happen at anytime and in any order.

These models express a different amount of uncertainty. The dedicated
model confines accesses to the shared resource to their respective dedicated
phases. In the general model, computation and accesses to shared resource
can happen anytime and in any order. Furthermore, we propose arrival
curves as a metric to represent the access pattern of a set of superblocks on
a particular processing element onto the shared resource. An upper arrival
curve represents the maximum (worst-case) number of access requests that
can happen in a particular time window of length Δ. The contributions of
this chapter are as follows:

1. We propose models to access the shared resource and models to sched-
ule superblocks on processing elements.

2. We introduce arrival curves to represent the access pattern of su-
perblocks that execute on a particular core.

Chapter 4: Static arbitration on shared resources
In Chapter 4, we investigate a static arbitration policy on the shared re-
source. This way, interference among the elements that compete for the
shared resource is eliminated. Time division multiple access (TDMA) is
a well known policy for systems that require a high degree of timing pre-

10 Chapter 1. Introduction

dictability. In TDMA, each processing element is assigned a time slot of
fixed length, in which the resource is exclusively assigned to it. We consider
systems with blocking/non-buffered access requests, i.e., once an access re-
quest has been issued, computation on the processing element can only
continue as soon as this access request has been served. In this chapter we
study the different models proposed in Chapter 3, combined with TDMA
arbitration on the shared resource and their effect on the worst-case re-
sponse time (WCRT). We conclude that the separation of communication
and computation is a key element for achieving timing predictable systems.
However, we show that time-triggered execution of superblocks, as opposed
to sequential execution, decreases the performance of a system with respect
to its WCRT.

1. We propose a worst-case analysis framework for shared resources with
TDMA arbitration policy.

2. We derive the schedulability relation of the proposed models and
recommend the dedicated model for resource sharing systems. In
this model, computation and communications is separated, while su-
perblocks execute sequentially.

Chapter 5: Hybrid arbitration on shared resources

Chapter 5 extends the results in Chapter 4 towards hybrid arbitration poli-
cies on the shared resource. The arbiter is inspired by the FlexRay protocol,
used in the automotive industry. In the FlexRay protocol, a static segment
assigns time slots to processing elements and a dynamic segment allows for
resource competition. As a result, there is a guaranteed service per ar-
bitration cycle, namely the time slot in the static segment, and a phase
with interference, namely the dynamic segment. The arbitration policy
in the dynamic segment follows the First-Come-First-Serve (FCFS) policy.
Hence, a processing element can be assigned additional time slots during
the dynamic segment, depending on the behavior of the other elements in
the systems. This arbitration policy is more flexible than the purely static
approach presented in Chapter 4, but also incurs a computationally more
complex analysis approach, since interference during the dynamic segment
has to be taken into account. In this chapter, we present the following
contributions:

1. We present an algorithm to derive an upper bound of the worst-case
response time (WCRT) for superblocks and tasks, considering the
FlexRay arbitration protocol on the shared resource.

1.4. Contributions and Thesis Outline 11

2. We present experimental results and show that minor changes in the
arbiter might lead to significant increases in the resulting WCRT of
superblocks and tasks.

Appendix A: Toolbox
In Appendix A, we present a toolbox that implements the analysis frame-
work for timing predictable systems proposed in this thesis. The toolbox
assumes parameters like the maximum and minimum amount of access re-
quests or the required computation time to be given. We describe the inte-
gration of the toolbox with a tool to formally analyze the WCET, i.e., aiT
form AbsInt. In addition, examples from a realistic automotive application
scenario are described. This case study has been defined in cooperation
with Bosch1.

1Due to confidentiality reasons, the exact nature of example applications was not
revealed to us.

12 Chapter 1. Introduction

2
Allocation on heterogeneous
MPSoCs
Increasing computational demand and reduced time-to-market requirements
for industrial embedded systems gave rise to multiprocessor and multicore
platforms, such as Multiprocessor System-On-Chips (MPSoCs). An increas-
ing share of these embedded systems are mobile, battery powered systems,
that are expected to execute multiple functionalities concurrently. Thus,
computational resources have to be shared by multiple, independently ex-
ecuting applications. While responsiveness of concurrent applications is a
crucial design issue, power consumption is of equal importance. These is-
sues hold for mobile systems in particular due to their constraint source
of energy. In general, industrial embedded systems perform increasingly
complex tasks, like control algorithms in automotive and avionic systems,
and hence require increased computational resources, while properties like
power consumption, space requirements or heat built-up affect the life-time
of a system.

In this chapter, we introduce an application model that is capable of
representing multiple concurrently executing applications sharing a single
hardware platform. Applications have a number of mutually exclusive ex-
ecution modes, each represented by a set of tasks, and their corresponding
execution probabilities. Based on this representation we show how to de-
rive a static allocation of tasks to processing elements, such that the overall
power consumption is minimized, taking leakage and dynamic power con-
sumption into consideration.

Embedded systems interact with the environment, by adapting the ex-
ecution frequency or the execution mode of a particular application. Static

14 Chapter 2. Allocation on heterogeneous MPSoCs

allocation of tasks to processing elements results in unforeseeable system
behavior once the anticipated environment changes. Therefore, dynamic
adaptation of the task allocation to changing use cases or changing envi-
ronmental conditions is required to maintain responsiveness and power effi-
ciency of systems. To this end, we introduce an approach that dynamically
allocates tasks to to processing elements. It takes advantage of structural
information about the applications, i.e., their modes of execution, mutual
exclusiveness among modes of a single applications and their execution prob-
ability. We show that the problem to allocate tasks to processing elements
is hard and propose heuristic solutions to the problem. Experimental eval-
uation shows the competitiveness of our proposed approach in comparison
to the optimal solution of the problem.

2.1 Introduction

Multiprocessor System-on-Chips (MPSoCs) typically are composed of mul-
tiple processors (processing units), memories, and a communication in-
frastructure. Heterogeneous MPSoCs contain different types of processing
units, some specialized for a specific purpose (e.g., Digital Signal Proces-
sors (DSP)), others for general purposes. Therefore, system designers can
take advantage of their properties when mapping tasks to specific processor
types and optimize criteria such as computational performance, cost and
energy consumption.

Energy awareness and power management are important design issues
for any embedded system in general, and for battery powered and mobile
systems in particular. Power consumption not only influences the battery
lifetime of mobile devices or the cost of operating a server farm, but also
influences the lifespan of systems, due to increased heat build-up. It is
caused by a dynamic and a static part [JPG04, CHK06]. In nano-meter
manufacturing, leakage current significantly contributes to the static power
consumption and cannot be neglected. Dynamic power consumption is re-
lated to the utilization of a processing unit.

In multimedia applications, such as mobile phones and Software-Defined-
Radio (SDR) systems, it is uncommon to assume a fixed task set, since
these applications (a) are usually composed of multiple execution modes
and (b) have heavily varying execution patterns over their lifespan. In
this chapter, we study how to map applications to processing units, where
applications are defined as sets of tasks, and run in one out of a set of
modes. An execution probability is assigned to each mode. Concrete ac-
tivation and active times are not known a priori. Scenarios define the
possible combinations of modes that execute concurrently. Consequently,
a mode change of an application results in a transition to another sce-

2.1. Introduction 15

nario. As a result, sequences of scenario transitions can be identified and
a particular scenario can be reached by a sequence of mode changes. This
model is common in various application domains such as multimedia pro-
cessing, media terminals, mobile phones, and software defined radio (SDR)
[LLW+06,LKMM07,MVB07,SWvdV08], just to name a few.

For example, a single SDR application consists of a set of tasks and
several of these applications are typically executed concurrently. In contrast,
modes of a particular application cannot execute concurrently. A single SDR
application often represents a signal or media processing algorithm which
involves the parallel execution of tasks. Often, the corresponding execution
times, power consumption, and rate characteristics have been specified or
can be obtained very accurately. The underlying hardware platform is given
as a library of available processing unit types. Deriving the actual hardware
platform by instantiating processing units is part of the mapping problem.

Given a set of applications and the underlying heterogeneous MPSoC
hardware platform as a library of available processing unit types, there is
a large degree of freedom in mapping the individual tasks to the allocated
processing elements. Adapting to varying resource requirements allows to
optimize the average power consumption dynamically. The mapping of
tasks to the computational resources admits a fine-grained power manage-
ment by switching off processing units that are not used or slowing down
processing units that are not fully utilized. The mapping process creates
a feasible hardware platform from a library of processing unit types by in-
stantiating processing units and determines a task assignment that satisfies
the computational demands of the scenarios while minimizing the static and
dynamic power consumption.

In this chapter we consider two approaches to compute the task to pro-
cessing element assignment. First, tasks are assigned to one particular pro-
cessing element, independently from the actual scenario. We denote this
problem as the global static power-aware mapping problem. This approach
requires little memory to store the mapping, but results in increased power
consumption once the system diverges from the anticipated usage pattern,
i.e., once the modes execution probabilities change. Second, depending on
the current scenario, a new task is assigned to different processing elements.
We denote this problem as the dynamic power-aware scenario-mapping
problem. This approach requires memory to store different precomputed
template mappings for each scenario, but allows to adapt the task alloca-
tion to different usage patterns, i.e., to store different mappings for different
execution probabilities. We assume tasks to be resident, i.e., once a task
is mapped onto a processing element, it cannot be remapped to any other
processing element. As a result, a particular mapping for each sequence of
scenario transitions needs to be computed, taking into account the possible
future developments of the system.

16 Chapter 2. Allocation on heterogeneous MPSoCs

The objective of both problems is to derive an optimal hardware platform
and an optimal task mapping, such that the average power consumption is
minimized while satisfying the execution constraints of all possible scenario
sequences.

The major contributions of this chapter are:

• We show that there is no polynomial-time approximation algorithm
with constant approximation factor for the task to processing element
problem unless P = NP .

• We propose a multiple-step approach to solve the global static power-
aware mapping problem in polynomial time by (1) computing an ini-
tial solution which assigns the tasks to their most effective processing
unit types and (2) applying a greedy heuristic algorithm to remap
tasks, thereby reducing the expected average power consumption.

• We propose a dynamic mapping process that is described by an offline
and an online part. The offline part computes template mappings for
each scenario sequence by applying the multi-step approach developed
for the global static power-aware mapping problem. In the online
part, a manager observes mode changes and chooses an appropriate
precomputed template.

• Adaptivity to changing execution probabilities is introduced. Tem-
plates for different execution probabilities are computed and stored
on the system.

• Experiments show the effectiveness of the proposed algorithm in terms
of expected average power consumption and computation time.

The rest of this chapter is organized as follows: Section 2.2 gives an
overview of related problems and approaches and Section 2.3 introduces
the models and defines the studied problem. Section 2.4 presents the pro-
posed algorithms for the global static power-aware mapping problem, while
Section 2.5 introduces the adapted algorithms to solve the dynamic power-
aware scenario-mapping. Section 2.6 provides experiments for performance
evaluation using SDR applications and Section 2.7 concludes this chapter.

2.2 RelatedWork
Work highly related to the probabilistic application model is done by Kim
et al. [KBDV08] and Schmitz et al. [SAHE05]. Specifically, in [KBDV08]
a heuristic algorithm is proposed, that reduces the dynamic energy con-
sumption, which is related to utilization. This is done by adding processing

2.2. Related Work 17

elements up to an area constraint, thereby reducing the average utilization.
Their application model considers probabilities of execution for modes. The
power model presented in this chapter considers static and dynamic power
as part of the objective to be minimized. In contrast, [KBDV08] only con-
siders dynamic power consumption in the objective and an area constraint
that has to be satisfied. Schmitz et al. [SAHE05] consider probabilistic ex-
ecution of multi-mode applications. They propose a genetic algorithm and
four different mutation strategies to reduce the energy dissipation.

Power-aware and energy-efficient scheduling for multiprocessor systems
has been explored widely in recent years in both academics and indus-
try, especially for real-time systems, e.g., [CHK06,AEA05,AY03], whereas
[CK07b] provides a comprehensive survey. However, only a few results
have been developed for power-awareness or energy-efficiency in heteroge-
neous multiprocessor systems. For example, in [CWSC08,CK06,CSZ+05,
RFSW06] heuristics and approximation algorithms to minimize the dynamic
energy consumption are studied, considering dynamic voltage scaling (DVS)
systems.

In nano-meter manufacturing, leakage current contributes significantly
to the power consumption of a system e.g., [JPG04]. Xu et al. [XZR+05]
and Chen et al. [CHK06] explore how to execute tasks and study DVS
techniques to turn off processors in homogeneous multi-processor systems.
These works focus on developing schedules for a fixed set of tasks, e.g.,
a single application with known activation and execution time or a set of
periodically executing tasks, e.g. [CST09].

There are several research results for energy-efficient and power-aware
designs in heterogeneous multiprocessor systems with non-negligible leakage
power consumption, see e.g. [RFSW06,CST09]. In these approaches, static
usage scenarios are assumed and probabilities of applications are not con-
sidered. As a result, all modes could run concurrently, which is not the case
in our proposed system model. This not only results in an over-dimensioned
MPSoC platform but also in a non-optimal task mapping which overesti-
mates the average power consumption. It is implausible for the considered
application domain, e.g., SDR systems, to assume that all applications are
active all the time.

Dynamic mapping methodologies have been studied more recently. These
studies basically split in two directions. Some tackle the problem by defin-
ing efficient heuristics to assign new arriving tasks onto processing units
at runtime, e.g., [MMB07,MMBM05]. Online heuristics cannot guarantee
schedulability, e.g., Moreira et al. evaluate their approaches by comput-
ing the mapping success rate in [MMB07] and [MMBM05]. Others analyze
applications offline and compute schedules and allocations that are then
stored on the system, e.g., [BBM08,MCR+06,YO09]. In [BBM08] Benini
et al. propose to compute system configurations and derive task allocations

18 Chapter 2. Allocation on heterogeneous MPSoCs

and schedules for each of them. At run-time, transitions between alloca-
tions are assigned a migration cost. This work assumes that tasks can be
migrated from one processing unit to another, once the system configura-
tion changes. The decision whether tasks are migrated or not depends on
precomputed migration costs. We assume tasks to be resident, i.e., task
migration is prohibited. This increases the complexity of the problem, since
we have to consider possible future scenario transitions when we assign a
task to a processing unit. Execution probabilities are neglected in [BBM08],
which might lead to adverse system configurations. Migration costs might
be low compared to the increased dynamic power dissipation that results
from not reallocating tasks that execute very frequently.

2.3 SystemModel

In this section, the hardware as well as the application models with the un-
derlying assumptions and terminology is introduced. The hardware model
describes processing units selected from a set of processing unit types. Pro-
cessing units are described by their computational resources and by their
power consumption. The application model considers multiple concurrently
executing applications, composed of tasks. Applications execute in one
mode out of a set of modes. Therefore, for each application, one single
mode is executing at a time. Table 2.1 gives an overview of regularly used
variables. A formal problem statement and a complexity analysis of the
optimal solution are given at the end of the section.

2.3.1 Hardware Model
The hardware platform is based on a set (P) of available processing unit
(PU) types. A PU type p ∈ P is characterized by its available computational
resources per time unit λ, e.g., measured in terms of operations or execution
cycles per time unit, and its static and dynamic power consumption σ and δ,
respectively. Consider a task with a computational demand of γ (measured
in operations or executions per time unit) on a specific resource type pj

with available computational resources λ. Over a time interval of length
τ the computational demand γ and available computational resources λ
accumulate to τγ and τλ, respectively. Under the assumption that a task
performs correctly as long as its computational demand is satisfied, the
utilization of a resource instance by this task can be formulated as γ

λ
.

Static power consumption σ describes the leakage power consumed by
a processing unit type, independent of whether tasks are executed or not.
Dynamic power consumption δ describes the additional power consumed by
a processing unit type depending on its utilization.

2.3. System Model 19

Symbol Meaning
P Library of PU types
pj Processing unit type j

p̂j,k instance k of PU type pj

σj static power consumption of PU type pj

δj dynamic power consumption of PU type pj

λj computational resources of PU type pj

S Set of scenarios
Sm scenario m

χm Probability of scenario Sm

A Set of concurrent Applications
Aℓ Application ℓ

Mℓ Set of modes constituting Application ℓ

µn Mode n of an application
χ̂n Probability of mode µn

Zm,j,k binary variable to indicate scenario Sm on p̂j,k

C Set of scenario sequences
T Set of Tasks
γi,j computational resource demand

of task ti on PU type pj

ui,j utilization of task ti on PU type pj

ψi Probability of task ti
Mi,j,k binary variable to indicate mapping

of task ti to p̂j,k

θi,m binary variable to indicate task
ti to scenario Sm assignment

cr scenario sequence r, cr ∈ C

Table 2.1: Overview of regularly used variables.

As an example, suppose that a PU type pj has a utilization of α, i.e.,
tasks are executing for an α fraction of the time span τ . Then, αδj + σj is
the average power consumption of the processing unit. The corresponding
energy consumption for τ time units is τ · (αδj + σj).

Given the available PU Types, a concrete hardware platform is con-
structed by instantiating processing units with unit types from P . Any
number k ∈ N of instances is allowed for each PU type. Constructing a
feasible hardware platform is part of the mapping problem.

20 Chapter 2. Allocation on heterogeneous MPSoCs

Application Modes Tasks Probability
of modes

A1 (DVB-H)

µ1 (sync)

FFT1

phase shifting1

noise detection1

frequency shifting1

...

χ̂1

µ2 (receive)

FFT1

phase shifting1

payload decoding1

video decoding1

...

χ̂2

A2 (WLAN)

µ3 (send)

FFT2

signal generation
encrypting
encoding

frequency shifting2

...

χ̂3

µ4 (receive)

FFT2

phase shifting2

decrypting
payload decoding2

frequency shifting2

...

χ̂4

Table 2.2: An example for different modes in DVB-H and WLAN.

2.3.2 Application and Scenario Specification
An application A is described as a set of nodes, each node representing a
task. A task ti in the given task set T is described by its computational re-
source demand γi,j per time unit on a given PU type pj ∈ P . The utilization
ui,j of a task ti mapped onto PU type pj is given as

ui,j =
γi,j

λj

. (2.1)

By definition, the total resource demands of tasks mapped on a processing
unit cannot exceed the available computational resources. As a result, the
total utilization of tasks mapped on a processing unit is constrained not to
exceed 100%. For each task ti, we assume that there is at least one PU type

2.3. System Model 21

pj with utilization ui,j ≤ 100%; otherwise, there is no feasible solution for
completing the task in time.

A represents the set of concurrent applications executing on the hard-
ware platform. An application Aℓ ∈ A is described by the given set of tasks
T . Aℓ is constituted by a set Mℓ of modes. Each mode defines a use-case
of an application, and, hence, has its own functionality. In other words,
for an application Aℓ ∈ A, a mode µk ∈ Mℓ defines the active tasks, see
Figure 2.1 for an example. Applications have sets of initial and final modes.
Initial modes define the start of an application. In Figure 2.2, applications
are composed of 3 modes. Modes I1 and I2 are the initial and modes R1
and R2 are the final modes of applications A1 and A2 respectively.

Tasks can be active in multiple modes of an application, see task t2 in
Application A1 in Figure 2.1. Conclusively only one mode of an application
can be active at a time. As an example consider an application implement-
ing a radio standard, such as Wireless Local Area Network (WLAN). The
application might be described by modes such as synchronize or receive and
there might be a functional dependency. Such an exclusion condition is
common in SDR (Software Defined Radio) applications, where tasks such
as Fast Fourier Transform (FFT) and decode [SKG+07,MVB07] are shared
by multiple modes. This situation is depicted for sync/send and receive
in Table 2.2, where Task FFT1 is shared among modes µ1 (sync) and µ2

(receive) in Application A1 (DVB-H) and Task FFT2 is shared among
modes µ3 (send) and µ4 (receive) in Application A2 (WLAN).

Application A1
1

Modes M

1
Mode µ

2
Mode µ

1
t

3
t

4
t

2
t

5
t

6
t 7

t

Figure 2.1: Application (e.g., WLAN) with 2 modes (e.g., send and receive)
and 7 tasks.

Modes of an application Aℓ ∈ A and its valid mode transitions are
represented by a directed graph Gℓ = (Eℓ, Vℓ), where each node vi ∈ Vℓ of
the graph describes a mode and each edge ei ∈ Eℓ describes a valid mode
change, see Figure 2.2 for example.

22 Chapter 2. Allocation on heterogeneous MPSoCs

Applications can change their modes anytime without affecting the other
applications. Thus, there are various combinations of active modes, as each
mode of an application can execute concurrently with any other mode of
other applications. One combination of active modes for the set of concur-
rent applications A is defined as a scenario S in this chapter. All possible
scenarios can be derived by computing the cross product of the graphs rep-
resenting the applications, i.e., Gπ = (Eπ,S) =

∏
∀ℓ

Gℓ. Therefore, S is the

set of scenarios and a node Sm in S is a scenario. A directed edge in graph
Gπ represents a possible transition from one scenario to another.

As an example, suppose that A consists of two applications A1 and A2

represented by graphs GA1 = (EA1 , VA1) and GA2 = (EA2 , VA2) respectively.
The resulting cross product Gπ = (Eπ,S) is GA1 × GA2 as shown in Fig-
ure 2.3. The initial and final modes of applications define the initial and final
modes of graph Gπ. The number of nodes in graph Gπ is |S| = |VA1 | · |VA2 |.

A path through the graph Gπ(Eπ,S) is a sequence of transitions, starting
at node vi ∈ S and leading to another node vj ∈ S \ {vi}, following the
edges in Eπ.

Thus, a path describes a sequence of scenarios and the set of all feasible
paths is denoted by C. This includes the assumption that mode changes are
ordered, i.e., they do not happen at exactly the same time. As an example,
consider the cross product in Figure 2.3 and the mode transitions start
1 and start 2. Executing these transitions leads to node (S1, S2) no
matter in which order they are executed. However, their order of execution
determines the path through the graph Gπ in Figure 2.3 that has to be
considered.

Application A1

Application A2

I1

I2

S1
S2

R1

R2

receive 1start 1

reset 1

start 2

receive 2

reset 2

Figure 2.2: Graphs representing applications A1 and A2

Modes of an application Aℓ are denoted Mℓ and each mode µn ∈ Mℓ has
an execution probability, such that the share of time a mode µn is active is
denoted as χ̂n. Modes of different applications are statistically independent,

2.3. System Model 23

Graph (,)G E
π π

S

receive 1
start 1

receive 1

receive 1

start 1

start 1

reset 1

reset 1

reset 1

st
a

rt
 2

st
a

rt
 2

st
a

rt
 2

re
ce

iv
e

 2

re
ce

iv
e

 2

re
ce

iv
e

 2

re
se

t
2

re
se

t
2

re
se

t
2

I1, I2 S1, I2 R1, I2

I1, S2 S1, S2 R1, S2

I1, R2 S1, R2 R1, R2

Figure 2.3: Cross product Gπ = GA1 ×GA2 representing all possible scenar-
ios.

and therefore the probability of a scenario Sm ∈ S is derived as the product
of its constituting modes:

χm =
∏

µn∈Sm

χ̂n. (2.2)

Conclusively, the execution probability ψi for a task ti ∈ T can be
computed, where

ψi =
∑

Sm:ti is active in scenario Sm

χm. (2.3)

2.3.3 Problem Definition
The problem explored in this chapter is to find a mapping of tasks in T onto
a hardware platform which consists of processing units from a given set of
PU types P . The selection of used processing unit types and the correspond-
ing number of processing units is part of the problem. As described above,
applications are characterized by their probabilities of execution. There-
fore, the objective is to minimize the average expected power consumption.
Once the time span of the system execution is known, the expected average
energy consumption can be computed.

24 Chapter 2. Allocation on heterogeneous MPSoCs

Besides selecting the optimal number of processing units, the mapping
needs to determine the binding of a task ti to an allocated processing unit
p̂j,k of PU type pj ∈ P . A task is mapped onto a PU p̂j,k while respecting
the maximum utilization constraint for all possible scenarios.

We assume that the number of possible instances k per PU type pj is
limited to be no more than Fj and for each task ti there is at least one PU
type pj on which it can be executed, i.e., ui,j ≤ 1. Hence, there exists a
feasible solution to the mapping problem and any feasible solution will at
most use |T | instances of PU type pj ∈ P . Therefore, we consider Fj ≤ |T |.

The binary variables Mi,j,k indicate which processing unit task ti is
mapped to. Let Mi,j,k = 1 if task ti is assigned to PU p̂j,k and Mi,j,k = 0
otherwise. Once we have Mi,j,k = 1, task ti consumes a portion of the dy-
namic power δj on PU p̂j,k. This portion is related to the task utilization
ui,j and its probability of execution ψi.

Furthermore, θi,m = 1 indicates that task ti is present in scenario Sm, and
θi,m = 0 otherwise. The binary variable Z indicates which processing units
are involved in which scenarios, i.e., whether they need to execute at least
one task in a specific scenario. We define Zm,j,k = 1 if there exists a task ti
mapped onto PU p̂j,k (i.e., Mi,j,k = 1) such that θi,m = 1 (i.e., it is present
in scenario Sm) and Zm,j,k = 0 otherwise. Once we have Zm,j,k = 1, static
power σj is consumed on p̂j,k whenever scenario Sm is executed, i.e., with
probability χm. The total utilization of the tasks in scenario Sm mapped
onto PU p̂j,k is constrained to be no more than 100% when Zm,j,k = 1, or
0% when Zm,j,k = 0.

As a result, the expected average power consumption for a mapping
described by M and Z can be determined as in Equation (2.4a), where
the first and the second term represents the static and the dynamic power
consumptions, respectively. The optimization problem can then be phrased
by the following integer linear programming (ILP):

min
∑

Sm∈S

∑
pj∈P

Fj∑
k=1

χmσjZm,j,k +
∑
ti∈T

∑
pj∈P

Fj∑
k=1

ui,jδjψiMi,j,k (2.4a)

s.t. ∑
ti∈T

θi,mMi,j,kui,j ≤ Zm,j,k,
∀pj ∈ P, Sm ∈ S,
∀k = 1, 2, . . . , Fj

(2.4b)

∑
pj∈P

Fj∑
k=1

Mi,j,k = 1, ∀ti ∈ T , (2.4c)

Mi,j,k ∈ {0, 1} , ∀ti ∈ T , pj ∈ P, k = 1, 2, . . . , Fj , (2.4d)
Zm,j,k ∈ {0, 1} , ∀Sm ∈ S, pj ∈ P, k = 1, 2, . . . , Fj , (2.4e)

2.3. System Model 25

where (2.4b) guarantees that no scenario violates the utilization constraints,
and (2.4c) specifies that a task is mapped on exactly one processing unit.

We denote this problem as the global static power-aware mapping prob-
lem.

This static mapping considers a set of applications with a probability
distribution and computes the set of scenarios from that. All tasks that are
active in these scenarios are considered for computing a static task to pro-
cessing unit allocation. The probability of execution for tasks is considered
to be known a priori, and taken into account for computing the task alloca-
tions. Diverging probability distributions in the actual system might result
in significantly increased power dissipation. Since modes of an application
can only execute in mutual exclusion, not all tasks of an application can be
active at a time. Considering all tasks for the allocation process would limit
the degree of freedom. Hence, the performance of the resulting mapping
would degrade.

We propose a dynamic approach, which takes advantage of the structure
of applications. The scenario sequences C, derived in Section 2.5.1, repre-
sent possible execution paths of a system. Instead of computing a global
static mapping, we compute a static mapping for each feasible sequence
of scenarios cr ∈ C, using the algorithms developed for the global static
power-aware mapping problem, called templates. Since a scenario sequence
represents one possible execution path of a system, not all tasks and sce-
narios are included, hence the problem size is reduced and the degree of
freedom for the mapping algorithms increases. Since probability distribu-
tions of applications are typically neither known nor static, we compute
different template mappings for a set of representative probability distribu-
tions. The mappings are stored in a table on the system, and a manager
chooses the appropriate template at run-time. We denote this problem as
the dynamic power-aware scenario-mapping problem.

A scenario sequence cr ∈ C contains scenarios Sm ∈ S, which we denote
Scr and Scr ⊂ S. Therefore, Equation (2.4) has to be adapted to consider
only tasks Tcr that are active in scenarios Scr . That is, Sm in Equations
(2.4a), (2.4b) and (2.4e) is replaced by Scr and Equation (2.4) is applied to
each scenario sequence cr ∈ C. As a result, the expected average power con-
sumption for the dynamic power-aware scenario-mapping problem is stated
as: ∑

Sm∈Scr

∑
pj∈P

Fj∑
k=1

χmσjZm,j,k +
∑

ti∈Tcr

∑
pj∈P

Fj∑
k=1

ui,jδjψiMi,j,k. (2.5)

For each sequence cr ∈ C a template mapping is computed, and thus for
each considered execution probability distribution there are |C| template
mappings.

26 Chapter 2. Allocation on heterogeneous MPSoCs

As an example, consider a radio application. Sometimes synchronization
is performed very frequently due to bad signal reception. At times, data
transmission is active more often. Thus, the modes probability distributions
change and only a subset of tasks is active at a time. Static task alloca-
tion can only cover one of the previously shown use-cases and might result
in increased power dissipation for the other. Deriving template mappings
for all the scenario sequences and the different execution probabilities of
modes allows maintaining low power consumption over a systems lifetime
and varying usage patterns.

Note that dynamic power management (DPM) is not adopted in the
studied problem since the necessary timing information of applications is
not contained in the problem definition.

2.3.4 Hardness
It is not difficult to see that the problem is NP-hard in a strong sense,
since the special case with one scenario and one processing unit type is the
bin packing problem. Moreover, when there is a limitation of the allocated
units, i.e., Fj < |T |, deriving a feasible solution for Equation (2.4) is a
NP-complete problem since the bin packing problem is its special case.
Therefore, unless P = NP , there is no polynomial-time algorithm for de-
riving a feasible solution for any input instance that allows for a feasible
mapping when Fj < |T |. Moreover, even if the architecture can be synthe-
sized without any cost restriction, deriving an optimal solution for Equa-
tion (2.4) is still NP-hard in a strong sense, and there does not exist any
polynomial-time approximation algorithm to have a constant approximation
factor unless P = NP . An algorithm is said to be with an approximation
factor β if the objective function of its derived solution is at most β times
the optimal objective solution for any input instance.

Theorem 1 Even when there is only one scenario, there does not exist any
polynomial-time approximation algorithm with a constant approximation
factor for the power-aware scenario-mapping problem, unless P = NP.

Proof. This theorem is proved by an L-reduction [Pap94] from the set cover
problem, which does not admit any polynomial-time approximation algo-
rithm with a constant approximation factor unless NP = P . Given a uni-
verse E = {e1, e2, . . . , em} of m elements, a collection W = {W1,W2, . . . ,Wn}
of sub-collections of E , and the cost Ci > 0 for each sub-collection Si, the set
cover problem is to pickup a minimum-cost sub-collection of S that covers
all elements in E .

The L-reduction is done as follows: For each sub-collection Wj, we create
a processing unit type pj with static power consumption σj equal to Cj. The
dynamic power consumption δj on each processing unit pj is a constant L.

2.4. Global static power-aware mapping problem 27

For each element ei in E , we create a task ti. If ei is in Wj, let ui,j be 1/|E|.
By restricting to the special case with one scenario, all the constructed tasks
are present in one scenario with 100% probability.

For an optimal solution of the set cover problem with cost C∗, there is a
feasible solution of the reduced input instance of the power-aware scenario-
mapping problem with C∗ + L expected average power consumption. For
a feasible solution with C expected average power consumption for the re-
duced input instance of the power-aware scenario-mapping problem, there
exists a solution for the set cover problem with cost no more than C−L. As
a result, when L ≪ C∗, if there is a polynomial-time β-approximation algo-
rithm for power-aware scenario-mapping problem, the set cover problem will
admit a polynomial-time β-approximation algorithm. The contradiction is
reached.

¤

According to the NP-completeness of the derivation of feasible solutions
for the global static power-aware mapping problem when Fj is less than |T |,
we focus our study on the case that Fj is not specified, i.e., Fj = |T |. If Fj

is specified, our remapping algorithm in Section 2.4 can be revised to try to
fit the required demand, but there is no feasibility guarantee.

2.4 Global static power-aware mapping problem

As it is difficult to derive solutions with worst-case guarantees in polyno-
mial time, this section presents an efficient multi-step heuristics to derive
approximative solutions for the global static power-aware mapping problem.
We first derive initial solutions based on linear programming relaxation, and
then perform task remapping to improve the solutions.

2.4.1 Initial Solutions

To derive a feasible initial solution, we can first relax the integral constraints
in Equation (2.4d) and Equation (2.4e) so that Mi,j,k and Zm,j,k can be any
fractional variable. That is, constraints (2.4d) and (2.4e) in Equation (2.4)
are relaxed and the problem can be formulated as:

28 Chapter 2. Allocation on heterogeneous MPSoCs

min
∑

Sm∈S

∑
pj∈P

Fj∑
k=1

χmσjZm,j,k +
∑
ti∈T

∑
pj∈P

Fj∑
k=1

ui,jδjψiMi,j,k (2.6a)

s.t. ∑
ti∈T

θi,sMi,j,kui,j ≤ Zm,j,k,
∀pj ∈ P, Sm ∈ S,
∀k = 1, 2, . . . , Fj

(2.6b)

∑
pj∈P

Fj∑
k=1

Mi,j,k = 1, ∀ti ∈ T , (2.6c)

Mi,j,k ≥ 0, ∀ti ∈ T , pj ∈ P, k = 1, 2, . . . , Fj , (2.6d)
Zm,j,k ≥ 0, ∀Sm ∈ S, pj ∈ P, k = 1, 2, . . . , Fj . (2.6e)

In contrast to Equation (2.4), the new problem formulation is not upper-
bounded anymore, as Zm,j,k can take any positive value. Therefore, con-
straint (2.4b) can be removed. Additionally, constraint (2.4c) can be re-
placed by M̂i,j =

∑Fj

k=1 Mi,j,k. As a consequence of the unboundedness
of Zm,j,k tasks are assigned to PU types, rather than to instances thereof.
Essentially, this means that portions of a task might be mapped onto dif-
ferent processing unit types, but these portions must sum up to 100%.
Consequently, the term representing the static power consumption in the
objective function is not constraint at all anymore and scenarios and their
probabilities of execution are no longer an influential factor in the optimiza-
tion process.

As a result, the optimal solution for the relaxed problem is equivalent
to the following linear program:

min
∑

pj∈P

∑
ti∈T

ψiui,j(δj + σj)M̂i,j (2.7a)

s.t. ∑
pj∈P

M̂i,j = 1, ∀ti ∈ T , (2.7b)

M̂i,j ≥ 0, ∀ti ∈ T , pj ∈ P , (2.7c)

where the variable M̂i,j indicates the portion of task ti that is assigned
to execute on PU type pj. By applying the extreme point theory [Sch86], it
is clear that there exists an optimal solution for Equation (2.7) which maps
every task ti ∈ T to the PU type pj ∈ P that has the minimum static and
dynamic power consumption (ui,j(δj + σj)).

Algorithm 2.1 presents the pseudo-code of the procedures to derive an
initial solution for the global static power-aware mapping problem. Step 2.1

2.4. Global static power-aware mapping problem 29

Algorithm 2.1 Initial Solution
Input: T ,P,S
1: Tj ← ∅,∀pj ∈ P;
2: for each ti ∈ T , find pj∗ ← argmin

pj∈P
ui,j(δj + σj) and Tj ← Tj ∪ {ti};

3: for each Tj 6= ∅ do
4: order tasks in Tj , e.g., decreasing on the utilization;
5: Um,j,k ← 0, ∀Sm ∈ S and k = 1, 2, . . . , |T |;
6: for each task ti in Tj do
7: let Sti be the set of scenarios that ti is associated with;
8: if there exists an index k with Um,j,k > 0 for some Sm ∈ Sti and

Um,j,k + ui,j ≤ 1 for all Sm ∈ Sti then
9: assign task ti to the k-th allocated PU of pj ;

10: Um,j,k ← Um,j,k + ui,j for all Sm ∈ Si;
11: else
12: let k∗ be the smallest k with Um,j,k = 0,∀Sm ∈ S;
13: allocate the k∗-th unit of pj and assign task ti to it;
14: Um,j,k∗ ← Um,j,k∗ + ui,j for all Sm ∈ Si;
15: end if
16: end for
17: end for

and Step 2 in Algorithm 2.1 derive an assignment of tasks to PU types,
where Steps 3 to 17 allocate processing unit instances for tasks as described
in the following.

After assigning tasks to PU types, the actual number of instances k per
PU type pj has to be computed. Suppose that the set of tasks, that are
mapped onto a specific PU type pj are denoted as Tj ⊆ T . For each PU
type, we order the tasks in Tj from high utilization to low utilization. Start-
ing with task ti ∈ Tj with the highest utilization ui,j, tasks are assigned to
an instance k of processing unit type pj, denoted p̂j,k. A task assignment
is feasible, if the additional utilization ui,j on target PU p̂j,k does not vio-
late the utilization constraint for any scenario Sm that task ti is assigned
to (compare to constraint (2.4b)). If no feasible assignment exists, an ad-
ditional instance of the corresponding PU type pj is created, and the task
is mapped onto this new instance. This process is repeated for each task
and each PU type pj until all tasks in T are assigned to an instance of a
processing unit. In case there are already multiple instances of a PU type
available, tasks can be assigned to any concrete instance, as long as the
utilization constraint is not violated.

Clearly, the derived solution is feasible for the global static power-aware
mapping problem. There is at least one available processing unit type pj ∈
P for each task ti ∈ T , such that the task utilization ui,j on processing unit
type pj is less than 100%. Hence, there is a feasible solution with at most

30 Chapter 2. Allocation on heterogeneous MPSoCs

Fj = |T | processing units. In Algorithm 2.1, Line 3 has to be executed at
most |P| times. Line 6 executes at most |T | times and the search for an
instance k such that the utilization constraint is satisfied for all scenarios
in Line 8 is in O(|S||T |). Therefore, the time complexity is O(|P||T |2|S|).

2.4.2 Task Remapping

In Equation (2.7) tasks are mapped to their most power efficient PU type.
This may distribute the tasks over a large amount of PU types and in-
stances thereof, which results in a low utilization of these PUs. According
to our power model, a PU consumes static power, once it is switched on.
Distributing tasks over a large amount of low utilized PUs leads to a high
contribution of static power consumption to the expected average power
consumption. Equation (2.7) disregards that fact, and thus might underes-
timate the objective.

We propose an approach to improve the solution iteratively by applying
a multiple-step procedure. Given an initial solution, derived from Algo-
rithm 2.1, we iteratively improve the solution by considering the remapping
of tasks. Task remapping is done by considering sets of tasks belonging to
a scenario Sm on a specific PU p̂j,k. Let Tm,j,k be the set of tasks assigned
to PU p̂j,k in scenario Sm. The remapping procedure attempts to remap all
the tasks in Tm,j,k to other PUs, in order to reduce the expected average
power consumption. To reduce the time complexity for remapping, only
PUs are considered as valid target units that already host all scenarios S ′

m

to which the tasks in Tm,j,k belong to. Tasks in Tm,j,k can only be mapped
onto PU p̂j′,k′ if the following condition applies: The sets of tasks Tm′,j′,k′

belonging to scenarios Sm′ , where θi,m′ = 1 ∀ti ∈ Tm,j,k, are non-empty
sets. Among all task sets Tm,j,k ∈ T we choose to remap the set of tasks
Tm∗,j∗,k∗ first, that yields the highest reduction of expected average power
consumption. This remapping step iterates until no further performance
gain can be achieved.

The pseudo-code for remapping is presented in Algorithm 2.2, where the
detail of Step 3 will be presented in Algorithm 2.3 later. To reduce the
time complexity for remapping, we only consider non-empty sets Tm,j,k. In
Algorithm 2.2, we use fj to denote the number of allocated units of PU type
pj in the initial solution.

We now present how to determine the highest expected average power
reduction of task set Tm,j,k, i.e., the implementation of Step 3 in Algo-
rithm 2.2. Suppose that Um,j,k is the utilization of tasks in Tm,j,k, i.e.,
Um,j,k =

∑
ti∈Tm,j,k

ui,j. Furthermore, once tasks assigned to scenario Sm are

mapped onto PU p̂j,k, we set Z†
m,j,k as 1, while Z†

m,j,k is 0 otherwise.

2.4. Global static power-aware mapping problem 31

Algorithm 2.2 Remapping
Input: Tm,j,k,∀Sm ∈ S, pj ∈ P, k = 1, . . . , fj ;
1: while true do
2: for each non-empty set Tm∗,j∗,k∗ do
3: apply Algorithm 3 to remap all the tasks in Tm∗,j∗,k∗ , and let

T m∗,j∗,k∗

m,j,k ,∀Sm ∈ S, pj ∈ P, k = 1, . . . , fj be the solution;
4: let Δm∗,j∗,k∗ be its reduced expected average power consumption if the

remapping (in Step 3) is successful;
5: end for
6: if there is no successful remapping (in Step 3) then
7: break;
8: else
9: let m†, j†, k† be the indexes m∗, j∗, k∗ with the minimum Δm∗,j∗,k∗ ;

10: Tm,j,k ← T m†,j†,k†

m,j,k ,∀Sm ∈ S, pj ∈ P, k = 1, . . . , fj ;
11: end if
12: end while
13: return the task sets Tm,j,k,∀Sm ∈ S, pj ∈ P, k = 1, . . . , fj ;

A set of tasks Tm∗,j∗,k∗ can only be remapped to a processing unit p̂j′,k′

if Z†
m∗,j′,k′ is 1. This allows satisfying the previously defined condition, that

tasks can only be remapped if all the scenarios they are assigned to are
hosted on the target processing unit.

The optimal solution for remapping task set Tm∗,j∗,k∗ can be formulated
by the following integer linear programming:

min
∑

Sm∈S

∑
pj∈P

Fj∑
k=1

χmδj

Um,j,k +
∑

ti∈Tm∗,j∗,k∗

Mi,j,kui,j

 (2.8a)

s.t.

Um,j,k +
∑

ti∈Tm∗,j∗,k∗

Mi,j,kui,j ≤ Z†
m,j,k,

∀pj ∈ P, Sm ∈ S,
∀k = 1, 2, . . . , Fj

(2.8b)

∑
pj∈P

Fj∑
k=1,k 6=k∗

Mi,j,k = 1, ∀ti ∈ Tm∗,j∗,k∗ , (2.8c)

Mi,j,k ∈ {0, 1} , ∀ti ∈ Tm∗,j∗,k∗ , pj ∈ P, k = 1, 2, . . . , Fj . (2.8d)

Note that Z†
m,j,k is not a variable in the programming shown in Equa-

tion (2.8), but is derived from the initial mapping.
As the number of tasks in task set Tm∗,j∗,k∗ is significantly reduced com-

pared to T , it is possible to derive optimal solutions of Equation (2.8).
However, the ILP in Equation (2.8) has to be executed many times (in
O(|P||S|)) to determine which remapping is the best so far. Once the re-
sulting task set is remapped, the ILP has to be solved again, to find the

32 Chapter 2. Allocation on heterogeneous MPSoCs

Algorithm 2.3 Remapping of One Task Set
Input: Tm,j,k, Sm ∈ S, pj ∈ P, k = 1, · · · , fj ; Tm∗,j∗,k∗ for remapping;
1: while Tm∗,j∗,k∗ 6= ∅ do
2: ti∗ ← argmin

ti∈Tm∗,j∗,k∗
ui,j∗ ;

3: let Si∗ be the set of the scenarios that task ti∗ is associated with;
4: among the non-empty task sets Tm,j,k ((j, k) 6= (j∗, k∗)) with Sm ∈ Si∗

and ui∗,j +
∑

ti∈Tm,j,k
ui,j ≤ 1 for all Sm in Si∗ , let (j′, k′) be the indexes with

the minimum ui∗,j′ and satisfied constraint Um,j′,k′ ;
5: if indexes (j′, k′) do not exist then
6: return remapping fails;
7: else
8: Tm′,j′,k′ ← Tm′,j′,k′ ∪ {ti∗} ,∀Sm′ ∈ Si∗ ;
9: Tm′,j∗,k∗ ← Tm′,j∗,k∗ \ {ti∗} ,∀Sm′ ∈ Si∗ ;

10: end if
11: end while
12: return task sets Tm,j,k, Sm ∈ S, pj ∈ P, k = 1, · · · , fj ;

next set of tasks for remapping. As a consequence, applying an ILP solver
to exactly solve Equation (2.8) with high complexity is impractical. This
chapter presents how to perform task remapping by applying a heuristic
approach as shown in Algorithm 2.3.

Algorithm 2.3 has as an input the set of tasks Tm∗,j∗,k∗ that shall be
remapped. In Step 2, task ti∗ with the lowest utilization ui∗,j is retrieved.
Furthermore Si∗ is defined to be the scenarios task ti∗ is present in.

The next steps perform the search for a processing unit p̂j′,k′ where the
utilization ui∗,j′ of task ti∗ is minimized and there exists an instance k′ of
PU type p′j such that the utilization constraints for all scenarios Si∗ are sat-
isfied. Furthermore the target and the origin PU cannot be the same unit
(p̂j′,k′ 6= p̂j,k). If such a PU cannot be found (Step 5), remapping fails and
the algorithm continues with the next task in the input task set. Otherwise
(Step 7) the remapping is performed and task ti∗ is removed from the set
of tasks to be remapped. This process repeats, as long as there are task
in the input task set. The approach aims at reducing the number of low
utilized PUs in order to reduce static power consumption. A set of tasks is
remapped to another processing element, if the benefit of saving the static
power consumption of the current PU outweighs the penalty of increased
dynamic power consumption on the target PU.

In Figure 2.4, the initial mapping of tasks to resource instances is shown
on the top. Based on that, two examples for the remapping process are pre-
sented. Scenario S1, S2, S3 and S4 are mapped onto resource instances p1,1,
p2,1 and p2,2 as shown in Figure 2.4 and the remapping process starts with

2.4. Global static power-aware mapping problem 33

task t8 in scenario S1 on resource instance p2,1 (e.g., Line 2 in Algorithm 2.3
returns t8). This task belongs only to scenario S1, but since all tasks of a
scenario are remapped, not just single tasks, the dependent scenarios for
all the tasks in S1 have to be considered as well. It turns out, that task t9
belongs to scenarios S1 and S2, and therefore, both scenarios are considered
for the remapping process. As a result, the task set to be remapped for
scenario S1 is T1,2,1 and the task set to be remapped for scenario S2 is T2,2,1.
In the next step, Step 4 in Algorithm 2.3, a resource instance that could
host the task sets without violating its utilization constraints is found. Let
this resource instance be p1,1 in Figure 2.4, since p2,2 does not host either
S1 nor S2 and therefore could not host any tasks belonging to these sce-
narios. Scenario S1 on resource instance p1,1 hosts the task set T1,1,1, and
after a successful mapping would also host the task set T 1,1,1

1,2,1 . Similarly for
scenario S2 and task sets T2,1,1 and T 2,1,1

2,2,1 . As a result, resource instance
p2,1 does not host scenarios S1 and S2 anymore. Therefore, this resource
instance can be switched off for a time span, corresponding to the active
time of scenarios S1 and S2. Hence static power consumption is reduced.
The reduced power consumption Δ1,1,1 and Δ2,1,1 for scenarios S1 and S2

respectively, is a result of reduced static power consumption on resource
instance p2,1. In case there are multiple resource instances, where task sets
T1,2,1 and T2,2,1 could be remapped to, the one resource instance that re-
sults in the minimum reduced expected average power consumption Δ is
chosen, see Line 9 in Algorithm 2.2. The second task set in Figure 2.4 that
should be remapped belongs to scenario S3 on resource instance p2,1. The
only other resource instance where scenario S3 is active, is resource instance
p2,2. Additionally, there are no other scenarios involved, since no task in
scenario S3 on p2,1 is active in any scenario other than S3. Similarly to the
previous example, the tasks in scenario S3 on p2,1 are reassigned to resource
instance p2,2. As a result, resource instance p1,1 can be switched off for a
time span that corresponds to the active time of scenario S3. The resulting
task to processing unit allocation is presented in Figure 2.4 on the bottom.
In these two examples, we assume that the saving that results from switch-
ing off resource instances outweighs the penalty of increased dynamic power
consumption that results from executing tasks on other resource instances.
However, this is not a requirement of our approach, but a simplification in
order not to overload the figures. Remapping of tasks is only performed
once the reduced expected power consumption actually results in decreased
power consumption; otherwise the tasks remain on their original resource
instance.

34 Chapter 2. Allocation on heterogeneous MPSoCs

1
t

2
t

3
t 4

t

5
t

6
t

7
t

1
S

2
S

3
S

8
t

9
t

10
t

11
t

1
S

2
S

12
t

13
t

14
t

3
S

15
t
4
S

1,1
p

2,1
p

2,2
p

re
m

a
p

p
in

g

1 2
{ , }

i
S S S=

2,2,1 9 10 11
{ , , }t t t=T

81,2,1 9
{ , }t t=T

8
it
t

=

1,1,1 1 2 3
{ , , }t t t=T

1,1,1

1,2, 8 91
{ , }t t=T

2,1,1 3 4 5
{ , , }t t t=T

2,1,1

2,2 1,1 119 0
{ , },t t t=T

1,1,1
∆

2,1,1
∆

re
m

a
p

p
in

g
6

it
t

=

3
{ }

i
S S=

3,1,1 6 7
{ , }t t=T

3,2,2 12 13 14
{ , , }t t t=T

3,1,1

3,2,2 6 7
{ , }t t=T

3,1,1
∆

1
t

2
t

3
t 4

t

5
t

1
S

2
S8

t

9
t

10
t

11
t

12
t

13
t

14
t

3
S

15
t
4
S

1,1
p

2,2
p

6
t

7
t

initial mapping

result

Figure 2.4: Task Remapping Approach - an example for two tasks being
remapped.

2.5. Dynamic power-aware scenario-mapping problem 35

2.4.3 Complexity

In Algorithm 2.3, the number of tasks in Tm∗,j∗,k∗ at Line 1 is at most |T |.
In Line 4, for all task sets Tm,j,k (at most |T |) and all scenarios (at most
|S|), the processing element p′j with the lowest utilization ui∗,j′ for task
t∗i has to be found, such that the utilization constraint is satisfied. This
search is in O(|T ||S||P|). As a result, the time complexity of Algorithm 2.3
is in O(|S||P||T ||Tm∗,j∗,k∗ |). Algorithm 2.3 is used in Algorithm 2.2 as a
subroutine. The loop in Line 1 is executed at most |P||S| times, since for all
possible task set Tm∗,j∗,k∗ the reduced expected average power consumption
needs to be computed. While the loop in Line 2 is executed for at most
|T | times. Since this loop dominates the complexity of Algorithm 2.2, its
time complexity is O(|T |3|P|2|S|2). Only one of the computed solutions in
Algorithm 2.2 is applied, namely the one that yields the lowest expected
average power consumption. In order to derive the next set of tasks and
their respective remapping possibilities, Algorithm 2.2 has to be executed
again. This procedure is repeated once for all scenarios and processing
element instances, at most |P||T ||S|. As a result, the remapping process
has a time complexity of O(|T |4|S|3|P|3).

2.5 Dynamic power-aware scenario-mapping problem

This section describes our proposed dynamic approach. Based on the graph
Gπ, see Figure 2.3, representing the scenarios and their valid transitions, the
offline part computes the set of loop free paths through the graph, i.e., the
scenario sequences C. For each scenario sequence, a static mapping, using
the algorithms presented to solve the global static power-aware mapping
problem, is computed and stored on the system as template. The online
part monitors the scenario transitions and, once a new scenario becomes
active, chooses an appropriate mapping from the precomputed templates,
see Figure 2.5. We show how to derive a finite set of paths through the
graph representing the possible scenarios and how to adapt the global static
mapping approach for dynamic behavior.

2.5.1 Scenario Sequence Generation

Consider the cross product Gπ(Eπ,S) in Figure 2.3 as an example. We
construct all possible paths from the initial to the final state. The initial
and final modes of applications A1 and A2 in Figure 2.2 are known, thus the
initial and final states of graph Gπ are (I1,I2) and (R1,R2) respectively.
Considering loop free paths only, i.e., paths that traverse a state at most
once, results in a finite set of paths.

36 Chapter 2. Allocation on heterogeneous MPSoCs

concurrent Applications A

generate
Scenarios

initial
mapping

task
remapping

Generate
scenario

sequences

compute
template
mappings

store
templates

static mapping

g
lo

b
a

l s
ta

ti
c

m
a

p
p

in
g

monitor
scenario

transitions

manager
chooses

appropriate
template

template
storage

OFFLINE

ONLINE

S

(,)G E
π π

S

i
c∀ ∈ C

C

Figure 2.5: Dynamic Mapping Approach - Overview of offline and online
steps

Deriving the set of paths C can be formulated by a recursive algorithm as
shown in Alg. 2.4. Consider Vinit as the set of initial states and Vend as the set
of final states. The set of paths from all vinit,i ∈ Vinit to all vend,j ∈ Vend is the
set of scenario sequences C and cr ∈ C is one unique sequence of scenarios.
We apply Algorithm 2.4 to any combination of initial and final states in
Vinit and Vend respectively. In our example in Figure 2.3, there is only one
initial and one final state. Therefore, let Algorithm 2.4 be initialized with
vinit,1 = (I1,I2), the initial sequence c = vinit,1, vend,1 =(R1,R2) and the
global variable C = ∅. Each iteration adds the current state vi to sequence
c and computes its successor states. Successor states vj, that lead to loop
free paths are considered for another iteration of the algorithm. Once all
the sequences are known, we can compute template mappings for each of
them.

2.5.2 Deriving templates and the hardware platform

The template mappings for our dynamic approach are computed by applying
the global static mapping procedure to each scenario sequence cr ∈ C. A
scenario sequence cr ∈ C describes the transitions from an initial scenario
Sinit to another scenario Send, and Scr denotes the set of scenarios that is

2.5. Dynamic power-aware scenario-mapping problem 37

Algorithm 2.4 compute paths
Global: C
Input: Gπ(S, Eπ), vinit, vend, vi, c;
1: if vi = vend then
2: C ← C ∪ {c}
3: return;
4: end if
5: for each successor vj of vi ∈ S do
6: if vj 6∈ c then
7: compute paths(Gπ(S, Eπ), vinit, vend, vj , c ∪ {vj});
8: end if
9: end for

traversed in this scenario sequence. Each scenario of that sequence activates
and deactivates some tasks. This results in a set of tasks Tcr that has to
be considered for allocation. The tasks in Tcr all belong to scenarios in the
scenario sequence cr, but not all scenarios that activate a task ti ∈ Tcr are
traversed by the sequence cr. The execution probability ψi of task ti ∈ Tcr

has to be recomputed, such that only those scenarios are considered that
are actually traversed by cr:

ψi =
∑

Sm:ti active in Sm and Sm∈Scr

χm (2.9)

The mapping process is applied and a task allocation for each sequence
cr ∈ C is derived.

The static mapping approach, as formulated in Equation (2.4), is changed
such that only those scenarios Sm ∈ S are considered, that are traversed in
sequence cr. That is, the objective in Equation (2.4a) is changed to:

∑
Sm∈Scr

∑
pj∈P

Fj∑
k=1

χmσjZm,j,k +
∑

ti∈Tcr

∑
pj∈P

Fj∑
k=1

ui,jδjψiMi,j,k. (2.10)

Note that only those scenarios are considered that are traversed by sce-
nario sequence cr. Furthermore, the set of tasks considered for the mapping
process is limited to those tasks activated by scenarios Sm ∈ cr, i.e., task set
Tcr . Based on this formulation, the algorithms presented in Section 2.4 can
be applied correspondingly. Optimally solving the dynamic power-aware
scenario-mapping problem means applying the ILP solver, as described in
Equation(2.4), to each scenario sequence cr ∈ C. Similarly, solving the
problem with a heuristic means applying the heuristic in Algorithms 2.1
and 2.2 to each scenario sequence.

The process of deriving all templates for all scenario sequences can be
formulated as in Algorithm 2.5.

38 Chapter 2. Allocation on heterogeneous MPSoCs

Algorithm 2.5 compute templates
Input: P, Gπ(S, Eπ), T ,Vinit,Vend;
Global: C
Output: templates for C
1: for all combinations of vinit,i ∈ Vinit and vend,j ∈ Vend do
2: c ← vinit,i

3: C = compute paths(Gπ(S, Eπ), vinit,i, vend,j , vinit,i, c)
4: end for
5: for each cj ∈ C do
6: initialize Z, M
7: compute Tcj and ψi for each task ti ∈ Tcj

8: M,Z ←static mapping(cj , Tcj ,P)
9: store mapping in M , Z as template for cj

10: end for

Once a scenario is reached, there exists a precomputed template map-
ping for each sequence of scenario transitions that might have been executed
before. As an example, consider a system transitioning to scenario Sm ∈ S.
This scenario was considered for template mappings in all the scenario se-
quences CSm ⊂ C that traverse Sm. Therefore, once a scenario Sm is reached,
the preceding sequence of scenario transitions cSm is included in CSm . The
tasks activated in scenario Sm are mapped according to the template com-
puted for scenario sequence cSm . Once the system transitions to scenario
Sm+1 6∈ cSm then the tasks activated in this scenario are mapped according
to the template computed for scenario sequence cSm+1 . Note the scenario
sequence cSm and scenario sequence cSm+1 traverse the same scenarios up
until scenario Sm, i.e., scenario Sm ∈ cSm and Sm ∈ cSm+1 . As a result,
up until scenario Sm these sequences represent the same set of scenario
transitions. Hence, the tasks in scenario Sm are mapped, such that a tran-
sition to all succeeding scenarios, including Sm+1 is feasible. See Figure 2.6
for an example. Consider the scenario reached by the scenario sequence
(I1,I2)(I1,S2)(S1,S2)(R1,S2). Once arriving in (R1,S2), there are two
possibilities to continue. First, transition to (R1, R2), or second, transition
to (I1, S2). The path transitioning to (I1, S2) needs not to be consid-
ered for the scenario sequences C, since this scenario was already traversed
by the sequence of scenario transitions so far. Hence, the mapping of the
tasks activated by (I1, S2) is already known for this sequence.

At runtime, once a scenario is reached, there exists a mapping for the
tasks that are activated by that scenario, for all scenario transitions that
can lead to this scenario and for all mapping decisions that have been taken
so far. Consider scenario (S1, R2) in the product graph in Figure 2.3 and
the possible scenario sequences that could lead to this scenario, as shown in
Figure 2.6 (which represents a partial unfolding of the graph in Figure 2.3

2.5. Dynamic power-aware scenario-mapping problem 39

only, due to space limitations). Then it can be seen that there are multiple
scenario sequences that contain (S1, R2). Now consider a transition from
scenario (I1, I2) to (I1, S2) and then to (S1, S2). At each transition
to a scenario, a template mapping has to be chosen by the runtime envi-
ronment, depending on the sequence of preceding scenario transitions. This
template was computed offline, such that all tasks that are activated by
succeeding scenarios can still be mapped, i.e., the subgraph for which the
current scenario represents the root is considered in the mapping process.
As a result, no matter which sequence of scenario transitions is executed
in the system, there is a template mapping for scenario (S1, S2), but those
templates take very different future developments into consideration. As an
example, the mapping of tasks activated in scenario (S1, S2) is different for
scenario sequence (I1, I2), (I1, S2), (S1, S2) and (I1, I2), (I1, S2),
(I1, R2), (S1, R2), (S1, I2), (S1, S2) since in the latter, the number of
possible future developments is significantly reduced compared to the first
case.

Upper bound on the number of scenario sequences
Consider the graphs GA1(VA1 , EA1) and GA2(VA2 , EA2) representing appli-
cations A1 and A2 respectively. Furthermore, consider graph Graph Gπ =
GA1 ×GA2 , k as the maximum number of outgoing transitions for each state
in Gπ and n as the length of the longest loop-free path to reach the final
state. Then, the number of paths to get from an initial state to a final state
can be bounded by:

|C| ≤ kn. (2.11)

This number is exponential in the number of scenarios, i.e., the number
of applications that execute concurrently. For our example in Figure 2.3,
each state has two outgoing transitions, therefore the number of paths is
bounded by |C| ≤ 2n. The actual number of paths is significantly smaller,
since in reality we are only considering loop-free paths, but not all paths
of length n are loop free. Conclusively, once a state is traversed that has
already been seen on the current path, this path can be omitted.

Tighter bounds on the number of paths can be derived by considering the
sub-trees that are omitted due to cycles and the structure of our proposed
application model.

In Figure 2.6, we show the unfolding of graph Gπ representing the cross
product of the example in Figure 2.3. It can be seen that there is a finite
number of loop free paths from the initial state to the final state. Light
gray nodes in the graph represent the initial state and once the system
transitions to that, it is restarted. Dark gray nodes represents a transition
to a scenario that has already been traversed, therefore a loop is detected.
Medium gray nodes represent the accepting state.

40 Chapter 2. Allocation on heterogeneous MPSoCs

.

.

.

I1

I2

I1

S2

I1

R2

S1

S2

I1

I2

S1

R2

R1

R2

S1

I2

S1

S2

R1

I2

I1

I2

R1

S2

R1

R2

I1

S2

R1

S2

R1

R2

I1

S2

S1

R2

R1

R2

S1

R2

S1

I2

R1

I2

I1

I2

S1

S2

R1

S2

R1

R2

I1

S2

R1

R2

R1

S2

I1

S2

Figure 2.6: Unfolding of the cross product Gπ of the example system in Fig-
ure 2.3. Green nodes represent system restart, red nodes represent cycles
that can be skipped and blue nodes represent accepting states.

Deriving a hardware platform
Each sequence cr ∈ C results in a distinct template mapping and therefore a
distinct number of instances kj for each PU type pj. The hardware platform,
that guarantees feasibility for any scenario sequence cr ∈ C, is constituted
by the maximum number of instances kj for each pj ∈ P , among all the
precomputed template mappings.

2.5.3 Online mapping
Templates are stored on the system and a manager observes scenario tran-
sitions. Based on this observation a precomputed template is chosen.

There is one mapping for each scenario sequence and the number of
such sequences is bound by Equation (2.11). However, in our example in
Figure 2.3, the number of templates is 12, representing a much lower number
than suggested by Equation (2.11) for k = 2 and n = 8. Storing template
mappings for two applications, constituted by a total of 34 tasks and an
assumed hardware platform of 20 processing units, requires 1kb of memory,
or 12 times the amount required by a global static mapping.

2.6. Performance Evaluation 41

Consider a scenario sequence cr ∈ C and a resulting template mapping
M r. This template mapping assigns the tasks that are active in the scenarios
that constitute cr to processing elements, such that task ti is mapped onto
processing element pj,k, if M r

i,j,k = 1 and M r
i,j,k = 0 otherwise. Furthermore,

consider an associative array L to store mappings, such that L = {c1 →
M1, . . . , cn → Mn} and n = |C|. Furthermore, consider the observer to
know the current system state h, i.e., the current scenario and the sequence
of scenario transitions so far. Then at a transition from a scenario Sm

to another scenario Sm+1, the online manager updates the current system
state, such that h = h ∪ {Sm+1}. In case Sm+1 ∈ Vinit, i.e., the system
transitions to an initial scenario, system state h is reset to {Sm+1}.

Matching the current system state h with the index of the associative
array L allows retrieving the template M r that was precomputed for the
current scenario sequence. The system state h as well as every scenario
sequence cr ∈ C start with a scenario Sinit ∈ Vinit. As a result, any of the
matching scenario sequences can be used to retrieve the mapping of a task
by reading their respective M r

i,j,k. Conclusively, the runtime environment
needs to be aware of the current system state. Then template mappings
can be retrieved in constant time.

2.5.4 Templates for different probability distributions

For different execution probability distributions optimal template mappings
are generated according to the proposed methodology and stored on the
system. In addition to monitoring the sequence of scenarios, the online
manager also needs to store the execution frequency of each individual sce-
nario, e.g., by incrementing a counter each time a particular scenario is
activated. Based on this information, the online manager can then choose
the best fitting template. The global static power-aware mapping prob-
lem does not allow providing additional mappings and therefore can only
guarantee efficient execution for a single probability distribution.

2.6 Performance Evaluation

This section provides the simulation results by means of realistic SDR (soft-
ware defined radio) applications. Specifically, Wireless Local Area Network
(WLAN), as described in [MVB07], Digital Video Broadcast - Handhelds
(DVB-H), as described in [SKG+07], and Ultra Wideband (UWB), as de-
scribed in [SWvdV08], are adopted in the simulations.

42 Chapter 2. Allocation on heterogeneous MPSoCs

2.6.1 Simulation Setup

The simulation setup is characterized in Table 2.3. For each application, a
set of tasks is extracted and the required computational resource demand
γi,j of task ti on processing unit type pj is generated, see Table 2.4.

We simulate systems with two applications (either WLAN and DVB-H
or WLAN and UWB), and three modes in each application (init, send/sync
and receive). Each application is composed by 3 modes, see Figure 2.2, and
parameters are generated as random variables.

Applications Modes Number of Number of γi,j χ̂

tasks shared tasks

A1 (DVB-H)
µ1 (sync) 4 0

0
≤

γ
i,
j
≤

0.
5

de
te

rm
in

ed
by

pr
ofi

lin
g

µ2 (receive) 7 0

A2 (WLAN)
µ3 (send) 10 10

µ4 (receive) 23 10

A3 (UWB)
µ5 (send) 3 1

µ6 (receive) 5 1

Table 2.3: Simulation setup for WLAN, DVB-H, and UWB applications.

variables values
σj random 0 ≤ σj ≤ 1.0

δj random 0 ≤ δj ≤ σj

λj random 0 ≤ λj ≤ 3.0

γi,j random 0 ≤ γi,j ≤ 0.5

Table 2.4: Parameters for generating the processing unit types.

Experiments are executed for different PU type library sizes, reaching
from 2 available types to 30. The modes execution probabilities have been
varied and experiments were executed for 6 different execution distributions.
For each distinct library size we created 1000 system instances. As a result,
6000 realizations per PU type library size were computed. Each instance
uses a different set of application parameters and a different library of PU
types P to construct the hardware platform.

2.6. Performance Evaluation 43

2.6.2 Global static power-aware mapping
The initial mapping, see Algorithm 2.1, denoted as 'INIT', the heuristic
mapping process, see Algorithm 2.2, and the optimal solution, see Equa-
tion (2.4), denoted as 'OPTIMAL' are evaluated. The heuristic mapping
performance is evaluated as an average, maximum and minimum case. The
average case (denoted 'HEURISTIC - average') is the average performance
computed from all realizations simulated for a specific PU types library
size. The maximum (denoted 'HEURISTIC - maximal') characterizes the
worst performance for a specific PU types library size and the minimum (de-
noted 'HEURISTIC - minimum') characterizes the best performance from
all realizations for a given library size.

For each simulation, the time consumed to compute the results is evalu-
ated. For the optimal case, we terminate the ILP after a reasonable amount
of time and do not consider those experiments for our results.

WLAN and UWB with varying probability distributions

n
o

rm
a

li
ze

d
 a

ve
ra

g
e

 e
x

p
e

ct
e

d
 p

o
w

e
r

co
n

su
m

p
ti

o
n

Number of available PU Types

0

2

4

6

10

15

20

205 10 15 25 30

HEURISTIC - minimal
HEURISTIC - maximal
INIT
HEURISTIC - average
OPTIMAL

Figure 2.7: Simulation results for WLAN/UWB.

Figure 2.7 represents the simulation results for systems with WLAN and
UWB applications. With increasing PU types library size the performance
of the initial mapping is deteriorating. The heuristic performance stays
below a factor of 4 even for the maximal case and a large number of PU
types. The average performance of our heuristic is below 2 for PU type
library size smaller than 15 PU types and below 3 for libraries of less than
30 PU types. The performance degradation is very slow, compared to the
initial mapping. This shows the effectiveness of the proposed multi-step
heuristic. The initial mapping degrades very fast, due to the fact that tasks

44 Chapter 2. Allocation on heterogeneous MPSoCs

2 5 10 15 20 25 30
10

−2

10
0

10
2

10
4

Number of available PU Types

a
ve

ra
g

e
co

m
p

u
ta

ti
o

n
 t

im
e

[m
s]

Time to compute mappings for WLAN and UWB

OPTIMAL
INIT

HEURISTIC - average

HEURISTIC - minimal

HEURISTIC - maximal

Figure 2.8: Time complexity for WLAN/UWB.

are mapped onto processing unit types, that result in minimized dynamic
power consumption for that task. As a result, a large number of processing
unit instances is created, each hosting only a small number of tasks, i.e.,
the processing units utilization is small. Conclusively, the overall power
consumption increases, due to many low utilized processing unit instances,
each consuming static power.

Figure 2.8 represents the timing evaluation of the remapping process for
systems with WLAN and UWB applications. Already at 2 available PU
types the heuristic mapping process is faster than the optimal. At a library
size of 5 PU types, the heuristic process is already one order of magnitude
and at a library size of 10 PU types 2 orders of magnitude faster than the
optimal algorithm. It can be noted that at a library size of about 25, the
time to compute the heuristic remapping process stays constant and the
gap between minimal and maximal time elapsed to compute the results for
the heuristic approach diminishes.

Increasing the absolute number of tasks makes the problem harder, and
thus the performance for systems with WLAN and DVB-H is slightly worse.
Figure 2.9 shows the simulation results for systems with WLAN and DVB
applications. Here we show results for two different probability distribu-
tions. The performance of the initial mapping deteriorates quickly. The
heuristic approach still achieves a power performance which is less than 3.5
times worse than the optimal solution. For distribution B, the approxi-
mation factor stays below 2.5. Again, the effectiveness of the multi-step

2.6. Performance Evaluation 45

5 10 15 20 25 30

1

2

3

4

5

10

20

30

Number of availabe PU Types

n
o

rm
a

liz
ed

 a
ve

ra
g

e
ex

p
ec

te
d

 p
o

w
er

 c
o

n
su

m
p

ti
o

n

WLAN and DVB−H with varying probability distributions

HEURISTIC − Distr. A

HEURISTIC − Distr. B

INITIAL − Distribution A

INITIAL − Distribution B

OPTIMAL (ILP)

Figure 2.9: Simulation results for WLAN/DVB-H for two probability distri-
butions.

heuristics is apparent, despite the fact that no polynomial-time approxima-
tion algorithm with a constant approximation factor exists.

Figure 2.10 represents the timing evaluation for systems with WLAN
and DVB-H applications. The increasing number of tasks, compared to the
system with WLAN and UWB presented in Figure 2.8, results in a slightly
increased computation time for the heuristic and the optimal approach. As
in the previous example, the heuristic approach outperforms the optimal
mapping by 2 orders of magnitude in terms of time consumption. The
second y-axis in Figure 2.10 corresponds to the number of resource instances
that were used in the resulting hardware platform. We denote the number
of resource instances that result from the heuristic approach as 'Number of
PUs - Heuristic', while the number of resource instances that result from
the optimal approach is denoted 'Number of PUs - optimal'. While for the
heuristic approach the number of resource instances rises with an increasing
number of available PU types, the optimal approach uses a constant amount
of resource instances. The heuristic approach suffers from this effect, since
an increased number of resource instances results in increased static power
consumption.

The optimal approach uses an ILP solver to compute the task alloca-
tions. The solver is stopped after 20 minutes, in order to limit the total

46 Chapter 2. Allocation on heterogeneous MPSoCs

5 10 15 20 25 30
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of available PU Types

a
ve

ra
g

e
co

m
p

u
ta

ti
o

n
 t

im
e

[m
s]

Time to compute mappings for WLAN and DVB−H

2

3

4

5

6

7

8

9

10

N
u

m
b

er
 o

f
P

ro
ce

ss
in

g
 U

n
it

 In
st

a
n

ce
s

Number of PUs − Heuristic

Number of PUs − optimal

OPTIMAL (ILP)

HEURISTIC

INITIAL

Figure 2.10: Time complexity for WLAN/DVB-H.

amount of time required to perform the experiments. If the computation of
the optimal result is terminated prematurely, the result is not included in
our experiments. Prematurely terminated computations account for up to
6% for systems with WLAN and DVB-H applications. For PU library sizes
below 10 this share is reduced to ≤ 1% and for libraries with less than 5
available PU types no computation had to be terminated. For systems with
WLAN and UWB this performance is enhanced, as the number of tasks
is reduced. Prematurely terminated computations for those simulations ac-
count for up to 3% and fall below 1% for libraries with less than 10 available
PU types.

As shown in the simulation results, the proposed algorithm can derive
feasible solutions, and the resulting expected average power consumption of
a solution is between 1.1 and 3.5 times of the optimal solution in average
cases. The solution stays below twice of the optimal solution for libraries
with less than 10 PU types. In terms of computation time a speed up of 2 or-
ders of magnitude is achieved in comparison to the optimal solution for large
PU type libraries. Even though we have proved the non-approximability in
polynomial-time, the derived solutions are quite promising.

2.6. Performance Evaluation 47

36%

34%
19%

30%

Dynamic vs. Global Static Mapping for WLAN and UWB

av
er

a
g

e
ex

p
ec

te
d

 p
o

w
er

 c
o

n
su

m
p

ti
o

n

Number of available PU Types

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 10 15 20 25 30

global static optimal (ILP)

global static heuristic
dynamic optimal (ILP)

dynamic heuristic

Figure 2.11: Global Static and Dynamic Mapping Approach for WLAN and
UWB

2.6.3 Dynamic power-aware scenario-mapping

In this section we show how the dynamic power-aware scenario-mapping
compares to the previously analyzed global static mapping approach. We
reuse the previously computed instances of the problem (1000 instances for
6 different probability distributions), and compute a template mapping for
each sequence cr ∈ C, resulting in a corresponding average expected power
consumption. For our particular experimental applications, there are 12
scenario sequences. The overall power dissipation can be computed by the
sum of the power dissipation of the sequence and their respective probabil-
ity. Providing templates for different probability distribution increases the
computation time and the memory requirement linearly with the number
of considered distributions.

In Figure 2.11 we compare the average expected power consumption of
the dynamic power-aware scenario mapping approach to the global static
mapping approach, assuming a WLAN and an UWB application execute
concurrently. We report the average expected power consumption. Where
'global static optimal' represents the expected average power consumption
of the global static mapping, solved using Equation (2.4). Similarly, 'global
static heuristic' represents the expected average power consumption of the
global static mapping, solved using the proposed heuristic, while 'dynamic

48 Chapter 2. Allocation on heterogeneous MPSoCs

5 10 15 20 25 30

1

2

3

4

5

10

20

30

40

Number of available PU Types

N
o

rm
a

liz
ed

 a
ve

ra
g

e
ex

p
ec

te
d

 p
o

w
er

 c
o

n
su

m
p

ti
o

n

Dynamic vs. Global Static Mapping for WLAN and DVB−H

Dynamic Initial

Dynamic Heuristic

Global Static Optimal (ILP)

Global Static Heuristic

Dynamic Optimal (ILP reference)

Figure 2.12: Global Static and Dynamic Mapping vs. Dynamic Optimal Ap-
proach for WLAN and DVB-H

optimal (ILP)' and 'dynamic heuristic' represent the results for the opti-
mal approach and heuristic approach applied to each scenario sequence,
respectively.

In Figure 2.11, the dynamic optimal approach performs best. The dy-
namic optimal approach results in a decreased average expected power con-
sumption of about 35% (34% and 36% in Figure 2.11) compared to the
global static optimal approach. The dynamic heuristic approach results in
an up to 19% increased average expected power consumption in comparison
to the global static optimal approach for large problem instances of more
than 13 available PU Types. For smaller problem instances the dynamic
heuristic approach can reduce the average expected power consumption up
to 30% compared to the global static optimal approach. Finally, both the
dynamic optimal and the dynamic heuristic approach clearly outperform
the global static heuristic approach.

In Figure 2.12, we compare the performance of the global static map-
ping approaches to the performance of the dynamic approaches, assuming a
WLAN and a DVB-H application execute concurrently. The baseline rep-
resents the results of the dynamic power-aware scenario-mapping problem,
solved using the optimal approach, i.e., applying Equation (2.4) to each
scenario sequence and is denoted 'Dynamic Optimal (ILP reference)'. The
global static mapping, solved using Equation (2.4), is denoted as 'Global

2.6. Performance Evaluation 49

Static Optimal (ILP)', and results in an average expected power consump-
tion that is almost twice the baseline. The heuristic approaches, denoted
'Dynamic Heuristic' and 'Global Static Heuristic' for the dynamic scenario-
mapping and the global static mapping approach respectively, show a sim-
ilar relationship. Until a PU Library size of 13, the dynamic heuristic
approach outperforms the global static optimal approach. Finally, the ex-
pected average power consumption of the initial mapping for the dynamic
approach is reported, denoted as 'Dynamic Initial'.

In Figure 2.13, the baseline represents the results of the global static
optimal approach for a single probability distribution. Despite the results in
Figure 2.12, the dynamic heuristic approach can only outperform the global
static optimal approach for small problem instances. However, the dynamic
optimal approach shows to be as efficient as for the problem instance in
Figure 2.12, with an improvement in terms of power consumption close to
45%.

5 10 15 20 25 30

1

2

3

4

5

10

20

30

Number of available PU Types

N
o

rm
a

liz
ed

 a
ve

ra
g

e
ex

p
ec

te
d

 p
o

w
er

 c
o

n
su

m
p

ti
o

n

Dynamic vs. Global Static Mapping for WLAN and DVB−H

Dynamic Initial

Dynamic Heuristic

Dynamic Optimal

Global Static Optimal
 (ILP reference)

Figure 2.13: Global Static and Dynamic Mapping vs. Global Static Optimal
Approach for WLAN and DVB-H

Large problem instances cannot be computed using the optimal, ILP
based, approaches since they fail to compute results in time. Correspond-
ing evaluations are shown in the previous set of experiments for the global
static mapping approach. Therefore, heuristics have to be used to com-
pute a mapping and hardware architecture. However, for larger problem
instances, heuristic approaches can be used to derive results, and the dy-

50 Chapter 2. Allocation on heterogeneous MPSoCs

5 10 15 20 25 30
10
1

10
2

10
3

10
4

10
5

Number of available PU Types

co
m

p
u

ta
ti

o
n

 t
im

e
in

 [
m

s]

Time to compute templates/mappings for WLAN and DVB−H

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

er
 o

f
P

ro
ce

ss
in

g
 U

n
it

 In
st

a
n

ce
s

Number of PUs − Heuristic

Number of PUs − Optimal

Dynamic Optimal

Dynamic Heuristic

Global Static (ILP)

Global Heuristic

Figure 2.14: Experimental Results: Time complexity

namic heuristic approach performs significantly better than the global static
heuristic approach, see Figure 2.12.

Figure 2.14 presents the time required to compute the templates for the
dynamic power-aware scenario mapping problem, using the heuristic and
the optimal approaches. We compare to their corresponding approaches for
the global static mapping problem. Instead of a single global mapping, we
have to compute 12 templates. Therefore the required computation time
increases compared to the global static mapping approach. However, there
are 12 templates to compute but the required computation time is only 9-
fold, while the absolute amount of time to compute the templates using the
heuristic stays well below 1 second even for large processing unit libraries. In
addition, in Figure 2.14 we report the number of processing unit instances in
the resulting hardware platform. Similarly to Figure 2.10, once the heuristic
approach is applied, the number of processing unit instances rises with the
amount of available processing unit types.

Conclusively, computing a template mapping for a single scenario se-
quence cr ∈ C is less challenging than computing a global static mapping.
In the experiments for the global static mapping approach, it is shown that
the optimal global static mapping fails to deliver results in up to 6% due
to complexity reasons. The dynamic approach is able to compute optimal
templates for all instances and all PU type library sizes in the experiments.

2.7. Chapter Summary 51

2.7 Chapter Summary
This chapter studies the problem how to share the computational resources
of a heterogeneous MPSoC among multiple concurrently executing applica-
tions. The responsiveness of an application is guaranteed by a utilization
bound, while the average expected power consumption of the system is
minimized. Applications have multiple modes, each characterized by an
execution probability, and are composed of sets of tasks. Multiple concur-
rently executing multi-mode applications result in a set of scenarios and
each scenario can be reached by sequences of mode changes.

• We show that there is no polynomial-time approximation algorithm
with a constant approximation factor and provide a polynomial-time
heuristic algorithm to solve the allocation problem.

• A multi-step mapping procedure is developed to improve an initial
solution that is based on the relaxation of the integer linear program-
ming formulation of the problem.

• A dynamic mapping strategy is proposed, where static mappings for
scenario sequences are computed and stored as templates on the sys-
tem. A manager observes mode changes at runtime and chooses an
appropriate precomputed template to assign newly arriving tasks to
processing units.

The proposed global static mapping approach derives feasible solutions
for the allocation and resource sharing problem. For the set of experiments
we performed, the expected average power consumption is between 1.1 and 4
times of the optimal solution. The solution stays below twice of the optimal
solution for libraries with less than 10 PU types. In terms of computation
time a speed up of 2 orders of magnitude is achieved in comparison to
the optimal solution for large PU type libraries. Due to time and memory
constraints, the optimal solution fails to derive results for large PU type
libraries and large task sets.

For the same set of experiments, the dynamic template based mapping
can achieve a reduction of the average expected power consumption of 40 -
45% in comparison to a static global mapping, while keeping the introduced
overhead to store the template mappings as low as 1kb. Template mappings
for different usage patterns introduce adaptivity to the system and allow
maintaining low power consumption over the systems life time.

52 Chapter 2. Allocation on heterogeneous MPSoCs

3
Interference in Resource Sharing
MPSoCs
Multiprocessor systems on chip (MPSoCs) and multicore platforms have
been widely applied for modern computer systems to reduce production
cost and increase computational performance without significantly increas-
ing power consumption. Industrial embedded systems, such as controllers
in the avionic and automotive industry, execute increasingly complex tasks,
and thus require the computational resources that multicore platforms can
offer.

Commercial-Off-The-Shelf (COTS) multicore systems are gaining mar-
ket share, as the design, evaluation and production of tailor-made systems
is getting prohibitively expensive. In the avionic industry, comparatively
small numbers of production units would result in a long time-to-market
and a large production overhead. In the automotive industry, with a large
number of production units, a vast number of third party software ven-
dors require a stable application programming interface (API), such as Au-
toSAR [Aut].

Multiple processing elements, working collaboratively on a common task,
increase the computational power but also increase the need for communi-
cation among tasks on different processing elements. Shared resources, such
as buses, main memory, and DMA in multicore and MPSoC systems now
represent the bottleneck for performance and timing predictability. A single
shared main memory, accessed by multiple processing elements, results in
contention and may lead to significant delays for tasks.

54 Chapter 3. Interference in Resource Sharing MPSoCs

Multiprocessor and MPSoC systems are typically designed to improve
the average-case performance, while worst-case timing guarantees are usu-
ally not taken into consideration. However, guarantees on worst-case re-
sponse/completion times are key requirements for avionic and automotive
applications, due to their hard real time constraints.

In this chapter, we introduce resource access and execution models that
allow to derive an interference representation, i.e., an arrival curve represen-
tation for the access pattern of one processing element on a particular shared
resource. Different task models, with varying structural uncertainties, are
introduced and the main properties of the assumed hardware platform are
presented. The task models, interference representation and assumptions
on hardware and shared resources presented here are used in Chapters 4
and 5 to derive analysis methodologies for static and dynamic arbitration
policies, respectively.

3.1 Introduction

Multiprocessor System-On-Chips (MPSoCs) are composed of multiple pro-
cessing elements, memories and a communication infrastructure. These
systems are optimized to increase performance and reduce power consump-
tion in the average-case. However, such systems have recently been consid-
ered to be applied in timing critical systems, such as automotive or avionic
applications, in which guarantees on worst-case response times are key re-
quirements.

Consider a platform with multiple processing elements and a single
shared main memory, see Figure 3.1. Executing a task on a processing ele-
ment requires fetching of program instructions and acquisition of data from
main memory. Moreover, communication among tasks on different pro-
cessing elements also results in memory accesses. As a result, contention on
shared resources in general, and on main memory in particular, significantly
delays the completion of tasks.

In this chapter, we consider systems with a single shared resource, that
requires a constant amount of time to complete a request. Access to the
resource, e.g., a bus in a multicore system or a main memory, is granted for
at most one request at a time and results in a corresponding blocking or
waiting time for any other request. An ongoing access to a shared resource
cannot be preempted.

We consider tasks to be specified by a sequence of non-preemptable
superblocks. We propose different models to access shared resources within
superblocks: (1) the dedicated model, (2) the general model and (3) the
hybrid model, see Figure 3.2.

3.1. Introduction 55

Figure 3.1: Resource Sharing Platform.

AR RA A/E/RA/E/RE

acquisistion phase

general phase

replication phase

general phase

acquisistion phase replication phase

execution phase

hybrid modelgeneral modeldedicated model

Figure 3.2: Overview Resource Access Models

In the dedicated model, communication and computation are sepa-
rated from each other. The acquisition phase, at the beginning of each
superblock, reads data from the shared resource, e.g., acquires information
from the shared memory. The acquisition phase performs resource access
requests only - no local computation is performed. Upon the start of this
phase, computation is required to initiate data transfer. However, compu-
tation is negligible in relation to the time required to transfer data from
the shared resource. The phase is specified by the maximum and minimum
number of access requests and is denoted A in Figure 3.2.

The execution phase starts after the acquisition phase has finished. In
this phase, computation is performed on local data only. In other words,
access requests to the shared resource are not permitted. The phase is
specified by the maximum and minimum amount of computation that has
to be performed and is denoted E in Figure 3.2.

Finally, the replication phase starts after the execution phase has fin-
ished. In this phase, data that has been changed or generated during the
execution phase is written to the shared resource. Similarly to the acquisi-
tion phase, the amount of computation that is required to initiate the data
transfer is neglected in our resource access models. The phase is specified
by the maximum and minimum number of access requests and is denoted
R in Figure 3.2.

56 Chapter 3. Interference in Resource Sharing MPSoCs

phase resource accesses computation
acquisition X -
execution - X
replication X -
general X X

Table 3.1: Overview of different phases

In the general model, communication and computation are not sepa-
rated at all. As a result, there is only a single phase, namely the general
phase. In this phase, access requests to the shared resource and computa-
tion can happen at any time and in any order. The phase is specified by
the maximum and minimum number of access requests and the maximum
and minimum computation. It is denoted A/E/R in Figure 3.2.

The hybrid model represents a trade-off between the two previous
models. In this model, there is an acquisition phase at the beginning and a
replication phase at the end of each superblock. However, there is no exe-
cution phase that performs local computation only. In this model, a general
phase follows the acquisition phase. In the general phase, computation and
communication can happen in any order. Acquisition and replication phases
are specified as in the dedicated model, while the general phase is specified
as in the general model, see Figure 3.2.

Table 3.1 summarizes the behavior of acquisition, replication, execution
and general phases.

We consider systems with real time tasks under a given partitioning, in
which a set of superblocks is running on a predefined processing element.
These sets of superblocks are executed either (1) sequentially or (2) time
triggered. A sequentially executing superblock starts its execution as soon as
its preceding superblock has finished. A time triggered superblock starts ex-
ecution at a predefined time instant. Phases of superblocks are specified by
their maximum and minimum computation time and their maximum and
minimum number of access requests to a shared resource. This resource
grants access according to a particular scheduling policy, e.g., TDMA, First
Come First Serve (FCFS), Fixed Priority or any other. The hardware plat-
form is assumed to conform to the the fully timing compositional archi-
tecture proposed by Wilhelm et al. [WGR+09], i.e., we assume a hardware
platform without timing anomalies.

The major contribution of this chapter are:

• We propose models to access the shared resource and models to sched-
ule superblocks on processing elements. The task model is inspired by
industrial practice. Extensions are presented that result in increased
efficiency and analyzability.

3.2. Related Work 57

• We introduce arrival curves as representation of the access pattern of
the set of superblocks that execute on a particular core. The arrival
curve provides an upper bound to the number of access requests that
are generated by a processing element in any interval of time.

The rest of this chapter is organized as follows: Section 3.2 gives an
overview of related work. Section 3.3 details on the task models and the
general model of a shared resource. Section 3.4 proposes arrival curves to
represent the access pattern of a particular set of superblocks on a shared
resource and shows an efficient algorithm to derive these arrival curves.
Section 3.5 concludes the chapter.

3.2 RelatedWork
Systems with shared resources have recently been studied by Pellizzoni et
al. [PC07,PBCS08,PSC+10], Negrean et al. [NSE09,NSE10], Schliecker et
al. [SIE06, SNN+08, SN10] and Andersson et al. [AEL10]. In our previous
work, [PSC+10], we propose a partitioning of tasks into sequentially ex-
ecuting superblocks. Superblocks are specified by their upper bound on
access requests to a shared memory and their maximum required compu-
tation time. The partitioning of tasks into superblocks is either performed
by static analysis of a program or by manually arranging access requests
and computation. Different arbitration policies on a shared memory are
analyzed and the worst-case delay suffered by a task due to the interference
of other tasks on the shared memory is computed.

Schliecker et al. [SIE06, SNN+08, SN10] and Negrean et al. [NSE09,
NSE10] assume a set of tasks executing on a set of processing elements,
all accessing a global shared resource. Accesses to the shared resource are
defined as event models, defining the maximum and minimum accesses in a
time window. The worst-case interference is then computed in an iterative
process. Each transaction takes a certain amount of time to be processed,
and therefore the maximal interference that can happen due to higher pri-
ority tasks can be derived from the event models. Priorities are assigned
statically, and therefore interferences on one task propagate to all lower
priority tasks.

In [AEL10], the authors derive a bound on additional execution time
due to contention on the memory bus, independent of the actual arbitration
policy thereon. As a result, the derived bound is very pessimistic, basically
assuming a bus transaction being interfered by all other tasks.

Other works, closely related to interferences on shared resources, focus
on interference due to cache accesses, e.g., Guan et al. [GSYY09], Yan
and Zhang [YZ08, ZY09], Li et al. [LSL+09]. In [GSYY09], the authors
propose a scheduling algorithm and a schedulability test based on linear

58 Chapter 3. Interference in Resource Sharing MPSoCs

programming for multiprocessor systems with shared L2 cache, while timing
analysis is provided in [LSL+09]. Tasks execute following a non-preemptive
fixed priority scheme and their worst-case execution time and required cache
space sizes are known. The cache is partitioned and a scheduler is proposed
such that at no time any two running tasks can have overlapping cache
spaces. A schedulability test based on linear programming is presented.
In [YZ08], the authors focus on the analysis of the worst-case execution
time for a limited hardware model with only a single real-time task. A task
executes on a dual-core processor with shared L2 cache and an ILP based
approach is presented to derive the worst-case execution time (WCET).
In [ZY09], the authors improve the accuracy of the derived WCET, by
enhancing the estimation of the inter-thread cache interference.

In [LGYY10], Lv et al. propose a technique that uses abstract interpre-
tation to derive the cache pattern of an application. Then, a Timed Au-
tomaton is generated that represents the timing information of the accesses
to the memory bus. The shared resource is modeled as a Timed Automaton
as well, and the UPPAAL model checker is used to find the WCET of the
application. The authors present a system with TDMA arbitration and a
system with FCFS arbitration on the shared resource as case studies. Using
Timed Automata a tight WCET can be found, as all execution traces are
considered. However, this approach suffers from scalability issues.

Paolieri et al. [PQnC+09] propose a hardware platform that enforces an
Upper Bound Delay (UBD). Once this bound is determined, each access
request of a hard real-time task (HRT) to a shared resource takes exactly
this amount of time. They introduce the WCET Computation Mode. Here,
the HRTs execute in isolation, but the platform enforces the UBD for each
access request, hence resulting in a safe upper bound on the WCET. This
approach allows to analyze HRTs in isolation from each other, since the
interference by other tasks is abstracted by the UBD. However, hardware
support is required, which is unavailable in many cases, in particular when
using COTS systems.

Other approaches also propose designs that eliminate or bound inter-
ference. For example, Rosen et al. [RAEP07] and Andrei et al. [AEPR08]
use Time Division Multiple Access (TDMA) for bus accesses and a task
model, where communication requests are confined to dedicated phases at
the beginning and the end of a task.

For non real-time systems, Fedorova et al. [FBZ10] propose a metric to
represent contention on shared resources for multicore processors based on
the LLC (Last Level Cache) miss rate. They then propose the Distributed
Intensity Online (DIO) scheduler and PowerDI (Power Distributed Den-
sity) scheduler. In their experiments with the SPEC CPU 2006 benchmark
suite, they show that these schedulers result in a significantly improved
execution time compared to the standard (Linux) scheduler for most exper-

3.3. System Model 59

iments. However, the authors focus on applications that emphasize average
case performance rather then timing predictability for hard real-time sys-
tems. Conclusively, the LLC miss rate used in this context is based on
measurement as opposed to worst-case analysis.

3.3 SystemModel

A system is composed of multiple processing elements pj ∈ P . The pro-
cessing elements in P execute independently, but share a common resource,
e.g., an interconnection fabric (bus) to access a shared memory. Sets of
superblocks are scheduled statically on the processing elements and access
the shared resource according to a resource access model.

3.3.1 Superblock Models

A task is constituted by a sequence of superblocks. Superblocks might have
branches and loops, but superblocks constituting a task execute sequentially,
i.e., the order of superblocks is the same for every possible execution path
of a task. We consider two models for executing superblocks,

1. in the sequential model a succeeding superblock is activated as soon
as its preceding superblock has finished, and

2. in the time triggered model, a superblock starts execution at a
predefined time.

Superblocks might be further structured in phases: acquisition phase,
execution phase, replication phase and general phase. We consider different
models to access shared resources within superblocks:

• the dedicated model,

• the general model and

• the hybrid model.

Acquisition and replication phase perform accesses to the shared resource
only, i.e., no local computation is performed. The execution phase performs
local computation only, without accessing the shared resource. In the gen-
eral phase, access requests as well as computation can happen. Table 3.2
gives an overview.

60 Chapter 3. Interference in Resource Sharing MPSoCs

phase resource accesses computation
acquisition µmax,a, µmin,a 0
execution 0 execmax, execmin

replication µmax,r, µmin,r 0
general µmax,e, µmin,e execmax,e, execmin,e

Table 3.2: Parameters specifying phases

Dedicated model

Accesses to the shared resource are limited to the acquisition phase at the
beginning of the superblock and to the replication phase at the end of the
superblock. After the activation of a superblock, requests to the shared
resource are issued, e.g., to receive required data. In the succeeding execu-
tion phase, the actual computation takes place, while accesses to the shared
resource are prohibited. After results are computed, the replication phase
is used to update the corresponding data on the shared resource. Once the
replication phase is finished, the superblock completes. See superblock s3,1

in Figure 3.3 for an example, where A, E and R represent the aquisition, exe-
cution and replication phase, respectively. Requests to the shared resource,
as well as the time required for computation, are specified as upper bounds.
The parameters for superblock si,j are:

• µmax,a
i,j , µmin,a

i,j : maximum/minimum number of requests in acquisition
phase,

• µmax,r
i,j , µmin,r

i,j : maximum/minimum number of requests in replication
phase, and

• execmax
i,j , execmin

i,j : maximum/minimum execution time excluding re-
source accesses.

General model

Accesses to the shared resource are not limited to specific phases and can
happen at any time and in any order. Conclusively, µmax,a

i,j , µmin,a
i,j , µmax,r

i,j

and µmin,r
i,j are 0, while parameters µmax,e

i,j and µmin,e
i,j define the maximum

number of requests during the active time of the superblock. Superblock s2,1

in Figure 3.3 gives an example, where A/E/R represents the general phase.
The execution time is bounded by execmax,e

i,j and execmin,e
i,j . A superblock

modeled according to the general model consists of a single general phase.

3.3. System Model 61

Hybrid model
Accesses to the shared resource can happen in the acquisition, the general,
and the replication phase. This model allows to access the shared resource
outside the dedicated acquisition and replication phases, e.g., reloading al-
tered data during the general phase. Requests to the shared resource during
the general phase can happen anytime and are constrained by an upper and
lower bound. See superblock s1,1 in Figure 3.3 as an example, where A and
R represent the aquisition and replication phase, while A/E/R represents the
general phase with possible access requests. As a result, in addition to the
parameters specified for the dedicated model, the hybrid model also defines
and maximum and minimum amount of access requests during the general
phase, i.e., the parameters µmax,e

i,j and µmin,e
i,j , respectively.

Without loss of generality, the hybrid access model covers the definitions
of the dedicated model and the general model. The dedicated model can
be represented by setting the parameters µmax,e

i,j = 0 and µmin,e
i,j = 0. The

general model can be modeled by setting parameters µmax,a
i,j = 0, µmin,a

i,j = 0,
µmax,r

i,j = 0 and µmin,r
i,j = 0, while µmax,e

i,j and µmin,e
i,j represent the correspond-

ing access requests.

Figure 3.3: Resource Sharing Platform Overview

62 Chapter 3. Interference in Resource Sharing MPSoCs

Application of the models

The dedicated model requires efforts to confine communication to dedicated
phases. This restriction is compensated by increased performance and pre-
dictability. For many applications in the domain of control and signal pro-
cessing, complying to these restrictions does not present a major obstacle,
since execution frequencies are typically known in advance. Applications
with user-interaction and/or event-triggered behavior cannot comply to this
model, and the general model has to be applied. The hybrid model presents
a way to increase the analyzability and performance of a system that is
otherwise designed according to the general model.

Scheduling of superblocks

We consider a (given) repeated schedule of length Wj time units, denoted
as processing cycle, on processing element pj, in which a superblock si,j

starts at time ρi,j. The first superblock in the first processing cycle starts
at time 0, i.e., in the first processing cycle ρ1,j = 0,∀j. Sets of superblocks,
denoted Sj on pj, are executed in the repeating time interval (ρ1,j,Wj], see
Figure 3.3.

Superblocks are indexed by a pre-defined order s1,j, s2,j, . . . , s|Sj |,j, in
which si,j precedes si+1,j. For superblocks executing according to the se-
quential execution model, the earliest starting time of superblock si,j is ρi,j

and its relative deadline is ℓi,j. Subsequent superblocks start as soon as
their preceding superblocks have finished, see Figure 3.4 for an example of
subsequently executing superblocks.

In the time-triggered execution model, each superblock or phase can
have a dedicated starting time. For models with time triggered superblocks,
but subsequently executing phases within superblocks, each superblock si,j

has a dedicated starting time ρi,j, see Figure 3.5a and 3.5b. Once phases
are executed in a time-triggered manner, as in Figure 3.5c, each phase
is assigned a dedicated starting time, i.e., ρi,j,[a|e|r] is the starting time of
the (a)cquisition, (e)xecution and (r)eplication phase of superblock si,j,
respectively.

Specifically, for time triggered models, the earliest starting time ρi,j of
superblock si,j must be no less than the deadline of the preceding superblock,
i.e., ρi−1,j + ℓi−1,j. That is, to meet the timing constraint, an instance of
superblock si,j released at time gWj + ρi,j must be finished no later than
gWj + ρi,j + ℓi,j, where the completion time minus the release time is the
response time of the superblock. For simplicity, we assume that the deadline
of a superblock released in a processing cycle on pj is no more than the end
of the processing cycle.

3.3. System Model 63

A/E/R

t

A/E/R A/E/R A/E/R ...

1,1
s 2,1

s
3,1
s 1,1

s

1
S 1

S

1,1
 2,1

 3,1

1,1

1
W 1

W

1,1
r 1,1 1

Wr +

(a)Model: GSS

t

A A RR ...

1,1
s 2,1

s
3,1
s 1,1

s

1
 1

1,1
 2,1

 3,1

1,1

1
W 1

W

R A A

1,1
r

1,1 1
Wr +

A/E/R A/E/R A/E/R A/E/R

(b)Model: HSS

t

A A RR ...

1,1
s 2,1

s
3,1
s 1,1

s

1
 1

1,1
 2,1

 3,1

1,1

1
W 1

W

E E ER A A E

1,1
r

1,1 1
Wr +

(c)Model: DSS

Figure 3.4: Sequential access models.

3.3.2 Resource Access Models

Based on these models to trigger the execution of superblocks and to access
the shared resource, we derive the following resource access models:

GSS - General Sequential phases, Sequential superblocks. Superblocks
execute sequentially and accesses to the shared resource can happen
anytime and in any order, see Figure 3.4a.

HSS - Hybrid Sequential phases, Sequential superblocks. Superblocks ex-
ecute sequentially and accesses to the shared resource are issued in
dedicated acquisition and replication phases. Additionally, in the gen-
eral phase, accesses to the shared resource can be issued at any time,
see Figure 3.4b.

64 Chapter 3. Interference in Resource Sharing MPSoCs

A/E/R

t

A/E/R A/E/R ...

1,1
s 2,1

s
3,1
s 1,1

s

1
S 1

S

1,1
 2,1

 3,1

1,1

1
W 1

W

A/E/R

1,1
r

A/E/R

2,1
r

A/E/R

3,1
r

A/E/R

1,1 1
Wr +

(a)Model: GST

A/E/R

t

A/E/R A/E/RA A RR ...

1,1
s 2,1

s
3,1
s 1,1

s

1
S 1

S

1,1
 2,1

 3,1

1,1

1
W 1

W

1,1
r 2,1

r 3,1
r 1,1 1

Wr +

R A A/E/RA

(b)Model: HST

A/E/R

t

A/E/R A/E/R A/E/RA A ARR ...

1,1
s 2,1

s
3,1
s 1,1

s

1
 1

1,1
 2,1

 3,1

1,1

1
W 1

W

1,1,a
r

1,1,e
r

1,1,r
r

2,1,a
r

2,1,e
r

3,1,e
r

3,1,r
r

1,1,
1

a W
r +

1,1,

1
e W

r
+

(c)Model: HTT

Figure 3.5: Time-Triggered access models.

DSS - Dedicated Sequential phases, Sequential superblocks. Superblocks
execute sequentially and accesses to the shared resource are restricted
to the acquisition and replication phases, see Figure 3.4c.

GST - General Sequential phases, Time triggered superblocks. Superblocks
start execution at dedicated points in time and accesses to the shared
resource can happen at any time and in any order, see Figure 3.5a.

HST - Hybrid Sequential phases, Time triggered superblocks. Superblocks
start execution at dedicated points in time and accesses to the shared
resource are specified according to the hybrid model, i.e., accesses
are issued in the acquisition, general and replication phases, see Fig-
ure 3.5b. Phases of a superblock execute sequentially.

3.4. Interference on shared resources 65

HTT - Hybrid Time triggered phases, Time triggered superblocks. Su-
perblocks are specified according to the hybrid model and each phase
starts at a statically defined point in time. Accesses to the shared
resource are issued in the acquisition, replication, and general phases,
see Figure 3.5c.

3.3.3 Model of the Shared Resource
This thesis considers systems with a stateless shared resource. Any request
to the shared resource has to wait until it is granted by the resource arbiter.
After a request is granted, the shared resource starts to serve the request. At
any time, the shared resource can serve at most one request. After an access
request is granted access to the shared resource, the accessing time to the
shared resource is (bounded by) a constant C. Therefore, if a superblock si,j

can access the shared resource at any time, the maximal time for executing
the superblock si,j is execmax

i,j + (µmax,a
i,j + µmax,e

i,j + µmax,r
i,j) · C. The shared

resource is assumed non-preemptive, and hence, the resource arbiter only
grants access to a pending request when there is currently no other request
served by the shared resource. Moreover, resource accesses in this thesis are
assumed non-buffered, such as shared memory access due to cache misses.
This means that a task has to stall until its request to the shared resource
is served successfully.

Motivational Example for different Arbiters
In Figure 3.6a, the sets of superblocks S1 and S2 are assigned to process-
ing element p1 and p2 respectively. If the superblocks do not access the
shared resource, as in Figure 3.6a, then they finish their execution before
their deadline (equals period). Once superblocks require access to a shared
resource, this resource is arbitrated among the competing processing ele-
ments. In Figure 3.6 we present a selection of arbitration policies and their
effect on the schedulability of the system. Dark gray areas represent phases
that access a shared resource, while light gray areas represent phases that
perform computation local to the corresponding processing element.

The system would be unschedulable under First Come First Serve (FCFS),
Figure 3.6b, and Fixed Priority (FP), Figure 3.6c, arbitration policies. How-
ever, applying a well designed TDMA arbiter results in the system being
schedulable, see Figure 3.6d.

3.4 Interference on shared resources
As shown in the previous section, concurrent execution of multiple su-
perblocks on multiple processing elements, all accessing a shared resource,

66 Chapter 3. Interference in Resource Sharing MPSoCs

1

t
1,1
r 1,1 1

Wr +
2,1
r

3,1
r

1,1
s

2,1
s 3,1

s ...

2

t
1,2
r 1,2 2

Wr +
2,2
r 3,2

r

1,2
s

2,2
s 3,2

s ...

1
p

2
p

(a)Without arbitration

1,2
s

1

t
1,1
r 1,1 1

Wr +

1,1
s

2,1
s 3,1

s ...

2

t
1,2
r 1,2 2

Wr +

1,2
s

2,2
s 3,2

s ...

1,1
s 2,1

s
2,2
s

3,2
s

3,1
s Bus

t

violation

1
p

2
p

(b) First Come First Serve (FCFS) Arbitration -
deadline miss

1,2
s

1

t
1,1
r 1,1 1

Wr +

1,1
s

2,1
s

3,1
s ...

2

t
1,2
r 1,2 2

Wr +

1,2
s

2,2
s

3,2
s ...

1,1
s

2,1
s

2,2
s

3,1
s Bus

t

1,2
s 2,2

s
3,2
s

violation

1
p

2
p

(c) Fixed Priority Arbitration (FP)- deadline
miss

1

t
1,1
r 1,1 1

Wr +

1,1
s

2,1
s 3,1

s ...

2

t
1,2
r 1,2 2

Wr +

1,2
s 2,2

s
3,2
s ...

Bus

t

1
p

2
p

1
p

1
p

1
p

1
p

2
p

2
p

2
p

2
p

(d) TDMA Arbitration - deadline satisfied

Figure 3.6: Two tasks on two processing elements accessing a shared bus
with different arbitration policies.

leads to contention on the shared resource. Due to this contention, the
execution time can be significantly increased. In this section, we present
an approach to represent the resource access pattern of superblocks onto
the shared resource. We use arrival curves as described in [TCN00] as
data structure to represent this access pattern. The upper arrival curve
represents the maximal number of access requests that can happen in any
time window of length Δ. The worst-case response time (WCRT) analy-
sis approach presented in Chapter 5 uses this representation to account for
interference on the shared resource.

3.4.1 Analysis Overview
Consider a set of superblocks Sj executing on a particular processing ele-
ment pj. In this section, we propose an approach to represent the resource
access pattern of such a set of superblocks onto a shared resource as an
arrival curve. The set of superblocks is modeled according to the resource
access models described in Section 3.3.2. Deriving the arrival curve repre-
sentation is performed in a multi-step approach. First, we derive an arrival
curve representing the resource access pattern for each processing element
in a multicore platform. Second, we compute the arrival curve that repre-

3.4. Interference on shared resources 67

sents the joined interference of a set of processing elements as the sum of the
arrival curves representing the single processing elements. Then, when the
WCRT of the set of superblocks is performed, the corresponding processing
element is considered as the processing element under analysis, while all the
other processing elements are considered by their joined arrival curve.

In the WCRT analysis approach presented in Chapter 5, one process-
ing element is considered as the processing element under analysis, while
the interference by all the other processing elements in the system is repre-
sented by a single arrival curve. Figure 3.7 presents an overview. Processing
element p1 is the processing element under analysis. The WCRT analysis
considers the resource access pattern of the processing element under analy-
sis, as defined by the set of superblocks S1, and the interference by all other
processing elements, denoted α(Δ).

Figure 3.7: Arrival Curve α(Δ) representing interference of two processing
elements to the processing element under analysis.

Deriving an arrival curve representation for a single processing element
Superblocks in Sj are defined with their upper and lower computation time
and their upper and lower amount of access requests. Deriving an arrival
curve for a set of superblocks involves the following steps:

• From the specification of the superblocks, we derive tuples of the form
t̂ =< γ, Δ >, where γ describes the amount of resource accesses that

68 Chapter 3. Interference in Resource Sharing MPSoCs

can happen in a time window of length Δ. These tuples are computed
by (1) deriving the time windows Δ that are relevant, see Section
3.4.3.2, and (2) deriving the number of access requests for each time
window, see Section 3.4.3.3. Note that for each time window, there
are several possible values for γ, i.e., the number of resource accesses.
Eventually, only the maximum number of access requests for each time
window Δ will remain in the final arrival curve representation.

• The set of relevant time windows is computed from the definition of
the set of superblocks. The set of superblocks is an ordered set. From
this set, we compute all possible ordered subsets. As an example, a set
of two superblocks results in four possible ordered subsets. Time win-
dows are computed as a function of the computation and the number
of access requests of the superblocks in a particular subset. Each sub-
set defines multiple time windows, see Section 3.4.3.1, as parameters of
superblocks are defined as minimum and maximum values rather than
exact values. Note that different subsets coincidently might result in
time windows of equal length, however their corresponding numbers
of access requests differ. Conclusively, the one subset with the higher
number of access requests will contribute to the arrival curve.

• Deriving the tuples for all possible time windows Δ allows to derive
an arrival curve representation. Upper arrival curve α̂u(Δ) is derived
by considering the maximum amount of access requests γ, for a time
window of length Δ, from all the tuples, see Equation (3.7).

• The derivation of tuples differs for sets of superblocks that are exe-
cuted sequentially, see Section 3.4.3, or that are executed in a time-
triggered manner, see Section 3.4.4. We show the derivation of time
windows and tuples for the sequentially executing models. In Sec-
tion 3.4.4 we show the required changes to the methods to handle the
time-triggered case.

As a result, each processing element of a multicore platform is repre-
sented by an arrival curve. The arrival curve represents the access pattern of
a processing element in isolation, i.e., no interference on the shared resource
is considered during the derivation of the arrival curve. When computing
the WCRT of the set of superblocks on a particular processing element, the
interference by all the other processing elements is considered as the sum of
their representative arrival curves. This represents a safe upper bound on
the interference that one processing element might suffer.

3.4. Interference on shared resources 69

Considering different resource access models
The resource access models, proposed in Section 3.3.2, differ by the amount
of known structure inside a superblock. Additional structure is represented
by phases, such as dedicated phases to access the shared resource. For ease
of notation, we translate these models such that each phase is represented
as a superblock with corresponding parameters. As an example, consider
Figure 3.8 where superblocks with dedicated phases are translated into an
equivalent set of superblocks. Superblock s1,1 with acquisition, execution
and replication phase translates to superblocks s′1,1, s

′
2,1, s

′
3,1. Superblock s′1,1

represents the acquisition phase with exec′max
1,1 = 0, exec′min

1,1 = 0, µ′max
1,1 =

µmax,a
1,1 and µ′min

1,1 = µmin,a
1,1 . Superblock s′2,1 represents the execution phase,

and thus exec′max
2,1 = execmax

1,1 , exec′min
1,1 = execmin

1,1 , µ′max
2,1 = 0 and µ′min

2,1 =
0. The remaining superblocks translate analogously. In the remainder of
this chapter, we assume that this translation has been done, i.e., we only
consider sets of superblocks where the superblock is the atomic unit and all
parameters are related to superblocks.

t

A RRE EA A ...

1,1
r

1,1 1
Wr +

1,1
max,am

1,1
maxexec

1,1
max,rm

1,1
min,am

1,1
minexec

1,1
min,rm

2,1
max,am

2,1
maxexec

2,1
max,rm

2,1
min,am

2,1
minexec

2,1
min,rm

translate phases
into superblocks

t
1,1
r

1,1 1
Wr +

2,1
¢maxexec

2,1
¢minexec

1,1
s 2,1

s

5,1
¢maxexec

5,1
¢minexec

...

1

1
¢

1,1
s ¢

2,1
s ¢

3,1
s ¢

4,1
s ¢

5,1
s ¢

6,1
s ¢

1,1
maxm¢

3,1
maxm¢

6,1
maxm¢

4,1
maxm¢

1,1
minm¢

3,1
minm¢

6,1
minm¢

4,1
minm¢

Figure 3.8: Translate phases to superblocks.

3.4.2 Analysis Methodolgy
A set of superblocks Sj executing on processing element pj, with processing
cycle Wj, accesses the shared resource according to a pattern. This pat-

70 Chapter 3. Interference in Resource Sharing MPSoCs

tern is specified by the minimum and maximum number of access requests
and minimum and maximum computation per superblock. We represent
this pattern as an arrival curve [TCN00], specifying the maximum number
of access requests for time windows of length Δ. Arrival curves are rep-
resented by an initial aperiodic part and a periodic part that continues to
infinity. This way, an infinite arrival curve can be represented by a finite
data structure. The aperiodic part can be derived from two succeeding pro-
cessing cycles of a set of superblocks. This is required in order to include
the behavior at the transition from one instance to the other. The periodic
part can be derived from the aperiodic part and the maximum number of
access requests that are issued in one period of the set of superblocks that
is considered, see Equation (3.8).

An arrival curve represents the access pattern of a set of superblocks on
the shared resource, assuming no interference occurs on the shared resource.
In other words, the set of superblocks is analyzed in isolation and no other
processing elements compete for access to the shared resource. Access re-
quests in a superblock can happen in bursts, i.e., once an access request is
issued it is served instantaneously and the subsequent access request can be
issued.

3.4.3 Sequential execution of superblocks

In this section we introduce our approach to represent accesses to a shared
resource as an arrival curve. We assume that superblocks execute sequen-
tially, i.e., a superblock starts as soon as its predecessor has finished, or at
time 0, if it is the first superblock.

3.4.3.1 Computing ordered subsets of superblocks

The aim of this approach is to find an upper arrival curve, representing
the maximal amount of access requests in a time window of length Δ. In
this section, we show how to derive subsets from the set of superblocks.
These subsets are then used to compute time windows in Section 3.4.3.2
and corresponding tuples in Section 3.4.3.3.

Consider the set of superblocks S1 that executes on processing element
p1 to be the ordered set S1 = {s1,1, s2,1}. Then the set of all possible ordered
subsets ∗S1 = {∅, {s1,1}, {s2,1}, {s1,1, s2,1}}. We refer to elements of ∗S1 as
subset t′m,d, where m denotes the index of the first constituting superblock
of the subset and d denotes the distance between first and last superblock
of the subset.

In order to account for the transition phase between successive pro-
cessing cycles, we consider two subsequent instances of Sj. Therefore we
specify S ′

j = {Sj Sj}, such that S ′
j = {s1,j . . . s|Sj |,j, s1,j . . . s|Sj |,j} and ∗S ′

j is

3.4. Interference on shared resources 71

the corresponding set of ordered subsets. Subset t′m,d ∈ ∗S ′
j now computes

as:
t′m,d = {sm,j , . . . , sm+d,j} ∀d ∈ [0 . . . |Sj | − 1],∀m ∈ [1 . . . |Sj |]. (3.1)

Since distance d ∈ [0 . . . |Sj| − 1] and offset m ∈ [1 . . . |Sj|], the set of
subsets ∗S ′

j covers two periods and has |Sj|2 elements. Note that distance
d start at 0, i.e., subsets t′m,0 consider only a single superblock. Contrarily,
offset m starts with 1, as it represents an index. Based on the subsets in
∗S ′

j, time windows and their corresponding number of accesses to the shared
resource can be computed in the following sections. The resulting tuples
are utilized to eventually derive the arrival curve representation.

3.4.3.2 Computing time windows
Based on subset t′m,d, computed in the previous section, we now derive
the corresponding time windows. These time windows are derived for each
subset t′m,d by considering (1) the computation time and (2) the number
of resource access of the constituting superblocks. However, superblocks
are defined by minimum and maximum computation time and by their
minimum and maximum number of access requests to the shared resource.
As a result, there are a number of time windows related to each subset.
Consider subset t′m,d, then the corresponding time windows compute as:

Δe,r
m,d =

m+d−1∑
i=m+1

exece
i,j +

m+d−1∑
i=m

µr
i,j · C, (3.2)

where the superscripts e = max or e = min denote maximum or minimum
computation time, respectively, and r = max or r = min denote maxi-
mum or the minimum number or access requests, respectively. Hence, the
time windows related to subset t′m,d, are Δmin,max

m,d , Δmin,min
m,d , Δmax,max

m,d and
Δmax,min

m,d .
In this section, we derive an upper arrival curve representation of the

access pattern of a set of superblocks onto the shared resource. Therefore,
our aim is to find time windows that are as small as possible, but exhibit
as many as possible access requests. In other words, we seek to find the
worst-case number of access requests that can happen in a particular time
window.

Consequently, time windows for subset t′m,d are computed by disregard-
ing the computation time of the last and first superblock in t′m,d, i.e., index i
in the first part of Equation (3.2) starts at m+1 and stops at m+d−1. In-
tuitively, in the worst-case, all the access requests in the first superblock are
issued at its end in a burst, after computations have been performed. Now
consider the successive superblock. Access requests in this superblock are
issued at its beginning in a burst, before computations are being performed.

72 Chapter 3. Interference in Resource Sharing MPSoCs

As a result, in a time window that corresponds to the time required to serve
the access requests of the first superblock, the total number of access re-
quests that are issued is the sum of access requests in both superblocks.
Note that index i in the second part of Equation (3.2) starts with the first
superblock of t′m,d, i.e., i = m, while it ends at i = m + d − 1. This reflects
the possible burst of access requests in the last superblock. In the worst-
case, all access requests of the last superblock are issued immediately upon
its activation, i.e., no time has to pass and the amount of time required
to serve these access request must not be considered for computing time
windows.

t
1,1
r

1,1 1
Wr +

1,1
maxm

2,1
maxexec

1,1
minm

2,1
minexec

3,1
maxm

3,1
minm

4,1
maxm

4,1
minm

5,1
maxexec

5,1
minexec

6,1
maxm

6,1
minm

1,1
s

2,1
s

3,1
s

4,1
s

5,1
s

6,1
s

1

1,1
maxm

2,1
maxexec

1,1
minm

2,1
minexec

3,1
maxm

3,1
minm

4,1
maxm

4,1
minm

5,1
maxexec

5,1
minexec

6,1
maxm

6,1
minm

1,1
s

2,1
s

3,1
s

4,1
s

5,1
s

6,1
s

1

1,1
ˆ , 0maxt m=< >1 superblock

1,1 2,1 1,1
ˆ , ·max max maxt Cm m m+=< >2 superblocks

4 superblocks

g

7 superblocks

5 superblocks

2x
maximize/minimize
to compute the gap

superblocks considered for gap computation

superblocks considered for time window computation

relevant time window

7

,1 ,1 5

6

,1

3 3

ˆ , ·max max min
k k

k k

t C exec gm m
= =

=< + + >å å

67

,1 ,1 2,1 5,1

1 1

ˆ , ·max max min min
k k

k k

t C exec exec gm m
= =

=< + + + >å å

4

,1 ,

1

3

1 2,1

1

ˆ , ·max max min
k k

k k

t C execm m
= =

=< + >å å

2,1
maxm

2,1
minm

Figure 3.9: Computing time windows for sequences of 1, 2, 4, 5 and 7 su-
perblocks including the gap between periods, for the upper arrival curve.
Note that in the circled dotted area, labeled ”2x”, two superblocks issue
their respective access requests, namely s3,1 and s4,1.

Consider Figure 3.9 for an example how to compute time windows. Note
that for each example in Figure 3.9 only one tuple is presented, namely the
tuple with the maximum amount of access requests and minimum computa-
tion time, i.e., with Δmin,max

m,d . Tuples representing time windows Δmin,min
m,d ,

Δmax,max
m,d and Δmax,min

m,d are not displayed for readability of the figure. In
the first example, denoted 1 superblock, the length of the time window
computes as zero, meaning that accesses to the shared resource occur con-
currently at one instant of time. In example 2 superblocks, the time window

3.4. Interference on shared resources 73

Δ is computed as the time required to process the first superblocks accesses.
However, the corresponding number of access requests is the sum of the is-
sued requests in both superblocks, as explained earlier. Execution times are
not considered for the time window, since in the worst case computation is
performed before access requests are issued in the first superblock and after
access requests are issued in the last superblock. In example 4 superblocks
in Figure 3.9, the execution time of superblock s2,1 has to be considered
for the time window computation. This superblock is surrounded by other
superblocks, and therefore there is no degree of freedom to arrange access
requests and computation. In other words, no matter how access requests
and computation is arranged in superblock s2,1, the time windows computed
for this example do not change.

Transition between successive processing cycles
Computing time windows for subsets t′m,d that span over the period, have
to consider the gap g between the successive processing cycles. Examples
7 superblocks and 5 superblocks in Figure 3.9 illustrate such cases. Gap
g represents the slack time of a set of superblocks, before a subsequent
processing cycle starts. Minimizing this gap minimizes the length of the
considered time window, but has no influence on the number of access re-
quests that can be issued by the subset. As a result, the worst case time
windows for subsets t′m,d are derived when the gap is minimized.

Minimizing the gap, and deductively the time window, is done by as-
suming maximum execution time execmax

i,j and maximum number of access
requests µmax

i,j for those superblocks that are not included in t′m,d. Then,
the gaps that have to be considered can be computed by Equation (3.3),
for r = min and r = max. In Figure 3.9, example 5 superblocks shows
such a case. Minimizing the gap equals maximizing the area with diamond
hatching. As a result, in order to consider the gap for deriving the upper
arrival curve, the two tuples that consider g(min) and g(max), respectively,
have to be considered, see Equation 3.6.

g(r) = Wj −
∑

∀si,j∈Sj\(Sj∩t′m,d)

execmax
i,j + µmax

i,j · C (3.3)

−
∑

∀si,j∈Sj∩t′m,d

execmin
i,j + µr

i,j · C,

3.4.3.3 Computing the bound on access requests for time windows

Time windows Δ and the corresponding number of access requests to the
shared resource γ for an element t′m,d are computed in Equations (3.4)

74 Chapter 3. Interference in Resource Sharing MPSoCs

and (3.5). Parameters e and r represent the maximum and minimum com-
putation and maximum and minimum number of access requests, respec-
tively. All possible combinations of e and r need to be considered, in order
to guarantee that the worst case behavior is included.

γr =
m+d∑
i=m

µr
i,j (3.4)

Δe,r =
m+d−1∑
i=m+1

exece
i,j +

m+d−1∑
j=m

µr
i,j · C (3.5)

Based on these values, the tuples for element t′m,d ∈ ∗Sj are computed
by Equation (3.6).

t̂e,rm,d =< γr ; Δe,r + g(r) > (3.6)

Computing the upper arrival curve αu(Δ) requires to consider tuples
t̂min,max
m,d , t̂min,min

m,d , t̂max,max
m,d and t̂max,min

m,d , for all distances d ∈ [0 . . . |Sj| − 1]
and offsets m ∈ [1 . . . |Sj|].

Linear approximation between tuples

Tuple t̂max,min
m,d can be transformed to tuple t̂max,max

m,d by increasing the amount
of access requests for the affected superblocks from the minimum to the
maximum number. In other words, they show a linear relation, since the
time required to process an access request is constant (C). As a result,
intermediate tuples can be computed by linear approximation. For any
number of access request to the shared resource within the range of these
tuples, we can compute a safe upper bound to the number of access requests
performed in the corresponding time window by linear approximation, see
Figure 3.10. This results in additional tuples that have to be considered
when deriving arrival curves.

3.4.3.4 Deriving arrival curves

Retrieving the maximum number of access requests to the shared resource
for every time interval Δ = {0 . . . 2Wj} from the computed tuples allows to
compute the arrival curve. Consider the function δ(t̂) to return the length
of the time window and ν(t̂) to return the number of access requests for
each tuple. Then the upper arrival curve α̃u

j can be obtained as:

α̃u
j (Δ) = argmax

∀t̂e,r
m,d;δ(t̂e,r

m,d)=Δ

ν(t̂e,rm,d). (3.7)

3.4. Interference on shared resources 75

,
,
m̂ax min

m d
t

,
,
m̂ax max

m d
t

...

t

ming
1ming +
2ming +

1maxg -

,

m
ax
m
in

D
,

1·

m
ax
m
in

C

+

D
,

2·

m
ax
m
in

C

+

D
,

m
ax
m
ax

D
,

1·

m
ax
m
ax

C

-

D

access

requests

maxg

Figure 3.10: Linear approximation betweenminimumandmaximumnum-
ber of accesses to the shared resource for a single super-block, disregarding
the gap g for ease of visualization.

We construct the infinite curve α̂u
j from an initial aperiodic part, that is

represented by α̃u
j and a periodic part which is repeated k-times for k ∈ N.

α̂u
j (Δ) =

α̃u

j (Δ) 0 ≤ Δ ≤ Wj

max
{

α̃u
j (Δ), α̃u

j (Δ − Wj) +
∑
∀i

(µmax
i,j)

}
Wj ≤ Δ ≤ 2Wj

α̃u
j (Δ − k · Wj) + k

∑
∀i

(µmax
i,j) otherwise

(3.8)

The computational complexity to obtain the infinite arrival curve is
O(|Sj|2). Following the previous computation we derive Lemma 1.

Lemma 1 Deriving arrival curve α̂u
j (Δ) by Equation (3.8) results in the upper

bound of access requests to a shared resource by the set of superblocks Sj for
any time window Δ.

Proof. In Equation (3.4) and (3.5), the time windows and number of access
requests for tuples in Equation (3.6) are computed. These tuples represent
the set of known structure about a set of superblocks Sj on processing
element pj and represent the maximum number of access requests for a
given time window. Based on this set of tuples, Equation (3.7) computes the
maximum amount of access requests for a given time window Δ. Consider,
as a contradiction, that there is an execution trace of Sj, such that there

76 Chapter 3. Interference in Resource Sharing MPSoCs

are more access requests in time window of length Δ than α̂u
j (Δ). Then,

there must exist a tuple t̂e,rm,d, such that the number of access requests γr for
the time window Δ is larger than α̂u

j (Δ). Such a tuple can only exist if the
constant access time C is not constant - contradicting the assumption.

¤

3.4.4 Time-triggered execution of superblocks
In the previous sections we showed how to derive a representation of accesses
to a shared resource for sequentially executing superblocks. In this section
we extend this approach to cover the time triggered models, defined in
Section 3.3.2.

2

3

1

2

3

1
 ...

t

g

t

1,2
s

2,2
s

3,2
s

2

2
r

1
r 3

r
1 1
Wr +

2 1
Wr + 3 1

Wr +

gg

t

1,3
s

3

2
r 3 1

Wr +

derived from model HTS

derived from model HTT

set of superblocks

singleton set of superblocks

Figure 3.11: Example of 3 sets of superblocks, with time-triggered execution

In the time triggered models, superblocks or phases have distinct starting
times. As an example, consider model HTS in Section 3.3.2. Superblocks
are time triggered, but phases inside each superblock execute sequentially.
We can represent such a superblock as a set of superblocks, by translating
each of its constituting phases into a superblock, as shown in Figure 3.8.

Figure 3.11 gives an example. Here, the set of superblocks S2 is a set of
superblocks with starting time ρ2. This set of superblocks is derived from
a single superblock, modeled according to model HTS. Similarly, the set of
superblocks S3 is the result of translating a superblock modeled according to
model GTS into a set of superblock. In this particular case, the translation
results in a set of superblocks that is constituted by a single superblock,
i.e., a singleton.

Given this translation, we can now perform the derivation of tuples as
in the previous sections. As an input, there are multiple sets of superblocks
T = {S1 . . .SN} scheduled statically, as in Figure 3.11. Each set of su-
perblocks Sn ∈ T represents a set of sequentially executing superblocks,

3.4. Interference on shared resources 77

with a distinct starting time ρn. This translation allows to represent each
time triggered model in Section 3.3.2.

Then we can compute a sequence of all superblocks that constitute the
sequence of sets in T as:

σ = {s1,1 . . . s|S1|,1, s1,2 . . . s|S2|,2 . . . s1,N . . . s|SN |,N} (3.9)

Based on σ the set of ordered subsets ∗σ is derived, as shown in Sec-
tion 3.4.3.1. Similarly to Section 3.4.3.1, we have to consider two subsequent
processing cycles to be sure to include the worst case behavior. Therefore,
we define σ′ = {σ σ} and compute the set of ordered subsets ∗σ′. Following
the approach shown in previous sections, t′m,d is a subset with m represent-
ing the index of the first superblock in the subset and d representing the
distance between the first and last superblock of the subset.

Time windows are computed for each subset t′m,d ∈ ∗σ′ following the
approach shown in Section 3.4.3.2. Some subsets t′m,d ∈ ∗σ′ contain su-
perblocks from different statically scheduled sets of superblocks. Therefore
the gap of the first set of superblocks in subset t′m,d has to be accounted for.
Similarly to the gap g for the sequential case, minimizing the gap results in
the worst case. Equation (3.3) can be rewritten to compute the gap for a
subset, by maximizing all the superblocks that are not considered by subset
t′m,d:

g(r) = max
∀Sk∈t′m,d

ρk − min
∀Sk∈t′m,d

ρk

−
∑

∀si,j∈σ\(σ∩t′m,d)

execmax
i,j + µmax

i,j · C

−
∑

∀si,j∈σ∩t′m,d

execmin
i,j + µr

i,j · C. (3.10)

Only the minimum and maximum starting time of the sets of superblocks
included in t′m,d have an influence on the gap. This is a direct result of the
time triggered execution. The early completion of a set of superblocks has
no influence on the starting time of successive sets of superblocks. Following
that, the tuples can now be computed as shown in Equation (3.6). From
this set of tuples, we can derive the upper arrival curve by Equations (3.7)
and (3.8).

3.4.5 Resulting arrival curve
Consider a multiprocessor platform as shown in Figure 3.3, with three pro-
cessing elements, each executing a set of superblocks. Furthermore, consider
processing element p1 to execute S1, composed of three superblocks, with

78 Chapter 3. Interference in Resource Sharing MPSoCs

parameters as shown in Table 3.3, a processing cycle W1 = 70ms and a
constant access time to the shared resource C = 1ms.

µmin
i,j µmax

i,j execmin
i,j execmax

i,j

s1,1 6 7 8ms 9ms
s1,2 12 14 3ms 6ms
s1,3 10 11 4ms 9ms

Table 3.3: Parameters for S1.

Then the resulting arrival curve, representing the access pattern of the
set of superblocks S1 to the shared resource is shown in Figure 3.12. The
tuples are represented by the marked data points in the figure, i.e., the
circle marker represents the tuples computed for a single superblock (d =
0) and all possible offsets (m = [1 . . . |S1|]), and so on. As an example,
see tuple t̂min,max

m,0 in Figure 3.12. The dark gray and light gray markers
correspond to the minimal and maximal computation considered for the
tuples, respectively. The effect of the linear approximation between the
minimum and the maximum number of access requests, as computed in
Section 3.4.3.3, is shown in the dashed circled area in Figure 3.12. The black
solid line represents the resulting upper arrival curve α̂u

1(Δ), as computed
by Equation (3.8). The black dotted line shows the arrival curve that would
result if intermediate tuples would not be considered.

3.5 Chapter Summary
This chapter studies the problem of a shared resource among multiple con-
currently executing processing elements. Several concurrent accesses to a
shared resource lead to contention on this resource, and thus to significantly
increased execution times. We present models of execution and models to
access the shared resource.

Tasks are described by superblocks and sets of superblocks execute on
processing elements, according to a model of execution (sequential or time
triggered). Additional known structure in superblocks is specified by phases.
Superblocks and phases are specified by their minimum and maximum com-
putation and by their minimum and maximum number of access requests
to a shared resource.

We propose the dedicated, general and hybrid model to access the shared
resource. The dedicated model defines dedicated phases to access the shared
resource and an execution phase to perform local computation. In the gen-
eral model, there is a general phase in which access requests and computa-
tion can happen at any time and in any order. The hybrid model defines
dedicated phases to access a shared resource and a general phase, where

3.5. Chapter Summary 79

0 50 100 15070
0

10

20

30

40

50

60

70

80

90

100
n

u
m

b
er

 o
f

a
cc

es
s

re
q

u
es

ts

arrival curve and comprising tuples

time window D [ms]

,
m,0
m̂in maxt

linearization between
 and ,

min
i j
m,

max
i j
m

min./max. 1 superblock

min./max. 2 superblocks

min./max. 3 superblocks

min./max. 4 superblocks

min./max. 5 superblocks

min./max. 6 superblocks

upper arrival curve 1̂ ()
ua D

effect of linearization

upper arrival curve, disregarding
linearization

Figure 3.12: Upper arrival curve, with constructing tuples.

computation and accesses to the shared resource can happen at any time
and in any order.

We show how to represent the access pattern of a set of superblocks to
the shared resource as an upper arrival curve, representing the maximum
number of access requests that can happen in any time window. This rep-
resentation can be used to compute the maximum amount of interference a
particular processing element can suffer from other processing elements in
the system, i.e., to approximate the maximum additional delay tasks and
superblocks may suffer due to contention on the shared resource.

The resource access models and models of execution presented in this
chapter form the basis of the proposed hardware platforms and worst-case
execution time (WCET) estimation approaches presented in Chapter 4 and
Chapter 5.

In Chapter 4, we show how interference can be neglected by applying a
time division multiple access (TDMA) arbiter on the shared resource and
how the different resource access models are related to each other in terms
of worst-case execution time (WCET).

In Chapter 5, we apply the FlexRay arbitration protocol on the shared
resource. This arbitration protocol increases the adaptivity of the system

80 Chapter 3. Interference in Resource Sharing MPSoCs

by introducing a dynamic arbitration element in the scheduling approach,
allowing to reclaim unused access slots to the shared resource by other pro-
cessing elements in the system. Interference from other processing elements
now has to be considered, since processing elements compete for access to
the shared resource. We present a worst case completion time (WCCT) es-
timation approach, that takes advantage of the interference representation
proposed in this chapter.

4
Static arbitration on shared
resources
Typically, multicore and multiprocessor systems are optimized towards av-
erage case performance. If such systems are used in applications with real-
time constraints, such as the control or signal processing domain, many
challenges arise.

Shared resources are usually connected via a bus that grants access ac-
cording to a specific (potentially proprietary) arbitration policy. Due to
the orientation towards average case performance, these arbitration poli-
cies are often dynamic, i.e., they grant access according to the First-Come-
First-Serve (FCFS), the Earliest-Deadline-First (EDF) or the Fixed-Priority
(FP) policy, to name just a few. Using dynamic arbitration policies makes
the derivation of worst-case execution times (WCETs) particularly hard,
i.e., these arbitration polices exhibit a large degree on non-determinism.
However, in order to guarantee timing predictability, a safe bound on the
worst-case execution time (WCET) has to be derived.

Designers of hard real-time systems use a number of techniques to in-
crease predictability, e.g., static schedules, over-approximation of compu-
tational resources or special programming techniques to reduce non-deter-
minism. In this chapter, we suppose that the time division multiple access
(TDMA) protocol is used for resolving access conflicts on shared resources,
such as communication buses or memories. This static arbitration policy al-
lows to analyze the timing properties of a single core or processing element,
without the need to consider the access patterns of other processing elements
onto the shared resource. We propose a worst-case analysis framework to

82 Chapter 4. Static arbitration on shared resources

derive the worst-case response time (WCRT) for the resource access models
presented in Chapter 3 and TDMA arbitration on the shared resource. Fur-
thermore, we give design guidelines for resource sharing real-time systems.

4.1 Introduction
Consider a platform with multiple processing elements and a single shared
main memory, as presented in Chapter 3, Figure 3.1, with static arbitration
on the shared resource. One example for such an arbitration policy is time
division multiple access (TDMA), where the shared resource is assigned to
a task or processing element for a particular time window. In other words,
access to the resource is partitioned over time and only a single actor can
acquire it at a time. TDMA arbitration policies are often used in industrial
applications, not only to increase timing predictability but also to alleviate
schedulability analysis.

We assume a hardware platform where execution time and communica-
tion time can be decoupled, e.g., the fully timing compositional architecture
proposed by Wilhelm et al. [WGR+09]. That is, we implicitly consider a
hardware platform that has no timing anomalies. Based on this assumption,
we provide an efficient and safe worst-case response time analysis.

This chapter considers systems with a shared resource, where the amount
of time required to complete a request can be bounded by a constant. Access
to the resource, e.g., a bus in a multicore system, is granted for at most one
request at a time, resulting in blocking/waiting time for any other request.
An ongoing access to a shared resource cannot be preempted.

Sets of superblocks are assigned to a predefined processing element and
executed in a periodically repeating static schedule. Resource accesses
within the superblocks are modeled according to the (1) dedicated model,
(2) general model and (3) hybrid model.

The contributions of this chapter are as follows:

• For the considered access models and a given TDMA arbiter, we pro-
pose an analytical worst-case analysis framework, considering blocking-
/non-buffered access to a shared resource.

• For the dedicated access model, our proposed analysis framework is
of linear time complexity.

• For a regular TDMA arbiter, in which each processing element has
only one time slot in a TDMA cycle, we show the computational
complexity of our analysis.

• For TDMA arbiters without constraints, we show that the timing
analysis can be done by applying binary search.

4.2. Related Work 83

• We derive the schedulability relation of the proposed models and pro-
pose the dedicated model, with sequential execution of superblocks,
as the model of choice for time critical resource sharing systems. We
show that time triggered superblocks cannot increase the performance
in our scenario.

The rest of the chapter is organized as follows: Related Work is pre-
sented in Section 4.2. In Section 4.3, we introduce the model of the shared
resource. We show the analytical framework to compute the worst-case com-
pletion time under a given TDMA arbiter in Section 4.5 for a phase and in
Section 4.6 for superblocks and tasks. Section 4.7 derives the schedulability
relation among the proposed models. Experimental results using an appli-
cations from the automotive domain are shown in Section 4.8. Section 4.9
concludes the paper.

4.2 RelatedWork
Time-triggered models of computation and of accessing resources typically
have been used to increase the timing predictability of systems and to
ease the prediction of system behavior. In [KG94] Kopetz et al. pro-
pose the TTA protocol for safety critical systems, that provides predictable
latency for message transport and clock synchronization among other prop-
erties. An application of the protocol to systems composed by multiple
elements (e.g., COTS systems) is shown in [KESH+08]. As opposed to
modern multiprocessor systems, e.g., the Cell Broadband Engine [IST06],
that is optimized for average case performance and exhibits a large de-
gree of non-determinism in transmission latencies and communication time
[AP07, Hüg10], time-triggered architectures provide analyzability and re-
peatability, and thus timing predictability.

Timing predictability [TW04] is a key issue in the design of safety critical
real-time systems system, as seen in the automotive and avionic industry.
Following Thiele et al. [TW04], we aim at designing performant systems
with sharp upper and lower bounds on their execution times. One of the
needs mentioned by Thiele et al. is the need for coordination on the ar-
chitecture - without which a system would become unpredictable. Time
Division Multiple Access (TDMA) satisfies this need for coordination on
the shared resource.

TDMA as arbitration policy to either access a shared resource, or to
assign computational resources to tasks, is studied in great detail [AEPR08,
RAEP07,WT06a,HE05]. Other fields also apply TDMA, e.g., to guarantee
bounded communication delays in networking [CF10].

Rosen et al. [RAEP07] and Andrei et al. [AEPR08] use Time Division
Multiple Access (TDMA) for bus accesses and a task model, where commu-

84 Chapter 4. Static arbitration on shared resources

nication requests are confined to dedicated phases at the beginning and the
end of a task. Execution traces for an application are generated using static
analysis, and applied to a given TDMA arbiter to derive the worst-case
completion time. Such systems can be analyzed compositionally, i.e., one
processing element is analyzed at a time, and the system is feasible, if all its
components are feasible. Thus, interference is eliminated through isolation.
Contrary to that, we assume that the positions of accesses to the shared
resource are not known a priori and neither is their order. Producing all the
feasible traces for such a configuration would result in an infinite number
of possibilities.

Wandeler et al. [WT06a] present a method to determine the minimal
slot length that has to be assigned to a resource, such that its real-time
constraints can be met. Based on that, the optimal cycle length for the
TDMA arbiter is derived. In contrast to the work presented in this thesis,
the model of the shared resource considered by Wandeler et al. allows
for events to be buffered. This way, a resource can issue multiple events,
without the need to wait for previous events to be served. As a result, there
is no blocking due to contention on the shared resource.

Another line of research, that considers dynamic arbitration policies,
such as First-Come-First-Server (FCFS), use Model Checking to analyze a
system. Gustavsson et al. [GELP10] analyze multi-core systems with private
L1 cache and shared L2 cache and main memory using Time Automata
[RD94] and the Uppaal Model Checker [LPY97]. In their experiments, for
an architecture with 4 cores, the analysis had to be aborted after 3 hours,
as the memory requirements exceeded the available 4GB. Since the worst-
case execution time is found using a binary search approach, the actual
total analysis time is a multiple of this time. The authors estimate a total
analysis time of more than 33 hours.

Lv et al. [LGYY10] also use timed automata and model checking to
analyze the timing behavior of an application, but propose abstract inter-
pretation of the application to reduce the state space. They analyze systems
with FCFS or TDMA arbitration policies. The approach is shown to per-
form well for the presented examples, but eventually suffers from the same
complexity issues.

Using TDMA, interference is neglected and the computational complex-
ity of the worst-case execution time (WCET) analysis depends on the prop-
erties of the considered application rather than the properties of competing
elements in the system.

4.3. System Model 85

4.3 SystemModel
In this section, we shortly recapitulate the models to access the shared
resource and the models of execution, introduced in the previous chapter.
Furthermore, we detail on the model of the shared resources, i.e., the TDMA
arbitration policy.

4.3.1 Models of Tasks and Processing Elements
We assume a platform with multiple processing elements pj ∈ P. Sets of
superblocks execute independently on a processing element and access the
shared resource according to the following models, as described in Section
3.3.1:

• the dedicated model,

• the general model and

• the hybrid model,

with the sequential and time-triggered models of execution. The dedicated
model limits accesses to the shared resource to dedicated phases and com-
putation to the execution phase, while in the general model access requests
and computation can happen anytime and in any order. The hybrid model
represents a trade-off, with dedicated phases to access the shared resource
and a general phase, where computation and resource accesses can happen
anytime and in any order.

4.3.2 Model of the Shared Resource
As introduced in Section 3.3.3, we consider systems with a stateless shared
resource among the processing elements in P . At any time, the shared
resource can serve at most one request and therefore, if a superblock si,j

modeled according to the dedicated model can access the shared resource at
any time, the maximal time for executing the superblock si,j is execmax

i,j +
(µmax,a

i,j + µmax,e
i,j + µmax,r

i,j) ·C, where si,j denotes superblock i on processing
element pj. Superblock si,j is specified with µmax,a

i,j , µmax,e
i,j and µmax,r

i,j access
requests in its acquisition, general and replication phase, respectively, and
execmax

i,j computation to be performed in its general phase. Accesses to the
shared resource require C units of time.

In this chapter, we consider systems with a TDMA arbiter for arbitrating
access to the shared resource. A TDMA schedule Θ is defined as sequence
of time slots, such that σm ∈ Θ is the starting time of the m-th time slot
(a.k.a. time slot m) and its duration is δm = σm+1 − σm. For notational
brevity, we define MΘ as the number of slots in schedule Θ and L(Θ) as
its period. As a result, the TDMA schedule is repeated after every L(Θ)

86 Chapter 4. Static arbitration on shared resources

()L Q 2(2,) 1pQ =

(5,2)H

4(5,) 1pQ =

C

b

1 {1, 4}V =

5MQ = 1,1,4B a b= +

a1d 3d

1p 2p 3p 1p 4p 1p 2p 3p 1p 4p

6 1 ()Ls s= + Q1 0s = 2s 3s 4s 5s

1 1()vD

t

Figure 4.1: TDMA Scheme Overview and Notation

time units. Furthermore, let σ1 be 0 and σMΘ+1 be L(Θ). Time slots of the
schedule are assigned to processing elements, such that θ(m, pj) = 1 if time
slot m is assigned to processing element pj, otherwise θ(m, pj) = 0. For
example, Figure 4.1 illustrates an example for the TDMA schedule, while
undefined variables will be explained later in Section 4.5.1.

Only requests from processing element pj with θ(m, pj) equal to 1 are
granted access to the shared resource in the m-th time slot of a TDMA cycle,
while requests from other processing elements have to wait. Moreover, if
at a time t the remaining time σm+1 − t of a time slot cannot serve a new
request, i.e., σm+1 − t ≤ C, the TDMA arbiter will not grant any requests
until the time slot expires. Therefore, in order to provide meaningful results,
we assume that slots in the schedule are at least of length C and there is at
least one slot for each processing element pj ∈ P . Slots with a length less
than C cannot serve any access requests.

We assume that processing elements and the resource arbiter initialize
synchronously, such that the first slot on the shared resource and the first
superblock on each processing element start at time 0. A TDMA schedule
for the shared resource is said to be schedulable if all the superblocks/tasks
in all processing elements can finish before their respective deadlines, i.e.,
the response time of a superblock is no more than the relative deadline. An
access to the shared resource blocks all other requesting tasks/superblocks,
until it is completed, and thus results in significantly increased worst-case
response times. The objective of this chapter is to provide efficient anal-
ysis methods to compute the worst-case response times for all the tasks
on a resource sharing system, assuming TDMA arbitration of the shared
resource.

4.4. Analysis Overview 87

4.4 Analysis Overview
In this chapter, we derive the WCRT of a set of superblocks, by determining
the worst-case trace of access requests to the shared resource. In other
words, we find the concrete execution trace of a superblock that leads to
the WCRT.

The worst-case trace is determined by maximizing the stall time of a
phase. In other words, we find the placement of access requests and com-
putation, such that the waiting time for accessing the shared resource is
maximized. For the TDMA arbitration policy on the shared resource, this
is done

1. by issuing access requests at the end of time slots that are assigned
to the superblock and

2. by performing computation during active time slots.

Intuitively, we place computation in such a way, that access requests
always happen when the shared resource is assigned to other processing
elements. This way, the superblock has to stall until the activation of the
next time slot. The time required to finish an access request is denoted C.
Conclusively, in order to maximize the stall time for an access request, it
should be issued C − ɛ units of time before the expiration of the active time
slot. Then, the access request cannot be finished in the current time slot,
and is served upon activation of the next assigned time slot. The stall time
that results from this strategy is related to the time between the expiration
of the time slot and the starting time of the next time slot and the time
required to serve the access request.

We propose an algorithm to derive this worst-case trace of access re-
quests for single phases in Section 4.5. The analysis for dedicated phases
is shown in Section 4.5.2, while the analysis for general phases is shown
in Section 4.5.3. In Section 4.6, we show how to compose these analyses
approaches to derive the WCRT for a complete superblock and task.

Dedicated phases
Dedicated phases either perform computation or issue access requests. As
a result, the analysis approach needs to compute the amount of arbitration
rounds that is required to perform all access requests. In case of a dedicated
execution phase, i.e., only local computation is performed, the maximum
execution time of the phase corresponds to the WCRT of the phase.

Otherwise, in case of an acquisition or replication phase, the WCRT
of the phase depends on the number of access requests that can be served
during active time slots, the time between time slots and the number of
arbitration cycles that is required until all access requests have been served.

88 Chapter 4. Static arbitration on shared resources

We denote the maximum number of access requests that can be performed
by time slots m to n, assigned to processing element pj, as Λmax

j,m,n, see
Equation (4.3). The blocking time depends on the distance between two
time slots. We denote the distance between the beginning of time slot m
to the beginning of time slot n as Hm,n, see Equation (4.2). The number
of access requests that can be served in each arbitration cycle is denoted
Λmax∗. Algorithm 4.1 in Section 4.5.2 details on this analysis.

General phases

In general phases, computation and access requests can happen at anytime
and in any order. Therefore, we have to determine the concrete trace that
leads to the WCRT. Similarly to dedicated phases, the WCRT for general
phases also depends on the number of access requests that can be served in
time slots, the time between time slots and the number of arbitration cycles
that is required to complete all access requests. However, the amount of
computation that is performed during active time slots is indirectly related
to the number of access requests that can be served. In other words, the
more computation we perform during a time slot, the less access requests
can be served in this time slot.

Intuitively, issuing access requests only at the end of active time slots
results in maximized stall times. Each time an access request is issued,
the time slot expires and the phase has to stall until the next time slot is
activated. In general phases, access requests and computation can happen in
any order. As a result, we can place computation such that access requests
happen at the end of time slot, and thus maximize the stall time. The
amount of computation that is required to achieve this particular placement
of access requests, for time slots m to n, is denoted Bj,m,n, see Equation
(4.6). Hence, active time slots are used for performing computation and
only a single access request is issued at their end. Therefore, the number
of access requests served between time slots m and n corresponds to the
number of time slots assigned to the phase, denoted ψj,m,n, see Equation
(4.5). Algorithm 4.2 derives the WCRT for this case.

Algorithm 4.3 considers the case, when the distance between time slots
assigned to a particular processing element are note equal. In this case,
and if the amount of computation is not sufficient to limit the number of
access requests in each time slot to 1, we have to find the optimal distribu-
tion of computation. We apply a binary search algorithm to determine the
execution trace that leads to the WCRT for the phase under analysis.

4.5. Worst-Case Completion Time of A Phase 89

4.5 Worst-Case Completion Time of A Phase
Given a TDMA schedule Θ, this section presents how to analyze the worst-
case completion time of an acquisition/replication phase starting at a spe-
cific time t. The delay suffered by the phase depends on its structure, i.e.,
how accesses to the shared resource are organized. We will first present
the required terminologies and notations in Section 4.5.1 with an exam-
ple schedule presented in Figure 4.1, and then show how to analyze the
worst-case completion time of a phase in Sections 4.5.2 and 4.5.3.

4.5.1 Terminologies and notations used for analysis
Let π(t) be the time slot of the TDMA schedule at time t and σπ(t) be its
starting time in the TDMA cycle, such that⌊

t

L(Θ)

⌋
L(Θ) + σπ(t) ≤ t <

⌊
t

L(Θ)

⌋
L(Θ) + σπ(t)+1. (4.1)

For brevity, the next time slot n of the current time slot m is defined by
the closest next time slot n in the TDMA schedule. That is, if n ≤ m, the
next time slot n is in the next TDMA cycle; otherwise, they are in the same
cycle. Therefore, the time distance Hm,n from the beginning of time slot m
to the beginning of the next time slot n is defined as follows:

Hm,n =

{
σn − σm if n > m

σn + L(Θ) − σm otherwise,
(4.2)

where Figure 4.1 provides an example for H(5, 2).
The maximal number of completed requests for processing element pj in

TDMA time slot m is defined by λj,m, in which λmax
j,m is

⌊
δm

C

⌋
θ(m, pj), for

acquisition/replication phases where no computation can happen. Similarly,
for general phases, since we are allowed to perform computation between
requests, the number of completed requests for processing element pj in a
TDMA time slot m is λmin

j,m =
⌊

δm−C
C

⌋
θ(m, pj). As a result, the maximal

number of completed requests for processing element pj from time slot m
to the next time slot n is denoted Λmax

j,m,n and is computed as:

Λmax
j,m,n =

{∑n
k=m λmax

j,k if n > m∑MΘ

k=m λmax
j,k +

∑n
k=1 λmax

j,k otherwise.
(4.3)

Computing Λmin
j,m,n follows suit. We denote

∑MΘ

v=1 λmax
j,v by Λmax∗ and∑MΘ

v=1 λmin
j,v by Λmin∗ , which is the maximal and minimal number of com-

pleted requests in a TDMA cycle L(Θ) respectively.
Assume a TDMA schedule Θ, with multiple time slots assigned to a

processing element pj. Then the ordered vector Vj contains the time slots

90 Chapter 4. Static arbitration on shared resources

assigned to pj and each element vq ∈ Vj is an integer between 1 and MΘ,
such that v1 < v2 · · · < v|Vj | and θ(vq, pj) = 1. Let Δj(vq) be the amount
of time that processing element pj has to wait for the next time slot, after
time slot vq has expired, then:

Δj(vq) =

{
σv(q+1)

− σ(vq+1) if q < |Vj|
σv1 + L(Θ) − σ(vq+1) otherwise.

(4.4)

See Figure 4.1 for an example to compute Δ1(v1). The number of time
slots assigned to processing element pj from time slot m to time slot n
(excluding time slot n) is defined as follows:

ψj,m,n =

{∑n−1
k=m θ(k, pj) if n > m∑MΘ

k=m θ(k, pj) +
∑n−1

k=1 θ(k, pj) otherwise.
(4.5)

The number of time slots in a TDMA cycle assigned to processing element
pj is denoted by Ψ∗

j , where Ψ∗
j =

∑MΘ

m=1 θ(m, pj).
Superblocks cannot proceed to perform computation as long as there

are unserved requests to the shared resource. As a consequence, if there is
an unserved request at the end of a time slot assigned to pj, computation
stalls until the next time slot becomes active and the request can be served.
These stalls can be maximized by issuing accesses to the shared resource
at the end of time slots. Hence, the time between consecutive time slots
assigned to pj is spent stalling, while active time slots are used to compute
the unserved access issued at the end of the preceding time slot and to
perform computation.

The time used performing computation on pj from time slot m to its next
time slot n, assuming that a single request to the shared resource is issued
at the end of each time slot assigned to pj is denoted as Bj,m,n. Intuitively,
time slot m is used to perform computation on pj, until C − ɛ time units
before the time slot expires (with C > ɛ > 0), when an access to the shared
resource is issued. The request cannot be completed anymore, and pj stalls
until the next time slot becomes active. Once the next time slot n becomes
active, the unserved access is completed, consuming a constant time C, and
computation continues. Another access request is issued C− ɛ units of time
before time slot n expires, such that it could not be served anymore. As
a result, in time slot n computation amounts for δn − (2C − ɛ) time units.
Therefore, we can derive Bj,m,n as follows:1

Bj,m,n = θ(m, pj)(δm − C) + (4.6)

1If z > 0, function {z}+ is z; otherwise {z}+ is 0. We ignore ɛ in (4.6) since the value
is meaningful only when it is very close to 0.

4.5. Worst-Case Completion Time of A Phase 91

∑n−1

v=m+1 θ(v, pj){δv − 2C}+ if n > m{ ∑MΘ

v=m+1 θ(v, pj){δv − 2C}+

+
∑n−1

v=1 θ(v, pj){δv − 2C}+
otherwise.

See Figure 4.1 for an example to compute B1,1,4. Similarly, the maximum
time for performing computation, denoted B∗, in a complete TDMA cycle
of length L(Θ) considering the previously defined conditions, computes as:

B∗ =

MΘ∑
v=1

θ(v, pj){δv − 2C}+. (4.7)

4.5.2 Worst-case completion time for a dedicated phase
This subsection presents how to analyze the worst-case completion time for
an acquisition (replication) phase, starting at time t. Basically, we compute
the time required to complete the access requests and how many time slots
are required to do so.

Suppose that µmax is the maximum number of requests to the shared
resource for a phase. Algorithm 4.1 presents the pseudo-code of the analysis
for the worst-case completion time. Parameter Λ is a vector representing
either Λmax or Λmin. Λmax

j,m,n represents the maximum number of access re-
quests that can be served in time slots m to n, that are assigned to pj, see
Equation (4.3). Then, Λmax represents the vector for all possible combi-
nations of m and n for a particular processing element pj. Similarly, Λmin

represents the maximum number of access requests that can be served by
time slots, considering that in each time slot a infinitely small amount of
computation can happen, see Equation (4.3). In other words, when consid-
ering a dedicated phase, we use Λmax in Algorithm 4.1. Contrarily, consider
the analysis of a general phase, where all computation has already been dis-
tributed. Then, the remaining access requests are regarded as a dedicated
acquisition or replication phase. However, in the worst-case, a small amount
of computation might be available to postpone each access request by ɛ units
of time. As a result, when analyzing general phases, we consider Λmin in
Algorithm 4.1.

Let t be the current time and t′ be the starting time of the next TDMA
time slot, i.e., t′ =

⌊
t

L(Θ)

⌋
L(Θ) + σπ(t)+1. If the current time slot can serve

the required requests µmax to the shared resource, the worst-case completion
time is simply t + Cµmax (see Step 2 to 3 in Algorithm 4.1). Otherwise, we
consider to issue

⌊
t′−t
C

⌋
θ(π(t), pj) requests in time slot π(t), which implies

that there are µ′ = µmax −
⌊

t′−t
C

⌋
θ(π(t), pj) unserved requests (Step 5). In

each TDMA cycle L(Θ), we can complete at most Λ∗ requests. Therefore,
we require at least

⌊
µ′

Λ∗

⌋
TDMA cycles to complete the remaining accesses.

92 Chapter 4. Static arbitration on shared resources

Algorithm 4.1 WCT-AR
Input: Θ, pj , µ

max, t, Λ;
Output: Worst-case completion time;
1: let t′ be the starting time of the next time slot after time t;
2: if

⌊
t′−t
C

⌋
θ(π(t), pj) ≥ µmax then

3: return t + Cµmax;
4: else
5: µ′ ← µmax −

⌊
t′−t
C

⌋
θ(π(t), pj);

6: t′ ← t′ +
⌊

µ′

Λ∗

⌋
L(Θ); µ′ ← µ′ −

⌊
µ′

Λ∗

⌋
Λ∗;

7: find the closest next time slot n∗ such that Λj,π(t′),n∗ ≥ µ′;
8: t′ ← t′ + Hπ(t′),n∗ + C · (µ′ − Λj,π(t′),n∗−1);
9: end if

Then time t′ is set to t′ +
⌊

µ′

Λ∗

⌋
L(Θ), while reducing µ′ to µ′ −

⌊
µ′

Λ∗

⌋
Λ∗

(Step 6). The remaining µ′ accesses can then be completed in the current or
next TDMA cycle. In other words, the algorithm finds slot n∗, with starting
timeσn∗ , in [σπ(t′), . . . σMΘ

, σ1, . . . , σπ(t′)−1], such that Λj,π(t′),n∗ ≥ µ′, i.e., the
number of requests that can be served between the slot at π(t′) and slot
n∗ exceeds the remaining access requests µ′ (Step 7). Following that, the
worst-case completion time is calculated in (Step 8).

We denote Algorithm 4.1 as WCT-AR. The time complexity is O(MΘ).
It can be improved to O(logMΘ) by applying binary search in Step 7 when
all Λj,m,n for all m,n are calculated a priori.

Lemma 2 For an acquisition or a replication phase on processing element pj

with at most µmax requests to the shared resource, Algorithm WCT-AR by
setting Λ as Λmax derives the worst-case completion time.

Proof. This is a result of the definition of the TDMA schedule Θ and the
resource access model. As there is no interference and no non-determinism
with respect to the decision whether to issue an access request or not, the
worst-case completion time is the time when the accumulated slot time
assigned to processing element pj suffices to serve all access requests.

¤

4.5.3 Worst-case completion time for a general phase
This subsection presents how to analyze the worst-case completion time for
a general phase on processing element pj when the phase starts at time t,
where µmax is the maximum number of requests to the shared resource and
execmax is the maximal amount of computation for the general phase. If
µmax is 0, the worst-case completion time is t + execmax.

4.5. Worst-Case Completion Time of A Phase 93

A request issued C−ɛ time units before the expiration of the current time
slot cannot be served immediately, for any ɛ > 0. For simplicity, we assume
a request cannot be served in the current time slot if ɛ ≥ 0, sacrificing only
little tightness.

Given the starting time t of a phase, we can determine whether or not
the current time time slot is assigned to processing element pj. In case the
current time slot is assigned to another processing element, our algorithm
for determining the worst-case trace has to consider two possible outcomes.
First, issuing an access request immediately at time t, or second, performing
computation. Depending on the distance of time t to the activation time of
the next time slot, both concrete execution traces might lead to the worst-
case trace. Therefore, our algorithm considers both cases and returns the
worst-case, see Line 9 in Algorithm 4.2. Lemma 3 shows that considering
these two cases is sufficient for determining the worst-case.

Lemma 3 If θ(π(t), pj) = 0, there are two concrete execution traces that
might lead to the WCRT. Either (1) performing computation before the
earliest next time slot for pj or (2) issuing one request immediately, and
thus stall until the earliest next time slot for pj.

Proof. Consider the other case, that at time t computation is performed and
then a request is issued at a time t′, such that θ(π(t′), pj) = 0, that is, befor
the activation of the next time slot assigned to pj. Then, it is clear that
the computation can be postponed such that the completion time is larger.
Therefore, one of the two cases in the statement results in the worst-case
completion time.

¤

Algorithm 4.2, denoted WCT-E, presents the pseudo-code of the analysis
for the worst-case completion time. If the current time slot is not assigned to
processing element pj, i.e., θ(π(t), pj) = 0, we can either issue a request, and
thereby cause the superblock to stall (Step 6), or perform computation till
the next time slot assigned to processing element pj (Step 8) becomes active.
In the analysis, both cases are examined recursively and the maximum
completion time is reported as the worst-case completion time.

Therefore, for the following iterations of Algorithm 4.2, we only have
to consider the case that θ(π(t), pj) is 1. Again, let t′ be initialized as
the starting time of the next TDMA time slot, i.e., t′ =

⌊
t

L(Θ)

⌋
L(Θ) +

σπ(t)+1. If executing all the required computation can be done before t′ −
C − t, the analysis executes computation first and then starts to access
the shared resource at time t + execmax. For this case, the problem is
reduced to an acquisition or a replication phase, and hence, we can use
Algorithm WCT-AR (Step 16 in Algorithm 4.2). Note that Λmin has to

94 Chapter 4. Static arbitration on shared resources

Algorithm 4.2 WCT-E
Input: Θ, pj , execmax, µmax, t;
Output: Worst-case completion time;
1: if µmax = 0 then
2: return t + execmax;
3: else
4: if θ(π(t), pj) = 0 then
5: let t∗ be the starting time of the next time slot assigned for pj in Θ;
6: R1 ← WCT-E(Θ, pj , execmax, µmax − 1, t∗ + C);
7: if execmax − t∗ + t > 0 then
8: R2 ← WCT-E(Θ, pj , execmax − t∗ + t, µmax, t∗);
9: return max{R1, R2};

10: else
11: return R1;
12: end if
13: end if
14: let t′ be the starting time of the next time slot after time t;
15: if (t′ − C) − t ≥ execmax then
16: return WCT-AR(Θ, pj , µ

max, t + execmax + C,Λmin);
17: end if
18: e′ ← execmax − {0, (t′ − C) − t}+; µ′ ← µmax − 1;
19: find h and n∗ such that hB∗ + Bj,π(t′),n∗ ≥ e′ > hB∗ + Bj,π(t′),n∗−1;
20: tc ← t′ + hL(Θ) + Hπ(t′),n∗ + C + (e′ − hB∗ − Bj,π(t′),n∗−1);
21: if hΨ∗

j + n∗ < µ′ then
22: if tc and tc + C are not in the same time slot then
23: let tc be the beginning of the next time slot assigned for pj after tc ;
24: end if
25: return WCT-AR(Θ, pj , µ

′ − hΨ∗
j , tc + C,Λmin);

26: else
27: return WCT-E-SUB(Θ, pj , execmax, µmax, t, tc);
28: end if
29: end if

be used to represent the number of access requests that can be served in
general phases. Otherwise, we perform computation for {(t′ − C)) − t}+

units of time and then issue one access request (Step 18). As a result,
the remaining computation time is e′ = execmax − {(t′ − C) − t}+ and the
remaining requests are µ′ = µmax − 1. If we serve exactly one request in one
time slot assigned to processing element pj by injecting unlimited requests,
we can find the time slot in which the remaining computation time becomes
0. That is, we find integers h and n∗ such that

hB∗ + Bj,π(t′),n∗ ≥ e′ > hB∗ + Bj,π(t′),n∗−1. (4.8)

In other words, we compute the number of TDMA cycles (h) and the time
slot (n∗) in the last TDMA cycle that is required to perform all computation,
assuming a single access request is issued in each time slot and assuming
that the processing element stalls in between subsequent time slots.

4.5. Worst-Case Completion Time of A Phase 95

Algorithm 4.3 WCT-E-SUB
Input: Θ, pj , execmax, µmax, t, Rub;
Output: Worst-case completion time;
1: let t′ be the starting time of the next time slot after time t;
2: find h and n∗ such that hΨ∗

j + ψj,π(t),n∗ = µmax > hΨ∗
j + ψj,π(t),n∗−1;

3: e′ ← execmax − B∗
⌊

µ′

Ψ∗
j

⌋
− Bj,π(t′),n∗ − (t′ − t − C);

4: Rlb ← t′ + hL(Θ) + Hπ(t′),n∗ + e′;
5: return the binary search result t† by applying WCT-E-SUB-TEST() by setting t†

in the range [Rlb, Rub];

The estimated completion time tc computes as tc ← t′ + hL(Θ) +
Hπ(t′),n∗−1 + C + (e′ − hB∗ − Bj,π(t′),n∗−1). If the number of remaining
requests µ′ is more than there are time slots between t′ and the estimated
completion time, i.e., hΨ∗

j + n∗ < µ′, only access requests remain to be
served. The completion time for these access requests is analyzed using
Algorithm WCT-AR with starting time tc + C, since one pending access
request is served immediately upon activation of slot n∗ (Step 25).

Steps 16 and 25 represent the cases where all computation is executed
and only access requests to the shared resource remain to be finished. The
worst-case completion time of the remaining accesses can be computed by
Algorithm WCT-AR, considering that in an general phase the issuing time
of an access request can be postponed by executing computation for ɛ units
of time. Therefore, the number of access requests that can be served in any
sequence of time slots is represented by Λmin. Furthermore, C units of time
are allocated to serve one open access request that might be pending at the
beginning of the next active time slot.

If hΨ∗
j + n∗ ≥ µ′, the estimated completion time tc gives an upper

bound of the worst-case completion time. To derive a tighter worst-case
completion time, we continue with Algorithm WCT-E-SUB (Algorithm 4.3)
by specifying Rub = tc as the upper bound of the worst-case completion time.
The basic idea in Algorithm WCT-E-SUB is to first find a lower bound of
the worst-case completion time by issuing a single request to the shared
resource in each time slot from the current time slot. After all requests are
served, the remaining computation is performed, which gives a lower bound
Rlb (Step 4 in Algorithm 4.3). Now, we have an upper bound and a lower
bound of the worst-case completion time, and apply binary search to find
t† between these bounds and test whether t† is feasible or not.

The test, whether t† is feasible or not, is shown in Algorithm 4.4. As
t† ≥ Rlb, we know that there are at least µmax time slots available for
processing element pj from time t to time t†.

The schedulability test distributes the µmax requests among the time
slots for processing element pj in time interval (t, t†], such that the time
spent waiting for grants to the shared resource is maximized. Let Vj denote

96 Chapter 4. Static arbitration on shared resources

Algorithm 4.4 WCT-E-SUB-TEST
Input: Θ, pj , execmax, µmax, t, t†;
Output: Feasibility to finish by t† for the worst case;
1: for each vq ∈ Vj do
2: derive ηq by Equation (4.9);
3: end for
4: µ′ ← µmax; wait ← 0;
5: while µ′ > 0 do
6: find the index n∗ such that Δj(vn∗) is the maximal among those vq ∈ Vj with

ηq > 0;
7: if ηn∗ > µ′ then
8: wait ← wait + µ′Δj(vn∗); ηn∗ ← ηn∗ − µ′; µ′ ← 0;
9: else

10: wait ← wait + ηn∗Δj(vn∗); µ′ ← µ′ − ηn∗ ;ηn∗ ← 0;
11: end if
12: end while
13: if wait + 2Cµmax + execmax ≤ t† − t then
14: return "feasible";
15: else
16: return "infeasible";
17: end if

the ordered vector of time slots assigned to pj in time interval [t, t†] and
vq ∈ Vj. If we issue a request in a time slot vq, we will experience at most
Δj(vq) + 2C waiting time to finish the request. Furthermore, ηq represents
the number of instances of slot vq in time interval [t, t†] (excluding the the
time slot at time t†), since this interval might span over several TDMA
cycles. That is,

ηq =

⌈ t̂−t

L(Θ)⌉ if π(t) ≤ vq < π(t̂) or π(t̂) < π(t) ≤ vq

or vq < π(t) < π(t̂)
⌈ t̂−t

L(Θ)⌉ − 1 otherwise,
(4.9)

where t̂ = σπ(t†) is the starting time of the time slot at time t†. As we want
to find the largest waiting time among those

∑
vq∈Vj

ηq time slots, we find
those µmax time slots with the largest waiting time (Step 4 to Step 12 in
Algorithm 4.4, where wait is a variable to indicate the waiting time without
considering the time to complete any request). Then, we test whether wait+
2Cµmax + execmax is less than t† − t (Step 13 to Step 17 in Algorithm 4.4)
to test the feasibility.

Correctness and Complexity of AlgorithmWCT-E

The time complexity is O(MΘ) if Algorithm WCT-E-SUB is not required.
As Rub − Rlb is bounded by execmax, the time complexity of Algorithm

4.5. Worst-Case Completion Time of A Phase 97

WCT-E-SUB is O(MΘ log execmax), which is also polynomial. Therefore,
the overall time complexity is O(MΘ log execmax).

Given a general phase on processing element pj starting at time t with
execmax computation time and µmax requests to the shared resource, con-
sider a schedule S, that

• issues an access request C − ɛ time units before the end of each up-
coming time slot assigned to processing element pj. This way, access
requests cannot be served in their current time slot anymore and the
system stalls until its next time slot becomes active, at which time C
units of time are consumed to execute the access request. (Note: for
time slots shorter than 2C, a request is issued immediately after the
pending request has completed, resulting in the system to block.)

• executes computation at all times when the system is neither stalling
nor executing access requests.

Suppose that, in schedule S, t1 is the completion time for preforming com-
putation and t2 is the completion time of the last request. Let µt1 be the
requests completed before t1 in schedule S.

Lemma 4 If t1 and t1+C are in the same time slot, let t̄ be t1+C; otherwise,
let t̄ be C plus the starting time of the next time slot for the phase after t1.
If t2 > t1, the completion time by issuing µmax − µt1 requests after time t̄
is an upper bound of the completion time for the general phase starting at
time t, assuming Λmin as the number of access requests that can be executed
in any sequence of time slots.

Proof. We can prove this lemma by swapping 1 request with computation
amounting for C units of time. Let φ∗ be a trace with computation and
requests located according to schedule S. For any different trace φ, with an
arbitrary access request being swapped with an arbitrary portion of com-
putation amounting for C units of time, results in (1) a trace that performs
computation in between time slots, instead of stalling, and therefore results
in a smaller completion time or (2) results in a trace that stalls between
assigned time slot and therefore results in the same completion time as the
trace produced by schedule S. It is not difficult to see that one can always
swap the computation and one request without extending the completion
time. Therefore, schedule S produces the worst-case completion time.

¤

Lemma 5 If t1 ≥ t2 and |Vj| = 1, the estimated completion time tc in Al-
gorithm 4.2 (Rlb in Algorithm 4.4) is an upper bound of the worst-case
completion time.

98 Chapter 4. Static arbitration on shared resources

Proof. Similarly, if there is computation left after all access requests are
served, the same swapping as in the proof of Lemma 4 can be performed.
Again, swapping an access request with an equivalent amount of computa-
tion time results in a trace of equal or smaller completion time as schedule
S.

¤

Lemma 5 states that it is not necessary to run a binary feasibility test in
Algorithm WCT-E-SUB for a regular TDMA arbiter, in which each process-
ing element has only one access time slot in a TDMA cycle, i.e., |Vj| = 1.
The time complexity for such a case becomes O(1). However, to the best of
our knowledge, for general TDMA arbiters, binary search to test feasibility
performs best.

Lemma 6 If t1 ≥ t2 and setting the completion time t† as tS′ returns "feasible"
by Algorithm WCT-E-SUB-TEST, the completion time of any schedule S′
for the general phase is no more than t†.

Proof. When Algorithm WCT-E-SUB-TEST returns "feasible", it is not
difficult to see and prove that Algorithm 4.4 is based on a concrete trace such
that the total blocking time in which the phase waits for the grants to the
shared resource is the largest. If a schedule S′ with completion time larger
than t† exists, it must create longer blocking times to wait for accessing the
shared resource, which contradicts the largest blocking time of the trace
considered in Algorithm 4.4.

¤

Lemma 7 If t1 ≥ t2 and t† is the worst-case completion time, applying Al-
gorithm WCT-E-SUB-TEST by setting the completion time t† − ɛ as tS′

returns ''infeasible'', for any ɛ > 0.

Proof. As the waiting time and the time required to perform computation
and to serve the remain access requests is larger than t† − ɛ − t, namely
t† − t, there must exist a trace, accordingly. Therefore, Algorithm WCT-E-
SUB-TEST returns ''infeasible''.

¤

As a result, we conclude the analysis for the general phase by the fol-
lowing theorem.

Theorem 2 The worst-case completion time derived from Algorithm WCT-E
provides an upper bound of the completion time for any feasible execution
bounded by computation time execmax and requests µmax on processing ele-
ment pj.

4.6. Timing Analysis for Superblocks and Tasks 99

Proof. Lemma 2 and Lemmas 4, 5, 6 and 7 state that schedule S results
in the trace with the worst-case completion time. Therefore, assuming a
hardware platform without timing anomalies, Algorithm WCT-E derives
the worst-case completion time.

¤

4.6 Timing Analysis for Superblocks and Tasks

With the analysis of the completion time of a phase, we can analyze the
schedulability of the superblocks on processing element pj. Testing the
schedulability of tasks on processing element pj requires to analyze for a
time period equal to the least common multiplier (LCM) of pj's period Wj

and the TDMA cycle L(Θ). This way, all possible offsets between slots and
superblocks are considered.

Since there is no interference of other processing elements when we ana-
lyze processing element pj, it is clear that there is no anomaly. That is, if a
superblock completes earlier than its worst-case completion time, this will
not increase the worst-case execution time of the remaining superblocks.
As a result, we have to consider the worst-case execution time of the su-
perblocks sequentially, see Algorithm 4.5. Algorithm 4.5 represents the
analysis for the hybrid resource access model and the subsequent execution
of superblocks, i.e., model HSS. The dedicated resource access model with
subsequent execution of superblocks, i.e., model DSS, is derived by setting
the parameter µmax,e

i,j = 0. The general resource access model with subse-
quent execution of superblocks, i.e., model GSS, is derived by setting the
parameter µmax,a

i,j = 0 and µmax,r
i,j = 0. In order to compute the worst-case

completion time for the three resource access models, with time-triggered
execution of the superblocks, the starting times of the superblocks in Al-
gorithm 4.5, need to be adjusted, see Line 4 where the starting time t is
adjusted to the dedicated starting time ρi,j of superblock si,j. Furthermore,
in order to analyze the model with time-triggered phases, Lines 7, 9 and 11
need to be adjusted to the corresponding earliest starting time ρi,j,a, ρi,j,e

and ρi,j,r for the acquisition, general and replication phase, respectively.
The time complexity of the algorithm is O(|Sj|LCM(Wj ,L(Θ))

Wj
). To con-

clude the analysis, the following theorem gives the correctness of Algorithm
4.5.

Theorem 3 A TDMA arbiter based on TDMA schedule Θ is schedulable for
scheduling tasks/superblocks assigned on processing element pj if Algorithm
4.5 returns "schedulable".

100 Chapter 4. Static arbitration on shared resources

Algorithm 4.5 Schedulability-Test
Input: Θ, pj ,Sj ,Wj ;
Output: Schedulability of TDMA schedules
1: for g ← 0; g <

LCM(Wj ,L(Θ))
Wj

; g ← g + 1 do
2: t ← g · Wj ;
3: for each si,j ∈ Sj sequentially do
4: if t < g · Wj + ρi,j then ⊲ for the time-triggered phases only
5: t ← g · Wj + ρi,j ;
6: end if
7: //t ← ρi,j,A for time-triggered phases
8: t ← WCT-AR(Θ, pj , µ

max,a
i,j , t, Λmax);

9: //t ← ρi,j,E for time-triggered phases
10: t ← WCT-E(Θ, pj , execmax,e

i,j , µmax,e
i,j , t);

11: //t ← ρi,j,R for time-triggered phases
12: t ← WCT-AR(Θ, pj , µ

max,r
i,j , t, Λmax);

13: if t − (g · Wj + ρi,j) > ℓi,j then
14: return "might be unschedulable" for pj ;
15: end if
16: end for
17: end for
18: return "schedulable" for pj ;

Proof. This results directly from Lemma 2 and Theorem 2 along with the
fact that the early completion of a superblock will not increase the worst-
case execution time of the remaining superblocks.

¤

4.7 Schedulability amongModels
In this section we introduce the relation of schedulability among the pro-
posed models to access a shared resource and to execute the superblocks on
the processing element. Consider a set of superblocks, specified according to
the models, introduced in Section 3.3.2. Then the schedulability of this set
of superblocks can be derived by Algorithm 4.2. Furthermore, assume that
(1) the total amount of accesses to the shared resource for each superblock
and (2) the amount of computation performed during a superblocks active
time are equal for each of the models we consider.

1. If the set of superblocks is schedulable for model GSS, then it is also
schedulable for model HSS. Consider a superblock specified according
to model HSS and the execution trace that leads to its WCRT. A su-
perblock with equivalent parameters but specified according to model
GSS is capable of realizing the same execution trace, since the total
amount of accesses and computation time is equal, but their position
is confined to dedicated phases in the first model.

4.7. Schedulability among Models 101

2. If the set of superblocks is schedulable for model HSS, then it is also
schedulable for the model DSS. Any concrete execution trace that can
be realized by a superblock specified according to model DSS, can also
be realized by an equivalent superblock specified according to model
HSS. Therefore, the execution trace leading to the WCRT for model
DSS, is also a feasible execution trace for model HSS, but the trace
that leads to the WCRT for model HSS might be infeasible for model
DSS.

3. If the set of superblocks is schedulable for the time triggered su-
perblocks general model GTS, then it is also schedulable for model
HTS. Any execution trace that can be realized by model HTS can
also be realized by model GTS for equivalent superblocks and equal
start times for the superblocks (equal time triggering), since in the
later access requests are restricted to specified phases.

4. If the set of superblocks is schedulable for model HTT, then it is
also schedulable for the HTS. In model HTT, the WCRT of the pre-
ceding phase of a phase represents the lower bound on its starting
time. Therefore, for model HTT, assigning any other starting time
for a phases than its preceding phases' WCRT, results in an increased
WCRT. Assigning starting times of phases as their respective prede-
cessors WCRT reproduces sequential behavior, as in model HTS.

5. If the set of superblocks is schedulable for model GTS then it is also
schedulable for model GSS. The lower bound on the starting time
for a superblock in time triggered systems is its predecessors' WCRT.
Therefore, the trace leading to the WCRT for a superblock specified
according to model GSS, is also a feasible trace for model GTS, but
not every possible execution trace for model GTS can be reproduced
by model GSS.

6. If the set of superblocks is schedulable for model HTT or for model
HTS, then it is also schedulable for model HSS. The starting times
of superblocks and phases in model HTS and HTT, respectively are
lower bounded by the WCRT of the respective preceding superblocks
and phases of an equivalent superblock specified according to model
HSS. The WCRT of a superblock specified according model HTS or
HSS is at least equal to the WCRT of a superblock specified according
to model HSS. The schedulability relation follows directly.

As a conclusion, if any of the six models results as schedulable, model
DSS, with dedicated phases to access the shared resource or to perform
computation, executed sequentially, is schedulable as well, see Figure 4.2.

102 Chapter 4. Static arbitration on shared resources

sequential

time-triggered

GSS

GTS HTS

DSSHSS

HTT

schedulability relation

Figure 4.2: Schedulability Relationship between different models.

Therefore, this model is the model of choice for multiprocessor, resource
sharing systems.

4.8 Experimental Results
In this section, we present the results of our proposed worst-case analy-
sis framework, applied to sequences of superblocks of different sizes and
under varying arbiters. We also show a concrete execution trace to visu-
alize the process of obtaining the worst-case response time. Our proposed
worst-case analysis is applied to three sequences of superblocks. The first
sequence represents a small task, with only 9 subsequent superblocks and
a processing cycle (period) of 5ms. The second sequence is constituted by
84 superblocks, and a period of 10ms, while the third sequence has 125
superblocks and a period of 20ms. These sequences resemble 5ms, 10ms
and 20ms runnables according to the AutoSAR [Aut] specification. The pa-
rameters of the superblocks are generated using random number generators,
following specifications provided by an industrial partner in the automotive
industry.

First a set of superblocks according to the hybrid model is generated
using a random number generator. Based on this superblock, an equivalent
superblock for each resource access model is generated. In other words, the
total number of accesses to the shared resource and the maximum required
computation is the same for superblocks representing one runnable and
different resource access models.

Based on the hybrid model, the general access model is derived by ac-
cumulating the accesses of the acquisition and replication phases to a single
phase in the general model. The dedicated model is derived by moving
a certain share of accesses from the general phase to the acquisition and
replication phase, while at the same time, the total number of accesses for
a superblock remains the same for each of the three access models.

4.8. Experimental Results 103

DSS HSS GSS HTS HTT GTS
0

5

10

15

20

25

30

35

40

Resource Access Model

W
o

rs
t−

C
a

se
 R

es
p

o
n

se
 T

im
e

(W
C

R
T

)
[m

s]

Experimental Results for 3 sets of superblocks and different access models

deadline

125 superblocks

84 superblocks

9 superblocks

Figure 4.3: Experimental results for a regular TDMA arbiter and three re-
source access model.

Our proposed analysis framework assumes a given TDMA arbiter and
therefore, in order to perform experimental evaluations, an arbiter was con-
structed. Each runnable is assigned to a processing element, and the time
slot assigned to this processing element is adjusted, such that the runnable
following the DSS model is the only to remain schedulable.

Figure 4.3 presented the resulting WCRT for 9, 84 and 125 superblocks,
respectively. The dashed lines represent the corresponding period and dead-
line. The dedicated access model outperforms the other access models with
respect to worst-case response time. This is due to the limited variability
inherent to the dedicated access model, as shown in Section 4.7.

Another possibility is to design an arbiter is to create an irregular TDMA
arbiter with randomly distributed slots, where multiple slots of varying
lengths are assigned to a processing element. These arbiters might be able
to decrease the WCRT of tasks, due to a better adjustment of the arbiter
to the actual resource access pattern, but design methodologies to derive
optimal TDMA arbiter are out of the scope of this thesis. Nevertheless,
as shown in Theorem 2, the complexity of the analysis approach increases
significantly.

The difference among irregular and regular arbiters is presented in Fig-
ures 4.4 and 4.5. Two sets of superblocks, resembling 5ms and 20ms

104 Chapter 4. Static arbitration on shared resources

0

5

10

15

20

25

30

35

W
o

rs
t

C
a

se
 R

es
p

o
n

ce
 T

im
e

[m
s]

Different access models, regular TDMA arbiter

82 superblocks

8 superblocks

deadline

DSSHSSGSS
no Interference

(WCET)

Figure 4.4: Experimental results for a regular TDMA arbiter.

runnables with 8 and 82 superblocks respectively, are generated according
to the previously presented approach. Two superblock sequences are ana-
lyzed, in 4 different access models. The most left pair of bars in Figure 4.4
represents the naive worst-case execution time, considering only a constant
amount of time consumed by each access to the shared resource, i.e., when
the shared resource is always available. The next three pairs of bars show
the results for different memory access models. Since we have shown that
time-triggered execution models cannot increase the performance, we omit
these models and show only results for subsequent execution models.

In Figure 4.5 the same superblock sequences are analyzed again, but this
time with an irregular TDMA arbiter, as described before. Again, the ded-
icated access model outperforms all the others. This effect is very apparent
in Figure 4.5, but also observable in Figure 4.4. For the regular arbiter
used in the first set of experiments, the delays are dominated by waiting
for the next period of the arbiter, while in the second set of experiments,
the distance between the single time slots is the determinant measure. The
difference between the WCRT for the irregular and regular arbiter increases
with increased non-determinism in the resource access model. The WCRTs
for the model GSS diverge significantly for regular and irregular arbiter,
while the WCRTs for model DSS and the two arbiters are similar.

4.8. Experimental Results 105

0

10

20

30

40

50

60

70

W
o

rs
t

C
a

se
 R

es
p

o
n

e
T

im
e

[m
s]

Different access models, irregular TDMA arbiter

82 superblocks

 8 superblocks

DSSHSSGSS
no Interference

(WCET)

deadline

Figure 4.5: Experimental results for an irregular TDMA arbiter.

In order to derive the worst-case response time for superblocks, different
traces of requests to the shared resource have to be examined. In Figure 4.6,
we analyze a sample superblock with earliest release time ρ = 0.5ms. We
show one trace that leads to the worst case response time (WCRT) (feasible
Trace 2) and one that does not.

Trace 1 (feasible Trace 1) starts with performing computation at time 0.5
ms while Trace 2 (feasible Trace 2) issues an access to the shared resource
and therefore stalls until the next time slot becomes available, at time 2.0ms,
see the recursive call in Algorithm 4.2, Line 8. Then, both traces perform
computation till the end of the time slot, i.e., till time 2.95 + ɛ. Eventually,
Trace 1 finishes its computation, at time 5.6ms, and the remaining accesses
to the shared resource have to be issued. Since the slot is currently active,
these accesses are completed and the superblock finishes at 5.7ms. Trace 2,
on the other hand, computes until the end of the second slot before issuing
another access request. After a long stall block, the system continues to
do computation for 0.2ms before finishing at 8.25ms, which results in a
worst-case response time (WCRT) of 7.75ms. This shows, that very small
deviations can result in large variances on the resulting WCRT.

The relationship between the length of a slot and the schedulability is
shown in Figure 4.7. Here we consider two applications, executing on two
different processing elements, i.e., they compete for the shared resource.

106 Chapter 4. Static arbitration on shared resources

Figure 4.6: Worst-case completion time for a sample superblock and a
TDMA arbiter (TDMA Bus).

The application on processing element 1 is represented by the solid lines and
the bottom x-axis, labeled δp1 . The application on processing element 2 is
represented by the dashed lines and the top x-Axis, labeled δp2 . Note that
the direction of the two x-axis are antipodal. For clarity of visualization,
only three models are shown per application. Furthermore, the length of
the schedule L(Θ) is constant, i.e., L(Θ) = δp1 + δp2 = 1.35ms. Since the
x-axes are antipodal, the region where both applications are schedulable can
be derived. These regions are marked as ''A'', ''B'' and ''C'' in the figure,
for model DSS, model GSS and model GTS respectively. Consider example
''a'' in Figure 4.7, which shows that both applications are schedulable, their
slot lengths are δp1 = 0.55ms and δp2 = 0.7ms respectively, and their worst-
case completion times are 16.25ms and 10.82ms respectively. Contrarily,
example ''b'' result in a deadline miss for application 1. Conclusively, the
region of schedulability for model DSS is larger than for model GSS and
GTS, respectively.

4.9. Chapter Summary 107

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

30

35

40

slot length [ms]

W
o

rs
t−

C
a

se
 R

es
p

o
n

se
 T

im
e

(W
C

R
T

)
[m

s]

DSS
GSS
GTS
deadline

A

B

C

a
b

DSS
GSS
GTS

slot length [ms]

1.05 0.95 0.85 0.75 0.65 0.55 0.45 0.35
2
p
d

1
p
d

Figure 4.7: Schedulability for two processing element accessing a shared
resource.

4.9 Chapter Summary

In this chapter, we introduced a novel methodology to analyze the worst-
case response time of real-time tasks/superblocks on systems with shared
resources and TDMA arbitration policies. Accesses to the shared resource
result in blocking of a real-time task/superblock until the request is com-
pleted, and therefore contention on the resource results in significantly
increased delays. We present an analysis framework that allows to effi-
ciently compute the worst-case response time and schedulability of tasks/-
superblocks specified according to any of the proposed access models and
for any TDMA arbitration on the shared resource.

The dedicated model with sequential superblocks is shown to be schedu-
lable as soon as any of the other models is schedulable. Experimental results
demonstrate the superiority of model DSS with respect to worst-case com-
pletion time.

We show that separating computation and accesses to the shared re-
source (dedicated model) is of crucial importance in the design of resource

108 Chapter 4. Static arbitration on shared resources

sharing systems. Using this model allows to derive tight and efficient algo-
rithms for schedulability analysis and significantly reduces the worst-case
response time of real-time tasks.

5
Hybrid arbitration on shared
resources
In the previous chapter, Chapter 4, we introduced static arbitration on the
shared resource to achieve a predictable system. Static arbitration poli-
cies, such as TDMA, provide isolation among the processing elements of
a multicore systems. This way, we can analyze the worst-case response
time (WCRT) of the superblocks on a processing element, without the need
to consider the other processing elements in the system. In fact, we can
even add processing elements to the system at runtime, providing that the
TDMA arbiter on the shared resource stays unchanged.

However, static arbitration policies need to be designed a priori, and
cannot adapt to changing access patterns or execution environments. For
many applications in the domain of control and signal processing, this does
not represent a major obstacle, since the behavior of the application can be
predicted very accurately. Nevertheless, real-time systems are increasingly
embedded in all-day life and applications are getting more and more di-
verse. Therefore, there is an increasing need to accommodate applications
that cannot be predicted that easily anymore. Popular examples for such
applications are user assistance applications in cars, that are either event-
triggered (e.g., collision avoidance or electronic stability program (ESP)) or
speed dependent (e.g., fuel injection control).

Industrial efforts in this direction resulted in the FlexRay communication
protocol [Fle], that combines static arbitration and dynamic arbitration,
and thus represents a hybrid approach to accessing shared resources. In the
FlexRay communication protocol, the arbiter is split into two segments. The

110 Chapter 5. Hybrid arbitration on shared resources

first segment represents a static TDMA arbiter, while the second segment
assigns mini-slots to processing elements following the First-Come-First-
Serve (FCFS) policy. It represents a trade-off between the predictability of
static arbiters and the flexibility of the FCFS arbitration policy.

In this chapter, we propose an approach to analyze the WCRT for sys-
tems that follow the previously stated models of execution and models of
accessing the shared resource, see Chapter 3, and apply the FlexRay commu-
nication protocol on the shared resource. We present an efficient algorithm
based on dynamic programming and experimental results, that emphasize
the need for sophisticated analysis tools for resource sharing systems, par-
ticularly when task isolation cannot be achieved and interference has to be
taken into consideration.

5.1 Introduction
In the multicore era, performance improvement with respect to computa-
tion depends on instruction, task and data parallelism. In order to reduce
hardware costs, most commercial multicore platforms have shared resources,
such as buses, main memory, and DMA in multicore and MPSoC systems.
As a result, shared resources have become the bottleneck for performance
improvement in multicore systems. Efficient arbitration of shared resources
allows to improve performance significantly.

We focused on a static resource sharing strategy in Chapter 4, in order
to guarantee predictability. In order to increase the performance in terms of
throughput, it is a good strategy to reassign the unused time-slots of a task
in a static arbiter to other tasks, with pending access requests. That way,
the performance of these tasks can be increased, while the other elements
in the system do not suffer from additional delays.

In order to be able to adapt to real-time tasks with early completion or
less resource accesses, adaptive resource arbiters, such as the FlexRay com-
munication protocol [Fle] in the automotive industry, have been proposed
and adopted recently. An adaptive resource arbiter combines dynamic and
static arbitration, in which an arbitration interval is divided into a static
arbitration segment with a static slot to processing element assignment and
a dynamic arbitration segment. As a result, it provides isolation between
processing elements in the static arbitration segment, ensuring timing guar-
antees, and, in the dynamic segment, allows dynamic arbitration to improve
the response time.

In safety-critical embedded systems, such as controllers in the Auto-
motive Open System Architecture (AutoSAR) [Aut], timing guarantees are
required, and thus, the WCRT has to be determined. Applying a hybrid ar-
bitration policy, such as the FlexRay communication protocol, increases the

5.1. Introduction 111

complexity of this problem, since the isolation between processing elements
and tasks is sacrificed for a potentially increased performance.

For synchronous resource accesses with a TDMA resource arbiter, we
can apply the results in Chapter 4, whereas the results in [PSC+10] can be
adopted for a dynamic arbiter, such as the FCFS or the Round-Robin (RR)
strategy. The adaptive resource arbiter presented in this chapter requires
the joint considerations of dynamic and static arbitration, and hence, these
analysis frameworks cannot be directly applied. To the best of our knowl-
edge, providing timing guarantees for synchronous resource accesses with
an adaptive resource arbiter is an open problem.

We consider a given task partitioning, in which a task is allocated on a
predefined processing element. Each task is divided into a set of superblocks,
which are executed in a fixed sequence, and characterized by their worst-case
number of accesses to the shared resource and their worst-case computation
time (derived assuming resource accesses take zero time). Interference from
other tasks and processing elements has to be considered during the dynamic
segment of the arbiter. This interference is represented as an arrival curve,
that defines the maximum amount of access requests in a time-window, and
is derived in Chapter 3.

In this chapter we study the problem of deriving the worst-case response
time (WCRT) of the tasks executing on a processing element pj ∈ P . We
assume an adaptive arbiter Θ granting access to the shared resource. We
unify the approach to derive a tight bound on the response time for static
arbitration, derived in Chapter 4, with the approach for dynamic arbitration
policies presented in [PSC+10]. Therefore, the proposed approach is a
generalization of these studies and allows to derive worst-case response times
for adaptive resource arbiters. An adaptive schedule for the shared resource
is said to be schedulable if all the superblocks on all processing elements can
finish before their respective deadlines. The contributions of this chapter
are as follows:

• Based on dynamic programming, we develop an algorithm that de-
rives an upper-bound of the worst-case response time (WCRT) for
superblocks and tasks, considering the delay caused by accesses to
the shared resource.

• Our analysis generalizes the analysis in [PSC+10] for dynamic resource
arbiters only and in Chapter 4 for static resource arbiters (TDMA).

• We present experimental results for a real-world application, and show
that minor suboptimal decisions can result in significantly increase
WCRTs.

In Section 5.3, we introduce the proposed task model and model of
the shared resource. We give an overview of our proposed algorithm in

112 Chapter 5. Hybrid arbitration on shared resources

Section 5.4 and detail our notation and methodology in Section 5.5. Sec-
tions 5.6 and 5.7 describe our WCRT analysis and prove its correctness.
Experimental results are shown in Section 5.8. Section 5.9 concludes the
chapter.

5.2 RelatedWork

Timing analysis of asynchronous resource accesses for the FlexRay com-
munication protocol has been recently developed by Pop et al. [PPE+08,
PPEP07], Chokshi et al. [CB10] and Lakshmanan et al. [LBR10].

Pop et al. consider a system with time-triggered tasks and tasks that are
scheduled according to the Fixed-Priority (FP) policy, while time-triggered
tasks preempt FP tasks. Furthermore, messages produced by tasks are as-
signed to the static or the dynamic segment of the FlexRay arbiter. During
any slot (dynamic or static), only the one message that holds the corre-
sponding frame identifier can be transmitted. This way, bus conflicts can
be avoided offline, by allocating one slot to at most one message. The dy-
namic segment differs from the static segment in a way, that the slot length
is assigned differently. In the static segment, the length of a slot is fixed.
In contrast to that, in the dynamic segment, a slot has a dynamic number
of mini-slots, while the number of mini-slots corresponds to the amount
of time that is required to transmit the whole message assigned to it. In
our proposed methodology, access requests from a processing element are
not assigned to any specific segment, nor to a specific slot in the dynamic
segment. This way, an access request is served during a time slot assigned
to its processing element in the static segment, or by a mini-slot during
the dynamic segment. In the dynamic segment, access requests are served
according to their arrival time, i.e., following the FCFS policy. As a result,
the number of feasible execution traces is significantly increased, since no
slot assignment has been performed that would avoid bus conflicts. While
this increases the flexibility of the system, deriving an analysis approach
becomes increasingly complex.

Chokshi et al. provide an analysis for the FlexRay communication proto-
col, assuming buffered (asynchronous) communication using Real-Time Cal-
culus [CKT03a]. In other words, resource access requests can be buffered,
while the execution on the processing element may continue. This analysis
allows to derive a lower service curve, and by considering event arrivals even-
tually buffer sizes can be estimated. Lakshmanan et al. [LBR10] consider
hierarchical bus structures composed of FlexRay, CAN, etc. and derive
End-to-End timing analysis. They derive utilization bounds for the static
and dynamic segments of the FlexRay communication protocol, under the
assumption that the period of the tasks and the period of the arbiter are

5.3. System Model 113

multiples of each other. By experimental evaluation, the authors provide
utilization bounds for the CAN bus. Nevertheless, synchronous resource
access leads to blocking, which is not considered by these approaches.

Burgio et al. [BRE+10], introduce an adaptive TDMA arbiter, to allow
for adaptive behavior and to ensure a high utilization of the processors in a
multicore environment. Upon a workload change, a slave core requests a new
service level at a master. The master collects service requests from all the
slaves and generates a new TDMA time wheel, that mediates the overall
bandwidth between all the cores. This new time wheel is communicated
back to the cores, that adjust their task periods accordingly, such that real-
time constraints are guaranteed. The WCET that results from the new
time-wheel is stored in a look-up table, since online computation would be
infeasible. As a result, the system can handle a discreet set of different
TDMA configurations, that have to be computed offline and stored on the
system in a table. While this approach conserves the task isolation, that
is the key advantage of classical TDMA arbiters, it allows for a limited
amount of flexibility, mainly restricted by the amount of a priori computed
configurations that can be stored on the system.

Results by Pellizzoni et al. [PSC+10] can be adopted for a dynamic
arbiter, such as the FCFS or the RR strategy. The adaptive resource arbiter
requires the joint considerations of dynamic and static arbitration, and,
hence, the analysis frameworks in [PSC+10], for dynamic arbitation, and
the approach presented in Chapter 4 of this thesis, for static arbitation,
cannot be applied directly.

5.3 SystemModel

This section presents the models of the tasks, the processing elements, the
schedulers, and the resource arbiter of the shared resource.

5.3.1 Models of Tasks and Processing Elements

We consider the same models of tasks and processing elements as in Chapter
4, in which there is a set P of processing elements that execute indepen-
dently. Processing elements share a common resource, for example, an
interconnection fabric (bus) to access a shared memory.

Accesses to the shared resource are modeled according to the dedicated
phases model, the general model or the hybrid model, while the execution
of the superblocks on the processing element is follows the sequential or
time-triggered model.

114 Chapter 5. Hybrid arbitration on shared resources

5.3.2 Model of the Shared Resource
Following the model in the previous chapter, Chapter 4, the shared resource
is only able to serve at most one access request at any time, and the ar-
biter decides which request is granted. This chapter considers an adaptive
arbiter, that follows the FlexRay protocol, where arbitration is conducted
based on a sequence of arbitration rounds. Each round comprises a static
segment followed by a dynamic segment. Once access to the shared resource
is granted, the arbiter, denoted Θ, serves an access request within C units
of time. We assume that processing elements and the resource arbiter ini-
tialize synchronously, such that the first arbitration round of Θ and the first
superblock on each processing element start at time 0.

The static segment comprises a sequence of MΘ (time) slots, indexed
from 0 to MΘ − 1. Let LΘ be the length of the static segment, while σm

is the starting time of slot m relative to the beginning of the round, with
σ0 = 0. For ease of notation, we define σMΘ

= LΘ; the duration of slot m
is then δm = σm+1 − σm. Each slot serves requests of a single processing
element according to function θ(m, pj), i.e., θ(m, pj) = 1 if slot m is assigned
to pj and θ(m, pj) = 0 otherwise. Multiple slots can be assigned to the same
processing element. A request of pj in its assigned slot m is served only if
it can be completed within the slot, i.e. it must arrive at least C time units
before the end of the slot.

The dynamic segment of arbiter Θ is defined by its length ΔΘ and
the length ℓ of a mini slot. In this thesis, we only consider arbiter where
ΔΘ > C. All processing elements contend for access to the shared resource
during the dynamic segment, and again a request is granted only if it can
be completed within the dynamic segment. Two arbitration models are pos-
sible. Under constrained request arbitration, resource accesses are granted
in FCFS order at the beginning of each minislot, while greedy arbitration
grants resource accesses in FCFS order also during minislots. Suppose that
the dynamic arbitration segment starts at time τ . The dynamic arbitra-
tion segment is valid for granting requests in time interval [τ, τ + ΔΘ − C]
to guarantee that the granted requests do not interfere the static arbitra-
tion segment. For the greedy arbitration in a dynamic segment, the arbiter
grants access to pending requests in First-Come, First-Serve (FCFS) order.
For the constrained arbitration in a dynamic segment, resource accesses are
granted in FCFS order only at the beginning of a mini time slot, i.e., t + kℓ
for positive integer k with k ≤

⌊
ΔΘ−C

ℓ

⌋
.

The FlexRay communication protocol is a special case of the above defi-
nition when the dynamic arbitration segment is constrained and static slots
all have the same duration. An example is shown in Figure 5.1. In this chap-
ter, we focus on constrained request arbitration, as applied in the FlexRay
communication protocol, while the results can be easily applied for greedy
request arbitration and RR arbitration for the dynamic arbitration segment

5.4. Analysis Overview 115

s1,1

t
A E R

1,1
max,am 1,1

max,rm1,1
maxexec

static dynamic

minislot

0
s

1
s

2
s

3
s

4M
Q
=

L
Q

0,1
1q = 1,2

1q =
2,3

1q =

Q
D

0,1
1q =

1,2
1q = 2,3

1q =

2
d

t

A/E/R

s1,2

1,2
maxexec

1,2
maxm

...A RA/E/R

1,3
max,am 1,3

max,rm

1,3
maxexec

1,3
max,em

s1,3

3,1
1q =

4
s

frames of 1p

1
2py =

...
shared

resource
arbitration / scheduling

1p 2p np

3,1
1q = ...

Figure 5.1: An example for the adaptive arbiter.

with minor changes, which are similar to the extension from FCFS to RR
in [PSC+10].

5.4 Analysis Overview

In our analysis we propose an algorithm that derives the worst-case execu-
tion trace for the sequence of superblocks Sj that executes on element pj.
In other words, we derive the trace that results in the WCRT for the task.
The degree of freedom for constructing this worst-case trace is the sequence
of access requests and the computation that have to be performed in the
individual superblocks. Consider a superblock specified according to the
general model. Then the degree of freedom with respect to the worst-case
trace, is the points in time when access requests are issued. Since in this
model, access requests and computation can happen at any time and in any
order, there are many possible execution traces.

116 Chapter 5. Hybrid arbitration on shared resources

Delays due to shared resource contention come from two cases: (1) an
access request happens during the static segment, but the current slot is
assigned to another processing element or there is not enough time to com-
plete the request; or (2) an access request happens during the dynamic
segment of the arbiter, but other access requests are already in the queue
or there is not enough time to complete the request. In both cases, the
access request has to wait either its turn in the dynamic segment or until
the beginning of its next assigned static slot, whichever comes first. Then
the access request has to wait its turn. To simplify the discussion, we will
refer to time slots assigned to processing element pj as ''frames of pj''. In
other words, slot m is a frame f of processing element pj, iff θ(m, pj) = 1.
The dynamic segment is a frame for every processing element pj as well,
since all elements contend for access to the shared resource during the dy-
namic segment. Since it is not obvious which pattern of access requests and
computation, respectively, creates the worst-case, we propose a dynamic
programming algorithm to solve this problem iteratively.

The key idea is as follows. Let u be the number of access requests
performed by the sequence Sj, and i be the number of requests performed by
tasks running on other cores that interfere (delay through contention) with
Sj during dynamic segments. Our algorithm derives the minimum amount
of time that the superblocks in Sj must compute to reach the beginning of
a particular frame f , for any feasible value of u and i; note that increasing
u and/or i can increase the resource access delay suffered by the task, hence
less computation time is required to reach a given frame. Based on this
information, the algorithm then iteratively derives the minimum amount of
computation time required to reach the following frame f +1, and so on and
so forth until the required computation time to reach frame f ′ + 1 becomes
greater than the worst-case computation time of the task for any value of
u and i; this implies that in the worst case the task can only reach up to
frame f ′.

Due to the blocking behavior of access requests, a frame f can be reached
in the ''free'' state, i.e., the processing element that executes Sj has no un-
served access requests upon activation of frame f , or in the ''pending''
state, i.e., the processing element stalls, because there is an unserved ac-
cess request that has to be served immediately upon activation of frame
f . The minimum amount of computation time is then stored in two tables
EF (f, u, i) and EP (f, u, i) for the free and pending states, respectively. In
other words, EF (f, u, i) represents the minimum amount of computation
that is required to reach frame f , assuming the state of the processing ele-
ment is ''free'' and before the beginning of frame f , u access requests have
been served and i interferences have been suffered. EP (f, u, i) represents
the analogous for the ''pending'' state.

5.4. Analysis Overview 117

FE PE
u u

i i

frame f:

FE PE
u u

i i

frame f+1:

min
minmin

min

PE (f,1,1)

+ 2 i
+ 2 u

derive
 computation
 time required
 to reach f+1
 in pending
 state

Example:

FE (f,1,1)

valid matrix elements to compute
FE

PE
valid matrix elements to compute

infeasible

Figure 5.2: Example how to construct the dynamic programming table.

Consider Figure 5.2 as an example to compute the minimal computation
time. We want to determine the minimum amount of computation time
EF (f + 1, u, i) and EP (f + 1, u, i) that is required to reach frame f + 1 in
the free and pending state, respectively, for a particular combination of u
access requests and i interferences. Then, this value depends on the values
computed for the previous frame, EF (f, u′, i′) and EP (f, u′, i′), for all values
of u′, i′ that are compatible with u, i: note that u−u′ and i−i′ represent the
amount of performed access requests and suffered interferences, respectively,
between the beginning of frames f and f + 1. Clearly, i′ ≤ i is a necessary
condition. Furthermore, u′ must be strictly smaller than u to be able to
reach frame f + 1 in the pending state, since at least one access request
needs to be issued after frame f is reached to enter the pending state. This
condition is not required if frame f + 1 is reached in the free state. As
an example consider Figure 5.2. Computing value EP (f + 1, u, i) depends
on the values EF (f, u′, i′) and EP (f, u′, i′) for the previous frame, for all
combinations of u < 3 and i ≤ 3 (dark gray field in Figure 5.2); while EF (f+
1, u, i) depends on the values EF (f, u′, i′) and EP (f, u′, i′) for u ≤ 3 and i ≤
3 (light gray field in Figure 5.2). In the remainder of this chapter, we detail
on the derivation of the amount of computation time that is required to move
from one configuration to the other, i.e., how to compute the minimum
amount of computation time that is required to get from EF (f, u′, i′) or

118 Chapter 5. Hybrid arbitration on shared resources

EP (f, u′, i′) to EF (f +1, u, i) or EP (f +1, u, i). Furthermore, we show how
to initialize the tables for the first slot and how to compute the final WCRT
when the iteration stops.

5.5 Analysis Methodology

To simplify the derivation of WCRT bounds, we split our analysis in two
parts. Algorithm 5.1, described in Section 5.6, computes the WCRT of a
single phase, based on its maximum amount of access requests µ

max,[a|e|r]
i,j

to the shared resource (for the acquisition, execution and replication phase,
respectively) and its maximum amount of computation time execmax

i,j . Al-
gorithm 5.2, which is detailed in Section 5.7, is then used to compute the
WCRT of a complete superblock and task. The start time of a phase ts

equals the completion time of the preceding phase, in case of sequential ex-
ecution, or a specified starting time, in case of time-triggered execution. The
first phase of the first superblock starts at time 0. Depending on the start
time of a phase, the initialization stage of Algorithm 5.1 (lines 2-7) initializes
the tables for the dynamic programming approach. The second stage, or
the analysis stage (lines 8-21), performs the dynamic programming analysis
described in Section 5.4. This stage iterates until the minimum amount of
computation required to reach frame f ′ + 1 exceeds the maximum amount
of computation execmax

i,j . The finalization stage (lines 22-23) then derives
the WCRT of the phase, based on f ′ and the dynamic programming tables
EF and EP .

Notation used in the analysis for a phase

To simplify notations, we drop the subscripts i, j from superblock si,j and
consider a phase under analysis defined by its parameters {ts, µmax, execmax},
where ts is the starting time of the phase; µmax is the maximum number of
accesses to the shared resource during the phase; and execmax is the maxi-
mum execution time. For an acquisition or replication phase, we simply set
execmax = 0, and µmax = µmax,a

i,j , or µmax = µmax,r
i,j , respectively; while for a

general phase, we set execmax = execmax
i,j , µmax = µmax,e

i,j .
Consider pj to be the processing element on which the phase under

analysis executes. Then we define ψ to be the total number of static slots
assigned to processing element pj, i.e., ψ =

∑
0≤m<MΘ

θ(m, pj). Since both
assigned static slots and the dynamic segment count as frames of pj, it
follows that pj has ψ + 1 frames in each arbitration round. To simplify the
algorithm description, we introduce some notations describing important
properties of each frame. We use I to represent the ordered set of the indexes
of frames assigned to pj. Static slots have indexes from 0 to MΘ − 1 as

5.5. Analysis Methodology 119

detailed in Section 5.3.2, while we assign index MΘ to the dynamic segment,
such that I = {I0, . . . Ii, . . . Iψ}, where Iψ = MΘ represents the dynamic
segment. As an example, consider Figure 5.3, where static slots 1 and 3 are
assigned to processing element p2, and the dynamic segment has index 5.
Then the frame indexes of p2 are I = {I0 = 1, I1 = 3, I2 = 5}. In other
words, frames I0, I1 and I2 of PU2 are slots 1, 3 and 5. Finally, let HIf

(with 0 ≤ f ≤ ψ) be the time distance between the end of frame If and
the beginning of the following frame. Note that the end of the dynamic
segment (frame ψ) corresponds to the end of the arbitration round. Then
HIf

can be written as:

HIf
=

{
σIf+1

− (σIf
+ δIf

) for 0 ≤ f < ψ,
σI1 otherwise.

(5.1)

Our proposed algorithm computes the WCRT of a phase, by finding
frame f ′ that can be reached by the worst-case trace. Depending on the
phase under analysis, many arbitration rounds might be necessary until
this frame can be found. Therefore, the amount of arbitration rounds that
have been performed needs to be considered. Let r0 be the arbitration
round, during which the phase is activated, i.e., the w-th round such that
w · (LΘ + ΔΘ) ≤ ts < (w + 1) · (LΘ + ΔΘ), and ri be the (w + i)-th round.
Then frame 0 is the first frame of pj in round r0 and frame f is frame (f
mod (ψ + 1)) of pj in round rbf/(ψ+1)c. For notational simplicity, we set
HIf

= HIf mod (ψ+1)
; analogously, we translate the starting time ts of a phase

to the starting time t̄s relative to the beginning of the current round.
Interference during the dynamic segment of arbiter Θ (e.g., all the el-

ements in a FCFS setting, or only elements executing higher priority su-
perblocks in a FP setting) depends on the access pattern of the other pro-
cessing elements to the shared resource. We capture this pattern through a
set of arrival curves: arrival curve αk(Δ) represents the maximum amount of
resource access requests that can be produced by tasks running on processing
element pk during a time window of length Δ. In Chapter 3, we introduced
a methodology to derive arrival curves for the different superblock models
(sequential or time-triggered) that we consider in this work. We translate
the αk(Δ) representation, such that αk(f) represents the maximum amount
of resource accesses by pk in a time window of length equal to the inter-
val between the start time of the phase under analysis and the beginning
of frame f . Consider multiple interfering processing element for a phase
executing on processing element pj, e.g., a set of interferers IP , such that
IP ⊆ P \pj. Then we approximate the overall interference of these interfer-
ers to the phase under analysis as the sum of the individual interferences,
i.e., α(f) =

∑
pk∈IP αk(f). This is a pessimistic assumption, but to the

best of our knowledge, deriving tight bounds on the combined interference
is still an open problem. In fact, obtaining an exact interference pattern,

120 Chapter 5. Hybrid arbitration on shared resources

0,1
1q =

1,2
1q =

A/E/R

0
s

1
s 2

s
3

s t

st

st

3H

0,1
1q = 1,2

1q = 2,3
1q =

0I 1I 2I
f

3,2
1q =

4
s

5
s

F
initE

...

1
s

0
s

t
totL
preL

ct

initialization analysis finalization

*()uC

(, ,)FE 2,u i

5H*()uC

(, ,)FE 3,u i

1H

(, ,)FE 4,u i

*(min(,))totpC i p C+- L

case a) case b) case c)

...

frames of 2p

2
2py =

2p

variable length

0 1 2{ 1, 3, 5}I I I I= = = =

0I

·max maxWCET C execm= +

WCRT

...

Figure 5.3: Analysis Overview

for multiple competing processing elements, onto the superblock/phase un-
der analysis is exponential in the number of interfering phases [PSC+10],
which makes it intractable in most practical settings. Finally, interference
is affected by two more parameters: (1) the number of processing elements
Λtot that can interfere with the phase under analysis and (2) the number
of processing element Λpre, that can have pending access requests that are
serviced before a pending request of pj at the beginning of the dynamic
segment, i.e., the number of interfering access requests once the dynamic
segment becomes active. As we show in Section 5.6, the worst-case pattern
in this situation is produced when the phase under analysis transitions to
state ''pending'' in slot Iψ−1, where slot Iψ−1 is its last assigned slot in the
static segment. Since arbitration in the dynamic segment is performed in
FCFS order, Λpre includes all processing elements that can interfere with
the phase under analysis and are assigned at least one static slot with index
smaller than Iψ−1.

5.6. Analysis for a single phase 121

Algorithm 5.1 Analyze a single phase
1: procedure AnalyzePhase(ts, execmax, µmax, Θ, IP)
2: ∀f, u, i : EP (f, u, i) := +∞, EF (f, u, i) := +∞
3: t̄s = ts − ⌊ ts

LΘ+ΔΘ
⌋ · (LΘ + ΔΘ)

4: f̄ = min
(
(ψ + 1), {f |0 ≤ f ≤ ψ ∧ t̄s ≤ σIf

}
)

5: ∀u, i : compute EF (f̄ , u, i), EP (f̄ , u, i) by Equation (5.2) and Equation (5.3) resp.

6: reachable = true
7: f = f̄ − 1
8: while reachable do
9: reachable = false

10: f = f + 1
11: for ∀u ∈ {0 . . . µmax} and i ∈ {0 . . . α(f + 1)} do
12: if f mod ψ + 1 < ψ then
13: compute EP (f + 1, u, i), EF (f + 1, u, i) by Equation (5.4), (5.5)
14: else
15: compute EP (f + 1, u, i), EF (f + 1, u, i) by Equation (5.6), (5.7)
16: end if
17: if min(EP (f + 1, u, i), EF (f + 1, u, i)) ≤ execmax then
18: reachable = true
19: end if
20: end for
21: end while
22: compute tc by Equation (5.8) or (5.9) for f as static or dynamic frame resp.
23: return WCRT =

⌊
f

ψ+1

⌋
· (LΘ + ΔΘ) + σIf

+ tc − ts

24: end procedure

These interference representations are pessimistic, and therefore our de-
rived worst-case response time (WCRT) analysis derives a safe upper bound.
However, given a tight interference representation, our proposed algorithm
performs a tight (WCRT) analysis.

5.6 Analysis for a single phase

In this section, we will introduce the three stages required to derive the
WCRT for a single phase. The two data structures EF (f, u, i) and EP (f, u, i)
represent the minimum amount of time required to reach a particular frame
f such that u access requests have been served and i interferences have been
suffered, for u ∈ {0 . . . µmax} and i ∈ {0 . . . α(f)}. Section 5.6.1 details on
the initialization phase, which depends on the starting time ts of the phase
under analysis. Section 5.6.2 introduces the analysis of a single phase, based
on a dynamic programming approach. The algorithm iterates until a frame
f ′ is reached, such that each entry in EF (f ′ + 1, u, i) and EP (f ′ + 1, u, i),
∀u, i, exceeds execmax. Section 5.6.3 shows how to derive the final WCRT

122 Chapter 5. Hybrid arbitration on shared resources

for the phase under analysis, based on the previously computed data struc-
tures EF and EP .

5.6.1 Initialization Stage
The initialization stage computes the amount of computation that is re-
quired to reach the first frame f̄ after the activation of a phase at time ts.
Depending on this starting time, the phase is activated either (a) within
the static segment of arbiter Θ but the slot is not assigned to pj or (b)
within the static segment and within a frame (i.e., a slot assigned to pj)
or (c) within the dynamic segment - compare cases ''a)'', ''b)'' and ''c)'' in
Figure 5.3. Note that time windows that depend on variable parameters
in Figure 5.3 are marked with an asterisk (∗) as superscript - namely time
windows that depend on u, i and Λtot.

First, in ''case a)'', the amount of time required to reach frame f̄ is
only related to the amount of time between the activation time ts and
the start time of the next frame. Frame f̄ can be reached in the pending
state, if an access request can be issued immediately upon the activation
of the phase, i.e., no computation is performed and EP (f̄ , 1, i) = 0, ∀i, see
Equation (5.3), case 2.1 If no access request can be issued, frame f̄ cannot
be reached in the pending state, i.e., EP (f̄ , 1, i) = ∞, ∀i, see Equation
(5.3), case 1. Frame f̄ can be reached in the free state by performing
computation from the activation of the phase until the activation of frame
f̄ , hence EF (f̄ , u, i) = σIf̄

− t̄s, ∀u, i, see Equation (5.2), case 1.
Second, ''case b)'', considers the case, that the current slot is a frame

of pj, i.e., the phase can immediately issue an access request that will be
granted by the arbiter. Therefore, EF (f̄ , u, i) is a function of the current
frames remaining duration, the amount of issued access requests u and the
time between the current frame f̄ − 1 and the next frame f̄ , see Equation
(5.2), second case. EP (f̄ , u, i) is computed analogously, except that the last
access request is issued C − ɛ time units before the frame expires.2 As a
result, this request is not served anymore, the phase has to stall until the
activation of frame f̄ and no computation can be performed between the
current and the next slot, see Equation (5.3) - third case.

Third, ''case c)'', considers the phase to start in the dynamic slot. For
both cases, reaching slot f̄ in the pending or in the free state, the required
amount of computation is related to the distance of the dynamic frames
activation time, the amount of access requests and the amount of inter-
ference (denoted as min(i, uΛtot)C - will be explained in more detail in
Section 5.6.2). In order to reach frame f̄ in the pending state, computation
is performed, such that the last request is issued C − ℓ time units before

1If z > 0, function z+ is z; otherwise z+ is 0
2ɛ is an arbitrary small value, greater than 0

5.6. Analysis for a single phase 123

the expiration of the dynamic segment. As a result, the request cannot be
served in the dynamic segment anymore and the processing element has to
stall until the activation of frame f̄ , i.e., the element is in pending state
upon activation of frame f̄ , see Equation (5.3) - fourth case. In contrast to
that, frame f̄ is reached in the free state, if computation is performed dur-
ing the current frames expiration and the next frames activation, denoted
HIf̄−1

, see Equation (5.2) - third case.

EF
init(f̄ , u, i) =

σIf̄

− t̄s Condition 1
(σIf̄−1

+ δIf̄−1
− t̄s − u · C)+ + HIf̄−1

f̄ < ψ + 1

(σIf̄−1
+ δIf̄−1

− t̄s − u · C−
min(i, u · Λtot) · C)+ + HIf̄−1

otherwise

(5.2)

for Condition 1 being t̄s ≤ σI0 ∨ (f̄ > 0 ∧ t̄s ≥ σIf̄−1
+ δIf̄−1

).

EP
init(f̄ , u, i) =

+∞ u = 0

0 Condition 2
(σIf̄−1

+ δIf̄−1
− t̄s + ɛ − u · C)+ f̄ < ψ + 1

(σIf̄−1
+ δIf̄−1

− t̄s + ℓ − u · C−
min(i, u · Λtot) · C)+ otherwise

(5.3)

for Condition 2 being t̄s ≤ σI0 ∨ (f̄ > 0 ∧ t̄s ≥ σIf̄−1
+ δIf̄−1

).
Algorithm 5.1 shows the derivation of the WCRT of a single phase. The

input to the algorithm is the activation time ts, the maximum amount of
computation execmax, the maximum amount of access requests µmax, the
arbiter Θ and the set of interferers IP for the phase under analysis. First
the data structures EP and EF are initialized to ∞. Then the starting time
relative to the current arbitration round t̄s and the next frame f̄ for the
phase under analysis are computed, see Line (3) and (4). Data structures
EP (f̄ , u, i), EF (f̄ , u, i) are initialized for all u and i, as described in this
section, see Line (5) and the termination condition reachable is set to true.

5.6.2 Analysis Stage
After the initialization is done, the main loop of Algorithm 5.1 starts in
Line (8). This loop computes the minimum amount of computation time
that is required to reach the next frame for all combinations of u served
access request, i suffered interferences for states ''free'' and ''pending'', see
Line (13) in case the frame f is a static slot and Line (15) in case frame f
is the dynamic segment.

The loop iterates until there is no entry in neither EP nor EF , that
exceeds the maximum amount of computation time execmax for the phase

124 Chapter 5. Hybrid arbitration on shared resources

under analysis. In other words, there exists no trace such that frame f + 1
can be reached. Then reachable is not set to true, and the loop terminates.
As a result, the last iteration of the algorithm computes values EP and EF

for the unreachable frame f + 1. See Figure 5.1 for an example to compute
EF (4, u, i), assuming EF (5, u, i) cannot be reached for any combination of
u and i. Therefore, the finalization phase computes the final WCRT based
on the previous frame, i.e., frame f , since the WCRT of the worst-case trace
must be between frames f and f + 1.

Lemma 8 Algorithm 5.1 terminates, for phases with finite values for param-
eters execmax and µmax, and an arbiter with frame sizes larger than or equal
to C.

Proof. Every iteration of the Algorithm increments the variable f , that
denotes the next frame. For finite parameters execmax and µmax, and an
arbitration policy that guarantees at least one access request to be served
per cycle, the amount of frames (and arbitration cycles) that is required to
finish this phase equals to at most the sum of the amount of access requests
µmax and the maximum amount of computation execmax that have to be
performed. In order to reach the beginning of frame f + 1 from frame
f , at least one access request has to be issued C − ɛ time units before f
expires, i.e., f + 1 is reached in the pending state. Otherwise, computation
amounting for HIf

is performed between frame f and f + 1, i.e., f + 1 is
reached in the free state.

Therefore, there exists a f ≤ µmax +

⌊
execmax

min
∀f

δIf
+HIf

⌋
, such that reachable

is not set to true and the Algorithm 5.1 terminates.

¤

EP and EF are computed differently, depending on whether the next
frame f + 1 is a static slot of the dynamic segment. The following two
sections will detail on the differences.

5.6.2.1 Static Slot
The minimum amount of computation that is required to reach frame f +1,
if frame f is a static frame, is computed in Equation (5.4) and (5.5), for
the free and the pending state respectively. Equation (5.4) computes the
minimum amount of computation that is required to reach frame f + 1, by
considering EF (f, u− p, i) and EP (f, u− p, i), the duration δIf

of frame f ,
the time spent serving p access requests, ∀0 ≤ p ≤ u, and the time between
frames f and f +1, denoted HIf

. As a result, EF (f +1, u, i) computes as the
minimum amount of time that is required to reach frame f +1, considering
all combinations of u − p access requests served previous to frame f and p

5.6. Analysis for a single phase 125

access requests served in frame f , for the ''free'' as well as for the ''pending''
state. Frame f +1 is reached in the free state, and therefore Equation (5.4)
considers computation to be performed in between frame f and f + 1, i.e.,
by the term HIf

.

EF (f + 1, u, i) = min
0≤p≤u

{
EF (f, u − p, i) + (δIf

− pC)+ + HIf

EP (f, u − p, i) + (δIf
− (p + 1)C)+ + HIf

(5.4)

EP (f + 1, u, i) = min
1≤p≤u

{
EF (f, u − p, i) + (δIf

+ ɛ − pC)+

EP (f, u − p, i) + (δIf
+ ɛ − (p + 1)C)+

(5.5)

Analogously, Equation (5.5) computes how to reach frame f + 1 in the
pending state. An access request is issued C−ɛ units of time before frame f
expires, resulting in this request not being served during frame f anymore.
This way, the stall time of the element is maximized, and thus the amount
of computation that is performed during frame f (at most δIf

+ ɛ) and
between frame f and f + 1 (equals 0 since HIf

is neglected) is minimized.
Issuing the access request at any later point results in an increased amount
of computation that has to be performed, and thus not in the worst-case
trace.

Note that in Equation (5.4) and (5.5), the amount of served access re-
quests during frame f is increased by 1 for the pending states. This is
due to the fact that upon the activation of frame f , an access request will
be issued immediately. Furthermore, note that the variable p for Equation
(5.5) starts at 1, since at least a single access request must remain unserved,
otherwise frame f + 1 cannot be reached in the pending state.

Lemma 9 If frame f is a static slot, Equation (5.4) and Equation (5.5) com-
pute the minimum amount of computation that have to be performed, such
that frame f +1 can be reached in the free and pending state, respectively, for
u served access requests and i interfering access requests by other phases.

Proof. For a particular frame f + 1 and number of served access requests u,
Equation (5.4) and Equation (5.5) compute the required amount of compu-
tation for all possible values of already served access requests u− p (before
frame f) and access requests p served in frame f , based on the pending
and the free state. The minimum among these values, based on both the
pending and the free state, is returned, and therefore Equation (5.4) and
(5.5) result in the minimum amount of computation time that is required
to reach frame f + 1 in the free state and pending state respectively.

¤

126 Chapter 5. Hybrid arbitration on shared resources

5.6.2.2 Dynamic Slot
In case frame f is a dynamic slot, interfering access requests have to be
considered. The minimum amount of computation that is required to reach
frame f + 1, is computed in Equation (5.6) and (5.7), for the free and
the pending state respectively. The respective amount of computation is
derived for all possible remaining access requests p and remaining interfering
access requests l. The minimum of these values is considered for further
computation and stored in EP and EF , see Lemma 10.

EF (f + 1, u, i) = min
0 ≤ p ≤ u
0 ≤ l ≤ i

EF (f, u − p, i − l) + (ΔΘ − pC−
min(l, pΛtot)C)+ + HIf

EP (f, u − p, i − l) + (ΔΘ − (p + 1)C−
min(l, pΛtot + Λpre)C)+ + HIf

(5.6)

EP (f + 1, u, i) = min
1 ≤ p ≤ u
0 ≤ l ≤ i

EF (f, u − p, i − l) + (ΔΘ + ℓ − pC−
min(l, pΛtot)C)+

EP (f, u − p, i − l) + (ΔΘ + ℓ − (p + 1)C−
min(l, pΛtot + Λpre)C)+

(5.7)

Equation (5.6) computes the amount of computation that is required
to reach frame f + 1 in the free state by considering the amount of com-
putation required to reach the current frame f , the length of the dynamic
segment ΔΘ, the amount of served access requests p (or p+1 for the pending
case), the amount of access requests that can be interfered with, and the
time between the expiration of the current and the activation of the next
frame HIf

. The term min(l, pΛtot)C)+ in Equation (5.6), for the free state,
constrains the maximum amount of interference a phase can suffer during
frame f . Intuitively, pΛtot represents the property that each access request
issued in frame f can be interfered by every other processing element once,
i.e., each access request ends up in the last position of the FIFO queue of
the arbiter during the dynamic segment. On the other hand, in case there
is less interference, i.e., l, then the access requests issued during frame f
cannot suffer more interference. For EF based on the pending state, this
term changes to min(l, pΛtot + Λpre)C)+. In other words, upon activation
of frame f there is a pending access request that has to be served and it is
interfered by up to Λpre access requests.

Equation (5.7) computes the amount of computation that is required to
reach frame f+1 in the pending state, similarly to Equation (5.6). However,
frame f + 1 shall be reached in the pending state, and therefore, the term
HIf

is not present in Equation (5.7). Instead, the amount of computation
during the active frame is increased, such that the last access request cannot

5.6. Analysis for a single phase 127

be served anymore. That is, in comparison to Equation (5.6), the amount of
computation is increased by one minislot of size ℓ. The last access request
cannot be served anymore and the phase stalls until frame f +1 is activated.
As a result, the last access request remains pending and the phase stalls in
between the end of the current and the activation of the next frame. If
p = 0, EP (k, u, i) = ∞, i.e., if no access request is issued, the next frame
cannot be reached in the pending state.

Lemma 10 If frame f is a dynamic slot, Equation (5.6) and (5.7) compute
the minimum amount of computation that have to be performed, such that
frame f + 1 can be reached in the free and pending state respectively, for u
served access requests and i interfering access requests by other phases.

Proof. Assume frame f + 1 should be reached, with u access requests being
served and i interfering access requests being issued by other processing
elements. Then Equation (5.6) and (5.7) compute the amount of computa-
tion that is required to reach frame f + 1 for all possible combinations of
access request, that are already served at frame f , denoted u−p, and access
requests that have to be served during frame f , denoted p. Similarly, the
interferences that have already happened, denoted i− l, and those that can
happen during frame f , denoted l, are considered. The rest of the proof is
similar to the proof for Lemma 9.

¤

5.6.3 Finalization
Algorithm 5.1 iterates until frame f +1, that cannot be reached anymore, is
found, i.e., frame f +1 such that variable reachable remains false for any u, i,
see Line 17. Then the worst-case completion of the phase under analysis is
between frame f and f + 1. As a result, the data structures EF (f, u, i) and
EP (f, u, i), ∀u, i are considered to compute the final WCRT.

Equation (5.8) and Equation (5.9) compute the WCRT of a phase, in
case frame f is a static or a dynamic frame, respectively.

tc = max
∀u,i

{
(execmax − EF (f, u, i) + (µmax − u)C)+

(execmax − EP (f, u, i) + (µmax − u + 1)C)+
(5.8)

tc = max
∀u,i

(execmax − EF (f, u, i) + (µmax − u+
min(α(f + 1) − i, (µmax − u)Λtot))C)+

(execmax − EP (f, u, i) + (µmax − u + 1+
min(α(f + 1) − i, (µmax − u)Λtot + Λpre))C)+

(5.9)

Consider frame f to be a static frame, then Equation (5.8) computes
the response time tc of a phase by considering the remaining access requests

128 Chapter 5. Hybrid arbitration on shared resources

(µmax − u) and the phases computation time (execmax). Their difference
represents the remaining amount of computation that has to be performed,
but proved to be insufficient to reach frame f + 1.

Similarly, Equation (5.9) computes the response time tc of a phase, if
frame f is the dynamic segment. In this case, the interference that might be
suffered during that frame has to be considered. As in Equation (5.6) and
(5.7), the additional delay due to inference depends on the upper bound of
interference (α(f +1)− i), and the number of issued access request that can
be interfered with: (µmax−u)Λtot in the free state, and (µmax−u)Λtot +Λpre

in the pending state. The WCRT tc is the maximum resulting value for any
u and i.

Lemma 11 Given a constrained adaptive arbiter Θ, Algorithm 5.1 computes
an upper bound of the worst-case response time for a phase with a defined
starting time ts, amount of access requests µmax, computation time execmax,
and the set of interferers IP .

Proof. EF (f + 1, u, i) and EP (f + 1, u, i) are computed as the minimum of
EF (f, u− p, i− l) and EP (f, u− p, i− l), for p and l as defined in Equation
(5.4) to (5.7). Instead of considering the minimum value for EF (f + 1, u, i)
and EP (f +1, u, i), consider all values that are computed in Equation (5.4)
to (5.7). In other words, at each iteration, all possible distributions of (a)
already served access requests u − p and remaining access requests u, and
(b) suffered interferences i − l and interferences that can be suffered in the
current frame i, and their respective required computation time are stored
in a data structure, not only their minimum. Consider EF

n (f + 1, u, i) and
EP

n (f + 1, u, i) to be the amount of computation that is required to reach
frame f + 1, for any distribution of u and i, but the one that results as
the minimum. In other words, ∀n : EF

n (f + 1, u, i) > EF (f + 1, u, i) and
∀n : EP

n (f +1, u, i) > EP (f +1, u, i). Then the amount of computation that
remains after frame f+1 is reduced, or execmax−EF

n (f+1, u, i) < execmax−
EF (f + 1, u, i) and execmax − EP

n (f + 1, u, i) < execmax − EP (f + 1, u, i).
Since EF

n (f + 1, u, i) computes as the sum of EF
n (f, u, i) and a term related

to the arbitration in frame f , EF
n (f + 1, u, i) > EF (f + 1, u, i). Similarly,

EP
n (f + 1, u, i) > EP (f + 1, u, i).

Eventually the remaining computation time is insufficient to reach the
next frame f + 1 and the final response time is computed in Equation (5.8)
and (5.9). Since EF

n (f, u, i) > EF (f, u, i) and EP
n (f, u, i) > EP (f, u, i), the

resulting response time tc is reduced and so is the WCRT.
Conclusively, considering any other amount of computation to reach

frame f+1, than the minimum computed in Equation (5.4) to (5.7), leads to
a decreased response time, which is upper-bounded by the solution derived
from Algorithm 5.1.

¤

5.7. Analysis for Superblocks and Tasks 129

5.6.4 Complexity
The complexity of the proposed methodology depends on the number of
access requests and interference. Consider Algorithm 5.1, Line 15, then it is
clear, that Equation (5.6) and (5.7) are computed f times. The complexity
of computing Equation (5.6) and Equation (5.7) is O((µmax)2α(f)2), since
for every combination of u and i, the minimum amount of computation has
to be computed for all possible remaining access requests p and interferences
l.

Furthermore, f is limited by a bound in Lemma 8. As a result, the
complexity of the proposed approach is O

(
(µmax)3α(f)2 +

⌊
execmax

min
∀k

(δIf
+HIf

)

⌋)
,

i.e., pseudo-polynomial.

5.7 Analysis for Superblocks and Tasks
In the previous section we showed how to derive the WCRT of a phase. This
section describes how to compute the WCRT of a task, which is composed
as a sequence of superblocks. Superblocks are composed of sequences of
phases, or are represented by a single phase, depending on the resource
access model, see Figure 5.1.

The analysis is performed for each phase, while the worst-case starting
time of a subsequent phase is the completion time of its preceding phase
(in the subsequent execution model), or a dedicated starting time (in the
time-triggered execution model). The starting time of the first phase in
superblock si,j is the worst-case completion time of its preceding superblock
si−1,j, or a dedicated starting time in the subsequent and time-triggered
execution model, respectively. For the first phase of the first superblock,
the starting time is 0. If the deadline di,j of a superblock si,j is violated,
then the task in unschedulable with this arbitration policy.

Consider ti,j to be the starting time of superblock si,j (e.g., in the time-
triggered execution mode), then without the need to consider any previous
or subsequent superblock, the analysis can be performed accordingly. In
case the resulting completion time exceeds deadline di,j, the task is un-
schedulable. The time-triggered models can be easily analyzed by replacing
Line 8 in Algorithm 5.2. Instead of setting time t to the WCRT of the
current phase, time t has to be set to the next phases dedicated starting
time.

The pseudo-code for analyzing a task under the sequential model is given
in Algorithm 5.2. Consider the set of superblocks Sj statically scheduled
on processing element pj and the set of interfering elements to be in IP .
Furthermore, we assume that the length of an arbitration round ΔΘ + LΘ

and the period Wj of the set of superblocks Sj under analysis to be integer

130 Chapter 5. Hybrid arbitration on shared resources

multiples. Otherwise, Algorithm 5.2 would have to iterate over all possible
offsets, i.e., the lcm of ΔΘ + LΘ and Wj.

Algorithm 5.2 Analyze Task
1: procedure AnalyzeTask(Sj , IP)
2: schedulable = true;
3: t = 0;
4: for each si,j ∈ Sj do
5: for each phase in si,j do
6: execmax max. amount of computation
7: µmax max. amount of resource accesses
8: t = t+AnalyzePhase(t, execmax, µmax, Θ, IP);
9: end for

10: if t > di,j then
11: schedulable = false;
12: end if
13: end for
14: return schedulable, t
15: end procedure

Theorem 4 Algorithm 5.2 computes the worst-case response time (WCRT)
for a set of superblocks Sj executing sequentially on a processing element pj.

Proof. The proof is based on Lemma 11 and the assumption of a fully
timing compositional architecture, i.e., no timing anomalies. Activating a
phase at time t1 and t2 results in WCRT1 ≤ WCRT2 for t1 ≤ t2. Therefore
a sequence of phases can be analyzed by setting the start time of a phase
as its predecessors completion time, or 0 if it is the first phase.

¤

5.8 Simulations
We present experimental results based on a real-world application and on
a generated application. The applications are composed of a set of subse-
quent superblocks, that are modeled according to the general model. The
industrial application, from the automotive domain, is composed of 120 su-
perblocks3. The interference on the shared resources is modeled as an arrival
curve αj for each interfering element, and assumed with a constant slope.
The generated application is composed of 209 superblocks, using parame-
ters extracted from the industrial application. It issues 230 access requests
and performs computation amounting for about 9 ms. The time required
to serve an access request, once access to the resource is granted, is 0.5ms,

3Due to confidentiality agreements, actual data sample cannot be disclosed.

5.8. Simulations 131

6.25
25

50

75
87.5

2

3

4

5

6
100

200

300

400

500

600

dynamic segment size [%]

120 sequential superblocks, varying Interference and Arbitration

Number of Interfering PUs

W
o

rs
t−

C
a

se
 R

es
p

o
n

se
 T

im
e

[m
s]

Figure 5.4: Results for an automotive application.

for both applications. The configuration of the arbiter is varied, such that
6.25% to 87.5% of an arbitration cycle belongs to the dynamic segment, and
conclusively 93.75% to 12.5% belongs to the static segment, respectively.
In the static segment, one slot is assigned to the application under analysis,
while the remainder of the static segment is assigned to other elements, and
thus unavailable. This slot amounts for 62.5% of the static segment length.
Varying sizes of the dynamic segment affect the size of the static segment,
since a larger dynamic segment implies a smaller static segment.

In Figure 5.4, an automotive application is analyzed. For an arbiter
with only a small dynamic segment (6.25%), the WCRT increases from
166ms, for 2 interfering processing elements, to 260ms, for a system with
6 interfering elements (which equals an increase of 260/166 − 1 = 56.6%).
With increasing share of the dynamic segment in the arbiter, the WCRT
rises for systems with a high number of interfering elements. A dynamic
segment, amounting for 25% of the arbitration cycle results in a WCRT of
161ms for two interfering elements, but in a WCRT of 309ms for a system
with 6 interfering elements. This equals an increase of 309/161−1 = 91.9%.

Further expansion of the dynamic segment, for a large amount of in-
terferers, at first results in a better performance, i.e., the WCRT decreases
again. At some point, this effect reverses, and the performance suffers. For
the application under consideration, a dynamic segment amounting for 25%

132 Chapter 5. Hybrid arbitration on shared resources

6.25
25

50

75
87.5

2

4

6

8

10

200

400

600

800

1000

dynamic segment size [%]

209 sequential Superblocks, varying Interference and Arbitration

Number of Interfering PUs

W
o

rs
t−

C
a

se
 R

es
p

o
n

se
 T

im
e

[m
s]

Figure 5.5: Results for a generated application.

to 50% of the arbitration cycle results in the lowest WRCT, i.e., the best
performance. For larger dynamic segments, the performance suffers from
the diminishing share of the static slot. The smaller the static slot, i.e., the
guaranteed service, the larger the WCRT, even for systems with only few
interfering elements. In Figure 5.4, the increase of the WCRT for dynamic
segments of 50% to 75% is apparent. For a system with only two interfering
elements the WCRT increases from 161ms to 514ms, respectively (equals
an increase of 514/161 − 1 = 219%.)

Further expansion of the dynamic segment resulted in another reduction
of the WCRT. This is a result of (a) only little interference on the shared re-
source due to the small amount of interfering elements, and (b) the reduced
influence of the blocking time in the static segment, between the end of the
static slot (aka. frame) assigned to the application under analysis and the
activation of the dynamic segment. With the static segment getting smaller
and smaller, also this blocking time gets less significant.

Similarly to the automotive application, the generated application in
Figure 5.5 illustrates the same effects. An increasing amount of interference
also results in an increased WCRT, but the effect is reduced compared to
Figure 5.4. The amount of interference that is suffered during the dynamic
segment depends on the number of interfering elements. In our experiments,

5.9. Chapter Summary 133

we assumed the overall amount of interference to be the same as for the
automotive application.

Experimental results show that the problem is non-convex and an accu-
rate WCRT is very hard to estimate. Many parameters, such as the size of
the respective segments of the arbiter, the amount and pattern of interfer-
ence and the number of interfering elements have an impact on the WCRT
of an application. For that reason, an efficient and tight analysis is even
more essential, since small changes in the design might lead to a significant
increase of the WCRT.

5.9 Chapter Summary
In this chapter, we present an analysis approach to derive a safe (upper)
bound of the worst-case response time (WCRT) for tasks in a resource shar-
ing multiprocessor system, with hybrid arbitration. Tasks are composed of
superblocks and phases, and are statically scheduled on the processing ele-
ments. Arbitration on the shared resource is based on an adaptive protocol,
e.g., FlexRay protocol, where a static segment with fixed assigned time
slots (TDMA) is succeeded by a dynamic segment with FCFS arbitration.
Therefore interference due to contention on the share resource has to be
considered for computing the WCRT of a task. Access to the shared re-
source is non-preemptive and synchronous. Hence, once a resource access
is issued, the corresponding task blocks until this resource access has been
served.

We propose a computationally efficient analysis approach that accounts
for interference due to contention on the shared resource. Interference is
represented as an arrival curve, as outlined in Chapter 3. Using a dynamic
programming approach, we derive a tight WCRT, for a given tight inter-
ference representation. The presented approach can seamlessly be applied
to the different resource access models. Experimental results show that
the problem cannot be modeled as a convex optimization problem and that
minor deviations in the size of the dynamic segment result in significantly
increased WCRT (up to 219% in our experiments). With the increasing
importance of multiprocessor/multi-core systems in the area of real-time
computing, accurate and efficient analysis approach are of crucial impor-
tance to designers. The approach presented in this chapter, provides such
an approach for an arbitration policy that is widely used in the avionic,
automotive and automation industry.

134 Chapter 5. Hybrid arbitration on shared resources

6
Conclusion
This chapter summarizes the contributions presented in this thesis and
closes with possible future research directions.

6.1 Contribution
In this thesis, we study the effect of resource sharing on the timing pre-
dictability of systems. On the one hand, computational resources are a
shared resources. Multiple concurrent applications executing on a single-
core or multicore processor share the computational resources of this pro-
cessor. We propose an approach to distribute concurrently executing ap-
plications on a heterogeneous MPSoC platform. Our approach satisfies
utilization constraints and minimizes the expected power consumption.

On the other hand, communication fabrics, such as buses and main
memory, represent a shared resource. Contention on the shared resource
has become the bottleneck for performance increase that can be achieved by
parallelization. We propose different models to access a shared resource, and
provide a worst-case response time (WCRT) analysis framework for static
and adaptive arbitration policies on the shared resource. Furthermore, we
give design guidelines for resource sharing systems.

6.1.1 Adaptive power-aware multiprocessor design
In Chapter 2, we propose a task model to specify multiple concurrently ex-
ecuting multi-mode applications. An execution probability is associated to

136 Chapter 6. Conclusion

each mode. A scenario represents a set of concurrently executing applica-
tions in their respective modes, i.e., a global system mode. The hardware
platform is given as a library of available processing element types. Each
type is defined by its dynamic and static (leakage) power consumption.
We propose an algorithm to optimize the mapping of tasks to processing
elements.

The problem is formulated as an integer linear program (ILP) and we
present a heuristic to efficiently solve it. The proposed methodology results
in a mapping that satisfies utilization constraints, while minimizing the
expected average power consumption. We propose an adaptive approach,
considering different execution probabilities. A set of template mappings is
computed offline and stored on the system, where a runtime manager ob-
serves scenario transitions and chooses the appropriate template mappings.

6.1.2 Task models and interference in resource sharing systems

Executing multiple applications on a multicore or multiprocessor platform
results in increased communication among applications and tasks on dif-
ferent processing elements. In multicore platforms, communication often
involves shared resources, such as shared memories and buses. As a result,
when accessing a shared resource, an application has to wait until the ar-
biter grants access. The waiting time depends on the arbitration policy and
is not a property of the application itself.

In Chapter 3 we present an application model, that specifies periodic
tasks as sets of superblocks. Superblocks are specified by their upper and
lower bound on execution time and maximum and minimum number of ac-
cess requests to the shared resource. We propose different models to access
the shared resource and to execute superblocks on processing elements. Ar-
rival curves are used as a metric to represent the access pattern of a set
of superblocks onto the shared resource. We detail on how to derive this
arrival curve representation for the proposed resource access models.

6.1.3 Towards timing predictability in resource sharing systems

Accessing shared resources results in delays due to contention. Therefore,
in order to guarantee real-time properties on multicore and multiproces-
sor platforms, appropriate worst-case response time (WCRT) analysis tools
are required. In Chapter 4, we propose the time division multiple access
(TDMA) protocol as resource arbiter on the shared resource. In this case
interference by other processing element in the system can be omitted. In
other words, the WCRT of tasks and superblocks on a processing element
can be computed in isolation. We present an efficient approach to derive
the WCRT, for the resource access models proposed in Chapter 3.

6.2. Outlook 137

Furthermore, we show that the resource access model that separates
communication and computation is the model of choice for resource sharing
real-time systems. We present the relation of the proposed resource access
models, with respect to their WCRT. The dedicated model with sequentially
executing superblocks (DSS) is shown to be the resource access model that
is schedule as soon as any of the proposed models is schedulable. In other
words, model DSS is the model with the lowest WCRT.

In Chapter 5, we consider systems with the FlexRay arbitration proto-
col on the shared resource. In FlexRay, the arbitration cycle is constituted
by a static and a dynamic segment. In the static segment, static time
slots are assigned to processing elements. In the dynamic segment, access
to the shared resource is granted according to the First-Come-First-Serve
(FCFS) policy. Competing for the resource in the dynamic segment allows
for adaptivity. Since previous results on dynamic arbitration [PSC+10] and
on static arbitration in Chapter 4 cannot be applied, we propose an algo-
rithm based on dynamic programming to derive the WCRT. We show that
minor changes in the dynamic segment of the arbiter might result in large
deviations in the resulting WCRT.

6.2 Outlook

The research presented in this thesis stimulated research in several direc-
tions.

6.2.1 Reducing Interference or Controlled Interference
In Chapter 3, we propose arrival curves to represent the resource access
pattern of a set of superblocks onto the shared resource. Multiple process-
ing element are represented by the sum of their constituting arrival curves.
In the WCRT analyses, we use these arrival curves to represent the inter-
ference that the processing element under analysis might suffer from the
other processing elements in the system. However, this is a very pessimistic
estimation of the overall interference.

The correlation between the multiple processing elements is disregarded.
Consider a system with n processing elements accessing a shared resource.
Then each of the n elements suffers from interference, and hence the actual
access pattern of these processing elements onto the shared resource changes.
As a result, the actual interference a superblock might suffer is smaller
than the sum of the arrival curves of all the other processing elements.
Reducing the overestimation of interference would result in significantly
reduced WCRTs. As a result, more applications could be executed on a
platform, while real-time properties could still be guaranteed.

138 Chapter 6. Conclusion

To that end, increasing the amount of structure in applications, e.g.,
by following the dedicated model, represents one possibility. Another pos-
sibility is the usage of exhaustive methods to compute the WCRT, e.g.,
timed automata. Although, these approaches suffer from scalability issues,
abstraction of system properties might lead to feasible solutions.

6.2.2 Massive multicore systems
Static and hybrid arbitration is shown to be a feasible way of designing
resource sharing real-time systems. These approaches are shown to perform
well, for the typically anticipated industrial embedded system with up to
10 processing elements. However, technology advances and future multi-
core or many-core systems might have a thousand and more cores. For such
systems, static arbitration seems not practicable any more, since slot sizes
will get very small, and arbitration cycles very large. On the other hand,
deriving WCRTs for dynamic arbitration policies with hundreds or possibly
thousands of interferers represents a major obstacle. While trivial bounds
to compute the interference (e.g., each access request is interfered by all
elements in the systems) are of little use, tighter bounds require computa-
tionally expensive techniques.

On way of handling the problem could be to introduce phases of con-
trolled interference. In other words, clusters of processors are assigned a
specific time slot to access a shared resource. During this time slot the pro-
cessors in the cluster might interfere each other. After the time slot for a
specific cluster has expired the corresponding processors continue with local
computation until their next time slot gets activated. This method requires
additional coordination on processor cluster level, but might make real-time
systems on massive multicore systems feasible in the first place.

6.2.3 Multiple shared resources
In this thesis, we considered a single shared resource only. However, a
multicore platform might have multiple shared resource. As an example,
consider a system with a shared memory for data and a shared instruc-
tion flash. In such systems, each instruction needs to be fetched from the
shared instruction flash before it can be executed. As a result, domino ef-
fects can be experienced, where contention on one shared resource results in
additional contention on the other. Additionally, even reduced interference
on one shared resource, e.g., due to faster processing, could result in addi-
tional interference on the other resource. Again, computational expensive
approaches, like exhaustive search, are able to derive the WCRT for small
problem instances. However, deriving efficient approaches to compute tight
WCRTs is still an open problem.

References

[AE10] B. Andersson and A. Easwaran. Provably good multiproces-
sor scheduling with resource sharing. Real-Time Systems,
46:153–159, October 2010.

[AEA05] T.A. Al Enawy and H. Aydin. Energy-aware task allocation for
rate monotonic scheduling. In Real Time and Embedded Tech-
nology and Applications Symposium, 2005. RTAS 2005. 11th IEEE,
pages 213 – 223, 2005.

[AEL10] B. Andersson, A. Easwaran, and J. Lee. Finding an upper bound
on the increase in execution time due to contention on the
memory bus in cots-based multicore systems. SIGBED Rev.,
7:4:1–4:4, January 2010.

[AEPR08] A. Andrei, P. Eles, Z. Peng, and J. Rosen. Predictable implemen-
tation of real-time applications onmultiprocessor systems-on-
chip. In Proceedings of the 21st International Conference on VLSI
Design, VLSID ’08, pages 103–110, Washington, DC, USA, 2008.
IEEE Computer Society.

[ANG+06] R. Atitallah, S. Niar, A. Greiner, S. Meftali, and J. Dekeyser. Esti-
mating energy consumption for anMPSoC architectural explo-
ration. InWernerGrass, Bernhard Sick, andKlausWaldschmidt,
editors, Architecture of Computing Systems - ARCS 2006, vol-
ume 3894 of Lecture Notes in Computer Science, pages 298–310.
Springer Berlin / Heidelberg, 2006.

[AP07] T.W. Ainsworth and T.M. Pinkston. On characterizing perfor-
mance of the cell broadband engine element interconnect bus.
In Networks-on-Chip, 2007. NOCS 2007. First International Sym-
posium on, pages 18 –29, May 2007.

[Aut] AutoSAR. Release 4.0, http://www.autosar.org.

[AY03] H. Aydin and Q. Yang. Energy-aware partitioning for multipro-
cessor real-time systems. In Proceedings, International Parallel
and Distributed Processing Symposium, 2003., page 9 pp., 2003.

140 References

[BBM08] L. Benini, D. Bertozzi, and M. Milano. Resource management
policy handling multiple use-cases in MPSoC platforms using
constraint programming. In Logic Programming, volume 5366
of Lecture Notes in Computer Science, pages 470–484. Springer
Berlin / Heidelberg, 2008.

[BCB+08] B.B. Brandenburg, J.M. Calandrino, A. Block, H. Leontyev, and
J.H. Anderson. Real-time synchronization on multiprocessors:
To block or not to block, to suspend or spin? In Real-Time and
Embedded Technology and Applications Symposium, 2008. RTAS
’08. IEEE, pages 342–353, 2008.

[BRE+10] P. Burgio, M. Ruggiero, F. Esposito, M. Marinoni, G. Buttazzo,
and L. Benini. Adaptive TDMA bus allocation and elastic
scheduling: a unified approach for enhancing robustness in
multi-core RT systems. In Proceedings of the 28th IEEE Interna-
tionals Conference on Computer Design, ICCD ’10, Washington,
DC, USA, October 2010. IEEE Computer Society.

[CB10] D. B. Chokshi and P. Bhaduri. Performance analysis of FlexRay-
based systems using real-time calculus, revisited. In Proceed-
ings of the 2010 ACM Symposium on Applied Computing, SAC
’10, pages 351–356, New York, NY, USA, 2010. ACM.

[CF10] G. Carvajal and S. Fischmeister. A TDMA ethernet switch for dy-
namic real-time communication. In Field-Programmable Cus-
tom Computing Machines (FCCM), 2010 18th IEEE Annual Inter-
national Symposium on, pages 119–126, May 2010.

[Che08] J.-J. Chen. Expected energy consumption minimization in
DVS systems with discrete frequencies. In Proceedings of the
2008 ACM symposium on Applied computing, SAC ’08, pages
1720–1725, New York, NY, USA, 2008. ACM.

[CHK06] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-
efficient scheduling of real-time tasks in multiprocessor sys-
tems. In Proceedings of the 12th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, pages 408–417,
Washington, DC, USA, 2006. IEEE Computer Society.

[CK06] J.-J. Chen and T.-W. Kuo. Allocation cost minimization for peri-
odichard real-time tasks in energy-constrainedDVS systems. In
Proceedings of the 2006 IEEE/ACM International Conference on
Computer-aided Design, ICCAD ’06, pages 255–260, New York,
NY, USA, 2006. ACM.

References 141

[CK07a] J.-J. Chen and C.-F. Kuo. Energy-efficient scheduling for real-
time systems on dynamic voltage scaling (DVS) platforms. In
Proceedings of the 13th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications, RTCSA
’07, pages 28–38, Washington, DC, USA, 2007. IEEE Computer
Society.

[CK07b] J.-J. Chen and C.-F. Kuo. Energy-efficient scheduling for real-
time systems on dynamic voltage scaling (DVS) platforms. In
Embedded and Real-Time Computing Systems and Applications,
2007. RTCSA 2007. 13th IEEE International Conference on, pages
28 –38, 2007.

[CKT03a] S. Chakraborty, S. Künzli, and L. Thiele. A general framework
for analysing system properties in platform-based embedded
system designs. In Proceedings of the conference on Design, Au-
tomation and Test in Europe - Volume 1, DATE ’03, pages 10190–,
Washington, DC, USA, 2003. IEEE Computer Society.

[CKT03b] Samarjit Chakraborty, Simon Künzli, and Lothar Thiele. A Gen-
eral Framework for Analyzing System Properties in Platform-
Based Embedded System Design. In Proc. Design, Automation
and Test in Europe (DATE), pages 190–195, Munich, Germany,
March 2003.

[CMCM09] E. Carvalho, C. Marcon, N. Calazans, and F. Moraes. Evalua-
tion of static and dynamic task mapping algorithms in NoC-
based MPSoCs. In Proceedings of the 11th international confer-
ence on System-on-chip, SOC’09, pages 87–90, Piscataway, NJ,
USA, 2009. IEEE Press.

[CRG08] A. K. Coskun, T. S. Rosing, and . C. Gross. Proactive tempera-
turemanagement inMPSoCs. In Proceeding of the 13th interna-
tional symposium on Low power electronics and design, ISLPED
’08, pages 165–170, New York, NY, USA, 2008. ACM.

[CST09] J.-J. Chen, A. Schranzhofer, and L. Thiele. Energy minimization
for periodic real-time tasks on heterogeneous processing units.
In Proceedings of the 2009 IEEE International SymposiumonPar-
allel& Distributed Processing, pages 1–12, Washington, DC, USA,
2009. IEEE Computer Society.

[CSZ+05] Y. Chen, Z. Shao, Q. Zhuge, C. Xue, B. Xiao, and E. H.M. Sha. Min-
imizing energy via loop scheduling and DVS for multi-core em-
bedded systems. In Proceedings of the 11th International Con-

142 References

ference on Parallel and Distributed Systems - Workshops - Vol-
ume 02, ICPADS ’05, pages 2–6, Washington, DC, USA, 2005.
IEEE Computer Society.

[CWSC08] P.-C. Chang, I.-W. Wu, J.-J. Shann, and C.-P. Chung. ETAHM:
an energy-aware task allocation algorithm for heterogeneous
multiprocessor. In Proceedings of the 45th annual Design Au-
tomation Conference, DAC ’08, pages 776–779, New York, NY,
USA, 2008. ACM.

[EKL+09] S.A. Edwards, Sungjun Kim, E.A. Lee, I. Liu, H.D. Patel, and
M. Schoeberl. A disruptive computer design idea: Architectures
with repeatable timing. In Computer Design, 2009. ICCD 2009.
IEEE International Conference on, pages 54 –59, 2009.

[FBZ10] A. Fedorova, S. Blagodurov, and S. Zhuravlev. Managing con-
tention for shared resources on multicore processors. Com-
mun. ACM, 53:49–57, February 2010.

[Fle] FlexRay. http://www.flexray.com/.

[fS] ITRS International Roadmap for Semiconductors.
http://www.itrs.net/.

[GELP10] A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson. To-
wardsWCET analysis of multicore architectures using UPPAAL.
In Proceedings of the 10th International Workshop on Worst-
Case Execution Time Analysis, pages 103–113. Österreichische
Computer Gesellschaft, July 2010.

[GSYY09] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling
and analysis for multicores. In Proceedings of the seventh ACM
international conference on Embedded software, EMSOFT ’09,
pages 245–254, New York, NY, USA, 2009. ACM.

[HE05] A. Hamann and R. Ernst. TDMA time slot and turn optimiza-
tion with evolutionary search techniques. In Proceedings of the
conference onDesign, Automation and Test in Europe - Volume 1,
DATE ’05, pages 312–317,Washington, DC, USA, 2005. IEEE Com-
puter Society.

[Hüg10] S. Hügi. Predictable communication on multiprocessor plat-
forms. Master’s thesis, Swiss Federal Institute of Technology
(ETH), Zurich, Switzerland, 2010.

[Inf] AbsInt Angewandte Informatik. http://www.absint.com/.

References 143

[IST06] IBM, Sony, and Toshiba. Cell broadband engine architecture,
2006.

[JLJ+10] C. Jalier, D. Lattard, A.A. Jerraya, G. Sassatelli, P. Benoit, and
L. Torres. Heterogeneous vs homogeneous MPSoC approaches
for a mobile LTE modem. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, pages 184 –189, 2010.

[JLS+10] C. Jalier, D. Lattard, G. Sassatelli, P. Benoit, and L. Torres. A ho-
mogeneous MPSoC with dynamic task mapping for software
defined radio. In Proceedings of the 2010 IEEE Annual Sympo-
sium on VLSI, ISVLSI ’10, pages 345–350, Washington, DC, USA,
2010. IEEE Computer Society.

[JPG04] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic
voltage scaling for real-time embedded systems. In Proceed-
ings of the 41st annual Design Automation Conference, DAC ’04,
pages 275–280, New York, NY, USA, 2004. ACM.

[KBDV08] M. Kim, S. Banerjee, N. Dutt, and N. Venkatasubramanian.
Energy-aware cosynthesis of real-time multimedia applica-
tions on MPSoCs using heterogeneous scheduling policies.
ACM Transactions on Embedded Computing Systems, 7:9:1–9:19,
January 2008.

[KESH+08] H. Kopetz, C. El Salloum, B. Huber, R. Obermaisser, and
C. Paukovits. Composability in the time-triggered system-on-
chip architecture. In SOC Conference, 2008 IEEE International,
pages 87–90, 2008.

[KG94] H. Kopetz and G. Grunsteidl. TTP-a protocol for fault-tolerant
real-time systems. Computer, 27(1):14–23, jan 1994.

[KSME05] J.-K. Kim, H. J. Siegel, A. A. Maciejewski, and R. Eigenmann. Dy-
namicmapping in energy constrained heterogeneous comput-
ing systems. In Proceedings of the 19th IEEE International Paral-
lel and Distributed Processing Symposium - Papers - Volume 01,
IPDPS ’05, pages 64.1–, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[LBR10] K. Lakshmanan, G. Bhatia, and R. Rajkumar. Integrated end-
to-end timing analysis of networked AUTOSAR-compliant sys-
tems. In Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’10, pages 331–334, 2010.

144 References

[LESL10] J. Lee, A. Easwaran, I. Shin, and I. Lee. Multiprocessor real-time
scheduling considering concurrency and urgency. SIGBED Re-
view, 7:5:1–5:5, January 2010.

[LGYY10] M. Lv, N. Guan,W. Yi, andG. Yu. Combining abstract interpreta-
tion withmodel checking for timing analysis of multicore soft-
ware. In Proc. IEEE Real-Time Systems Symposium (RTSS 2010),
volume to appear, Nov. 2010.

[LKMM07] Y. Lin, M. Kudlur, S. Mahlke, and T. Mudge. Hierarchical coarse-
grained stream compilation for software defined radio. In
Proceedings of the 2007 international conference on Compilers,
architecture, and synthesis for embedded systems, CASES ’07,
pages 115–124, New York, NY, USA, 2007. ACM.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM,
20:46–61, January 1973.

[LLW+06] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge, Ch.
Chakrabarti, and K. Flautner. SODA: A low-power architecture
for software radio. In Proceedings of the 33rd annual interna-
tional symposium on Computer Architecture, ISCA ’06, pages
89–101, Washington, DC, USA, 2006. IEEE Computer Society.

[LPY97] K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. In-
ternational Journal on Software Tools for Technology Transfer,
1:134–152, 1997.

[LSL+09] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. Tim-
ing analysis of concurrent programs running on shared cache
multi-cores. In Proceedings of the 2009 30th IEEE Real-Time Sys-
tems Symposium, RTSS ’09, pages 57–67, Washington, DC, USA,
2009. IEEE Computer Society.

[MCR+06] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and
G. De Micheli. Mapping and configuration methods for
multi-use-case networks on chips. In Proceedings of the 2006
Asia and South Pacific Design Automation Conference, ASP-DAC
’06, pages 146–151, Piscataway, NJ, USA, 2006. IEEE Press.

[MMB07] O.Moreira, J. J.-D.Mol, andM.Bekooij. Online resourcemanage-
ment in a multiprocessor with a network-on-chip. In Proceed-
ingsof the 2007ACMsymposiumonApplied computing, SAC ’07,
pages 1557–1564, New York, NY, USA, 2007. ACM.

References 145

[MMBM05] O. Moreira, J.-D. Mol, M. Bekooij, and J. v. Meerbergen. Mul-
tiprocessor resource allocation for hard-real-time streaming
with adynamic job-mix. In Proceedings of the 11th IEEE Real Time
on Embedded Technology and Applications Symposium, pages
332–341, Washington, DC, USA, 2005. IEEE Computer Society.

[MVB07] O. Moreira, F. Valente, and M. Bekooij. Scheduling multiple in-
dependent hard-real-time jobs on a heterogeneous multipro-
cessor. In Proceedings of the 7th ACM & IEEE international con-
ference on Embedded software, EMSOFT ’07, pages 57–66, New
York, NY, USA, 2007. ACM.

[NSE09] M. Negrean, S. Schliecker, and R. Ernst. Response-time analy-
sis of arbitrarily activated tasks inmultiprocessor systemswith
shared resources. In Design, Automation Test in Europe Confer-
ence Exhibition, 2009. DATE ’09., pages 524 –529, 2009.

[NSE10] M. Negrean, S. Schliecker, and R. Ernst. Timing implications of
sharing resources in multicore real-time automotive systems.
In SAE 2010 World Congress & Exhibition Technical Papers, vol-
ume 3, pages 27–40, Detroit, MI, USA, August 2010.

[Pap94] Ch. H. Papadimitriou. Computational Complexity. Addison-
Wesley Publishing Company, 1994.

[PBCS08] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha. Coscheduling of
CPUand I/O transactions in COTS-based embedded systems. In
Proceedings of the 2008 Real-Time Systems Symposium, pages
221–231, Washington, DC, USA, 2008. IEEE Computer Society.

[PC07] R. Pellizzoni and M. Caccamo. Toward the predictable inte-
gration of real-time cots based systems. In Proceedings of the
28th IEEE International Real-Time Systems Symposium, RTSS ’07,
pages 73–82, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[PPE+08] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analy-
sis of the FlexRay communication protocol. Real-Time Systems,
39:205–235, August 2008.

[PPEP07] T. Pop, P. Pop, P. Eles, and Z. Peng. Bus access optimisation
for FlexRay-based distributed embedded systems. In Proceed-
ings of the conference onDesign, automation and test in Europe,
DATE ’07, pages 51–56, San Jose, CA, USA, 2007. EDA Consor-
tium.

146 References

[PQnC+09] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero.
Hardware support forwcet analysis of hard real-timemulticore
systems. In Proceedings of the 36th annual international sym-
posium on Computer architecture, ISCA ’09, pages 57–68, New
York, NY, USA, 2009. ACM.

[Pre] European Union 7th Framework Programme Project Predator.
http://www.predator-project.eu/.

[PSC+10] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and
L. Thiele. Worst case delay analysis for memory interference
in multicore systems. In Proceedings of the Conference on De-
sign, Automation and Test in Europe, DATE ’10, pages 741–746,
2010.

[RAEP07] J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus access optimization
for predictable implementation of real-time applications on
multiprocessor systems-on-chip. In Proceedings of the 28th IEEE
International Real-Time Systems Symposium, RTSS ’07, pages
49–60, Washington, DC, USA, 2007. IEEE Computer Society.

[Raj91] R. Rajkumar. Synchronization in Real-Time Systems: A Priority In-
heritance Approach. Kluwer Academic Publishers, Norwell, MA,
USA, 1991.

[RD94] A. Rajeev and David L. D.L. A theory of timed automata. Theo-
retical Computer Science, 126:183–235, April 1994.

[RFSW06] C. Rusu, A. Ferreira, C. Scordino, andA.Watson. Energy-efficient
real-time heterogeneous server clusters. In Proceedings of the
12th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 418–428, Washington, DC, USA, 2006. IEEE
Computer Society.

[RGBW07] J. Reineke, D.Grund, C. Berg, andR.Wilhelm. Timingpredictabil-
ity of cache replacement policies. Real-Time Systems, 37:99–122,
November 2007.

[SAHE05] M.T. Schmitz, B.M. Al-Hashimi, and P. Eles. Cosynthesis of
energy-efficient multimode embedded systems with consid-
eration of mode-execution probabilities. Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Transactions on,
24(2):153–169, 2005.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons, Chichester, 1986.

References 147

[SIE06] S. Schliecker, M. Ivers, and R. Ernst. Integrated analysis of com-
municating tasks in MPSoCs. In Proceedings of the 4th inter-
national conference onHardware/software codesignand system
synthesis, CODES+ISSS ’06, pages 288–293, New York, NY, USA,
2006. ACM.

[SKG+07] L. Schwoerer, A. Kaufmann, D. Guevorkian, J. Westmeijer, and
Y. Xu. DVB (synchronizedand receivingmode) summary for SDR
scheduler modeling workshop: timing corresponds to 8k case.
Technical report, Radio Communications CTC, NOKIA Research
Center, Helsinki, June 2007.

[SN10] S. Schliecker and R. Negrean,M.and Ernst. Bounding the shared
resource load for the performance analysis of multiprocessor
systems. In Proceedings of the Conference on Design, Automa-
tion and Test in Europe, DATE ’10, pages 759–764, 2010.

[SNN+08] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, and R. Ernst.
Reliable performance analysis of a multicore multithreaded
system-on-chip. In Proceedings of the 6th IEEE/ACM/IFIP in-
ternational conference onHardware/Software codesign and sys-
tem synthesis, CODES+ISSS ’08, pages 161–166, New York, NY,
USA, 2008. ACM.

[SWvdV08] A. Schranzhofer, YiyinWang, andA.-J. vanderVeen. Acquisition
for a transmitted reference UWB receiver. In Ultra-Wideband,
2008. ICUWB 2008. IEEE International Conference on, volume 2,
pages 149 –152, 2008.

[TCN00] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus
for scheduling hard real-time systems. In Circuits and Systems,
2000. Proceedings. ISCAS 2000. The IEEE International Sympo-
sium on, 2000.

[TW04] L. Thiele and R. Wilhelm. Design for timing predictability. Real-
Time Systems, 28:157–177, November 2004.

[WGR+09] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
Ch. Ferdinand. Memory hierarchies, pipelines, and buses for fu-
ture architectures in time-critical embedded systems. Transac-
tions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 28:966–978, July 2009.

[Wil05] R. Wilhelm. Timing analysis and timing predictability. In
Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and

148 References

Willem-Paul de Roever, editors, Formal Methods for Compo-
nents and Objects, volume 3657 of Lecture Notes in Computer
Science, pages 317–323. Springer Berlin / Heidelberg, 2005.
10.1007/1156116314.

[WJM08] W. Wolf, A.A. Jerraya, and G. Martin. Multiprocessor system-
on-chip (MPSoC) technology. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 27(10):1701
–1713, 2008.

[WT06a] E. Wandeler and L. Thiele. Optimal TDMA time slot and cycle
length allocation for hard real-time systems. In Proceedings of
the 2006 Asia and South Pacific Design Automation Conference,
ASP-DAC ’06, pages 479–484, Piscataway, NJ, USA, 2006. IEEE
Press.

[WT06b] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC)
Toolbox. http://www.mpa.ethz.ch/rtctoolbox, 2006.

[XZR+05] R. Xu, D. Zhu, C. Rusu, R.Melhem, andD.Mossé. Energy-efficient
policies for embedded clusters. In Proceedings of the 2005 ACM
SIGPLAN/SIGBED conference on Languages, compilers, and tools
for embedded systems, LCTES ’05, pages 1–10, New York, NY,
USA, 2005. ACM.

[YO09] Ch. Yang and A. Orailoglu. Towards no-cost adaptive MP-
SoC static schedules throughexploitationof logical-to-physical
core mapping latitude. In Proceedings of the Conference on De-
sign, Automation and Test in Europe, DATE ’09, pages 63–68,
2009.

[YZ08] J. Yan and W. Zhang. WCET analysis for multi-core proces-
sors with shared L2 instruction caches. In Proceedings of the
2008 IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, RTAS, pages 80–89, Washington, DC, USA,
2008. IEEE Computer Society.

[ZY09] W. Zhang and J. Yan. Accurately estimating worst-case execu-
tion time for multi-core processors with shared direct-mapped
instruction caches. In Embedded and Real-Time Computing Sys-
tems and Applications, 2009. RTCSA ’09. 15th IEEE International
Conference on, pages 455 –463, 2009.

A
Toolbox
In this chapter, we outline the analysis toolbox that has been developed in
the course of this thesis. The toolbox presented in this chapter is included
in the RTC toolbox [WT06b] and takes advantage of RTC data structures,
such as arrival curves [CKT03b]. In Section A.1 we present the representa-
tion of interference as arrival curve, as described in Chapter 3. Section A.2
provides the implementation of the WCRT analysis for static arbitration
policies on the shared resource, as presented in Chapter 4. The WCRT
analysis for hybrid arbitration policies, i.e., the FlexRay protocol presented
in Chapter 5, is given in Section A.3. Section A.4 outlines the integration
of this thesis into the Predator project [Pre] and input provided by project
partners.

A.1 Representing Interference

We implemented a MATLAB toolbox to derive the access pattern of a set
of superblocks, that executes periodically, onto a shared resource. The
definition of the set of superblocks is done in an ASCII file, which is the
input to the analysis. The derivation of this access pattern splits into two
cases: (1) superblocks execute sequentially or (2) superblocks or phases
execute in a time-triggered manner.

150 Appendix A. Toolbox

A.1.1 Sequential execution of superblocks
For the sequentially executing models, the starting time of the superblocks
does not need to be considered, since superblocks execute as soon as their
predecessor has finished. The set of superblocks are specified in a file,
which is denoted as configuration file. This file is the input to our analysis
methodology, which is described in Section 3.4.3, and is formated according
to Listing A.1.

Listing A.1: File specifying a set of 10 subsequently executing superblocks,
with a period of 285ms.

1 %number o f superb locks
2 %per iod
3 %minimum number o f a c c e s s r eque s t s
4 %maximum number o f a c c e s s r eque s t s
5 %communication time per a c c e s s r eques t
6 %minimum computation time
7 %maximum computation time
8 10
9 285

10 7 2 9 3 11 2 5 5 12 13
11 10 12 9 10 14 4 6 12 13 18
12 2
13 8 9 5 4 7 6 3 1 2 5
14 10 30 9 10 15 9 4 2 4 5

The derivation of the arrival curves, as shown in Chapter 3, Equations
(3.8) and (??), is then performed by calling the function:

interference_single_periodic_task(config_file, ...
output, delta, debug).

The first argument to this function is config_file, representing the
MATLAB file handle to the configuration file specified in Listing A.1. The
argument output, defines whether a plot representing the curves should
be plotted output=1, or not output=0, while argument delta specifies the
maximum value on the x-axis, in case a plot is produced. Argument debug=1
allows to produce a plot with all the tuples, see Section 3.4.3.3, or debug=0
otherwise. The function returns the parameters RTCcurve_upper represent-
ing the resulting arrival curves α̂u

j (Δ) see Listing A.2.

Listing A.2: Derive the interference representation for a subsequently exe-
cuting set of superblocks.

1 %load the c on f i gu r a t i on f i l e
2 c o n f i g f i l e = ('\ path\ to \ c on f i gu r a t i on \ f i l e ') ;
3 %produce a p l o t o f the r e s u l t i n g a r r i v a l curves
4 output = 1 ;
5 %sp e c i f y the l ength o f the x−ax i s
6 de l t a = 100 ;

A.1. Representing Interference 151

7 %do not p l o t the tup l e s
8 debug = 0 ;
9

10 [RTCcurve upper] = . . .
11 i n t e r f e r e n c e s i n g l e p e r i o d i c t a s k (. . .
12 c o n f i g f i l e , output , de l ta , debug) ;

A.1.2 Time-triggered execution of superblocks

This section describes the extension of the toolbox to derive the access pat-
tern, in case superblocks or phases are executed in a time-triggered manner.
The analysis of these models in given in Section 3.4.4. As opposed to se-
quentially executing superblocks, analysis of the time-triggered case requires
to consider the dedicated starting times. As a result, the configuration file
needs to be extended to account for that. See Listing A.3 for an example
configuration file, specifying two sets of superblocks - in the first line. Fol-
lowing that, the time window for each set of superblocks is specified, i.e., the
first set of superblocks starts execution at time 0 and might continue to do
so until time 22, while the second set starts execution at time 22 and then
might continue to execute for 12 units of time. Conclusively, the period of
the considered set of superblocks is 34ms. Then follows the specification of
the number of superblocks in the respective sets of superblocks and 4 lines
to specify each set of superblocks.

ListingA.3: File specifying 2 sets of superblocks executed in a time-triggered
manner, with a period of 34ms.

1 %Number o f s e t s o f superb locks
2 %time windows f o r the s e t o f superb locks
3 %the number o f superb locks in each s e t
4 %fo r each s e t o f superb locks 4 l i n e s :
5 %min . computat ional time f o r each superb lock
6 %max . computat ional time f o r each superb lock
7 %min . a c c e s s r eque s t s f o r each superb lock
8 %max . a c c e s s r eque s t s f o r each superb lock
9 2

10 22 12
11 2 1
12 3 2
13 5 3
14 1 1
15 2 2
16 4
17 7
18 1
19 2

Then, the arrival curve is generated by calling function

152 Appendix A. Toolbox

RTCupperCurve = computeMultiTaskInterference(...
config_file, output, delta),

where the arguments config_file, output and delta are defined as in
Section A.1.1, i.e., the MATLAB handle to the configuration file, a binary
value specifying whether or not to produce a plot and the length of the x-
axis in case a plot is generated, respectively. The function returns parameter
RTCupperCurve representing the resulting upper arrival curve, as specified
in Section 3.4.4.

A.2 Worst-Case Analysis for static arbitration
In Chapter 4, we present an approach to find the worst-case completion
time (WCCT) of a set of superblocks, given a TDMA arbitration policy on
the shared resource, for the different resource access models, as proposed in
Section 3.3.2.

We specify the system by an array of tasks, i.e., tasks[]. The elements
of this array are arrays of superblocks, i.e., for a task i, the superblocks are
tasks(i).superblocks[]. A superblock has two parameters (1) the max-
imum amount of computation that has to be performed and (2) the maxi-
mum number of access requests in the phases of the superblock. Consider
a superblock j of task i, then the maximum amount of computations is de-
noted tasks(i).superblocks(j).exec_time_u, while the maximum num-
ber of access requests for the three different types of phases (acquisition/-
general/replication) is stored in an array accesses_upper[] as field of the
structure tasks(i).superblocks(j). This array has three elements, where
the first, second and third element represent the maximum number of access
requests in the acquisition, general and replication phase, respectively. Fol-
lowing that, a superblock that follows the dedicated phases model stores the
corresponding values in accesses_upper(1) and accesses_upper(3) for
the acquisition and replication phase, respectively, while no access requests
can happen during its execution phase, i.e., accesses_upper(2) = 0. The
hybrid model is specified similarly, except that there might be access re-
quests in the general phase, i.e., accesses_upper(2) has a value. In order
to model the general model, the sum of all three phases is considered as the
number of access requests that might happen anytime and in any order.

Since tasks represent an array of superblocks, i.e., a set of superblocks,
we assume one periodic task to execute on each processing element of a
multicore system. As a result, the analysis is done for one task at a time,
with each task being assigned a time slot in the TDMA arbiter. The TDMA
arbiter is defined by three parameters: (1) the TDMA cycle, (2) that start-
ing time of the slot assigned to the task under analysis and (3) the duration
of the time slot assigned to the task under analysis.

A.2. Worst-Case Analysis for static arbitration 153

The WCCT of such a system, as discussed in Chapter 4, can be com-
puted as shown in Listing A.4. Note that in this skript, we assume a
task under analysis, and compute the WCCT of this task for all differ-
ent resource access models. Function SEQ_WCCT computes the WCCT of
the task for the three sequential models and additionally derives the earli-
est starting time for the time-triggered models, i.e., the dedicated starting
times for superblocks in model HTS and GTS, and the dedicated start-
ing times for phases in model HTT. As arguments, this function expects
the task structure as specified ealier, tasks, the arbitration cycle of the
TDMA arbiter, length, the duration and starting time of the slot assigned
to the task under analysis, duration and start_time, the time required
to complete an access request, C, the index of the task under analysis,
considered_task, as well as the period of the task, period. Note that
tasks are either generated by a random number generator or according to
specifications given by industrial partners, where the argument to func-
tion createProblemInstance specifies in which fields of the data structure
tasks[].superblocks[].access_upper[] the access requests are written.

Functions HTS_WCCT, GTS_WCCT and HTT_WCCT compute the WCCT for
models HTS, GTS and HTT, respectively. These functions have additional
arguments to specify the starting times of superblocks (models HTS and
GTS) and phases (model HTT). In our experiments, we used the ear-
liest possible starting times, as derived by function SEQ_WCCT for these
models, in order to provide a fair comparison. The starting times are
stored in an array, each element representing a starting time. For function
HTS_WCCT and GTS_WCCT, the starting times are stored in start_hs_sb_max
and start_gs_sb_max, respectively. Function HTT_WCCT has three addi-
tional arguments, where start_ht_acq_max, start_ht_exec_max and
start_ht_rep_max represent the starting times of the acquisition, general
and replication phases, respectively.
Listing A.4: Derive theWCCT of a task, for different resource accessmodels
and a given TDMA arbiter.

1 %generate a task accord ing to a pattern
2 %e i t h e r by a random number generator
3 %or by data from an i n d u s t r i a l partner
4 ta sk s = createProb lemInstance (' hybrid ') ;
5

6 %choose the task to analyze
7 con s i d e r ed ta sk = 1 ;
8

9 %the a r b i t r a t i o n cy c e l
10 per iod = tasks (c on s i d e r ed ta sk) . per iod ;
11

12 %s t a r t i n g time o f the s l o t a s s i gned to the task under ana l y s i s
13 s t a r t t ime = 0 ;
14

154 Appendix A. Toolbox

15 %durat ion o f that time s l o t
16 durat ion = 5 ;
17

18 %communication time per a c c e s s r eques t
19 C = 2 ;
20

21 %the length o f the TDMA a rb i t r a t i o n cy c l e
22 l ength = 10 ;
23

24 %compute the WCRT fo r the s e qu en t i a l models
25 %and the e a r l i e s t p o s s i b l e s t a r t i n g t imes f o r
26 %the time−t r i g g e r e d models
27 %the output v a r i a b l e s :
28 % wcrt GSS . . . WCRT fo r model GSS
29 % wcrt HSS . . . WCRT fo r model HSS
30 % wcrt DSS . . . WCRT fo r model DSS
31 % star t ds sb max . . . s t a r t i n g t imes f o r superb locks
32 % star t hs sb max . . . s t a r t i n g t imes f o r superb locks , model HTS
33 % sta r t g s sb max . . . s t a r t i n g t imes f o r superb locks , model GTS
34 % star t ht acq max . . . s t a r t i n g t imes f o r phases , model HTT
35 % star t h t exec max . . . s t a r t i n g t imes f o r phases , model HTT
36 % star t ht r ep maxx . . . s t a r t i n g t imes f o r phases , model HTT
37

38 [wcrt GSS . . .
39 wcrt HSS . . .
40 wcrt DSS . . .
41 s ta r t ds sb max . . .
42 s ta r t hs sb max . . .
43 s t a r t g s sb max . . .
44 s ta r t ht acq max . . .
45 s ta r t h t exec max . . .
46 s ta r t h t r ep max] = . . .
47 SEQ WCCT(tasks , length , durat ion , s t a r t t ime , C, . . .
48 cons ide r ed ta sk , per iod) ;
49

50 %compute the WCRT fo r model HTS
51 [wcrt HTS] = . . .
52 HTSWCCT(tasks , length , durat ion , s t a r t t ime , C, . . .
53 s tar t hs sb max , cons ide r ed ta sk , per iod) ;
54

55 %compute the WCRT fo r model GTS
56 [wcrt GTS] = . . .
57 GTSWCCT(tasks , length , durat ion , s t a r t t ime , C, . . .
58 s ta r t gs sb max , cons ide r ed ta sk , per iod) ;
59

60 %compute the WCRT fo r model HTT
61 [wcrt HTT] = . . .
62 HTTWCCT(tasks , length , durat ion , s t a r t t ime , C, . . .
63 s tart ht acq max , s tar t ht exec max , . . .
64 s tar t ht rep max , cons ide r ed ta sk , per iod) ;
65

66 r e s u l t s = [wcrt DSS . . .

A.3. Worst-Case Analysis for hybrid arbitration 155

67 wcrt HSS . . .
68 wcrt GSS . . .
69 wcrt HTS . . .
70 wcrt HTT . . .
71 wcrt GTS] ;

A.3 Worst-Case Analysis for hybrid arbitration
As opposed to static arbitration, we analyze systems with hybrid arbitration
in Chapter 5. Therefore, resource interference, as described in Chapter 3
has to be considered. In this section, we introduce our analysis framework,
that allows to derive the WCRT of a set of superblocks, given an inter-
ference representation and a FlexRay arbiter on the shared resource. The
interference representation can be computed by the functions presented in
Section A.1 of this chapter.

In Listing A.5, we show how to compute the WCCT of a set of su-
perblocks. First, the problem instance is generated, as in Section A.2. Then
the superblock data structure is generated. The set of superblocks, execut-
ing on a processing element, is represented by the data structure S, which is
a N × 5 matrix, where N represents the number of superblocks in the set.
The parameters stored for each superblock are (1) the maximum computa-
tion time, (2) the maximum number of access requests, (3) the assignment
to a time slot in the static segment, (4) the starting time of the superblock,
or 0 if the superblock should be executed sequentially and (5) the deadline
and period of the superblock. Then, the communication time C and the
arbiter is specified. Note that deriving a TDMA or FlexRay arbiter is out
of scope of this toolbox.

Then, after deriving an arrival curve representation of the other sets
of superblocks in the system, the WCCT can be derived by analyzeTask,
with the arguments S, as described earlier, alpha_upper as the interference
by other elements, theta as the arbiter, Ltot as the number of interfering
elements, C as the communication time, ml as the length of a minislot and
Lpre as the maximum number of pending access requests at the beginning of
the dynamic segment. The function returns a binary variable schedulable
and the actual WCCT of the set of superblocks, as variable wcct.

Listing A.5: Derive theWCCT of a task, for different resource access models
and a given FlexRay arbiter.

1 %generate a task accord ing to a pattern
2 %e i t h e r by a random number generator
3 %or by data from an i n d u s t r i a l partner
4 ta sk s = createProb lemInstance (' hybrid ') ;
5

6 %choose the task to analyze

156 Appendix A. Toolbox

7 con s i d e r ed t a sk = 1 ;
8

9 %load the c on f i gu r a t i on f i l e
10 c o n f i g f i l e = ('\ path\ to \ c on f i gu r a t i on \ f i l e ') ;
11

12 %do not p l o t a f i g u r e f o r the i n t e r f e r e n c e
13 output = 0 ;
14 de l t a = 1 ;
15 debug = 0 ;
16

17 %choose the task
18 task = tasks (c on s i d e rd t a sk) ;
19 number o f b locks = task . number o f superb locks ;
20

21 %i n i t i a l i z e the superb lock da ta s t ruc tu r e
22 S = ze ro s (number of b locks , 5) ;
23 f o r j =1: number o f b locks
24 S(j , 1) = task . superb locks (j) . execut ion t ime upper ;
25 S(j , 2) = sum(task . superb locks (j) . a c c e s s e s uppe r) ;
26 %the superb lock to time s l o t assignment ,
27 %note that a l l superb lock in the s e t are a s s i gned
28 %to the same s l o t .
29 S(j , 3) = 1 ;
30 %the s t a r t i n g time o f the superb lock
31 %0 i f s e qu en t i a l execut ion
32 S(j , 4) = 0 ;
33 %the dead l ine o f the superb lock = the per iod
34 S(j , 5) = 100 ;
35 end
36

37 %communication time per a c c e s s r eques t
38 C = 0 . 5 ;
39

40 %the a r b i t e r
41 %Superblock 2 as s i gned to s l o t 1 in
42 %the s t a t i c segment
43 theta . ass ignments = [2 1 3] ;
44 %the s t a r t i n g t imes o f the s t a t i c s l o t s
45 theta . s t a r t i n g t ime s = [0 11 1 5] ;
46 %the length o f the s t a t i c segment
47 theta .L = 17
48 %the length o f the dynamic segment
49 theta . dyn length = 7 ;
50

51 %the worst−case number o f i n t e r f e r e r s and
52 %pending ac c e s s r eque s t s at the beg inning
53 %of the dynamic segment
54 Ltot = 2
55 Lpre = 2 ;
56

57 %the length o f a m in i s l o t in the dynamic
58 %segment

A.4. Integration with Project Partners 157

59 ml = 0 . 5 ;
60

61 [a lpha upper] = i n t e r f e r e n c e s i n g l e p e r i o d i c t a s k (. . .
62 c o n f i g f i l e , output , de l ta , debug) ;
63

64 [s chedu lab le , wcct] = analyzeTask (S , alpha upper , theta , . . .
65 Ltot , C, ml , Lpre) ;

A.4 Integration with Project Partners
In this thesis, we rely on the availability of high-level application specifica-
tions, like the worst-case execution time of a task or a superblock, and the
maximum and minimum number of access requests of a task or superblock
to a shared resource.

In the Predator project, we received data for example applications in the
automotive domain from Bosch. These applications were analyzed with an
adapted version of the aiT analysis tool by AbsInt [Inf] and the University
of Saarland (abbreviated: USAAR). The aiT tool analyzes the worst-case
execution time (WCET) of a task or superblocks. The tool was extended
to analyze the maximum number of access requests to a shared resources.
Deriving the minimum number of access requests is not yet implemented
in the current version of aiT. See Figure A.1 for an overview of project
partners, contributing to the analysis framework.

Application by
Bosch

Worst-Case
Parameters

by AbsInt and
USAAR

generate
configuration

interference
representation

(Chapter 3)

WCRT analysis
for FlexRay
(Chapter 5)

WCRT analysis
for TDMA

(Chapter 4)

WCRT

WCRT

arrival curve
representing
interference

WCRT Toolbox by ETH

Figure A.1: WCRT Analysis Toolbox for resource sharing systems.

158 Appendix A. Toolbox

List of Publications

The following list presents the publications that form the basis of this the-
sis. The according chapters are given in brackets.

Andreas Schranzhofer, Jian-Jia Chen and Lothar Thiele, Power-Aware
Mapping of Probabilistic Applications onto Heterogeneous MPSoC Plat-
forms. In Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS 09), San Francisco, CA, April 2009,
(Chapter 2)

Andreas Schranzhofer, Jian-Jia Chen and Lothar Thiele, Timing Pre-
dictability on Multi-Processor Systems with Shared Resources. In Work-
shop on Reconciling Performance with Predictability (RePP 09), co-located
with ESWEEK, Grenoble, France, October 2009
(Chapter 3 and 4)

Andreas Schranzhofer, Jian-Jia Chen, Luca Santinelli and Lothar Thiele,
Dynamic and Adaptive Allocation of Applications on MPSoC Platforms.
In Asia and South Pacific Design Automation Conference (ASPDAC 10),
Taipei, Taiwan, January 2010,
(Chapter 2)

Andreas Schranzhofer, Jian-Jia Chen and Lothar Thiele, Dynamic Power-
Aware Mapping of Applications onto Heterogeneous MPSoC Platforms. In
IEEE Transactions on Industrial Informatics (TII), November 2010, Vol-
ume 6, Nr. 4, Pages 692 - 707
(Chapter 2)

Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo
and Lothar Thiele, Worst Case Delay Analysis for Memory Interference
in Multicore Systems, in Conference of Design, Automation, and Test in
Europe (DATE 10), Dresden, Germany, March 2010
(Chapter 3)

Andreas Schranzhofer, Jian-Jia Chen and Lothar Thiele, Timing Analy-
sis for TDMA Arbitration in Resource Sharing Systems. In Real-Time and
Embedded Technology and Applications Symposium (RTAS 10), Stockolm,
Sweden, April 2010
(Chapter 4)

Andreas Schranzhofer, Rodolfo Pellizzoni, Jian-Jia Chen, Lothar Thiele and
Marco Caccamo, Worst-Case Response Time Analysis of Resource Access
Models in Multi-Core Systems. In Design Automation Conference (DAC
10), Anaheim, CA, June 2010
(Chapter 4)

Andreas Schranzhofer, Rodolfo Pellizzoni, Jian-Jia Chen, Lothar Thiele and
Marco Caccamo, Timing Analysis for Resource Access Interference on
Adaptive Resource Arbiters. to appear in Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS 2011), Chicago, IL, April 2011.
(Chapter 5)

The following publications are not part of this thesis.

Jian-Jia Chen, Andreas Schranzhofer and Lothar Thiele Energy mini-
mization for periodic real-time tasks on heterogeneous processing units. In
International Symposium on Parallel. Distributed Processing (IPDPS 09),
Rome, Italy, May 2009

Jian-Jia Chen, Andreas Schranzhofer and Lothar Thiele Energy-Aware
Task Partitioning and Processing Unit Allocation for Periodic Real-Time
Tasks on Systems with Heterogeneous Processing Units. In Work-in-Progress
in EuroMicro Conference on Real-Time Systems (ECRTS 08), Prague,
Czech Republic, July 2008

Curriculum Vitae

Personal Data

Name: Andreas Schranzhofer
Date of birth: December 23, 1980
Place of birth: Lienz, Austria
Citizenship: Austria

Education

2007 - 03/2011 PhD in Computer Engineering, ETH Zurich, Switzerland
with Prof. Dr. Lothar Thiele
Thesis: Efficiency and predictability in resource sharing Multi-
Core Systems
EU Project: Predator - Design for predictability and efficiency

2005 - 2007 M.Sc. in Telematics, TU Graz, Austria
Graduation with distinction
Thesis: Acquisition for a Transmitted Reference UWB Re-
ceiver, at Circuits and Systems Group, TU Delft, The Nether-
lands
Supervisors: prof. dr. ir. Alle-Jan v. d. Veen (TU Delft) and
Dr. Dipl. Ing. Klaus Witrisal (TU Graz)

2004 - 2005 Erasmus, TU Tampere, Finland
Department of Information Technology

2001 - 2005 B.Sc. in Telematics, TU Graz, Austria
1995 - 2000 Technical High School (HTL), Jenbach, Austria

focus on Engineering, Mathematics and Physics
1991 - 1995 Grammar school (Gymnasium) in Lienz, Austria
1987 - 1991 Elementary School (Volksschule) in Sillian, Austria

Professional Experience

2007 - 2011 Teaching Assistant at Computer Engineering and Networks
Laboratory (TIK), ETH Zurich

2007 - 2011 Supervision of Master Theses in the field of embedded systems
09/2005 - 11/2006 J. Christof Group, Graz, Austria, www.christof-group.at

Development of an intranet based management application
07/2002 - 08/2004 Laufer & Partner OEG, Graz, Austria, www.laufer.at

Programming in PHP, Perl, C, MySQL, Apache, Unix/Linux
01/2001- 08/2001 Military Service, Austrian Armed Forces

