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Abstract

Embedded systems are computer systems that are deeply integrated in
and interact with the physical world. The physical world often imposes
strict timing constraints on these systems. Therefore, the correct operation
of such systems depends not only on the values of the produced results,
but also on their timing. Such systems are called real-time systems.

Methods for system-level performance analysis play an integral
part during the early design phase of embedded real-time systems.
They support the analysis of various non-functional performance
characteristics, and alleviate the choice of important design decisions
before much time and resources are invested in detailed implementations.

Compositional formal methods for performance analysis are able
to quickly provide hard upper and lower bounds on performance
characteristics. However, such analytical methods are limited in their
scope and accuracy as they cannot incorporate many system details in
the analysis.

Interface-based design has been proposed in order to unify the steps
of designing a system and analyzing it. It supports the paradigm
for correct-by-construction design in the domain of embedded real-
time systems. It can significantly shorten the design time of complex
distributed embedded real-time systems.

Recently, a method for Modular Performance Analysis based on
Real-Time Calculus has been proposed that is also connected with the
principles of interface-based design in the framework of Real-Time
Interfaces. Both of them support the analysis and design of complex
distributed embedded real-time systems. This thesis builds on these
results and extends them in several directions. The main contributions of
this work are summarized as follows:

• A novel framework for interface-based design of distributed
embedded real-time systems is proposed. It includes properties



such as incremental design, independent-implementability, and
refinement. It unifies many existing compositional performance
analysis and interface-based design methods.

• Novel models and methods for interface-based design are proposed
that support the analysis and design of distributed embedded
real-time systems which have buffer overflow and underflow
constraints, end-to-end delay constraints, variable execution
demands of tasks, and complex resource sharing policies.

• A novel method for compositional performance analysis of marked
graphs is proposed that can be used for distributed embedded
real-time systems with cyclic data dependencies, finite buffers with
blocking write semantics, variable execution demands of tasks, non-
deterministic event streams and resource behaviors, and complex
resource sharing policies.

• A novel method for mode change performance analysis of multi-
mode embedded real-time systems is proposed that can be used
for systems with non-deterministic event streams and resource
behaviors, variable execution demands of tasks, complex resource
sharing policies, and various mode change protocols.

• A novel scheduling server based on time division multiple
access is proposed that can be reconfigured during run-time,
and can guarantee the real-time properties of applications during
reconfigurations.



Zusammenfassung

Eingebettete Systeme sind Computersysteme, die in eine physikalische
Umgebung eingebunden sind und mit dieser intensiv interagieren. Oft
müssen eingebettete Systeme strenge Zeitbedingungen einhalten, die
von der physikalischen Umgebung auferlegt werden. Die korrekte
Ausführung des Systems hängt in solchen Fällen nicht nur von den
berechneten Ergebnissen ab, aber auch vom Zeitpunkt, an dem die
Ergebnisse produziert werden. Solche Systeme werden allgemein als
Echtzeit-Systeme bezeichnet.

In frühen Entwicklungsphasen von eingebetteten Echtzeit-Systemen
spielen Methoden zur Leistungsbewertung auf Systemebene eine
wesentliche Rolle. Sie ermöglichen die Analyse von verschiedenen
Leistungskriterien wie beispielsweise die Ausführungszeit des Systems
und erleichtern das Treffen von wichtigen Entwurfsentscheidungen bevor
Zeit und Ressourcen für die eigentliche Implementierung des Systems
aufgewendet werden.

Modulare formale Methoden zur Leistungsbewertung können in
kurzer Zeit sichere obere und untere Schranken für Leistungskriterien
von Systemen bestimmen. Diese analytischen Verfahren sind allerdings
in ihrem Anwendungsbereich und ihrer Genauigkeit eingeschränkt, da
sie viele Systemdetails nicht in die Analyse einbinden können.

Die interface-basierte Entwicklung von eingebetteten Echtzeit-
Systemen wurde eingeführt, um die beiden Schritte des Entwurfs und
der Analyse eines Systems zu vereinen. Diese Art von Entwicklung folgt
dem Paradigma des correct-by-construction, d.h. Systeme werden so
entworfen, dass die Leistungskriterien garantiert erfüllt sind. Interface-
basierte Entwicklung kann zudem die Entwicklungszeit von komplexen
verteilten Echtzeit-Systemen massgeblich verkürzen.

Vor kurzem wurde die Modular Performance Analysis, eine auf Real-
Time Calculus basierte Methode zur Leistungsbewertung vorgestellt.
Diese Methode ist eng mit dem Verfahren der Real-Time Interfaces



verknüpft, die die Prinzipien der interface-basierten Entwicklung
umsetzt. Beide Verfahren unterstützen die Analyse und den Entwurf
von komplexen verteilten eingebetteten Echtzeit-Systemen. Diese
Dissertation baut auf beide Verfahren auf und erweitert sie in mehrere
Richtungen. Die wichtigsten Beiträge dieser Arbeit können wie folgt
zusammengefasst werden:

• Ein neues Framework zur interface-basierten Entwicklung von
verteilten eingebetteten Echtzeit-Systemen wird vorgestellt. Das
Verfahren erfüllt die Eigenschaften des inkrementellen Entwurfs,
der unabhängigen Implementierbarkeit und der Verfeinerung.
Es vereint verschiedene existierende modulare Methoden zur
Leistungsbewertung und interface-basierten Entwicklung.

• Neue Modelle und Methoden für interface-basierte Entwick-
lung werden vorgeschlagen, die die Analyse und den Entwurf
von verteilten eingebetteten Echtzeit-Systemen mit folgenden
Eigenschaften ermöglichen: Einschränkungen bzgl. Puffer-
Überlauf/Unterlauf, Einschränkungen bzgl. End-to-end Latenzen,
variable Ausführungszeiten von Tasks, Ressourcen-Sharing anhand
komplexer Verfahren.

• Eine neue Methode zur modularen Analyse von markierten
Graphen wird vorgestellt, die für verteilte eingebettete Echtzeit-
Systeme mit einer oder mehreren der folgenden Eigenschaften
eingesetzt werden kann: Zyklische Abhängigkeiten zwischen
Komponenten, endliche Puffer mit blocking-write Semantik, vari-
able Ausführungszeiten von Tasks, nicht-deterministische Ereignis-
ströme oder Resourcenverfügbarkeit, Ressourcen-Sharing anhand
komplexer Verfahren.

• Ein neues Verfahren zur Analyse von Mode-Wechseln in
eingebetteten Echtzeitsystemen mit mehreren Ausführungsmodi
wird eingeführt. Das Verfahren unterstützt nicht-deterministische
Erignisströme und Resourcenverfügbarkeit, variable
Ausführungszeiten von Tasks, komplexe Verfahren für Ressourcen-
Sharing sowie verschiedene Protokolle für Mode-Wechsel.

• Ein neuer auf Zeitmultiplexing aufbauender Scheduling-Server
wird vorgestellt, der zur Laufzeit umkonfiguriert werden kann.
Der Server garantiert die Einhaltung der Echtzeit-Anforderungen
von Applikationen auch während der Umkonfigurierung.
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1
Introduction

Embedded systems are computer systems that are deeply integrated in
and interact with the physical world. Examples of applications that
use such systems traditionally have been nuclear power plants, railway
switching systems, automotive and avionics electronics, air traffic control,
telecommunications, but today they also include wireless sensor nodes,
multimedia systems, mobile phones, tablets, gaming consoles, electronic
book readers, building automation systems, and many others.

An embedded system is a special-purpose information processing
system. It is specialized in performing specific functions under various
constraints in a specific application domain. Functions and constraints
are usually known at design time and this information can be used for
customization and optimization of the system.

The typical applications are distributed as they usually consist of many
parallel tasks which are mapped onto different heterogenous hardware
components in the platform. Very often, several tasks are mapped on
a single processing element that they need to time share by the use
of a resource scheduling policy. Hardware components communicate
and interact through one or many communication networks. Therefore,
the functional and non-functional properties of the system depend not
only on the actual processing done by the application tasks, but also on
the chosen mapping, the selected resource scheduling policies, and the
data stream interactions on the common communication network. These
and also the fact that processing elements can take independent resource
access decisions make the system design challenging [TW06].

Moreover, the domain-specific nature of embedded systems can
lead to high specialization of the used hardware components. This
not only allows a designer to select hardware components that are
optimal for the specific functions that they are going to perform,
but it also makes the choice of components much more difficult.
For example, in the automotive industry a single embedded control



2 Chapter 1. Introduction

unit (ECU) contains a communication controller, memory, a central
processing unit (CPU), and I/O interfaces. But depending on the function
and the environment of the ECU, a designer may have the choice
between using a general purpose processor, microcontroller, digital-signal
processor (DSP), field-programmable gate array (FPGA), or application-
specific integration circuits (ASIC). Similarly, the communication network
between ECUs may consist of various heterogenous subnetworks each
of them characterized by specific communication protocols, scheduling
policies, and topologies. This vastly increases the complexity of a design.

The physical world imposes strict timing constraints on these systems.
The times of their reactions must be in strict concordance with the times
of events in the real world. Therefore, the correct operation of such
systems depends not only on the values of the produced results, but also
on their timing. Such systems are called real-time systems. Examples
are signal-processing applications, automatic manufacturing systems,
avionics and automotive applications, and many others. A system is
called hard real-time if violating the timing constraints can be fatal for
the system or its environment, and soft real-time otherwise. A typical
example in an automotive system of a real-time constraint is a constraint
on the end-to-end delay experienced by data that is read by a sensor,
possibly processed by several ECUs and communicated over several
communication buses, and finally written to an actuator. A designer must
ensure the timing predictability of such systems in advance. Therefore,
various performance analysis methods play an important role during the
early design phase.

1.1 System-Level Performance Analysis
A major challenge in the design of distributed embedded systems is
determining essential performance characteristics of a system in the early
design phase before much time and resources are invested in detailed
implementations. A designer needs to decide on important questions
such as: which functions should be implemented in hardware and which
in software (partitioning), which hardware components should be used
(allocation), and how the different software tasks should be distributed
between the chosen hardware components (mapping). In addition, she
needs to verify whether a particular design meets all timing, memory,
power, energy, and temperature constraints. Moreover, she may want to
optimize a design by answering the questions: what are the minimum
required processor speeds in order to meet all constraints, what are the
minimum required communication bandwidths, etc.
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Answering these multiple and often conflicting questions creates
a large design space. This has lead to development of automatic
design space exploration tools that usually employ techniques for multi-
objective decision making, black-box optimization, and randomized
search algorithms [KTZ05]. Performance analysis methods play an
important role in design space exploration. The different choices for
the chosen hardware components, scheduling policies, or mapping of
software tasks to different computation and communication resources
need to be not only evaluated against the system specification, but also
compared to each other in order to find the set of optimal choices. The
automatic exploration of these design choices imposes constraints on
the performance analysis methods for short analysis times because of the
large design space, and ability to work with incomplete information as
the detailed system specification may not be available at an early design
phase.

The methods for performance analysis of distributed embedded sys-
tems can be classified as: simulation-based, holistic, and compositional,
see [TW06]. Simulation-based methods are the most widely used, in
particular the ones based on SystemC [GLMS02]. These methods have a
large scope of application as they can take into account many dynamic
interactions existing in a system. They have the possibility to model
a system in any desired level of detail in order to obtain as accurate
performance characteristics as possible. On the other hand, such high
detailed modeling brings high complexity and high computation times.
Performance evaluation quickly becomes the bottleneck in the design
space exploration.

Another disadvantage of simulation-based methods is their insuf-
ficient corner case coverage. Usually they are not able to compute
worst-case and best-case values of a performance characteristic but only
compute values that are specific to particular traces of system inputs. It is
often impossible for a designer to generate all possible system inputs and
interactions, and therefore a simulation-based method cannot show if a
system meets its specification constraints under all possible conditions.

While system-level analysis of complex embedded systems is
currently mainly based on simulation, there exists also a large body
of research that aims at developing formal analytical methods. These
methods typically abstract the necessary properties of the concrete system.
In contrast to simulation-based methods that inherently suffer from
insufficient corner case coverage, the latter typically allow to obtain hard
upper and lower bounds on the performance results, and are therefore also
applicable in the analysis of hard real-time embedded systems. The
concept of abstraction plays an important role in these methods as it
allows to model large classes of non-deterministic system behaviors,
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system inputs, environment and resource interactions, and not only
specific instances of them.

The typical requirements for such performance analysis methods are
to be able to compute correct and accurate bounds on the performance
characteristics. Correct means that there exists no reachable system state
or feasible reaction of the system environment that lead to violations of the
computed bounds. While accuracy means that the determined bounds
are as close as possible to the actual worst-case and best-case performance
characteristics exhibited by the system during run-time [TW06].

Holistic performance analysis methods are an extension of classical
formal methods for timing analysis of uniprocessor systems toward
distributed systems [TC94, PEP02]. These methods handle the
communication system similarly to processing nodes, and integrate
the computation and communication schedulability analysis. They
are able to handle various resource sharing policies, complex input
arrivals with release jitter, and timing correlations between input
arrivals. However, because of their holistic nature, these methods do
not scale well as their complexity grows with the number of system
components and different scheduling policies used. As discussed before,
modern distributed embedded systems are highly heterogeneous in
terms of the underlying hardware platform, the diverse concurrently
running applications, and the different scheduling policies. Therefore,
compositionality (modularity) is a key requirement for a fast performance
analysis method.

1.1.1 Compositional Performance Analysis
Compositional methods typically abstract the properties of the concrete
hardware/software components into so-called abstract components that
build the fundament for performance analysis. Abstract components
can represent various composable entities, such as tasks, resources,
and scheduling disciplines. Instances of inputs and outputs of such
components represent all first class citizens of the analysis method.
They are abstract representations of relevant properties of the concrete
hardware/software components, such as resource capabilities or event
streams.

The SymTA/S method [RJE03] is based on classical formal methods
for timing analysis of uniprocessor systems but instead of being extended
to specific cases of heterogeneous distributed embedded systems as in
holistic methods, existing results are applied in a compositional manner
to the individual abstract components. The performance characteristics
are computed locally and propagated through the system by the use
of different well-known abstractions for event task arrival patterns and
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interfaces for conversions between them. On the other hand, the
Modular Performance Analysis (MPA) framework [CKT03b, WTVL06]
is an analytical approach based on the Real-Time Calculus (RTC)
[TCN00], which has its foundations in methods for worst-case analysis of
communication networks (Network Calculus) [Cru91a, Cru91b].

MPA is an example of formal analytical performance analysis
approaches that can determine guaranteed performance limits. While
these techniques can compute hard performance bounds, they abstract
from the complex interactions and state dependent behavior in the
system. MPA uses a unifying model for the representation of
different event patterns in the form of arrival curves known from the
communication domain [Cru91a] which generalize on any previously
known event task activation models. In addition, it uses a similar concept
called service curves to represent the resources and their computational
or communication capabilities, which allows MPA to model any
combination of resource sharing policies in heterogeneous distributed
embedded systems as well as complex hierarchical scheduling schemes.
The detailed modeling of the capabilities of the shared resources and the
event streams can lead to highly accurate performance results, see for
example [CKT+03a].

An MPA model is a performance network of components, where
application tasks are mapped to computation and communication
resources. One can differentiate between three main entities: event streams
represented as arrival curves, resource streams represented as service
curves, and application tasks represented as processing components. The
application tasks are activated by the event streams and process them by
considering their interaction with the resource streams. On a higher level,
the model is a network of components that communicate with each other
through event interfaces. Performance metrics for the whole application are
computed by combining the behavior of the individual components. This
modularity aspect achieves short analysis times even for large systems.
Typical performance metrics computed with MPA are upper and lower
bounds on buffer levels, end-to-end delays experienced by events, and
the number of events that can be processed in a time unit (throughput).

1.1.2 Challenges
Developing system-level performance analysis methods has a lot of
challenges. They are very often the reason for the limited scope of the
methods or their lack of accuracy. Typically the methods have difficulties
coping with: non-deterministic event task activations, non-deterministic
resource behaviors, complex resource sharing policies, resource access
interferences, complex task activation schemes, complex processing
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semantics, variable execution demands, and workload correlations. Most
of them have been addressed before to different extents in the scientific
literature, for an overview see [Max05, Wan06, Hai10, Sch11]. Here we
give a brief overview of several challenges that are addressed in this
thesis:

• Cyclic data dependencies: Many modern media-, signal-, and
image-processing applications are specified with dataflow graphs
that have cycles. Similarly distributed systems that have finite
buffers with blocking write semantics are very often modeled
with cyclic dataflow graphs. Compositional performance analysis
methods face enormous challenges in the analysis of cyclic dataflow
applications. The cycles in the information flow between the
individual processes of an application lead to global, system-wide
state dependencies. As a result, the timing behavior of a process
(and as a result its use of the available resources) not only depends
on predecessor processes that provide the data streams that are to
be processed, but also on successor processes and the process itself.

• Adaptive behavior: Very often systems are required to change their
functionality or characteristics during run-time due to changes
inside of them or changes in their environments. Such changes
can be observed in different operating modes for the applications in
the system, different characteristics of the outside environment, or
different characteristics of the hardware platform and the resources
that it provides. A designer must ensure that the system meets
its specification and real-time requirements not only when system
characteristics are stable, but also when they are changing, e.g. when
the system is in the process of a mode change. Specific abstractions
need to be introduced to performance analysis methods that are able
to capture the dynamics of the system when its characteristics are
being changed.

1.2 Interface-Based Design
System-level performance analysis methods are used for analysis of
distributed embedded real-time systems subsequently to the specification
and design of the system. Only after completion of the design step,
performance analysis is applied to the system design in a second step. The
analysis result will then answer the question whether the system design
that was developed in the first step meets all real-time requirements, or
not. A designer must then go back to the first step, change the design,
and iterate on the two steps until an appropriate system design is found.
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In contrast to this two-step approach for design and posterior analysis
is the idea for interface-based design [dAH01b, dAH05]. It proposes a
holistic one-step approach toward design and analysis of systems where
components have interfaces, and a designer can decide whether two
components can be connected and work together while meeting real-time
requirements based only on the information exposed in their interfaces.

A component interface models how a component can be used, which
is in contrast to an abstract component that models what a component
does. Through input assumptions, a component interface models what
a component expects from the other components in the system and the
environment. Through output guarantees, a component interface informs
the rest of the system and the environment what they can expect from this
component. Typically such assumptions and guarantees specify intervals
for permissable values of specific system parameters such as input data
rates, processor speeds, communication bandwidths, etc. Composition
of components into a system design is allowed only if their interface
assumptions and guarantees are compatible which would automatically
ensure satisfaction of all constraints in the system specification.

Interface-based design techniques extend the scope of system-level
performance analysis methods by allowing them to answer more
efficiently questions such as: given the arrival rates of the input streams
and the system throughput requirements, what is the optimal buffer size
for a component that is being added to a partially-designed architecture;
can the scheduler for a particular processing element be replaced by
a different scheduler without violating any of the real-time constraints
of all existing components; what is the minimum required processing
frequency such that none of the real-time constraints in the system are
violated, etc. Previously, all of these questions would have been answered
by trying many different designs with components that have different
parameters, and subsequent performance analysis of the whole system
would show whether a design satisfies the specification or not.

MPA promotes interface-based design of embedded systems with
the concept of Real-Time Interfaces [Wan06]. It supports the design
phase of embedded real-time systems by proposing interfaces whose
compatibility means that the real-time properties of the system are
satisfied. Assumptions and guarantees of component interfaces are
specified with arrival and service curves. Compatibility between two
interfaces is also expressed in terms of these entities. Real-Time Interfaces
provide mechanisms to propagate component constraints through the
system. Guarantees and assumptions are not any longer static but adapt
according to the changing system constraints. Such changes occur when
new components are added to the systems, existing components are
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removed or change their parameters, or the system environment changes
its requirements.

1.3 Aim of the Thesis
The results presented in this thesis aim at defending the following
hypotheses:

1. It is possible to develop compositional analytical performance analysis
methods that can compute correct and accurate performance results for
heterogenous distributed embedded real-time systems that have various
complexities.

2. In addition, it is possible to extend such compositional performance analysis
methods and connect them with principles of interface-based design in order
to make the system design phase more efficient and less time consuming.

Complexities in the above hypotheses may include: multiple
applications mapped to multiple computing and communication resources,
memory and delay constraints, variable execution demands of tasks, complex
resource sharing policies, non-deterministic event streams behavior, non-
deterministic resource behavior, cyclic data dependencies, finite buffers with
blocking write semantics, and adaptive behavior.

1.4 Thesis Outline and Contributions
The thesis is divided into two major parts. Part I focuses on formalizing,
generalizing, and extending the scope of compositional methods for
performance analysis and interface-based design. Part II focuses
on proposing new techniques for performance analysis of adaptive
embedded real-time systems. In summary, the thesis contains the
following topics and contributions:

Part I: Compositional Design and Analysis for Distributed
Embedded Systems
This part focuses on formalizing and generalizing the existing framework
for interface-based design with Real-Time Interfaces, extending it
to distributed systems, and proposes a compositional method for
performance analysis of systems with cyclic data dependencies.
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Chapter 2: Interface-Based Design with Adaptive Real-Time Interfaces
This chapter formalizes and generalizes the framework of Real-Time
Interfaces. The main contributions are as follows:

• The properties of independent implementability, incremental
design, and refinement of components and interfaces are formally
defined. Conditions for their existence in an interface-based design
framework are derived.

• The notions of adaptive interfaces and transfer functions are
formally defined. They support the design by providing
mechanisms to propagate constraints between components.

• Existing compositional frameworks for performance analysis and
interface-based design are unified.

Chapter 3: Interface Algebra with Rate Interfaces
This chapter extends the framework of Real-Time Interfaces. The main
contributions are as follows:

• The framework of Real-Time Interfaces is extended toward
distributed multiprocessor embedded real-time systems.

• The new results are applied on a realistic multiprocessor video-
processing system that has buffer overflow and underflow
constraints, and fixed priority or earliest deadline first scheduled
components.

• A new interface is added to the framework of Real-Time Interfaces
in order to allow it to include global real-time constraints that span
networks of components, and not only single components.

Chapter 4: Compositional Analysis for Real-Time Systems with Cyclic
Dataflow
This chapter extends the scope of compositional performance analysis
methods toward distributed embedded real-time systems with cyclic data
dependencies. The main contributions are as follows:

• The Modular Performance Analysis method is extended toward
the class of systems modeled with marked graphs. Unlike any
previously existing approaches, the new method takes accurately
into account the interactions of the graph processes with resources,
and accurately models the resource scheduling policies.
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• The proposed analysis method can be embedded into previously
existing compositional methods for performance analysis.

• The proposed analysis method yields performance characteristics
of accuracy higher than any of the previously existing approaches.
This is illustrated with a case study of two realistic signal-processing
applications running concurrently on a multiprocessor platform.

Part II: Analysis of Adaptive Embedded Systems
This part focuses on proposing performance analysis methods for
embedded real-time systems with adaptive behavior.

Chapter 5: Analysis of Adaptive Applications
This chapter develops a performance analysis method for multi-mode
embedded real-time systems that run applications with several operating
modes. The main contributions are as follows:

• The Modular Performance Analysis framework is extended toward
uniprocessor multi-mode embedded real-time systems with fixed
priority scheduling. Unlike any previously existing approaches, the
new method can be applied to systems with any complex event task
activation pattern, and any complex resource behavior.

• The method can be applied for analysis of mode change protocols
with and without offsets.

Chapter 6: Analysis of Adaptive Schedulers
This chapter develops a performance analysis method for multi-
mode embedded real-time systems that provide reconfigurable resource
reservations. The main contributions are as follows:

• A framework for adaptive resource reservations based on time
division multiple access is proposed. Each application is served by
an Adaptive Server with Guarantees that can change its parameters
during run-time without violating the real-time constraints of the
application.

• Resource reconfiguration scenarios are classified, algorithms that
preserve the real-time constraints are proposed for each scenario,
and analysis of the resource guarantees provided by each algorithm
is developed.



Part I
Compositional Design and Analysis
for Distributed Embedded Systems





2
Interface-Based Design with
Adaptive Real-Time Interfaces

A major challenge in the design process of complex real-time embedded
system is the analysis of essential characteristics of a system architecture
at an early design stage. The goal is to support the design decisions as
early as possible and before much time and resources are invested in
detailed implementations. Essential characteristics for embedded real-
time systems are for example whether maximum delay and throughput
constraints are satisfied, what the on-chip memory requirements are, or
how different architectural elements must be dimensioned.

Typically performance analysis methods are used for the analysis of a
component-based real-time system design a posteriori. This means that
a real-time system is designed and dimensioned in a first step, and only
after completion of this first step, the performance analysis is applied to
the system design in a second step. The analysis result will then give
an answer to the binary question whether the system design that was
developed in the first step meets all real-time requirements, or not. A
designer must then go back to the first step, change the design, and
iterate on the two steps until an appropriate system design is found.

In contrast to the two-step approach for design and posterior analysis
is the idea for interface-based design described by de Alfaro and Henzinger
[dAH01b, dAH05]. They propose a holistic one-step approach toward
design and analysis of systems where components have interfaces, and a
designer can decide whether two components can be connected and work
together based only on the information exposed in their interfaces. Such
a theory supports the crucial properties of refinement, incremental design,
and independent implementability.

This chapter develops an interface-based design theory for real-time
systems. It formalizes and generalizes the theory of Real-Time Interfaces
introduced in [WT05b, WT06a]. It formalizes and elaborates on the
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concepts of abstract components and Adaptive Real-Time Interfaces.
Properties such as refinement and incremental design are defined. The
framework is very general and powerful, and it is applicable to many
previously known compositional performance analysis methods for real-
time systems.

2.1 Introduction
In interface-based design, components are described by component
interfaces. A component interface models how a component can be
used, which is in contrast to an abstract component that models what
a component does. Through input assumptions, a component interface
models the expectations that a component has from the other components
in the system and the environment. Through output guarantees, a
component interface tells the other components in the system and the
environment what they can expect from this component. The major goal
of a good component interface is then to provide only the appropriate
information that is sufficient to decide whether two or more components
can work together properly. In the context of component interfaces
for real-time system performance analysis, the term ’properly’ refers to
questions like: Does the composed system satisfy all requested real-time
properties such as delay, buffer, and throughput constraints?

Consequently, in an interface-based real-time system design approach,
the compliance to real-time constraints is checked at composition time.
That is, the successful composition of a set of components and their
interfaces to a complete system design already guarantees the satisfaction
of all real-time constraints, and no further analysis steps are required.
This leads to faster design processes and partly removes the need for
the classical binary search iteration approach to find appropriate system
designs.

Additionally, an interface-based real-time system design approach
also benefits from the properties of incremental design and independent
implementability that are elementary features of an interface-based
design. The support for incremental design ensures that component
interfaces can be composed one-by-one into subsystems in any order.
If at any composition a component interface cannot be composed with a
subsystem, this already excludes the possibility that the complete system
can work properly. Refinement on the other hand is very similar to
subtyping of classes in object-oriented programming. A component
interface can be refined by another component interface if it accepts at
least all inputs of the original interface and produces only a subset of
the original outputs. Fulfilling these constraints ensures that components



2.1. Introduction 15

with compatible interfaces can be refined independently and still remain
compatible, thus supporting independent implementability.

Besides these properties, the recently proposed interface theory of
Real-Time Interfaces [WT05b, WT06a] also supports dynamic adaptivity.
These interfaces not only expose enough information to resolve the
composability with other component interfaces, but also they change their
assumptions and guarantees when new components are added (removed)
to (from) a partially designed system following principles of constraints
propagation.

The contributions of this chapter can be summarized as follows:

• We formalize and generalize the framework of Real-Time Interfaces
introduced in [WT05b, WT06a].

• Important aspects like independent implementability, refinement
and incremental design are discussed and corresponding conditions
are derived, see Sections 2.3 and 2.4.

• Traditional assume / guarantee interface theory is enriched with
the notion of a transfer function that enables expressing relations
between assume and guarantee inputs and outputs, and is crucial
in the definition of adaptive interfaces.

• The new notion of adaptive interfaces supports the design by
providing mechanisms to propagate constraints, for example (end-
to-end) delays, computing and communication resources, energy
and buffer spaces, see Section 2.4. Guarantees and assumptions are
not any longer static but adapt according to the current system
environment. This can be used to answer synthesis questions
at design time, and to adapt a system at run-time when the
requirements from the environment change.

• We unify a large set of modular and interface-based methods for
real-time systems design, see Section 2.6.

• The use of Adaptive Real-Time Interfaces is discussed using a set of
different examples, and a larger system in Section 2.7.

In the following description of Real-Time Interfaces, we will make
a distinction between abstract components and their adaptive interfaces.
Both terms are widely used and there are many interpretations available.
Before specifying formally the meaning of both terms in the context of
real-time interfaces, let us introduce them informally.

Abstract components describe building blocks for a system-wide
analysis. They can represent various composable entities, such as tasks,
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resources, and scheduling disciplines. Instances of inputs and outputs of
such components represent all first class citizens of the analysis method.
They are abstract representations of relevant properties of the concrete
hardware/software components, such as resource capabilities or event
streams. In summary, an abstract component provides a mathematical
abstract model of a hardware/software component.

An interface, on the other hand, should expose enough information
about a component as to make it possible to predict if two or more
components can work properly together by looking only at their interfaces
[dAH05]. Adaptive interfaces, as used in the context of real-time systems
[WT05b, WT06a], not only allow for such an analysis of a given real-
time system, but also support the design by providing mechanisms to
propagate constraints, for example (end-to-end) delays, computing and
communication resources, buffer spaces, and energy. Guarantees and
assumptions are not any longer static but adapt according to the changing
system constraints. Such changes occur when new components are
added to the systems, existing components are removed or change their
parameters, or the system environment changes its requirements. Such
changes can be during the design phase of a system when different design
choices are evaluated, or at run-time when the requirements toward the
system may change dynamically.

The fact that many well-known analysis methods can be represented
makes the described framework widely applicable. Therefore, the simple
examples used in this chapter should be understood only as illustrations
of the main principles.

Section 2.2 continues with a brief discussion on the related work.
Section 2.3 describes the essential properties for a component-based
design and analysis framework for embedded real-time systems.
Section 2.4 describes these properties for an interface-based design
framework and introduces the concept of Adaptive Real-Time Interfaces.
Section 2.5 discusses possible extensions of the proposed basic framework.
Section 2.6 discusses several frameworks for compositional performance
analysis that can be unified in the proposed framework. Section 2.7 shows
the applicability of the framework for design and analysis of a realistic
system. Finally, Section 2.8 concludes this chapter with a brief summary
and a discussion.

2.2 Related Work
An analytical framework for system-level performance analysis was
proposed in [RJE03]. It uses a number of well-known abstractions to
capture the timing behavior of event streams, and provides additional
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interfaces between them. Traditional schedulability analysis results
are then used to analyze a component-based real-time system design.
The framework presented in [WRM+05], on the other hand, uses the
notion of traditional software component standards such as CORBA. It
proposes extensions for the support of real-time services. The approach
proposed in [SL03], composes real-time components by making use of
hierarchical scheduling. Finally, the approach to modular performance
analysis proposed in [CKT03b] relies on Network Calculus [LBT01] and its
extensions to the domain of real-time embedded systems known as Real-
Time Calculus [TCN00]. It is based on a general event and resource model,
and allows to analyze complex systems with hierarchical scheduling and
arbitration. It can take computation as well as communication resources
into account. All of these methods for performance analysis are only
suitable for the two-step design process where a fully designed system is
verified a posteriori. They cannot be used directly in a holistic one-step
interface-based design process.

Traditional interface-based design theories focus on stateful interfaces
[dAH01a, dAHS02, CdAHS03], while the work presented here is based
on stateless assume / guarantee (A/G) interfaces. There exists a recent
approach that also relies on stateless A/G interfaces proposed in [HM06],
but it is limited to using bounded-delay resource models with earliest
deadline first (EDF) scheduling. Similarly, an interface-based framework
for compositional design of real-time systems is proposed in [ESSL06],
but it is limited only to hierarchically scheduled systems that use rate
monotonic (RM) or EDF scheduling under the periodic resource model.

The theory presented in this chapter not only generalizes the work
presented in [HM06, ESSL06], but it is also able to empower a large class
of real-time system-level analysis methods with the principles of interface-
based design. The presented theory is thereby an analysis, extension and
generalization of the basic Real-Time Interfaces that were first introduced
in [WT05b, WT06a].

2.3 Abstract Components
As has been previously described, abstract components in the context of
performance analysis represent the building blocks of an analysis method.
At first, single abstract components will be described.

2.3.1 Single Abstract Component
The abstract components considered throughout this chapter can be
formally defined as follows:
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G

x2

x1

y1

y2ψG

XG = (x1, x2)
YG = (y1, y2)
(y1, y2) = TG(x1, x2) = (x1, x2-x1)
ψG(x1, x2) = (x2 ≥ x1)

Fig. 2.1: A simple abstract component G representing the analysis of a shared bus
from Example 2.2

Definition 2.1: (Abstract Component) An abstract component F is the tuple
(X,Y,T,Ψ) where X is a set of input variables, Y is a set of output variables, T
is the transfer function Y = T(X), and Ψ is a predicate over the input variables
X. An abstract component can work properly iff Ψ holds for some valuation
of the input variables X.

The transfer function T(X)1 represents the transformation of input
values X to output values Y in the analysis, i.e. Y = T(X). The predicate
Ψ(X) restricts the scope in which the underlying component can be used.
It formalizes the notion that a component can work properly, i.e. it meets
certain real-time requirements.

In the chapter we provide a running example that is not directly related
to real-time analysis but it serves well to illustrate the basic concepts.

Example 2.2: Let suppose that packet streams share a communication unit.
The analysis simply adds the data rates of the streams and requires that the
accumulated rate does not exceed the available bandwidth.

Figure 2.1 represents a corresponding abstract component G where x2

represents the available bandwidth and x1 the bandwidth used by a single packet
stream. Note that the outgoing packet stream y1 may trigger a computation
demand on a computing unit that is attached to the communication unit. y2

denotes the remaining bandwidth available to other streams. ΨG denotes that
the component works properly only if the available bandwidth is larger than the
requested one. In this example, the input and output variables are non-negative
real numbers. In general, they could however be of any type. In particular,
in real-time analysis, functions over independent variables are often used, e.g.
arrival and service curves, demand bound functions, etc. Moreover, the predicate
may also be used to describe other kinds of constraints such as memory, energy,
or delays.

1Unless there are ambiguities, we will not distinguish between a set of variables and
their valuation, e.g. depending on the context, X can represent a set of input variables
or their values.
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2.3.2 Network of Abstract Components
Outputs of abstract components can be connected to inputs which leads
to a network of abstract components.2 The inputs (outputs) of such a
network are those inputs (outputs) of its abstract components that are not
connected to some output (input).

Definition 2.3: (Network of Abstract Components) A network of abstract
components F consists of connected abstract components F ∈ F that form a
connection graph. If an output is connected to an input, then the variables
are identical; unconnected variables are assumed to be different. Connections are
point-to-point, i.e. an output is connected to at most one input and vice versa.3

The following elements are defined:

• Inputs of F: XF = (
⋃

F∈F XF)\(
⋃

F∈F YF)

• Outputs of F: YF = (
⋃

F∈F YF)\(
⋃

F∈F XF)

• Predicate of F: ΨF =
∧

F∈F ΨF

• The transfer function TF of F is determined by concatenating TF, F ∈ F,
according to the connection graph, i.e. YF = TF(XF) ⇒

∧
F∈F(YF =

TF(XF)) is satisfiable for all valuations of XF.

A network of abstract components can work properly iff ΨF is satisfiable for
some inputs XF.

In this section, we will only look at networks of abstract components
whose connection graph does not contain directed cycles. Possible
extensions are discussed in Section 2.5. Moreover, it should be noted
that a network of abstract components as defined in Definition 2.3 is in
the form of an abstract component again, i.e. it is defined by sets of
input and output variables, a transfer function and a predicate over the
input variables. In order to understand the important notion of working
properly in the context of networks of components, we introduce the
notion of a subnetwork.

Definition 2.4: (Subnetwork of Abstract Components) A subnetwork G of
a network F is denoted as G ⊆ F and consists of abstract components in G ⊆ F
that form a subgraph of the connection graph, i.e. deleting abstract components
F\G and incident connections.

2For the sake of simplicity, the above component model does not define types that
would restrict possible compositions. It will be straightforward to extend it.

3This is without any restriction in generality. If an output needs to be connected to
several inputs, then an additional one-to-many component will do.
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Fig. 2.2: A network of components F consisting of two abstract components G
and H from Example 2.6. The associated partial orders are shown next to each
input and output variable. The connection graph is also shown on the right

Similarly we need to define what it means to connect two networks of
components and when they are compatible.

Definition 2.5: (Connection and Compatibility for Abstract Components)
Connecting two networks G and H to form a network F is denoted as
G ‖ H = F. We call G and H compatible (G ∼ H) if the network G ‖ H can
work properly.

Now the above concepts can be used to continue with the running
Example 2.2.

Example 2.6: Figure 2.2 represents a simple network of two abstract components
where each is of the form defined in Example 2.2.

Here, two packet streams with bandwidth x1 and x3 share a common bus
with bandwidth x2. x4 and y2 ought to be just one single variable (to match the
previous definitions), but the original names from G and H are used to simplify the
presentation. We have XF = (x1, x2, x3), YF = (y1, y3, y4), ΨF(x1, x2, x3) = (x2 ≥

x1) ∧ (x2 − x1 ≥ x3) and (y1, y3, y4) = TF(x1, x2, x3) = (x1, x3, x2 − x1 − x3). Of
course, ΨF is satisfiable for some input XF and therefore, the abstract components
can work properly.

2.3.3 Incremental Design
Following [dAH05], we want to ensure the property of incremental design,
i.e. if a network of abstract components can work properly, then it can
be composed in any order from subnetworks and these subnetworks
can work properly also. In other words, if a subnetwork can not
work properly, then the whole network can not. Obviously, the reverse
direction can not be expected: If two networks can work properly, their
composition may not. This is described formally in the following theorem.
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Theorem 2.7: (Incremental Design with Abstract Components) Given a
network F. If F can work properly then any sub-network G ⊆ F can work
properly.

Proof. If F can work properly, then ΨF =
∧

F∈F ΨF is satisfied for some
input valuation XF, see Definition 2.3. Following the definition of the
transfer function TF, we can determine for such an input the values of
all internal variables by concatenation of functions TF, F ∈ F. For any
subnetwork G ⊆ F, we can set the input variables to the same values as
in F. As

∧
F∈F ΨF was satisfied,

∧
G∈G⊆F ΨG is satisfied too andG can work

properly.

2.3.4 Refinement
In a design process, there is often the demand for independent
implementability. One can replace the implementation of a subnetwork
by another one, as long as the new abstract component representing this
new subnetwork refines the original one. If the original network could
work properly, then this design step should not violate this property. This
way, the implementation of subsystems can be performed independently.

In order to allow refinement, we need to define the class of monotone
abstract components.

Definition 2.8: (Monotone Abstract Component) To each input and output
variable of an abstract component, we associate an individual partial order
denoted as ≥, i.e. a binary relation which is reflexive, antisymmetric, and
transitive.4 An abstract component F is called monotone, if for all XF, X̂F we
have that:

XF ≥ X̂F ⇒ TF(XF) ≥ TF(X̂F) ,

XF ≥ X̂F ∧ΨF(XF)⇒ ΨF(X̂F) .

If monotone abstract components are connected, then the partial orders assigned
to connected input/output pairs must be identical.

It can simply be seen that the composition of monotone abstract
components is monotone again as we just compose monotone functions
and conjunct monotone predicates. Without loss of generality we consider
only monotone abstract components. In Chapter 3 we will show that

4If we write X ≥ X̂ for sets of variables X and X̂, then the comparison is done using
the binary relation that is specific for each variable.
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many useful abstract components used for performance analysis are
indeed monotone. Based on the notion of monotonicity, we can now
define the refinement of an abstract component.

Definition 2.9: (Refinement for Abstract Components) Given a monotone
abstract component G that can work properly. Then G′ refines G denoted
as (G � G′) if:

• The sets of input and output variables of G and G′ are equal.5

• (ΨG(X) ⇒ ΨG′(X)) ∧ (TG(X) ≥ TG′(X)) for all valuations of input
variables X.

According to the above definition, a refined abstract component has a
weaker predicate. In addition, the transfer functions satisfy Y ≥ TG(X)⇒
Y ≥ TG′(X) for all Y (using the respective partial order for each variable).
Note that the abstract component in Definition 2.9 may also denote a
network of abstract components, see Definition 2.3. Therefore, the notion
of refinement holds for both single abstract components and networks of
abstract components.

Theorem 2.10: (Refinement for Abstract Components Preserves Compati-
bility) Given a network of monotone abstract components F that can work
properly and an arbitrary partition F = G ‖ H. If we refine G to G′ (G � G′)
then F′ = G′ ‖H can work properly, i.e. G′ ∼H.

Proof. AsF can work properly,
∧

F∈F ΨF can be satisfied for some valuation
of input variables XF. The variables in the network with G replaced by G′

according to Definition 2.9 are denoted as X̃G′ , ỸG′ , X̃H, ỸH. In the original
network they are denoted as XG, YG, XH, YH. As all transfer functions are
monotone and because of Definition 2.9, we have X̃G′ ≤ XG , ỸG′ ≤ YG ,
X̃H ≤ XH , and ỸH ≤ YH . Because (ΨG(XG)⇒ ΨG′(XG)), X̃G′ ≤ XG and the
monotonicity of Ψ and T (see Definition 2.8), the predicates of all abstract
components in the new system are satisfied.

The concepts of refinement and independent implementability can
now be illustrated in the running example.

5In order to reduce the notational overhead, we restrict the refinement of an abstract
component to changes of its predicate and transfer function only. In a similar way to
[dAH05], the number of inputs and outputs could also be changed.
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G’
x2 ,≤

x1 ,≥

y1 ,≥

y2 ,≤
ψG’

(y1, y2) = TG’(x1, x2) = (x1-1, x2-x1+1)
ψG’(x1, x2) = (x2+1 ≥ x1)

Fig. 2.3: The refined component G′ (G � G′) used in Example 2.11, where G is
shown in Fig. 2.1

Example 2.11: Given the small networkF in Fig. 2.2, we now consider the partial
orders of the different variables. As all variables are simple real numbers and
not complex data types such as tuples (e.g. representations of event streams in
the form of ’period and jitter’ or ’burst size and average rate’) or curves (e.g.
arrival and service curves), we only use the conventional ’greater or equal’ ≥ for
variables x1, x3, y1, y3 and ’less or equal’ ≤ for variables x2, x4, y2, y4. Then the
partial orders of connected inputs and outputs match.

The transfer function TF and predicate ΨF are monotone, see Definition 2.8.
For example, as ΨF(x1, x2, x3) = (x2 ≥ x1)∧(x2−x1 ≥ x3) we have x1 ≥ x̃1∧x2 ≤

x̃2 ∧ x3 ≥ x̃3 ∧ [(x2 ≥ x1) ∧ (x2 − x1 ≥ x3)]⇒ (x̃2 ≥ x̃1) ∧ (x̃2 − x̃1 ≥ x̃3).
A refined component G′ shown in Fig. 2.3, i.e. G � G′, could be characterized

by (y1, y2) = TG′(x1, x2) = (x1 − 1, x2 − x1 + 1) and ΨG′ = (x2 + 1 ≥ x1), see
Definition 2.9. Looking at TG′ , one can see that the component delivers a packet
stream with a smaller bandwidth (y1 < x1) and provides more communication
bandwidth to other packet streams via y2 where y2 > x2 − x1 + 1.

If we would replace G in Fig. 2.2 by G′, we would obtain a new network
called F′ according to Theorem 2.10. We can now compute the new predicate
ΨF′(x1, x2, x3) = (x2 + 1 ≥ x1)∧ (x2−x1 + 1 ≥ x3). Then, it can easily be verified
that Theorem 2.10 holds. In other words, if predicate ΨF holds for a certain
valuation of inputs then also ΨF′ holds, and therefore, F′ can work properly.

2.4 Adaptive Real-Time Interfaces
An adaptive interface of an abstract component not only exposes enough
information to predict whether a composition with other components is
compatible, but in addition, (a) it is adaptive as it changes assumptions
and guarantees when connected components and their predicates change,
new components are added, or existing components are removed and (b)
it distributes constraints globally through the whole network. At first, we
will describe the main concept informally.
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Fig. 2.4: A simple abstract component F and its adaptive interface representation

Figure 2.4 shows an abstract component and the corresponding
adaptive interface representation. The abstract component variables
represent some abstraction of the actual component behavior, where
XF = (x1, x2), YF = (y1, y2) represent abstractions of its inputs and outputs,
respectively. The component works properly if ΨF(XF) is satisfied and it
can work properly, if ΨF(XF) is satisfiable.

If we make the transition from an abstract component F to its adaptive
real-time interfaceF , see Fig. 2.4, then we have input and output variables
and implicit partial orders. The variables denoted with superscript G
are called guaranteed values, XG

F
≥ XF , YG

F
≥ YF. Their meaning is

that the network of abstract components works properly whenever the
abstract component variables are ’smaller’ than the guaranteed values
in the corresponding network of interfaces. The predicate ΨF has been
converted into the new assume variables XA

F
(denoted with superscript A).

Their meaning is that whenever we have XA
F
≥ XG

F
, then ΨF is satisfied6.

The adaptive interface makes the predicate ΨF explicit in the form of
additional input assume variables. They also appear at outputs of other
adaptive interfaces as output assume variables. Therefore, the following
interpretations can be given:

• Input assume variables: The input assume variables XA
F

describe the
assumption of the component toward the environment or other
components. If we have XA

F
≥ XG

F
, then (a) the corresponding

component works properly and (b) the requests of all connected
components (indicated by YA

F ) are satisfied, i.e. YA
F
≥ YG

F
.

• Output assume variables: The output assume variables YA
F

describe
the assumption of the environment or other components toward F,
i.e. they request that YA

F
≥ YG

F
.

6One may extend the framework and consider explicitly predicates in the abstract
interface also, see Section 2.5.2.
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With this framework a particular combination of assumptions and
guarantees can be determined for each component which will reflect
current system inputs, constraints and requirements.

Next we will see how input and output assume and guarantee
variables are connected by transfer functions. This way, it is possible to
represent adaptive behavior of a component, e.g. if it changes its behavior
depending on local requirements, this will be reflected in the input and
output assumes and guarantees. Moreover, one can decide whether the
whole system is able to meet constraints and under what assumptions on
its inputs, thereby solving important synthesis questions.

2.4.1 Single Adaptive Interface
Now we can state the formal definition of an adaptive real-time interface.

Definition 2.12: (Adaptive Real-Time Interface) An adaptive interface
(XA,XG,YA, YG, T f ,Tb) corresponds to a monotone abstract component
(X,Y,T,Ψ) with at least one input and is characterized as follows:

• A set of input guarantee and input assume variables XG and XA, one
for each variable in the inputs X of the abstract component. The input
guarantee variables XG are inputs for the adaptive interface, and the input
assume variables XA are outputs for the adaptive interface.

• A set of output guarantee and output assume variables YG and YA, one
for each variable in the outputs Y of the abstract component. The output
guarantee variables YG are outputs for the adaptive interface, and the
output assume variables YA are inputs for the adaptive interface.

• A monotone forward transfer function with YG = T f (XG).

• A backward transfer function with XA = Tb(XG,YA).

In addition, we require that:

XA
≥ XG

≥ X⇒ YA
≥ YG

≥ Y ∧Ψ(X) .

According to the above definition, an adaptive interface has a pair of
variables (one is an input the other one is an output) for each variable of the
corresponding abstract component. The outputs of the adaptive interface,
XA and YG, are computed using the forward and backward transfer
functions. Therefore, the input assumptions and output guarantees,
XA and YG, adapt depending on the propagated requirements and
constraints from the other components and the environment. Note that
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Fig. 2.5: Adaptive interfaces that correspond to the abstract component and the
network of abstract components shown in Fig. 2.1 and Fig. 2.2, respectively

the underlying abstract component may also represent a whole set of
connected components.

The condition that establishes the relation between an abstract
component and its adaptive interface reads as follows: If the input values
of the abstract component as well as the corresponding assumptions and
guarantees match (using the partial order assigned to each single input),
then the same holds for the output values and the predicate of the abstract
component is satisfied. Later on, we will determine T f and Tb such that
this requirement is satisfied. But at first, let us illustrate Definition 2.12
with a simple network of two abstract components and their respective
interfaces.

Example 2.13: Figure 2.5 shows on the left hand side an adaptive interface that
corresponds to the abstract component shown in Fig. 2.1.

We have XG
G

= (xG
1 , x

G
2 ), XA

G
= (xA

1 , x
A
2 ), YG

G
= (yG

1 , y
G
2 ) and YA

G
= (yA

1 , y
A
2 ).

Let us use the forward and backward transfer functions (yG
1 , y

G
2 ) = T f

G
(xG

1 , x
G
2 ) =

(xG
1 , x

G
2 − xG

1 ) and (xA
1 , x

A
2 ) = Tb

G
(xG

1 , x
G
2 , y

A
1 , y

A
2 ) = (min{xG

2 , y
A
1 },max{xG

1 , y
A
2 +

xG
1 }). Then we can easily check that XA

G
≥ XG

G
≥ XG ⇒ YA

G
≥ YG

G
≥ YG∧ΨG(XG),

i.e. if the assumptions and guarantees of the inputs match (xA
1 ≥ xG

1 ,xA
2 ≤ xG

2 ),
then those of the outputs also match (yA

1 ≥ yG
1 ,yA

2 ≤ yG
2 ), and the predicate of the

abstract component is satisfied (ΨG(XG
G

) = (xG
2 ≥ xG

1 )).

2.4.2 Connecting Adaptive Interfaces
Now we can proceed with the formal definition of the connection of two
interfaces G andH .

Definition 2.14: (Connection of Adaptive Real-Time Interfaces) The connec-
tion of two interfacesG ‖ H follows the connection of the corresponding abstract
components, i.e. G ‖ H. In particular, we have:
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• If an output y of an abstract component is connected to an input x with
x = y, then the corresponding assume and guarantees are identical too:
xG = yG and yA = xA.

• The inputs and outputs of the adaptive interface F = G ‖ H are given
by XA

F
= (XA

G
∪ XA

H
)\(YA

G
∪ YA

H
)), YA

F
= (YA

G
∪ YA

H
)\(XA

G
∪ XA

H
)), XG

F
=

(XG
G
∪ XG

H
)\(YG

G
∪ YG

H
)), and YG

F
= (YG

G
∪ YG

H
)\(XG

G
∪ XG

H
)).

• The forward and backward transfer functions T f
F

and Tb
F

are determined
by composing T f

G
with T f

H
, and Tb

G
with Tb

H
, respectively, following the

connections of the interfaces inputs and outputs, see Definition 2.3.

The above definition can easily be extended to the case of a
network of adaptive interfaces as in the case of abstract components,
see Definition 2.3. The construction of the forward and backward
transfer functions T f and Tb, according to Definition 2.14, by a simple
concatenation of functions requires that there are no dependency cycles.
The following theorem proves that this is actually the case if the
corresponding network of abstract components does not have directed
cycles either.

Theorem 2.15: (Transfer Functions for Networks of Adaptive Real-Time
Interfaces) Given a network of monotone abstract components F whose
connection graph is free of directed cycles and a partitioning F = G ‖ H.
Interfaces G andH correspond to the subnetworks G and H, respectively. Then
T f
F

and Tb
F

can be determined without dependency cycles, i.e. by simple function
composition (concatenation).

Proof. All guarantee variables can be determined with simple
concatenation of forward transfer functions as the connection graph
of F does not contain directed cycles and the interconnection of the
corresponding adaptive interfaces follows this structure, and as YG =
T f (XG). The assume variables are determined according to XA =
Tb(XG,YA). Their values depend on the guarantee variables (whose
values can be determined without considering dependency cycles) and
on assume variables. Because of Definition 2.14, the determination of the
assume variables again follows the connection graph, but now with all
edges reversed. As this graph also does not contain directed cycles, the
theorem follows.

From Definition 2.14, we know how to combine a set of adaptive
interfaces to a new adaptive interface. In addition, Definition 2.12 states
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the condition, that an adaptive interface actually represents an abstract
component, i.e. that it can work properly. The above concepts are
useful only, if we are able to show that the combined adaptive interface
contains enough information to decide whether all abstract components
it represents can work properly together.

Theorem 2.16: (Compatibility for Adaptive Real-Time Interfaces) The com-
position of two interfacesF = G ‖ H is called compatible (G ∼ H), iff XA

F
≥ XG

F

is satisfiable. Then we have (G ∼ H)⇒ (G ∼H), i.e. the corresponding abstract
components also can work properly together. In particular, we have:

XA
F
≥ XG

F
≥ XF ⇒ YA

F
≥ YG

F
≥ YF ∧ΨF(XF) .

Proof. Let us first consider two connected abstract components M and N,
i.e. K = M ‖ N. As the connection graph does not contain any directed
cycles, we can suppose that only outputs of M are connected to inputs of
N. The corresponding adaptive interfaces are connected correspondingly.
ForM we have XA

M
≥ XG

M
≥ XM ⇒ YA

M
≥ YG

M
≥ YM ∧ΨM(XM). As some

of the outputs of M are connected to some inputs of N and the other
inputs of N are inputs of K, we also have XA

K
≥ XG

K
≥ XK ⇒ XA

N
≥ XG

N
≥

XN ∧ΨN(XN). If we combine the arguments for the two components, we
obtain XA

K
≥ XG

K
≥ XK ⇒ YA

K
≥ YG

K
≥ YK ∧ΨK(XK). The same argument

can be now recursively applied to the case of interfaces that represent
sub-networks of abstract components.

The theorem now states that it is sufficient to look only at the input
guarantees and assumptions of an adaptive interface in order to determine
whether the corresponding abstract components work properly together.
That is, if we have XA

F
≥ XG

F
, then we can also conclude that all output

assumptions from the environment are satisfied as well as the predicates
of the abstract components.

Example 2.17: We are continuing Example 2.13 by connecting the adaptive
interfaces G, H of the abstract components G, H according to the network F
shown in Fig. 2.2. The resulting interfaceF and its compositionF = G ‖ H are
shown in Fig. 2.5 on the right hand side. As stated in Theorem 2.15, the resulting
forward and backward transfer functions can be computed by simple composition.
We obtain (yG

1 , y
G
3 , y

G
4 ) = T f (XG

F
) = (xG

1 , x
G
3 , x

G
2 − xG

1 − xG
3 ) and (xA

1 , x
A
2 , x

A
3 ) =

Tb(XG
F
,YA
F

) = (min{xG
2 , y

A
1 },max{xG

1 , x
G
1 + xG

3 , x
G
1 + xG

3 + yA
4 },min{xG

2 −xG
1 , y

A
3 }).

One can easily check that XA
F
≥ XG

F
is satisfiable and the abstract components

are compatible, i.e. can work together properly.



2.4. Adaptive Real-Time Interfaces 29

2.4.3 Constructing Transfer Functions
Now we will construct the forward and backward functions T f and Tb

in such a way that the relation XA
≥ XG

≥ X ⇒ YA
≥ YG

≥ Y ∧Ψ(X) in
Definition 2.12 holds.

Theorem 2.18: (Properties of Transfer Functions) If for all X, Y we have
T f (X) ≥ T(X) and X ≤ Tb(X,Y) ⇒ Y ≥ T f (X) ∧ Ψ(X) then XA

≥ XG
≥

X⇒ YA
≥ YG

≥ Y ∧Ψ(X).

Proof. We have XA
≥ XG

≥ X⇒ Tb(XG,YA) ≥ XG
∧T f (XG) ≥ T(X)⇒ YA

≥

T f (XG) ∧ YG
≥ Y ∧Ψ(XG) ⇒ YA

≥ YG
≥ Y ∧Ψ(X). Here we make use of

the monotonicity of T,T f , and Ψ, and Definitions 2.1 and 2.12.

The above theorem leads to a simple constructive method to determine
T f , namely T f = T. In the case of Tb, we determine one general possibility
next. Let the input variables of the abstract component be denoted as X =
(x1, ..., xN), then the construction of a large but feasible Tb(X,Y) involves
the following three steps:

1. Determine a set of N functions Ψ̃i(X) such that
Ψ̃i(X) = max{z |Ψ(x1, . . . , xi−1, z, xi+1, . . . , xN)} for all X.

2. Determine a set of N functions T̃i(X,Y) such that
T̃i(X,Y) = max{z |Y ≥ T f (x1, . . . , xi−1, z, xi+1, . . . , xN)} for all X, Y.

3. Finally, we have for all i: Tb
i (X,Y) = inf{Ψ̃i(X), T̃i(X, Y)} for all X, Y.

In steps 1 and 2, max denotes a maximal element of a set where the
partial order relation of xi is used. Let us choose some X, Y such that X ≤
Tb(X,Y) holds, then Step 3 yields xi ≤ Ψ̃i(X) and xi ≤ T̃i(X,Y). Because of 1
we find that Ψ(X) holds because Ψ(x1, ..., xi−1, Ψ̃i(X), xi+1, ..., xN) is satisfied
for all 1 ≤ i ≤ N, xi ≤ Ψ̃i(X), and Ψ is monotone. Because of 2 we find
that Y ≥ T(X) for all i holds because Y ≥ T(x1, ..., xi−1, T̃i(X,Y), xi+1, ..., xN),
xi ≤ T̃i(X,Y), and T is monotone.

Example 2.19: The forward and backward transfer functions for G as used in
Example 2.13 have been determined by the above method. Obviously, we had
T f
G

= TG, see also Fig. 2.1. Let us show how to construct xA
2 = Tb

2(XG
G
,YA
G

).

For step 2 we obtain T̃21 = min{z | yA
1 ≥ z} = −∞ and T̃22 = min{z | yA

2 ≤

z − xG
1 } = yA

2 + xG
1 . For step 1 we obtain Ψ̃2 = min{z | z ≥ xG

1 } = xG
1 . Note

that we have to consider the correct partial orders everywhere. Finally, we obtain
xA

2 = Tb
2(XG

G
,YA
G

) = sup{Ψ̃2, T̃21, T̃22} = max{xG
1 , y

A
2 + xG

1 }. This is the same
expression as used in Example 2.13.
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In Chapter 3 we will show how to determine the transfer functions
for several abstract components using Modular Performance Analysis
[CKT03b].

2.4.4 Refinement
In a similar way to the refinement of abstract components, we can
define the refinement of adaptive interfaces. Let us suppose that
a component is implemented together with an implementation of its
adaptive interface. This way, at a system house (that combines the
independently implemented components) one can connect the interfaces
during design time in order to check whether the components work
properly for the specific environment and set of constraints. A designer
may also explore different implementations of the components and their
respective interfaces, and can be sure that they can be connected and work
together properly as long as the new interfaces refine the original ones.
One may even adapt the assumptions and guarantees of an interface at
run-time in order to perform a system-wide admittance test in case the
environment changes (adaptive behavior). In this case, the interfaces are
actually implemented on the run-time system.

In both cases it would be useful if the implementation of such
a combined component/interface can be performed independently, i.e.
involving also a possible change in the interface. Such a change may be
necessary for example to reflect a simplified implementation. But it must
still be guaranteed that if a network of interfaces worked properly for a
certain set of input assumptions and output guarantees, then it also works
properly after a refinement of the adaptive interface for the same set.

The following arguments follow closely those in Section 2.3.4 but
before we proceed, we need to define antitone functions. A function
T is called antitone if for all X, X̃ we have that:

X ≥ X̃⇒ T(X) ≤ T(X̃) .

Definition 2.20: (Refinement for Adaptive Real-Time Interfaces) Given an
adaptive interface G. Then G′ refines G (G � G′) if:

• The sets of input and output variables of G and G′ are equal.

• T f
G

(X) is monotone in X and Tb
G

(X,Y) is monotone in Y, antitone in X.

• T f
G

(X) ≥ T f
G′

(X) and Tb
G

(X,Y) ≤ Tb
G′

(X,Y) for all valuations of variables
X, Y.
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From Definition 2.20 it follows that a refined adaptive interface has a
stronger forward and a weaker backward transfer function. Now we can
state the main refinement theorem.

Theorem 2.21: (Refinement for Adaptive Real-Time Interfaces Preserves
Compatibility) Given adaptive interfaces and a compatible connection, i.e.
F = G ‖ H and G ∼ H . If we refine G to G′ (G � G′) then F ′ = G′ ‖ H is
also a compatible connection, i.e. G′ ∼ H .

Proof. As G ∼ H we find from Theorem 2.16 that XA
F
≥ XG

F
is satisfiable

for some XG
F

. After replacing G by G′ let the variables in the network

be denoted as X̃G,A
G′

, ỸG,A
G′

, X̃G,A
H

, ỸG,A
H

. Because of the monotonicity of

T f
F

(X) and T f
F

(X) ≥ T f
F ′

(X) we find X̃G
G′
≤ XG

G
, ỸG

G′
≤ YG

G
, X̃G

H
≤ XG

H
,

and ỸG
H
≤ YG

H
. In a similar way, because the backward functions are

monotone in the guarantee and antitone in the assume inputs, and because
Tb
F

(X,Y) ≤ Tb
F ′

(X,Y), we find X̃A
G′
≥ XA

G
, ỸA

G′
≥ YA

G
, X̃A

H
≥ XA

H
, and

ỸA
H
≥ YA

H
. As a result, we find XA

F ′
≥ XA

F
≥ XG

F
≥ XG

F ′
and therefore

XA
F ′
≥ XG

F ′
.

2.4.5 Incremental Design
We would ideally expect that the incremental design property for
networks of abstract components holds also in the case of networks
of adaptive interfaces. Let us suppose that we have a network of
abstract components, that can work properly. Summarizing the results
we obtained so far, we can draw the following conclusions:

• Any subnetwork of abstract components can also work properly,
see Theorem 2.7.

• If we connect two subnetworks G and H that are represented by
adaptive interfaces G and H , then (G ∼ H) ⇒ (G ∼ H), see
Theorem 2.16. In other words, compatibility of interfaces guarantees
that the associated components can work properly together, but not
the other way round.

Therefore, the property of incremental design does not hold for
adaptive interfaces as defined so far. Composition of adaptive interfaces
is not associative and therefore, the success of a design (in terms of
compatibility of interfaces) depends on the ordering of compositions.
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On the other hand, if we would have a one-to-one correspondence
between the compatibility of adaptive components and interfaces, then
the property stated in Theorem 2.7 would carry over to adaptive
interfaces.

Definition 2.22: (Strict Adaptive Real-Time Interface) A strict adaptive
interface is an adaptive interface according to Definition 2.12 that satisfies
in addition the following property:

YA
≥ YG

∧Ψ(XG)⇒ XA
≥ XG.

Now, we can state the necessary strong relation between abstract
components and strict adaptive interfaces.

Theorem 2.23: (Equivalence of Compatibility for Abstract Components and
Strict Adaptive Real-Time Interfaces) Given a composition of two strict
interfaces F = G ‖ H where the corresponding network of components F
does not have any outputs 7. Then we have (G ∼ H) ⇐⇒ (G ∼H).

Proof. The forward direction (G ∼ H) ⇒ (G ∼ H) has already been
proved in Theorem 2.16. Let us first consider two connected abstract
components A and B, i.e. C = A ‖ B. As the connection graph does
not contain any directed cycles, we can suppose that only outputs of A
are connected to inputs of B. The corresponding adaptive interfaces are
connected correspondingly. ForBwe have YA

B
≥ YG

B
∧ΨB(XG

B
)⇒ XA

B
≥ XG

B
.

As some of the outputs of A are connected to some inputs of B and the
other outputs of A are outputs of C, we also have YA

C
≥ YG

C
∧ΨC(XG

C
) ⇒

YA
A
≥ YG

A
∧ ΨA(XG

A
) ⇒ XA

A
≥ XG

A
. As the inputs of C contain inputs of

A and B, we finally have YA
C
≥ YG

C
∧ ΨC(XG

C
) ⇒ XA

C
≥ XG

C
. The same

argument can now be recursively applied to the case of interfaces that
represent subnetworks of abstract components.

As a result of Theorem 2.23, there is a one-to-one correspondence
between the compatibility relations for interfaces and the corresponding
underlying network of abstract components. Therefore, if adaptive
interfaces are strict, then they allow for incremental design as defined
in [dAH05].

It remains to show, how we can construct the transfer functions of a
strict adaptive interface, and when they exist.

7This technical condition ensures that we do not impose additional assume/guarantee
constraints from the environment that are not present in the corresponding network of
abstract components. This is no restriction of generality as one could close open outputs
with additional abstract components.
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Theorem 2.24: (Strict Forward and Backward Transfer Functions) We call T f

and Tb strict if they satisfy the conditions of Theorem 2.18 and in addition
Ψ(X)⇒ Tb(X,T(X)) ≥ X for all X. In this case we have XA

≥ XG
⇐⇒ YA

≥

YG
∧Ψ(XG).

Proof. The forward direction has already been proved in Theorem 2.18.
Here we show: YA

≥ YG
∧Ψ(XG) ⇒ Tb(XG,YA) ≥ Tb(XG,YG) ∧Ψ(XG) ⇒

XA
≥ Tb(XG,YG) ∧ Ψ(XG) ⇒ XA

≥ Tb(XG,T(XG)) ∧ Ψ(XG) ⇒ XA
≥

Tb(XG,T(XG)) ≥ XG. Here we use the monotonicity of Tb(X,Y) in Y and
Definition 2.12.

Finally, we will give a constructive method to determine strict forward
and backward transfer functions from T and Ψ. It follows directly the
approach taken in Section 2.4.3 but replaces ’a maximal’ element by ’the
greatest’ element:

T f (X) = T(X) ,

Ψ̃i(X) = grt{z | Ψ(x1, ..., xi−1, z, xi+1, ..., xN)} ,

T̃i(X,Y) = grt{z | Y ≥ T(x1, ..., xi−1, z, xi+1, ..., xN)} ,

Tb
i (X,Y) = inf{Ψ̃i(X), T̃i(X,Y)} ,

where grt yields the greatest element of a set (if it exists) and inf denotes
the infimum of a set. Note that the sets are partially ordered using the
partial order associated to each input and output, see Definition 2.8. For
example, inf and grt in the above equations use the partial order associated
with xi and the relations in Y ≥ T(x1, ..., xi−1, z, xi+1, ..., xN) are computed
using the partial order associated with each y j. It also appears, that Tb

can only be computed if the greatest elements of the partially ordered sets
exist.

We still need to show that the above equations yield a valid strict
backward transfer function with X ≤ Tb(X,Y) ⇒ Y ≥ T(X) ∧ Ψ(X) and
Ψ(X)⇒ Tb(X,T(X)) ≥ X. For the first relation, we find:

X ≤ Tb(X,Y)⇒
∧

i

(xi ≤ Tb
i (X,Y))⇒∧

i

(xi ≤ T̃i(X,Y)) ∧
∧

i

(xi ≤ Ψ̃i(X))⇒

Y ≥ T(X) ∧Ψ(X) .
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Fig. 2.6: The adaptive interface from Fig. 2.5 but now it shows valuations for the
output assumptions and computed values for the input assumptions

Using the definitions of the infimum and greatest element, the second
relation can be shown as follows using a proof by contrapositive:

X � Tb(X,T(X))⇒
∨

i

(xi � Tb
i (X,T(X)))⇒∨

i

(xi � T̃b
i (X,T(X))) ∨

∨
i

(xi � Ψ̃i(X))⇒

(T(X) � T(X)) ∨Ψ(X)⇒

Ψ(X) .

The following example applies the concept of strict transfer functions
to our running example.

Example 2.25: As the forward and backward transfer functions of G have been
already determined in the way described here, they are strict and therefore, the
adaptive interface shown in Fig. 2.5 and Example 2.13 is strict too. As a result
from Theorem 2.23 we can also conclude that the interface F as shown on
the right hand side of Fig. 2.5 is strict and we have the compatibility relation
(G ∼ H) ⇐⇒ (G ∼ H), see Theorem 2.23. The corresponding transfer
functions are given in Example 2.17.

Now we can show how one can use adaptive interfaces for solving
design problems off-line or for adapting to changes in the environment
that are either caused by changed requirements (assumptions) or changed
properties.

Example 2.26: Consider Fig. 2.6 which shows the adaptive interface F again,
but now with some (assumed) valuations of the outputs.

We can summarize some uses of adaptive interfaces at design time and at
run-time as follows:
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Design Time
Let us suppose, that there are two packet streams with bandwidth requirements
xG

1 and xG
3 to be processed, then we can directly compute the requirement toward

the bus bandwidth xA
2 . As in the above example, xA

2 does not depend on xG
2 , see

Section 2.5.3, we can also set the bus bandwidth to its minimal feasible value
xG

2 = xG
1 + max{0, xG

3 }, given input demands xG
1 and xG

3 of the traffic streams.
After any single change of one of the input guarantees or output assumptions,
we need to recalculate all the other assumptions and guarantees.

Run-Time
If the adaptive interface is implemented in the run-time system, the above
described process can be used to adapt to new requirements and guarantees
of the environment:

1. Change one input guarantee according to a new environment, e.g. adapt
the available bus bandwidth or the bandwidth of packet streams while
respecting the corresponding assume. The execution of the actual change
will be subject to a mode change protocol as will be further elaborated in
Chapter 5.

2. Recalculate the resulting assumptions in the whole system in order to adapt
to the new environment.

This method can be applied if the underlying network of abstract components is
free of undirected cycles, see Section 2.5.3.

We continue with a small example that illustrates the modularity of
the whole network. This will be further illustrated with the case study in
Section 2.7.

Example 2.27: Finally, Fig. 2.7 shows a more complex scenario that shows the
modularity of the framework described in this chapter.

Here, we have two independent resources such as a communication unit with
bandwidth x2 and a computing resource with service x6. Both packet streams
pass the communication unit and the computing device. Note that the interfaces
could be combined in any order (incremental design property) because of the
strict forward and backward transfer functions. As indicated in Fig. 2.7, we
could construct interfaces K and L that abstract each packet stream (instead of
abstracting the resources as in Fig. 2.6).

2.5 Extensions of the Basic Framework
The above framework for interface-based analysis, design, and adaptation
of real-time systems can be extended in several ways. The following
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Fig. 2.7: Adaptive interface for a more complex system with two resources

discussion is done in an informal manner and only the major ideas and
concepts are briefly presented.

2.5.1 Multiple Assume/Guarantee Pairs
In the adaptive interfaces defined so far, there has been exactly one
assume/guarantee pair for each input and output of the corresponding
abstract component. One could extend the framework by allowing several
of these pairs. This way, it is possible to consider for example upper and
lower constraints for a given value. This has been extensively used in
the interface-based design with modular performance analysis as will be
shown in Chapter 3, see also [WT05b, WT06a].

2.5.2 Additional Predicates in Adaptive Interfaces
Clearly, not all constraints imposed by an environment or by abstract
components can be simply phrased into the restricted class of adaptive
interfaces that we defined. It is possible to add to each interface additional
predicates like the ones defined for abstract components.

2.5.3 Cycle-Free Networks of Abstract Components
We have been restricting the framework to the case where there are
no directed cycles in the network of components. We can restrict the
scope even more by having the condition that there are no undirected
cycles. Then the network of adaptive interfaces has a very interesting and
practically important property.
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By inspecting the class of cycle-free connection graphs it can easily
be shown that in this case for each input and output variable of the
network the following statements hold: (1) For any input, the assume
value does not change if the corresponding guarantee is changed. (2) For
any output, the guarantee value does not change if the corresponding
assume is changed.

Consider now the network of adaptive interfaces. We can now select
any input guarantee xG and change it while respecting xG

≤ xA. In other
words, for all xG

≤ xA, the system of components still works properly
while guaranteeing all constraints. This can be used during design time
in order to determine, for example, the maximally allowed input rates or
the minimal processor capabilities. If the network of adaptive interfaces is
used at run-time, then the change of the environment at a single input can
be accepted as long as xG

≤ xA. Afterwards a re-calculation of the interface
equations (using forward and backward transfer functions) needs to be
performed, and new assumptions toward the environment are calculated.

The same principle does hold for output assumptions also. In
particular, the environment can (dynamically) pose a new constraint by
changing a single output assume yA while respecting yA

≥ yG. Examples
are changed required properties of the outgoing event streams or required
qualities of the remaining resources. Again, such changes can be done
either at design time or at run-time. They would also require re-
calculation of the interface equations, and the new assumptions should
be propagated through the system.

2.5.4 Cycles in Networks of Abstract Components
We have been restricting the scope of the framework to connection graphs
that are free of directed cycles. Otherwise, for the computation of the
transfer function of connected components, fixed point calculations may
be necessary. The same holds for the forward and backward transfer
functions of the corresponding interfaces also. The present framework
provides the necessary algebraic background to formally argue about the
existence of these fixed points.

If the network does contain undirected cycles, the framework of
Adaptive Real-Time Interfaces as presented here works as described.
In contrary to the simple scenario described in Figures 2.5 and 2.6,
assumptions and guarantees of a single input or output may depend on
each other. In order to find the maximal (in terms of the associated partial
order) input guarantee, again a fixed point iteration may be necessary.
The investigation of the conditions for convergence are outside the scope
of this work.
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Note that fixed point calculations in the context of real-time analysis
are in use since some time, see [RJE03]. Fixed point calculations for
cyclic component networks analyzed with modular performance analysis
have been investigated in [JPTY08]. The paper focuses on directed
cycles formed by mixed data and resource dependencies. Fixed point
calculations for networks with directed cycles in the data flows where
the component networks can be represented by marked graphs will be
discussed in Chapter 4.

2.6 Unifying Some Common Frameworks for Real-
Time Analysis

The presented framework for Adaptive Real-Time Interfaces is powerful
enough to unify several existing compositional performance analysis
methods and enable them with the concepts of interface-based design.
Here we briefly discuss how this can be done.

2.6.1 Hierarchical Scheduling
In [SL04], Shin et al. propose a compositional scheduling framework
to determine the schedulability of real-time systems with a set of
applications that are scheduled hierarchically. In this framework, the
resource demand of a single task is represented as a demand bound
function dbf, w ∈ W, see [Bar03], and a scheduling component has
as input the set of demand bound functions of all tasks that are
scheduled by this component. Depending on the associated scheduling
strategy, a scheduling component then determines the total demand
to schedule all tasks and expresses this again as a demand bound
function on its output. Scheduling components can then be composed
hierarchically, and the complete system is schedulable if the demand of
the scheduling component at the top of the hierarchy can be fulfilled by a
dedicated resource. In the context of Real-Time Interfaces, the scheduling
components of this framework can be interpreted as abstract components
(X,Y,T,Ψ), with a set of inputs X : x ∈ W and outputs Y : y ∈ W.
The transfer function T(X) is applied to compute the outgoing demand
bound function, and the predicate Ψ(X) expresses the constraint that a
component must be schedulable by a dedicated resource. It can be shown
that these abstract components are monotone under the partial order
defined as w ≥ w̃ ⇐⇒ w(t) ≥ w̃(t), ∀t ≥ 0. Based on these abstract
components, Adaptive Real-Time Interfaces can then be determined for
this scheduling framework following the steps described in this chapter.
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2.6.2 SymTA/S
In [RJE03], Richter et al. propose a compositional approach to extend
the concepts of classical scheduling theory to heterogeneous distributed
systems. In this approach, every single processor or communication link
is represented as a component that is analyzed locally. To interconnect
the various components, the method relies on a set of standard event
arrival patterns that are described as a tuple consisting of a period p ∈ P,
a jitter j ∈ J and a minimum event inter-arrival distance d ∈ D. Based on
the arrival patterns of the incoming event streams and on the scheduling
policy of the component, the appropriate analysis technique is chosen to
compute the worst-case response time of every incoming event stream,
and to compute the arrival patterns of the outgoing event streams that will
trigger succeeding components. In the context of real-time interfaces, the
components of this framework can be interpreted as abstract components
(X,Y,T,Ψ), with a set of inputs X : x = (p, j, d) ∈ P × J × D and outputs
Y : y = (p, j, d) ∈ P× J×D. The transfer function T(X) is applied to compute
the outgoing arrival patterns of event streams, and the predicate Ψ(X)
expresses the constraints on the maximum allowable response time for
every event stream as well as the schedulability of the total component.
It can be shown that these abstract components are monotone under the
partial order defined as:

(p, j, d) ≥ (p̃, j̃, d̃) ⇐⇒

min
{⌈

∆ + j
p

⌉
,
⌈
∆

d

⌉}
≥ min

{⌈
∆ + j̃

p̃

⌉
,
⌈
∆

d̃

⌉}
∀∆ ∈ R≥0 .

Based on these abstract components, Adaptive Real-Time Interfaces
can then be determined for this compositional framework following the
steps described in this chapter.

2.6.3 Modular Performance Analysis
In [CKT03b], an alternative approach for modular performance analysis of
real-time embedded system is proposed. In this approach, every task of a
system is represented as a component that is analyzed locally. The method
is based on arrival curves α(∆) ∈ A which are a generic event stream
model, see [Cru91a, Cru91b, LBT01], and on service curves β(∆) ∈ B, a
generic resource model. Based on the task processing semantics, a task
component relates incoming arrival and service curves that model the
input event stream and the available resources to outgoing arrival and
service curves that model the output event stream as well as the remaining
resources. The analysis method allows to compute delay bounds and
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buffer requirements at each task component. Task components are
interconnected via their arrival curve inputs and outputs to reflect the
flow of data in a system, and via their service curve inputs and outputs
to reflect the chosen scheduling policy in a system. In the context of
Real-Time Interfaces, task components can also be interpreted as abstract
components (X,Y,T,Ψ), with a set of inputs X : x ∈ A ∪ B and a set of
outputs Y : y ∈ A ∪ B. The transfer function T(X) equals the internal
component relations that are determined according to the processing
semantics. The predicate Ψ(X) expresses the constraints on the maximum
allowable delay or buffer requirements. It can again be shown that these
abstract components are monotone under the partial order defined as
α ≥ α̃ ⇐⇒ α(∆) ≥ α̃(∆),∀∆ ≥ 0 and β ≥ β̃ ⇐⇒ β(∆) ≥ β̃(∆),∀∆ ≥ 0.
Based on these abstract components, Adaptive Real-Time Interfaces can
again be determined following the steps described in this chapter. Initial
Adaptive Real-Time Interfaces for a subset of the modular performance
analysis framework are already presented in [WT05b] and [WT06a].
These results will be further extended in Chapter 3 toward distributed
systems.

2.7 Case Study
Here we will describe the application of the Adaptive Real-Time Interface
framework to the analysis and design of systems with earliest deadline
first (EDF) scheduling. It is supposed that the reader is familiar with
the basic analysis methods based on supply, demand, and request bound
functions as described for example in [SL03, Bar03], and the bounded
delay model [MF01]. The models developed here are simplified and their
purpose is only to illustrate the use of the Adaptive Real-Time Interfaces
framework. Similar results can be shown also for systems with fixed
priority scheduling, time division multiple access, servers, or hierarchical
scheduling, for details see [WT05b, WT06a, WT06b] and Chapter 3.

2.7.1 Modeling Earliest Deadline First (EDF) Scheduling
First we need to introduce the basic abstract components and their
respective interfaces in order to model EDF scheduled systems. Then
in Section 2.7.2 we will look closely at a scenario described by Henzinger
and Matic in [HM06].

The basic assumptions in our model are the following:

• A single processor characterized by a service curve β(∆) (also known
as supply bound function) which denotes the minimal computation
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time available in any time interval of length ∆. For example, a fully
available processor with speed 1 is characterized by β(∆) = ∆.

• A set of tasks τi with fixed computation times ei and relative
deadlines Di.

• The tasks are activated using event streams S j that are described
using arrival curves α j(∆) (also known as request bound functions).
Here, α j(∆) denotes the maximal number of events that can arrive in
any time interval of length ∆. For example, a periodic event stream
with period p j has α j(∆) = d ∆

p j
e.

• An event stream triggers a chain of tasks, i.e. each event in a stream
directly triggers the first task. When an event has been processed
by a task, it triggers the next task in the chain, and so on until it is
processed by all tasks in the chain.

As an example, we describe one way to model systems with EDF
scheduling using the modular performance analysis method as described
in [WT06a]. Based on this we will develop the abstract components and
their adaptive interfaces. Several basic results about modeling of EDF
scheduling will be used here, more details can be found in Chapter 3.

Let us suppose that a task ti is activated by the events of several event
streams, each one characterized by an arrival curve αk(∆), k ∈ Ki. Then
it is activated by the accumulated arrival curve αi(∆) =

∑
k∈Ki

αk(∆) which
is the sum of the arrival curves of all activating streams. A set of tasks
τi, i ∈ I, is schedulable by EDF, iff β(∆) ≥

∑
i∈I ei · αi(∆ − Di) for all ∆ > 0

where the right hand side is also known as demand bound function8. The
condition simply states that the total demand for computation time from
tasks should always be smaller or equal to the available computation time
in any time interval. The output stream of a task τi that contains processed
events from the stream with arrival curve αk(∆), k ∈ Ki, is bounded by the
arrival curve α′k(∆) = αk(∆ + (Di − ei)) for any k ∈ Ki.

Using these well-known facts, we can now define basic abstract
components and use them to build networks of abstract components that
correspond to any particular scenario for systems with EDF scheduling.
To this end, we consider the two basic abstract components as shown in
Fig. 2.8 on the left hand side.

The top component G describes the use of the available service r to
process a task characterized by a relative deadline D and computation
time e. Therefore, variable r carries a service curve β(∆), and a carries
the accumulated arrival curves α(∆) activating the task. According to
the above analysis, the output c carries β(∆) − e · α(∆ − D) which now is

8We can suppose here that α(∆) = 0 for all ∆ ≤ 0.
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Fig. 2.8: Basic abstract components and interfaces for EDF scheduling

the transfer function of the abstract task component, and represents the
unused service that is available for other components connected to output
c. The predicate of the abstract task component is β(∆) ≥ e ·α(∆−D) which
represents the EDF schedulability condition. Note that the above transfer
function and predicate are monotone with respect to the partial order ≤
for r, c where a ≤ b iff a(∆) ≤ b(∆), ∀∆ > 0 and ≥ for a (defined in a similar
way). Defining the operator . as:

(a .D)(∆) =

{
a(∆ −D) ∆ > max(D, 0)
0 0 ≤ ∆ ≤ max(D, 0)

allows us to write more compactly the transfer function and the predicate
as follows:

c = r − e · (a .D) , Ψ = (r ≥ e · (a .D)) . (2.1)

The bottom abstract component H in Fig. 2.8 denotes the processing
of a stream with arrival curve α(∆) which is associated to input i. The
output arrival curve o can be determined as α(∆ + (D − e)) and g denotes
the accumulation of arrival curves of all streams that activate the task, i.e.
from the new input i and from other inputs accumulated in f . Using the
above shorthand notation, we find:

o = i . (e −D) , g = i + f . (2.2)

Besides these (monotone) transfer functions, there is no predicate
associated to a stream component.

By combining the above two classes of components according to a
given scenario, we get a network of abstract components that can be used
as described in the previous section. An example is given in Fig. 2.9 on
the left hand side.
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Fig. 2.9: Example of a network of abstract components and interfaces for EDF
scheduling

The scenario consists of two tasks τ1 and τ2 (there are two task
components). There are 3 event streams, namely i1, i3, and i4, where
i1 at first passes τ1 and then τ2. Task τ1 is triggered by i1 and i3,
and task τ2 is triggered by i1 (after passing τ1) and by i4. Because
of the independent implementability property, see Theorem 2.7, any
partitioning in sub-networks is possible (commutativity and associativity
of composition). For example, F denotes an abstract component that
describes the resource usage by the two tasks including the processing of
stream i1. The corresponding transfer function and predicate are obtained
by a (trivial) composition of the individual transfer functions of the used
abstract components G1, G2, H1 and H2.

In order to allow for solving synthesis problems and propagating
constraints, we can also construct the adaptive interfaces corresponding
to the abstract components, see Fig. 2.8 on the right hand side. According
to Theorem 2.24 and the subsequent method, we can construct strict
forward and backward transfer functions.

To this end, we need to define the backward transfer functions
according to Theorems 2.18 and 2.24. Whereas this is simple for the
usual addition and subtraction operators in (2.1) and (2.2), the operator .
is more difficult to handle. If b is the greatest positive function such that
b .D ≤ a then we denote b = a /D and find:

(a /D)(∆) =


a(∆ + D) ∆ > max(−D, 0)
a(0+) 0 < ∆ ≤ max(−D, 0)
0 ∆ = 0
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where a(0+) denotes limε↓0 a(ε).
Then we can determine the forward and backward transfer functions

of the adaptive task interface G shown in Fig. 2.8 as:

cG = rG
− e · (aG .D) , aA =

1
e

((rG
− cA) /D) , rA = cA + e · (aG .D) .

For the adaptive stream interfaceH we find:

gG = iG + f G , oG = iG . (e −D) , f A = gA
− iG ,

iA = min{gA
− f G, oA / (e −D)} .

The above forward and backward transfer functions are strict and
therefore, the composition of the adaptive interfaces is associative and
commutative which support the independent implementability property.
Note that the method described in [HM06] does not guarantee this
property. Figure 2.9 presents the same scenario, but now with a different
hierarchical component, namely F which abstracts all activations of task
τ1 and its influence on the system behavior. Note that the combined
interface can simply be constructed by composing the forward and
backward transfer functions. The system environment can be closed
by setting f G

3 = f G
4 = 0, oA

2 = oA
3 = oA

4 = ∞ and cA
2 = 0 for example.

Because of the adaptivity of the representation, the suitability of any
other environment with other guarantees and assumptions can be easily
checked.

Finally, one should note, that the same example could also be handled
with a different, more specific, abstraction of resources and event streams,
based on the well-known bounded delay model introduced in [MF01]. In this
case, the structure as shown in Figures 2.8 and 2.9 remains the same, only
the data types associated with the variables (the abstraction used in the
analysis) as well as the partial orders, transfer functions, and predicates
change. The bounded delay model is a much coarser abstraction than
general service curves and therefore, the bounds obtained are worse.
On the other hand, the analysis and synthesis is computationally much
simpler. Figure 2.10 shows the basic abstractions used in the bounded
delay model.

The arrival curve corresponding to a periodic event stream with period
p is shown in Fig. 2.10(a). Such an arrival curve, but also any other
one, can be abstracted using two numbers only, namely burst σ and rate
ρ, i.e. σ + ρ · ∆, as shown in Fig. 2.10(b). For the periodic task we
obtain σ = 1, ρ = 1/p. In a similar way, we can abstract any service
curve by the one shown in Fig. 2.10(c) using latency Θ and rate R, i.e.
max{0, (∆−Θ) ·R}. Using the new abstraction, we can now simply replace
the transfer functions, the predicates, and the forward and backward
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Fig. 2.10: Abstractions used in the bounded delay model: (a) a periodic arrival
curve that is abstracted by (b) a burst and a rate, and (c) a rate and a latency
resource model that can abstract any service curve

transfer functions. The valuations of variables for r and c are now tuples
(Θ,R) with the partial order ≤ defined as a ≤ b iff Θa ≤ Θb ∧ Ra ≤ Rb.
Similarly for variables a, i, o, f , and g, we have the tuples (σ, ρ) with the
partial order ≥ defined as a ≥ b iff σa ≥ σb∧ρa ≥ ρb. The transfer functions
and predicates can now simply be determined by combining the results
described in this chapter and [HM06].

2.7.2 A Comprehensive EDF Example
In this section, we will provide some numerical results for the EDF
scenario described in [HM06], i.e. a real-time robotic application adapted
from [HKL94]. We have a set of 13 tasks τi with i = 1, . . . , 13, computation
times ei and deadlines di. They are activated using 5 periodic streams Sk

with the nominal periods pk for k = 1, . . . , 5. The corresponding numbers
are given in Tables 2.1 and 2.2.

Tab. 2.1: Task computation times and deadlines for the comprehensive EDF
example

τ τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13

e 0.2 1.2 1.0 1.0 2.0 0.3 0.8 1.2 1.0 0.5 0.5 0.1 0.5
D 10.48 32.05 21.56 5.79 16.37 9.88 2.30 5.71 3.33 7.51 5.17 1.55 4.86

Tab. 2.2: Stream nominal event periods for the comprehensive EDF example

S S1 S2 S3 S4 S5

p 40 20 5 10 4
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τ1 τ2 τ3
S1
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τ9 τ10 τ11

τ12 τ13
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S4

S5

D E

F

Fig. 2.11: Task chains in the EDF example and the corresponding partitioning into
the abstract componentsD,E, and F

The structure of the application is shown in Fig. 2.11. Stream S1

activates the task chain τ1 → τ2 → τ3, stream S2 activates τ4 → τ5 → τ6

and so forth. A possible partitioning of the tasks into abstract components
D, E and F is also shown. Note that this is an informal representation
only as only the tasks are shown here and not the complete abstract
components that consist of task and stream subcomponents according
to Figures 2.8 and 2.9. The Adaptive Real-Time Interfaces D, E, and
F , corresponding to the partitioning shown in Fig. 2.11, are shown in
Fig. 2.12.

In terms of an incremental design, let us first connect the interfaces
corresponding to the abstract components D and E, i.e. we form D ‖ E.

D E
rGD
rAD

iG1
iA1

iG2
iA2
iG3
iA3
iG4
iA4

cGD
cAD

oG1,D
oA1,D
oG2,D
oA2,D
oG3
oA3

oG4,D
oA4,D

rGE
rAE

iG1,E
iA1,E
iG2,E
iA2,E
iG4,E
iA4,E

cGE
cAE

oG1
oA1

oG2
oA2

oG4
oA4

F
rGF
rAF

cGF
cAF

iG5
iA5

oG5
oA5

Fig. 2.12: Adaptive Real-Time Interfaces D, E, and F corresponding to the
partitioning in Fig. 2.11
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Fig. 2.13: Assume and guarantee arrival curves for stream S2 if only tasks τ1, ...τ11

are processed, i.e. if interfacesD and E are connected

We would like to know whether there is an environment such that all real-
time constraints are satisfied when processing tasks τ1, ...τ11. Therefore,
we connect the stream-related connectors of the adaptive interfaces D
and E as follows, see also Figures 2.8 and 2.9: iG

1,E = oG
1,D, oA

1,D = iA
1,E,

iG
2,E = oG

2,D, oA
2,D = iA

2,E, iG
4,E = oG

4,D, and oA
4,D = iA

4,E. In addition, we connect
the resource-related interfaces according to rG

E
= cG

D
and cA

D
= rA
E

. Now, we
connect the combined interfaces to the weakest environment by setting
iG
k = αk(∆) = d ∆

pk
e, oA

k = ∞ for k = 1, . . . , 4, rG
D

= β(∆) = ∆ and cA
E

= 0.
In order to check, whether components D and E work together

properly, we just need to compute the interface equations as described in
the previous section, i.e. those related to the adaptive interface shown in
the right hand side of Fig. 2.8. It turns out that the components can work
properly, as all interface relations are satisfied. For example, Fig. 2.13
shows that iG

2 ≤ iA
2 , i.e. the input arrival curve of stream S2 is always

smaller or equal than what can be properly processed by the combined
components D and E. The area between the two curves represents the
remaining ’headroom’ for the arrival curve of S2.

If we also connect component F in isolation to a weak environment
by setting iG

5 = α5(∆) = d ∆
p5
e, rG

F
= β(∆) = ∆, cA

F
= 0 and oA

5 = ∞, we
can observe by checking the interface relations that this component also
works properly, i.e. tasks τ12 and τ13 can be executed on the processor if
no other tasks are running.

But if try to compose F ‖ (D ‖ E) and compare the assume rA
F

of
interface F with the guarantee cG

E
of interface E, which is the remaining

resource available for component F, then we observe that rA
F
� cG

E
, see
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Fig. 2.14: Resource assume rA
F

of interface F and resource guarantee cG
E

ofD ‖ E
show that the components will not work together properly as rA

F
� cG
E

Fig. 2.14. In other words, the whole system consisting of all tasksτ1, . . . , τ13

will not work properly. This is checked only by comparing the interfaces
of the components.

Indeed, if we connect D, E and F to the network D ‖ E ‖ F by setting
rG
F

= cG
E

and cA
E

= rA
F

and evaluate all interface equations, we can see that
the interface relations are not satisfied. For example, Fig. 2.15 shows that
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Fig. 2.15: Resource assume rA
D

of D ‖ E ‖ F and the resource guarantee rG
D

for
two processor speeds: 1 and 1.0757. Only the second one is compatible with the
system (can make all components work together properly)
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the assumed resource for the whole system rA
D

is not smaller than the
available resource rG

D
= β(∆) = 1 · ∆ when the processor speed is set to

1. But we can now easily adjust the processor speed to its minimal value
such that the system can just work properly, i.e. rG

D
= β(∆) = 1.0757 · ∆,

see also Fig. 2.15.

2.8 Discussion
The chapter generalizes the concept of Real-Time Interfaces that enable
compositional analysis of hierarchical and distributed real-time systems.
In addition, the concept of adaptive interfaces is formally defined. It
allows us to solve design and synthesis problems as the requirements
and constraints can be dynamically propagated through the system.
In addition, the adaptivity leads to tighter performance results as the
properties of the components adapt to the current needs. Moreover, the
adaptive interfaces could be implemented in the run-time system which
leads to adaptive system behavior that depends on the current requests
from the environment.

It should be mentioned that we use a transformational approach to
Real-Time Interfaces. On the other hand, this does not prevent us from
modeling complex internal behavior of components or non-determinism
in streams or components. For example, it has been shown in [WT05a] that
stateful and non-deterministic behavior of components can be modeled
too. In addition, the abstractions used in Section 2.7.1 describe non-
deterministic event streams but one could even use statistical stream
models.

The framework presented here can also be used for real-time systems
that work in several operating modes. The changing requirements
and constraints will automatically propagate through the components
when the system changes its operating mode. However, the timing
characteristics of the actual switches between the requirements and
constraints associated with the different operating modes will be
dependent on the mode change protocol that is used [RC04]. Such timing
information can be obtained by using mode change analysis techniques
such as the ones presented in Chapter 5, and then this information can
be used to augment the Adaptive Real-Time Interface. Thus the interface
will contain information not only about the bounds of a certain parameter,
e.g. maximal input stream rate supported by the system, but it will
also have information how quickly the environment can switch between
the different parameters that are within these bounds, e.g. what is the
minimum delay between the activation of a new input stream and the
deactivation of another input stream.
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3
Interface Algebra with Rate
Interfaces

Interface-based design is now considered to be one of the keys to tackling
the increasing complexity of modern embedded systems. The central idea
is that different components comprising such systems can be developed
independently and a system designer can connect them together only
if their interfaces match, without knowing the details of their internals.
Chapter 2 developed the theory for an interface-based design framework
for real-time systems which is applicable to many existing component-
based real-time analysis methods.

This chapter illustrates an interface-based design framework with
the Modular Performance Analysis method [CKT03b]. It extends the
Real-Time Interfaces theory [WT05b, WT06a], and makes it applicable
to systems with multiple distributed processing and communication
resources by using the concept of Rate Interfaces.

Rate Interfaces are used for compositional (correct-by-construction)
design of embedded systems whose components communicate through
data streams. Using the associated rate interface algebra, two components
can be connected together if the output rate of one component is
“compatible” with the input rate of the other component. We formalize
this notion of compatibility and show that such an algebra is non-trivial
because it has to accurately model the burstiness in the arrival rates of
such data streams and the variability in their processing requirements.
We discuss how rate interfaces simplify compositional design and at the
same time help in functional and performance verification which would
be difficult to address otherwise. We illustrate the capabilities of Rate
Interfaces through a realistic case study involving a component-based
design of a multiprocessor architecture running a picture-in-picture video
application.
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3.1 Introduction
Most embedded systems today consist of a heterogeneous collection
of processing elements, application-specific hardware accelerators and
memory modules, which are connected together using some communica-
tion subsystem. Typically these components are designed by different
vendors, and hence integrating them together and ensuring that the
system works correctly often turns out to be a challenging problem. To
address this problem, recently there has been a considerable emphasis
on interface-based design [dAH01b]. Here, the basic premise is that
a system designer using a component only needs to understand the
component’s interface and not the details of how the functionality
offered by the component is implemented. In other words, it should
be possible to integrate a set of components if their interfaces “match”.
This gives rise to two related questions: (i) What kind of information
about a component should be exposed by its interface? (ii) How is
the notion of two interfaces “matching” technically formulated and
realized? Answers to these questions clearly depend on the system
being designed. Hence, lately there has been a number of proposals on
different kinds of interface specifications and on what constitutes a good
notion of “match” for different system design scenarios, see for example
[dAH05, WT05b, WT06a, HM06].

Following this line of work, in this chapter we use the concepts of
Modular Performance Analysis with Real-Time Calculus as proposed
in [TCN00, CKT03b] and combine it with ideas from assume/guarantee
(A/G) interfaces [dAH01a] to propose what we refer to as Rate Interfaces.
They complement the concept of Real-Time Interfaces introduced in
[WT05b, WT06a, WT06b] as Real-Time Interfaces focus on single processor
systems with different scheduling policies. Here we focus on distributed
multiprocessor systems.

With Rate Interfaces to check if two interfaces match, we resort to an
analysis technique called rate analysis. The key feature of Rate Interfaces
is a specification of the allowed input rate at which data may arrive
at a component and the rate at which such data gets processed by
the component. The processed data may then serve as input to other
components. Two components can be composed together if the output
rate of the first component is compatible with the input rate of the
second component. Later in this chapter we will precisely define what
“compatibility” of input and output rates mean in the context of our
work. But here we would like to point out that “compatible” does not
necessarily mean “equal”, and very often compatible rates are not equal.

The abstractions offered by Rate Interfaces are particularly suited for
component-based design of systems that process continuous data streams.
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Examples of these might be sensors sensing at a pre-specified rate and
sending the data to an actuator for processing (or triggering certain tasks).
Other examples might be media processors, network processors, etc.,
which consist of multiple processing elements (PEs) with each of them
running one or more tasks. An input data stream gets processed at the first
PE, the partially processed stream then enters the second PE for further
processing, and this continues until the stream is fully processed and
leaves the system. The timing properties (or the output rate) of a partially
processed stream coming out of a PE might be very different from the
properties of the input stream. Such a transformation depends on the
tasks running on the PE, the scheduling policy used, and the architecture
of the PE [RJE03]. In this setup, two PEs can be composed (i.e. work
together) if the timing properties of the data stream coming out of the
first PE can be guaranteed to be compatible with the timing properties
of the input data stream expected by the second PE. Here, compatibility
may be defined, for example, as a constraint that the buffer between the
two PEs should not overflow.

The algebra that we present in this chapter can be used to effectively
verify such compatibility conditions by only analyzing the interfaces of
the components. Further, it can also be verified if one of the components
can be replaced by a different component, which is often referred to as
component refinement. This might involve, for example, changing the
scheduler in the component or changing its hardware architecture. In
contrast to global (or monolithic) system verification, such compatibility
and refinement checks significantly ease component integration, design-
space exploration and resource dimensioning.

In this chapter, a rate does not only capture the average arrival
rate of a data stream, but it also accurately specifies the burstiness
in the arrival of a stream over different time scales. Such a detailed
specification is necessary for our framework to be useful because on-
chip traffic and processing requirements of applications tend to be highly
bursty in modern component-based embedded systems, see for example,
[RJE03, RvEP02, VM04]. However, this also necessitates an involved
algebra for reasoning about such rate specifications.

In summary, the main contributions of this chapter are as follows:

• We formulate the rate analysis problem in an interface-based design
setting. It allows for compositional design of embedded systems
whose components communicate through data or event streams.
This translates into two components being composable if their
input and output data rates are compatible. We show that such
compatibility of two Rate Interfaces can be effectively checked and
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compatible interfaces guarantee buffer overflow and underflow
constraints.

• Rate Interfaces complement previous results on Real-Time Interfaces
with Real-Time Calculus [WT05b, WT06a, WT06b] towards a
distributed setting. Therefore, we not only consider tasks that
are executed on a single processing element but allow for data
streams that are processed on several computing resources and
communicated through different communication media. This way,
independent composition in terms of data streams and resources is
possible.

• We consider variable execution demands of tasks in an interface-
based design approach which improves the accuracy of the analysis.
Given that many multimedia tasks (especially from the video
encoding/decoding domain) exhibit very high variations in their
execution requirements, this makes our framework more useable for
designing component-based distributed multimedia architectures.

• We consider not only component-wise constraints such as buffer
underflow and overflow, but also constraints on networks of
components such as end-to-end delays or worst-case traversal times
(WCTTs). We develop a novel interface that will allow us to compute
WCTTs and verify their compliance to provided deadlines in an
incremental manner, i.e. as and when new components are added
or removed from the network.

• Lastly, we show that the interface-theoretic formulation of the
rate analysis problem has several advantages. These include the
possibility of component-level analysis, which is computationally
more efficient than the global, monolithic analysis proposed in
[LCM06, MKCT04]. This also implies easier component-level design
space exploration and resource dimensioning. In other words,
questions like “if the scheduler in one particular component is
changed, then will all of the buffer constraints in the system still
be satisfied?” can now be answered easily. We also show that
this formulation enables the modeling of different component-level
scheduling policies. We illustrate this for the fixed priority (FP) and
the earliest deadline first (EDF) scheduling policies.

The rest of this chapter is organized as follows. Section 3.2
briefly discusses some of the related work. Section 3.3 presents a
motivating example that is used throughout the chapter to illustrate the
proposed theory. Section 3.4 describes the basics of a component-based
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analysis method based on Modular Performance Analysis with Real-
Time Calculus. Section 3.5 outlines the basics of assume/guarantee (A/G)
interfaces. Section 3.6 shows how they are combined with Real-Time
Calculus in order to develop an interface-based design framework for
real-time systems that supports constraint propagation. This is followed
by our theory of Rate Interfaces in Section 3.7. Section 3.8 presents several
extensions of basic Rate Interfaces to take into account variable workloads,
support multiple scheduling policies within a component, and model
worst-case traversal time constraints that can span several components
connected in a network. Section 3.9 presents a case study using the
motivating example introduced earlier. This case study illustrates how
our proposed interfaces may help in resource dimensioning, incremental
design and component refinement. Finally, Section 3.10 summarizes the
chapter and outlines some directions for future work.

3.2 Related Work
There have been a few previous attempts to analyze real-time systems
in terms of their input/output data rates. More specifically, the rate
analysis proposed in [MDG98] considered a collection of concurrently
executing components that interact through synchronization messages.
The problem is then to compute bounds on the execution rates of these
components under certain resource constraints. Alternatively, given a set
of rate constraints, the problem is to efficiently check if these constraints
are consistent. Similarly, [BDN05] addressed the problem of identifying
task activation rates for fixed-priority scheduled systems with deadline
constraints.

This chapter is largely motivated by our previous efforts to study
such rate analysis for buffer-constrained architectures in the context of
multimedia processing [LCM06, MKCT04]. In contrast to [BDN05] and
[MDG98], which deal with resource and deadline constraints, the problem
addressed in [LCM06, MKCT04] was concerned with determining upper
and lower bounds on the arrival rates of multimedia streams such that
certain buffer overflow and underflow constraints are satisfied. The
model specifying the arrival rate (or timing properties) of a stream in
[MKCT04] was refined in [LCM06], thereby leading to tighter results.

The interface algebra presented here is an interface-theoretic formu-
lation of the rate analysis problem studied in [LCM06, MKCT04]. In
particular, we complement the concept of Real-Time Interfaces by making
it applicable to distributed systems with multiple resources. Real-Time
Interfaces was proposed in [WT05b, WT06a, WT06b] to enable interface-
based design for single processor systems with mixed scheduling policies.
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Real-Time Interfaces theory uses concepts from Real-Time Calculus
[TCN00, CKT03b] and assume/guarantee interfaces [dAH01b]. Real-Time
Calculus is an analytical method for worst-case performance analysis
of distributed real-time systems. It is a very general approach based
on Network Calculus [Cru91a, Cru91b, LBT01]. It models data streams
with arrival curves α, resource availabilities with service curves β, and
the processing semantics of the HW/SW components of a system with
min/max algebra functions that represent transformations on the arrival
and service curves. On the other hand, A/G interfaces are a concept
that allows interface-based design of systems. Generally they contain
a set of input and output variables, and a predicate φI on the input
variables which states the constraints on the input that a component
assumes. Another predicate φO on the output variables represents the
guarantee that the component will only provide outputs which satisfy φO

if φI is satisfied.
In Real-Time Interfaces, input variables represent timing properties of

resource availabilities, and output variables represent timing properties
of unused resources. The predicateφI represents upper and lower bounds
on the necessary resources that make a component schedulable, and the
predicateφO gives guarantees or upper and lower bounds on the resources
available for other lower priority components. Such a setting allows
composition of components according to a scheduling policy in terms
of their resource usage. Real-Time Interfaces have been used to answer
schedulability questions for single processor systems with fixed priority
(FP), earliest deadline first (EDF), time division multiple access (TDMA),
hierarchical scheduling, and scheduling servers [WT06a, WT06b]. Real-
Time Interfaces extend A/G interfaces with the concept of constraint
propagation which was outlined in Chapter 2, and will be illustrated
in Section 3.6.1 too.

This chapter develops the concept of Rate Interfaces to address the
rate analysis problem in the context of component-based system design.
Rate Interfaces turn out to be a convenient mechanism for component-
based design of distributed systems where tasks are partitioned and
mapped onto several processing elements communicating via continuous
data/event streams. Rate Interfaces combined with Real-Time Interfaces
can be used to perform a complete interface-based design of streaming
real-time systems where components are composed in terms of resources
and data streams.

In Rate Interfaces, the input and output variables represent rates (or
timing properties) of the input and output data streams for a component.
The predicate φI represents constraints or upper and lower bounds on
the rate of the input data stream. Similarly, the predicate φO represents
guarantees on the timing properties of the output/processed data stream,
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Fig. 3.1: A picture-in-picture (PiP) application decoding two MPEG-2 video streams

which then serve as input to another component. It may be noted here,
that the main complexity of Rate Interfaces stems from the manner in
which input and output data rates are required to be specified (which we
explain later in this chapter).

3.3 Illustrative Example
Here we present an example to illustrate typical hardware/software
architectures that are amenable to component-based design using Rate
Interfaces. After describing our rate interface algebra, in the subsequent
sections we return to this example to present its component-based
realization, and show how components can be composed using their
Rate Interfaces.

Figure 3.1 shows an architecture consisting of three processing
elements PE1, PE2, and PE3 onto which an MPEG-2 decoder has been
partitioned and mapped. This architecture implements a picture-in-
picture (PiP) application where two concurrent video streams are being
decoded and displayed on the same output device. The variable length
decoding (VLD) and inverse quantization (IQ) tasks of the decoder have
been mapped onto PE1 and also replicated on PE3. Each of these two PEs
process a different video stream. PE2, on the other hand, implements the
inverse discrete cosine transform (IDCT) and the motion compensation
(MC) tasks and processes both of the streams. A scheduler implemented
on PE2 schedules these streams, typically using different QoS parameters
for each stream. The stream corresponding to the main window in
the output display device is typically associated with a higher frame
resolution (indicated as “HR” in Fig. 3.1) and generates a higher workload
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on PE2, compared to the lower resolution video (“LR”in the figure)
associated with the secondary window.

As shown in the figure, the video streams arrive over a network
and enter the system after some initial packet processing at the network
interface. The inputs to PE1 and PE3 are compressed bitstreams and their
outputs are partially decoded macroblocks, which serve as inputs to PE2.
The fully decoded video streams are written into two playout buffers PBHR

and PBLR associated with the high and low resolution streams respectively.
These buffers are read by the video interface at constant frame rates rHR

and rLR.

Note that each task running on a PE is allocated some buffer which
resides inside the PE. Such buffers are used to store the incoming stream
to be processed by the PE. Hence, a typical design constraint that needs to
be satisfied while connecting these PEs is that none of the buffers should
overflow. In addition, the playout buffers should not underflow because
that would result in the output device having to stall.

In this chapter we show that following a component-based design
approach, each processing element and playout buffer may be considered
to be an independent component with well-defined interfaces. To connect
these components together in order to realize an architecture like the one
shown in Fig. 3.1, a designer only needs to check if their interfaces are
compatible. If these interfaces are well-designed, then such compatibility
would guarantee that the buffers inside the components would not
overflow and the playout buffers would not overflow and underflow. Our
goal in this chapter is to design such interfaces. By designing appropriate
interfaces, it is also possible to satisfy other non-functional or performance
constraints such as the utilization of the components should be above a
certain threshold or that the data streams being processed should meet
their maximum WCTT constraints.

We also show that the proposed interfaces can be used to efficiently
answer questions such as: Given the input arrival rates of the streams
and the consumption rates by the output device, what is the optimal
buffer size for a component that is being added to a partially-designed
architecture? Can the scheduler in PE2 be replaced by a different scheduler
without violating the buffer constraints of all the existing components?
Note that answering these questions at the component level — especially
for complex architectures — is much more efficient than designing the
complete architecture, and then doing a global performance analysis
followed by re-designing the architecture if it does not satisfy the specified
performance constraints.

We will follow the general approach proposed in Chapter 2 that
yields a component system suitable for interface-based design of real-
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time systems. The approach can be summarized in the following three
steps:

1. First, we need to define an abstract component that describes
the real-time properties of a concrete hardware/software system
component. This entails defining proper abstractions for component
inputs and outputs, and internal component relations that
meaningfully relate abstract inputs to abstract outputs.

2. To derive the interface of an abstract component we need to define
interface variables as well as input and output predicates on these
interface variables.

3. Finally, we need to establish the internal interface relations that
relate incoming guarantees and assumptions to outgoing guarantees
and assumptions of the interface.

3.4 Modular Performance Analysis
In this section, we will describe a component-based method suitable for
performance analysis of stream-processing distributed real-time systems
based on Real-Time Calculus. The abstract component model for the
picture-in-picture application of Fig. 3.1 is depicted in Fig. 3.2.

In real-time systems, as we consider them in this chapter, event streams
are processed on a sequence of hardware/software (HW/SW) components
that we will interpret as tasks executing on possibly different hardware
resources. Figure 3.3(a) depicts such a component. An event or data
stream described by the cumulative function R(t) enters the input buffer
of the component and is eventually processed by the component that is
executed on a hardware resource whose availability is described by the
cumulative function C(t). The domain of these functions is extended to
the real numbers as components may only partially process events or data
items.

Definition 3.1: (Cumulative Functions) The cumulative function R(t) ∈ R≥0

(C(t) ∈ R≥0) for t ≥ 0 denotes the number of events/data items that have been
received (could be processed) within the time interval [0, t).

After being processed, events are emitted on the component’s output,
resulting in an outgoing event stream R′(t), and the remaining resources
that were not consumed are available to be used by other components
and are described by an outgoing resource availability trace C′(t). The
relations between R(t), C(t), R′(t) and C′(t) depend on the component’s
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Fig. 3.2: A component model (top) and the corresponding interface model
(bottom) of the architecture in Fig. 3.1

processing semantics. For example, Greedy Processing (GP), also called
work-conserving, denotes that events are always processed when there
are resources available. Typically, the outgoing event stream R′(t) will not
equal the incoming event stream R(t) as it may, for example, exhibit more
or less jitter.

For the purpose of analysis, we model such a HW/SW component
as an abstract component as depicted in Fig. 3.3(b). While cumulative
functions such as R(t) or C(t) describe one concrete trace of an event
stream or a resource availability, variability characterization curves (VCC)
provide means to capture all possible traces within an event stream or of
a resource availability, see for example [MZCW04]. In the context of this
chapter, we use the notion of arrival curves and service curves [LBT01],
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Fig. 3.3: (a) A concrete component, processing an event stream on a resource.
(b) An abstract component, processing an abstract event stream on an abstract
resource. The label GP (greedy processing) denotes that events are processed
whenever resources are available

which are special cases of VCCs. They are considerably more expressive
than, for example, traditional event stream models. While these typically
only specify a period and a jitter to model an event stream, arrival curves
and service curves can accurately characterize the detailed burstiness
and variability of event streams and resource availabilities. We further
use workload curves [MKT04] to model the variable execution demands
of tasks, and readout curves to model the removing of data items from a
playout buffer.

Arrival curves are used to characterize the burstiness in the arrival
pattern of events or data items. They have the following formal definition.

Definition 3.2: (Arrival Curves) Let R(t) denote the total number of events that
arrived in the time interval [0, t). Then, the arrival curves αl(∆) and αu(∆)
denote the minimum and the maximum number of events that can arrive in any
time interval of length ∆, i.e. αl(t− s) ≤ R(t)−R(s) ≤ αu(t− s) for all t > s ≥ 0.
In addition, αl(0) = αu(0) = 0. We also denote α = (αl, αu).

Service curves are used to characterize the variability in the service
provided by a resource. Service curves have the following formal
definition.

Definition 3.3: (Service Curves) Let C(t) denote the total number of events that
could be processed in the time interval [0, t). Then, the service curves βl(∆) and
βu(∆) denote the minimum and the maximum number of events that could be
processed within any time interval of length ∆, i.e. βl(t − s) ≤ C(t) − C(s) ≤
βu(t − s) for all t > s ≥ 0. In addition, βl(0) = βu(0) = 0. We also denote
β = (βl, βu).
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Workload curves are similar to arrival and service curves however, they
describe the variability in the execution requirements (for example in
terms of processing cycles or time) necessary to process an event or
communicate a data item. Therefore, they relate physical to abstract
quantities in the analysis. They have the following formal definition.

Definition 3.4: (Workload Curves) The workload curves γl(v) and γu(v) denote
the minimum and the maximum execution requirement that is necessary to
process any v consecutive stream objects or events within a given sequence. We
also denote γ = (γl, γu).

In Fig. 3.3(b), an abstract event stream α(∆) enters the abstract
component and is processed using an abstract resource βl(∆). The output
is again an abstract event stream α′(∆), and the remaining resources are
expressed again as an abstract resource β′l(∆). Later, we will also use the
concept of VCCs to specify the process of reading out a playout buffer
(readout VCC). Note that the domain of the arrival and service curves
used in Fig. 3.3(b) are events, i.e. they describe the number of arriving
events and the capability to process a certain number of events. The
generalization towards physical quantities such as processing cycles or
computation time by means of workload curves as defined above will be
done in Section 3.8.1.

3.4.1 Abstract Components
The internal relations of an abstract component depend on the processing
semantics and scheduling policy of the modeled HW/SW component. For
modeling distributed stream-processing systems, we consider three basic
types of components:

• Processing Element (PE): It can be used to model a single processing
element which processes one input stream. However, it can also be
used to represent a composition with other components of the same
type and model processing elements that process more than one
input stream with a fixed priority (FP) scheduling as illustrated in
component PE2 in Fig. 3.2 and described in Section 3.7.2.

• Playout Buffer (PB): It models a component that receives data which
is stored in a buffer, and the buffer is read at a constant (usually
periodic) rate. An example is the PBHR component shown in Fig. 3.2.

• EDF Component: This component is similar to PE but it processes
several data streams by using the earliest deadline first (EDF)
scheduling policy. Such a component can be used, for example,
to replace component PE2 in Fig. 3.2.
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3.4.1.1 Processing Element
Let us first derive the abstract component model PE. Consider the greedy
processing component from Fig. 3.3(a), that is triggered by the events of an
incoming event stream. A fully preemptive task is instantiated at every
event arrival to process the incoming event, and active tasks are processed
in a FIFO order, while being restricted by the availability of resources (or
processor capacity). The completion of each task execution results in the
corresponding event being removed from the input buffer and an event
being emitted on the outgoing event stream. Using Definition 3.1 and
the above semantics, we define the input-output relations of a greedy
processing component with the following theorem.

Theorem 3.5: (PE Relations in Time Domain) A greedy processing component
with an empty input buffer at t = 0 satisfies the following input-output relations
with R(t) defined as the number of events that have been received, C(t) as the
number of events that could be processed, R′(t) ∈ R≥0 as the number of events
that have been processed, C′(t) ∈ R≥0 as the number of events of other event
streams that could be processed, and b(t) ∈ R≥0 as the number of events stored
in the input buffer at time t:

b(t) = R(t) − R′(t) , (3.1)
C(t) = C′(t) + R′(t) , (3.2)

R′(t) = inf
0≤u≤t
{R(u) + C(t) − C(u)} . (3.3)

Proof. The first two relations simply describe the conservation laws of a
greedy processing element. As no events are lost, all events that arrived
until t either left the processing element or they are still stored in the
buffer, see (3.1). In addition, all the available computing capability of the
processing element until t (C(t)), has either been used to process events
(R′(t)), or has been available to process other events from lower priority
streams (C′(t)), see (3.2). In order to prove (3.3), first note that for all u ≥ 0
we have R′(u) ≤ R(u) as b(u) ≥ 0. We also find R′(t)−R′(u) ≤ C(t)−C(u) for
u ≤ t as the number of output events in the time interval [u, t) can not be
larger than the available processing ability in [u, t). As a result, we obtain
R′(t) ≤ R(u)+C(t)−C(u). In order to show (3.3), we need to prove that there
exists a u ≤ t such that R′(t) = R(u)+C(t)−C(u). To this end, let us suppose
that u∗ is the last time instance before t with an empty input buffer. Such
a time exists as the buffer was empty at t = 0. We have R(u∗) = R′(u∗) at
time u∗ and also R′(t) − R′(u∗) = C(t) − C(u∗) as all available resources in
[u∗, t) have been used to produce output because of the greediness of the
processing element. Therefore, we find R′(t) = R(u∗) + C(t) − C(u∗).
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Such a component can be modeled by an abstract component PE
as depicted in Fig. 3.3(b) and in Fig. 3.2 with the following internal
component relations in the time interval domain1:

α′u = αu
� βl , (3.4)

α′l = αl
⊗ βl , (3.5)

β′l(∆) = sup
0≤λ≤∆

{
βl(λ) − αu(λ)

}
, (3.6)

where the backlog of the input FIFO buffer can be bounded by:

b(t) ≤ sup
0≤λ≤∆

{
αu(λ) − βl(λ)

}
. (3.7)

These relations will not be proven here as they follow directly from
Network Calculus [LBT01] and Real-Time Calculus [CKT03b].

If the maximum available buffer space in the input buffer is constrained
by bmax, the backlog should never become bigger than the buffer size,
b(t) ≤ bmax, i.e. we have a buffer overflow constraint. In this case, we
can obtain the following component-based constraint on the admissible
arrival and service curves:

αu(∆) ≤ βl(∆) + bmax ∀∆ ∈ R≥0 . (3.8)

If the input arrival and service curves satisfy the above constraint, the
backlog will never be bigger than bmax.

This abstract PE component is one of the basic building blocks in Real-
Time Calculus as it can be used to model a single processing element
which processes a single input stream or a composition with other
components of the same type and model components processing more
than one input stream with a fixed priority (FP) scheduling.

3.4.1.2 Playout Buffer
Now, let us derive the abstract component model PB of the playout buffer
as used in the picture-in-picture application in Fig. 3.1, and as shown in
Fig. 3.2. It receives data at a rate bounded by the arrival curve α(∆). The
incoming data is stored in a buffer of maximum size Bmax. We make the
assumption that at time t = 0, there are already B(0) = B0 data items in
the playout buffer, e.g. due to a playback delay.

Data items in the playout buffer are removed by the video interface,
see Fig. 3.1. In particular, D(t) data items are removed within the time
interval [0, t). This behavior can be described by the readout VCC ρ(∆) =

1See Appendix A for the definitions of the operators ⊗ and �.
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(ρl(∆), ρu(∆)), i.e. ρl(t − s) ≤ D(t) − D(s) ≤ ρu(t − s) for all t > s ≥ 0. What
needs to be guaranteed is that the playout buffer PB never overflows or
underflows.

Theorem 3.6: (PB Relations in Time Interval Domain) Let be given a playout
buffer (PB) component with input and readout event streams R(t) and D(t) which
are characterized by the VCCs α and ρ, respectively. Further suppose that there
are B(0) = B0 events in the playout buffer at time t = 0 . Then the playout buffer
size is constrained by 0 ≤ B(t) ≤ Bmax if the following constraints are satisfied:

αl(∆) ≥ ρu(∆) − B0 ∀∆ ∈ R≥0 , (3.9)

αu(∆) ≤ ρl(∆) + Bmax − B0 ∀∆ ∈ R≥0 . (3.10)

Proof. Assume that the total number of data items written into the playout
buffer PB till time t is given by R(t) and the total number of data items
read and removed from PB till time t is given by D(t) (readout stream).
Then the number of data items B(t) in the buffer at time t can be expressed
as B(t) = R(t) − R(0) − [D(t) − D(0)] + B0. Using the definitions of the
associated VCCs we simply get the inequalities B(t) ≥ αl(∆) − ρu(∆) + B0

for all ∆ ≥ 0 and B(t) ≤ αu(∆) − ρl(∆) + B0 for all ∆ ≥ 0. In other words, in
order for the PB not to underflow and overflow, its input arrival curve α
and readout curve ρ need to obey (3.9) and (3.10).

3.4.1.3 Earliest Deadline First Component
In order to model a component processing several input streams with
an earliest deadline first (EDF) scheduling, a new abstract component is
needed with different internal relations [WT06a], as the greedy processing
component PE defined above can not handle a deadline-based scheduling
policy. Such an EDF component processes N input event streams and
emits N output event streams. Each input event stream i, 1 ≤ i ≤ N,
is associated with a fully preemptive task which is activated repeatedly
by incoming events. Each input event stream i has an associated buffer
with maximum size bi max where events are backlogged. Tasks associated
with the input event streams process the head events in these buffers
and are scheduled in an EDF order. Each task has a best-case execution
time BCETi, a worst-case execution time WCETi, and a relative deadline Di

where BCETi ≤WCETi ≤ Di. The completion of a task execution results in
the corresponding input event being removed from the associated buffer
and an output event being emitted on the associated output event stream.
The following theorem describes the properties of the EDF component. It
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uses the following shift function which simply shifts a given curve α(∆)
by the amount c to ’the right’:

r(α, c,∆) =

{
α(∆ − c) if (∆ > c) ∧ (∆ , 0)
0 if (∆ ≤ c) ∨ (∆ = 0) (3.11)

Theorem 3.7: (EDF Component Relations in Time Interval Domain) Let be
given an EDF component as described above with an input service curve β.
The event streams i are characterized by arrival curves αi and have associated
tasks with relative deadlines, worst-case and best-case execution times given
as Di ≥ WCETi ≥ BCETi, respectively. All tasks are processed within their
deadlines if and only if:

N∑
i=1

r(αu
i ,Di,∆) ≤ βl(∆) ∀∆ ∈ R≥0 , (3.12)

using the shift function r from (3.11). The output streams can be characterized
by arrival curves computed as follows:

α′ui (∆) = r(αu
i ,−(Di − BCETi),∆) ∀i , (3.13)

α′li (∆) = r(αl
i, (Di − BCETi),∆) ∀i . (3.14)

The number of events in the input buffers do not exceed their capacity bi max if
the following constraints are satisfied:

αu
i (Di) ≤ bi max ∀i . (3.15)

Proof. Let us first prove (3.12). Function r(αi,Di,∆), as defined in
(3.11), characterizes an event stream αi where all events need to be
processed within the same relative deadline Di. In particular, it returns
the maximum number of events that arrive in any time interval of length
∆ and have their deadlines in the same time interval. The function is
defined similarly to a demand bound function as introduced by Baruah
et al. in [BCGM99]. We now would like to prove that if a component is
processing N independent streams given a minimum resource availability
βl using an EDF resource sharing policy, all events will be processed within
their deadlines, if and only if (3.12) holds.
If: Suppose that r(αi,Di,∆) is tight, i.e. there is a time interval of length
∆ = tu

i − tl
i, with tu

i > tl
i ≥ 0, for which the number of events that have their

arrival and absolute deadline times within [tl
i, t

u
i ) is equal to r(αi,Di,∆).

Since the streams are independent, we can construct a critical instant
by shifting the time intervals of all of the N input streams such that
tl = tl

i = tl
j, tu = tu

i = tu
j , ∀i, j ∈ {1, . . . ,N}. Then, the cumulative number of

events that have their arrival and deadline times within the interval [tl, tu)
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is given by
∑N

i=1 r(αi,Di,∆). Suppose that, we also shift the time axis of the
component service in such a way that the number of events that can be
processed in the interval [tl, tu) is equal to βl(∆). If

∑N
i=1 r(αi,Di,∆) > βl(∆),

then clearly not all events can be processed within their deadlines.
Only if: Suppose that there is a deadline violation at some time instance
tu. Let us define tl to be the earliest time such that for the interval [tl, tu),
the processor has been operating continuously on events with absolute
deadlines smaller than tu. Because of the greediness of EDF, all resources
available in the interval [tl, tu) have been used which is at least equal to
βl(tu

− tl), i.e. the processor has not been idling. Because of the definition
of EDF, the processor has only been operating on events that have their
arrival and deadline times within the interval [tl, tu). Therefore, it must be
the case that

∑N
i=1 r(αi,Di,∆) > βl(∆), ∆ = tu

− tl, i.e. the maximum number
of events that must be processed is greater than the number of events that
can be processed in the interval [tl, tu).

Now, let us prove (3.13) and (3.14). Because of the deadline-based
scheduling, an event arriving at an input buffer i takes at least BCETi and
at most Di time units until it appears at the output stream. Therefore, the
additional jitter it observers is bounded by (Di − BCETi). As a result, the
events that arrived in some interval ∆ + (Di − BCETi) can now appear at
the output in an interval of length ∆.

Finally, we show (3.15). As any event will leave the associated queue
after at most its relative deadline Di time units, the backlog of each buffer
associated with an input event stream can be bounded by bi(t) ≤ αu

i (Di)
which directly leads to (3.15).

3.5 Assume/Guarantee Interfaces in Our Setup
In this section we outline the basic principles of assume/guarantee
(A/G) interfaces as proposed in [dAH01b], and briefly discuss how we
borrow ideas from them and adapt them in the context of our setup,
where components communicate via continuous data streams, have
limited buffers inside them, and the interfaces implement a constraint
propagation scheme. This section outlines briefly many concepts that
were developed in more detail in Chapter 2.

Let us first consider a single component. Its A/G interface consists
of two disjoint sets of input and output variables XI and XO, as well
as two associated predicates φI and φO, respectively. The interface
makes certain assumptions on XI, which are specified using the predicate
φI(XI). Provided this predicate is satisfied, the interface guarantees that the
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component works correctly and its output variables will satisfy a predicate
φO(XO). Hence, φO is the guarantee that the component provides to the
environment assuming the precondition φI. In other words, for each
component φI

⇒ φO is true for each valuation of input variables XI.
Clearly, the predicate φI need not be true for all possible valuations of XI,
i.e. there might exist environments where this component cannot be used
or cannot provide the output guarantee. Environments which satisfy φI

are environments where this component can be used. If there exists at
least one environment, i.e. one valuation of variables XI, such that φI(XI)
is true, then we call the corresponding component satisfiable.

Two interfaces F and G are composed by connecting the output
variables of one to the input variables of the other and the composed
interface is typically denoted as F‖G. The input variables of this composed
interface are all the unconnected (or free) input variables of F and G, and
the output variables are all outputs of F and G. We will use XI

F, XO
F , φI

F
and φO

F to denote the variables and predicates of F, and similarly for G.
Two interfaces can be syntactically composed if their output variables

are disjoint. If F and G form a closed system, i.e. all outputs of F are
connected to the inputs of G and vice-versa, then for F and G to be
composable, the following closed formula should be true for all possible
valuations of variables:

φO
F ∧ φ

O
G ⇒ φI

F ∧ φ
I
G . (3.16)

In other words, what one component guarantees at its output satisfies
the predicates of the connected inputs.

If F‖G is open, i.e. it has free input variables then (3.16) should be
satisfiable. In other words, there must exist some environment in which
F and G can be composed. Expression (3.16) is hence the weakest
precondition on the environment of F‖G for the two interfaces to be
composable. Therefore, the assumption φI

F‖G on the input variables of
the composed interface is given by (3.16).

A component H can now provide inputs to F‖G if φO
H ⇒ φI

F‖G
is satisfiable. In other words, there should exist a valuation of XI

H
and a valuation of XI

F‖G under which φI
H(XI

H) ⇒ φO
H(XO

H) is true and
φO

H(XO
H)⇒ φI

F‖G(XI
F‖G) is also true. This way, a system can be incrementally

designed by adding one component at a time and verifying if the newly
added component is compatible with the existing partially designed
system.

In our setup, each component receives as input one or more data
streams, processes them, and the processed data streams enter other
components for further processing, see Fig. 3.1). Each component
has a certain processing capability and allocates this capability among
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the incoming streams according to a predefined scheduling policy.
Components also have a specified amount of buffer to hold the incoming
streams. As mentioned in Section 3.1, the interface variables XI and XO

represent rates or timing properties of the incoming and outgoing streams.
Hence, the component composability conditions translate into predicates
involving these data rates. The predicate φI specifies constraints on
the rates of the incoming streams and φO specifies guarantees that a
component provides on the rates at which the processed streams may
be consumed by other components. We will show how to derive the
interface variables and predicates in such a way that the composability of
two components will implicitly guarantee that the buffers inside them do
not overflow, and for certain components they also do not underflow.

By extending the interface theory provided in [dAH01b], we also
propagate information about the predicates between the interfaces, see
also Chapter 2. This way, we combine interface theory with constraint
propagation, which enables parameterized design of component-based
systems. To this end, as we are dealing with stateless interfaces, XI and
XO can be related by a transfer function, e.g. XO = F(XI) where the actual
function depends on the semantics of the modeled component.

In the context of embedded multimedia systems — which is the
application domain we focus on — the proposed framework can be used
to determine the maximal input rates of multimedia streams, processor
speeds, and scheduling policy parameters of the different processing
elements and various buffer sizes, such that all components work as
intended and the system-wide buffer and timing constraints are satisfied.

3.6 Basis of an Interface-based Design Theory for
Real-Time Systems

In Section 3.4, we introduced abstract components which work with
abstract representations of the input event streams and the resource
availabilities. In this section we need to relate them to the interface-
theoretic concepts as introduced in Section 3.5, and develop the basis for
an interface theory that will be used in Rate Interfaces similarly to Real-
Time Interfaces [WT05b, WT06a, WT06b]. In order to do this, first we
need to relate input and output interface variables to inputs and outputs
of components, i.e. arrival, service, and readout curves. Secondly, we
need to define the input and output predicates in terms of the VCC curves.
Lastly, we will extend the interface theory with a method for constraint
propagation.
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In our setup, the input and output variables of the interface of an
abstract component are VCC curves. They can be related to event streams
(arrival curves α), resource availabilities (service curves β), or readout
streams (ρ). In our presentation we will use the terms input and output
ports. Each component has a set of input ports I and a set of output ports
O. A connection from output j of one component to the input i of some
other component will be denoted by ( j, i).

In order to simplify the presentation, we introduce the complies to
relation ` between two VCC curves a(∆) and b(∆) as follows:

a ` b = (∀∆ : (al(∆) ≥ bl(∆)) ∧ (au(∆) ≤ bu(∆))) .

In other words, a complies to b (a ` b) if for all values of ∆ the interval
[al(∆), au(∆)] is enclosed by [bl(∆), bu(∆)].

In the following, we will just useα to denote the characterization of any
variability curve that is an input or an output of an abstract component.

Following the notation introduced in Section 3.5, we can now define
the input and output predicates for some component input i and output
j as:

φI
i(αi) = (αi ` α

A
i ) , φO

j (α j) = (α j ` α
G
j ) , (3.17)

where αA and αG are assume and guarantee curves provided by the
component interface. Now similarly as for A/G interfaces, we can
define that the interfaces of every component must satisfy the following
condition: ∧

∀i∈I

φI
i(αi)⇒

∧
∀ j∈O

φO
j (α j) (3.18)

for all input curves αi. In other words, if the input predicates of
a component are all satisfied, then it works correctly and all output
predicates are satisfied too. Note that the output curves α j of a component
are a function of its input curves αi, see for example (3.4, 3.5, 3.6) and (3.13,
3.14).

If we now connect several components, we want to be able to check
if the whole system can work correctly by just checking whether their
interfaces are compatible. Following Section 3.5, this can be done by
testing whether the following relation is satisfiable:∧

∀ ( j,i)

φO
j (α j)⇒

∧
∀ ( j,i)

φI
i(αi) . (3.19)

3.6.1 Constraint Propagation
The input and output predicates (3.17) are characterized by the assume
and guarantee curves αA and αG, respectively. If they are static,
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Fig. 3.4: Relation between input/output variables of abstract components and
assume/guarantee quantities in real-time interfaces

i.e. independent of the system composition and the properties of the
connected components, then we are severely limited in the applicability
of the interface concept. For example, let us suppose that a component F
needs to guarantee that some buffer never overflows and this fact can be
guaranteed by limiting the input rate, i.e. by determining an appropriate
input predicate φI

F. If a preceding component G, i.e. a component that
transmits this input stream, is not aware of this predicate, then (3.19)
will not be satisfied in general. We need a method to propagate φI

F to
component G and combine it with the input predicate φI

G, i.e. the input to
G should satisfy constraints from both components, F and G, respectively.
This way, if another component is to be connected to the input of G, we
only need to check at the interface connection if the composition will be
successful, i.e. constraints from F and G will be satisfied. In other words,
the constraints of individual components should propagate through the
interfaces.

To this end, we propagate the assume and guarantee curves of
the input and output predicates through the interfaces as shown in
Fig. 3.4. Considering connections ( j, i), we connect the interfaces, i.e.
the corresponding guarantee and assume curves, as follows:

∀ ( j, i) : (αG(i) = αG( j)) ∧ (αA( j) = αA(i)) . (3.20)

If we now determine the transfer function of a component interface
in a specific manner, i.e. how output assume and guarantee curves are
determined based on input curves, we can (a) propagate constraints and
(b) check the compatibility of components in an integrated method.

Theorem 3.8: (Relations between Input and Output Assumes and Guaran-
tees) Let us suppose that the assume and guarantee quantities of an interface
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Fig. 3.5: Relation between interface assumptions, interface guarantees, and values

of any component and their relation to the input and output curves of the
corresponding abstract component satisfy:

(∀i ∈ I : αi ` α
G
i ` α

A
i )⇒ (∀ j ∈ O : α j ` α

G
j ` α

A
j ) , (3.21)

where the component has input and output ports, I and O, respectively.
If we have a network of components and the relations:

∀ inputs i : αG
i ` α

A
i (3.22)

are satisfied, then the system works correctly, i.e. (3.18) and (3.19) hold.

Proof. At first note that the ’complies to’ operator ` is transitive and
therefore, α ` αG

` αA
⇒ α ` αA. From (3.21), we find (∀i ∈ I : αi ` αA

i )⇒
(∀ j ∈ O : α j ` αG

j ) which directly leads to (3.18). If we have a connection
( j, i), then from (3.20) we have αi = α j, αA

i = αA
j and αG

i = αG
j . From (3.22)

we find that as well αG
j ` α

A
j as αG

i ` α
A
i hold for any connection ( j, i). As

(α j ` αG
j ) = (αi ` αG

i ), we can conclude that for any connection ( j, i), we
have (α j ` αG

j ` α
A
j ) = (αi ` αG

i ` α
A
i ) and therefore (α j ` αG

j ) = (αi ` αA
i ).

Expression (3.19) follows directly using the definitions (3.17).

The relations between the values, the assume and the guarantee curves
of a single connection are shown in Fig. 3.5. As a result of the above
Theorem 3.8, we can determine whether two abstract components are
compatible by checking the compatibility of their interfaces. We can then
generalize that two interfaces are compatible if (3.22) is true for all internal
rate, readout and service connections, respectively. Note, that in our setup
this also implies that all open input variables are satisfiable.

In the next section we develop a method to determine the internal
interface relations for the abstract real-time streaming components
introduced in Section 3.4.
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3.7 Rate Interfaces
Now we need to develop the relations between guarantees and
assumptions in order to satisfy (3.21) for every component. We will
first describe a general method how these relations can be determined
and then apply it to the real-time components described in Section 3.4.

To this end, we first need to define the concept of a monotone abstract
component. Note that the ’complies to’ relation ` has been generalized to
tuples, i.e. (ai : i ∈ I) ` (bi : i ∈ I) equals ∀i ∈ I : ai ` bi.

Definition 3.9: (Monotone Abstract Component) An abstract component
with a set of input and output ports I and O, respectively, and a transfer function
F that maps input rates to output rates, is monotone if:

((α̂i : i ∈ I) ` (αi : i ∈ I))⇒ ((α̂ j : j ∈ O) ` (α j : j ∈ O)) ,

where (α j : j ∈ O) = F(αi : i ∈ I) and (α̂ j : j ∈ O) = F(α̂i : i ∈ I).

In other words, if we replace the input rates of an abstract component
with rates that are compliant, then the new output rates are also compliant
to the previous ones. Note that all components we look at in this chapter
satisfy this monotonicity condition, see for example (3.4, 3.5, 3.6) and
(3.13, 3.14).

The following theorem leads to a constructive way to compute the
input assumes and output guarantees from the given input guarantees
and output assumes. We make use of the individual components of the
transfer function F, i.e. α j = F j(αi : i ∈ I) for all j ∈ O where I and O denote
the input and output ports of the corresponding abstract component,
respectively.

Theorem 3.10: (Computation of Output Guarantees and Input Assumes)
Given a monotone component with input ports I, output ports O, and a transfer
function F that maps input curves to output curves, i.e. (α j : j ∈ O) = F(αi : i ∈
I).

Let us suppose that we determine the output guarantees using:

αG
j = F j(αG

i : i ∈ I) ∀ j ∈ O . (3.23)

Furthermore, suppose that the input assumes are computed such that:

∀ j ∈ O ∃i∗ ∈ I :
(
F j(αG

i : i ∈ I)
∣∣∣∣
αG

i∗←α
A
i∗

` αA
j

)
, (3.24)

where αG
i∗ ← αA

i∗ denotes that in the preceding term αG
i∗ is replaced by αA

i∗ .

Then (3.21) holds.
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Proof. Let us assume that for all input ports i ∈ I we have αi ` αG
i , see

(3.21). Using the monotonicity of F, we can now see that (∀i ∈ I : αi `

αG
i )⇒ F(αi : i ∈ I) ` F(αG

i : i ∈ I)⇒ (∀ j ∈ O : α j ` αG
j ).

We still need to show that (∀i ∈ I : αG
i ` α

A
i )⇒ (∀ j ∈ O : αG

j ` α
A
j ) using

the construction in (3.23). At first note that this expression is equivalent
to

∀ j ∈ O ∃i∗ ∈ I :
(
(αG

i∗ ` α
A
i∗ )⇒ (αG

j ` α
A
j )
)
.

We also know that for any i∗ ∈ I we have:

(αG
i∗ ` α

A
i∗ )⇒

(
(αG

i : i ∈ I) ` (αG
i : i ∈ I)

∣∣∣∣
αG

i∗←α
A
i∗

)
.

Because of the monotonicity of F we can derive that for any i∗ ∈ I we have:

(αG
i∗ ` α

A
i∗ )⇒

(
F(αG

i : i ∈ I) ` F(αG
i : i ∈ I)

∣∣∣∣
αG

i∗←α
A
i∗

)
,

and using (3.23) we find:

∀ j ∈O ∃ i∗ ∈ I :(
(αG

i∗ ` α
A
i∗ )⇒

(
F j(αG

i : i ∈ I) ` F j(αG
i : i ∈ I)

∣∣∣∣
αG

i∗←α
A
i∗

)
⇒ (αG

j ` α
A
j )
)
.

The theorem establishes that we can simply determine the output
guarantees using the components of a given transfer function of the
abstract component, see (3.23). For the input assumes we need to
determine some kind of inverses of the transfer functions F j with respect
to at least one of its arguments. Following (3.24), all arguments of some
F j are determined by the input guarantees but one, say for example αG

i∗ .
This one we replace by αA

i∗ and try to determine this curve such that the
result of the transfer function still complies to the given output assumes.
If we choose the same i∗ for several components of the output function,
then the resulting αA

i∗ needs to comply to all partial ’inverses’. As we will
see later on, we may determine the inverses of the transfer functions F j

with respect to more than one of its arguments. This way, a violation at
some output port will appear as violations at more than one input port.
Later on, we will attempt to compute the largest upper curve and smallest
lower curve for which the respective relations still hold. This leads to the
weakest possible input assumptions.
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3.7.1 Abstract Components: Interface Relations
We will now illustrate the concept of rate interfaces using a system with
a processing element (PE) containing one greedy processing abstract
component and one playout buffer (PB) as shown in Fig. 3.6. Due to
the modularity of our framework, the results derived here can be used
for building more complex systems.

In this system, there is one input stream, which is described by the
arrival curve αx = (αl

x, α
u
x). The processing element PE provides a service

described by the lower service curve βl. The processed output stream is
described by the arrival curve αy = (αl

y, α
u
y). Note that the input stream

αx could be a stream coming from the environment or it could have been
processed by other processing elements. The processed stream αy is the
input for the playout buffer. Data items from the PB are read at a rate
described by the readout VCC ρ = (ρl, ρu). It specifies the minimum
and maximum number of data items being read from the PB over time
intervals of any specified length. For the system shown in Fig. 3.6, we will
include into the interface descriptions of the components the conditions
under which the buffer b associated with the component in the PE never
overflows, and the buffer B in the PB does not overflow or underflow.
Fig. 3.7 represents the abstract components of Fig. 3.6 in terms of their
interfaces.

3.7.1.1 Processing Element
Now, using the relation between interface values, assumptions and guar-
antees from Theorem 3.8, and following the results from Theorem 3.10,
we can deduce that the equations describing the output guarantees are
equivalent to those for the abstract component, i.e. (3.4) and (3.5), just
using interface guarantees instead of values. Therefore, we have:

αlG
y = αlG

x ⊗ β
lG , (3.25)

αuG
y = αuG

x � β
lG . (3.26)

PBPE

αx

ρβ

αy

b(t)
GP

B(t)

Fig. 3.6: Abstract components of a system with one processing element and one
playout buffer
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PBPE

PE PB

αx
G

αx
A

ρG ρAβG βA

αy
G

αy
A

Fig. 3.7: Interface description of the abstract components shown in Fig. 3.6

In order to calculate the input assumptions of the abstract component
in the processing element, we need to determine inverse relations
corresponding to (3.4), (3.5) and the constraint (3.8). In particular, we
need to compute the largest upper curve and smallest lower curve for
which the respective relations still hold. This leads to the weakest possible
input assumption. Following results from Network Calculus [LBT01], we
can do this by determining the pseudo-inverse functions which have the
following definition:

f −1(x) = inf{t : f (t) ≥ x} .

In order to guarantee that all relations hold if the input and output
predicates are satisfied, we then need to use the minimum (in case of the
upper curves) or the maximum (in case of the lower curves) of all the
determined pseudo-inverses.

From the pseudo-inverses of equation (3.5), we get the inequalities
αlA

x ≥ α
lA
y �β

lG and βlA
≥ αlA

y �α
lG
x . Here we use the duality relation between

the� and⊗ operators as defined in Appendix A. In a similar way, from the
pseudo-inverses of equation (3.4), we get the inequalities βlA

≥ αuG
x � α

uA
y

and αuA
x ≤ β

lG
⊗αuA

y . Inverting the buffer overflow constraint (3.8) is trivial
and we get the inequalities αuA

x ≤ β
lG + bmax and βlA

≥ αuG
x − bmax.

In summary, after combining the previous inequalities, the assump-
tions related to the abstract component PE can be determined as follows:

αlA
x = αlA

y � β
lG , (3.27)

αuA
x = min{βlG

⊗ αuA
y , β

lG + bmax} , (3.28)

βlA = max{αlA
y � α

lG
x , α

uG
x � α

uA
y , α

uG
x − bmax} . (3.29)

3.7.1.2 Playout Buffer
For a playout buffer PB, the relations are simpler. We only need to
determine the inverse relations for the buffer constraints (3.9) and (3.10),
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which directly yield the following relations:

αuA
y = ρlG + Bmax − B0 , (3.30)

αlA
y = ρuG

− B0 , (3.31)

ρuA = αlG
y + B0 , (3.32)

ρlA = αuG
y − (Bmax − B0) . (3.33)

We can now also combine the above interface relations to construct a
single interface that describes the composed system PE‖PB in Fig. 3.7. The
new interface states the input assumptions of the system only in terms of
the output guarantees that the system expects from its environment:

αlA
x = (ρuG

− B0) � βlG , (3.34)

αuA
x = min{βlG

⊗ (ρlG + Bmax − B0), βlG + bmax} , (3.35)

βlA = max{(ρuG
− B0) � αlG

x , α
uG
x � (ρlG + Bmax − B0), αuG

x − bmax} , (3.36)

ρlA = (αuG
x � β

lG) − (Bmax − B0) , (3.37)

ρuA = (αlG
x ⊗ β

lG) + B0 . (3.38)

3.7.2 Composition Using Fixed Priority Schedulers
The system shown in Fig. 3.7 can be composed with other processing
elements which, for example, have more than one task that needs to be
executed for each single data item. It is also possible to have systems
with processing elements that process more than one data stream. This
is the case for the application shown in Fig. 3.1 where in PE2 there
are two components which share the service provided by PE2 using
fixed priority scheduling. The corresponding abstract components and
interface connections are depicted in Fig. 3.2.

If a component shares the service it receives from a processing
element, with another lower-priority component, this remaining service
is bounded by (3.6). In terms of output guaranteed values, this can be
expressed as:

β′lG(∆) = sup
0≤λ≤∆

{
βlG(λ) − αuG

x (λ)
} def

= RT(βlG, αuG
x ) .

In order to obtain the input assumptions of a component that shares
its provided service with lower priority components, we will need to
use the inverses of the RT operator2. Most of the relations for the
input assumptions are the same as the ones for a single PE. However,

2See Appendix B for the definitions of the pseudo-inverses of the RT operator, and
for more details refer to [WT05b].
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PE3

PE PB

PE1

PE PB

PE2

EDF
αHR

G

αHR
A

αLR
A

αLR
G

ρHR
G ρHR

A

ρLR
G ρLR

A

β1
G β1

A β2
G β2

A

β3
G β3

A PBLR

PBHR

Fig. 3.8: Interface model for the architecture in Fig. 3.1 with EDF scheduling in PE2

equations (3.28) and (3.29) change because of taking into account the
pseudo-inverse of (3.6). This is written as follows:

αuA
x = min{βlG

⊗ αuA
y , β

lG + bmax,RT−α(β′lA, βlG)} ,

βlA = max{αlA
y � α

lG
x , α

uG
x � α

uA
y , α

uG
x − bmax,RT−β(β′lA, αuG

x )} . (3.39)

3.7.3 Earliest Deadline First Scheduling
It was shown in Section 3.4 that it is possible to model abstract components
which process several data streams using an earliest deadline first
scheduling policy. For example, the application shown in Fig. 3.1 could
be changed by substituting the fixed priority scheduler in PE2 with an
EDF one. The corresponding interface model is shown in Fig. 3.8.

Again, what we need to do is determine the relations between all
interface variables. This is similar to what was done for the processing
element PE and the playout buffer PB in Sections 3.7.1.1 and 3.7.1.2,
respectively. The interfaces corresponding to a generic EDF component
which processes N input data streams are shown in Fig. 3.9.

Equations describing the output guarantees are again equivalent to
those for the abstract component, i.e. (3.13) and (3.14). They only need to
be expressed in terms of interface guarantees instead of values as follows:

αuG
yi (∆) = r(αuG

xi ,−(Di − BCETi),∆) ∀i , (3.40)

αlG
yi (∆) = r(αlG

xi , (Di − BCETi),∆) ∀i , (3.41)

using the definition of the shift function r in (3.11).
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EDF

α x1
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.
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.

Fig. 3.9: Interface model for a generic EDF component processing N data streams

Similarly, for the resource and buffer constraints, (3.12) and (3.15), we
obtain:

N∑
i=1

r(αuG
xi ,Di,∆) ≤ βlG(∆) ∀∆ ∈ R≥0 , (3.42)

αuG
xi (Di) ≤ bi max ∀i . (3.43)

Determining the input assumptions of the EDF component also
involves finding the pseudo-inverse functions of the relations. Finding
the input assumes for the upper arrival curves involves inverting
relations (3.12), (3.13), and (3.15). Again, we need to compute the largest
upper curves for which the relations still hold. Using (3.13), we can
determine for the upper curve of each input data stream the following
inequality:

αuA
xi (∆) ≤ s(αuA

yi , (Di − BCETi),∆) ∀∆ ∈ R≥0
∀i , (3.44)

where s(α, c,∆) is the function:

s(α, c,∆) =


α(∆ − c) if ∆ > c
α(0+) if 0 < ∆ ≤ c
0 if ∆ = 0

with α(0+) = limε→0{α(ε)}.
Similarly, considering the buffer constraint (3.15) for each input data

stream, we find:

αuA
xi (∆) ≤ t(Di, bi max,∆) ∀∆ ∈ R≥0

∀i , (3.45)

where t(d, b,∆) is the function:

t(d, b,∆) =


∞ if ∆ > d
b if 0 < ∆ ≤ d
0 if ∆ = 0
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Finally, inverting the resource constraint (3.12) yields:

αuA
xi (∆) ≤ βlG(∆ + Di) −

N∑
j=1
j,i

r(αuG
xj , (D j −Di),∆) ∀∆ ∈ R≥0

∀i , (3.46)

using the definition of the shift function r in (3.11).
Combining inequalities (3.44), (3.45), and (3.46), for the input assume

of the upper curve of each input data stream, we finally find for all i:

αuA
xi (∆) = min

{
s(αuA

yi , (Di − BCETi),∆), t(Di, bi max,∆),

βlG(∆ + Di) −
N∑

j=1
j,i

r(αuG
xj , (D j −Di),∆)

 ∀i . (3.47)

Calculating the input assumption for the lower curve is much simpler
as it involves finding the smallest lower curve solution to the pseudo-
inverse of relation (3.14) or αlA

xi (∆) ≥ αlA
yi (∆ + (Di − BCETi)) for all i.

Therefore, we can determine the following assume interface function for
the lower curve of each input data stream:

αlA
xi (∆) = r(αlA

yi ,−(Di − BCETi),∆) ∀i , (3.48)

using the shift function r as defined in (3.11).
Similarly, for the assume of the lower service curve we invert

relation (3.12) which yields the inequality βlA(∆) ≥
∑N

i=1 r(αuG
xi ,Di,∆).

Therefore, the input assume for the lower service curve of an EDF
component can be determined as:

βlA(∆) =

N∑
i=1

r(αuG
xi ,Di,∆) . (3.49)

It is also possible to combine the relations for an EDF component
with those for a playout buffer PB in the same way it was done for
a single processing component PE and a PB component. Note that
the component-based approach described in this chapter is suitable for
design and analysis of any complex hierarchial scheduling method in a
distributed implementation, see for example [WT06a].

3.8 Generalizing the Interface Model
The theory of Rate Interfaces is not confined to the interface models
presented in the previous sections, but can be generalized into various



3.8. Generalizing the Interface Model 81

directions. In the following sections we only show some of the possible
generalizations.

3.8.1 Workload Characterization
So far, the main characterization of streams and the service provided by a
resource have been the arrival and service curves α and β. As explained in
Section 3.4, they map the domain of time intervals to that of events. On the
other hand, computing resources are usually characterized by physical
quantities like processing cycles per second. The relation between these
physical quantities and the abstract notion of events can be given by
workload curves as defined in Section 3.4. Here, γ(v) = (γl(v), γu(v))
denotes the minimal and maximal amount of resource units (workload)
which is needed to process any sequence of v consecutive events.

We denote as β(∆) = (βl(∆), βu(∆)) the minimum and the maximum
available resource units in any time interval of length ∆. If event-based
service curves are given, then valid resource-based service curves can be
determined as:

βu(∆) = γu(βu(∆)) , βl(∆) = γl(βl(∆)) . (3.50)

Conversely, if resource-based service curves are given, then valid event-
based curves are:

βu(∆) = γ−l(βu(∆)) , βl(∆) = γ−u(βl(∆)) , (3.51)

where

γ−u(r) = sup{v | γu(v) ≤ r} , γ−l(r) = inf{v | γl(v) ≥ r} .

These inverse workload curves γ−u(r) and γ−l(r) represent the minimal
and the maximal number of events that can be processed with r resource
units.

In a similar way, we denote as α(∆) = (αl(∆), αu(∆)) the minimum
and the maximum workload arriving on an event stream in any time
interval of length ∆. Then, the conversion between the event-based and
resource-based arrival curves can be given as follows:

αu(∆) = γu(αu(∆)) , αl(∆) = γl(αl(∆)) ,

αu(∆) = γ−l(αu(∆)) , αl(∆) = γ−u(αl(∆)) .

The workload curves can be obtained from the system specification
using various methods, see also [MKT04]:
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• Let us suppose that the resource unit we are considering is the
execution demand of a task, e.g. in terms of processing cycles. In
this case we can determine the workload curves as a function of the
worst-case execution demand (WCED) and the best-case execution
demand (BCED) of the task associated with each stream:

γu(v) = v ·WCED , γl(v) = v · BCED ,

γ−u(r) = br/WCEDc , γ−l(r) = dr/BCEDe .

• If a more detailed model of the task execution is known, e.g. in form
of a finite state machine that executes a subfunction of the task at
each transition, then one can analytically determine the workload
functions. In this case, one can take advantage of the fact that not
for every event the worst-case execution demand or the best-case
execution demand may occur, i.e. for v successive events we have
γu(v) < v ·WCED and γl(v) > v · BCED.

• Finally, one may determine workload curves by simulation. In this
case, the execution demand of event i, i ≥ 0, in a sample input stream
is denoted as EDi. From the definition of the workload curves, we
obtain γu(v) = sup{

∑i<k+v
i=k EDi | k ≥ 0} and γl(v) = inf{

∑i<k+v
i=k EDi | k ≥

0}. Because of the simulation-based approach, we do not obtain
worst-case results that hold for all executions of the system. They
are only valid for a certain class of input streams.

Now, the rate interface equations as derived in this chapter can be
rewritten such that they involve for example the resource-based service
curve. Here, we only describe how to derive the relations given in
Sections 3.7.1.1 and 3.7.1.2 for the simple scenario shown in Fig. 3.7. The
other scenarios described in the chapter can be adapted in a similar way.

The basic equations that describe the abstract greedy processing
component PE in (3.4), (3.5), (3.6) and (3.8) change to:

α′u = αu
� γ−u(βl) , α′l = αl

⊗ γ−u(βl) ,

β′l(∆) = sup
0≤λ≤∆

{
βl(λ) − (γu(αu))(λ)

}
, αu(∆) ≤ (γ−u(βl))(∆) + bmax .

In a similar way, also the relations that describe the abstract EDF
component can be adapted to the resource-based representation.
Constraints (3.9) and (3.10) for the playout buffer component PB remain
unchanged.

As a result, (3.25) and (3.26) are adapted to:

αuG
y = αuG

x � γ
−u(βlG) , αlG

y = αlG
x ⊗ γ

−u(βlG) .
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By a simple replacement of the event-based service curve, we obtain the
following for (3.27) and (3.28):

αlA
x = αlA

y � γ
−u(βlG) ,

αuA
x = min{γ−u(βlG) ⊗ αuA

y , γ
−u(βlG) + bmax} .

Finally, the workload relations lead to:

βlA(∆) = γl(βlA(∆)) , βlA = max{αlA
y � α

lG
x , α

uG
x � α

uA
y , α

uG
x − bmax} .

The playout buffer relations (3.30–3.33) remain unchanged as only event-
based quantities are involved.

As a result of this discussion, we can state that the interface rate algebra
derived in this chapter can be extended towards resource-based quantities
like computation time, number of execution cycles or communication
bandwidth.

3.8.2 Large Interface Models
In Section 3.7 we derived the interface relations for a PE with one
abstract component in (3.25)–(3.29), as well as for a PB in (3.30)–(3.33).
In (3.34)–(3.38) we combine these relations to form the interface of a
system consisting of a single PE and a single PB, as depicted in Fig. 3.7.
Analogously one could combine the interfaces of several single PEs and
PBs to model larger systems that are composed of many PEs and PBs, as
for example to form the interface of the system depicted in the bottom of
Fig. 3.2. By concatenating the relations of the single component interfaces
we can directly obtain the interface of the larger system.

3.8.3 Scheduling Policies
As was shown in Section 3.7, the theory of Rate Interfaces allows
us to express the interface of a processing element processing more
then one input stream. In Sections 3.7.2 and 3.7.3, we presented the
interface relations for abstract components that share the available service
using fixed priority and earliest deadline first scheduling policies. It is
also possible to derive the internal interface relations for various other
scheduling policies such as time division multiple access (TDMA), first-
in first-out (FIFO), generalized processor sharing (GPS), polling servers,
and any hierarchical combination of them. It is feasible to obtain interface
models of PEs that implement any of these scheduling policies, see e.g.
[WT06a].
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3.8.4 Rich Interfaces
In this work, the interface of an abstract component PE exposes the arrival
and service guarantees and the requirements it has, e.g. its internal
buffer does not overflow. The interface of a playout buffer component
PB on the other hand exposes the arrival and consumption guarantees
and assumptions to ensure that its internal buffer neither overflows, nor
underflows. Hence, the buffers of both components are treated as fixed
internal parts and are not directly exposed at the interfaces.

However, we could also expose the internal buffers of abstract
components at their interfaces. Analogous to (3.25)–(3.29) and (3.30)–
(3.33), we could then derive the interface relations for the buffer
guarantees and assumptions, using the various buffer constraints
described in Section 3.7. With such richer interfaces, one could solve
additional design problems. For example, given the service guarantees
and assumptions as well as the arrival guarantees and assumptions of
an abstract component, what is the minimum assumption on its internal
buffer such that the buffer does not overflow? Moreover, if we would
also expose the initial buffer fill level in the interface of a playout buffer,
one could even derive the assumptions on the minimum and maximum
initial buffer fill level such that the playout buffer does not overflow or
underflow, given its arrival and consumption guarantees.

For a component with EDF scheduling it could be interesting to
determine the deadlines that can be associated with the event streams
such that all streams remain schedulable. By exposing the deadlines at the
component interface, we could easily derive the minimum assumptions
on the deadlines that must be associated to an event stream such that the
system remains schedulable.

3.8.5 Interface for Worst-Case Traversal Times Constraints in
Component Networks

Until now we have considered only component-wise constraints such as a
certain buffer inside of a component should never underflow or overflow.
However, we may have constraints that span a network of components
such as end-to-end delay constraints or worst-case traversal time (WCTT)
constraints.

The worst-case traversal time for an event from an input stream which
is processed by a sequence of components can be computed as the sum of
the worst-case traversal times of the individual components. However,
this would lead to a very pessimistic and unrealistic result as it would
assume that the worst-case traversal times occur in all components for
the same event. A better bound on the worst-case traversal time can be
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achieved by considering a concatenation of the components. This is a
phenomenon known as “pay bursts only once” [LBT01].

Before we continue, we need to define the computation of the
WCTT for the abstract components described in Section 3.4. Following
results from Network Calculus, the WCTT experienced by an event in a
component of type PE, defined as its finishing time minus its arrival time,
can be computed as:

sup
λ≥0

{
inf{τ ≥ 0 : αu(λ) ≤ βl(λ + τ)}

} def
= Del(αu, βl) .

If all events of the input stream must be processed by the PE
component within a delay constraint D, then for the stream to be
schedulable we must have that Del(αu, βl) ≤ D which can be written as:

βl(∆) ≥ r(αu,D,∆) ∀∆ ∈ R≥0 .

The above inequality gives us an expression for the minimum service in
component PE that is required in order to meet the delay constraint.

For the PB component, the WCTT experienced by an event can be
computed as Del(αu, ρl

τ) where

ρl
τ(∆) = r(ρl, τ,∆) (3.52)

is the lower readout curve ’shifted to the right’ by the initial playback
delay τ ≥ 0 necessary to accumulate B0 events. Similarly to the PE
component, meeting a delay constraint of D in the PB component would
require that we have the following constraint satisfied:

ρl
τ(∆) ≥ r(αu,D,∆) ∀∆ ∈ R≥0 ,

where r is the shift function defined in (3.11).
For the EDF component, the WCTT experienced by an event from

a stream can be computed as Del(αu
i , β

l
D i

) where βl
D i

is the service curve
provided to each stream when the schedulability condition (3.12) for the
EDF component is satisfied. The service curve is modeled with a burst-
delay function defined in [LBT01] as:

βl
D i

(∆) =

{
+∞ if ∆ > Di

0 otherwise (3.53)

Given the above computations of the WCTT in individual abstract
components, we can generalize them towards networks of components.
For an input event stream bounded by αu traversing a sequence of
components which consists of a set of PEs, a set of PBs, and a set of
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EDF components denoted as PE, PB and EDF , respectively, the worst-
case traversal time that an event can experience can be computed as
Del(αu, βPE ⊗ ρPB ⊗ βEDF ) with βPE =

⊗
c∈PE β

l
c , ρPB =

⊗
c∈PB ρ

l
τ c , and

βEDF =
⊗

c∈EDF β
l
Di c , where βl

c is the service availability of PE component
c, ρl

τ c is the lower readout curve for PB component c as defined with
(3.52), and βl

Di c is the service availability provided to the stream served
with relative deadline Di by EDF component c as defined with (3.53).

A WCTT constraint on the sequence of components Del(αu, βPE⊗ρPB⊗
βEDF ) ≤ D can be written as follows:

βPE ⊗ ρPB ⊗ βEDF ≥ r(αu,D,∆) ∀∆ ∈ R≥0 , (3.54)

using the shift function r from (3.11).
Besides computing WCTT, we can develop an additional type of

interface to alleviate design of systems with WCTT constraints that span
networks of components. It is an interface-based interpretation of meeting
a WCTT requirement with (3.54).

The ’complies to’ relation ` for this interface connection is defined
as ΠG(∆) ` ΠA(∆) = (∀∆ : ΠG(∆) ≥ ΠA(∆)), where ΠA expresses the
minimum service requested from all subsequent components such that
a WCTT constraint is satisfied, and ΠG expresses the minimum service
guaranteed by all subsequent components.

Computing the guarantee for a sequence of components follows
directly from (3.54) and can be done with ΠG = βG

PE
⊗ ρG

PB
⊗ βG

EDF
.

Connecting a PE component to the sequence would change the combined
service to Π′G = βlG

⊗ΠG where βlG is the lower service guaranteed by the
PE. Similarly, connecting a PB component we would have Π′G = ρlG

τ ⊗ΠG,
where ρl

τ(∆) is the lower guaranteed shifted readout curve as defined
with (3.52). For an EDF component, we have Π′G = βlG

D i
⊗ΠG where βlG

D i
is

the service curve provided to the stream when processed with a relative
deadline Di as defined in (3.53).

From (3.54), we can also compute the assume on the combined service
of a sequence of components as ΠA = r(αuG,D,∆) which expresses the
minimum necessary service in order to meet a WCTT constraint of D
for the input αuG. Propagating the assume value through a sequence of
components can be done for the three types of components by inverting
(3.54) as follows:

PE : ΠA = Π′A�βlG , PB : ΠA = Π′A�ρlG
τ , EDF : ΠA = Π′A�βlG

D i
.

We can also compute component-wise constraints on the resources
provided to each component given the resource assumption from
preceding components Π′A, and the resource guarantee from subsequent
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Fig. 3.10: Interface models for: (a) two PE components processing two streams
with FP scheduling, (b) PB component, and (c) EDF component processing N
streams

components ΠG. We can do this for the three types of components as
follows:

PE : βlA
≥ Π′A�ΠG , PB : ρlA

τ ≥ Π′A�ΠG , EDF : βlA
D i
≥ Π′A�ΠG .

The above constraints can be combined with the previously computed
input assumes for the resources of the three components with (3.39), (3.33),
and (3.49). By doing this, satisfying all interface relations of components
composed in a sequence will guarantee that the WCTT constraint on the
sequence of components is satisfied. The WCTT interfaces for the PE, PB,
and EDF components are shown in Fig. 3.10(a)–(c).

3.9 Case Study
In this section we show how our proposed theory can be applied to
the application scenario described in Section 3.3. Towards this, each
processing element and playout buffer in Fig. 3.1 is considered to be an
independent component and our objective is to connect them together to
realize the architecture shown in the figure. In order to decide whether
two components can be connected together, we would only inspect their
interfaces. Two compatible interfaces implicitly guarantee that the buffers
inside their respective components will never overflow, and in addition,
the playout buffers will never underflow.

The main message in this section is an illustration of how the
internal details of a component (e.g. its buffer size, scheduling policy,
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processor frequency) are reflected (or summarized) through its rate
interface. We show that if these internal details are changed then
the component’s rate interface also gets changed and two previously
compatible components may now become incompatible (or vice versa).
Further, we show how rate interfaces can help determine internal
parameters of a component during design time by keeping all interface
connections compatible. As mentioned earlier, this approach is in contrast
to first designing/assembling the complete system and postponing the
performance analysis step to the very end.

Figure 3.2 shows the component model of the architecture in Fig. 3.1
and also its interface model. Whereas the arrows in the component model
(top) represent the flow of the video streams, those in the interface model
(bottom) represent the assumptions and the guarantees associated with
the individual components.

3.9.1 Experimental Setup
We use two different sets of video clips; the first set being made up
of regular clips with moderate to high motion content and the second
set being made up of clips displaying still images. The former set
characterizes video streams to be viewed through the main window of
the PiP application. The latter set represents content like stock quotes
and upcoming program schedules, which will be viewed in the smaller
secondary window (see Fig. 3.1). These two sets characterize the two
streams HR and LR shown in Fig. 3.1. In our experiments, both the
incoming streams have the same frame resolution of 704× 576 pixels and
we assume that the down-scaling for the secondary window is being
done at the output device. However, for simplicity we slightly abuse
the notation and refer to the stream for the main window as the high-
resolution (or HR) stream and that for the secondary window as the
low-resolution (or LR) stream. Both the streams arrive at the system at a
constant bitrate of 8 Mbps and the playout buffers are read at a constant
rate of 25 frames/second. Further, in the architecture shown in Fig. 3.1,
PE1 is set to run at a processor frequency of 1.3 GHz, PE2 at 3 GHz and
PE3 at 1.25 GHz.

We simulated the execution of the VLD, IQ, IDCT and MC tasks
for these two sets of video clips using a SimpleScalar model [ALE02]
of the processing elements (with the sim-profile configuration and the
PISA instruction set). Both of the video streams were modeled at the
macroblock granularity. Note that the number of bits constituting each
compressed macroblock in the input stream is variable. Hence, at the
macroblock granularity, a constant bitrate stream translates into a bursty
arrival pattern. Similarly, the number of processor cycles required to
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Fig. 3.11: Upper and lower bounds on the arrival process of the video streams at
PE1 and PE3, and the guaranteed service offered by these PEs

process each macroblock is also highly variable. Hence, the service offered
by a PE running at a constant frequency translates into a variable service
when expressed in terms of the number of macroblocks guaranteed to be
processed within any time interval of a specified length. Figure 3.11 shows
the bounds on these bursty arrival patterns at the input to the system for
the HR and LR streams. It also shows the guaranteed service βG offered
by PE1 and PE3 to these two streams. The event-based (macroblock level)
service curves have been computed with workload curves that come
from data recorded for the two streams during simulation. It represents
the maximum number of CPU cycles needed to process one, two, and
more consecutive macroblocks. The conversion has been done with
equations (3.51).

3.9.2 Results
We report four different cases, each of them involving different instances
of the five components shown in Fig. 3.2. For the first three cases, these
instances were obtained by changing the sizes and initial fill-levels of
the playout buffer components, with all the other components remaining
unchanged. We show that in the first case, the components turn out to
be compatible, whereas in the following two cases they are incompatible.
Our main result is that this compatibility is checked by only inspecting the
components’ interfaces. The fourth case involves changing the scheduler
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in PE2 from one with a fixed priority policy to one with an EDF policy.
Bounds on the deadlines for the two tasks running in component PE2

are determined by keeping all interface connections of the component
compatible.

Before continuing further, we would like to point out that the buffer
sizes b2 and b4 in PE2 (see Fig. 3.1) can be chosen independently of the other
system parameters. However, they influence the rates of the incoming
streams assumed by the component PE2. On the other hand, for given
arrival rates of the input streams and given processor frequencies, the
buffer sizes b1 and b3 inside PE1 and PE3 should be of a certain minimum
size for them not to overflow. Given the parameters in our experimental
setup, these buffer sizes turn out to be b1 = 576 macroblocks and b3 = 1315
macroblocks.

For the first three cases, the buffer sizes b2 and b4 inside PE2 are set
to 1 and 2 video frames respectively (each frame being made up of 1584
macroblocks). In these cases, we will only be concerned with checking
if the component PE1 (in Fig. 3.2) is compatible with a partially designed
system with all the other components already connected together. This is
done by checking if the output rate guaranteed by PE1 is compatible with
the input rate assumed by PE2. This compatibility check is indicated in
Fig. 3.2 with a “?” mark.

3.9.2.1 Case I

Here we consider a partially designed system with all the components
except PE1 already connected. The buffer size in the component PBHR is
equal to 6 frames and its initial fill-level is set to 3 frames. In other words,
the output device starts consuming frames from this component only
after an initial playout delay, during which the buffer fill-level reaches 3
frames. The buffer size and initial fill-level associated with the component
PBLR are also 6 and 3 frames respectively. All the other components are
as specified in our experimental setup.

The problem is now to check whether the component PE1 is compatible
with this partially designed system. Figure 3.12 shows the assumption on
the input rate αA

HR,PE2
expressed by PE2’s component interface. The same

figure also shows the guarantee on the output stream rateαG
HR,PE1

expressed
by PE1’s interface. Here, the output guarantee is fully “enclosed” by the
input assumption (i.e. they match), thereby suggesting that the two
components are compatible.
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Fig. 3.12: Assumption on the input rate expressed by PE2’s interface matches the
guarantee on the output rate provided by PE1’s interface. Hence, PE1 is compatible
with the partially designed system

3.9.2.2 Case II
Now we consider the same partially designed system but with the
component PBHR’s initial buffer fill-level reduced to 2 frames and
everything else remaining unchanged. The assumptions and the
guarantees on the input and output rates in this case are shown in
Fig. 3.13. Note that since the component PE1 remains unchanged,
its output guarantee αG

HR,PE1
is also unchanged. However, the input

assumption from the partially designed system has changed and it does
not satisfy the guarantee provided by PE1 anymore. Hence, the two
components are no longer compatible. If they are connected together,
then the playout buffer in PBHR might underflow.

3.9.2.3 Case III
Here, the partially designed system is the same as in Case I, with the only
exception being the component PBLR, whose buffer size and initial fill-
level are changed to 5 and 3 frames respectively. Note that (surprisingly)
changing the size of the playout buffer associated with the low resolution
stream has an influence on the input assumption expressed at the interface
of PE2 that is associated with the high resolution stream. This nicely
illustrates how changes made in one component are reflected in a different
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Fig. 3.13: Assumption on the input rate expressed by PE2’s interface does not
match the guarantee on the output rate provided by PE1’s interface. Hence, PE1 is
not compatible with the partially designed system

component’s interface once they have been composed together due to
the constraint propagation feature of our interface theory as outlined in
Section 3.6.1. Figure 3.14 shows the assumptions and the guarantees on
the input and output rates in this case. Again, here they do not match.
If PE1 is connected to the system then this might potentially lead to an
overflow of the buffer inside PBLR.

3.9.2.4 Case IV
Here we consider a different design scenario. The buffer sizes of
components PBHR and PBLR are both set to 8 frames and their initial
fill-levels are set to 4 frames. The buffers b2 and b4 in component PE2

are set respectively to 2 and 3 frames. Given the system shown in
Fig. 3.2, we would like to change the scheduler in PE2 from a fixed
priority one to an EDF one. The respective system model is shown in
Fig. 3.8. Substituting a component means that its internal configuration
parameters need to be set-up in such a way that the interface connections
of the component are compatible with the rest of the system. In this case,
it would mean exploring the space of feasible relative deadlines, DHR and
DLR, for the two tasks in PE2 while keeping the interface connections of
the component satisfied. Taking any values for the relative deadlines
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Fig. 3.14: The assumptions and guarantees do not match; hence, PE1 is not
compatible with the partially designed system. Here, the incompatibility is due
to the component PBLR being changed

from the computed intervals will guarantee that all buffers in the system
meet their overflow and underflow constraints since all the interfaces of
the new EDF component are still compatible with the ones of the other
components.

First, we need to consider that the deadlines should be greater or
equal to the worst-case execution times of the two tasks running on PE2,
i.e. DHR ≥ WCETHR, DLR ≥ WCETLR. They were found in simulation
to be 0.013 ms for the high-resolution stream and 0.025 ms for the low-
resolution one.

Secondly, we need to consider the interface relations of the EDF
component where the deadline parameters are present. Upper and lower
bounds on the deadlines are found using binary search such that the
assumptions and guarantees on the interface connections of PE2 always
match, i.e. the inequalities where the deadlines are involved are satisfied.

If we consider the data stream connections between PE2, PE1, and PE3

as seen in Fig. 3.8, considering inequality (3.44) separately for the high-
resolution and low-resolution streams will give us, for example, lower
bounds on the feasible deadlines derived from:

αuG
HR,PE1

(∆) ≤ s(αuA
HR,PBHR

, (DHR − BCETHR),∆) ∀∆ ∈ R≥0 ,

αuG
LR,PE1

(∆) ≤ s(αuA
LR,PBLR

, (DLR − BCETLR),∆) ∀∆ ∈ R≥0 .
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Similarly, we can compute intervals for the deadlines from relations
(3.45), (3.46), and (3.48) which we have to intersect in order to get the
region of feasible deadlines as shown in Fig. 3.15. We need to do the same
with the inequalities for the connections with the playout buffers PBHR

and PBLR, (3.40) and (3.41), and the inequality for the service connection
of PE2 (3.49). Finally, we need to intersect all found intervals in order to
get the region of feasible relative deadlines which will satisfy all interface
connections of PE2. This means that choosing any values for the relative
deadlines from the computed region shown in Fig. 3.15 would guarantee
that all constraints in the system are satisfied, e.g. no buffer in the system
will underflow or overflow. The lower bounds on the deadlines which
we constructed from the worst-case execution times are not drawn in the
figure since they almost coincide with the x- and y-axes.

In summary, we have shown through concrete examples how
incremental compatibility checking can be done using Rate Interfaces.
Clearly, such interfaces can also be used in a straightforward manner for
resource dimensioning and component-level design space exploration.
Here, the typical questions that one would ask are: What is the minimum
buffer size of a component such that its interface is compatible with a
partially existing design? Or what is the minimum processing frequency
such that its interface is still compatible? Finally, although here we
were only concerned with buffer overflow and underflow constraints,
as mentioned before, our framework can be easily extended to handle
other performance constraints as well.
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3.10 Discussion
In this chapter we proposed the theory of Rate Interfaces for compositional
design of embedded systems whose components communicate via data
streams. We showed how Rate Interfaces can be effectively checked to
guarantee buffer overflow and underflow constraints. As mentioned
earlier, the framework can be extended to handle other types of constraints
as well, e.g. worst-case traversal time constraints.

This chapter extends previous work in two different ways. First,
we cast the rate analysis problem studied in [LCM06, MKCT04] in
an interface-theoretic setting and show how this leads to efficient
component-based design of embedded systems. Second, it also extends
our previous work on Real-Time Interfaces [WT05b, WT06a] by applying
them to a distributed setup. Real-Time Interfaces are proposed for the
design and analysis of real-time systems in an interface-theoretic setting.
However, the previous results were restricted to uniprocessor systems.
In this chapter we show that by using the Rate Interface algebra, they are
extended towards the analysis and design of multiprocessor architectures.

The algebra presented in this chapter is purely stateless. It would
be interesting to extend our work to setups where the processing in a
component is state-dependent. Towards this, stateful interface languages
like interface automata [dAH05] will be worth investigating.

Similarly to the results developed in Chapter 2, the Rate Interfaces
algebra considers only networks of components free of directed cycles.
An interface algebra for cyclic networks is a topic for future investigations.
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4
Compositional Analysis for Real-Time
Systems with Cyclic Dataflow

Chapters 2 and 3 deal with interface-based design frameworks for real-
time systems. Such frameworks specify interfaces for system components
that contain information about how the components can be used. With
such frameworks a designer can decide whether two components can
work together by only inspecting their interfaces without considering
the internal implementation details of the components. One of the main
restrictions of these frameworks is that they apply only to networks of
components that are free of directed cycles. This chapter goes into the
direction of developing a performance analysis method that can work
with systems whose component networks contain directed cycles. Typical
examples of such systems are parallel and distributed embedded systems
which run control and signal processing applications. These are often
specified as dataflow graphs with dependency cycles. Examples of the
corresponding models of computation are marked graphs or synchronous
data flow graphs.

Performance analysis is often used in the exploration of different
implementation alternatives or in order to provide guarantees on the
timing behavior. This chapter describes a new approach to the
compositional performance analysis of cyclic dataflow graphs as existing
component-based analysis methods are not able to faithfully deal with
cycles in the event flows. The new method results in tight bounds
on essential quantities such as buffer sizes, end-to-end delays, and
throughput. Because of the generality of the approach, one can analyze
not only systems that contain cyclic event flows, but also implementations
that contain buffers with finite sizes that produce system-wide back-
pressure caused by blocking-write semantics. The embedding of the
novel approach into the Modular Performance Analysis (MPA) [CKT03b]
method allows the analysis of distributed implementations that use
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resource sharing mechanisms such as fixed priority (FP) scheduling and
time division multiple access (TDMA).

4.1 Introduction
Applications that are implemented on distributed embedded systems
can often be specified using dataflow graphs where nodes correspond to
processes, and edges correspond to communication channels with first-in
first-out (FIFO) buffer semantics. In particular, this observation holds
if the underlying algorithms perform computations on streaming data
which is common for control-, media-, signal-, image- and transceiver-
applications. This model of computation has received a lot of interest
in the past as it naturally fits to distributed implementations, for
example heterogeneous multiprocessors, multiprocessor System-on-Chip
(MPSoC), and large scale distributed systems in the automotive and
avionics industries. There are several well-known subclasses of dataflow
models such as Kahn Process Networks [Kah74], Marked Graphs
[Mur89], and Synchronous Dataflow Graphs [LM87], for an overview see
[LP95]. Many results are available concerning their deadlock behavior,
schedulability, and mapping onto multiprocessor systems [BML99, SB00].

The performance analysis of applications that have been mapped onto
distributed or parallel computation and communication platforms has
received much attention recently, see e.g. [CKT03b, JE03, PEP02, TC94].
It enables the analysis of essential system characteristics such as end-to-
end delays, upper bounds on buffer spaces, and throughput. It is based on
information about the worst-case execution times, communication times,
and the resource sharing strategies. The formal analysis can be used
for design space exploration, e.g. binding of processes to computing
resources, mapping of channels to communication paths, and selecting
scheduling strategies, or for final verification of system properties after
the design step.

In many of the above mentioned application domains we are faced
with applications that contain cyclic dependence behavior where the
result of a certain process output may depend on previous outputs of the
same process, possibly transformed via a set of intermediate processes.
Such applications exhibit iterative behavior that is combined with loop
carried dependencies. Another prominent example is related to the use of
finite buffers in the implementation of a given application which is usually
modeled as a one which has infinite buffers but contains additional cyclic
dependencies.

However, the analysis of cycles in the dataflow of applications poses
tremendous difficulties for performance analysis, in particular for any
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modular and component-based approach. The cycles in the information
flow between the individual processes of an application lead to global,
system-wide state dependencies. As a result, the timing behavior of
a process (and as a result its use of the available resources) not only
depends on predecessor processes that provide the data streams that
are to be processed, but also on successor processes and the process
itself. A typical special case is the use of finite buffers with blocking-write
semantics which can be summarized as follows: if a buffer is full, it puts
a back-pressure to preceding processes and may cause a system-wide
slow-down or even blocking. Ignoring dependency cycles, for example
by just cutting them or by replacing finite buffers by infinite ones, would
lead to unsafe performance analysis results.

Following the above discussion, there is a need for extending the
model of computation that can be handled efficiently by the modular
component-based performance analysis methods towards systems with
cyclic behavior in the event flows.

The problem statement of this chapter can be formulated as follows:
Given is a set of marked graphs, as depicted in Fig. 4.1, that share a
set of computation and communication devices by means of FP and
TDMA scheduling policies, and show a complex interaction with the
environment. Marked graph 1 (MG1) has finite buffers between processes
v1 → v2 and v2 → v3 limited to maximal sizes of 1 and 2, respectively.
Similarly, marked graph 2 (MG2) has finite buffers and shares the same
execution platform with MG1. We would like to determine essential
system characteristics for the two graphs such as end-to-end delays, buffer
sizes, and throughput.

In summary, the chapter presents the following new results:

• Component-based performance analysis methods are extended to
the class of marked graphs. Unlike other known methods, the
approach takes into account a general model for resource interaction
based on the concept of service curves that cover traditional resource
models such as periodic and bounded delay as special cases, and
a general data stream model based on arrival curves that cover
traditional stream models such as periodic, sporadic, periodic with
jitter, and periodic with bursts as special cases.

• Performance bounds obtained with the newly described method
have higher accuracy than previously known methods.

• The analysis covers systems with cyclic data dependencies, finite
buffer sizes, non-deterministic resource behavior, TDMA and FP
scheduling policies. It can also be embedded into compositional
frameworks such as the SymTA/S [JE03] or the MPA [CKT03b].
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MG2: low priority

Fig. 4.1: Visualization of problem statement where two marked graphs are
mapped to a distributed platform and the individual processes share the available
resources using some scheduling scheme such as FP or TDMA

• Experimental results are provided that show the applicability of
the new method to selected case studies and the advantages with
respect to known approaches in terms of accuracy of the results.

The chapter describes a stepwise abstraction that leads from a
characterization of a marked graph in time domain to an abstract
representation in time interval domain which is then used to (a) determine
essential performance indicators and to (b) embed the analysis into a
compositional framework. Section 4.2 briefly discusses some of the
related work. Section 4.3 contains the time domain characterization
and introduces the essential notation of a service function to describe
resources. Section 4.4 introduces an abstraction of the service function,
i.e. it represents resource capabilities in the time interval domain using
service curves, and analyzes marked graphs under this abstraction.
Section 4.5 introduces the final abstraction, namely the representation
of data streams in the time interval domain using arrival curves which is
the main prerequisite for performance analysis and determining bounds
on real-time characteristics such as buffer sizes, end-to-end delays, and
throughput. Section 4.6 contains the experimental results that show
the applicability and the tightness of the analysis. Finally, Section 4.7
concludes this chapter with a brief summary and a discussion.
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4.2 Related Work
The present chapter specifically deals with a subclass of dataflow graphs
called marked graphs, see e.g. [Mur89, Rei68]. They are characterized by
the fact that each process can fire if there is at least one token in each input
queue and the firing adds one output token to each output queue. For
graphs where each process has a fixed delay (execution time), there are
many results in the literature that characterize the timing behavior. They
all suppose that there is a fixed deterministic processing time for tokens in
each node. Early results in [Rei68] have been generalized and connected
to eigenvalue problems in max-plus algebra, see [BOQC92, CDQV85] and
more recently [GGS+06]. The results are not directly applicable to more
complex interactions with the resources as envisioned in this chapter:
non-deterministic delays, various resource sharing mechanisms such as
FP and TDMA, and non-deterministic timing behavior of input streams.

The class of synchronous dataflow graphs (SDF) has been introduced
in [LM87] as an untimed model. Unlike marked graphs, they are
characterized by fixed token consumption and production rates that can
be different than 1. Because of the practical importance of this model
of computation, many results are available that describe properties of an
implementation on single- and multi-processor systems. The processes
in an SDF graph, also called actors, are annotated with fixed execution
times or bounds on the execution times for the purpose of performance
analysis [SB00]. The above mentioned restrictions on the scope of the
performance analysis for marked graphs also hold here.

Very often, SDF graphs are converted to equivalent marked graphs,
also denoted as homogeneous SDF graphs (HSDF) [SB00], for the purpose
of performance analysis. The same method can be used by the analysis
framework described in this chapter. Therefore, the new results can be
generalized to the class of SDF graphs as well.

Systems with finite buffers can be modeled as marked graphs by
adding to each edge with finite buffer an edge in the opposite direction
with initial tokens that represent the available capacity of the buffer. Based
on this concept, there have been several results based on the classical fixed
delay models, e.g. computing buffer sizes under throughput constraints,
see [WBJS06], and computing throughput while respecting sequence
constraints by additional edges, see [PBB+03]. In all of these cases,
resources are not explicitly modeled and therefore: (a) only limited
resource sharing methods can be analyzed, and (b) modularity and
composability is limited.

More complex interactions between resources and process executions
can be faithfully modeled using the closely related concepts of dioids
[BOQC92] and Network Calculus [Cha00, Cru91a, LBT01]. The concepts
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of arrival and service curves allow a much more general modeling of
the system environment and have been applied to model communication
networks. In [BJLL06], results from [Cha00] have been applied to chains
of processes with finite buffer sizes. Recently, very similar results have
been described in [BPC09]. These results are restricted only to systems
with finite buffer sizes, use course-grained approximations of resources
as the upper bounds on processing and communication capabilities are
set to infinity, and they are not compositional in terms of resources, i.e.
they are pessimistic for systems with resource sharing.

The SymTA/S approach [JE03] has been extended towards cyclic data
dependencies in [JRE05]. The analysis is based on classical real-time
analysis, i.e. worst-case response times. By iterating relations for
individual processes, the overall system behavior is obtained, see also
[TC94]. The approach is limited in terms of traffic models, i.e. periodic
with jitter and bursts, as well as in terms of resource models. Recently, the
SymTA/S approach has been extended towards the class of SDF graphs,
see [SSE07]. Here, an SDF application is encapsulated by providing input
and output interfaces to it. The analysis of the dataflow graph itself
is based on the classical results described above as well as simulation.
Therefore, they are restricted to simple delay-based resource interactions
with upper and lower bounds on the execution times.

Recently, the above models and methods have been generalized to
distributed real-time systems, denoted as Real-Time Calculus (RTC) and
Modular Performance Analysis (MPA) [CKT03b, WTVL06]. The method
allows to consider complex communication and computation resource
models, scheduling policies such as FP, TDMA, earliest deadline first
(EDF), and hierarchical scheduling. On the other hand, complex state-
dependent behavior such as cyclic data-dependencies as in marked
graphs can not be modeled as well as implementations with finite
buffer sizes. Recently, there have been extensions towards cyclic
resource dependencies [JPTY08], which do not extend directly to cyclic
dataflow dependencies as described in this chapter. In addition, the
MPA framework has been extended towards AND/OR activations as
described in [HT07] which are essential components in dataflow graph
representations however, cycles in the dataflow have not been considered.

4.3 Model Definition
In this section, we will define the basic elements of the analysis
framework. A system under analysis will be modeled as a marked graph,
i.e. as a set of processes that (a) communicate via FIFO buffers with
unlimited capacity, and (b) at the time of firing, a process consumes one
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token from all of its inputs, and produces one token to all of its outputs.
Finite size buffers will be modeled using cycles in the dataflow graph, see
Section 4.6. Moreover, other forms of dataflow graphs (such as SDF) can
be converted into marked graphs for analysis purposes, see [SB00].

4.3.1 Dataflow Graph
Let us first define a generic dataflow graph, i.e. the basic underlying
model of the forthcoming analysis, see also Fig. 4.1.

Definition 4.1: (Dataflow Graph) A dataflow graph (V,E,M) is defined as a set
of processes v ∈ V and a set of channels e ∈ E where E ⊆ V×V. To each channel
there is associated a number of initial tokens M : E → R≥0, i.e. mi j ∈ R≥0

denotes the number of tokens associated with channel ei j = (vi, v j) that connects
process vi ∈ V with process v j ∈ V.

The term ’token’ is used in a very general sense. It should be
interpreted as any amount of data, not necessarily integer. This way,
we will be able to model systems in a flow-based as well as in a discrete-
event setting.

It will be useful to assign input and output ports to each process vi ∈ V.
We denote the input port of vi associated to channel e ji = (v j, vi) as ( j, i),
and the output port associated to eik = (vi, vk) as (i, k).

4.3.2 Arrival Functions
The timing properties of an event stream can be described using the
concept of an arrival function R: R(t) ∈ R≥0 which denotes the number of
tokens that arrived in the time interval [0, t), t > 0, and R(0) denotes the
initial number of tokens in the stream.

It will be useful for the analysis if we partially order the set of all arrival
functions. In particular, we say that R ≥ R′ if and only if R(t) ≥ R′(t) for
all t ≥ 0. If we are dealing with n-dimensional vectors of arrival functions
R = (Ri : i = 1, . . . ,n), then we say that R ≥ R′ if and only if Ri(t) ≥ R′i(t)
for all t ≥ 0, i = 1, . . . ,n.

It is known from lattice theory, see e.g. [DP02], page 63, that the set of
arrival functions ordered by ≥ as defined above forms a complete lattice.
The bottom ⊥ and top > element of the set are defined as 0 and ∞ for
all t ≥ 0, respectively, where > ≥ R ≥ ⊥ for all arrival functions R. The
’complete’ means that there exists a least upper bound and a greatest
lower bound for each finite or infinite subset of arrival functions.

Example 4.2: Figure 4.2 shows two examples of arrival functions. In Fig. 4.2(a)
R1 represents a periodic arrival pattern of discrete tokens with period p, and in
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Fig. 4.2: Two simple arrival functions: (a) discrete periodic arrivals, (b) continuous
flow arrival

Fig. 4.2(b) R2 represents a continuous flow with rate ρ/σ. In both cases, the
streams of tokens start at time τ.

4.3.3 Processes and Mappings
The operation of a single process vi can be described as the mapping from
a vector of input arrival functions to a vector of output arrival functions.
The input arrival function Rin

ji is associated to an input port ( j, i) of vi and
the output arrival function Rout

ik is associated to an output port (i, k).

Definition 4.3: (Process Mapping) A process vi ∈ V with n input ports and m
output ports maps an n-dimensional vector of input arrival functions Rin to an
m-dimensional vector of output arrival functions Rout by means of a deterministic
mapping Πi, i.e. Rout = Πi ◦ Rin where Rin = (Rin

ji : e ji ∈ E) and Rout = (Rout
ik :

eik ∈ E). We will also call the mapping Πi, the transfer function of process vi.

In the following, we will restrict our discussion to the class of
monotone processes. Loosely speaking, if we consider two distinct traces
and we feed more tokens to a process in one of them (Rin ≥ Rin), than the
process does produce at least as many output token as for the other one
(Rout ≥ Rout). We say that such a process has a monotone mapping.

Definition 4.4: (Monotone Process Mapping) The mapping Π of a monotone
process satisfies: ∀R,R : R ≥ R⇒ Π ◦ R ≥ Π ◦ R.

Note that not all possible processes satisfy this condition. Never-
theless, a large class of interesting processes are monotone, e.g. the
considered class of marked graphs.
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Example 4.5: A simple process type is denoted as AND. It fires immediately
when there are tokens available at all of its input ports. If we restrict it to two
inputs Rin

1 and Rin
2 , we find its transfer function as:

AND: Rout(t) = min{Rin
1 (t),Rin

2 (t)} . (4.1)

Another process can be characterized as a ’tokenizer’. It receives fractional
tokens at the input that may correspond to a partially transmitted packet or a
partially executed function. But a discrete output token is only generated if the
whole processing or communication of the predecessor process is finished, i.e.
Rout is integer. We denote this process as TOK and define its transfer function
as:

TOK: Rout(t) = bRin(t)c . (4.2)

4.3.4 Service Function and Greedy Processing Components
The elementary processes described in Example 4.5 do not interact with
available resources at all. On the other hand, it would be highly desirable
to express the fact, that a process may need resources in order to operate
on available input tokens. The concept of a service function C allows
us to describe the availability of a resource (such as a processor or a
communication device). C(t) ∈ R≥0 denotes the number of tokens that
can be processed in the time interval [0, t), t > 0, where C(0) = 0. In
this chapter, the unit of the service function is the same as the one of the
arrival function, more general concepts for characterization of these units
are described in [MKT04] and Section 3.8.1 in Chapter 3.

Example 4.6: Note that the concept of service functions allows us to model any
complex resource behavior, i.e. the resource may be available with a resource
rate of 1 token unit in [0, t1) and not available in [t1, t2) which is the case when
another task is running on the resource or other data are communicated, or the
time slot allocated to the process has finished. This is expressed with C(t) = 1 · t,
0 ≤ t < t1, and C(t) = C(t1), t1 ≤ t < t2.

Now, let us consider a process with a single input which uses a
resource. It consumes data which arrivals are described by the input
arrival function Rin(t), outputs processed data described by the output
arrival function Rout(t), and processes the data on a resource whose
availability is described by means of the service function C(t). It
has greedy processing semantics (it is work-conserving) or in other
words, input data tokens are processed always when there are resources
available. Therefore, we call the corresponding process a Greedy
Processing Component (GPC). It has the following formal definition.
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Definition 4.7: (Greedy Processing Component) A Greedy Processing Com-
ponent (GPC) with single input arrival function Rin, output arrival function
Rout, and service function C is defined by the following transfer function:

GPC: Rout(t) = inf
0≤λ≤t
{Rin(λ) + C(t) − C(λ)} . (4.3)

The remaining unused service from such a component is given by:

C′(t) = C(t) − Rin(t) . (4.4)

The above definition can be related to the intuitive notion of a greedy
(work-conserving) process as follows: The output between some time λ
and t can not be larger than the available service: C(t)−C(λ), and therefore,
Rout(t) ≤ Rout(λ)+C(t)−C(λ). As the component can not output more than
what was available at the input, we have Rout(λ) ≤ Rin(λ) and therefore,
Rout(t) ≤ Rin(λ) + C(t) − C(λ). There is some last time λ∗ before t when
the buffer was empty. At λ∗, we clearly have Rout(λ∗) = Rin(λ∗). In the
interval from λ∗ to t, the buffer is never empty and all available resources
are used to produce output tokens: Rout(t) = Rout(λ∗) + C(t) − C(λ∗) =
Rin(λ∗) + C(t) − C(λ∗). As a result, we obtain (4.3).

Obtaining (4.4) is much simpler as it expresses the semantics that
resources available to a process until time t, C(t), are either used to process
input data, Rin(t), or they are unused, C′(t), and may be used by other
lower priority processes.

Note that the above resource and timing semantics model almost
all practically relevant processing and communication components, e.g.
processors that operate on tasks and use queues to keep ready tasks,
communication networks and buses, etc. As a result, we are not restricted
to model processing time with a fixed delay. The service function can
be chosen to represent a resource that is available only in certain time
intervals (e.g. TDMA scheduling) or which is the remaining service
after a resource has been used for other higher priority tasks (e.g. FP
scheduling).

Following the above results, we can define the notion of a Greedy
Marked Graph Process, and say that an activated Greedy Marked Graph
Process simultaneously removes a token from each input channel and
adds a token to each output channel with a rate that is determined by the
available service. A Greedy Marked Graph Process is activated if there is
a positive number of tokens in each input channel.

Using the above characterization, (4.1), and (4.3), it follows that a
Greedy Marked Graph Process can be modeled as a concatenation of an
AND and a GPC processes as shown in Fig. 4.3.
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Fig. 4.3: Marked graph node and its representation as a Greedy Marked Graph
Process

Example 4.8: Let us consider now the case that a component needs a certain
amount of resources to process a certain amount of token. For example, let
us suppose that we have a single Greedy Marked Graph Process as depicted
in Fig. 4.3 with integer tokens and each of them needs w resource units to be
processed. Then we obtain

Rout(t) =

⌊
inf

0≤λ≤t
{bmin{Rin

1 (λ),Rin
2 (λ)}c +

C(t)
w
−

C(λ)
w
}

⌋
. (4.5)

Note that, all processes defined so far in (4.1), (4.2), and (4.3) are
monotone as defined in Definition 4.4.

4.3.5 Execution Semantics of Marked Graphs with Greedy
Processes

In this section, we move one step further towards the performance
analysis of marked graphs with cyclic dependencies. To this end, we
first define the operation of a network of greedy process nodes using
fixed points of a system equation. Note, that we are still describing the
operation of the marked graph in time domain, i.e. without any sort of
abstractions.

In order to determine the semantics of a marked graph, we will derive
a set of system equations. To this end, let us first define a step function
with height s as follows:

Is(t) =

{
0 if t = 0
s if t > 0

If we now look at the semantics of a channel containing s initial tokens, it
provides at its output as many tokens as have been submitted to its input
plus the number of initial tokens s.
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Now, we can set up a set of equations that describe the semantics of a
whole marked graph (V,E,M) as follows:

(Rout
ik : eik ∈ E) = Πi ◦ (Rin

ji : e ji ∈ E) ∀vi ∈ V , (4.6)

Rin
i j = Rout

i j + Imi j ∀ei j ∈ E , (4.7)

where Πi denotes the input-output transfer function of a single greedy
marked graph process vi. If we combine (4.6) and (4.7), we get a single
equation of the form

R = Π ◦ R , (4.8)

where R = (Rout
i j : ei j ∈ E) is a vector of arrival functions that contains

as elements the output arrival functions of all processes, and Π is the
combined mapping of the whole dataflow graph. Note that, the combined
mapping Π is monotone if all process mappings Πi, vi ∈ V, are monotone.

In order to solve (4.8), we can use results from lattice theory, see
[DP02], page 187. It follows that if the mapping Π is monotone, then the
fixed-point equation (4.8) has a least and a greatest fixed-points, Rl and
Ru, respectively.

We can strengthen this result by assuming δ-causality for all processes
of a marked graph, i.e. changes at the input of a process are not visible
before a (small) time lag δ > 0: if R(s) = R′(s) for all s ≤ t − δ then we
have (Π ◦ R′)(t) = (Π ◦ R)(t). Then we can determine all solutions of (4.8)
inductively, starting from initial conditions at t = 0. As the mappings of
the processes are deterministic, the solutions to (4.8) are unique.

Example 4.9: Let us look at the simple dataflow graph MG1 shown in Fig. 4.1
and determine the corresponding mapping R = Π◦R by concatenating (4.1) and
(4.3) as follows:

Rout
1,2(t) = inf

0≤λ≤t
{Rout

2,1(λ) + I1(λ) + C1(t) − C1(λ)} ,

Rout
2,3(t) = inf

0≤λ≤t
{min{Rout

3,2(λ) + I2(λ),Rout
1,2(λ)} + C2(t) − C2(λ)} ,

Rout
3,2(t) = inf

0≤λ≤t
{Rout

2,3(λ) + C3(t) − C3(λ)} ,

Rout
2,1(t) = inf

0≤λ≤t
{min{Rout

3,2(λ) + I2(λ),Rout
1,2(λ)} + C2(t) − C2(λ)} ,

where the resources available to v1, v2, and v3 are described by service functions
C1(t), C2(t), and C3(t), respectively. The functionality corresponds to a simple
processing chain with finite buffer sizes of 1 and 2, respectively.

4.4 Resource Abstraction and System Equations
In order to develop efficient methods for compositional performance
analysis of marked graphs, we will need to introduce several abstractions.
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Fig. 4.4: Three examples of service curves: (a) fully available resource, (b) TDMA
resource, and (c) locally synchronous resource

Instead of calculating the output arrival function of a process with a
single service function Ci(t) in time domain, we will use upper and
lower bounds on Ci(t). This will enable us to consider a wider class of
processes and process characteristics as well as to derive computationally
feasible analysis methods that provide statements about the behavior of
a system under a whole set of resource behaviors. This first abstraction
step introduces non-determinism as the service function is not provided
explicitly anymore, but only its bounds are considered.

4.4.1 Service Curves
Following the ideas of Network Calculus [Cru91a, LBT01], we define
upper and lower bounds on service functions, denoted as service curves.
This way, we abstract from the concrete time domain and operate in the
time interval domain. Service curves have the following formal definition.

Definition 4.10: (Service Curves) Upper and lower service curves, βu and βl,
map positive time intervals ∆ ∈ R≥0 to the maximal and minimal amount of
available resources in any time interval of length ∆. They satisfy βu(0) = βl(0) =
0 and

βl(∆) ≤ C(t + ∆) − C(t) ≤ βu(∆) ∀t ≥ 0,∆ > 0 .

Example 4.11: Figure 4.4 shows three examples of service curves that model: (a)
a fully available resource that leads to a delay of τ for each unit of input token, (b)
a TDMA resource that is available only in periodically repeating time slots, and
(c) a service curve that models a locally synchronous behavior with cycle time τ,
i.e. every τ a complete unit of input token can be processed.
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Now, we can upper and lower bound the mapping of a GPC as given
in (4.3) by using service curves as follows:

Rout(t) ≤ inf
0≤λ≤t
{Rin(λ) + βu(t − λ)} ,

Rout(t) ≥ inf
0≤λ≤t
{Rin(λ) + βl(t − λ)} .

Using the min-plus algebra convolution operator ⊗ as defined in
Appendix A, we can obtain a more concise notation, see also [Cha00,
Cru91a, LBT01]:

Rin
⊗ βl
≤ Rout

≤ Rin
⊗ βu . (4.9)

In other words, for a single GPC component we can bound the number
of tokens that arrive in [0, t) by abstracting the available service using βu

and βl.

Example 4.12: If we consider again that tokens are integer valued, i.e. a
subsequent process can start working only if the whole workload w associated
to a token has been available. We obtain for the marked graph process described
with (4.5) the following upper and lower bounds on the output arrival function:

(Rin
1 ∧ Rin

2 ) ⊗ b
1
w
βl
c ≤ Rout

≤ (Rin
1 ∧ Rin

2 ) ⊗
1
w
βu , (4.10)

where a ∧ b = min{a, b}.

The next step is to apply this abstraction to the whole marked graph.
As we will see, we then get upper and lower bounds on the number of
tokens that arrive on any channel in the graph.

4.4.2 Bounds for the Marked Graph and System Equations
So far, the (concrete) execution semantics of a marked graph has been
described by the single equation (4.8). Now, we will investigate the
influence of the resource abstraction introduced in (4.9).

The approach is based on replacing the mapping Π of the whole
marked graph by ’larger’ and ’smaller’ mappings. Then the resulting
arrival functions R provide upper and lower bounds on the system
behavior, respectively. We say that a mapping Πu is larger or equal than
a mapping Π if the relation holds pointwise or more generally:

Πu
≥ Π ⇐⇒ Πu

◦ R ≥ Π ◦ R ∀R ,

Πl
≤ Π ⇐⇒ Πl

◦ R ≤ Π ◦ R ∀R .



4.4. Resource Abstraction and System Equations 111

⊗
Ruj , R

l
j

Ruk , R
l
k

vj mji

vi

vk

Rui , R
l
i

marked graph node abstract greedy process

mki

βui ,β
l
i

∧
β0ui , β

0l
i

Fig. 4.5: A marked graph node with m ji and mki initial tokens on input channels e ji

and eki, respectively, and its abstract representation

Theorem 4.13: (Upper and Lower Bounds on Output Arrival Functions in a
Marked Graph with Greedy Processes) Let R be a complete lattice. Let be
given a monotone mapping Π with a unique fixed-point R ∈ R. Define Rl to
be the greatest fixed-point of Rl = Πl

◦ Rl, and Ru to be the least fixed-point of
Ru = Πu

◦ Ru. Then we have:

Rl
≤ R ≤ Ru .

Proof. Under the assumptions of the theorem, we find that the smallest
fixed-points of R = Π ◦ R and Ru = Πu

◦ Ru satisfy R ≤ Ru, see [DP02],
page 199. As we have R ≥ R for all R that satisfy R = Π ◦ R, we find
R ≥ R ≤ Ru. As the fixed-point of Π is unique, we finally get R = R ≤ Ru.
The proof for Rl is similar.

As a result of the theorem one can directly show that Rl
≤ R ≤ Ru holds

for any of the fixed-points of Rl = Πl
◦ Rl and Ru = Πu

◦ Ru.
In other words, if we replace the mapping of a dataflow graph by one

that is either not smaller or not larger, then we get upper or lower bounds
on the arrival functions, i.e. on the number of tokens that passed through
the processing elements at each moment in time. This result will now be
used in order to replace the service functions C(t) by their abstractions,
the service curves βu(∆) and βl(∆).

To this end, we will determine the above mappings Πu and Πl explicitly
from the given marked graph structure. As a result, we obtain abstract
system equations whose solutions yield upper and lower bounds on the
behavior of any marked graph.

Starting point is again the modeling of each process of a marked graph
by a Greedy Marked Graph Process, see also (4.1), (4.3), (4.9) and Fig. 4.3.

Using the notation introduced so far, we obtain for the simple two-
inputs case as depicted in Fig. 4.5 the following transfer function:

Ri = [(R j + Im ji) ∧ (Rk + Imki)] ⊗ βi , (4.11)
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where βi can be replaced by βu
i and βl

i in order to obtain the equations for
the upper and lower bounds Ru

i and Rl
i, respectively, where Ru

i ≥ Ri ≥ Rl
i.

Using elementary calculus, we can reformulate equation (4.11) to:

Ri = [(R j + Im ji) ⊗ βi] ∧ [(Rk + Imki) ⊗ βi] ,
Ri = βi ∧ [R j ⊗ (βi + m ji)] ∧ [Rk ⊗ (βi + mki)] .

For the following theorem, we will make use of the matrix notation
S = (Si j) where S contains elements Si j, the vector notations R = (Ri) and
β = (βi) as well as the matrix product C = A ⊗ B with ci j =

∧
(k)(aik ⊗ bkj).

Note again the definition of ⊗ in Appendix A and a ∧ b = min{a, b}.

Theorem 4.14: (System Equations for a Marked Graph with Greedy Pro-
cesses) Given a marked graph (V,E,M) and the vectors of service curves βu and
βl associated to the graph processes that describe bounds on the corresponding
available resources, see Definition 4.10. Define the upper and lower system
matrices of the graph as S u, l = (S u, l

i j ) with elements:

S u, l
i j =

{
βu, l

i + m ji e ji ∈ E
∞ e ji < E

(4.12)

Then we can write system equations for a marked graph as follows:

Ru = βu
∧ Su

⊗ Ru , (4.13)

Rl = βl
∧ Sl
⊗ Rl , (4.14)

where Ru and Rl denote upper and lower bounds on any vector of execution traces
of the marked graph:

Ru
≥ R ≥ Rl . (4.15)

Proof. Results follow directly from (4.11) and the structure of the matrices
S u, l defined with (4.12).

Example 4.15: If we use integer tokens and scale the resources used to process
a single token as in Example 4.12, then we just need to replace βl and βu in
equations (4.12), (4.13), and (4.14) by b 1

wβ
l
c and 1

wβ
u, respectively.

4.4.3 Solving the System Equation
Finally, we need to determine solutions to (4.13) and (4.14) in order to
determine bounds on the traces of event sequences between the processes,
i.e. tight upper and lower bounds on the vector of arrival functions R in
(4.15).



4.4. Resource Abstraction and System Equations 113

To this end, we make use of the corresponding results for distributive
dioids as described in [BOQC92], page 193. All solutions to (4.13) and
(4.14) can be determined as:

R = y ∧ S∗ ⊗ β ∀y : y = S ⊗ y , (4.16)

where for simplicity we omit the superscripts u or l that relate to (4.13) or
(4.14), respectively. The matrix S∗ denotes the min-closure of S which is
defined as:

S∗ =

∞∧
k=0

S(k) , (4.17)

where S(k) = S ⊗ S(k−1) for k ≥ 1 and

S(0) =


I∞ ∞ · · ·

∞ I∞ · · ·

· · · · · ·
. . .


Investigating the structure of the S∗ more closely yields the following

interpretation: An element S∗ji of S∗ is the minimal ’path length’ of all
(including cyclic) paths from node i to node j in the marked graph. The
’path length’ is defined as the sum of all tokens along the path plus the
convolution of all service curves on the path, except that of node i. If i = j,
then the value of S∗ii(0) is set to 0. We will come back to the structure of S∗

in more detail in Section 4.4.4.
In order to determine as tight bounds as possible, we should find

now the least fixed-point of Ru = βu
∧ Su

⊗ Ru and the greatest fixed-point of
Rl = βl

∧ Sl
⊗ Rl.

The greatest solution to Rl = βl
∧ Sl
⊗ Rl is simply obtained as Rl =

(Sl)∗⊗βl, see [BOQC92], page 192. In order to determine the least solution
to Ru = βu

∧ Su
⊗ Ru, we need to determine the least y with y = Su

⊗ y, i.e.
y = inf{y : y = Su

⊗ y}.
The least fixed-point of y = Su

⊗ y with y = inf{y : y = Su
⊗ y} is

given by y = limk→∞((Su)(k)
⊗ ⊥) where ⊥(t) = 0 for all t ≥ 0. This result

can easily be shown using elementary techniques from lattice theory, see
[DP02], and by noting that Su is monotone. This is the result of the
following theorem.

Theorem 4.16: (The Least Fixed-Point Solution of y = S ⊗ y) The least fixed-
point of y = S ⊗ y with y = inf{y : y = S ⊗ y} is given by:

y = lim
k→∞

(S(k)
⊗ ⊥) .
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Proof. Let us consider the sequence: y0 = ⊥, y1 = S ⊗ ⊥, y2 = S(2)
⊗ ⊥, . . . .

Then we can easily see that it is increasing as y1 = S ⊗ ⊥ ≥ ⊥ = y0 and
yk = S ⊗ yk−1 ≥ S ⊗ yk−2 = yk−1 if yk−1 ≥ yk−2. Here we use the fact that S
is monotone. Therefore, we have y0 ≤ y1 ≤ y2 ≤ .... As a result, the limit
y′ = supk→∞(S(k)

⊗ ⊥) exists.
Now, we will show that y ≥ yk for all k ≥ 0, i.e. the least fixed-point is

lower bounded by yk. Of course, we have y ≥ y0 = ⊥. Therefore, we also
find y = S ⊗ y ≥ S ⊗ y0 = y1 and in general y = S(k)

⊗ y ≥ S(k)
⊗ y0 = yk.

Again, we make use of the monotonicity of S. As a result we have y ≥ y′.
Finally, we note that y′ = limk→∞(S(k)

⊗ ⊥) is actually a fixed-point, i.e.
y′ = S ⊗ y′ and therefore y = y′.

We can now show that for all meaningful marked graphs, we can
simplify the calculation of the least fixed-point and therefore for Ru. We
need the fact that for a given marked graph where the sum of initial
tokens in each directed cycle of the network is strictly larger than 0. Then
y = limk→∞((Su)(k)

⊗ ⊥) = >, where we have ⊥(t) = 0 and >(t) = ∞ for all
t ≥ 0. More specifically, we have the following theorem. The proof uses
some interpretation of (Su)(k) which will be given in Section 4.4.4.

Theorem 4.17: (Determining the Upper Bound Ru in a Marked Graph with
Greedy Processes) Given a dataflow graph which models a marked graph.
Suppose that the sum of initial tokens in each directed cycle of the network
is strictly larger than 0. Then y = limk→∞((Su)(k)

⊗ ⊥) = > and therefore we
have:

Ru = (Su)∗ ⊗ βu . (4.18)

Proof. If we show that y = limk→∞((Su)(k)
⊗ ⊥) = >, then the theorem

follows from (4.16). To this end, we prove that all elements (Su)(k)
ji of (Su)(k)

will approach ∞ for k → ∞. Let us distinguish between two situations.
At first, there is no path containing a directed cycle in the dataflow graph
between a pair of nodes i and j. Based on the result (4.21), we find
(Su)(k)

ji = ∞ for all k > |V| where |V| denotes the number of nodes of the
dataflow graph. Now, let us suppose that there is a path from i to j that
contains a cycle. If k > |V| · K, then any path of length k contains at least
K cycles. Moreover, let δ denote the minimal sum of initial tokens on any
cycle of the dataflow graph. Then we find using (4.21) that (Su)(k)

ji ≥ Kδ

for k > |V| · K. As δ > 0, we find limk→∞(Su)(k)
ji = ∞.
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Note that the result also shows that the fixed points of the system
equations (4.13) and (4.14) are unique for both cases, S = Su and S = Sl,
respectively, see also [Cha00].

The main results of this section can be summarized in the following
theorem.

Theorem 4.18: (Upper and Lower Bounds, Ru and Rl, in a Marked Graph
with Greedy Processes) Given a marked graph (V,E,M) and service curves βu

and βl associated to its nodes. Suppose that the sum of initial tokens in each
directed cycle of the network is strictly larger than 0. Then we can determine
tight upper and lower bounds on any vector of execution traces of the marked
graph where Ru

≥ R ≥ Rl with the following arrival functions:

Rl = (Sl)∗ ⊗ βl , (4.19)
Ru = (Su)∗ ⊗ βu , (4.20)

where we use Su and Sl from Theorem 4.14, and the corresponding closures (Su)∗

and (Sl)∗ as defined with (4.17).

4.4.4 Interpretations
In this section, we will interpret equations (4.19) and (4.20) in terms of
properties of the underlying marked graph, e.g. paths, initial tokens and
service curves associated with the processes.

Obviously, the matrix S(n) plays a central role in the solution to the
system equation for a marked graph. As will be shown, there is a close
relation to results in max-plus algebra, see [BOQC92], page 110.

As has been defined already in (4.12), the elements of the system
matrix S are given as Si j = m ji + βi if edge ( j, i) exists in the marked graph.
Using this definition, one can now determine the elements of S(n) which
are denoted as S(n)

i j . Here, we use the following notation:

• A path p in the marked graph is a set of connected edges, i.e.

p = {(i0, i1), (i1, i2), . . . , (in−1, in)}.

• The length n of a path is defined as n = |p|.

• The set of nodes of a path is defined as V(p) = {i0, ..., in}.

• The set of all paths of length n from node i to node j is denoted as
Pn(i, j) = {p : (|p| = n) ∧ (i = i0) ∧ ( j = in)}.

• The set of all paths from i to j is denoted as P(i, j).
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Based on the definition of S for S(n) we find:

S(n)
i j =

∧
p∈Pn( j,i)

 ∑
(r,s)∈p

mrs +
⊗
(r,s)∈p

βs

 , (4.21)

for n > 0. If there exists no path of length n from j to i, then S(n)
i j = ∞.

The matrix S+ is defined as:

S+ =

∞∧
k=1

S(k) .

Using the definition of S, we find:

S+
i j =

∧
p∈P( j,i)

 ∑
(r,s)∈p

mrs +
⊗
(r,s)∈p

βs

 , (4.22)

if there exists a path from j to i, and S+
i j = ∞ otherwise. Note that the

min-closure S∗ can simply be determined as S∗ = S(0)
⊗ S+ (or S∗i j = S+

i j if
i , j and S∗ii = min{I∞,S+

ii }).
Now, we can more explicitly determine the resulting upper and lower

arrival functions in the dataflow graph as stated in (4.19) and (4.20). Using
elementary arithmetic, we obtain:

Ri = βi ∧

∧
p∈P( j,i)

 ∑
(r,s)∈p

mrs +
⊗
k∈V(p)

βk

 , (4.23)

where the equation holds for the upper and for the lower bounds, i.e. by
adding the superscripts u or l to R and β. As an interpretation one can say
that Ri is the minimal function that is larger than βi and larger than the
’path length’ of any path in the marked graph that ends at node i. Here,
the ’path length’ is determined as the sum of all initial tokens on the path
plus the convolutions of all service curves on the path, including that of
the path origin.

Example 4.19: It is useful to derive explicit formulas for special forms of service
curves. The linear approximations used here are common in the analysis of
networked systems, see e.g. [LBT01]. Therefore, let us consider the special case
of βi as depicted in Fig. 4.6, where βl is specified with a rate σl and a latency τ,
and it is defined as:

βl(∆) = max{0, σl
· (∆ − τ)} ,
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σu

τ

β

σl

∆

βu

βl

Fig. 4.6: A pair of peak rate and rate-latency service curves

and βu is specified with a peak rate σu and defined as:

βu(∆) = σu
· ∆ .

As a shorthand notation for the above, we can also write βl = (τ, σl) and
βu = (σu).

From the definition of the convolution operator we can conclude that:⊗
i∈I

βl
i = (

∑
i∈I

τi,
∧
i∈I

σl
i) ,

where I is a multiset of node indices i ∈ V. One should note that the indices i are
not necessarily disjoint, i.e. the result changes if a service curve appears several
times in the convolution.

For the upper service curve, the situation is even simpler. Here, we obtain:⊗
i∈I

βu
i = (

∧
i∈I

σu
i ) .

Now, we can make the explicit formula (4.23) more concrete by just replacing
the convolution of the service curves with the above expressions:

Rl
i = (τi, σ

l
i) ∧

∧
p∈P( j,i)

 ∑
(r,s)∈p

mrs + (
∑

k∈V(p)

τk,
∧

k∈V(p)

σl
k)

 ,
Ru

i = (σu
i ) ∧

∧
p∈P( j,i)

 ∑
(r,s)∈p

mrs + (
∧

k∈V(p)

σu
k )

 .
4.4.5 Marked Graphs with External Inputs
So far, we have been dealing with marked graphs that are autonomous,
i.e. they do not have any stream of input tokens from the environment.
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v1

v2

v3

service curves 

G1

input arrival βu3 ,β
l
3

Ru2 ≥ R2 ≥ Rl2
G2 βu,l =

⎛⎝ βu,l1
βu,l2
βu,l3

⎞⎠

Ru,l =

⎛⎝ Ru,l1
Ru,l2
Ru,l3

⎞⎠
G =

⎛⎝ G1 0 0
0 G2 0
0 0 ∞

⎞⎠

Fig. 4.7: Marked graph with input arrival functions G, service curves βu, βl

associated to its nodes and the resulting traces characterized by arrival functions
R and their bounds Ru, Rl

Token sources can enter the AND elements of Greedy Marked Graph
Processes like any other channel, see Fig. 4.5. Therefore, we can start
from the elementary system equation (4.11) and integrate external system
inputs. Let us define the system input matrix G with elements (Gi j),
where Gii = Gi(t) if there is an input at node vi with arrival function Gi(t),
otherwise Gii = Gi(t) = ∞ for all t if there is no input at node vi, and all
other non-diagonal matrix elements are set to 0, see Fig. 4.7. Then we can
obtain the following equation:

Ri = [(R j + Im ji) ∧ (Rk + Imki) ∧ Gi] ⊗ βi .

Using this information in the fixed-point equation discussed in the
previous section, we replace (4.19) and (4.20) in Theorem 4.18 with

Rl = (Sl)∗ ⊗ G ⊗ βl , (4.24)
Ru = (Su)∗ ⊗ G ⊗ βu . (4.25)

4.4.6 Transfer Functions in Marked Graphs
As a last preparatory step for embedding marked graphs into any
compositional performance analysis framework, we need to determine
the transfer functions of a marked graph: How does a single input
stream Gs at source node vs influence the output data stream Rd at some
destination node vd?

Since this information is already contained in (4.24) and (4.25), we only
have to rewrite the equations such that we (a) only evaluate the bounds
on the output arrival functions Ru,l

d at the destination vd, and (b) have only
one explicit external input, namely Gs at the source node vs. In order to
simplify the notation, we suppose that the graph has only a single input
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vdvsGs

Rd

Rud ≥ Rd ≥ Rld

input

outputtransfer function
Rld = (β

l
sd ⊗Gs) ∧ hlsd

Rud = (β
u
sd ⊗Gs) ∧ husd

Fig. 4.8: Visualization of transfer functions of marked graphs

at node vs, an extension to the general case is straightforward. As a result
of the whole exercise we find the following expressions:

Rl
d = (βl

sd ⊗ Gs) ∧ hl
sd , (4.26)

where βl
sd = (Sl)∗ds⊗β

l
s and hl

sd =
∧

j,s((Sl)∗dj⊗β
l
j), and similarly for the upper

bound:

Ru
d = (βu

sd ⊗ Gs) ∧ hu
sd , (4.27)

where βu
sd = (Su)∗ds ⊗ β

u
s and hu

sd =
∧

j,s((Su)∗dj ⊗ β
u
j ).

Here, we note that βu,l
sd denote the cumulative service curves for the

path from source node vs to destination vd, and hu,l
sd denote ’offset’ terms.

The latter are functions that are independent from the input arrival, i.e.
they represent the constant part in the transfer function which is the
response of the marked graph if the input stream does not contain any
tokens. Note also, that (4.26) and (4.27) are scalar functions and not
matrices or vectors anymore. Figure 4.8 visualizes the concept of a transfer
function for a path in a marked graph.

4.5 Performance Analysis
In this section, we will do the last abstraction on marked graphs. After
replacing the service functions Ci(t) that represent the availability of a
resource at node vi in the time domain by their corresponding service
curves βu

i (∆) and βl
i(∆) in the time interval domain, we now introduce

a similar abstraction for the arrival functions Ri(t) and Gi(t). This last
abstraction is necessary for several reasons.

Now, the whole analysis of a marked graph can be done in the time
interval domain. This way, we can not only embed the analysis in the
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τ ∆
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∆
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Fig. 4.9: Two examples of arrival curves: (a) arrival curves for a periodic stream, (b)
arrival curves for a periodic stream with jitter and limited bursts

Modular Performance Analysis framework, see for example [WTVL06],
but also relate it to classical real-time analysis that expects stream
characterizations like periodicity, jitter, and burst size, see [RJE03].

We will be able to determine performance bounds on end-to-end
delays, necessary buffer spaces, and the remaining service, i.e. after a
given resource has been used for executing a certain marked graph node.
The last one enables composability in terms of resources which makes
possible the analysis of various resource sharing strategies such as FP
and TDMA.

4.5.1 Arrival Curves
In contrast to arrival functions R(t) that count the number of tokens that
occurred in [0, t), arrival curves determine upper and lower bounds on the
number of tokens in any time interval of size ∆, for examples see Fig. 4.9.

Definition 4.20: (Arrival Curves) Upper and lower arrival curves αu, αl map
positive time intervals ∆ ∈ R≥0 to the maximal and minimal number of tokens
in any time interval of length ∆. They satisfy αu(0) = αl(0) = 0 and

αl(∆) ≤ R(t + ∆) − R(t) ≤ αu(∆) ∀t ≥ 0,∆ > 0 .

In order to simplify the following discussions, we will use the
notation of the min-plus and max-plus deconvolution operators, � and
�, respectively, as defined in Appendix A.

Now we can make use of Definition 4.20 and obtain the tightest arrival
curves (i.e. the least upper and greatest lower curves) of an internal stream
R(t) and an input stream G(t). Here, we use α and γ to denote arrival
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curves related to internal streams (arrival functions R) and external input
streams (arrival functions G):

αu = R � R , αl = R�R , (4.28)

γu = G � G , γl = G�G . (4.29)

4.5.2 Bounds on Buffer Size and End-to-End Delay
Let us now determine an upper bound Bsd on the difference between the
number of tokens that arrived at the input of some source node vs and left
at some destination node vd at any time. For example, if we set vs = vd,
then Bss is an upper bound on the number of tokens that are stored in front
of the marked graph (of node vs), i.e. at its input queue. In other words,
one can then guarantee that an input queue of size Bss would be sufficient
to store all necessary tokens during any execution of the marked graph.

The above definition of Bsd directly yields:

Gs(t) − Rd(t) ≤ Gs(t) − ((βl
sd ⊗ Gs) ∧ hl

sd)(t) = Bsd .

Using the transfer functions from (4.26) and (4.27), and the arrival
curve corresponding to the input as computed with (4.29), we obtain:

Gs(t) − ((βl
sd ⊗ Gs) ∧ hl

sd)(t) =

=Gs(t) + max{−hl
sd(t), sup

0≤λ≤t
(−Gs(t − λ) − βl

sd(λ))}

= max{Gs(t) − hl
sd(t), sup

0≤λ≤t
(Gs(t) − Gs(t − λ) − βl

sd(λ))}

≤max{γu
s (t) − hl

sd(t), sup
0≤λ≤t

(γu
s (λ) − βl

sd(λ))} .

As a result, we find:

Bsd ≤ max
{

sup
λ≥0
{γu

s (λ) − hl
sd(λ)}, sup

λ≥0
{γu

s (λ) − βl
sd(λ)}

}
. (4.30)

In other words, the maximal backlog as defined above can be determined
as the maximum of the maximal vertical distances between the functions
γu

s (the upper arrival curve corresponding to the input stream) and hl
sd as

well as between γu
s and βl

sd.
Let us now determine a bound Dsd on the end-to-end delay of tokens,

i.e. the maximal time any token needs from a system input at the source
node vs to the output of a destination node vd. In order to faithfully
determine such a bound on the end-to-end delay we suppose that the
system does not produce an output if the input stream is empty, i.e.
Gs(t) = 0. Therefore, we require that βl

sd(0) = 0.
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Fig. 4.10: Visualization of: (a) delay, and (b) backlog bounds in a marked graph

In order to simplify the notation let us first define the maximal
horizontal distance of two functions A and B as follows:

h(A,B) = sup
t≥0
{inf{τ ≥ 0 : B(t + τ) ≥ A(t)}} .

Then an upper bound on the end-to-end delay of any token between an
input Gs at source node vs to a destination node vd is given by:

Dsd = h(Gs,Rd) = sup
t≥0
{inf{τ ≥ 0 : Rd(t + τ) ≥ Gs(t)}} .

Using similar arguments as in the case of the necessary buffer space,
we obtain that:

Gs(t) − Rd(t + τ) =

= max{Gs(t) − hl
sd(t + τ), sup

0≤λ≤t+τ
(Gs(t) − Gs(λ) − βl

sd(t + τ − λ))}

≤max{0,Gs(t) − hl
sd(t + τ), sup

0≤λ≤t
(Gs(t) − Gs(λ) − βl

sd(t + τ − λ))}

≤max{0, γu
s (t) − hl

sd(t + τ), sup
0≤λ≤t

(γu
s (t − λ) − βl

sd(t − λ + τ))}

≤max{0, sup
λ≥0
{γu

s (λ) − hl
sd(λ + τ)}, sup

λ≥0
(γu

s (λ) − βl
sd(λ + τ))} .

As a result we get the following upper bound:

Dsd ≤ max{h(γu
s , β

l
sd), h(γu

s , h
l
sd)} . (4.31)

In other words, the maximal delay as defined above can be determined
as the maximum of the maximal horizontal distances between the
functions γu

s and hl
sd as well as between γu

s and βl
sd. The interpretations of

the delay and buffer bounds in marked graphs are visualized in Fig. 4.10.
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Fig. 4.11: Transfer function of a marked graph in time interval domain

4.5.3 Output Arrival Curves
In this section, we will describe a method that allows to compute bounds
on the token streams at any node in a given marked graph. In comparison
to the results in Theorem 4.18, these bounds are now given in terms
of arrival curves, i.e. not in the time domain but in the time interval
domain as can be seen when comparing Fig. 4.8 with Fig. 4.11. Again, it
is necessary to abstract from the concrete time domain because it leads to
composability in terms of resources and event streams.

The derivation starts from the transfer functions developed in (4.26)
and (4.27). In order to apply the relations known from Real-Time Calculus,
see [TCGK02], we first approximate the transfer functions from input vs

to node vd as follows:

Rl
d =(βl

sd ⊗ Gs) ∧ hl
sd ≥ (βl

sd ⊗ Gs) ∧ (hl
sd ⊗ Gs) ≥ (βl

sd ∧ hl
sd) ⊗ Gs , (4.32)

Ru
d =(βu

sd ⊗ Gs) ∧ hu
sd ≤ β

u
sd ⊗ Gs . (4.33)

As a result, we find that upper and lower bounds on the output stream
at node vd in the time domain Ru,l

d can be determined by convolving the
input stream function Gs with a certain service curve. This fact enables to
directly use the results shown in [TCGK02] to compute the corresponding
output arrival curves. The results can be summarized in the following
theorem.

Theorem 4.21: (Transfer Functions in Marked Graphs in Time Interval
Domain) Given a marked graph (V,E,M), and vector service curves βu and
βl associated to its nodes according to Theorem 4.18. Suppose that the network
has a single input stream at node vs with arrival curves γu

s and γl
s. Then we can

determine upper and lower arrival curves, αu
s and αl

s, associated to any node vd

using the following expressions:

αu
d =

(
(γu

s ⊗ β
u
sd) � (βl

sd ∧ hl
sd)

)
∧ βu

sd , (4.34)

αl
d =γl

s ⊗ (βl
sd ∧ hl

sd) , (4.35)
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where we use βl
sd, βu

sd, and hl
sd as defined for (4.26) and (4.27).

Proof. Results follow directly from (4.28), (4.29), (4.32), and (4.33).

4.5.4 Remaining Service
In order to enable compositionality in terms of resources, we need to
determine the remaining service curves β′ld and β′ud at any node vd, see
Fig. 4.5. This enables us to use the remaining service curves as inputs to
processes of other marked graphs, and thereby, represent fixed priority
scheduling where the first process, i.e. the one that gets the initial service
curves, βl

d and βu
d , has a higher priority in comparison to the process that

just gets the remaining service curves, β′ld and β′ud .
To this end, we start from the balancing equation (4.4) of a Greedy

Processing Component according to Definition 4.7, i.e. the remaining
service equals the available service reduced by the produced output, i.e.
C′d(t) = Cd(t) − R′d(t). Therefore, we can obtain the following expression:

C′d(t + ∆) − C′d(t) = [Cd(t + ∆) − Cd(t)] − [R′d(t + ∆) − R′d(t)] ,

which is bounded by:

β′ld (∆) ≥ βl
d(∆) − αu

d(∆) , β′ud (∆) ≤ βu
d(∆) − αl

d(∆) .

Using the fact that the remaining service curves are monotone
functions, we can tighten the bounds as follows:

β′ld (∆) = sup
0≤λ≤∆

{βl
d(λ) − αu

d(λ)} , (4.36)

β′ud (∆) = max{0, inf
∆≤λ
{βu

d(λ) − αl
d(λ)}} . (4.37)

In the last two subsections, we have determined the output arrival
curves at any process and the corresponding remaining service curves
of any process in a marked graph. These representations can then be
used in order to compose the marked graph model with other parts of the
application. For example, the output of a marked graph characterized
by its arrival curves can be linked to the input of some other application
that may be given as any MPA or SymTA/S model. One can also link
the remaining service to another performance model and analyze a fixed
priority setting this way, see also [CKT03b, WTVL06].
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4.6 Experimental Results
Here we show the feasibility of the proposed analysis framework by first
comparing its accuracy to another recent analysis framework when both
frameworks are applied to a simple finite buffer system. Secondly, we
analyze a more complex system from the area of software defined radio,
and compare the analysis results to simulation measurements.

4.6.1 Comparison
In this section we compare the performance analysis results computed
with the method proposed in this chapter with results computed with
the methods proposed in [BJLL06] and [BPC09]. These two methods are
very similar in their approach and therefore we have implemented only
the more recent one described in [BPC09]. It is also based on Real-Time
Calculus but it is limited to simple cyclic models of finite buffer systems.
For simplicity in this section, we will refer to our method as MG (for
marked graph) and the method proposed in [BPC09] as FB (for finite
buffer).

System. The system used for evaluation is shown in Fig. 4.12(a). It
is a simple chain of three tasks T1,T2,T3 which processes a bursty input
event stream which timing characteristics are described with period 4 ms,
jitter 20 ms, and minimum interarrival distance between two events 1 ms.
All tasks have constant execution times of 1 ms. They are mapped on an
MpSoC with three processing elements PE1,PE2, and PE3. PE1 exhibits
complex behavior due to being shared with other tasks, it may not be
available to task T1 for 2 ms, then it may provide service of maximum
20 events/ms which eventually slows down to a long-term processing
rate of 1 event/ms. Similarly, PE2 may not be available for 2 ms, has a
maximum speed of 2 events/ms, and a long-term rate of 1 event/ms. PE3
may not be available for 1 ms, and has a constant rate of 0.5 events/ms.
For simplicity, the communication hardware is not shown here and it is
not modeled.

Each task is activated by events that arrive in a FIFO buffer mapped
to the same processing element as the task. For modeling purposes, tasks
T1 and T2 have buffers with unlimited capacity. Task T3 has a buffer with
a finite size B = 1. The semantics of the buffer are blocking-write which
means that task T2 needs to block if the buffer at T3 is full. When T2
blocks, the service provided by PE2 is available to be used by other lower
priority tasks mapped on PE2.

Model. The system is modeled with a simple marked graph that has a
single cycle with one initial token, see Fig. 4.12(b). The abstract model of
greedy marked graph processes that is used for performance evaluation
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Fig. 4.12: System with one blocking-write buffer at task T3 shown as: (a) abstract
system model, (b) marked graph model, and (c) marked graph model with greedy
processes

of the system with method MG is shown in Fig. 4.12(c). It is annotated
with the arrival curves of the input: γu

1 , γ
l
1, the output arrival curves of

the three tasks: αu
i , α

l
i, i = 1, 2, 3, the service curves modeling the service

provided by the processing elements to the tasks: βu
i , β

l
i, i = 1, 2, 3, and the

remaining service curves that characterize the unused service from the
tasks: β′ui , β

′l
i , i = 1, 2, 3.

Scenario. We compare methods MG and FB in terms of tightness
(accuracy) of the computed performance metrics for the system in
Fig. 4.12(a). More specifically, we compare the bounds on the output
of task T2: αu

2 , α
l
2 computed with the two methods, and the bounds

on the remaining service of task T2: β′u2 , β
′l
2 again for both methods.

The parameters of interest are marked with a question mark ’?’ in
Fig. 4.12(c). We have chosen these parameters because they are essential
for computing bounds on other performance metrics such as end-to-
end delays and buffer sizes. Any inaccuracy in computing the chosen
parameters will have an influence on all other computed metrics for the
system.

Results. Bounds for the output event stream of T2 computed with
methods FB and MG are shown in Fig. 4.13. Note that method FB does
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Fig. 4.13: Comparison of methods FB and MG for the output event stream. Note
that method FB does not compute lower bounds on the output event streams

not compute the lower bound αl
2. For the upper bound αu

2 , method MG
is tighter, and it accurately shows the fact that there cannot be a burst of
events coming out of task T2 since the input buffer of T3 is of finite size.
Even for the long term rate, method FB shows some error.

Bounds for the remaining service of T2 are shown in Fig. 4.14. Note,
that method FB does not compute an upper bound on the service β′u2 . For
the lower bound β′l2 , method MG is again tighter. This is due to the fact
that method FB computes a pessimistic bound on the event output of the
task which is then used for computation of the remaining service.

The tightness of the results computed with method MG can be
observed even for simple systems such as the one used here. We expect
that the differences in results will be more visible for more complex
systems. MG is a more general method than method FB since it can
analyze not only systems with finite buffers but any system that can
be modeled with a marked graph. And more importantly, this gain in
generality does not lead to inaccuracies in the computed results.

4.6.2 Validation
In this section, we validate our approach with a more complex scenario
and compare the analysis results to simulation measurements.

System and models. We use an application from the area of software
defined radio. It is adapted from [MVB07]. The Wireless LAN (WLAN)
and the Time Division Synchronous Code Division Multiple Access (TD-
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Fig. 4.14: Comparison of methods FB and MG for the remaining service. Note that
method FB does not compute upper bounds on the remaining services

SCDMA) applications run in parallel. Both of them are modeled as
marked graphs as depicted in Fig. 4.15. In contrast to [MVB07], we will
use an idealized scenario. The underlying multiprocessor architecture
consists of 5 independent cores where communication time is supposed
to be negligible.

It is assumed, that processor 5 provides a TDMA schedule which
partitions the period into two equal time slices, named 5.1 and 5.2.
Processors 1−4 have speeds of 100 million cycles/sec, processor 5 provides
200 million cycles/sec. Table 4.1 lists the mapping of marked graph nodes

1

2

3 4

5

6

WLAN

7

8

9

10

11

12

TD-SCDMA

Fig. 4.15: Marked graphs that model WLAN and TD-SCDMA applications
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Tab. 4.1: Mapping and worst-case execution demands in cycles for each of the
processes from Fig. 4.15

node 1 2 3 4 5 6
WCED [cycles] 2k 0.31k 0.33k 0.42k 4k 2k

core 1 2 4 3 5.1 5.2
node 7 8 9 10 11 12

WCED [cycles] 50k 12.5k 20k 3.3k 0.25k 50k
core 1 2 5.1 3 4 5.2

Tab. 4.2: Maximum end-to-end delays from source to the different outputs
observed in simulation and compared to analytical results

output 1 2 3 4 5 6
simulation [ms] 0.02 0.023 0.026 0.031 0.12 0.11

analysis [ms] 0.02 0.023 0.027 0.031 0.151 0.13
output 7 8 9 10 11 12

simulation [ms] 0.56 0.688 1.025 0.721 0.691 1.28
analysis [ms] 0.56 0.688 1.048 0.726 0.692 1.316

to processors, and the number of cycles each of the nodes needs on
the respective processor, i.e. their worst-case execution demands. The
TDMA-scheduler in processor 5 is assumed to have a period of 0.2 ms
and equal slot lengths for slices 5.1 and 5.2, i.e. 0.1 ms each. We further
assume, that the inputs to the two applications are periodic with periods
equal to 0.2 ms and 0.7 ms, for the WLAN and TD-SDMA applications,
respectively.

Let us suppose that we use fixed priority scheduling where all nodes
of the WLAN marked graph have higher priority than those of the TD-
SCDMA marked graph.

Experimental setup. Simulation models of the two applications have
been implemented in the Real-Time Simulation (RTS) Toolbox [TS09]. It
is a framework for discrete-event simulation which uses the component
structure of MPA [CKT03b, WTVL06] however, instead of using
abstracted event and resource models, it uses traces which are produced
randomly following the specifications of the processing cores and the
input streams. The processes are simulated assuming their worst-case
execution demands. The analysis computations have been performed
with the Real-Time Calculus (RTC) Toolbox [WT06c].

Scenario. We compare results from analysis computed with inequality
(4.31) and simulations for the maximum token delays from the input
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node to the outputs of all nodes in the graph for both applications. The
simulation has been performed with several traces and from all of them
the maximum observed end-to-end delays have been selected.

Results. The results are summarized in Tab. 4.2. They show
the tightness of the analysis and the feasibility of the method for the
performance analysis of complex data processing applications with cyclic
dataflow.

4.7 Discussion
The chapter presents a new compositional performance analysis
framework for distributed implementations of cyclic dataflow graphs, in
particular marked graphs. It is based on Modular Performance Analysis
and Real-Time Calculus. It substantially generalizes previous analysis
approaches in that general non-deterministic input event streams can
be modeled by means of arrival curves, and general non-deterministic
resource interactions can be modeled by means of service curves. This
way, it is possible to model implementations with finite buffer sizes, model
dynamic scheduling where the processes of different marked graphs are
scheduled according to a fixed priority scheme, and take into account
other scheduling disciplines like TDMA.

Unlike Chapters 2 and 3 which deal with interface-based design
methods for component models of real-time systems free of directed
cycles, this chapter focuses on an analysis method for cyclic component
models. Developing an interface-based design method for cyclic
component models is a topic for future research which can build on the
results presented in this chapter. As a component can be considered not
only an individual process in a marked graph, but also the whole marked
graph. Such a design framework would allow us to specify interfaces on
the buffer sizes in finite-buffer systems, and would partly avoid the need
for exhaustive search for minimum buffer sizes in throughput-constrained
systems.
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5
Analysis of Adaptive Applications

Many application domains require adaptive real-time embedded systems
that can change their functionality over time. Performance analysis
methods need to analyze these systems not only in the individual modes
where functionality does not change, but also during the transitions
between operating modes. Such mode change analysis is important
because during transitions, the system may execute functions belonging
to both of the operating modes which may cause the system to become
temporary overloaded. Known approaches that address the problem of
timing analysis over mode changes are mostly restricted to fixed priority
scheduling policies. In addition, most of them are also limited to simple
periodic or sporadic event stream models and therefore, they can not
faithfully abstract the bursty timing behavior which can be observed in
complex embedded systems. This chapter proposes a new method for the
design and analysis of adaptive multi-mode systems that supports any
event stream model. The analysis is embedded in the well-established
Modular Performance Analysis framework based on Real-Time Calculus
[CKT03b].

Chapters 2 and 3 deal with interface-based design frameworks for
real-time systems. They specify interfaces for system components that
can be used during design-time to answer essential questions like what is
the minimum resource required by a component in order to meet a certain
deadline constraint, what is the maximum input rate supported by the
real-time system, etc. In particular, interfaces specify bounds within
which system parameters, such as input event stream rates, processing
element speeds, communication buses speeds, can be changed. If the
actual system parameter values fall within the bounds given by an
interface, then the interface-based design theory guarantees that the
system will meet all real-time constraints such as maximum memory
usage, end-to-end delays, throughput, etc. However, interfaces do not
specify how fast and under what conditions system parameters may
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change, e.g. how often the environment can switch from one input rate
to another. The problem of analyzing such dynamics and transient effects
is the topic of this chapter. It focuses on changes in the parameters of an
application such as task activation rates and task execution times. The
presented results are valid for fixed priority scheduled sets of tasks that
run on uniprocessor systems. As it will be shown, run-time changes in
task parameters can be done only under certain conditions, otherwise
the system may violate its real-time constraints. Unlike Chapter 4 which
deals with performance analysis of cyclic dataflow systems, this chapter
considers only cycle-free systems.

5.1 Introduction
Several application domains ask for real-time embedded systems that
can adapt their behavior at run-time by changing their operating mode.
Examples of multi-mode systems are adaptive control systems in the
automotive domain or new mobile phone applications such as software
defined radio receivers. A mode change in an embedded application can
be requested for several reasons. For example the system might need to
switch to an emergency state, to adapt its behavior to changed conditions
in the environment, or to change its resource usage.

Another example is the use of scheduling servers within an operating
system. They assign a periodic computing service to each application
and therefore, lead to a largely reduced timing interference between
applications. But the computing bandwidth available to a specific
application needs to be adapted to its needs and new servers appear
with new applications. Each of these adaptations leads to a mode change.

We assume that a mode change can involve changes in the set of
executed tasks, changes in the parameters of tasks (e.g. execution time,
deadline) or changes in the activation pattern of tasks. In such adaptive
real-time systems, all deadlines must be provably met not only in the
individual operating modes, but also during the transitions between
modes. It is therefore essential to provide designers of multi-mode real-
time systems with appropriate instruments for the verification of timing
constraints across mode changes.

While in some domains a change of the operating mode can be
performed by simply stopping the execution of all tasks in the system
and restarting it with a new configuration, in many applications this is
not feasible and the mode changes have to be carried out dynamically at
run-time. For instance in many dependable systems there are tasks which
cannot be stopped and must reliably execute also during changes in the
configuration of the system.
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In general, a sudden mode change at run-time can have severe and
unexpected impacts on the timing behavior of a system. For instance, if
the execution of a task is triggered by an event stream, replacing the event
stream instantaneously with a less demanding one (e.g. one with a larger
period) can nevertheless harm the system, because bursts of events from
both event streams appearing at the switching time can lead to a transient
overload of the system and missed deadlines.

In summary the contributions of this chapter can be stated as follows:

• We present a method for timing analysis of uniprocessor multi-mode
systems with fixed priority (FP) scheduling of tasks that supports
any task activation pattern. It is the first method that is based on
Modular Performance Analysis with Real-Time Calculus [CKT03b,
TCN00] and can consider general event and resource stream models.

• We show how the method can be applied to transform a non-
schedulable mode change into a schedulable one using an offset.

• We show the applicability of the presented method by analyzing a
case study.

Section 5.2 briefly discusses some of the related work. Section 5.3
presents a video-processing application which will be used to illustrate
some of the problems that occur in multi-mode real-time systems.
Section 5.4 presents a short introduction to the abstractions used in
Modular Performance Analysis with Real-Time Calculus [CKT03b] that
underlie the mode change analysis presented in this chapter. Section 5.5
presents the mode change model that we consider and which system
parameters are allowed to change. Section 5.6 presents the mode change
analysis for fixed priority scheduled sets of tasks with and without
offsets. Section 5.7 applies the analysis framework to the example system
introduced in Section 5.3. Finally, Section 5.8 concludes this chapter with
a brief summary and a discussion.

5.2 Related Work
The problem of timing analysis across mode changes has been addressed
previously, see [RC04]. An analysis approach for mode changes on
uniprocessor systems with rate-monotonic scheduling is introduced in
[SRLR89]. The analysis approach is improved and extended to deadline-
monotonic scheduling in [TBW92]. The model is augmented with
transition offsets in [PB98], which permits to avoid overload situations.
However, a way to calculate such offsets is not provided. A slightly
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different mode change protocol is introduced in [RC04], together with an
algorithm for offset calculation. All these analysis methods are limited to
strictly periodic task activations. This restriction was recently overcome
in the SymTA/S approach [HE07], where the authors consider mode
changes under a more general task activation scheme. In their model
each event stream is described by three parameters: period, jitter and
minimum interarrival distance between events. Although this model
captures considerably more complex activation patterns, it still describes
only a limited set of event streams.

Mode change analysis for dynamic priority systems with earliest
deadline first (EDF) scheduling has been proposed in [And08]. However,
it is limited only to tasks activated by sporadic event streams.

This chapter extends all previous results by considering general event
stream models modeled with arrival curves and resources modeled with
service curves, both of which are known from Network Calculus [LBT01].
The analysis can consider offsets between tasks which can be efficiently
calculated using a binary search strategy. The results presented here are
applied to fixed priority scheduled systems but can be extended to EDF
scheduling as shown in [SPT09].

5.3 Illustrative Example
For illustrative purposes, we present a multimedia system that undergoes
a mode change. It will serve as a case study throughout the chapter, and
will help us to visualize the presented theoretical results. Figure 5.1
shows the architecture of a digital set-top box implementing a picture-in-
picture (PiP) application where two concurrent MPEG-2 video streams
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Fig. 5.1: System architecture
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are being decoded on a single CPU and displayed on the same output
device. The streams correspond to a main window W1 and a small
window W2 in the output device, and they are denoted as S1 and S2,
respectively. The CPU executes two tasks T1 and T2 which perform the
MPEG-2 decoding for S1 and S2, respectively. The inputs to the tasks
are compressed bitstreams and their outputs are decoded macroblocks,
which are written into playout buffers. The video interface reads from
the playout buffers at a constant rate, and sends the data to the display.

Consider now that the video displayed on W1 changes from video
stream S1 (mode I) to a video stream S1 new with a lower workload (mode
II). Such an instantaneous mode change is likely to result in a transient
overload of the system and missed deadlines, which in this scenario
translates to distorted playback. A common way to reduce the workload
during mode changes is to delay the start of mode II by an offset [PB98].
In this case, workload from mode I is accepted up to the time of the mode
change request tMCR, while workload from mode II is not accepted before
tMCR + δ, where δ is the length of the offset. The designer of the set-top
box needs to find an offset of sufficient length in order to avoid distorted
images during stream changes. At the same time, the offset should be
kept as short as possible. Adding an offset delays the switch to the new
video stream however, the disruption is completely predictable at design
time.

Choosing the offset for a mode change is not trivial at all. To illustrate
this, consider that the two tasks T1 and T2 are scheduled according to a
preemptive FP scheduling policy, with T1 having higher priority than T2.
For the sake of simplicity, assume that T1 and T2 are triggered by periodic
event streams with jitter and have constant execution times. In Section 5.7
we will analyze the set-top box mode change scenario for realistic MPEG-
2 video streams. For now, consider that task T1 in mode I has a constant
execution time of 2 ms, a relative deadline of 11 ms, and it is triggered by
stream S1 described with period of 11 ms and jitter of 10 ms. In mode II,
the execution time becomes 3 ms, the relative deadline is 18 ms, and the
activation stream S1 new is described by period of 18 ms and jitter of 10 ms.
For task T2, the parameters in mode I and mode II are equal, and the task
continues to run uninterruptedly during the mode change. Its execution
time is 30 ms, the relative deadline is 41 ms, and it is triggered by stream
S2 that is described by period of 41 ms and jitter of 5 ms.

A reasonable guess for the length of the offset at the mode change is
δ = 21 ms, which is the maximum distance between the arrival of two
events in stream S1. Since the workload for S1 new is slightly smaller
(3/18 < 2/11), one might assume that this offset is sufficient for meeting
all deadlines. However, the trace depicted in Fig. 5.2 shows that with
δ = 21 ms, an activation of task T2 can miss a deadline due to the video
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Fig. 5.2: Missed deadline due to transient overload during mode change

change in the higher priority stream. In other words, switching between
two video streams in W1 can cause an unpredictable disruption in the
video playback of W2. The example shows that formal methods are
desirable for the design and analysis of multi-mode real-time systems.

5.4 System Abstractions
In this section we shortly describe the framework of Modular Performance
Analysis with Real-Time Calculus (in short called MPA), on top of which
we will develop the analysis of mode changes. MPA is a compositional
framework for system-level performance analysis of distributed real-time
systems [CKT03b, TCN00]. It has its roots in Network Calculus [Cru91a,
LBT01]. It analyzes the flow of event streams through a network of
processing and communication resources in order to compute worst-case
backlogs, end-to-end delays, and throughput.

5.4.1 A General Event Stream Model
Event streams are abstracted by a tuple α(∆) = [αu(∆), αl(∆)] of upper and
lower arrival curves which provide an upper and a lower bound on the
number of events in any time interval of length ∆. If R[s, t) denotes the
number of events that arrive in the time interval [s, t) , then the following
inequality holds:

αl(t − s) ≤ R[s, t) ≤ αu(t − s) ∀s < t ,

where αu(∆) = αl(∆) = 0 for ∆ ≤ 0. Arrival curves substantially generalize
conventional event stream models such as sporadic, periodic, or periodic
with jitter. Note that often the domain of arrival curves are workload
units. Event-based arrival curves can be converted to workload-based



5.4. System Abstractions 139

GPC

β

GPC

β′

α 1

α 2

Fig. 5.3: Two abstract components GPC modeling two tasks processing two
streams with FP scheduling

arrival curves by scaling with the best-case/worst-case execution demand
of events. We will use the workload-based interpretation in the rest of
the chapter. For more general characterizations of the workload refer to
Chapter 3 Section 3.8.1.

5.4.2 A General Resource Model
The availability of processing or communication resources is described
by a tuple β(∆) = [βu(∆), βl(∆)] of upper and lower service curves which
provide an upper and a lower bound on the available service in any
time interval of length ∆. The service is expressed in an appropriate
workload unit compatible to that of the arrival curve, like number of
cycles for computing resources or bits for communication resources. If
C[s, t) denotes the amount of workload units available from a resource in
the time interval [s, t) , then the following inequality holds:

βl(t − s) ≤ C[s, t) ≤ βu(t − s) ∀s < t .

5.4.3 Processing Model and Analysis
In real-time systems, event streams are typically processed by a sequence
of HW/SW components. In the framework of MPA such processing
or communication components are modeled by abstract performance
components that act as curve transformers in the domain of arrival and
service curves, where the transfer function depends on the modeled
processing semantics.

A typical example for an abstract performance component in the
context of MPA-RTC is a Greedy Processing Component (GPC), shown in
Fig. 5.3. It models a task that is triggered by the events of the incoming
event stream which queue up in a first-in first-out (FIFO) buffer. The
task processes the events in a greedy (work-conserving) fashion, while
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being restricted by the availability of processing resources. The worst-
case response time experienced by an event at a GPC and the worst-case
backlog of a GPC satisfy the following upper bounds:

sup
λ≥0

{
inf{τ ≥ 0 : αu(λ) ≤ βl(λ + τ)}

} def
= Del(αu, βl) , (5.1)

sup
λ≥0
{αu(λ) − βl(λ)} def

= Bu f (αu, βl) . (5.2)

Having a delay requirement D for a GPC component means that we
require Del(αu, βl) ≤ D for ∀∆ ∈ R≥0 which can be expressed as the
following inequality:

αu(∆ −D) ≤ βl(∆) ∀∆ ∈ R≥0 . (5.3)

A GPC is said to be schedulable, if for all events of the triggering event
stream the above inequality is satisfied.

Performance components are connected in a network which reflects
the dataflow as well as the hardware architecture of the modeled system.
Some scheduling policies for shared resources are expressed by the way
abstract resource streams β are distributed among the different abstract
components. For instance, in a preemptive FP scheduling scheme with
two tasks the lower priority task only gets the resources left over by the
higher priority task. In the MPA framework this is modeled by connecting
the service stream output β′ of the higher priority GPC with the service
stream input of the lower priority GPC as shown in Fig. 5.3. We find a
lower bound for β′ as follows:

β′l(∆) = sup
0≤λ≤∆

{βl(λ) − αu(λ)} . (5.4)

Other scheduling policies are modeled by means of abstract
performance components with multiple event stream inputs and tailored
internal relations. An example is the abstract performance component for
EDF scheduling as described in Chapter 3 Section 3.4.1.3.

5.5 Mode Change Model
In this section we define a model for mode changes which provides the
basis for the timing analysis described in the following sections. A mode
change request (MCR) can be initiated by the environment or by the system.
An MCR is asynchronous and can happen at any time of a mode execution
denoted by tMCR. In order to exclude interference of multiple mode
changes, we assume that a new MCR cannot occur during a transition



5.5. Mode Change Model 141

between modes. We will refer to the mode in which a change is initiated
as mode I. The target mode of a change will be called mode II. Each mode
comprises a set of tasks to execute. The task set or parameters of single
tasks can change only at mode switches. Each task is associated with an
activation stream expressed as an arrival curve α, a best-case execution
demand b, a worst-case execution demand w, and a deadline D. These
parameters are defined for all modes however, they may be different for
the different modes. For mode I, they will be denoted as (αI, bI,wI,DI), and
for mode II as (αII, bII,wII,DII), respectively. During a mode change, we
differentiate between four types of tasks which are illustrated in Fig. 5.4.
They are described as follows:

Added tasks are active in mode II, and inactive in mode I. Therefore, we
have αI(∆) = 0 ∀∆. Activations for these tasks will be accepted only
at time t ≥ tMCR.

Completed tasks are active in mode I, and inactive in mode II, thus
αII(∆) = 0 ∀∆. Activations for these tasks will be accepted only
at time t < tMCR. For all activations the task execution needs to be
completed, even if this happens after tMCR.

Unchanged tasks are active in mode I and mode II with the same
parameters. An MCR does not affect them.

Changed tasks are active in mode I and mode II with different
parameters αI , αII ∨ wI , wII ∨ bI , bII ∨ DI , DII. They are
activated with the first set of parameters for t < tMCR and with the
second set of parameters for t ≥ tMCR. As for the completed tasks,
changed tasks need to complete all executions even if this happens
after tMCR.

The potential transient overlap in the workload deriving from tasks
of modes I and II after the MCR can lead to an overload situation for
the system. As indicated in Section 5.3, the overload can be avoided by
delaying the start of tasks in mode II by an offset of length δ. In this case,
activations for added tasks will be accepted only at time t ≥ tMCR + δ. For
changed tasks, no activations are accepted in the interval [tMCR, tMCR + δ).
They are activated with the parameters of mode I for t < tMCR and with
the parameters of mode II for t ≥ tMCR + δ.

Schedulability for a system undergoing a mode change is defined as
all tasks in the system always meeting their deadlines (in mode I, mode
II, and during the transition). In the next section we present a method
for schedulability analysis across mode changes under the FP scheduling
policy. We assume schedulability for both modes in mutual exclusion,
and we show how to analyze schedulability during the transition.



142 Chapter 5. Analysis of Adaptive Applications

As MPA allows us to incorporate task parameters b and w into the
arrival curve of the activating stream α, in the next section we discuss
only changes in α and D, i.e. we consider only workload-based arrival
curves.

5.6 Mode Change Analysis
Consider a uniprocessor system which executes multiple tasks according
to a preemptive FP scheduling policy. Consider two modes, I and II, in
which the system is schedulable, and a change from mode I to mode II for
which schedulability needs to be proven. Assume that for a generic task
τ a service curve β̃l is given as input that lower bounds the service which
is available to τ for all time intervals, i.e. it is valid in mode I, mode II, and
during the transition. If τ is an unchanged task with activation pattern
α and deadline D, using (5.3) we can check for schedulability, and with
(5.4) we can directly compute bounds on the remaining service β̃′.

If τ is a changed task, we have to take into account that its workload
changes from αI to αII and its deadline from DI to DII. We want to find
an arrival curve α̃u which upper bounds the workload of τ for all time
intervals. Then given α̃u we can compute the remaining service that is
available for lower priority tasks by means of (5.4). Here we consider two
different cases. In the first case, we assume that the switch from mode I
to mode II is immediate, i.e. there is no offset, δ = 0. In the second case,
we consider an offset of length δ > 0 between the two modes. Note that
added and completed tasks can be treated as changed tasks and therefore
are not discussed separately here.

Completed

Added

Changed

Unchanged

tMCR

offset
 > 0

t

t

t

t

Fig. 5.4: Types of tasks considered during the mode change analysis
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5.6.1 Immediate Start of Mode II Tasks
In this case, mode I activations of τ stop at tMCR, and mode II activations
are accepted for t ≥ tMCR. In order to guarantee the schedulability of τ,
we have to verify that the task always meets its deadlines. For events of
mode I the deadline is guaranteed to be met if Del(αu

I , β̃
l) ≤ DI. For events

of mode II, we have to consider not only the worst-case activation pattern
of mode II given by αu

II, but also the fact that all buffered events of mode I
need to be processed before any event of mode II. Thus, all events of mode
II are guaranteed to meet their deadline if Del(αu

II + Bu f (αu
I , β

l
I), β̃

l) ≤ DII.1

In order to safely bound the remaining service for lower priority tasks,
we need to find an arrival curve α̃u that upper bounds the workload of
τ for all time intervals, i.e. which is valid in mode I, mode II, and also
during the transition. Such an arrival curve is computed in the following
theorem.

The result can be understood by looking at time intervals of length ∆
that start before the mode change request, and end after it. In terms of the
resulting arrival curve we need to consider the worst-case with respect to
any location of this time interval relative to the mode change request, i.e.
starting ∆ − λ time units before tMCR and ending λ time units after tMCR.
It takes into account the fact that the bursts from both activation streams,
αu

I and αu
II, can appear very close to the mode change request.

Theorem 5.1: (Upper Bound on the Active Workload of a Changed Task
during Mode Changes without Offset) Given a changed task τ that is activated
by stream αu

I in mode I, and by stream αu
II in mode II, when switching from mode

I to mode II with offset δ = 0, has a maximum workload α̃u computed as follows:

α̃u(∆) = sup
0≤λ≤∆

{αu
I (∆ − λ) + αu

II(λ)} . (5.5)

Proof. Consider a time interval [s, t) with t > s and t− s = ∆. Then we can
distinguish three cases that are depicted in Fig. 5.5:

a) t ≤ tMCR (the interval lies entirely before the MCR)

b) s ≥ tMCR (the interval lies entirely after the MCR)

c) s < tMCR < t (the interval spans across the MCR)

1The sum of an arrival curve α and a constant C is an arrival curve αS defined as αS(∆) = α(∆) + C for
∆ > 0 and αS(∆) = 0 otherwise.
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Fig. 5.5: Case distinction for workload bounding when there is no offset, δ = 0

From the definition of an upper arrival curve we can derive the
following inequalities:

R[s, t) ≤ αu
I (∆) for t ≤ tMCR (case a)

R[s, t) ≤ αu
II(∆) for s ≥ tMCR (case b)

R[s, t) = RI[s, tMCR) + RII[tMCR, t) for s < tMCR < t (case c)
Subst. λ := t − tMCR

= RI[s, t − λ) + RII[t − λ, t)
= RI[s, s + ∆ − λ) + RII[s + ∆ − λ, s + ∆)
≤ αu

I (∆ − λ) + αu
II(λ)

≤ sup
0≤λ≤∆

{
αu

I (∆ − λ) + αu
II(λ)

}

Since we have the inequalities:

sup
0≤λ≤∆

{
αu

I (∆ − λ) + αu
II(λ)

}
≥ αu

I (∆) ∀∆ ∈ R≥0 ,

sup
0≤λ≤∆

{
αu

I (∆ − λ) + αu
II(λ)

}
≥ αu

II(∆) ∀∆ ∈ R≥0 .

Then we have that α̃u(∆) := sup0≤λ≤∆

{
αu

I (∆ − λ) + αu
II(λ)

}
is a valid

upper bound for all three cases.

5.6.2 Delayed Start of Mode II Tasks
In this case, mode I activations of τ stop at tMCR, while mode II activations
are accepted only for t ≥ tMCR + δ with δ > 0. In order to guarantee
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schedulability, again we have to make sure that deadlines are always
met. For events of mode I we have to check that Del(αu

I , β̃
l) ≤ DI. For

events of mode II, we have to consider not only the existence of events
remaining from mode I, but also that some of them could be processed
during the offset interval. Thus, all events of the mode II are guaranteed
to meet their deadline if Del(αu

II + max{0,Bu f (αu
I , β

l
I)− β̃

l(δ)}, β̃l) ≤ DII. The
workload of τ is safely upper bounded by the equation in the following
theorem which is valid in mode I, mode II, and also during the transition.

In comparison to (5.5), we just shift the arrival curve associated to the
second mode by the offset δ. In addition, we need to explicitly consider
the arrival curve of mode II; in (5.5) it is implicitly taken into account.

Theorem 5.2: (Upper Bound on the Active Workload of a Changed Task
during Mode Changes with Offset) Given a changed task τ that is activated by
stream αu

I in mode I, and by stream αu
II in mode II, when switching from mode I

to mode II with offset δ > 0, has a maximum workload α̃u computed as follows:

α̃u(∆) = max
{
αu

II(∆), sup
0≤λ≤∆

{αu
I (∆ − λ) + αu

II(λ − δ)}
}
. (5.6)

Proof. Consider a time interval [s, t) with t > s and t− s = ∆. Then we can
distinguish six cases that are depicted in Fig. 5.6:

a) t ≤ tMCR

b) s ≥ tMCR + δ

Fig. 5.6: Case distinction for workload bounding in the presence of an offset time
δ > 0
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c) s < tMCR < t ≤ tMCR + δ

d) tMCR ≤ s < tMCR + δ < t

e) tMCR ≤ s < t ≤ tMCR + δ

f) s < tMCR < tMCR + δ < t

Using the definition of arrival curve and considering that no events arrive
during the offset interval [tMCR, tMCR + δ), we can derive the following
inequalities:

R[s, t) ≤ αu
I (∆) for t ≤ tMCR (case a)

R[s, t) ≤ αu
II(∆) for s ≥ tMCR + δ (case b)

R[s, t) ≤ αu
I (tMCR − s) ≤ αu

I (∆) for s < tMCR < t ≤ tMCR + δ (case c)
R[s, t) ≤ αu

II(t − tMCR − δ) ≤ αu
II(∆) for tMCR ≤ s < tMCR + δ < t (case d)

R[s, t) = 0 for tMCR ≤ s < t ≤ tMCR + δ (case e)
R[s, t) = RI[s, tMCR) + RII[tMCR + δ, t) for s < tMCR < tMCR + δ < t (case f)

≤ αu
I (tMCR − s) + αu

II(t − tMCR − δ)
Subst. λ := t − tMCR

= αu
I (t − λ − s) + αu

II(λ − δ)
= αu

I (∆ − λ) + αu
II(λ − δ)

≤ sup
0≤λ≤∆

{
αu

I (∆ − λ) + αu
II(λ − δ)

}
If we take the maximum of the right hand sides of the inequalities, we

get an upper bound for the workload of τwhich is valid in all of the cases:

α̃u(∆) := max
{
αu

I (∆), αu
II(∆), sup

0≤λ≤∆

{
αu

I (∆ − λ) + αu
II(λ − δ)

} }
.

Since we have the following inequality:

sup
0≤λ≤∆

{
αu

I (∆ − λ) + αu
II(λ − δ)

}
≥ αu

I (∆) ∀∆ ∈ R≥0 ,

therefore we have the following upper bound:

α̃u(∆) := max
{
αu

II(∆), sup
0≤λ≤∆

{αu
I (∆ − λ) + αu

II(λ − δ)}
}
.
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Fig. 5.7: Insufficient remaining service for T2

Example 5.3: Let us consider again the application scenario presented in
Section 5.3. We want to determine the length of the offset δ which is sufficient to
guarantee all timing constraints for the video decoding. First we represent the
arrival patterns of S1, S1 new, and S2 with appropriate arrival curves α1,I, α1,II,
and α2, respectively. This is simple due to the periodic with jitter nature of the
event streams. Then, we compute bounds for the workload of T1 which are valid
for all time intervals by means of (5.6). At this point we can safely lower bound
the remaining service β̃2 available for T2 during the mode switch using (5.4). In
order to verify whether it is sufficient for the timely decoding of video stream S2,
we use (5.3) with β̃2

l and αu
2 . For the described mode change with an offset of

δ = 21 ms the inequality is not satisfied, as highlighted in the plot of Fig. 5.7.
This confirms the deadline miss observed in the trace shown in Fig. 5.2.

A good approximation for a safe size of δ can be found by iterating the analysis
procedure according to a binary search strategy. Following this method, we can
derive an offset of length δ = 24 ms for a safe mode change.

5.7 Case Study
In this section we show how the proposed theory can be applied to the
analysis of the system described in Section 5.3 with realistic MPEG-2
video streams. We consider that a mode change occurs in one of the
video streams and we want to reduce its effects on the other video stream.
The case study illustrates that the proposed methods can be applied to
the mode change analysis of tasks scheduled with fixed priorities and
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activated by streams with arbitrary complex arrival patterns. We show
that a designer can find a sufficient offset such that a mode change in
certain tasks does not violate the timing constraints of other tasks. In the
case study, first we run a simulation with different sets of video streams
and collect data for their arrival patterns and workload demands, then
we compute workload arrival curves which we use for the mode change
analysis.

Experimental setup. We simulate the system architecture shown in
Fig. 5.1 with two different sets of video clips. The first set consists of
regular clips with moderate to high motion content. It is selected to be
representative for clips having high workload for the CPU. The second
set consists of clips displaying still images. It is representative for low
workload clips. All of the clips are MPEG-2 encoded and have the
same frame resolution of 704 × 576 pixels. Each frame is made up of
1584 macroblocks. The down-scaling for the small PiP window is being
done at the output device. The two video streams arrive at a constant
bitrate of 8 Mbps and the two playout buffers are read at a constant rate
of 25 frames/s. The CPU is set to run at a frequency of 3 GHz.

The two MPEG-2 decoding tasks have been mapped to the CPU.
Both of them implement the variable length decoding (VLD), the inverse
quantization (IQ), the inverse discrete cosine transform (IDCT), and the
motion compensation (MC) functions for the two streams, respectively.
A scheduler schedules the two tasks according to the selected QoS
parameters for each stream. In this application the QoS has been reflected
in the predetermined priorities of the tasks. The simulation for the two
sets of video clips have been performed using a SimpleScalar model
[ALE02] of the CPU (with the sim-profile configuration and the PISA
instruction set). The video streams are modeled at the macroblock
granularity. Each compressed macroblock in the input stream is made
up of a variable number of bits. Therefore, at the macroblock granularity,
a constant bitrate translates into a bursty arrival pattern. This can be
observed in the derived upper arrival curve for the set of high workload
video streams shown in Fig. 5.8(a) which is expressed in number of
macroblocks arriving per time unit. Similarly, the number of processor
cycles required to process a macroblock is also variable. During the
simulation, workload data was gathered for the two tasks processing
the two different sets of streams. It represents the worst-case execution
demand in CPU cycles for processing one, two, and more consecutive
macroblocks in a video stream. For the analysis, this data was combined
with the arrival pattern of macroblocks in order to obtain workload-
based arrival curves. The corresponding curve for the high workload set
is shown in Fig. 5.8(b).
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Fig. 5.8: Upper bound on the workload for the set of high-motion videos in terms
of: (a) number of macroblocks per ms, and (b) number of required processor cycles
per ms

Mode change analysis. The analysis starts from the fact that the
system can meet all deadlines in all modes in mutual exclusion. Mode
changes are first analyzed with offset δ = 0. If the system is found
schedulable then the mode change can be performed safely without any
offset. However, if the system is found unschedulable, the analysis is
performed repetitively with different sizes of δ which are chosen with a
binary search strategy. Analysis stops when the smallest δ is found that
makes the system schedulable during the mode change.

Results. The CPU scheduler implements a FP scheduling scheme.
Context switches are considered to take negligible times. For both
scenarios we perform a mode change where the video displayed on
window W1 changes from video stream S1 (high motion content) to a
video stream S1 new with a lower workload (still images). We find an
offset which is the smallest offset such that video stream S2 meets its
deadlines during the mode change, i.e. there is no disruption in the video
displayed in window W2.

We consider FP scheduling of the two MPEG-2 decoding tasks where
stream S1 (S1 new) is processed with a higher priority than S2. S1 and
S1 new have both a maximum delay requirement of 14 ms. In both modes,
stream S2 does not change. It has low workload and a maximum delay
requirement of 89 ms. The analysis is first performed for an immediate
change from S1 to S1 new without any offset. As can be seen in Fig. 5.9,
when δ = 0 the CPU service remaining for task T2 which processes stream
S2 is not sufficient to meet the delay requirement. After repeating the



150 Chapter 5. Analysis of Adaptive Applications

0 100 200 300 400
0

1

2

3

4

5 x 108

Δ [ms]

[c
yc

le
s]

 

 

αu
2

δ = 0

, δ = 26
(Δ-D  )2

βl
2

~
(Δ)

, βl
2

~
(Δ)

Fig. 5.9: Remaining service for stream S2 with and without an offset during a
mode change

analysis for various δ chosen by binary search, the smallest offset found
is δ = 26 ms. The result is shown in Fig. 5.9.

The chosen scenario shows the counterintuitive result that performing
a mode change to a mode with lower system utilization can lead to timing
violations during the transition period.

5.8 Discussion
In this chapter we presented a new approach for the design and analysis
of adaptive multi-mode embedded real-time systems. We introduced
methods for schedulability analysis during mode transitions. They
guarantee the timing behavior of multi-mode systems with FP scheduling
of an arbitrary number of tasks. They can also be applied to systems
with EDF scheduling or any hierarchical combination of the FP and EDF
scheduling policies [SPT09]. The analysis is not bound to particular event
stream models, but supports any arbitrary task activation pattern. We
looked at immediate switches between modes, and showed that such
changes often involve a transient overload of the system. Subsequently,
we considered mode changes with an offset for the start of the new
mode tasks, and we showed how an offset can be used to transform
an unschedulable transition into a schedulable one.
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The method presented here is restricted to analysis of mode
changes in uniprocessor systems. Mode change analysis techniques
for multiprocessor systems have been considered in [NGA09, YNG10]
but they are restricted only to task sets without dataflow dependencies
between them which are activated by sporadic event streams.

Mode changes for more general distributed systems are considered
in [HE07]. However, the authors limit their discussion to identifying
recurring effects of a mode change as the main problem for the analysis
of an example system, without devising a detailed analysis procedure for
the general distributed case.

The results presented in this chapter can be a starting point for
developing a schedulability analysis for mode changes in distributed
systems where tasks have dataflow dependencies. While such a
method would be trivial to derive for systems without dataflow cycles,
considering the general case where tasks may participate in dataflow
cycles seems to be much more difficult as mode change effects may
propagate in the system for arbitrary long time intervals.

This chapter discusses only mode changes in applications, i.e. changes
in the task sets and their parameters. However, many real-time systems
use scheduling servers in order to guarantee temporal isolation between
tasks. It is likely that server parameters may need to be changed
dynamically during run-time, e.g. when tasks are dynamically added
or removed, or when tasks change their execution demands during run-
time. Such scheduler mode changes require more complex schedulability
analysis methods as they need to guarantee during mode transitions
not only that individual servers do not miss deadlines, but also that
none of the applications served by the servers do not miss deadlines. A
designer would need not only to verify mode change schedulability, but
also to design algorithms (protocols) for server mode changes that will
guarantee schedulability of both servers and applications. This is the
topic of discussion of Chapter 6.
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6
Analysis of Adaptive Schedulers

Many real-time applications are designed to work in different operating
modes each characterized by different functionality and resource
demands. With each mode change, resource demands of applications
change, and static resource reservations may not be feasible anymore.
Dynamic environments where applications may be added and removed
at run-time also need to adapt their resource reservations. In such
scenarios, resource reconfigurations are needed for changing the resource
reservations during run-time and achieve better resource allocations.

Chapter 5 discusses how an application can perform safe mode
transitions. It develops a schedulability mode change analysis for fixed
priority scheduled uniprocessor systems. It considers how to switch from
one schedulable task set to another one with different parameters, and
still guarantee that no task misses a deadline during the mode switch.
However, the problem of mode switches in schedulers or how to switch
safely from one set of schedulable resource reservations to another one
has not been addressed. A resource scheduler should be reconfigured
online in such a way that it still guarantees a certain amount of resources
during the reconfiguration process, otherwise applications may miss
deadlines. The current chapter proposes a framework for scheduling
real-time applications through scheduling servers that provide resource
reservations, and algorithms for changing the resource reservations online
while still guaranteeing the feasibility of the system and the schedulability
of applications.

Chapters 2 and 3 deal with interface-based design frameworks for
real-time systems. They specify interfaces for system components that
can be used during design-time to find out for example what is the
minimum resource reservation needed by a component in order to
make it schedulable. If a component changes its operating mode and
functionality, interface-based design theories can be used to compute
the new minimum resource reservation needed for scheduling however,
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the methods do not provide any information how to switch safely
to the new reservation. The current chapter goes into more details
about mode switches in resource schedulers. It deals particularly
with resource reservations provided by Time Division Multiple Access
(TDMA) schedulers, and develops algorithms that can switch under
different scenarios from one set of schedulable resource reservations to
another one while keeping the system schedulable during the switch.

6.1 Introduction
The server architecture paradigm has been seriously considered in the
past years for its ability to separate the scheduling concerns between
the system and the application levels. A server mechanism is strictly
connected with the resource partition idea [LLB06, SBNN08] where
a shared resource, e.g. CPU computation time, is used by several
applications. Servers are used to isolate the temporal behavior of real-
time tasks through resource reservations [MRZ94]. Abeni and Buttazzo
[AB04] introduced a bandwidth reservation mechanism, namely the
Constant Bandwidth Server (CBS), that allows real-time tasks to execute
in dynamic environments under a temporal protection mechanism, so
that a server never exceeds a predefined bandwidth, independently of
the actual requests of the tasks served by it.

Server models can be classified into event-driven servers where the
servers are driven by the application requirements. The CBS [AB98]
and the sporadic server [SSL89] are typical examples. In time-triggered
servers, the server resource supply is driven by a predefined timing pattern
that depends only on the server properties. An example is the Time
Division Multiple Access (TDMA) server paradigm where the resource is
periodically partitioned [WT06b]. In particular, a TDMA server assigns
time slots of fixed lengths to its applications that repeat in each cycle.

Nowadays, dynamic real-time applications ask for real-time systems
that can adapt their behavior at run-time by changing their operating
mode: the computing environment and the available resource of a system
may change over time. For example, adding a new task into the system
at run-time may result in a reduction of the computing resources being
allocated to existing tasks. Moreover a change in the operating mode
of an application, e.g. from start-up to normal, or from normal to shut-
down, may also demand re-allocation of the computing resources among
the tasks. That and many other scenarios require flexible workload
management and resource allocation.

Whereas a server manages an application by supplying the resource
it requires [DB06], adaptive applications must rely on adaptive servers
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to meet their changing resource requirements. Servers need to be
reconfigured dynamically to adapt the resource reservations and reflect
the changes in the system or its environment. Such reconfigurations need
to be performed online without jeopardizing schedulability. It is therefore
essential to develop appropriate resource reconfiguration criteria and
algorithms to manage the criticality of the resource reconfiguration phase.

In summary, this chapter makes the following contributions:

• The problem of scheduler adaptations in resource partitioned
architectures is considered from the perspective of adaptive servers
that provide real-time guarantees. It is the first discussion on the
topic where not only schedulability of reconfigurable servers is
considered, but also schedulability of applications during server
reconfigurations.

• An adaptive scheduling server framework based on the TDMA
partitioning paradigm is developed.

• Conditions are established that need to be met during a reconfigu-
ration of the framework.

• All possible reconfiguration scenarios are classified.

• Algorithms are developed for each reconfiguration scenario that
guarantee meeting of the real-time constraints during reconfigura-
tions.

• Server reconfiguration schedulability analysis is presented based on
the Real-Time Calculus [TCN00].

Section 6.2 discusses briefly some of the related work. Section 6.3
classifies the problems that may occur during reconfigurations of
some common servers and provides simple examples illustrating
them. Section 6.4 describes the proposed Adaptive Server with
Guarantees (ASG), and defines the service guarantees that it provides
during operation and reconfiguration. Section 6.5 classifies the
possible reconfiguration scenarios, provides algorithms, and analyzes
schedulability for each of them. Section 6.6 illustrates the algorithms
with a case study. Finally, Section 6.7 concludes this chapter with a brief
discussion.

6.2 Related Work
To cope with applications in which the computational demand is highly
variable, using fixed reservations can lead to under-utilization of system
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resources, hence adaptive scheduling schemes need to be adopted.
Buttazzo et al. [BA00] proposed an elastic scheduling methodology for
adapting the rates of a periodic task set to different workload scenarios,
without affecting the system schedulability. Abeni et al. [AB99] presented
a framework for dynamically allocating the CPU resource to tasks whose
execution times are not known a priori. Adaptive reservation techniques
based on feedback scheduling have also been investigated by the authors
in [AB01]. All of these frameworks are only suitable for soft real-time
systems as they may experience missed deadlines.

There are also systems in which the application is characterized by
multiple execution modes, each consisting of a specific task set and
workload requirement. For these systems, the feasibility of the schedule
has to be guaranteed not only within each individual mode, but also
during mode transitions. This problem has been deeply investigated
in the real-time literature [TBW92, BLCA02, PB98, SRLR89] and in
Chapter 5 of this thesis. Crespo et al. [RC04] presented a survey of
mode change protocols for uniprocessor systems under fixed-priority
scheduling and proposed a new protocol along with its schedulability
analysis. Guangming [Gua09] computed the earliest time at which a new
task can be safely added to a system scheduled by the Earliest Deadline
First (EDF) policy, without jeopardizing the feasibility of the task set. All
of these results and the ones presented in Chapter 5 address the problem
of performing mode transitions in applications without violating their
schedulability. None of them considers how to change resource reservations
online without violating schedulability of applications which is the goal
of this chapter.

In real-time operating systems, servers are a specific scheduling
mechanism that handles aperiodic requests as soon as possible while
preserving hard periodic tasks from missing their deadlines. Another
classification distinguishes between fixed priority and dynamic priority
servers, depending on the scheduling policy used to schedule them.
Among fixed priority servers, deferrable server [LSS87, SLS95] and
sporadic server [SSL89] are the most well-known techniques that preserve
their capacity when no request is pending upon the invocation of a server.
Spuri et al. [SB96] presented a survey of dynamic priority servers that
can efficiently work under EDF. It is also notable that time-triggered
architectures play an increasingly important role in large distributed
embedded systems as described in [HHK03, HE05, WT06b]. Mainly,
time-triggered servers offer high predictability with enormous benefits to
the analysis of real-time systems.

However, classical server paradigms and models do not allow
adaptations to changing conditions. To the best of our knowledge,
none of the schedulers that provide isolation and real-time guarantees



6.2. Related Work 157

have mechanisms for online reconfiguration that can provide guarantees
during the reconfiguration process. It may be possible to wait for an idle
time in the system in order to reconfigure the scheduler as in [CPL08],
however, it is highly unlikely that idle times occur at the same time for
all applications.

Several papers have tried to face and cope with this lack. Fohler
[Foh93] investigated the problem of mode changes in both the
applications and the scheduler in the context of pre run-time scheduled
hard real-time systems. Applications are specified with periodically
activated graphs with precedence constraints for which safe switching
points are pre-computed using heuristic search techniques. The
FRESCOR project [HSdE09] has proposed a mode change protocol for
a system with virtual resources based on the sporadic server and periodic
tasks where budgets may change. Both frameworks are not as general as
the results presented in this chapter which can deal with hierarchically
scheduled systems with mixed schedulers and complex task activation
schemes.

New mechanisms have been proposed to dynamically change server
paramters at run-time. de Olivera et al. [OCL09] addressed the problem
of finding optimal CBS parameters and dynamically reconfiguring the
servers, offering support for multi-mode adaptive real-time applications.
Valls et al. [VAdlP09] presented an adaptation protocol based on the
definition of a contract model for filtering peaks in resource demands
where applications are modeled with periodic, continuous, and imprecise
tasks. However, in both frameworks there are no algorithms and
analysis of applications schedulability for the proposed online resource
reconfigurations.

Brandt et al. [BBLB03] propose the rate-based earliest deadline
(RBED) scheduler where servers are periodic tasks scheduled with EDF.
The paper gives system schedulability conditions for adaptations in the
periods and utilizations of the servers. However, the paper does not go
neither into characterizing the service provided by the servers during
reconfigurations, nor into algorithms for how to control this service.

Craciunas et al. [CKP+09] propose the variable-bandwidth server
(VBS) which is based on CBS but allows for adaptations. Applications
are specified as sequences of actions which execute on a VBS. Activations
of actions may change the parameters of the VBS, and schedulability is
based on the maximum utilization from all actions of an application. Our
framework is more general as server reconfigurations may happen at any
time, are independent of application model, and can take advantage of
application operating modes.



158 Chapter 6. Analysis of Adaptive Schedulers

6.3 Motivational Examples
To illustrate the different problems that may occur during reconfigura-
tions, we have chosen three examples of systems with TDMA servers
[WT06b], static polling servers [SLR86], and CBSs [AB04]. Similar
examples can be derived with other kinds of servers and show that a
naive online change of parameters is not able to guarantee the system
schedulability in hard real-time scenarios.

Example 6.1: Consider the timing diagram shown in Fig. 6.1. Three TDMA
servers, SA, SB, and SC can operate in two modes, denoted as Old Mode and New
Mode, respectively. We suppose that given an operating mode, all TDMA servers
operate with the same period which equals the cycle of the TDMA. When there
is a mode change, the allocated slots in the TDMA and the cycle of the TDMA
may change. When a server slot becomes available, it is available regardless of
whether there is workload to use it.

Server SA serves a single task τA with worst-case execution time (WCET) of
2 ms and period of 20 ms which we will denote as (2, 20). In Old Mode, server
SA has a reserved slot of 1 ms in a TDMA cycle of 10 ms denoted as (1, 10). In
New Mode, server SA has parameters (3, 12). Server SB serves a single task τB

with parameters (2, 5). The server in Old Mode has parameters (5, 10) and in
New Mode (6, 12). Server SC serves a single task τC with parameters (1, 16).
The server in Old Mode has parameters (1, 10) and in New Mode (1, 12).

Figure 6.1 shows a server reconfiguration performed at time t = 20 ms. For
task τB this means that it suffers longer worst-case response time (WCRT) of
9 ms during the reconfiguration whereas its WCRT is 7 ms in the Old Mode
and 8 ms in the New Mode. Similarly task τC has a longer WCRT during the

t [ms]

Old Mode New Mode

1 5 1

 Cycle = 10 ms

3 6 1

Cycle = 12 ms

τA

Old Mode
WCRT = 7 ms

Transition
WCRT = 9 ms
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Transition
WCRT = 13 ms

τB

τC

t [ms]
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SA SB SC

0       2       4       6       8      10    12     14     16    18     20    22     24     26    28     30    32     34    36     38     40    42     44     46    48     50    52     54

Fig. 6.1: TDMA servers reconfigured at t = 20 ms (dashed line) causes longer
WCRTs for tasks τB and τC
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Figure 2. Polling server SA reconfigured at t = 28ms (dashed line) causes a deadline miss for task

τB and a capacity miss for server SB .

Figure 2 shows a server reconfiguration without a proper transition algorithm. Server SA and task τA simulta-

neously enter Mode II at time t = 28ms which leads to a capacity miss for server SB and a deadline miss for task

τB at time t = 59ms even though the mode change was performed at the end of the periods for server SA and task

τA.

The example illustrates that reconfiguration of a server may cause other servers to not be able to deliver their

guaranteed budgets.

Example 2.3. Consider Figure 3. CBS SA can operate in two modes. In Old Mode it has a budget of 4ms with

a period of 5ms denoted as (4, 5). It serves a single task τA with WCET of 8ms and deadline equal to period of

10ms denoted as (8, 10). In New Mode, the parameters for SA are (8, 10) and τA is unchanged. CBS SB serves

a single task τB with parameters (2, 10) and (2, 10), respectively. The system is schedulable when server SA is

either in Old Mode or in New Mode as U = USA
+ USB

= 1.

Figure 3 shows a reconfiguration for server SA at the end of a server deadline at time t = 15ms which leads to

a missed deadline for task τA at time t = 20ms.

The example illustrates that reconfiguration of a server may cause the application that it serves to miss dead-

lines.

In summary, the problems observed during online reconfiguration of servers fall in two classes:

1. Isolation violation: a reconfiguration of one server may cause other servers to not be able to deliver their

guaranteed capacities.

2. Deadline violation: a reconfiguration of a server may affect the application that it serves by making it miss

deadlines.

Safe reconfiguration algorithms will have to address both problems in order to be suitable for hard real-time

systems.

3 Framework for Adaptive Servers with Guarantees

In this section, we give an overview of a framework with adaptive resource reservations. There are many

scenarios for the use of such a framework and many different ways to realize it. We focus on the scheduling

5

Fig. 6.2: Polling server SA reconfigured at t = 28 ms (dashed line) causes a deadline
miss for task τB and a capacity miss for server SB

reconfiguration which equals to 13 ms, whereas in the Old and in the New Modes
it is 10 ms and 12 ms, respectively.

Hence, a reconfiguration of TDMA servers may cause several tasks to miss
deadlines.

Example 6.2: Consider the timing diagram shown in Fig. 6.2. The example is
adapted from [TBW92]. Two polling servers, SA and SB, are scheduled with
the fixed priority policy. Server SA has higher priority. It can operate in two
modes. In Old Mode it has a budget of 2 ms and a period of 7 ms, denoted as
(2, 7). It serves a single task τA with WCET of 2 ms and deadline equal to period
of 7 ms, denoted as (2, 7). In New Mode SA and τA have parameters (6, 24) and
(6, 24), respectively. Server SB and its task τB operate in a single mode and their
parameters are (40, 59) and (40, 59), respectively. The system is schedulable
separately in both modes.

Figure 6.2 shows a server reconfiguration without a proper transition
algorithm. Server SA and task τA simultaneously enter the New Mode at time
t = 28 ms which leads to a capacity miss for server SB and a deadline miss for
task τB at time t = 59 ms even though the mode change was performed at the end
of the periods for server SA and task τA.

The example illustrates that reconfiguration of one server may cause other
servers to not be able to deliver their guaranteed budgets.

Example 6.3: Consider the timing diagram shown in Fig. 6.3. CBS SA can
operate in two modes. In Old Mode it has a budget of 4 ms with a period of 5 ms
denoted as (4, 5). It serves a single task τA with WCET of 8 ms and deadline
equal to period of 10 ms denoted as (8, 10). In New Mode, the parameters for SA
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Figure 3. CBS SA reconfigured at t = 15ms (dashed line) causes a missed deadline for task τA.

servers and their properties. In our framework, applications share a common processor using servers and we

refer to them as Adaptive Servers with Guarantees (ASG) as they guarantee resource reservations and can be

reconfigured dynamically while still providing a guarantee even during the reconfiguration.

We consider a uniprocessor system that runs a set of applications. Each application is scheduled on an individual

ASG. The servers provide resource reservations and guarantee isolation between applications. Applications can be

of arbitrary complexity and they may even have their own schedulers, as in hierarchically scheduled systems [36].

An ASG is only concerned with guaranteeing a minimum service supply to its application. The system has a

single Server Manager that can control the parameters of all servers (such as their budgets and period) and is able

to communicate with the applications in order to accommodate their changing resource requirements.

The overall system framework is illustrated in Figure 4.

3.1 The Adaptive Server with Guarantees

Servers are scheduled statically by a TDMA scheme. For each server a slot of fixed size Q called budget is

reserved in the TDMA time-wheel. A server is activated, i.e., its budget becomes available, when the slot of the

server arrives in the TDMA time-wheel. All servers in the system are activated periodically with the same period

P which equals to the cycle of the TDMA. Servers can have different budgets but always a common period. An

ASG is denoted with the tuple (Q, P ). A schedule of four ASGs is illustrated in Figure 5.

Budgets are always given to applications regardless of whether they use them or not, like in a traditional TDMA

ASG 1 ASG 2 ASG N

APPL. 1 APPL. 2 APPL. N

EDF FPFIFO

CPU

Server Manager

. . .

Figure 4. Overview of a system where the CPU is shared by applications through multiple ASGs.
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Fig. 6.3: CBS SA reconfigured at t = 15 ms (dashed line) causes a missed deadline
for task τA

are (8, 10) and τA is unchanged. CBS SB serves a single task τB with parameters
(2, 10) and (2, 10), respectively. The system is schedulable when server SA is
either in Old Mode or in New Mode as U = USA + USB = 1.

Figure 6.3 shows a reconfiguration for server SA at the end of a server deadline
at time t = 15 ms which leads to a missed deadline for task τA at time t = 20 ms.

The example illustrates that reconfiguration of a server may cause the
application that it serves to miss deadlines.

In summary, the problems observed during online reconfiguration of
servers fall in two classes:

1. Isolation violation: a reconfiguration of one server may cause other
servers to not be able to deliver their guaranteed capacities.

2. Deadline violation: a reconfiguration of a server may affect the
application that it serves by making it miss deadlines.

Safe reconfiguration algorithms will have to address both problems in
order to be suitable for hard real-time systems.

6.4 System Framework
In this section, we give an overview of a framework with adaptive
resource reservations. There are many scenarios for the use of such
a framework and many different ways to realize it. We focus on the
scheduling servers and their properties. In our framework, applications



6.4. System Framework 161

ASG 1 ASG 2 ASG N

APPL. 1 APPL. 2 APPL. N
EDF FPFIFO

CPU

Server Manager
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Fig. 6.4: Overview of a system where the CPU is shared by applications through
multiple ASGs

share a common processor using servers and we refer to them as Adaptive
Servers with Guarantees (ASG) as they guarantee resource reservations
and can be reconfigured dynamically while still providing a guarantee
even during the reconfiguration.

We consider a uniprocessor system that runs a set of applications.
Each application is scheduled on an individual ASG. The servers provide
resource reservations and guarantee isolation between applications.
Applications can be of arbitrary complexity and they may even have
their own schedulers, as in hierarchically scheduled systems [WT06a]. An
ASG is only concerned with guaranteeing a minimum service supply to
its application. The system has a single Server Manager that can control
the parameters of all servers (such as their budgets and period) and is
able to communicate with the applications in order to accommodate their
changing resource requirements.

The overall system framework is illustrated in Fig. 6.4.

6.4.1 The Adaptive Server with Guarantees
Servers are scheduled statically by a TDMA scheme. For each server a
slot of fixed size Q called budget is reserved in the TDMA time-wheel.
A server is activated, i.e. its budget becomes available, when the slot of
the server arrives in the TDMA time-wheel. All servers in the system are
activated periodically with the same period P which equals to the cycle
of the TDMA. Servers can have different budgets but always a common
period. An ASG is denoted with the tuple (Q,P). A schedule of four
ASGs is illustrated in Fig. 6.5.

Budgets are always given to applications regardless of whether they
use them or not, like in a traditional TDMA schedule. In the following
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ASG 1 ASG 2 ASG 3 ASG 4 unused ASG 1 ASG 2 ASG 3 ASG 4 unused ASG 1

t

period P
budget for server ASG 1

Q1

free budget
QF

Fig. 6.5: Schedule for four ASGs

discussion, we assume that context switch overheads take negligible time
but they can be trivially added to our analysis. The description of an ASG
can be summarized in the following definition.

Definition 6.4: (Adaptive Server with Guarantees) An ASG (Q,P) guaran-
tees to an application access to a shared resource for Q > 0 time units every P > 0
time units, where Q ≤ P.

The total utilization for a system with N ASGs is defined as:

U =

∑N
i=1 Qi

P
,

which is the sum of the single server utilizations Qi/P. Such a system is
schedulable when the total utilization is smaller or equal to 1:

U ≤ 1 . (6.1)

When the total utilization is less than 1, there is some unused budget
in the system, QF, called the free budget. We suppose that all ASGs are
scheduled from the beginning of every period one after the other, and the
free budget is always at the end, as illustrated in Fig. 6.5. The free budget
may be given to non real-time applications on the basis that it can always
be reclaimed by the system. The free budget is essential in our framework
during reconfigurations as it will be shown in Section 6.5.

6.4.2 Resource Supply of an ASG
An ASG (Q,P) may not have access to the CPU for a time interval ∆
that is upper bounded by P − Q. After this interval, the server will have
guaranteed access to the resource for Q time units. Therefore, an ASG
cannot guarantee resource access for any interval of size 0 ≤ ∆ ≤ P − Q.
However, it guarantees service of S(∆− (P−Q)), in any interval (P−Q) ≤
∆ ≤ P, where S is the CPU speed, e.g. cycles per time unit. Without
loss of generality, we assume that S = 1, as all parameters in the system
can be normalized according to this speed. Then the minimum resource



6.4. System Framework 163

ASG(Q,P)

t

period 
P

budget
Q

QP - Q
βQ,P

Δ

# 
p

ro
ce

ss
o

r c
yc

le
s

ASG(Q,P) ASG(Q,P)

Fig. 6.6: Resource supply of an ASG (Q,P)

supply of an ASG (Q,P) in any time interval ∆ can be lower bounded by
the following function:

βQ,P(∆) = max
(⌊

∆

P

⌋
Q,∆ −

⌈
∆

P

⌉
(P −Q)

)
,

or more compactly as:

βQ,P(∆) = sup
0≤λ≤∆

{
λ −

⌈
λ
P

⌉
(P −Q)

}
. (6.2)

The minimum resource supply for an ASG (Q,P) is illustrated in
Fig. 6.6.

The minimum resource supply function (6.2) is actually a lower service
curve as known from Network and Real-Time Calculus [Cru91a, LBT01,
TCN00]. Service curves are abstract representations for the availability
of processing and communication resources. A service curve β(∆) gives a
lower bound on the available service in any time interval of length ∆ > 0
where for ∆ ≤ 0 we have β(∆) = 0. The service is usually expressed in a
suitable workload unit such as number of cycles for computing resources
or bits for communication resources.

6.4.3 Performance Analysis
Application tasks are activated by the arrivals of events. The timing
characteristics of event arrivals are described abstractly with arrival curves
as known from Network and Real-Time Calculus. The arrival curve
α(∆) denotes an upper bound on the number of events that arrive in
any time interval of length ∆ > 0 where for ∆ ≤ 0, α(∆) = 0. Arrival
curves substantially generalize traditional event stream models such as
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periodic, periodic with jitter, and sporadic. Often the domain of arrival
curves are workload units. Event-based arrival curves can be converted
to workload-based arrival curves by scaling with the best-case/worst-case
execution demands of events. The units of the arrival and service curves
used in an analysis need to be the same. In this chapter, we will use the
workload-based interpretation and assume that each event has a fixed
execution demand. More general concepts for characterization of these
units are discussed in [MKT04] as well as in Chapter 3 Section 3.8.1.

Now given the minimum resource supply of an ASG and a
characterization of the activation stream of a task, we can compute the
worst-case response time (WCRT) for the task. To this end, we use
results from Network and Real-Time Calculus where for a resource supply
characterized with a service curve β and an input stream characterized
with an arrival curve α, the WCRT of an event from the stream is the
maximum horizontal distance between the arrival and the service curves
computed as follows:

sup
λ≥0

{
inf{τ ≥ 0 : α(λ) ≤ β(λ + τ)}

} def
= Del(α, β) . (6.3)

Example 6.5: To illustrate this let us consider Example 6.1 from Section 6.3.
Consider server SB in Old Mode which is an ASG with budget Q = 5 ms
and a period P = 10 ms. The respective service curve can be computed with
equation (6.2). It serves a single periodic task τB with a period of 5 ms and
WCET of 2 ms. The WCRT of the task computed with equation (6.3) is shown
in Fig. 6.7. The computed WCRT is equal to the one observed on the trace in
Fig. 6.1.
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Fig. 6.7: Server SB and task τB WCRT analysis
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6.4.4 Schedulability of Applications
An application is schedulable if its real-time requirements are satisfied
by the system. If we consider the case of a single task, we may have the
requirement that all activations are processed within a relative deadline
D. Given (6.3), this is expressed as Del(α, β) ≤ D. Inverting it w.r.t. β, we
can compute a lower bound on the minimum resource demand required
to meet the deadline requirement. This is expressed as follows:

β(∆) ≥ α(∆ −D) ∀∆ ∈ R≥0 . (6.4)

In other words, the minimum resource demand has a lower service
curve that equals to β(∆) = α(∆ −D).

By using previous results on demand bound functions by Baruah et
al. [BCGM99] and interface-based design as described in Chapter 3, such
a task is schedulable if a resource can supply service that is larger or equal
to the demanded one. For an ASG (Q,P), schedulability would mean that:

βQ,P(∆) ≥ β(∆) ∀∆ ∈ R≥0 , (6.5)

where βQ,P is computed with (6.2).

Example 6.6: In the case of task τB from Example 6.1, it is schedulable with a
relative deadline D = 7 ms by server SB with Old Mode parameters (5, 10). This
can be seen in Fig. 6.8 where the service curve of server SB is above the shifted
arrival curve of task τB which expresses the resource demand of the task.

The same schedulability condition applies not only for single tasks,
but even for complex applications as we can compute the minimum
resource demand of an application as a single service curve β, for details
see Chapters 2 and 3.
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Fig. 6.8: Server SB and task τB schedulability condition (6.5)
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6.4.5 Schedulability during a Reconfiguration
A reconfiguration may change the server parameters such as their
budgets and period from one mode to another. We consider a single
reconfiguration. For a system with N ASGs before a reconfiguration they
operate with parameters (QO

i ,P
O), 1 ≤ i ≤ N, (for Old Mode), and after

the reconfiguration with parameters (QN
i ,P

N), 1 ≤ i ≤ N, (for New Mode).
We assume that the system is schedulable in Old Mode and New Mode
separately, i.e. condition (6.5) is satisfied by assumption for all servers in
Old Mode:

βQO
i ,P

O(∆) ≥ βi(∆) ∀∆ ∈ R≥0
∀i ,

and for all servers in New Mode:

βQN
i ,P

N (∆) ≥ βi(∆) ∀∆ ∈ R≥0
∀i .

During a reconfiguration or the changing from one set of server
parameters to another, the system should not suffer a degraded
performance. Let us consider the two problems described in Section 6.3.
To prevent isolation violations, each server should be able to guarantee
a service curve during a reconfiguration. To prevent deadline violations,
each server should be able to guarantee a service curve that is sufficiently
large during a reconfiguration.

Let us denote as β̃i(∆) the service provided by an ASG during time
intervals ∆ that span Old Mode, the Reconfiguration, and New Mode.
In order to prevent a degraded performance during a reconfiguration we
need to have for all servers that:

β̃i(∆) ≥ min{βQO
i ,P

O(∆), βQN
i ,P

N (∆)} ∀∆ ∈ R≥0
∀i . (6.6)

The above condition ensures that each server guarantees during a
reconfiguration at least the minimum of the services guaranteed in Old
and New Modes. This implies that each application served by an ASG
during a reconfiguration is guaranteed that it will not violate the larger
of the deadlines from Old and New Modes.

Example 6.7: To illustrate this, consider server SB from Example 6.1. During the
transition from Old Mode to New Mode, if the server were able to meet condition
(6.6), then the WCRT of task τB would have been at most the maximum of the
WCRTs from the two modes which is 8 ms, and it would not have experienced
the WCRT of 9 ms. This is illustrated in Fig. 6.9.
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Fig. 6.9: Condition (6.6) can guarantee a WCRT of 8 ms for task τB during the
reconfiguration in Example 6.1

6.5 Algorithms and Analysis
In this section, we classify the scenarios for feasible resource reconfigura-
tions and provide schedulability analysis for each of them to show that
they meet condition (6.6). The proposed algorithms are implemented in
the Server Manager and executed by it. Initiation of a reconfiguration
can be done by an application in order to request a different resource
reservation, or by the Server Manager in order to achieve better resource
allocation (decreased system utilization). The proposed algorithms work
regardless of what the reason for reconfiguration is.

We differentiate between reconfigurations that do not change the
period of the servers, i.e. PO = PN, and those that do, i.e. PO , PN.
The possible reconfiguration scenarios are summarized in Tab. 6.1.

Reconfigurations that do not require change of period have simple
feasibility conditions, and they do not require any pre-computed
information except budgets and period as the decision for performing
them can be made online. For the case of changing periods, the conditions

Tab. 6.1: Reconfiguration Scenarios

Remove a server
Decrease of a budget

PO = PN Add a server
Increase of a budget

Increase of period PO < PN

PO , PN Decrease of period PO > PN
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are much more involved as we will see, and some parameters need to be
pre-computed and stored in the Server Manager to be used online.

6.5.1 Notation
The time of the k-th activation of server (Qi,P) is denoted as si,k. The time
when the free budget starts is sF,k. An activation frame k contains the k-th
activations of all servers and the free budget. The time when activation
frame k starts is the activation time of the first scheduled server (Q1,P)
denoted as s1,k and it ends when the same server is scheduled again s1,k+1.
When we would like to differentiate between any of the parameters and
indicate that they belong to the Old Mode or the New Mode, we will
add the superscripts O or N, respectively. In the Old Mode, all activation
frames have the same length which equals to the period, PO = sO

1,k+1 − sO
1,k

for frames k in the Old Mode, unless otherwise stated. Similarly for the
New Mode.

Algorithms that change the period of servers will require an
intermediate phase called Reconfiguration where budgets and period will
be different from the ones in Old and New Modes. Parameters belonging
to the Reconfiguration will carry the superscript R when necessary. The
notation is illustrated in Fig. 6.10.

For the proofs of some theorems we will need the definition of the
min-plus convolution operator ⊗ and some of its properties which can
be found in Appendix A. We will also need the facts that the Old Mode
service curve of an ASG can be expressed as:

βQO,PO(∆) = (βQO,PO ⊗ βQO,PO)(∆ + PO
−QO) , (6.7)

and the New Mode service curve as:

βQN ,PN (∆) = (βQN ,PN ⊗ βQN ,PN )(∆ + PN
−QN) , (6.8)

which can be easily proven.
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Fig. 6.10: Notation. Three activation frames where activation frame k belongs to
the Old Mode, frame k+1 to the Reconfiguration, and frame k+2 to the New Mode
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6.5.2 No Change of Period
Here for brevity we do not differentiate between PO and PN but refer to
the period as P. In these scenarios the last activation frame of the Old
Mode which we denote as k is followed immediately by the first activation
frame of the New Mode denoted as k + 1.

6.5.2.1 Removing an Existing ASG
Removing a server from the schedule means that in the Old Mode, it has
budget QO > 0, and in the New Mode, its budget is QN = 0. The budgets
of all other servers are unchanged. This is an operation that can always
be performed since it decreases the utilization of the system by QO/P, and
increases the free budget, QN

F = QO
F + QO.

Algorithm 6.1 describes removing server (QO
i ,P) from a schedule with

N servers. When the server is removed, activations of all preceding
servers are unchanged while activations of succeeding servers are shifted
earlier by the removed budget. This is illustrated in Fig. 6.11.

Theorem 6.8: (Service Guarantee during Removing an ASG) Removing
server (QO

i ,P) from a schedule of N servers using Algorithm 6.1 satisfies
condition (6.6) for all other servers in the system as each of them gets at least a
guaranteed service during the reconfiguration of β̃ j ≥ βQ j,P, 1 ≤ j ≤ N, j , i.

Proof. For all servers except the removed one we have that βQO
j ,P

= βQN
j ,P

which we denote as βQ j,P.

Algorithm 6.1 Removing an ASG

Input: sO
j,k, 1 ≤ j ≤ N . Schedule in the last frame (k) of Old Mode

Input: P . Current period
Input: (QO

i ,P) . Server to be removed
Output: sN

j,k+1, 1 ≤ j ≤ N, j , i . Schedule in the first frame (k + 1) of
New Mode

1: for j← 1 to N do
2: if j < i then

3: sN
j,k+1 ← sO

j,k + P
4: else if j > i then

5: sN
j,k+1 ← sO

j,k + P −QO
i

6: end if
7: end for
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Fig. 6.11: Removing server (QO
2 ,P) from a schedule of four ASGs. The activation

times of servers (QN
3 ,P) and (QN

4 ,P) have been shifted to the left by QO
2 in New

Mode, and QO
2 has been used to increase the free budget. The dashed boxes show

where servers (QO
3 ,P) and (QO

4 ,P) would have been scheduled if there were no
reconfiguration

The algorithm does not change the schedule of servers (Q1,P), . . . ,
(Qi−1,P). Then we have β̃ j = βQ j,P for 1 ≤ j ≤ i − 1 and condition (6.6)
follows from this.

We need to show that condition (6.6) holds for the servers with shifted
activation times, i.e. (Qi+1,P), . . . , (QN,P). We will do this for server
(Qi+1,P) but the proof is the same for all of them.

Let us consider a time interval [l, h) where h > l and ∆ = h − l. There
are three cases for the position of this interval with respect to time t =
sO

i+1,k + Qi+1 which is the end of the last activation of server (Qi+1,P) in Old
Mode. Cases are illustrated in Fig. 6.12.

Case 1: h ≤ t. Up to time t, server (Qi+1,P) is scheduled without
changes with Old Mode parameters. Then we have β̃i+1 ≥ βQi+1,P.

Case 2: t ≤ l. After time t, server (Qi+1,P) is scheduled with New Mode
parameters which are the same as for the Old Mode. By construction

Qi-1

t

QO
i Qi+1 Qi-1 Qi+1

P - Qi+1 - QOi

Case 1 Case 2

Case 3

P - Qi-1

Fig. 6.12: Cases in the proof of Theorem 6.8
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because of the shift of the starting time, the first activation of the server
after time t comes at most after P −QO

i −Qi+1 time units which is smaller
than the maximum distance between the end of an activation and the start
of the next activation in New Mode, P − Qi+1. Afterwards, in the New
Mode, the start of each activation is separated by P time units. Therefore
we have that β̃i+1 ≥ βQi+1,P.

Case 3: l < t < h. Denote the service supplied by the server in interval
[l, t) as C[l, t). We know that the end of the last activation of the server was
at time t which means that in Old Mode, the next activation of the server
will not happen until time t + P − Qi+1. Then it follows that the service
provided in interval [l, t) can be lower bounded with the service curve for
interval [l, t+P−Qi+1). Therefore, we have that C[l, t) ≥ βQi+1,P(t+P−Qi+1−l).

For interval [t, h), let the service supplied by the server be C[t, h). With
the reconfiguration algorithm we have shifted earlier the activation times
of server (Qi+1,P) by the budget of the removed server QO

i , then the service
supplied in interval [t, h) can be lower bounded with the service curve for
interval [t −QO

i , h). Then we have C[t, h) ≥ βQi+1,P(h − t + QO
i ).

Now, we can compute the service for interval ∆ = (h − l) and get a
lower bound for β̃i+1(∆) as follows:

C[l, h) = C[l, t) + C[t, h)

≥ βQi+1,P(t + P −Qi+1 − l) + βQi+1,P(h − t + QO
i )

Substitute: λ = h − t + QO
i , where 0 ≤ λ ≤ (h − l)

= βQi+1,P(h − λ + QO
i + P −Qi+1 − l) + βQi+1,P(λ)

= βQi+1,P(∆ − λ + P −Qi+1 + QO
i ) + βQi+1,P(λ)

≥ inf
0≤λ≤∆

{βQi+1,P(∆ − λ + P −Qi+1 + QO
i ) + βQi+1,P(λ)}

= (βQi+1,P ⊗ βQi+1,P)(∆ + P −Qi+1 + QO
i ) , (6.9)

where we use the definition of ⊗ from Appendix A.
Combining cases 1, 2, and 3, we get the following lower bound for

β̃i+1(∆):

β̃i+1(∆) ≥ min{βQi+1,P(∆), (βQi+1,P ⊗ βQi+1,P)(∆ + P −Qi+1 + QO
i )} .

Since, the service curve βQi+1,P is a wide-sense increasing function (see
Appendix A), and we have that (6.9) is greater or equal to (6.7), then
condition (6.6) follows.

6.5.2.2 Decreasing the Budget of an Existing ASG
Decreasing the budget of a server means that in Old Mode, the server
has budget QO > 0, and in New Mode, its budget is 0 < QN < QO. The



172 Chapter 6. Analysis of Adaptive Schedulers

Q1
t

QO
2 Q3 Q4 QO

F Q1 Q3 Q4 QN
F Q1

Q3 Q4

QO
2 - QN

2Old Mode New Mode

QN
2

Fig. 6.13: Decreasing the budget from QO
2 to QN

2 in a schedule of four ASGs. The
activation times of servers (Q3,P) and (Q4,P) have been shifted earlier in New
Mode by (QO

2 −QN
2 ), and (QO

2 −QN
2 ) has been used to increase the free budget. The

dashed boxes show where servers (Q3,P) and (Q4,P) would have been scheduled
if there were no reconfiguration

budgets of all other servers are unchanged. This is an operation that can
always be performed since it decreases the utilization of the system by
(QO
−QN)/P, and increases the free budget, QN

F = QO
F + (QO

−QN).
Algorithm 6.2 describes decreasing the budget of server (Qi,P) from

QO
i in Old Mode to QN

i in New Mode in a schedule of N servers. In the first
frame when the budget is decreased, activations of all preceding servers
are unchanged while activations of succeeding servers are shifted earlier
by the amount of decrease of budget. This is illustrated in Fig. 6.13.

Theorem 6.9: (Service Guarantee during Decreasing the Budget of an ASG)
Decreasing the budget of a server from (QO

i ,P) to (QN
i ,P) in a schedule of N

servers using Algorithm 6.2 satisfies condition (6.6) for all servers in the system.

Algorithm 6.2 Decreasing the budget of an ASG

Input: sO
j,k, 1 ≤ j ≤ N . Schedule in the last frame (k) of Old Mode

Input: P . Current period
Input: (QO

i ,P) . Server to be modified with Old Mode parameters
Input: (QN

i ,P) . Server to be modified with New Mode parameters
Output: sN

j,k+1, 1 ≤ j ≤ N . Schedule in the first frame (k + 1) of New
Mode

1: for j← 1 to N do
2: if j ≤ i then

3: sN
j,k+1 ← sO

j,k + P
4: else if j > i then

5: sN
j,k+1 ← sO

j,k + P − (QO
i −QN

i )
6: end if
7: end for
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Unchanged servers get at least a guaranteed service during the reconfiguration
of β̃ j ≥ βQ j,P, 1 ≤ j ≤ N, j , i. For the decreased server, this is β̃i ≥ βQN

i ,P
.

Proof. Similarly to removing a server, the schedule of servers (Q1,P), . . . ,
(Qi−1,P) does not change. Then we have that β̃ j = βQ j,P for 1 ≤ j ≤ i − 1
and condition (6.6) follows from this.

We need to show that condition (6.6) holds for the servers with shifted
activation times (Qi+1,P), . . . , (QN,P). For each of them we have that:

β̃ j(∆) ≥ min{βQ j,P(∆), (βQ j,P ⊗ βQ j,P)(∆ + P −Q j + QO
i −QN

i )} j ∈ [i + 1,N] .

Following the same argument as for the removal of a server we can show
that condition (6.6) is satisfied. The complete proof is omitted here.

We also need to show that condition (6.6) holds for the server with
decreased budget (Qi,P). Let us consider a time interval [l, h) where h > l
and ∆ = h − l. There are three cases for the position of this interval with
respect to time t = sO

i,k + QO
i which is the end of the last activation of server

(QO
i ,P) in the Old Mode. Cases are illustrated in Fig. 6.14.
Case 1: h ≤ t. Up to time t server (QO

i ,P) is scheduled without changes
with Old Mode parameters. Then we have β̃i ≥ βQO

i ,P
.

Case 2: t ≤ l. After time t server (QN
i ,P) is scheduled with New Mode

parameters. By construction, the first activation of the server after time t
comes after P−QO

i time units which is smaller than the maximum distance
between the end of an activation and the start of the next activation in
New Mode, P − QN

i . Afterwards, the distance between the starts of all

Qi-1 QO
i Qi+1 Qi-1 Qi+1QN

i

P - (QOi - QNi) - Qi+1

P - QOi

Case 1 Case 2

Case 3

t

P - Qi-1

Fig. 6.14: Cases in the proof of Theorem 6.9
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subsequent activations of the server is equal to P. This means that we
have β̃i ≥ βQN

i ,P
.

Case 3: l < t < h. Server (Qi,P) is scheduled with budget QO
i before

time t and with budget QN
i after time t.

Denote the service supplied by the server in interval [l, t) as C[l, t). We
know that the end of the last activation of the server was at time t which
means that in Old Mode, the next activation of the server will not happen
until time t + P −QO

i . From which it follows that the service provided in
interval [l, t) is lower bounded by the Old Mode service curve for interval
[l, t + P −QO

i ). Therefore, we have that C[l, t) ≥ βQO
i ,P

(t + P −QO
i − l).

Now consider interval [t, h) where the service supplied is C[t, h). After
time t the next activation comes after P −QO

i time units which is smaller
than the one for New Mode, P − QN

i . We have a difference of (QO
i − QN

i ).
Therefore we can bound the actual service in interval [t, h) using the
New Mode service curve for interval (h − t + (QO

i − QN
i )) as C[t, h) ≥

βQN
i ,P

(h − t + (QO
i −QN

i )).
Now, we can compute the service for interval ∆ = (h − l) and get a

lower bound for β̃i(∆) as follows:

C[l, h) = C[l, t) + C[t, h)

≥ βQO
i ,P

(t + P −QO
i − l) + βQN

i ,P
(h − t + (QO

i −QN
i ))

Substitute: λ = h − t + (QO
i −QN

i ), where 0 ≤ λ ≤ (h − l)

= βQO
i ,P

(h − λ + QO
i −QN

i + P −QO
i − l) + βQN

i ,P
(λ)

= βQO
i ,P

(∆ − λ −QN
i + P) + βQN

i ,P
(λ)

≥ inf
0≤λ≤∆

{βQO
i ,P

(∆ − λ + P −QN
i ) + βQN

i ,P
(λ)}

= (βQO
i ,P
⊗ βQN

i ,P
)(∆ + P −QN

i ) . (6.10)

Combining cases 1, 2, and 3, we get the following lower bound for
β̃i(∆):

β̃i(∆) ≥ min{βQO
i ,P

(∆), βQN
i ,P

(∆), (βQO
i ,P
⊗ βQN

i ,P
)(∆ + P −QN

i )}

Since we have that βQO
i ,P

(∆) ≥ βQN
i ,P

(∆) for ∀∆ ∈ R≥0 and from
the isotonicity property of the min-plus convolution operator ⊗ (see
Appendix A), it follows that (6.10) is greater or equal to (6.8), then
condition (6.6) follows.
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Algorithm 6.3 Adding an ASG

Input: sO
j,k, 1 ≤ j ≤ N . Schedule in the last frame (k) of Old Mode

Input: sO
F,k . Start of free budget in frame (k) in Old Mode

Input: P . Current period
Input: QO

F . Free budget in Old Mode
Input: (QN

N+1,P) . Server to be added in New Mode
Require: QN

N+1 ≤ QO
F

Output: sN
j,k+1, 1 ≤ j ≤ N + 1 . Schedule in the first frame (k + 1) of New

Mode

1: for j← 1 to N do
2: sN

j,k+1 ← sO
j,k + P

3: end for
4: sN

N+1,k+1 ← sO
F,k + P

6.5.2.3 Adding a New ASG
Adding a server to the schedule means that in Old Mode, it has budget
QO = 0, while in New Mode, its budget is QN > 0. Budgets of all other
servers are unchanged. From condition (6.1), this is an operation that is
feasible if there is sufficient free budget in the system:

QN
≤ QO

F .

The reconfiguration decreases the free budget in the system, QN
F =

QO
F −QN, and increases the utilization by QN/P.

Algorithm 6.3 describes adding server (QN
N+1,P) to a schedule of N

servers. In the first frame where the server is added, it is scheduled at the
beginning of the free budget slot. This is illustrated in Fig. 6.15.

Theorem 6.10: (Service Guarantee during Adding an ASG) Adding server
(QN

N+1,P) to a schedule of N servers using Algorithm 6.3 satisfies condition

Q1
t

Q2 Q3 Q4 QO
F Q1 Q3 Q4 QN

F Q1

Old Mode New Mode

Q2 QN
5

QO
F

Fig. 6.15: Addition of server (Q5,P) to a schedule of four ASGs. Activation times
of existing servers do not change as the added server is scheduled after all other
servers in New Mode. Free budget has been decreased by the budget of the added
server, QN

F = QO
F − QN

5 . The dashed box shows where the free budget QO
F would

have been if there were no reconfiguration
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(6.6) for all other servers in the system as each of them gets at least a guaranteed
service during the reconfiguration of β̃ j = βQ j,P, 1 ≤ j ≤ N.

Proof. In this scenario, proving condition (6.6) is trivial, as addition of
server (QN

N+1,P) does not affect the schedule of any other server in the
system, i.e. β̃ j = βQ j,P for 1 ≤ j ≤ N.

6.5.2.4 Increasing the Budget of an Existing ASG
Increasing the budget of a server means that in Old Mode it has budget
QO > 0, and in New Mode it has budget QN > QO. Budgets of all other
servers are unchanged. From condition (6.1), this is an operation that is
feasible if there is sufficient free budget in the system:

QN
−QO

≤ QO
F . (6.11)

The reconfiguration decreases the free budget in the system, QN
F =

QO
F −(QN

−QO), and increases the utilization of the system by (QN
−QO)/P.

Algorithm 6.4 shows increasing the budget of a server from (QO
i ,P) to

(QN
i ,P) in a schedule of N servers. In the first frame where the budget

is increased, all preceding servers are activated earlier in the free budget
of the previous frame by the amount of the increase of budget, and all
succeeding servers are activated without change. This is illustrated in
Fig. 6.16.

Theorem 6.11: (Service Guarantee during Increasing the Budget of an ASG)
Increasing the budget of a server from (QO

i , P) to (QN
i ,P) in a schedule of N

servers using Algorithm 6.4 satisfies condition (6.6) for all servers in the system.

QO
FQ3

Q1
t

QO
2 Q3 QO

F Q1 Q3

Old Mode New Mode

QO
2

Q1

Q1 QN
2 Q3QN

F QN
F

QO
2

Q1

P - QN
2 + QO

2

Fig. 6.16: Increasing the budget of server (QO
2 ,P) to QN

2 in a schedule of three
ASGs. Last frame of Old Mode has a decreased length, P−QN

2 +QO
2 . This causes the

subsequent activation times of server (Q1,P) to be shifted earlier. Activation times
of server (Q3,P) do not change as the shorter activation frame cancels with the
increased budget for all New Mode activations. Free budget has been decreased
by the increase of server budget, QN

F = QO
F − QN

2 + QO
2 . The dashed boxes show

where the activations of servers (Q1,P), (Q2,P), (Q3,P) and the free budget QF

would have been if there were no reconfiguration
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Algorithm 6.4 Increasing the budget of an ASG

Input: sO
j,k, 1 ≤ j ≤ N . Schedule in the last frame (k) of Old Mode

Input: P . Current period
Input: QO

F . Free budget in Old Mode
Input: (QO

i ,P) . Server to be modified with Old Mode parameters
Input: (QN

i ,P) . Server to be modified with New Mode parameters
Require: QN

i −QO
i ≤ QO

F
Output: sN

j,k+1, 1 ≤ j ≤ N . Schedule in the first frame (k + 1) of New
Mode

1: for j← 1 to N do
2: if j ≤ i then

3: sN
j,k+1 ← sO

j,k + P − (QN
i −QO

i )
4: else if j > i then

5: sN
j,k+1 ← sO

j,k + P
6: end if
7: end for

Unchanged servers get at least a guaranteed service during the reconfiguration
of β̃ j ≥ βQ j,P, 1 ≤ j ≤ N, j , i. For the increased server this is β̃i ≥ βQO

i ,P
.

Proof. Showing schedulability for servers (Qi+1,P), . . . , (QN,P) is trivial
as their schedule is not affected by the algorithm, i.e. β̃ j = βQ j,P for
i + 1 ≤ j ≤ N.

The shifting of activation times for servers (Q1,P), . . . , (Qi−1,P) is
exactly the same operation as in the scenario of removing a server,
therefore the proof is similar to the one for Theorem 6.8 and will be
omitted here. The service provided by each of them in the transition is
lower bounded by:

β̃ j(∆) ≥ min{βQ j,P(∆), (βQ j,P ⊗ βQ j,P)(∆ + P −Q j + QN
i −QO

i )} j ∈ [1, i − 1] ,

which meets condition (6.6).
We need to show the schedulability for the server with increased

budget (Qi,P). Let us consider a time interval [l, h) where h > l and
∆ = h − l. There are three cases for the position of this interval with
respect to time t = sO

i,k + QO
i which is the end of the last activation of server

(QO
i ,P) in the Old Mode. Cases are illustrated in Fig. 6.17.
Case 1: h ≤ t. Up to time t server (QO

i ,P) is scheduled without changes
using only Old Mode parameters. This implies that β̃i ≥ βQO

i ,P
.
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Qi-1 Qi+1QO
i Qi-1 QN

i Qi+1

P - Qi-1 - (QN
i - QO
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i - (QN
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t
Case 1 Case 2

Case 3

Fig. 6.17: Cases in the proof of Theorem 6.11

Case 2: t ≤ l. After time t server (QN
i ,P) is scheduled with New

Mode parameters. By construction, the first activation of the server after
time t comes after P−QN

i time units which equals the maximum distance
between the end of an activation and the start of the next activation in
the New Mode, P − QN

i . Afterwards, the distance between the starts of
all subsequent activations of the server is equal to P. This means that
β̃i(∆) ≥ βQN

i ,P
(∆).

Case 3: l < t < h. Server (Qi,P) is scheduled with budget QO
i before

time t and with budget QN
i after time t.

Denote the service supplied by the server in interval [l, t) as C[l, t).
We know that the end of the last activation of the server was at time t
which means that in Old Mode, the next activation of the server will not
happen until time t + P−QO

i . Then the service provided in interval [l, t) is
lower bounded by the Old Mode service curve for interval [l, t + P −QO

i ).
Therefore, we have that C[l, t) ≥ βQO

i ,P
(t + P −QO

i − l).

Now consider interval [t, h) where the service supplied is C[t, h). After
time t, the next activation of the server comes after P − QN

i time units
which equals the maximum distance between the end of an activation
and the start of the next activation in the New Mode. Afterwards, the
distance between the starts of all subsequent activations of the server is
equal to P. Therefore we can bound the actual service in interval [t, h)
using the New Mode service curve as C[t, h) ≥ βQN

i ,P
(h − t).
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Now, we can compute the service for interval ∆ = (h − l) and get a
lower bound for β̃i(∆) as follows:

C[l, h) = C[l, t) + C[t, h)

≥ βQO
i ,P

(t + P −QO
i − l) + βQN

i ,P
(h − t)

Substitute: λ = h − t, where 0 ≤ λ ≤ (h − l)

= βQO
i ,P

(h − λ + P −QO
i − l) + βQN

i ,P
(λ)

= βQO
i ,P

(∆ − λ + P −QO
i ) + βQN

i ,P
(λ)

≥ inf
0≤λ≤∆

{βQO
i ,P

(∆ − λ + P −QO
i ) + βQN

i ,P
(λ)}

= (βQO
i ,P
⊗ βQN

i ,P
)(∆ + P −QO

i ) . (6.12)

Combining cases 1, 2, and 3, we get the following lower bound for
β̃i(∆):

β̃i(∆) ≥ min{βQO
i ,P

(∆), βQN
i ,P

(∆), (βQO
i ,P
⊗ βQN

i ,P
)(∆ + P −QO

i )} .

Since we have that βQN
i ,P

(∆) ≥ βQO
i ,P

(∆) for ∀∆ ∈ R≥0 and because of the
isotonicity of the min-plus convolution operator ⊗ (see Appendix A), we
have that (6.12) is greater or equal to (6.7), then condition (6.6) follows.

6.5.3 Change of Period
We perform analysis given the configurations of the system (such as
budgets and periods) in Old and New Modes. The results of the analysis
are whether a transition is feasible with the given configurations, and in
the case of feasibility with what parameters for the Reconfiguration phase
it can be executed online.

6.5.3.1 Increase of Period
We suppose that there are N servers in the system. In the Old Mode, they
operate with parameters (QO

i ,P
O), 1 ≤ i ≤ N, and in the New Mode with

(QN
i ,P

N), 1 ≤ i ≤ N, where PO < PN. Assume that for every server we
have that QO

i ≤ QN
i . If this is not the case, namely there is a server that

requires a smaller budget in the bigger period, QO
i > QN

i , we can reduce
its budget first by using the algorithms proposed in Section 6.5.2 as we
can be sure that schedulability will be satisfied with the new budget in
the old (smaller) period, and then perform the reconfiguration involving
increase of period.



180 Chapter 6. Analysis of Adaptive Schedulers

The proposed reconfiguration algorithm is subject to the feasibility
condition that the sum of all New Mode server budgets is smaller than
the Old Mode period which is expressed as follows:

N∑
i=1

QN
i ≤ PO . (6.13)

The condition ensures that the increase of budgets does not lead
to service guarantee violations in intervals of time beginning PO time
units before the reconfiguration and ending PO time units after the
reconfiguration. It can be related to the feasibility condition (6.11) from
Section 6.5.2.4,

∑N
i=1(QN

i −QO
i ) ≤ QO

F .
Assume that condition (6.13) is satisfied. Consider the last server

in the schedule, (QO
N,P

O) and suppose that the reconfiguration starts
immediately when it finishes executing. In the first activation frame when
the budgets of all servers are increased, the last server will not receive
any service for at most

∑N−1
i=1 QN

i time units. Just before this waiting time
however, the server was scheduled with budget QO

N. Then the server will
receive a budget of QO

N in a time interval of PO +
∑N−1

i=1 QN
i . From (6.13),

we have that
∑N−1

i=1 QN
i ≤ PO

− QO
N, and this will satisfy the Old Mode

service guarantee βQO
N ,P

O . Similarly, the New Mode service guarantee
βQN

N ,P
N is satisfied as the waiting time before the server is given budget of

QN
N is

∑N−1
i=1 QN

i time units which is upper bounded by PN
−QN

N. We have
shown that condition (6.13) is a sufficient condition which ensures that
condition (6.6) holds for the time interval beginning PO time units before
the reconfiguration and ending PO time units after the reconfiguration.
However, to do this for bigger time intervals we need to develop a more
involved reconfiguration algorithm and analysis.

When condition (6.13) is not satisfied, i.e. staying in the most
pessimistic configuration is not feasible, the reconfiguration algorithm
would need to go through one or more intermediate modes (budgets and
periods) where for each successive pair of them condition (6.13) holds.
We will not discuss this further and assume that the feasibility condition
is met.

The algorithm for performing safely the increase of period can be
summarized in three steps: (1) Increase to New Mode budgets following
Algorithm 6.4. (2) Schedule the ASG servers for K ≥ 1 activation frames
using the New Mode budgets and Old Mode period. (3) Increase to New
Mode period by increasing free budget. The second step of the algorithm
we denote as the Reconfiguration phase which is K activation frames long.
For simplicity of the presentation, we suppose that it has the Old Mode
period but it can actually have a shorter period which would require a
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Algorithm 6.5 Increase of Period

Input: sO
j,k, 1 ≤ j ≤ N . Schedule in the last frame (k) of Old Mode

Input: PO . Old Mode period
Input: PN . New Mode period
Input: (QO

i ,P
O), 1 ≤ i ≤ N . Servers in Old Mode

Input: (QN
i ,P

N), 1 ≤ i ≤ N . Servers in New Mode
Input: K . Number of activation frames during the Reconfiguration
Require:

∑N
i=1 QN

i ≤ PO

Output: sN
j,k+p, 1 ≤ j ≤ N, 1 ≤ p ≤ K . Schedule in all frames during the

Reconfiguration
Output: sN

j,k+K+1, 1 ≤ j ≤ N . Schedule in the first frame (k + K + 1) of
New Mode

(* First frame of Reconfiguration - increase budgets *)
1: sR

1,k+1 ← sO
1,k + PO

−
∑N

i=1(QN
i −QO

i )
2: for j← 2 to N do
3: sR

j,k+1 ← sR
j−1,k+1 + QN

j−1
4: end for

(* All subsequent frames of Reconfiguration *)
5: for p← 2 to K do
6: for j← 1 to N do
7: sR

j,k+p ← sR
j,k+p−1 + PO

8: end for
9: end for

(* First frame of New Mode - increase period *)
10: for j← 1 to N do
11: sN

j,k+K+1 ← sR
j,k+K + PN

12: end for

small modification in the analysis. At the moment we assume that K is
given as input to the algorithm, later we will show how to compute it.
Algorithm 6.5 describes the details for performing the increase of period.
It is illustrated in Fig. 6.18.

The following theorem gives a lower bound for the guaranteed
resource supply of an ASG server during an increase of period
reconfiguration.

Theorem 6.12: (Service Guarantee during Increasing the Period of the
ASGs) Reconfiguring a server from (QO

i ,P
O) to (QN

i ,P
N) in a schedule of N
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Fig. 6.18: Increase of period with K = 2

servers using Algorithm 6.5 provides at least a guaranteed service of1:

β̃i(∆) = min
{
βQO

i ,P
O(∆), βQN

i ,P
N (∆),

(βQO
i ,P

O ⊗ βQN
i ,P

N )(∆ − K · PO + PO
−QO

i ) (6.14)

+ βQN
i ,P

O(K · PO)
}
, (6.15)

which satisfies condition (6.6) when K ≥ 1 is found as:

K = max
1≤i≤N

{
min

{
κ | ∀∆ ∈ R≥0, κ ∈ Z+,

(βQO
i ,P

O ⊗ βQN
i ,P

N )(∆ − κ · PO + PO
−QO

i ) + βQN
i ,P

O(κ · PO)

≥ min{βQO
i ,P

O(∆), βQN
i ,P

N (∆)}
}}
.

The guaranteed service in the above theorem can be explained
informally as follows. It is computed as the minimum of the services from
Old Mode, New Mode, and an expression which describes the service in
time intervals that span Old Mode, Reconfiguration, and New Mode. The
last one consists of two subexpressions. Expression (6.14) lower bounds
the service guaranteed in the time window part that is outside of the
Reconfiguration time window and hence the service curve depends only
on the Old and the New Modes parameters, it is ’shifted to the right’ by
the size of the Reconfiguration time window which is at most K · PO time
units. Expression (6.15) lower bounds the service guaranteed only in the
Reconfiguration time window which uses New Mode budgets with Old
Mode period, and the service is defined for a fixed length interval of size
K · PO.

In expressions (6.14) and (6.15), we can increase the size of the
Reconfiguration phase by increasing the number of activation frames
in it K. In order to meet condition (6.6) for each server, we have to find
the minimum K that will make the guaranteed service β̃i greater or equal
to the minimum of the Old and New Modes services. After doing this

1See Appendix A for the definition of the min-plus convolution operator ⊗.
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Fig. 6.19: Effect of K = {1, 2, 3} for server SB from Example 6.1. Only K = 3 is
feasible

for all servers, we have to take the maximum K which will make the
reconfiguration feasible for all of them.

We can find the minimum K for a server efficiently by starting with an
initial value of K = 1. If this is not feasible, we choose successive values
of K by using a binary search strategy until the smallest one is found that
is feasible. With bigger K we are increasing the service guaranteed in the
Reconfiguration which is service greater than Old Mode and New Mode
services (it has the larger New Mode budget and the smaller Old Mode
period), therefore we are guaranteed to find a finite value for K which
will make condition (6.6) satisfied.

Example 6.13: We can illustrate this argument by considering server SB from
Example 6.1. It will need K = 3 to perform a safe reconfiguration from (5, 10)
to (6, 12). This is illustrated in Fig. 6.19 as well as the violations of condition
(6.6) for K = {1, 2}. The trace illustrating the violation for K = 2 for server SB is
shown in Fig. 6.20.

Proof. Let us analyze the service guaranteed by an ASG server
(Qi,P) during the reconfiguration performed with Algorithm 6.5. The
Reconfiguration phase is K frames long.

t

Old Mode New Mode

Violation: Interval of 60 msec, server SB delivers budget of 29 msec when 
Old Mode guarantees 30 msec and New Mode guarantees 30 msec.

SB Reconfiguration K = 2

1 5 1 3 3 6 11 5 1 3 6 1 3 6 1 3 6 1 32 2 2

Fig. 6.20: Violation of condition (6.6) when increasing period with K = 2 for server
SB from Example 6.1
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Fig. 6.21: Cases for the proof of Theorem 6.12

Consider a time interval [l, h) where h > l and ∆ = h − l. There are six
cases for the position of this interval with respect to time t1 = sO

i,k + QO
i

which is the end of the last activation of the server in the Old Mode, and
time t2 = sR

i,k+K + QN
i which is the end of the last activation of the server in

the Reconfiguration. Cases are illustrated in Fig. 6.21.
Case 1: h ≤ t1. Up to time t1 server (QO

i ,P
O) is scheduled without

changes using only Old Mode parameters. This implies that β̃i ≥ βQO
i ,P

O .

Case 2: t2 ≤ l. After time t2 server (QN
i ,P

N) is scheduled with New
Mode parameters. By construction, the first activation of the server
after time t2 comes at most after PN

− QN
i time units which equals the

maximum distance between the end of an activation and the start of the
next activation in the New Mode. Afterwards, the distance between the
starts of all subsequent activations of the server is equal to PN. This means
that β̃i ≥ βQN

i ,P
N .

Case 3: t1 ≤ l < h ≤ t2. Between times t1 and t2, the server is scheduled
with New Mode budget QN

i during a period PR =
∑N

j=1 QN
j which is upper

bounded by PO from feasibility condition (6.13). Therefore the service
guaranteed by the ASG server is β̃i ≥ βQN

i ,P
O which is greater or equal to

βQO
i ,P

O as we have that QN
i ≥ QO

i , and greater or equal to βQN
i ,P

N as we have
that PO < PN (all functions are wide-sense increasing, see Appendix A).

Case 4: l < t1 < h ≤ t2. Consider the service provided in interval
[l, t1) and denote it as C[l, t1). Before time t1 the server is scheduled with
Old Mode budget and period. Since t1 is the end of the last activation,
the server should not be scheduled for PO

− QO
i time units. Therefore

we can bound the service provided in interval [l, t1) with the Old Mode
service curve for interval [l, t1 +PO

−QO
i ). Therefore, we have that C[l, t1) ≥

βQO
i ,P

O(t1 + PO
−QO

i − l).
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Consider the service provided in interval [t1, h) and denote it as C[t1, h).
The server is activated after at most PO

−QN
i time units with New Mode

budget QN
i , and then repeatedly every PO time units. Therefore we have

a lower bound for the service here with the service curve βQN ,PO(h − t1).
Now for the service guaranteed in this case β̃i(h − l) we get a lower

bound as follows:

C[l, h) = C[l, t1) + C[t1, h)

≥ βQO
i ,P

O(t1 + PO
−QO

i − l) + βQN
i ,P

O(h − t1)

Substitute: λ = h − t1, where 0 ≤ λ ≤ (h − l)

= βQO
i ,P

O(h − λ + PO
−QO

i − l) + βQN
i ,P

O(λ)

= βQO
i ,P

O(∆ − λ + PO
−QO

i ) + βQN
i ,P

O(λ)

≥ inf
0≤λ≤∆

{βQO
i ,P

O(∆ − λ + PO
−QO

i ) + βQN
i ,P

O(λ)}

= (βQO
i ,P

O ⊗ βQN
i ,P

O)(∆ + PO
−QO

i )

Case 5: t1 ≤ l < t2 < h. Consider the service provided in interval [l, t2)
and denote it as C[l, t2). The server is activated after at most PO

− QN
i

time units with New Mode budget and then repeatedly every PO time
units. Since t2 is the end of the last activation of the server during the
Reconfiguration, the server should not receive any service for PO

− QN
i

time units. Therefore we have that the service provided in interval [l, t2)
can be lower bounded with a service curve for interval [l, t2 + PO

− QN
i )

which is βQN ,PO(t2 + PO
−QN

i − l).
Consider the service provided in interval [t2, h) and denote it as C[t2, h).

The server is activated after at most PN
− QN

i time units, and afterwards
every PN time units. It is activated with New Mode budget and period,
therefore the actual service is lower bounded by βQN ,PN (h − t2).

Now for the service guaranteed in this case β̃i(h − l) we get a lower
bound as follows:

C[l, h) = C[l, t2) + C[t2, h)

≥ βQN
i ,P

O(t2 + PO
−QN

i − l) + βQN
i ,P

N (h − t2)

Substitute: λ = h − t2, where 0 ≤ λ ≤ (h − l)

= βQN
i ,P

O(h − λ + PO
−QN

i − l) + βQN
i ,P

N (λ)

= βQN
i ,P

O(∆ − λ + PO
−QN

i ) + βQN
i ,P

N (λ)

≥ inf
0≤λ≤∆

{βQN
i ,P

O(∆ − λ + PO
−QN

i ) + βQN
i ,P

N (λ)}

= (βQN
i ,P

O ⊗ βQN
i ,P

N )(∆ + PO
−QN

i )

Case 6: l < t1 < t2 < h. Consider the service provided in interval [l, t1)
and denote it as C[l, t1). Since t1 is the end of the last activation, the server
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will not get any service in interval of PO
−QO

i time units. Therefore we can
bound the service in interval [l, t1) with the Old Mode service curve for
interval [l, t1 +PO

−QO
i ). Then we have that C[l, t1) ≥ βQO

i ,P
O(t1 +PO

−QO
i −l).

Consider interval [t1, t2). The length of the interval is upper bounded
by K · PO. Let the service provided in this interval be denoted as C[t1, t2).
As the server is provided New Mode budget QN

i during Old Mode period
PO, the service is lower bounded by βQN

i ,P
O(t2 − t1) = βQN

i ,P
O(K · PO).

Consider the service provided in interval [t2, h) and denote it as
C[t2, h). The server is activated after at most PN

−QN
i time units, and then

repeatedly every PN time units. It is activated with New Mode budget
and period, therefore the service is lower bounded by βQN ,PN (h − t2).

Now for the service guaranteed in this case β̃i(h − l) we get a lower
bound as follows:

C[l, h) = C[l, t1) + C[t1, t2) + C[t2, h)

≥ βQO
i ,P

O(t1 + PO
−QO

i − l) + βQN
i ,P

O(K · PO) + βQN
i ,P

N (h − t2)

Substitute: λ = h − t2 = h − t1 − K · PO

where 0 ≤ λ ≤ (h − l)

= βQO
i ,P

O(h − λ − K · PO + PO
−QO

i − l) + βQN
i ,P

N (λ) + βQN
i ,P

O(K · PO)

= βQO
i ,P

O(∆ − λ − K · PO + PO
−QO

i ) + βQN
i ,P

N (λ) + βQN
i ,P

O(K · PO)

≥ inf
0≤λ≤∆

{βQO
i ,P

O(∆ − λ − K · PO + PO
−QO

i ) + βQN
i ,P

N (λ)} + βQN
i ,P

O(K · PO)

= (βQO
i ,P

O ⊗ βQN
i ,P

N )(∆ − K · PO + PO
−QO

i ) + βQN
i ,P

O(K · PO)

Combining cases 1, 2, 3, 4, 5, and 6, we get as a lower bound for β̃i(∆)
the following expression:

β̃i(∆) ≥ min
{
βQO

i ,P
O(∆), (6.16)

βQN
i ,P

N (∆), (6.17)

βQN
i ,P

O(∆), (6.18)

(βQO
i ,P

O ⊗ βQN
i ,P

O)(∆ + PO
−QO

i ), (6.19)

(βQN
i ,P

O ⊗ βQN
i ,P

N )(∆ + PO
−QN

i ), (6.20)

(βQO
i ,P

O ⊗ βQN
i ,P

N )(∆ − K · PO + PO
−QO

i ) + βQN
i ,P

O(K · PO)
}

(6.21)

For expressions (6.16) and (6.17), which correspond to cases 1 and 2,
respectively, condition (6.6) holds trivially.

For expression (6.18) corresponding to case 3, we have that βQN
i ,P

O(∆) ≥
βQO

i ,P
O(∆) for ∀∆ ∈ R≥0, as we have QN

i ≥ QO
i , and βQN

i ,P
O(∆) ≥ βQN

i ,P
N (∆) for
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∀∆ ∈ R≥0, as we have PO < PN (all functions are wide-sense increasing,
see Appendix A). From these, condition (6.6) follows.

For expression (6.19) corresponding to case 4, we have that βQN
i ,P

O(∆) ≥
βQO

i ,P
O(∆) for ∀∆ ∈ R≥0, as we have QN

i ≥ QO
i . From this and the isotonicity

of the min-plus convolution (see Appendix A), it follows that (6.19) is
greater or equal to (6.7), then condition (6.6) follows.

For expression (6.20) corresponding to case 5, we have that βQN
i ,P

O(∆ +

PO
− QN

i ) ≥ βQN
i ,P

N (∆ + PN
− QN

i ) for ∀∆ ∈ R≥0 as PO < PN. From this and
the isotonicity of the min-plus convolution operator (see Appendix A),
we have that (6.20) is greater or equal to (6.8), then condition (6.6) follows.

For expression (6.21) corresponding to case 6, we cannot prove that
it meets condition (6.6) because this depends on parameter K which is
the length of the Reconfiguration phase. Therefore we have to find a
sufficiently large K that will make (6.21) greater or equal to (6.6). We can
be sure that such a K exists as for the service in the Reconfiguration phase
we know that βQN

i ,P
O(∆) ≥ βQO

i ,P
O(∆) for ∀∆ ∈ R≥0, as we have QN

i ≥ QO
i ,

and βQN
i ,P

O(∆) ≥ βQN
i ,P

N (∆) for ∀∆ ∈ R≥0, as we have PO < PN, i.e. with
increasing K we are providing a service that is larger than both of the
services in the Old and the New Modes.

Therefore, K is found as:

K = min
{
κ | ∀∆ ∈ R≥0, κ ∈ Z+,

(βQO
i ,P

O ⊗ βQN
i ,P

N )(∆ − κ · PO + PO
−QO

i ) + βQN
i ,P

O(κ · PO)

≥ min{βQO
i ,P

O(∆), βQN
i ,P

N (∆)}
}
.

6.5.3.2 Decrease of Period
This scenario is very similar to the one for increasing the period. In the
Old Mode servers operate with parameters (QO

i ,P
O), 1 ≤ i ≤ N, and in the

New Mode with (QN
i ,P

N), 1 ≤ i ≤ N, where PO > PN. We assume that for
each server we have that QO

i ≥ QN
i .

It is subject to the feasibility condition that the sum of Old Mode
budgets is smaller than the New Mode period which is expressed as:

N∑
i=1

QO
i ≤ PN .

The algorithm can be summarized in three steps: (1) Decrease to New
Mode period by decreasing free budget. (2) Schedule the ASG servers for
K ≥ 1 activation frames using Old Mode budgets and New Mode period.
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Algorithm 6.6 Decrease of Period

Input: sO
j,k, 1 ≤ j ≤ N . Schedule in the last frame (k) of Old Mode

Input: PO . Old Mode period
Input: PN . New Mode period
Input: (QO

i ,P
O), 1 ≤ i ≤ N . Servers in Old Mode

Input: (QN
i ,P

N), 1 ≤ i ≤ N . Servers in New Mode
Input: K . Number of activation frames during the Reconfiguration
Require:

∑N
i=1 QO

i ≤ PN

Output: sN
j,k+p, 1 ≤ j ≤ N, 1 ≤ p ≤ K . Schedule in all frames during the

Reconfiguration
Output: sN

j,k+K+1, 1 ≤ j ≤ N . Schedule in the first frame (k + K + 1) of
New Mode

(* First frame of Reconfiguration - with decreased period *)
1: for j← 1 to N do
2: sR

j,k+1 ← sO
j,k + PO

3: end for

(* All subsequent frames of Reconfiguration *)
4: for p← 2 to K do
5: for j← 1 to N do
6: sR

j,k+p ← sR
j,k+p−1 + PN

7: end for
8: end for

(* First frame of New Mode - decrease budgets *)
9: sN

1,k+K+1 ← sR
1,k+K + PN

10: for j← 2 to N do
11: sN

j,k+K+1 ← sN
j−1,k+K+1 + QN

j−1
12: end for

(3) Decrease budgets by using Algorithm 6.2. Algorithm 6.6 describes the
details for performing the decrease of period. It is illustrated in Fig. 6.22.

Theorem 6.14: (Service Guarantee during Decreasing the Period of the
ASGs) Reconfiguring a server from (QO

i ,P
O) to (QN

i ,P
N) in a schedule of N

servers using Algorithm 6.6 provides at least a guaranteed service of:

β̃i(∆) = min
{
βQO

i ,P
O(∆), βQN

i ,P
N (∆),

(βQO
i ,P

O ⊗ βQN
i ,P

N )(∆ − K · PN + PN
−QN

i ) + βQO
i ,P

N (K · PN)
}
,
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Fig. 6.22: Decrease of period with K = 2

which satisfies condition (6.6) when K ≥ 1 is found as:

K = max
1≤i≤N

{
min

{
κ | ∀∆ ∈ R≥0, κ ∈ Z+,

(βQO
i ,P

O ⊗ βQN
i ,P

N )(∆ − κ · PN + PN
−QN

i ) + βQO
i ,P

N (κ · PN)

≥ min{βQO
i ,P

O(∆), βQN
i ,P

N (∆)}
}}
.

Proof. Proof is analogous to the one for Theorem 6.12.

6.6 Case Study
Here, we consider a multi-mode real-time system that executes two
applications. Application 1 can run in two modes denoted as mode 1
and mode 2. In mode 1, there is a single task which processes a single
event stream described with a period p = 5 ms, jitter j = 10 ms, and
minimum interarrival time between two events d = 1 ms. Each event
has a worst-case execution time of c = 2 ms, and it needs to be processed
within a relative deadline of D = 9 ms. Similarly, in mode 2 there is a
single task but it processes an event stream with parameters p = 40 ms,
j = 20 ms, d = 20 ms, c = 7 ms, and D = 25 ms. Application 2 is a single
mode application, it has a single task that processes one event stream
with parameters p = 20 ms, j = 15 ms, d = 5 ms, c = 1 ms, and D = 30 ms.
The system schedules the two applications using two servers (Q1,P) and
(Q2,P). We suppose that each context switch takes 0.3 ms. The utilization
of the system, U, can be computed as U = (Q1 + 0.3 + Q2 + 0.3)/P.

The designer of this system needs to select the configuration
parameters of the ASGs such as the minimum required budgets that make
the two applications schedulable, and the size of the period for the two
servers. The design objective is to minimize utilization because other
soft real-time applications use the unused resources while guaranteeing
the real-time requirements. Then the solution depends on the mode
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Fig. 6.23: Total utilization for period varying from 1 ms up-to 50 ms considering the
two different modes of application 1. The circles on the graphs denote the points
of minimum utilization

that application 1 is currently in. Figure 6.23 shows the total utilization
of the system as a function of the period of the servers considering
the two modes of application 1, where the period varies from 1 ms to
50 ms. When application 1 is in mode 1, the system has the minimum
utilization (U = 0.768) with period P = 12.5 ms, and allocated budgets for
application 1 and application 2, Q1 = 8 ms and Q2 = 1 ms, respectively.
When application 1 is in mode 2, however, the system has the minimum
utilization (U = 0.427) achieved for period P = 22.5 ms, and budgets
Q1 = 7 ms and Q2 = 2 ms, respectively.

Since the mode of application 1 changes dynamically during run-time,
it is not possible to fix the parameters of the scheduler at design time and
achieve minimum utilization. If the parameters are set to the optimal
ones for mode 1, when operating in mode 2 the system would have a
15 % utilization overhead. Similarly fixing the parameters optimally for
mode 2, the utilization overhead would be 14 % when application 1 is in
mode 1.

We can solve the above problem by using the algorithms proposed in
this chapter. Let us consider the following two scenarios.

Scenario 1. When application 1 is in mode 1, we run the two ASG
servers corresponding to the two applications with parameters (8, 12.5)
and (1, 12.5) which give us the minimum system utilization. When
application 1 switches to mode 2, it notifies the Server Manager (SM)
and it requests a switch to the minimum budget for mode 2, (4.7, 12.5).
The SM can grant this budget using Algorithm 6.2. Afterwards the SM
can reconfigure the two ASG servers and increase their period to the
one which makes the system utilization the smallest. The SM can use
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Algorithm 6.5 with K = 1 to reconfigure the system from (4.7, 12.5) and
(1, 12.5) to (7, 22.5) and (2, 22.5).

Scenario 2. When application 1 has to switch back to mode 1, it first
notifies the SM which by using Algorithm 6.6 with K = 1 reconfigures
the two servers from (7, 22.5) and (2, 22.5) back to (4.7, 12.5) and (1, 12.5).
Then the SM increases the budget for application 1 using Algorithm 6.4
from 4.7 to 8. Afterwards, application 1 is notified and can safely switch
to mode 1.

Note that the SM takes advantage of the fact that mode 1 is more
heavily loaded than mode 2 for application 1. Therefore, the SM optimizes
the server period when the application is in the lightly loaded mode. This
means that in Scenario 1, the application mode change is done before the
resource optimization. And in Scenario 2, it is done after the resource
optimization. This is feasible with our algorithms as they are completely
deterministic and the time needed for a reconfiguration can be safely and
accurately upper bounded in advance. It is also possible to perform the
resource optimization when the system is more heavily loaded however,
the reconfiguration process will take longer.

In summary, we can guarantee an optimal resource allocation in
environments where applications are added or removed dynamically, or
perform mode-changes. With the proposed algorithms, the schedulability
of the applications is never compromised during the reconfiguration
process.

Setup. The servers and applications have been modeled with the
MATLAB Real-Time Calculus Toolbox [WT06c]. The exploration of the
minimum required budgets for different periods as shown in Fig. 6.23
has been done with the Real-Time Interfaces methodology as described
in Chapters 2 and 3. The exploration took less than 15 s to perform on a
commodity laptop considering discretization of the period with steps of
0.1 ms. The search for the value of K took less than 1 s.

6.7 Discussion
The chapter considers the problem of adaptive resource reservations using
servers in hard real-time systems. It classifies the possible problems
that may occur during online server reconfigurations and establishes
conditions of how to avoid them. It defines a statically TDMA scheduled
adaptive server that provides resource guarantees not only during normal
operation, but also during reconfigurations. The chapter identifies
the possible reconfiguration scenarios for such a server and provides
algorithms and schedulability analysis for each of them. The analysis is
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based on Real-Time Calculus which even for the simplest case of TDMA
scheduled servers is not trivial.

The server reconfiguration analysis and algorithms presented here
guarantee schedulability of hard real-time applications even during
reconfiguration phases. They are suitable for multi-mode real-time
systems because the scheduling servers can be reconfigured during
run-time in pace with the changing schedulability requirements of the
applications. Therefore, multi-mode real-time systems that have been
previously classified incorrectly as unschedulable, now can become
schedulable as the analysis can accurately take into account that servers
can always be run with optimal parameters that minimize system
utilization with respect to the possible combinations of operating modes
of the applications.

The general framework proposed here for reconfigurations of servers,
and the respective algorithms and analysis, are applicable not only
to TDMA-based servers, but also can be used as a methodology for
developing similar results for other kinds of servers such as the CBS,
the deferable, and others. The question whether there exists a server that
is more suitable for online reconfigurations while providing scheduling
guarantees is still open.



7
Conclusions

The aim of this thesis is to show that it is possible to develop
accurate compositional system-level performance analysis methods for
complex embedded real-time systems which use multiple distributed
computational and communication resources, use complex resource
sharing policies, have cycles in the event flows which can create
backpressure, and can change their parameters at run-time due to
changing system or environment conditions. Moreover, it shows that it
is possible to develop a general framework for interface-based design of
real-time systems which can support the early design phase by developing
interfaces of system components that can take into account various
constraints on time, resources, and memory usage.

7.1 Main Results
The thesis extends previous state-of-the-art results on Modular Perfor-
mance Analysis with Real-Time Calculus and interface-based design with
Real-Time Interfaces in the following several ways:

• Interface-Based Design for Real-Time Systems. We formalize
and generalize the framework of Real-Time Interfaces by for-
mally defining the concepts of abstract components, and their
respective interfaces, and establishing properties for the successful
composition of components and interfaces while respecting real-
time constraints. The important aspects such as independent
implementability, refinement, and incremental design are defined
and corresponding conditions are derived. The proposed notion
of interfaces supports the design by providing mechanisms to
propagate real-time constraints. Interfaces are no longer static
but adapt according to changes in the connected components
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and system environment. This can be used to answer synthesis
questions at design time, and to adapt a system at run-time when
the requirements from the environment change.

• Algebra for Interface-Based Design of Real-Time Systems. We
formulate the rate analysis problem in an interface-based design
setting. It allows for compositional design of embedded systems
whose components communicate through data or event streams.
For this purpose, we develop the Rate Interfaces theory which
can effectively check compatibility between components and
guarantee various buffer and delay constraints. Rate Interfaces
extend previous results on Real-Time Interfaces towards distributed
systems. Therefore, we not only consider tasks that are executed
on a single processing element but allow for data streams that
are processed on several computing resources and communicated
through different communication media. We consider variable
execution demands of tasks in an interface-based design approach
which improves the accuracy of the performance results. We
consider not only component-wise constraints such as buffer
underflow and overflow, but also constraints on networks of
components such as end-to-end delays.

• Compositional Performance Analysis of Cyclic Dataflow Real-
Time Systems. Component-based performance analysis methods
are extended to the class of marked graphs. Unlike other known
methods, the approach takes into account a general model for
resource interaction based on the concept of service curves, and
a general data stream model based on arrival curves. Performance
bounds obtained with the newly described method have higher
accuracy than the ones obtained with any of the previously known
methods. The analysis can cover any system that can be modeled
with a marked graph including ones with cyclic data dependencies,
finite buffer sizes, non-deterministic resource behavior, and complex
scheduling policies. It can be embedded into existing compositional
frameworks such as the SymTA/S or the Modular Performance
Analysis.

• Performance Analysis of Multi-Mode Real-Time Applications.
We present a method for timing and buffer size analysis of
uniprocessor multi-mode systems with fixed priority scheduling
of tasks. It improves on accuracy and scope of previous mode
change analysis methods since it supports complex task activation
patterns by the use of arrival curves, and non-deterministic resource
behaviors by the use of service curves. We show how the method



7.2. Future Directions 195

can be applied to transform a non-schedulable mode change into a
schedulable one using an offset.

• Performance Analysis of Run-Time Reconfigurable Resource
Reservations in Real-Time Systems. The problem of scheduler
adaptations in resource partitioned architectures is considered from
the perspective of adaptive servers that provide guarantees on
real-time properties. It is the first discussion on the topic where
not only schedulability of reconfigurable servers is considered, but
also schedulability of applications during server reconfigurations.
An adaptive scheduling server framework based on the TDMA
partitioning paradigm is developed. Algorithms are developed for
different reconfiguration scenarios that can guarantee meeting of
real-time constraints of applications during server reconfigurations.

7.2 Future Directions
This thesis presents several substantial extensions of the scope and
accuracy of previously existing compositional analysis and design frame-
works for embedded real-time systems. However, their applicability
and relevancy in modern industrial systems are not clear. Realistic
real-time systems are likely to exhibit multiple complexities which can
be any combination of multiple computational and communication
resources, complex resource sharing policies, variable execution demands
of applications, various memory and delay constraints, cyclic dataflow
dependencies, and adaptive behavior in applications and resources.

The extensions presented here can deal with systems that only have
memory and delay constraints, only cyclic dataflow dependencies, or
only adaptive behavior. A method that can analyze accurately systems
that exhibit a combination of such complexities does not exist yet.
Development of such a method is not only driven by an academic need for
a unified framework for compositional analysis and design of complex
embedded real-time system, but also it is necessitated by the recent
development in complexity and features of modern industrial embedded
systems. It is common, nowadays, for mobile phones and tablets to have
multiple processing cores connected over various buses with memory,
caches, and specialized processors. Resource contentions and complex
resource sharing policies are ubiquitous in such platforms. The devices
need to perform various signal-, voice-, image-, and video-processing
tasks which are usually modeled with formalisms with cyclic dataflow
dependencies. Applications may be switched on and off by the user at any
time which means that the analysis has to deal with the adaptive behavior



196 Chapter 7. Conclusions

of the system that tries to maintain its real-time properties despite of the
constant changes inside of it and in the environment.

Having one unified performance analysis and design framework for
complex embedded real-time systems will make its adoption in industry
much more likely. This will not only increase the quality and features
of industrial embedded real-time systems, but will also support future
research in this area.

Based on the conclusion drawn above, we can outline three main
directions for continuing the work from this thesis:

• Interface-Based Design for Real-Time Systems with Cyclic
Dataflow. Results presented in Chapters 2 and 3 focus on
interface-based design frameworks for distributed embedded real-
time systems that have various memory and delay constraints.
However, they cannot deal with systems that have cyclic dataflow
dependencies or finite buffer sizes. On the other hand, Chapter 4
develops a compositional performance analysis method specifically
tailored to distributed systems with cycles in the event flows or
with finite buffers that create backpressure. Combining these
results would bring the advantages of interface-based design to
the design flow of cyclic dataflow systems. Besides the questions
already mentioned in Chapters 2 and 3, a designer would be able
to efficiently answer questions such as: what is the design space
of minimum buffer sizes in a system with cyclic data dependencies
in order to meet a certain throughput constraint, or what is the
minimum required CPU frequency by a component in a system
with backpressure.

• Compositional Performance Analysis of Distributed Multi-Mode
Real-Time Applications. Results presented in Chapters 5 and 6
focus on timing analysis of adaptive behavior in uniprocessor
embedded real-time systems. Extending these results to multicore
or multiprocessor systems is necessary because most realistic
systems nowadays exhibit multiple processing and communication
resources. Such an analysis will not be trivial as it has to
accurately take into account that effects from adaptive behavior may
propagate through the multiple processing elements in the system
for indefinitely long during run-time.

• Interface-Based Design for Real-Time Systems with Adaptive
Behavior. Results presented in Chapters 2 and 3 focus on
interface-based design frameworks that are limited to systems
whose parameters do not change during run-time. On the other
hand, results in Chapters 5 and 6 focus on timing and buffer
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analysis of adaptive systems without considering the features of
interface-based design. It is desirable to combine them as it will
allow the use of interface theory in online performance analysis
for reconfigurations whose parameters are only known at run-
time. It will also bring traditional benefits of interface-based design
to multi-mode real-time systems such as being able to efficiently
answer design questions. On the other hand, this will not be
trivial to achieve as it will require designing interfaces that contain
information not only about the bounds of certain parameters, but
also information about how and when one can switch from one
value of a parameter to another one during run-time without
violating real-time constraints.
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A
Min/Max Algebra

The min-plus convolution ⊗ and deconvolution � operators are defined
as:

( f ⊗ g)(∆) = inf
0≤λ≤∆

{ f (∆ − λ) + g(λ)} ,

( f � g)(∆) = sup
λ≥0
{ f (∆ + λ) − g(λ)} .

The duality between ⊗ and � states that:

f � g ≤ h ⇐⇒ f ≤ g ⊗ h .

Isotonicity property of the min-plus convolution operator ⊗ is defined as:

If f ≤ g and f ′ ≤ g′ then f ⊗ f ′ ≤ g ⊗ g′ .

A function f is wide-sense increasing iff f (s) ≤ f (t) for all s ≤ t.

The max-plus deconvolution operator � is defined as:

(a�b)(∆) = inf
λ≥0
{a(∆ + λ) − b(λ)} .

For details on the above operators and their properties see [LBT01].
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B
Real-Time Calculus

The operator RT(β, α) for the remaining service curve of a GPC is defined
as:

β′(∆) = sup
0≤λ≤∆

{
β(λ) − α(λ)

}
.

Its two inverses are defined as:

α = RT−α(β′, β)⇒ β′ ≤ RT(β, α) ,

β = RT−β(β′, α)⇒ β′ ≤ RT(β, α) ,

with solutions:

RT−α(β′, β)(∆) = β(∆ + λ) − β′(∆ + λ) ,
for λ = sup

{
τ : β′(∆ + τ) = β′(∆)

}
,

and

RT−β(β′, α)(∆) = β′(∆ − λ) + α(∆ − λ) ,
for λ = sup

{
τ : β′(∆ − τ) = β′(∆)

}
.
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