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Abstract

In contemporary multicore architectures, three trends can be observed: (i) A grow-
ing number of cores, (ii) shared memory as the primary means of communication
and data exchange and (iii) high diversity between platform architectures. Still,
these platforms are typically programmed manually on a core-by-core basis; the
most helpful tool that is widely accepted are library implementations of frequently
used algorithms. This complicated task of multicore programming will grow fur-
ther in complexity with the increasing numbers of cores. In addition, the constant
change in architecture designs and thus in platform-specific programming demands
will continue to make it laborious to migrate existing code to new platforms.

State-of-the-art methods of automatic multicore code generation only partially
meet the requirements of modern multicore platforms. They typically have a high
overhead for different threads when growing numbers of cores and thus shrinking
thread granularities demand the opposite. Also, they typically use message passing
models for implementing data exchange when memory sharing should be the nat-
ural mode of data exchange. As a result, they often fail to produce efficient code,
especially when large data throughput is required.

This thesis proposes a data-oriented approach to multicore programming. It
shows how dividing a program into discrete tasks with clearly specified inputs and
outputs helps to formalise the problem of optimising high data throughput applic-
ations for a large range of multicore architectures, at the same time enabling an
efficient, low-overhead implementation. In detail, its contributions are as follows.

• Inefficiencies in existing programming models are demonstrated for the cases
of the CAL actor language and Kahn process networks. Methods are shown
to reduce these inefficiencies.

• Ladybirds, a specificationmodel and language for parallel programs is presen-
ted. A Ladybirds program consists of a tasks with clearly defined inputs and
outputs and of dependencies between them. It is explained how Ladybirds
aims at execution efficiency also in the domains of data placement and trans-
port and what steps are necessary to get from a Ladybirds specification to
executable program code.The examples of comfortable debugging and ofmin-
imising state retention overhead for transient systems underline the usability
and versatility of Ladybirds.

• An optimisation method for Ladybirds programs on the Kalray MPPA plat-
form is presented. It tries to place data on different memory banks such as
to avoid access conflicts. Afterwards, the Ladybirds optimisation problem for
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the general case of arbitrary target platforms is formalised. Different aspects
of it are discussed in greater detail and requirements for particular target plat-
forms are examined.

• Also, a better understanding of contemporary hardware is sought. For that
purpose, different probabilistic descriptions and models for interleaved on-
chip memory are proposed and evaluated.
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Zusammenfassung

In aktuellen Mehrkernarchitekturen lassen sich drei Trends beobachten: (i) Eine
wachsende Anzahl an Kernen, (ii) gemeinsam genutzter Speicher als das Hauptin-
strument der Kommunikation und des Datenaustauschs und (iii) eine hohe Diversi-
tät zwischen den Plattformarchitekturen. Dennoch werden diese Plattformen typi-
scherweise manuell und Kern für Kern programmiert; das nützlichste breit akzep-
tierte Werkzeug sind Bibliotheksimplementierungen häufig verwendeter Algorith-
men. Diese schwierige Aufgabe der Mehrkernprogrammierung wird mit den wach-
senden Zahlen der Kerne weiter an Komplexität gewinnen. Darüber hinaus wird der
ständige Wandel in Architektur-Designs und damit in plattformspezifischen Pro-
grammieranforderungen weiterhin großen Aufwand beim Migrieren bestehenden
Codes auf neue Plattformen verursachen.

Derzeit genutzte Verfahren zur automatischen Mehrkern-Codegeneration ent-
sprechen nur teilweise den Anforderungen moderner Mehrkernplattformen. Typi-
scherweise weisen sie einen hohen Overhead für Threads auf und implementieren
Datenaustausch mit Nachrichtenübergabemodellen, wohingegen eine wachsende
Anzahl von Kernen, somit kleinereThread-Granularitäten, geringeren Overhead er-
fordern und die gemeinsame Nutzung von Speichern die natürliche Art des Daten-
austauschs sein sollte. Infolgedessen schaffen es diese Verfahren oft nicht, effizien-
ten Code zu erzeugen, insbesondere, wenn ein hoher Datendurchsatz erforderlich
ist.

Diese Arbeit schlägt einen datenorientierten Ansatz für die Mehrkernprogram-
mierung vor. Sie zeigt, wie die Unterteilung eines Programms in getrennte Tasks mit
klar spezifizierter Ein- und Ausgabe dabei hilft, das Problem der Optimierung von
Anwendungen mit hohem Datendurchsatz für eine große Auswahl an Mehrkernar-
chitekturen zu formalisieren und gleichzeitig eine effiziente Implementierung mit
geringem Overhead zu erreichen. Im Einzelnen sind liefert sie folgende Erkenntnis-
se:

• Unzulänglichkeiten der Effizienz bestehender Programmiermodelle werden
in den konkreten Fällen der CAL Actor Language und der Kahn-Prozessnetz-
werke dargelegt. Methoden zur Verringerung dieser Unzulänglichkeiten wer-
den aufgezeigt.

• Ladybirds, Spezifikationsmodell und -sprache für parallele Programme, wird
vorgestellt. Ein Ladybirds-Programm besteht aus Tasks mit klar definierten
Ein- und Ausgaben und Abhängigkeiten zwischen diesen. Es wird erläutert,
wie Ladybirds eine hohe Ausführungseffizienz auch bei Datenplatzierung
und -transport anstrebt und welche Schritte notwendig sind, um von einer
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Ladybirds-Spezifikation zu ausführbarem Programmcode zu gelangen. Als
Beispiele unterstreichen komfortables Debugging und die Minimierung des
Zustandssicherungsaufwands für transiente Systeme die Nutzbarkeit und
die Vielseitigkeit von Ladybirds.

• Eine Optimierungsmethode für Ladybirds-Programme auf der Kalray-MPPA-
Plattform wird vorgestellt, die versucht, Daten auf verschiedenen Speicher-
bänken zu platzieren, um Zugriffskonflikte zu vermeiden. Anschließend wird
das Ladybirds-Optimierungsproblem für den allgemeinen Fall beliebiger Ziel-
plattformen formalisiert. Verschiedene Gesichtspunkte davon werden detail-
lierter besprochen undAnforderungen für bestimmte Zielplattformenwerden
untersucht.

• Weiterhin wird ein besseres Verständnis der heutigen Hardware angestrebt.
Hierfür werden verschiedene probabilistische Beschreibungen und Modelle
für verschränkten On-Chip-Speicher vorgeschlagen und ausgewertet.
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1
Introduction

The ubiquity of multi- and manycore platforms amongst today’s electronic sys-
tems is contrasted by a lack of generally accepted high-level methods of program-
ming these devices.While code parallelisation, i.e., the distribution of computational
workload amongst the individual cores, is often seen as the major obstacle, it is by
itself only a subproblem of a bigger challenge.

A less studied, but likewise important part of this challenge is the problem of data
storage and transport. A typical calculation needs input data and produces results,
which, in turn, may be needed for further calculations. Distributing the calculation
to multiple cores now raises the question of how input data need to be distributed
between the cores, and how the individual results can be merged afterwards. This
may, ormay not, require duplication of data, e.g. to preventmutual input alterations,
data races, access conflicts and alike. With higher amounts of data to be processed,
these effects can have a vital impact on the system performance.

At the same time, hardware architectures are numerous and highly diversified
with respect to memory and data transport. Shared on-chip memory and networks
on chip are two trends that have emerged in the last years; even combinations of
both are not uncommon. Each of these platform types needs a different program-
ming approach. Careful data placement, well-managed DMA operations and the
right amount of data duplication are only some of the software characteristics that
may be a prerequisite to good performance on some platforms — and irrelevant on
others.

This thesis is devoted to the question of how data storage and transport can be op-
timised and how this optimisation can be unified and automated for a large range of
multicore platforms, where the latter term shall henceforth also include manycore
platforms. A novel specification model for parallel programs is proposed that aims
at optimisations for a large class of multi-core architectures. Examples for such op-
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Chapter 1 Introduction

timisation automations are given, and requirements as well as pitfalls for efficient
data storage and transport in concrete program implementations are discussed.

In the following, the diversity in multi-core architectures and programming re-
quirements is demonstrated using the example of several contemporary platforms.
A set of challenges is derived that must be met for achieving good performance.
After separating the problem into four domains that must be addressed, a short
outline of aim and contributions of this thesis follows.

1.1 Contemporary Multi-Core Platforms

As popularity and utilisation of multicore systems spread over the last years, a num-
ber of such platforms and architectures came into existence.These architectures dif-
fer in target audience and use cases; as a result, they have different features, design
choices and programming models. Four different architecture approaches shall be
presented here together with the demands they impose on programmers.

Intel Xeon Phi
Xeon Phi is a high-performance architecture by Intel, which exists in different mod-
els and versions. Particularly relevant are the generations “knights corner” [Chr14]
and “knights landing” [Sod⁺16].

All “knights corner” platforms contain around 60 processor cores clocked be-
tween 1053 and 1238MHz. Special vector units in the cores allow for exploiting
data parallelism, each core has a 32 KB L1 data cache and a 512 KB L2 cache. A
bidirectional ring bus connects the cores to each other and to the four memory
controllers on the chip.Thememory has a capacity of between 6 and 16GB and uses
pseudo-random interleaving [Rau91]. Communication between the cores ismemory
mapped, however, a sophisticated cache synchronisation protocol between the cores
allows for efficient data exchange without going through the memory.

The “knights landing” generation brought several improvements to the architec-
ture, such as more cores with higher computation power, a mesh interconnect in-
stead of the ring bus and higher memory capacity (16GB plus up to 384GB addi-
tional, slower bulk memory).

While the programmer can significantly influence the performance of his pro-
gram by promoting the use of vector units and other instruction-related optimisa-
tions, memory-related performance issues are automatically handled by the hard-
ware.This frees the programmer from the burden of organising efficient data storage
and exchange, but also marginalises his influence in this respect. “Knights landing”
allows the programmer to choose between different hardware modes of either using
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1.1 Contemporary Multi-Core Platforms

the main memory as a cache for the bulk memory or a flat address model in which
data placement is manual. In the latter case, all frequently accessed data must be
placed in the main memory.

P2012 and PULP
P2012 [Ben⁺12] and PULP [Con⁺15] are two different platform architectures based
on similar design principles. Both consist of clusters with multiple processor cores
and a fast on-chip cluster memory also called L1 memory or tightly-coupled data
memory. Data caches are not used, but each core has a private instruction cache.
The L1 memory consists of multiple sequentially interleaved banks that form one
memory module. The cores are linked to the memory banks via a “logarithmic in-
terconnect” consisting of tree structures of multiplexers and arbiters. All clusters
on the platform share a common L2 memory, which is slower to access. Program
code is stored on the L2 memory. External memory modules of larger capacities can
be connected and would be referred to as L3 memory. DMA controllers effect data
transfer between the different memories in the background.

The P2012 platform, also known as “STHORM”, consists of 3 clusters with 16 cores
and 32 memory banks each. The local L1 memory can be accessed within one cycle
and has a capacity of 256 KB per cluster.The L2 memory capacity is 1MB.The PULP
architecture is used in different platforms; one multicore example is HERO [Kur⁺17]
with up to 8 clusters of 8 cores and 16 memory banks each. The L1 memory of each
cluster as well as the L2 memory have a capacity of up to 256 KB.

These platforms are examples for hierarchical memory architectures — different
levels of memory from small scratchpadmemories near to the cores to large memor-
ies far away from the cores allow to combine short-latency access to frequently ac-
cessed data with a large overall memory capacity. This principle is also the base of
cache hierarchies; the difference is that while the latter fetch and write back data
automatically, the programmer needs to take care of this with scratchpad memor-
ies. On the other hand, memories consume less power than caches and a good data
transfer and placement strategy allows for higher and more predictable perform-
ance with scratchpad memories. Using memory hierarchies in P2012 and PULP is
part of a strategy of achieving high computational performance on embedded sys-
tems, i.e., at a low power consumption.

For these systems to be efficient, it is important to place frequently accessed data
on the L1 memory; DMA operations must ensure that at any moment in time, the
data required for the ongoing operations is available there. In order to avoid pro-
cessing elements waiting for their input data to arrive or their output buffers to be
freed, DMA operations and computations must take place concurrently; efficiently
scheduling these operations is an important task for the programmer.
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Chapter 1 Introduction

Adapteva Epiphany
The Epiphany architecture [Olo⁺11] was designed by Adapteva with a clear focus on
energy efficiency. It only contains the most essential components and all compon-
ents are reduced to the most essential functionality, the idea being that the die area
saved by these measures can be used instead for placing a higher number of pro-
cessing elements. Epiphany consists of multiple identical tiles connected through a
mesh network on chip (NoC). Each tile contains a processor core, a DMA controller,
4 non-interleaved memory banks of 8 KB each (for code and data) and a NoC router.
Each router can send up to 8 bytes per direction (north, south, east, west) per cycle;
these are routed following a fixed mechanism and they advance one tile per cycle.
Communication between the cores is purely memory based; each core can access all
memory banks on the chip. Memory writes are executed asynchronously, i.e., a core
needs one cycle to place a write command on the NoC (if there is no congestion)
and then immediately resumes operation. Memory reads can be performed within
one cycle on the local memory banks (those on the same tile), reads on other tiles,
however, are blocking and need to travel two-way through the NoC. To ensure swift
operation of the NoC, memory access requests coming from the NoC always have
priority over local access requests.

Because of its concept of identical tiles connected through a one hop mesh, the
Epiphany architecture scales well and versions of different sizes exist. Epiphany-III
chips feature 16 cores and are commercially available; they are also used on a
credit-card sized “miniature computer” called Parallella. Epiphany-IV chips with 64
cores have been produced as well, are however not freely available on the market.
Epiphany-V exists as a 1024 core IP (intellectual property) core.

For the programmer, data placement is even more complex with Epiphany than
with the P2012/PULP architectures, since each core has its own memory. While
P2012/PULP allow easy data sharing between cores in the same cluster, Epiphany
requires the programmer to choose on which tile to place each chunk of data, and,
possibly, whether it is useful to create multiple copies of it. Within one tile, the
programmer must also choose which bank to use for which data chunk such as
to minimise the number of memory access conflicts. While the considerations on
background DMA transfers on P2012/PULP also apply for Epiphany, the latter also
promotes the use of asynchronous write operations for data exchange. A core can
directly write results it produces to the local memory of another core, which then
processes them further. This is an important technique on Epiphany.

Kalray MPPA
The “massively parallel processor array” [Din⁺14] produced by Kalray is a platform
conceived for embedded systems, however with real-time requirements in mind.
It was built such that it behaves deterministically and predictably — experimental
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1.2 Challenges in Optimising Data Storage and Transfer

results obtained on it in the course of this thesis (see Section 5.1) varied onlymargin-
ally, if at all, between different runs. This thesis will concentrate on the first version
of it (“Andey”), but later versions (“Bostan”, “Bostan2” and “Coolidge”) do not differ
from it in the fundamental principles.

The MPPA consists of 4 input/output clusters and 16 compute clusters, each of
which has 16 cores plus one “resource manager” (a dedicated core for system and
resource management operations). 2MB of memory distributed over 16 banks is
available on each cluster and stores code and data. The programmer can choose
whether to use memory interleaving or not. Each core has an instruction and a
data cache. While the instruction caches are always enabled, the programmer can
turn the data caches on or off. Cores can only access the local cluster memory. The
clusters are connected via a NoC, which can be described as a torus mesh with con-
figurable routing. Communication between the clusters is implemented via message
passing, but DMA controllers also exist on each cluster. The input/output clusters
can be used to access, for instance, external memory.

The programmer has to tackle data placement questions and DMA transfer
scheduling tasks similar to the P2012/PULP architectures, but the choice between
interleaved and non-interleaved memory yields more degrees of freedom. In partic-
ular, the problem of manually placing data on different memory banks considering
that the latter are accessed by multiple cores can be intricate. At the same time, the
relatively large on-chip memory eases the task of fitting all necessary data in it.

1.2 Challenges inOptimisingDataStorageandTransfer
The last section presented a wide variety of contemporary multicore platform
architectures. It contained power-hungry high-performance manycore architec-
tures like Xeon Phi as well as highly energy-efficient low-power 16-core chips like
Epiphany-III. Even if manifold differences in design principles and ideas became
apparent, the comparison also revealed interesting commonalities.

• The number of cores is growing, not only with new architectures but also
with the different generations of the same architecture families. Scalability is
an important design factor that is often met by connecting identical tiles or
clusters through networks on chip.

• Memory sharing is the prevalent concept of data exchange. Forming clusters
of processing elements that share memory is a frequent pattern as well as
non-uniform memory access models. Only the Xeon Phi architecture is even
more extreme by featuring just one large coherent memory space; in this case,
however, sophisticated caches are there to organise efficient data exchange.
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In any case, none of the hardware architectures has a memory module that is
private to a core.

• DMA controllers are standard on all platforms. The only exception is Xeon
Phi, which has only one large memory space and which uses automatic cache
synchronisation to achieve a similar goal.

• Direct communication between cores, for instance by signals or message
passing, as it was done on Intel SCC, does not play an important role. Except
for the Kalray MPPA, which allows sending messages between clusters, and
certain low-level hardware supports for interrupt signals between cores
in a cluster, memory based data exchange is the only supported form of
communication between cores on all platforms. Message passing can of
course be implemented in software, but no hardware support is provided.

Still, the differences must be taken into account as well:

• Large versus small memory capacities.

• Caches versus no caches. The latter case requires more memory optimisation
code within the program.

• Uniform versus non-uniform memory access designs. This is not a binary
question, but there are multiple degrees — completely uniform, uniform
within clusters, completely non-uniform for each core.

• Memory transparency, e.g. interleaved versus non-interleaved. Interleaved
memory requires less optimisation effort for placing data.

From these findings, the following requirements for a program optimiser can be de-
rived. Firstly, the produced codemust efficiently parallelise also for large numbers of
cores, i.e., the overhead for executing independent threads and for exchanging data
between them must be low. In particular, the philosophy of sharing data by shar-
ing memory must be embraced and implemented together with DMA transfers in
the background as an important means of efficient data exchange. Secondly, an op-
timisation methodology is needed that can be adapted to different target platforms
with their individual requirements. Sophisticated algorithms for data placement in
case of non-uniform memory access or non-interleaved memory are required, but
must be replaceable with simpler optimisations in case of hardware-based memory
management. In general, the optimiser must “understand” its target platform, i.e., it
needs an accurate model of it.Thirdly, memory being a scarce resource onmany em-
bedded systems, optimisers for such architectures must be able to be as economical
as possible with it. Since access times to different memory modules can easily differ
by orders of magnitude, this is not only a question of being able or not to execute
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an application on a platform, but it is a vital performance question. An optimiser
should know what data is needed where at what time, and it should then make sure
that the data will be available on a low-latency memory module when needed.

These are the challenges that need to be met for successful program optimisation
and efficient program implementation. For this purpose, analyses and optimisations
are required in various domains from high-level optimisationmodels to low level bit
tweaks. These domains are tightly connected to different models and model types:
The next section will try to establish a taxonomy of them.

1.3 Models Involved in Program Creation

A software implementation process, if it comprises compilation or design automa-
tion, can be divided into three steps: Program specification by the programmer,
optimisation combined with code creation by one or multiple compilation tools
and finally execution on the target platform. During these steps, the program is
described using different representations, which, in turn, can be characterised by
different models. In this work, these models shall be categorised as follows (see also
Figure 1.1 on the following page).

• A specification model describes the semantics of the program specification,
defining the basic elements and patterns that the programmer can combine to
specify an application. It also defines the rules the program must conform to,
and thereby the assumptions that can be safely made during the optimisation
process and even during program execution.

• Optimisation models are abstractions of the program that are used during
the optimisation process. They contain all information that is necessary for
the corresponding optimisations to be carried out, typically in a format that
is favourable for these optimisations. As there can be multiple optimisation
phases, multiple optimisation models can be used during the optimisation
process.

• An implementation model describes the semantics of the code to be executed
on the platform. For that purpose, as a complement to the optimised program,
it also provides basic primitives for program execution and a strategy for or-
chestrating them to a correct and possibly efficient execution. This implies
that the optimisation process and maybe even the models it relies on are ad-
apted to the implementation model.
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Platform
model

Specification

Optimisation

Execution on
hardware platform

Specification
model

Optimisation
model(s)

Implementation
model

Figure 1.1: Models required in the compilation process of an application. Specification,
optimisation and implementation model all describe representations of the given program,
while a platform model predicts the behaviour of the hardware.

Since for optimisation, not only the program itself is interesting but also certain
execution parameters, another class of models is required:

• A platform model is used to predict the behaviour of the target hardware
platform, for instance in terms of execution time of certain program parts,
memory availability, caching strategies etc. It is important to note that op-
timisation is in fact performed against this model rather than the actual hard-
ware.

The combined set of all these models for a particular programming scenario shall be
denoted here as a model set. The following examples give different such scenarios
and illustrate the model sets for them.
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Single threaded C program: The specification model is given by the source lan-
guage C. The optimisation model is the intermediate representation of the
compiler, typically together with control and data flow graphs, dominance
tables and other information. The implementation model is given by the tar-
get processor, for instance as sequential execution of the generated assembly
instructions. The platform model comprises the target instruction set, the ex-
ecution times of the individual instructions, and maybe even information on
the caches and their behaviour.

C program with POSIX threads: In addition to what was said about the single-
threaded C program, the specification model here includes the POSIX threads
API. The optimisation and description models are the same as for the single-
threaded case (some compilers do additional checks, but no inter-thread op-
timisation). The implementation model is now augmented by the POSIX mul-
tithreading mechanisms, which are typically implemented by an operating
system.

Process networks shall be considered here only at the network level rather than
through the individual processes. Here, the specification is the same as the op-
timisation model – a directed graph of processes. The platform model would
typically provide coarse-grained information about the platform (number and
types of cores, connectivity between them, available memory) and about pro-
cess affinities (e.g. certain runtimes on different processor types). There exist
different implementation models (cf. Chapter 2); one possibility is to com-
bine an existing multithreading mechanism like POSIX threads with an im-
plementation of reading and writing functions for the channels.

From the description of the model types, it is clear that communication efficiency
and high data throughput can only be attained if the all models in a model set are
well-suited for this task, individually and in their interplay.

1.4 Aim and Contributions of This Thesis
The research conducted in this work leads to and justifies the following hypothesis:

A model set based on the concept of separate tasks with clearly defined
inputs and outputs allows to reason about automatic program parallelisa-
tion with efficient use of memory and communication resources on any
multicore platform.

The following chapters will detail the findings and show the steps that lead there.
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Chapter 2 gives an insight into implementation models, their crucial role for
execution efficiency and how they connect and relate to specification models.
First, a novel transformation technique from CAL actors to KPN processes
is presented, making the case that switching the implementation model (to
KPN) can yield not only performance gains. Secondly, the KPN implement-
ation model in turn is shown to be inefficient on shared memory systems
and a new extension to it is presented such as to overcome this issue in a
simple way, which is, however, proven to maintain correct and determinate
execution. For both cases, the implications on the corresponding specifica-
tion models are discussed and conclusions are drawn on required and desired
properties of possible specification models.

Chapter 3 presents Ladybirds, the specification model proposed in this work
and derives the related optimisation and implementation models. It is shown
how these models apply the lessons from the previous chapter, why they
promise efficiency in data exchange and why they achieve the goals from
Section 1.2 better than existing models. Examples underline the usefulness of
the models, for muli-core systems as well as in completely unrelated areas.

Chapter 4 discusses the importance of platformmodels, with a special focus on
interleaved memories. While all other components in current multicore plat-
forms have been widely analysed or can easily be modelled, there exists no
description model for interleaved memories that has been tested for suitabil-
ity. This chapter introduces different possibilities and analyes their accuracy.

Chapter 5 finally comes to the subject of optimisation models and techniques
for Ladybirds. First, an optimisation algorithm is introduced for assigning
memory blocks to the different banks in a multi-bank shared-memory sys-
tem with non-interleaved memory configuration. Such optimisations existed
only for instruction level parallelism on VLIW processors. Afterwards, the
generic case of optimising Ladybirds programs for arbitrary target platforms
is discussed. The problem is formally described and important aspects of it
are regarded in greater detail. Concrete target platforms are considered to
establish a relation to the formalised optimisation problem.
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Implementation models

Out of all models in a model set, the implementation model is certainly the one with
the most direct influence on execution performance: Programs with an inefficient
implementation model can hardly show good performance, and improvements to
the implementationmodel typically are reflected one to one during execution. At the
same time, the potential of an implementation model cannot be exploited unless the
optimisation model(s) and sometimes even the specification model from the model
set properly fit to it. This chapter will shed light on both of these aspects.

The CAL actor language will be used as an example of how switching from one
implementationmodel to another can achieve a significant increase in performance.
Such a switch, however, cannot be carried out without accompanying optimisation
steps, which will be explained and discussed also with respect to their limitations.

Afterwards, the focus will be on inefficiencies of Kahn process networks and their
implementation models when executed on shared memory platforms. An exten-
sion of these models will be shown which remedies these inefficiencies while fully
maintaining the philosophy and the advantageous characteristics of Kahn process
networks. As it will turn out, however, these improvements come at the cost of
complicating the specification model.

A final discussion will wrap up the findings of this chapter, analyse the tradeoffs
and derive desirable properties for implementation and corresponding specification
models.

At first, however, an overview shall be given on the paradigm of process net-
works, in particular Kahn process networks. Being the subject of several studies,
comparisons and considerations throughout this whole thesis, these networks are
worth a closer look and a careful definition.
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Algorithm 2.1: Specification of a Kahn process

process Echo (in channels: X; out channels: Y )
while true do

𝑥 ← Read (X )
Write (Y, x)

end
end

2.1 Process Networks

In this thesis, the term process networks shall be used to integrate multiple different
programming concepts, which are similar in their topology but differ in many de-
tails, mostly terminology and semantic details of components. Some of these con-
cepts have developed independently, for instance Kahn process networks (Kahn
1974 [Kah74]) and synchronous dataflow (Karp and Miller 1966 [KM66], Lee and
Messerschmitt 1987 [LM87]). This explains notable differences not only in nam-
ing but also in the approaches, given especially the different backgrounds of the
originators of these models.

The following definitions can be seen as an attempt to obtain a unified and con-
sistent representation of the different concepts and terminologies throughout this
thesis.

Definition 2.1. A process network is a directed multigraph, the nodes of which
represent computational elements. Its edges are called channels and represent un-
bounded FIFO buffers. Computational elements can write tokens to outgoing chan-
nels by enqueueing them at the back of the FIFO and read tokens from incoming
channels by dequeueing them from the front of the FIFO. No other communication
is allowed between the computational elements.

In different models, these computational elements have different names. In Kahn
process networks, the computational elements are called processes, whereas in the
dataflow domain, they are called actors. This differentiation is maintained here be-
cause of a fundamental semantic difference between processes and actors (see be-
low).

The different types of process networks shall be explained in the following. The
approach taken here will be to first discuss the concept of Kahn process networks
in detail and then to present the other models in where they differ from it.
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2.1.1 Kahn Process Networks
The idea of Kahn process networks (KPNs) was introduced by Gilles Kahn [Kah74].
It has become popular in the parallel programming domain, but is not always
defined in the same way. This section will give a KPN definition for this thesis,
summarise the most important properties of these networks and discuss how they
can be implemented.

2.1.1.1 The KPN specification model

As Kahn points out, a KPN can be thought of as a process network with multi-
band Turing machines as computational elements. The first band of each machine
is its private working band, and for each channel in the network, a one-way band
is added on which one machine writes and another reads. This notion of KPNs shall
be adopted here, albeit in a different, but equivalent definition, which is nearer to
programming practice.

Definition 2.2. A Kahn process network is a process network with Kahn pro-
cesses as computational elements.
A Kahn process is a stateful, sequential program which in any arbitrary sequence
performs calculations with predictable results, write accesses to the outgoing chan-
nels, and blocking, destructive read accesses to the incoming channels.

This is a very generic definition of processes, imposing only the restriction that each
channel read access has to be blocking and destructive. Blocking means that when a
process tries to read from an empty channel, it will wait (possibly for infinite time)
until a token arrives on the channel. Destructive means that upon reading a token,
the token is also removed from the channel.
Example 2.1. Algorithm 2.1 gives the specification of a process Echo, which has
one input and one output channel. Its functionality is to repeat all tokens from the
input channel one to one on the output channel.

2.1.1.2 Formal description and analysis of KPNs

The formal description of KPNs requires a number of terms and concepts, firstly
that of channel, input ant output histories.

Definition 2.3. Let 𝛾 be a channel. For any execution of the process network, the
history of 𝛾 is the (possibly infinite) sequence of all tokens that are written to the
channel.

Correspondingly, the input history of a process is the combination of the histor-
ies of all its incoming channels and its output history that of its outgoing channels.
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Furthermore, the following notations shall be used. Let 𝒜 be an alphabet of tokens.
Then 𝒜 ∗ denotes the set of all finite and infinite sequences of arbitrary length over
𝒜, including the empty sequence. For two sequences 𝑋, 𝑌 ∈ 𝒜∗, the notation 𝑋 ⊑ 𝑌
means that 𝑋 is a prefix of 𝑌, i.e. |𝑋 | ⩽ |𝑌 | and 𝑋𝑖 = 𝑌𝑖, 1 ⩽ 𝑖 ⩽ |𝑋 |. In particular, the
empty sequence is a prefix of any sequence.

A function 𝑓 ∶ 𝒜 ∗
1 → 𝒜 ∗

2 , with 𝒜1, 𝒜2 two alphabets, is called monotonic if
𝑋 ⊑ 𝑌 ⟹ 𝑓 (𝑋) ⊑ 𝑓 (𝑌 ).

The definition of monotonicity for functions with multiple arguments and/or
returned sequences is analogous: The prefix property is extended to tuples of se-
quences such that a tuple is the prefix of another if each of its sequences is the
prefix of the corresponding sequence in the other tuple. A monotonic function then
maintains the prefix relation of two tuples when applied to them.

With these prerequisites, a Kahn process can be formally described as a mono-
tonic1 function assigning its input history to its output history.
Example 2.2. Consider the process Echo from Example 2.1 on the preceding page.
Assuming an alphabet 𝒜, it can be described as

Echo ∶ 𝒜 ∗ → 𝒜 ∗, Echo(𝑋) = 𝑋 .

This is the formal descriptionwhich Kahn uses for describing and analysing Kahn
processes. It is, however, not fully equivalent to the previous definition of Kahn
processes as sequential programs. In fact, it includes a larger set of processes, as the
following example shows.
Example 2.3. Consider the Echo process from before. Two Echo processes are now
merged into a single process named Echo2.

Using the formal description, Echo2 could simply be declared as

Echo2 ∶ 𝒜 ∗ × 𝒜 ∗ → 𝒜 ∗ × 𝒜 ∗, Echo2(𝑋1, 𝑋2) = (𝑋1, 𝑋2) .

A possible attempt to specify Echo2 as a Kahn process according to Definition 2.2
might look like Algorithm 2.2. It is, however, not fruitful, as the following consid-
erations show.

Assume the input sequences 𝑋1 = [1] and 𝑋2 = [1, 1, 1, …] are provided to the
Echo2 process.The formal description functionwould return𝑋1 and𝑋2 as expected.
Now consider the actual specification. In the first iteration of the loop, from each
channel one token would be copied. In the second iteration, however, 𝑋1 is empty
and the read operation on it would block infinitely. The returned sequences would
therefore be [1] and [1], which is different from the input. Since Kahn processes are
1For the sake of simplicity, this definition is weaker than that of Kahn (monotonic vs. “continuous”). It

is, however, sufficient for the considerations in this work.
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Algorithm 2.2: Failed specification attempt for the Echo2 process

process Echo2 (in channels: 𝑋1, 𝑋2; out channels: 𝑌1, 𝑌2)
while true do

𝑥 ← Read (𝑋1)
Write (𝑌1, 𝑥)
𝑥 ← Read (𝑋2)
Write (𝑌2, 𝑥)

end
end

not allowed to know which channel is empty and which is not, there is no way of
avoiding this problem. Thus, Echo2 cannot be specified as a Kahn process.

As it was mentioned earlier, there are different definitions of KPNs. For instance,
[LP95] considers all monotonic functions to be Kahn processes, i.e., Echo2 would
be a Kahn process according to that definition. While this approach is suitable for
formal analysis, the functional description of Kahn processes does not give any hints
on how to specify or implement such processes in practice, given in particular that
monotonic functions can express any amount of concurrency. Those aspects, how-
ever, play an important role in this work. Therefore, while it is acknowledged that
[Kah74] leaves room for both interpretations of KPNs, this work adopts the notion
of Kahn processes being sequential programs, as it was given in Definition 2.2.

2.1.1.3 Properties of KPNs

With the notions from above, the following characteristics of KPNs can be derived.

Determinacy: Kahn processes are determinate [Kah74], i.e., for any given input
history, they will always produce the same output history. The property of
determinacy holds for each KPN as a whole. This is what makes KPNs par-
ticularly interesting for parallel programming, since a relatively small set of
requirements in the implementation (correctmessage passing, blocking reads)
guarantees correct execution independently of timing conditions.

Composability: Inside a KPN, multiple processes and the channels between them
can be merged into one process. This process can then can be described by a
monotonic function [Kah74] and therefore holds all the properties of a Kahn
process. However, in general it cannot be specified as a sequential program,
as Example 2.3 showed.
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Parallelism: Because of the multiple independent processes, concurrency is expli-
cit in the model and therefore easily accessible to automation and optimisa-
tion tools.

Analysability: Kahn processes are Turing-complete sequential programs to which
the halting problem applies. Yet, even the networks by themselves can become
Turing complete already with very simple processes [Buc93]. Therefore, the
possibilities for automatic analysis of KPNswith compilation tools are limited.
In particular, it is impossible in general to decide at compile time whether the
memory consumption of a KPN will remain bounded [Par95].

2.1.1.4 Implementation models for KPNs

Until now, the KPN specification model has been presented and the characteristics
of KPNs have been discussed. In this work, however, KPNs are important mostly
with respect to the implementation of parallel programs.Therefore, implementation
models, methods and characteristics of those networks shall be discussed in this
section. The focus will be on typical models for efficient execution on multi-core
platforms; other approaches, which for instance support unfolding of recursive KPN
definitions at runtime [KM76], shall be omitted here.

Overall, the implementation of KPNs is mostly straightforward. Since the pro-
cesses are specified as sequential programs, they can simply be compiled by a con-
ventional compiler. Read and write directives can be implemented by an applica-
tion programmers’ interface (API) that provides functions for these purposes. These
functions need to implement communication: either in form of sending and receiv-
ing data through a network, network on chip etc. (message passing) or by storing
and loading in a local memory. In the latter case, correct synchronisation between
the processes must be ensured.

Once the processes are implemented, their execution must be scheduled. Simple
options include having one process per processor core or relying on multithreading
functionality provided by an operating system. It is also possible, however, to ex-
ecute multiple or even all processes on one single processor in a single thread, for
instance by executing one process until it blocks and then switching to the next.

Finally, the channels need to be implemented as well. Since these are of infinite
size in the specification, care must be taken not to infringe on the semantics of
the original program when dimensioning the (finite) buffers that implement the
channels. As already discussed, it is not possible to predict at compile time how
large the channels need to be for correct program execution (i.e. for retaining the
specified program semantics). The following solution approaches address this issue,
but none in a fully satisfying way.
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• Dynamically adjusting the buffer sizes as needed [Par95; BH01]. This method
is hard to implement on embedded systems. Moreover, since it is limited by
the available resources, buffer dimensioning can fail at runtime.

• Dimensioning the buffers according to a pre-compilation instrumentation
run [LC10]. This does not guarantee correct execution in all cases.

• Adding buffer sizes to the specification [Thi⁺07; Sch⁺12]. This obviously en-
sures that the KPN executes as specified, but offloads the non-trivial task of
buffer dimensioning on to the programmer.

In summary, most of the tasks related to implementing KPNs are easy to accomplish,
but some challenges need to be addressed in practice in the individual cases.

2.1.2 Dataflow Graphs
Apart from KPNs, a second concept has become popular for describing parallel
programs: Dataflow graphs are a family of process network types consisting of
Synchronous Dataflow (SDF) graphs [LM87] and generalisations thereof (e.g. cyclo-
static dataflow [Bil⁺96] or boolean dataflow [Lee91]). SDF, in turn, is derived from
the “model for parallel computations” by Karp and Miller [KM66].

SDFs are process networks with so-called actors as computational elements. An
SDF actor, unlike a Kahn process, is not an infinitely running program. Instead, it
repeatedly performs one atomic operation called firing, which consists of destruct-
ively reading fixed amounts of tokens from the input channels, processing them
and writing a fixed amount of tokens on the output channels. An SDF actor also
does not have a state, i.e., no information is stored between the firings. However,
a “self-edge” (an edge having the same actor as source and target) can be used to
model such a state. Due to the simple communication patterns of the actors, initial
tokens that can be placed on the channels before execution of the network play a
larger role in SDF graphs than in KPNs.

The SDF model of computation is often referred to as a specialisation of the KPN
model. This is correct when only the specification models are considered. Each SDF
actor can be expressed as a Kahn process (in an infinite loop, read the inputs, pro-
cess them, write the outputs) and therefore each SDF graph can also be specified as
a KPN. When it comes to implementation, however, implementation models exist
for SDF which exploit the potential of SDF graphs better than the KPN implementa-
tion models. One reason is the SDF actors being stateless and the resulting intrinsic
parallelism. This parallelism allows the simultaneous execution of multiple firings
of the same actor. KPN implementation models do not account for such parallelism,
since a Kahn process is a sequential program. Other reasons are that actor firings
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can be scheduled statically and context switching overhead can be avoided due to
the stateless nature of the actors.

Generalisations of SDF can be described — as [LP95] points out — as actors which
can fire different actions (i.e. input/output token counts as well as input-to-output
assignment may differ). Firing rules determine which action is actually fired. For
instance, cyclo-static dataflow actors consist of a tuple of actions, which are fired
repeatedly in the same order. Note that this introduces a (predictable) state to the
actors which needs to be considered by the implementationmodel. Boolean dataflow
actors have two actions; boolean tokens on one input channel determine which of
them is fired. Boolean dataflow graphs are already Turing complete [Buc93]. All of
these extensions can be expressed by the KPN specification model. Further gener-
alisations with more generic firing rules are proposed in [LP95].

Another model of computation that is often seen in the tradition of dataflow
graphs is given by the CAL actor language, which shall be the subject of the next
section.

2.2 Executing CAL actors as KPN processes

After the theoretical considerations on different specification and implementation
models from the last section, this section will show the impact and implications
of using different implementation models in the concrete case of the CAL actor
language as compared to Kahn process networks. As will be shown, changing im-
plementation models can not only have a strong influence on performance, but
also help to uncover flaws in program specifications. The necessary prerequisites
for such a change will be discussed as well as possible disadvantages. The results
presented here were obtained in collaboration with Jani Boutellier, James Guthrie
and Lars Schor.

2.2.1 Introduction

The antagonism between expressivity and analysability has led to a number of dif-
ferent types of process networks, which provide different degrees of freedom to the
programmer.

As opposed to KPNs, certain extended dataflow models allow non-determinacy
and other features, however at the price of static analysability and thus a potentially
less efficient implementation. An example for this kind of dataflow networks is the
CAL actor language [EJ03], a subset of which named RVC-CAL [MAR10] has been
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standardized by ISO/IEC 23001-4:2009 MPEG to specify multimedia applications.
Since it represents a very generic kind of dataflow, we will take it as a reference for
dataflow actors in this section.

Other than the dataflow models described in the last section, CAL allows, for in-
stance, to fire different actions depending on the availability of data. Clearly, such
features enable higher expressiveness and flexibility. On the other hand, if an actor’s
behaviour depends on data availability, it may also depend on timing. Consequently,
an actor classification into either static, dynamic or time-dependent has been pro-
posed [WR12; Zeb⁺08].

KPNs, being always determinate, bring the benefit of a more efficient low-level
implementation. As a Kahn process is at any moment either computing or waiting
for input from a specific channel, it is easy to determinewhether the process is ready
for execution. For a dataflow actor, multiple rules and criteria have to be evaluated
first to achieve the same goal. This is one of the reasons why the KPN model has
been widely used in high-level synthesis frameworks for parallel systems as, for
instance, MAPS [LC10] or DAL [Sch⁺12]. Since even in non-determinate dataflow
specifications, many actors are in fact determinate, it appears favourable to ana-
lyse these actors for KPN compatibility in order to exploit the related optimisation
potential.

In this section, we present a formal method for translating KPN compatible data-
flow actors to Kahn processes. To this end, we first show that the aforementioned
classification into static, dynamic and time-dependent actors is inadequate for eval-
uating KPN compatibility. Afterwards, we propose an algorithm to classify a data-
flow actor as KPN compatible or potentially KPN incompatible (it tries to identify
sufficient conditions for KPN compatibility in a high number of real cases, the prob-
lem being undecidable in general). Based on this algorithm, we then propose a
method to translate a KPN compatible dataflow actor to a Kahn process. Finally,
we implement the proposed method in the RVC-CAL framework [Yvi⁺13] and show
that more than 75% of all actors of the RVC-CAL application suite [ORCAR] that
have left the active development stage can be proven to be KPN compatible by our
algorithm and that their execution time can be decreased by up to 1.97 x when ex-
ecuting them as Kahn processes instead of dataflow actors. In amanual classification
effort, we analyse the KPN compatibility of all these actors and discover a high ac-
curacy of the proposed method. We list the different patterns and situations leading
to KPN incompatibility or non-recognition of KPN compatibility.

The remainder of the section is organized as follows. In Section 2.2.2, an overview
on CAL is given. In Section 2.2.3, we describe the proposed translation technique.
Experimental results are presented in Section 2.2.4. Finally, we review related work
in Section 2.2.5.
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Algorithm 2.3: Illustration of the behaviour of a dataflow actor 𝛼.

while true do
𝐴∗
𝛼 ← {𝑎 ∈ 𝐴𝛼

|| 𝑎 can be fired }
if 𝐴∗

𝛼 ≠ {} then
𝑎∗ ← argmax

𝑎∈𝐴∗
𝛼
𝑞𝛼(𝑎)

fire 𝑎∗

end
end

2.2.2 Background
In this section, the CAL programming model is introduced in detail. Afterwards,
compatibility between CAL actors and Kahn processes is defined and the problem
to be solved is formulated.

2.2.2.1 Dataflow Actors

An overview of different dataflow models has been given in Section 2.1.2. This sec-
tion, as already mentioned, will concentrate on CAL, a very generic dataflow exten-
sion in which an actor may have a state and a set of different actions.

In order to properly define input and output of an action, we first introduce the
notion of a token set. A token set contains all tokens that are read or written by an
action; they are represented by their position immediately before or after firing, e.g.
the second token to be read from a specific input channel or the fifth token to be
written to a specific output channel during the firing. As FIFO channels only allow
in-order accesses, all the token positions on a specific channel must form a sequence
without any gaps in it. Formally, we define a token set as follows.

Definition 2.4. Let Γ be a set of channels and 𝜈 ∶ Γ → ℕ0 a function as-
signing each channel 𝛾 ∈ Γ a number of tokens to be read from or written
to it. Then the token set 𝜓 over Γ defined by 𝜈 is a set of token positions
𝜓 = {(𝛾 ∈ Γ, 𝑛 ∈ ℕ) || 𝑛 ≤ 𝜈(𝛾)}. Ψ(Γ) is the set of all token sets over Γ.

To be able to formally describe functions using these tokens as input or output, we
introduce the notion of a value space:

Definition 2.5. The value space 𝑉 (𝜓) of a token set 𝜓 is the set of all possible
combinations of values which the tokens represented in 𝜓 can have.
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Now, we formally define an actor as a stateful computational element with a prior-
itised set of actions it can fire.

Definition 2.6. An actor is a tuple 𝛼 = (𝑆𝛼, 𝐴𝛼, 𝑞𝛼, 𝑠0𝛼), with 𝑆𝛼 the set of possible
states of the actor, 𝐴𝛼 a set of actions for the actor, 𝑞𝛼 ∶ 𝐴𝛼 → ℕ a function
assigning each action a priority and 𝑠0𝛼 ∈ 𝑆𝛼 the initial state.

We consider the states of an actor to be an arbitrary combination of variables of
any kind. This means in particular that the state set of an actor does not have to be
finite.

We define an action as follows:

Definition 2.7. Let 𝛼 be an actor with 𝐼𝛼 the set of its incoming and 𝑂𝛼 the set of
its outgoing channels. An action for this actor is a tuple 𝑎 = (𝑟𝑎, 𝑤𝑎, 𝑓𝑎, 𝑔𝑎) with
𝑟𝑎 ∈ Ψ(𝐼𝛼) and 𝑤𝑎 ∈ Ψ(𝑂𝛼) the input and output token sets, 𝑓𝑎 ∶ 𝑆𝛼 × 𝑉 (𝑟𝑎) →
𝑆𝛼×𝑉 (𝑤𝑎) the fire function and 𝑔𝑎 ∶ 𝑆𝛼×𝑉 (𝑟𝑎) → {true, false} the guard function
of the action.

The action 𝑎 can be fired if:

1. all input tokens according to 𝑟𝑎 are available and

2. 𝑔𝑎 evaluates to true for the current state and the available input tokens.

Upon firing, it will destructively read the input tokens (i.e. all tokens in 𝑟𝑎) from
the channels, evaluate 𝑓𝑎 for the current state and the tokens just read and use
its return values for updating the state of 𝛼 and for writing tokens to the output
channels according to 𝑤𝑎.

Now we can define the behaviour of an actor 𝛼 as an infinite repetition of the
following operations: It will determine the set 𝐴∗

𝛼 ⊆ 𝐴𝛼 of actions that can be fired.
If this set is non-empty, the action 𝑎 ∈ 𝐴∗

𝛼 with the highest priority 𝑞𝛼(𝑎) will be
fired. If there are multiple actions with the same, highest priority that can be fired,
it is not defined which of those actions is fired. An illustration of this behaviour is
given in Algorithm 2.3.

In summary, for a dataflow actor, the actionwhich is fired (and thus the amount of
tokens read and written) can depend on the state of the actor, on the value of tokens
in the incoming channels and on the existence of tokens in the incoming channels.
A dataflow actor must therefore be able to non-destructively read the tokens on its
incoming channels (peeking). Furthermore, since there can be situations when the
action to be fired (and thus possibly the output to be produced) depends on which
token arrives first, actors can be non-determinate.
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Listing 2.1: An absolute value actor written in CAL.

actor Abs() int In ==> int Out: / / one channel in, one out
pos: / / action: reads a token i from In and writes it to Out

action In:[i] ==> Out:[i]

guard i >= 0 / / only fired if i is non-negative
end

neg: / / action: reads a token i from In and writes -i to Out
action In:[i] ==> Out:[-i]

guard i < 0 / / only fired if i is negative
end

end

Listing 2.2: A non-deterministic merge actor written in CAL.

actor NDMerge() / / two channels in, one out
int InA, int InB ==> int Out:

actionA: / / reads i from InA and writes it to Out
action InA:[i] ==> Out:[i]

end / / no guard

actionB: / / reads i from InB and writes it to Out
action InB:[i] ==> Out:[i]

end / / no guard
end

This dataflow model is implemented by the CAL Actor Language [EJ03] and its
standardised variant RVC-CAL [MAR10] 2. Listings 2.1 and 2.2 show two code ex-
amples written in RVC-CAL. The Abs actor in Listing 2.1 has two actions pos and
neg. Both read one token from the input channel In and write one token to the
output channel Out. The guard expressions 𝑖 ≥ 0 and 𝑖 < 0, respectively, ensure
that, depending on the value of the token at the FIFO head of In, only one of both
actions can fire. This actor is determinate. For comparison, the two actions of the
NDMerge actor in Listing 2.2 have no guards specified, i.e. their guard function
always evaluates to true. Therefore, actionA and actionB can fire whenever a
token is available at InA and InB, respectively, forwarding this token to Out.
2The model and (RVC-)CAL differ in that (RVC-)CAL does not require the specification of priorities.

Also, the latter are specified as partial orders, i.e. one only defines e.g. 𝑞(𝑎1) > 𝑞(𝑎2). The slightly
simpler notation we chose does, however, cover all the cases required for this chapter, since multiple
actions can still have the same priority number.
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Listing 2.3: Example for a determinate, but not KPN compatible actor.

actor DeterminateNotKPN()

int InA, int InB, int InC ==> int Out:

actionA: action InA:[a], InB:[b] ==> Out:[a]

guard a>0 && b>0 end

actionB: action InB:[b], InC:[c] ==> Out:[b]

guard b<=0 && c>0 end

actionC: action InA:[a], InC:[c] ==> Out:[c]

guard a<=0 && c<=0 end

actionX: action InA:[a], InB:[b], InC:[c] ==>

guard (a<=0 && b>0 && c>0) ||

(a>0 && b<=0 && c<=0) end

end

𝑏 ≤ 0 𝑏 > 0
𝑎 > 0

𝑎 ≤ 0
𝑐 > 0 𝑐 ≤ 0 𝑐 > 0

ActionB
ActionX

ActionC

ActionA

ActionX

Figure 2.1: A Karnaugh map showing the actions to be fired for the actor from Listing 2.3,
depending on the input token combination.

2.2.2.2 Problem Statement

In the following, we will define the problem to be solved in this section. To this end,
we first define when an actor and a process can be regarded as equivalent.

Definition 2.8. Let 𝛼 be a dataflow actor according to Definition 2.6 and 𝜋 be a
Kahn process as specified in Definition 2.2. 𝛼 and 𝜋 are functionally equivalent
iff for any equal input history, 𝛼 and 𝜋 always produce equal output histories.

The problem regarded in this section can now be formulated as follows:

Given a dataflow actor 𝛼. Is there a functionally equivalent Kahn process
𝜋 and, if so, how can it be constructed?

The following examples shall illustrate the complexity of the problem. Of course,
the actor in Listing 2.1 is KPN compatible while the actor in Listing 2.2 is non-
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determinate and thus clearly not KPN compatible. However, things are more com-
plicated for the actor shown in Listing 2.3 on the previous page. The Karnaugh map
in Figure 2.1 on the preceding page shows the different actions to be fired for each
combination (a, b, c) of the first tokens to be read from each of the input channels
(provided that they exist). Since none of the guards overlap in the diagram, the ac-
tion to be fired can be clearly determined from the values of the tokens and does not
depend on priorities or the availability of tokens. The behaviour of the actor is thus
determinate. Although some actions can still be fired if one of the channels is empty,
this will only happen if the respective action would also be fired if the channel was
filled.

This feature, however, cannot be achieved with KPN: A Kahn process would
have to choose one channel to read from without knowing about the availability
of tokens. If, for instance, this channel was InA, the process would block on an in-
finite sequence of negative integers on InB and of positive integers on InC if InA
remained empty. This, however, is not the behaviour of the given actor. In other
words, this actor is determinate but KPN incompatible3. A graphical interpretation
of this example is that it is impossible to split the Karnaugh map at the borders for
a, b or c without cutting through one of the action guards.

This example shows that the problem regarded in this work is not the same as
the problem of classifying an actor as time-dependent or not, which was discussed,
e.g., in [WR12].

2.2.3 Translating Dataflow Actors to Kahn Processes
In this section, we discuss the translation of dataflow actors to Kahn processes.
While the two-step procedure we propose consists of a KPN compatibility eval-
uation and a subsequent Kahn process construction, our compatibility analysis
method is constructive and thus works the other way round: We first construct
a Kahn process imitation of the dataflow actor, i.e., a Kahn process that tries to
produce the same output as the dataflow actor. Afterwards, if we can show that
this process is functionally equivalent to the actor, we have proved the actor’s KPN
compatibility.

Obviously, this approach cannot detect all cases of KPN compatibility (that prob-
lem is undecidable [Zeb⁺08]). However, we will show in the next section, using a
state-of-the-art dataflow benchmark suite with 381 actors, that the method works
for a large subset of KPN compatible dataflow actors in real applications.

The section continues by showing how to build the mentioned Kahn process imit-
ation of a given dataflow actor. For given input sequences, we establish criteria that
3Note the actor could be described by amonotonic assignment as discussed in Section 2.1.1.2. According

to our Definition 2.2, however, this is not sufficient for KPN compatibility.
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Algorithm2.4: Template for a Kahn process translation 𝜋 of a dataflow actor 𝛼.The template
uses initial state 𝑠0𝜋 = 𝑠0𝛼 and an action set 𝐴𝜋 = 𝐴𝛼.

𝑠 ← 𝑠0𝜋
while true do

// Find next action to be fired
𝑎 ← SelectNextAction (𝑠, 𝐴𝜋)
// Fire the action
𝑖𝑛 = ReadInputTokens (𝑟𝑎)
(𝑠, 𝑜𝑢𝑡) ← 𝑓𝑎(𝑠, 𝑖𝑛)
WriteOutputTokens (𝑤𝑎, 𝑜𝑢𝑡)

end

guarantee functional equivalence in the concrete cases. Afterwards, we will show
a formalisation of this approach in which we statically analyse if these require-
ments are met for all possible inputs, thereby establishing a sufficient condition for
KPN compatibility. Finally, we will discuss different translation implementations
and compare the efficiency of the produced code.

2.2.3.1 Constructing a Kahn Process from a Dataflow Actor

In the following, we propose a method to build a Kahn process imitating the func-
tionality of a given actor. The difficulty is that in contrast to the dataflow actor,
the constructed Kahn process can only access the input channels using blocking,
destructive reads.

We propose to construct the process using the template shown in Algorithm 2.4.
The behaviour of the process can be described as an endless loop, each iteration
consisting of two operations: Finding the next action to fire and actually firing
it. As firing a dataflow action can be done natively in a Kahn process, the only
difficulty lies in finding the correct action to fire, i.e. in determining the function
SelectNextAction. The following theorem shows that functional equivalence
between such a Kahn process and a dataflow actor can be attained if for any input,
the sequence of actions fired by the process is same as with the actor.

Theorem 2.1. Let 𝛼 be a dataflow actor and let 𝜋 be a Kahn process constructed
according to the template given in Algorithm 2.4. 𝜋 is functionally equivalent to 𝛼 if
for any input history, 𝜋 and 𝛼 always fire the same actions in the same order.

Proof. From Definition 2.8, we know that 𝜋 and 𝛼 are functionally equivalent if
both generate the same output history for any given input history. According to the
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process template, the operation of finding the next action neither alters the process
state nor produces any output. Anything that can influence the output therefore
has to happen when firing actions. Thus, 𝜋 and 𝛼 are functionally equivalent if they
always fire the same actions on the same input sequence. ∎

The challenge is now to be able at any moment to determine which action the actor
will fire without knowing about the availability of tokens or their content. In gen-
eral, this is not always possible for dataflow actors where, for instance, actions can
be fired or not depending on the availability of tokens or their values. However, for
a large group of actors, there are possibilities of exploiting certain properties of the
action guards.

• In general, guard functions do not depend on the full input token set of the
associated action. In particular, many guard functions only depend on the
state of the actor and can thus be evaluated without reading any tokens.

• Actions may have common input tokens. The Abs actor in Listing 2.1 on
page 22 shows a typical example of this situation: There are two different
actions, both with guards that peek an input token. However, both of these
guards peek the same input token, and one of these two actions must fire next.
Consequently, the token will be read in any case and can thus be prefetched.
After reading it, the process can decide which action to fire and pass the token
on to it.

• Oftentimes, the return values of guards can be predicted without knowing all
of the required input tokens. If, for instance, a guard function is a boolean
and combination of multiple terms, the result will always be false if only
one of these terms evaluates to false. In this case, the input tokens for the
other terms are not required to know that the guard is not met.

These ideas can now be combined to an algorithm for determining the action which
is to be fired next, i.e. an implementation of SelectNextAction in Algorithm 2.4.
For this, we assume that for each guard 𝑔, there is function predict⟨𝑔⟩ (…), which,
provided with the state of the actor and the values of the input tokens prefetched
so far, evaluates to true, false or unknown. The following theorems shall provide
a theoretical basis for the operation of the SelectNextAction algorithm.

First, we show that if the guard of a given action within a dataflow actor can be
predicted to false, this action will not be fired next, independently of any additional
input tokens that may arrive.

Theorem 2.2. Let 𝛼 be an actor and 𝑎 ∈ 𝐴𝛼 be an action, with predict⟨𝑔𝑎⟩ evaluating
to false. Then 𝑎 will not be the next action fired by 𝛼.
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2.2 Executing CAL actors as KPN processes

Proof. If predict⟨𝑔𝑎⟩ (and thus 𝑔𝑎) evaluates to false, 𝑎 cannot be fired. The return
value of 𝑔𝑎 depends on the state of the actor and on certain input tokens. Both can
only be changed when firing an action. So another action has to be fired first before
𝑔𝑎 can evaluate to true. ∎

Now we will analyse which tokens the constructed Kahn process can prefetch at a
given moment without losing functional equivalence to the original dataflow actor.
The difficulty here is to avoid additional blocking which is not there in the original
actor. Such a blocking could be induced by a (blocking) read operation in the Kahn
process.

Theorem 2.3. Let 𝛼 be an actor to be translated to a Kahn process 𝜋. Let 𝐴 ⊆ 𝐴𝛼 be
a set containing all actions the guards of which are predicted to true or to unknown.
Then 𝜋 can prefetch all tokens from the prefetch token set of 𝐴, ⋂

𝑎 ∈𝐴
𝑟𝑎, without losing

the functional equivalence to 𝛼.

Proof. According to Theorem 2.2, only elements of 𝐴 are eligible to be fired next.
Each of these actions 𝑎 ∈ 𝐴 needs all tokens out of its input token set 𝑟𝑎 before it can
be fired. Therefore, 𝛼will not fire any action until those tokens which are contained
in all of these input token sets have been fetched. A Kahn process prefetching any
token from the prefetch token set will thus never be blocked for longer than 𝛼 will.
When in control again, it can continue imitating 𝛼. ∎

With these prerequisites, we can now describe a possible implementation of
SelectNextAction for the imitation of an actor 𝛼. The algorithm performs an
iterative reduction of a set 𝐴 of actions and can be summarised by the following
steps:

0. Start with 𝐴 = 𝐴𝛼.

1. Prefetch all tokens from the prefetch token set of 𝐴.

2. If the guard of an action from 𝐴 is predicted to false considering all
prefetched tokens, remove the action from 𝐴.

3. Iterate steps 1 and 2 until convergence. (Since𝐴 can only shrink, convergence
is guaranteed.)

Once the iteration has converged, there are two possibilities: If all input tokens of
the action in 𝐴 with the highest priority have been prefetched, this action is to be
fired next. Otherwise, the next action to be fired cannot be determined using this
method.
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Table 2.1: Example actions of an example dataflow actor with the state 𝑠 ∈ ℕ and the input
channels 𝑋 and 𝑌. 𝑋[0] is the first token the actor receives when reading from 𝑋, 𝑋[1] the
second token etc. The actions’ priorities increase with increasing numbers.

Action Input tokens Guard Priority

𝑎1 — 𝑠 = 1 1
𝑎2 𝑋[0], 𝑋 [1], 𝑌 [0] 𝑠 = 2 ∧ 𝑋[1] > 0 ∧ 𝑌 [0] > 0 2
𝑎3 𝑋[0] 𝑠 = 2 ∧ 𝑋[0] = 1 3
𝑎4 𝑋[0], 𝑋 [1], 𝑌 [0] 𝑠 = 2 ∧ 𝑋[0] = 2 ∧ 𝑋[1] ⋅ 𝑌 [0] ⩽ 0 4
𝑎5 — 𝑠 = 3 5
𝑎6 𝑌[0] 𝑠 = 3 ∧ 𝑌 [0] < 0 6

We will illustrate this algorithm for the example actor given in Table 2.1. The
actor has a rather simple state 𝑠 ∈ ℕ and two input channels, 𝑋 and 𝑌. Each of the
actions 𝑎𝑘, 𝑘 ∈ {1, … , 6} has a different priority 𝑞(𝑎𝑘) = 𝑘 (this is not necessarily the
case in practice). Assuming that 𝑠 = 2 and the input tokens on both X and Y are
1, 2, 3, 4, 5, ..., the algorithm would behave as follows:

• Initialisation: 𝐴 = {𝑎1, … , 𝑎6}. No tokens to prefetch. Since 𝑠 = 2, 𝑎1, 𝑎5 and
𝑎6 can be eliminated (i.e. removed from A).

• First iteration: 𝐴 = {𝑎2, 𝑎3, 𝑎4}. Prefetch 𝑋[0]. Since 𝑋[0] = 1, 𝑎4 can be elim-
inated.

• Second iteration:𝐴 = {𝑎2, 𝑎3}. No further tokens can be prefetched. No further
eliminations are possible.

In this case, the algorithm stops with 𝐴 = {𝑎2, 𝑎3}. Since all input tokens of 𝑎3 have
been prefetched and its guard evaluates to true, 𝑎3 can be fired. 𝑎2 is also still a
candidate but cannot be fired yet because some of its input tokens are still missing.
Since, however, 𝑎3 has the higher priority and can be fired, the actor will fire 𝑎3,
independently of 𝑎2. Thus, in this case the algorithm is able to determine 𝑎3 as the
next action to be fired. For other actor states or inputs, however, the situation may
be different. Clearly, the constructed Kahn process is only functionally equivalent
to the original actor if the next action to fire can be determined for any actor state
and input. This is expressed in the following theorem.
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Theorem 2.4. Let 𝛼 be an actor to be translated to a Kahn process 𝜋 using the method
described above. 𝛼 and 𝜋 are functionally equivalent if the proposed implementation
of SelectNextAction is able to determine the next action to fire for any state of the
actor and of the input channels.

Proof. The correctness of the operations applied by the algorithm has been proven
in Theorems 2.2 and 2.3. Therefore, the set 𝐴∗

𝛼 of actions that can be fired at a given
moment is a subset of the set𝐴 of candidates obtained by the algorithm. If the action
in𝐴with the highest priority can be fired, it is (i) an element of𝐴∗

𝛼 and (ii) the action
with the highest priority in 𝐴∗

𝛼 , since 𝐴∗
𝛼 ⊆ 𝐴. 𝜋 will thus fire the same action as 𝛼.

If this method works for any state and input combination, 𝜋 and 𝛼 will always
fire the same actions and are therefore functionally equivalent, which follows from
Theorem 2.1. ∎

2.2.3.2 Classification of Dataflow Actors

So far, we have seen a technique to construct a Kahn process from a dataflow actor. It
tries to determine at runtime the next action to be fired. Only if this always succeeds,
a correct translationwas obtained and the actor can be shown to be KPN compatible.
In the following, we present a static analysis method that determines if this holds
true by systematically checking all possible outcomes of the SelectNextAction
function introduced previously.

To this end, we construct a tree containing all possible operations that might
be performed by SelectNextAction, i.e. reducing the set of firing candidates and
prefetching tokens, depending on certain conditions that can be fulfilled or not. As
this tree gives information about which tokens are fetched in which order, we call
it the peek sequence tree (PST); a more formal definition is given later on.

For the example actor from Table 2.1, which was discussed above, the PST is
given in Figure 2.2 on page 31. Every node in it represents a possible iteration of
SelectNextAction, with the set 𝐴 of firing candidates and the set 𝑃 of tokens to
be prefetched. The root node (marked as a) represents the initialisation step. The
outgoing edges of each node (i.e. those leading further away from the root node)
represent the different possibilities of how SelectNextAction may proceed, lead-
ing to the next iteration step in the respective cases. They are annotated with a
condition to be met such that the edge is followed. Since the prefetch token set of
the root node is empty, the conditions leading away from it only contain the actor
state 𝑠. The edge annotations further down will also have conditions concerning the
prefetched tokens. Note that all these conditions are mutually exclusive for edges
leaving the same node. However, they need not cover all possible cases, but only
those which are covered by the actions of the original actor.

29



Chapter 2 Implementation models

The leaves of the tree correspond to all possible outcomes of SelectNextAction:

• The iteration scenario discussed in Section 2.2.3.1 is represented by the path
a – c – e .

• Node b is a very straightforward case in which the action to fire is determined
only by the state of the actor.

• Nodes h, i and g represent cases in which, due to repeated token prefetching
and firing candidate elimination, only one action to fire is left.

• Finally, in the case of node d, the action to fire cannot be determined. This
is because action 𝑎6 has a higher priority than 𝑎5, but also needs more in-
put tokens. The actor would thus fire 𝑎6 if these tokens are available and 𝑎5
otherwise. The example actor regarded here is thus not KPN compatible.

• Another possible case, which does not occur in this example, is that of an
ambiguous actor specification. An actor is specified ambiguously if it has two
actions with the same priority, without mutually exclusive guards and if the
input token set of the one action is a subset of that of the other action. In
the PST, this would lead to a leaf with multiple actions of the same priority.
One possible way of handling this issue would be to arbitrarily give priority to
one of the actions.This is done in many backends as well as in [WR12]. In this
work, however, since our final goal is translation to a KPN process, we choose
a conservative approach and do not classify the actor as KPN compatible in
order to prevent a translation when the actor semantics as intended by the
programmer are not clear.

In the following, we will give the formal definition of a PST and we will show how
to construct it. To this end, we first discuss how the predict⟨·⟩ function introduced
earlier can be implemented. We do so by assuming that every guard is a boolean
and combination of multiple terms referred to as constraints. According to our fol-
lowing definition, a constraint requires a set of tokens (the peek tokens) in order to
be evaluated and it can be met or not, according to a boolean function:

Definition 2.9. Let 𝐼𝛼 be a set of input channels and 𝑆𝛼 a set of possible states of an
actor 𝛼. A constraint to an action for 𝛼 is a tuple 𝑐 = (𝑝𝑐, 𝑒𝑐)with 𝑝𝑐 ∈ Ψ(𝐼𝛼) a token
set of peek tokens and 𝑒𝑐 ∶ 𝑆𝛼 × 𝑉 (𝑝𝑐) → {true, false} the evaluation function.

The negation of a constraint 𝑐 is given as ̄𝑐 ∶= (𝑝𝑐, not(𝑒𝑐)). Likewise, the com-
bination of two constraints 𝑐 and 𝑑 is given as 𝑐 ∧ 𝑑 ∶= (𝑝𝑐 ∪ 𝑝𝑑, 𝑒𝑐 ∧ 𝑒𝑑).

With this definition, a guard can be expressed as the boolean and combination of
all elements in a set of constraints. Therefore, we can assign each action such a
set representing its guard. To be able to evaluate as many constraints as early as
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a 𝐴= {𝑎1, … , 𝑎6}
𝑃 = {}

b
𝐴= {𝑎1}
𝑃 = {}

𝑠 = 1

c 𝐴= {𝑎2, 𝑎3, 𝑎4}
𝑃 = {𝑋[0]}

𝑠=2

d
𝐴= {𝑎5, 𝑎6}
𝑃 = {}

𝑠 = 3

e 𝐴= {𝑎2, 𝑎3}
𝑃 = {}

𝑋[0] = 1

f 𝐴= {𝑎2, 𝑎4}
𝑃 = {𝑋[1], 𝑌 [0]}

𝑋[0]=2

g 𝐴= {𝑎2}
𝑃 = {𝑋[1], 𝑌 [0]}

𝑋[0] ∉ {1, 2}

h
𝐴= {𝑎2}
𝑃 = {}

𝑋[1]>0 ∧
𝑌 [0]>0

i
𝐴= {𝑎4}
𝑃 = {}

𝑋[1] ⋅ 𝑌 [0] ⩽ 0

Figure 2.2: The peek sequence tree for the actor described in Table 2.1 on page 28.The action
to be fired in each case is highlighted.
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possible and thus maybe to eliminate certain actions as firing candidates early on,
we would like to break down each guard into as many constraints with as small
peek token sets as possible.

Definition 2.10. Let 𝑎 be an action.The constraint set𝐶𝑎 of 𝑎 is a set of constraints
such that

⋀
𝑐 ∈ 𝐶𝑎

𝑐 = (𝑝, 𝑔𝑎), 𝑝 ⊆ 𝑟𝑎

and that for each constraint 𝑐 ∈ 𝐶𝑎, there are no two constraints 𝑐′, 𝑐′′ ≠ 𝑐 such that
𝑐′ ∧ 𝑐′′ = 𝑐.

In the example actor described in Table 2.1 on page 28, the guard of action 𝑎4 can
be decomposed to the constraint set

𝐶𝑎4 = { ({}, 𝑠 = 2) , ({𝑋[0]}, 𝑋 [0] = 2) ,

({𝑋[0], 𝑋 [1], 𝑌 [0]}, 𝑋 [1] ⋅ 𝑌 [0] ⩽ 0) }.

Our definition of a PST is now as follows:

Definition 2.11. A peek sequence tree (PST) for an actor 𝛼 is a tree 𝑇 = (𝑁 , 𝐿)
on which each node 𝑛 ∈ 𝑁 is annotated with a set of actions 𝐴(𝑛) ⊆ 𝐴𝛼 and each
edge 𝑙 ∈ 𝐿 is annotated with a constraint 𝑐(𝑙).

We define the prefetch token set of a node according to Theorem 2.3 on page 27:

Definition 2.12. Let 𝑛 be a node in a PST. Then its prefetch token set is

𝑃(𝑛) = ⋂
𝑎 ∈𝐴(𝑛)

𝑟𝑎 .

A PST 𝑇 = (𝑁 , 𝐿) must fulfil the following conditions: For each edge 𝑙 ∈ 𝐿 with
𝑛 ∈ 𝑁 being its parent (source) node, it must hold that 𝑝𝑐(𝑙) ⊆ 𝑃(𝑛). For any two
edges 𝑙, 𝑚 ∈ 𝐿 with a common parent node, it must hold that 𝑐(𝑙) and 𝑐(𝑚) cannot
be satisfied at the same time, i.e. 𝑒𝑐(𝑙) ∧ 𝑐(𝑚) ≡ false.

The rest of this section describes the construction of a PST for an actor 𝛼. This
procedure can be formalised as follows: A root node 𝑛0 is created with 𝐴(𝑛0) = 𝐴𝛼.
For each action 𝑎 ∈ 𝐴(𝑛0), the set of evaluable constraints 𝐶′

𝑎 = {𝑐 ∈ 𝐶𝑎 | 𝑝𝑐 ⊆ 𝑃(𝑛0)}
is determined and combined to the strictest evaluable constraint 𝑐′𝑎 = ⋀𝑐 ∈ 𝐶′

𝑎
𝑐, i.e.

the largest top-level sub-expression of 𝑔𝑎 that can already be evaluated with the
tokens available through prefetching. (If 𝐶′

𝑎 is empty, we have 𝑐′𝑎 = ({}, true).) For
action 𝑎4 from the example actor, the strictest evaluable constraint for the root node
is 𝑐′𝑎4 = ({}, 𝑠 = 2).
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From these 𝑘 ∶= |𝐴(𝑛0)| strictest evaluable constraints, each one can theoretically
be met or not, which in total gives 2𝑘 cases. These cases can be expressed as a set of
constraint combinations

𝐶theo(𝑛0) ∶= { ⋀
𝑎∈𝐴(𝑛0)

𝑥𝑎
|
|
|
|
𝑥𝑎 ∈ {𝑐′𝑎, 𝑐′𝑎}} .

For the example actor, the possible cases for the root node are

• 𝑠 = 1 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 3 ∧ 𝑠 = 3,
• 𝑠 = 1 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 3 ∧ 𝑠 = 3,
• 𝑠 = 1 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 3 ∧ 𝑠 = 3,
• …

As constraints are often related and some contradict each other, not all of the com-
binations are satisfiable, as clearly seen in the example. Using a satisfiability modulo
theories (SMT) solver, which is also provided with the set 𝑆𝛼 of possible states of 𝛼,
one can eliminate the unsatisfiable combinations. Also the case that none of the
constraints is met can be eliminated, since this case is not covered either in the ori-
ginal actor. In the example, all of the 26 = 64 possibilities are eliminated except for
three:

• 𝑠 = 1 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 3 ∧ 𝑠 = 3
• 𝑠 = 1 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 3 ∧ 𝑠 = 3
• 𝑠 = 1 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 2 ∧ 𝑠 = 3 ∧ 𝑠 = 3

These combinations obviously simplify to 𝑠 = 1, 𝑠 = 2 and 𝑠 = 3, which have been
noted down in Figure 2.2 on page 31. In the real implementation, the number of
satisfiability evaluations can be reduced by applying various optimisations that shall
not be discussed here.

For each of the cases that have not been eliminated, a child node is inserted.
The edge to it is annotated with the constraint combination corresponding to the
case. The child node itself is annotated with the set of all actions for which the
strictest evaluable constraint was assumed to be met in the constraint combination.
See Figure 2.2 on page 31 for the example actor.

For all the child nodes, the same procedure is carried out recursively. However,
only constraints that could not be evaluated before are regarded now. The old con-
straints are taken into account by combining all constraints of the edges that lead
from the root node to the current node and by adding this combination as an ad-
ditional constraint for the SMT solver. As soon as only one child node would be
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Table 2.2: Satisfiability calculations for the PST in Figure 2.2 on page 31 at node c . The
constraint “true” comes from action 𝑎2, which also reads 𝑋[0], but does not put a constraint
on it.

Actions Constraint combination Eliminate?

{} 𝑠 = 2∧true∧𝑋[0] = 1∧𝑋[0] = 2 Yes, empty set
{𝑎2} 𝑠 = 2∧true∧𝑋[0] = 1∧𝑋[0] = 2 No, retain
{𝑎3} 𝑠 = 2∧true∧𝑋[0] = 1∧𝑋[0] = 2 Yes, unsatisfiable
{𝑎2, 𝑎3} 𝑠 = 2∧true∧𝑋[0] = 1∧𝑋[0] = 2 No, retain
{𝑎4} 𝑠 = 2∧true∧𝑋[0] = 1∧𝑋[0] = 2 Yes, unsatisfiable
{𝑎2, 𝑎4} 𝑠 = 2∧true∧𝑋[0] = 1∧𝑋[0] = 2 No, retain
{𝑎3, 𝑎4} 𝑠 = 2∧true∧𝑋[0] = 1∧𝑋[0] = 2 Yes, unsatisfiable
{𝑎2, 𝑎3, 𝑎4} 𝑠 = 2∧true∧𝑋[0] = 1∧𝑋[0] = 2 Yes, unsatisfiable

inserted for a node, the recursion is stopped. Table 2.2 shows the procedure for
node c in the PST for the example actor. The constraint “inherited” from above is
𝑠 = 2; it is therefore only added at the beginning of each combination.

We can upper bound the complexity of the proposed PST construction algorithm:

Theorem 2.5. For an actor with 𝑘 actions, the maximum number of nodes in the PST
is smaller than 21/2 (𝑘

2+𝑘).

Proof. If a child node has the same number of actions as its parents, no progress
is made and the recursion is stopped. Therefore, a child has in the worst case one
action less than its parent. In the worst case, the root node can have up to 2𝑘−1 child
nodes. Each of these child nodes can then have up to 2𝑘−1 − 1 children, which again
can have 2𝑘−2−1 children each and so forth. Multiplying these numbers, one obtains
the maximum number of leaves in the tree. Also counting the non-leaf nodes, one
has 1+(2𝑘−1)⋅(1 + (2𝑘−1 − 1) ⋅ (1 + …)) < (1+2𝑘−1)⋅(1+2𝑘−1−1)⋅... = 2𝑘 ⋅2𝑘−1⋯20 =
20+1+2+…+𝑘 = 21/2 (𝑘

2+𝑘). ∎

Note that this is an upper bound for pathological cases. In our experimental evalu-
ations with 381 real actors, the number of nodes stayed way below it in each case.
Section 2.2.4 will show that even for large actors, the tree can be constructed in an
acceptable time frame despite its theoretically exponential complexity. In extreme
cases, one could stop PST construction prematurely without a classification result.
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2.2.3.3 Constructing the translated Kahn process

With the results from the classification problem in mind, the solution to the trans-
lation problem is straightforward. If an actor has been classified as KPN compatible,
one just needs to construct a process as described in Section 2.2.3.1.

One can simply implement the SelectNextAction function as shown there for
determining the action to fire. This has the advantage that the complexity of this
algorithm is polynomial with respect to the number of actions.

In practice, however, more lightweight code can be generated directly following
the structure of the PST constructed during classification. For each node, prefetch-
ing code needs to be produced whereas each edge in the tree will be a branch in the
code. Like this, dynamic predictions of guards can be replaced by simple, hard-coded
if statements.

2.2.4 Experimental Results
In this section, we evaluate the performance of the proposed classification and trans-
lation algorithm using a state-of-the-art dataflow benchmark suite. The goal is to
answer the following questions:

• What percentage of realistic RVC-CAL actors does the proposed algorithm
classify as KPN compatible?

• What are the reasons for KPN compatible actors not being classified as such?

• Does the proposed translation of KPN compatible dataflow actors into Kahn
processes indeed improve the performance of streaming applications?

2.2.4.1 Experimental Setup

The proposed classification and translation algorithm has been implemented as
an extension to the Open RVC-Cal Compiler (ORCC) [Yvi⁺13] using the z3 SMT
solver [DB08]. The corresponding ORCC benchmark suite [ORCAR] contains a
total of 549 CAL actors. In order to provide meaningful data, current research
projects (i.e. immature work under construction) as well as overly simplistic
actors such as “hello world” examples have been left out from the evaluation.
With the exception of those, the proposed classification algorithm has been tested
on all available actors, 381 in total. In particular, the set of applications contains
various video decoders (H.265 part2, H.264 PHiP, H.264 CBP and MPEG-4 SP, AVS),
the JPEG and JPEG2000 image compression codecs, for telecommunications the
ZigBee transmitter baseband description and a digital predistortion filter [Gha⁺14],
a number of basic digital filters, a cryptographic library, a WAV audio player, a
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Figure 2.3: Overall comparison of the classification results of the algorithm of Wipliez and
Raulet (“W&R”) and that proposed in this section (“this”). The abbreviation “t.-d.” stands for
time-dependent ; “unsure” designates potentially KPN incompatible actors.

GZIP decompressor and implementations of several CHSTONE benchmark suite
applications.

The classification algorithm discussed above was run on an Intel Core i5-3210M
processor, as a single threaded implementation. The classification of all 114 actors
of the H.264 PHiP decoder, one of the most elaborate dataflow applications in the
benchmark suite and with several highly complex actors, took about 65 seconds.

2.2.4.2 Comparison to Other Classifiers

In the following, we evaluate the performance of the proposed classification al-
gorithm. To this end, we first regard the counts of the different classification results
for the algorithm proposed in this work and for the algorithm byWipliez and Raulet
(W&R) [WR12]. These numbers are given in Figure 2.3.

For W&R, the group (quasi) static combines the three possible results SDF, CSDF
and quasi-static [Bou⁺09], which are all KPN compatible by construction.

Actors are marked as time-dependent by the W&R classifier if it finds situations
similar to that in node d in Figure 2.2 on page 31. As explained in Section 2.2.3.2,
such actors are KPN incompatible. Note, however, that time-dependency is not the
same as non-determinacy; it is only a necessary condition for the latter.

Finally, all other actors are classified as dynamic, i.e. determinate but not (quasi)
static. These actors may or may not be KPN compatible.

The two classifiers regarded here cannot be compared directly for two reasons:
Firstly, the different classification categories and secondly, their different treatment
of ambiguous actor specifications as described in Section 2.2.3.2.TheW&R classifier
enforces (arbitrarily) a total priority ordering of all actions, which, in the extreme
case, leads to an actor being classified either as time-dependent or as quasi static,
depending on the order of the action specifications in the source code. The classifier
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we propose always classifies actors with ambiguous specifications as potentially
KPN incompatible.

Consequently, we have to look at the cases in closer detail:

• The results of the (quasi) static group of W&R can be confirmed by our al-
gorithm in so far as it classifies all of the concerned actors as KPN compatible.
The only exception is given by three ambiguously specified actors.

• The W&R classification of actors as time-dependent uses similar criteria to
those in the algorithm we propose. Accordingly, none of the actors classified
as time-dependent was classified as KPN compatible by the algorithm pro-
posed in this work. However, manual classification showed that more than a
quarter of these actors are KPN compatible, which was not recognised by the
algorithms. The reasons of W&R time-dependent misclassifications and their
frequency are similar to those for non-classifications in our algorithm, which
will be discussed later on in detail.

• Out of the actors classified as dynamic by W&R, 75 % were classified as KPN
compatible by the proposed algorithm. Another 7 % of these actors is KPN
compatible as well but were not recognised as such. Note that these rates do
not differ significantly from the overall KPN classification rate of 77 % with
additional 6 % not recognised. In other words, for the regarded set of actors a
W&R classification as dynamic does not provide information about the KPN
compatibility of an actor.

In summary, theW&R classifier can – leaving aside the ambiguously specified actors
– classify 185 out of 363 actors (or 51 %) with certainty as KPN compatible, whereas
the algorithm proposed in this work can do the same with 292 actors (or 80 %). The
number of recognised KPN compatible actors is thus 58 % higher.

2.2.4.3 Comparison to Manual Classification

In addition to the comparison with other classifiers, we also investigated on an ab-
solute scale the classification quality of the algorithm proposed in this work. To this
end, we undertook a manual classification effort of all the actors in the set.

Since the algorithm we propose guarantees KPN compatibility for all actors clas-
sified accordingly, we did not cross-check all of these actors manually, but we took
samples at random and were able to validate the correctness of the algorithm and
its implementation.

All actors which the algorithm did not classify as KPN compatible were checked
manually with the help of its output. Figure 2.4 on the next page shows the results of
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Figure 2.4:
Manual classification results
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Listing 2.4: Simplified example for a KPN compatible actor not recognised as such.

bool ax:=false, bx:=false, cx:=false;

a: action => guard !ax do ax := true; end

b: action => guard ax and !bx do bx := true; end

c: action => guard bx and !cx do cx := true; end

this manual classification effort.While 292 of the 381 actors were correctly classified
as KPN compatible, there are 23 more KPN compatible actors, which, however, were
not recognised as such. 66 actors are not KPN compatible for various reasons, which
will be discussed in Section 2.2.4.4. In summary, our classifier in 94 % of the cases
obtained the same result as an ideal classifier would. The optimisation possibilities
for the other 23 cases will be discussed below. Note that we classified all actors on
the basis of the given implementation, not on the basis of whether there could exist
a KPN compatible implementation of their functionality.

During manual classification, we analysed why KPN compatible actors were not
recognised as such. With the exception of one actor, which caused an error of the
SMT solver, the reason was always the determination of the actors’ state sets (𝑆𝛼
for an actor 𝛼). The implementation we used for the experiments is very simplistic:
It assumes all combinations of all possible values of the actor’s state variables to be
the set of states the actor can have instead of analysing the actions to find out which
values and which combinations thereof can actually be attained.

Listing 2.4 shows a simplified, but realistic example, in which there are three
actions a, b and c, each of which during execution sets a state variable to true to
indicate it has been fired. Their guards ensure no action is fired twice and each
action is only fired after the one above it. Thus, actions a, b and c are fired in exactly
that order. The classifier will, however, notice that the guards of actions a and c
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are not mutually exclusive since it cannot establish a link between the three state
variables. It will thus conclude that these two actions can be fired at the same time
and it will assume an ambiguous specification. Intelligent state analysis, however,
would yield that the combination ax=false and bx=true is not contained in
the state set of the actor. Using this information, the guards of actions a and c could
be recognised as mutually exclusive and the actor as KPN compatible.

2.2.4.4 Further results of manual classification

The manual classification also provided results concerning the nature of the KPN
incompatible actors. Although these results do not affect the classification perform-
ance of the algorithm proposed in this work, they can give hints about how it might
be used to aid programmers in writing actors or about which other classifications
might be desirable to have.

The actors analysed here can be divided into two groups: determinate but KPN
incompatible actors, which always produce the same output for the same input but
cannot be expressed as Kahn processes, and non-determinate or ambiguously spe-
cified actors, which may produce different output for the same input. Both groups
will be discussed in the following.

The group of determinate, yet KPN incompatible actors is quite diversified.
In addition to actors similar to that shown in Listing 2.3 on page 23, it features two
more kinds of actors.

One kind of actors performs multiple unrelated operations. These actors could, in
fact, be replaced by multiple Kahn processes. A (sequential) Kahn process as defined
in Definition 2.2, however, cannot produce this behaviour4.

Another kind of actors contains two sets of actions: The first set describes the
actor’s main behaviour and is completely KPN compatible. In parallel to it, the
second set has the task of pre-buffering input tokens in internal buffers of the actor.
This is a low-level optimisation with the idea that if the actor cannot perform the
main calculations, it can still use the time for pre-buffering data. While the order
and the firing counts of the actions thus vary, the output is still always the same
and these actors are determinate.
Non-determinate or ambiguously specified actors may produce different

output for the same input. However, the two groups differ in one point: While am-
biguous specifications should clearly be avoided, non-determinacy is sometimes ne-
cessary, for instance in the case of a video streaming application which has to react
to video input not arriving within a certain deadline.

From the semantics of each of the 20 non-determinate actors amongst the actors
regarded in this evaluation, however, it can be concluded that non-determinacy in
4 For an example, cf. the Echo2 actor in Example 2.3.
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Listing 2.5: Simplified example for an unintentionally KPN incompatible actor.

actor Sum() int DataIn, bool EndOfStream ==> int SumOut:

int sum := 0;

readData: action DataIn:[i] ==> do sum := sum + i; end

done: action EndOfStream:[eos] ==> SumOut:[sum] end

priority

readData > done

end

end

these cases is unintended. This meets the fact that all of the applications (video
decoders, cryptographic applications etc.) in the set are supposed to be determinate.

The possible programming mistakes we identified amongst non-determinate and
ambiguously specified actors are often the same. In most cases, it seems the author
of the concerned actor did not realise that two guards actually overlap each other.
In the case of ambiguity he may also have forgotten to specify a higher priority for
one of the actions.The fact that most backends in such cases typically fire the action
which comes first in the source code leads unfortunately often to this kind of error
not being discovered.

In other cases assumptions about the input are made, usually founded on the con-
crete data sent in a particular graph. However, the behaviour of an actor is clearly
defined only if it is unambiguous for any input.

In the case of non-determinacy, we found another pattern, which is illustrated in
Listing 2.5. This actor reads data on one channel and is informed about the end of
the data stream on a second channel (typically, both channels come from the same
process). While this apparently worked well in the tests of the programmers, wrong
output would be produced if the data channel delayed the tokens for longer than
the end-of-stream channel, such that the end-of-stream token arrived before the
last data tokens. This situation could be avoided if the data channel supported the
transmission of special control tokens. In this case, the second channel would not
be necessary and the actor would actually be KPN compatible.

All these results show that KPN-incompatibility is often unintended. Especially
for larger actors (there are several with more than 2000 lines of code), a KPN com-
patibility analysis, as performed by the algorithm presented here, may thus prove
to be a valuable tool for a programmer, even if he does not target a KPN implement-
ation of his actors.
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Table 2.3: Execution time of CAL actorswhen being scheduled either using the default sched-
uler of ORCC or as a Kahn process.

actor platform scheduler speed-upORCC Kahn

mvseq DSP 156 691 cycles 85 249 cycles 1.84 x
invpred DSP 129 641 cycles 83 478 cycles 1.55 x
mvseq RISC 241 544 cycles 151 636 cycles 1.59 x
invpred RISC 453 836 cycles 230 188 cycles 1.97 x

2.2.4.5 Performance of a Dataflow Actor and a KPN Process

Next, we evaluate if the proposed translation of a KPN compatible actor to a Kahn
process can be used to improve the performance of dataflow graphs. To this end,
C versions of the translated Kahn processes were generated as described in Sec-
tion 2.2.3.3 and compared to C code generated conventionally by ORCC [Yvi⁺13].

The code was compiled and then run on two systems:

• A Texas Instruments TMS320C6416 Fixed Point DSP featuring L1 instruction
and data caches of 16 KB each. The evaluation was done on the Texas Instru-
ments cycle accurate device simulator, which takes account of cache behavior.
The CCS IDE version was 5.5.0.

• An Altera Nios II/f RISC processor with 4 KB L1 instruction and 2KB L1 data
cache. The evaluation was done by synthesizing the processor core on an Al-
tera Stratix III FPGA and by measuring the cycle time with the SignalTap II
logic analyzer. The Quartus II software version was 13.1.

The measurements were performed with two different actors:

• “Mgnt_MVSequence_LeftAndTopAndTopRight” (mvseq) and

• “Algo_DCRInvPred_LUMA_16x16” (invpred),

both from the MPEG-4 Part 2 Simple Profile decoder. The former consists of 7, the
latter of 10 actions. The achieved results are summarized in Table 2.3.

For these actors, a speed-up between 1.55 x and 1.97 x was achieved. The reason
for these improvements is that, instead of linearly iterating over all actions like
CAL implementations, the KPN translation follows the structure of the PST, i.e. it
performs a sort of binary search for the next action to be fired. It also does not need
to check the availability of tokens.
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Of course, the influence of this overhead reduction decreases with a higher com-
putational complexity of the actions to be fired. Still, the examples show its relev-
ance in real production code.

2.2.5 Related Work
Classifying dataflow actors into more restrictive dataflow models has recently been
considered as an efficient technique to improve the execution performance of data-
flow graphs, e.g. by reducing the number of communication channel accesses. In
particular, a methodology to classify dataflow actors into SDF and CSDF actors is
presented in [Zeb⁺08]. In order to model dynamic and time-dependent behavior,
each actor is described by a finite state machine that controls the communication
behavior of the actor. In contrast to our work, their approach is limited to only
classify static dataflow actors.

A method to classify dataflow actors into static, dynamic, and time-dependent
actors is presented in [WR12] based on satisfiability and abstract interpretation.This
method has been discussed in Section 2.2.4. While it can identify SDF, CSDF and
quasi-static actors, which are KPN compatible by construction, it cannot identify
more general patterns of KPN compatibility.The method for detecting time depend-
ency could be used for showing KPN incompatibility, but is somewhat inaccurate
as seen before. With its ability to identify (quasi) static actors, it can, like [Zeb⁺08],
be regarded as a complement to our approach.

In [PSB09], a scheduling approach for semi-dynamic dataflow graphs is presen-
ted. To this end, a novel dataflow model is introduced that constructs actors with
sets of modes representing fixed behaviors. Then, it is shown that a set of static
dataflow graphs can be derived by decomposing the graph by its modes.

Other approaches trying to improve the performance of dataflow actors exist,
e.g. by scheduling the actor more efficiently. For instance, the technique proposed
in [BRS12] identifies most scheduling decisions of a dynamic dataflow actor at com-
pile time by determining most of the schedule statically. In [Ers⁺12], this approach
has been extended to also analyze the state space of certain network partitions.

Outside the field of the CAL language, the problems of availability of input vari-
ables and of obtaining them has been discussed as well. Among others, [BC82] and
[Win87] analyse formal representations of algorithms with a particular focus on
fetching variables. [LP95] sketches a theoretic method for analysing actors in data-
flow process networks for actions with common input. These actors, however, are
stateless and have less complex guard functions than CAL. [BCG00] investigates in
the domain of synchronous programming whether a given module can iteratively
infer the availability of all required input variables from its state (endochrony). All
these approaches have in common that theywork on program descriptions in which

42



2.3 Deterministic Memory Sharing in KPNs

every input variable has to be fetched explicitly. This form of specification has nat-
ural representations as trees or graphs similar to the PST shown in this work. In
dataflow networks, however, fetching all input variables upon firing an actor is one
atomic operation as well as checking if an actor can fire. Breaking up these atomic
operations and constructing a PST is thus less obvious than with other program-
ming models.

2.2.6 Conclusion
In this section, we have presented a novel algorithm to classify dataflow actors that
are specified according to the CAL language into KPN compatible and potentially
KPN incompatible actors. A dataflow actor is KPN compatible if it can be represen-
ted as an infinite program that only performs blocking, destructive read accesses,
calculations and non-blocking write accesses. Based on the classification algorithm,
we have described a formal method to translate a KPN compatible dataflow actor
into a Kahn process. We have demonstrated the viability of our algorithms by im-
plementing them in the RVC-CAL framework. In fact, the proposed classification
algorithm has been capable to identify 93 % of all KPN compatible, mature actors
from the ORCC benchmark suite. The performance of KPN compatible actors can
be improved by up to 1.97 x when executing them as Kahn processes instead of CAL
actors.

Manual code inspection found reasons for KPN incompatibility and in particular
time-dependent actors. While time-dependency is an important language feature of
CAL, in all the cases observed in the analysed code base, it was unintended. Sec-
tion 2.4 will discuss in detail what these findings mean for the optimal choice of an
implementation model.

2.3 Deterministic Memory Sharing in KPNs
The last section showed how switching to a KPN implementationmodel can improve
the performance of a CAL program. However, as this section will establish, also
the KPN implementation model can be inefficient in certain cases, especially when
implemented on shared memory. Given that many modern multi-core platforms
concentrate on shared memory as a means of communication and data exchange,
this is a relevant drawback.

In the following, a concept for deterministic memory sharing in KPNs will be in-
troduced which can be applied to any KPN. It allows to take advantage of shared
memory data exchange mechanisms while still preserving determinacy. Through-
out the section, an ultrasound image reconstruction algorithm will be used as an
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example for a high-throughput real-world KPN application. It will be shown where
the deficiencies of conventional KPN implementations lie for this class of applica-
tions and that applying deterministic memory sharing combines significantly better
performance with a drastically smaller memory footprint. These insights arise from
a collaboration with Harshavardhan Pandit and Pratyush Kumar.

2.3.1 Introduction

While KPNs can be thought of as advocating message passing to correctly manage
concurrency, the current trend in hardware platforms, especially in the embedded
domain, goes into another direction. Many of the modern multi-core platforms (e.g.
Kalray MPPA, Intel Xeon Phi, PULP, adapteva Epiphany or ARM Multicore plat-
forms) count on shared memory architectures for data exchange. These platforms
minimise the latency of accessing shared memory using hardware features such as
crossbar communication, multi-banked memorymodules and hierarchical cache ar-
chitectures. Applications with high communication demands need to make use of
these features in order to attain maximum efficiency on such platforms. Traditional
KPNs, however, explicitly do not allow this. It would thus be desirable to combine
the determinacy of KPNs and the improved performance of memory sharing on
modern multi-core architectures.

Hereinafter, we propose a set of transformations that enable the use of shared
memory communication patterns without affecting the determinacy of KPNs. We
call this Deterministic Memory Sharing (DMS). There are four primary features of
DMS. First, we propose transformations to convert any standard channel of a KPN to
allow a memory block to be shared between the producer and consumer processes
of the channel. Second, we propose transformations to allow multiple processes to
concurrently read from a shared memory block. We formalise the intricate condi-
tions under which such concurrent reads can be allowed. Third, we propose using
memory blocks for in-place modifications and direct re-transmissions. Fourth, mo-
tivated by streaming applications which expose data parallelism, we propose divid-
ing a memory block into smaller sub-blocks, which can be concurrently read from
and written to by different processes.

In addition, we propose the insertion of recycling channels which significantly
reduce the cost of allocation and deallocation of the shared memory blocks by al-
lowing reuse of memory blocks once they are not used by any process. All the trans-
formations mentioned above have been conceived such that they can be employed
selectively to transform a standard KPN into a DMS-enabled KPN, sequentially and
only looking at one process at a time. We show that applying each set of transform-
ations preserves the determinacy of the KPN, by construction.
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We illustrate DMS with an ultrasound image reconstruction algorithm, which is
representative of most streaming applications:There is a large communication over-
head, and explicit data and task parallelism. We show that a subset of our proposed
transformations can be employed to correctly transform the KPN model of the al-
gorithm. We implement the original KPN, the transformed DMS-enabled KPN, and
a windowed-FIFO-based KPN [HGT07], using the DAL framework [Sch⁺12], on the
Intel Xeon Phi processor. With extensive experimental tests we conclude that shar-
ing memory enables a higher throughput of the application, while using a smaller
memory footprint.

The remainder of the section is structured as follows: In Section 2.3.2, related
work is reviewed. In Section 2.3.3, the ultrasound image reconstruction algorithm
is presented in detail. In Section 2.3.4, the basic ideas ofmemory sharing in KPNs and
how this can be done deterministically will be explained. In Section 2.3.5, these ideas
are formalised. In Section 2.3.6, transformations will be given for existing KPNs
to apply these ideas and to optimise the resulting networks. In Section 2.3.7, the
correctness of these transformations will be shown. In Section 2.3.8, the ultrasound
imaging algorithm is revisited and it is demonstrated how the transformations from
the section before can be applied to it. Section 2.3.9will showhow the concept can be
implemented in C code. Finally, experimental results are presented in Section 2.3.10.

2.3.2 Related Work
Memory related publications in the domain of process networks can be divided into
three groups. The first group regards channel capacities (i.e. the amount of tokens
the actual implementations of the individual KPN channels can hold), usually try-
ing to minimise the memory footprint via these capacities. The second group tries
to further reduce the memory footprint by reusing the same memory for multiple
channels. A third group finally tries to avoid unnecessary copying overhead rather
than looking at the memory consumption.

In the first group, which regards channel capacities, one idea is to start with small
channel capacities, dynamically increasing them as required [Par95; BH01]. Another
approach is to entirely eliminate certain channels by automatically merging pro-
cesses where appropriate [SLA12]. For networks with regular patterns, such as syn-
chronous dataflow [LM87] or cyclo-static dataflow [Bil⁺96], the minimal channel ca-
pacities can be calculated at design time. There are a number of approaches which
try to further reduce these minimal capacities for special cases of these dataflow
graphs [OH04; VNS07] or performing special analyses [Cho⁺07].

All the methods mentioned so far are complementary to our work; we assume
these optimisations, if required, to have been carried out prior to applying the trans-
formations presented here.
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Another work on channel capacities, however focusing on their relation to ap-
plication performance, is [CHB07]. While this relation is regarded as a trade-off
there (more memory for better performance), we can reduce the memory footprint
of an application and achieve a better performance at the same time.

In the second group, which reuses buffers for multiple channels, [OH00] tries
to minimise the memory footprint of synchronous dataflow graphs in the case
of single-core systems with pre-determined schedules. While greatly reducing
memory requirements, it is unclear if this approach could be applied to multi-core
implementations.

[Goo01] uses a global memory manager. Processes can obtain buffers through the
memory manager from so-called pools. The programming model used there is not
compatible to KPNs, though; in fact, it is non-deterministic. Also, it is the task of
the programmer to decide which pool to obtain buffers from or how many buffers
these pools should be provided with. In this work, we show how a deterministic,
DMS-enabled application can be obtained from any KPN by applying simple trans-
formations. No complicated synchronisation or buffer allocation decisions have to
be taken care of by the programmer.

In [PCH02], the SDF model is extended with a sort of global buffers for keeping
track of common global states such as sampling frequency or gain in a multimedia
stream. The motivation of that work are synchronisation purposes; memory foot-
print or performance are not taken into account.

The papers from the third group do, although often achieving it, not primarily
target a low memory footprint. Their main idea is rather to boost the application
performance by avoiding unnecessary copying overhead. In [HGT07], this is done
by using so-called windowed FIFOs, which can replace the standard FIFOs in KPN
channels. Instead of copying the tokens from a sender or to a receiver process, a
windowed FIFO provides these processes with a shared memory region (a window)
they can directly write to or read from. A technique of managing the access to this
window ensures that processes do not overwrite unread data or do not read stale
data. This saves a certain amount of copying overhead between two processes; still,
when the data has to be passed on to a third process, copying cannot be avoided.

A more general approach is discussed in [Sat⁺03]. The idea there is that processes
can allocate memory blocks, and then send tokens representing these blocks over
the channels. The token gives a process the permission to access the corresponding
memory block. Further, processes can send read-only copies of tokens to multiple
receivers. However, it is not clearly mentioned whether the data in these memory
blocks can be edited in-place and then sent on to another process. Also, the notion
of block allocation and deallocation is only abstractly defined; using memory alloc-
ation functions provided by an operating system would be rather slow for regular
allocation as part of a data streaming process network.
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In this section, we generalise the concepts from the third group of works men-
tioned here and we discuss several implementation details. We show simple trans-
formations allowing to turn a traditional KPN into one using shared memory, still
staying deterministic. Also, we introduce new techniques, such as recycling chan-
nels and memory sub-blocks. Furthermore, formalise the concept of in-place editing
in KPNs and show how it can be implemented.

2.3.3 Ultrasound Image Reconstruction

In the following, we will describe in detail the ultrasound image reconstruction
algorithm we use for our experiments. It will be shown what it does and how it can
be implemented as a KPN.

The different hardware variants, methods, reconstruction algorithms and para-
meters of ultrasound imaging are as manifold as the applications in medicine and
in other domains. In this work, we will limit ourselves to one single configuration,
which we implement in different ways. First, we will explain the general principle
of ultrasound imaging. Then, we will give details about the individual steps to be
performed during image reconstruction. Finally, we will show how the whole al-
gorithm can be implemented efficiently.

2.3.3.1 Principles behind ultrasound imaging

In the medical domain, one typically uses sound waves with a frequency of 1 to
50MHz, which are simplifyingly assumed to travel at constant speed through hu-
man tissue. At every boundary of materials with different physical properties, trans-
mission, absorption and reflection occur. The latter effect is taken advantage of for
ultrasound imaging.

The tool for obtaining the images is called a probe and, in our case, is an array of
linearly arranged piezoelectric crystals called transducers. A transducer changes its
shape when subjected to an external voltage and can therefore be used to generate
sound waves. Conversely, when changing its shape due to mechanical pressure (like
sound waves), it produces a voltage which can be measured.

The image capturing process now works as follows. First, a plain wave signal is
sent out from the transducers; this signal is e.g. a short window of a sine wave.
As the wave travels through the tissue, it gets reflected varyingly strongly at the
different locations. After sending out the signal, no more voltage is applied to the
transducers and instead, the voltage generated by the transducers is measured over
time. For 𝑛 transducers, this gives 𝑛 individual traces of recorded soundwaves. From
these traces, a two-dimensional image is reconstructed. This can be done using the
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algorithm which we implement and optimise in this work, and which is described
in the next section.

2.3.3.2 Individual steps of the algorithm

The image reconstruction can be decomposed into multiple independent steps,
which are explained in the following.

Attenuation compensation: The longer a wave travels through the tissue, the
more it gets attenuated. This attenuation can be calculated and reversed on
each trace by multiplying the samples with an exponentially growing func-
tion.

High pass filter: Each trace is convolved with a high-pass filter to eliminate DC
biases.

Beamforming and apodisation: This is the most important reconstruction step.
When the signal is reflected, the reflection arrives at all transducers, however
at different points in time due to the different geometrical distances between
the reflection origin and the transducers. For every geometrical position, one
can calculate at what times a reflection from there arrives at the individual
transducers. The different samples at these times are summed up for all po-
sitions considered, thus creating a first image. The image quality can be im-
proved byweighting the different samples according to the angle in which the
reflection hits a transducer. This is called apodisation. In practice, for each
transducer, one image column is calculated such that all the samples from
the transducer’s trace can be used. For each column, this can be achieved by
taking the prepared traces from all transducers, extracting samples at precal-
culated indices, multiplying the extracted samples with precalculated factors
and finally summing the results up. All these operations are element-wise
vector operations.

Demodulation: The beamformed image still contains the sine waves of the echoed
signal. These are removed by applying an envelope detection and a low-pass
filter. Both can essentially be implemented as a convolution.

Log compression: To stress differences at weaker reflections, the logarithm is
taken of each point in the image.

Figure 2.5 shows how the ultrasound image reconstruction can be implemented
as a KPN. An input process obtains the data from the transducers, which is then
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split into the individual transducer traces and sent through the channels. The com-
putation processes accomplish rather simple work like convolutions, element-wise
multiplications or index-lookups. At the end, the final image is merged together.

2.3.4 Deterministic memory sharing

It can be easily seen from the last section that the ultrasound image reconstruction
algorithm works on large amounts of data, which need to be exchanged between
different cores on multi-core systems. Also, multiple processes have to work on
the same data. In a traditional KPN, all this data has to be sent over the channels,
and there has to be a separate copy of it for each process. Clearly, this leads to a
considerable overhead. We try to avoid this overhead using a different method of
data exchange that is based on memory sharing.

This section explains how memory blocks can be shared by multiple Kahn pro-
cesses while still preserving the advantages of the KPN model, in particular its de-
terminacy. We will introduce the basic ideas of KPN memory sharing and that of an
efficient memory management technique.

2.3.4.1 Basic idea of the model

As previously mentioned, our approach is to have multiple KPN processes share
certain memory blocks. In general, however, when multiple processes share one
memory block, they can communicate through it, thereby circumventing the ac-
tual KPN communication mechanism (which uses channels). This would not only
destroy the determinacy of the process network, it would also reintroduce races,
glitches and all the other multi-processor issues KPN originally set out to avoid.
Therefore, it is essential to have a synchronisation mechanism which regulates the
accesses to shared memory blocks.

This can be done by the concept of access tokens. An access token gives a process
the right to access (i.e. read from and write to) a certain memory block. There is
only one access token for each memory block, and a process is not allowed to create
copies of it. This ensures that only one process can access a memory block at a time.
Access tokens can be sent to other processes over the conventional KPN channels;
the sending process has to destroy its local instance of the token once it has sent it
(s.t. there are no two copies of the token).

In summary, instead of sending data directly over a channel, the data is stored
in a memory block, the access token to which is then sent over the channel. This is
illustrated in Figure 2.6. Wewill show in Section 2.3.7 that the determinacy property
of KPN still holds when sharing memory through access tokens.
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a) A B b) A B
♠

Figure 2.6: Two KPN approaches: a) Classic process network; b) Process network with
shared memory blocks. The spade represents an access token linked to a memory block with
the “classic” token from before.

2.3.4.2 Relaxations and additions to the model

The mechanism presented above already brings clear improvements, but there are
more possibilities of eliminating overhead. In this section, we will discuss how it
can be relaxed in order to allow further useful optimisations.

Multiple memory copies
One desirable feature would be to avoid multiple copies of the same data. This can
be achieved by allowing multiple processes to simultaneously share one memory
block. However, that leads to problems when these processes simultaneously write
(or read and write) the same memory locations. As it was shown above, this would
violate the determinacy of the KPN. On the other hand, it is not a problem if multiple
processes concurrently read from the same memory locations. Thus, it is possible
to relax the uniqueness constraint for the access tokens in a way that access tokens
can be duplicated if it can be guaranteed that no write accesses are performed to
the memory blocks they are linked to. Conversely, one can say that memory blocks
may not be written to if multiple access tokens are linked to them. This relaxation
does not compromise the determinacy of the KPN for the simple reason that no
communication can be established by only reading.

A typical use case for duplicating access tokens could be as follows. Some data is
produced and written to a memory block. Once the writing is finished, the produ-
cing process duplicates the access token multiple times and distributes the access
tokens linked to the memory block to multiple receivers, which can then read it
simultaneously.

Different levels of process granularity
A second relaxation that can bemade to the access-token principle helps to deal with
different levels of granularity of different processes. Depending, for instance, on the
workload of different tasks, it may be advantageous if one process works on a large
amount of data and afterwards multiple processes work on distinct subsets of this
data. After that, it may be desirable again to have one more process working on the
entire set of data. This can be allowed if it is ensured that these subsets are distinct,
i.e. that in the memory block, the locations accessed by the different processes do
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not overlap. Again, it must be ensured that these processes cannot communicate
through shared memory blocks.

To this end, we introduce the notion of memory sub-blocks. A memory block
can be split up into multiple sub-blocks, which denote distinct, non-overlapping
memory regions in the original memory block. Every sub-block can now have its
own access token. The different access tokens can be sent to different processes,
which can then only access different memory regions. Thus, no communication
between them through the memory block is possible.

It is also possible to introduce a reverse operation to the split mechanism, which
we will callmerge. The merge operation can join two (or multiple) adjacent memory
sub-blocks to one single (sub-)block, reducing the set of access tokens provided to
it to one single access token.

Memory recycling
Until now,memory blocks have been discussed as something that exists, but without
mentioning where they actually come from. The conventional way of obtaining
them is through dynamic allocation [Sat⁺03]. Similarly, they are deallocated when
no more access token is linked to them. This, however, may be rather slow on many
systems or even not supported by the underlying software stack. Thus it appears
sensible to look for alternatives to dynamic memory allocation.

One such alternative would be to introduce a recycling channel which goes from
a consuming to a producing process. Instead of deallocating memory blocks, the
consuming process sends the access tokens linked to them back to the producing
process for later use. Initial access tokens (with corresponding memory blocks) are
placed on the recycling channel such that the producing process can always use
this channel as a source for obtaining (access tokens to) memory blocks. We call
this technique memory block recycling.

In general, this change to the process network also changes the semantics of the
program, especially when there is no more access token on the recycling channel
and the consuming process blocks trying to obtain one. However, we will show that
under certain conditions, the same change in semantics is also induced by using
channels with limited capacity (which is anyway necessary when actually imple-
menting a KPN).

2.3.5 Formalisation of the model

Above, we have informally described the different ideas DMS is based on. Now,
we are going to give a formal definition of all the mechanisms included. This will
help in the next sections, when we discuss KPN transformation methods and show
their correctness. For this purpose, we will first define the data structures involved
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and the properties they have. Afterwards, the different operations on these data
structures will be defined.

The model works on memory blocks, which are regions of memory that can be
shared between processes. ℬ is the set of memory blocks. For each block 𝑏 ∈ ℬ,
there is

• size(𝑏) ∈ ℕ, the size of the memory block

• 𝑏[𝑛], 𝑛 ∈ {0.. size(𝑏)−1}, the access operator for the memory block. It returns
a memory location which can be read or written.

The processes do not have direct access to the memory blocks. They can only access
the blocks through access tokens. An access token is an abstract entity with the
following properties:

1. It is linked to a memory block.

2. It allows read accesses to the block.

3. It only allows write accesses to the block when it is the only access token
linked to the block.

4. It can be sent over KPN channels.

5. Send operations are destructive, i.e. the sending process does not retain a copy
of the token sent.

𝒯 is the set of access tokens which currently exist in the application. For each 𝑡 ∈ 𝒯,
there is

• link(𝑡) ∈ ℬ, the memory block the token is linked to.

• 𝑡[𝑛] ∶= link(𝑡)[𝑛], the access operator for the access token.

The subject of whether write accesses are allowed or not needs some more dis-
cussion. It relates to a global property, which we call ownership: A process owns a
memory block if it has the only access token linked to that block. One could have
mechanisms to check for ownership at runtime before each write operation. This,
however, would have to be done carefully in order not to allow global communic-
ation through this checking mechanism. In this work, the approach is to formally
ensure at design time that write accesses are only performedwhen they are allowed.

For defining split and merge operations later, we also need the concept of a sub-
block. A sub-block is a part of a memory block, which can be created by splitting a
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memory block. A sub-block behaves like a normal block, in particular it can have
access tokens linked to it.

With these definitions, we can now describe the set of DMS operations that can
be executed by the processes.

Allocation: Creates a new memory block of a given size and returns an access
token to it.

Duplication: A copy of a given access token is created, thereby ending a possible
ownership of (and thus inhibiting further write accesses to) thememory block
linked to the token.

Splitting: The memory block (or sub-block) a given access token is linked to is
split into two or more sub-blocks. The access token which was provided is
destroyed. Instead, access tokens to the sub-blocks are returned. For simplicity
reasons, we demand that the calling process must own the memory block for
splitting. All sub-blocks created are then owned by the calling process, but
can later also be owned each by different processes.

Merging: Two or more sub-blocks of the same memory block that are adjacent
in memory are merged together to a bigger sub-block or back to the entire
memory block. The calling process must own all the sub-blocks. The access
tokens which were provided are destroyed. Instead, an access token to the
merged (sub-)block is returned.

Release: Destroys an access token. If the calling process owns the memory block
linked to the access token, this block is destroyed as well. In the case of a
sub-block, destruction only happens to the entire memory block once the last
access token linked to it or one of its sub-blocks is released.

These operations can now be used to implement a DMS-enabled KPN.

2.3.6 Translation to DMS
In the last sections, the idea of DMS was explained and formally described. How-
ever, it is not clear yet how it can be applied and in particular how an existing KPN
can be transformed to use DMS. Note that the transformation process must be or-
ganised such that the generated code follows DMS rules and that the semantics of
the original KPN are preserved (no deadlocks are introduced etc.).

It is important to note that the translation is not an all-or-nothing operation;
in fact, it may sometimes be advantageous to convert a KPN only partially. Note
that due to the high expressiveness and the intricate process interactions of KPNs,
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it is not possible in general to always implement the optimisation ideas shown in
Section 2.3.4.

This section will introduce a set of transformations that can be carried out in
process networks and we will try to establish an intuitive understanding for them.
We will show in the next section that they all are correct and do not change the
semantics of the process network.

We have conceived the translation such that it works step by step, each time
applying one transformation. The translation is performed in three stages:

1. Basic transformations: All channels are transformed to DMS for which this is
desired. Recycling channels can be added.

2. Optimisation:The performance of the application is increased and its memory
footprint is decreased by taking advantage of techniques like splitting and
merging or token duplication.

3. Final clean-up: The attained process network is simplified.

In the following, the transformations in each stage shall be discussed. Afterwards,
it is shown how the optimisation transformations can be coordinated.

2.3.6.1 Basic transformations

The basic transformations are described below and illustrated in Figures 2.7a to 2.7c
on the following page. We assume each channel to have been assigned a maximum
capacity. (This is necessary for any implementation. Dynamically increasing chan-
nel capacities later as in [Par95; BH01] is also possible with our approach.)

Transformation 1: Enabling DMS on KPN channels
For every channel in the network that is intended to use DMS, its sending process
and its receiving process are altered such that they send and receive access tokens
instead of traditional “data” tokens. The access tokens are obtained by allocating
memory blocks in the sending process and directly released after reading in the
receiving process.

Transformation 2: Adding recycling channels
For each channel converted to DMS as shown above (referred to as data channel),
a recycling channel can be added. The recycling channel goes into the opposite dir-
ection of the data channel and has the same capacity. Initial access tokens linked
to separate memory blocks are added to the recycling channel such that the total
number of initial tokens on both channels is equal to the capacity of the data chan-
nel. Releasing tokens and memory block allocation are replaced with sending and
receiving tokens from the recycling channel, respectively.
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Figure 2.7:
Illustrations showing
the basic transforma-
tions for introducing
DMS to a KPN. Re-
cycling channels are
shown as dotted lines.
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Transformation 3: Reordering channel accesses
After applying the transformations above, accesses to a data channel and its corres-
ponding recycling channel happen in pairs, i.e., one channel is accessed directly after
the other, with no other channel access in between.This means that only one access
token is available to a process at a time. Simultaneous access to two ormorememory
blocks can be achieved by moving reads from or writes to recycling channels such
that they happen earlier or later in the execution path, respectively. However, an
additional initial access token may have to be added to the recycling channel in
order to prevent a change in the semantics of the process network.

2.3.6.2 Optimisation transformations

For the optimisation transformations, we will give a non-exhaustive list of the most
common optimisations that can be applied to a DMS-enabled KPN. We will assume
recycling channels have always been added to the channels involved (the other case
can be easily derived). All these transformations can be applied by looking at one
process and a subset of its data channels. We look at processes which access all the
channels in this subset only in the form of elementary transactions, which consist of
reading/writing exactly one token from/to each channel. Note that this only restricts
the access pattern of a process concerning the subset of channels considered. Its other
behaviour – in particular, its accesses to other channels – does not play a role.
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Figure 2.8: Illustrations of DMS optimisation transformations. Dummy processes generated
during transformation are shown as dotted circles.

We look at three groups of transformations here, which are illustrated in Fig-
ures 2.8a to 2.8d.

Transformation 4: In-place editing
If a process always reads from one channel 𝑐𝑖 and writes to another channel 𝑐𝑜,
and if the operations to the two memory blocks concerned are such that they could
happen in-place in only one memory block, then the process can be altered such
that it performs the in-place operation on the memory block received from 𝑐𝑖 and
then sends the access token to 𝑐𝑜. The recycling channels corresponding to 𝑐𝑖 and
𝑐𝑜 are joined as shown in Figure 2.8a, with their capacities and number of initial
tokens adding up for the joint recycling channel.

Transformations 5 and 6: Splitting and merging
These transformations work in a similar way as in-place editing. The difference is
that in the case of split, the input memory block is split into smaller sub-blocks,
which are then distributed to multiple output channels. In the case of merge, mul-
tiple input-sub-blocks are merged to give the output block. As sub-blocks can only
be merged when they belong to a common memory block, a dummy split process
has to be generated as a part of the recycling infrastructure when applying a merge
transformation (cf. Figure 2.8c). In the case of a split transformation, a dummymerge
process is generated to ensure correct memory block recycling (cf. Figure 2.8b).

Transformation 7: Duplicating access tokens
If a process always sends the same data to multiple channels, it can be transformed
such that it only allocates one memory block which is filled with this data. The
access token to this block is then duplicated and sent to each of the channels. Aswith
split, an additional dummy process is generated in order to collect all these duplicate
tokens again, such that the memory block can be safely recycled (cf. Figure 2.8d).
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Figure 2.9:
Illustrations of DMS simpli-
fication transformations.
Dummy processes generated
during previous optimisation
transformations are shown as
dotted circles.
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2.3.6.3 Simplifications

Simplification transformations become necessary due to the overhead caused by
the previous optimisations. While this overhead is necessary to ensure correctness
of the optimisations, it can be safely eliminated after they are finished. We limit
ourselves to two important simplifications, which are illustrated in Figures 2.9a
and 2.9b.

Transformation 8: Gathering initial tokens
Initial access tokens should always be linked to entire memory blocks, not to sub-
blocks. Therefore, initial access tokens linked to sub-blocks are moved behind a
merge or in front of a split. This implies a merge operation on the initial access
tokens, as illustrated in Figure 2.9a. Should the number of initial tokens on different
branches differ, this situation can be resolved by adding additional initial access
tokens to certain branches.

Transformation 9: Removing split and merge processes
In certain situations, a dummy split and a dummy merge process just neutralise
each other after a sequence of transformations. In that case, both can be removed
and the channels connected to them are joined, as shown in Figure 2.9b.

2.3.6.4 Optimisation coordination

All of the optimisation transformations shown above can be applied if their require-
ments are met; however, not all of them can be applied together. For instance, an
in-place edit transformation is not allowed after an access token has been duplic-
ated. As transformations are applied individually to the processes, one after another,
a mechanism is required which keeps track of the transformations applied and re-
veals which transformations are still allowed. In particular, one must be able to
prove at design time whether or not a process, after a given sequence of operations,
owns the memory blocks arriving from a certain channel. For this purpose, we use
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Figure 2.10: Example for the ownership annotation of channels. The graph shown only
contains channels transporting duplicate access tokens linked to the same memory blocks.
Note that the rightmost process owns the memory block.

an ownership annotation of the channels: own (𝑐) ∈ (0, 1] ∪ {∗} for every channel 𝑐
using DMS.

Directly after applying the basic transformations to a channel, its target process
always owns the memory blocks sent over it. On the other hand, it only reads from
the blocks and then recycles them, i.e. it does not need to own them. Therefore, the
ownership annotation is ∗ directly after the basic transformation to indicate that
optimisations changing the ownership are still possible.

When a process needs ownership of the tokens coming through a channel (i.e.
for in-place edit, merge and split transformations), the annotation of the channel is
changed to 1 during the transformation. When a token is duplicated, the channels
which the duplicates go to are marked with an ownership < 1. Once a channel
has been annotated with an ownership other than ∗, this annotation must not be
changed any more. Any transformation may only be applied if the corresponding
annotations are still possible or if the channels already have the annotation the
transformation would entail.

In case of token duplications or collecting duplicates, the exact value of the own-
ership annotation is determined such that the sum of the annotations of the out-
going channels is always equal to that of the incoming channels carrying access
tokens linked to the same memory blocks. In case of token duplication, this means
that the annotation value of the incoming channel (or recycling channel, i.e. 1) is
divided by the number of duplicates. In case of collecting duplicates, the annotation
values of the incoming channels are added up to obtain the value for the outgoing
channel. This is illustrated in Figure 2.10. As the ownership value is always one be-
fore the first duplication, the sum of the ownership values after any combination
of duplications and collected duplicates is always equal to one. If all the channels
transporting a duplicate of an access token are collected again, the resulting own-
ership value must be one. Conversely, if there is one duplicate channel which has

59



Chapter 2 Implementation models

not yet been collected, this ownership value cannot be one because the ownership
value of the uncollected channel is greater than zero by definition. Remember that
an ownership annotation of one for a channel means that its target process owns
the memory blocks linked to the tokens it receives from that channel.

2.3.7 Correctness of the Translation
In this section, we show that the translation described in the previous section is
correct. This comprises three points:

1. Memory integrity: We show that all memory blocks are correctly deallocated.

2. Determinacy: We show that the modified KPN is still determinate.

3. Semantics: We show that the semantics of the original KPN are preserved.

The first two points will be shown in general, whereas the third point will be shown
to hold for each transformation individually.

2.3.7.1 Memory integrity

If an access token is sent to a channel – including recycling channels –, the memory
block linked to it stays in use and must not be deallocated. If an access token is
released, the memory block linked to it will be deallocated if it is no longer in use,
as described in Section 2.3.5.

With the transformations shown in this work, one of both is always the case in
each process for each access token. Therefore, no memory leaks can occur among
the memory blocks allocated using the DMS mechanisms.

2.3.7.2 Determinacy

To show the determinacy of the modified KPNs, we have to show that they meet
two properties:

1. Communication only happens through channels.

2. Read accesses on the channels are blocking and destructive.

Then, determinacy follows from [Kah74].
The second property is inherited from the underlying KPN channels, which still

transport the access tokens.
The first property is met because a process can only write to a memory block if

it owns it, i.e. if no other process can access the block. The only possibility for the
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process of making the data available to other processes is to send the access token
over a channel. At this point, it loses the access to thememory block and thus cannot
use it for any further communication. Therefore, any data transfer needs a sending
operation over a KPN channel.

2.3.7.3 Semantics

In the following, we show that each of the transformations given in Section 2.3.6
preserves the semantics of the process network, i.e., that the same data is sent over
the channels and that no deadlocks are introduced by the transformations5. For this
purpose, we give exact specifications of these transformations and draw conclusions
about their correctness.

Transformation 1 (Enabling DMS on a KPN channel)
Prerequisites: A channel 𝑐 that does not use DMS
Annotations: own (𝑐) ∶= ∗

This transformation is always valid, since any data that can be sent using normal
KPN channels can also be sent using DMS.

Transformation 2 (Adding recycling channels)
Prerequisites: A DMS-enabled channel 𝑐 with fixed capacity

This transformation’s influence on the process network semantics is identical to
that of introducing feed-back channels as described in [Par95]. There, feed-back
channels are used to model the fixed capacities of KPN channels. As we assume a
fixed capacity for 𝑐, the transformation is neutral to the semantics of the process
network.

Transformation 3 (Reordering channel accesses)
Prerequisites: Aprocess 𝑝 accessingmultiple channels, at least one of which uses

DMS
As mentioned in Transformation 2, a recycling channel models the fixed capacity
of its corresponding data channel. Postponing a send operation to a recycling chan-
nel thus delays the reinstatement of available channel capacity after a (destructive)
read. Similarly, preponing a receive operation from a recycling channel prepones
the beginning of a write operation in the sense that channel capacity is claimed. A
possibly blocking operation between a pair of data and recycling channel accesses
5 We do not consider limits of channel capacities as a part of the semantics, since KPN channels are

theoretically unbounded. If one needs this feature, one can always add feed-back channels.
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may therefore, in connection with other processes, lead to deadlocks. As these dead-
locks, however, are only related to a limitation of virtual channel sizes, they can be
prevented by increasing these virtual channel sizes by adding initial access tokens
to recycling channels.

The next transformation to be considered is in-place editing. To give an accurate
specification of it, however, we need to formalise the conditions which guarantee
that the transformation can be applied. To this end, we will introduce the notion
of inplaceable behaviour. One precondition for inplaceable behaviour is that every
write operation corresponds to a read operation and vice versa. We formalise this
pattern with the term regular behaviour.

Definition 2.13 (Regular behaviour). A process 𝑝 performs an elementary trans-
action on a subset 𝐶𝑖 of its input channels and a subset 𝐶𝑜 of its output channels
iff

• it reads exactly one token from each channel 𝑐 ∈ 𝐶𝑖 and releases/recycles it
after usage and afterwards

• it allocates/obtains through recycling exactly one memory block for each 𝑐 ∈
𝐶𝑜 and sends it over that channel.

𝑝 behaves regularly on 𝐶𝑖 and 𝐶𝑜 iff all accesses to the channels in 𝐶𝑖 and 𝐶𝑜 can
be described as a sequence of elementary transactions on 𝐶𝑖 and 𝐶𝑜.

Note that regular behaviour is defined with respect to particular sets of input and
output channels. This means that it is not affected by any arbitrary accesses to other
channels, see also Algorithm 2.5. Inplaceable behaviour can now be defined as fol-
lows:

Definition 2.14. The behaviour of a process 𝑝 on an input channel 𝑐𝑖 and an output
channel 𝑐𝑜 (other channels may exist) is inplaceable iff

• 𝑝 behaves regularly on {𝑐𝑖} and {𝑐𝑜} and

• 𝑝 never writes to memory blocks received from 𝑐𝑖 and

• in every elementary transaction, 𝑎 being the memory block received from 𝑐𝑖
and 𝑏 being the block sent to 𝑐𝑜, no location in 𝑎 is read after writing to the
corresponding location in 𝑏—more formally, there is no 𝑙 s.t. 𝑝 reads 𝑎[𝑙] after
writing 𝑏[𝑙].

If this is the case, one can set 𝑎 = 𝑏 because (i) before any write operation to a
location 𝑏[𝑙], 𝑏[𝑙] is still undefined and 𝑎[𝑙] contains the expected value and (ii)
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Algorithm 2.5: Example on regular behaviour. The given Kahn process receives access
tokens from two channels 𝑋1 and 𝑋2 and sends access tokens to a channel 𝑌1. The function
SomeOp arithmetically combines two blocks, storing the result in a newly allocated third
block.
The process shows regular behaviour on {𝑋2} and {𝑌 }, since it repeatedly receives one token
from 𝑋2 and sends one on 𝑌. It does not behave regularly on {𝑋1} and {𝑌 }, since each read on
𝑋1 is followed by two writes on 𝑌.

process Myproc (in channels: 𝑋1, 𝑋2; out channels: 𝑌)
while true do

𝑡1 ← Read (𝑋1)
𝑡2 ← Read (𝑋2)
𝑡3 ← SomeOp (𝑡1, 𝑡2)
Free (𝑡2)
Write (𝑌 , 𝑡3) // Destroys local copy of 𝑡3
𝑡2 ← Read (𝑋2)
𝑡3 ← SomeOp (𝑡1, 𝑡2)
Write (𝑌 , 𝑡3)
Free (𝑡1, 𝑡2)

end
end

after a write operation to a location 𝑏[𝑙], 𝑏[𝑙] contains the expected value and 𝑎[𝑙]
is not accessed any more.

Note that these conditions are only sufficient. Without a doubt, there is a plethora
of other access patterns which also allow for performing operations in-place. Listing
all of these, however, would go too far at this point. We believe that our definition
of inplaceable behaviour holds a good balance between simplicity and practical ap-
plicability on the one hand and a large amount of real-world code examples it covers
on the other. This leads to:

Transformation 4 (In-place editing)
Prerequisites: A process 𝑝 with inplaceable behaviour on input 𝑐𝑖 and output 𝑐𝑜
Annotations: own (𝑐𝑖) ∶= 1

The transformation of the process behaviour with respect to the tokens on the data
channels does not change the semantics of the process network as it has been shown
above. The same holds for the recycling channels, because (i) the overall number of
initial memory blocks does not change and therefore all the data channels affected
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still can be filled completely and (ii) the elimination of a receive and a send operation
in 𝑝 can only decrease, not increase, the possibilities for an (unwanted) blocking.

Note that, as described in Section 2.3.6.4, the ownership annotation of 𝑐𝑖 cannot
be performed if own (𝑐𝑖) < 1. Therefore, this transformation cannot be applied to
input channels transporting duplicated tokens.

To extend the definition of inplaceable behaviour for split and join operations, we
gather multiple channels to one virtual channel, which we call compound channel.
A compound channel over a tuple of channels is interpreted such that it reads/writes
one token each from/to each channel of the tuple, virtually concatenating them to
a compound block. For a tuple of 𝑛 different memory (sub-)blocks 𝑏1...𝑏𝑛, the com-
pound block 𝑘 over these blocks then has an access operator defined as an access to
the concatenation of all (sub-)blocks. Formally,

𝑘[𝑠(𝑗) + 𝑙] = 𝑏𝑗[𝑙] ∀ 𝑙 ∈ {0.. size(𝑏𝑗) − 1} ∀ 𝑗 ∈ {1..𝑛}, 𝑠(𝑗) =
𝑗

∑
𝑖=1

size(𝑏𝑖).

With this notion, the definition of inplaceable behaviour naturally extends to sets
of input and output channels:

Definition 2.15 (Inplaceable behaviour on channel sets).
The behaviour of a process 𝑝 on a subset 𝐶𝑖 of its input channels and a subset 𝐶𝑜 of
its output channels is inplaceable iff there exist ordered arrangements 𝑥𝑖 and 𝑥𝑜 of
the channels in 𝐶𝑖 and 𝐶𝑜, respectively, such that the behaviour of 𝑝 is inplaceable
on the compound channel over 𝑥𝑖 and that over 𝑥𝑜.

Transformation 5 (Splitting)
Prerequisites: Process 𝑝 with inplaceable behaviour on input {𝑐𝑖} and output

set 𝐶𝑜
Annotations: own (𝑐𝑖) ∶= 1

In general, we do not assume to have separate split processes, but rather consider the
split as an operation happening inside a process of any kind. Therefore, we require
inplaceable behaviour, allowing the process to write to the memory block before
splitting it.

For the transformation of the process behaviour concerning the data channels, the
above considerations apply. Likewise, the process network semantics are not altered
by the transformations to the recycling channels, because (i) the overall number of
initial memory blocks for each cycle containing a split branch does not change and
therefore all the data channels affected still can be filled completely and (ii) the out-
sourcing of multiple receive and a send operation from 𝑝 to a dedicated process can
only decrease, not increase, the possibilities for an (unwanted) blocking.
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Transformation 6 (Merging)
Prerequisites: Process 𝑝 with inplaceable behaviour on input set 𝐶𝑖 and output

{𝑐𝑜}
Annotations: ∀𝑐𝑖 ∈ 𝐶𝑖, own (𝑐𝑖) ∶= 1

For this transformation, all the considerations from Transformation 5 apply analog-
ously.

Transformation 7 (Duplicating access tokens)
Prerequisites: • Process 𝑝 with regular behaviour on input set {}

and output set 𝐶 ∪ {𝑐∗}
• The channels in 𝐶 just receive copies of the data going to 𝑐∗

Annotations: ∀𝑐 ∈ 𝐶 ∪ {𝑐∗}, own (𝑐) ∶= 𝜔, where 𝜔 = 1
|𝐶|+1

or, if the ac-
cess tokens sent to 𝑐∗ already come from an input channel 𝑐𝑜𝑟𝑖𝑔,

𝜔 =
own (𝑐𝑜𝑟𝑖𝑔)

|𝐶|+1
.

Transformation correctness for the data channels is trivial here, since no write
operation is performed. By annotating the output channels with a “non-ownership”,
it is ensured that no split or in-place modification transformation is performed on
one of the ouput channels. On the side of the recycling channels, all the considera-
tions from Transformation 5 apply.

For the simplification transformations, all prerequisites and annotations can easily
be deduced from their previous descriptions. Also their correctness is easy to see
and therefore not further discussed here.

2.3.8 Applying DMS to the Ultrasound Algorithm

Having theoretically discussed the transformation of a classic KPN to a KPN us-
ing DMS in the previous section, we will now show how these transformations are
applied to a given KPN. We choose to use the ultrasound image reconstruction al-
gorithm explained in Section 2.3.3 as an example for amultimedia applicationwhich
has a high demand of computation power and handles large amounts of data.

Starting point is a slight variation from the KPN shown in Figure 2.5 on page 49.
To reduce the large number of processes in the application, the index extraction
processes and the apodisation multiplication processes have already been merged
together to beamforming processes. Due to the moderately complex structure of the
network, all channels can be limited to a capacity of one token, where a token usu-
ally is a vector or a matrix. The different transformation steps which are performed
are going to be explained below.
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In a first step, all channels are transformed to DMS channels according to Trans-
formation 1. To all channels drawn in horizontal direction in Figure 2.5, Transform-
ation 2 is applied, i.e. recycling channels are added. The other channels just trans-
port the precalculated working data to the processes that use it. These processes
will however keep the data forever, thus rendering recycling channels pointless.
Wherever necessary or advantageous, the processes are transformed such that they
permit simultaneous access to certain memory blocks (Transformation 3). Again,
due to the moderate complexity of the network structure, the additional initial
tokens suggested in this rule are not necessary here. Figure 2.11 shows the process
network after these transformation steps.

In the following, it is described how the optimisation transformations can be ap-
plied. This is essentially done traversing the process network from left to right, al-
though other transformation sequences are also possible.

For the split process, both splitting and token duplication are an option. We
thus postpone the decision here. The element-wise multiplication processes next
to it (attenuation compensation) lend themselves to applying an in-place editing
transformation (Transformation 4). During this transformation, the channels com-
ing from split are annotated with an ownership of one. With this annotation,
Transformation 7 (token duplication) can no longer be applied to the split pro-
cess, so this process is transformed according to Transformation 5 (splitting). This
transformation requires a new merge process to be put in place which takes all the
recycling channels coming from the high-pass filter processes (the first convolution
processes from the left), merges them back together and then sends a token linked
to the full memory block back to the transducer input process for later use.

The high-pass filter processes have a hybrid functionality: Each one convolves
the incoming vector with a high-pass kernel. The convolution is done such that the
resulting vector has the same size as the incoming one. Its implementation allows
the convolution to be carried out in-place. On the other hand, one copy of the result-
ing vector is sent to a beamforming process in each beamforming block. We there-
fore apply Transformation 4 (in-place editing) first for one of the output channels.
Then, we apply Transformation 7, access token duplication, for this output channel
together with the other output channels. The procedure will be such that the high-
pass process obtains an access token from the attenuation compensation process,
convolves the data in-place and then duplicates the token, sending one duplicate to
each out-going channel. This also necessitates a new process which collects all the
duplicate tokens coming back through recycling channels from the different beam-
forming processes. It will then release these sub-block access tokens except for one,
which is sent further to the previously generated merging process.

For the beamforming processes, in-place editing is not an option, since the access
tokens they receive are duplicates. This is reflected by the fact that the prerequis-
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ites of Transformation 4 are not met, the input channels being annotated with an
ownership of a fraction of one.

The following summation processes also fulfil the requirements for in-place edit-
ing: From the vectors obtained through the input channels, it is possible to take one
out and then add all the others to it. Thus, the operation between the input chan-
nel that provides this vector and the output channel is inplaceable, which makes
it possible to apply the in-place editing transformation to the summation processes
considering one of the input channels and the output channel.The other input chan-
nels remain untouched.

For the following processes (envelope detection, low-pass filter and logarithm),
in-place editing can again be applied. The merge process can be optimised using
Transformation 6 (merging). For this, a new splitting process is created, which takes
the full blocks recycled from the display process and splits them again for reuse
at one beamforming process in each beamforming block.

Finally, the processes generating the initial working data are transformed accord-
ing to Transformation 7 (duplication). All the data generated by them is thus no
longer copied but instead only the access tokens are duplicated.

The resulting KPN after applying the clean-up transformations is shown (without
the initialisation processes) in Figure 2.12. Note that the number of initial access
tokens has decreased; this, however, is just due to the merging of smaller vector to
bigger matrix tokens. The amount of memory linked to these initial tokens is still
the same.

2.3.9 Implementation in DAL

In the previous sections, DMS has been theoretically specified and it was shown ab-
stractly how a given KPN can be transformed to a KPN using DMS. It has, however,
not been explained yet how DMS can be implemented on a target architecture. In
particular, the notion of an access token was only introduced as an abstract concept.
This section will show how the ultrasound image reconstruction algorithm was im-
plemented as a C-based program using the Distributed Application Layer (DAL)
framework [Sch⁺12].

DAL is a programming framework which allows the user to specify a KPN and
then translates this definition to parallel C code. The specification of a KPN applic-
ation in DAL consists of two parts. In the first part, one specifies as C code the
behaviour of a set of processes with input and output ports. Sending and receiv-
ing data works through these ports, using special read and write functions. The
second part is an XML specification of howmany copies of these processes exist and
how they are connected through channels. There are different back-ends producing
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Chapter 2 Implementation models

native C code for different target platform types; in our case we use a back-end
creating POSIX threads since it provides a shared memory model.

The implementation of the DMS mechanisms can contain arbitrarily many safety
checks. For instance, one could add a thread-safe reference counting mechanism
to each memory block for keeping track of its usage and deallocating it when ne-
cessary. One could also store privilege information in the access token to inform a
process whether it is allowed to write to the memory block linked to it. Another
possibility would be to use the reference counter to dynamically check if a write
access is allowed and, if not, block until this is the case.

Our approach concentrates rather on performance than on runtime assertions.
As it has been shown in the previous sections, one can formally ensure that the
code one creates is correct by construction. If the programmer strictly follows the
rules and mechanisms of DMS, no global runtime checks are necessary.

We therefore implement access tokens as simple pointers. We use malloc and
free for allocating and deallocating memory blocks and pointer arithmetic for
splitting and merging. The sending and receiving of tokens is done by using the
DAL read and write functions on the pointer itself, sending it over the channel
as one would send a normal integer.

DAL allows to specify an initialisation and a clean-up function for each process.
We use the former for creating the initial tokens on the channels and the latter for
deallocating the memory. As the clean-up function is only called once the whole
process network has stopped executing, every process can just store a reference to
the memory blocks it allocated during initialisation an then deallocate those during
clean-up.

2.3.10 Experimental results
The previous sections have shownmany optimisation possibilities that are provided
by DMS. Now we examine if these theoretical advantages translate to actual per-
formance improvements with the ultrasound image reconstruction algorithm.

To this end, we execute the algorithm on an Intel Xeon Phi 5110P accelerator run-
ning a Linux kernel (version 2.6.38.8). This accelerator has 60 processor cores, each
running at a clock frequency of 1053 MHz. Each core has four instruction decoding
pipelines, which allows for a better utilisation of the ALU and for an overhead-
free context switch between four threads per core. The cores are linked by a token
ring communication infrastructure to each other and to the memory, which has a
total capacity of 8 GB. They can not directly communicate; data exchange is done
exclusively through memory. However, each processor has a 32 KB L1 data cache
and a 512 KB L2 cache. A complex hardware-implemented cache synchronisation
mechanism allows data exchange directly through the caches without accessing
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the memory. The code is compiled using the Intel compiler ICC, version 14.0.1 with
optimisation level 2.

Two implementations of the ultrasound algorithm are tested. One is the config-
uration discussed earlier. The second implementation is obtained by aggressively
merging processes in the original KPN before translating it to DMS. In particular,
all the beamforming and apodisation processes for one output image column (all the
processes in a dashed rectangle in Figure 2.5 on page 49) are merged to one single
process. The transducer samples are obtained from pre-recorded data loaded into
memory during program initialisation. The configuration is for 63 transducers and
2048 12 bit samples (stored as 16 bit integers) per transducer. This gives a process
count of roughly 4000 for the first implementation and 200 for the second imple-
mentation.

The 4000 thread implementation is tested using dynamic mapping (operating sys-
tem decides on binding and scheduling of the processes at runtime) with two con-
figurations, namely classic KPN channels and DMS channels.

The 200 thread implementation is also tested using static mapping (binding of
processes is decided at design-time according to load-balancing considerations,
scheduling is done by hardware, since there are more instruction pipelines than
threads). Furthermore, windowed FIFO channels are tested as a third option for
channel implementations.

The performance of the different configurations is measured in the form of the
amortised average image reconstruction framerate. To this end, the execution time
of the program is measured for 50 frames and for 250 frames, 30 times each. The
values obtained are then fitted using the least squares method on a linear model
(time vs. number of frames).

In general, the channel capacities have a considerable influence on the perform-
ance of an application. While too low capacities restrict the parallelism and the
scheduling options for a KPN, too high capacities will result in higher memory
footprints and thus a worse performance of the caches. We have therefore tested
different values for the capacity of all the channels in the range of 1 to 250 tokens
per channel. For the DMS implementation, we have also varied the number of ini-
tial access tokens in all the token cycles in the range of 1 to 250. In Table 2.4 on
the next page, we give two configurations for each implementation: The configur-
ation achieving the best framerate and, if it exists, the configuration coming next
to this framerate with a smaller memory footprint. The memory footprint is also
given for these configurations. Note that in the case of classic or windowed FIFOs,
it depends mainly on the channel capacities whereas for DMS implementations, it
is the number of initial tokens that counts.

The numbers show that: (i) the framerate with DMS is significantly higher than
with windowed FIFOs and classic channels, (ii) the memory footprint with DMS
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Table 2.4: Experimental results for the ultrasound image reconstruction algorithm. For each
method, the configuration with the highest throughput is listed here as well as, in some cases,
a second configuration coming next to this throughput with a smaller memory footprint. Init
denotes the number of initial tokens (i.e. memory blocks) on recycling channels. Cap denotes
the capacity (in tokens) of the channels (except for the initialisation channels, which only hold
one token). Mem denotes the total amount of memory used for all channels and the initial
tokens. Rate denotes the amortised average reconstruction framerate achieved.

Threads Mapping Method Init Cap Mem (MB) Rate (s−1)

4000 dynamic classic 12 397 65.3
classic 5 212 61.1
DMS 4 1 47 121.5

200 dynamic classic 12 254 147.6
windowed 2 109 157.7

DMS 30 7 32 187.3
DMS 3 2 5 180.0

200 static classic 50 805 154.3
classic 3 124 151.0

windowed 2 109 161.7
DMS 6 14 8 192.1
DMS 4 2 6 191.8

is drastically lower than with windowed FIFOs and classic channels and (iii) using
DMS, it is possible to achieve good performance already with small amounts of
memory.

Especially from the fact that no special optimisations for the target platformwere
applied, it can be concluded that the effort of transforming a KPN to use DMS pays
off in terms of performance and memory footprint.

2.3.11 Summary

In this section, we have presented deterministic memory sharing, a concept for shar-
ing memory blocks between different processes in a KPN. We have shown how the
concept of access tokens ensures that the determinacy of KPNs still persists even
when multiple processes access the same memory regions. Rules have been set up
which allow to transform a traditional KPN application such as to make use of DMS.
A first set of rules transforms the channels into DMS channels. A second set of rules
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optimise individual processes.They can be applied locally, i.e. to one process and the
channels connected to it without having to consider the rest of the process network.

An ultrasound image reconstruction algorithm was explained and a classic KPN
implementation of it was presented. This KPN was then transformed according to
the rules mentioned above. Experiments on the Intel Xeon Phi accelerator show that
even without any special adaptations, a significant speed-up can be achieved while
immensely reducing the memory footprint of the application.

2.4 Discussion
The last two sections demonstrated the influence of implementation models on ap-
plication performance. In both cases, a given implementation model was replaced
with a different one, yielding considerable improvements in execution time and
throughput. As a result, one could argue that the performance goals formulated
in the beginning of this thesis have already been reached.

Unfortunately, these performance gains come at a price. In fact, both examples
have shown that one cannot simply exchange the implementation model in a model
set without greatly affecting the entire rest of the application programming proced-
ure.
When converting CAL actors to Kahn processes, the problem arises how to

handle KPN incompatible actors. Since CAL allows the programmer to specify them,
the two unsatisfying options are either not to support the full spectrum of the lan-
guage or to mix different implementation models. The first approach would inevit-
ably raise the question why to use CAL as a specification model in the first place.
The second approachwould introducemanifold implementational intricacies aswell
as possible losses in analysability. Together this might easily introduce new imple-
mentation overhead, which might even neutralize the performance gains from the
KPN implementation model.
Introducing deterministic memory sharing in a KPN worked well in the ex-

ample, but was donemanually. In otherwords, all the additional programming prim-
itives and rules implicitly became part of the specification model. This resulted in
a high amount of programming work (remember the number of 4000 processes in
one case), including many of the typical multi-core programming issues like error-
proneness and laborious debugging.

At the same time, the given example was implemented on the Intel Xeon Phi
platform, which only featured one big shared memory. This is still rather straight-
forward as compared to other possible platforms, which could consist of multiple
clusters and different memory layers. On such platforms, each pair of processors
may have a different preferred way of communication between them, e.g. different
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shared memory banks or a network-on-chip. In the extreme case, each change in
the process binding can entail a re-evaluation of the entire DMS configuration and
a complete relaunch of the DMS optimisation process. This means no less than mix-
ing up specification and design space exploration procedures, rendering the entire
application optimisation process a fully manual, time-consuming endeavour.

Since Kahn processes as well as Kahn process networks are Turing-complete, it
is not possible in general to automate DMS optimisations. For instance, it is unde-
cidable in general whether a Kahn process shows regular behaviour with respect to
certain channels or if channel access reordering requires additional initial tokens.
Even if such optimisations can be automated in simple cases, the question remains
how they could be combined such as to obtain a globally optimised DMS network
and if a set of simple, automated optimisations is sufficient to attain this goal.

To summarise, in both cases the replacement of the implementation model was
either incomplete or it required a change in the specification model. While there
are also counter-examples to this (e.g., windowed FIFOs [HGT07] can improve per-
formance even with the traditional KPN specification model), it is safe to say that
especially in the case of fundamental changes to an implementation model, these
changes are likely to also have an impact on the related specification and optimisa-
tion models. In short, all models in a model set must be conceived together.

The approaches presented in this chapter sections yielded excellent results in
terms of performance, in addition to other valuable findings. However, for these
approaches to be useful in the real-world programming domain, they need to be
embedded in an overall approach including adequate specification and optimisa-
tion models. Such an overall approach will be the subject of the next chapter.
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specification model

Specification models can be regarded as the interface between programmer and
compiler. As such, they need to “connect” well to both sides: To the programmer
with his view of the target application and to the compiler with its optimisation
model. A specification model which is unintuitive to the programmer can quickly
lead to clumsy code or may not be used altogether. A specification model which
does not translate well to an adequate optimisation model for the targeted goal is
unlikely to yield an efficient implementation of a given specification.

This chapter will discuss the challenge of finding a good specification model for
achieving efficient data exchange in multi-core architectures. At first, the prerequis-
ites for such a model will be derived from the results of the previous chapter as well
as from general considerations, including those mentioned above. A short survey
on existing solutions for programming multi-cores will substantiate the need for
a new specification model. Eventually, a new model set (consisting of specifica-
tion, optimisation and implementation model) called Ladybirds will be introduced:
Its specification model will be presented along with the corresponding optimisation
and implementation models. It will be explained how the models translate into each
other and to what extent they fulfil the prerequisites mentioned previously. Finally,
two different implementation models targeted for use cases outside the multicore
domain will demonstrate the wide range of application of the Ladybirds specifica-
tion model.
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3.1 Requirements for a model set
As the last chapter showed, the models in a model set cannot be considered inde-
pendently. A specification model must be devised already with optimisation and
implementation models in mind. Consequently, when assembling a list of require-
ments for a specification model, the requirements for optimisation and implement-
ation model must be included as well.

In the field of implementation models, important requirements have already
been discussed in this thesis. As it was shown in Section 2.3, an efficient implement-
ation model needs to allow efficient data exchange over shared memory. Costly
emulation of message passing through coping must be avoided. In particular, the
functionality of multiple cores sharing the same data must be implemented nat-
ively on shared memory platforms, i.e. cores must be able to concurrently access the
same memory regions. Along the same lines, in-place data modifications should
be supported, especially for cases in which only a small part of a data block is to
be modified. The case of multiple cores modifying data in the same memory re-
gion is of course more complicated, as tight synchronisation may be necessary to
avoid uncoordinated reading and writing. However, there should be a possibility
of dividing memory blocks into smaller regions which can then be modified in
parallel by different cores. This is a simple feature, but fundamental for exploiting
data parallelism.

The amount ofmemory that is allocated should be kept low as well as the run-
time overhead for gaining access to a new buffer (unlike, e.g., with typical dynamic
memory allocation algorithms). Section 2.3 showed the high impact an allocation
scheme can have on memory footprint as well as execution time. It is important to
note that in many cases the former has a direct influence on the latter: Whenever
caches are involved, using less memory reduces the chances of cache misses. On
a platform with on-chip memory, a lower memory footprint typically means that
more data can be stored in fast memories near to the core. In such cases, speed-ups
of orders of magnitudes can be expected for the concerned memory accesses.

Another source of inefficiency can be induced by the implementation model. As
Section 2.2 showed, the overhead for task management should be kept low and
scheduling different tasks should be kept efficient by having a low-overhead
mechanism to determine whether a task can execute or not.

More abstract and yet essential requirements have to be imposed on optimisa-
tionmodels. First and foremost, theymust pave theway for an automated optim-
isation procedure. In particular, easy extraction of concurrency in a program is
vital for unobstructed parallelisation. Secondly, with non-uniform memory access
(NUMA) architectures and memory hierarchies gaining popularity in multi-core
platforms, a good optimisation model must support these technologies in the sense

76



3.1 Requirements for a model set

that it needs to take account of data placement on different memory modules,
thereby providing a starting point for optimisation of memory and data exchange
efficiency. Finally, today’s large and still growing variety in architectures and plat-
form types, especially with respect to memory, requires universal and flexible
optimisation models in order to attain a desirable degree of portability. This is
not only relevant for application code that is to be used on different platforms, but
just as well for optimisation frameworks themselves: While it is a standard proced-
ure to provide with a new processor architecture a suitable compilation toolchain,
automatic parallelisation and efficient parallel implementation of programs typic-
ally require intensive research for each new platform. The goal should be to have a
set of standard optimisation techniques that can be adapted to a new platform in the
same way as single-threaded compiler backends can be adapted to new processors.

For specificationmodels, a number of features are desirable. Apart from a high
expressiveness, which allows a large range of applications to be specified, this in-
cludes features aiming to ease the programmer’s job. A good specification model
should present itself to the programmer in an intuitiveway, typically in form of an
intuitive programming language. Along the same lines, it is helpful if this program-
ming language is close to existing languages, not only to allow code reuse, but
more importantly to take advantage of abilities and competences which program-
mers have already acquired.

When it comes to multi-core architectures, concurrency plays a big role in spe-
cification models. One particularly important form of concurrency is data parallel-
ism, for a number of reasons. Data parallelism in an application is easy to recognise.
It also scales well; for instance when an image is divided into multiple blocks, their
number can be chosen freely (within certain bounds). Moreover, data parallelism
allows to maximise processor usage, since multiple cores typically take the same
time for executing the same code. This helps to avoid processor inactivity due to
dependency-induced waiting times, even on different platforms. As a consequence,
a program specification model for multi-core architectures should provide an intu-
itive way of specifying data-parallel execution.

Finally, debugging parallel programs is particularly intricate.With high amounts
of concurrency, it is difficult to isolate the origin of a faulty program state and thus to
locate a defect in program code. A specification model providing an easy method to
find programmingmistakes, possibly even through automatic analysis or in a simple
test environment independent of the target platform or hardware simulators, could
save the programmer tedious and time-consuming debugging operations.

This long list of requirements shows the difficulty in finding a well-suited spe-
cification model that allows memory and data exchange efficiency optimisations
in multi-core architectures. The situation is complicated further by the fact that
some of the criteria mentioned above actually conflict with each other, for instance
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high expressiveness and easy extraction of concurrency. A good specification model
thus requires not only smart solutions, but also tradeoffs and sometimes painful
decisions. What this means in practice and how the problems are approached in
different existing models will be the topic of the next section.

3.2 Existing Concepts for Parallel Programming
A large number of solutions exists for programming multi-core systems. This sec-
tion will present the most important ones and discuss them with respect to the
requirements listed in the last section, focusing in particular on their suitability for
data exchange efficiency.

Manual thread synchronisation and data management is still the most
widespread approach. Typical examples are POSIX threads (pthreads) or hardware-
specific software stacks, programming language in-builts (e.g. the C++ thread sup-
port library), frameworks like OpenCL [Mun09] and Grand Central Dispatch [SF12]
or libraries like Open MPI [Gab⁺04]. The problem with these approaches is that
manual code parallelisation is an intricate and error-prone task: There are many
pitfalls like deadlocks, unwanted sequentialisation, inefficient organisation of data
transfer etc. Moreover, debugging multi-core platforms is tedious. All this leads to
a long development process.

Another problem all these approaches have in common is their lack of portability:
A code written for one platform using these methods either cannot be executed at
all on a dissimilar platform or, like in the case of OpenCL or programming language
directives, only with serious performance losses (not even considering the different
memory capacities on target platforms). It is not uncommon that a change in the
target platform entails a complete re-design of an algorithm implementation.

Compiler based parallelisation as introduced by OpenMP [DM98] is also a
popular option. The idea of this mechanism is that the programmer gives parallel-
isation directives, e.g. as towhich loops are to be parallelised and how.The drawback
of this mechanism is that only a small number of parallelism types (like for loops)
can be optimised automatically. For more complex concurrency structures, OpenMP
directives require the user to manually orchestrate concurrency and synchronisa-
tion, leaving him with all the related problems as described above1.

Certain domain-specific libraries or frameworks exist, in particular for im-
age processing (e.g. OpenCV [Bra00] or OpenVX [GR14]). These solutions provide
1 OpenMP supports the specification of tasks with explicit inputs and outputs, from which it can de-

rive dependencies. Since, however, for each pair of input and output specifications in the program,
their memory areas must be either fully identical or fully disjoint and since dependencies are not
verified by the compiler, this feature is hardly more helpful than manual specification of execution
dependencies between tasks.
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parallel implementations of commonly used algorithms, which can then be com-
bined to a program. This works well as long as the application only uses these pre-
implemented algorithms and is to be run on a supported platform for which these
implementations already exist. As soon as one of these conditions is not met, the
programmer has to resort, partially or entirely, to manual synchronisation and data
management (see above).

Even more purpose-built specification models exist for databases and big data
applications, e.g. SQL [DD89] or MapReduce [DG08]. These models allow highly ef-
ficient processing of large amounts of data, however solely for a small set of well-
defined operations. Low-power or embedded systems are not targeted by thesemod-
els.
Functional programming languages have been proposed for parallel program

specification; SISAL [FCO90] is an example of a language that supports parallel
and communication-aware programming and that was used in high-performance
clusters. Single-Assignment C [Sch94] is a newer, C-oriented functional language
that is subject to steady research in the multicore parallelisation domain. Unfor-
tunately, the paradigm of functional programming substantially differs from con-
ventional programming approaches taken for multicore architectures. This means
that not only all existing code would have to be entirely rewritten but also most
programmers’ habits and competences (in fact, even their formation) could only
restrictedly be applied to the functional programming methods. Furthermore, func-
tional programming does not correspond to the internal working principle of pro-
cessors, which is purely instructional. Translating functional program specifications
to instructional code can induce significant inefficiencies. In particular, automatic
parallelisation monolithic code — functional or single-threaded instructional — is
hard to achieve and not reliably effective with state-of-the-art compilation tech-
niques.

In the domain of high-performance computing, multiple parallel program-
ming languages have evolved. Cilk [Blu⁺96] provides an easy syntax for instantiat-
ing concurrent tasks and a memory model allowing task execution on distributed
memory. Data synchronisation is implemented based on a tagging system and thus
requires unconditional copying of data, which may be difficult on embedded sys-
tems with low memory capacities. Also, task coordination and guaranteeing data
coherency between the tasks are left to the programmer. StarPU [Aug⁺11] goes one
step further and allows the specification of tasks with explicit inputs and outputs.
Like with OpenMP tasks, task arguments can be specified with read, write or read-
write access. Data dependencies are automatically calculated and result in a cor-
rect and thread-safe task execution order. All these systems have in common that
tasks are generated dynamically at runtime, such that a compile-time analysis is
not possible. Task mapping and scheduling, buffer allocation and data transfers are
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managed ad hoc, which may cause an unbearable runtime overhead on embedded
and particularly on low-power systems. Moreover, runtime resource management
makes it impossible in non-trivial cases to give guarantees for execution times and
even for execution as such.

Finally, process networks are a popular approach in science, for instance rep-
resenting programs as KPNs, SDF graphs or using CAL, as Chapter 2 showed. The
big advantage of this type of representation is that parallelism is made explicit and
can thus easily be exploited. The downside, however, is that these models implicitly
assume message passing as the only method of data exchange, which is suboptimal
particularly on shared memory systems. As discussed previously, this can severely
impact application performance.

With all the individual drawbacks which were discussed for all of the solutions
above, one characteristic is common to all of them. Some of these solutions res-
ult in efficient code which is however not portable to all platforms; others result
in portable code that is not efficient. Finding a solution that leads to a parallel pro-
gram implementation that is portable and efficient, in particular with respect to data
placement and exchange, constitutes an important task that remains to be solved.

Closing this gap will require a specification model that accounts for the issues
and requirements discussed so far. The remainder of this chapter will present a spe-
cification model that was designed to go hand in hand with a later optimisation and
implementation model. It is based on the ambition of finding an easy way to specify
an application such that it can readily be parallelised and optimised for data stor-
age and exchange. The idea behind this is that such a specification model allows to
concentrate on the related optimisation problems without having to think about or
to rely on complex code analysis techniques.

3.3 Specification Model
The last sections showed manifold problems to solve and requirements to meet. In
the course of this thesis, an experimental model set called Ladybirds evolved with
the aim of addressing these issues. It is a first prototype based on the idea of limiting
the complexity in code analysis such that code parallelisation and optimisation are
facilitated. Ladybirds consists of a specification model, an optimisation model and
an implementation model, the former shall be discussed in this section.

In a nutshell, a Ladybirds program consists of a set of atomic tasks with clearly
defined inputs and outputs. A task carries out a well-defined operation, which is
given by a kernel. Metakernels can be used to compose the functionality of kernels
to an analysable and parallelisable program. The Ladybirds specification model is
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Listing 3.1: Example for a Ladybirds kernel. The kernel describes a 1-d convolution of an
input signal with a filter kernel; the input signal and the filter kernel are provided as argu-
ments in the form of floating point arrays, the output signal is written to another floating
point array which is returned.

kernel(Convolution)(in float signal[128],

in float filter[5],

out float response[124])

{

for(int i = 0; i < 124; ++i)

{

float f = 0;

for(int n = 0; n < 5; ++n)

f += signal[i+n] * filter[n];

response[i] = f;

}

}

Listing 3.2: A Ladybirds kernel sorting an array in-place

kernel(Quicksort)(inout float array[128]) {…}

represented by a C-based programming language called Ladybirds C, the concepts
of which shall be introduced in the following.

3.3.1 Kernels

Listing 3.1 shows an example for a kernel. Essentially a kernel is a conventional
C function, however with fixed and explicitly specified inputs and outputs called
packets. Packets consist of fixed size arrays with a specified type of access. inmeans
that the packet is only read but not modified, out means that the contents of the
packet will be provided as an output by the kernel. A kernel is allowed to read
from packets declared as out, but the contents are uninitialised at the start of its
execution.

In certain cases, the clear categorisation of packets into input and output is un-
suitable.Therefore, Ladybirds C also allows the specification of combined input/out-
put (inout) packets for algorithms that modify data in-place (see Listing 3.2). Pack-
ets declared as inout contain input data for the kernel before its execution; the
kernel can then arbitrarily modify them, returning the modified version. Note that
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inout is meant for algorithms that need to modify data in-place, such as many
sorting algorithms or FFT implementations.

This raises the question of how to specify algorithms which could be implemen-
ted such as to modify data in-place or such as to return the output in a different
packet than the input. Take as an example a subtraction of two vectors. It could be
regarded as an operation with two input packets and one output packet. However, it
could just as well implemented by writing the result back to one of the input pack-
ets, saving memory with this in-place modification. Which variant is best-suited
for the purpose does not depend on the kernel itself but only on its later use in
the program (examples will be given in the following sections); it would thus be
unsatisfying to have to take this decision already with the kernel declaration. The
Ladybirds approach to this are buddies. The idea is to independently specify an in
and an out packet and to then declare them as buddies, which means that the se-
mantics of the kernel would be the same if the two packets were just aliases of the
same inout packet. A buddy declaration allows the optimiser to later transform the
kernel accordingly and merge the buddy packets to one, enabling in-place modific-
ation. A packet may be involved in multiple buddy relationships; the latter are not
transitive, however, and each packet may only be merged with one other packet
at the same time. Ladybirds C code for the vector subtraction example is given in
Listing 3.3.

For certain kernels, e.g. such with generic or often-used functionality, it is de-
sirable to be able adapt them, for instance to different packet sizes. For these cases,
Ladybirds C supports kernel parameters. Listing 3.4 shows an example of a paramet-
rised kernel.

To summarise, a kernel is a function consisting of a C code body and a special
declaration. It must have the following properties.

• It may be parametrised; for each parameter value that is chosen in the pro-
gram, all of the following properties must be fulfilled.

• The body must describe a finite amount of calculations.

• Its inputs and outputsmust be clearly specified; they consist of in,out and/or
inout packets. in and inout packets, upon execution of the kernel, contain
values constituting the inputs of the kernel. The elements of out and inout
packets can be modified during execution of the kernel. All packets can be
read from during kernel execution. At the end of kernel execution, all out
packets must have been assigned values, which, together with the inout
packet values, constitute the outputs of the kernel.

• Pairs of one in and one out packet of the same data type may be declared
as buddy interfaces. For each such pair, it must hold that the kernel output is

82



3.3 Specification Model

Listing 3.3: A Ladybirds kernel subtracting two vectors.The output packet res is marked as
a buddy of each of the input packets, i.e., a and res are buddies and b and res are buddies.
This tells the optimiser that it may decide to store back the output res directly to a or to b.

kernel(VecSub)(in float a[128], in float b[128],

out float res[128] buddy(a) buddy(b))

{

for(int i = 0; i < 128; ++i) res[i] = a[i] - b[i];

}

Listing 3.4: A parametrised kernel. It returns a packet in which all array elements have a
value of zero.

kernel(Zero)(param int size, out int res[size])

{ for(int i = 0; i < size; ++i) res[i] = 0; }

the same if the elements at each common index of both packets are stored in
the same location. A packet can be part of multiple buddy relations.

• It must not perform pointer arithmetic on packets or packet elements, since
the results are undefined.

• A kernel must not have any side effects. This directly relates to the property
of clearly defined inputs and outputs. A consequence of this restriction is
that kernels must be stateless in the sense that they must not preserve a state
outside their execution. For the programmer, this means that no static and no
global variables must be used inside kernels.

Formally, a packet can be defined as amulti-dimensional data vector of fixed size and
with a given data type. A kernel can be interpreted as a (parametrisable) algorithmic
description of how to transform a tuple 𝑃𝑖 of input packets to a tuple 𝑃𝑜 of output
packets. With the sets 𝑃 ∗

𝑖 and 𝑃 ∗
𝑜 of all elements contained in 𝑃𝑖 and 𝑃𝑜, respectively,

there may exist a set 𝐽 𝑖𝑜 ⊆ 𝑃 ∗
𝑖 × 𝑃 ∗

𝑜 of pairs of packets that have to be placed in
the same memory locations (specified as inout) and a set 𝐽 bud ⊆ 𝑃 ∗

𝑖 × 𝑃 ∗
𝑜 of pairs of

packets that can, but do not have to be placed in the samememory location (specified
as buddies). No packet may appear in both 𝐽 𝑖𝑜 and 𝐽 bud.

The Ladybirds kernel concept addresses many requirements from Section 3.1:

• Since the kernel description is based on C and can contain any arbitrary C
code, a high compatibility to existing code but also to programmers’ habits
is achieved.
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• The explicit declaration of kernel inputs and outputs guarantees a high ana-
lysability of the code and in particular of its memory usage patterns. The
optimiser knows which task needs which data and can allocate memory ac-
cordingly. The specification of input and output being a classic concept from
computer science, it is not alien to the programmers and easily integrated in
programming practice. At the same time, compared to automatically analys-
ing the C code inside the kernels, manual specification drastically improves
accuracy and reliability of this information while increasing the program-
mer’s freedom inside the kernel.

• As compared, for instance, to manual parallelisation or to KPN specifications,
communication is not a part of the Ladybirds code. A kernel just declares
inputs and outputs in its header, but does not contain any communication
directives (like sending or receiving data) in its body. This saves the program-
mer from large amounts of repetitive code which is often tedious to write
and amajor source of errors. Additionally, it greatly enhances the portability
of the code, since all the instructions for data storage and exchange, which
change from implementation to implementation, are not a part of the kernel
and can be auto-generated by an optimisation framework without having to
touch the kernel code.

• The packet types (in, out etc.) directly relate to some of the previously men-
tioned techniques of achieving memory efficiency.

– inout packets allow in-place modification of data.
– in packets allowmemory sharing between multiple tasks, since these

packets are known to remain unmodified by the tasks.

Clearly, these advantages come at a price; just from the kernel specifications, one
can already see that Ladybirds C is more formal and restrictive than C. This point
will be discussed in greater detail after the next section, which shows how kernels
can be composed to a program specification that allows optimisation for data ex-
change efficiency.

3.3.2 Metakernels
Ladybirds kernels provide basic functionality and can be implemented using arbit-
rary instructional specifications. This allows for high efficiency at instruction level,
but severely limits global code analysability inside their bodies. While at function
level such an approach is convenient, at inter-thread level its converse is required:
Individual inefficiencies at instruction level may be tolerated as long as the coordin-
ation of the threads (synchronisation, data exchange) is efficient. For an automated
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X

X[1,4]

X[6,9][8,23]
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0
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Figure 3.1: Graphic illustration of
the sub-packet operator.
For a 12 × 32 packet X, the regions
covered by sub-packets obtained us-
ing the sub-packet operator [] are
shown.

optimisation of this efficiency, it thus makes sense to restrict the programmer’s free-
dom for the benefit of high analysability.

This idea is taken to extremes by Ladybirds metakernels. Metakernels do not
provide own functionality but merely compose the functionality provided by other
kernels. To the outside, metakernels provide the same interface as kernels, and both
can be used interchangeably in Ladybirds C. Metakernels can have in, out and
inout packets like kernels; buddy declarations are allowed but have no effect, since
these relations will be automatically detected in later optimisation procedures. The
definition of a metakernel only consists of an ordered list of references to other
(meta-)kernels.

Listing 3.5 on the next page shows a metakernel. Its body contains declarations
of temporary packets and calls to other (meta-)kernels. Packet declarations are not
to be understood as concrete instructions for immediate memory allocation, they
merely announce the existence of a packet with particular data type and dimensions.
Like with a variable in a traditional compiler, an optimiser later decides whether
and where to store it. For instance, the declaration of a packet that is never used
will simply be ignored.

In kernel calls, entire packets are provided to the kernels for reading or writing
(in conventional programming languages, this would be referred to as “by refer-
ence”). These calls are meant to be executed in consecutive order, like in a sequen-
tial program. A metakernel is not allowed to call itself, directly or through other
metakernels, since this would lead to infinite recursion.

Listing 3.6 on page 87 shows an optimised implementation of the metakernel
from Listing 3.5. The hard-coded image dimensions have been replaced with con-
stants for better readability and adaptability, but this does not alter the semantics of
the program. More importantly, parallelism was doubled by splitting up each opera-
tion into two new operations working on sub-blocks of the image. For this purpose,
Ladybirds C introduces the sub-packet operator [𝑙,𝑢], which, applied to a packet,
provides a sub-packet of it, which, in its highest dimension, is restricted to indices 𝑙
up to and including 𝑢. Multiple sub-packet operators can be concatenated to obtain
a sub-packet that is restricted in multiple dimensions (see Figure 3.1). Packet dimen-
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Listing 3.5: Ladybirds C specification of a (part of a) Canny edge detection filter. For an
input image, it calculates pseudo partial derivatives in horizontal and vertical direction by
2-d convolutions with Sobel filters, thus obtaining a gradient given in Cartesian form. This
gradient is then converted into a polar representation (steepness and direction) and the still
blurred edges given by this gradient are sharpened by a non-maximum suppression.

kernel(SobelX)(param int height, param int width,

in uchar Img[height][width],

out char GradientX[height-2][width-2]) {…}

kernel(SobelY)(param int height, param int width,

in uchar Img[height][width],

out char GradientY[height-2][width-2]) {…}

kernel(EdgeGrad)(param int height, param int width,

in char GradientX[height][width],

in char GradientY[height][width],

out uchar Gradient[height][width]

buddy(GradientX) buddy(GradientY),

out uchar Direction[height][width]

buddy(GradientX) buddy(GradientY)) {…}

kernel(NonMaxSupp)(param int height, param int width,

inout uchar Gradient[height][width],

in uchar Direction[height][width]) {…}

metakernel(Canny)(in uchar Img[1038][1038],

out uchar Edges[1036][1036])

{

char GradX[1036][1036];

char GradtY[1036][1036];

uchar Direction[1036][1036];

SobelX(1038, 1038, Img, GradX);

SobelY(1038, 1038, Img, GradY);

EdgeGrad(1036, 1036, GradX, GradY, Edges, Direction);

NonMaxSupp(1036, 1036, Edges, Direction);

}

sionality can also be reduced by sub-packet operations. E.g., if a kernel requires a
packet of size 3 × 3, a sub-packet of a 3 × 3 × 3 packet X may be provided, such as
X[1] or X[0..2][1].

Listing 3.7 shows how this concept can be generalised using generator variables
and a generator loop. Generator variables (declared as genvar) can be assigned any
value and used in any operation. However, they are interpreted at compile time
and then treated as a constant. Similarly, generator loops are fully unfolded and
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Listing 3.6: Specificationwithmore parallelism of the Cannymetakernel of Listing 3.5. Each
operation has been split into two operations working on the upper and the lower half of the
image, respectively. Note that the input sub-packets passed to the Sobel kernels overlap by
two pixel rows.

enum { ImgWd = 1038, ImgHt = 1038,

EdgeWd = (ImgWd-2), EdgeHt = (ImgHt-2) };

metakernel(Canny)(in uchar Img[ImgHt][ImgWd],

out uchar Edges[EdgeHt][EdgeWd])

{

char GradX[EdgeHt][EdgeWd];

char GradY[EdgeHt][EdgeWd];

uchar Direction[EdgeHt][EdgeWd];

enum { blkht = EdgeHt/2 }; / / height of each block

SobelX(blkht+2, ImgWd, Img[0,blkht+1], GradX[0,blkht-1]);

SobelX(blkht+2, ImgWd, Img[blkht,ImgHt-1], GradX[blkht,EdgeHt-1]);

SobelY(blkht+2, ImgWd, Img[0,blkht+1], GradY[0,blkht-1]);

SobelY(blkht+2, ImgWd, Img[blkht,ImgHt-1], GradY[blkht,EdgeHt-1]);

EdgeGrad(blkht, EdgeWd, GradX[0,blkht-1], GradY[0,blkht-1],

Edges[0,blkht-1], Direction[0,blkht-1]);

EdgeGrad(blkht, EdgeWd, GradX[blkht,EdgeHt-1], GradY[blkht,EdgeHt-1],

Edges[blkht,EdgeHt-1], Direction[blkht,EdgeHt-1]);

NonMaxSupp(blkht, EdgeWd, Edges[0,blkht-1], Direction[0,blkht-1]);

NonMaxSupp(blkht, EdgeWd, Edges[blkht,EdgeHt-1],

Direction[blkht,EdgeHt-1]);

}

Listing 3.7: Extension of the parallelism in Listing 3.6. Only the operations in the body
are shown. This time, the image is split into multiple horizontal stripes, and the Sobel filter is
applied independently to each stripe. Setting nstripes=2would yield the same metakernel
as in Listing 3.6.

genvar int nstripes = 4; / / change here for more/less concurrency
genvar int blkht = EdgeHt/nstripes;

for (genvar int y1 = 0; y1 < EdgeHt; y1 += blkht)

{

genvar int y2 = y1+blkht-1;

SobelX(blkht+2, ImgWd, Img[y1,y2+2], GradX[y1,y2]);

SobelY(blkht+2, ImgWd, Img[y1,y2+2], GradY[y1,y2]);

EdgeGrad(blkht, EdgeWd, GradX[y1,y2], GradY[y1,y2],

Edges[y1,y2], Direction[y1,y2]);

NonMaxSupp(blkht, EdgeWd, Edges[y1,y2], Direction[y1,y2]);

}
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Listing 3.8: Top-level metakernel for the Canny program

metakernel(mainkernel)()

{

uchar Image[ImgHt][ImgWd];

uchar Edges[EdgeHt][EdgeWd];

CaptureImage(Image); / / obtains a picture, e.g. from a camera
Canny(Image, Edges);

OutputImage(Edges); / / Shows the calculated edges, e.g. on a screen
}

interpreted at compile time, such that the resulting code is still a sequential list of
kernel calls. They are thus meant as a helper tool for the programmer, but do not
add functionality to the specification model.

The concept of metakernels leads the way to specifying entire Ladybirds applica-
tions. As already mentioned, metakernels can contain calls to other metakernels;
this way, a call hierarchy develops. At the root of such a call hierarchy is one
metakernel which serves as the entry point to a Ladybirds program. Listing 3.8
shows a typical example for such top-level metakernel, in this case for the Canny
code from above.

In summary, a metakernel is a special kernel which has the following properties:

• Its inputs and outputs are clearly defined and consist ofin,out and/orinout
packets. The same properties as with kernels apply.

• Buddy relationships may be declared, but have no effect.
• The bodies of metakernels consist of only two types of statements, viz. tem-
porary packet declarations and calls to other (meta-)kernels. All numeric val-
ues, i.e. array sizes, indices and parameter values have to be known at compile
time. Expressions with generator variables and generator loops are evaluated
at compile time; this evaluation has to result in statements of the types dis-
cussed previously.

• In (meta-)kernel calls, a value must be provided for each parameter and for
each kernel argument, a packet (either one of the metakernel arguments or
a temporarily declared one) or sub-packet thereof of the correct size must be
provided.

• For each output packet of the metakernel, the element at each index of it must
be part of at least one (meta-)kernel call such that its value is defined at the
end of the metakernel execution.
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Formally, a metakernel can be interpreted as a description of how to transform a
tuple 𝑃𝑖 of input packets to a tuple 𝑃𝑜 of output packets. As with kernels, there
may exist a set 𝐽 io of pairs of packets that have to be placed in the same memory
locations (inout packets).The packet transformation is described as an ordered list
of operations, where each operation consists of the execution of one (meta-)kernel
on a combination of packets in 𝑃𝑖, sub-packets thereof, packets obtained in previous
operations and sub-packets thereof.

With their C-like syntax, metakernels are intuitive to understand and to write
for any programmer used to instructional programming. Furthermore, the sequen-
tial specification also allows for easy debugging. The sub-packet functionality to-
gether with the generator variables and loops allows for a comfortable and at the
same time flexible specification of data parallelism in Ladybirds code. This makes
it easy to exploit data parallelism as a major source of concurrency (see above)
while increasing portability andmaintainability of the code. In addition, the sub-
packet operator has counterparts in other programming languages, for instance in
Matlab, which enjoys great popularity exactly for that reason. Passing sub-parts of
multi-dimensional arrays as arguments to functions is in fact a useful functionality,
which in C, however, is cumbersome and needs advanced language experience to
implement.

At the same time, dependencies between the operations are easily analysable and
thus, parallelism and data exchange requirements can be readily extracted. As
already mentioned, however, this analysability was achieved by restricting the set
of allowed operations inside a metakernel. The next section will discuss the effects
of this restriction in detail.

3.3.3 Expressiveness of Ladybirds C

Previously, the Ladybirds specification model and its specification language, Lady-
birds C, have been presented. They have useful features and were designed to meet
most of the requirements given in Section 3.1. However, there is also standard func-
tionality which is not part of Ladybirds.

• Iterations (i.e. loops) cannot be expressed on meta-kernel level. Each opera-
tion in a metakernel is executed exactly once. This makes it impossible, for
instance, to run a sensing program (acquiring data from a sensor, processing
it, transmitting the results) in an infinite loop and profit from pipelining par-
allelism.
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• Conditional execution of operations is not supported in a metakernel. For in-
stance, semantics like not processing uninteresting data (e.g. a signal below
a given threshold) or executing an operation a varying number of times, de-
pending on the amount of received data, cannot be implemented at metaker-
nel level.

• Input and output packet sizes are fixed and cannot be adjusted dynamically
(e.g. when compressing data).

This limits the expressiveness of the Ladybirds specification model significantly,
which is a conflict with the goals set out in Section 3.1.

On the other hand, the expressiveness of Ladybirds is sufficient for many real-
world programs. As numerous experiments will show in Chapter 5, there is a high
number of real-world applications that can be efficiently implemented using Lady-
birds. Also, workarounds exist for emulating certain features:

• Even if no iterations are possible inside a metakernel, one can still repeatedly
execute the entire program.

• Conditional execution can be controlled inside kernel definitions.

Furthermore, even when the amount of input or output data of an operation varies,
one can still establish an upper bound, which then determines the packet sizes. If less
data is produced, parts of these packets will carry undefined values. This is anyway
a well-known strategy and sound practice on embedded multi-core systems: Dy-
namic allocation may be expensive, especially in the case of shared memory, where
runtime allocation must be synchronised between all cores making use of it. Also,
the risk of memory insufficiency at runtime may be unacceptable when a system
must operate reliably.

Adding functionality to the Ladybirds specification model is also possible; in par-
ticular, a directive for specifying loops in metakernels would be entirely feasible.
Since this would complicate program optimisation, it is beyond the scope of this
work; however, it constitutes an interesting addition to consider in the future.

In more general terms, it is the deliberate strategy of Ladybirds to resolve the con-
flict of expressiveness and analysability such that the former is clearly subordinated
to the latter. The goal is to allow automatic optimisation of parallel applications on
multicore platforms to as high an extent as possible. Once the necessary optimisa-
tion techniques and methodologies have been established, it is always possible to
research on possible extensions to the specification model.
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3.4 Optimisation Model

As discussed previously, kernels and metakernels describe functions transforming
packets, with metakernels consisting of lists of references to other kernels. Con-
sequently, an entire Ladybirds program can be interpreted as a chain of kernel calls.
In order to implement a Ladybirds program, i.e., to translate it to an implementation
model, the abstract kernel calls now need to be planned in a more concrete fash-
ion, namely as tasks requiring computational resources. Memory must be allocated
to hold the packets and in certain cases packets may need to be transferred from
one memory module to another. Modelling, orchestrating and scheduling these op-
erations is the challenge of the program optimisation phase, and this section will
introduce an optimisation model designed for it. First it will be explained how a
Ladybirds C specification can be translated to an optimisation model. Then, the dif-
ferent optimisation decisions mentioned above will be discussed in detail. An ab-
stract description finally summarises the steps and problems of the optimisation
phase.

3.4.1 Translation from the specification model

In Figure 3.2 on the following page, the Canny application presented in the last
section has been translated to a packet dependency graph, which is part of the Lady-
birds optimisation model. Each kernel call is represented by a task; a task is the
instance of a kernel. As opposed to a kernel, which is a piece of code describing a
transformation of packets, a task represents the concrete action of performing this
transformation, which needs to be carried out by a processor core. The call hier-
archy of the metakernels has been flattened, i.e., calls to metakernels do not appear
in the optimisation model but are replaced recursively with the translated kernel
calls from their body.

Through so-called interfaces, tasks are provided with memory slots called buffers,
which are there to carry the input and output packets specified in the kernels. Inter-
faces are represented by rectangles in the graphical representation. Input interfaces
are shown on the input wing (left-hand side) and output interfaces on the output
wing (right-hand side) of the task body. Combined input-output interfaces (for car-
rying inout packets) cross both wings, and thick, dashed lines connect interfaces
for buddy packets.

Packets declared in metakernels are not directly represented in the optimisation
model. Instead, the results of an indexed static single-assignment analysis for multi-
dimensional arrays are shown in form of packet dependencies between the inter-
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faces. Each such dependency is represented by an edge and denotes that the packet
produced by its source task and stored to the buffer provided at its source inter-
face will be required by the destination task at the destination interface. For inout
packets, the conservative assumption that must be taken during the static single-
assignment analysis is that they are always entirely modified by the respective ker-
nel call. Some of the dependencies may refer only to parts of the interfaces they
link. In Figure 3.2 the outgoing dependencies of CaptureImage-0:img denote
that only sub-packets of img (with the specified indices) will be required by the
Sobel tasks. The incoming edges of OutputImage-0:img denote that one part of
img is provided by NonMaxSupp-0, the other by NonMaxSupp-1. Note that the
edges only express data dependency relations, but do not include any notion of data
transport or exchange.

Figure 3.3 on the next page illustrates the adaptation of packet dependencies
when flattening a metakernel hierarchy. Each metakernel can be expressed as a
packet dependency graph of task prototypes which contains additional dependen-
cies between the prototypes and the metakernel input and output interfaces. The
task prototypes are no proper tasks yet because they could be instantiated multiple
times or not at all, depending on how often the metakernel is referenced. In this rep-
resentation, an inout packet in a metakernel declaration leads to two interfaces,
one at the input and one at the output side. When the metakernel is instantiated,
its tasks have indirect connections to other tasks of the program via the metaker-
nel interfaces. In the course of flattening the metakernel hierarchy, the metakernel
interfaces are eliminated by replacing these indirect connections with direct edges
between the task interfaces. In certain cases, this leads to inout interfaces effect-
ively being replaced with separate input and output interfaces (an example would
be if k2 in Figure 3.3 had separate input and output interfaces instead of a combined
one). Still, the possibility of declaring inout packets in metakernels is necessary:
In the original setting given in the figure, meta:m must be declared as inout to
allow the call to k2.

Once the packet dependency graph for an application has been constructed, a
further transformation may be helpful for the subsequent analysis and optimisa-
tion steps: The feature of packet dependencies referring only to sub-packets of task
inputs or outputs, while useful and desired, complicates the formal discussion of
program analysis and optimisation, especially when multiple dependencies exist.
This can be avoided by splitting interfaces into multiple parts such that each de-
pendency always refers to an entire resulting interface. This typically implies that
multiple dependencies replace what was a single dependency before. Figure 3.4 on
page 95 shows the result of this transformation for the first tasks of the Canny ex-
ample. Since this transformation is always possible, the feature of sub-packets (or
sub-interfaces) can be neglected in the following considerations.
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Figure 3.3: Resolving dependencies when flattening metakernel hierarchies.The application
depicted in a) contains a reference to a metakernel meta, the definition of which is illustrated
as a packet dependency graph in b). c) shows the flattened version of the application.
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Figure 3.5: A packet dependency graph (a) and a possible implementation of it, given by
a buffer dependency graph (b). While edges in packet dependency graphs are drawn with
dotted lines to stress their abstract character, solid lines are used for the concrete semantics
of buffer sharing expressed in buffer dependency graphs.

3.4.2 Translation to Implementation Model

Packet dependency graphs are comparable to process networks in the sense that
concurrency is explicit in them and parallelisation can be achieved by binding the
tasks to processors and scheduling them. There are, however, also intricacies and
decision problems that are unique to Ladybirds, in particular the question of how
the abstract packet dependencies discussed so far can bemet andwhichmechanisms
need to be put in place to do so.These questions must be resolved before a Ladybirds
program can be implemented; they shall be focused on in the following.

The simplest mechanism of exchanging data between two tasks is to make them
work on the same buffer, e.g., one task writes its output to a buffer which is then
provided to another task, which reads its input from it. Typically, this is also the
most efficient implementation — for two cores exchanging data via shared memory,
this is the natural way of communicating, and for one core sequentially executing
both tasks, it can achieve a similar performance, depending on the semantics of the
tasks, to merging the kernels of both tasks to one. In the following, buffer depend-
ency graphs will be used to represent the data exchange mechanisms. In a buffer
dependency graph, the tasks are the same as in a packet dependency graph; how-
ever, edges denote data exchange by sharing buffers, i.e., the two interfaces connec-
ted by an edge will be provided the same buffer. Figure 3.5 shows the two different
graph types for a simple application. Unlike packet dependency graphs, buffer de-
pendency graphs have clear execution semantics: A partial execution order of the
tasks is given by the edges, and using the same buffers for all interfaces connected
by edges implements communication between the tasks as specified.

Buffer sharing is, however, not always possible. An obvious example is that of two
tasks being executed on two cores that do not share any common memory. Data
transfer is necessary in these situations. It can be modelled in buffer dependency
graphs by inserting additional data transfer tasks, as Figure 3.6 shows.

Even if shared memory is available and can be used, buffer sharing is not al-
ways possible, as the application in Figure 3.7 on page 98 shows. In this example, a
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Figure 3.6: Insertion of data transfer tasks. Two tasks are to be executed on different clusters
of a platform that do not share any memory. During the translation from the packet depend-
encies (above) to the buffer dependencies (below), a transfer task is inserted which represents
the packet transmission from the first to the second cluster, e.g. over a network on chip. Typ-
ically, the implementation of this task will consist of two parts — one that sends on the one
cluster and one that receives on the other. In such a case, the execution of the program can
then be managed independently on each cluster, since the synchronisation of the clusters is
accomplished by the transfer task(s), with the data transmission by its nature ensuring the
correct scheduling order.

produce-read-modify situation occurs, namely two tasks (read-0 and mod-0) op-
erate on the same data and one of them (mod-0) wants to modify it. While such a
configuration is perfectly valid in an abstract packet dependency graph, a one-to-
one translation to a buffer dependency graph is not possible: Simply replacing the
packet dependency edges with buffer dependency edges would allow mod-0 and
read-0 to work simultaneously on the same buffer, which would likely lead to un-
synchronised reading and writing, breaking the semantics of the application. For
a valid buffer dependency graph, two possible efficient solutions exist, which are
shown in Figure 3.8 on the following page. The first solution is to execute the pro-
cesses sequentially, essentially adding a dependency from read-0 to mod-0. The
second solution is, instead of providing the original buffer, to create a copy of it,
which then mod-0 can safely modify. Both solutions make sense in different scen-
arios. If, for instance, all tasks are mapped to the same processor, the first solution
is the most natural. Configurations requiring data transfers between prod-0 and
mod-0 (as seen before) automatically lead to the second solution. In other cases,
the decision is not so clear and other factors may play a role, like size of the packet,
available memory, task execution times, numbers of memory accesses, other tasks
that need to be scheduled etc.
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int packet[…];

prod( / ∗ out ∗ / packet);

read( / ∗ in ∗ / packet);

mod( / ∗ i n ou t ∗ / packet);

read( / ∗ in ∗ / packet);
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Figure 3.7: Example for a produce-read-modify situation. A sample code for a metakernel
is given on the left and the resulting task graph on the right.

Figure 3.8:
Two buffer dependency
graphs with efficient im-
plementation options for
the produce-read-modify
configuration as given in
Figure 3.7
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Such considerations, in addition to the well-known mapping problems from pro-
cess networks, are the core of the Ladybirds optimisation phase. Given a specific-
ation of which packets (i.e. data) are produced and required in which tasks, the
optimiser must allocate buffers to carry those packets and arrange all necessary
copying and data transport. Two additional considerations may be relevant in cer-
tain situations.

• Additional copy tasks or data transfer tasks may, even when not neces-
sary for program execution, still increase application performance. A typical
example are memory hierarchies with a larger memory shared between mul-
tiple cores and small, fast scratch-pad memories private to each core. A task
can execute significantly faster if its input packets have been copied into a
scratch-pad memory or if its output buffers are allocated there, necessitating
a later transfer to shared memory.
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• Buddy interfaces, i.e. pairs of an input and an output interface declared as
buddies, can be merged by simply providing the same buffer to both of them.
The question of whether or not to do this depends again on the application
context. If, for instance, the mod-0 task in the produce-read-modify example
(Figure 3.7), instead of an inout interface had two interfaces, in and out,
declared as buddies, mod-0 and read-0 could execute in parallel without an
additional copy task (one would just pass a different buffer the output inter-
face of mod-0). On the other hand, also the solution of merging the interfaces
and executing all tasks sequentially may be appropriate in certain cases (e.g.
all tasks are mapped to the same processor, or not much memory is available).

3.4.3 Summary of the Optimisation Procedure
The previous descriptions have introduced the concepts and ideas of transformation
and optimisation steps that have to be carried out during the optimisation phase
of a Ladybirds application. These steps shall now be generalised and summarised.
Since this section is about the Ladybirds optimisationmodel but not about the actual
optimisation techniques, it will only give a list of steps, but no concrete algorithms.

As discussed previously, the first analysis performed on a Ladybirds application
specification is a dependency analysis leading to the construction of a packet de-
pendency graph. The goal of the optimisation procedure is now to transform this
packet dependency graph into a buffer dependency graph, where

• Each task is assigned to a processing element (task binding),

• At least one buffer is allocated for each packet (buffer allocation), such that
the processors executing the tasks can access the required buffers and that
the limitations of memory availability are respected,

• Additional copy tasks or buffer dependencies are insertedwherever the choice
of the buffers makes it necessary (copy optimisation — cf. Figure 3.8),

• For buddy interfaces, it is decided whether they are merged (buddy optimisa-
tion),

• Data transfer tasks are inserted wherever necessary (transfer management),

• Each copy or transfer task is assigned to a processing element or DMA con-
troller (transfer binding),

• The order of all tasks (including copy and transfer tasks) is determined (task
scheduling) such that all buffer dependencies are fulfilled.
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These decisions and transformations are carried out such that a certain targetmetric,
for instance the execution time of the entire program, is optimised.

The purpose of these optimisations is that all the requirements set out previously
for efficient data exchange and memory usage are met, in particular also sharing of
data and in-place modifications. The optimisation model is generic enough to allow
such optimisations for an arbitrary platform; different transformations for different
architectures and memory hierarchies have been discussed, but none of them was
fixed or presumed for the overall optimisation process.

Note that the above description focuses on static bindings and schedules. It is
possible to have a more flexible implementation, however at a higher complexity in
optimisation procedure, implementation and runtime system. In the special case of
dynamic scheduling, the additional flexibility can also be bought at the price of a
higher memory consumption: More buffers must be available simultaneously such
that different tasks can be dynamically scheduled. In short, the above description,
which also sets up the largest possible design space, is just one of many other pos-
sible optimisations procedures. However, it prepares a program specified in Lady-
birds C for being implemented, as will be shown in the next section.

3.5 Implementation Model
A buffer dependency graph of an application, once constructed, contains all neces-
sary semantics of an efficient parallel execution of the application. The semantics
of the tasks are given by the kernels, and each communication or data exchange is
explicit — either through buffer sharing edges or through dedicated data transfer
tasks. What remains to be shown is that there exist efficient techniques for im-
plementing these functionalities on the platforms. The two relevant points in this
context are buffer dependencies and reading and writing packets, in particular sub-
packets, from/to buffers in the course of task execution.

As to the buffer dependencies, an implementation model needs to provide an effi-
cient technique to guarantee that they are respected. As it turns out, however, these
dependencies are no longer necessary in this degree of detail. Since buffers have
been allocated for all interfaces during optimisation, it is sufficient to ensure that
the scheduling constraints they impose on the tasks are respected. Therefore, the
constraints can be merged at task level. Figure 3.9 illustrates this using the Canny
example from the previous sections. The result of this transformation can be re-
garded as an SDF graph in which all firing counts are one (also known as homogen-
eous SDF or marked graph). Note, however, that the tokens sent in this graph do
not contain any data, they just represent scheduling constraints. Data exchange is
performed purely through the buffers, which, however, are not shown in the figure.
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CaptureImage-0
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SobelX-1
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SobelY-1

EdgeGrad-0

EdgeGrad-1

NonMaxSupp-0

NonMaxSupp-1

OutputImage-0

Figure 3.9: Implementation model for the Canny application (cf. Listing 3.8 on page 88 and
Figure 3.2 on page 92).

Since such a graph is also acyclic by construction and each task is executed exactly
once, the edges can be implemented by simple bit masks that indicate whether a
task has already finished or not. A scheduler can then easily check whether all de-
pendencies of a task have been fulfilled such that the task is ready for execution.

The point that remains to be discussed is how to implement the concept of
(sub-)packets (cf. p. 85) in tasks. In the Ladybirds model, a task execution boils
down to a C function call, where the function is an implementation of the kernel
which the task instantiates. Possible kernel parameters (declared as param in
the specification) need to be passed to the function as well as references to
the buffers that were allocated for the task interfaces. Since these buffers could
also be parts of a larger buffer (when a sub-packet was passed in a meta-kernel
declaration), the question is how to implement such functionality in C. To answer
this question, it helps to regard how an array access is interpreted in C. An element
arr[1][2][3] of an array declared as int arr[4][5][6] is translated to
the byte address &arr+ ((1 ⋅ 5 + 2) ⋅ 6 + 3) ⋅sizeof(int). More formally, for an
𝑛-dimensional array with a size given by a vector 𝒔 ∈ ℕ𝑛+1, (where 𝑠1 shall denote
the size in bytes of the base type), an 𝑛-dimensional address given by a vector
𝒂 ∈ ℕ𝑛 is translated to the byte address

base + ((⋯ (𝑎𝑛 ⋅ 𝑠𝑛 + 𝑎𝑛−1) ⋅ 𝑠𝑛−1 + …) ⋅ 𝑠2 + 𝑎1) ⋅ 𝑠1 = base + ⟨𝒂, 𝒔∗⟩,

with the base address base of the array, ⟨⋅, ⋅⟩ the scalar product and 𝒔∗ ∈ ℕ𝑛 given
as

𝑠∗𝑖 =
𝑖

∏
𝑘=1

𝑠𝑘.

101



Chapter 3 The Ladybirds specification model

For a sub-packet starting at themulti-dimensional index (0, 0, … , 0) of the original
packet, the called function can therefore correctly calculate all byte addresses if it
knows the size 𝒔 of the original buffer that was allocated. If a sub-packet is located
“in the middle” of the original packet, i.e., the sub-packet index (0, 0, ..., 0) is mapped
to an index 𝒅 ∈ ℕ𝑛 in the original packet, the byte address of a sub-packet index 𝒂
can be calculated as

base + ⟨𝒂 + 𝒅, 𝒔∗⟩ = (base + ⟨𝒅, 𝒔∗⟩) + ⟨𝒂, 𝒔∗⟩.

This corresponds to an array of dimension 𝒔 with a base address equivalent to the
byte address of element 𝒅 in the original packet. In short, a sub-buffer reference
can be passed to a function by passing a pointer with a base address and an ar-
ray with the dimensions of the original buffer that was allocated. Along the same
lines, sub-packets with reduced dimensionality can be implemented by removing
elements in 𝒔∗, which corresponds to multiplying the sizes of the removed dimen-
sions into the sizes of the dimensions below. For instance, for a packet declared
as int arr[4][5][6], a two-dimensional sub-packet arr[0,2][3][1,3] can
be emulated as an array of dimensions 4 × 30 with the base pointer at the address
&arr[0][3][1]. Reducing dimensions at the lowest level is equally possible (e.g.
arr[0,2][0,2][3]); however, it requires modifications to the original code.

Listing 3.9 shows how a kernel specification code can be modified such as to ac-
cept sub-buffers. Note that the C code in the kernel body is not changed. The only
difference as compared to a direct implementation with fixed array sizes is that the
C compiler cannot perform strength reductions which were possible before, e.g. bit
shifts instead of multiplications when array dimensions were powers of two. How-
ever, when iterating over arrays (which is a very typical case), element addresses can
also be calculated by adding offsets in each iteration, such that no performance is
lost. As a complementing optimisation, it would be possible to hard-code the kernel
parameters and buffer sizes that actually appear in a program, possibly producing
multiple implementations of the same kernel.

The reference-based sub-packet implementation is also the reason why Ladybirds
C does not support pointer arithmetic on packets or their elements: A programmer
specifying a kernel has no knowledge about how the packet elements will later
be arranged in memory. Calculating their addresses according to conventional C
programming practices is therefore not possible.

This section discussed two simple mechanisms, task dependency bitmasks and
(sub-)buffer references, which together are sufficient to implement a Ladybirds ap-
plication. Data exchange and memory efficiency have been addressed in the optim-
isation process, the results of which can be implemented one to one. The overhead
for scheduling is reduced to bitmasks and the execution of a task is as simple as a
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Listing 3.9: Code transformation from a Ladybirds C kernel specification (a) to a conven-
tional C function (b). Each packet in the argument list of the kernel is replaced with two
function arguments, viz. base pointer of the (sub-)buffer and size of the originally allocated
buffer. Those two arguments are then used to construct an array pointer with the name of
the original packet at the beginning of the C function implementation.

(a) Ladybirds C kernel specification
kernel(SobelX)(param int height, param int width,

in uchar Image[height][width],

out char GradX[height-2][width-2])

{

for (int y = 0; y < height-2; ++y)

for (int x = 0; x < width-2; ++x)

GradX[y][x] = Image[y ][x] - Image[y ][x+2]

+ 2*Image[y+1][x] - 2*Image[y+1][x+2]

+ Image[y+2][x] - Image[y+2][x+2];

}

(b) Implementation as C function
void SobelX(const int height, const int width,

const int _lb_size_Image[2], const void *_lb_base_Image,

const int _lb_size_GradX[2], void *_lb_base_GradX)

{

const uchar (*Image)[ _lb_size_Image[1] ] =

(const uchar (*)[_lb_size_Image[1]]) _lb_base_Image;

char (*GradX)[ _lb_size_GradX[1] ] =

(char (*)[_lb_size_GradX[1]]) _lb_base_GradX;

for (int y = 0; y < height-2; ++y)

for (int x = 0; x < width-2; ++x)

GradX[y][x] = Image[y ][x] - Image[y ][x+2]

+ 2*Image[y+1][x] - 2*Image[y+1][x+2]

+ Image[y+2][x] - Image[y+2][x+2];

}

function call. Since the tasks are stateless, no preemption techniques are necessary.
In summary, it can be stated that the Ladybirds implementation model achieves a
high degree of efficiency and addresses well the requirements for implementation
models set out in Section 3.1.
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3.6 Other implementation models
The previous sections have introduced the Ladybirds model set and shown how
it can be used to obtain efficient parallel application implementations on different
multicore platforms and architectures. This section will show that Ladybirds is also
useful even for single-threaded program execution. Two such cases shall be presen-
ted, firstly that of debugging Ladybirds C code and secondly that of state retention
in systems with volatile power supply.

3.6.1 Debugging
As already mentioned, debugging parallel code is known to be a notoriously tedi-
ous and complicated endeavour. The major difficulties lie in locating the source of
an error among multiple independent threads, and in the fact that parallel program-
ming introduces a large number of additional error sources such as synchronisation
problems, glitches, out-of-bounds array accesses impacting other cores etc.

Ladybirds substantially simplifies this issue because the code specification in
Ladybirds C is a single-threaded one.This makes it possible to circumvent the entire
optimisation phase and instead obtain a single-threaded implementation directly
from the specification. The last section showed how a kernel can be transformed to
obtain a C function implementation; the same transformation can also be applied to
metakernels. When doing so, however, also the metakernel bodies must be adapted
such that the kernel calls are transformed into native C function calls with the cor-
rect arguments for the sub-buffers. While packet declarations in metakernels con-
stitute valid C code, their meaning in C is to allocate arrays on the stack. For small
packets, this is not problematic; to cover the case of larger packets, however, it is
advisable to transform these directives to dynamic memory allocation instructions.
Generator variables and loops can be left unchanged and will be executed as nor-
mal C instructions. The genvar keyword is easily neutralised with a preprocessor
directive. Listing 3.10 shows the debug implementation generated for the Canny
metakernel.

With these small and straightforward transformations, any Ladybirds C program
can be compiled using a conventional C compiler and debugged using conventional
debugging tools. Adding C preprocessor #line directives during code transforma-
tion even allows to display the original Ladybirds C code in the debugger. Moreover,
since packet sizes are well-defined in Ladybirds C, it is possible to add instrumenta-
tion code that detects out-of-bounds accesses during the debug run. A programmer
can thus comfortably execute a sequential implementation of his application on his
computer, spotting and removing possible bugs. The correct(ed) program specific-
ation is then optimised to an efficient parallel implementation, which is correct by
construction. Parallel debugging can therefore be entirely avoided in many cases.
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Listing 3.10: Debug implementation of the Canny metakernel in Listing 3.7. The packet
declarations in the body have not been transformed in this example.

void Canny(

const int _lb_size_Image[2], const void *_lb_base_Image,

const int _lb_size_Edges[2], void *_lb_base_Edges)

{

#line 95

const uchar (*Image)[ _lb_size_Image[1] ] =

(const uchar (*)[_lb_size_Image[1]]) _lb_base_Image;

#line 95

uchar (*Edges)[ _lb_size_Edges[1] ] =

(uchar (*)[_lb_size_Edges[1]]) _lb_base_Edges;

#line 96

char GradX[EdgeHt][EdgeWd];

char GradY[EdgeHt][EdgeWd];

uchar Direction[EdgeHt][EdgeWd];

genvar int nstripes = 4;

genvar int blockht = EdgeHt/nstripes;

for (genvar int y1 = 0; y1 < EdgeHt; y1 += blockht)

{

genvar int y2 = y1+blockht-1;

SobelX(blockht+2, ImgWd, (int []){_lb_size_Image[0],

_lb_size_Image[1]}, Image[y1],

(int []){1, 1036}, GradX[y1]);

SobelY(blockht+2, ImgWd, (int []){_lb_size_Image[0],

_lb_size_Image[1]}, Image[y1],

(int []){1, 1036}, GradY[y1]);

EdgeGrad(blockht, EdgeWd, (int []){1, 1036},

GradX[y1], (int []){1, 1036}, GradY[y1],

(int []){_lb_size_Edges[0], _lb_size_Edges[1]},

Edges[y1], (int []){1, 1036}, Direction[y1]);

NonMaxSupp(blockht, EdgeWd,

(int []){_lb_size_Edges[0], _lb_size_Edges[1]},

Edges[y1], (int []){1, 1036}, Direction[y1]);

}

}

105



Chapter 3 The Ladybirds specification model

3.6.2 State retention on transient systems
Another case in which Ladybirds is useful beyond parallel programming are transi-
ent systems. A transient system is a digital device that is powered only by a volatile
energy source such as a solar panel. Batteries are not used because of their limited
number of recharge cycles, their cost and their possible environmental impact, so
only capacitors are used as small energy buffers to allow for a controlled shut-down
in case of energy breakdown. Typical examples are small sensor nodes, i.e. devices
which acquire data from a sensor, process it and then transmit the results over a
wireless connection. Being highly autonomous and maintenance-free, such transi-
ent systems lend themselves for instance to autonomous monitoring installations
in unreachable terrain.

Since, however, their power supply is gained through energy harvesting, they
must be prepared for a power cut at any moment — consider, for instance, the case
of a solar panel subjected to varying lighting conditions. Before power runs out,
transient systems need to save to a non-volatile memory, e.g. FRAM, all data rel-
evant for further execution (state retention). Due to technical reasons related to the
manufacturing process, the non-volatile memory is located on an external chip in
many systems, such that the storing and the subsequent loading procedure have
significant costs in terms of time and energy. For these systems, it is vital to min-
imise the size of the state that needs to be retained, thereby increasing the energy
available for productive tasks or even enabling a reduction of the capacitor size.This
requires, however, accurate knowledge about which data really needs to be saved
and how this can be determined. Such knowledgemakes it possible not only to avoid
unnecessary data retention overhead but also to leverage other application optim-
isations which can further reduce state retention overhead. Unfortunately, current
approaches to this issue face considerable limitations.

• Manual specification is tedious and error-prone.

• Automatic analysis of generic code is infeasible in general.

• Some software solutions [RSF11; BM16] take the conservative approach of
saving the contents of all occupied regions of the volatile memory. This leads
to an overly high amount of precious energy being spent on state retention
overhead.

• An improvement to this is to save only those areas that have been modified.
To achieve that, it has been proposed [BM16] to first read the non-volatile
memory (which, in the case of flash memory, is much less costly) or to build
special hardware using techniques comparable to dirty bits in caches (e.g.
in [Liu⁺16], however for on-chip ReRAM). This reduces, but does not solve
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Figure 3.10: Illustration of a transient system architecture according to [Gom⁺16]. An energy
management unit (EMU) gathers volatile energy supplies in a capacitor and uses them to
reliably power a system-on-a-chip (SoC) and a non-volatile memory (NVM) for predefined
time spans.

the problem of the conservative approach. Consider, for instance, a neural
network based image classification algorithm that stores tens of kilobytes or
even megabytes of intermediate data for its neurons, whereas only the classi-
fication result is important, which typically can be stored in one single byte.

This problem is remedied by Ladybirds: With its clearly defined task inputs and out-
puts, it allows the automatic analysis of data dependencies and therefore of what
data must be conserved for later use. This consideration will be substantiated by
the following methodology for minimising the state retention overhead of a given
Ladybirds application, which results from a collaboration with Andrés Gomez, Pas-
cal Alexander Hager and Praveenth Sanmugujarah.

We consider a type of platforms as proposed in [Gom⁺16]. Their architecture is
illustrated in Figure 3.10. It contains a conventional low-power system-on-a-chip
(single-core processor, volatile memory module) which is connected to a separate
chip providing non-volatile memory. Power is supplied by a volatile source, which
is managed by an energy management unit. This unit uses the incoming power to
load a capacitor. When enough energy has been stored, the processor is powered
on, initialises the system-on-a-chip, executes a number of tasks and turns itself off
again. Prior to task execution, it fetches required data from the non-volatile memory
and afterwards, it writes results back.The entirety of all the actions between power-
up and turn-off is called a burst ; the energy management unit guarantees that each
burst can be completed without power cuts.

This architecture has a number of distinct advantages. Firstly, the energymanage-
ment unit decouples the input voltage for the power supply and the output voltage
for the load, thereby achieving a high degree of energy efficiency. Secondly, due to
the principle of energy bursts, it also works for configurations in which the power
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supply from the source is significantly less than the power demand required by
the load. Thirdly, it guarantees application progress even with highly intermittent
power sources instead of repeatedly starting up the processor without finishing any
task. Finally, it allows to plan ahead for the task execution such that state retention
can be performed when the amount of data that must be saved is small.

The question that arises now is how many and which tasks should be combined
in a single burst. In general it is advantageous to end a burst where the amount of
data that needs to be stored and restored is small; however, this may not always be
possible, since burst sizes are limited by the energy amount that can be maximally
stored in the capacitor. The problem is complicated by the fact that the decisions
taken for one burst influence the options for the next, thereby turning the local
optimisation problem into a global one. The following will show how this problem
can be solved using Ladybirds.

We model the system as follows. The program to be executed is a Ladybirds ap-
plication consisting of 𝑛𝑡 tasks 𝑡1, … , 𝑡𝑛𝑡 , which are executed in that order.This order
follows the (sequential) Ladybirds C specification. Each task 𝑡𝑖 reads and writes, re-
spectively, a set of packets 𝑃 𝑟

𝑖 ⊆ 𝑃 and 𝑃𝑤
𝑖 ⊆ 𝑃, with 𝑃 = ⋃𝑃𝑤

𝑖 the set of all packets in
the application. Each packet 𝑝 ∈ 𝑃 is contained in exactly one 𝑃𝑤

𝑖 , but can belong to
one or multiple2 𝑃 𝑟

𝑖 .This corresponds to the Ladybirds optimisationmodel with split
interfaces; however, inout packets and buddies are not of interest in this context
and are thus modelled as separate inputs and outputs.

Each task 𝑡𝑖 consumes an amount 𝐸𝑥(𝑡𝑖) of energy for its execution, the loading
and storing of a packet 𝑝 from/to the non-volatile memory requires energy amounts
of 𝐸𝑟(𝑝) and 𝐸𝑤(𝑝), respectively, and the start-up energy needed for initialising the
system-on-a-chip is 𝐸𝑠. The problem to be solved is now as follows:

Given a maximum amount 𝐸cap of energy that can be stored in the capacitor, par-
tition the tasks into a set of bursts such that (i) no burst consumes a higher amount
of energy than 𝐸cap and (ii) the total amount of energy consumed during all bursts is
minimised.

To approach that problem, we first calculate the energy required for one burst.
We denote as 𝐸⟨𝑖, 𝑗⟩ the energy required to execute a burst that executes the tasks
𝑡𝑖, … , 𝑡𝑗. If only one task is executed in a burst, i.e. 𝑖 = 𝑗, the burst consists of start-
ing up the processor, loading the input packets of the task, executing the task and
storing its output packets to non-volatile memory. The burst energy can thus be
calculated as

𝐸⟨𝑖, 𝑖⟩ = 𝐸𝑠 + ∑
𝑝 ∈𝑃 𝑟𝑖

𝐸𝑟(𝑝) + 𝐸𝑥(𝑡𝑖) + ∑
𝑝 ∈𝑃𝑤𝑖

𝐸𝑤(𝑝).

2 According to the Ladybirds model, there could also be packets that are not read by any task. Since,
however, these packets never need to be saved or restored, we can leave them out of our considera-
tions without loss of generality.
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If now a second task is added to the burst, the burst energy can be computed ana-
logously, except for a number of additional effects that need to be considered:

• An input packet of the second task could also be an input packet of the first
task. In that case, it would not have to be loaded twice.

• An input packet of the second task could have been produced by the first task.
In that case, it would already be in the volatile memory as well.

• An output packet of the first task could be used solely by the second task. In
that case, it would not have to be saved to the non-volatile memory.

Similar considerations hold for tasks consisting of multiple bursts. To formalise
these constraints, we define the last use 𝑙𝑗(𝑝) of a packet 𝑝 prior to an index 𝑗 as

𝑙𝑗(𝑝) = max {𝑖 < 𝑗 || 𝑝 ∈ 𝑃 𝑟
𝑖 ∨ 𝑝 ∈ 𝑃𝑤

𝑖 } ,

i.e. as the highest index less than 𝑗 of a task that reads or writes 𝑝. This definition
includes 𝑙∞(𝑝), the index of the last task in the application that reads or writes 𝑝.
We can now express the sets of packets 𝑃 𝑟

𝑘⟨𝑖, 𝑗⟩ and 𝑃
𝑤
𝑘 ⟨𝑖, 𝑗⟩ that must be loaded and

stored, respectively, for a task 𝑡𝑘 contained in a burst executing tasks 𝑡𝑖, … , 𝑡𝑗:

𝑃 𝑟
𝑘⟨𝑖, 𝑗⟩ = { 𝑝 ∈ 𝑃 𝑟

𝑘
|| 𝑙𝑘(𝑝) < 𝑖 } , 𝑃𝑤

𝑘 ⟨𝑖, 𝑗⟩ = { 𝑝 ∈ 𝑃𝑤
𝑘

|| 𝑙∞(𝑝) > 𝑗 } .

The burst energy can then be computed as

𝐸⟨𝑖, 𝑗⟩ = 𝐸𝑠 +
𝑗

∑
𝑘=𝑖

( ∑
𝑝 ∈𝑃 𝑟𝑘⟨𝑖,𝑗⟩

𝐸𝑟(𝑝) + 𝐸𝑥(𝑡𝑘) + ∑
𝑝 ∈𝑃𝑤𝑘 ⟨𝑖,𝑗⟩

𝐸𝑤(𝑝) ).

Note that due its explicit input/output specification, Ladybirds allows parallel
data transfer and execution. For instance, after loading the packets in 𝑃 𝑟

𝑖 ⟨𝑖, 𝑗⟩, task 𝑡𝑖
can start executingwhile a DMA controller already loads the packets in 𝑃 𝑟

𝑖+1⟨𝑖, 𝑗⟩ and
maybe even data for later tasks. Similarly, it can also transfer output packets of 𝑡𝑖 to
the non-volatile memory while later tasks still execute. This technique saves time
and thus energy. The burst energy calculation could be adapted accordingly; due to
the intricacies involved in predicting task execution times and thus data transfer
concurrency, this is however beyond the scope of this work.

Now that the burst energies are known, we can solve the task partitioning prob-
lem, i.e. the question of how the tasks should be partitioned to bursts such that
the overall application execution energy is minimised while respecting the upper
energy bound 𝐸cap for all bursts.
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𝑠0 𝑡1
𝑠1 𝑡2

𝑠2
⋯

𝑡𝑛𝑡
𝑠𝑛𝑡

𝐸⟨1, 1⟩ 𝐸⟨2, 2⟩

𝐸⟨1, 2⟩

𝐸⟨1, 𝑛𝑡⟩

𝐸⟨2, 𝑛𝑡⟩

𝐸⟨3, 𝑛𝑡⟩

Figure 3.11: Graphic illustration of the states 𝑠0, … , 𝑠𝑛𝑡 between the bursts for the case of
single-task bursts executing the tasks 𝑡1, … , 𝑡𝑛𝑡 . Burst energies for transitions between the
states have been added (lighter colour for single-task bursts). This leads to the construction
of a burst graph.

To address this problem, we first consider the case that each task is executed in
its own burst. In this case, we have 𝑛𝑡 bursts and we can define (𝑛𝑡 + 1) power-off
states 𝑠0, … , 𝑠𝑛𝑡 . In this definition, 𝑠0 is the state before application execution has
started, 𝑠1 is the state after the burst with 𝑡1 has executed etc. (see Figure 3.11). For
getting from 𝑠0 to 𝑠1, the system consumes the energy 𝐸⟨1, 1⟩, for getting from 𝑠1 to
𝑠2 it consumes 𝐸⟨2, 2⟩ and so forth. If we now take bursts with multiple tasks into
consideration, the system can also get from 𝑠0 directly to 𝑠2 by executing a burst
with 𝑡1 and 𝑡2, consuming the energy 𝐸⟨1, 2⟩. In this way, we can construct a burst
graph connecting each state 𝑠𝑖 to any state 𝑠𝑗, 𝑗 > 𝑖, and assign to each edge a cost
equivalent to the corresponding burst energy.

This graph offers a new interpretation of the task partitioning problem. The min-
imisation of the total application execution energy can be interpreted as the problem
of getting from 𝑠0 to 𝑠𝑛𝑡 with the smallest cumulative cost. The constraint of keep-
ing the burst energy below 𝐸cap translates such that no edges with a cost larger
than this upper bound may be considered. The task partitioning problem therefore
is equivalent to the problem of finding the shortest path from 𝑠0 to 𝑠𝑛𝑡 on a burst
graph from which the edges with a cost higher than 𝐸cap have been removed.

Shortest path problems can be efficiently solved, for instance, using Dijkstra’s
algorithm [Dij59], with a complexity of 𝒪(𝑛𝑡2). The complexity of the proposed cal-
culations is, in fact, dominated by the computation of the burst energies 𝐸⟨𝑖, 𝑗⟩:
There are ½ 𝑛𝑡 (𝑛𝑡 + 1) possible burst energies to calculate. For each such burst, one
needs to iterate over all tasks contained in it and check each packet accessed by
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each task for whether it needs to be transferred or not. These checks can be imple-
mented efficiently (amortised 𝒪(1)) using lookup tables, which leads to an overall
complexity of 𝒪(𝑛𝑡3 ⋅ |𝑃 |). While this is more complex than the mere shortest path
calculation, we still have presented a method which finds the optimal solution to
the task partitioning problem in polynomial time.

In addition, the proposed method can not only be used to minimise the overall
application execution energy. It can also determine the smallest energy storage ca-
pacity 𝐸cap

min necessary to execute a given application. Note that this energy is not
equivalent to the highest burst energy of all single-task bursts, since adding tasks
to a burst could save more data transfer energy than it costs additional task execu-
tion energy. 𝐸cap

min can be calculated by modifying the shortest path algorithm such
that a path length is not calculated by adding all costs along the path, but instead
by choosing the maximum cost along the path. Applying the modified algorithm
to the complete burst graph (with no connections removed) will yield 𝐸cap

min as the
shortest path cost. Another run of the original partitioning algorithm then returns
the optimal partitioning for this maximum burst cost.

In the following, the proposed approach for grouping tasks to bursts for execu-
tion on a transient system shall be discussed. The previous considerations demon-
strated that for Ladybirds applications, there is an efficient method for optimally
partitioning a sequence of tasks. There is, however, one optimisation lever which
has not been regarded yet. In the proposed methodology, the order of the tasks was
assumed as given (we used the sequential order from the application specification).
The Ladybirds optimisation model, however, makes parallelism explicit and there-
fore also allows to reorder the tasks. A promising idea would be to do this in such
a way that those tasks sharing large amounts of data are close to each other in
the execution order, allowing them to be executed in the same burst and therefore
reducing state retention costs. This optimisation problem, however, does not seem
to have a polynomial solution. Possible approaches might include greedy, but also
evolutionary heuristics with the results of the proposed partitioning algorithm as
an evaluation metric during the selection step.

In that sense, the previous approach of following the sequential execution order
from the specification can also be regarded as a heuristic. In fact, this heuristic is
far from arbitrary and produces good results in many cases: Programmers typically
write their code such that they can easily trace the data that is modified throughout
the code. This coding scheme is likely to result in a specification in which tasks
exchanging large amounts of data are placed close to each other. However, like with
every heuristic, exceptions exist. One example is whenmultiple processing steps are
parallelised independently of each other as shown in Listing 3.11 on the following
page. Knowing the compilation mechanism, however, the programmer can easily
influence this behaviour.

111



Chapter 3 The Ladybirds specification model

Listing 3.11: Code snippet of ametakernel that would lead to suboptimal results on transient
systems when executing the tasks in specification order. In this extreme example, an image
img is split into 8 blocks, all of which are subjected to the same filter before the next filter
is applied. This may lead to each intermediate result having to be stored on non-volatile
memory when following the specified order. It would be clearly advantageous to put all filter
calls into one generator loop, such that all filters are applied subsequently to each block. In
this case, multiple filter tasks might be combined in one burst, leaving intermediate results
in volatile memory only.

uchar img[1024][1024];

AcquireImg(img);

for(genvar int i = 0; i < 8; ++i)

Filter1( / ∗ i n ou t ∗ / img[i*128,i*128+127]);

for(genvar int i = 0; i < 8; ++i)

Filter2( / ∗ i n ou t ∗ / img[i*128,i*128+127]);

for(genvar int i = 0; i < 8; ++i)

Filter3( / ∗ i n ou t ∗ / img[i*128,i*128+127]);

/ / further processing...

In summary, we have presented a method to group a sequential list of tasks into
bursts such that the total energy consumption is minimised for the transient system
architecture described in [Gom⁺16]. The minimisation is performed under the con-
straint of a maximum energy that can be stored in a capacitor, and we can calculate
the minimum energy a capacitor must be able to store to execute an application. To
be able to perform these computations, we have shown how the state that must be
retained can be accurately determined for any Ladybirds program. Different heurist-
ics have been discussed as to finding the optimal task order of a program, although
further research on this topic may be useful. The important take-away from this ex-
ample is that this promising optimisation methodology was only made possible by
the Ladybirds programming model and its concept of dividing programs into tasks
with clearly specified inputs and outputs. Ladybirds C allows to comfortably and
intuitively specify such programs; by restricting the programmer to a limited set of
features in the top level program architecture, it enables analyses and optimisations
that would not have been possible otherwise.
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3.7 Concluding remarks
In this chapter, a set of requirements and desirable properties for a specification
model — and thus an entire model set — has been derived from the results of the
previous chapter as well as from generic considerations. One major requirement
was an intuitive, comfortable and platform-independent way of specifying parallel
programs with the goal of achieving efficient data exchange between the cores on
any arbitrary platform architecture. A survey of parallel programming methodolo-
gies showed that no existing specification model fulfilled all of these requirements.
As a result, the Ladybirds model set was developed with the requirements in mind.
Apart from expressiveness, which was deliberately attributed lower priority, it was
shown that all of the mentioned requirements and desirable properties were taken
into consideration. The two examples of debugging and transient systems showed
the usefulness of the Ladybirds model set also in other domains.

An important part of the Ladybirds concept is to simplify program analysis. A
Ladybirds application consists of the one-time execution of a set of atomic taskswith
clearly defined inputs, outputs and dependencies. There is no iteration, parallelism
is explicit and all required data exchange is known exactly at compile time, making
complex and possibly inaccurate analysis unnecessary. Yet, as the considerations
about the possible optimisations for efficient data exchange or for energy-efficient
execution in transient systems have shown, complex problems still remain to be
solved. The simple optimisation model only seemingly contradicts the perception
that the optimisation problems are at least as complicated as for many other op-
timisation models. In fact, the simplicity in the optimisation model provides access
to new optimisation levers that were unavailable before. Chapter 2 clearly showed
the optimisation potential lying in these new options; Chapter 5 will show in fur-
ther concrete methods and examples how this potential can be exploited. To do so,
however, it is vital to have an accurate model of the underlying hardware. Details
on this shall be provided in the next chapter.
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4
Modelling

Interleaved Memory Platforms
Platform models, although not directly involved in processing and translation of
an application code, play an important role in the compilation process. They do
not have to be complicated, certainly, but if they are inaccurate, they can signific-
antly impair program optimisation. An optimiser relies on the platform model not
only for evaluating different options during decision-making, but also for assess-
ing the quality of a produced solution. If these decisions and assessments are based
on wrong assumptions, the progress of the optimisation metric in the optimisation
procedure is decoupled from the real system. In short, a faulty platform model is
just as bad as an inadequate optimisation algorithm.

Many different platform models have been conceived for different platform com-
ponents and different optimisation algorithms. For the execution time of tasks, for
instance, tools exist that perform a worst-case analysis based on detailed processor
models; often, however, task execution time is simply assumed to be constant for
each task and known at compile time. The cost for copying data in memory or for
sending it over a NoC is typically estimated as a function of the data volume, us-
ing linear models or stair-case functions. Most components in a hardware platform
can indeed accurately be described using such methods, and in many cases, these
models are natural and easy to derive.

One type of components exists, however, which appears in increasingly many
platforms and is far from obvious to model: Interleaved memories. The only models
proposed for them are several decades old and were developed for entirely different
hardware. Their suitability for today’s hardware and optimisation processes never
was evaluated. In this chapter, that gap shall be closed by adapting different models
and comparing their accuracy. Practical consequences for hardware and software
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⋯

(a) Contiguous mapping
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0x0028
0x0048

⋮
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⋯

(b) Sequentially interleaved mapping

Figure 4.1: Examples for different memory address mapping types. For each of the first three
banks, the addresses of the first three words stored therein are shown and optically illustrated
by darker colours for higher addresses.

design will be presented with the goal of establishing an intuitive understanding
of the characteristics of interleaved memory architectures. These findings were ob-
tained in collaboration with Pratyush Kumar.

4.1 Introduction

While sharing memory between multiple processor cores brings many advantages,
it also introduces the problem of interference amongst the cores. One solution to
this is to increase the number of memory banks: The more banks exist, the lower is
the expected probability of multiple cores accessing the same bank. However, apart
from having scalability issues, this solution by itself cannot solve the problem. We
also need to optimise the address mapping – the mapping of the logical addresses to
physical locations.

The first such mapping that comes to mind is certainly to assign each bank its
own, contiguous address space, thereby providing explicit access to the individual
banks and leaving the storage concept to the programmer. This approach, which is
for instance used by the Adapteva Epiphany chip, is called a contiguous mapping
(cf. Figure 4.1a).

A different approach ismemory interleaving.The idea of it is to have one common,
big address space for all the banks, with the data being spread at fine granularity
over all the banks. Among these interleaved mappings, the most popular in the em-
bedded systems domain is sequential interleaving. This mapping, which is adopted
for instance by the P2012 [Ben⁺12] or the PULP [Con⁺15] platforms, divides the ad-
dress space into small chunks (typically of word granularity), and each subsequent
chunk is assigned to a subsequent bank (cf. Figure 4.1b). Typically, this means that
some of the low-order bits of the word address are assigned to the bank address.
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Contiguous memory mapping configurations can be modelled with conventional
memory models: Each bank is regarded as one memory module, and two simul-
taneous accesses to it will lead to an access conflict. If a conflict happens, only one
access can be served, and the other one has to be stalled meanwhile.

Modelling interleaved memory, on the other hand, is far from straightforward.
Model-wise, there is only one memory module, and two simultaneous accesses to
it may lead to a conflict — or not. Apart from the (infeasible) approach of exactly
predicting each memory access of each core at each point in time, there is no way
of knowing which of both cases will occur. The conservative approach — assuming
that an access conflict will always arise — leads to safe upper bounds, but would be
overly pessimistic.

Probabilistic models certainly promisemore accurate results for this problem.The
obvious idea they rely on is that for 𝑏 banks, the probability that two accesses are to
the same bank is 1/𝑏. This simple idea, however, quickly grows in complexity when
trying to model multiple simultaneous accesses. Moreover, when a core is stalled
because of a pending access, it cannot request any further accesses during that time.
This means that the problem actually has a state that needs to be considered.

A second question arising with this idea is that it is based on the assumption
that the banks to be accessed are chosen randomly, while sequential interleaving
provides a fixed, predictable mapping of the memory addresses to the banks. It is
questionable whether a core’s memory access patterns can really be described by a
random variable under these circumstances. In fact, one consideration brought for-
ward by advocates of sequential interleaving is that multiple cores with the same
memory access patterns (e.g. iterating over the same array) will, after a small num-
ber of initial collisions, always be displaced by one access each and thus work in
lock-step, causing no further conflicts. We will call this phenomenon the synchron-
isation effect. If it is significant, this will clearly undermine the validity of the random
variable approach.

In this chapter, we shed light on all these questions.With the aim of quantitatively
evaluating the properties and characteristics of sequentially interleaved memory
systems, we study the metric of average throughput of the memory subsystem, i.e. the
number of access requests that are served per cycle. We propose and compare two
methods of predicting memory throughput: One based on the (stateless) occupancy
distribution and one based on a Markov model. We demonstrate that with these
methods, the average memory throughput of many real-world applications can be
accurately predicted based only on two stochastic parameters: The probability of a
core accessing the memory in any given cycle and the probability that the requested
address is subsequent to the previous one.

To evaluate the accuracy of the proposed abstraction and analysis methods, we
perform several experiments. Using the gem5 simulator [Bin⁺11], we model a multi-
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banked memory module accessed by multiple ARM-based processors. We consider
different applications that are common in several benchmarks. We profile these ap-
plications, compute their stochastic parameters, and then analyse themwith the two
methods. Across experiments, we find that the Markov-based method computes a
throughput that is within 2.5 % deviation of the measured throughput. For settings
containing twice as many banks as cores, i.e. where waiting accesses do not play a
dominating role, the error of the occupancy distribution method is within 5 %.

The rest of the chapter is organized as follows. We define the system model and
the problem statement in Section 4.3. In Section 4.4, the classic occupancy distri-
bution and the model based on it will be presented. Section 4.5 does the same with
the Markov based model. The models will then be evaluated experimentally in Sec-
tion 4.6. Before, however, we review other works on the same or related issues in
the next section.

4.2 Related work

Interestingly, the main line of research in the domain of interleaved memory took
place as early as the late 1960s and the 1970s, at the time using magnetic core
memories.Withmemory accesses taking considerably longer than a processor clock
cycle, the common simplification was to partition time into “access cycles”, assum-
ing that any access demand arrived at the beginning of a cycle and that every core
accessed the memory in each such a cycle.

Some of the analysis models (e.g. Burnett and Coffman [BC70; BC73]) were
conceived for architectures which we do not regard here. Others (e.g. Skinner and
Asher [SA69]) are computationally challenging and therefore only applicable to
smaller clusters.

Two models turned out to be successful and were adopted in multiple public-
ations. The first such model is that of Strecker [Str70], which assumes that every
memory access will be to a random bank in each cycle, leaving out of consideration
the pending accesses from previous cycles. This allows for a stateless analysis of the
system and therefore for high analysability. Rabinowitz [Rab91] uses this model for
further calculations.

The second popular model was first published by Bhandarkar and Fuller [BF73;
Bha75]. Also Chewning, Baskett and Smith researched on this model [BS76]. The
idea of it is to use a Markov description of the system and to extract results from a
steady state analysis. Rau [Rau79] provides a simpler and more accurate estimation
for the results.

Many recent works use these two models for their applications; however, to the
best of our knowledge, no publication has altered their basic assumptions. In this
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chapter, we revisit both the models and check if they can be applied to state-of-the-
art multi-processor systems with fast on-chip memories. We take account of the fact
that a processor will no longer access the memory in every cycle by extending the
models by memory access probabilities. Also, we introduce a sequential access prob-
ability into the Markov model in order to reflect certain memory access patterns
present in real applications. We believe that this is more relevant for systems with
dedicated data memory than for the machines regarded in the aforementioned pub-
lications, which fetch instructions and data interchangeably from the samememory.

4.3 System Model and Problem Definition
This section explains which kind of platforms and applications we consider and
how we model them. With these prerequisites, we then formalise the problem we
are aiming to solve.

4.3.1 Architecture Model
As for the hardware we look into, we consider a Harvard architecture, i.e., data and
program memory are separately stored and accessed. Our focus is only on mapping
and throughput of the data memory. We consider a platform with 𝑐 processor cores
and 𝑏 independently accessible SRAM banks. Each memory bank takes 1 processor
cycle to serve an access. Such fast memories are becoming common in cache-less
many- and multi-core platforms [Ben⁺12; Olo⁺11; Con⁺15].This memory model does
not consider open-row effects in other memory types such as in SDRAM.There is no
contention in the communication between the processors and the banks, i.e. there
exist dedicated communication links (usually fully parallel crossbars) between the
processors and the banks.

4.3.2 Application Model
By an application, we refer to a thread executing on a core. Each such application is
characterized by a timed trace of memory accesses. We do not consider applications
which are synchronized across processors.

For the analysis, we consider an approximate stochastic model of the application.
This model characterizes each application by only two stochastic parameters – the
access probability 𝑝a and the sequential access probability 𝑝seq. The access probab-
ility 𝑝a represents the probability that in any given processor cycle the application
will perform a memory access (assuming that perfect and contention-free memory
access is given).The sequential access probability 𝑝seq represents the probability that
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any two subsequent memory accesses will be to consecutive addresses in the local
address space, i.e. to two subsequent memory banks. Both of these mean quantit-
ies are obtained by profiling traces of the application: 𝑝a as the ratio of cycles with
memory accesses to the total number of cycles; and 𝑝seq, counting the frequency
of the individual address offsets between each pair of subsequent memory accesses
from the trace, as the relative frequency of one-word offsets.

4.3.3 Problem Definition
Themetric of interest is the throughput of the entirememory subsystem.Thismetric
expresses the aggregated performance of all applications in the system. We do not
regard how this performance is distributed between the individual applications; the
problem of arbitration is orthogonal to the problem discussed here.

For an accurate application model, the mentioned metric can be measured using
memory simulators like gem5. For the approximate stochastic model mentioned
above, we aim to design analysis methods which can estimate the metric. To this
end, we define two random variables: 𝐴 and 𝐼, where 𝐴 denotes the random num-
ber of accesses requested in any given cycle, and 𝐼 represents the number of banks
serving accesses in any given cycle. As an example, P(𝐼 = 3) denotes the probability
that there are exactly 3 banks serving an access in any given cycle. Then, the aver-
age throughput is given as the expectation of 𝐼, written as E[𝐼 ]. The distribution of 𝐼
provides information about how much this throughput can vary and about the best
and worst cases to expect.

This defines the problem which we will study in the next two sections: Under the
approximate stochastic model, given 𝑐, 𝑏, 𝑝a and 𝑝seq, compute the distribution of the
number 𝐼 of memory banks serving accesses.

For a small number of memory accesses (𝑝a close to zero), it can be expected that
every access request is served immediately (𝐼 =𝐴 in every cycle). With 𝑝a growing,
however, the probability increases that two cores try to access the same memory
bank. Since each bank can only serve one access at a time, this may lead to 𝐼 < 𝐴.
At the same time, a bank might also serve a pending access request from a previous
cycle, such that 𝐼 > 𝐴 is possible as well. While it must hold that 𝐼 ≤ 𝑏 and 𝐼 ≤ 𝑐 and
steady state considerations yield that E[𝐼 ] = E[𝐴], the exact distribution of 𝐼, given
𝑐, 𝑏 and 𝑝a only, is far from obvious.

These considerations are further complicated by the influence of sequentiality in
memory accesses. It is clear that if all accesses are always sequential (𝑝seq = 1) one
would – after a first phase of collisions andwaiting – expect all accesses to happen in
lock-step with no further collisions (synchronisation effect). Yet, for smaller values
of 𝑝seq, it is not clear a priori if this effect still plays an important role. In particular,
only the comparison with 𝑝seq = 0 can show if it is significant at all.
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4.4 Classic occupancy based model
In this section, we will analyse memory bank access conflicts using the classic oc-
cupancy distribution. This necessitates the simplification from [Str70] that pending
accesses from previous memory cycles are ignored.

We will first summarise the results from [Str70] (which assume 𝑝a = 1) and then
extend the model for different values of 𝑝a. Finally, we will evaluate the limitations
of this model.

4.4.1 The classic occupancy distribution
This section summarises the existing approach to the problem. If the number of
actual memory accesses 𝑎 in a cycle is known (the usual assumption is 𝑎 = 𝑐),
the throughput in the cycle follows the so-called classic occupancy distribution. This
distribution is defined as follows. 𝑛 balls are distributed at random into𝑚 urns. How
many urns will contain at least one ball?

Setting 𝑛 = 𝑎 and 𝑚 = 𝑏, one can reuse the known results for this distribu-
tion [Fel68; JK77]:

Pocc
𝑎,𝑏(𝐼 = 𝑖) = {

𝑎
𝑖
} ⋅

𝑏𝑖

𝑏𝑎
with {

𝑎
𝑖
} =

1
𝑖!

𝑖
∑
𝑘=0

(−1)𝑖−𝑘(
𝑖
𝑘
)𝑘𝑎, (4.1)

where 𝑏𝑖 is the falling factorial 𝑏 ⋅ (𝑏 − 1)⋯ (𝑏 − 𝑖 + 1) and {𝑎𝑖 } is the Stirling number
of the second kind, sometimes also written as S(𝑎, 𝑖). It represents the number of
possibilities of partitioning 𝑎 distinct elements into 𝑖 non-empty sets.

The expected throughput is

Eocc
𝑎,𝑏[𝐼 ] = 𝑏 − 𝑏 ⋅ (1 −

1
𝑏
)
𝑎
. (4.2)

4.4.2 Adding access probabilities
Previously, we have seen how to predict the throughput if the total number 𝑎 of
simultaneous accesses is known. This, however, is not the case for 𝑝a < 1. To extend
the model accordingly, we therefore also have to describe 𝑎.

We thus model the actual number of accesses as a random variable 𝐴, which,
according to our definition follows the binomial distribution

P(𝐴 = 𝑎) = (
𝑐
𝑎
) ⋅ 𝑝a𝑎 ⋅ (1 − 𝑝a)𝑐−𝑎 .
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Combining this with (4.1), we obtain

Pocc
𝑐,𝑏,𝑝a(𝐼 = 𝑖) =

𝑐
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(
𝑐
𝑎
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𝑖
} ⋅

𝑏𝑖

𝑏𝑎
. (4.3)

The expected throughput for this distribution is

Eocc
𝑐,𝑏,𝑝a[𝐼 ] = 𝑏 − 𝑏 ⋅ (1 −

𝑝a
𝑏
)
𝑐
. (4.4)

This can be shown in a similar way as (4.2) was shown in [JK77]. For each bank,
the probability of being accessed by one given core is 𝑝a ⋅ 1𝑏 , and thus the probability
not to be accessed by any core is

(1 −
𝑝a
𝑏
)
𝑐
.

This is also the expected number of banks out of this one bank which are not accessed
by any core. As the expected values for the different banks can be just added up,
multiplication with 𝑏 and subtraction from b (to get the number of banks that are
accessed) yields the result above.

Since usually 𝑝a ≪ 𝑏, we can introduce the following simplification. If the ratio
𝑟 = 𝑐

𝑏
of cores and banks is constant, the approximation

Eocc
𝑐,𝑏,𝑝a[𝐼 ] = 𝑏 − 𝑏 ⋅ (1 −

𝑝a ⋅ 𝑟
𝑐

)
𝑐
≈ 𝑏 − 𝑏 ⋅ 𝑒−𝑝a⋅𝑟 (4.5)

holds, with (1 − 𝜆
𝑥
)
𝑥
≈ 𝑒−𝜆 for 𝜆 ≪ 𝑥, 𝑒 being the Euler number.

4.4.3 Limitations of the model

While the model allows interesting insights, it also has some shortcomings. Firstly,
since it is stateless, sequential access patterns of the applications (i.e. 𝑝seq ≠ 0) can-
not be taken into account. Secondly, as discussed earlier, it ignores the fact that
accesses that cannot be immediately served are served in subsequent cycles, then
interfering with new accesses. As long as the number of such accesses having to
wait is small, the occupancy distribution can therefore be regarded as an approxim-
ation for the real system. With a higher number of conflicts, however, the numbers
can be expected to deviate substantially from the real values.

122



4.5 Markov model

4.5 Markov model

In this section, wewill analyse memory bank access conflicts using aMarkovmodel.
This ismore calculation intensive, but alsomore accurate than the occupancymodel.

We will again start with the known model described in [BF73], i.e. 𝑝a = 1 and
𝑝seq = 0. We will then extend the model to include sequential accesses and finally,
we will introduce the memory access probability again.

4.5.1 Known model

In the following, it will be explained how Markov model steady states are used in
general to calculate certain distributions and how this is done in [BF73] for model-
ling interleaved memory throughput.

In general, a Markov model consists of a set of 𝑘 states 𝑆 = {𝒔1, … , 𝒔𝑘} and a
transition probability function 𝑓 ∶ 𝑆 ×𝑆 → [0, 1]. This function 𝑓 (𝒔, 𝒕) = P(𝒔 → 𝒕)
describes the probability of a transition from state 𝒔 to 𝒕.

One can define a transition matrix 𝑻 ∈ ℝ𝑘×𝑘 with 𝑇𝑖,𝑗 = 𝑃(𝒔𝑗 → 𝒔𝑖). If a vector
𝒗 ∈ ℝ𝑘 contains the probabilities 𝑣𝑗 for the system to be in a state 𝒔𝑗 at a certain
point, 𝑻 ⋅ 𝒗 will contain the state probabilities after one state transition. After a
large number of rounds, the system has reached the steady state described by the
probability vector 𝝈 ∈ ℝ𝑘. It holds that

𝑻 ⋅ 𝝈 = 𝝈. (4.6)

If the transition probabilities are known, one can thus calculate the steady state
probabilities by solving the mentioned eigenvector problem.

Since one is usually not interested in the probabilities of certain states but rather
in the probabilities of certain quantities associated with the states, one will define
a quantity function 𝑞 ∶ 𝑆 → ℝ mapping the states to the quantities. Then one
can extract the probability of a certain value 𝑞∗ as the probability sum of all the
concerned states

P(𝑄 = 𝑞∗) = ∑
𝑗 ∈ 𝐽

𝜎𝑗 with 𝐽 = { 𝑗 || 𝑞(𝒔𝑗) = 𝑞∗ } . (4.7)

To apply the tool of the Markov steady state to the interleaved memory through-
put problem, i.e., to calculate Pmkv

𝑐,𝑏,𝑝a=1,𝑝seq=0(𝐼 = 𝑖) and Emkv
𝑐,𝑏,𝑝a=1,𝑝seq=0[𝐼 ], one needs to

define the set of states, derive the transition probabilities and provide a mapping
from the states to the throughput. In the following, it will be shown how this is
done in [BF73]. Accordingly, it is assumed that 𝑎 = 𝑐 and that 𝑝seq = 0.
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State set. To provide better extensibility for later problems, we encode the states
differently here than it is done in [BF73]. The states themselves, however, are still
the same. The state vectors we use have the form

𝒔 = (𝑠1, … , 𝑠𝑐),

where 𝑠𝑛 is the number of banks having exactly 𝑛 accesses in their queue. For ex-
ample, for 𝑐 = 4 cores, a state 𝒔example = (2, 1, 0, 0)⊤ would mean that two banks
have enqueued one access each and one bank has enqueued two accesses. In this
example, there are no banks with three or four accesses enqueued. Summing up the
queue lengths of all banks, one can see that the state set is

𝑆 = { 𝒔 ∈ ℕ 𝑐
0

|
|
|

𝑐
∑
𝑗=1

𝑗 ⋅ 𝑠𝑗 = 𝑎 }. (4.8)

We define 𝑠0 = 𝑏 − ∑𝑐
𝑗=1 𝑠𝑗, the number of idle memory banks for a state 𝒔.

The number of states is equal to the number of partitions of 𝑎: As an example, for
𝑎 = 16, there are 𝑃(𝑎) = 273 different states.
Transition probabilities. The probability of attaining a state 𝒔 out of the ini-
tial state 𝒔0 (with all banks idle) can be calculated directly according to this for-
mula [Mis38]:

P(𝒔0 → 𝒔) =
𝑎! ⋅ 𝑏!

𝑏𝑎 ⋅ ∏𝑐
𝑗=0[(𝑗!)

𝑠𝑗 ⋅ 𝑠𝑗!]
. (4.9)

However, for attaining a target state 𝒕 from an arbitrary state 𝒔, there are multiple
different access redistribution possibilities, which makes it hard to come up with a
closed formula for calculating the associated probability. (We use the term “access
redistributions” to model the fact that as soon as an access is served, the concerned
processor will make a new access request to a new bank.)The problem can be solved
by first determining the “stripped” state

𝒔′ = (𝑠2, 𝑠3, … , 𝑠𝑐, 0), (4.10)

in which one access request has been removed from each bank’s queue, and by
then enumerating the possibilities for distributing new access requests such that 𝒕
is attained. One algorithm for this calculation is described in [BF73; Bha75].
State throughput mapping. For a state 𝒔, the associated throughput is given by

𝑏 − 𝑠0 .
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4.5.2 Adding sequential access patterns
In order to analyse the access synchronisation effect for sequentially interleaved
memories, which was mentioned in the introduction, we now extend the model by a
sequential access probability 𝑝seq. We assume a (circular) order of the memory banks
and that upon each access, with a probability of 𝑝seq the memory bank assigned to
the accessed address will not be random but instead the bank next to the previously
accessed one.

Clearly, an exact solution to the problem would need distinction of the individual
banks, since their relative position to each other has now become relevant. Such a
distinction would, however, blow up the number of states to (𝑎+𝑏−1𝑏−1 ), e.g. 1.5 ⋅ 1012
states for the configuration 𝑎 = 16, 𝑏 = 32 (P2012), which is computationally dif-
ficult. We thus stick to the states introduced in the last section and simplifyingly
assume that all combinations of relative bank positionings are equiprobable.

The redistribution of the accesses in this model can be regarded as consisting
of two distinct steps: First a sequential distribution (access requests to the “next”
banks) of 𝑛seq balls and then a random distribution of 𝑛rnd accesses, with 𝑛seq+𝑛rnd =
𝑛redist the total number of accesses redistributed. (4.6) can then be rewritten as

𝑻rnd ⋅ (𝑻seq ⋅ 𝝈) = (𝑻rnd ⋅ 𝑻seq) ⋅ 𝝈 = 𝝈, (4.11)

defining a new transition matrix 𝑻 = 𝑻rnd ⋅ 𝑻seq.
Note that there has to be a higher number of “intermediary” states between ap-

plying 𝑻seq and 𝑻rnd, since a subset of the accesses has not yet been redistributed
and thus (4.8) must be weakened to

𝑐
∑
𝑗=1

𝑗 ⋅ 𝑠𝑗 ≤ 𝑎, (4.12)

increasing the number of intermediary states to∑𝑎
𝑗=0 𝑃(𝑎), e.g. 915 states for 𝑎 = 16,

with 𝑻rnd ∈ ℝ273×915 and 𝑻seq ∈ ℝ915×273.
The algorithm from [Bha75] mentioned in the previous section can also be used

to calculate 𝑻rnd. Note that 𝑻rnd does not depend on 𝑝seq, it can thus be reused when
testing different values of 𝑝seq.
𝑻seq can be calculated as follows. For a transition from a state 𝒔 to an intermediary

target state 𝒕, one calculates the “stripped state” 𝒔′ according to (4.10) and then the
upgrade vector 𝒖 ∈ ℤ0…𝑐 as

𝑢𝑗 =
𝑗

∑
𝜈=0

𝑢∗𝜈 with 𝒖∗ = 𝒔′ − 𝒕, 𝑢∗0 = 𝑠′0 − 𝑡0. (4.13)
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The idea is that if in 𝒔′, 𝑠′0 banks are idle and in 𝒕, only 𝑡0 banks should be idle,
𝑢0 = 𝑠′0 − 𝑡0 banks have to be upgraded by assigning one access to them. Now there
are 𝑠′1 + 𝑢0 banks with a queue length of exactly one; if only 𝑡1 of these are required,
(𝑠′1 + 𝑢0) − 𝑡1 = 𝑢1 of them have to be upgraded again etc. If any element of 𝒖 is
negative, a transition is not possible, i.e. the transition probability is zero. Also, the
transition is only possible if ∀𝑗, 𝑠′𝑗 ≥ 𝑢𝑗, since no bank can receive more than one
access through sequential redistribution.

For each upgrade class 𝑗, there are now 𝑢𝑗 out of 𝑠′𝑗 banks that must be upgraded;
in total, there are 𝑛seq = ∑𝑐

𝑗=1(𝑡𝑗 − 𝑠′𝑗) accesses to be sequentially distributed and
thus 𝑛seq out of 𝑏 banks to be upgraded. Together with the (binomial) probability
that indeed 𝑛seq accesses are redistributed sequentially, the joint probability for the
sequential transition from 𝒔 to 𝒕 is equal to

P(𝒔
seq
→⎯⎯→ 𝒕) = (

𝑛redist
𝑛seq

) ⋅ 𝑝seq𝑛seq ⋅ (1 − 𝑝seq)𝑛rnd ⋅

𝑐
∏
𝑗=0

(𝑠
′
𝑗
𝑢𝑗
)

( 𝑏
𝑛seq

)
. (4.14)

4.5.3 Adding access probabilities
In this section, we will remove the previous assumption 𝑎 = 𝑐 and introduce the
memory access probability 𝑝a for each core.

The solution to this problem is a combination of different approaches already
shown in this chapter. It is clear that dropping the assumption 𝑎 = 𝑐 increases the
number of possible states. In fact, since each state 𝒔 has to fulfil the requirement

𝑐
∑
𝑖=1

𝑖 ⋅ 𝑠𝑖 ≤ 𝑐, (4.15)

which is similar to (4.12), the new states are identical to the intermediary states from
the last section.

Like in Section 4.4.2, the different possible values of 𝑎 and thus of 𝑛redist for the
target state have to be considered separately:

(
𝑐
∑
𝑎=0

𝑻rnd
𝐴=𝑎 ⋅ 𝑻seq

𝐴=𝑎) ⋅ 𝝈 = 𝝈.

For each possible transition, the probability that 𝐴 = 𝑎 must be included as well.
This can be done by multiplying it into 𝑻seq

𝐴=𝑎, i.e.

𝑇seq
𝐴=𝑎
𝑖,𝑗

= (
𝑛avail
𝑛idle

) ⋅ 𝑝a(𝑛avail−𝑛idle) ⋅ (1 − 𝑝a)𝑛idle ⋅ P(𝒔𝑗
seq
→⎯⎯→ 𝒔𝑖),
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with 𝑛avail = 𝑏 − 𝑠0 the number of cores available for requesting new accesses and
𝑛idle = 𝑐 − 𝑎 the number of cores that are not going to request an access.

For calculating 𝑻rnd
𝐴=𝑎, the algorithm from [Bha75] mentioned in the previous

sections can be used again.

4.6 Experimental evaluation
In this section we compare the estimates based on the analysis of the approxim-
ate probabilistic model with the simulated results of different sequentially inter-
leaved memory configurations with real benchmark applications. First we describe
the setup and then the obtained results. We also draw conclusions from the models
and give hints for system designers.

4.6.1 Experimental setup
All benchmarks were compiled for and run on the gem5 [Bin⁺11] ARM simulator.
For every core (we simulated 𝑐 = 16), a separate memory access trace was cre-
ated, recording the accessed addresses as well as the pauses between the accesses.
Wherever possible, program parameters or inputs were varied in order to create
different access patterns.

A bank access and collision simulation was then carried out on a custom simu-
lator, replaying each of the traces with short, but random initial delays.Thememory
was configured either with 𝑏 = 16 or 𝑏 = 32 banks (the latter is the configuration of
P2012) with round robin arbitration.

A selection of benchmarks from the MiBench [Gut⁺01] embedded benchmark
suite was used for the experiments. The GSM, FFT, blowfish, string search and JPEG
examples were chosen to obtain a high diversity in behaviour.

From the traces, 𝑝a and 𝑝seq were extracted and used as parameters for the occu-
pancy and for the Markov model.

4.6.2 Accuracy of the occupancy model
The occupancy model makes drastic simplifications, especially when a high number
of waiting accesses is expected in a system. Figure 4.2 on the following page com-
pares the simulated throughput of the Blowfish benchmark for 𝑐 = 16 and 1 ≤ 𝑏 ≤ 64
with the predicted value from the occupancy model. For a small number of banks,
it is likely that each bank serves exactly one access per cycle and thus the through-
put is accurately estimated. For a sufficiently large number of banks, the number
of waiting accesses is small and thus the accuracy of the model is good as well. As
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Figure 4.2: Accuracy of the occupancy model. The simulated average throughput for the
Blowfish benchmark (𝑝a = 0.34) and the expected throughput according to the occupancy
model are plotted against the number of memory banks for 𝑐 = 16. The approximation (4.5)
on page 122 is plotted as well. The maximum relative error is of 12.0% for 𝑏 = 8.

expected, the deviation from the simulation is highest in between, i.e. around the
value 𝑏 = 𝑝a ⋅ 𝑐. The maximum error observed is about 12%. However, the trend of
the throughput is still captured by the occupancy model.

4.6.3 Benchmark Results
Figure 4.3 shows the results of the simulations for all the benchmark applications.
In general, both the occupancy and the Markov models reflect well the trends that
emerge in the simulation. As expected, the Markov model fits particularly well for
small values of 𝑝seq and for 𝑝seq → 1. In these settings, theMarkov results are nearly
congruent with the simulation results. For the string search example, the deviations
can be explained with the inexactness resulting from the simplified sequentiality
model as described in Section 4.5.2.

Only in the FFT example, the simulation shows a clearly large variance com-
pared to the Markov model. We believe this is because of the specific access pat-
tern of the FFT algorithm. The algorithm recursively splits arrays with a dimension
of a power of two into two sub-arrays. It switches accesses between these arrays
and thus produces multiple accesses in a row on the same memory bank. This is a
well-documented effect (cf., e.g., [Rau91]) in which multiple processors with similar
memory access patterns frequently access the same banks, thus repeatedly block-
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(a) Blowfish. 𝑏=32, 𝑝a=0.34, 𝑝seq=0.27.
̄𝐼 sim=5.23, Emkv[𝐼 ]=5.24, Eocc[𝐼 ]=4.98.
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(b) FFT. 𝑏=16, 𝑝a=0.20, 𝑝seq=0.49.
̄𝐼 sim=3.02, Emkv[𝐼 ]=3.09, Eocc[𝐼 ]=2.87.
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(c) GSM. 𝑏=16, 𝑝a=0.33, 𝑝seq=0.07.
̄𝐼 sim=4.93, Emkv[𝐼 ]=4.94, Eocc[𝐼 ]=4.53.
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(d) GSM. 𝑏=32, 𝑝a=0.33, 𝑝seq=0.07.
̄𝐼 sim=5.12, Emkv[𝐼 ]=5.13, Eocc[𝐼 ]=4.89.
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(e) String search. 𝑏=32, 𝑝a=0.25, 𝑝seq=0.86.
̄𝐼 sim=3.94, Emkv[𝐼 ]=3.95, Eocc[𝐼 ]=3.75.
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(f) JPEG. 𝑏=16, 𝑝a=0.42, 𝑝seq=0.14.
̄𝐼 sim=6.01, Emkv[𝐼 ]=6.07, Eocc[𝐼 ]=5.57.

Figure 4.3: Simulation results for different benchmarks. The simulated systems have 𝑐=16
cores and either 𝑏=16 or 𝑏=32 memory banks. For each benchmark, the simulated through-
put frequencies are plotted together with the predictions from the Markov and the occu-
pancy model. Model parameters like 𝑏, 𝑝a and 𝑝seq are given as well as the simulated average
throughput ̄𝐼 sim and the expected throughput according to the Markov and the occupancy
models.

129



Chapter 4 Modelling Interleaved Memory Platforms

ing each other. A similar effect is observed when multiplying matrices with powers
of two as their dimensions. Customized programming is required to avoid such in-
stances on sequentially interleaved memories. [Rau91] proposes pseudo-random in-
terleaving, which tries to avoid access collision patterns by quasi-randomising the
assignment of memory addresses to physical banks. The FFT benchmark was the
worst fit from all the benchmarks we tested.

In summary, the simulations show that for several benchmark applications the
simple probabilistic model of an access probability and a sequential access probab-
ility accurately estimates the throughput of an interleaved memory system.

4.6.4 Conclusions from the occupancy model

The advantage of the occupancy model is the analytical form of its result. We now
draw some conclusions from these results, which hold only under the conditions
as described in Section 4.6.2. In (4.5), the expected throughput of a system was ap-
proximated as E[𝐼 ] ≈ 𝑏 −𝑏 ⋅ 𝑒−𝑝a⋅𝑟 with 𝑟 = 𝑐

𝑏 . This simplification yields the following
conclusions.

• As long as the ratio of banks and cores is constant, a system can be arbitrarily
scaled without changing the throughput expectation per bank or per core.

• The throughput converges exponentially with the product 𝑝a ⋅ 𝑟 to the max-
imum value 𝑏. Note that 𝑝a ⋅ 𝑟 = 1

𝑏 ⋅ E[𝐴] is the expected number of accesses
per memory bank.

• For 𝑝a ⋅ 𝑟 < 0.3, the throughput can be regarded as growing approximately
linearly with 𝑝a.

4.6.5 Application example: System design

The occupancy model can also be used to answer simple design questions. Consider
the comparison between two different systems, each with 𝑐 = 16 cores and 𝑏 =
32 banks. System 1 uses complete interleaving over all 32 banks. System 2 uses
interleaving for 16 banks and provides each core with one “private” memory bank.
Let now 𝑝priv be the probability that an access goes to the private memory bank on
System 2. The question is which setting is better, and for which values of 𝑝priv.

Since every access to the private memory is immediately served, the expected
throughput for System 2 is

Eocc
System2[𝐼 ] = 𝑐 ⋅ 𝑝a ⋅ 𝑝priv + Eocc

𝑐, 𝑏2 ,𝑝a⋅(1−𝑝priv)
[𝐼 ],
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Figure 4.4: Comparison of two systems: System 1 with fully interleaved memory and Sys-
tem 2 with partially interleaved, partially private memory.
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Figure 4.5: Evaluation of the synchronisation effect in sequentially interleaved and pseudo-
randomly interleaved memory systems. The throughput according to the Markov model is
plotted as a function of 𝑝seq for 𝑐 = 16, 𝑏 = 32, 𝑝a = 0.4.

whereas (4.2) can be used for System 1. Both expected throughputs are shown for
𝑝a = 0.5 as a function of 𝑝priv in Figure 4.4. For System 1, the throughput is constant
as 𝑝priv does not play a role there. For System 2, the worst case is 𝑝priv = 0 with ef-
fectively only 16 banks, the private banks not being used. The throughput increases
with 𝑝priv increasing, the maximum value being attained for 𝑝priv = 1, in which case
no conflicts occur as each core only uses its private memory. Comparing both sys-
tems, System 2 performs better for 𝑝priv > 0.2875. Many other such comparisons
can be made with the analytical results from the occupancy model.
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4.6.6 Discussion of the synchronisation effect
The support for sequential access patterns in the Markov model allows to analyse
the synchronisation effect described earlier. For this, Figure 4.5 on the previous page
shows a plot of the throughput of a sequentially interleaved memory system with
𝑐 = 16 and 𝑏 = 32 as a function of 𝑝seq. The memory access probability has been
chosen rather high with 𝑝a = 0.4. As a comparison, we show the throughput of a
system with pseudo-random interleaving as hinted above and discussed in [Rau91].
In these systems, the assignment of word addresses to physical memory can be re-
garded as random and therefore, their throughput is equal to sequential interleaving
with 𝑝seq = 0. Two things can be seen from the plot: (i) For 𝑝seq < 0.4, the synchron-
isation effect is insignificant. (ii) Even the speed-up from 𝑝seq = 0 to 𝑝seq = 1 is less
than 5 % in this system.

This small benefit is opposed by the danger of collision patterns like with the
FFT benchmark as described earlier. Hence, software designers who appreciate
code compatibility or who do not know their target platform in detail, also on se-
quentially interleaved memory systems may want to randomise their applications’
memory accesses. This could for example be achieved by running multiple different
types of tasks on a cluster instead of having a homogeneous set of threads.

4.7 Concluding remarks
In this chapter, interferences in sequentially interleavedmemory systems have been
theoretically analysed using a simple probabilistic abstraction. Two models — a fast
occupancy distribution based model and a more accurate Markov model — have
been presented and discussed. General principles and character traits of interleaved
memory systems have been deduced theoretically from the models. Finally, the
models have been validated in an extensive set of simulations.

Apart frommany concrete results such as the small impact of the synchronisation
effect, the most important result of this study is that interleaved memory systems
can be adequately described by a simple probabilistic abstraction which only knows
thememory access probability of the processes and the probability of accessing con-
secutive memory banks. This gives room for extensive abstract analyses as well as
for lightweight and calculation-efficient, yet accurate platform models for systems
with interleaved memory. The next chapter will show how these findings can be
taken advantage of in a code optimisation framework, but also how interleaved
memory actually performs compared to contiguous mappings.
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and algorithms
Optimisation models are often seen as program representations used internally by
an optimiser. This is, while correct, only one part of a bigger picture. Optimisation
models are abstractions which allow systematic analysis of a code:The structure of a
program specification is not only determined by the application to be implemented
but typically also influenced by the programmer’s needs and personal taste. Such
a structure, however, is typically unrelated to the requirements of generic program
optimisation. An optimisation model now brings the code into a canonical form and
defines a metric to be optimised. This provides a lever for handling the optimisation
problem, and, as a result, a base for an optimisation algorithm.

These considerations show that optimisation models are a crucial step towards
good optimisation algorithms. In some cases, the right model directly leads to an
optimal solution (remember the task partitioning algorithm for transient systems
in Section 3.6.2); in other cases, it is more difficult. A good model should seek the
balance between sufficient abstraction and thus tractability on the one hand and an
accurate representation of optimisation potential on the other. Also, generality and
adaptability decisively add to a model’s use.

This chapter will present two optimisation problems and discuss related optim-
isation models and strategies. First, multicore platforms with multi-bank memories
are revisited. Unlike in the last chapter, which concentrated on memory interleav-
ing, a comparison is drawn between the latter and contiguous memory mapping.
In the case of the latter, the problem arises how to organise the data and how to
distribute it between the different banks. An optimisation model and algorithm for
this task is devised which allows a fair comparison of the two different memory
mapping strategies.
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In a second step, the generic optimisation problem is defined based on the Lady-
birds model set. Starting from the Ladybirds optimisationmodel, a more detailed op-
timisation model is conceived for the special needs of different optimisation goals.
These different optimisation subproblems are then described in more detail and re-
quirements are discussed for how to progress towards the aim of optimising any
Ladybirds program for any platform (with sufficient resources) and achieving a
memory and transport efficient implementation.

5.1 Minimising Access Conflicts
on Shared Multi-Bank Memory

The last chapter introduced the notions of interleaved and contiguous memory ad-
dress mapping. In this section, both approaches shall be compared — with theor-
etical considerations and experimentally on the Kalray MPPA-256 platform. In the
case of contiguous mapping, data must be distributed between the different banks.
An optimisation model is proposed as well as a related algorithm, based on graph
colouring techniques, to automatically perform this distribution with the goal of
minimising access collisions and delays. These results were obtained in a collabor-
ation with Georgia Giannopoulou and Matthias Baer.

5.1.1 Introduction
As it has been shown in the last chapter, memory interleaving has several advant-
ages: All the cores see a uniform memory space, in which the programmer can
accommodate any code or data without having to think of its particular placement.
The bank access patterns of the cores and the resulting collision behaviour can be ac-
curately described by random variables and probabilistic distributions derived from
them. As a result, the memory space can be treated like a single bank and standard
compilers and linkers can be used while still achieving good performance.

At the same time, contiguous mapping has its advantages as well. Firstly, the per-
formance of many low-latency implementations of interleaved mapping is vulner-
able to memory access patterns which repeatedly access the same bank (e.g. opera-
tions on matrices having dimensions of powers of two). This can be avoided by con-
tiguous mapping with an appropriate data placement. Secondly, worst-case delays
are harder to determine on interleaved memory systems, and calculated bounds are
usually far from tight. This is why recent publications in that domain focus on con-
tiguous mapping, see e.g. [Bec⁺16; Car⁺14; VY15; NYP16; Per⁺16].

When average case performance is more important than worst case execution,
there is no such clear preference. It would therefore be desirable to have a direct
comparison between both approaches, which up to now does not exist. However, to
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perform such a comparison, one would also need to find a solution to the question of
data placement in the case of contiguous mapping, i.e., on which bank which data
should be placed. Currently, this has to be decided manually by the programmer,
which constitutes a significant obstacle to the application of contiguous mapping.
Finding a way of automatically partitioning data between the memory banks would
thus not only allow a comparison between the different mapping approaches, but
it would also demonstrate the practical feasibility of implementing applications on
multi-bank platforms with contiguous address mapping.

Several approaches and algorithms have been proposed to tackle the data place-
ment issue for single-processor multi-bank systems, in particular VLIWs and DSPs.
Unfortunately, the corresponding optimisation problem significantly differs from
the multi-core problem, since compiler backends for individual cores can easily de-
tect simultaneous memory accesses on instruction level. On multi-core systems, in
contrast, the individual cores are independent and only loosely synchronised. Ac-
cess conflicts happen non-deterministically. As a result, existing single-core solu-
tions cannot be directly applied to multi-processor systems.

In this section, we try to close the aforementioned gaps with a two-fold contri-
bution: Firstly, we propose a heuristic algorithm to automate buffer placement such
that every buffer is assigned a memory bank for contiguous mapping.The proposed
approach was designed to find mappings that minimise access conflicts as well as
other delays, and thus the application runtime. Secondly, with the help of and as an
evaluation for the newly introduced algorithm, we compare the average case per-
formance of contiguous and interleaved mapping, theoretically and experimentally,
on the Kalray MPPA platform.This platform is very well-suited for this comparison,
since it allows the programmer to choose between interleaved and contiguous map-
ping. To obtain meaningful results in a wider context, we have conducted dedicated,
synthetic experiments on the MPPA and we have run real world benchmarks.

With a memory bank assignment optimised using the proposed algorithm, 96.7%
of the tested benchmark configurations perform at least as well as with interleaved
memory mapping. In 54.5% of the cases, the runtime is even significantly shorter.

In Section 5.1.3, we describe our optimisation and platform models. On this basis,
we formally define the bank assignment problem for the contiguous memory map-
ping scenario. We then introduce an algorithm for solving this generic bank assign-
ment problem in Section 5.1.4. Section 5.1.5 gives detailed information about the
MPPA and its memory architecture. Based on the results of synthetic benchmarks
revealing the platform’s characteristics, we show how the generic bank assignment
algorithm can be adapted to this particular platform. Section 5.1.6 finally shows the
results of the experimental comparison of contiguous and interleaved mapping on
the Kalray MPPA, using the proposed bank assignment algorithm for the case of
contiguous memory address mapping.
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5.1.2 Related Work

Various works address the problem of mapping data to memory banks for single-
processor systems. In particular, there are many works on VLIW (in particular
DSP) systems with dual-bank memories, e.g. by Saghir et al. [SCL96], Leupers and
Kotte [LK01], Cho et al. [CPW02], Sipkova [Sip03], Ko and Bhattacharyya [KB03]
and Murray and Franke [MF08]. All of these works try to enable two simultaneous
memory accesses by mapping the corresponding variables (or arrays) to different
memory banks. While [SCL96], [LK01] and [CPW02] propose implementations as
compiler backends, [Sip03], [KB03] and [MF08] analyse the code on higher levels.

Zhang et al. [Zha⁺11] and Soto et al. [Sot⁺13] extend this optimisation to a variable
number of memory banks. Conversely, Shyam and Govindarajan [SG07] try to min-
imise energy consumption in such a system by assigning the banks such that some
of them can be brought to sleep mode as often as possible. [Zha⁺11] also supports
this optimisation.

Most of the works discussed until now make use of so-called conflict or interfer-
ence graphs, as we do in this section. The typical solution approaches are greedy
algorithms, other heuristics, or integer linear programming. [Sot⁺13] and [MF08]
treat the assignment task as a graph colouring problem, like it is done in this sec-
tion. However, all theseworks consider single processor systems and rely on conflict
analysis techniques that are not applicable to multi-processor systems, as discussed
earlier.

Kim and Kim [KK07] propose a method to improve performance of multiple
DRAM banks connected to a single processor. Their approach is to maximise
spatial access locality within each memory bank, thus avoiding costly row opening
operations required on this memory architecture. In this section, we consider
platforms with on-chip SRAMs, on which access locality has no influence.

In the area of multi-core systems, [Kim⁺10] and [Mi⁺10] propose heuristics for
mapping data of different application threads to DRAM banks to reduce the average
thread execution times. Kim et al. [Kim⁺10] present a compiler approach targeting
coarse grain reconfigurable architectures. Our approach is more general, since it
is applicable to any homogeneous shared-memory architecture. Mi et al. [Mi⁺10]
introduce a software/hardware scheme for static DRAM bank partitioning. Purely
hardware-based solutions include the works of Reineke et al. [Rei⁺11] and Wu et
al. [WKP13], which rely on DRAM controllers to implement bank privatisation
schemes. Such approaches require special hardware, while we propose compiler
techniques that are applicable to commercial off-the-shelf platforms.

Other works implement software approaches to completely eliminate bank-level
conflicts. Liu et al. [Liu⁺12] implement a custom page-colouring algorithm inside
the memory management of the Linux kernel for this purpose. Jeong et al. [Jeo⁺12]
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propose a combination of bank partitioning and memory sub-ranking, implemen-
ted through an extension of the OS physical frame allocation algorithm. Yun et
al. [Yun⁺14] implement a DRAM bank-aware memory allocator to allocate memory
pages of different applications to private banks. Chandru et al. [CM16] implement a
user space bank-aware and controller-aware allocator, which enables binding a core
to a specific bank and controller in a cluster-based architecture. Pan et al. [PGM16]
enable frame allocation on thread-specific cache, memory controller and memory
bank combinations through an accordingmodification to the Linux kernel. All these
works try to cleanly (or at least largely) separate the banks accessed by the different
applications or cores. In contrast, we assume that bank sharing is indispensable for
communication between cores and that each core will thus need regular access to
multiple banks.

Closer to our approach lies the approach of Giannopoulou et al. [Gia⁺14], which
also tries to minimise bank conflicts through optimised data-to-bank mapping.
However, their method aims at minimising the worst-case execution time of
real-time applications and is bound to specific scheduling policies, whereas we
address the average-case execution time of a wider class of applications. Rih-
ani et al. [Rih⁺16] propose a solution for process networks (i.e. single-producer
single-consumer) by assigning each consumer a bank for all its input FIFOs.
This works well for the selected application model, which, however, necessitates
abundant copying of data and is therefore inherently inefficient on shared memory
platforms(cf. Section 2.3). Finally, Goens et al. [Goe⁺16] employ a buffer allocation
approach similar to the one shown in this section, but based on integer linear
programming. While they use a more general platform model and a more detailed
application model, this comes at the price of longer optimisation time. Also, their
model does not cover the particularities of the MPPA platform (cf. Section 5.1.5.2).

5.1.3 Considered Memory Bank Assignment Problem

As discussed earlier, in the case of contiguous memory mapping, each buffer or
piece of data accessed by the application must be assigned to a memory bank on
which it will reside.This assignment should be done in such away that interferences
between different threads are minimised. This section gives a detailed definition of
the problem, showing how we model the application and the target platform. All
models are kept as generic as possible, and an algorithm to solve the assignment
problem for the generic case will be given in the next section. Later sections will
then discuss how the generic models may or may need to be adapted to concrete
target platforms such as the Kalray MPPA.
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Figure 5.1: Representation of a simple image edge detection algorithm in the application
model from Section 5.1.3.1. It reads an image into memory, numerically computes its gradi-
ents in 𝑥 and 𝑦 direction and then computes the edge intensity as the euclidean norm of both.
The upper part shows the tasks, the lower part the buffers.

5.1.3.1 Application Model

Figure 5.1 illustrates how we model the applications that are executed on a cluster.

Definition 5.1. An application is given by a tuple (𝑇 , 𝐷, 𝐵, 𝑎) consisting of a set
𝑇 = {𝑡1, … , 𝑡𝑛𝑇} of tasks, a set 𝐷 ⊂ 𝑇 × 𝑇 of dependencies, a set 𝐵 = {𝑏1, … , 𝑏𝑛𝐵} of
buffers and an access function 𝑎 ∶ 𝑇 → 𝒫 (𝐵).

Each task 𝑡 executes exactly once and accesses only the buffers contained in
𝑎(𝑡) ⊆ 𝐵. Each dependency (𝑡𝑖, 𝑡𝑗) ∈ 𝐷 enforces that 𝑡𝑗 can only start once 𝑡𝑖 has
finished. Each buffer 𝑏 ∈ 𝐵 has a distinct size |𝑏|, given as a number of bytes.

This model is a simplification of the Ladybirds optimisation model in which the
packet types (in, out etc.) have been abstracted away as they are not relevant for
this optimisation. It is assumed that we are working on a buffer dependency graph,
i.e., optimisation steps like buffer allocation have already been performed (cf. Sec-
tion 3.4). Also note that no assumptions are made as to how often or in what pattern
a task 𝑡 accesses the buffers given by 𝑎(𝑡).

5.1.3.2 Platform Model

Figure 5.2 gives an (abstract) example of the kind of target platform considered in
this work. It can be formalised in the following, even more generic model.

Definition 5.2. A platform is a tuple (𝐶,𝑀), with 𝐶 = {𝑐1, … , 𝑐𝑛𝐶} a set of
cores or processing elements (PEs) that share access to a set of memory banks
𝑀 = {𝑚1, … ,𝑚𝑛𝑀}. Each memory bank 𝑚 ∈ 𝑀 has a size |𝑚|, given as a number of
bytes.
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Figure 5.2:
Exemplified illustration of the
generic type of platform con-
sidered in this work

We make the following assumptions about a platform:

• The banks are configured for contiguous address mapping.

• Each PE takes the same time to access each bank.

• All banks can be accessed in parallel, but each bank can only be accessed by
one PE at a time, e.g. by a crossbar communication structure between PEs and
banks.

• The arbitration between bank accesses is fair, e.g. Round Robin.

• The PEs do not perform task preemption.

This model fits to many existing multi-core multi-bank platforms, for instance the
NXP LPC family or the Kalray MPPA (details will be given later). It would fit to
the P2012 [Ben⁺12] and the PULP [Con⁺15] architectures as well if they supported a
contiguous memory address layout. Also, it comes very near to platforms like the
Adapteva Epiphany [Olo⁺11] chips. Since the latter have a non-uniformmemory ac-
cess architecture (different access times to different banks), certain adaptions would
be necessary, but feasible.

5.1.3.3 Problem Description

Theproblem to be solved now is assigning buffers to banks.With the previous defin-
itions, it can be described as follows.

Let (𝑇 , 𝐷, 𝐵, 𝑎) be an application to run on a platform (𝐶,𝑀). Let there further be
a given mapping 𝑇 → 𝐶 and a schedule for execution of the tasks. Find a mapping
𝑓 ∶ 𝐵 → 𝑀 that assigns each buffer to a bank such that:

• All buffers fit into the banks they are assigned to, i.e.,

∀𝑚 ∈ 𝑀, ∑
𝑏 ∈ 𝐵𝑚

|𝑏| ≤ |𝑚| with 𝐵𝑚 = { 𝑏 ∈ 𝐵 || 𝑓 (𝑏) = 𝑚 } .
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• The time between the execution start of the first and the execution end of the
last task in the schedule is minimised. In this context, “time” denotes average
values, as runtimes can vary due to synchronisation and data dependencies,
for example.

5.1.4 Generic Memory Bank Assignment Algorithm
This section describes the approach proposed for solving the problem defined in the
previous section, i.e., for assigning buffers to memory banks in the generic case with
the generic platform model. First, the challenges of conceiving such an algorithm
are discussed, and a general overview of the proposed method is given. Then the
algorithm itself is presented and simple optimisations are discussed.

5.1.4.1 Overall Approach

A simple idea for solving the problem might be a heuristic that follows the concept
of static load balancing, i.e. of distributing the buffers evenly among the banks. This
heuristic would assign banks to all buffers in the order of their size, starting from
the largest buffer. For each buffer, it would select the bank which, at the current
state of assignment, has the most free space. Such an algorithm attempts to find a
valid bank assignment if one exists and to distribute the access bandwidth over the
banks. However, it is fully agnostic to program semantics and cannot detect possible
access collision hotspots. For instance, in the application example from Figure 5.1 on
page 138, the most promising optimisation would be to assign Grad1 and Grad2
to different banks. With a load balancing algorithm, however, in case of resource
scarcity, whether this happens or not is coincidence.

A good bank assignment algorithm therefore needs to model possible access col-
lisions between two tasks. These depend on multiple factors, such as whether the
execution times of the tasks overlap, how often they access the buffers, in what pat-
tern they do so, etc. Note that there exist cyclic dependencies between the timing
of the tasks (overlaps) and the bank assignments. Also, there may be conflicting
optimisation criteria on particular platforms. For instance, in order to avoid access
collisions between different cores on the MPPA platform, one would often like to
place buffers on different banks. On the other hand, if these buffers are later ac-
cessed simultaneously by one core, it may be advantageous to place them on the
same bank, as will be shown later.

For modelling access collisions and the aforementioned related problems, many
different analysis methods have been proposed and could be successfully applied
here. For reasons of simplicity, however, we choose a heuristic approach: We take
the time that two tasks execute in parallel as an indication for the occurrence of
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Figure 5.3: Flow chart diagram of the iterative approach proposed for assigning buffers to
banks

access collisions on their associated buffers. This time is determined by measure-
ments. By cumulating the execution time overlaps from all pairs of tasks, we obtain
pairwise access conflict potentials between all buffers. Whether these conflicts ma-
terialise depends on the bank assignment of the buffers, which we try to optimise.

This leads to the iterative approach shown in Figure 5.3. First, the application is
executed in an initial implementation, measuring the start and finish times of all
tasks. This initial implementation could either be with interleaved memory address
mapping if the platform allows it, or contiguous memory mapping with a bank as-
signment obtained by a simple heuristic like the load-balancing based method men-
tioned previously. Based on these times, a bank assignment is obtained by our al-
gorithm. Application executionwith this new assignment yields new timings, which
are then used for a refined bank assignment as the execution leads to different as-
sumptions on overlapping accesses to shared memory banks.This is continued until
the assignment converges or for a fixed number of iterations. In our experiments,
ten iterations proved to be sufficient to get a steady-state behaviour or a limit cycle.

The following section will present the above described algorithm that assigns
banks to buffers.

5.1.4.2 Basic Bank Assignment Algorithm

As already mentioned, we need an algorithm that, given the execution start and end
times for all tasks in an application, finds a bank assignment that minimises access
conflicts between different tasks. To attain this goal, we express it as a graph col-
ouring problem. In the graph to be coloured, each buffer is represented by a node
and an edge exists between two nodes when the corresponding buffers are accessed
in parallel by different tasks. The banks are represented by colours, so the number
of colours is fixed. A fundamental difference to classic graph colouring is that the
latter does not allow two neighbouring nodes to have the same colour. For bank as-
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Algorithm 5.1: Graph colouring based bank assignment
input : Application (𝑇 , 𝐷, 𝐵, 𝑎), platform (𝐶,𝑀),

task execution times start ∶ 𝑇 → ℕ, end ∶ 𝑇 → ℕ
output: Bank assignment colours ∶ 𝐵 → 𝑀

(𝑉 , 𝐸) ← CreateCollisionGraph((𝑇 , 𝐷, 𝐵, 𝑎), start, end)
for 𝑖 ← 1… |𝐵| do

𝑅𝑖 ← SelectRemoveCandidate((𝑉 , 𝐸), (𝑇 , 𝐷, 𝐵, 𝑎))
(𝑉 , 𝐸) ← RemoveNode(𝑉 , 𝐸, 𝑅𝑖)

end
for 𝑖 ← |𝐵| … 1 do

(𝑉 , 𝐸) ← ReinsertNode(𝑉 , 𝐸, 𝑅𝑖)
colours[𝑅𝑖] ← ChooseColour((𝑉 , 𝐸), (𝐶,𝑀), colours, 𝑅𝑖)

end

signment, this case would mean possible access conflicts on the concerned bank, but
the program would still execute correctly. Neighbours of same colour are therefore
allowed but will yield a performance penalty.

The algorithm has been inspired by a well known graph colouring based solu-
tion to the register allocation problem [Cha82] and is shown in Algorithm 5.1. It
consists of constructing a collision graph, gradually removing all nodes from it and
re-inserting and colouring them in reverse order.The idea of the node removal phase
is to fix an order in which the nodes are coloured: Since each colouring decision re-
duces the degrees of freedom for the remaining nodes, it is important on the one
hand to colour those nodes first for which conflicts would have the greatest impact
and on the other hand those that have a low degree of freedom already from the
start. The details of the different phases shall be layed out in the following.
a) Construction of the collision graph: Given an application (𝑇 , 𝐷, 𝐵, 𝑎), the colli-
sion graph is an undirected, weighted graph with the buffers in 𝐵 as the nodes. A
description of its construction (function CreateCollisionGraph) is given in Al-
gorithm 5.2. For each pair of tasks 𝑡1 ≠ 𝑡2 ∈ 𝑇 that execute in parallel, an edge is
inserted between each pair of buffers 𝑏1 ∈ 𝑎(𝑡1), 𝑏2 ∈ 𝑎(𝑡2), 𝑏1 ≠ 𝑏2. These are the
buffers that are accessed in parallel by both tasks. The weight of the edge is equal
to the time that 𝑡1 and 𝑡2 execute in parallel and multiple edges between the same
nodes are combined to one edge with the sum of the weights.

Figure 5.4 shows the conflict graph for the case of the example application from
Figure 5.1 on page 138. It is assumed that GradientX and GradientY execute in
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Algorithm 5.2: Function CreateCollisionGraph
input : (𝑇 , 𝐷, 𝐵, 𝑎), start, end
output: Collision graph (𝑉 , 𝐸)

(𝑉 , 𝐸) ← (𝐵, {pairs(𝐵) → 0})
foreach pair 𝑡1 ≠ 𝑡2 ∈ 𝑇 do

// calculate execution time overlap 𝑜
𝑜 ← min (end (𝑡1), end (𝑡2)) −max (start (𝑡1), start (𝑡2))
if 𝑜 > 0 then

foreach 𝑏1 ∈ 𝑎(𝑡1), 𝑏2 ∈ 𝑎(𝑡2), 𝑏1 ≠ 𝑏2 do
𝐸[{𝑏1, 𝑏2}] ← 𝐸[{𝑏1, 𝑏2}] + 𝑜

end
end

end

Figure 5.4: Conflict graph for the
sample application from Figure 5.1
on page 138 Grad2

Img

Grad1

Edges

𝜏
𝜏

𝜏

parallel for 𝜏 cycles. As a result, the graph contains three edges between the buffers
Img, Grad1 and Grad2, each with the weight 𝜏.
b) Node removal: In this step, repeatedly a node will be chosen and removed from
the graph, until the graph is empty. The node to be removed is determined by
SelectRemoveCandidate, which can be described by the function

𝑟((𝑉 , 𝐸), (𝑇 , 𝐷, 𝐵, 𝑎)) = argmax
𝑣 ∈𝑉

(𝜆3 ⋅ ||{𝑡 ∈ 𝑇 | 𝑣 ∈ 𝑎(𝑡)}||

− 𝜆2 ⋅ ||{𝑣′ ∈ 𝑉 | 𝐸[{𝑣, 𝑣′}] > 0}|| − 𝜆 ⋅ ∑
𝑣′∈𝑉

𝐸[{𝑣, 𝑣′}] − |𝑣|). (5.1)

In this notation, 𝜆 is considered to be a symbolic constant that is very large com-
pared to all other numbers in the formula. The function will thus return that node
𝑣 ∈ 𝑉 for which the 𝜆3 term is the largest. Only if there are multiple nodes with
the same 𝜆3 term, the node with the least absolute value for the 𝜆2 term will be
returned (least because of the negative sign). Only in case of another tie will lower
power terms of 𝜆 be taken into consideration.
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The function can be described as follows. It selects the nodes to be removed first
and later coloured last, i.e., the nodes with lower priority. For this purpose, it per-
forms a multi-criteria comparison, where the first criterion is the most important
and later ones are only considered in case of a tie. The criteria for this comparison
of the nodes are explained below, ordered from high to low priority. The node to be
removed is that node with

The highest number of tasks accessing the buffer. The reasoning behind this
somewhat counter-intuitive criterion is that buffers accessed by only few
tasks yield a high optimisation potential as opposed to buffers accessed by
many tasks, which are anyway susceptible to access collisions.

The lowest number of neighbours in the graph. This is known as an import-
ant criterion also in register allocation, essentially because a high number of
neighbours means a lower degree of freedom when trying to avoid conflicts.
Therefore, we try to colour nodes with many neighbours first to still have a
higher number of colours left for them. Note that the removal of nodes in-
fluences the number of neighbours left for the other nodes, often uncovering
further nodes with high degrees of freedom. This is the essential idea behind
the removal procedure.

The lowest cumulative weight of all adjacent edges. This is again an indicator
for the optimisation potential of a buffer.

The lowest size of the buffer. This is only a minor criterion meant to improve
algorithm reliability (cf. Section 5.1.4.3).

For the example graph from Figure 5.4 on the previous page, this would result in
Edges being coloured first, then Grad1 and Grad2, then Img. While this seems
unintuitive for this simple example application, it does make sense in more complex
scenarios with more simultaneous tasks and more buffers involved. If a node (like
Edges in this example) has no neighbours in the conflict graph, there is a chance
that it can be accessed by the corresponding tasks without any conflicts. Colouring
such a node first increases the probability that this chance is exploited.
c) Node re-insertion and colouring: The graph is reconstructed by re-inserting and
colouring the nodes in the reverse order of their removal before. The colour for a
node and thus the bank assignment of a buffer is given by ChooseColour, which
can be described by the function

𝑥((𝑉 , 𝐸), (𝐶,𝑀), colours, 𝑣) =

argmax
𝑚∈𝑀 ∗(𝑣)

( − 𝜆 ⋅ ∑
𝑣′∈𝑉 | colours[𝑣′]=𝑚

𝐸[{𝑣, 𝑣′}] + free(𝑚)), (5.2)
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where
free(𝑚) = |𝑚| − ∑

𝑣∈𝑉 | 𝑐𝑜𝑙𝑜𝑢𝑟𝑠[𝑣]=𝑚
|𝑣|

gives the free space on 𝑚 and 𝑀 ∗(𝑣) = { 𝑚 ∈ 𝑀 || free(𝑚) ≥ |𝑣| } is the set of banks
with enough free space to accommodate buffer 𝑣. 𝜆 is again used like in (5.1).

This is again a multi-criteria comparison, in which those banks are chosen that
have (in that order):

The least sum of weights on adjacent edges leading to nodes of the same colour.
As discussed previously, we regard the weights of the edges as an indicator
for the occurrence of simultaneous accesses and thus for the conflict potential
between two buffers. If we decide to assign two adjacent nodes to the same
bank, the conflict potential of the connecting edge will materialise.

Themost space left on the bank. The idea behind this criterion is load balancing.

If there is no bank with enough space left to accommodate a buffer, the algorithm
fails.

For the conflict graph from Figure 5.4 on page 143, if we assume that only two
memory banks are available, the colouring would take place as follows.

1. Edges would be assigned to any of the two banks; in the following, we as-
sume it is to the first one.

2. Grad1 would be assigned to the second bank, since the latter has more free
space left.

3. Grad2 would be assigned to the first bank, since Grad1 is assigned to the
other one and there is an edge between the two nodes in the conflict graph.

4. Img has edges to Grad1 and Grad2, each of which is mapped to one of the
two banks. Therefore, the penalty is equally high for both banks, and Img is
assigned to the second bank, again because of free space.

If there were three banks, Edges and Img would be mapped to one bank, Grad1
and Grad2 to the other two. This would completely avoid access conflicts between
different buffers.

5.1.4.3 Improving algorithm reliability

The algorithm as described above fails if at one point no bank has enough space left
to accommodate the buffer to be assigned. This can happen if smaller buffers are
distributed first, not leaving sufficient space for the larger buffers. In this case, the
algorithm is re-run, with a special correction factor 𝛾. For this purpose, an additional
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Figure 5.5: Illustrations of an MPPA cluster

term 𝜆3 ⋅𝛾 ⋅ |𝑣| is added in (5.1). It enforces a higher priority for the buffer size during
the node removal phase. 𝛾 is small in the beginning, but if the algorithm fails again, it
is increased exponentially until bank assignment succeeds. This drastically reduces
the rate of algorithm-induced failures. In our experiments, they were no longer an
issue.

5.1.5 Platform Specific Adaptions
Previously, we presented a memory bank assignment approach for a generic plat-
form. This section now shows how this approach can be adapted to concrete plat-
forms, which may slightly deviate from the assumptions made before.

The Kalray MPPA is going to be used as an example for such a platform. First,
its cluster architecture is shown in detail and some of its characteristics are derived
from experiments. In particular, the effects of interleaved vs. contiguous memory
address mapping and those of the cache will be examined. Then, the generic bank
assignment algorithm is adapted to deal with the platform’s special properties.

5.1.5.1 MPPA-256 Memory Architecture

The Kalray MPPA-256 Andey processor [Din⁺14] integrates 256 PEs, which are
grouped into 16 compute clusters. All PEs implement the same VLIW architecture.

Figure 5.5a illustrates the architecture of a cluster. It has a local on-chip memory
with 2MB capacity, which is organized in 16 independent SRAM banks. These are
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Figure 5.6: Runtime for reading 128 bytes with different stride

arranged in two sides (left and right). The PEs are organised in 8 pairs. Each pair
has two memory buses (one for each side), which can be utilised in parallel by the
two cores. Figure 5.5b shows the arbitration hierarchy for a PE that wants to access
a certain memory bank. A first conflict arises when the other core of the pair wants
to access a memory bank from the same side. A second possibility for a conflict is
that another pair tries to access the same bank. All these conflicts are resolved by
round robin arbitration.

The memory model is von Neumann; however, each core has two private, two-
way set associative caches, one for instructions and one for data. While the instruc-
tion cache is always enabled, the data cache can be enabled or disabled as needed
by the programmer. Cache coherency is not supported and is a responsibility of the
programmer.

Within a compute cluster, the memory address mapping can be configured either
as interleaved or as contiguous. In the contiguous mapping, each bank spans 128 kB
consecutive addresses. In interleaved mode, the data is distributed over all banks
with a granularity of 64 byte blocks. The blocks are placed on left and on right
banks in alternation.

5.1.5.2 Synthetic Memory Benchmarks

The MPPA platform has a number of properties that are important to know for
achieving optimal performance in a cluster. The following experiments will demon-
strate these properties.

In a first experiment, a single core reads 128 bytes individually frommemory.The
addresses of the bytes increase linearly with a constant stride. Figure 5.6 shows the
time needed for reading all the bytes, as a function of the stride. The experiment
was conducted with data caches enabled and disabled, and with interleaved and
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Figure 5.7: Runtime for consecutive memory accesses with contention

contiguous memory configuration. The contiguous configuration shows the expec-
ted behaviour, i.e., the access time is constant and independent of the target bank.
In particular, since SRAM is used, the access time is constantly low also for bigger
strides. The interleaved configuration, in contrast, needs some explanation. With a
stride of one byte, 64 consecutive accesses are made to the same bank before the
core needs to read from a different bank. With a stride of 64 bytes, each access is
to a different bank. A delay for switching banks thus explains the different timings.
Assuming an additional delay caused by switches between bank sides (left to right
or vice versa), one can explain the lower runtime for strides of 128 bytes, which
always access banks on the same side. Overall, the measurements from this exper-
iment perfectly match a model that assumes 4 cycles for one access, 3 cycles for
switching banks and 4 additional cycles for switching the side.

Another finding is that in this experiment, enabling the cache clearly worsens
performance. The reason for this is that since there is no memory access locality
in the code, the caches do not bring a benefit, but on the contrary, with increasing
strides, lead to continuous loads of entire 32 byte cache lines for only one byte that
is accessed. This effect is not limited to this particular experiment but could occur
for any code with little locality.

Contention effects between multiple cores are evaluated in a second experiment.
As before, one core reads data from a buffer and measures the time needed for it in
contiguous mode. However, between 0 and 7 other cores access the same memory
block simultaneously such as to create contention. Note that simultaneous accesses
from more than 8 cores cannot occur in an MPPA cluster due to the PE pair archi-
tecture. Figure 5.7 shows the runtimes depending on the amount of data read for
different numbers of contending cores. While for four or less cores in total, the ef-
fects of contention are insignificant, a large impact can be observed for more cores.
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These results lead to the following general conclusions:

• For code with little memory access locality, enabling data caches can substan-
tially decrease performance.

• With ideally partitioned data, the performance potential is higher for con-
tiguous than for interleaved mode.

• In interleaved mode, due to the bank switching delays, even programs with
data-independent control flow can have data-dependent execution times
when they have memory accesses at data-dependent addresses.

With regards to contiguous memory organisation, these rules of thumb can be
derived: (i) Simultaneous accesses from large numbers of cores to the same bank
should be avoided. (ii) All memory accesses of one core should, if possible, be on a
single memory bank to avoid bank switching delays. If multiple banks need to be
used, all of them should be on the same side (left/right) to at least avoid side switch-
ing delays. (iii) The two PEs in a pair should access banks from opposing sides (this
follows directly from the architecture).

5.1.5.3 Adaption of the bank assignment algorithm

From the point of view of the high-level architecture, an MPPA cluster, when con-
figured for contiguous memory layout, clearly fits the generic platform model de-
scribed earlier in Section 5.1.3.2. Looking at the results of the previous experiments
on the platform, however, some deviations from the assumptions made there can
be spotted. The main reasons for these deviations are the organisation in PE pairs
and the delays for switching banks or sides in consecutive memory accesses. These
architectural specifics lead to the fact that when the system is in a particular state,
accesses to some banks will take longer than to others. This, however, contradicts
the assumption made before that each PE takes the same time to access each bank.

While the generic bank assignment algorithm can still be used for the MPPA plat-
form, its results will not be optimal, since it does not take account of the platform’s
particularities. To obtain better assignments, the algorithm therefore needs to be
adapted. The following paragraphs will show how this can be achieved.

The adapted conflict graph, again for the sample application from Figure 5.1 on
page 138, is given in Figure 5.8 on the following page. It is assumed that the task
GradientY is mapped to the second PE of a PE pair, all other tasks to the first PE
of the same pair.
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Figure 5.8: Conflict graph for the sample application from Figure 5.1 on page 138, with the
MPPA-specific algorithm extensions.

a) Collisions within PE pairs: The two PEs in a pair should not access two banks from
the same side simultaneously. To achieve this, we add a second type of weighted
edges, the side penalty edges. Their weight is calculated like the weights of the other
edges, except that only those task pairs mapped to the two PEs of a PE pair are
taken into consideration. In Figure 5.8, since all penalty edges in the example come
from the tasks GradientX and GradientY, there is a side penalty edges wherever
there is also a “normal” penalty edge.

During the node re-insertion step, these weights are summed up for both bank
sides, resulting in two side penalties 𝑤right and 𝑤left. The edge weight sums for each
bank are then complemented with the corresponding side penalty, which corres-
ponds to adding a term −𝜆 ⋅ 𝑤side(𝑏) in (5.2) on page 144.
b) Banks accessed by one task: Switching between different banks takes time, so
the buffers accessed by a task should be distributed over as few banks as possible.
We approach this demand by inserting another type of (unweighted) edges in the
collision graph, the reward edges. Such edges are inserted for each task; they are
inserted between all the buffers it accesses. In Figure 5.8, the reward edges connected
to Img come from the tasks GradientX and GradientY. All other edges come
from the task Abs.

The reward edges are only considered in the node re-insertion step as the second
criterion after the other edges: If two banks have the same sum of weights, the bank
with the higher number of reward edges to adjacent buffers of the same colour is
chosen. This corresponds to extending (5.2) on page 144 with an additional term
+𝜆0.5 ⋅ 𝑛reward(𝑣, 𝑏), where 𝑛reward(𝑣, 𝑏) is the number of reward edges between node
𝑣 and other nodes with colour 𝑏.
c) Bank sides accessed by one task: Switching between banks takes even more time
if they belong to different sides. Therefore, if a task needs to access multiple banks,
these should be on the same side (left or right). We account for this in the node
re-insertion step when a node is to be coloured: We count the number of adjacent
reward edges going to nodes assigned to left banks (𝑛reward,left) and those going to
nodes assigned to right banks (𝑛reward,right). The results are added (with a weighting
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factor 𝜔) to the reward edge count for each bank of the corresponding side. This
corresponds to adding a term +𝜆0.5 ⋅𝜔 ⋅𝑛reward,side(𝑏) in (5.2) on page 144. Empirically,
𝜔 = 0.375 has turned out to be a good choice.
d) Cache indices: Since the data cache on the MPPA is two-way set associative, no
more than two buffers accessed by the same task should have similar cache indices.
Otherwise, if the buffers are accessed in alternation, frequent cache misses would
occur. For this reason, a mechanism that aligns the buffers within each bank was
added as a second step after the bank assignment. It adds free spaces between the
buffers such that the base addresses of all buffers accessed by a task have different
cache indices. Again, an algorithm based on graph colouring is used for this purpose.
The nodes are the buffers as before, edges are inserted between two buffers if they
are used by the same task, and the colours are given by all possible cache indices. In
the node removal phase, those nodes are removed first (and later coloured last) that
have the most free space on the banks they have been assigned to. The nodes are re-
inserted filling banks from their base address upwards with buffers. Cache indices
of the buffers are adjusted by placing “gaps” between the buffers. These gaps must
be small enough to still fit into the bank.

5.1.6 Performance Comparison of Interleaved vs. Contiguous
Mapping

To compare application performance of interleaved and contiguous memory con-
figurations, we executed different applications on one cluster of a Kalray MPPA de-
veloper board, model Andey, using toolchain 1.4.2, with a bare-metal configuration.
The applications comprise six different, parametrised benchmarks:

• Matrices of different sizes weremultiplied, onematrix per core. Powers of two
were chosen as the matrix dimensions in some cases (denoted as “matrix2”)
and other, random numbers in other cases (denoted as “matrix”).

• The Fast Fourier Transform (FFT) of different signals in different lengths was
calculated using a benchmark from [SBS], one FFT per core.

• A Canny edge detection filter was applied to images of different sizes. The
images were split into different numbers of blocks, with one PE working on
one block.

• Using convolutional neural networks that were taken from the CConvNet
library [CPB14; Con], up to four hand-written digits were simultaneously re-
cognised out of images, with four PEs working together for one recognition.
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• Floating point number arrays of different sizes were sorted using a merge sort
algorithm. All involved cores worked in parallel for one array.

• Sparse matrices of different shapes and sizes were multiplied with dense vec-
tors (experiment denoted as SpMV). The matrices were split into different
blocks with the same size of non-zero entries, with one PE per block.

Variation of the mentioned parameters as well as of the number of active PEs
(between 2 and 16) yielded a total of 345 different configurations. Note that some
of the benchmarks have regular memory access patterns (e.g. Canny), while others
show data-dependent control flow (e.g. merge sort or SpMV). Usually, the former
is advantageous for interleaved address mapping (see Chapter 4).

All benchmarkswere implemented in Ladybirds C and parsed using the C++ fron-
tend “Clang” of LLVM [LA04] into a newly created compilation framework. The
tasks were assigned to the different PEs by hand following regular patterns. Dy-
namic scheduling was used. To exclude performance influences of the binding of
the tasks to the PEs, the latter was kept constant in that the same task was always
assigned to the same PE in all configurations of each benchmark. Bank assignment
optimisation, code generation and benchmarking were conducted in an automated
process. Each configuration was implemented with the local data caches enabled
and disabled. All benchmarks were executed in three ways:

• With interleaved mode,

• With contiguous mode, optimised using the proposed algorithm,

• With contiguous mode and a bank assignment obtained using the load balan-
cing based approach discussed in Section 5.1.4.1.

The results shall be presented in the following. Figure 5.9a compares the runtimes of
the benchmarks in contiguous mode to those in interleaved mode, for the optimised
bank assignment algorithm proposed in this work as well as for the load-balancing
based solution. Data caches are disabled.

Using the assignments determined by the proposed algorithm, the applications
run equally fast or faster with a contiguous memory configuration for 95.1% of all
configurations. The speed-ups are significant (more than 5%) for 75.1% of all con-
figurations. Only in the Canny experiment, 14% of configurations performed worse
with contiguous mapping; in the worst case, the runtime was 9.0 % longer than with
interleaved mapping.

Figure 5.9b shows the results of the same experiments with the data caches en-
abled. In this case, 87.8% of all configurations run at least equally fast with con-
tiguous memory, while speed-ups are significant in still 20.3% of the configurations.
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Figure 5.9: Ratio of runtime in contiguous mode (𝑟cont) and runtime in interleavedmode (𝑟int),
with data cache enabled or disabled.
The results are shown as Tukey box plots: Each box describes their distribution for all different
configurations of the corresponding benchmark. The bounds of the box mark the first and
third quartiles, the band inside marks the median value. The whiskers extend to the most
extreme results still within 1.5 times the inter-quartile range from the box. Results outside
that range are marked separately as outliers.
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Figure 5.10: Measured runtime and cache miss stalls of the Canny benchmark for a 338×258
pixel image, depending on the number of blocks it was split into (i.e. the number of PEs
involved). Cache was enabled.

A moderate performance degradation can be seen for the SpMV benchmark. It is
due to the fact that all the PEs access with a highly irregular pattern the vector to
be multiplied with the sparse matrix. This results in a 14.4% longer runtime in the
worst case.

Deeper insight into one of the different configurations is provided in Figure 5.10
in an exemplary way for the Canny experiment. The figure shows details about the
absolute runtimes for one particular configuration, but with a varying number of
active PEs. With enabled data cache, in-built performance monitoring counters of
the MPPA platform were used to measure the number of stall cycles due to cache
misses as a reference of thememory access overhead. Since thework is split between
the active PEs, an increasing number of the latter yields a smaller part of thememory
to be accessed by each PE; as a result, the caches get more efficient.

Both with caches enabled and disabled, the matrix2 and fft benchmarks perform
significantly worse in interleaved mode. This is because the Kalray MPPA uses se-
quential interleaving, i.e., the bank a memory address is assigned to is given by
a number of lower-order bits of the address. Consecutive accesses with address off-
sets of powers of 2 (as they occur frequently in the applications mentioned before)
therefore all go to the same bank, in the case of a collision causing multiple sub-
sequent collisions as well. As discussed in the last chapter, this problem is well
known and can be solved by pseudo-random interleaving [Rau91]. While the
latter technique is frequent with off-chip memory systems, to our best knowledge
no on-chipmemory architecture is organised in this fashion. One can conclude from
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Figure 5.11: Ratio of runtimes with data cache enabled and disabled. The ratio is shown for
interleaved mapping, for contiguous mapping optimised with the proposed algorithm and
for contiguous mapping with the simple, load-balancing based method. The results are again
shown as Tukey box plots like in Figure 5.9.
For most configurations, this ratio is below 100%, i.e., the runtime is shorter with cache en-
abled. One can also see that the speed-up potential of the cache is lower for configurations
that already profit from an optimised bank assignment when the cache is disabled (cf. Fig-
ure 5.9a).

this that sequential memory interleaving, in deviation from one of its frequently-
named advantages, does not allow formemory-agnostic programming in every case.

Figure 5.11 compares the runtimes with enabled caches to those with disabled
caches. In 86.9% of the configurations, enabling the cache yields a speed-up. Excep-
tions are the “matrix2” benchmarks and few configurations of the FFT benchmark;
these applications only show little locality. For all configurations, it holds that en-
abling the cache yields a speed-up either in both contiguous and interleaved mode
or in none of them.The figure also shows that the optimisation potential of enabling
the cache in general is lower for contiguous memory with optimised bank assign-
ment. This is because in interleaved mode, memory accesses have a higher cost due
to performance-degrading patterns like switching between different banks. Since
the cache reduces the number of memory accesses, its impact is determined by that
cost.
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In summary, it can be stated for many applications that while the cache is able to
hide certain issues like access conflicts or bank switch latencies, still better perform-
ance can be attained by avoiding these problems altogether through the choice of
an appropriate contiguous memory mapping. Particularly, in cases of low locality,
only contiguous mapping boosts performance.

Independently of the aspect of performance improvement, contiguous mapping
allows for better static analysability [Bec⁺16; Car⁺14; VY15; NYP16; Per⁺16]. As the
results show, this analysability comes at a very moderate price, the possible average
performance degradation being low in most of the cases.

The runtime of the mapping algorithm itself was in the order of tens of milli-
seconds on an Intel Core i7-3820 CPU based machined clocked at 3.60GHz. This
makes it very short as compared to the overhead for code generation, compiling the
code for the target platform etc.

5.1.7 Concluding Remarks

In this first part of this chapter, we compared contiguous and interleaved memory
configurations on the Kalray MPPA. Synthetic benchmarks showed important char-
acteristics for the memory access delays on this platform.

For the contiguous memory configuration, we presented a relatively simple op-
timisation algorithm for assigning buffers to memory banks. This algorithm only
needs little information about the application; in particular, fine-grained profiling
or in-depth static analysis are not required. Still, in real-world benchmarks we were
able to attain speed-ups of up to 86 % as compared to the interleaved configuration,
while significant degradation in speed was only observed in a minority of the cases.

This shows that using contiguous memory mapping is a worthwhile alternat-
ive to interleaved mapping. With the presented algorithm, it is feasible in terms of
programming effort and on the MPPA it is at least comparable in terms of aver-
age performance. Being clearly better suited for worst-case timing analysis is what
makes it particularly attractive.

At the same time, the potential of this optimisation method has not been fully ex-
ploited yet. In particular, the algorithms could be clearly enhanced by adding static
analysis, for instance for determining the actual numbers of accesses the tasks per-
form to buffers. Also, only the sub-problem of distributing data within one cluster is
targeted; the bigger challenge of placing data on the numerousmemory banks of the
Epiphany chip still remains. The next section will detail this and other challenges
and outline the necessary steps towards efficient data placement and exchange on
any arbitrary platform.
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5.2 Data Storage and Transport Optimisation on
Multi-Memory Systems

Earlier in this thesis, the Ladybirds specification model was introduced with arbit-
rary multi- and manycore target architectures in mind. The focus was then directed
towards such systems with one shared memory (which could, however, consist of
multiple banks, with interleaved or contiguous address mapping). The mechanisms
elaborated so far already cover platforms like the Intel Xeon Phi [Chr14], and they
naturally extend to systems like the Kalray MPPA even when using all clusters —
data transfer tasks can be inserted mechanically whenever data exchange between
different clusters is required, whereupon the program can be optimised for each
cluster individually. For other target platforms, unfortunately, these mechanisms
are not yet sufficient. This comprises platforms with non-uniform memory archi-
tectures, such as Adapteva Epiphany [Olo⁺11], and platforms with memory hier-
archies like P2012 [Ben⁺12] or PULP [Con⁺15]. These systems require methods of
careful data placement on the different banks. In this context, also accurate and
tight packet liveness analysis can be performance-critical, just as well as mechan-
isms of temporarily moving packets to other locations such as to make space on
fast memory modules. Due to the high complexity of these individual optimisations
combined with the manifold interdependencies between them, no complete optim-
isation algorithm will be presented in this thesis. To get an idea, however, about the
feasibility of such an undertaking, goals and constraints of it shall be formalised in
the following and the most important challenges shall be discussed together with
possible solution approaches. Finally, it will be shown how optimisation methods
can be adapted to concrete hardware architectures and their special requirements.

5.2.1 Hardware and Software Models

In Section 3.4, a Ladybirds optimisation procedure was defined as a transforma-
tion of a packet dependency graph to a buffer dependency graph. In addition to
the former, more information is required for successful data storage and transport
optimisation. This comprises further details about the application as well as a de-
scription of the target platform. What exact data is needed clearly depends on the
optimisations that are performed; this section will give an overview on some para-
meters that can be readily obtained and aid the optimisation process. First, an ac-
curate and detailed optimisation model shall be formalised, then a formal, generic
hardware description model is presented.

To allow a better representation of the data dependencies in a packet depend-
ency tree, the transformation of splitting interfaces according to the dependencies
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was proposed in Section 3.4. On the other hand, since buffers must be allocated as
a whole for each interface, the original packet dependency tree can be useful as
well during certain optimisation stages. In the following considerations, a hybrid
representation shall be used which depicts complete interfaces together with their
breakdown into regions.

To describe the dimensions of interfaces and regions, the notion of cubes shall
be utilised. An 𝑛-dimensional cube 𝓆 shall be defined by two corner points 𝒒𝑙 and
𝒒𝑢 ∈ ℤ𝑛 such that 𝓆 = { 𝒑 ∈ ℤ𝑛 || 𝒒𝑙 ⩽ 𝒑 < 𝒒𝑢 } , where < and ⩽ are defined element-
wise, e.g. 𝒙 ⩽ 𝒚 ⟺ 𝑥𝑖 ⩽ 𝑦𝑖 ∀ 𝑖. 𝓠𝑛 is the set of all 𝑛-dimensional cubes.

An interface 𝑖 for an 𝑛-dimensional packet can then be defined as a tuple (𝓆𝑖, 𝑅𝑖),
where 𝓆𝑖 ∈ 𝓠𝑛+1 is given by 𝒒𝑙𝑖 = 𝟎 and 𝒒𝑢𝑖 , the dimensions of the packet. To
account for the different sizes of the underlying data types (char, int, double,
…), the first dimension of 𝒒𝑢𝑖 shall denote the size, in bytes, of the packet base type.
For instance, for a packet declared as double x[5][2][3], the corresponding
interface 𝑖 would have 𝒒𝑢𝑖 = (8, 3, 2, 5)⊤. With this technique, every array of any
data type can be modelled as a multi-dimensional array of bytes.

𝑅𝑖 is a set of regions, with each region 𝑟 ∈ 𝑅𝑖 covering a sub-cube 𝓆(𝑟) of 𝓆𝑖, i.e.
𝓆(𝑟) ⊆ 𝓆𝑖. All these sub-cubes are pairwise disjoint and

⋃
𝑟∈𝑅𝑖

𝓆(𝑟) = 𝓆𝑖 .

For instance, if a sub-packet1 x[2,3][1][0,2] of the packet x from the last ex-
ample were used as a task input, the corresponding region 𝑟would cover a sub-cube
𝓆 ∶= 𝓆(𝑟) with 𝒒𝑙 = (0, 0, 1, 2)⊤ and 𝒒𝑢 = (8, 3, 2, 4)⊤.

A task 𝑡 shall be a tuple (𝐼 i𝑡 , 𝐼 o𝑡 , 𝑘𝑡, 𝐽 io𝑡 , 𝐽 bud𝑡 ), where

• 𝐼 i𝑡 is a set of input interfaces

• 𝐼 o𝑡 is a set of output interfaces

• 𝑘𝑡 is a kernel describing the operation to be performed

• 𝐽 io𝑡 ⊆ 𝐼 i𝑡 × 𝐼 o𝑡 describes interfaces for combined input/output (inout) packets.
For each such packet, one input and one output interface is declared in 𝐼 i𝑡 and
𝐼 o𝑡 ; the pair of these interfaces in 𝐽 io𝑡 specifies that both must be provided with
the same buffer.

• 𝐽 bud𝑡 ⊆ 𝐼 i𝑡 × 𝐼 o𝑡 describes interfaces for buddy packets, similar to 𝐽 io𝑡 .

1For the Ladybirds sub-packet notation, see page 85, in particular also Figure 3.1. Note that the Lady-
birds C language expects closed intervals, whereas this model works with half-open intervals.
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Figure 5.12: Illustration of the modelling of a packet dependency graph. Interfaces are com-
posed into regions and combined input/output interfaces are depicted separately, but with a
strong connection between them.

An application can then be represented as a packet dependency graph, which can be
defined as a tuple (𝑅i, 𝑅o, 𝑇 , 𝐷), where 𝑅i and 𝑅o are sets containing all regions in the
application, 𝑅i those used in input and 𝑅o those used in output interfaces. 𝑇 is the set
of all tasks and 𝐷 ⊆ 𝑅o × 𝑅i is the set of edges representing all packet dependencies
in the application. Note that for each 𝑟 ∈ 𝑅i, there is exactly one 𝑑 ∈ 𝐷 which has
𝑟 as the target. For regions contained in 𝑅o, any number of dependencies from zero
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to |𝑅i| can have them as source. Figure 5.12 on the preceding page illustrates the
model.

A hardware platform can be modelled as a tuple (𝐶, 𝐶x, 𝑀, 𝐴, 𝑋), where

• 𝐶 is the set of cores or processing elements in the platform that can execute
tasks

• 𝐶x is the set of cores, processing elements, DMA controllers and other devices
that can perform data transfers between different memory modules or data
copies within memory modules. 𝐶 and 𝐶x need not be disjoint.

• 𝑀 is the set of memory modules on the platform. For each memory module
𝑚 ∈ 𝑀, |𝑚| denotes its capacity in bytes.

• 𝐴 ⊆ 𝐶 × 𝑀 is a set of access features. Each 𝑎 = (𝑐𝑎, 𝑚𝑎) ∈ 𝐴 denotes that the
core 𝑐𝑎 can access the memory module 𝑚𝑎.
Cost functions 𝜏 r ∶ 𝐴 → ℕ and 𝜏w ∶ 𝐴 → ℕ specify the time, in cycles,
needed for one such read or one write access.

• 𝑋 ⊆ 𝑀 ×𝐶x ×𝑀 is a set of data transfer features. Each 𝑥 = (𝑚from
𝑥 , 𝑐𝑥, 𝑚to

𝑥 ) ∈ 𝑋
denotes that data can be transferred from memory module 𝑚from

𝑥 to memory
module 𝑚to

𝑥 using the transfer component 𝑐𝑥.
A cost function 𝜏x ∶ 𝑋 ×ℕ → ℕ gives the time, in cycles, needed for trans-
ferring a specified amount of bytes as indicated by the given transfer feature.

All elements of a platform description can be derived directly from the target plat-
form architecture; in certain cases, however, cost functions are not known or not
published by the platform producer. In these cases, measurementsmay be necessary.
Access conflicts or congestion on buses or networks on chip, other than through the
resource availabilities in 𝐶 and 𝐶x, are not included in this model, but could be ad-
ded.

The packet dependency graph described earlier can be obtained directly from
the application specification. However, the following additional parameters contain
useful information about an application, where 𝐼 i ∶= ⋃

𝑡∈𝑇
𝐼 i𝑡 and 𝐼 o ∶= ⋃

𝑡∈𝑇
𝐼 o𝑡 are the

sets of all input and output interfaces in the application.

• 𝜏 e ∶ 𝑇 ×𝐶 → ℕ, the pure execution time (without read accesses) in cycles of
a given task on a given core. These times are required to predict which tasks
can and will run in parallel. They can be obtained through measuring (see last
section), but also with static analysis tools like [FH04].

• 𝑛r ∶ 𝐼 i ∪ 𝐼 o → ℕ, the number of read accesses performed to the packet
provided through a given interface. These numbers are important to predict
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possible access conflicts and, more importantly, the impact of the choice of
the memory module on which the buffers for the interfaces are allocated. 𝑛r

can again be obtained through measuring or through static analysis.

• 𝑛w ∶ 𝐼 o → ℕ, the number of write accesses performed to the buffer provided
through a given interface. Similar considerations as with 𝑛r hold for these
numbers.The separation of these two functions is necessary because the costs
of read and write operations can significantly differ on certain architectures,
e.g. Adapteva Epiphany.

As already discussed, these parameters can be readily obtained; typically, they are
also used in other optimisation methodologies. More information could be collected
and included in the different models, but the following sections will show the large
range of optimisations that is already possible with only the parameters mentioned
above.

5.2.2 Problem Definition

The application model and the platform model proposed earlier allow a definition
of the problem of optimising Ladybirds applications for given target platforms. The
most important results to be produced are certainly a task binding and a scheme
for allocating buffers on appropriate memory modules. There are, however, more
decisions to be taken, and a high cross-dependency exists. If, for instance, one task
produces data on onememory bank and another task expects this data on a different
bank, a data transfer task must be inserted. On other occasions, to allow concurrent
processing of the same data, the latter must be copied within a memory module.
These operations must be scheduled such that all buffers fit into the memory, which,
again, might require more data transfers etc.

In the following, all the results to be produced shall be formalised as well as the
requirements that they must meet. These outputs are formulated as individual sub-
problems; they are presented in an order which makes it easy to describe the prob-
lem, whereas the order in which the subproblems have to be solved may be entirely
different. Table 5.1 on page 164 can be used as a help to look up the meanings of
symbols and variables.

Given a platform (𝐶, 𝐶x, 𝑀, 𝐴, 𝑋) and a packet dependency graph (𝑅i, 𝑅o, 𝑇 , 𝐷)
together with additional information consisting of 𝜏 e, 𝑛r and 𝑛r, the optimisation
procedure must establish the following results.

For one, a buffer dependency graph must be produced out of the packet de-
pendency graph. This needs the following decisions:

161



Chapter 5 Optimisation models and algorithms

• It must be decided which of the buddy interfaces in each task are merged,
i.e., provided with the same buffer. These interface pairs then act like inout
interface pairs, together with which they shall be stored in a common set.

Formally, for each task 𝑡 ∈ 𝑇, the optimiser must produce a set 𝐽𝑡 = 𝐽 io𝑡 ∪ 𝐽 bud*𝑡
with 𝐽 bud*𝑡 ⊆ 𝐽 bud𝑡 . No interface must appear twice in 𝐽𝑡.

• For each dependency, it must be decided whether the corresponding (sub-)
packet will be exchanged through buffer sharing or whether a copy or a trans-
fer task is inserted. It may also be necessary to insert multiple such tasks to
temporarily move data to a different memory module and later bring it back.

Formally, the optimiser must generate a set 𝑇 x of transfer or copy tasks and
a function 𝛾 ∶ 𝐷 → 𝒫 (𝑇 x) assigning each dependency zero, one or mul-
tiple such transfers or copies. Each task in 𝑇 x must be assigned to exactly
one dependency. The same (sub-)buffer may be modified by one task at most,
otherwise copy tasks must be inserted, i.e. for each 𝑟 ∈ 𝑅o, there must be at
most one dependency (𝑟 , 𝑟 ′) ∈ 𝐷, with 𝛾 ((𝑟 , 𝑟 ′)) = {}, to a region 𝑟 ′ that is
part of an inout or merged buddy interface.

With these results, a buffer dependency graph (𝑅i∗, 𝑅o∗, 𝑇 ∗, 𝐷∗) can be constructed
with 𝑇 ∗ = 𝑇 ∪ 𝑇 x. 𝑅i∗ and 𝑅o∗ extend 𝑅i and 𝑅o with the input and output regions
of the tasks in 𝑇 x. 𝐷∗ is constructed from 𝐷 by replacing all dependencies 𝑑 ∈ 𝐷,
𝛾(𝑑) ≠ {}, with dependencies connecting the source and target regions of 𝑑 via the
regions of the newly inserted tasks 𝛾(𝑑).

One further output that may also be necessary is tightly connected to the buffer
dependency graph.

• A set𝐷+ ⊂ (𝑅i∗∪𝑅o∗)×(𝑅i∗∪𝑅o∗) of additional dependencies must be established
to ensure correct execution of the application. For instance, produce-read-
modify situations that were not handled by copy or transfer tasks must be re-
solved by adding a dependency, i.e., for each combination of regions 𝑟 ∈ 𝑅o∗,
𝑟 ′, 𝑟 ′′ ∈ 𝑅i∗ such that (𝑟 , 𝑟 ′), (𝑟 , 𝑟 ′′) ∈ 𝐷∗, if 𝑟 ′′ belongs to a merged or inout
interface and 𝑟 ′ does not, 𝐷+ must contain (𝑟 ′, 𝑟 ′′). Also, if a static schedul-
ing order of the tasks is desired, it can be modelled by adding dependencies.
However, no dependencies must be added that introduce cycles at task level.

While buffer dependency graph and additional dependencies define the execution
semantics of the application, it must also be definedwhich resources are used for
this execution. For this purpose, the following outputs must be generated, where
𝐼 i∗ = ⋃𝑡∈𝑇 ∗ 𝐼 i𝑡 and 𝐼 o∗ = ⋃𝑡∈𝑇 ∗ 𝐼 o𝑡 shall denote the sets of all input and all output
interfaces in the application.
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• A task binding 𝛽 ∶ 𝑇 → 𝐶 and a transfer binding 𝛽𝑋 ∶ 𝑇 x → 𝐶x must be
established to denote which execution resource executes which task.

• A memory binding 𝛽𝑀 ∶ 𝐼 i∗ ∪ 𝐼 o∗ → 𝑀 must be found which specifies on
which memory modules the packets are stored that will be provided to the
tasks through the interfaces. The following requirements must be fulfilled.
For each dependency (𝑟 , 𝑟 ′) ∈ 𝐷∗, it must hold that the interfaces to which 𝑟
and 𝑟 ′ belong are bound to the same memory module (dependencies in the
buffer dependency graph denote data exchange by buffer sharing). For each
task 𝑡 ∈ 𝑇, it must hold that combined input/output ormerged buddy interface
pairs are mapped to the same memory, i.e. ∀(𝑖i, 𝑖o) ∈ 𝐽𝑡, 𝛽𝑀(𝑖i) = 𝛽𝑀(𝑖o) and
that the core to which 𝑡 is mapped can access the memory assigned to the
interfaces, i.e. ∀𝑖 ∈ 𝐼 i𝑡 ∪ 𝐼 o𝑡 , (𝛽(𝑡), 𝛽𝑀(𝑖)) ∈ 𝐴. For each 𝑡 ∈ 𝑇 x, the core or DMA
controller executing 𝑡 must be able to transport data from the source to the
destination memory, i.e. (𝛽𝑀(𝑖i), 𝛽𝑋(𝑡), 𝛽𝑀(𝑖o)) ∈ 𝑋with 𝐼 i𝑡 = {𝑖i} and 𝐼 o𝑡 = {𝑖o}.

• A buffer allocation 𝛼𝐵 ∶ 𝐼 i∗ ∪ 𝐼 o∗ → ℬ must be made, where ℬ is the set
of all buffers. For each task 𝑡 ∈ 𝑇, the interface pairs contained in 𝐽𝑡 must be
mapped to the same buffer, i.e. ∀(𝑖i, 𝑖o) ∈ 𝐽𝑡, 𝛼𝐵(𝑖i) = 𝛼𝐵(𝑖o). All buffers must fit
into the memory modules and buffer overlaps must be prevented during the
buffer lifetimes. The buffers must be allocated such that for each dependency
(𝑟o, 𝑟 i) ∈ 𝐷∗, the buffer addresses assigned to 𝑟𝑜 and 𝑟𝑖 are the same for the
same elements.

The details for the buffers can be described as follows. A buffer shall be defined as
an injective affine transformation of a cube toℕ0 (for each memory module𝑚 ∈ 𝑀,
its address space shall be denoted as {0, … , |𝑚| − 1} ). For instance, a buffer 𝑏 for a
cube 𝓆 ∈ 𝓠𝑛 is given as 𝑏 ∶ 𝓆 → ℕ0 with 𝑏(𝒑) = 𝑙 + ⟨𝒑, 𝒔⟩, 𝑙 ∈ ℤ, 𝒔 ∈ ℤ𝑛, ⟨⋅, ⋅⟩ the
scalar product, such that ∀𝒑1 ≠ 𝒑2 ∈ 𝓆, 𝑏(𝒑1) ≠ 𝑏(𝒑2). 𝑏[𝓆] shall denote the image
of 𝑏, i.e. the set of all its returned byte addresses.

For instance, to store the example packet x from before (which was declared as
double x[5][2][3]) in a contiguous chunk of memory beginning at address
0x43210, one would use the buffer 𝑏(𝒑) = 0x43210 + ⟨𝒑, (1, 8, 24, 48)⊤⟩.

Each buffer must fit into the corresponding memory module, i.e. for each inter-
face 𝑖, max 𝛼𝐵(𝑖)[𝓆𝑖] < |𝛽𝑀(𝑖)|. For each pair of regions 𝑟1 ≠ 𝑟2 ∈ 𝑅o∗ belonging to
two interfaces 𝑖1 and 𝑖2, at least one of the following conditions must hold:

• They reside on different memory modules, i.e. 𝛽𝑀(𝑖1) ≠ 𝛽𝑀(𝑖2) or

• their buffers do not overlap, i.e. 𝛼𝐵(𝑖1)[𝓆(𝑟1)] ∩ 𝛼𝐵(𝑖2)[𝓆(𝑟2)] = {} or
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Table 5.1: Symbols and variables used in the problem definition

Variable Type Explanation

𝐴 ⊆ 𝐶 × 𝑀 Which core can access which memory module
ℬ set All possible buffers
𝐶 set All cores on a platform
𝐶x set All data transfer or copy resources on a platform

(DMA controllers, cores, …)
𝐷 ⊆ 𝑅i × 𝑅o Dependencies in the packet dependency graph
𝐷∗ ⊆ 𝑅i∗ × 𝑅o∗ Dependencies in the buffer dependency graph
𝐷+ ⊆ (𝑅i∗ ∪ 𝑅o∗) × (𝑅i∗ ∪ 𝑅o∗) Additional dependencies for the buffer dependency graph
𝐼 i∗ set All input interfaces in the buffer dependency graph
𝐼 o∗ set All output interfaces in the buffer dependency graph
𝑀 set All memory modules on a platform
𝑛r 𝐼 i∗ ∪ 𝐼 o∗ → ℕ Number of read accesses to an interface
𝑛w 𝐼 o∗ → ℕ Number of write accesses to an interface
𝓠𝑛 set All 𝑛-dimensional cubes
𝑅i set All regions of input interfaces (packet dependency graph)
𝑅i∗ set All regions of input interfaces (the buffer dependency graph)
𝑅o set All regions of output interfaces (packet dependency graph)
𝑅o∗ set All regions of output interfaces (buffer dependency graph)
𝑇 set All computation tasks in the application
𝑇 x set All transfer or copy tasks (automatically inserted)
𝑇 ∗ = 𝑇 ∪ 𝑇 x All tasks (of any type) in the buffer dependency graph
𝑋 ⊆ 𝑀 × 𝐶x × 𝑀 Possibilities of transferring data from one module to another

or itself using a transfer or copy resource
𝛼𝐵 𝐼 i∗ ∪ 𝐼 o∗ → ℬ Buffer allocated for each interface
𝛽 𝑇 → 𝐶 Task binding (computation tasks)
𝛽𝑋 𝑇 x → 𝐶x Transport/copy task binding
𝛽𝑀 𝐼 i∗ ∪ 𝐼 o∗ → 𝑀 Memory binding
𝛾 𝐷 → 𝒫 (𝑇 x) Copy/transfer tasks to be inserted for each packet dependency
𝜏 e 𝑇 × 𝐶 → ℕ Pure computation time for executing a task on a core
𝜏 r 𝐴 → ℕ Time for one read access
𝜏w 𝐴 → ℕ Time for one write access
𝜏x 𝑋 ×ℕ → ℕ Time for transferring or copying a given number of bytes

For each task 𝑡 ∈ 𝑇 ∗:
𝐼 i𝑡 set All input interfaces of the task
𝐼 o𝑡 set All output interfaces of the task
𝐽𝑡 ⊆ 𝐼 i𝑡 × 𝐼 o𝑡 Merged interfaces (provided with the same buffer)

For each interface 𝑖:
𝓆𝑖 cube Dimensions of the interface
𝑅𝑖 set Regions into which the interface is divided
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• the lifespans of the (sub-)packets they carry do not overlap. These lifespans
can be described by the set 𝑅1 containing 𝑟1 and its successors and the set 𝑅2
of 𝑟2 and its successors (e.g. 𝑅1 = {𝑟1} ∪ { 𝑟 | (𝑟1, 𝑟) ∈ 𝐷∗ }). 𝑅1 is before 𝑅2 if for
each pair 𝑟 ∈ 𝑅1, 𝑟 ′ ∈ 𝑅2 there is either a direct or indirect dependency, given
by all elements in 𝐷∗ ∪ 𝐷+, from the task accessing 𝑟 to that accessing 𝑟 ′, or 𝑟
and 𝑟 ′ belong to the same task 𝑡 and there is a (𝑖, 𝑖′) ∈ 𝐽𝑡, 𝑟 ∈ 𝑅𝑖, 𝑟 ′ ∈ 𝑅𝑖′ . The
lifespans do not overlap if either 𝑅1 is before 𝑅2 or 𝑅2 before 𝑅1.

Note that lifespans are defined only using dependencies and do not carry any notion
of time. This is because the latter may be hard to predict and thus cannot serve
as a guarantee of non-overlapping. Insertion of additional dependencies into 𝐷+,
however, can.

The buffer dependency graph and the bindings must be generated such as to op-
timise a specific metric. For instance, the execution time of the application would
be such a metric and can be determined as follows. For each task 𝑡 ∈ 𝑇, its execution
time is given by the sum of the computation time on the selected core and the access
times to all interfaces:

𝜏(𝑡) = 𝜏 e(𝑡, 𝛽(𝑡))+ ∑
𝑖∈𝐼 i𝑡∪𝐼 o𝑡

𝜏 r ((𝛽(𝑡), 𝛽𝑀(𝑖)))⋅𝑛r(𝑖)+∑
𝑖∈𝐼 o𝑡

𝜏w ((𝛽(𝑡), 𝛽𝑀(𝑖)))⋅𝑛w(𝑖). (5.3)

The execution time of a copy or transport task 𝑡x ∈ 𝑇 x is given by

𝜏(𝑡x) = 𝜏x ((𝛽𝑀(𝑖i), 𝛽𝑋(𝑡x), 𝛽𝑀(𝑖o)) , |𝑖i|) with 𝐼 i𝑡x = {𝑖i}, 𝐼 o𝑡x = {𝑖o}. (5.4)

These formulae do notmodel possible access conflicts; such terms could, however, be
added. As Chapter 4 showed, simple probabilistic models yield a satisfying accuracy.

The execution time of the entire application results from these times, considering
that the dependencies in 𝐷∗ ∪ 𝐷+ impose precedence relations on the tasks and that
no two tasks may execute simultaneously on the same resource.

While most of the outputs described above are already hard to determine on their
own, it is the interdependencies between them that significantly complicate the
optimisation problem. For instance, all bindings 𝛽, 𝛽𝑋, 𝛽𝑀 tightly depend on each
other. On one hand, cores and DMA controllers must be able to access the memory
modules chosen for the tasks they execute. On the other hand, the choice of the
memory bindings heavily influences the execution times of the tasks, thereby pos-
sible schedules and thus the task bindings (think of memory modules with access
times differing in orders of magnitude).

Another example are decisions of inserting additional copy tasks or merging
buddy interfaces. On the one hand, they are largely determined by memory bind-
ings and thus by task bindings —when data is produced on onememorymodule and
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required later on another memory module, a transfer task must be inserted; since
this creates a copy of the data, it may allow two buddy interfaces to be merged etc.
On the other hand, copying can significantly increase and merging buddies can sig-
nificantly decrease memory consumption, thereby influencing buffer allocation and
thus memory mapping and thus task mapping. Such interdependencies, as well as
individual optimisation subproblems, shall be touched upon in the next section.

5.2.3 Particular Subproblems

Some of the optimisation subproblems discussed before are well-known or at least
similar to well-known problems. For instance, the question of task binding has been
widely researched in different contexts. Other subproblems are specific to Lady-
birds. In the following, some of these subproblems shall be regarded, discussing
some of the main difficulties as well as the interdependencies with other subprob-
lems. At first, the question of whether or not tomerge buddy interfaces andwhere to
introduce copy tasks shall be targeted. Afterwards, it will be discussed how sched-
ules can help the rest of the optimisation and how they can be determined. Buffer-
related subproblems will then form the second part of the discussion, which treats
the problem of memory binding and that of buffer allocation.

5.2.3.1 Buddy and Copy Decisions

As mentioned before, for each pair of buddy interfaces, it must be decided in the
optimisation process whether they are to be merged, i.e. provided with the same
buffer. For each dependency in the packet dependency graph, it must be decided
if and how many copy or transfer tasks are to be inserted on it. The insertion of
transfer tasks is typically determined by other constraints: If an edge connects two
regions that should be bound to different memory modules (for instance for per-
formance reasons or because a core cannot access a memory module), one transfer
task is required for the dependency. Memory insufficiencies on individual a memory
modules may be tackled by temporarily “out-sourcing” a sub-packet to a different
memory module — in such a case, two or more transfer tasks are required. These
cases are part of different optimisation sub-problems and shall be regarded later on.
In the following, the focus shall be put on the insertion of copy tasks (i.e. copying
data within the same memory module) and on merging buddy interfaces.

Due to the sequential nature of Ladybirds C, a Ladybirds application can always
be executed (resource sufficiency provided) in the sequential specification order
without any additional copy tasks. It therefore makes sense to consider an imple-
mentation without any copy task and without any merged buddy interfaces as a
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Figure 5.13:
Example for an application with mutu-
ally exclusive buddy relations

basic implementation, with copy tasks and buddy interface merging being optimisa-
tions that can be applied to it. From this angle, creating copies of packets is a trade-
off: Additional memory is invested in return for higher concurrency and therefore
better parallelisability, as can be easily seen in the produce-read-modify example
in Figures 3.7 and 3.8 on page 98. Consequently, inserting copy tasks is mainly an
option if enough memory is available and if more concurrency is required. One
concrete criterion can be if the “modify” task is on a critical path of the application.

Merging buddy interfaces, on the other hand, does not directly influence exe-
cution time; it is rather an optimisation for saving memory. Indirectly, of course,
this can also lead to better performance whenever space is created in fast memory
modules such that more data can be placed there.

One caveat when merging buddy interfaces is that it can break certain ap-
plications. Consider the example in Figure 5.13. If the interfaces mod1-0:i1

and mod1-0:o1 are merged (and no copy/transfer task is inserted), mod1-0
needs to be executed after mod2-0 because of the write-after-read dependency
between mod2-0:i1 and mod1-0:o1. Similar considerations hold for mod2-0
and its interfaces i2 and o2. Merging the buddy interfaces in both tasks without
inserting any additional copy/transfer tasks would thus lead to a cyclic dependency
obstructing correct program execution.

Such issues are, however, easy to detect. Also, these corner cases should not dis-
guise the common cases inwhich buddy interfaces can bemergedwithout any prob-
lem, for instance when the input packets are not read by any other tasks. One could
think of filtering out these simple cases beforehand and automaticallymerging these
buddy interfaces; this may, however, be detrimental to performance on certain tar-
get platforms like Adapteva Epiphany (see below).
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5.2.3.2 Finding Schedules

Many of the optimisation results mentioned earlier are hard to produce without a
notion of time or precedence. For instance, establishing efficient task bindings re-
quires a way of knowing which cores are occupied when. The same holds for trans-
fer bindings; data transfer, however, also influences memory bindings because the
efficiency of a certain memory binding may depend on packets being transferred
swiftly between memory modules. Buddy and copy decisions also may depend on
such factors, and clearly, buffer allocation and reallocation require timing inform-
ation to know when memory can be reused. Finally, optimisation metrics typically
also depend on timing, such as the application execution time. For all these reasons,
an optimisation procedure will need a way of obtaining the timings of all tasks in
the application, i.e., a schedule.

The following considerations will illustrate methods, difficulties and applications
of scheduling using the example of list scheduling. List scheduling is a well-known
and popular scheduling heuristic. Gradually advancing in scheduled time, it greedily
assigns ready tasks to free resources according to a fixed priority scheme.

In the following, the assumption shall be made that a buffer dependency graph
and all bindings 𝛽, 𝛽𝑋, 𝛽𝑀 are given, but no buffer allocation has taken place yet
(the latter cannot be established without a schedule if dependencies are sparse and
memory resources are not abundant). In this case, the scheduler has to take two
kinds of resources into consideration — the processing resources (cores and DMA
controllers) and the memory resources. Each task (which, in the following, shall
also include transfer tasks) can only be scheduled if both its processing resource is
unoccupied and enough memory is available on the modules such that the buffers
for all interfaces can be allocated. While the occupation of the processing resources
follows a binary scheme, the memory occupation scheme is more complex. Before
the start of a task 𝑡 ∈ 𝑇 ∪ 𝑇 x, buffers must be allocated for all its pure output inter-
faces, i.e. for all interfaces in 𝐼 o𝑡 which are no inout or merged interfaces. When
it finishes, it must release the buffers for each input region 𝑟 ∈ 𝑅𝑖, 𝑖 ∈ 𝐼 i𝑡 , if 𝑖 is not
an inout or merged interface and if all other tasks using the buffer have already
finished. Also, upon finishing, it must release the buffers for each output region
𝑟 ∈ 𝑅𝑖, 𝑖 ∈ 𝐼 o𝑡 if 𝑟 is not used, i.e., if there is no 𝑟 ′ s.t. (𝑟 , 𝑟 ′) ∈ 𝐷∗.

An important issue to address is when to schedule data transfer tasks. If such a
task is scheduled too early, it binds resources on the target memory that are still
needed for other tasks. Scheduled too late, it binds resources on the source memory
for too long. These considerations particularly apply in the case of multiple transfer
tasks used for temporarily storing packets on other memory modules. One possible
strategy might be to establish the schedule in two steps. In the first step, transfer
tasks are scheduled but do not allocate buffers — this is instead done by the first
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task that uses a buffer. In the second step, one can use the memory availability
information obtained previously to schedule the transfer tasks.

Once a schedule has been established, it can be used for all the purposes men-
tioned before. In particular, one can now easily insert additional dependencies in𝐷+:
With the scheduled start and end times of all tasks being known, it is safe to insert
an edge if the source task ends before the destination task begins. While this may
lead to performance losses in case of an inaccurate schedule, it can never deadlock
the program because there exists at least one valid schedule supporting the newly
inserted dependency.

5.2.3.3 Memory Binding

The problem of mapping packets to memory has been formally divided into two
distinct sub-problems, memory binding 𝛽𝑀 and buffer allocation 𝛼𝐵. This division
is useful for a number of reasons. Firstly, it simplifies the formal problem and al-
gorithm descriptions. Secondly, such a division can also be taken advantage of for
simplifying the optimisation procedures. While there is a strong interdependency
between the memory binding and other optimisation decisions, the interdepend-
encies with buffer allocation are much weaker. As long as there is a valid solution
to the latter problem, the question which exact solution is chosen does not influ-
ence application execution. Therefore, the two problems do not need to be handled
simultaneously. Thirdly, a good prediction of the tractability of a buffer allocation
problem can be given by simply calculating the amount of occupied space on each
memory module. This prediction does not give false negatives, and false positives
are only likely if the amount of occupied space comes close to the memory capacity.

Memory binding is crucial to performance on non-uniform memory access plat-
forms, especially on all platforms with memory hierarchies. Therefore, good al-
gorithms for obtaining such a binding are important. At the same time, the formulae
for calculating task execution times, (5.3) and (5.4), constitute an easily applicable
tool to reliably detect the implications of important mapping decisions. It therefore
does not seem too unreasonable to be optimistic that already simple optimisation
algorithms may yield acceptable results for typical applications.

In practice, cores typically have a set of small memory modules near to them such
that the access is fast. On some systems (like the Kalray MPPA), the cores cannot
even access other memories; for these systems memory binding is trivial (leaving
aside possible access conflicts). On other systems, their are further memorymodules
a core can access, but typically at a considerably higher latency. On these systems,
as a rule of thumb, all (sub-)packets accessed frequently should be stored on the
near memorymodules and packets accessed sporadically can reside on further away
memory modules. As mentioned before, (5.3) quantifies this.
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In all cases, the problem may arise that not enough memory may be available
on the memory near to a core or on all memory modules a core can access. Since
especially the fast scratch-pad memories are typically small, such a situation is not
unlikely. Apart from changing the task binding, there are two methods to resolve
such a situation.They shall be called schedule relaxation and spilling. To knowwhich
method must be applied in what cases, it is important to distinguish between live
and active (sub-)packets. Similar to the concept of live variables, a (sub-)packet is live
from the execution start of the task writing it to the execution end of the last task
reading it. A (sub-)packet is active only during the execution of any task accessing
it. That means an active (sub-)packet is always live, but a live (sub-)packet can be
inactive between the executions of tasks accessing it.

If at a given point in time, the set of active (sub-)packets does not fit into the
memory, it helps to relax the schedule by executing some tasks later in time, thereby
reducing concurrency and thus simultaneous memory requirements. If at a given
point in time, the set of active, but not that of live packets fits into the memory,
it helps to spill inactive (sub-)packets, i.e. to temporarily move them to a different
memory module. Together, the methods of schedule relaxation and spilling always
make the execution of an application possible (provided enough spilling memory
and individual tasks with sufficiently low memory requirements), in the extreme
case by sequentialising task execution.

5.2.3.4 Buffer allocation

Previously, it has been shown how memory binding and buffer allocation can be
separated.The following considerationswill now focus on the subproblem of finding
a valid buffer allocation for a given memory binding and a given schedule, provided
that the capacity of each memory module is higher than the sum of the sizes of the
live packets bound to it at any point in time. Since this task can be handled for each
memory module individually, the focus will be on a single memory module in the
following.

As discussed earlier, for two different (sub-)packets bound to the same memory
module, it must hold that either their lifespans or their buffers or both do not over-
lap. Lifespans were defined with respect to the dependencies in 𝐷∗ ∪ 𝐷+; however,
these may not yield enough potential for reusing memory. Information from the
schedule needs to be used in these cases, but such decisions must be backed up by
inserting additional dependencies into 𝐷+. To avoid overly high overhead and per-
formance implications through these dependencies, their number should be kept
low. In the temporal domain, this can be achieved by building chains and trees of
dependencies, such that a region does not need dependencies from all possible re-
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gions prior to it. In the spatial domain, dependencies are dispensable between two
regions if their buffers do not overlap.

Amethod for checking buffer overlaps is also needed for those regions with over-
lapping lifespans. Thus, this problem shall be discussed here. Let 𝓆1 ∈ 𝓠𝑛1 and
𝓆2 ∈ 𝓠𝑛2 be two cubes of same or different dimensions. Let 𝑏1, 𝑏2 ∈ ℬ be two
buffers assigned to 𝓆1 and 𝓆2, respectively, with 𝑏𝑘(𝒑) = 𝑙𝑘 + ⟨𝒔𝑘, 𝒑⟩ for 𝑘 ∈ {1, 2}.
The question to answer is now if there exists an 𝒙1 ∈ 𝓆1 and an 𝒙2 ∈ 𝓆2 such that
𝑏1(𝒙1) = 𝑏2(𝒙2). Inserting the definitions of 𝑏1 and 𝑏2 yields

𝑙1 + ⟨𝒔1, 𝒙1⟩ = 𝑙2 + ⟨𝒔2, 𝒙2⟩

or

⟨𝒙, 𝒔⟩ = 𝑙2 − 𝑙1 with 𝒙 = (
𝒙1

𝒙2
) and 𝒔 = (

𝒔1

−𝒔2
).

This is a linear diophantine equation.This type of equations also appears in the con-
text of loop dependence analysis in compilers; several approaches to that problem
have been established and can be used for the present problem (a list can be found
for instance in [Muc97, Section 9.8]). Two simple methods specifically for the buffer
overlap problem are as follows.

• A simple test that can quickly exclude overlaps, typically in a vast majority of
cases, is to compare the lowest and highest buffer addresses 𝑙 𝑙𝑘 ∶= 𝑏𝑘(𝒒𝑙𝑘) and
𝑙𝑢𝑘 ∶= 𝑏𝑘(𝒒𝑢𝑘) for 𝑘 ∈ {1, 2}. If [𝑙 𝑙1, 𝑙𝑢1 ) ∩ [𝑙 𝑙2, 𝑙𝑢2 ) = {}, an overlap is not possible.

• Based on the fact that the vectors 𝒔𝑘, 𝑘 ∈ {1, 2}, are structured such that 𝑠𝑘𝑗
divides 𝑠𝑘𝑗+1 (cf. Section 3.5), one can take advantage of the periodicity patterns
in a buffer’s image (see Table 5.2 on the following page). More concretely, if
there is a pair 𝑗1, 𝑗2 ∈ ℕ such that 𝑠1𝑗1 = 𝑠2𝑗2 , one can compare the patterns with
respect to this period. Let

𝑙 𝑙𝑘 ∶= (𝑙𝑘 + (𝒒𝑙𝑘)(𝑗𝑘−1) ⋅ 𝑠
𝑘
𝑗𝑘−1)mod 𝑠𝑘𝑗𝑘 and 𝑙𝑢𝑘 ∶= (𝑙𝑘 + (𝒒𝑢𝑘)(𝑗𝑘−1) ⋅ 𝑠

𝑘
𝑗𝑘−1)mod 𝑠𝑘𝑗𝑘 ,

𝑘 ∈ {1, 2}, denote the lower and bounds of the two periodic address occu-
pations with period 𝑠1𝑗1 = 𝑠2𝑗2 . If these occupations do not overlap, i.e., if
𝑙 𝑙1 < 𝑙𝑢1 ⩽ 𝑙 𝑙2 < 𝑙𝑢2 or 𝑙𝑢1 ⩽ 𝑙 𝑙2 < 𝑙𝑢2 ⩽ 𝑙 𝑙1 or 𝑙 𝑙2 < 𝑙𝑢2 ⩽ 𝑙 𝑙1 < 𝑙𝑢1 or 𝑙𝑢2 ⩽ 𝑙 𝑙1 < 𝑙𝑢1 ⩽ 𝑙 𝑙2, the
images of the buffers do not overlap for the given cubes. This is particularly
interesting for optimisation because it gives a simple method of adjusting
𝑙1, 𝑙2, 𝒔1 or 𝒔2 such as to avoid overlaps.

The reason why buffer overlap is analysed at the level of regions and not of inter-
faces is that packets do not always need to be fully present in memory. An extreme
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Table 5.2: Memory occupation patterns for a sub-packet y[1,2][0,2][1] on the buffer
𝑏(𝒑) = [base]+ ⟨𝒑, (1, 8, 16, 80)⊤⟩. The occupation of the linear address space can be visualised
by considering each dimension of the sub-packet separately. Each dimension creates a regular
occupation pattern, and the actual memory occupation can be obtained by combining all
pattern with a boolean and.

Dimen-
sion indices

byte
factor period occupation pattern (coloured addresses are occupied)

1 [0, 8) 1 8
2 [1, 2) 8 16
3 [0, 3) 16 80
4 [1, 3) 80 —

resulting occupation

Listing 5.1: Ladybirds C specification of an application gradually replacing buffer contents.
The type of the packets (in, out, …) requested by the kernels are as stated in the comments.

char img[16][128];

AcquireImg( / ∗ out ∗ / img);

for(genvar int i = 0; i < 16; ++i)

{

TransformRow( / ∗ i n ou t ∗ / img[i]);

}

DisplayImg( / ∗ in ∗ / img);

example of this is given in Listing 5.1. It shall be assumed that no copy or transfer
tasks have been inserted during optimisation. At the beginning of the code, the buf-
fer allocated for img contains the output packet of AcquireImg. At the end of the
code, it contains the input packet of DisplayImg. In between, however, some parts
of it may contain sub-packets of the output of AcquireImg while others already
contain sub-packets of the input of DisplayImg. In this example, this memory
alignment is induced by the specification. Similar arrangements might, however,
also be purely the result of an optimised buffer allocation. This is intended in Lady-
birds as it allows for efficient use of memory.
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A question that might arise is how, for a complex buffer dependency graph with
interfaces consisting of many regions andmultiple cross-dependencies between dif-
ferent tasks, the buffers have to be dimensioned and allocated and how the regions
have to be placed there such that the address constraints of all dependencies are ful-
filled. With the possibilities of merging multiple task outputs to one task input or of
specifying sub-packets, particularly such with reduced dimensionalities, this may
become an intricate multi-dimensional puzzle. However, since Ladybirds C only al-
lows entire packets and sub-packets thereof, but no compositions of (sub-)packets,
as kernel arguments, there always exists a solution to this problem. It can always
be obtained by using the packet declarations and sub-packet indices in the specific-
ation as an orientation.

5.2.4 Application to Different Target Platforms
Previously, optimisation methods and goals have been discussed on a formal level.
In this section, two concrete target platform architectures shall be considered: The
P2012/PULP architecture family and Adapteva Epiphany. For both architectures, the
most important programming hints and thus optimisation goals will be given and it
will be discussed how to achieve these goals using Ladybirds optimisation models.

5.2.4.1 P2012 and PULP

TheP2012 [Ben⁺12] as well as the PULP [Con⁺15] platform consist of clusters of mul-
tiple processing elements. Each cluster has a fast L1 scratchpad memory for storing
data, and slower, but larger L2 memory is shared amongst the clusters. External
L3 memory may be connected as well. DMA controllers manage the data transport
between the different memory modules.

On such a platform architecture, as already mentioned, it is important to have
frequently accessed data in the L1 memories. For efficient execution, it is recom-
mended to establish a kind of pipeline of transferring input data to the L1 memories
via DMA, processing it there and transferring back outputs. Similar considerations
hold for transferring data directly between clusters. A more abstract formulation of
this is that data transfer and processing must be performed in parallel such that the
cores can continuously perform calculations and do not need to wait for data.

As discussed before, the difference between binding (sub-)packets to L1 and L2
memory can be quantitatively evaluated using (5.3). An optimisation algorithm thus
has the information it needs to arrange for a good memory binding.

Concurrency between processing and data transfer is provided by the Ladybirds
optimisation and implementation models. A data transfer can be scheduled as soon
as the data is available, the target buffer is free and a DMA controller is unoccupied.

173



Chapter 5 Optimisation models and algorithms

Each of these conditions starts to be fulfilled at the end of a task, when it can easily
be detected by a runtime manager which then can immediately launch the data
transfer.The data that must be transferred is explicit from the program specification.

It is, however, important to ensure that the target buffers for data transfers are
free soon enough for the transfers to be completed in time.This may require certain
(sub-)packets to be bound to L2 or even L3 instead of L1 memory. It might therefore
be a good idea to clearly prioritise frequently accessed (sub-)packets in an optimisa-
tion algorithm, also taking account of the time required for their transfer. Finally,
aggressive merging of buddy interfaces may be advantageous for saving L1memory
and therefore fitting more (sub-)packets in it.

5.2.4.2 Adapteva Epiphany

The Adapteva Epiphany architecture [Olo⁺11] consists of independent tiles that are
connected over a network on chip. Each tile contains a processing element, a DMA
controller and four memory banks, which store code as well as data. Each core can
access each memory bank on the chip. Accesses to the local banks (those on the
same tile) take place within one cycle; accesses to banks from other tiles are routed
through the network on chip. Write accesses are performed asynchronously, i.e., a
write request is posted within one cycle and the core immediately resumes its oper-
ation. Read accesses, on the other hand, involve sending a read request and waiting
for the data: This operation takes multiple cycles, depending on the geometrical
distance of the other tile.

An efficient program should place data that is frequently read on the same tile as
the processing element that reads it; alternatively, at least on a tile that is geometric-
ally near. Doing so does not only reduce the latency for a read operation but also the
traffic and therefore the congestion potential on the network on chip. Since writing
is asynchronous, it is not always necessary to only write to the local memory. In
fact, one can often take advantage of this “free” data transport mechanism.

For a Ladybirds optimiser, this means that merging buddy interfaces is not always
a good idea. In particular, when no read accesses happen to an output interface,
much better performance can be achieved by mapping the latter to a memory bank
on the tile of a core that later reads the produced packet. In general, output interfaces
with low read counts are flexible: A promising, natural approach might therefore be
to attribute higher priority to input interfaces when establishing a memory binding.
When buddy interfaces are bound to the samememorymodule, the algorithmmight
then decide to merge them.

One particularity of the Epiphany architecture are certainly the complex inter-
dependencies between task binding and data transfers. The task binding should be
established such that those tasks exchanging large amounts of data are bound to
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cores geometrically near to each other. The Ladybirds specification model, together
with the timings of the tasks, provides the necessary information to predict the
amounts of data exchanged during a given period of time. Using this information
could be advantageous to speed up read operations and to reduce overall traffic and
therefore congestions on the network-on-chip.

Finally, within each tile, the (sub-)packets need to be distributed between the
different banks. An algorithm similar to the one introduced in Section 5.1 could be
applied for this purpose.

5.2.5 Conclusion

The sections above covered problems and approaches related to the general case
of optimising Ladybirds applications for multicore platforms, in particular for plat-
formswith complexmemory architectures. A formalmodel of Ladybirds application
specifications with additional informations on runtimes and interface access counts
was given as well as a model for describing hardware architectures. Based on these
models, all required outputs of an application optimisation procedure were form-
alised. Details were discussed for the subproblems of buddy and copy decisions,
scheduling algorithms, memory binding and buffer allocation. In several cases, pos-
sible solution approaches or ideas were outlined. Finally, P2012 and PULP on the
on hand and Adapteva Epiphany on the other hand were shown as platform ex-
amples and it was discussed how the presented concepts could be applied to these
architectures.

Although the platformmodel is reduced to the essentials and only few data about
the application is needed in addition to the specification, the discussions have shown
how many optimisations come to mind with the Ladybirds optimisation model. It
was also shown that the generic and still sufficiently detailed descriptions of both
application and hardware architecture gave room to tailor the applications to a large
range of platforms and their particular requirements without making major modi-
fications to the optimisation algorithms. What remains to be shown is that there
exists an algorithm that can perform all the optimisations discussed in this chapter,
producing a solution that is correct with respect to the definition from Section 5.2.2
and achieves good performance. Different optimisation methods like evolutionary
algorithms, simulated annealing or even greedy heuristics come to mind here; since
Ladybirds applications can be comfortably debugged on normal PCs and parallel im-
plementations of correct Ladybirds applications are correct by construction, there is
no pressing need for short optimisation time. Also, the Ladybirds implementation
model unlocks optimisation potential that is not yet accessible to existing optim-
isation methods, for instance, it fully supports the shared memory data exchange
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philosophy. Therefore, if an optimisation algorithm is found that can produce a cor-
rect solution, one could be optimistic that the resulting code is more efficient than
existing auto-generated application implementations, in particular in the case of
high data exchange rates.
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6
Closing Remarks

This thesis tried to find answers to the question of how parallel programs could be
optimised for modern multicore architectures, in particular with respect to storing
and transporting data efficiently. It identified four important fields of work given as
specification, optimisation, implementation and platform models.

The influence of implementation models was evaluated for the cases of the
CAL actor language and for Kahn process networks on the Intel Xeon Phi platform.
Inefficient implementation models were shown to lead to inefficient program exe-
cution. Methods were given for getting to more efficient implementation models,
but this turned out to be problematic because of strong implications on the adopted
specification model.

As a result, a new specificationmodelwas conceived with efficient data storage
and transfer implementation primitives in mind. The Ladybirds model set consists
of a specification model, a basic optimisation model and an implementation model
that were devised together. Using a specification language based on C with some
MatLab-like array functionality, the programmer can comfortably specify a parallel-
isable application as a set of tasks with clearly defined inputs and outputs together
with data dependencies between them. Ladybirds applications can be debugged as
single-threaded PC programs and later optimised for parallel execution. It was also
demonstrated that the Ladybirds is not only useful in the area of multicore archi-
tectures, but can also be applied to minimise state retention overhead in transient
systems.

Different sophisticated optimisation models and methods for Ladybirds were
discussed. The problem of distributing data between multiple memory banks in
non-interleaved memories was successfully addressed with the Ladybirds optimisa-
tion model. As a generalisation, the problem of optimising Ladybirds applications
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for arbitrary platforms and their requirements was formally described and different
aspects of it were discussed in greater detail.

In the area of platformmodels, the characteristics of interleaved memory were
studied. Probabilistic models were proposed and evaluated, giving valuable hints of
how to describe these components and predict their performance in optimisation
algorithms.

Even if a complete algorithm for optimising data-intensive applications on mem-
ory hierarchies or non-uniform memory access platforms remains to be subject of
further research, this work has contributed important results and shown a pos-
sible path towards this goal. Reaching the latter could constitute a decisive step
towards more optimisation automation, less dedicated data management hardware
and higher energy efficiency in embedded systems.

Besides of a generic Ladybirds optimisation algorithm, further extensions to
Ladybirds could certainly be interesting.

• One clear deficiency of the Ladybirds specification model is that no loops
can be specified in metakernels. Such a functionality would be important for
many applications. If an Ladybirds optimisation algorithm as discussed pre-
viously existed, it might be extended to handle loops by making use of well-
known compiler techniques like modulo scheduling. The question of how to
handle nested loops might be more difficult in this context, but even without
loop nesting, the possibility of specifying simple loops in metakernels would
be a substantial improvement. A question deserving special attention in this
context is that of the exact optimisation goal for the loop. It may be worth-
while to add programming directives that allow the programmer to specify
throughput and/or latency constraints and to indicate whether a loop should
be optimised for throughput or latency.

• Another possible extension that goes into the same direction might be sup-
port for if-else branches in metakernels. This would allow to better handle
cases in which either one or another given set of tasks is executed, avoid-
ing unnecessary memory allocation and producing more accurate schedules.
Polyhedral analysis techniques might me of significant help, for instance in
detecting regular patterns over multiple iterations.

• Assignment statements in metakernels might be useful as well, allowing, for
instance, the programmer to assign the values of one (sub-)packet to an-
other. This would make it possible to comfortably pass the same data in mul-
tiple kernel calls with combined input/output arguments.The optimiser could
then decide where copies are necessary. The difficulty of this feature is that
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it could significantly complicate buffer allocation (think of the multidimen-
sional puzzle explained in Section 5.2.3.4).

• If loops can be specified in Ladybirds metakernels, a different approach to
implementing them might be to produce Kahn process networks that make
use of deterministic memory sharing. The slight overhead as compared to the
Ladybirds implementation model might be outweighed in certain cases by the
larger flexibility of dynamic execution. It would be interesting to find out if
a Kahn process network shows more robustness towards large variations in
task execution times or jitters in the input.

• An important feature to be considered on the optimisation side is task granu-
larity. In the current version, all metakernels are flattened, i.e., replaced with
their definition, such that a large graph of possibly small tasks is obtained.
Depending on the target cores, it might be advantageous to execute entire
metakernels as a whole, i.e. to stop the flattening process before the leaves in
the call tree are reached.

• Finally, GPUs may be considered as target platforms. This is mostly an im-
plementational issue, since GPUs are not programmed in plain C but in spe-
cial languages like those provided by CUDA or OpenCL. Also, the degree of
parallelism between the processing elements on GPU clusters is more fine-
grained; one would therefore have to see if it makes more sense to work with
tiny Ladybirds kernels or rather to transform loops within the kernels. From
their architecture, however, GPUs would fit well to the Ladybirds model set.
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