
Diss. ETH № 

Exploring Structural Diversity
in Evolutionary Algorithms

A dissertation submitted to
ETH Zurich

for the degree of

Doctor of Sciences

presented by

Tamara Ulrich

MSc ETH in Electrical Engineering and Information Technology
born September , 
citizen of Küssnacht, SZ

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Kalyanmoy Deb, co-examiner



Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 

Tamara Ulrich

Exploring Structural Diversity
in Evolutionary Algorithms

A dissertation submitted to
ETH Zurich
for the degree of Doctor of Sciences

Diss. ETH № 

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Kalyanmoy Deb, co-examiner

Examination date: September , 

Contents

Abstract ix
Zusammenfassung xi
Statement of Contributions xiii
Acknowledgments xv
List of Symbols and Abbreviations xv

 Introduction 
. Multi-objective Optimization . 
. Evolutionary Algorithms . 
. Research Questions . 
. Contributions and Overview . 

 Maintaining Structural Diversity During Optimization 
. Motivation and Background . 

.. Single-objective Problems 
.. Multi-objective Problems 
.. Overview of Proposed Methods 

. Measuring Diversity . 
.. Requirements . 
.. Overview of Existing Measures 
.. The Measure of Solow and Polasky 

. Maximizing Population Diversity in Single-objective Optimization . . . 
.. Problem Setting . 
.. NOAH Algorithm . 
.. Results . 
.. NOAH Summary . 

. Maximizing Population Diversity in Multi-objective Optimization . . . 
.. Problem Setting . 
.. DIOP Algorithm . 
.. Results . 
.. DIOP Summary . 

vi Contents

. Integrating Diversity into the Hypervolume Indicator 
.. Problem Setting . 
.. Modified Hypervolume . 
.. DIVA Algorithm . 
.. Results . 
.. DIVA Summary . 

. Comparison of Approaches . 

 Pareto-Set Analysis Through Clustering 
. Motivation and Background . 
. Related Work . 
. Binary Decision Spaces with Two Objectives 

.. Problem Setting . 
.. MANA Algorithm . 
.. Experimental Validation . 
.. Results . 
.. MANA Summary . 

. General Decision and Objective Spaces 
.. Problem Setting . 
.. PAN Algorithm . 
.. Selection of Validity Index and Representation 
.. Results . 
.. PAN Summary . 

. Comparison of Approaches . 

 Bounding the Effectiveness of the Hypervolume Indicator 
. Motivation and Background . 
. Preliminaries . 

.. Hypervolume Indicator . 
.. Algorithmic Setting . 
.. Effectiveness and Approximate Effectiveness 
.. Submodular Functions . 

. Upper Bound on the Approximate Effectiveness 
. Lower Bound on the Approximate Effectiveness 
. Summary . 

Contents vii

 Conclusions 
. Key Results . 

.. Finding Structurally Diverse Close-To-Optimal Sets of Solutions 
.. Analyzing Given Sets of Solutions 
.. Bounding the Effectiveness of the Hypervolume Indicator . . . 

. Discussion and Future Work . 

Appendix 
A Reference Algorithm: Greedy Hypervolume Selection 
B Bridge Optimization Problem . 
C Singular Matrix for Solow-Polasky Diversity Measure 

Bibliography 
Curriculum Vitae 

Personal Information . 
Education . 

Abstract

Optimization problems arise in many different contexts and applications.
For each optimization problem, there is a so-called decision space that con-
tains all feasible solutions to the problem. Additionally there are one or
several objective functions that quantify how well each solution satisfies the
given objectives. The goal of optimization algorithms for single-objective
problems is to find the global optimum, i.e. one or several solutions that
have the best objective value. In multi-objective problems, on the other
hand, there is no single best solution, but a set of tradeoff solutions, the
so-called Pareto-front. Multi-objective optimizers therefore aim at finding
that front, or a subset of it.

To find the global optimum or the Pareto-front, either analytical methods or
exhaustive search can be employed. Sometimes though, the decision space
is too large for exhaustive search, and the type of problem is not suitable for
analytical methods. In such cases, Evolutionary Algorithms (EAs) are often
used to approximate the best solutions. EAs mimic natural evolution by
evolving sets of solutions in iterations, where in each iteration, new solutions
are created by combining or modifying the current solutions, and the best
solutions are kept and enter the next iteration.

When optimizing real-world problems, a model is needed that presents the
optimization problem in such a way that an EA can optimize it. Often,
there are simplifications and uncertainties in these models. Therefore, not
only optimal, but also close-to-optimal solutions are of interest. Moreover,
a user may not be satisfied with a single solution, but instead wants to gain
insights into the problem. In this case it is advantageous to present the
user with structurally diverse solutions, i.e. solutions which are diverse in
decision space. Therefore, this thesis tackles the problem of generating a
set of solutions which has a high structural diversity, but whose solutions
at the same time have acceptable objective values.

Also, it is useful to have methods that support analyzing the optimized set,
in order to help the user to identify the characteristics that lead to high

x Abstract

quality solutions, and in the case of multi-objective problems, the charac-
teristics that cause the solutions to lie in a certain region in objective space.
This thesis provides methods to analyze these optimized sets by clustering
the solutions and highlighting the similarities of the solutions of each cluster.

Finally, this thesis investigates the effectiveness of the hypervolume indica-
tor, which in this thesis is the main measure of objective space goodness
in multi-objective problems. The hypervolume indicator basically measures
how well a set of solutions approximates the Pareto-front. An algorithm is
effective if it can reach the set with the optimal hypervolume on any opti-
mization problem. If there are optimization problems where the algorithm
cannot reach the best set, the question arises how far the best achievable
hypervolume is from the theoretically optimal hypervolume.

More precisely, this thesis makes the following main contributions:

• It proposes three diversity-optimizing EAs, one for single-objective prob-
lems and two for multi-objective problems, and compares their perfor-
mance on different problems, including a bridge optimization problem.

• It proposes two methods to analyze optimized sets of solutions, one
specifically designed to tackle binary, biobjective problems, and the other
designed to tackle problems with an arbitrary number of objectives and
general decision spaces.

• It derives upper and lower bounds on how far the best hypervolume
achieved by an EA is from the theoretically optimal hypervolume. These
bounds hold for any optimization problem, and are tighter than the
bounds previously known in the literature.

Zusammenfassung

Optimierungsprobleme treten in verschiedensten Gebieten auf. Zu jedem
Optimierungsproblem gehört ein Entscheidungsraum, welcher die gültigen
Lösungen des Problems enthält. Zusätzlich gibt es eine oder mehrere Ziel-
funktionen, welche ausdrücken wie gut eine einzelne Lösung die gegebenen
Optimierungsziele erfüllt. In Einzielproblemen soll ein Optimierungsalgo-
rithmus das globale Optimum finden, d.h eine oder mehrere Lösungen, wel-
che den besten Zielfunktionswert haben. In Mehrzielproblemen hingegen
gibt es nicht eine beste Lösung, sondern eine Menge von Kompromisslösun-
gen, welche zusammen die so genannte Pareto-Front bilden. Optimierer für
Mehrzielprobleme sollen deshalb diese Front, oder eine Teilmenge davon,
finden.

Um das globale Optimum oder die Pareto-Front zu finden können entweder
analytische Methoden oder eine vollständige Suche verwendet werden, wo-
bei die vollständige Suche alle Lösungen im Entscheidungsraum vergleicht.
Manchmal ist der Entscheidungsraum jedoch zu gross für eine vollständige
Suche, und die Art des Problems lässt keine analytischen Methoden zu. In
solchen Fällen werden oft Evolutionäre Algorithmen (EAs) verwendet, um
die besten Lösungen zu approximieren. EAs imitieren die natürliche Evo-
lution indem sie Mengen von Lösungen in Schritten optimieren, wobei in
jedem Schritt neue Lösungen aus den bisherigen erzeugt werden, indem die
bisherigen Lösungen kombiniert oder leicht verändert werden. Dabei werden
jeweils die besten Lösungen ausgewählt, um die bisherigen zu ersetzen.

Bei der Optimierung von realen Problemen wird meist ein Modell benötigt,
welches das Optimierungsproblem so darstellt, dass es mittels eines EAs
optimiert werden kann. Oft gibt es in einem solchen Modell Vereinfachun-
gen und Unsicherheiten. Deshalb sind nicht nur optimale, sondern auch
leicht suboptimale Lösungen von Interesse. Zusätzlich kann es sein, dass
der Benutzer nicht nur an einer einzelnen Lösung interessiert ist, sondern
dass er durch die Optimierung einen Einblick in das Problem selbst erhalten
möchte. In einem solchen Fall ist es von Vorteil, wenn der Algorithmus dem
Benutzer strukturell unterschiedliche Lösungen präsentieren kann, also Lö-

xii Zusammenfassung

sungen, welche im Entscheidungsraum divers sind. Diese Arbeit untersucht
deshalb das Problem, Lösungen zu finden, welche strukturell divers sind,
aber trotzdem gute Zielfunktionswerte besitzen.

Nützlich sind auch Methoden welche es erlauben, eine optimierte Menge
von Lösungen zu untersuchen. So sollen Charakteristiken gefunden wer-
den, welche zu guten Lösungen führen, oder im Fall von Mehrzielproble-
men Charakteristiken, welche einen Einfluss auf die Position der Lösung im
Zielfunktionsraum haben. Diese Arbeit stellt deshalb Methoden vor, welche
optimierte Lösungsmengen analysieren indem die Lösungen gruppiert und
die Gemeinsamkeiten der Lösungen in einer Gruppe hervorgehoben werden.

Die vorliegende Arbeit untersucht auch die Effektivität des Hypervolumen-
indikators. Der Hypervolumenindikator ist in dieser Arbeit das hauptsäch-
lich verwendete Mass, um die Güte einer Lösungsmenge im Zielfunktions-
raum zu berechnen. Im Wesentlichen misst der Indikator die Grösse des
dominierten Bereiches in Mehrzielproblemen. Ein Algorithmus wird effektiv
genannt, wenn er die Lösungsmenge mit dem besten Hypervolumen in jedem
beliebigen Optimierungsproblem erreichen kann. Falls es Optimierungspro-
bleme gibt, in welchen der Algorithmus die beste Menge nicht erreichen
kann stellt sich die Frage, wie nah das beste erreichbare Hypervolumen
dem theoretisch besten Hypervolumen kommt.

Konkret liefert die vorliegende Arbeit die folgenden Beiträge:

• Sie schlägt drei Diversitäts-optimierende EAs vor, einer für Einzielpro-
bleme und zwei für Mehrzielprobleme, und vergleicht diese auf verschie-
denen Optimierungsproblemen, insbesondere auf einem Brückenproblem.

• Sie schlägt zwei Methoden vor um Lösungsmengen zu analysieren, eine
für binäre Entscheidungsräume und zweidimensionale Zielfunktionsräu-
me, und die andere für beliebige Entscheidungsräume und beliebig viele
Zielfunktionen.

• Sie findet eine Unter- und eine Obergrenze dafür, wie weit das beste
erreichbare Hypervolumen eines EA vom theoretisch bestmöglichen Hy-
pervolumen entfernt ist. Diese Grenzen gelten für alle Optimierungspro-
bleme, und sind enger als die bisher in der Literatur bekannten Grenzen.

Statement of Contributions

Parts of this thesis has been already published in journal articles and con-
ference proceedings. However, some approaches, experiments and results
have not yet been published. Additionally, the whole content of the thesis
has been revised and partly rewritten.

With the exception of the hill climber leading to Figure ., all the experi-
ments and implementation work in the original papers and the thesis were
done by myself. Also, all illustrations in this thesis have been created by
myself (with the exception of Figure .), and have been adapted to fit the
style of this thesis. My contribution to the writing of a each contributing
paper was at least 1/n, n denoting the number of authors.

In detail, the publications behind the individual chapters of this thesis are
as follows:

Chapter  The entire chapter including the illustrations have been created
from scratch for this thesis.

Chapter  This chapter is based on the work published in [, , ]. All
experiments have been redone for this thesis. Also, the thesis contains
more extensive tests than the original papers. Algorithmic changes with
respect to the original papers are as follows: DIOP is used without the
weighted sum as its fitness measure (as indicated in the corresponding
paragraph), and DIVA has been adapted to include the Solow-Polasky
diversity measure.

Chapter  This chapter is based on [] and [].
Chapter  This chapter is based on [].

Tamara Ulrich

Acknowledgments

First of all, I thank my advisors, Lothar Thiele and Eckart Zitzler for the
valuable inputs and ideas, as well as for the honest evaluation of my work. I
also thank my co-examiner, Kalyanmoy Deb, for taking the time to correct
this thesis. Further thanks go to my coauthors Dimo Brockhoff, Johannes
Bader, Eckart Zitzler and Lothar Thiele, for teaching and supporting me in
writing my papers.

Furthermore I thank all my colleagues from TIK, especially the former
SOPsies Dimo Brockhoff, Johannes Bader, and Tim Hohm, for countless
discussions about problems I encountered during my thesis. I especially
thank Dimo Brockhoff and Eckart Zitzler for introducing me to SOP by
supervising my master thesis.

Thanks also go to my colleagues from Bosch, Ralph Moritz, Susanne Bürklen,
Robert Kornhaas and Markus Behle, for giving me the opportunity to work
on a real-world problem. Many of the topics covered in this thesis were
motivated by this optimization problem.

Finally, I thank my own moral support team, my parents, my brother, and
Roman, who encouraged me in challenging times and celebrated with me
the highlights of my time at ETH.

List of Symbols and Abbreviations

The following notation and abbreviations are used in this thesis:
Pareto-Set Analysis

Mn,d({0, 1}) Set of binary matrices with n rows and d columns, as used in MANA,
page 

Υ Module matrix as used in MANA, page 
Ξ Decision matrix as used in MANA, page 
C Partitioning, i.e. a set of clusters, page 
ci Cluster, i.e. a subset of solutions, page 
dD Distance in decision space, page 
dO Distance in objective space, page 
dH Hamming distance, page 
edec, eobj Error functions as used in MANA, page 
G Group, i.e. a subset of solutions as used in MANA, page 
k Number of clusters, page 
m(ci) Medoid of cluster ci, page 
Si Module as used in MANA, page 
TΥ→Ξ Transformation function between module matrix and decision matrix

as used in MANA, page 
TΞ→Υ Transformation function between decision matrix and module matrix

as used in MANA, page 
V Validity index as used in PAN, page 
xi Decision vector as used in MANA, page 
yr Module vector as used in MANA, page 
Diversity

A Archive population used in DIOP, page 
DA(T , ε) Constrained diversity measure used in DIOP, page 
domA(z) Subset ofA dominating the objective vector z, as used in DIVA, page 
4D Diversity preference as used in DIVA, page 
T Target population used in DIOP, page 

xviii List of Symbols and Abbreviations

θ Normalization parameter for Solow-Polasky diversity measure, page 
b Bound used in NOAH, page 
c Termination criterion for diversity optimization in NOAH, page 
D Diversity measure, page 
d Distance measure, page 
eT Transpose of vector e, page 
ID

H Diversity integrating hypervolume, as used in DIVA, page 
M Matrix of normalized pairwise distances, page 
qX ∗ Measure that quantifies distance to Pareto-optimal set, page 
r Number of solutions being kept in the population during C

in NOAH, page 
v Barrier value used in NOAH, page 
General

∅ Empty set, page 
N Set of natural numbers, page 
R Set of real numbers, page 
≤ Comparing scalars, left scalar is smaller or equal to right scalar, page 
6 Comparing vectors, all elements of left vector are smaller or equal to

corresponding element of right vector, page 
P,A,B Sets of solutions, page 
Hypervolume Effectiveness

R Reference set, page 
A(P,O) Archiving algorithm, page 
AP(y) Attainment function of set P, page 
IH Hypervolume indicator, page 
Imax

H Maximum achievable hypervolume, page 
Imax

H,µ Maximum achievable hypervolume for a population of size µ, page 
Multiobjective Optimization

2X Powerset of the decision space, page 
λ Offspring size, page 
µ Population size, page 
≺ Pareto dominance, page 
≼ Weak Pareto dominance, page 

List of Symbols and Abbreviations xix

≼ε Weak ε-Pareto dominance, page 
X Decision space, page 
X ∗ Pareto-optimal set, page 
Y Objective space, page 
d Dimensionality of decision space if decision variables are used, page 
f Vector of m objective functions, page 
fi i-th objective function, page 
g Maximum number of generations, page 
m Number of objective functions, page 
pR Recombination probability, page 

EA Evolutionary Algorithm
NOAH the Diversity-optimizing Single-objective Evolutionary Algorithm
DIVA the Diversity-integrating Multi-objective Evolutionary Algorithm
DIOP the Diversity-optimizing Multi-objective Evolutionary Algorithm
sMOEA the Standard Multi-objective Evolutionary Algorithm
OMNI the Omni-Optimizer
NSGA-II the Nondominated Sorting Genetic Algorithm
WFG Walking Fish Group
ECU electronic control unit
PAN the Pareto-Front Analyzer
MANA the Module-Annotating Hierarchical Clustering Algorithm
SPEA the Modified Strength Pareto Evolutionary Algorithm
IBEA the Indicator-Based Evolutionary Algorithm


Introduction

Many real-world problems aim at optimizing several conflicting objectives.
Consider for example a car manufacturing problem, where the task is to
design the car’s electric and electronic (E/E) architecture. Designing an
E/E-architecture consists of multiple steps, ranging from assigning a given
set of components (sensors, actuators and software) to electronic control
units (ECUs), to placing those ECUs in the car and connecting them via
busses, selecting gateways to connect the busses, selecting microcontrollers
for the ECUs, and realizing the bus structure using physical wires. The goal
is to find an architecture which is as cheap as possible but at the same time
has a complexity which is as low as possible. Complexity here is defined as
the average number of components per ECU, whereas the cost is governed
mainly by the wiring cost. Cost and complexity are also called objectives,
and in this case, they are conflicting, as an architecture containing only a few
ECUs with many components has most communication between components
handled within the ECUs which reduces cost, whereas an architecture with
many ECUs containing only one component has a low complexity.

 Chapter . Introduction

decision space

dominated space

objective space
cost

co
m

p
le

xi
ty

Figure . Biobjective optimization problem where the objectives to be minimized are cost
and complexity. Both the decision and the objective space are shown. Pareto-optimal solu-
tions are indicated with a star, dominated solutions with a circle. Also, the area dominated by
the Pareto-optimal solutions is shown (gray area).

This E/E-architecture design problem is an example of a multi-objective
optimization problem, see Figure . for an illustration. A specific architec-
ture is also called a solution to the car manufacturing problem. The space
of all possible architectures is called the decision space. The image of the
decision space under the given objectives is called the objective space, which
in the car manufacturing problem is a two dimensional real-valued space,
where each architecture is assigned a vector corresponding to its values in
the two objectives. As these objectives are conflicting, there is no single
best architecture minimizing both objectives. Instead, there is a set of
tradeoff architectures, the so-called Pareto-optimal set or Pareto set. The
image of the Pareto set under the objectives is called the Pareto-optimal
front or Pareto front. It is usually not possible to find the exact Pareto
front, mostly because the problems are complex such that analytical solvers
cannot be used, and the size of the decision space does not allow complete
enumeration. Therefore, most approaches aim at approximating the Pareto
front.

One way to approximate the Pareto front is to use an Evolutionary Algo-
rithm (EA). They mimic biological evolution, one part of which is that
they do not evolve single solutions, but sets of solutions. In accordance

.. Multi-objective Optimization 

with biology, these sets are called populations. Because EAs optimize sets
of solutions, they are well suited to solve multi-objective optimization prob-
lems, where an approximation of the Pareto front is sought. Furthermore,
they are very general in nature and can therefore be applied to a variety of
problems.

During this thesis, an application scenario of an E/E-architecture problem
was jointly investigated with BOSCH. A short overview of the problem
including a description of the model we developed for the EA is presented
in []. Several research questions considered in this thesis were inspired by
this project.

This chapter is organized as follows: First, there will be a more detailed
introduction into multi-objective optimization, including the notation used
throughout the thesis. Then, a description of EAs will be given. And finally,
the research questions of this thesis will be posed and the contributions will
be outlined.

. ·Multi-objective Optimization

Consider a two-objective car manufacturing problem, where the first goal is
to minimize the cost, and the second goal is to minimize the complexity, as
illustrated in Figure .. As these objectives are conflicting, there is not one
single car being best in both objectives. Instead, there are three Pareto-
optimal cars. The first one is the cheapest car, the second one is a bit more
expensive, but has a lower complexity than the cheapest car, and the third
one has the lowest complexity. All three cars are non-dominated, meaning
that there is no car which is both cheaper and less complex. The set of all
non-dominated solutions is also called the Pareto-optimal front, or Pareto
front. Multi-objective optimizers aim at finding that Pareto front, or, if
finding it is not possible, approximating it in a suitable manner.

The notation used throughout this thesis is as follows: We are considering
the minimization of m objective functions f : X → Y, f = {f1, ..., fm}.
Here, X denotes the feasible set of solutions in the decision space, i.e. the

 Chapter . Introduction

set of alternatives of the optimization problem. In the car problem, this
would be the set of all possible E/E-architectures. Note that without loss
of generality, every maximization problem can be transformed into a mini-
mization problem. A single alternative x ∈ X , i.e. a single E/E-architecture
will be denoted as a solution x. The image of X under f is denoted as
the feasible set in the objective space Y = f(X) = {y ∈ Rm | ∃x ∈
X : y = f(x)}. Therefore, the objective vector of a single solution x is
f(x) = {f1(x), ..., fm(x)}.

The underlying preference relation is weak Pareto dominance, where a so-
lution a ∈ X weakly dominates another solution b ∈ X , denoted a ≼ b, if
and only if solution a is better or equal than b in all objectives, i.e., a ≼ b

iff f(a) 6 f(b) or equivalently, iff fi(a) ≤ fi(b), ∀ i ∈ {1, ..., m}. A solution
a ∈ X strictly dominates another solution b ∈ X , denoted a ≺ b, if and
only if solution a is better or equal than b in all objectives and strictly
better in at least one objective, i.e., a ≺ b iff f(a) 6 f(b) ∧ ∃i ∈ {1, ..., m}
s.t. fi(a) < fi(b).

Ideally, a multi-objective optimizer finds the whole Pareto-front, i.e. all
solutions which are not dominated by any other solution in X . However,
as the size of the Pareto-front is not bounded in general, a subset of fixed
size of the whole Pareto-front is usually sought. The question therefore
arises which subset of the Pareto-front is the best. One approach to solve
this problem is to use a quality indicator I : 2X → R, which assigns each
subset of the decision space a real number that indicates the quality of
the set. The indicator used in this thesis is the hypervolume indicator,
where the hypervolume indicator of a given set P ⊆ X is the volume of all
points in Rm which are dominated by at least one point in P and which
dominate at least one point of a reference set R ⊂ Rm. Roughly speaking,
the hypervolume measures the size of the dominated space of a given set.
Sets with a larger hypervolume are considered better. More formally, the
hypervolume indicator can be written as IH(A) =

∫
y∈Rm AP(y)dy, where

AP(y) is called the attainment function of set P with respect to a given
reference set R, and it holds that AP(y) = 1 iff ∃p ∈ P, r ∈ R : f(p) 6 y 6
r, else AP(y) = 0.

.. Evolutionary Algorithms 

Chapter  of this thesis proposes methods to optimize sets of solutions
which are both Pareto-optimal and structurally diverse. Structural in this
case means that the diversity is measured in decision space, not in objective
space. We therefore need a measure to quantify diversity in decision space.
Most diversity measures require that some measure of dissimilarity between
two arbitrary solutions is provided. Therefore, we assume that a symmetric
distance measure d : X 2 → R between two solutions is given. Based on the
distance measure we define a diversity measure D : 2X → R, where 2X is the
powerset of the decision space, i.e. all possible subsets of the decision space.
The measure determines for a subset of the decision space its corresponding
diversity, which in turn directly depends on the chosen distance measure.
Unless otherwise stated, we do not make any other assumptions about the
decision space.

. · Evolutionary Algorithms

In this thesis we are dealing with problems which are neither convex nor
linear, and cannot be solved optimally. Instead, we would like to find an
approximation of the unknown Pareto front. One family of algorithms de-
signed to do exactly that are EAs. EAs have been invented in the s
and early s [, , , ], and have since been applied successfully to
a variety of problems, from car manufacturing [] to aircraft layout [],
antenna design [] and space mission design [].

EAs work by mimicking biological evolution, see Figure .. They operate
in cycles called generations, and maintain a set of solutions, called pop-
ulation. At first, the population is initialized with random solutions. In
each generation, new offspring are generated from the current population,
a process called variation, and then, a subset of the current population and
the offspring is selected to survive into the next generation, a process called
environmental selection. During variation, first the solutions which will be
used for reproduction have to be selected, a process called mating selection.
The selected solutions are first recombined using a crossover operator, and
then mutated using a mutation operator. The goal of recombination is to

 Chapter . Introduction

recombination mutation

mating

selection

environmental

selection

variation

initialize

offspring

Figure . General principle of an evolutionary algorithm. They evolve populations (large
white circles) of solutions (small gray circles), and alternate between variation and environ-
mental selection. Both the current population (lestmost population) and the offspring are
considered for environmental selection

find better solutions by mixing traits of good solutions. The goal of muta-
tion is finding better solutions in the vicinity of good solutions. While the
variation phase has to be chosen appropriately for the problem at hand, the
selection process is problem independent.

EAs can be used to solve single- as well as multi-objective problems. In
single-objective problems, each solution is assigned a fitness value, which
corresponds to the objective function value of that solution. Unless two
solutions have the same fitness, it is always clear which one of two solutions
is better. A straight-forward approach therefore would be to always prefer
better solutions to worse ones during selection. However, it has been found
that following this approach leads to a population containing only copies or
slight variations of the best solution, which in turn often leads the algorithm
into a local optimum from which it cannot escape. One of the challenges

.. Research Questions 

in designing an EA for a single-objective problem therefore is to maintain
diversity in the population while still progressing towards better solutions.

In multi-objective problems [], on the other hand, there is not a single
best solution. Instead, there is a whole set of Pareto-optimal solutions. An
algorithm that approximates the Pareto front will therefore inherently be
able to maintain some diversity in its population. However, in contrast to
single-objective problems, the objective values do not yield a total order of
the solutions anymore. The concept of Pareto-dominance implies a partial
order on the solutions, but there can be solutions which are incomparable,
where no solution dominates any other. In this case, it is not quite clear
which solutions should be chosen during the selection process.

. · Research Questions

As stated before, it is usually not possible to find the exact Pareto front,
therefore we are interested in a good approximation of the front. However,
it is not intuitively clear what makes a good approximation. Usually, the
quality of a set is determined in objective space, in which case the goal is
to have solutions which are (a) close to the true Pareto front, and (b) well
distributed in terms of their objective values. One way to measure both
of these goals for a given set in one single goodness value is to use the
hypervolume indicator []. The hypervolume indicator basically measures
the size of the dominated objective space, see Figure .. The higher the
hypervolume, the better the set.

However, if the results are going to be used in a real-world scenario, e.g.
when an engineer is using an EA to determine a good set of E/E-architectures
in an automotive design problem, it is not only useful to have solutions that
cover the front well, but it is also beneficial to have solutions which are
structurally diverse. Sometimes, it would be even more interesting for an
engineer to find an architecture which e.g. is a bit more expensive and has a
slightly higher complexity than another architecture, but at the same time

 Chapter . Introduction

has a completely different bus structure from all the other architectures
which have already been found.

Therefore, the first research question of this thesis focuses on not only ap-
proximating the Pareto front well, but also optimizing the structural diver-
sity of the population. When starting an EA, the randomly chosen initial
population has a high structural diversity. During the run, the population
converges to Pareto-optimal regions of the decision space, and therefore, di-
versity decreases. This leads to a tradeoff between converging to the Pareto-
optimal front, and optimizing structural diversity. The question is how to
find a population with both an acceptable quality in objective space and a
high structural diversity, and how to decide on a tradeoff between these two
conflicting goals. Consider the situation depicted in Figure ., where you
have to decide between two solutions b and c, both being incomparable to the
two already selected solutions a and d. There is a tradeoff, as b dominates
c, but adding c would increase the diversity more. Up to now, the quality
in objective space has been the priority, although some approaches do use
structural diversity as a selection criterion if they have to select between
two solutions that do not dominate each other. If the quality in objective
space is more important than the diversity, b will be chosen, although for
an engineer, knowing about c might be more interesting if b is very similar
to a and d, and c, on the other hand, is very dissimilar. Therefore, if neither
the quality in objective space nor the diversity is given strict priority, it is
not clear how the tradeoff should be set.

The second research question tackles the a posteriori problem of learning,
once an approximation of the Pareto front is found. Interpreting a given set
of solutions can take a lot of time, especially if there are many objectives,
many solutions, and if a single solution is difficult to visualize. For example
in the E/E-architecture problem, it is difficult to visualize a solution, as this
includes plotting between  and  ECUs, showing how they are connected
via busses, how these busses are wired, etc. Still, a decision maker might
want to learn about the problem, such as what type of architectures lead
to Pareto-optimal solutions, and what architectures lead to what region
in objective space. Depending on the problem at hand, it could even be

.. Research Questions 

a

low contribution to diversity

high contribution to diversity

f
1

f
2

b
c

d

Figure . Tradeoff between quality in objective space and diversity. Four solutions a, b, c,
and d are shown, where b dominates c, but c has a higher contribution to diversity.

possible to extract certain characteristics in decision space which influence
in which objective space region a solution lies. For example it might be
possible that architectures which contain Flexray busses are less complex
but more expensive than cars containing only CAN busses. Therefore, we
need ways to represent the final solutions to the engineer such that it is
easier for him to learn from the optimization problem.

All EAs proposed in this thesis use the hypervolume indicator to quantify
the quality of a set of solutions in objective space. By using the hypervol-
ume indicator, the multi-objective problem of selecting a set of solutions
which is close to the Pareto front and well distributed in objective space
transforms to a set problem, where the set of solutions which maximizes the
hypervolume indicator is sought. Ideally, an algorithm will find the set of
a given size n with the maximum hypervolume value. In practice, however,
the best hypervolume which can be achieved by a specific EA might be
lower than the maximal hypervolume over all possible sets of size n. There-
fore, the third research question is about determining the effectiveness of
hypervolume-based algorithms. An algorithm is called effective if it can
be proven that the algorithm can find the set of size n with the maximum
hypervolume. An algorithm is called α-approximate, if it can be proven
that it can find a set of size n with a hypervolume which is at least 1/α

times the maximum hypervolume. If an algorithm is not effective, we would

 Chapter . Introduction

like to find optimization problems where the algorithm cannot reach the set
with maximal hypervolume, and we would like to derive upper and lower
bounds on α, i.e. on how close the hypervolume of the best set of solutions
found by the algorithm will be to the maximum hypervolume.

. · Contributions and Overview

This thesis proposes methods and answers to the above three problems.
First, three approaches are presented that maintain structural diversity
during the search and find a tradeoff between quality in objective space
and structural diversity. The first one tackles single-objective problems. It
only optimizes according to structural diversity, but at the same time has a
constraint on the minimum quality in terms of the objective function. This
constraint is loose at first, and becomes tighter during the search to ensure a
good quality in objective space. The second one follows a similar approach,
but for multi-objective problems. To do so, two populations are evolved
simultaneously, one which is optimized according to the hypervolume indi-
cator, and the other which is optimized according to structural diversity,
but with the constraint of staying within a certain distance in objective
space to the solutions in the first population. This constraint also becomes
tighter during the run, as the first population progresses towards the Pareto
front. The third approach is also aimed at multi-objective optimization, but
instead of simply having a constraint on the quality in objective space, and
optimizing for structural diversity of feasible solutions, this approach aims
at having solutions well distributed in both decision and objective space, as
well as being close to the front. It does so by integrating the diversity of
the solutions into the hypervolume indicator.

To answer the second research question of how to present the solutions to the
decision maker, we propose two approaches, one aimed at binary biobjective
problems, and the other aimed at general multi-objective problems. The
first method uses biclustering to find so-called modules of similar settings of
the binary decision variables. Those modules are then used to cluster the
solutions in objective space. As a result, the decision maker can learn about

.. Contributions and Overview 

what decision variable setting leads to what region in objective space. This
approach tackles the two problems of interpreting large sets of solutions,
and of interpreting solutions which are difficult to visualize because there
are many decision variables, as each solution can be expressed in terms of
the chosen modules. The second approach does not make any assumptions
about the decision space, only that a distance measure between solutions is
given. It then simultaneously clusters the solutions in decision and objective
space, such that the resulting clusters contain similar solutions (according
to the chosen distance measure in decision space) which lie close in objective
space. For each cluster, a representative solution is selected. In order to
learn about what types of solutions lead to what regions in objective space,
the decision maker only has to look at one solution per cluster, knowing that
the other solutions in the cluster are similar to the representative solution.
It therefore helps solving the problem of interpreting a large population in
a general setting.

For the third research question, we consider general (µ + λ)-evolutionary
algorithms, where µ is the population size and λ is the number of offspring.
The + here means that both the current population and the offspring gen-
erated from it are considered during selection. We investigate how far the
achievable hypervolume is from the theoretically optimal hypervolume, and
derive upper and lower bounds for the achievable hypervolume. The bounds
presented in this thesis are tighter than the bounds previously known in the
literature.


Maintaining Structural Diversity
During Optimization

Typically, optimization attempts to find a solution that minimizes one or
possibly several given objective functions. But often, it might also be useful
to obtain a set of structurally diverse solutions which all have acceptable
objective values. With such a set, a decision maker would be given a choice
of diverse solutions to select from. In addition, the decision maker can learn
about the optimization problem at hand by inspecting the diverse close-to-
optimal solutions.

This chapter addresses the problem of simultaneously optimizing the struc-
tural diversity and the objective values of a set of solutions. Section .
gives some motivation of why structural diversity optimization can be use-
ful. Section . formally states the requirements a diversity measure should
fulfill, and it reviews some of the more commonly used diversity measures.
Finally, Sections ., ., and . discuss three approaches, one aimed at
single-objective optimization and two aimed at multi-objective optimization.

 Chapter . Maintaining Structural Diversity During Optimization

. ·Motivation and Background

Consider the case that an engineer wants to design the electronic system
in a car. The engineer is given a fixed cap on the cost that must be sat-
isfied. There are a few standard designs which the engineer could use,
e.g. a centralized system where each subsystem is controlled by a central
processor, or a distributed design where each subsystem has its own proces-
sor. Nevertheless, the engineer would like to know whether there are any
other, possibly non-standard designs that satisfy the cost cap, such that the
engineer can then select the design which can best be integrated into the
given car family. To this end, an algorithm is required that returns a set of
designs (i.e. solutions) that are structurally as diverse as possible, but still
satisfy the cost cap.

Another engineer might want to create a truss bridge that is as cheap as
possible but at the same time can carry as much load as possible. The engi-
neer used a multi-objective optimizer to approximate the Pareto-front, and
found that the optimized set consists of bridges with similar truss structures,
but different truss thicknesses. The whole Pareto-front can be covered by
such designs, as thickening the trusses increases both the load the bridge
can carry as well as its cost. Nevertheless, the engineer might want to know
whether there are some other, dissimilar truss structures with acceptable
objective values.

In single-objective evolutionary optimization, the maintenance of structural
diversity has played an important role since the beginning. Without any di-
versity maintenance, the population will quickly converge to a set containing
only copies of a single solution, an effect called premature convergence [].
In multi-objective optimization, the problem is less obvious, as the existence
of conflicting objectives ensures that there is a set of Pareto-optimal solu-
tions instead of a single optimal solution. Algorithms that aim at achieving
a good distribution of the solutions across the Pareto-front usually also
achieve a certain degree of structural diversity at the same time. Note that
in multi-objective optimization, the term diversity is usually used in the
context of objective space diversity, where solutions should (a) be as close

.. Motivation and Background 

to the front as possible, and (b) well distributed (i.e. diverse) in objective
space. In this thesis, however, the term diversity refers to the structural
diversity, i.e. the diversity of solutions in decision space. Many notions of
diversity exist, and it is important to formally define what is meant by the
term diversity, as it is done in Section ..

Maintaining multiple solutions that cover different parts of the decision
space, e.g. different designs, offers many advantages: First, it enables the
decision maker to choose among different designs with the same or at least
equally preferable objective values. In certain applications, it may even be
more important to find a diverse set of close-to-optimal solutions than to
identify a set of optimal but structurally similar solutions. Second, it helps
the decision maker to gather information about the problem structure; and
third, it can speed up search—for instance by improving exploration and
preventing premature convergence. Finally, when simultaneously optimiz-
ing diversity and objective function values, large gains in diversity can be
achieved with little to no loss in objective space values. The next two sec-
tions elaborate on when and why diversity optimization might be helpful,
and they give an overview over related work.

.. ·Single-objective Problems

In a standard single-objective problem, the optimization goal is to find the
one solution with the best objective function value. Nevertheless, there
may be several reasons for an optimization scenario where not a single best
solution is of interest but a set of diverse high-quality solutions. At first,
the result of the optimization may be only a single step in a complex design
process, as in the engineering examples above. Due to unknowns in the
whole decision process, one would rather be interested in various possible
options that explore the solution space and can be evaluated further (maybe
based on additional criteria). Secondly, a set of diverse (almost) optimal
solutions as the result of an optimization may be used to learn more about
the system to be optimized. Finally, optimizations are usually based on
a suitable abstraction of the problem, for example in form of an analytic
model or a simulation. These models typically contain simplifications and

 Chapter . Maintaining Structural Diversity During Optimization

need appropriate parameterizations. This modeling process introduces un-
certainties in the objective function. Other reasons for such uncertainties
are unknown or time-varying system parameters. An optimization process
which yields a single solution may not be sufficient in this case as it reflects
only a single possible problem instance. Rather, one would be interested in
a diverse set of solutions that provide appropriate decision support.

There exists a large body of methods that integrate diversity preservation
into evolutionary search methods, see for example [, ] for an overview.
Most of these methods try to maintain diverse solutions in order to fight
the problem of premature convergence during the optimization. However,
known approaches do not directly optimize diversity as a set measure, but
rather have some implicit diversity preservation, e.g. through the mainte-
nance of different niches, see also []. In the following, a more detailed
overview about comparable approaches is given, including methods that
determine solutions that are robust towards uncertainties in the objective
function or solutions that reflect sets of local minima.

As stated before, one of the main reasons why a diverse, close-to-optimal set
of solutions is beneficial is that there are uncertainties in the design process
and in the modeling of a system. The handling of uncertainties during
optimization has been treated before, for an overview see e.g. []. Four
different categories of uncertainties are distinguished: () Subsequent eval-
uations of the same individual yield different objective values. () There are
uncertainties in the decision variables. Both categories are usually treated
by repeatedly evaluating a single individual in order to get an estimation of
its fitness. Further categories are: () Uncertainties introduced by the usage
of a simplified model of a real-world problem. () Objective functions that
change over time. Methods dealing with dynamically changing objective
functions usually try to introduce or maintain a certain degree of diversity,
which is discussed next.

There are many algorithms that attempt to preserve diversity during an
optimization run. The motivation for these methods usually comes from
optimizing multi-modal problems, where evolutionary algorithms can get
stuck in local optima due to genetic drift, see e.g. [, ]. One method

.. Motivation and Background 

is to run several populations in parallel with the goal that they explore
different regions in the search space. Island model EAs and parallel EAs
fall into this category as well. Usually, there is some exchange between the
different populations in the runs, and the main difference between existing
algorithms is on how often individuals are exchanged and which individuals
are exchanged []. A similar concept is implemented in the forking GA
[], where subpopulations are created when needed to explore a new part
of the decision space. The sequential niche technique [] runs several EAs
in sequence, and passes information from one run to the next in order to
prevent the following runs to find the same local optimum.

Other approaches are based on speciation, an observation from nature which
states that first, only individuals from the same species can mate to produce
offspring and second, there is a certain amount of geographic separation
between individuals from the same species, and only neighboring individuals
are eligible for mating. Examples for corresponding algorithmic techniques
are assigning individuals to species prior to any selection step and to restrict
competition, see [], or placing mating restrictions on the individuals by
assigning a geographic location of each individual, see e.g. [], or by only
allowing individuals within a certain distance of each other to mate [].
Other methods use fitness sharing, see [], such that individuals that have
a lot of close neighbors have a reduced fitness. Another approach is to use
crowding, see [], where individuals can only be replaced by neighboring
individuals.

Finally, Ursem [] switches between exploration phases and exploitation
phases, depending on the current diversity. Shimodaira [] uses the dis-
tance to the best solution as the primary selection criterion.

Many of these algorithms do not optimize diversity explicitly by means of
a set measure. Maintaining diversity is used to increase the probability to
find the global optimum, or at least different local optima.

 Chapter . Maintaining Structural Diversity During Optimization

.. ·Multi-objective Problems

In multi-objective optimization there is no single best solution, but a set
of tradeoff solutions. An optimized set should both be close to the true
Pareto-front, and well distributed in objective space. In this chapter, we
additionally would like the set to be well distributed, i.e. diverse in decision
space.

Interestingly, the idea to integrate diversity into multi-objective optimiza-
tion has been proposed as early as 1994 in the first NSGA paper [].
NSGA uses fitness sharing on the decision vectors in combination with non-
dominated sorting, i.e. it groups solutions that are mutually nondominat-
ing into dominance classes, and considers diversity only when a selection
between non-dominated solutions has to be made. After that, most algo-
rithms concentrated on properties of the objective space only, such as the
front shape and the distribution of optimal solutions []. In recent years,
however, a few studies have picked up on this idea and have proposed alter-
native approaches. In 2003, GDEA [] integrated diversity into the search
as an additional objective. In 2008, the Omni-Optimizer [] was developed
which extends the original idea of NSGA, but in contrast to NSGA, its
diversity measure takes both the decision and objective space diversity into
account. It does so by alternating between considering decision space and
objective space diversity, depending on which one is larger at the current
evaluation. In 2009, two further studies were proposed. [] extended a
CMA-ES niching framework to include diversity by using an unweighted
sum of objective space goodness and diversity. The MMEA [] on the
other hand applies clustering in objective space and then builds a statistical
model from the solutions in these clusters. This model is then used during
variation in order to generate new offspring. Finally in , SPAM []
was proposed, which offers the possibility to use a sequence of quality and
diversity indicators. Also, a proof of convergence to the Pareto-front has
been provided.

Most of the time, the exact optimization goal is often far from clear, meaning
that the optimal set of solutions is not well-defined, nor is it easily possible to
specify the desired tradeoff between quality of the solutions in the objective

.. Motivation and Background 

space and their diversity. Diversity is a set measure and should be defined
accordingly. A single solution is never diverse on its own, it is diverse with
respect to other solutions.

As diversity is a set measure, it is a separate goal to the optimization. The
other goal – let’s call it the objective space measure – is also a set mea-
sure that indicates how well the final population approximates the Pareto-
optimal front. With two set measures the question arises how these two
measures can be combined. NSGA [], the Omni-Optimizer [] and
SPAM [] use a ranking of the two, where the objective space measure
is always considered first, and only if there are ties using this measure,
diversity is taken into consideration. The drawback of this approach is that
the diversity plays an inferior role and there is no possibility to change
the tradeoff between the two measures. A second approach is considering
the diversity as an additional objective, as for example in GDEA [].
The problem is that the diversity, which is defined on sets, is treated the
same way as the original solution-oriented objectives. A second problem
is that all tradeoffs between diversity and original objectives are explored
concurrently, without any means to adjust the tradeoff. As the number
of incomparable solutions increases, this may lead to an ineffective search.
Also, a solution might be accepted into the optimized set which has poor
objective values, as long as it adds considerably to the diversity. In this
chapter, on the other hand, we are assuming that a decision maker is only
interested in high quality solutions. Finally, MMEA [] and the approach
of Shir et al. [] both assume that the decision space is Euclidean, whereas
in this chapter, we do not make any assumptions about the decision space.

.. ·Overview of Proposed Methods

This chapter proposes three methods that tackle the disadvantages of pre-
vious approaches, as discussed in the last two sections. All three meth-
ods share the notion of a tradeoff between diversity and objective values.
Usually, a random population is very diverse, and the diversity decreases
when the population evolves towards the Pareto-front. In most state-of-
the-art approaches, the quality of a solution in terms of its objective values

 Chapter . Maintaining Structural Diversity During Optimization

is more important than its contribution to population diversity, whereas in
the methods proposed in this chapter, the tradeoff can be set by the user.

In the single-objective case presented in Section ., the optimization goal
is to determine a set of maximally diverse solutions, with the constraint that
the solutions must have a certain quality with respect to the given objective
function, i.e. the user can specify a certain barrier value, which determines
whether a solution is acceptable in terms of its objective value or not. The
algorithm iteratively switches between objective value and diversity opti-
mization while automatically adapting a constraint on the objective value
until it reaches the barrier. To be able to appropriately set that quality
constraint, any standard single-objective optimizer can be used prior to the
diversity optimization to calculate the best achievable objective value.

In the multi-objective case, we first present a method that resembles the
single-objective approach, where the tradeoff between diversity and good-
ness in objective space can be explicitly set by the user by specifying the
minimal proximity of an acceptable solution to the Pareto-front. As the true
Pareto-optimal front is unknown for most problems, an approximation of the
Pareto-front is evolved together with the diversity-optimized population. In
the second method, the diversity measure is integrated into the hypervolume
indicator, leading to a new indicator that can be used for selection, with an
adjustable tradeoff between diversity and goodness in objective space.

. ·Measuring Diversity

Up to now, we have assumed that a diversity measure D : 2X → R is given.
This section states the requirements a suitable diversity measure should
fulfill, and gives a review of commonly used measures.

Typically, measures for the diversity of a set are based on the definition
of a pairwise distance between any two elements. As shortly introduced in
Section ., we assume that we are given a distance measure d : X 2 → R≥0 on
the decision space. In contrast to the objective space Y ⊆ Rm, depending on
the optimization problem and the corresponding representation of solutions,

.. Measuring Diversity 

we are confronted with many different classes of decision spaces, such as
vectors, graphs, trees or even programs. In order to be applicable for a large
class of optimization domains, we would like to place as few restrictions on
the structure of the decision space as possible, i.e. we do not require that
X is a Euclidean space or that the triangle inequality is satisfied. Instead,
we just assume X to be a semimetric space, i.e., ∀a, b ∈ X : d(a, b) ≥
0 (non-negativity), d(a, b) = d(b, a) (symmetry), d(a, a) = 0 (identity of
indiscernibles). Given such a distance measure, we now would like to define
a set diversity measure D : 2X → R≥0 which assigns to each subset of the
decision space a real value, i.e. its diversity. Note that while we are looking
mainly for diversity in decision space, a diversity measure as defined above
could also be used to measure diversity in objective space, e.g. by setting the
distance between two solutions a, b ∈ X to the Euclidean distance between
the solutions in objective space, i.e. d(a, b) = ||f(a)− f(b)||2.

There are many possible interpretations and concepts of set diversity, i.e.
how a given number of solutions should be distributed in decision space
such that they achieve an optimal set diversity. In order to get a first
insight, let us consider a simple example. Figure . shows the optimized

distribution of 100 points in a two dimensional Euclidean space X = [0, 1]2

for two diversity measures, namely the commonly used measure of summing
up all pairwise distances, as well as the Solow-Polasky [] measure which
is described in Section ... While the Solow-Polasky measure gives a
grid-like structure, the sum of pairwise distance measure distributes all 100
solutions into the four corners. As a result, it appears that we need to define
a set of formal requirements for a useful diversity measure.

.. ·Requirements

Measuring diversity of sets is much-discussed in biology, more specifically
in the field of biodiversity. The vast amount of studies on this subject
offers also potential for the application in evolutionary algorithms. Not
A randomized hill climber that tries to optimize the measure by moving the solutions slightly in a random direction
was used. The used distance measure was Euclidean distance. The optimizer was run for 1000 seconds for each
measure.

 Chapter . Maintaining Structural Diversity During Optimization

Figure . Best distributions of 100 points found by the hill-climber, for the sum of pairwise
distances diversity measure (lest) and the Solow-Polasky measure (right).

only because these algorithms are inspired by biology, but also because the
idea of diversity in evolutionary algorithms is similar to the one in biology.
However, there are also some substantial differences worth pointing out, in
particular the solutions of an EA are arbitrarily duplicable in contrast to
individuals in nature.

So what constitutes a diverse set? Just as for the decision maker’s pref-
erence, no generally agreed-on definition exists neither in biology nor in
the field of evolutionary algorithms. In the following, we discuss the most
prominent classes of existing biodiversity measures with respect to their
applicability to EAs. We thereby in particular consider the following three
requirements to a diversity measure D, first proposed by Solow and Polasky
[]:

P1: Monotonicity in Varieties The diversity of a set of solutions A should
increase when adding an individual b not yet in A, i.e., if A ⊂ B, then
D(A) < D(B)). This fundamental property assures that increased species
richness is reflected by the diversity measure [].

P2: Twinning Diversity should stay constant when adding an individual c

already in A, i.e., D(A ∪ c) = D(A) iff c ∈ A. This property is subject
to debate in biology, where having more of a rare species mostly is a

.. Measuring Diversity 

desirable thing. In evolutionary algorithms—were solutions are digital
blueprints—having the same solution more than once is without benefits
and should not increase D.

P3: Monotonicity in Distance The diversity of set A should not decrease if
all pairs of solutions are at least as dissimilar (measured by d) as before.
I.e. for a one-to-one mapping of A onto B such that d(ai, aj) ≤ d(bi, bj)

with at least one strict inequality and ai, aj ∈ A and bi, bj ∈ B, D(A) ≤
D(B) holds. The more dissimilar solutions are, the better. Note that in
finite decision spaces, optimally diverse sets of a measure fulfilling this
requirement contain solutions on the border of the decision space. This
might not be desired in certain situations, for example in a Euclidean
space, a diversity measure whose optimal set corresponds to a centroidal
Voronoi tessellation might be more desirable.

.. ·Overview of Existing Measures

Based on Relative Abundances One straightforward way of measuring
diversity is based on the relative abundance of each solution present in set
A. Methods include the indices of Simpson, Shannon, and Berger-Parker
[]. Those measures are easy to calculate, however, they have two major
drawbacks: First, the degree of dissimilarity d between individuals has no
influence, although it is important for example in real valued problems.
Second, the twinning property is not fulfilled.

Based on Taxonomy The second group of diversity measures is based
on taxonomy, where the individuals are first arranged in a dendrogram re-
flecting the taxonomic distinctiveness of solutions. Diversity of the set then
corresponds to the overall path length in the taxonomic tree, see e.g. [].
Most methods that build such trees are based on heuristics which meet nei-
ther monotonicity in distance nor monotonicity in varieties. One approach
that at least fulfills monotonicity in variety has been proposed by Weitzman
[], but unfortunately building the taxonomic tree has a runtime which is
exponential in the number of individuals, and is therefore only feasible for
small sets of solutions (containing at most 20 individuals).

 Chapter . Maintaining Structural Diversity During Optimization

Based on Aggregating the Dissimilarities A simple way of aggregating
the dissimilarity information give by d into a diversity measure is to sum
up the values, D(A) =

∑
a,b∈A d(a, b) [], or similarly, using the average

distance, D(A) = 1
|A|2

∑
a,b∈A d(a, b). Shir et al. for instance used this

measure in their EA []. Other algorithms, such as the Omni-Optimizer,
only consider the distance d to the closest neighbors of a solution. However,
all these measures do not meet the twinning requirement. Even worse, these
measures promote having only two solutions with large distance duplicated
multiple times.

Based on Utility of Solutions A completely new approach has been pre-
sented by Solow and Polasky []. Their measure is based on an utilitarian
view on individuals, where the function u : X → R≥0 defines the utility of
any subset of solutions. Every single individual has a predefined utility of
1. Having this individual duplicated does not increase the overall utility.
On the other hand, having two completely distinct individuals results in a
utility of 2. In between these two extreme cases, the utility needs to increase
monotonically. Solow and Polasky suggested to use an exponential increase
u = 2 − e(−d(a,b)). The major difficulty is to calculate the utility of three
or more individuals (similar to the problem of calculating the overlap of
more than two solutions provided only the distance (hence overlap) of pairs
of solutions). Solow and Polasky have proven that an approximation can
be used to get a lower bound on the utility of arbitrary sets. Fortunately,
despite using this approximation the three above requirements are fulfilled
in most cases.

Coverage Measures Diversity can be intuitively understood as measuring
the coverage of a set of points in Euclidean space. The more regularly the
points are distributed, the better the space is covered. Each chosen point
covers a certain area around it, and the size of the union of the covered space
is the diversity measure, see e.g. []. The notion of coverage is a special
case of the notion of utility as explained above. While this measure satisfies
the three requirements, it also assumes that the points can be embedded
in Euclidean space, which is generally not possible for a set of points with
arbitrary pairwise distances [].

.. Measuring Diversity 

Diversity in Evolutionary Algorithms In the evolutionary algorithm
literature, a lot of thought has been given to decision space diversity. Most
of it is in the context of diversity preservation, especially in single-objective
optimization, in order to prevent premature convergence. The approaches
use different notions of diversity. Some make use of nominal spaces, i.e.
discrete spaces where the different values are either equal or different, but
no measure for telling how different exists. These approaches then use the
Hamming distance to their crossover mate [] or to the best solution found
so far [] to assess the diversity contribution to the population. Squillero
and Tonda [] use an entropy measure to assess the diversity of the whole
set. Others assume an Euclidean space and use the average distance to the
centroid of the population as a diversity measure [, ]. Others again
use the distance to the nearest neighbors [] or the number of neighbors
within a certain distance [] to measure the diversity of a point. Zhou et
al. [] assume that the Pareto-optimal solutions are known and compute
the coverage of these solutions. Li et al [] do a hierarchical clustering
of the solutions until the cluster centroids are sufficiently far apart. The
number of clusters then is the diversity of the set. The Omni-Optimizer
[] assumes real-valued decision variables and uses the crowding distance,
i.e. the distance to the two nearest neighbors in each dimension. Finally,
there are some problem-specific diversity measures [, ], when for exam-
ple it is known that the Pareto-optimal solutions are divided into clusters,
the number of found clusters can be used as a diversity measure.

Most of these measures either require a specific decision space, like a nom-
inally scaled or an Euclidean one, or they do not define a measure on sets,
but only calculate the relative diversity of each solution with respect to the
remaining solutions, or they make assumptions on the Pareto-front or the
problem landscape.

Comparison of Measures Table . summarizes the different diversity
measures in context of the three requirements P1, P2 and P3. As can be
seen, only the coverage measure and the measure by Solow-Polasky satisfy
all three requirements, but not for sets with arbitrary pairwise distances.
The coverage measure assumes that the points are given in Euclidean space.

 Chapter . Maintaining Structural Diversity During Optimization

class method P1 P2 P3
(Varieties) (Twinning) (Distance)

relative abundance
Simpson [] no no yes
Shannon [] no no yes
Berger-Parker [] no no yes

taxonomy
clustering [] no yes no
Weitzman [] yes yes no

functions of sum [] yes no yes
distance crowding distance [] no no yes

coverage
union of point

yes yes yes
coverages∗ []

utilitarian Solow-Polasky [] yes∗ yes∗ yes∗

∗ Making assumptions about the decision space that exceed those presented in Section ..

Table . Comparison of different diversity metrics with respect to the three properties
stated in Sec. .., monotonicity in varieties (P1), twinning (P2), and monotonicity in distance
(P3).

Moreover, calculating it is #P-hard [], which makes it unusable for larger
decision spaces. The measure of Solow and Polasky is the main measure of
diversity used throughout this thesis. It works in most cases, but not in all,
a fact which is investigated in the next section.

.. ·The Measure of Solow and Polasky

The Solow-Polasky measure D(P) of a population P ⊆ X is determined
as follows: Suppose P contains the n solutions p1, ..., pn where |P| = n.
Furthermore, d(pi, pj) denotes the distance between solutions pi and pj .
Then we can define the (n, n)-matrix M = (mij) with elements

mij = exp(−θ · d(pi, pj)) for all 1 ≤ i, j ≤ n

Then, the Solow-Polasky measure can be given as

D(P) = eM−1eT

where e = (1, 1, . . . , 1) and eT denotes its transpose. In other words, D(P)
is the sum of all matrix elements of M−1.

.. Measuring Diversity 

The Solow-Polasky measure yields real values in the interval [1, |P|], which
can be interpreted as the number of different species found in the population,
where individuals that lie close to each other belong to the same species. The
parameter θ normalizes the relationship between distance d and the number
of species. As the selection of a distance d is problem domain specific,
the value of θ has to be appropriately set. Following our experimental
evaluations, the choice of θ is not critical as long as the matrix elements of
M are in a reasonable interval, i.e. 10−5 ≤ mij ≪ 1, ∀i, j, i ̸= j.

Fulfilling the Requirements
In the paper where the Solow-Polasky measure is proposed, the authors
give basic proofs that their measure fulfills the three requirements twin-
ning, monotonicity in varieties and monotonicity in distance. However,
these proofs make certain assumptions, therefore the Solow-Polasky measure
does not satisfy the requirements for solution sets with arbitrary pairwise
distances.

In the proofs for both twinning and monotonicity in varieties, they use
following formula, taken from []:

sup
c

(cT
1

nc)

cT Mc
= eM−1eT

where c is any vector of length n and 1
n is a matrix of size n × n only

containing ones. However, according to [], this formula can only be used
if M is positive definite. In the case of the Solow-Polasky measure, the
transformation exp(−θ · d(a, b)) is positive definite, assuring that M is pos-
itive semidefinite, but not necessarily positive definite.

Also, Solow and Polasky state that ”[the Solow-Polasky measure] is not
monotone in distance. [...] This seemingly paradoxical result arises [...] if
M becomes singular in a certain way”. They also state that in the case of 3
solutions, the fulfillment of the triangle inequality ensures that the measure
is monotone in distance. To the best of our knowledge, this result has
not been extended to more than 3 points, so in general, the Solow-Polasky

 Chapter . Maintaining Structural Diversity During Optimization

measure is not known to be monotone in distance for an arbitrary number
of points.

Despite the fact that the Solow-Polasky measure does not fulfill the require-
ments in all the cases, it works remarkably well in most cases, especially
if the points are given in Euclidean space. It also leads to the nicest set
distributions when compared to the other approaches mentioned above.
Therefore, this measure will be used throughout the thesis. Nevertheless,
care has to be taken when running algorithms using this measure, because if
the pairwise distance matrix M becomes singular, the global optimum will
(falsely) be located at this point, which leads to non-diverse sets that have
a high diversity value. One example of such a singular matrix is shown in
Appendix C.

Proposed Diversity-based Selection
During environmental selection, we would like to select a subset of size µ

from the given µ + λ parents and offspring. Because the diversity is used
as a selection criterion, a way to find the best subset of a population has to
be found. The problem of selecting the best subset P ′ of size n from P can
be formulated as follows:

argmax
P ′∈P,|P ′|=n

D(P ′)

As testing all possible subsets is infeasible due to combinatorial explosion,
we suggest to use the usual greedy strategy which removes one solution after
another from the population P until only n solutions remain. In each step,
the solution that contributes least to the diversity is discarded. Here, the
contribution of a solution p ∈ P to the diversity of the set P is defined as
D(P)−D(P\{p}), i.e. the difference between the diversity of the whole set
and the diversity of the set without the solution p.

The computational complexity of the calculation of a subset optimized for
the Solow-Polasky measure is now determined by the fact that we have to
remove n solutions and for each of them, we have to test between n+1 and 2n

.. Measuring Diversity 

candidates. Each candidate evaluation for p necessitates the computation of
D(P\{p}) whose complexity is dominated by the matrix inverse calculation
of the Solow-Polasky measure, which is O(n3).

As a result, the computational complexity of the selection problem is re-
duced to O(n5) in comparison to an exponential complexity, while giving up
on the optimality of the obtained subset. Unfortunately, the computational
complexity still is unacceptable for practical purposes, i.e. large population
sizes. The next subsection describes an improved algorithm that reduces
the complexity to O(n3).

Fast Diversity-based Selection Algorithm
As described above, the complexity of O(n5) to determine an optimized
subset with maximal diversity is still a serious performance bottleneck. In
the following we therefore suggest a novel way to (a) calculate the contri-
butions of solutions to the Solow-Polasky measure and (b) to update the
measure after removing a solution that only requires one matrix inversion
in the whole selection process, therefore reducing its complexity to O(n3).

First, we provide some definitions and known relations from linear algebra
that will be used. Assume that we have a symmetric matrix M and its
inverse M−1 which are partitioned in the following form:

M =

(
A b

bT c

)
, M−1 =

(
Ā b̄

b̄T c̄

)

where c and c̄ are single elements, b and b̄ are column vectors and bT and b̄T

denote their transpose. We also make use of the notion Σ(M) =
∑

i,j mi,j

which is the sum of all elements of the matrix M . Finally, we use the well
known result for the block matrix inverse of M :

A−1 = Ā− 1

c̄
· b̄ · b̄T

We now want to calculate the contribution of a single solution to the
Solow-Polasky measure. Remember that the Solow-Polasky measure is the
element-wise sum of the inverse M−1 of the transformed pairwise distance

 Chapter . Maintaining Structural Diversity During Optimization

matrix M of all solutions, i.e. D(P) = Σ(M−1). Note that M can be
described in the partitioned form as M is symmetric due to the symmetry
of the distance measure, i.e. d(pi, pj) = d(pj , pi) for all pi, pj ∈ X .

If a solution is discarded from P, its corresponding row and column are
deleted from the distance matrix M . Assume without loss of generality that
the solution we want to discard corresponds to the last row and column of
M , i.e. we want to delete the last row and the last column from M and
determine the impact on the Solow-Polasky measure. This difference in the
measure can now be calculated as follows:

Σ(M−1)− Σ(A−1) = [Σ(Ā) + 2Σ(b̄) + c̄]

− [Σ(Ā)− 1

c̄
(Σ(b̄))2]

=
1

c̄
[2c̄Σ(b̄) + (c̄)2 + (Σ(b̄))2]

=
1

c̄
(Σ(b̄) + c̄)2

The term 1
c̄ (Σ(b̄)+ c̄)2 can be interpreted as the normalized squared sum of

the last column’s elements of M−1. By comparing all of these terms we can
determine the solution which leads to the least difference in the diversity
measure by O(n2) operations.

Afterwards, we have to delete from M the solution with the smallest contri-
bution and set the new distance matrix M ′ to the corresponding submatrix.
If we again suppose without loss of generality that the solution with the
smallest loss in diversity was associated to the last column, we have M ′ = A.
In order to repeat this process for further solutions we would have to deter-
mine the inverse M ′−1 = A−1 which would need O(n3) computations in a
naive implementation. But using the above results on block matrix inverses,
we can reduce this computation to O(n2) computations. As a result, the
removal of one element needs O(n2) computations which leads to the desired
O(n3) complexity for the whole subset computation the selection problem.

.. Maximizing Population Diversity in Single-objective Optimization 

. ·Maximizing Population Diversity in Single-objective Optimization

This section presents the Diversity-optimizing Single-objective Evolution-
ary Algorithm (NOAH). NOAH switches between optimizing for fitness, and
optimizing for diversity. Quality of fitness is ensured by a constraint on the
fitness value, which is tightened during the run. Finally, NOAH returns a
population which is diversity optimized, but contains only solutions whose
fitness is better than a predefined barrier value.

.. ·Problem Setting

The problem definition tackled in this section can be interpreted as a special
kind of multi-objective optimization, denoted as mixed multi-objective prob-
lem, where the first goal is to generate solutions that optimize some objective
function, and the second goal is to have a final set of solutions which is as
diverse as possible with respect to some diversity measure. In contrast to
typical multi-objective problems, where a vector of objective functions is
associated to each individual solution, mixed multi-objective problems have
a different structure: One objective can be described by a function that
maps individual solutions to objective values whereas the other objective is
defined by a set indicator that maps sets of solutions to objective values.

We use the general setup presented in Section .. More precisely, we are
considering the minimization of a single objective function f : X → R. Here,
X denotes the feasible set of solutions in the decision space, i.e. the set of
alternatives of the decision problem. A single alternative x ∈ X is denoted
as a solution x. The image of X under f is denoted as the feasible set in
the objective space Y = f(X) = {y ∈ R | ∃x ∈ X : y = f(x)}. Therefore,
the objective value of a single solution x is f(x).

There are no assumptions about the structure of the decision space, except
that a symmetric distance measure d : X 2 → R between two solutions is
required. Based on the distance measure we define a diversity measure
D : 2X → R. It is defined on the powerset of the decision space, i.e. all
possible subsets of the decision space, and determines for a subset of the

 Chapter . Maintaining Structural Diversity During Optimization

decision space its corresponding diversity. Finally, a provided barrier value
v is used to determine a constraint on the objective values.

The mixed multi-objective optimization problem we are trying to solve can
therefore be stated as follows:

Problem . (mixed multi-objective problem): Determine a population
P ⊆ X with a given size |P| = n which maximizes the diversity measure
D while satisfying the provided barrier v on the objective values:

max
P⊆Xv ,|P|=n

D(P) where Xv = {x ∈ X | f(x) ≤ v}

In other words, we are trying to find a population P that only contains
solutions which are better or equal than the barrier v and which maximizes
the diversity measure D. Note that this is not the same as multi-modal
optimization, where multiple local optima are sought without considering
their quality, see e.g []. Neither are we looking for robust solutions or
solutions insensitive to change as for example in dynamic environments [].
Also, we do not consider diversity as an additional independent objective,
as we are not interested in diverse but low-quality solutions. Instead, we
want diverse solutions that satisfy a certain quality bound.

Let us now present a simple example. Consider a minimization problem
with a one-dimensional real-valued decision space. The objective function
is depicted in Figure .. We would like to find a maximally distributed set
of solutions below a given barrier value (horizontal line). Figure . shows
the case that the decision maker finds all solutions that have an objective
value of 0.45 or lower to be acceptable. One possible set of solutions that
satisfy the quality constraint and that are well distributed in decision space
is shown as circles in the Figure.

These solutions have been generated using NOAH as defined in Algorithm  for 450 function evaluations, with the
following parameters: n = 10, v = 0.45, g = 10, r = 5, c = 20 (see Section .. for more details), using
Euclidean distance as a distance measure and using the Solow-Polasky measure as defined in Section .. for
calculating the diversity D.

.. Maximizing Population Diversity in Single-objective Optimization 

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

decision variable

o
b
je

ct
iv

e
 f

u
n
ct

io
n

(m
in

im
iz

e
)

Figure . Simple objective function with decision space on x-axis and objective space on
y-axis. Circles show solutions found by NOAH with barrier v = 0.45 (dashed horizontal line).

Note that a similar problem setting has been considered before by Schütze et
al. []. They developed an algorithm to solve a space mission design, where
the trajectory of a satellite going from earth to a comet has to be optimized,
see []. The objective function in this case is the total variation in velocity
throughout the whole trajectory. One crucial design parameter is the date of
the satellite launch. Here, it is important to have decision space diversity, in
order to present the engineer near-optimal trajectories with different launch
dates. Their approach presents a new archiving strategy that has been
integrated into a differential evolution algorithm. The algorithm takes two
parameters ∆ and ε and returns a set P∗, where no point p ∈ P∗ is more
than ε away from the value of the global optimum, and no p ∈ P∗ has any
other solution s ∈ P∗ in its neighborhood of size ∆. This algorithm has been
tailored for problems with real-valued decision spaces, i.e. X ⊆ Rd, where
d is the size of the decision space, although it would probably be possible
to extend it to general decision spaces and general distance measures. Also,
the size of the final set P∗ strongly depends on the choice of ∆, which is
problem-dependent and has to be chosen carefully.

.. ·NOAH Algorithm

In this section, we propose a new algorithm called NOAH to solve the mixed
multi-objective problem. Remember from Section .. that we assume
that there is a certain objective value v, called the barrier, below which
all solutions are acceptable. This barrier value can be flexibly chosen. The
algorithm we propose in this section then generates a population which only

 Chapter . Maintaining Structural Diversity During Optimization

: function NOAH(n, v, g, r, c)
: Initialize population P randomly with n solutions
: b =∞
: while (b > v)∧(termination criterion not reached) do
: P : = O(P, g, b)
: (P, b) := C(P, r)
: P : = O(P, n, b, c)
: return P

Algorithm  Mixed multi-objective optimization algorithm NOAH. Input parameters: popu-
lation size n; barrier value v; minimization of objective function is done for g generations; r
solutions remain in the population aster bound adaptation; the population diversity converged
if it did not improve for a total of c generations.

contains solutions that are better or equal than this barrier and that are as
diverse as possible, as stated in Problem .. In case the barrier is set to a
value lower than any value the algorithm is able to achieve, NOAH performs
a conventional single-objective optimization where solutions with a better
objective function value are always more desirable than those with a worse
value.

NOAH uses two key concepts to solve Problem .: bound adaptation and
diversity optimization. Its main structure is shown in Algorithm . Each
iteration consists of three steps, namely the optimization of the objective
function f by means of O, the bound adaptation using C and
the diversity optimization in O. The iteration stops if all solutions p in
the population P have objective value f(p) ≤ v or some other termination
criterion is satisfied.

The rationale behind NOAH will now be described in some more detail. As
mentioned above, in each loop a standard evolutionary algorithm operates
for g generations, then the bound is adapted and finally diversity is opti-
mized until it converges. In other words, objective value and population
diversity are jointly optimized by transforming the mixed multi-objective
problem into a constrained set diversity optimization problem. The con-
straint is the bound b on the objective values which is adaptively reduced
until it reaches the provided barrier value v. The diversity optimization

.. Maximizing Population Diversity in Single-objective Optimization 

O results in a population which is optimized with respect to its diversity
D(P) but respects the constraint imposed by the bound b.

Subalgorithms O and C are responsible for optimizing the
population with respect to the objective function f . O receives a popu-
lation P with n elements and objective values f(p) ≤ b and uses a standard
evolutionary algorithm for g generations to optimize it. Any optimization
algorithm can be used as long as the solutions in the resulting population
also have objective values f(p) ≤ b.

In order to balance diversity optimization and objective value optimization,
a bound value b is monotonically decreased during the run in C.
The new bound value is set in such a way that at least r individuals in the
population are still on or below the new bound. These individuals form the
new population.

Finally, O maximizes the diversity D(P) under the constraint that the
resulting population has again n elements whose objective values are at or
below b, i.e. f(p) ≤ b. The iterative optimization in O terminates if the
diversity did not improve for a total of c generations. As a result we can state
that in each iteration O optimizes the population for g generations with
respect to the objective function f , then C adaptively adjusts the
objective value bound b such that r solutions are on or below the new bound
b, and O maximizes the diversity while maintaining the bound b. Now,
some more details about the different subalgorithms of NOAH are provided.

The objective value optimization O uses a simple (µ + λ) evolutionary
algorithm with µ = λ = n which respects the bound b, see Algorithm .
The variation function P may use any appropriate combination of
mutation and crossover operators in order to generate a resulting population
with n solutions. Its only difference to a standard variation of a given
population is that it returns only solutions that have an objective value not
worse than b. One way to achieve this is to call the operators as many times
as necessary to generate enough feasible individuals. Selection function
O selects a population of n solutions according to some (possibly
standard) selection criterion that ensures selection pressure. Note that any

 Chapter . Maintaining Structural Diversity During Optimization

: function O(P, g, b)
: n : = |P|
: for g iterations do
: P ′ : = P(P, b, n)
: P : = O({P ∪ P ′}, n)
: return P

Algorithm  Objective value optimization O. Input parameters: population P ; number
of generations g; bound b.

: function C(P, r)
: b : = minimal x s.t. |{p|p ∈ P, f(p) ≤ x}| ≥ r
: P ′ : = {p ∈ P|f(p) ≤ b}
: return (P ′, b)

Algorithm  Adaptive change of bound C. Input parameters: populationP ; min-
imal number of solutions in resulting population r.

other refined strategy can be used for O as long as the bound b is
respected in the resulting population.

The strategy to adaptively change the bound value b is described in Algo-
rithm . In C, the new bound is set to the minimal value such
that at least r solutions are still on or below it. The resulting subset of the
population contains all elements with objective values equal or below this
new bound.

The optimization of diversity O is described in Algorithm . At first,
the already described variation operator P is called that generates
a population P ′ by any appropriate combination of mutation and crossover
operators. Again, it returns only solutions that have an objective value not
worse than b. The number of generated solutions is chosen such that {P∪P ′}
has 2n solutions (remember that we have chosen µ = λ = n). In the selection
phase the solutions are selected according to their diversity contribution
using the operator D that we choose to be the fast diversity selection
scheme using the Solow Polasky diversity measure as described in Section
... This is in contrast to the standard evolutionary algorithm shown

.. Maximizing Population Diversity in Single-objective Optimization 

: function O(P, n, b, c)
: i : = 0
: while i < c do
: P ′ : = P(P, b, 2n− |P|)
: P ′′ : = D({P ∪ P ′}, n)
: if D(P ′′) > D(P) then
: P : = P ′′

: else
: i : = i + 1

: return P

Algorithm  Diversity optimization O. Input parameters: population P ; population size
n; bound value b; the total number of generations the diversity did not change for convergence
c.

in Algorithm , where solutions are selected according to their objective
values. Moreover, the diversity optimization is run until there have been c

generations in total without an increase in diversity. Note that as soon as
the adaptive bound b has reached the user-specified barrier value v, diversity
is optimized one more time until it converges and NOAH is stopped.

.. ·Results

In this section we compare NOAH to several other standard evolutionary
algorithms with and without diversity preservation mechanisms. The pur-
pose of this experimental evaluation is to see whether the considered set of
algorithms is able to reach a given barrier, and if so, what conclusion can
be drawn about the diversity of the final populations.

3-Sat and nk-Landscape Problems
For this comparison, we selected two well-known test problems: The nk-
Landscapes problem [] and the 3-Sat problem []. In the nk-Landscapes
problem, there are n decision variables (in our case, n = 100). Each decision
variable is influenced by k (in our case k = 10) randomly chosen other
decision variables. The decision variables are binary, i.e. they can either
take the value 0 or 1. Each decision variable together with the influencing

 Chapter . Maintaining Structural Diversity During Optimization

Name Diversity Mating Selection Environmental Selection
Preserving

NOAH yes Random without replacement see Section ..
DetC yes Random without replacement Deterministic crowding []
ResT yes Random with replacement Restricted tournament []
Diff yes Random without replacement Diffusion model []
Clear yes Random without replacement Clearing procedure []
Share yes Fitness sharing [, ] Pairwise tournament
Tour no Random without replacement Pairwise tournament
Random no n/a n/a

Table . Compared algorithms.

decision variables codes an index in a randomly generated fitness matrix.
The overall fitness then is the sum of the fitness values coded by each decision
variable.

The 3-Sat problem is a specific Boolean satisfiability problem. In our case,
the Boolean expression that has to be satisfied consists of 200 clauses with
3 elements each. A clause is true if any of its elements is set to one, and the
whole expression is true if all clauses are true. As an objective function, we
use the number of false clauses, leading to a minimization problem that has
an optimal value of 0 (that can only be reached if the expression is satisfi-
able). Our problem has 50 decision variables, where each clause contains 3

randomly selected decision variables as its elements.

Both optimization problems have binary search spaces. We suggest to use
the Hamming distance between decision vectors as a distance measure. For
example considering the 3-Sat problem, we want not only to be able to find
out whether the expression is satisfiable, but also to find a whole set of
assignments that satisfy the Boolean expression. These assignments should
be as diverse as possible in terms of differing decision variables.

As a variation operator, we first apply a two-point crossover with probability
0.5. Then, each solution undergoes a one-point bitflip mutation, i.e. one of
its (binary) decision variables is selected at random and set to its inverse
value (1 instead of 0 and vice versa).

.. Maximizing Population Diversity in Single-objective Optimization 

Compared Algorithms All algorithms that we compare are listed in Table
.. Mating selection denotes the step where the parents that will be re-
combined and mutated are selected. During environmental selection the
individuals which are to survive (from the pool of parents and offspring)
are chosen. NOAH optimizes according to Algorithm , with parameters
n = 20, g = 20, r = 10, c = 10, and with pairwise tournament for O
in Algorithm .

During deterministic crowding (DetC), offspring are generated by recombin-
ing and mutating two parents, and then, a pairwise tournament between
each offspring and its more similar parent takes place, see []. In restricted
tournament (ResT), offspring are generated in a standard manner, and then
each offspring replaces the most similar parent, if it is better than said
parent. In the Diffusion Model Evolutionary Algorithm (Diff), the solu-
tions are located on a grid in a fixed manner, where each solution has 8

neighbors. During variation, each individual is recombined with one of its
neighbors. The offspring that is more similar to the neighbor replaces the
current individual if it is better. The Clearing Procedure (Clear) generates
offspring in a standard way. Then, it performs a pruning on the offspring
in order to find the κ best individuals in each niche. Niches are defined by
a parameter σ, which in our case is set to 0.2 for all problems. Also, we use
κ = 1, i.e. we use only one representative per niche. This representative
then replaces the most similar parent, if it is better than that parent. When
using fitness sharing (Share), the fitness of each individual is decreased prior
to selection, depending on the closeness and number of neighbors. We set
the niche radius σ to 0.2. Random selection with replacement is just a
random selection of parents, where each individual can be selected multiple
times. In the same selection without replacement, each individual can only
be selected once. In pairwise tournament (Tour), pairs of solutions are se-
lected and the better one is kept. Finally, the random algorithm (Random)
generates random solutions and keeps the 20 best ones (if more than 20

individuals have the same best value, the most diverse ones are kept).

Experimental Setup We test each problem with different barrier values. We
compare the number of runs that achieved at least one solution with the

 Chapter . Maintaining Structural Diversity During Optimization

barrier value, and the diversity of the solutions that reached the barrier
value. In order to be able to fairly compare the different algorithms, all
objective values below the barrier are set to the barrier, such that there is
no selection pressure below the barrier. This way, the algorithms are free to
optimize the diversity of the population after the barrier has been reached.

For each problem, the number of objective function evaluations fEvals is
fixed. Note that NOAH terminates as soon as its bound reaches the barrier
value, or when fEvals function evaluations have been performed, whichever
happens first. For the nk-Landscapes and the 3-Sat problem, fEvals was set
to 5 · 105 and 106, respectively. All algorithms use a population size of 20.
For the diversity calculation we use θ = 10.

Each problem/barrier value pair was run on 30 different instances of the
3-Sat and nk-Landscape problems. To test the resulting diversity values for
significant differences, a Kruskal-Wallis test as described in [] has been
carried out, using the Conover-Inman procedure, Fisher’s least significant
difference method performed on ranks and a significance level of 1%.

Results The results are shown in Table .. For the two higher barrier values
of 3-Sat, the algorithms (except Random) always reach the barrier value, and
the resulting diversity of NOAH is always significantly better than that of the
other algorithms, even random search. For the lowest barrier value, NOAH
sometimes does not reach the barrier, which can be explained with the fact
that it spends a considerable amount of function evaluations on diversity
optimizations. But when NOAH does reach the barrier of v = 2, the diversity
of the solutions reaching the barrier is always significantly higher than the
diversity achieved by the remaining algorithms.

For the nk-Landscapes problem it is interesting to note that for the lowest
barrier value, most algorithms cannot reach that barrier (except Tour and
Share, which reach the barrier once/twice). This is in contrast to NOAH,
which reaches the barrier every third time. This indicates that diversity
might help identifying the global optimum by covering as many local optima
as possible. This can still be seen for the second lowest barrier value, which
is always reached by NOAH, whereas it is only reached in about 50% of the

.. Maximizing Population Diversity in Single-objective Optimization 

NOAH DetC ResT Diff

-Sat v = 2 22 13.4883 30 7.0855+ 30 7.3768+ 29 6.6820+

-Sat v = 5 30 16.5848 30 8.0943+ 30 12.2711+ 30 11.7993+

-Sat v = 10 30 17.4981 30 11.8069+ 30 14.2957+ 30 13.7548+

nk-L. v = 23 13 2.0249 0 NaN 0 NaN 0 NaN
nk-L. v = 25 30 5.2924 5 1.0000+ 8 1.2478+ 3 1.0000+

nk-L. v = 30 30 17.3183 30 14.2214+ 30 13.9020+ 30 13.6611+

Clear Share Tour Random

-Sat v = 2 29 7.7224+ 30 1.3600+ 30 1.5759+ 0 NaN
-Sat v = 5 30 12.4424+ 30 1.7953+ 30 2.5646+ 7 1.6355+

-Sat v = 10 30 14.3036+ 30 1.8493+ 30 3.4553+ 30 17.2617+

nk-L. v = 23 0 NaN 2 1.0000 1 1.0500 0 NaN
nk-L. v = 25 6 1.0000+ 12 1.0042+ 13 1.0077+ 0 NaN
nk-L. v = 30 30 14.3188+ 30 1.1999+ 30 1.2114+ 0 NaN

Table . Experiment results of 30 runs. Columns show the different algorithms, rows the
different problems (with the corresponding barrier value v). For each problem/barrier value
pair and each algorithm there are two values, where the lest one is the number of runs that
had at least one solution on the barrier, and the right number is the mean diversity of the
solutions that reached the barrier. A +/− beside the diversity means that the diversity of
NOAH is significantly better/worse than the diversity of that particular algorithm.

cases by the best other algorithms (Tour and Share). For the highest barrier
value, all algorithms always reach it (except random search), but NOAH’s
diversity is always significantly better than the other algorithm’s diversity.

Bridge Construction
In order to qualitatively interpret the simultaneous optimization of the ob-
jective function and the set diversity, we applied NOAH to a more realistic
problem. Here, we would like to see whether truss bridges constructed and
optimized by NOAH ’look’ more diverse than bridges produced by standard
evolutionary algorithms. We are using the bridge optimization problem de-
scribed in Appendix B. The goal is to find a bridge with minimum weight,
as a higher weight implies higher material cost, which in turn implies higher
overall cost. The recombination/mutation probabilities were set to 0.5 and
1, respectively.

First, we want to find the best possible bridge. To do so we run all al-
gorithms with a barrier value of v = −10, i.e. a value that can never be

 Chapter . Maintaining Structural Diversity During Optimization

Figure . Best bridge over all runs with v = −10, achieved by NOAH.

achieved as the weight of the bridge cannot be negative. NOAH is run with
parameters n = 20, g = 20, r = 10, c = 10. The results of this run can be
seen in Figures .. When looking at the fitness values, NOAH achieves the
best fitness values of the solutions in the final populations, ResT the second
best, DetC third, Share and Tour fourth, Diff fifth, Random sixth and Clear
worst. Interestingly enough, NOAH finds the bridge with the lowest weight
of 538.584kg, as depicted in Figure .. Looking at the achieved diversity,
it can be seen that Clear achieves the highest diversity, ResT and Random
the second highest, DetC and Diff the second lowest and NOAH, Share and
Tour the lowest. It is expected that the better the fitness of the solutions in
the final population, the lower the diversity should be. Therefore, there is
a tradeoff between fitness and diversity, and no algorithm is best in both of
them. However, NOAH is better in both diversity and fitness than Share and
Tour, and ResT is better than DetC, Share, Tour, Diff and Random.

Second, we want to see whether the diversity of the solutions can be in-
creased if the constraint on the objective value is relaxed. To do so, we
set the barrier to two values, 580kg which is 7.69% heavier than the best
bridge shown in Figure ., and 700kg which is 29.97% heavier than the
best bridge. As NOAH is expected to reach higher barriers earlier, it can
spend the gained time on diversity optimization. Therefore, we used NOAH
with parameters n = 20, g = 20, r = 10, c = 50 for the barrier of 580kg, and

.. Maximizing Population Diversity in Single-objective Optimization 

600

700

800

900

1000

1100

1200

Noah(1) DetC(3) ResT(2) Diff(5) Share(4) Tour(4) Rand(6)

fi
tn

e
ss

 v
a
lu

e
s

o
f

fi
n
a
l p

o
p
u
la

ti
o
n
s

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Noah(4)DetC(3)ResT(2) Diff(3) Clear(1)Share(4)Tour(4) Rand(2)

d
iv

e
rs

it
ie

s
o
f

fi
n
a
l p

o
p
u
la

ti
o
n

Figure . Diversity and fitnesses of final populations achieved on the bridge optimization
problem with v = −10. Clear had an average fitness of 4368± 18378, with a worst fitness
of 303 680 and is therefore not shown in the lest plot. Each algorithm name is annotated
in brackets with the rank according to a significance test. A lower number means that the
algorithm was significantly better than those with higher numbers.

NOAH DetC ResT Diff

bridge v = 580 26 1.1515 30 1.0682+ 30 1.0866+ 29 1.0388+

bridge v = 700 29 1.6102 30 1.1873+ 30 1.1631+ 30 1.1006+

Clear Share Tour Random

bridge v = 580 30 1.0405+ 28 1.0010+ 28 1.0299+ 25 1.0097+

bridge v = 700 30 1.0909+ 30 1.0025+ 30 1.1010+ 30 1.1625+

Table . Experiment results of 30 runs. Columns show the different algorithms, rows the
different problems (with the corresponding barrier value v). For each problem/barrier value
pair and each algorithm there are two values, where the lest one is the number of runs that
had at least one solution on the barrier, and the right number is the mean diversity of the
solutions that reached the barrier. A +/− beside the diversity means that the diversity of
NOAH is significantly better/worse than the diversity of that particular algorithm.

NOAH with parameters n = 20, g = 20, r = 10, c = 100 for the barrier of
700kg.

The results can be seen in Table .. NOAH is the only algorithm (besides
random search) which does not reach the barrier in all of the runs. However,
when it does reach the barrier, it’s diversity is always significantly higher
than the diversities achieved by the remaining algorithms. Two example
populations (with a diversity close to the mean diversity over all NOAH runs

 Chapter . Maintaining Structural Diversity During Optimization

(a) v = 580, diversity 1.1563, NOAH (b) v = 700, diversity 1.5959, NOAH

(c) v = 580, diversity 1.0849, ResT (d) v = 700, diversity 1.1869, DetC

Figure . Example populations of the NOAH runs (upper row), as well as of the second best
performing algorithms (lower row), for the barriers v = 580 (lest) and v = 700 (right).

for that particular barrier) are shown in Figure .. As can be seen the
bridges with the higher barrier value look more dissimilar than the bridges
with the lower barrier. Figure . also shows example populations of the
second best performing algorithms, as determined by a statistical test on the
achieved diversity values (DetC for v = 700 and ResT for v = 580). Again,
populations were chosen whose diversity is closest to the mean diversity of
all 30 runs of that algorithm. As can be seen, the bridges found by NOAH
look more dissimilar in shape than the bridges found by the second best
algorithm, especially for the higher barrier.

.. Maximizing Population Diversity in Multi-objective Optimization 

.. ·NOAH Summary

This section proposes a method to generate a set of maximally diverse so-
lutions which are better in terms of objective value than a certain fitness
value. All solutions beyond this barrier are supposed to be acceptable to
the decision maker.

To this end, we propose an algorithm called NOAH that alternates between
optimizing the population for diversity and for objective value, and that
uses an adaptive constraint to ensure the quality of the solutions.

NOAH is compared to standard evolutionary algorithms with and without
diversity preservation on the nk-Landscapes and the 3-Sat problem. It could
be seen that NOAH consistently achieves a significantly better diversity than
the other algorithms. On the nk-Landscapes problem it appears that the di-
versity preservation helps identifying better local optima, as NOAH achieves
better fitness values than the other algorithms.

All algorithms are also applied to a truss bridge construction problem. NOAH
was able to find significantly more diverse bridges than standard evolution-
ary algorithms, both if about 7% and about 30% more weight is allowed
than the weight of the best bridge found with by the algorithms with an
unreachable barrier value.

An important feature of NOAH is its ability to adaptively reduce its cur-
rent bound value during optimization. In the future, it would be desirable
to automatically tune the parameters of NOAH, especially the number of
generations for which the optimization of fitness values takes place, as this
parameter decides on the tradeoff between diversity and fitness optimization
speed.

. ·Maximizing Population Diversity in Multi-objective Optimization

This section introduces the Diversity-optimizing Multi-objective Evolution-
ary Algorithm (DIOP). We present a possibility to improve the diversity
of a solution set, while satisfying a user-defined constraint in terms of the

 Chapter . Maintaining Structural Diversity During Optimization

minimum proximity of these solutions to the Pareto-front, i.e. the minimum
quality of the solutions regarding their objective values. More specifically,
we make the following assumptions about the preferences of a decision maker
throughout this section:

. The decision maker is interested in a set of solutions.
. Each solution in this set should be close to optimal, i.e., not “far” from

the Pareto-front in objective space.
. The target population should cover large parts of the decision space, i.e.

offer decision space diversity.

.. ·Problem Setting

Again, we use the general setup presented in Section .. We additionally
introduce the notion of of weak ε-Pareto-dominance defined as a ≼ε b iff
fi(a) − ε ≤ fi(b), ∀ i ∈ {1, ..., m}. This definition follows the one of weak
additive ε-dominance as defined in []. In other words, suppose that we
improve solution a in every objective by ε. Then a ≼ε b iff the improved
solution weakly dominates solution b.

Also, let X ∗ ⊆ X denote the Pareto-optimal set, X ∗ = {x | @a ∈ X : a ≼
x ∧ x ̸≼ a}, let T ⊂ X denote a target population of solutions, and let
qX ∗ : X → R≥0 measure for each solution x ∈ X the distance qX ∗(x) to the
Pareto-optimal set X ∗. Let D(T) : 2X → R≥0 measure the diversity of a
set of solutions T ⊆ X in the decision space. Given this notation, the three
optimization assumptions provided above can be formalized as follows:

Problem .: Formalization of assumptions about the preferences of a
decision maker:
. We are interested in a target population of solutions T ⊆ X , |T | = µ,

where µ denotes its size.
. Optimality: ∀t ∈ T : qX ∗(t) ≤ ε, where ε is a given bound on the

optimality of solutions in T .
. Diversity in decision space: Determine T such that D(T) is maximal.

.. Maximizing Population Diversity in Multi-objective Optimization 

archive

target

first objective

se
co

n
d
 o

b
je

ct
iv

e

ε

ε

Figure . Example of a typical archiveA and target T population for a minimization prob-
lem. The feasible region (grey area) is the area containing all solutions that weakly ε-dominate
at least one solution from the archive, i.e. {(x1, x2) ∈ R2|∃a ∈ A : xi ≤ ε + f(ai), ∀i ∈
{1, 2}}.

As a consequence, we are dealing with a constrained optimization problem
on sets of solutions. Given this setting, different problems arise:

• A way to measure the distance qX ∗(x) of a solution x to the Pareto-front
X ∗ has to be specified.

• Determining qX ∗(T) requires knowledge of the Pareto-optimal set X ∗,
which in general is not known.

• The constraint on the objective space quality of the solutions might be
difficult to fulfill, especially if the specified distance to the front is small.
A set fulfilling the constraints can be generated with a standard optimi-
zation run. However, it is not clear how a set fulfilling the constraint
can be generated while still maintaining the maximally possible decision
space diversity. Diversity once lost might be difficult to reintroduce.

.. ·DIOP Algorithm

DIOP provides one way to tackle above problems. As the Pareto-optimal set
X ∗ in general is unknown, we propose using a helper set, called the archive
A, that approximates X ∗. We therefore have two concurrent MOEAs, one

 Chapter . Maintaining Structural Diversity During Optimization

which optimizes the target population according to diversity under the qual-
ity constraint, which depends on the archive, and one which optimizes the
archive population according to objective values, see Figure . for an exam-
ple. This offers the advantage that the quality constraint (decision maker
preference 2) continuously tightens as the archive population improves. In
order to benefit from one another, the two sets can exchange solutions,
therefore improving the diversity in the archive and producing more solu-
tions that satisfy the quality constraint in the target. This is useful as
experiments have indicated that considering diverse solutions might speed
up the search for some problems [].

Having an approximation A of the Pareto-optimal set X ∗, a distance metric
qA has to be defined. We propose to use ≼ε to define the distance as the
smallest ε to reach ε-dominance of any solution in A, i.e.,

qA(x) := min{ε | ∃a ∈ A : x ≼ε a}

As the decision maker is only interested in solutions not exceeding a pre-
defined distance ε to the Pareto-front, the diversity measure of an arbi-
trary target population T is only calculated for those solutions T ε ⊆ T
not exceeding the distance ε from the front approximation A, T ε = {t ∈
T | qA(t) ≤ ε}. All solutions satisfying this condition for a given archive are
shown as the grey area in Figure .. The goal of the target population
therefore is to optimize the constrained diversity measure

DA(T , ε) = D(t : t ∈ T ∧ qA(t) ≤ ε)

Note that this is an adapted version of the DIOP algorithm proposed in
[]. In the original paper, we used a weighted sum of a diversity measure
in objective space and a diversity measure in decision space. The problem
with this approach is that a weighted sum only makes sense if the values to
be weighted are normalized. However, as the achievable diversity values in
objective space may be quite different from the achievable diversity values

.. Maximizing Population Diversity in Multi-objective Optimization 

: function DIOP(ε, µa, µt)
: A = {x1, ..., xµa}, xi ∈ X (randomly initialize archive)
: T = {x1, ..., xµt}, xi ∈ X (randomly initialize target)
: while stopping criterion not met do
: A′ = (A, µa) (generate archive offspring)
: A′′ = S(A ∪A′ ∪ T , µa) (select µa new individuals)
: (Only use new archive if its hypervolume value is better or equal)
: if IH(A′′) ≥ IH(A) then
: A = A′′

: T ′ = (T , µt) (generate target offspring)
: T ′′ = S(A, T ∪ T ′ ∪ A, µt, ε) (select µt new individuals)
: T = T ′′

: Return T

Algorithm  DIOP algorithm. Takes a parameter ε, an archive size µa , a target size µt.
Returns the optimized target set.

in decision space, a normalization is not straightforward. In the original
paper, this was done by trial and error, which is time consuming. In this
thesis a DIOP version that only optimizes the diversity in decision space is
proposed for simplicity. Note that the original version with weighted sums
can be reintroduced easily if necessary.

To sum up, DIOP simultaneously evolves two populations, namely the archive
A that approximates X ∗ according to the hypervolume indicator, and the
target population T that maximizes diversity under a quality constraint.
Each population produces its own offspring. During environmental selec-
tion, both populations can select from their offspring, the current archive
A and the current target T . The pseudocode of the proposed algorithm is
shown in Algorithm .

The function A′′ = S(A, µa), selects µa solutions A′′ from a set
A. The selection goal is to maximize the hypervolume, i.e. IH(A′′). The
function P ′ = (P, µ) generates µ offspring P ′ from a given set P.
The method T ′ = S(A, T , µt, ε) selects µt solutions T ′ from set
T . The goal is to maximize DA(T ′, ε).

 Chapter . Maintaining Structural Diversity During Optimization

.. ·Results

In this section, two main questions are investigated: first, how does the
main parameter of DIOP, i.e. ε, influence the obtained target population in
terms of the hypervolume and the achieved diversity? Second, we compare
DIOP to the Standard Multi-objective Evolutionary Algorithm (sMOEA) (as
described in appendix A) and to the Omni-Optimizer (OMNI) [] on the
nine test problems of the Walking Fish Group (WFG) testsuite [] to assess
its performance.

Experimental Setup
The WFG testproblems have a real-valued decision space X = [0, 1]d ⊂ Rd.
Therefore, we use a standard variation scheme for real-valued decision vec-
tors. The method (P, n) selects n/2 random pairs of solutions with-
out replacement from P to generate the offspring population. These pairs
are then recombined using the SBX crossover operator [] with ηc = 15,
where each pair is recombined with probability one. During a recombina-
tion, each decision variable is recombined separately with probability one.
With probability 0.5, the recombined values of this decision variable are
exchanged between the offspring. After recombination, each individual is
mutated with probability one. To mutate an individual, each decision vari-
able is mutated with probability 1/d using polynomial mutation [] with
ηm = 20. To perform the archive selection S(A ∪ A′ ∪ T , µa),
the same greedy hypervolume selection strategy as for the sMOEA is used
as described in Algorithm . The Solow-Polasky measure is used to mea-
sure the decision space diversity D(P). To perform the target selection
S(A, T ∪T ′∪A, µt), the fast diversity selection scheme described
in Section .. is used, where only the feasible solutions T f = {t ∈
T ∪ T ′ ∪ A|qA(t) ≤ ε} are considered for selection. Note that ∀a ∈ A,
qA(a) = 0 holds, and therefore, the feasible set is always large enough, i.e.
|T f | ≥ µt, as long as |A| ≥ µt. Here, we set µt = µa.

All differences in results mentioned for the remainder of the chapter are
statistically significant according to the Kruskal-Wallis test with post-hoc
Conover-Inman procedure [] and with a significance level of %.

.. Maximizing Population Diversity in Multi-objective Optimization 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

first objective

se
co

n
d
 o

b
je

ct
iv

e

Pareto−front
archive (ε=0.1)
target (ε=0.1)
target (ε=0.2)
target (ε=0.3)
target (ε=0.4)
target (ε=0.5)

Figure . One run of DIOP for different values of ε on the WFG7 testproblem with 4 position
and 20 distance related parameters.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

decision variables

d
e
c
is

io
n
 v

a
ri

a
b
le

 v
a
lu

e

Figure . Parallel coordinates plot of the ε = 0.1 target population of Figure ..

Influence of ε

To assess the influence of the parameter ε, DIOP is run on WFG7 with 2

objectives and 4 position and 20 distance dependent variables, i.e. a total
of 24 decision variables. WFG7 was chosen as it is one of the easier WFG
problems, being separable, unimodal, and having a concave Pareto-optimal
front. Note though that DIOP can also be run on real-world problems with
more complex decision spaces that are not metric. We chose the archive and
target size to be 50 and run the algorithm for 50 000 function evaluations.
For the Solow-Polasky measure, θ = 10 was chosen. The parameter ε takes
the values {0.1, 0.2, 0.3, 0.4, 0.5}. For each setting of ε, 30 runs were done.

 Chapter . Maintaining Structural Diversity During Optimization

The results of one run are shown in Figures . and .. A few things
can be noticed. First, the diversity optimized solutions tend to stick to the
border of the feasible region. This is due to the setup of the WFG-testsuite,
where the decision variables are distributed into position and distance re-
lated parameters. For a solution to be Pareto-optimal, the distance related
parameters must be equal to 0.35, whereas the position related parameters
determine where on the front the solution lies. The further away from the
front the solutions are, the more diverse the values of the distance related
parameters become.

Second, there are five clusters of solutions in each population. The reason
again is the distribution of variables into position- and distance-related vari-
ables. Pareto-optimal solutions have their 20 distance related parameters
set to 0.35. Because DIOP allows to tradeoff optimality in objective space
with diversity in decision space, the target population has these variables set
as far from 0.35 as possible, while still satisfying the constraint in objective
space. The 4 position related parameters, on the other hand, decide on the
position of the solution on the front, and therefore can be set arbitrarily.
For the highest diversity, they are either set to 0 or 1, resulting in 24 = 16

distinct clusters in decision space. Using WFG7, these 16 clusters in decision
space translate to 5 clusters in objective space, because in WFG7, the position
on the front is defined by one parameter, which is calculated as the average
of all 4 position dependent variables. As these variables are either set to 0

or 1, there are 5 different values for the average, i.e. {0, 0.25, 0.5, 0.75, 1},
which directly leads to the five clusters. This is an example where diversity
in decision space does not automatically lead to diversity in objective space.

Figures . and . show boxplots of the achieved diversity and hypervol-
ume over all 30 runs. As can be seen, the diversity and hypervolume of
the archive populations are in the same range, whereas for the targets, the
diversity increases with increasing ε, whereas the hypervolume decreases.
This is as expected, as the further away the solutions are allowed to be,
the higher the achievable diversity and the lower the achieved hypervolume.
There are statistically significant differences, where the archive with ε = 0.4 has a better diversity than the archive
with ε = 0.1, and the archives with ε = 0.1 and ε = 0.5 have a better hypervolume than the other archives.

.. Maximizing Population Diversity in Multi-objective Optimization 

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5
H

yp
e
rv

o
lu

m
e

a
rc

h
iv

e
,

ε
 =

 0
.1

a
rc

h
iv

e
,

ε
 =

 0
.2

a
rc

h
iv

e
,

ε
 =

 0
.3

a
rc

h
iv

e
,

ε
 =

 0
.4

a
rc

h
iv

e
,

ε
 =

 0
.5

ta
rg

e
t,

ε
 =

 0
.1

ta
rg

e
t,

ε
 =

 0
.2

ta
rg

e
t,

ε
 =

 0
.3

ta
rg

e
t,

ε
 =

 0
.4

ta
rg

e
t,

ε
 =

 0
.5

Figure . Hypervolume values for different settings of ε, for the archive and target popula-
tions of DIOP.

Therefore, through ε, the user can set the desired tradeoff between good-
ness in objective space and diversity. If there are solutions that are slightly
suboptimal, but very different from the Pareto-optimal solutions, those can
be found using DIOP. At the same time, if only Pareto-optimal solutions are
desired, ε can be set to 0.

Comparison to sMOEA and to OMNI
In this section, we compare DIOP to the sMOEA as described in Section A and
to OMNI []. While the sMOEA has as the sole goal the optimization of the
hypervolume, the Omni-Optimizer uses the nondominated sorting procedure
known from the Nondominated Sorting Genetic Algorithm (NSGA-II) [],
and in addition optimizes both the crowding distances in decision and in
objective space. Note that while the sMOEA and DIOP can handle arbitrary
decision spaces, the Omni-Optimizer is designed to work with binary or real
valued decision spaces only.

 Chapter . Maintaining Structural Diversity During Optimization

5

10

15

20

25

30

35

a
rc

h
iv

e
,

ε
 =

 0
.1

a
rc

h
iv

e
,

ε
 =

 0
.2

a
rc

h
iv

e
,

ε
 =

 0
.3

a
rc

h
iv

e
,

ε
 =

 0
.4

a
rc

h
iv

e
,

ε
 =

 0
.5

ta
rg

e
t,

ε
 =

 0
.1

ta
rg

e
t,

ε
 =

 0
.2

ta
rg

e
t,

ε
 =

 0
.3

ta
rg

e
t,

ε
 =

 0
.4

ta
rg

e
t,

ε
 =

 0
.5

D
iv

e
rs

it
y

Figure . Diversity values for different settings of ε, for the archive and target populations
of DIOP.

To compare these three algorithms, they were run on the nine testproblems
of the WFG testsuite [] with 3 objectives and 4 position and 20 distance de-
pendent variables, i.e. a total of 24 decision variables. All of these problems
have a known Pareto-optimal front. We chose the archive and target size,
as well as the population sizes of the sMOEA and the Omni-Optimizer to be
100 and run the algorithms for 50 000 function evaluations. For the Solow-
Polasky measure, θ = 10 was chosen. For the hypervolume, a reference
point of ri = 2 · i + 1.1 was chosen for the i-th objective. The parameter ε

of DIOP was chosen to be 0.1. For each algorithm, 30 runs were done.

The resulting populations of one run for WFG9 are shown in Figure .. As
can be seen, the populations of the DIOP archive and the sMOEA look similar
and cover the front well. Most solutions of the DIOP target reached the front,
but the population is not well distributed in objective space, even though
it has the highest diversity in decision space. Finally, the population of the
Omni-Optimizer does not reach the front and is not as nicely distributed
as the populations of the DIOP archive and the sMOEA. Also, boxplots for

.. Maximizing Population Diversity in Multi-objective Optimization 

0

1

2

3
0 1 2 3 4 5

0

1

2

3

4

5

6

7

second objective

first objective

th
ir

d
 o

b
je

ct
iv

e

(a) DIOP Archive

0

0.5

1

1.5

2 0 1 2 3 4 5

0

1

2

3

4

5

6

7

second objective

first objective

th
ir

d
 o

b
je

ct
iv

e

(b) DIOP Target

0

1

2

3
0 1 2 3 4 5

0

1

2

3

4

6

7

second objective

first objective

th
ir

d
 o

b
je

ct
iv

e

5

(c) sMOEA

0

1

2

3
0 1 2 3 4 5

0

1

2

3

4

5

6

7

second objective

first objective

th
ir

d
 o

b
je

ct
iv

e

(d) Omni-Optimizer

55

60

65

70

75

80

sM
O
EA

Dio
p

Ar
ch

ive

Dio
p

Ta
rg

et

O
m

ni
−O

pt
im

ize
r

H
yp

e
rv

o
lu

m
e

(e) Hypervolume

5

10

15

20

25

30

35

40

45

sM
O
EA

Dio
p

Ar
ch

ive

Dio
p

Ta
rg

et

O
m

ni
−O

pt
im

ize
r

D
iv

e
rs

it
y

(f) Diversity

Figure . Example populations of one single run of the WFG9 problem, Figures (a)-(d).
Hypervolume and Diversity of all runs of the WFG9 problem, (e) and (f).

 Chapter . Maintaining Structural Diversity During Optimization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

sM
O
EA

Dio
p

Ar
ch

ive

Dio
p

Ta
rg

et

O
m

ni
−O

pt
im

ize
r

D
is

ta
n
ce

 f
ro

m
 F

ro
n
t

Figure . Distance to Pareto-front of the WFG9 problem for the different algorithms.

the achieved hypervolume and diversity of all 3 algorithms on WFG9 are
shown in the bottom row of Figure .. As can be seen, the hypervolume
of both the sMOEA and the DIOP archive is significantly higher than the
hypervolume of the DIOP archive and the Omni-Optimizer. There are no
statistically significant differences between the sMOEA and the archive, and
neither between the target and the Omni-Optimizer. At the same time, the
target and Omni-Optimizer diversity is significantly higher than the sMOEA
and archive diversity, and the archive diversity is also significantly higher
than the sMOEA diversity.

To sum up, the sMOEA and the archive seem to be comparable in terms of
hypervolume and diversity. At the same time, the target has no statisti-
cally significant differences from the Omni-Optimizer. When looking at the
fronts, however, some differences are apparent. The target population is
closer to the front, but less nicely distributed in objective space. This can
be visualized when plotting the distances of the solutions of all 30 runs to
the true Pareto-front (in terms of D as used in the general definition of the
objective function of the WFG problems), as shown in Figure .. Here it
can be seen that the archive solutions are closest to the front, second comes
the sMOEA, third the target and last the Omni-Optimizer.

The achieved hypervolumes/diversities on all testproblems are shown in Ta-
bles . and ., repectively. The significance tests on the hypervolume and
diversity values can be found in Tables . and .. As can be seen, the

.. Maximizing Population Diversity in Multi-objective Optimization 

sMOEA Archive Target OMNI

WFG1 50.4± 2.6 44.4± 0.8 30.2± 8.9 24.5± 0.8
WFG2 99.2± 8.3 105.6± 5.7 100.3± 5.2 96.6± 3.1
WFG3 82.3± 0.1 81.9± 0.2 31.9± 4.4 62.7± 1.5
WFG4 83.2± 0.2 82.8± 0.3 73.6± 3.2 49.1± 1.6
WFG5 80.0± 0.3 79.5± 0.2 32.6± 12.4 49.3± 1.6
WFG6 80.7± 0.4 79.7± 0.4 61.4± 10.1 50.2± 2.1
WFG7 84.2± 0.0 84.1± 0.1 76.3± 1.1 52.6± 1.7
WFG8 77.7± 0.2 76.3± 0.2 68.5± 3.0 47.1± 1.5
WFG9 78.0± 2.7 78.6± 2.3 64.3± 5.1 64.4± 2.4

Table . Mean and standard deviation of hypervolume values of all 3 algorithms on all 9
testproblems.

sMOEA Archive Target OMNI

WFG1 3.2± 0.4 2.9± 0.5 29.4± 10.3 14.4± 1.2
WFG2 5.9± 0.3 6.1± 0.3 12.4± 1.2 7.0± 0.4
WFG3 11.2± 0.9 14.7± 1.6 78.5± 0.8 23.5± 1.0
WFG4 5.3± 0.7 5.3± 0.8 12.2± 1.1 22.4± 1.0
WFG5 5.1± 1.1 5.0± 0.9 80.7± 6.5 44.4± 1.2
WFG6 6.3± 1.0 7.1± 1.5 41.3± 9.3 20.3± 3.6
WFG7 7.3± 0.2 7.3± 0.1 14.0± 0.8 18.9± 0.9
WFG8 7.9± 0.2 8.0± 0.3 15.8± 2.8 18.9± 0.8
WFG9 5.0± 0.9 5.8± 1.0 22.8± 13.2 16.4± 0.7

Table . Mean and standard deviation of diversity values of all 3 algorithms on all 9 test-
problems.

(diversity-optimizing) target and Omni-optimizer populations are always
significantly more diverse than the sMOEA and archive populations. Also,
with the exception of WFG2 where there is no significant difference between
the sMOEA and the target population, the sMOEA and the archive popula-
tions always have a significantly higher hypervolume than the target and
the Omni-optimizer populations. This shows the tradeoff between decision
space diversity and hypervolume.

 Chapter . Maintaining Structural Diversity During Optimization

Furthermore, it can be seen that the archive has most of the time (with
the notable exception of WFG2) a lower hypervolume and a lower diversity
than the sMOEA. This can be attributed to the fact that the archive is a
(100 + 200)-MOEA that was run for 250 generations, whereas the sMOEA
is a (100 + 100)-MOEA that was run for 500 generations, where the latter
seems to produce better results.

Finally for the target and the Omni-optimizer, it can be stated that the
target is better than the Omni-Optimizer in the problems WFG2 and WFG6,
and never worse in both the hypervolume and the diversity. In WFG1, the
target populations have a higher diversity, without having a worse hyper-
volume. In WFG9, there is no statistically significant difference in either the
hypervolume and the diversity. In WFG3 and WFG5, the target population
has a higher diversity but a lower hypervolume than the Omni-Optimizer,
whereas for WFG4, WFG7 and WFG8, the opposite holds.

To interpret these results, the relation between hypervolume and diversity
has to be kept in mind. There are two conceptually different cases in which
a lower hypervolume leads to a higher diversity. The first one happens
when diverse solutions in decision space are not diverse in objective space,
in which case structurally diverse solutions all are on the front, but not in a
nicely distributed way. This is what happens to the target population in all
WFG problems where the archive solutions are on the front, and therefore,
the target solutions have to be within a distance of ε = 0.1 to the front as
well. In these cases, it can be seen that structurally diverse solutions do not
automatically lead to nicely distributed solutions in objective space.

In the second case, the solutions do not reach the front, and as especially in
the WFG testsuite where the Pareto-optimal solutions have the same value
in 20 out of the 24 decision variables, solutions further away from the front
automatically have a higher diversity. This happens to the Omni-Optimizer
most of the time, where in all problems except WFG3 the distance of all so-
lutions produced by the Omni-Optimizer are significantly larger than the
distances of the solutions of the sMOEA, the archive and the target (in terms
of D as used in the general definition of the objective function of the WFG

.. Maximizing Population Diversity in Multi-objective Optimization 

sMOEA Archive Target OMNI

sMOEA 000000000 +-++++++0 +0+++++++ +++++++++
Archive -+------0 000000000 +++++++++ +++++++++
Target -0------- --------- 000000000 0+-+-+++0
OMNI --------- --------- 0-+-+---0 000000000

Table . Hypervolume significance tests. Each entry has nine symbols, corresponding to the
nine WFG testproblems. A +/-/0 as the k-th symbol in the i-th row and j-th column means
that the j-th algorithm was significantly better / significantly worse / not significantly different
from the i-th algorithm in WFGk.

sMOEA Archive Target OMNI

sMOEA 000000000 +--00--0- --------- ---------
Archive -++00++0+ 000000000 --------- ---------
Target +++++++++ +++++++++ 000000000 +++-++--0
OMNI +++++++++ +++++++++ ---+--++0 000000000

Table . Diversity significance tests. Notation as in Table ..

problems). WFG3 is the exception, because it is a degenerate problem, mean-
ing that the Pareto-front is a line. Here, the archive has solutions that are
non-dominated but do not lie on this line, and therefore, the target takes
advantage of that and has many solutions in the vicinity of these non-
dominated solutions.

.. ·DIOP Summary

This section presented DIOP, a multi-objective evolutionary algorithm that
evolves two populations simultaneously, one being optimized according to
the hypervolume indicator, and the other being optimized according to di-
versity, while being constrained by a maximally allowed distance to the
hypervolume-optimized population. This constraint can be set arbitrarily,
denoting the quality the user is willing to loose in order to gain a higher
diversity. Comparing DIOP to the Omni-Optimizer showed that DIOP is able
to produce populations with a high diversity, which still lie close to the

 Chapter . Maintaining Structural Diversity During Optimization

Pareto-optimal front, whereas the Omni-Optimizer does not converge as
well towards the front.

. · Integrating Diversity into the Hypervolume Indicator

In the last section, DIOP was proposed which allows the user to specify
the tradeoff between diversity and objective values through a constraint on
the objective values. This approach suffers from the standard problems of
setting constraints. Setting a constraint might give a wrong view on what is
achievable. Consider the case that the user sets a constraint on the goodness
in objective space. The corresponding diversity of the final population is
low. If the constraint had been relaxed slightly, the diversity could have
increased dramatically, but unless the user tries different settings for the
constraint, which is time-intensive, the user will never known that.

Furthermore, there might be some problems where solutions that are di-
verse in decision space might lie close in objective space, as e.g. several WFG
problems as shown in the last section. In such a case, it might be useful to
have a method that automatically finds a good tradeoff between diversity
in decision and in objective space. For these reasons, this section proposes
the Diversity-integrating Multi-objective Evolutionary Algorithm (DIVA), an
algorithm that automatically combines the two goals, objective functions
and structural diversity in a flexible manner. To do so, a modified hyper-
volume indicator that includes the diversity contribution of each solution is
proposed, and this indicator is then used during environmental selection.

.. ·Problem Setting

Again, we use the general setup presented in Section .. More precisely,
we assume that two objective functions fi : X → R, i = {1, 2} are to be
minimized. We only consider biobjective problems. While the definition
of the modified hypervolume indicator is valid for any number of objec-
tive functions, its high computational complexity makes it only suitable for
problems with two objectives.

.. Integrating Diversity into the Hypervolume Indicator 

a

r

c

b

objective 1

o
b
je

ct
iv

e
 2

a

r

c

b

D({a}) D({a,b}) D({a,b,c})

D({b}) D({b,c})

D({c})

objective 1

o
b
je

ct
iv

e
 2

Figure . Original (lest) andmodified (right) hypervolume for a population of three solutions
A = {a, b, c} with reference set R = {r}. D({a, b}) for example is the diversity value of
the subset B = {a, b}.

We would now like to motivate the idea which is explained in detail in the
next section. To this end we consider the example shown in the left part
of Figure ., with three solutions A = {a, b, c} and one reference point
R = {r}. We assume that the hypervolume indicator is given, plus an
additional diversity measure D : 2X → R≥0 that returns the diversity of a
subset B ⊆ A of solutions. We would now like to integrate this diversity
measure into the hypervolume indicator. The first idea which comes to
mind is using a weighted sum. However, this approach comes with a serious
drawback. Because only the non-dominated solutions have a contribution
to the hypervolume, the dominated solutions are evaluated based on their
contribution to diversity only. As solutions that are very diverse from non-
dominating solutions usually also have very dissimilar objective values, this
leads to populations where the non-dominated front optimizes the hypervol-
ume and the dominated solutions optimize the diversity and are therefore
randomly distributed instead of being close to the non-dominated solutions.

Therefore, our approach focuses on the hypervolume indicator. When look-
ing at the hypervolume of a set of solutions, it can be seen that it is divided
into partitions, where each partition is dominated by a specific subset of the
whole population. In this study we propose to weight these partitions with
the diversity of their dominating points before summing them up (see the

 Chapter . Maintaining Structural Diversity During Optimization

right part of Figure .). Note that in the original hypervolume indicator,
the partitions are weighted with one.

This adaptation has several nice properties. First, if a population is given,
and the objective values of one solution improve, the modified hypervol-
ume also improves. Second, if the diversity of a subset of the population
improves (and the diversities of the remaining subsets remain the same),
the modified hypervolume also improves. Third, if the diversity measure
is chosen to be monotonically increasing with the number of solutions in
the subset, adding a solution to the population cannot worsen the modified
hypervolume. Fourth, it is more important that two solutions that are close
in objective space are diverse than two solutions which are far apart in
objective space. This is due to the fact that there are more partitions that
are dominated by two close solutions than two far apart solutions.

.. ·Modified Hypervolume

In this section we provide a formal definition of the modified hypervolume
indicator. First we discuss diversity measures and the properties they should
have, then we show how such set measures in general can be integrated into
the hypervolume indicator.

Diversity measures have been discussed in Section ., where it has been
found that a diversity measure should fulfill the three requirements twinning,
monotonicity in varieties and monotonicity in distance. In this section, a
diversity function has to fulfill certain requirements such that the modified
hypervolume indicator remains compliant with the underlying preference
relation. First, the diversity of a set of solution must not decrease if a new
solution is added to the set. Second, the diversity of a non-empty set of
solution must be greater than zero, and the diversity of the empty set has
to be zero. These properties are formally defined as follows:

P4: Monotonicity If A,B ∈ X are two sets of solutions for which A ⊆ B
holds, then D(A) ≤ D(B).

P5: Positivity and null empty set For all A ∈ X\∅ it holds D(A) > 0, while
D(∅) = 0

.. Integrating Diversity into the Hypervolume Indicator 

Note that while the monotonicity property P4 is satisfied by any measure
fulfilling the monotonicity in varieties property P1 as defined in Section
.., the positivity and null empty set property P5 is fulfilled by most
common diversity measures, including the measure by Solow and Polasky
which is used in this thesis.

We now explain how any set-based function that fulfills the above properties
can be integrated into the hypervolume indicator. As motivated before, we
look at the hypervolume as a set of partitions that are dominated by a subset
of the population. We call the solutions in A that dominate a certain point
z the dominating points of z:

Definition . (dominating points): Given a point z ∈ Rd, and A ⊆ X a set of
solutions. We call the set of solutions domA(z) := {x |x ∈ A ∧ f(x) 6 z}
the subset of A dominating the objective vector z.

We can say that if one set A ⊆ X has a better or equal diversity in all hyp-
ervolume partitions than another set B ⊆ X , the set A is weakly preferred
to set B:

Definition . (diversity preference relation): Let A,B ⊆ X be two sets of so-
lutions and D a diversity function. A is weakly diversity preferred to B,
denoted A 4D B iff ∀z ∈ Rd : D(domA(z)) ≥ D(domB(z))

This preference relation has the property that if A is weakly diversity pre-
ferred to B, it is also weakly preferred to B according to Pareto dominance:

Theorem .: Given two sets A,B ⊆ X and a diversity measure D, then
A 4D B ⇒ A 4par B holds, where 4par is the extension of Pareto dominance
to sets, i.e. A 4par B holds iff ∀y ∈ B : ∃x ∈ A : f(x) 6 f(y).

Proof. Remember that A 4D B means that for all points z in objec-
tive space, the diversity of the solutions in A that dominate the point,
D(domA(z)) has to be larger than the diversity of the solutions in B that
dominate the same point, D(domB(z)). Now it is obvious that if there is a
solution in B dominating that point, then D(domB(z)) > 0 holds. If there
would be no solution in A dominating that point z, D(domA(z)) = 0 would
hold, which is a contradiction to A 4D B. Therefore, each point in objective

 Chapter . Maintaining Structural Diversity During Optimization

space which is dominated by a solution in B is also dominated by at least
one solution in A, which means that A 4par B.

More formally the proof can be given as follows: Given A 4D B, by defi-
nition it holds that ∀b ∈ B : D(domA(f(b))) ≥ D(domB(f(b))). We want
to proof that this means that also A 4par B as defined in this theorem
holds. Assume the contrary, i.e. ∃b ∈ B : @a ∈ A : f(a) 6 f(b). In this
case, domA(f(b)) = ∅ ⇒ D(domA(f(b))) = 0. At the same time D(b) > 0

and with monotonicity D(domB(f(b))) > 0. Therefore D(domB(f(b))) >

D(domA(f(b))) which is a contradiction.

Now we are able to formally define the diversity integrating hypervolume.
The objective space is divided into hypervolume partitions. Each partition
is dominated by a specific subset of the population. The partitions weight is
equal to the diversity of that subset of solutions. To calculate the diversity
integrating hypervolume, the partitions size multiplied with its weight is
summed up.

Definition . (diversity integrating hypervolume): Let A ⊆ X denote a set of
solutions. Furthermore, let D : 2X → R≥0 be a diversity measure fulfilling
the properties P4 and P5, and let domA(z) according to Def. . give the
subset of A dominating the objective vector z. Then the diversity integrating
hypervolume indicator ID

H(A) corresponds to a weighted Lebesgue measure
of the set of objective vectors weakly dominated by the solutions in A but
not by a so-called reference set R ∈ Y:

ID
H(A) =

∫
y∈Rm

AA(y)D(domA(y))dy

where AA(y) is called the attainment function of set A with respect to a
given reference set R, and it holds that AA(y) = 1 iff ∃a ∈ A, r ∈ R :

f(a) 6 y 6 r, else AA(y) = 0.

This indicator is a weak refinement of the diversity preference relation de-
fined in Definition .:

.. Integrating Diversity into the Hypervolume Indicator 

Theorem .: If a set A ⊆ X is weakly diversity preferred to another set
B ⊆ X , the modified hypervolume of set A is larger or equal the one of B,
i.e. A 4D B ⇒ ID

H(A,R) ≥ ID
H(B,R).

Proof. We know that A 4D B ⇒ A 4par B (Theorem .), therefore,
{z ∈ Rd : αB(z) ̸= 0} ⊆ {z ∈ Rd : αA(z) ̸= 0}. Also, we know that
D(domA(z)) ≥ D(domB(z)). Therefore, ID

H(A,R) ≥ ID
H(B,R).

The optimization goal therefore is to find a population of a fixed size that
maximizes the modified hypervolume indicator.

.. ·DIVA Algorithm

First, we need to decide how the modified hypervolume indicator can be cal-
culated. As we optimize a problem with two objective functions, we propose
to use the hypervolume by slicing objectives algorithm [] to calculate the
hypervolume partitions, and then calculate the size and diversity of each
partition. We therefore need a notion of the size of a partition dominated
by a set B: Out of a set A, the size of the objective space solely dominated
by solutions in B ⊆ A is s(A,B,R), where R is the set or reference points:

s(A,B,R) =
∫

y∈Rm
αB

A(y)dy

where

αB
A(y) =

{
1 if ∃r ∈ R : y 6 r ∧ domA(y) = B
0 else

The modified hypervolume can therefore be rewritten as:

ID
H(A,R) =

∑
B⊆A\∅, ∃z∈R2:domA(z)=B

s(A,B,R) ·D(B)

The calculation of the modified hypervolume is shown in Algorithm . Using
the measure of Solow and Polasky to quantify diversity, the calculation

 Chapter . Maintaining Structural Diversity During Optimization

: function H(P)
: h = 0 (the indicator value)
: (For all non empty hypervolume partitions)
: for all B ⊆ P\∅, ∃z ∈ R2 : domP(z) = B do
: h← h + s(P,B,R) ·D(B) (Increment indicator)
: Return h

Algorithm  Calculation of the modified hypervolume indicator ID
H . Takes a population P ⊆

X and returns the indicator value.

: function ES(P, µ)
: {P ′,S ′, µ′} = DS(P, µ)
: while |S ′| > µ′ do
: (Simulate removing each solution from the population. Remove the

solution that induces the smallest indicator loss.)
: S ′ ← S ′\ argmaxx∈S′ ID

H(S ′\x)
: return P ′ ∪ S ′

Algorithm  Environmental Selection. Takes a Population P , |P| ≥ µ, and the number µ of
selected individuals. R is the reference set. n is the population size. The whole environmental
selection is of complexity O(n7).

is of complexity O(n3 + n2 · n2) = O(n4), where the n3 comes from the
calculation of the matrix inverse of all pairwise distances as required by
the Solow-Polasky diversity measure, and the n2 · n2 is the calculation of
the matrix inverses for the remaining partitions, using the block matrix
inverse mentioned in Section ... Note that without using the block
matrix inverse, the calculation would be of complexity O(n2n3) = O(n5).

Next, we need an environmental selection strategy. We propose to use
Algorithm  where first any duplicates are thrown away using Algorithm
, and then the standard greedy environmental selection scheme is used.
In this greedy strategy, the solution with lowest fitness is removed until the
population is of size µ′. The fitness of a solution is equal to the loss in the
modified hypervolume if that solution is removed from the population. As
soon as one solution is removed, the fitnesses of the remaining solutions are
reevaluated. This greedy procedure is similar to the greedy strategy used

.. Integrating Diversity into the Hypervolume Indicator 

in the usual hypervolume selection scheme presented in Algorithm , with
the only difference that ID

H is used to calculate fitness instead of the normal
hypervolume indicator IH . The environmental selection furthermore dif-
fers from the standard hypervolume-based environmental selection scheme
presented in Algorithm , because in DIVA, no non-dominated sorting is
used. The reason is that dominated solutions usually have a higher di-
versity contribution than non-dominated solutions, and therefore can have
a large impact on the modified hypervolume and should not be discarded
prematurely.

The whole environmental selection algorithm including the indicator calcu-
lation is of complexity O(n · n2 · O(D) · n). The first n is the number of
greedy steps in the environmental selection. The n2 is due to the number
of hypervolume partitions, the O(D) is the complexity of the diversity cal-
culation, and the last n is the fact that the effect of removing a solution
has to be calculated for each solution in each step. If using the measure of
Solow-Polasky which is of complexity O(n3), the complexity of the environ-
mental selection equals O(n7). Due to its high combinatorial complexity,
this algorithm can only be applied to small population sizes, e.g. |P| ≤ 10.

However, using the fast diversity calculation strategy for the Solow-Polasky
measure and storing relevant data (such as the distance matrix inverses of
the dominating solutions of each partition), this complexity can be reduced
to O(n5), see Algorithm . Starting with the partition which is dominated
by all solutions, the relevant matrix inverses of subsequent partitions can
be calculated in quadratic time using the block matrix inverse. Calculating
all matrix inverses therefore is of complexity O(n3+n2 ·n2) = O(n4), where
the first O(n3) comes from the matrix inverse calculation of the pairwise
distances of all solutions, and the O(n2 · n2) comes from the recalculation
of all inverses for the remaining partitions. The diversity contribution of
one solution in one particular partition can be calculated in linear time, see
Section ... Therefore, calculating all relevant diversity contributions is
of complexity O(n2nn) = O(n4), where the n2 is the number of partitions,
the first n is the complexity of the contribution calculation (according to the
fast diversity selection scheme), and the second n is because the contribution

 Chapter . Maintaining Structural Diversity During Optimization

: function ES(P, µ)
: {P ′,S ′, µ′} = DS(P, µ)
: (Calculate matrix inverses and diversity contributions)
: Calculate matrix inverse of S ′

: for all B ⊂ S ′\∅, ∃z ∈ R2 : domS′(z) = B do
: Calculate matrix inverse of B, using the inverse of S ′

: Calculate D(B)−D(B\s), ∀s ∈ B
: (Iteratively throw away solutions)
: while |S ′| > µ′ do

: (Throw away solution with lowest contribution)
: s = argmaxx∈S′ ID

H(S ′\x,R)
: S ′ ← S ′\s
: (Update partition information)
: for all B ⊆ S ′: s ∈ B ∧ ∃z ∈ R2 : domS′(z) = B do
: Update matrix inverse of B
: Calculate D(B)−D(B\s), ∀s ∈ B
: return P ′ ∪ S ′

Algorithm  Environmental Selection. Takes a Population P , |P| ≥ µ, and the number µ
of selected individuals. R is the reference set. n is the population size. Produces the same
output as ES, but with a lower complexity of O(n5).

of all solutions have to be calculated. Using these precalculated diversity
contributions, the contribution of a solution to the overall modified hyper-
volume can be calculated with complexity O(n2n) = O(n3), where the first
n2 is the number of partitions, and the second n is due to the fact that the
contribution of each solution has to be calculated. Finally, after selecting
one solution for removal, all matrix inverses as well as the contributions
have to be updated, which again is of complexity O(n2(n2 + n2)) = O(n4),
i.e. O(n2) for the number of partitions and one O(n2) to recalculate the
matrix inverses and the other to update the diversity contributions. This
whole loop of removing a solution and updating the matrix inverses and
the diversity contributions has to be executed n times, therefore the overall
complexity isO(n5), leading to the same results as the naive implementation
described above.

.. Integrating Diversity into the Hypervolume Indicator 

: function DIVA(µ, λ, R, g)
: Initialize population P1 randomly with µ solutions
: i = 1
: for g generations do
: Oi : = (Pi, λ)
: Pi+1 : = ES(Pi ∪ Oi, µ)
: (Only take new population if not worse)
: if ID

H(Pi+1,R) ≤ ID
H(Pi,R) then

: Pi+1 : = Pi

: i = i + 1

: return Pi

Algorithm  Complete DIVA algorithm, optimizing the modified hypervolume indicator ID
H .

Input parameters: population size µ, offspring size λ, reference setR; minimization of objec-
tive functions is done for g generations

Now that we have designed an environmental selection strategy, we can
integrate it into DIVA, see Algorithm . To do so we adapt our reference
sMOEA described in Algorithm  by replacing the standard selection scheme
(P, µ) with our DIVA selection scheme ES(P, µ), and the hyp-
ervolume indicator IH with the modified hypervolume indicator ID

H .

.. ·Results

In this section, we first quantify the influence of the diversity parameter
θ on the achieved hypervolume and diversity. Then we compare DIVA to
the Omni-Optimizer, to the Standard Multi-objective Evolutionary Algo-
rithm (sMOEA) as described in Appendix A, and to DIOP on the WFG test-
suite. Also, DIVA, DIOP and the sMOEA are applied to the bridge construction
problem.

Influence of θ

The parameter θ which is used in the calculation of the Solow-Polasky di-
versity measure can be used to adjust the tradeoff between diversity and
hypervolume. The larger θ is, the sooner two solutions are considered as
two different species, leading to a higher diversity. Therefore, with a large

 Chapter . Maintaining Structural Diversity During Optimization

400 600 800 1000 1200 1400 1600 1800 2000 2200
0

10

20

30

40

50

60

70

80

90

weight [kg]

le
n
g
th

 o
f

lo
n
g
e
st

 c
o
n
n
e
ct

io
n
 [
m

]

theta 0.1
theta 1
theta 10
theta 100

570

580

590

600

610

620

630

640

650

theta 0.1 theta 1 theta 10 theta 100

H
yp

e
rv

o
lu

m
e

Figure . Lest: Objective space values (not normalized) of the same populations shown in
Figure .. Right: Resulting hypervolume of all 30 runs on the bridge problem, for 4 different
settings of θ.

θ, most sets of solutions have a diversity which is close to the maximally
achievable value (i.e. the size of the set). With a low θ, on the other hand,
all solutions are considered to lie close, leading to a diversity close to one for
any set of solutions. Therefore, intuitively, working with a low theta should
lead to populations similar to those achieved by the greedy hypervolume
selection scheme, but without the beneficial effect of nondominated sorting.

To test the influence of θ, DIVA was run on the biobjective version of the
bridge problem as described in Appendix B, where the first objective is the
weight of the bridge, and the second objective is the length of the longest
connection. As the two objectives are not within the same value range, we
normalize the first/second objective by dividing it by 200 and 10, respec-
tively.

We ran DIVA 30 times, for 50 000 function evaluations, with a population
size of 20. The recombination/mutation probabilities were set to 0.5 and
1, respectively. The nadir point for the normalized objectives was 75 and
10 for the first/second objective. DIVA was run for 4 different settings of θ,
namely θ ∈ {0.1, 1, 10, 100}.

.. Integrating Diversity into the Hypervolume Indicator 

(a) θ = 0.1 (b) θ = 1

(c) θ = 10 (d) θ = 100

Figure . Example populations of one single run of the bridge problem, for different θ
values. Corresponding objective values are shown in Figure ..

The results for the remainder of Section .. are tested for statistical sig-
nificance according to the Kruskal-Wallis test with post-hoc Conover-Inman
procedure [] and with a significance level of %.

The objective space values of the resulting population of one run are shown
in Figure .. As can be seen, the population with θ = 0.1 has more solu-
tions on the front than the population with θ = 1, whereas the populations
with θ = 10 and θ = 100 do not lie on the front anymore. The corresponding
bridges are shown in Figure ..

The results of all runs are depicted in Figures . (hypervolume) and .
(diversity). As expected, using a lower θ leads to a higher hypervolume,
the difference between the θ = 0.1 and the θ = 1 run is not statistically significant.

 Chapter . Maintaining Structural Diversity During Optimization

as it starts to resemble the standard greedy hypervolume selection scheme.
The runs with θ = 100 always have a significantly lower hypervolume and
diversity than the rest of the runs (except for the diversity calculated with
θ = 100). This can be explained as follows: Using such a high θ, all solutions
are viewed as completely dissimilar, no matter what their true distance
is (remember, the similarity is calculated as exp(−θ · d), where d is the
distance between two solutions). Therefore, as stated before, the diversity
of a given set is close to the size of the set. DIVA now tries to optimize
the modified hypervolume, which in this case means that the hypervolume
partition which is dominated by all solutions should be as large as possible.

To sum up, the parameter θ adjusts the number of solutions that lie on the
front, which in turn directly relates to the achieved hypervolume. Lower
values of θ lead to higher hypervolume values. When looking at the achieved
diversity, the results depend on what setting of θ is used to calculate the
diversity of the final population. If a lower value of θ is used, optimizations
also using a lower value perform better. If a high value is used for diversity
calculation, optimizations with a higher θ value perform better. There are
limits, tough, as an optimization with θ = 100 neither achieved a good
hypervolume nor a good diversity.

Comparison of sMOEA, DIOP, DIVA, and the Omni-Optimizer
In this section, the proposed diversity-integrating optimizers DIOP and DIVA
are compared against the sMOEA and against the Omni-Optimizer, an adapted
version of NSGA-II which also integrates diversity in decision space. These
four algorithms were run on the WFG testsuite (consisting of the testproblems
WFG1-WFG9), as well as on the Omni problem (Equation (16) in [], with
n = 5 as suggested in the paper) which has been proposed together with the
Omni-Optimizer. For the WFG problems, we use 2 objectives and 4 position
and 20 distance dependent variables, i.e. a total of 24 decision variables. ε

in DIOP was chosen to be 0.2. ε in the Omni-Optimizer was chosen to be 0.
The population size was chosen to be 20 (for DIOP, the archive and target
size were both 20), θ was chosen to be 1. Each algorithm was run 30 times
on each problem, for 50 000 function evaluations on each WFG instance, and
for 20 000 function evaluations on the Omni problem.

.. Integrating Diversity into the Hypervolume Indicator 

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

theta 0.1 theta 1 theta 10 theta 100

D
iv

e
rs

it
y

ca
lc

u
la

te
d
 w

it
h
 t

h
e
ta

=
0

.1

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

theta 0.1 theta 1 theta 10 theta 100

D
iv

e
rs

it
y

ca
lc

u
la

te
d
 w

it
h
 t

h
e
ta

=
1

2

3

4

5

6

7

8

theta 0.1 theta 1 theta 10 theta 100

D
iv

e
rs

it
y

ca
lc

u
la

te
d
 w

it
h
 t

h
e
ta

=
1

0

16

16.5

17

17.5

18

18.5

19

19.5

20

theta 0.1 theta 1 theta 10 theta 100

D
iv

e
rs

it
y

ca
lc

u
la

te
d
 w

it
h
 t

h
e
ta

=
1

0
0

Figure . Resulting diversity of all 30 runs on the bridge problem. The four figures corre-
spond to the θ setting used to calculate the final diversity. In each figure, four boxplots are
shown, one for each of the 4 different settings of θ for which the population was optimized.

Both the WFG testproblems and the Omni problem have real-valued decision
spaces. The variation setup is similar to the one in Section .., where we
used a standard variation scheme for real-valued decision vectors. In this
scheme, m/2 random pairs of solutions are selected without replacement
from P to generate the offspring population. These pairs are then recom-
bined using the SBX crossover operator [] with ηc = 15, where each pair
is recombined with probability 0.5. During a recombination, each decision
variable is recombined separately with probability one. With probability
0.5, the recombined values of this decision variable are exchanged between
the offspring. After recombination, each individual is mutated with prob-
ability 1. To mutate an individual, each decision variable is mutated with
probability 1/d, where d is the length of the decision vector, using polyno-
mial mutation [] with ηm = 20.

 Chapter . Maintaining Structural Diversity During Optimization

Moea

Diop archive

Diop target

Diva

Omni

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

First objective

S
e
co

n
d
 o

b
je

ct
iv

e

1

2

3

4

5

6

7

Moea Archive Target Diva Omni

H
yp

e
rv
o
lu
m
e

2

4

6

8

10

12

14

16

18

Moea Archive Target Diva Omni

D
iv
e
rs
it
y

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

First objective

S
e
co

n
d
 o

b
je

ct
iv

e

8

8.5

9

9.5

10

10.5

11

11.5

Moea Archive Target Diva Omni

H
yp

e
rv
o
lu
m
e

2

4

6

8

10

12

14

16

18

Moea Archive Target Diva Omni

D
iv
e
rs
it
y

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

First objective

S
e
co

n
d
 o

b
je

ct
iv

e

8

8.5

9

9.5

10

10.5

11

11.5

Moea Archive Target Diva Omni

H
yp

e
rv
o
lu
m
e

2

4

6

8

10

12

14

16

Moea Archive Target Diva Omni

D
iv
e
rs
it
y

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

First objective

S
e
co

n
d
 o

b
je

ct
iv

e

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Moea Archive Target Diva Omni

H
yp

e
rv
o
lu
m
e

2

4

6

8

10

12

14

Moea Archive Target Diva Omni

D
iv
e
rs
it
y

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

First objective

S
e
co

n
d
 o

b
je

ct
iv

e

3

4

5

6

7

8

9

Moea Archive Target Diva Omni

H
yp

e
rv
o
lu
m
e

2

4

6

8

10

12

14

16

18

20

Moea Archive Target Diva Omni

D
iv
e
rs
it
y

Figure . Results of the sMOEA, DIOP, DIVA and OMNI on several testproblems. Each row
presents the solutions of one of the testproblems WFG1 - WFG5. The first column shows a
random population for each algorithm, where the Pareto-front is shown as a black line. The
second/third column shows the achieved hypervolume/diversity of each algorithm.

.. Integrating Diversity into the Hypervolume Indicator 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

First objective

S
e
co

n
d
 o

b
je

ct
iv

e

Moea

Diop archive

Diop target

Diva

Omni

5

5.5

6

6.5

7

7.5

8

8.5

9

Moea Archive Target Diva Omni
H
yp

e
rv
o
lu
m
e

2

4

6

8

10

12

14

16

18

Moea Archive Target Diva Omni

D
iv
e
rs
it
y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

First objective

S
e
co

n
d
 o

b
je

ct
iv

e

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Moea Archive Target Diva Omni

H
yp

e
rv
o
lu
m
e

2

4

6

8

10

12

14

Moea Archive Target Diva Omni

D
iv
e
rs
it
y

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

First objective

S
e
co

n
d
 o

b
je

ct
iv

e

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Moea Archive Target Diva Omni

H
yp

e
rv
o
lu
m
e

2

4

6

8

10

12

14

16

Moea Archive Target Diva Omni

D
iv
e
rs
it
y

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

First objective

S
e
co

n
d
 o

b
je

ct
iv

e

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Moea Archive Target Diva Omni

H
yp

e
rv
o
lu
m
e

2

4

6

8

10

12

14

16

Moea Archive Target Diva Omni

D
iv
e
rs
it
y

−5 −4 −3 −2 −1 0 1
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

First objective

S
e
co

n
d
 o

b
je

ct
iv

e

26.5

27

27.5

28

28.5

29

29.5

30

30.5

31

31.5

Moea Archive Target Diva Omni

H
yp

e
rv
o
lu
m
e

2

4

6

8

10

12

14

16

Moea Archive Target Diva Omni

D
iv
e
rs
it
y

Figure . Results of the sMOEA, DIOP, DIVA and OMNI on several testproblems. Each row
presents the solutions of one of the testproblems WFG6 - WFG9, and the Omni problem (last
row). The first column shows a random population for each algorithm, where the Pareto-front
is shown as a black line. The second/third column shows the achieved hypervolume/diversity
of each algorithm.

 Chapter . Maintaining Structural Diversity During Optimization

The results can be seen in Figures . and ., where each row corresponds
to a test problem. The first column plots a random final population out of
the 30 runs, while the second and third column plot the resulting hypervol-
ume and diversity, respectively. The results of the statistical tests are shown
in Table .. As can be seen, the sMOEA never has a worse hypervolume
than the other algorithms. The second best performing population in terms
of hypervolume is the DIOP archive, and the third best is the DIVA popula-
tion. There is no clear distinction between the DIOP target population and
the OMNI population, where the DIOP target population is better in some
problems, and worse in others. When looking at the DIOP target and OMNI
populations in objective space, it can be seen that in general, the OMNI pop-
ulations are closer to the front, but at the same time those populations are
not well spread on the front. The DIOP target populations are further from
the front, and sometimes well spread, sometimes not. Remember that the
DIOP target population only optimizes diversity (within a certain distance
to the front), therefore if the most diverse solutions can be found in a small
region in objective space, the DIOP target population will concentrate in that
region.

When looking at diversity, it can be seen that DIVA performs best, the
DIOP target second best, the DIOP archive and the sMOEA third and OMNI
worst. There are several explanations for the poor performance of the
Omni-Optimizer. First, it was designed to be fast even when operating
on large populations, while DIOP and DIVA will not work on population sizes
of e.g. 1000. Secondly, the Omni-Optimizer does not optimize either the
hypervolume or the Solow-Polasky diversity. It is unknown which measures
it optimizes, as the used crowding distance only defines the contribution of
a single solution to the diversity (both in decision and objective space), not
the diversity of the whole set.

The use of the crowding distance as a diversity measure comes with a further
problem as soon as the considered space has more than 2 dimensions. The
problem is that a point which is far from any other point in terms of Eu-
clidean distance might still get a bad crowding distance (low contribution to

.. Integrating Diversity into the Hypervolume Indicator 

diversity), whereas two points which are very close according to Euclidean
distance might get a very good value, as shown in Example ..

Example .: Consider the following 8 points in three-dimensional Euclidean
Space:

d1 d2 d3
p1 −140 −140 −140
p2 1 1 1

p3 2 2 2

p4 999 999 900

p5 900 900 999

p6 1000 1000 1000

p7 1001 1001 1100

p8 1100 1100 1001

The minimal distance to the nearest neighbor (D), the contribution to
the Solow-Polasky measure with θ = 1 () and the crowding distance ()
of each point is as follows:

p1 p2 p3 p4 p5 p6 p7 p8
D 244.22 1.73 1.73 100.01 141.42 100.01 100.01 141.42

 0.84 0.01 0.01 0.30 0.45 0.04 0.30 0.45

 ∞ 426 2697 1197 2094 6 ∞ ∞

The minimal Euclidean distance for each point to any other point is larger
than 100, with the only exception of the two points p2, and p3, which have
an Euclidean distance of 1.73. Intuitively, either p2 or p3 should have the
lowest contribution to diversity, as one of them is redundant. Using the
Solow-Polasky measure with θ = 1, p2 and p3 have the lowest contribution.
The correlation coefficient between D and  is 0.9345. Without p6 it is
0.9965. p6 is an outlier, because it has a similar minimal nearest neighbor
distance as p4 and p7, but lies in the middle of p4, p5, p7 and p8, thereby
having a lower contribution to the Solow-Polasky measure.

 Chapter . Maintaining Structural Diversity During Optimization

sMOEA DIOP archive DIOP target DIVA OMNI

sMOEA
0000000000 +0+++0++0+ ++++++++++ +0++++++++ ++++++++++
0000000000 +00000000- ---------- ---------- +++0++++00

DIOP archive
-0---0--0- 0000000000 ++++++++++ -0++++++0+ ++++++++++
-00000000+ 0000000000 ---------- ---------- +++0++++0+

DIOP target
---------- ---------- 0000000000 ---------- -0++-+++0-
++++++++++ ++++++++++ 0000000000 ----+---0- ++++++++++

DIVA
-0-------- +0------0- ++++++++++ 0000000000 ++++++++++
++++++++++ ++++++++++ ++++-+++0+ 0000000000 ++++++++++

OMNI
---------- ---------- +0--+---0+ ---------- 0000000000
---0----00 ---0----0- ---------- ---------- 0000000000

Table . Pairwise significances of the Kruskal-Wallis test. Each entry ei,j of a given pair of
algorithms i and j consists of two rows, where the first row gives the hypervolume results,
and the second row gives the diversity results. In both rows of an entry ei,j , there are 10
elements 0, + or −, one for each testproblem, namely WFG1-WFG9 and the Omni-Problem.
A +/− means that the algorithm i was significantly better/worse than algorithm j , and a 0
means there was no statistically significant difference between in the two algorithms.

The crowding distance, on the other hand, is lowest for p6, second lowest
for p2, and highest for p3. The first solution to be discarded would not be
the obvious choice of p2 or p3, but p6. The correlation coefficient between
the (finite) elements of D and  is −0.0735, indicating that there is no
correlation between the minimal Euclidean distance to the nearest neighbor
and the crowding distance of a solution. We therefore discourage to use
the crowding distance as a diversity measure for Euclidean spaces with 3 or
more dimensions. ◦

To sum up, the sMOEA, the DIOP archive and DIVA achieve a good hypervol-
ume, whereas the DIOP target and the Omni-Optimizer achieve a poor hyp-
ervolume. At the same time, DIVA and the DIOP target achieve a good diver-
sity, whereas the sMOEA, the DIOP archive and the Omni-Optimizer achieve
a poor diversity. Therefore, DIVA is the only algorithm which achieves both
a good hypervolume and a good diversity. However, remember that the use
of DIVA is limited to biobjective problems and small population sizes. DIOP
produces two populations, one which has a high hypervolume but a poor
diversity, and the other which has a high diversity, but a poor hypervolume.

.. Integrating Diversity into the Hypervolume Indicator 

620

625

630

635

640

645

650

655

Diva Moea Archive Target

H
yp

e
rv
o
lu
m
e

1

1.5

2

2.5

3

3.5

4

4.5

5

Diva Moea Archive Target

D
iv
e
rs
it
y

Figure . Hypervolumes and diversities achieved by DIVA, the sMOEA and DIOP on the
biobjective bridge construction problem.

The sMOEA achieves the highest hypervolume. Finally the Omni-Optimizer
produces populations with both a poor hypervolume and a poor diversity.

Bridge Optimization Problem
In this section, we compare the sMOEA, DIVA and DIOP on the bridge con-
struction problem as described in Appendix B, using the same parameter
setup as in Section .., with θ = 0.01. Note that we do not compare
to the Omni-Optimizer, because the Omni-Optimizer only works for real
valued or binary decision spaces, and it is not clear how to transform the
bridge problem into a problem with a real valued or binary decision space.

The resulting hypervolumes and diversities can be seen in Figure .. There
is no significant difference between the hypervolumes achieved by DIVA, the
sMOEA and the DIOP archive, whereas the hypervolumes achieved by the DIOP
target are significantly lower. When looking at the diversity, a statistical
test shows that DIVA has the highest diversity, the DIOP target the second
highest, and the sMOEA and the DIOP archive the lowest.

The bridges of randomly selected populations can be seen in Figure ..
The corresponding points in objective space are shown in Figure .. As
can be seen, the bridges of the sMOEA and the DIOP archive look similar. The
bridges of the DIOP target seem be more dissimilar, although all bridges fall
into one of two categories: Flat bridges with large connection diameters, and

 Chapter . Maintaining Structural Diversity During Optimization

(a) DIVA (b) sMOEA

(c) DIOP archive (d) DIOP target

Figure . One random population per algorithm, for the bridge optimization problem.

tall bridges. The DIVA bridges look much more dissimilar than the sMOEA or
the DIOP bridges. The reason for this can be seen in the objective space, as
shown in Figure .. The bridges of the sMOEA and the DIOP archive are
all non-dominated with respect to the other solutions in their population.
The DIOP target population contains dominated solutions, but all solutions
are somewhat close to the front (as parametrized by ε). Finally, some of
the DIVA bridges are quite far from the front, thereby allowing to increase
the diversity of the population. At the same time there are enough bridges
on the non-dominated front to yield an acceptable hypervolume.

.. Integrating Diversity into the Hypervolume Indicator 

400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

90

weight [kg]

le
n
g
th

 o
f

lo
n
g
e
st

 c
o
n
n
e
ct

io
n
 [
m

]

Diva
Moea

Diop archive
Diop target

Figure . Objective space values of one random population per algorithm, for the bridge
optimization problem.

.. ·DIVA Summary

This section proposes DIVA, which works like a standard hypervolume-based
evolutionary algorithm, but uses a modified version of the hypervolume that
incorporates diversity. As a diversity measure, the measure proposed by
Solow and Polasky is used. The tradeoff between objective function values
and diversity can be adjusted by the parameter θ of the diversity measure.
Tests on the influence of θ showed that a low θ leads to a population with a
higher hypervolume, but a lower diversity than populations optimized with
a higher θ.

DIVA was compared against the sMOEA, DIOP and the Omni-Optimizer, on
the WFG testsuite and the Omni problem which has been proposed together
with the Omni-Optimizer. It was found that DIVA leads to populations
with both a good hypervolume and a good diversity, the sMOEA produces
the best hypervolume, and DIOP produces an archive population with a
good hypervolume, and a target population with a good diversity. The
Omni-Optimizer performs worst both with respect to hypervolume and to
diversity, which may be explained by the fact that it (a) does not explicitly
optimize either the hypervolume or the diversity measure by Solow and
Polasky, and (b) the used crowding distance is not suited for spaces with
more than  dimensions.

 Chapter . Maintaining Structural Diversity During Optimization

Tests on a bridge optimization problem with DIVA, DIOP and the sMOEA
showed that DIVA, the sMOEA and the DIOP archive produce the highest
hypervolume without significant differences, whereas the best diversity is
produced by DIVA, the second best by the DIOP target and the worst by the
DIOP archive and the sMOEA. Therefore, DIVA performs best on the bridge
construction problem in terms of achieved hypervolume and diversity.

In the future, it might be desirable to address the major shortcoming of
DIVA, which is its computational complexity. Due to its complexity, the
usage of DIVA is restricted to biobjective problems with small population
sizes. It would be useful to find a way to approximate the modified hyper-
volume indicator, and/or the calculation of a solution’s contribution to this
indicator.

. · Comparison of Approaches

This chapter aimed at optimizing diversity together with the usual optimi-
zation of objective function(s). We first discussed what a suitable diversity
measure should look like, and found that the measure by Solow and Po-
lasky fits our needs best, and therefore was used throughout the rest of
the chapter. We proposed three diversity optimizing algorithms, one for
single-objective problems, and two for multi-objective problems. NOAH, the
algorithm for single-objective problems, tackles the problem of finding a set
of solutions that is optimal in terms of diversity, while fulfilling a constraint
on the objective function. DIOP, an algorithm for multi-objective problems,
builds on this idea. It also finds a set of solutions with a maximal diversity,
where the solutions fulfill a constraint in objective space in terms of their
distance to a known approximation of the true Pareto-front. Finally, DIVA
takes a different approach, where the diversity information is integrated into
the hypervolume indicator, and this modified hypervolume indicator is then
used for selection.

When comparing the two multi-objective algorithms DIOP and DIVA, the
following considerations have to be taken into account: While the tradeoff

.. Comparison of Approaches 

between closeness to the Pareto-front and diversity could be explicitly set
by the user in DIOP, DIVA sets the tradeoff implicitly through the parameter
θ, depending on the problem at hand. Different settings for θ will have
to be tested in order to find the desired tradeoff. Also, DIVA has a high
computational complexity. Furthermore, the solutions in the DIOP target
population fulfill a quality constraint in terms of its objective values, and
whether the solutions are distributed well in objective space depends on the
problem. The solutions of DIVA, on the other hand, are distributed well over
the objective space, and depending on the chosen θ value, the solutions can
have poor objective values, as long as they contribute enough to diversity.
To sum up, it is recommended to use DIVA for biobjective problems where
the population size is relatively small, e.g. µ = λ = 20, and if there is
no quality constraint in objective space and/or if the optimization focus is
more on diversity than on good objective space values. For larger population
sizes, and if the decision maker has a clear idea of what objective values are
acceptable, the use of DIOP is recommended.


Pareto-Set Analysis Through Clus-
tering

In a multi-objective setting, the result of an optimization run is a set of
compromise solutions. Users therefore have alternative solutions at hand
that they can directly compare. However, the number of solutions can be
large and the solutions can be time consuming to interpret, as there may
be no intuitive visualization of all aspects of a solution, or there may be
many decision variables. Therefore, comparing solutions may be time con-
suming and corresponding tools are desirable to support a decision maker
in separating relevant from irrelevant information. Therefore, this chapter
presents two methods to extract structural information from Pareto-set ap-
proximations that offer the possibility to present and visualize the trade-off
surface in a compressed form.

The chapter is organized as follows: First, Section . gives an introduction
of the problem and motivates why and when Pareto-set analysis can be
useful. Section . discusses related work, whereas Sections . and .

 Chapter . Pareto-Set Analysis Through Clustering

introduce two methods to analyze Pareto-sets. Finally, Section . compares
the two methods and their results.

. ·Motivation and Background

When solving optimization problems, there are two scenarios about how
the results can be used. In the first scenario, the end goal is to pick one
preferred solution which will be used as-is. In the second scenario, the
goal is to get new ideas about how a problem could be solved, and also
justify the use of existing solutions by showing that alternative solutions do
not dominate the existing solutions. In a real-world optimization problem
such as the E/E-Architecture problem described in the introduction, the
second scenario applies. The optimization serves as an inspiration of how
an E/E-Architecture could be designed differently. It is therefore useful to
approximate the set of Pareto-optimal solutions in order to learn about the
underlying problem and to gain information that provides a better basis
for decision making. By being presented with such a set of compromise
solutions, the so-called Pareto-set approximation, the decision maker can
not only study the relationships among the objectives, but also gain insights
about the inherent structure of the problem.

In real-world problems, engineers who optimize such problems are not only
interested in the objective values of the found solutions, but also in their
structure, i.e. how the designs look like. For example considering the E/E-
architecture problem, the engineers are not only interested in the cost and
the complexity of an optimized architecture, but also in the bus structures
of the optimized solutions, or whether these solutions were centralized, with
a few master electronic control units (ECUs) or distributed with many small
ECUs with comparable functionality. Therefore, a method to analyze the
Pareto-front approximation should also include information about the deci-
sion space, and not only the objective values of the found solutions.

Including the decision space into the decision making process introduces a
new level of difficulty. The interpretation of the achieved solutions might

.. Motivation and Background 

be time-consuming, because the representation of each solution is complex.
For example in the E/E-architecture problem, there were approximately 150

components that were partitioned to an average of 80 assembly units, and
approximately 270 signals that were transmitted over 3 busses on average.
In addition, the assembly units need to be placed in the car, microcontrollers
and gateways have to be selected, and the physical wires have to be routed.
There is no easy way to plot all aspects of an E/E-architecture. Comparing
two architectures is even more onerous. The more detailed the model to be
optimized becomes, the more time it takes to inspect the solutions returned
by the optimization algorithm. Here, it is useful to have an automated
method to structure the solutions, such that the engineer only has to look
at a few of them, and knows that the remaining solutions are of a similar
structure with similar objective values. If possible, the method should also
highlight the specific similarities and differences between solutions.

To sum up, when developing methods that help with decision making, three
problems have to be tackled. First, the Pareto-optimal solutions are difficult
to interpret in objective space if there are more than two or three objectives.
Second, they are also difficult to interpret if the decision space is complex
and if there are many decision variables. Third, the set is also difficult to
interpret because it contains a large number of solutions, and the decision
maker might not have time to look at all of them. Nowadays, increased
computing resources allow to cope with problems that have more and more
decision variables and objectives, see e.g. [, ]. Therefore, in practice all
three entities can become large and tools are needed that help the decision
maker in analyzing the trade-off surface.

In this thesis, we focus on the problems caused by the fact that there are
complex decision spaces and many solutions. The issue of dealing with many
objective functions has been recently addressed in a few studies, see [] for
an overview. Different methods have been proposed to reduce the number
of objective functions by omitting certain criteria such that the resulting
error is minimized; this can be helpful both for assisting in decision making
and for speeding up the search.

 Chapter . Pareto-Set Analysis Through Clustering

The problem of many decision variables has been mainly studied in the
context of search, see e.g. [, ]; only few contributions exist in the context
of Pareto-set analysis, see e.g. []. However, Deb and Srinivasan [] have
shown that important structural information in the decision space may be
contained within a non-dominated set. This thesis proposes two methods,
the Module-Annotating Hierarchical Clustering Algorithm (MANA) that
aims at biobjective problems with binary decision spaces, and the Pareto-
Front Analyzer (PAN) that aims at general optimization problems with an
arbitrary number of objectives.

In MANA, the main idea is to identify modules of decision variables that
are strongly related to each other. Thereby, the set of decision variables can
be reduced to a smaller number of significant modules. Furthermore, the
solutions are grouped in a hierarchical manner according to their module
similarity. Overall, the output is a dendrogram where the leaves are the
solutions and the nodes are annotated with modules that are contained in
the solutions below that node.

The second method, PAN, helps the decision maker by clustering a given
set of tradeoff solutions. The found clusters are compact and well separated
both in decision and in objective space. A good clustering of the tradeoff
solutions both in decision space and in objective space elicits information
from the front about what design types lead to what regions in objective
space. The novelty of PAN over existing work is its general nature, as it
does not require the identification of distinct design variables or feature
vectors. Instead, PAN only requires that a distance measure between a
given pair of solutions can be calculated both in decision and in objective
space. This clustering problem is formulated as a biobjective optimization
problem, and a multi-objective evolutionary algorithm is used in PAN to
generate promising partitionings.

.. Related Work 

. · Related Work

The first approach presented in this thesis, which identifies modules of sim-
ilar decision variable settings and clusters the solutions according to these
modules, is strongly related to the concepts of building blocks as well as to
biclustering. Building blocks [] have already been used explicitly during
both single-objective search, e.g., in the messy GA [], and multi-objective
search []. In the messy GA, promising building blocks are generated prior
to the search. Here, we argue that an automated identification of those
building blocks in a given Pareto-set approximation makes also sense after
the search to assist in decision making. Unlike in the messy GA, we would
like to generate building blocks based on problem specific information that
is provided in the decision space. The consideration of the decision space is
in fact crucial in the case of multi-objective optimization, as was indicated
recently by Preuss et al. [].

Identifying sets of decision variables that exhibit homogeneous behavior over
a large number of solutions also corresponds to the concept of biclustering.
Biclustering is a recent extension of standard clustering that aims at finding
large homogeneous submatrices in a matrix, the so-called biclusters. Biclus-
tering has become popular especially in computational biology, see Madeira
and Oliveira [] for a survey. Biclustering methods mainly differ in the
definition of homogeneity, the distribution of the biclusters found and the
strategies that are used to find the biclusters. One of the first biclustering
algorithms presented in the literature was the one of Hartigan [] which is,
due to its simplicity, also used in the first method of this chapter. However,
Hartigan’s algorithm is not able to find biclusters that overlap which is its
main drawback. An algorithm that not only allows the biclusters to over-
lap but also finds the exhaustive set of all biclusters is Bimax []. Such
an exhaustive search, however, is only applicable for small and/or sparse
matrices.

In the second approach presented in this thesis, a clustering that is ac-
ceptable both in decision and in objective space is sought, for general de-
Except for biclusters that are entirely contained in larger ones.

 Chapter . Pareto-Set Analysis Through Clustering

cision and objective spaces. This problem is closely related to traditional
clustering, which aims at finding groups of points in such a way that the
points within a cluster are as similar as possible, whereas points belonging
to different clusters should be well distinguishable. Clustering is an unsu-
pervised process that groups solutions based on how near they are to each
other. This differs from classification, which uses supervised learning to
derive rules to assign solutions to groups by using training data, i.e. given
assignments that are known to be correct. Clustering problems have been
known for a long time, see e.g. Xu and Wunsch [] for a good overview of
the field and an introduction into standard clustering techniques, including
partitional clustering which is used in this work. Other techniques that are
not considered in this chapter because they either place some assumptions
on the solution space or do not produce crisp clusters are hierarchical, neural
network-based, kernel-based, sequential or fuzzy clustering techniques.

The clustering problem tackled in this chapterhk differs from tradi-
tional clustering as the considered points are characterized by two aspects,
namely the decision space representation of solutions as well as their objec-
tive space values. We would like to group solutions such that the clusters
are close in objective space, but at the same time exhibit strong similarities
in decision space. Note that this is not the same as multi-objective clus-
tering, as it is e.g. described by Handl and Knowles []. Multi-objective
clustering aims at solving common problems in standard clustering, such
as setting the tradeoff between cluster compactness, cluster separation and
cluster number. It does so by transforming the clustering problem into a
biobjective problem, a process which is also known as multiobjectivization,
where the first goal is to optimize the cluster compactness and the second
goal is to optimize cluster separation.

Clustering of data which is characterized by more than one aspect has re-
cently gained attention in the field of bioinformatics, where for instance
genes need to be grouped according to their mRNA expression profiles and
their protein interaction partners. A commonly used approach combines
this data into one matrix and then applies conventional clustering tech-
niques []. In our case, the cluster measures are different for the objective

.. Related Work 

and the decision space, so merging the two spaces is not an option. Other
approaches consider both datasets separately, but are designed to find only
a single best cluster [, ]. In this study, however, we would like to find
multiple groups of solutions. Bushel et al. [] use a common distance mea-
sure, i.e. the sum of Euclidean distances in both spaces, and then apply the
k-means clustering algorithm to derive the groups. In our problem however
we are considering data sets where the best partitioning in decision space
might be different from the best partitioning in objective space, and we
would like to generate the tradeoff solutions in between. Pollard and van
der Laan [] apply iterative clustering, which means that the data is first
clustered in one space, and the resulting clusters are then clustered again
in the other space. This process can be repeated, or the order of the spaces
can be reversed. This approach is similar to the approach proposed by
Aittokoski et al. [], that applies a modified k-means algorithm to cluster
the solutions in objective space. For a refinement, the same algorithm can
be applied to group the solutions of individual clusters in decision space.
Finally, Narayanan et al. [] propose a measure to quantify the goodness of
clusters in different spaces. They assume that each space can be transformed
into a graph, where the nodes are the genes and the edges are the relations
between genes. Here, different relations can be modeled in different graphs.
The measure then calculates for each cluster a score on each graph and the
worst score over all graphs is selected as the representative score for that
cluster. The partitioning goodness measure then is defined as the sum of
these representative scores of all clusters.

Some recent efforts have been undertaken in order to infer relationships
between decision and objective space, which helps to extract design princi-
ples that can be useful to the decision maker. One such method is called
‘innovization’ (innovation through optimization), see Deb and Srinivasan
[]. To be able to apply innovization it is assumed that the decision space
is built from real and/or discrete decision variables which can take certain
values. In earlier innovization approaches [], solutions were examined
manually on a specific problem to derive interesting facts about variables
such as common variable settings, variable importance, and relations be-
tween variable settings and objective values. A more recent approach [],

 Chapter . Pareto-Set Analysis Through Clustering

automates this process by first using clustering in objective space and then
fitting some basis functions to model the data in the cluster.

Other approaches aim at visualizing the Pareto-front and/or the Pareto-
optimal solutions in decision space, and inferring design principles from this
visualization. One such approach is using self-organizing maps (SOMs) [],
where high-dimensional decision and objective spaces are mapped to two-
dimensional maps. Another approach is using heatmaps [], where real-
valued variable and/or objective vectors of a set of solutions are plotted
as colored heatmaps. Both approaches assume that the decision space is a
real-valued space.

Some work has also been done in order to do feature extraction. Sheng
et al. [] assume that each solution can be described as a set of features,
which can, but do not have to be equal to the decision variables. They
then optimize a partitioning using an evolutionary algorithm, where they
also evolve a subset of features which is to be taken into account when
calculating the partitioning goodness. Sugimura et al. [] also assume
that there are design variables, and mine for design rules that specify which
variable settings lead to which fitness levels. Note that all of the previously
mentioned approaches make some assumptions about the decision space,
i.e. that there is a given set of continuous or discrete design variables, such
that each solution can be represented as a vector of real or discrete values.
It is also assumed that solutions with similar vectors have similar designs.
Considering the E/E-architecture problem described in the introduction,
it might be difficult to define the space of all possible architectures using
design variables. In fact, we decided to represent an E/E-architecture as
a hierarchical partitioning with labeled nodes. Our approach aims at such
problems with complex decision spaces, as the only requirement of our ap-
proach is that it is possible to measure the distance or dissimilarity between
any two solutions.

There has been a multitude of approaches to do clustering using evolution-
ary algorithms, see e.g. Hruschka et al. [] for a comprehensive overview
of current approaches. These approaches mainly differ in the used represen-
tations, variation operators, fitness functions (i.e. the used cluster validity

.. Binary Decision Spaces with Two Objectives 

index) and whether the number of clusters is variable or is assumed to be
fixed.

Also, clustering has been used to prune a given set of tradeoff solutions
e.g. produced by a multi-objective optimizer in order to help the decision
maker. Typically, this clustering is done solely in objective space. Taboada
and Coit [] apply the k-means algorithm for all possible number of clus-
ters. Morse [] uses both partitional and hierarchical clustering. Rosenman
and Gero [] tackle the problem of differently scaled objectives.

Finally, there has been some work that aims at maintaining diversity in
decision space during optimization, see for example [], or Chapter  of
this thesis. If there are so-called preimages (i.e. distinct regions) in the de-
cision space that map to the whole Pareto-optimal front, a decision maker
might be interested in finding all of those preimages. In such cases, cluster-
ing the solutions not only in objective space, but also in decision space is
advantageous.

. · Binary Decision Spaces with Two Objectives

This section presents the Module-Annotating Hierarchical Clustering Algo-
rithm (MANA), a method that helps interpreting Pareto-sets or approxi-
mations thereof, which have many solutions and many decision variables.
The main idea is to identify sets of decision variables, called modules, that
are strongly related to each other. For binary decision spaces, a solution is
said to contain a module if all decision variables belonging to the module
are set to 1 in that particular solution. We are looking for large modules
that are contained in as many solutions as possible. Using these modules,
the solutions can be clustered hierarchically. This hierarchical clustering
can be visualized both in decision and objective space, yielding information
about the relationship between decision space and objective space.

 Chapter . Pareto-Set Analysis Through Clustering

.. ·Problem Setting

We here follow the notation introduced in Section .: Suppose we have a
multi-objective minimization problem f : X → Y, f = {f1, ..., fm}. Here,
we only consider biobjective problems, i.e. Y ⊆ R2, and only binary decision
spaces with d decision variables, i.e. X ⊆ {0, 1}d. Furthermore, assume we
are given a Pareto-set approximation, i.e. a set of non-dominated solutions,
which can, but does not have to be generated by a multi-objective optimizer.
Such a Pareto-set approximation can be considered as a set of decision vec-
tors {x1, . . . , xn} ⊆ X that are mutually non-dominated. In this thesis, we
represent a Pareto-set approximation as a decision matrix Ξ ∈Mn,d({0, 1})
whereMn,d({0, 1}) is the set of binary matrices with n rows and d columns.

Definition . (decision matrix): A decision matrix Ξ = (ξi,j)n×d is a matrix
with d columns and n rows that is composed of the decision vectors xr =

(ξr,1, . . . , ξr,d) of n solutions (1 ≤ r ≤ n).

In practice, two main problems emerge. The first problem is that there are
too many decision variables. The methods proposed in this thesis tackle
this problem by merging the decision variables into so-called modules.

Definition . (module): A module is a subset S ⊆ {1, . . . , d} of the decision
variables.

These modules are then used to generate a new reduced representation of
the decision variables.

The second problem is that there are too many solutions. This problem is
tackled by grouping solutions hierarchically. Sec. .. introduces a method
to generate such a grouping based on modules. Both the problem of finding
the best reduced representation and the problem of grouping the solutions
are formalized in the following.

Transformation to a New Representation
When identifying modules, the goal is to find a small set of large modules.
By representing modules instead of decision variables, a reduced represen-
tation of a decision matrix can be achieved. More precisely, given a set of

.. Binary Decision Spaces with Two Objectives 

modules S = {S1, . . . , Sl}, we would like to transform the decision matrix
Ξ ∈ Mn,d({0, 1}) into a new representation, the module matrix Υ wherein
the rows correspond to the original solutions in Ξ and the columns corre-
spond to the modules in S. For a certain solution xr, the ith bit in the
new representation yr is set to 1 if and only if the original representation
contains the module Si, i.e., if and only if all decision variables belonging
to Si are set to 1 in xr.

Definition . (module matrix): Given a decision matrix Ξ = (ξi,j)n×d ∈
Mn,d({0, 1}) and a set of modules S = {S1, . . . , Sl}, the function TΞ→Υ(Ξ, S)

yields a corresponding module matrix Υ = (υi,j)n×l, which is defined as
υr,c = 1 ⇔ ∀i ∈ Sc : ξr,i = 1 for all 1 ≤ r ≤ n and 1 ≤ c ≤ d. Each row of
Υ is called a module vector.

Note that we here assume that whenever a module is selected, all contained
decision variables are set to 1. In general, one could consider an arbitrary
variable assignment representing the module; for reasons of simplicity, we
do not consider this further.

Example .: Consider a decision matrix Ξ with five solutions and decision
vectors of length 5 as depicted on the left of Figure .. In addition, the
module set S consists of three modules S1 = {1, 2, 3}, S2 = {2, 3, 4}, and
S3 = {4, 5}. The above defined transformation TΞ→Υ maps the decision
matrix Ξ to the new representation Υ = TΞ→Υ(Ξ, S) as shown on the right of
Figure .. For example, the decision vector x3 has ones at the positions 1 to
4 and therefore contains both modules S1 = {1, 2, 3} and S2 = {2, 3, 4} but
not module S3 since the fifth bit is not set to 1. Therefore, its corresponding
module vector y3 in Υ contains ones at the positions 1 and 2 and a zero at
position 3. ◦

Note that in the above example, the module matrix can cover all 1s in the
original decision matrix. In general, this is not the case as the following
example shows.

Example .: Consider the decision vector x1 in Figure . and the same
modules as in the Example above. Since x1 only contains module S3 but

 Chapter . Pareto-Set Analysis Through Clustering

x1

x2

x3

x4

x5

1 2 3 4 5

1 1 1 0 0
1 1 1 0 0
1 1 1 1 0
0 1 1 1 0
0 0 0 1 1

decision matrix Ξ = (ξij)
with decision vectors xr

TΞ→Υ−−−−→

y1

y2

y3

y4

y5

S1 S2 S3

1 0 0
1 0 0
1 1 0
0 1 0
0 0 1

module matrix Υ = (υij)
with module vectors yr

Figure . Illustration of the decision matrix/module matrix concept for the given modules
S1 = {1, 2, 3}, S2 = {2, 3, 4}, and S3 = {4, 5}.

not S1 and S2, the bit ξ1,2 cannot be reconstructed with the module repre-
sentation Υ. Therefore with the transformation TΞ→Υ information is lost.
◦

To measure the information loss described in the previous example, we
interpret a module matrix again as a decision matrix by retransforming it
with the following function.

Definition . (module vector): Given a set S = {S1, . . . , Sl} of modules, a
module vector yr = (υr,1, . . . , υr,l) can be interpreted as the decision vector
TΥ→Ξ(y

r, S) = (ξr,1, . . . , ξr,d) where a bit ξr,c is set to 1 if at least one entry
υr,i in yr is set to 1 for which the module Si contains the column c, i.e.,
ξr,c = 1⇔ ∃Si ∈ S : υr,i = 1 ∧ c ∈ Si for all 1 ≤ r ≤ n and 1 ≤ c ≤ d.

When reducing the decision matrix to the module matrix, we want to
achieve the smallest representation while most of the information has to
be preserved. More formally, we assess a certain transformation by com-
puting an error function e(Ξ, TΥ→Ξ (TΞ→Υ (Ξ, S) , S)) between the origi-
nal decision matrix Ξ and the corresponding retransformed module matrix
TΥ→Ξ (TΞ→Υ (Ξ, S) , S). This error can be defined with respect to both
decision space and objective space. Here, we use the following two error
functions:

.. Binary Decision Spaces with Two Objectives 

Definition . (error function): Let Ξ = (ξi,j)n×d ∈ Mn,d({0, 1}) and ΞT =

(ξT
i,j)n×d ∈Mn,d({0, 1}) be two decision matrices. Then, one possible error

function with respect to decision space is the Hamming distance between the
matrices:

edec(Ξ,ΞT) :=
∑

1≤i≤n

∑
1≤j≤d

|ξi,j − ξT
i,j |

An error function with respect to to objective space can be defined as

eobj(Ξ,ΞT) :=
∑

1≤i≤n

Iε

(
f((ξT

i,1, . . . , ξT
i,d)), f((ξi,1, . . . , ξi,d))

)
where Iε is the binary additive epsilon indicator of []. Note that other
quality indicators like the hypervolume indicator in [] can be used as well.
The second error function gives an idea of the change in objective vector
values if the new module representation is used.

Now, we can state the problem of finding a best set of modules according
to a given error function:

Problem . (bi-objective module selection): Let Ξ ∈ Mn,d({0, 1}) be a
decision matrix and e :Mn,d({0, 1}) ×Mn,d({0, 1})→ R an error func-
tion that computes an error between two arbitrary decision matrices.
Then, the bi-objective problem of simultaneously selecting a module set
and minimizing the number of modules can be stated as finding a set
S = {S1, . . . , Sl} such that both the number of modules l and the error
e(Ξ, TΥ→Ξ (TΞ→Υ (Ξ, S) , S)) are minimized.

Theorem .: Problem . is NP-hard with respect to the error function
edec(Ξ,ΞT) :=

∑
1≤i≤m

∑
1≤j≤n |ξi,j − ξT

i,j | .

The proof is given in []. Methods to tackle this module selection problem
are presented in Sec. ...

Grouping Solutions by Using Structure Information
Given a set of modules, we would like to reduce the number of solutions
by merging them into hierarchical groups. The goal is to generate groups
whose solutions are as similar as possible. This in general corresponds to

 Chapter . Pareto-Set Analysis Through Clustering

x1

x2

x3

x4

1 2 3 4 5

0  0 1 1
0 1 1 1 1
1 1 1 1 0
0 1 1 1 0

decision matrix Ξ

̸=
retransformed matrix

TΥ→Ξ (TΞ→Υ (Ξ, S) , S)

t1

t2

t3

t4

1 2 3 4 5

0  0 1 1
0 1 1 1 1
1 1 1 1 0
0 1 1 1 0

TΞ→Υ−−−−−→

←−−−−−
TΥ→Ξ

y1

y2

y3

y4

S1 S2 S3

0 0 1
0 1 1
1 1 0
0 1 0

module matrix Υ

Figure . An example where the retransformation does not yield the original decision ma-
trix. The modules are defined as S1 = {1, 2, 3}, S2 = {2, 3, 4}, and S3 = {4, 5}.

the task of clustering. Instead of setting the number of groups a priori,
we would like to be able to traverse the group hierarchy from the largest
group, which contains all solutions, to the smallest groups where each group
consists of only one solution. To achieve this, we propose to use dendrograms
to represent the grouping structure. The resulting groups should strongly
depend on the modules found, such that each group can be uniquely defined
by a sequence of modules that are selected in this group. To this end,
module-annotated dendrograms are introduced.

In general, a dendrogram is a binary tree that can be used to represent a
hierarchically organized grouping structure. An example is given in Fig-
ure .. The nodes are distributed on so-called levels, i.e., each node has
a fixed distance from the root. In a module-annotated dendrogram, each
level has exactly one node, reflecting the order in which modules are se-
lected for the grouping. Each node is associated with one module, where

.. Binary Decision Spaces with Two Objectives 

solutions containing the module all belong to the left branch of the node,
and solutions that do not contain the module belong to the right branch.
The leaves represent the rows of the decision matrix, i.e., the solutions in a
Pareto-set approximation. The branches represent groups that contain all
solutions (leaves) below that branch. In general, solutions and groups of
solutions that lie close to each other have many modules in common and
therefore have a high similarity.

We consider the goal of identifying the dendrogram that minimizes the
distances of the solutions within the groups. As a distance measure of a
group G ⊆ {1, . . . , n} of solutions, we use the average pairwise Hamming
distance s(G) := 1/

(|G|
2

)∑
r,s∈G dH(xr, xs) where the Hamming distance

between two points xr = (xr
1, . . . , xr

d) and xs = (xs
1, . . . , xs

d) is defined as
dH(x

r, xs) =
∑

1≤j≤d |xr
j − xs

j |. For evaluating an entire dendrogram, we
use the intra-group distance measure as defined above averaged over all
groups in a level cut and averaged over all these cuts. A level cut divides
the dendrogram horizontally, such that with each level cut a set of groups
is associated. For example, the level cut between S2 and S3 in Figure .
contains three groups: The one where all solutions contain S1 and S2 (left
subtree), one where all solutions contain S1 but not S2 (middle) and the
third where all solutions neither contain S1 nor S2 (right subtree).

Definition . (distance measure of dendrograms): As distance measure s of
a dendrogram D with the level cuts C1, . . . , Cm ⊆ 2{1,...,n}, where each level
cut Ci is a set of groups Ci = {Gi,1, . . . , Gi,|Ci|} (Gi,j ∈ {1, . . . , n}) we
propose the average pairwise intra-group Hamming distance, averaged over
all groups and all cuts. The number of groups associated with a cut is equal
to the number of intersections between the cut and the dendrogram branches.

s(D) :=
1

n

∑
1≤i≤n

1

|Ci|
∑

1≤j≤|Ci|

1(|Gj |
2

) ∑
r,s∈Gi,j

dH(x
r, xs).

Overall, this leads to the following problem which has been shown to be
NP-hard [].

 Chapter . Pareto-Set Analysis Through Clustering

S
1

S
2

S
3

S
4

S
5

S
6 S

1

S
2

S
3

S
4

S
5

S
6

cut

1 2 3 4 5 6 7

Figure . Example of a dendrogram with additional module annotations (right) for a given
decision matrix (lest). The solutions are denoted by the numbers from 1 to 7 and the modules
by S1 to S6. The vertical lines on the right of the decision matrix indicate the corresponding
groups.

Problem . (finding the optimal dendrogram): Given a decision matrix
Ξ, the problem of finding the optimal module-annotated dendrogram cor-
responds to finding the dendrogram D with the lowest distance measure
s(D) as defined in Definition ..

.. ·MANA Algorithm

We propose MANA to solve the two problems presented in the previous
section. Since the two problems are NP-hard, we propose corresponding
heuristics in the following. More precisely, we propose (i) two approaches
based on biclustering for approximating the module selection problem and
on that basis (ii) a method to construct a module-annotated dendrogram.
To apply MANA, one of the proposed biclustering algorithms has to be
selected in order to calculate an approximation of the optimal set of mod-
ules. After the modules have been generated, MANA uses these modules to
produce an approximation of the optimal dendrogram.

Module finding
As described in Sec. .. we would like to find modules that exhibit homo-
geneous behavior over many solutions. This problem corresponds to the task

.. Binary Decision Spaces with Two Objectives 

of biclustering. In the following, a bicluster is defined as a submatrix of Ξ
that only contains ones. Each of these biclusters forms a module consisting
of the bicluster’s columns. Here, we are using two exemplary biclustering
algorithms: Hartigan’s algorithm [] and Bimax [].

Both algorithms have their advantages and drawbacks but due to their
complementary behavior, we selected them as representative examples of
biclustering algorithms. The Hartigan algorithm is the first proposed bi-
clustering algorithm, and many other algorithms are based on its principles,
cf. []; it is simple and fast. In contrast to the Bimax algorithm, it limits
the number of possible biclusters substantially as it does not find overlap-
ping biclusters. The Bimax algorithm, however, finds all possible inclusion
maximal biclusters, i.e., all biclusters that are not contained in larger ones.
As the number of all biclusters is in general exponential in the matrix size
this algorithm is impractical for larger matrices.

Hartigan’s Algorithm: Hartigan’s algorithm is based on a simple divide-
and-conquer strategy; it iteratively divides the decision matrix into smaller
submatrices. Due to this strategy, the order of the rows and columns of the
decision matrix is fixed as soon as the splitting starts. The matrix therefore
has to be sorted prior to algorithm execution. To be able to identify large
biclusters, an appropriate sorting measure is essential.

In this thesis, we use two criteria for the initial sorting: one sorts according
to the Hamming distances in decision space and the other sorts according
to the objective space values. The first criterion places the two solutions
with the highest Hamming distance as first and last row, making them the
upper and lower border solution. It then iteratively selects the solution with
the smallest Hamming distance to either border solution, places it next to
this border solution and makes it the new respective border solution. The
second criterion is restricted to two-objective problems; it sorts the solutions
in the decision matrix according to their values of the first objective.

After sorting, the iterative splitting of the matrix takes place. In each step,
the theoretical best split for each existing submatrix is calculated and the
best overall split is performed by splitting one of the existing submatrices

 Chapter . Pareto-Set Analysis Through Clustering

into two new submatrices. The algorithm stops as soon as each submatrix
contains only ones or only zeros. As a splitting measure for Hartigan’s
algorithm, we take the following percentage split measure, defined as

Q(M1, M2) =

∣∣∣∣# ones in M1

|M1|
− # ones in M2

|M2|

∣∣∣∣
where M1 and M2 are the two submatrices resulting from the split. This
split measure has to be maximized in order to find the best split.

Bimax: The recursive Bimax algorithm performs an exhaustive search for
the set of all biclusters using a branch-and-bound strategy. Even for rea-
sonably sized matrices, the number of biclusters found can become high.
Therefore, we use a heuristic method to prune the set of biclusters found.
The pruning method iteratively selects the bicluster which covers most of
the remaining 1s. The remaining 1s are defined as the 1s not yet covered
by any selected bicluster. This iteration stops if either a predefined number
of selected biclusters is reached or all 1s of the matrix are covered by the
selected biclusters.

Grouping Solutions Within Dendrogram
To create a module-annotated dendrogram, hierarchical clustering could
be used on the reduced representation, in which case each module would
contribute equally to the grouping. Here, however, we would like a group to
be defined by the sequence of modules that are selected in all solutions of
the group. We propose the following simple approach. The grouping starts
according to the largest bicluster. This bicluster divides the solutions into
two groups, namely those solutions which contain the module given by the
bicluster and those that do not. This is the root of the dendrogram. Then,
the next largest bicluster has to be selected where the size of a bicluster is
defined as the number of ones covered by this bicluster that are not covered
by any previously chosen bicluster. The generation of the dendrogram stops
if all groups contain only one solution.

.. Binary Decision Spaces with Two Objectives 

.. ·Experimental Validation

In this section, we address two questions: (i) are the algorithms successful in
finding meaningful groups, and (ii) are there interesting structures present in
Pareto-optimal sets and approximations thereof. These aspects are studied
on the basis of the bi-objective 0-1-knapsack problem [].

Proof-of-principle Results on Well-structured Matrices
To show that both methods presented in the last section can find known
structures in a given decision matrix Ξ, we implant random biclusters, each
defining a particular module, into a matrix and analyze the capability
of the two biclustering algorithms to find the corresponding modules. In
detail, biclusters that contain the same solutions are merged to constitute
one bicluster beforehand. Each of these enlarged implanted biclusters cor-
responds to a module that contains all columns the bicluster contains. To
check whether both Hartigan’s algorithm (with sorting according to Ham-
ming distance) and Bimax find these modules, we use the following measure.
For each implanted module, we compute the module found by the biclus-
tering algorithms that matches the implanted module best, i.e., that has
the highest ratio of shared columns to the union of both column sets. The
average of these best ratios over all implanted modules indicates the percent-
age of implanted modules that are covered by the automatically identified
modules.

The results for different matrix sizes and different densities are shown in
Table .. Two major observations can be made. First, Bimax finds more
of the implanted structure than Hartigan due to its exhaustive search for
biclusters. The covering is not 100% for Bimax because it only finds inclu-
sion maximal biclusters, that can be larger than the implanted biclusters.
Second, the results for the sparse matrices are in all cases better than for
the dense matrices. This can be explained by the high number of implanted

To this end, random biclusters are generated until the desired number of ones is reached.
The biclusters are then placed in the matrix randomly in order of their sizes—starting with
the largest—with the restriction that biclusters cannot overlap.

 Chapter . Pareto-Set Analysis Through Clustering

matrix percentage of percentage of covering

size ones in matrices Hartigan Bimax

x  . .
x  . .
x  . .
x  . .
x  . .
x  . n/a

Table . Percentage of modules found in structured random matrices that are covered by
implantedmodules. Note that the number of biclusters found by Bimax on the dense 300×300
matrix was already too large, i.e., its running time longer than one day.

biclusters in the dense matrices and the issue that even Bimax does not find
all of these biclusters since the pruning heuristic of Sec. .. was used.

Pareto-Optimal Sets Contain Structure
We would now like to show that Pareto-optimal sets actually contain struc-
ture. As a test case, the knapsack problem is chosen, as its Pareto-optimal
set can be calculated exactly using an integer linear programming solver. If
the hypothesis that a Pareto-optimal set actually contains structure holds,
the corresponding decision matrix should contain larger and fewer modules
than a random matrix; this, in turn, should be reflected in a smaller error
as defined in Definition ..

Here, we compare the Pareto-optimal sets of 11 different bi-objective knap-
sack instances including 100 items with 11 randomly generated matrices of
similar size with respect to the structure that is found by the two pro-
posed methods based on Hartigan’s algorithm (with sorting according to
Hamming distance) and Bimax. The random matrices are generated by
The size is chosen by calculating the average length and width of the knapsack Pareto-
optimal sets. In this case, there are on average 150 solutions and 55 items that are neither
contained in all nor in none of the solutions. Note that we are not interested in decision
variables that are contained in all or no solution. Therefore, such columns are deleted prior
to module finding.

.. Binary Decision Spaces with Two Objectives 

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

Number of Modules

E
rr

o
r

in
 D

e
ci

si
o
n
 S

p
a
ce Front, Bimax

Front, Hartigan

Random, Hartigan

0 100 200 300
0

0.5

1

1.5

Number of Modules

E
rr

o
r

in
 O

b
je

ct
iv

e
 S

p
a
ce Front, Bimax

Front, Hartigan

Random, Hartigan

Figure . Comparison between Pareto-optimal sets and random matrices with respect to
error function edec (lest) and eobj (right) averaged over 11 instances. The error is plotted
against the number of modules taken into account if the modules are chosen as in the den-
drogram, i.e., according to their size—starting with the largest.

setting every entry to 1 independently with probability 0.5; the solution’s
objective vectors are also randomly chosen by assigning randomly generated
profits and weights to the 0-1-knapsack problem.

The results as depicted in Figure . indicate that the Pareto-optimal fronts
contain more structure than the random matrices. In detail, both Bimax
and Hartigan find modules that yield smaller errors for the Pareto-optimal
fronts than for the random matrices if the same number of modules is taken
into account. Note that although the objective space values are not taken
into account by either method, the error in objective space is significantly
smaller for Pareto-optimal fronts than for random matrices. Furthermore,
we have to note that Bimax was not applicable on the random matrices since
the number of biclusters found is too high. However, Bimax finds better
modules in the structured Pareto-optimal sets yielding a lower error than
those found by Hartigan’s algorithm. An error of zero is already reached
with about 50 modules which results in a reduction of the decision variables
of about 50% in the corresponding module matrix.

Progress of Structure During Search
To study the change of the structure of the Pareto-optimal set approxima-

 Chapter . Pareto-Set Analysis Through Clustering

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation

M
o
d
u
le

 C
o
ve

ra
g
e

Figure . Average coverage of the modules found by Hartigan’s algorithm on SPEA’s
current non-dominated individuals plotted over time.

tion during the run of a multi-objective evolutionary algorithm, we apply
the Modified Strength Pareto Evolutionary Algorithm (SPEA) [] to
one of the 0-1-knapsack instances of the previous section. This is the first
step towards an automated detection of problem structure to speed up the
search. However, it remains future work to study an online search space
reduction in depth. Figure . shows the progress of similarity between
the population’s modules and the modules contained in the Pareto-optimal
set over time. In this case, Hartigan’s algorithm with sorting according to
Hamming distance was applied both to the sets of non-dominated solutions
in each generation and on the Pareto-optimal set itself to find the contained
modules. The similarity of modules is defined as the deviation between the
two column sets as described in Sec. ...

Figure . shows the trend of the module coverage over time. As expected,
the modules found in the population become more similar to the ones con-
tained in the Pareto-optimal set as the population converges to the Pareto-
optimal set, although the fluctuations of the similarity are large.

For SPEA, the implementation from the PISA toolbox with standard parameter values is
used []. The population size is set to 300 and the knapsack instance has 100 items.

.. Binary Decision Spaces with Two Objectives 

Running Times
The Bimax algorithm has a worst-case running time which is exponential
in the matrix size. This is mainly due to the number of biclusters found,
which limits the usage of Bimax. For example, the decision matrix of size
701× 123 containing the solutions of a Pareto-optimal set from a 250 items
knapsack instance produce more than 2 GB of data. One way to reduce this
huge amount of data is to restrict the minimum bicluster size. However, this
cannot solve the problem completely. Although structured matrices of size
300 × 300 can be processed, Bimax needs more than one day on an AMD
64bit Linux machine with 4 cores and 2.6GHz to process random matrices
of the same size. The usage of Bimax is therefore limited to small instances.
However, it served as a reference method that yields—due to its exhaustive
search for biclusters—better results than Hartigan’s algorithm.

For Hartigan’s algorithm, a similar restriction on the minimum bicluster size
can be used which makes the algorithm applicable to matrices of reasonable
size, see Figure .. For example, the computation of the modules within
a Pareto-optimal set of a 250 item knapsack instance with 344 solutions
takes about one minute on the AMD Linux machine mentioned above if the
minimum bicluster size is set to 10% of the matrix dimensions.

.. ·Results

In this section, we apply MANA to analyze two populations of a knapsack
and a network processor design problem to show what can be gained from
an analysis of the structure in Pareto-optimal set approximations.

Knapsack Problem
For the biobjective 0-1-knapsack problem, we focus on the grouping accord-
ing to both similarity in decision space and objective space. This is not
directly provided by the proposed approaches but can be gained indirectly
by sorting the decision matrix within the Hartigan framework according to
objective space and doing the grouping according to decision space. For sets
of non-dominated solutions of a two-objective problem, the sorting of the
decision matrix according to objective space values can be achieved without

 Chapter . Pareto-Set Analysis Through Clustering

50 100 150 200 250
0

100

200

300

400

500

Number of Decision Variables

R
u
n
n
in

g
 T

im
e
 [
s]

Min. Bicluster Size: 1

Min. Bicluster Size: Matrix Dimensions/5

Min. Bicluster Size: Matrix Dimensions/10

Min. Bicluster Size: Matrix Dimensions/20

Figure . Running time of Hartigan’s algorithm on Pareto-optimal sets of the 0-1-knapsack
problem for different input sizes and different minimal bicluster sizes. Note that the number
of solutions in the Pareto-optimal sets is 142 on average for the 100 item instances and 344
for the 250 item instances.

loss of generality by sorting according to the values of the first objective.
Figure . shows a grouping example for a Pareto-set approximation of a
0-1-knapsack problem instance with 100 items, generated by SPEA as in
the previous section, using the settings of [].

For illustrating the similarities within the groups, we can additionally plot
the profit-to-weight ratios of the items of the knapsack instance and indicate
for each group which items are included in all solutions of the considered
group (black), and included in no solution of the group (white). Figure .
shows the profit-to-weight ratio plots for three exemplary groups of the
investigated knapsack instance. For clarity, items that are contained in all or
in no solutions of the entire Pareto-optimal set are not plotted. Interestingly,
the analyzed Pareto-optimal set contains structure within both decision and
objective space: solutions that are neighbored in objective space also show
similarities in their decision vectors. Solutions located on the same extreme
of the Pareto-optimal frontier have similar items selected whereas solutions
on opposite extremes have complementary decision vectors; for solutions

.. Binary Decision Spaces with Two Objectives 

0 2 4 6 8
0

1

2

3

4

5

6

Profit 1 / Weight 1

P
ro

fi
t

2
 /

 W
e
ig

h
t

2

Upper Group

none

all

Items contained in

of the solutions of
the upper group

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Profit 1 / Weight 1

P
ro

fi
t

2
 /

 W
e
ig

h
t

2

Middle Group

none

all

of the solutions of
the middle group

Items contained in

2800 3000 3200 3400 3600 3800
2400

2600

2800

3000

3200

3400

Sum of Profit 1

S
u
m

 o
f

P
ro

fi
t

2

Upper

Group

Middle

Group

Lower

Group

0 2 4 6 8
0

1

2

3

4

5

6

Profit 1 / Weight 1

P
ro

fi
t

2
 /

 W
e
ig

h
t

2

Lower Group

none

all

Items contained in

of the solutions of
the lower group

Figure . Grouping of a Pareto-optimal set approximation for the knapsack problem with
300 solutions and 11 groups (lower lest) and item representation of three exemplary groups:
the group with highest f1 values is shown in the lower right figure, the group with the highest
f2 values is shown in the upper lest figure, and the upper right figure shows a group with
intermediate objective values. The grouping is done with modules of Hartigan’s algorithm.

that have a high f1 value, items with high f1 profit are selected, whereas
solutions with high f2 values contain more items with high f2 profit.

Network Processor Design
As a second application, we choose the problem of a network processor
design as described in [] and as provided in the PISA framework [].
The problem is to optimize the architecture of packet processing devices
with respect to the two objectives performance and cost. In more detail,
components of the processor have to be chosen and computing tasks have to
be assigned to these components afterwards. To investigate the underlying

 Chapter . Pareto-Set Analysis Through Clustering

structure of this problem, we use the multi-objective optimizer IBEA []
to generate a Pareto-optimal set approximation. To this end, the algorithm
is run with a population size of 150 for 300 generations. Only the 33 non-
dominated solutions found are used in the analysis based on Hartigan’s
algorithm.

Figure . illustrates the original decision matrix ordered by objective space
similarity together with the largest found biclusters and shows the resulting
dendrogram. The modules found and the dendrogram help to gain a basic
understanding of the problem, even when the decision maker cannot be sure
about whether the known solutions are Pareto-optimal or not.

For our example instance, 143 out of all 233 decision variables are set to
zero for all 33 solutions, which means that certain tasks are never mapped
to certain components. Four of the remaining 90 decision variables are set
to 1 in all 33 solutions. In this case, it says that in all 33 different processor
designs, one particular component, namely a digital signal processor (DSP),
is chosen and three of the 25 tasks are allocated to this component. This
can assist in decision making in a way that these parts do not have to
be taken into account by the decision maker because all known solutions
have the same sub-structure. From the dendrogram, we can also extract
some information about the problem. For example, in the case of three
groups (horizontal cut between S2 and S3), one group contains module
S1 (left branch of the dendrogram) and the second one only module S2

(middle branch). In the third group, indicated by the rightmost branch in
the dendrogram of Figure ., all solutions contain neither the module S1

nor the module S2. S1 maps all remaining tasks to the DSP. S2, on the
other hand selects a cipher and assigns it two other tasks. Interestingly
and similar to the observation for the knapsack problem, all solutions that
contain a certain module, here S1, occur on an extreme of the Pareto-optimal
front: the solutions are cheap but slow.

.. ·MANA Summary

When solving multi-objective optimization problems, three problems occur
during decision making: (i) the solutions are represented by too many de-

.. Binary Decision Spaces with Two Objectives 

S
1 S

2S
3

S
4

S
5

S
6

S
1

S
2

S
3

S
4

S
5

S
6

Figure . Visualization of structure in a Pareto-set approximation for the network processor
design problem: (lest) decision space values of the 33 non-dominated solutions found; (right)
dendrogram.

cision variables, (ii) too many non-dominated solutions exist, and (iii) too
many objectives are involved in the evaluation. The approach presented in
this section tackled the first and second problem simultaneously. The first
problem is solved by using two biclustering algorithms to automatically
reduce the number of decision variables, by finding so-called modules of
the decision space, i.e. subsets of decision variables that are as large as
possible and are set to the same value in as many solutions as possible. The
information encoded in a large number of decision variables can therefore be
reduced to a smaller number of modules. The second problem is solved by
using these modules to group similar solutions in a dendrogram, where the
solutions are the leaves. Each node in the dendrogram is annotated with
a module, and the solutions to the left of the node contain this module,
whereas the solutions to the right do not contain the module. Each level of
the dendrogram corresponds to a partitioning of the solutions into clusters,
which groups solutions containing similar modules.

The proposed methods have been extensively tested. When running the
biclustering algorithms on artificial binary matrices with implanted biclus-

 Chapter . Pareto-Set Analysis Through Clustering

ters, it was found that the exhaustive biclustering algorithm Bimax finds
more of the implanted clusters than the other tested biclustering algorithm
by Hartigan. The Hartigan algorithm, on the other hand, can be applied to
larger matrices than Bimax. When comparing the biclusters found in the
Pareto-set of a knapsack problem with random matrices, we found that the
Pareto-set contains fewer but larger modules, indicating that Pareto-sets
do contain structure. We also found on a knapsack problem that the mod-
ules of the population of an evolutionary algorithm become more similar to
the modules contained in the Pareto-set during the search. Finally, when
applying MANA to a knapsack problem and a network processor design
problem, it was found that there is a relation between modules contained in
solutions and the solution’s objective values, and that these relations could
be visualized using MANA, as solutions containing the same modules map
to the same objective space region.

In the future, it may be promising to extend the proposed approach to non-
binary decision spaces. Here, advanced biclustering techniques could be
useful []. For a more general approach, modules with arbitrary decision
variable values could be considered. Furthermore, one may think of using
the reduction techniques online, i.e., during the search. The idea would be
to reduce the decision space whenever significant modules have been found.
Thereby, the search may be better focused towards promising regions.

. · General Decision and Objective Spaces

This section presents the Pareto-Front Analyzer (PAN), another method
that helps to analyze Pareto-sets or approximations thereof. It tackles the
case that there are many solutions and that the solutions in general are
difficult to interpret or visualize. It formulates the problem as a biobjective
clustering problems where a partitioning is sought which yields compact
and well separated clusters both in decision and in objective space. A clus-
tering which is good both in decision space and in objective space elicits
information from the front about what design types lead to what regions in

.. General Decision and Objective Spaces 

objective space. This section therefore proposes PAN, an evolutionary algo-
rithm, which yields a set of tradeoff solutions to this biobjective partitioning
problem. The novelty of the presented approach over existing work is its
general nature, as it does not require the identification of distinct design
variables or feature vectors. Instead, the proposed method only requires
that a distance measure between a given pair of solutions can be calculated
both in decision and in objective space.

.. ·Problem Setting

We here follow the notation introduced in Section .. Consider a multi-
objective optimization problem with a decision space X and an objective
space Y ⊆ Rm = {f(x) |x ∈ X}, where f : X → Y denotes a mapping
from the decision space to the objective space with m objective functions
f = {f1, ..., fm}. An element x ∈ X of the decision space is also named
a solution. While the objective space is a real-valued space, we make no
assumptions about the structure of the decision space. In particular, we
do not require the decision space to be an Euclidean space, and we also do
not require the decision space to be spanned by a predefined set of decision
variables that can take a certain set of values. Instead, we only assume that
we are given a distance measure on solution pairs, i.e. dD : X 2 → R, where
dD(x1, x2) ∈ R denotes the structural distance between the two solutions
x1 and x2.

We also need a distance measure in objective space. As the objective space is
a real-valued metric space, we choose Euclidean distance, i.e. dO : X 2 → R,
with dO(x1, x2) =

√∑m
i=1(fi(x1)− fi(x2))2 denoting the Euclidean distance

between x1 and x2 in objective space. Note that we here assume that the
objective space is of a reasonable dimensionality. For high-dimensional real
spaces, the Euclidean distance is not a good distance measure anymore. See
[] for more information and a rank-based solution to this problem.

Consider now that we are given a set of such solutions X ∗ ⊂ X . We do not
make any assumptions about this set itself or about how this set has been
generated, for example it can be the output of a multi-objective optimizer,
and it can contain both dominated and non-dominated solutions. This set

 Chapter . Pareto-Set Analysis Through Clustering

may be time consuming to interpret, especially if there are many solutions,
many objectives and if the solutions have a complex decision space repre-
sentation. We therefore would like to generate a partitioning of this set, i.e.
we would like to group the solutions into clusters to ease the interpretation
of X ∗.

Definition . (cluster): A cluster c ⊆ X ∗ is a subset of all solutions in the
given set X ∗.

Definition . (partitioning): A partitioning C = {c1, · · · , ck} is a set of
k clusters such that each solution is included in exactly one cluster, i.e.
∀x ∈ X ∗ : (∃ci ∈ C : x ∈ ci) and no solutions is included in more than one
cluster, i.e. xi ∈ cj ∧ xi ∈ cl ⇒ j = l.

But what is a good partitioning? Usually, a good partitioning is one where
the clusters are compact and well separated. This means that solutions
within a cluster should be close to each other (i.e. the cluster has a small
intra-cluster distance), and solutions of different clusters should be far from
each other (i.e. the clusters have a large inter-cluster distance). In the
literature [], these two measures are usually combined into one goodness
measure, the so-called validity index. We therefore assume that we are given
such a validity index V : (D, d)→ R. Here, D is an arbitrary space and d is
a distance measure defined on D, i.e. d : D2 → R. Note that many validity
indices cannot cope with partitionings that contain only one cluster (which
in turn contains all solutions). Also, they sometimes have problems with
clusters that only contain one solution. We therefore assume that a feasible
partitioning must contain at least 2 clusters, and each cluster must contain
at least two solutions. This reduces the possible number of clusters k to the
interval k ∈ [2, ⌊ |X ∗|

2 ⌋].

In this section, we would like to find a partitioning which is good both in
decision and in objective space. We therefore have two objectives, the first
is the validity index in objective space and the second is the validity index
in decision space. Whether these two indices are conflicting or not depends
on the given solution set X ∗. There may well be solution sets where a
good partitioning in objective space does not result in a good decision space

.. General Decision and Objective Spaces 

partitioning and vice versa, e.g. for optimization problems where radically
different designs can lead to similar objective space values. Depending on
the chosen distance measure, it can also happen that two solutions with a
low distance to each other have quite dissimilar objective values, in partic-
ular if the distance measure does not capture all differences between the
solutions.

As two conflicting objectives generally lead to a tradeoff front, we here
suggest to optimize the two validity indices as a biobjective problem in order
to find that front. This has the advantage that the two indices do not have to
be combined into one goodness measure a priori. Furthermore, the tradeoff
between a good partitioning in decision space and in objective space can be
visualized, and the user can then choose one of the partitionings depending
on which space is more important to him. The optimization problem can
therefore be stated as follows:

Problem . (biobjective clustering): Find a partitioning C∗ such that
V (f(C∗), dO) and V (C∗, dD) are optimal. Here, V (f(C∗), dO) is the
validity index calculated on the objective space values of the solutions
in C∗, and V (C∗, dD) is the validity index calculated on the decision
space values. dO and dD are the distance measures in objective and
decision space, as defined in the first two paragraphs of this section.

.. ·PAN Algorithm

Clustering problems in general are hard to solve. A simultaneous clustering
in two spaces is even more challenging, and it is not clear how an algorithm
should be designed to achieve good clusters, especially if several cluster
validity indices are considered. We therefore propose PAN, an evolutionary
algorithm, to optimize the biobjective problem defined in Section ... The
general framework of our evolutionary algorithm is shown in Algorithm
. This is a standard form of an evolutionary algorithm, where variation
and selection is iteratively applied for a fixed number of iterations. Note
that in PAN, each solution corresponds to a partitioning. The population

 Chapter . Pareto-Set Analysis Through Clustering

: function EA(n, g)
: Initialize population P randomly with n partitionings
: for g generations do
: P ′ = (P,n) (generate n offspring)
: P = (P ∪ P ′, n) (select n partitionings)
: return P

Algorithm  General framework of an evolutionary algorithm. Input parameters: population
size n; minimization is done for g generations.

: function (P, n)
: while |P| > n do
: (remove partitioning with smallest contribution)
: P = P\{argminpi∈P(IH(P)− IH(P\pi))}
: return P

Algorithm  Selection Procedure. Input parameters: population P , number of partitionings
to select n. IH(P) is the hypervolume of population P .

P therefore is a set of partitionings and the objective functions are the
partitioning goodness measures in decision and in objective space.

For the selection procedure, we opted to go for the standard greedy hyper-
volume-based selection which is shown in Algorithm , where IH(P) is the
hypervolume of population P. The hypervolume in turn is calculated on
the objective values of the solutions that are defined by the selected cluster
validity index.

The variation procedure is shown in Algorithm . We assume that the
number of offspring to generate is equal to the population size. Also, we are
using random sampling without replacement as a mating selection scheme.
Note that there are some constraints on the partitionings, namely that each
partitioning must at least contain two clusters and that each cluster must
at least contain two solutions. The functions V and I check
whether a given partitioning is valid or invalid. We deal with these con-
straints by using a repeat strategy, i.e. for each parent pair selected during
mating selection, we keep generating offspring until two feasible offspring

.. General Decision and Objective Spaces 

: function (P, n, pR)
: for 1 to n/2 do
: set o1 and o2 to an invalid partitioning
: while I(o1) or I(o2) do
: (randomly select two parents from P)
: {p1, p2} =S(P)
: o′

1 = p1, o′
2 = p2 (set offspring to parents)

: With probability pR: {o′
1, o′

2} =(p1, p2)
: o′

1 =(o′
1)

: o′
2 =(o′

2)
: if I(o1) and V(o′

1) then
: o1 = o′

1

: if I(o2) and V(o′
2) then

: o2 = o′
2

: P = P ∪ {o1, o2}
: return P ′

Algorithm  Variation procedure. Input parameters: population P , (even) number of off-
spring n; recombination probability pR .

have been found. The recombination and mutation depends on the selected
representation and is described in more detail in Section ...

Speed Up by Local Heuristic
Preliminary tests (see also Section ..) showed that without any speedup,
PAN with an arbitrary representation and validity index takes a long time to
reach satisfying partitionings. In order to speed up the search we therefore
propose to integrate a local heuristic into the search. One of the most
common clustering algorithms is the k-means algorithm []. The k-means
algorithm is known to converge quickly towards the nearest local optimum,
which makes it well suitable as a local heuristic during optimization.

To integrate the local heuristic, we propose to locally optimize the offspring
partitionings both in decision and in objective space, and then select the
future parents from the set containing both original offspring, offspring lo-
cally optimized for partitioning goodness in objective space, and offspring
locally optimized for partitioning goodness in decision space. The adapted

 Chapter . Pareto-Set Analysis Through Clustering

: function PAN(n, g)
: Initialize population P randomly with n partitionings
: for g generations do
: P ′ = (P,n) (generate n offspring)
: (apply local optimization in both spaces)
: P ′

o = O(P ′, obj)
: P ′

d = O(P ′, dec)
: P = (P ∪ P ′ ∪ P ′

o ∪ P ′
d, n) (select n solutions)

: return P

Algorithm  PAN algorithm with local search. Input parameters: population size n; mini-
mization is done for g generations.

general framework of PAN that incorporates the local search is shown in
Algorithm .

Note that the original k-means algorithm makes use of the cluster centroids,
which assumes that the solutions are given in Euclidean space. As we only
require pairwise distances in decision space, we therefore use the k-medoids
[] algorithm instead, which is an adapted version of k-means that works
with cluster medoids instead of centroids, see also Section .. for more
details about cluster medoids. The adapted k-means algorithm is shown in
Algorithm .

Representation
When designing an evolutionary algorithm, a suitable representation has to
be chosen for the problem at hand in order to code the different solutions,
in this case partitionings. In the literature, several representations are used
for clustering problems, namely the centroid representation, the graph rep-
resentation, the integer representation and the direct representation, see
e.g. [].

Centroid representation The centroid representation is used by several au-
thors [, ] and codes only the cluster centroids. Each solution is assigned
to the nearest centroid. This is similar to the cluster allocation of the well-
known k-means clustering algorithm []. Two versions of this representa-

.. General Decision and Objective Spaces 

: function O(P, d)
: for p ∈ P do
: ∀ci ∈ p : mold(ci) = ∅ (initialize medoids)
: while forever do
: (calculate cluster medoids)
: ∀ci ∈ p : m(ci) = argminxj∈ci

∑
xk∈ci

d(xj , xk)
: (reassign partitionings to nearest medoid)
: ∀ci ∈ p : ci = {x ∈ X ∗| ̸ ∃cj , cj ̸= ci s.t. d(x, m(cj)) < d(x, m(ci))}
: if ∀ci ∈ p : m(ci) == mold(ci) then

: break
: ∀ci ∈ p : mold(ci) = m(ci)

: return P

Algorithm  Local Heuristic: adapted k-means. Input parameters: population of partition-
ingsP ; pairwise distancemeasure d in the space where the partitionings have to be optimized.
X ∗ contains the solutions to be partitioned.

tion exist, the first one has a fixed (maximum) number of cluster centroids,
and the representation also contains a bitstring that says for each cluster
centroid whether it is activated or not. The number of activated centroids
then is the number of actually considered clusters. The second version has a
variable-length representation, where centroids can be added and removed
from a list of centroids. The centroid representation has the advantage
that it considerably reduces the search space, as only a small number of
centroids has to be chosen. The disadvantage is that it is especially useful
for spherical clusters, but can lead to wrong partitionings on more general
cluster shapes. Also, the centroid calculation assumes that the solutions are
given in Euclidean space. While this problem could be solved by using a
different definition of centroids, we still have the problem that the centroids
are defined in the same space where the solutions are defined. In our case,
the solutions are defined in two spaces, and it is not at all clear how one
centroid can be decoded into two spaces. We therefore need a representation
that directly represents the solutions assignment to clusters, without making
any assumptions about the used spaces.

 Chapter . Pareto-Set Analysis Through Clustering

Graph Representation Park and Song [] suggest the graph representation,
which is an adjacency list of length n where n is the number of solutions.
The i-th value in the list codes one link that says to which other solution the
i-th solution is connected to. The connections of the whole adjacency list
return a graph, where the clusters are the unconnected subgraphs. Handl
and Knowles [] did extensive tests with this representation, and found that
it works satisfactorily. The advantage of this representation is that standard
variation operators can be applied. Here, we follow Handl and Knowles and
use uniform crossover with switching probability of 0.5 for each element to
do recombination and randomly change one element in each mutation. Note
that Handl and Knowles proposed to reduce the search space by allowing
each solution to be only connected to its L nearest neighbors. Also, Handl
and Knowles state that links to further away individuals are less favorable
than links to close neighbors and should therefore be mutated with a higher
probability []. To keep the comparison between different representations
fair, we do not make use of these techniques.

When using the graph representation, applying the local heuristic using
k-medoids is not straightforward as the locally optimized partitioning popt

i

might look quite different from the original partitioning pi. If so, it is not
clear how to incorporate these changes into the original graph structure,
while keeping as many common links as possible. We here use the following
approach: First, starting from the original partitioning pi, all links between
solutions that are not in the same cluster in the optimized partitioning popt

i

are removed. Then, for each remaining cluster in pi an unweighted mini-
mum spanning tree is calculated and all links not present in the minimum
spanning tree are removed. Then, all links that have been removed in the
previous two steps are reinserted in a random manner, and it is checked
whether the new partitioning p′

i corresponds to the optimized one popt
i . If

not, another random assignment is selected. If no assignment is found which
produces the optimized partitioning, the locally optimized partitioning is
discarded.

Integer Representation Another representation we consider in this section
is called the integer representation. It is coded by an integer string x ∈

.. General Decision and Objective Spaces 

{1, 2, ..., ⌊n
2 ⌋}

n of length n, where n is the number of solutions. Solutions
with the same integer value are assigned to the same cluster. As a mutation
operator, we use single-point mutation, where one randomly chosen position
in the string is assigned a randomly chosen new integer value already present
in the string, i.e. vnew ∈ {x}. As a recombination operator we use uniform
crossover, where for each position in both parent strings, the two integers
are exchanged with probability 0.5.

Direct Representation We also suggest to use a direct representation, in-
spired by the work of Falkenauer []. The direct representation stores a
list of clusters or variable length, where each cluster in turn is a list of
solutions. We then define three mutation operators for this representation:

• Move Operator: Moves a randomly selected solution to a randomly se-
lected other cluster, with probability pm

• Merge Operator: Merges two randomly selected clusters, with probability
pu

• Split Operator: Splits a randomly selected cluster into two random parts,
with probability ps

As a recombination operator we suggest to use an operator proposed by
Falkenauer []. It resembles a two-point crossover in the following way:
given two parents p1 and p2, from which we want to create two offspring o1
and o2. First, we set o1 = p2 and o2 = p2. Then, we choose two random
cut points in the cluster list of both parents. The clusters between the two
cut points of p1 are added to o2 in the position after the first cut point
in p2. Now there are several original clusters in o2 that contain the same
solutions as the clusters added from p1. Therefore, these duplicate solutions
are removed from their clusters. The second offspring is generated in the
same way, with the roles of the parents reversed. An example is shown in
Figure ..

The direct representation has the advantage that the impact of the variation
operators on the partitioning is obvious and known in advance. This for
example contrasts with the graph representation, where the redirection of
one edge can lead to a move, merge or split, depending on the remaining

 Chapter . Pareto-Set Analysis Through Clustering

1 2

3

4 5

6

7 8

9

1 2

3

4 5

6

7 8

9

1 2

3

4 5

6

7 8

9

first parent second parent offspring

+

Figure . Example of how an offspring is generated using recombination in the direct rep-
resentation. The data set contains 9 points, and the clusters of the parents as well as of the
offspring are shown. The dotted cluster of the first parent is the cluster which is implanted
into the second parent to generate the offspring.

graph edges. Note that the direct representation together with its operators
is the only representation which is context sensitive according to [], i.e.
which variates the solutions taking into account the specific cluster structure
at hand.

Validity Indices
As stated in Section .., we would like to find partitionings that have a
good cluster validity index both in objective and in decision space. In the
literature a multitude of different validity indices can be found, see e.g. [,
, , ]. They combine the two clustering goals, i.e. cluster compactness
and cluster separation, into one goodness measure. Usually, these validity
indices are used to find the correct number of clusters to a given clustering
problem. To do so, clustering optimizers that take the number of clusters k

as a parameter (e.g. the well-known k-means algorithm) are run for different
values of k, and the resulting partitioning which achieves the highest cluster
validity index is chosen to be the correct one. Optimizing such a validity
index therefore leads to a partitioning with the correct number of clusters,
see also [, , ] for overviews over indices that are used to identify the
correct number of clusters.

Many of the validity indices found in the literature assume that the points
to be clustered are given in Euclidean space. Most of the time, they as-
sume that a cluster centroid can be calculated, where in each dimension
the centroids value is the mean value of all solutions in the cluster and in

.. General Decision and Objective Spaces 

the respective dimension. Examples for such indices are the Davies-Bouldin
index [], the CS index [], some variants of the Dunn index [], the SD
index [], the I(k) index [] and the adapted silhouette index []. As we
only assume that we are given pairwise distances, but without any informa-
tion about the underlying decision variables, the cluster centroids cannot
be calculated. To solve that problem, we here propose to use the medoids
instead of the centroids. The medoid of a cluster is the solution with the
smallest average distance to all other solutions in the cluster, see []. Note
that while the calculation of the centroid is linear in the number of solutions,
the calculation of the medoid is quadratic. See [] for a sampling approach
that faces this issue and speeds up the medoid calculation.

Also, there are some validity indices that do not only use centroids, but use
the notion of a direction in the solution space, e.g. the S_Dbw index []
or the ReD index []. Such indices cannot be used for our problem.

In the following, we shortly describe each of the validity indices we se-
lected for our problem. We assume that we are given a set of n points
X ∗ = {x1, ..., xn}, with a distance measure d(xi, xj) ∈ R. We now want
to evaluate a given partitioning C = {c1, ..., ck}, with ci ⊂ {x1, ..., xn},
where the definition of a cluster and of a partitioning corresponds to Defi-
nition . and ., respectively. The medoid of a cluster ci calculated as
m(ci) = argminxj∈ci

∑
xk∈ci

d(xj , xk). For reasons of comparison, we adapt
the indices where necessary, such that each index has to be minimized.

Silhouettes Index The silhouettes index [] is defined as follows:

Sorig(C) =
1

n

n∑
i=1

b(i)− a(i)

max{a(i), b(i)}

where a(i) = 1
|cp|−1

∑
xj∈cp

d(xi, xj), with cp such that xi ∈ cp (i.e. cp is
the cluster containing xi). a(i) therefore denotes the average distance of
solution xi to all other solutions in the same cluster. Also, b(i) denotes the
minimum distance of xi to any other solution which is in a different cluster

 Chapter . Pareto-Set Analysis Through Clustering

than xi, i.e. b(i) = mincl ̸=cp d(xi, cl). Here d(xi, cl) = minxr∈cl
d(xi, xr) is

the minimum distance of xi to any solution in cl.

The silhouettes index can obtain values in the interval S ∈ [−1, 1], where a
value of 1 denotes a good partitioning and −1 denotes a bad partitioning.
In order to transform this problem into a minimization problem with an
optimal value of 0, we propose to use the following formula:

S(C) = −(Sorig(C)− 1), , S(C) ∈ [0, 2]

Adapted Silhouettes Index The adapted silhouettes index [] is defined as
follows:

ASorig(C) =
1

n

n∑
i=1

b(i)− a(i)

max{a(i), b(i)}

where a(i) = d(xi, m(cp)), with cp such that xi ∈ cp (i.e. cp is the cluster con-
taining xi). a(i) therefore denotes the distance of solution xi to the medoid
of the cluster containing xi. Also, b(i) denotes the minimum distance of xi to
any medoid of a cluster not containing xi, i.e. b(i) = mincl ̸=cp d(xi, m(cl)).

The same value adaptation as for the standard silhouettes index is used:

AS(C) = −(ASorig(C)− 1), AS(C) ∈ [0, 2]

Dunn Index The Dunn index [] is defined as:

Dorig(C) =
minci,cj∈C,ci ̸=cj ,xp∈ci,xl∈cj

[d(xp, xl)]

maxct∈C,xp,xl∈ct [d(xp, xl)]

i.e. the Dunn index divides the distance of the closest two points between
any cluster by the largest spread of any cluster. This is a maximization
problem, that lies in an interval of D(C) ∈ [0,∞]. In order to transform it
into a minimization problem, we propose the following adaption:

.. General Decision and Objective Spaces 

D(C) = −Dorig(C), Dorig(C) ∈ [−∞, 0]

Generalized Dunn Index The generalized Dunn index [] is defined as:

GDorig(C) =
minci,cj∈C,ci ̸=cj

δ(ci, cj)

maxci∈C ∆(ci)

As the original Dunn index was found to be strongly influenced by outliers,
[] suggested several new definitions of the inter- and intra-cluster distances.
Two well performing definitions that only rely on pairwise distances are the
following:

δ(ci, cj) = max{max
xl∈ci

min
xp∈cj

d(xl, xp), max
xl∈cj

min
xp∈ci

d(xl, xp)}

∆(ci) =
1

|ci| · (|ci| − 1)

∑
xl,xp∈ci,xl ̸=xp

d(xl, xp)

Again, this is a maximization problem, such that we need an adapted ver-
sion:

GD(C) = −GDorig(C), GD(C) ∈ [−∞, 0]

VRC Index The VRC Index [] is defined as follows (BGSS/WGSS = be-
tween/within group sum of squares):

V RCorig(C) =
BGSS

k − 1
/

WGSS

n− k
=

d̄2 + n−k
k−1Ak

d̄2 −Ak

where d̄2 =
∑

i∈[1,n]

∑
j∈[1,n],j ̸=i[d(xi, xj)]

2 2
n·(n−1) is the average squared

pairwise distance, Ak = 1
n−k

∑
ci∈C(|ci| − 1)(d̄2 − d̄2i) is a weighted mean

 Chapter . Pareto-Set Analysis Through Clustering

of differences between the general and the within-group mean squared dis-
tances, and d̄2i =

∑
xl,xp∈ci,xl ̸=xp

d(xl, xp)
2 2

|ci|·(|ci|−1) is the average pairwise
distance in cluster ci.

This index has to be maximized, with values in the interval [−∞,∞]. We
therefore suggest an adapted version that has to be minimized:

V RC(C) = −V RCorig(C), V RC(C) ∈ [−∞,∞]

Davies Bouldin Index The DB Index [] is defined as follows:

DB(C) =
1

n

∑
ci∈C

max
cj∈C,ci ̸=cj

σ(ci) + σ(cj)

d(m(ci), m(cj))

Where the dispersion σ(ci) of a cluster ci is defined as σ(ci) =
1

|ci|
∑

xj∈ci
d(xj , m(ci)).

This measure has to be minimized by design, with DB(C) ∈ [0,∞].

CS Index The CS Index [] is defined as follows:

CS(C) =

∑
ci∈C

{
1

|ci|
∑

xj∈ci
maxxk∈ci d(xj , xk)

}
∑

ci∈C

{
mincj∈C,ci ̸=cj

d(m(ci), m(cj))
}

This measure is minimized by design, with CS(C) ∈ [0,∞].

I Index The I Index [] is defined as follows:

Iorig(C) =

(
1

k
· E1

Ek
·Dk

)2

where k is the number of clusters, Ek =
∑

ci∈C

∑
xj∈ci

d(xj , m(ci)) is the
sum of the distances of all solutions to their respective cluster medoid,
E1 =

∑
xi∈X ∗ d(xi, m(X)) is the sum of the distances of all solutions to the

medoid of the whole population X ∗, and Dk = maxci,cj∈C d(m(ci), m(cj)) is

.. General Decision and Objective Spaces 

the maximum medoid distance. This measure has to be maximized, so we
use an adapted version:

I(C) = −Iorig(C), I(C) ∈ [−∞, 0]

SD Index The SD Index [] is defined as follows:

SD(C) = a · Scat(C) + Dis(C)

Scat(C) =
1

k

∑
ci∈C

σ(ci)

σ(X ∗)

Dis(C) =
Dmax

Dmin

∑
ci∈C

∑
cj∈C

d(m(ci), m(cj))

−1

where the variance σ(ci) of a cluster ci is defined in the same way as for
the Davies Bouldin Index, Dmax = maxci,cj∈C d(m(ci), m(cj)) and Dmin =

minci,cj∈C d(m(ci), m(cj)) are the maximum and minimum distance between
any two cluster medoids, respectively, and a = Dis(Cmax) is the dispersion
of the partitioning with the maximum number of input clusters, i.e. in Cmax,
each solution is in its own cluster, or to put it differently, each cluster
contains exactly one solution.

This measure has to be minimized by definition, with SD(C) ∈ [0,∞].

Practical Considerations
The PAN algorithm only makes a few assumptions about the dataset at
hand. The first one is that the best partitioning in objective space is different
from the best partitioning in decision space. If the two clustering goals
are not conflicting, there is no set of tradeoff partitionings, but a single
best partitioning. In this case, the final PAN population will contain a
partitioning which dominates all others.

The second assumption is that each cluster contains at least two solutions,
because some validity indices cannot handle clusters with only one solution.

 Chapter . Pareto-Set Analysis Through Clustering

We therefore suggest to do a data cleaning step where outliers, i.e. solutions
that have a large distance to all other solutions, both in objective and in
decision space, are identified by hand, and removed prior to clustering.

.. ·Selection of Validity Index and Representation

Clustering problems in general are hard to solve and the search space is
huge, even for a reasonable number of points to be clustered. If the op-
timization should work satisfactorily, the representation and partitioning
goodness measure have to be selected carefully. This is due to the fact
that some indices might introduce plateaus, or many local optima. In this
section we try to find a combination of validity index and representation
that performs satisfactorily on several clustering problems.

Usually, to test which validity index / representation combination works
best on a standard clustering problem, the different combinations are tested
on datasets where the optimal partitionings are known. Then, the combina-
tion whose result is closest to the known partitioning is chosen as the best
one. In this section, however, the dataset is given in two spaces, namely
the objective and the decision space, and a good partitioning should be
good in both spaces. Assuming that the best partitioning in one space is
not equal to the best partitioning in the second space, we are given the
choice between different tradeoff partitionings. Unfortunately it is not clear
what qualifies as a good tradeoff partitioning. Moreover, a tradeoff which is
good with respect to one validity index can be poor with respect to another
validity index. However, we know that all combinations should be able to
find those two partitionings that are best in either the first or the second
space, because these two partitionings are Pareto-optimal, independently of
the chosen validity index (assuming that the validity index is actually best
for the known optimal partitioning).

Therefore, we test our combinations by constructing different clustering
problems where we know the optimal partitionings in both spaces in ad-
vance, and see whether the combinations can find the two extremal parti-
tionings (those best in one of the two spaces) in the same run. We selected
three testcases. The first testcase is the simplest where both spaces to

.. General Decision and Objective Spaces 

be clustered contain four clearly distinguishable clusters with five solutions
each. The second testcase has clusters with different numbers of solutions
to test PANs capability to recognize differently sized clusters. Finally, the
third testcase has a larger set of solutions to be clustered in order to test
PANs capability to achieve good partitionings even for a large number of
solutions.

We use the same experimental setup for all three testcases, i.e. we use a
population size of 10 for 500 generations, Euclidean distance as a distance
measure (where we normalize all pairwise distances to lie in the interval
[0, 1]). For each setting, we do 30 runs, with recombination probability
pR = 0.7 and pm = 0.6, pu = 0.2, ps = 0.2 for the mutation operator of the
direct representation.

To compare the results, we consider two aspects. First we check whether the
partitionings that PAN finds to be optimal either in decision or objective
space correspond to the expected optimal partitionings. And second, we
measure the minimum number of function evaluations that is needed to
find the optimal partitionings in both spaces.

st Testcase: Proof of Concept and Validation of Local Heuristic
The simplest testcase is shown in Figure ., which shows the optimal
partitioning in both spaces. In both spaces, the best partitioning consists
of 4 clusters of 5 solutions each. However, these best partitionings do not
correspond to each other, as can be seen in the figure, where the upper two
plots show the best partitioning in the first space (and the corresponding
partitioning in the second space), whereas the lower two plots show the best
partitioning in the second space (and the corresponding partitioning in the
first space). For reasons of simplicity, we used the same location of points
in both spaces. Note that if using the Pareto-optimal set of an optimization
problem, the first space might be the objective space and the second space
might be the decision space. We applied PAN with and without the local
heuristic to get a feeling about the speedup when adding the local heuristic.

In both cases, we found that the SD Index found suboptimal partitionings
that have a better validity index value than the known optimal ones. When

 Chapter . Pareto-Set Analysis Through Clustering

first variable

se
co

n
d
 v

a
ri

a
b
le

first space

first variable

se
co

n
d
 v

a
ri

a
b
le

second space

optimal partitioning in first space

first variable

se
co

n
d
 v

a
ri

a
b
le

first space

first variable

se
co

n
d
 v

a
ri

a
b
le

second space

optimal partitioning in second space

Figure . Points to be clustered for first testcase. The upper two plots show the optimal
partitioning in the first space, the lower two plots show the optimal partitioning in the second
space. Both pairs of plots show the points in the first/second space in their lest/right plot.

inspecting these partitionings it can be seen that the reason for this behavior
is the use of the medoid instead of the centroid. If one cluster contains
solutions from all four optimal clusters, the centroid lies in the center of
the solutions, whereas the medoid has to be one of the actual solutions
and therefore is far from the centroid, which in turn causes problems when
calculating the SD Index. The SD index therefore cannot be used for the
optimization.

For the remaining indices, the number of function evaluations after which
both optima have been found without the local heuristic is shown in the

.. General Decision and Objective Spaces 

1000

2000

3000

4000

5000

S
 d

ir
e
ct

S
 g

ra
p
h

S
 i
n
te

g
e
r

A
S

 d
ir

e
ct

A
S

 g
ra

p
h

A
S

 i
n
te

g
e
r

D
 d

ir
e
ct

D
 g

ra
p
h

D
 i
n
te

g
e
r

G
D

 d
ir

e
ct

G
D

 g
ra

p
h

G
D

 i
n
te

g
e
r

V
R

C
 d

ir
e
ct

V
R

C
 g

ra
p
h

V
R

C
 i
n
te

g
e
r

D
B

 d
ir

e
ct

D
B

 g
ra

p
h

D
B

 i
n
te

g
e
r

C
S

 d
ir

e
ct

C
S

 g
ra

p
h

C
S

 i
n
te

g
e
r

I
d
ir

e
ct

I
g
ra

p
h

I
in

te
g
e
r

0

100

200

300

400

500

600

700

800

900

S
 d

ir
e
ct

S
 g

ra
p
h

S
 i
n
te

g
e
r

A
S

 d
ir

e
ct

A
S

 g
ra

p
h

A
S

 i
n
te

g
e
r

D
 d

ir
e
ct

D
 g

ra
p
h

D
 i
n
te

g
e
r

G
D

 d
ir

e
ct

G
D

 g
ra

p
h

G
D

 i
n
te

g
e
r

V
R

C
 d

ir
e
ct

V
R

C
 g

ra
p
h

V
R

C
 i
n
te

g
e
r

D
B

 d
ir

e
ct

D
B

 g
ra

p
h

D
B

 i
n
te

g
e
r

C
S

 d
ir

e
ct

C
S

 g
ra

p
h

C
S

 i
n
te

g
e
r

I
d
ir

e
ct

I
g
ra

p
h

I
in

te
g
e
r

Figure . Number of function evaluations (smaller is better) aster which both optima have
been found for different validity index / representation pairs, without local heuristic (upper
plot) and with local heuristic (lower plot).

left plot of Figure .. It can be seen that no combination reaches both
optima within 5000 function evaluations in all runs, which is an indication
for a low convergence speed. Nevertheless, the VRC, S and AS Index with
direct representation as well as the DB Index with integer representation
seem to work better than the remaining combinations.

 Chapter . Pareto-Set Analysis Through Clustering

To tackle the slow convergence speed we now add the local heuristic. The
number of function evaluations for reaching the known optima is shown in
the right plot of Figure .. As can be seen from the figure, all combinations
(with the exception of the GD and DB index with integer representation
that did not reach both optima in 5000 function evaluations in one out of
all 30 runs) reach both optima within 800 function evaluations. Moreover,
it can be seen that the direct and the integer representation find the optima
faster than the graph representation.

nd Testcase: Irregular Clusters
In the last section the known optimal clusters were all of the same size and
both spaces had the same optimal number of clusters (i.e. four). The goal
of this section is to see (a) how PAN performs if the best clusters are of
different sizes and (b) whether PAN struggles with cases where the optimal
number of clusters is quite different in the two spaces. The corresponding
problem is shown in Figure .. Note that in the first space there are 3

clusters with 2, 5, and 13 solutions each, whereas in the second space there is
a more regular structure with 8 clusters of 2 solutions each, and one cluster
with 4 solutions.

When looking at the results it has been found that the VRC Index, the I
Index as well as the SD Index all find suboptimal partitionings that have a
better value than the known optimal ones and therefore cannot be used for
the optimization. For the remaining validity indices, the number of function
evaluations after which both optima have been found is shown in the left
plot of Figure .. It can be seen that the direct representation is faster for
the S, D and AS index, and not worse in the other indices than the graph
and the integer representation.

rd Testcase: Larger Dataset
Considering the results from the previous two testcases it was found that
the direct representation works better than the other two representations.
Also, the VRC, I and SD Index cannot be used, because their optimal
partitionings are known to be suboptimal. The remaining indices seem to
perform satisfactorily, so we tested these indices with direct representation

.. General Decision and Objective Spaces 

first variable

se
co

n
d
 v

a
ri

a
b
le

first space

first variable
se

co
n
d
 v

a
ri

a
b
le

second space

optimal partitioning in first space

first variable

se
co

n
d
 v

a
ri

a
b
le

first space

first variable

se
co

n
d
 v

a
ri

a
b
le

second space

optimal partitioning in first space

Figure . Points to be clustered for second (upper two plots) and third (lower two plots)
testcase. Both pairs of plots show the optimal partitioning in the first space (lest plots), with
the corresponding partitioning in the second space in the right plot of the respective plot pair.

on a larger dataset. The dataset under consideration is shown in Figure
.. In the first space, there are four distinct clusters with 5, 15, 30 and
50 solutions each. In the second space, there are 25 evenly spaced clusters
with 4 solutions each.

The results are shown in the right plot of Figure .. It can be seen that
PAN both with the D and the GD index do not find both optima within
5000 function evaluations. Also, the S index and the CS index perform

 Chapter . Pareto-Set Analysis Through Clustering

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

S
 d

ir
e
ct

S
 g

ra
p
h

S
 i
n
te

g
e
r

A
S

 d
ir

e
ct

A
S

 g
ra

p
h

A
S

 i
n
te

g
e
r

D
 d

ir
e
ct

D
 g

ra
p
h

D
 i
n
te

g
e
r

G
D

 d
ir

e
ct

G
D

 g
ra

p
h

G
D

 i
n
te

g
e
r

D
B

 d
ir

e
ct

D
B

 g
ra

p
h

D
B

 i
n
te

g
e
r

C
S

 d
ir

e
ct

C
S

 g
ra

p
h

C
S

 i
n
te

g
e
r

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

S
 d

ir
e
c
t

A
S

 d
ir

e
c
t

D
 d

ir
e
c
t

G
D

 d
ir

e
c
t

D
B

 d
ir

e
c
t

C
S

 d
ir

e
c
t

Figure . Number of function evaluations (smaller is better) aster which both optima have
been found for all representation / validity index pairs, with local heuristic.

slightly better than the AS index and the DB index. Finally, it has been
found that the S index takes much longer to compute than the remaining
indices, as it needs to calculate the pairwise distances between all solutions.

Testcase Summary
In this section we considered several artificial datasets in order to find a

.. General Decision and Objective Spaces 

good configuration for PAN. First, it could be observed that the speedup
proposed in Section .. decreases the required number of function eval-
uations to reach the known optimal partitionings significantly. Second, it
was found that the SD, the VRC and the I index sometimes find suboptimal
partitionings that have a better partitioning goodness value than the known
optimal partitionings. Also, the D and the GD index do not reach the op-
timal partitioning in a reasonable number of function evaluations for larger
datasets. And finally, the direct representation has a better performance
than the graph and the integer representation, especially on larger datasets.
In conclusion, it was found that a good combination for PAN is to use direct
representation with either the S, the AS, the DB or the CS index.

.. ·Results

This section first compares the proposed algorithm with the standard ap-
proach of iteratively applying the k-medoids algorithm. Then, the method
is applied first to a knapsack problem and then to a real-world bridge con-
struction problem and its results are qualitatively inspected.

Comparison with k-medoids
The goal of this section is to validate the multi-objective approach. To this
end we compare the achieved hypervolume with the hypervolume obtained
by the standard method of applying k-medoids iteratively. In more detail,
this is done in the following way: We apply k-medoids several times for all
possible cluster numbers. Each time we cluster the solutions twice, once in
decision space and once in objective space and check whether the optimized
partitionings satisfy the constraints (i.e. they contain at least two clusters,
where each cluster must at least contain 2 solutions). For all partitionings
that satisfy the constraints, we calculate the cluster goodness values in de-
cision and in objective space. Finally, to compare the resulting population
with PAN, we reduce the number of achieved solutions to the population
size used with PAN, using PANs selection procedure.

We compared k-medoids with PAN on the rd testcase, where PAN uses
direct representation and the same indices tested in Section ... PANs

 Chapter . Pareto-Set Analysis Through Clustering

PAN k-medoids
S index 0.68± 0.27 0.36± 0.19

AS index 0.80± 0.23 0.22± 0.13
D index 0.20± 0.32 0.10± 0.02

GD index 0.52± 0.29 0.12± 0.04
DB index 0.63± 0.25 0.29± 0.11
CS index 0.75± 0.18 0.34± 0.17

Table . Mean and standard variation of achieved hypervolume values of PAN and the it-
erated k-medoids algorithm for six indices. For each index, all achieved hypervolume values
were normalized such that the minimum/maximum hypervolume got the values 0/1.

population size again is 10 and it is run for 5000 function evaluations. The
iterative k-medoids algorithm, on the other hand, is applied for all cluster
numbers in the interval [2, 50], with ⌈5000/49⌉ = 103 restarts for each cluster
number. This way, both PAN and the iterative k-medoids algorithm use the
same number of calls to the actual k-medoid algorithm.

The corresponding hypervolume values for the different validity indices are
shown in Table . and Figure .. According to a Kruskal-Wallis test
performed on the data as described in [], with the Conover-Inman pro-
cedure, Fisher’s least significant difference method performed on ranks and
a significance level of 1%, PAN is always significantly better than the k-
medoids algorithm, except for the D index that has many outliers. This
indicates that some partitionings found by PAN cannot be achieved by
using k-medoids. Instead, slight variations of partitionings produced by k-
medoids might have a high gain in one space, but at the same time not
much loss in the other space.

Application to Knapsack Problem
First, we applied PAN to a simple biobjective knapsack problem. Here, we
consider a problem with 150 items where each item i has two randomly
chosen profits p1i and p2i and weights w1

i , w2
i , where p1i , p2i , w1

i , and w2
i

are chosen uniformly and at random in the interval [10, 100]. The problem
can therefore be viewed as a selection problem, where a subset of the 150

.. General Decision and Objective Spaces 

P
A

N

k
−

m
e
a
n
s

P
A

N

k
−

m
e
a
n
s

P
A

N

k
−

m
e
a
n
s

P
A

N

k
−

m
e
a
n
s

P
A

N

k
−

m
e
a
n
s

P
A

N

k
−

m
e
a
n
s

S AS D GD DB CS

Figure . Achieved Hypervolume (larger is better) of PAN and the iterative k-medoids al-
gorithm, for six selected indices. Visualization of the data shown in Table ..

items has to be selected which is evaluated in two separate knapsacks, where
each item has a different profit and weight in each knapsack. Each solution
x = {x1, x2, ..., x150} ∈ {0, 1}150 is a binary string of length 150, saying for
each item whether it is selected or not. The biobjective knapsack problem
is a constrained problem, where for each feasible solution x, ∑150

i=1 xi · w1
i ≤

0.2 ·
∑150

i=1 w1
i and ∑150

i=1 xi · w2
i ≤ 0.2 ·

∑150
i=1 w2

i must hold, i.e. the total
weight of all selected items in each knapsack must not exceed 20 percent
of the total weight of all items of that knapsack. The objectives then are
the sum of profits of each knapsack, i.e. the first objective is to maximize∑150

i=1 xi · p1i , and the second objective is to maximize ∑150
i=1 xi · p2i . These

objectives can be transformed easily into minimization problems using the
following formula:

f1(x) =
∑150

i=1 p1i −
∑150

i=1 xi · p1i
f2(x) =

∑150
i=1 p2i −

∑150
i=1 xi · p2i

We used the integer programming problem solver CPLEX to generate the
exact Pareto-optimal front for one instance of this knapsack problem with
150 items. The resulting front contained 138 Pareto-optimal solutions that
were clustered using PAN. We applied PAN using the AS, CS and DB
indices, using direct representation, a population size of 20 and running
PAN for 100 000 function evaluations. We found that the AS index has
a tendency to produce many small clusters, whereas the CS produces two
small and one large cluster. The DB index, on the other hand, produces a

 Chapter . Pareto-Set Analysis Through Clustering

0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54

0.7

0.8

0.9

1

1.1

1.2

1.3

Cluster goodness in objective space

C
lu

st
e
r

g
o
o
d
n
e
ss

 i
n
 d

e
ci

si
o
n
 s

p
a
ce

3 Clusters

2 Clusters

Figure . Partitionings resulting from one PAN run on the knapsack problem using the
Davies Bouldin index. All found partitionings either had two or three clusters (as indicated).
The chosen partitioning that will be inspected in more detail is indicated with an arrow.

few clusters of reasonable size. We only show the results of the DB index in
the following. When looking more closely at the found partitionings shown
in Figure ., it was found that they can be classified in two templates,
one that contains three clusters and one that contains two clusters. All
partitionings are similar to one of these two partitioning templates. We
look at a partitioning with three clusters in the following.

To visualize one solution in decision space, the profits of the chosen and
discarded items are plotted. Note that there are 17 items that are selected
in all Pareto-optimal solutions, and 75 items that are never selected in any
of the Pareto-optimal solutions. The profits of these items are not plotted,
although a decision maker might certainly look at them to learn more about
the problem at hand. To interpret differences and similarities of clusters,
only the 58 items that are selected in some solutions, but not in others are
plotted. To plot a whole cluster, the cluster medoid and the solution furthest
from the medoid are calculated and the items that are selected/not selected

.. General Decision and Objective Spaces 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Profit of first knapsack (normalized)

P
ro

fi
t

o
f

se
co

n
d
 k

n
a
p
sa

ck
 (

n
o
rm

a
liz

e
d
)

Cluster 1

Cluster 2

Cluster 3

Figure . Chosen partitioning with its three clusters (crosses, circles and squares) in ob-
jective space.

in those two representative solutions are plotted. Also, it is indicated which
items are selected in all/no solutions of that cluster.

The results are shown in Figures . and .. As can be seen, there
are two large clusters and one small cluster, where the two large clusters
cover the two extremal regions of the Pareto-front, and the small cluster
covers the middle region. When looking at the decision space as shown
in Figure ., the connection between selected items and location of the
solution on the front can be seen. Cluster 1 contains the solutions with
the highest profit in the first knapsack, and at the same time with the
lowest profit in the second knapsack (remember that the profits in Figure
. are transformed to yield a minimization problem). Several items are
selected / not selected in all solutions of this first cluster, and the selected
solutions all have a good profit in the first knapsack. In the third cluster,
the opposite holds, namely the items selected in all solutions mainly have a
good profit in the second knapsack, leading to solutions with a good overall

 Chapter . Pareto-Set Analysis Through Clustering

/ :

Medoid Furthest

C
lu

st
e
r

1
C

lu
st

e
r

2
C

lu
st

e
r

3

selected / not selected in solution

selected / not selected in all solutions of this cluster/ :

x/y-axes: items profit in first/second knapsack

Figure . For each cluster (rows), the medoid and the solution furthest from the medoid are
plotted. Each plot shows the knapsack items selected / not selected in that specific solutions,
plus the items selected / not selected in all solutions of that cluster.

profit in the second knapsack. Finally, the middle cluster contains solutions
that selected items from the whole range of profits in both knapsacks. As
for the difference between cluster medoids and solutions furthest from the
medoid, it can be noted that the Hamming distance between the medoid
and furthest solution are 12, 8 and 12 items for the first, second and third
cluster, respectively. For the whole dataset, the Hamming distance between
solutions varies between 2 and 43 items (remember that from the 150 items,
only 58 are not selected/deselected in all solutions), with a mean distance
of 15.22± 7.78.

.. General Decision and Objective Spaces 

Application to Bridge Construction Problem
We also applied our algorithm to a real-world problem. As a problem, we
selected the bridge construction problem which is described in Appendix
B, where the goal is to build a truss bridge that can carry a fixed load.
We generated a set of optimized bridges using DIOP (see Section .) for
100 000 function evaluations and with a population size of 100. We chose
DIOP because a standard multi-objective evolutionary algorithm produces a
set of similar-looking bridges that are not interesting to cluster. DIOP on
the other hand optimizes the bridges for structural diversity, while having
constraints on the bridge’s objective values. After deleting duplicates, i.e.
bridges with decision or objective space distance zero, 98 solutions remain
for the partitioning. Note that these bridges are optimized for diversity,
i.e. there should be no natural clusters of bridges. Therefore, the clustering
task actually is hard, and no trivial partitioning can be expected. The
different indices handle the situation in different ways. The S index was
not tested as it takes considerably longer to compute than the other three
indices. Also, the AS index that has been proposed to solve the speed
problem of the S index can be used instead. The AS index itself handles
the problem of a non-trivial dataset by generating a large number of small
clusters. The CS index, on the other hand, finds a few good small clusters,
and one large cluster that contains the remaining bridges. The DB index is
even more extreme and generates the minimum number of clusters, i.e. two,
where one cluster is large and the other small. We here only show the results
of the CS index.

We clustered all the bridges in the given set using the direct representation
and the CS index, with a population size of 20 and for 80 000 function
evaluations. The resulting partitionings are shown in Figure .. In the
following, one of the partitionings, indicated with an arrow in the figure,
will be inspected more closely. The chosen partitioning is shown in Figure
. and consists of a total of 8 clusters, out of which 7 are small clusters
with either two or three bridges, and one large cluster containing all the
remaining bridges. When inspecting the small clusters it can be seen that
Duplicates in objective space are also deleted as some cluster validity indices cannot handle duplicates in either
space.

 Chapter . Pareto-Set Analysis Through Clustering

0.6 0.7 0.8 0.9 1 1.1 1.2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Cluster goodness in objective space

C
lu

st
e
r

g
o
o
d
n
e
ss

 i
n
 d

e
ci

si
o
n
 s

p
a
ce

Figure . Partitionings found by PAN on the bridge dataset (measures have to be mini-
mized).

they indeed contain similar looking bridges (one example is given in the
upper right corner of the figure). The large cluster, on the other hand,
contains many different looking bridges, though without the most distant
looking bridges. Apparently, these bridges could not be put into smaller
clusters without impeding the CS measure. When inspecting the covered
objective space area of the smaller clusters, it can be seen that the area
they cover is quite different. One extreme is the cluster with a length of the
longest connection of 10 to 12 meters, and a weight between 800 and 1 100

kg. The other extreme is represented by the three clusters that all map
to a point in objective space that has a length of the longest connection
of approximately 21, and a weight of approximately 580 kg. Overall, a
visualization of the whole front as shown in Figure . is a much more
intuitive way of extracting information from the front than just plotting the
objectives, or by cluttering the picture with plotting all 98 bridges.

.. General Decision and Objective Spaces 

500 600 700 800 900 1000 1100

10

15

20

25

30

35

weight (cost)

le
n
g
th

 o
f

lo
n
g
e
st

 c
o
n
n
e
ct

io
n

Figure . Partitioning achieved by PAN. The partitioning consists of 7 small clusters of
2 or 3 bridges each, and one large cluster of 83 bridges. The objective space values of the
bridges are shown on the lest, where the small clusters are indicated by a dark gray box. Each
small cluster is represented by a random bridge out of that cluster. For one of the clusters,
both bridges are shown (dashed box). The large cluster is indicated by a box with a black edge.
6 random bridges out of that cluster are shown on the right lower part.

.. ·PAN Summary

In this section we cluster a set of solutions, such that clusters that are com-
pact and well separated in both decision and objective space are generated.
To this end, we formally define this clustering problem as a biobjective
optimization problem, and designed PAN, a multi-objective evolutionary
algorithm, to solve the problem. We tested several standard cluster validity
indices for their use as optimization goals, and several representations found
in the literature to represent a partitioning. Applying all representation /
validity index combinations to cluster several artificial datasets with known
optimal partitionings helped identifying the strengths and weaknesses of the
different representations and validity indices, such that a combination that
reliably produces good partitionings could be chosen.

PAN was then compared to the standard clustering approach of repeatedly
using the k-medoids clustering algorithm for all possible number of clusters.
It has been found that the partitionings found by PAN achieve a higher

 Chapter . Pareto-Set Analysis Through Clustering

hypervolume in terms of decision and objective space goodness than the
partitionings found by the k-medoids algorithm. When applying PAN to a
knapsack problem, the relation between selected items and achieved profits
could be visualized. Also, the method was applied to a real-world truss
bridge optimization problem, where a front containing 98 bridges could be
visualized in a compact manner by representing each cluster by a represen-
tative bridge and by dividing the objective space into regions to which the
particular clusters map. In conclusion, it has been found that the proposed
method is able to adequately cluster the solutions, such that the clusters
contain similar designs, and are located in compact regions in objective
space.

In the future, a measure to quantify the goodness of different clustering
tradeoffs should be developed. That way, validity indices could not only be
compared according to the extreme Pareto-optimal partitionings (that are
either best in decision or objective space), but also according to their trade-
offs between the two extreme partitionings. Also, there might be some user
preferences, for example a maximum number of clusters that the user can
handle, or the user might value cluster compactness more than cluster sep-
arations. PAN could therefore be adapted to incorporate such preferences.
Furthermore, PAN could be extended to provide some help in picking one
partitioning out of the set of partitionings which is produced.

. · Comparison of Approaches

This chapter proposes two approaches to analyze Pareto-sets or approxima-
tions thereof. The first approach, MANA, assumes that the decision space
is binary, and requires that there are two objectives and that the set of so-
lutions to be analyzed only contains non-dominated solutions. The second
approach, PAN, is applicable to problems with any number of objectives,
with any type of decision space, as long as there is a distance measure
to quantify the dissimilarity of two solutions, and it can handle sets that
contain dominated solutions.

.. Comparison of Approaches 

Both approaches were applied to the biobjective knapsack problem, and they
both discovered the inherent relation between decision space and objective
space values of solutions to the knapsack problem, i.e. that solutions which
achieve a high profit in the first/second knapsack mainly contain items
with a high profit in the first or second knapsack, respectively. On the
other hand, there are several differences between the results of the two
approaches. MANA yields a hierarchical clustering, whereas PAN yields
one single partitioning, whose number of clusters is best with respect to
the chosen cluster validity index. Also, MANA discovers subsets of items
that are selected in a large number of solutions and clusters the solutions
using these subsets, whereas PAN clusters solutions that are similar to each
other in terms of the Hamming distance of the selected items. Here, the
main difference is that PAN clusters solutions with similar selected items,
whereas MANA clusters solutions with equal selected items.

Finally, PAN was applied to a bridge construction problem, which cannot be
decoded into a binary decision space, and therefore, MANA cannot be used
to analyze the resulting front. In conclusion, PAN is a general algorithm
that can be applied to a wide variety of problems. MANA, on the other
hand, aims at problems with binary decision spaces, and is useful if blocks
of decision variables that are set to one are of interest.


Bounding the Effectiveness of the
Hypervolume Indicator

In this chapter, we study bounds for the α-approximate effectiveness of non-
decreasing (µ + λ)-archiving algorithms that optimize the hypervolume. A
(µ + λ)-archiving algorithm defines how µ individuals are to be selected
from a population of µ parents and λ offspring. It is non-decreasing if the µ

new individuals never have a lower hypervolume than the µ original parents.
An algorithm is α-approximate if for any optimization problem and for any
initial population, there exists a sequence of offspring populations for which
the algorithm achieves a hypervolume of at least 1/α times the maximum
hypervolume.

Bringmann and Friedrich [] have proven that all non-decreasing, locally
optimal (µ+1)-archiving algorithms are (2+ ε)-approximate for any ε > 0.
We extend this work and substantially improve the approximation factor by
generalizing and tightening it for any choice of λ to α = 2− (λ− p)/µ with
µ = q · λ− p and 0 ≤ p ≤ λ− 1. In addition, we show that 1 + 1

2λ − δ, for

 Chapter . Bounding the Effectiveness of the Hypervolume Indicator

λ < µ and for any δ > 0, is a lower bound on α, i.e. there are optimization
problems where one cannot get closer than a factor of 1/α to the optimal
hypervolume.

. ·Motivation and Background

When optimizing multiple conflicting objectives, there usually is no single
best solution. Instead, there are incomparable tradeoff solutions, where no
solution is strictly better than any other solution. Better in this case refers
to Pareto-dominance, i.e. one solution is said to be better than another,
or dominate it, if it is equal or better in all objectives, and strictly better
in at least one objective. The set of non-dominated solutions is called the
Pareto-optimal set. Usually, this Pareto-optimal set can contain a large
number of solutions, and it is infeasible to calculate all of them. Instead,
one is interested in finding a relatively small, but still good subset of this
Pareto-optimal set.

It is not a priori clear how a good subset should look like, i.e. how the
goodness of a subset can be measured. One of the most popular measures
for subset quality is the hypervolume indicator, which measures the volume
of the dominated space. Therefore, one possibility to pose a multi-objective
optimization problem is to look for a solution set P∗ of fixed size, which
maximizes the hypervolume.

Algorithms that optimize the hypervolume face several problems. First, the
number of possible solutions can become very large, so it is not possible to
select from all solutions. Second, even if all solutions are known and the
non-dominated solutions can be identified, the number of subsets explodes
and not all of them can be enumerated for comparison.

In this chapter, we consider (µ + λ)-Evolutionary Algorithms, or (µ + λ)-
EAs. They iteratively improve a set of solutions, where the set is named
population and the iteration is denoted as generation. In particular, they
maintain a population of size µ, generate λ offspring from the µ parents
and then select µ solutions from the µ parents and the λ offspring that are

.. Motivation and Background 

to survive into the next generation. Note that we here only consider non-
decreasing algorithms, i.e. algorithms whose hypervolume cannot decrease
from one generation to the next.

Several questions arise in this setting. First, what are upper and lower
bounds on the hypervolume that a population of a fixed size will achieve?
Is it possible to prove that a set of size µ with the maximal hypervolume
can be found, without explicitly testing all possible sets? To answer these
questions, the term effectiveness has been defined. An algorithm is effec-
tive if for any optimization problem and for any initial population, there
is a sequence of offspring which leads to the population with maximum
hypervolume. Obviously, (µ + µ)-EAs are always effective: We just choose
the first set of offspring to be exactly the population with the maximal
hypervolume and then we select this set as the new population. It has also
been shown by Zitzler et al.[] that (µ + 1)-EAs, on the other hand, are
ineffective. Recently, it has been shown by Bringmann and Friedrich []
that all (µ + λ)-EAs with λ < µ are ineffective.

Bringmann and Friedrich then raised the follow-up question: If it is not
possible to reach the optimal hypervolume for all optimization problems
and all initial populations, is it at least possible to give a lower bound
on the achieved hypervolume? To this end, they introduced the term α-
approximate effectiveness. An algorithm is α-approximate if for any op-
timization problem and for any initial population there is a sequence of
offspring with which the algorithm achieves at least 1/α · Imax

H , where Imax
H

is the maximum achievable hypervolume of a population of size µ. They
proved in their paper that a (µ + 1)-EA is 2-approximate and conjectured
that for larger λ, a (µ + λ)-EA is O(1/λ)-approximate.

On the other hand, we might also be interested in upper bounds on the
achievable hypervolume. Bringmann and Friedrich [] have found an opti-
We only consider finite search spaces here, such that mutation operators exist which produce offspring with a
probability larger than zero. Note that any search space coded on a computer is finite.

Note that the term for any initial population implies that at any point during the algorithm, there exists a sequence
of offspring with which an effective algorithm can achieve the optimal hypervolume.

Note that the term there is a sequence of offspring assumes that we are given variation operators that produce any
sequence of offspring with probability greater than zero.

 Chapter . Bounding the Effectiveness of the Hypervolume Indicator

mization problem where no algorithm can achieve more than 1/(1+0.1338(1/λ−
1/µ)−ε) of the optimal hypervolume, i.e. there is no (1+0.1338(1/λ−1/µ)−
ε)-approximate archiving algorithm for any ε > 0.

Why is knowledge of the bounds of the α-approximate effectiveness useful?
Assume that we are using an exhaustive mutation operator, which produces
any offspring with a probability larger than zero. Therefore, the probability
of generating an arbitrary sequence of offspring is also larger than zero. The
1
2 -approximate effectiveness of (µ+1)-EAs now tells us that if we execute the
evolutionary algorithm for a sufficiently large number of generations, we will
end up with a population that has at least half of the maximal hypervolume.
In case of a (µ + µ)-EA, on the other hand, we know that we will finally
achieve a population with maximum hypervolume, i.e. α = 1. We are
therefore interested in deriving bounds on the effectiveness of evolutionary
algorithms.

This chapter extends the work of Bringmann and Friedrich by (a) computing
the α-approximate effectiveness of (µ+ λ)-EAs for general choices of λ, (b)
tightening the previously known upper bound on α, and (c) tightening the
previously known lower bound on α. The results for (a) and (b) are based
on the theory of submodular functions, see []. For (c) we show that for
λ < µ, there exist optimization problems where any (µ+λ)-EA does not get
closer than a factor of 1/α to the optimal hypervolume with α = 1+ 1

2λ − δ,
for any δ > 0.

The chapter is organized as follows: The next section presents the formal
setting, including the definition of the hypervolume, the algorithmic set-
ting, definitions for the effectiveness and approximate effectiveness and an
introduction into submodular functions. In Section . we determine an
upper bound on α for general choices of µ and λ, thereby giving a quality
guarantee in terms of a lower bound of the achievable hypervolume. Finally
in Section ., we will determine a lower bound on α for general choices of
µ and λ.

.. Preliminaries 

. · Preliminaries

We here follow the notation introduced in Section ., and shortly revisit the
relevant concepts. Consider a multi-objective minimization problem with a
decision space X and an objective space Y ⊆ Rm = {f(x)|x ∈ X}, where
f : X → Y denotes a mapping from the decision space to the objective space
with m objective functions f = {f1, ..., fm} which are to be minimized.

The underlying preference relation is weak Pareto-dominance, where a so-
lution a ∈ X weakly dominates another solution b ∈ X , denoted as a ≼ b,
if and only if solution a is better or equal than b in all objectives, i.e. iff
f(a) 6 f(b), or equivalently, iff fi(a) ≤ fi(b),∀i ∈ {1, ..., m}. In other
words, a point p ∈ X weakly dominates the region {y ∈ Rm : f(p) 6 y} ⊂
Rm.

.. ·Hypervolume Indicator

The hypervolume indicator of a given set P ⊆ X is the volume of all points
in Rm which are dominated by at least one point in P and which dominate
at least one point of a reference set R ⊂ Rm. Roughly speaking, the hyper-
volume measures the size of the dominated space of a given set. Sets with a
larger hypervolume are considered better. More formally, the hypervolume
indicator can be written as

IH(P) :=
∫

y∈Rm
AP(y) dy

where AP(y) is called the attainment function of set P with respect to a
given reference set R, and is defined as follows:

AP(y) =

{
1 if ∃p ∈ P, r ∈ R : f(p) 6 y 6 r

0 else

No assumptions on the reference set have to be made, as our results have to hold for any objective space, including
the one only containing solutions that dominate at least one reference point. If that set is empty, all algorithms are
effective, as the hypervolume is always zero.

 Chapter . Bounding the Effectiveness of the Hypervolume Indicator

: function EA(µ, λ, g)
: P0 ← initialize with µ random solutions
: for t = 1 to g do
: Ot ← generate λ offspring
: Pt ← select µ solutions from Pt−1 ∪ Ot

: return Pg

Algorithm  General (µ+λ)-EA framework: µ denotes the population size; λ the offspring
size; the algorithm runs for g generations.

The goal of a (µ + λ)-EA is to find a population P∗ ⊆ X of size µ with the
maximum hypervolume:

IH(P∗) = max
P⊆X ,|P|=µ

IH(P) = Imax
H,µ (X)

.. ·Algorithmic Setting

The general framework we are considering here is based on a (µ+λ) Evolutio-
nary Algorithm (EA) as shown in Algorithm . The selection step of Line 
is done by a (µ+λ)-archiving algorithm. We here assume that the archiving
algorithm is non-decreasing, i.e. IH(Pt) ≥ IH(Pt−1), 1 ≤ t ≤ g. We use
the following formal definition (as given in []) to describe an archiving
algorithm:

Definition . (archiving algorithm): A (µ + λ)-archiving algorithm A is a
partial mapping A : 2X × 2X → 2X such that for a µ-population P and a
λ-population O, A(P,O) is a µ-population and A(P,O) ⊆ P ∪O.

Using this definition, the for-loop in Algorithm  can be described as fol-
lows, see also []:

Definition . (population at generation t): Let P0 be a µ-population and O1, ...,ON

a sequence of λ-populations. Then

Pt := A(Pt−1,Ot) for all t = 1, ..., N

We use the term archiving algorihm here to be compliant with []. It does not mean that we keep a separate archive
in addition to the population Pt .

.. Preliminaries 

We also define

A(P0,O1, ...,Ot) := A(A(P0,O1, ...,Ot−1),Ot)

= A(...A(A(P0,O1),O2), ...,Ot)

= Pt for all t = 1, ..., N

As mentioned above, we only consider non-decreasing archiving algorithms
which are defined as follows, see also []:

Definition . (non-decreasing archiving algorithm): An archiving algorithm A

is non-decreasing, if for all inputs P and O, we have

IH(A(P,O)) ≥ IH(P)

.. ·Effectiveness and Approximate Effectiveness

Following Bringmann and Friedrich [], we here assume a worst-case view
on the initial population and a best-case view on the choice of offspring. This
means that we would like to know for any optimization problem, starting
from any initial population, whether there exists a sequence of offspring
populations such that the EA is able to find a population with the maximum
possible hypervolume. If so, the archiving algorithm is called effective:

Definition . (effectiveness): A (µ+ λ)-archiving algorithm A is effective, if
for all finite sets X , all objective functions f and all µ-populations P0 ⊆ X ,
there exists an N ∈ N and a sequence of λ-populations O1, ...,ON ⊆ X such
that

IH(A(P0,O1, ...,ON)) = Imax
H,µ (X)

Similarly, we use the following definition for the approximate effective-
ness, which quantifies the distance to the optimal hypervolume that can
be achieved:

Definition . (approximate effectiveness): Let α ≥ 1. A (µ + λ)-archiving
algorithm A is α-approximate if for all finite sets X , all objective functions

 Chapter . Bounding the Effectiveness of the Hypervolume Indicator

f and all µ-populations P0 ⊆ X , there exists an N ∈ N and a sequence of
λ-populations O1, ...,ON such that

IH(A(P0,O1, ...,ON)) ≥ 1

α
Imax

H,µ (X)

Of course, an effective archiving algorithm is 1-approximate. Here, we are
interested in deriving bounds on α for any choice of µ and λ.

.. ·Submodular Functions

The theory of submodular functions has been widely used to investigate
problems where one is interested in selecting optimal subsets of a given size.
But what exactly is a submodular function? At first, they map subsets of a
given base set to real numbers, just like the hypervolume indicator defined
above. In addition, submodular functions show a diminishing increase when
adding points to sets that become larger. In other words, let us define
the set function z : 2X → R, where 2X is the power set of the decision
space. Then the contribution of a point s ∈ X with respect to set A ⊂ X
is c(s,A) = z(A ∪ {s}) − z(A). When z is a submodular function, the
contribution c(s,A) gets smaller when A becomes larger. More formally, a
submodular function z is defined as follows:

∀A ⊆ B ⊆ X , ∀s ∈ X\B : z(A ∪ {s})− z(A) ≥ z(B ∪ {s})− z(B)

i.e. if set A is contained in set B, the contribution of adding a point s to
A is larger or equal than the contribution of adding s to B. A submodular
function is non-decreasing if it is monotone in adding points:

∀B ⊆ X , ∀s ∈ X\B : z(B ∪ {s}) ≥ z(B)

Now, we show that the hypervolume indicator as defined above is non-
decreasing and submodular.

Theorem .: The hypervolume indicator IH(P) is non-decreasing submodu-
lar.

.. Preliminaries 

Proof. At first, we define the contribution of a solution s to a set B as

IH(B ∪ {s})− IH(B) =
∫

y∈Rm
C(B, s, y) dy

with
C(B, s, y) = AB∪{s}(y)−AB(y)

Using the definition of the attainment function A we find

C(B, s, y) =

{
1 if (∃r ∈ R : f(s) 6 y 6 r) ∧ (@p ∈ B : f(p) 6 y)

0 else

As C(B, s, y) is non-negative, the hypervolume indicator is non-decreasing.

Consider two arbitrary sets A,B ⊆ X with A ⊆ B, and an arbitrary solution
s ∈ X , s ̸∈ B. To prove that the hypervolume indicator is submodular, we
have to show that

IH(A ∪ s)− IH(A) ≥ IH(B ∪ s)− IH(B)

or equivalently ∫
y∈Rm

C(A, s, y) dy ≥
∫

y∈Rm
C(B, s, y) dy (.)

for A ⊆ B, s ̸∈ B.

To this end, we will show that for all y ∈ Rm the inequality C(A, s, y) ≥
C(B, s, y) holds. As C(·, ·, ·) can only assume the values 0 and 1, we have
to show that for all y ∈ Rm, s ̸∈ B we have

C(A, s, y) = 0 ⇒ C(B, s, y) = 0

Following the definition of C, there are the following three cases where
C(A, s, y) = 0:

. (@r ∈ R : y 6 r): In this case, we also have C(B, s, y) = 0 as the
condition is the same for C(A, s, y) and C(B, s, y).

 Chapter . Bounding the Effectiveness of the Hypervolume Indicator

. (f(s) ̸6 r): Again, we find C(B, s, y) = 0 as the condition is the same
for C(A, s, y) and C(B, s, y).

. (∃p ∈ A : f(p) 6 y): In other words, there exists a solution p ∈ A in
A which weakly dominates y. But as A ⊆ B, we also have p ∈ B and
therefore, (∃p ∈ B : f(p) 6 y). Therefore, we find C(B, s, y) = 0.

As a result, (.) holds and the hypervolume indicator is submodular.

. · Upper Bound on the Approximate Effectiveness

In this section, we will provide quality guarantees on the hypervolume
achieved by an EA in terms of the α-approximate effectiveness, i.e. we will
provide an upper bound on α for all population sizes µ and offspring set
sizes λ.

In the previous section, we showed that the hypervolume is non-decreasing
submodular. Nemhauser, Wolsey and Fisher [] have investigated inter-
change heuristics for non-decreasing set functions and showed approxima-
tion properties in case of submodular set functions. We will first show that
the interchange heuristic in [] is execution-equivalent to the previously
defined (µ+ λ)-EA framework. Then, the approximation properties for the
R-interchange heuristics are used to determine upper bounds on α.

The heuristic described in [] is shown in Algorithm  where we deliber-
ately changed the variable names to make them fit to the notations intro-
duced so far. It makes use of the difference between sets, which is defined
as follows: Given two sets A and B, the difference between A and B is
A−B = {x : x ∈ A∧x ̸∈ B}, i.e. the set of all solutions which are contained
in A but not in B.

The heuristic in Algorithm  is of a very general nature. No assumptions
are made about the starting population P0, and the method of searching
for Pt. For example, we can set the function z(P) = IH(P) and then choose
the following strategy for Line :

. Determine a set Ot of offspring of size λ.

.. Upper Bound on the Approximate Effectiveness 

: function heuristic(µ, λ)
: P0 ← initialize with an arbitrary set of size µ
: t← 1
: while true do
: determine a set Pt of size µ with |Pt − Pt−1| ≤ λ such that z(Pt) >

z(Pt−1)
: if no such a Pt exists then
: break
: t← t + 1

: return PG ← Pt−1

Algorithm  Interchange heuristic: µ is the size of the final set; λ the maximum number of
elements which can be exchanged.

. Select µ solutions from Pt−1∪Ot using an archiving algorithm A, i.e. S =

A(Pt−1,Ot).
. Execute the above two steps until IH(S) > IH(Pt−1) and then set Pt =

S, or until no such S can be found.

Following Algorithm , the above steps need to guarantee that a set Pt

with IH(Pt) > IH(Pt−1) is found if it exists. For example, we can use an
exhaustive offspring generation, i.e. every subset of size λ of the decision
space X can be determined with a probability larger than zero. Moreover,
the archiving algorithm A must be able to determine an improved subset of
Pt−1∪Ot if it exists. In other words, we require from A that IH(A(P,O)) >

IH(P) if there exists a subset of P ∪O of size µ with a larger hypervolume
than IH(P). For example, A may in turn remove all possible subsets of size
λ from Pt−1∪Ot and return a set that has a better hypervolume than Pt−1.
Note that this instance of the interchange heuristic can be easily rephrased
in the general (µ + λ)-EA framework of Algorithm  with an unbounded
number of generations.

Nemhauser et al. [] have proven the following result for the interchange
heuristic:

 Chapter . Bounding the Effectiveness of the Hypervolume Indicator

Theorem .: Suppose z is non-decreasing and submodular. Moreover, define
the optimization problem z∗ = maxP⊆X ,|P|≤µ z(P). If µ = q · λ− p with q a
positive integer, and p integer with 0 ≤ p ≤ λ− 1, then

z∗ − z(PG)

z∗ − z(∅)
≤ µ− λ + p

2µ− λ + p

where z(PG) is the value of the set obtained by Algorithm  and z(∅) is the
value of the empty set.

We have shown that the hypervolume indicator is non-decreasing submodu-
lar. Therefore, if we set the function z(P) = IH(P) and note that IH(∅) = 0,
we can easily obtain the following bound on the approximation quality of
Algorithm :

Proposition .: If µ = q · λ− p with an integer 0 ≤ p ≤ λ− 1, then

IH(PG) ≥ 1

2− λ−p
µ

· Imax
H,µ (X) (.)

This bound can be compared to the definition of the approximate effective-
ness, see Definition ., i.e. it bounds the achievable optimization quality
in terms of the hypervolume if a certain algorithm structure is used. But
whereas Definition . and the corresponding value of α = 2 + ε from []
is related to Algorithm , the above bound with α = 2− λ−p

µ is related to
Algorithm .

We will now show that the improved approximation bound of α = 2− λ−p
µ

is valid also in the case of Algorithm , thereby improving the results in
[].

Theorem .: Suppose a non-decreasing (µ + λ)-archiving algorithm which
satisfies in addition

∃S : (S ⊂ P∪O)∧(|S| = µ)∧(IH(S) > IH(P)) ⇒ IH(A(P,O)) > IH(P)

.. Upper Bound on the Approximate Effectiveness 

Then for all finite sets X , all objective functions f and all µ-populations
P0 ⊆ X the following holds: For any run of an instance of Algorithm ,
one can determine a sequence of λ-populations O1, ...,ON such that

IH(A(P0,O1, ...,ON)) = IH(PG)

Proof. The proof uses the special instance of Algorithm  that has been
introduced above. Line  is implemented as follows: () Determine a set
Ot of offspring of size λ using an exhaustive generation, i.e. each subset of
X is determined with non-zero probability. () Use the archiving algorithm
A to determine a set S = A(Pt−1,Ot). () Repeat these two steps until
IH(S) > IH(Pt−1) or no such S can be found. Due to the required property
of A, no such S can be found if it does not exist.

Algorithm  yields as final population PG = Pt−1 which can be rewritten
as Pt−1 = A(P0,O1, ...,Ot−1) The sets of offspring Oi are generated as de-
scribed above. Using N = t−1 yields the required result IH(A(P0,O1, ...,ON)) =

IH(PG).

As a direct consequence of the execution equivalence between Algorithm 
and Algorithm  according to the above theorem, the Definition . and
(.), we can state the following result:

Proposition .: A non-decreasing (µ + λ)-archiving algorithm A(P,O),
which yields a subset of P ∪ O of size µ with a better hypervolume than
that of P if there exists one, is (2 − λ−p

µ)-approximate where µ = q · λ − p

with an integer 0 ≤ p ≤ λ− 1.

It is interesting to note two special cases of the above proposition:

. µ = λ: In this case, we have a (µ+µ)-EA. It holds that p = 0 and there-
fore, the formula evaluates to α = 1, which means that this algorithm
actually is effective. This corresponds to the obvious result mentioned
in Section ..

. λ = 1: In this case, we have a (µ+1)-EA. It holds that p = 0 and q = µ

and therefore, the formula evaluates to α = 2− 1
µ , which is tighter than

the bound of Bringmann and Friedrich [].

 Chapter . Bounding the Effectiveness of the Hypervolume Indicator

0 100 200 300 400 500

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

λ

1
/α

µ = 50

µ = 100

µ = 500

Figure . Quality guarantees for the hypervolume achieved by a (µ + λ)-EA. For a given
µ and a given λ, there is a sequence of offspring such that at least 1

α · I
max
H,µ (X) can be

achieved, irrespective of the optimization problem and the chosen initial population.

Figure . shows the relation between λ and α for several settings of µ.
As can be seen, it is a zigzag line which corresponds to the modulo-like
definition of p and q. The local maxima of each line are located where µ is
an integer multiple of λ.

. · Lower Bound on the Approximate Effectiveness

In the previous section we gave an upper bound on α. In this section, on
the other hand, we will give a lower bound on α. This lower bound is tight
for µ = 2, i.e. is equal to the upper bound. To find this bound, we will show
that there exist optimization problems and initial populations, such that
any non-decreasing archiving algorithm will end up with a hypervolume
that is at most 1/(1 + 1

2λ) of the optimal hypervolume. Whereas a first
particular example has been shown in [], a more general lower bound
was shown in [], where Bringmann and Friedrich found a problem where

.. Lower Bound on the Approximate Effectiveness 

any non-decreasing archiving algorithm ends up with a hypervolume that is
at most 1/(1 + 0.1338(1/λ− 1/µ)− ε) of the optimal hypervolume, for any
ε > 0. The new bound substantially tightens the result of [], but relies on
the general definition of the hypervolume indicator which uses a reference
set R instead of a single reference point.

Theorem .: Let λ < µ. There is no α-approximate non-decreasing (µ+λ)-
archiving algorithm for any α < 1 + 1

2λ .

Proof. We proof this theorem by finding a population P0 = {s0, ..., sµ−1}
whose hypervolume indicator IH(P0) cannot be improved by any non-decreasing
(µ+λ)-archiving algorithm, i.e. it is locally optimal. At the same time, the
optimal population P∗ = {o0, ..., oµ−1} has a hypervolume indicator value
of IH(P∗) which satisfies IH(P∗) = (1 + 1

2λ − δ)IH(P0) for any δ > 0.

The setting we are considering for the proof is shown in Figure .. There
are 2 ·µ points, where the initial population is set to P0 = {s0, ..., sµ−1} and
the optimal population would be P∗ = {o0, ..., oµ−1}. We consider a setting
with multiple reference points {r0, ..., r2µ−2}, such that the areas contribut-
ing to the hypervolume calculation are Ai (areas only dominated by the
initial population), Bi (areas only dominated by the optimal population),
and Ci and Di (areas dominated by one solution of the initial population
and one solution of the optimal population), see Figure .. The objective
space is the union of all points, i.e. Y = P0 ∪ P∗.

In our example, we set these areas as follows, assuming λ < µ:

Ai = ε for 0 ≤ i < µ , Bi =

{
ε for 0 ≤ i < λ

1 for λ ≤ i < µ

Ci =
∑

i−λ≤j<i

Bj mod µ , Di =
∑

i+1≤j<i+1+λ

Bj mod µ

Note that for any choice of areas Ai, Bi, Ci, and Di, corresponding coordi-
nates can be found for all si and oi and ri by using the following recursions:

 Chapter . Bounding the Effectiveness of the Hypervolume Indicator

r
0

s
0

o
0

r
1

r
2

r
3

r
2µ-3

r
2µ-2

s
1

o
1

s
2

s
µ-1

o
µ-1

o
µ-2

A
0

C
0

D
0

C
1

D
1

D
µ-2

C
µ-1

B
0

A
1

B
1

A
2

B
µ-2

A
µ-1

B
µ-1

Figure . Schematic drawing of the example setting in the proof of Theorem ..

sx
i = ox

i−1 +
Ai

sy
i − oy

i

, ox
i = sx

i +
Bi

oy
i − sy

i+1

sy
i = oy

i−1 −
Ci−1

sx
i−1 − ox

i−2

, oy
i = sy

i −
Di−1

ox
i−1 − sx

i−1

rx
i =

{
ox

i/2−1 i even
sx
(i−1)/2−1 i odd , ry

i =

{
oy

i/2+1 i even
sy
(i−1)/2 i odd

where sx
i , ox

i , sy
i , oy

i and ry
i , ry

i are the x-axis and y-axis coordinates of si,
oi and ri, respectively. While sx

0 , sy
0, and rx

0 with rx
0 < sx

0 can be chosen
arbitrarily, the coordinates for oy

0 and sy
1 are set as follows:

.. Lower Bound on the Approximate Effectiveness 

oy
0 = sy

0 −
A0

sx
0 − rx

0

, sy
1 = oy

0 −
C0

sx
0 − rx

0

Furthermore, ry
2µ−2 and ox

µ−1 are set as follows:

ry
2µ−2 = oy

µ−1 −
Cµ−1

sx
µ−1 − ox

µ−2

, ox
µ−1 = sx

µ−1 +
Bµ−1

oy
µ−1 − ry

2µ−2

First, we want to show that for the example, P0 is a local optimum, i.e. IH(P0)

cannot be improved by any non-decreasing (µ+λ)-archiving algorithm. To
do so consider a λ-population O ⊂ Y and a µ-population P1 ⊂ P0 ∪ O. In
order for P0 to be a local optimum, we have to show that IH(P0) ≥ IH(P1).

Note that for the rest of the proof, we will always use the indices modulo µ

without writing it explicitly. Put differently, we will write Ai,Bi,Ci, and Di

as a short form of Ai mod µ,Bi mod µ,Ci mod µ, and Di mod µ.

The hypervolume of the initial population can be written as IH(P0) =

IH −
∑

0≤i<µ Bi = IH − (µ − λ) − λε, where IH is the hypervolume of
all solutions, i.e. IH = IH(P0 ∪ P∗). Similarly, we can write IH(P1) =

IH −
∑

i:si,oi ̸∈P 1 Ci −
∑

i:si+1,oi ̸∈P 1 Di −
∑

i:oi ̸∈P1 Bi −
∑

i:si ̸∈P1 Ai. Using
these expressions, we get the following set of equivalent inequalities:

IH(P0) ≥ IH(P1)

IH − (µ− λ)− λε ≥ IH −
∑

i:si,oi ̸∈P 1 Ci −
∑

i:si+1,oi ̸∈P 1 Di

−
∑

i:oi ̸∈P1 Bi −
∑

i:si ̸∈P1 Ai

(µ− λ) + λε ≤
∑

i:si,oi ̸∈P 1 Ci +
∑

i:si+1,oi ̸∈P 1 Di

+((µ− λ) + λε−
∑

i:oi∈P1 Bi) +
∑

i:si ̸∈P1 Ai∑
i:oi∈P1

Bi ≤
∑

i:si,oi ̸∈P 1

Ci +
∑

i:si+1,oi ̸∈P 1

Di +
∑

i:si ̸∈P1

Ai (.)

To prove this inequality (.), we need to consider all possible µ-populations
P1 ⊂ P0 ∪ O, i.e. the results of all possible (µ + λ)-archiving algorithms.

 Chapter . Bounding the Effectiveness of the Hypervolume Indicator

To go from P0 to P1, λ solutions si of the initial set are discarded and the
same number of solutions oi from the optimal set are added. We call these
discarded si and added oi affected solutions.

In the following, we consider blocks of affected solutions. To this end, we
first mark all solutions in P0 ∪ P∗ that are either removed from P0 or
added to P0 when going from P0 to P1. This set of marked solutions is
then partitioned into the minimal number of subsets, such that each subset
contains all solutions in index range [i, i+k]. Depending on whether the first
and last solutions in such a subset are from set P0 or P∗ we call it an (s, s)-,
(s, o)-, (o, s)- or (o, o)-block, respectively. For example, an (o, s)-block with
index range [2, 5] contains solutions {o2, s3, o3, s4, o4, s5}. The rationale is
that non-neighboring solutions do not influence each other, as they do not
dominate any common area. As for the blocks, there are two cases which
will be considered separately.

Blocks of even length: There are two types of blocks of even length: Those
starting with an added solution from the optimal set, i.e. (o, s)-blocks, and
those starting with a discarded solution from the initial set, i.e. (s, o)-blocks.
The first case can be formalized as follows: The (o, s)-block with index range
[i, i + k] exists iff (ol ∈ P1, i ≤ l < i + k) ∧ (oi+k ̸∈ P1) ∧ (si ∈ P1) ∧ (sl ̸∈
P1, i + 1 ≤ l < i + k + 1). For this block, (.) evaluates to:

∑
i:oi∈P1 Bi ≤

∑
i:si,oi ̸∈P 1 Ci +

∑
i:si+1,oi ̸∈P 1 Di +

∑
i:si ̸∈P1 Ai∑

i≤l<i+k Bl ≤ Ci+k + 0 +
∑

i+1≤l<i+k+1 Al∑
i≤l<i+k Bl ≤

∑
i+k−λ≤l<i+k Bl + kε

0 ≤
∑

i+k−λ≤l<i Bl + kε

The last step is true because we know that k ≤ λ. As all Bl as well as ε are
larger than zero, (.) holds.

The second case can be formalized as follows: The (s, o)-block with index
range [i, i + k] exists iff (oi−1 ̸∈ P1)∧ (ol ∈ P1, i ≤ l < i + k)∧ (sl ̸∈ P1, i ≤
l < i + k) ∧ (si+k ∈ P1). For this block, (.) evaluates to:

.. Lower Bound on the Approximate Effectiveness 

∑
i:oi∈P1 Bi ≤

∑
i:si,oi ̸∈P 1 Ci +

∑
i:si+1,oi ̸∈P 1 Di +

∑
i:si ̸∈P1 Ai∑

i≤l<i+k Bl ≤ 0 + Di−1 +
∑

i≤l<i+k Al∑
i≤l<i+k Bl ≤

∑
i≤l<i+λ Bl + kε

0 ≤
∑

i+k≤l<i+λ Bl + kε

Again, we can see that the last inequality holds, and therefore, (.) holds.

Blocks of odd length: Such blocks consist of either a set of discarded solutions
that enclose a set of added solutions or vice versa, i.e. (s, s)- or (o, o)-blocks.
Due to |P0| = |P1|, the number of added solutions from the optimal set
must be equal to the number of discarded solutions from the initial set.
Directly following this, we know that for each block of discarded solutions
enclosing added solutions, there must be another block of added solutions
enclosing discarded solutions and vice versa. These two types of blocks can
be formalized as follows: The (s, s)-block with index range [i, i+k] exists iff
(ol ∈ P1, i ≤ l < i+k−1)∧(oi−1, oi+k−1 ̸∈ P1)∧(sl ̸∈ P1, i ≤ l < i+k). The
(o, o)-block with index range [j, j+p] exists iff (ol ∈ P1, j ≤ l < j+p)∧(sl ̸∈
P1, j + 1 ≤ l < j + p) ∧ (sj , sj+p ∈ P1). Also, we know that 1 ≤ k, p ≤ λ

and k + p ≤ λ + 1. Considering both of these blocks, (.) evaluates to:

∑
i:oi∈P1 Bi ≤

∑
i:si,oi ̸∈P 1 Ci +

∑
i:si+1,oi ̸∈P 1 Di

+
∑

i:si ̸∈P1 Ai∑
i≤l<i+k−1 Bl +

∑
j≤l<j+p Bl ≤ Ci+k−1 + Di−1 +

∑
i≤l<i+k Al

+
∑

j+1≤l<j+p Al∑
i≤l<i+k−1 Bl +

∑
j≤l<j+p Bl ≤

∑
i+k−1−λ≤l<i+k−1 Bl +

∑
i≤l<i+λ Bl

+(k + p− 1)ε∑
j≤l<j+p Bl ≤ p ≤

∑
i+k−1−λ≤l<i+λ Bl + (k + p− 1)ε

p ≤ λε + λ− k + 1 + (k + p− 1)ε

The second last step can be done because we know that at most λ of the
Bl’s are set to ε and therefore, at least λ − k + 1 ≥ p of the Bl’s remain
which are set to 1. Also, because of p ≤ λ− k + 1, the last inequality holds
and with it (.) holds.

 Chapter . Bounding the Effectiveness of the Hypervolume Indicator

Combinations of blocks: As stated before, only neighboring solutions in Y =

P0∪P∗ share a common dominated area. From the definition of the different
types of blocks it can be seen that there are no adjacent blocks, because in
this case, the two blocks would be combined into one. Therefore, each pair
of blocks is separated by at least one solution from Y which is not affected
by the transition from P0 to P1. As a result, the changes in hypervolume
when going from P0 to P1 can be considered separately for each block. We
have shown that for any block, (.) holds. From this we can conclude that
IH(P0) ≥ IH(P1) and therefore, P0 is a local optimum.

Now that we’ve done the first part of the proof, i.e. showing that any non-
decreasing (µ+λ)-archiving algorithm will not be able to escape from P0, we
would like to calculate how far the hypervolume of P0 is from the maximum
achievable hypervolume. In other words, we would like to calculate IH(P∗)

IH(P0)
.

The hypervolume of the initial population evaluates to:

IH(P0) =
∑

0≤l<µ Cl +
∑

0≤l<µ Dl +
∑

0≤l<µ Al

=
∑

0≤l<µ

(∑
l−λ≤j<l Bj +

∑
l+1≤j<l+1+λ Bj

)
+ µε

=
∑

0≤l<µ

(∑
l−λ≤j<l+1+λ Bj −Bl

)
+ µε

= (2λ + 1)
∑

0≤l<µ Bl −
∑

0≤l<µ Bl + µε

= 2λ
∑

0≤l<µ Bl + µε

The hypervolume of the optimal population, on the other hand, can be
calculated as follows:

IH(P∗) =
∑

0≤l<µ Cl +
∑

0≤l<µ Dl +
∑

0≤l<µ Bl

=
∑

0≤l<µ

∑
l−λ≤j<l+1+λ Bj

= (2λ + 1)
∑

0≤l<µ Bl

Both sets of equations make use of∑0≤l<µ

∑
l−λ≤j<l+1+λ Bj = (2λ+1)

∑
0≤l<µ Bl.

This is due to the fact that the inner sum of the left-hand term consists of
2λ+1 summands. Because all indices are taken modulo µ, we see that each
Bj is summed up 2λ + 1 times in the whole term.

.. Summary 

Finally, this leads us to the following result, which holds for any δ > 0 if
ε→ 0 and λ < µ:

IH(P∗)
IH(P0)

=
(2λ+1)

∑
0≤l<µ

Bl

2λ
∑

0≤l<µ
Bl+µε

= 1 + 1
2λ − δ

Note that in the case of λ = µ, the equation evaluates to IH(P∗)
IH(P0)

= 1,
which is very natural, since for µ = λ, any non-decreasing (µ+λ)-archiving
algorithm is effective.

We may also interpret the above result in terms of the more practical in-
terchange heuristic shown in Algorithm . One can conclude that for
z(P) = IH(P), i.e. we use the hypervolume indicator for archiving, we
may end up with a solution that is not better than 1/α times the optimal
hypervolume with α > 1+ 1

2λ , even after an unlimited number of iterations.

. · Summary

In this chapter, we investigated the α-approximate effectiveness of (µ + λ)-
EAs that optimize the hypervolume. The value of α gives a lower bound on
the hypervolume which can always be achieved, independent of the objective
space and the chosen initial population. While it is obvious that for µ = λ,
α is equal to 1, Bringmann and Friedrich have shown that for λ = 1, α is
equal to 2. This chapter strictly improves the currently known bound and
finds that for arbitrary λ, the approximation factor α is equal to 2 − λ−p

µ ,
where µ = q · λ− p and 0 ≤ p ≤ λ− 1.

Furthermore, we improve the available lower bound on α for the general
definition of the hypervolume indicator, i.e. α > 1 + 1

2λ . Upper and lower
bounds only match for a population size of µ = 2. It might be possible to
further tighten the lower bound by extending the worst case construction
in the proof of Theorem . to higher dimensions of the objective space.


Conclusions

Optimization problems can either be single-objective or multi-objective . In
the case of a single-objective problem, there is one solution or possibly a
set of solutions that has the best objective value, whereas in the case of
multi-objective problems with conflicting objectives, there is no single best
solution, but a set of tradeoff solutions, the so-called Pareto-front. Usually,
the goal of optimizing algorithms is to find one or all of the best solutions
in single-objective problems, and the whole Pareto-front or a representative
subset of it in multi-objective problems.

This thesis considers the case that there are some uncertainties or simpli-
fications in the optimization model, which make close-to-optimal solutions
also interesting for the user who optimizes the problem. Moreover, we
assume that the user is interested in a set of structurally diverse, close-to-
optimal solutions. The present thesis (a) explores ways to generate such
sets of solutions, and (b) provides methods to analyze the resulting sets of
solutions.

Finally, this thesis investigates the properties of the hypervolume indicator,
which is a contemporary measure to quantify the quality of a set of solutions

 Chapter . Conclusions

in terms of its objective values in multi-objective problems. The hypervol-
ume indicator is used in all parts of this thesis, both in the algorithms
that generate diverse solutions for multi-objective problems and in one of
the algorithms that helps to analyze the achieved set. We investigate the
effectiveness of this indicator, which states whether an algorithm can reach
a set of solutions of a certain size with the best hypervolume.

. · Key Results

The present thesis makes the following three main contributions.

.. · Finding Structurally Diverse Close-To-Optimal Sets of Solutions

We propose three evolutionary algorithms to find structurally close-to-optimal
sets of solutions. The first algorithm, NOAH, aims at single-objective prob-
lems, where the user can specify a certain barrier value v, where all solutions
that are better than v are acceptable to the user. NOAH then finds a set
of solutions of high diversity, where each solution has an objective value
which is better or equal to v. The second algorithm, DIOP, extends the
idea of NOAH to multi-objective problems. It finds a maximally diverse
set of solutions that lie within a user-defined distance of an approximation
of the Pareto-optimal front. Finally, the third algorithm, DIVA, integrates
the diversity information into the hypervolume indicator, and finds a set of
solutions which maximizes this adapted indicator.

.. ·Analyzing Given Sets of Solutions

Once a set of solutions is returned by the optimizer, the user has to analyze
it in order to pick a preferred solution or learn about the problem. This
thesis focuses on the latter, and proposes two algorithms to analyze a given
set in terms of what types of solutions lead to what objective values. The
first algorithm, MANA, tackles biobjective problems with binary decision
spaces. It finds so-called modules of decision variables, i.e. sets of decision
variables that are set to 1 in as many solutions as possible. The output is

.. Discussion and Future Work 

a hierarchical clustering, where on each level of the hierarchy, the clusters
contain only neighboring solutions in objective space, and can be annotated
with the modules that are contained in the solutions of this cluster. The
second algorithm, PAN, is aimed at problems with 2 or more objectives, and
with arbitrary decision spaces. It solves the biobjective problem of clustering
solutions both in decision and objective space. The output is a partitioning
of the solutions into clusters, where solutions within the clusters have low
pairwise distances both in objective and decision space, and solutions in
different clusters have a high pairwise distance both in objective and decision
space.

.. ·Bounding the Effectiveness of the Hypervolume Indicator

Evolutionary Algorithms (EAs) usually have a fixed population size. Instead
of finding the whole Pareto-front, they aim at finding a good subset of that
front. One way to do so is to pick the subset with the best hypervolume.
This thesis investigates the effectiveness of (µ+λ)-EAs. An algorithm is
effective if for any optimization problem, and for any initial population,
there is a sequence of offspring such that the algorithm can reach the set of
solutions with the best hypervolume. If such a sequence of offspring does
not exist, the set with the best hypervolume cannot be reached, and the
question arises how far the best achievable hypervolume is from the optimal
hypervolume. We present both upper and lower bounds on this achievable
hypervolume which are tighter than the bounds previously known in the
literature.

. · Discussion and Future Work

This thesis showed that explicitly maintaining structural diversity during
optimization can lead to considerably more diverse, but still close-to-optimal
solutions. However, some questions still remain unanswered, which might be
interesting to discuss in the future. The first question concerns the diversity
measure itself, and the requirements the measure should fulfill. We listed

 Chapter . Conclusions

three requirements, originally stated by Solow and Polasky [], that a diver-
sity measure should satisfy. These three requirements are that (a) diversity
should increase if a solution is added to the set, (b) adding duplicates should
not change diversity, and (c) increasing the distance between two or more
solutions should increase the diversity. It is not clear whether these three re-
quirements are sufficient. For example they make no statement about what
type of distribution of points is preferred, or what the optimal distribution
of points would be. Moreover, it is not clear whether requirements (a)
and (b) are necessary or wanted. These two requirements indicate that the
diversity should measure how well the points cover a given space. Adding
a duplicate does not increase coverage, and adding a new solution never
decreases coverage. The problem is that with these requirements, only sets
with the same number of solutions can be compared fairly, as the diversity
can only increase by adding solutions. For comparing sets of solutions with
different numbers of solutions, the measure should decrease when adding
duplicates and solutions very similar to solutions already present in the set.
Even if it is decided that the three requirements are what is wanted, a
measure needs to be found that satisfies these requirements. Up to date the
author is not aware of any measure that fulfills all requirements for general
decision spaces and general distance metrics.

For analyzing sets of solutions, more information about the problem may be
included, as this would enable algorithms to automatically extract problem
specific design principles. Also, interactive methods could be developed that
guide the user through the set of solutions, where the user can focus on the
area he or she is most interested in.

Finally the work on the hypervolume effectiveness may be extended to find
tight bounds for populations with more than two solutions. Also, a dif-
ferent scenario could be considered. In this thesis, we assume a best case
view on the offspring generation, which in reality has a very low probability
of occurring. Therefore it would be interesting to investigate average off-
spring sequences, or at least give some indication of the probability that an
offspring sequence might occur in practice.

Appendix

A · Reference Algorithm: Greedy Hypervolume Selection

In this section we introduce the Standard Multi-objective Evolutionary Algorithm
(sMOEA) that is needed in order to quantify the results of the proposed diversity-
optimizing multi-objective evolutionary algorithms DIOP and DIVA. Since in this thesis
we use the hypervolume indicator as a measure of set quality in objective space, we
propose to use an algorithm that explicitly optimizes the hypervolume.

The framework of the sMOEA is given in Algorithm . We want to compare selection
strategies, therefore, the problem-dependent variation procedure will be the same for
all compared algorithms. For selection, several things have to be taken into account.
First, it is possible that the population is a multiset, i.e. it contains duplicate solutions.
Note that solutions are unique in decision space, but not necessarily in objective space,
as two different solution can map to the same objective values. So the term duplicate
means that two solutions are equal in decision space. We assume that two dissimilar
solutions a, b ∈ X are always better than two duplicates a, a ∈ X , i.e. duplicates will
only be selected if only duplicates are left to select from. One way to achieve this is
using the method described in Algorithm .

Second, any selection strategy should respect the given preference relation, i.e. Pareto
dominance. This means that a dominated solution should only be selected if its dom-

: function MOEA(µ, λ, R, g)
: Initialize population P1 randomly with µ solutions
: i = 1

: for g generations do
: Oi : = (Pi, λ)
: Pi+1 : = (Pi ∪ Oi, µ)
: (Only take new population if not worse)
: if IH(Pi+1, R) < IH(Pi, R) then
: Pi+1 : = Pi

: i = i + 1

: return Pi

Algorithm  Framework of sMOEA. Input parameters: population size µ, offspring size λ, reference
set R; minimization of objective functions is done for g generations

 Appendix

: function DuplicateSelection(P, s)
: define R to be the underlying set of elements of the multiset P
: define m : R → N≥1 as a function giving the multiplicity of each element in r ∈ R,

i.e. m(r) is the number of times r appears in P
: generate duplicate sets {D1, ..., Dn}, where Di = {r ∈ R : m(r) ≥ i}
: S = ∅
: i = 1

: while |S ∪ Di| ≤ s do
: S = S ∪ Di (multiset union)
: i = i + 1

: S ′ = Di

: s′ = s − |S|
: return S, S ′, s′

Algorithm  Duplicate selection. Input parameters: population of n solutions P , number of solutions
to select s. Returns selected solutions S , solutions to select from S ′ and number of remaining solutions
to select s′ .

: function NondominatedSortingSelection(P, s)
: extract nondominated fronts {F1, ..., Fn}, where Fi = {p ∈ P : @y ∈ P\ ∪i−1

j=1

Fi s.t. y ≺ p}
: S = ∅
: i = 1

: while |S ∪ Fi| ≤ s do
: S = S ∪ Fi

: i = i + 1

: S ′ = Fi

: s′ = s − |S|
: return S, S ′, s′

Algorithm  Nondominated sorting selection. Input parameters: population of n solutions P , num-
ber of solutions to select s. Returns selected solutions S , solutions to select from S ′ and number of
remaining solutions to select s′ .

inating solutions are selected as well. To achieve this, the well-known nondominated
sorting strategy [] as described in Algorithm  can be used.

Finally, an ideal hypervolume-optimizing selection strategy would return the subset P ′

of size s which has the maximum hypervolume, i.e. P ′ = argmaxP′′⊆P,|P′′|=s IH(P ′′).
Unfortunately, there is no easy way to determine this best set P ′. Also, testing all
possible subsets of size s is infeasible due to combinatorial explosion. One common way

B. Bridge Optimization Problem 

: function GreedyHypervolumeSelection(P, s)
: while |P| > s do
: ∀pi ∈ P : c(pi, P) = IH(P) − IH(P\{pi})
: pmin = argminpi∈P c(pi, P)

: P : = P\{pmin}
: return P

Algorithm  Greedy hypervolume selection strategy. Input parameters: population of n solutions P ,
number of solutions to select s

: function select(P, µ)
: {P ′, S ′, s′} =DS(P, µ)

: {P ′′, S ′′, s′′} =NSS(S ′, s′)

: P ′′′ =GHS(S ′′, s′′)

: return P ′ ∪ P ′′ ∪ P ′′′

Algorithm  Reference selection strategy. Input parameters: population of µ+λ solutionsP , number
of solutions to select µ

to deal with this is to iteratively throw away the solution with the lowest contribution
to the hypervolume, which is also called greedy hypervolume selection, see Algorithm
.

Using these methods, we can finally describe the reference environmental selection
scheme used in this thesis, see Algorithm . It first handles the duplicates and extracts
a subset containing only dissimilar solutions. Second, it prefers non-dominated solutions
over dominated ones by using non-dominated sorting, which returns a subset only
containing non-dominated solutions. Finally, to select from this set of non-dominated
solutions, the greedy hypervolume selection strategy is used. Note that because a greedy
selection scheme is used, it is possible that the hypervolume of the new population is
lower than the hypervolume of the parent population. In this case, the new population
is discarded and the parent population is used instead.

B · Bridge Optimization Problem

This thesis uses a bridge construction problem as a real-world optimization problem.
This problem is well suited as a test problem because (a) bridges are easy to visualize,
(b) bridge evaluation is fast and (c) the decision space of possible bridges is complex
and large. The bridge construction problem considered in this thesis is inspired by [],

 Appendix

�xed node

load

decks

Figure B. Example bridge. One of the two fixed nodes, the five applied loads and two of the six decks
are indicated using dotted arrows.

where the goal is to build a truss bridge that can carry a fixed load. An example bridge
can be seen in Figure B.. Each bridge basically is a set of nodes, with connections
between certain node pairs. All bridges have to be built in the following framework:
First, there are 2 fixed nodes, shown as black circles in the figure, to which the bridge
is connected. Note that in accordance with standard truss analysis, the fixed node on
the left side of the bridge is fixed both in horizontal and vertical direction, whereas the
fixed node on the right side of the bridge is fixed only in the vertical direction. Each
bridge has a set of 6 horizontal connections, called the decks, over which the traffic
goes. The traffic is modeled as a fixed load which is applied to the five non-fixed nodes
between these decks, shown as arrows in the figure. In this thesis we assume that a
good bridge will be symmetric. Therefore we reduce the search space to symmetric
bridges only, i.e. bridges whose left half is identical to the mirrored right half of the
bridge. We do so by starting with randomized symmetric bridges and then ensuring
that each change we apply to the bridge is also mirrored to the other side.

The optimization algorithm needs to be able to modify existing bridges in order to create
new bridges from old ones. So how do we represent and modify existing bridges? We
use a so-called direct representation, i.e. the bridges are directly stored as a set of nodes,
and a list of pairs of nodes between which there is a connection. To create new bridges
from existing ones, each bridge can be modified through mutation, or two bridges can
be recombined. To do mutation, either the nodes or the connections of the bridge can be
modified. If a node is modified, three elementary operations can be made: a node can be
added, removed, or moved. If a node is removed, the node is deleted from the node list
and all connections to or from that node are also deleted. If a node is added, an existing
connection (not the decks though) is randomly selected and split by adding a node

B. Bridge Optimization Problem 

somewhere in between the end nodes of the connection, removing the old connection
and then reconnecting both end nodes to the newly inserted node by inserting two
new connections. To move a node, a random node is selected and moved both in
horizontal and vertical direction by adding a random number distributed according to
a two dimensional Gaussian distribution. Modifying connections is straightforward.
Either a random existing connection (except the decks) is selected and removed, or a
connection is added between two nodes which have not yet been connected.

To recombine two parent bridges, we use an adaptation of one-point crossover which
is illustrated in Figure B.. Note that because bridges are symmetric, the one-point
crossover is actually a two-point crossover with mirrored cut points. First, a cut position
is chosen randomly, shown as a vertical line. A second cut is calculated by mirroring
the first cut. Both parent bridges are cut at those two positions, and the parts between
the cuts are swapped in order to generate two offspring. Hence the first offspring bridge
for example consists of the outer part of the first parent bridge and the inner part the
second parent bridge. Now, there might have been certain connections in both parent
bridges which have been destroyed by the cutting. For each connection that was cut, one
end node is retained in the offspring, whereas the other end node is not there anymore.
To repair such a connection, all available nodes in the offspring are considered and
the one node which is closest to the removed end node (the one which is not available
anymore in the offspring) will be used as the new end node of the connection.

The optimization algorithm also needs to be able to create random bridges to generate
the initial population. As randomly generating nodes and connecting them in a random
manner is likely to lead to unstable bridges, we propose the following approach: We
always start with a (stable) Warren truss, and then we randomly move the nodes of
the bridge’s top horizontal connections in order to introduce some variation. A warren
truss (left) and a random bridge generated from it (right) are shown in the upper row
of Figure B.. If a random bridge is unstable, new bridges are generated repeatedly
until a stable one is found.

Bridges are evaluated according to two criteria: weight and the length of the longest
connection. We assume that nodes are weight-free, and the total weight is solely de-
termined by the weights of the connections. We chose the bridge weight as the first
objective because under a few assumptions, the weight relates linearly to the cost of the
bridge through the material cost. These assumptions are that there are no additional
cost for nodes, and no fixed cost for each connection. The second objective is the length
of the longest connections. We chose this objective because in a real-world scenario,
long connections might be more difficult to transport than short connections, and they
may be difficult to produce.

 Appendix

Figure B. Example for the recombination of two parent bridges (upper row). Cuts are shown as vertical
lines. Connections that will be destroyed by the cut are shown as dashed lines in the parents. For both
offspring (bottom row), four connections have been cut and need to be reinserted. The corresponding
inserted connections are shown as dashed lines in the children. Also, the original nodes (dashed circles)
are shown, as well as the offspring nodes to which they are closest (indicated by arrows).

The weight of the bridge is calculated as follows: First, it is checked whether the bridge
is stable. To do so, we use an approach presented in []. If the bridge is not stable, it is
discarded. If it is stable, the force on each connection is calculated. Then, the minimum
diameter of each connection is calculated. It is chosen such that the connection can
withstand the force applied to it, a decision which only depends on the material’s yield
strength. Note that the forces on the connections can only be calculated if the truss is
statically determinate, meaning the equation 2 · j = m+ r holds, where j is the number
of nodes, m is the number of connections and r is the number of reaction components.
As this cannot be guaranteed in our algorithms, a method which is called the force
method [] is used. The force method allows deflection of the connections, which
makes it possible to calculate the forces of a statically indeterminate truss. To apply
the force method, knowledge of the connection diameters is necessary. As the diameters
of the bridges in turn depend on the forces, we decided to calculate the forces with each
connection diameter set to 1m2, then to calculate the true connection area, and then
recalculate the forces of the bridge with the new diameters. If the bridge is stable with
the connection diameters of 1m2, but unstable with the true connection areas, it is
treated as unstable and discarded. Also, if the forces with the true diameters deviates

Rahami’s Matlab code which we used in this thesis is available on http://www.mathworks.com/matlabcentral/
fileexchange/-truss-analysis

B. Bridge Optimization Problem 

Figure B. Distance calculation between two bridges (top row). Bridge areas are shown in gray. The
distance is visualized in the bottom row, as the lighter gray area.

more than 1% from the forces of the 1m2 diameters, the bridge is treated as unstable
and discarded. Once the diameters of the connections have been calculated, the weight
of the connection can be calculated using this diameter, the length of the connection
and the density of the chosen material.

As mentioned in Section ., a distance measure in decision space is needed, such that
similar looking bridges have a low distance and dissimilar looking bridges have a large
distance. But how can the distance between two bridges be measured? We decided
to go for a visual measure, based on the shape of each bridge. We define the shape
of a bridge as the area enclosed by its outermost connections, see Figure B. for an
example. The area difference between the shapes of two bridges then is the distance
between the two bridges.

To generate a set of optimized bridges we used the following specifications: The bridges
must support 6 decks, where each deck has a length of 10 meters. Therefore the bridge
has to cover a distance of 60 meters. For the load we assume that the bridge must
be able to carry two 40 ton trucks, a load of 80 tons therefore is applied to each node
between the decks. The bridge has to use steel as a material, with a yield strength of
400 MPa, an elasticity (young’s modulus) of 300 GPa and a density of 7.8 g/cm3. For
the variation process in the evolutionary algorithm, we use a recombination probability

 Appendix

of 0.5 and a mutation probability of 1.0, and during mutation, we randomly select
with equal probability one of the elementary mutations, i.e. add a connection, remove
a connection, add a node, remove a node or move a node. When adding a node,
as explained before, an existing connection is removed and replaced by a new node
which is connected to the end nodes of the removed connection. The location of the
inserted node is chosen randomly in the rectangle area spanned by the end nodes of
the removed connection. When moving a node, a Gaussian is added in each dimension
with mean zero and standard deviation 3. Whenever infeasible bridges are generated
during mutation, we use a repeat strategy that repeatedly tries to do the selected
elementary mutation on the parent until either a maximal number of tries, in our case
100, is reached (in which case the parent is returned) or a feasible bridge is found.
Furthermore we use a repair strategy prior to the distance calculation which iteratively
removes all connections on which there is no force, and all nodes which are the end
nodes of less than two connections.

Note that this bridge problem has many similarities to the one proposed in []. One
difference is that the load is a constraint that determines the connection thickness, where
in [] the load was an objective and the thickness was an optimization parameter. A
second difference is that in [] connections are not allowed to cross the middle of the
bridge, as only one half of the bridge was stored, and this half was simply mirrored to
the other side to create the whole bridge. In this thesis, the whole bridge is stored,
therefore connections can go from the left half to the right half, as long as they have
a mirrored counterpart. Also, while [] only used mutation, this thesis proposes a
recombination operator to be used on the bridges.

C · Singular Matrix for Solow-Polasky Diversity Measure

The matrix shown in Figure C. is a distance matrix we encountered during a run of
the E/E-architecture optimization problem (see Section ). The distance values are
integers, because the measure has to quantify the difference between two partitionings,
and is related to the number of differently clustered elements.

Note that there is no violation of the triangle inequality in this matrix. Remember that
the Solow-Polasky should yield a value between 1 and the number of solutions, i.e. 17
in this case, which indicates the number of different species found in the population.
However, using θ = 0.15, the normalized distance matrix M is close to singular, and the
value of the Solow-Polasky measure is 1442.4. Note that the value of the Solow-Polasky
measure depends on the value of θ. Figure C. shows the influence of θ on the measure,

C. Singular Matrix for Solow-Polasky Diversity Measure 

0 10 9 8 8 9 5 7 4 10 7 7 4 10 6 10 7
10 0 14 11 8 13 12 14 8 3 12 10 10 10 6 7 3
9 14 0 9 11 6 4 2 11 11 4 10 7 7 11 10 13
8 11 9 0 12 11 11 11 8 10 7 7 10 4 6 7 11
8 8 11 12 0 11 11 11 10 8 9 7 4 10 8 10 5
9 13 6 11 11 0 10 8 11 13 10 4 7 7 13 7 11
5 12 4 11 11 10 0 6 9 12 8 6 9 9 9 9 9
7 14 2 11 11 8 6 0 11 13 6 8 9 9 13 11 11
4 8 11 8 10 11 9 11 0 8 7 11 8 9 2 9 8
10 3 11 10 8 13 12 13 8 0 9 10 10 7 6 7 3
7 12 4 7 9 10 8 6 7 9 0 6 9 9 9 9 9
7 10 10 7 7 4 6 8 11 10 6 0 3 3 10 3 7
4 10 7 10 4 7 9 9 8 10 9 3 0 6 7 6 7
10 10 7 4 10 7 9 9 9 7 9 3 6 0 7 3 10
6 6 11 6 8 13 9 13 2 6 9 10 7 7 0 7 6
10 7 10 7 10 7 9 11 9 7 9 3 6 3 7 0 10
7 3 13 11 5 11 9 11 8 3 9 7 7 10 6 10 0

Figure C. Distance matrix for 17 solutions of the E/E-architecture problem. The element in the i-th
row and the j-th column is the distance between the i-th and the j-th solution.

0.1 0.12 0.14 0.16 0.18 0.2
−5

0

5

10

15

20

theta

S
o
lo

w
-P

o
la

sk
y

d
iv

e
rs

it
y

m
e
a
su

re

Figure C. Change of the Solow-Polaskymeasure calculated on the above distancematrix with different
values of θ. The gray area indicates the expected range (between 1 and 17 for the given distance matrix)
of values for the Solow-Polasky measure.

around the critical value of θ = 0.15. Note that the critical range of θ, i.e. where the
diversity measure is smaller than 1 or larger than 17, is quite narrow, e.g. choosing
θ = 0.14 or θ = 0.16, again leads to a measure value in the expected area, i.e. between
1 and 17.

Bibliography

 T. Aittokoski, S. Ayramo, and K. Miettinen. Clustering aided approach for decision making in compu-
tationally expensive multiobjective optimization. Optimization Methods Sostware, :–, April
.

 E. Altshuler and D. Linden. Design of a wire antenna using a genetic algorithm. Journal of Electronic
Defense, :–, .

 J. Bader. Hypervolume-Based Search for Multiobjective Optimization: Theory and Methods. PhD thesis,
ETH Zurich, Switzerland, .

 S. Bandaru and K. Deb. Towards automating the discovery of certain innovative design principles
through a clustering-based optimization technique. Engineering Optimization, :–, .

 S. Bandyopadhyay and U. Maulik. Nonparametric genetic clustering: Comparison of validity indices.
IEEE Transactions on Systems, Man, and Cybernetics, SMC--:–, .

 D. Beasley, D. Bull, and R. Martin. A sequential niche technique for multimodal function optimization.
Evolutionary Computation, :–, .

 J. C. Bezdek and N. R. Pal. Cluster validation with generalized dunn’s indices. In Conference on
Artificial Neural Networks and Expert Systems (ANNES ’), .

 S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. Pisa—a platform and programming language in-
dependent interface for search algorithms. In Evolutionary Multi-Criterion Optimization (EMO ),
.

 J. Bourgain. On lipschitz embeddings of finite metric spaces in hilbert space. Israel Journal of
Mathematics, :–, .

 H. J. Bremermann, M. Rogson, and S. Salaff. Global properties of evolution processes. In Natural
Automata and Useful Simulations, pages –. Spartan Books, .

 K. Bringmann and T. Friedrich. Approximating the volume of unions and intersections of high-
dimensional geometric objects. In International Symposium on Algorithms and Computation (ISAAC
), volume  of LNCS, pages –, .

 K. Bringmann and T. Friedrich. Convergence of hypervolume-based archiving algorithms i: Effec-
tiveness. In Genetic and Evolutionary Computation Conference (GECCO ), .

 D. Brockhoff, D. K. Saxena, K. Deb, and E. Zitzler. On handling a large number of objectives a
posteriori and during optimization. In Multi-Objective Problem Solving from Nature: From Concepts
to Applications, pages –. Springer, .

 Appendix

 L. T. Bui, J. Branke, and H. A. Abbass. Multiobjective optimization for dynamic environments. In
Congress on Evolutionary Computation (CEC ), .

 P. R. Bushel, R. D. Wolfinger, and G. Gibson. Simultaneous clustering of gene expression data with
clinical chemistry and pathological evaluations reveals phenotypic prototypes. BMC Systems Biol-
ogy, , .

 T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communications in Statistics -
Theory and Methods, ():–, .

 M. Calonder, S. Bleuler, and E. Zitzler. Module identification from heterogeneous biological data
using multiobjective evolutionary algorithms. In Parallel Problem Solving from Nature (PPSN IX),
.

 C. H. Chou, M. C. Su, and E. Lai. A new cluster validity measure and its application to image
compression. Pattern Analysis and Applications, :–, .

 W. J. Conover. Practical Nonparametric Statistics. John Wiley, rd edition, .

 S. Das, A. Abraham, and A. Konar. Metaheuristic Clustering. Springer, .

 D. L. Davies and D. W. Bouldin. A cluster separation measure. Pattern Analysis and Machine Intelli-
gence, PAMI-:–, .

 K. A. de Jong. An Analysis of the Behaviour of a Class of Genetic Adaptive Systems. PhD thesis,
University of Michigan, .

 K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, .

 K. Deb and S. Agrawal. A niched-penalty approach for constraint handling in genetic algorithms. In
International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA-), .

 K. Deb and D. E. Goldberg. An investigation of niche and species formation in genetic function
optimization. In Third International Conference on Genetic Algorithms, .

 K. Deb and A. Srinivasan. Innovization: Innovative design principles through optimization. Technical
report, KanGAL, Indian Institute of Technology Kanpur, .

 K. Deb and A. Srinivasan. Innovization: Innovating design principles through optimization. In Genetic
and Evolutionary Computation Conference (GECCO ), .

 K. Deb and S. Tiwari. Omni-optimizer: A generic evolutionary algorithm for single and multi-
objective optimization. European Journal of Operational Research, ():–, .

 K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic algo-
rithm for multi-objective optimization: NSGA-II. In Parallel Problem Solving from Nature (PPSN VI),
.

Bibliography 

 J. J. Dunn. Well separated clusters and optimal fuzzy-partitions. Journal of Cybernetics, :–,
.

 J. Edmonds. Submodular functions, matroids and certain polyhedra. In Combinatorial Structures and
their Applications. Gordon and Breach, .

 A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer, .

 M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-
wide expression patterns. National Academy of Sciences of the United States of America, ():
–, .

 E. Falkenauer. Genetic Algorithms and Groupping Problems. Wiley, .

 F. R. Gantmacher. The Theory of Matrices. Chelsea Publishing Company, .

 K. J. Gaston and J. I. Spicer. Biodiversity: An Introduction. Wiley-Blackwell, nd edition, .

 D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley,
.

 D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function optimi-
zation. In Second International Conference on Genetic Algorithms and their Application, .

 D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis, and first results.
Complex Systems, :–, .

 M. Halkidi and M. Vazirgiannis. Clustering validity assessment: Finding the optimal partitioning of
a data set. In IEEE International Conference on Data Mining, .

 M. Halkidi, Michalis M. Vazirgiannis, and Y. Batistakis. Quality scheme assessment in the clustering
process. In th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD
), .

 M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Clustering validity checking methods: part ii. ACM
SIGMOD Record, :–, .

 J. Handl. Multiobjective clustering around medoids. In Congress on Evolutionary Computation (CEC
), .

 J. Handl and J. Knowles. Improvements to the scalability of multiobjective clustering. In Congress
on Evolutionary Computation (CEC ), .

 J. Handl and J. Knowles. Exploiting the trade-off - the benefits of multiple objectives in data clus-
tering. In Evolutionary Multi-Criterion Optimization (EMO ), .

 J. Handl and J. Knowles. An evolutionary approach to multiobjective clustering. IEEE Transactions
on Evolutionary Computation, :–, .

 Appendix

 B. Hardung. Optimisation of the Allocation of Functions in Vehicle Networks. PhD thesis, Universität
Erlangen, .

 G. Harik. Finding multimodal solutions using restricted tournament selection. In Sixth International
Conference on Genetic Algorithms, .

 J. A. Hartigan. Direct clustering of a data matrix. Journal of the Amercian Statistical Association, 
():–, .

 C. Haubelt, S. Mostaghim, J. Teich, and A. Tyagi. Solving hierarchical optimization problems using
moeas. In Evolutionary Multi-Criterion Optimization (EMO ), .

 J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications
to Biology, Control and Artificial Intelligence. MIT Press, .

 M. Houle, H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Can shared-neighbor distances defeat
the curse of dimensionality? In Scientific and Statistical Database Management. Springer Berlin /
Heidelberg, .

 E. R. Hruschka, R. J. G. B. Campello, and L. N. de Castro. Evolving clusters in gene-expression data.
Information Sciences, ():–, .

 E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas, and A. C. P. L. F. de Carvalho. A survey of evolutionary
algorithms for clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), ():–, .

 S. Huband, P. Hingston, L. Barone, and L. While. A review of multiobjective test problems and a
scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, ():–, .

 E. J. Hughes. Radar waveform optimization as a many-objective application benchmark. In Evolu-
tionary Multi-Criterion Optimization (EMO ), .

 J. Izsák and L. Papp. A link between ecological diversity indices and measures of biodiversity.
Ecological Modelling, :–, .

 Y. Jin and J. Branke. Evolutionary optimization in uncertain environments-a survey. IEEE Transactions
on Evolutionary Computation, (): – , .

 R. Jornsten, Y. Vardi, and C.-H. Zhang. A robust clustering method and visualization tool based on
data depth. In In Statistical data analysis based on the Lnorm and related methods (Neuch�tel, ),
.

 S. A. Kauffman. Origins of Order: Self-Organization and Selection in Evolution. Oxford University
Press, .

 L. Kaufman and P. J. Rousseeuw. Clustering by means of medoids. Statistical Data Analysis based
on the L Norm, pages –, .

Bibliography 

 L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley,
.

 D. Kundu, K. Suresh, S. Ghosh, S. Das, A. Abraham, and Y. Badr. Automatic clustering using a
synergy of genetic algorithm andmulti-objective differential evolution. InHybrid Artificial Intelligence
Systems (HAIS ), .

 Z. Kutalik, J. S. Beckmann, and S. Bergmann. A modular approach for integrative analysis of large-
scale gene-expression and drug-response data. Nature Biotechnology, ():–, .

 M. Křivánek and J. Morávek. NP-hard Problems in Hierachical-Tree Clustering. Acta Informatica, 
():–, .

 X. Li, J. Zheng, and J. Xue. A diversity metric for multi-objective evolutionary algorithms. In Interna-
tional Conference on Advances in Natural Computation (ICNC ), .

 J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In Fisth
Berkeley Symposium on Mathematical Statistics and Probability, .

 S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: A survey.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, ():–, .

 S. W. Mahfoud. Crowding and preselection revisited. In Parallel Problem Solving FromNature (PPSN II),
.

 G. W. Milligan and M. C. Cooper. An examination of procedures for determining the number of
clusters in a data set. Psychometrika, :–, .

 D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of sat problems. In Tenth
National Conference on Artificial Intelligence, .

 R. Moritz, T. Ulrich, and L. Thiele. Evolutionary exploration of e/e-architectures in automotive design.
In International Conference on Operations Research, .

 J. N. Morse. Reducing the size of the nondominated set: Pruning by clustering. Computers and
Operations Research, :–, .

 M. Narayanan, A. Vetta, E. E. Schadt, and J. Zhu. Simultaneous clustering of multiple gene expression
and physical interaction datasets. PLoS Computational Biology, , .

 G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions – i. Mathematical Programming, :–, .

 S. Obayashi. Pareto Solutions of Multipoint Design of Supersonic Wings Using Evolutionary Algo-
rithms. Adaptive Computing in Design and Manufacture V, .

 S. Obayashi and D. Sasaki. Visualization and data mining of pareto solutions using self-organizing
map. In Evolutionary Multi-Criterion Optimization (EMO ), .

 Appendix

 S. Obayashi, D. Sasaki, Y. Takeguchi, and N. Hirose. Multiobjective evolutionary computation for
supersonic wing-shape optimization. IEEE Transactions on Evolutionary Computation, :–,
.

 Y. J. Park and M. S. Song. A genetic algorithm for clustering problems. In Proceedings of the Third
Annual Conference on Genetic Programming, .

 A. Petrowski. A clearing procedure as a niching method for genetic algorithms. In Conference on
Evolutionary Computation (CEC ), .

 K. S. Pollard and M. J. van der Laan. Statistical inference for simultaneous clustering of gene
expression data. Mathematical Biosciences, :–, .

 A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann, W. Gruissem, L. Hennig, L. Thiele, and
E. Zitzler. A systematic comparison and evaluation of biclustering methods for gene expression
data. Bioinformatics, ():–, .

 M. Preuss, B. Naujoks, and G. Rudolph. Pareto set and emoa behavior for simple multimodal mul-
tiobjective functions. In Parallel Problem Solving From Nature (PPSN IX), .

 A. Pryke, S. Mostaghim, and A. Nazemi. Heatmap visualization of population based multi objective
algorithms. In Evolutionary Multi-Criterion Optimization (EMO ), .

 H. Rahami, A. Kaveh, and Y. Gholipour. Sizing, geometry and topology optimization of trusses via
force method and genetic algorithm. Engineering Structures, ():–, .

 I. Rechenberg. Evolutionsstrategie � Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution. PhD thesis, .

 C. Ricotta and M. Moretti. Quantifying functional diversity with graph-theoretical measures: ad-
vantages and pitfalls. Community Ecology, :–, .

 M. A. Rosenman and J. S. Gero. Reducing the pareto optimal set in multicriteria optimization.
Engineering Optimization, :–, .

 P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics, ():–, .

 G. Rudolph, B. Naujoks, and M. Preuss. Capabilities of emoa to detect and preserve equivalent
pareto subsets. In Evolutionary Multi-Criterion Optimization (EMO ), .

 A. Saha and K. Deb. A bi-criterion approach to multimodal optimization: Self-adaptive approach.
In Simulated Evolution and Learning (SEAL ), .

 K. Sastry, D. E. Goldberg, and X. Llorà. Towards billion-bit optimization via a parallel estimation of
distribution algorithm. In Genetic and Evolutionary Computation Conference (GECCO ), .

Bibliography 

 O. Schütze, A. Lara, C.A. Coello Coello, and M. Vasile. Computing approximate solutions of scalar
optimization problems and applications in space mission design. In Conference on Evolutionary
Computation (CEC ), .

 H. P. Schwefel. Numerical Optimization of Computer Models. Wiley, .

 W. Sheng, X. Liu, and M. Fairhurst. A niching memetic algorithm for simultaneous clustering and
feature selection. IEEE Transactions on Knowledge and Data Engineering, ():–, .

 H. Shimodaira. A diversity-control-oriented genetic algorithm (dcga): Performance in function
optimization. In Genetic and Evolutionary Computation Conference (GECCO ), .

 O. M. Shir, M. Preuss, B. Naujoks, and M. Emmerich. Enhancing decision space diversity in evolu-
tionary multiobjective algorithms. In Evolutionary Multi-Criterion Optimization (EMO ), .

 A. R. Solow and S. Polasky. Measuring bilological diversity. Environmental and Ecological Statistics,
:–, .

 G. Squillero and A. P. Tonda. A novel methodology for diversity preservation in evolutionary al-
gorithms. In Conference Companion on Genetic and Evolutionary Computation Conference (GECCO
), .

 N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting in genetic algo-
rithms. Evolutionary Computation, ():–, .

 K. Sugimura, S. Jeong, S. Obayashi, and T. Kimura. Kriging-model-based multi-objective robust
optimization and trade-off-rule mining using association rule with aspiration vector. In Congress
on Evolutionary Computation (CEC ), .

 H. A. Taboada and D. W. Coit. Data clustering of solutions for multiple objective system reliability
optimization problems. Quality Technology and Quantitative Management, :–, .

 L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design space exploration of network processor
architectures. In Network Processor Design : Design Principles and Practices. Morgan Kaufmann,
.

 A. Toffolo and E. Benini. Genetic diversity as an objective in multi-objective evolutionary algorithms.
Evolutionary Computation, ():–, .

 S. Tsutsui, Y. Fujimoto, and A. Ghosh. Forking genetic algorithms: Gas with search space division
schemes. Evolutionary Computation, ():–, .

 T. Ulrich. Pareto-set analysis: Biobjective clustering in decision and objective spaces. Journal of
Multi-Criteria Decision Analysis.

 T. Ulrich and L. Thiele. Maximizing population diversity in single-objective optimization. In Genetic
and Evolutionary Computation Conference (GECCO ), .

 Appendix

 T. Ulrich and L. Thiele. Bounding the effectiveness of hypervolume-based (mu + lambda)-archiving
algorithms. In Learning and Intelligent Optimization Conference (LION ), .

 T. Ulrich, D. Brockhoff, and E. Zitzler. Pattern identification in pareto-set approximations. In Genetic
and Evolutionary Computation Conference (GECCO ), .

 T. Ulrich, J. Bader, and L. Thiele. Defining and optimizing indicator-based diversity measures in
multiobjective search. In Parallel Problem Solving From Nature (PPSN XI), .

 T. Ulrich, J. Bader, and E. Zitzler. Integrating decision space diversity into hypervolume-based mul-
tiobjective search. In Genetic and Evolutionary Computation Conference (GECCO ), .

 R. K. Ursem. Diversity-guided evolutionary algorithms. In Congress on Evolutionary Computation
(CEC ), .

 D. A. Van Veldhuizen and G. B. Lamont. Multiobjective optimization with messy genetic algorithms.
In ACM Symposium on Applied Computing, .

 M. Vasile and P. De Pascale. Preliminary design of multiple gravity-assist trajectories. Journal of
Spacecrast and Rockets, ():–, .

 M. L. Weitzman. On diversity. The Quarterly Journal of Economics, ():–, .

 L. While, P. Hingston, L. Barone, and S. Huband. A faster algorithm for calculating hypervolume.
IEEE Transactions on Evolutionary Computation, ():–, .

 R. Xu and D. C. Wunsch. Clustering. Wiley, .

 X. Yu and M. Gen. Introduction to Evolutionary Algorithms. Springer, .

 A. Zhou, Q. Zhang, and Y. Jin. Approximating the set of pareto optimal solutions in both the decision
and objective spaces by an estimation of distribution algorithm. IEEE Transactions on Evolutionary
Computation, :–, .

 E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search. In Parallel Problem Solving
from Nature (PPSN VIII), .

 E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case study and the
strength pareto approach. IEEE Transactions on Evolutionary Computation, ():–, .

 E. Zitzler, M. Laumanns, and L. Thiele. Spea: Improving the strength pareto evolutionary algorithm
for multiobjective optimization. In Evolutionary Methods for Design, Optimisation and Control with
Application to Industrial Problems (EUROGEN ), .

 E. Zitzler, L. Thiele, M. Laumanns, C. M. Foneseca, and V. Grunert da Fonseca. Performance as-
sessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary
Computation, ():–, .

Bibliography 

 E. Zitzler, L. Thiele, and J. Bader. On set-based multiobjective optimization. IEEE Transactions on
Evolutionary Computation, :–, .

Curriculum Vitae

Personal Information

Tamara Emiliana Ulrich
Born September ,  in Schwyz, Switzerland
Citizen of Switzerland

Education

– Doctoral student at Computer Engineering and Networks Laboratory (TIK),
ETH Zurich, Switzerland

– Master studies in information technology and electrical engineering at ETH
Zurich, Switzerland

 Matura at Gymnasium Immensee

