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Abstract
The confluence of networked embedded computing, low-power wireless
communications, and sensor technology has spawned a whole spectrum
of powerful applications that are commonly believed to radically change
the way we perceive and interact with the physical world. Data collection
applications, for example, enable the monitoring of physical phenomena
with unprecedented spatial and temporal resolutions, and cyber-physical
systems (CPS) applications can control physical processes by integrating
sensing and computation with actuation into distributed feedback loops.
Application domains include transportation, healthcare, and buildings.

Data collection and CPS applications alike demand predictability and
e�ciency from the wireless communication substrate to function correctly
and e↵ectively. In particular, these applications require a certain energy
e�ciency, reliability, and timeliness of end-to-end packet transmissions.
Meeting perhaps multiple such non-functional requirements is, however,
extremely challenging. This is due to, for example, the need for multi-hop
communication over lossy low-power wireless channels, unpredictable
and non-deterministic changes in the environment, and limited resources
of the employed devices in terms of computation, memory, and energy.

Dedicated solutions have been proposed that attempt to tackle these
challenges in order to satisfy the needs of either non-critical data collection
or critical CPS applications. As for the former, adapting the operational
parameters of the MAC protocol proved to be highly e↵ective; however,
current e↵orts focus only on a single performance metric or consider local
metrics, whereas applications often exhibit requirements along multiple
metrics that are most naturally expressed in global, network-wide terms.
As for the latter, state-of-the-art solutions including industry standards do
not provide hard end-to-end real-time guarantees because of a localized
operation, or can hardly keep up with dynamic changes in the network.

To address these problems, this thesis presents new analytical results
as well as real implementations of novel protocols and systems that make
use of them. Specifically, we make three main contributions:

• We design pTunes, a framework that meets multiple soft application
requirements on network lifetime, end-to-end reliability, and end-
to-end latency by adapting the MAC protocol parameters at runtime
in response to changes in the network and the tra�c load. pTunes
exploits a centralized approach that is similar in spirit to a model-
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predictive controller. Results from testbed experiments show that
relative to carefully chosen fixed MAC parameters pTunes extends
network lifetime by up to 3⇥, and reduces packet loss by 70–80 %
during periods of wireless interference or when multiple nodes fail.

• A new breed of protocols that utilize synchronous transmissions has
been shown to enhance the reliability and e�ciency of protocols that
use link-based transmissions. We find that these emerging protocols
also enable simpler and more accurate models, which play a key role
in system design, verification, and runtime adaptation to meet given
requirements. We show through testbed experiments and statistical
analyses that unlike link-based transmissions, packet receptions and
losses using synchronous transmissions with Glossy can largely be
considered statistically independent events. This property greatly
simplifies the accurate modeling of protocols based on synchronous
transmissions. We demonstrate this by obtaining an unprecedented
error below 0.25 % in the energy model of the Glossy-based Low-
power Wireless Bus (LWB), and providing su�cient conditions for
probabilistic guarantees on LWB’s end-to-end reliability.

• We present Blink, the first protocol that provides hard guarantees on
end-to-end packet deadlines in large multi-hop low-power wireless
networks. Built on top of LWB as communication support, we map
the scheduling problem in Blink to uniprocessor scheduling. We
devise earliest deadline first (EDF) based scheduling policies that
Blink employs to compute online a schedule that provably meets all
deadlines of packets released by admitted real-time packet streams
while minimizing the network-wide energy consumption within
the limits of LWB, tolerating changes in the network and the set of
streams. An e�cient priority queue data structure and algorithms
we design prove instrumental for a viable implementation of these
policies on resource-constrained nodes. Our experiments show that
Blink meets nearly 100 % of packet deadlines on a large multi-hop
testbed, and achieves speed-ups of up to 4.1⇥ over a conventional
scheduler implementation on state-of-the-art microcontrollers.
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1
Introduction

Low-power wireless communications has been a key enabling technology
for innovative applications over the last 15 years. First and foremost, low-
power wireless has been the primary choice for networking embedded
low-power sensing devices in distributed wireless sensor networks. These
networks have given rise to di↵erent classes of important applications.

A prominent example is the class of data collection applications, where
tens to hundreds of sensing devices gather information to monitor physical
processes. Real data collection applications range from habitat [MCP+02],
soil ecology [METS+06], permafrost [BGH+09], microclimate [TPS+05],
vital sign [CLBR10] as well as structural health monitoring [CFP+06] to
tra�c [SMR+12], fire [HHSH06], and wildlife tracking [DEM+10]. Many
of these applications exploit the possibility of collecting sensor data with
unprecedented spatio-temporal resolution using networked devices that
are deeply embedded into the environment around us or even inside our
bodies to gain a deeper understanding of certain physical phenomena.

Another representative example is the emerging class of cyber-physical
systems (CPS) applications. These systems are facilitated by augmenting
traditional wireless sensor networks with actuating devices such that
sensing, computation, and actuation can jointly work in concert within
distributed feedback loops to control physical processes. CPS applications
include factory and building automation, infrastructure control, precision
agriculture, distributed robotics, assisted living, tra�c safety, industrial
process control, and advanced automotive and avionic systems [Lee08,
Sta08]. It is widely anticipated that CPS will be key to solving a number
of significant societal challenges in the 21st century [NAE, RLSS10].

Irrespective of the application class, low-power wireless communica-
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tion is what glues everything together by allowing devices to exchange
application and protocol data over short distances at low energy cost.

1.1 Application Requirements
The utility of any real-world low-power wireless application is judged on
the grounds of requirements that are specified by the user, which could be
an environmental scientist or a control engineer. This thesis deals with
non-functional requirements put on the wireless communication substrate
that express the desired energy e�ciency, reliability, and timeliness of
packet transmissions. Both data collection and CPS applications exhibit
requirements along these key dimensions, although to varying degrees.

Metric #1: energy. Two tangible benefits of low-power wireless are higher
flexibility and lower costs by avoiding any sort of wiring, and this notably
includes power cables. At the same time, the vast majority of applications
needs to operate without interruption and possibly unattended for several
months or even multiple years [CMP+09, CCD+11]. As an example, for
intelligent telemetry of freight railroad trains to be economically viable,
railroad cars should not be hauled in just to service the networking
infrastructure; rather, replacing or recharging batteries is only plausible
during regular maintenance of a railroad car [RC10]. Thus, the network
lifetime must be at least as long as the maintenance cycle of a car, which
can easily exceed five years [ZDR08]. To achieve this, reducing the energy
consumption due to communication is an important requirement, because
the radio transceiver is one of the most power-hungry components on a
typical low-power wireless platform [Lan08].

Metric #2: reliability. In general, an application would like to see as many
packets as possible being delivered from the sources to the destination(s).
However, successful delivery of all packets cannot be guaranteed over a
channel that is lossy because of fading, interference, and environmental
e↵ects [SDTL10]. To account for this, a low-power wireless application
should tolerate a reasonable amount of packet loss [RCCD09], yet some
applications are inherently more resilient to packet loss than others.
For instance, when monitoring relatively slow-changing environmental
parameters such as temperature and humidity, meaningful long-term
analyses may be possible even with 10–20 % of packet loss. However, in
high data rate applications such as acoustic source localization [AYC+07]
and structural health monitoring [CFP+06], much smaller packet loss rates
can adversely a↵ect the accuracy of the corresponding algorithms [PG07].
Similarly, CPS applications typically require a packet reliability well above
99 % to make well-informed control decisions [SSF+04].
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Metric #3: latency. Besides the reliable delivery of packets, it is sometimes
equally important that packets be delivered in a timely manner. This may
be a soft requirement in the sense that ”most“ of the packets should arrive at
the destination(s) a given interval after they were generated by the sources
(e.g., to provide an up-to-date view of the observed phenomenon to the
user), but packets arriving late are nevertheless useful for the application
(e.g., for later analyses) and do not have any catastrophic consequences.
Specific CPS applications, however, impose hard requirements on packet
latency, typically in the form of deadlines; that is, any packet arriving after
its deadline is useless to the application and thus counts as lost. Such real-
time applications are often found in safety-critical scenarios, for example,
when control law computations need to occur at pre-determined times to
guarantee the stability of the controlled physical process [ÅGB11].

Data collection and CPS applications put di↵erent emphasis on these
metrics. In the former, energy e�ciency is typically paramount, reliability
comes second, and latency plays only a minor role. In the latter, instead,
meeting packet deadlines through timely and reliable delivery is typically
the most important requirement, which leaves energy e�ciency, if at all, a
secondary objective. In fact, energy consumption may only be a concern
for a subset of the devices in the network, for example, for mobile devices
running on batteries, while other devices, such as a static base station or
programmable logic controller (PLC), enjoy a steady power supply.

Irrespective of the concrete scenario, there are two general character-
istics of application requirements one needs to take into account:

• Application requirements are specified from a network-wide perspective.
Ultimately, the end user only cares about the performance she gets
from the system as a whole. This includes the lifetime of the entire
network as well as the end-to-end latency and the end-to-end reliability
between packet sources and their destinations. It is therefore most
natural and convenient for domain experts and other users alike to
specify requirements in terms of these global, network-wide metrics.
Instead, local metrics referring to the performance inside the network,
for example, the per-hop packet delay between neighboring devices,
are only of interest to the system or protocol designer.

• Application requirements are at odds with each other. Many applications
do exhibit multiple requirements. As an example, in a building fire
detection system based on wireless battery-powered sensors, real-
time packet delivery is mandated by fire regulations, but a high level
of energy e�ciency is also required to keep the maintenance costs to
a minimum. Meeting multiple requirements simultaneously often
involves striking a balance between conflicting goals. To illustrate
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this, consider a protocol using radio duty cycling, whereby the radio
transceiver is put into a low-power mode as often and for as long as
possible. However, two devices can only talk with each other when
they both have their radios on. Thus, while radio duty cycling saves
energy, it can increase latency and negatively a↵ect reliability, too.

1.2 Challenges to Meeting Requirements
Meeting the requirements of real-world low-power wireless applications
is far from trivial. This is due to the need for multi-hop communication
protocols that constantly adapt their functioning to unpredictable and non-
deterministic changes in the environment, while operating very close to the
resource limits of the employed devices. We next discuss these challenges
before moving on to a high-level review of prior attempts to tackling them
with the goal of meeting soft and hard application requirements.

Low-power wireless links are volatile. Low-power wireless communica-
tions are notoriously unreliable. Fading because of multipath propagation
or shadowing can reduce the power of the received signal to a point where
successful reception is impossible; interference from wireless transmitters
operating on almost the same frequency at the same time can destroy the
information encoded in signals; and meteorological conditions such as air
temperature and humidity a↵ect the link quality, too [BKM+12, WHR+13].
As a result, low-power wireless links are volatile with coherence times
as small as a few hundred milliseconds [SKAL08], thus su↵ering from
unpredictable packet loss that can vary significantly over time [SDTL10].

A common approach to combat packet loss is to possibly transmit a
packet more than once. Such a packet retransmission is triggered by the
sender when no acknowledgment from the receiver has arrived within a
predetermined time interval [GFJ+09]. Another possibility is the use of
an error-correction code, such as Reed-Solomon, whereby multiple check
symbols are added to the packet by the sender to detect a certain number of
erroneous symbols at the receiver [LPLT10]. While both retransmissions
and coding help improve packet reliability, they increase average packet
latency and energy consumption. These two examples already show that
parameters of communication protocols, such as the maximum number of
retransmissions per packet or the number of check symbols to be added,
could be important for meeting the application requirements, yet it may
be non-trivial to find the right trade-o↵ between all performance metrics.

Resource-constrained devices. To benefit the most from low costs, high
flexibility, and deep embedding in the environment, low-power wireless
devices often come in small form factors with severely limited resources.
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Figure 1.1: A TelosB (also known as Tmote Sky) fits an 8 MHz microcontroller
and a 2.4 GHz low-power wireless radio within a few square centimeters.

Typical platforms feature a low-power microcontroller (MCU), a low data
rate radio with a relatively short range, and a limited amount of code and
data memory. For example, the TelosB [PSC05] shown in Figure 1.1—still
one of the most widely used platforms in low-power wireless research
today despite its release a decade ago—has a 16-bit MSP430 MCU running
at a speed of up to 8 MHz, an IEEE 802.15.4 compliant CC2420 wireless
radio operating in the 2.4 GHz ISM band at a fixed data rate of 250 kbps,
10 kB of RAM, 48 kB of program memory, and 1 MB of non-volatile flash
storage. In addition, energy is often limited by the battery capacity or the
maximum possible intake in an energy harvesting scenario [BSBT14].

These resource constraints put limits on what can be computed, stored,
and communicated using low-power wireless platforms. Although there
are increasingly more powerful yet very e�cient MCUs appearing on the
market, including the recent ARM Cortex-M0+, these represent only the
middle to upper end of the spectrum. At the lower end, there will soon
be true “Smart Dust” chips that integrate computation, communication,
storage, and sensing in a cubic-millimeter [LBL+13]. It is clear that these
devices will be even more resource-constrained than the smallest devices
that challenge the designers of communication protocols today.

Multi-hop communication. One limit that deeply a↵ects communication
protocol design is the transmission range of low-power wireless radios of
a few tens of meters indoors and a little over a hundred meters outdoors.
The locations of nodes in a real deployment are, however, dictated by the
application, which may require to cover significantly larger distances. For
instance, intelligent telemetry of freight railroad trains requires networks
that span the length of a train, which can be up to 2.7 kilometers [ZDR08];
a network for monitoring and controlling a modern paper mill needs to
extend across about 150 meters; and process control in chemical plants or
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source 

destination link 

Figure 1.2: Example of a multi-hop low-power wireless network with 16 nodes.
Arrows represent physical communication links between neighboring devices;
circles represent the nodes’ communication ranges. Due to the limited transmission
range of low-power wireless radios, the source relies on intermediate nodes that relay its
packets along a routing path to the destination. The quality of each link on the path varies
unpredictably over time because of fading, interference, and environmental factors.

refineries and building automation scenarios require network diameters
that are multiples of a node’s transmission range. Therefore, as shown in
Figure 1.2, end-to-end packet delivery in these networks relies on multi-
hop communication, where intermediate nodes relay packets on behalf of
sources that cannot directly communicate with the intended destinations.

In a multi-hop setting, the amount of network state—that is, information
about the instantaneous conditions at the physical layer—that determine
the success or failure of an end-to-end packet transmission is a function
of the number of intermediate hops (or link) connecting the source with
the destination. However, as explained before, the quality of low-power
wireless links can fluctuate significantly over time even in a static network.
Links can also vanish completely when devices suddenly fail because of
battery depletion or damage, or when nodes move out of communication
range. All these factors concur and make the network state a continuously
changing unknown, which complicates multi-hop communication [AY05].

1.3 State of the Art
As discussed in the following, three important problems remain unsolved
by prior work on low-power wireless communication protocols:



1.3. State of the Art 7

1. Support for non-critical data collection applications with multiple
soft requirements on global, network-wide performance metrics.

2. Support for critical CPS applications having hard requirements on
end-to-end packet deadlines and possibly also energy constraints.

3. Addressing problems 1. and 2. above in the face of unpredictable
and non-deterministic changes in the environment.

Architecture of layered low-power wireless networking stacks. Numer-
ous low-power wireless communication protocols have been developed to
tackle the inherent network-level challenges discussed above. Traditional
solutions that have been deployed with great success in the real world
and also those that are freely available as part of the open source TinyOS
and Contiki distributions typically include multiple protocols organized
into layers [ASSC02]. In low-power wireless, such a networking stack often
comprises only the three lower layers: physical, data link, and network.
The physical layer includes the radio hardware and the software driver for
transmitting individual bits, often grouped into symbols as defined by the
modulation scheme, between two devices within communication range.
The link layer, implemented by a media access control (MAC) protocol, uses
techniques like carrier sense multiple access (CSMA) to arbitrate access to
the shared wireless medium to let multiple neighboring devices exchange
packets with one another. Low-power MAC protocols additionally use radio
duty cycling and distinguish between unicast and broadcast to conserve
energy, and use per-hop packet retransmissions to help improve reliability
[Lan08]. The routing protocol at the network layer is then responsible for
the end-to-end delivery of packets across multiple hops, for example, by
establishing a routing tree that maintains a path from every source to the
destination, which represents the root of the tree [AY05]. Only very few
transport layer protocols exist, providing services like rate control and
end-to-end acknowledgments to further help packet reliability [PG07].
Primary focus on energy. As for meeting the non-functional requirements
of low-power wireless applications, the primary focus of existing low-
power wireless communication stacks has been on reducing the nodes’
energy consumption. Two techniques are commonly employed: radio
duty cycling at the data link layer and finding routes that minimize the
total number of transmissions per packet at the network layer [Lan08,
AY05]. It has been shown that in particular the parameters of the low-
power MAC protocol operating at the link layer largely determine not
only the energy cost of communication, but also the per-hop latency and
reliability of and the bandwidth available for communication [LM10].
The need to adapt. However, identifying a set of MAC parameters such
that the resulting performance matches the application requirements is
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cumbersome and error-prone, but most importantly, a particular choice of
MAC parameters may become unfit as the tra�c load and/or the network
state changes. A few works thus propose to adapt specific MAC protocol
parameters at runtime in response to such changes, mostly with the sole
goal of keeping the energy consumption to a minimum [JBL07, CWW10].

Focus on single or local metrics. There is even less work incorporating
additional metrics, such as per-hop latency and per-hop reliability, into
the adaptation decisions [PFJ10]. While these e↵orts are an important
step in the right direction, they fall short of meeting the requirements of
low-power applications in that they either focus only on a single metric
or consider only local metrics. Nevertheless, as described in Section 1.1,
low-power wireless applications often have requirements along multiple
metrics, which are most naturally specified in global, network-wide terms.

No hard performance guarantees in multi-hop networks. Despite the
usefulness of traditional networking stacks in enabling non-critical (data
collection) applications, their complexity makes it almost impossible to
provide hard guarantees on the end-to-end performance over multiple
hops, which are definitely needed to support critical CPS scenarios. The
root cause of this complexity is the wireless link abstraction: Many protocols
on all layers of the stack adopt concepts from wired networks like unicast
transmission and routing path, as shown in Figure 1.2, thereby treating the
wireless channel between two devices as a point-to-point link [KRH+06].
The end-to-end behavior of these protocols, then, depends on the quality
of multiple links, each of which is subject to several unpredictable factors.

The inability to keep up with the ever-changing network state is indeed
the primary reason why previous solutions cannot support applications
that require packets to be delivered within hard real-time deadlines. Both
industry standards [har, isa] and research prototypes [OBB+13, SNSW10]
exist that compute at runtime transmission schedules tailored for each
node in the network at a central entity, based on information about the
global network state. Assuming the latter would not change at all, these
approaches could in principle guarantee end-to-end packet deadlines. In
the real world, however, the network state changes, and because it takes
considerable time from when such change occurs until when a change is
reflected in new transmissions schedules—on the order of several minutes
based on anecdotal evidence reported by our contacts at ABB Research—
these routing-based solutions are fundamentally incapable of supporting
hard real-time applications. This is also acknowledged by major industry
players who contributed to the WirelessHART standard: “. . . none of the
technologies provide any hard guarantees on deadlines, which is needed
if you should dare to use the technology in critical applications” [Per].
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1.4 Thesis Contributions and Road Map
To address these shortcomings, this thesis makes three key contributions.

Meeting soft network-wide performance requirements (Chapter 2). To
serve the needs of real-world data collection applications, we introduce
pTunes, a framework for runtime adaptation of low-power MAC protocol
parameters. Compared with prior solutions, pTunes takes a more holistic
approach by allowing the user to specify multiple performance goals from
a global, network-wide perspective. These performance goals, specified in
terms of network lifetime, end-to-end reliability, and end-to-end latency,
represent soft requirements that are to be satisfied in the long run. Given a
concrete requirements specification and a traditional low-power wireless
stack running at each node, pTunes adapts the operational parameters of
the low-power MAC protocol at runtime to meet the requirements against
dynamic changes in network state, tra�c load, and routing topology.

As detailed in Chapter 2, pTunes rests upon three building blocks:

• The design of pTunes revolves around a centralized approach that
is similar in spirit to a model-predictive controller. To reason about
network-wide performance, pTunes periodically collects at a central
entity (e.g., the base station in a deployment) reports from each node
that contain local routing and network state, among others. Based
on the thus obtained global network view and an accurate performance
model, pTunes first checks whether the application requirements are
violated. If so, it automatically solves a multi-objective optimization
problem in order to determine MAC parameters so that the predicted
performance matches again the application requirements under the
current global network view. The determined MAC parameters are
then distributed in the network and installed on all devices.

• We structure the aforementioned performance model in a layered
fashion, clearly separating application-level, protocol-independent,
and protocol-dependent modeling quantities. This way, we simplify
the integration of a di↵erent MAC protocol into pTunes by reusing
common expressions and identifying the minimum set of quantities
that needs to be altered. We show the e↵ectiveness of our modeling
approach by applying it to two state-of-the-art protocols, X-MAC
and LPP, based on their implementations in Contiki.

• We design an e�cient runtime support to “close the loop” in pTunes.
Our approach uses fast and reliable Glossy floods [FZTS11] to collect
network state and disseminate new MAC parameters. This enables
pTunes to gather consistent snapshots of network state, taken with
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microsecond accuracy at all nodes simultaneously, with low energy
costs and independent of other protocols running concurrently.

We demonstrate using testbed experiments that pTunes can achieve
severalfold improvements in network lifetime over fixed MAC parame-
ters, while satisfying soft end-to-end latency and reliability requirements
in the long run despite unforeseen changes in the network caused by, for
example, wireless interference and multiple node failures.

Modeling protocols that utilize synchronous transmissions (Chapter 3).
The e↵ectiveness of pTunes is fundamentally dependent on the accuracy
of the performance model, which maps the global network view and the
MAC protocol parameters to the three performance metrics we target. In
essence, it is the performance model that closes the large conceptual gap
between the high-level application requirements and the low-level MAC
protocol parameters, and the solver exercises the model while computing
the latter in order to satisfy the former. More generally, accurate models
of a network’s end-to-end performance can greatly aid in the design and
verification of emerging systems, including CPS that “. . . must operate
dependably, safely, securely, e�ciently, and in real-time. [RLSS10]”

Unfortunately, traditional multi-hop low-power wireless protocols as
considered in Chapter 2 are intricate and di�cult to model. This is because
their operation is conditional on the ever-changing network state, which
leads to unpredictable and often uncoordinated changes in the protocol’s
behavior, for example, when some node in the routing tree locally decides
to forward packets to a di↵erent parent [GFJ+09]. As a result, previous
modeling e↵orts often stop at the link layer, where distributed interactions
span only a single hop and hence reasoning is still manageable, achieving
model errors in the range of 2–7 % (see Section 2.5.2). Only a few works
model higher-layer functionality [YZDPHg11, GB12], but their validation
is limited to simulations, which lack precisely the real-world dynamics of
low-power wireless that complicate the modeling in the first place.

Fueled by our own work on the Glossy flooding architecture [FZTS11]
and the Low-Power Wireless Bus (LWB) [FZMT12], a radically di↵erent
breed of communication protocols has emerged that utilizes synchronous
transmissions. Rather than one sender transmitting over a dedicated wire-
less link to a receiver, using synchronous transmissions multiple senders
transmit simultaneously to the receiver. The sender diversity [RHK10] and
two physical-layer phenomena, constructive baseband interference and
capture e↵ects [WLS14], let synchronous transmissions achieve a higher
one-hop packet reliability than link-based transmissions [DDHC+10].

Chapter 3 of this thesis shows that certain protocols using synchronous
transmissions are also simpler to model than link-based protocols with an
unparalleled accuracy. Specifically, Chapter 3 contributes the following:
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• Using statistical time series analyses of a large set of packet reception
traces collected through extensive testbed experiments, we find that
packet receptions and losses in Glossy largely adhere to a sequence
of independent and identically distributed (i.i.d.) Bernoulli trials.
This so-called Bernoulli assumption is typically made to simplify the
modeling, yet we find that this assumption is significantly less valid
when modeling protocols that operate on individual wireless links.

• Leveraging the validity of the Bernoulli assumption to synchronous
transmissions, we devise a simple Markovian model that estimates
LWB’s long-term energy consumption with an unparalleled error
of 0.25 % relative to real measurements, and su�cient conditions to
give probabilistic guarantees on LWB’s end-to-end packet reliability.
In doing so, we demonstrate for the first time the accurate modeling
of a complete multi-hop low-power wireless networking solution.

These results are particularly relevant to CPS applications employing
feedback control. Many control algorithms can be designed to tolerate a
small fraction of packet loss, say, less than 1 %, without sacrificing control
performance and stability. Nevertheless, this assumes that the few losses
do not happen as a longer burst of multiple consecutive losses [SSF+04].
The validity of the Bernoulli assumption for synchronous transmissions
essentially says that such adverse bursts virtually never occur when using,
for example, Glossy to communicate packets throughout the network.

Meeting hard real-time requirements with low energy costs (Chapter 4).
Since LWB employs only Glossy for communication and has been shown
to keep end-to-end packet loss rates below 1 % [FZMT12], LWB could be a
good candidate protocol for supporting CPS applications. Indeed, LWB’s
operation resembles that of wired fieldbusses, such as FlexRay [MT06] and
Time-Triggered Protocol [KG93], which are used in classical embedded
systems with high dependability and real-time requirements. Using LWB,
nodes are synchronized and an appointed host node repeatedly computes
a communication schedule that globally allocates non-overlapping time
slots to nodes that have pending packets. That is, there is just one global
schedule that applies to all nodes in the network, and every time slot in
this schedule corresponds to a distinct network-wide Glossy flood. While
working with Glossy and LWB over the past years, we began to nourish
the hope that it could be possible to support CPS applications with hard
real-time requirements by leveraging LWB’s bus-like operation.

To show that our intuition was correct, we design Blink, the first low-
power wireless protocol providing hard real-time guarantees on end-to-
end packet deadlines in large multi-hop networks, while simultaneously
incurring low energy costs. Blink uses LWB as underlying communication
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support, yet the original LWB scheduler is completely oblivious of packet
deadlines. The key observation that makes Blink immune to the problem
that prevents prior solutions from providing real-time guarantees across
multiple hops (see Section 1.3) is that because Glossy’s protocol logic is
independent of the current network state, we do not need to consider the
time-varying network state as an input to the scheduling problem either.

As detailed in Chapter 4, Blink’s design rests upon three components:

• In LWB all nodes follow the same schedule, while Glossy provides
very accurate network-wide time synchronization and allows us to
ignore the network state. Due to these properties we can treat an
entire multi-hop low-power wireless network as a single resource that
runs on a single clock. This abstraction is powerful in that it allows
us to map the real-time scheduling problem in Blink to uniprocessor
scheduling, which is well known and easier to solve than the multi-
processor scheduling problem found in prior work [SXLC10].

• We conceive scheduling policies based on the earliest deadline first
(EDF) principle [LL73]. Blink uses these policies to compute online
a schedule that provably meets all deadlines of admitted packet
streams, while minimizing the network-wide energy consumption
within the limits of the underlying LWB communication support,
tolerating changes in both the network state and the set of streams.

• We design and implement a highly e�cient priority queue as well as
algorithms that make use of it to enable EDF scheduling on resource-
poor devices. Based on these, we can demonstrate the first working
implementation of EDF on low-power embedded platforms.

We evaluate a Blink prototype on two testbeds, showing that it meets
nearly 100 % of packet deadlines; the few deadline misses are entirely due
to packet loss, which cannot be completely avoided in a wireless setting.
Moreover, experiments on three state-of-the-art MCUs show that, thanks
to our data structures and algorithms, Blink achieves speed-ups of up to
4.1⇥ relative to a conventional scheduler implementation. These speed-
ups prove instrumental to the viability of EDF-based real-time scheduling
on specific low-power embedded platforms.



2
pTunes:

Runtime Parameter Adaptation
for Low-power MAC Protocols

Media access control (MAC) protocols play a key role in determining the
performance of low-power wireless networks, but very few of the many
proposed solutions have been used in real deployments [KGN09, RC08].

Challenges. There exists a significant conceptual gap between the high-
level application requirements on the one hand and the low-level MAC
protocol operation on the other [KGN09]. In particular, it requires expert
knowledge to find operating parameters of the low-power MAC protocol
such that the performance satisfies given application requirements.

In most deployments today, the choice of MAC parameters is based
on experience and rules of thumb involving a coarse-grained analysis
of expected network load and topology dynamics. This can yield a
performance far o↵ the application requirements [LM10]. Alternatively,
system designers conduct several field trials in order to identify suitable
MAC parameters [CCD+11]. This time-consuming and deployment-
specific practice, however, is hardly sustainable in the long term.

Even if the MAC parameters are appropriate at one time, they are likely
to perform poorly when the network state changes. The quality of low-
power wireless links varies greatly over time, leading to unpredictable
packet loss [ZG03]; harsh environmental conditions cause nodes to be
temporarily disconnected or to fail [BGH+09]; and changes in the routing
topology or the sensing activity result in fluctuating tra�c load. Statically
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Figure 2.1: Overview of the pTunes framework. pTunes takes advantage of a
centralized approach that shares some similarities with a model-predictive controller.

configured MAC protocols cannot cope with these dynamics.
To perform e�ciently at all times, MAC protocols must adapt their

operating parameters at runtime. One way to approach this problem is to
embed adaptivity within the protocol operation [HB10]. This, however,
hard-codes the adaptation policies and hence limits their applicability.
Instead, separating adaptivity from the protocol operation enables higher-
layer services to dynamically adjust the operating parameters [PHC04].
Although a few mechanisms utilize these “control knobs,” they either
focus on a single performance metric—typically energy [JBL07, MWZT10,
CWW10]—or consider only local metrics, such as per-hop latency [PFJ10,
BYAH06]. Real-world applications, however, often need to balance
multiple conflicting performance metrics, such as reliability, energy, and
latency, expressed on a network-wide scale [CMP+09, SMP+04, WALJ+06].

Contributions and road-map. To tackle the issues above, we present
pTunes, a framework for runtime adaptation of low-power MAC protocol
parameters. pTunes allows users to specify application requirements
in terms of network lifetime, end-to-end reliability, and end-to-end latency,
which are key performance metrics in real-world applications [CCD+11,
CMP+09, SMP+04, WALJ+06, TPS+05]. Based on information about the
current network state, pTunes automatically determines optimized MAC
parameters whose performance meets the requirements specification.

This chapter makes the following contributions:

• We introduce the pTunes framework, targeting data collection
systems employing tree routing atop low-power MAC protocols.
As shown in Figure 2.1, using pTunes a base station collects reports
on the network state, such as topology and link quality information,
to evaluate the network-wide metrics we target. The optimization
trigger decides when to carry out the parameter optimization, based
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on a periodic timer or some mechanism that uses the network-
wide performance model to check if the application requirements are
violated under the current network state. The solver determines
optimized MAC parameters, which are disseminated in the network
and installed on all nodes. Section 2.1 further characterizes the
multi-objective parameter optimization problem in pTunes.

• We design a well-structured modeling framework to solve the
parameter optimization problem. Our layered modeling approach,
described in Section 2.2, separates application-level, protocol-
independent, and protocol-dependent quantities. This increases
generality and flexibility, as it cleanly determines what needs
to be changed to account for a di↵erent MAC protocol. We
apply this modeling approach to two state-of-the-art protocols,
X-MAC [BYAH06] and LPP [MELT08], based on their implemen-
tations in Contiki. We use these models throughout this chapter,
ultimately demonstrating that they are both practical and accurate.

• We present the design and implementation of an e�cient system
support to address the system-level challenges arising in pTunes.
These include, for instance, the timely collection of accurate network
state with little energy overhead and minimum disruption for the
application operation. As described in Section 2.3, unlike most
approaches in the literature, we meet these requirements with
a novel solution for collecting network state and disseminating
new MAC parameters independent of other protocols running
concurrently. Our approach utilizes fast and reliable Glossy network
floods [FZTS11], allowing pTunes to collect consistent network
state snapshots, taken with microsecond accuracy at all nodes
simultaneously, with very low energy cost.

After illustrating implementation details in Section 2.4, we evaluate
pTunes in Section 2.5 using experiments with X-MAC and LPP on a 44-
node testbed. For instance, we find that adapting their parameters using
pTunes enables up to three-fold lifetime gains over static MAC parameters
optimized for peak tra�c, the latter being current practice in many real
deployments [KGN09]. pTunes promptly reacts to changes in tra�c load
and link quality, meeting application-level requirements through an 80 %
reduction in packet loss during periods of controlled wireless interference.
Moreover, we find that pTunes helps the routing protocol recover from
critical network changes, reducing the total number of parent switches
and settling quickly on a stable, high-quality routing topology. This
reduces packet loss by 70% in a scenario where multiple core routing
nodes fail simultaneously.
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We discuss design trade-o↵s of pTunes in Section 2.6, review related
work in Section 2.7, and provide brief concluding remarks in Section 2.8.

2.1 Optimization Problem
In pTunes, we simultaneously consider three key performance metrics of
real-world applications [CCD+11, CMP+09, SMP+04, WALJ+06, TPS+05]:
network lifetime T, end-to-end reliability R, and end-to-end latency L.
The MAC parameter optimization problem thus becomes a multi-objective
optimization problem (MOP). This involves optimizing the objective
functions T(c), R(c), and L(c), where c is a vector of MAC parameters,
or MAC configuration for short. There may exist not one unique optimal
solution to this MOP, but rather a set of solutions that are optimal in
the sense that no other solution is superior in all objectives. These are
known as Pareto-optimal solutions and represent di↵erent optimal trade-
o↵s among T, R, and L.

Given the many Pareto-optimal solutions, a natural question is which
solution best serves the application demands. pTunes needs to make
this decision at runtime in an automated fashion, without involving
the user (e.g., to manually select a solution from a set of candidates).
With this requirement in mind, we adopt from among the many
MOP solving techniques an approach inspired by the epsilon-constraint
method [HLW71]. This method treats all but one objective as constraints,
and thus provides a natural interface for specifying typical requirements
of low-power wireless systems such as “batteries should last for at least
6 months.” Using this approach, pTunes solves the MOP by optimizing
one objective subject to constraints on the remaining objectives

Maximize/Minimize M1(c)
Subject to M2(c) �, C1

M3(c) �, C2

(2.1)

where each Mi is one among {T,R,L} and {C1,C2} are soft requirements to
be satisfied in the long run, corresponding to the best-e↵ort operation of
many data collection systems [GFJ+09]. By varying {C1,C2}, all Pareto-
optimal solutions can be generated. Based on concrete values for {C1,C2}
set by the user on some objectives, pTunes translates the application
requirements into a solution that optimizes the remaining objective.
The resulting solution is Pareto-optimal while representing the trade-o↵
provided by the user.

As an example, in long-term structural monitoring the major concern
is typically network lifetime, but domain experts also require a certain
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Figure 2.2: Modeling framework of pTunes with inputs, output, and mapping
between the di↵erent modeling layers. The layered modeling approach simplifies the
integration of new MAC protocols into pTunes by fostering reuse of common expressions
and clearly identifying the minimum set of quantities that needs to be changed.

reliability in delivering sensed data [CMP+09]. Instantiating (2.1), the
user would specify the maximization of network lifetime subject to a
minimum end-to-end reliability as follows

Maximize T(c)
Subject to R(c) � Rmin

(2.2)

In addition, the user may impose an additional constraint on end-to-end
latency, L(c)  Lmax, in case timely data delivery is also relevant.

2.2 Modeling Framework
To facilitate using pTunes with di↵erent low-power MAC protocols, we
break up the modeling into three distinct layers, as shown in the model
frame in Figure 2.2. The upper layer defines application-level metrics
(R, L, T) as functions of link and node-specific metrics (Rl, Ll, Tn). The
middle layer expresses these metrics in a protocol-independent manner,
and provides the entry point for the modeling of a concrete MAC protocol
by exposing six terms to the lower protocol-dependent layer. Binding
these terms to concrete protocol-specific expressions is su�cient to adapt
the network-wide performance model in pTunes to a given MAC protocol.

Model inputs are the MAC parameters and the network state,
comprising information about routing topology, tra�c volumes, and link
qualities. As a measure of the latter, we take the probability of successful
transmission pl over the link to the parent in the routing tree. To keep
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Table 2.1: Terms denoting network state and protocol-dependent quantities.
Term Description
N Set of all nodes in the network excluding the sink
M Set of source nodes generating packets
L Set of all links forming the routing tree
Fn Packet generation rate of node n
pl Probability of successful transmission over link l
ps,l Probability of successful unicast transm. over link l

Nftx,l Number of failed unicast transmissions before success over link l
Tftx,l Time for a failed unicast transmission over link l
Tstx,l Time for a successful unicast transmission over link l
Drx,n Fraction of time radio is in receive mode at node n
Dtx,n Fraction of time radio is in transmit mode at node n

our models simple and practical, we assume the delivery of individual
packets to be independent of their size, of the delivery of any other packet,
and of the link direction they travel along. As illustrated in Section 2.3,
our runtime evaluation of pl captures the impact of channel contention
on link quality, allowing us not to consider it explicitly in our models.
Testbed experiments in Section 2.5.2 show that this approach results in
highly accurate models for both X-MAC and LPP.

2.2.1 Application-level Metrics

In a typical data collection scenario with static nodes, a tree-shaped
routing topology provides a unique path from every sensor node to
a sink node. These paths are generally time-varying, as the routing
protocol adapts them according to link quality estimates among other
things [GFJ+09, PH10]. In the following, we use N to denote the set of
all nodes in the network excluding the sink, and M ✓ N to denote the
set of source nodes generating packets. We also indicate with L the set of
communication links that form the current routing tree. The path Pn ✓ L
originating at node n 2 M includes all intermediate links that connect
node n to the sink. Table 2.1 lists these and other modeling terms we use
to denote network state and protocol-dependent quantities.

End-to-end reliability and latency. The reliability RPn of path Pn is the
expected fraction of packets delivered from node n 2 M to the sink
along Pn. Thus, RPn is the product of per-hop reliabilities Rl, l 2 Pn. We
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define the end-to-end reliability R as the average reliability of all paths Pn.

R =
1
|M|

X

n2M
RPn =

1
|M|

X

n2M

0
BBBBB@
Y

l2Pn

Rl

1
CCCCCA (2.3)

Likewise, the latency LPn of path Pn is the expected time between the
first transmission of a packet at node n 2M and its reception at the sink.
Thus, LPn is the sum of per-hop latencies Ll, l 2 Pn. Similar to (2.3),
we define the end-to-end latency L for successfully delivered packets as the
average latency of all paths Pn, and omit the formula.

We define R and L as averages of all source-sink paths since the global,
long-term performance is of ultimate interest for most data collection
systems [WALJ+06, TPS+05, SMP+04]. Local, short-term deviations from
the requirements are usually tolerated, provided they are compensated
in the long run. In other scenarios (e.g., industrial settings), it might be
more appropriate to define R and L as the minimum reliability and the
maximum latency among all source-sink paths, which would only require
modifying the two definitions above.

Network lifetime. Similar to prior work [ML06], we define the network
lifetime T as the expected shortest node lifetime Tn, n 2 N . We assume the
sink has infinite energy supply.

T = min
n2N

(Tn) (2.4)

This choice is motivated by the fact that a single node failure can lead to
network partition and service interruption. It is also possible to express
other notions of network lifetime in pTunes, such as the time until some
fraction of nodes fails, again requiring only to modify (2.4).

2.2.2 Protocol-independent Modeling
The section above expressed the application-level metrics R, L, and T as
functions of per-hop reliability Rl, per-hop latency Ll, and node lifetime Tn

(see Figure 2.2). We now define the latter three in a protocol-independent
manner, which increases flexibility and generality by isolating protocol-
dependent quantities.

Per-hop reliability and latency. Several factors influence these metrics:
(i) the MAC operation when transmitting packets, (ii) packet queuing
throughout the network stack due to insu�cient bandwidth, and
(iii) application-level bu↵ering, for example, to perform in-network
processing. The MAC parameters have an impact on (i) and may avoid
the occurrence of (ii), provided a MAC configuration exists that provides
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su�cient bandwidth for the current tra�c load. Application-specific in-
network functionality akin to (iii) is out of the scope of this work.

We present next expressions for per-hop reliability and latency due to
the MAC operation, corresponding to (i). Additionally, pTunes includes
models to detect situations akin to (ii). In fact, as we show in Section 2.5.2,
pTunes automatically adjusts the MAC parameters to provide higher
bandwidth against increased tra�c, thus avoiding the occurrence of local
packet queuing until the network capacity attainable in our experimental
setting is fully exhausted.

We define the per-hop reliability Rl of link l 2 L, which connects node n 2
N to its parent m in the routing tree, as the probability that n successfully
transmits a packet to m.

Rl = 1 � (1 � ps,l)N+1 (2.5)

Here, ps,l represents the MAC-dependent probability that a single unicast
transmission over link l succeeds, and N is the maximum number of
retransmissions per packet, modeling automatic repeat request (ARQ)
mechanisms used by many MAC protocols to improve reliability.

Furthermore, we define the per-hop latency Ll of link l as the time for
node n to deliver a message to its parent m.

Ll = Nftx,l · Tftx,l + Tstx,l (2.6)

Here, Tftx,l and Tstx,l are the MAC-dependent times needed for each failed
and the final successful transmission, and Nftx,l is the expected number of
failed transmissions before the final successful one.

To derive an expression for Nftx,l, let pf ,l = 1 � ps,l be the probability
that a single transmission over link l fails, and pf ,l(k) = pf ,l(0) · pk

f ,l the
probability of k, 0  k  N, consecutive failed transmissions, where
pf ,l(0) denotes the probability that already the first transmission succeeds
(i.e., no transmission fails). There can be between 0 and N failed packet
transmissions. To compute the expectation Nftx,l, we sum over all possible
values 0  k  N, weighted by their probabilities of occurrence pf ,l(k).

Nftx,l =
NX

k=0

k · pf ,l(k)

= pf ,l(0) · pf ,l ·
NX

k=0

k · pk�1
f ,l (2.7)

Since we consider the per-hop latency Ll in (2.6) only for delivered packets,
that is, for packets that are eventually successfully transmitted, the sum
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of the di↵erent probabilities pf ,l(k) for all possible k amounts to 1.

1 =
NX

k=0

pf ,l(k)

= pf ,l(0) ·
1 � pN+1

f ,l

1 � pf ,l
(2.8)

From this, we immediately obtain an expression for the probability pf ,l(0)
that the first packet transmissions succeeds.

pf ,l(0) =
1 � pf ,l

1 � pN+1
f ,l

(2.9)

Replacing pf ,l(0) in (2.7) with the expression in (2.9) we get

Nftx,l =
pf ,l · (1 � pf ,l)

1 � pN+1
f ,l

·
NX

k=0

k · pk�1
f ,l

=
pf ,l · (1 � pf ,l)

1 � pN+1
f ,l

·
0
BBBBB@

1 � pN+1
f ,l

(1 � pf ,l)2 �
(N + 1) · pN

f ,l

1 � pf ,l

1
CCCCCA

=
pf ,l

1 � pf ,l
� (N + 1) ·

pN+1
f ,l

1 � pN+1
f ,l

(2.10)

Node lifetime. Sensor nodes consume energy by communicating,
sensing, processing, and storing data. Adapting the MAC parameters has
no significant impact on the latter three, but a↵ects energy expenditures
on communication to a large extent, as the radio is typically a major energy
consumer. Given a battery capacity Q, we define the node lifetime Tn of
node n 2 N as

Tn = Q/(Dtx,n · Itx +Drx,n · Irx +Didle,n · Iidle) (2.11)

where Itx, Irx, and Ii are the current draws of the radio in transmit, receive,
and idle mode. Tn is thus the expected node lifetime based on the fractions
of time in each mode Dtx,n, Drx,n, and Didle,n = 1�Dtx,n�Drx,n, which depend
on the MAC protocol and the tra�c volume at node n.

The tra�c volume is the rate at which nodes send and receive packets.
A node n 2 N generates packets at rate Fn and receives packets from its
children Cn ✓ N in the routing tree, if any. The rate of packet reception
depends on each child’s packet transmission rate Ftx,c and the individual
per-hop reliabilities Rlc of links lc, c 2 Cn, connecting each child c with n.
Thus, node n transmits packets at rate

Ftx,n = (Nrtx,l + 1) ·
0
BBBBB@Fn +

X

c2Cn

Ftx,c · Rlc

1
CCCCCA (2.12)



22 Chapter 2. pTunes: Runtime Parameter Adaptation for Low-power MAC Protocols

Here, Nrtx,l is the expected number of retransmissions per packet over
link l. To compute it, we have to sum over all possible values, weighted
by their probabilities of occurrence. The probability of k, 0  k < N,
retransmissions is pk

rt,l · (1 � prt,l); that is, the first k packet transmissions
fail (each with probability prt,l) and the last one succeeds (with probability
1 � prt,l). With pN

rt,l denoting the probability that the maximum number
of packet retransmissions is exhausted without delivering the packet, we
derive the expected number of retransmissions per packet as follows.

Nrtx,l = N · pN
rt,l +

N�1X

k=0

k · pk
rt,l · (1 � prt,l)

= N · pN
rt,l + prt,l · (1 � prt,l) ·

N�1X

k=0

k · pk�1
rt,l

= N · pN
rt,l + prt,l · (1 � prt,l) ·

0
BBBB@

1 � pN
rt,l

(1 � prt,l)2 �
N · pN�1

rt,l

1 � prt,l

1
CCCCA

=
prt,l · (1 � pN

rt,l)

1 � prt,l
(2.13)

Packet queuing. Whenever node n enqueues packets at a higher rate than
it forwards (i.e., dequeues) packets, packets start to queue up at node n.
The former rate is given by

F0 = Fn +
X

c2Cn

Ftx,c · Rlc (2.14)

adding up the local packet generation rate Fn and the rate at which
packets are received from n’s child nodes Cn. The latter rate, that is,
the upper bound on the rate at which node n can forward (dequeue)
packets, is the inverse of the expected MAC-dependent time needed for
a packet transmission Ttx, including retransmissions and packets that are
eventually dropped when the maximum number of retransmissions N
has been exhausted. Thus, by imposing the constraint

1
(Nrtx,l + 1) · Ttx

� F0 (2.15)

where Nrtx,l is given by (2.13), we enforce that pTunes selects
MAC parameters such that MAC-dependent queuing does not occur.
Furthermore, if (2.15) is not satisfiable when estimating the network-wide
performance based on the collected network state, pTunes essentially
knows and can thus detect that there is MAC-dependent queuing within
the network. High-layer functionality, such as data aggregation and other
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Figure 2.3: Sequence of radio modes and packet exchanges during a successful
unicast transmission in X-MAC.

in-network processing, may introduce additional packet bu↵ering, which
is however independent of the MAC operation.

We demonstrate next the modeling of a concrete MAC protocol. This
requires to find expressions for six protocol-specific terms, as shown in
Figure 2.2 and described in Table 2.1.

2.2.3 Protocol-specific Modeling
We use two state-of-the-art MAC protocols to exemplify the protocol-
specific modeling. X-MAC [BYAH06] is representative of many sender-
initiated MAC protocols based on low-power listening (LPL) [PHC04]
that proved viable in real-world deployments [KGN09]. More recent
work focuses on receiver-initiated MAC protocols such as low-power
probing (LPP) [MELT08]. In the following, we refer to implementations
of X-MAC and LPP in Contiki 2.3, which we also use in our experiments
in Section 2.5.

2.2.3.1 Sender-initiated: X-MAC

Figure 2.3 shows a successful unicast transmission in X-MAC. Nodes
wake up periodically for Ton to poll the channel h1i, where To↵ is the
time between two channel polls. To send a packet, a node transmits
a sequence of strobes h2i, short packets containing the identifier of the
receiver. Strobing continues for a period su�cient to make at least
one strobe overlap with a receiver wake-up h3i. The receiver replies
with a strobe acknowledgment (s-ack) h4i and keeps the radio on awaiting
the transmission of the data packet h5i. The sender transmits the data
packet upon receiving the s-ack h6i and waits for the data acknowledgment
(d-ack) h7i from the receiver. Afterward, both nodes turn o↵ their radios.

Failed s-ack, d-ack, and data packet transmissions are handled by
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timeouts. When a timeout occurs, the sender backs o↵ for a random
period and retries beginning with the strobing phase, for at most N times.
Broadcasts proceed similarly to unicast transmissions, but the strobing
phase lasts for Tm = 2 · Ton + To↵ to make a strobe overlap with the wake-
up of all neighboring nodes. Nodes receiving a broadcast strobe keep
their radio on until they receive the data packet at the end of the sender’s
strobing phase.

Several variables are adjustable in the X-MAC implementation we
consider. However, three specific parameters a↵ect its performance to a
major extent.

c = [Ton,To↵ ,N] (2.16)

We let pTunes adapt these parameters at runtime, leveraging the X-MAC
specific models presented next.

Per-hop reliability. We determine ps,l in (2.5), the probability that a single
unicast from node n to its parent m succeeds. This is the case if m hears a
strobe (with probability ps,l), the s-ack reaches n, and m receives the data
packet. Each of the latter two succeeds with probability pl, collected at
runtime as part of the network state (see Section 2.3).

ps,l = ps,l · p2
l (2.17)

The probability of receiving at least one strobe is

ps,l = 1 � (1 � pl)(Ton�Ts)/Tit (2.18)

where Tit = Ts + Tsl is the duration of a strobe iteration at the sender,
which includes the length of a strobe transmission Ts and listening Tsl for
an s-ack.

Per-hop latency. We determine Tftx,l and Tstx,l in (2.6), the times spent
for failed and successful transmissions. Tftx,l depends on whether node n
receives an s-ack. If so, n stops strobing, sends the data packet, and times
out after Tout. Otherwise, n sends strobes for Tm. In either case, node n
backs o↵ for Tb before retransmitting.

Tftx,l = (NitTit + Td + Tout)ps,l + Tm(1 � ps,l) + Tb (2.19)

Here, Nit = (Ton + To↵ )/(2 · Tit) is the average number of strobe iterations
before m possibly replies with an s-ack.

The time for a successful transmission Tstx,l includes the time to wait
for the s-ack and to send the data packet.

Tstx,l = Nit · Tit + Td (2.20)

Node lifetime. We determine Dtx,n and Drx,n in (2.11), the fractions of time
spent by the radio in transmit and receive mode. Both quantities depend
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on the rate Farx,lc at which node n attempts to receive a packet from child c
over link lc

Farx,lc =
�
Nrtx,lc + 1

� · Ftx,c · ps,lc (2.21)

where Ftx,c and ps,lc are given by (2.12) and (2.18).
We start with Dtx,n. Node n transmits during packet receptions from

child c and during packet transmissions to its parent m. Letting Trxt,lc and
Ttxt,l denote the expected times the radio is in transmission mode during
receptions over link lc and transmissions over link l, we thus have

Dtx,n = Ftx,n · Ttxt,l +
X

c2Cn

Farx,lc · Trxt,lc (2.22)

Trxt,lc includes the times to transmit the s-ack and, provided s-ack and data
packet are successfully transmitted, to send the d-ack, which happens
with probability plc

2.
Trxt,lc = Tsa + Tda · plc

2 (2.23)

To compute Ttxt,l, we distinguish whether node n’s parent m receives one
of its strobes and successfully replies with a s-ack, which happens with
probability ps-ack,l = ps,l · pl. If so, n is in transmit mode for sending Nit

strobes and the data packet. Otherwise, n is in transmit mode for sending
as many strobes as fit into the maximum length of the strobing period Tm.

Ttxt,l = (Nit · Ts + Td) · ps-ack,l +
✓Tm

Tit
· Ts

◆
· �1 � ps-ack,l

�
(2.24)

Next we consider Drx,n. Node n is in receive mode during packet
transmissions to its parent m and packet receptions from child c. Let Ttxr,l

and Trxr,lc be the expected times spent by the radio in reception mode
during transmissions over link l and receptions over link lc. The fraction
of time in receive mode for actual communication is

Drxc,n = Ftx,n · Ttxr,l +
X

c2Cn

Farx,lc · Trxr,lc (2.25)

To compute Trxr,lc , we note that n is in receive mode during receptions
from child c along link lc to receive a strobe and the data packet. We
account for the time to receive a strobe in the time for channel checks,
as per (2.28). Thus, if the s-ack sent by node n and the data packet sent
by c are successfully transmitted, n is in receive mode to receive the data
packet; otherwise, n is in receive mode for Tout until a timeout expires.
Additionally, we consider the turnaround time Tturn for switching between
transmit and received modes time in receive mode.

Trxr,lc = 2 · Tturn + (Tturn + Td) · plc
2 + (Tout) ·

⇣
1 � plc

2
⌘

(2.26)
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Figure 2.4: Sequence of radio modes and packet exchanges during a successful
unicast transmission in LPP.

Next, we look at the expected time Ttxr,l node n is in receive mode during
transmissions to its parent m along link l. If m eventually receives a strobe
and successfully replies with a s-ack, n spends time in receive mode while
waiting Tsl for m to reply with a s-ack between two strobes, to receive the
d-ack from m, or to wait for the d-ack but timeout after Tsl. Otherwise,
if either strobe or s-ack transmission fails, n spends time in receive mode
during back-to-back strobe transmissions.

Ttxr,l = (Nit · (2 · Tturn + Tsl)) · ps-ack,l

+
⇣
2 · Tturn + Tda · p2

l + Tsl ·
⇣
1 � p2

l

⌘⌘
· ps-ack,l (2.27)

+
✓Tm

Tit
· (2 · Tturn + Tsl)

◆
· �1 � ps-ack,l

�

Finally, node n is in receive mode for Fcc = Ton/(Ton + To↵ ) during
channel checks, which leads to

Drx,n = Drxc,n +
�
1 �Drxc,n

� · Fcc (2.28)

Expected time needed for transmission. To instantiate the constraint in
(2.15) to prevent MAC-dependent packet queuing, we give an expression
for the expected time needed for a single transmission attempt in X-MAC.

Ttx =
h
Nit · Tit + 2 · Tturn + Td + Tda · p2

l + (Tout + Tb) · (1 � p2
l )
i
· ps-ack,l

+ (Tm + Tb) · (1 � ps-ack,l) (2.29)

2.2.3.2 Receiver-initiated: LPP

Figure 2.4 shows a successful unicast transmission in LPP. Nodes
periodically turn on their radio for Tl and transmit a short probe h1i
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containing their own identifier. To send a packet, a node turns on its
radio h2i and listens for a probe from the intended receiver h3i, for at
most Ton. Then the sender transmits the data packet h4i, waits for the
d-ack from the receiver h5i, and goes back to sleep h6i. After sending the
d-ack, the receiver keeps the radio on until a timeout signals the end of the
active phase h7i. Between two active phases nodes sleep for To↵ . To send
a broadcast, the sender keeps its radio on for Tm = 2 · Tl + To↵ to receive a
probe from every neighbor, immediately replying to each received probe
with the data packet. We let pTunes adapt the same set of LPP parameters
c in (2.16) as for X-MAC (note that Ton has now a di↵erent meaning as
explained above).

Per-hop reliability. A single LPP unicast from node n to its parent m
succeeds if n receives a probe from m (with probability pp,l) and then
successfully transmits the data packet (with probability pl).

ps,l = pp,l · pl (2.30)

The probability that n receives a probe is given by

pp,l = 1 � (1 � pl)k (2.31)

where k = (Ton � Tp)/T is the number of possible probe receptions while
node n listens for at most Ton. The term T = Tl + To↵ + Trm/2 denotes
the LPP duty cycle period, which is the sum of radio on-time, radio o↵-
time, and a small random quantity with uniform distribution {0, . . . ,Trm}
to scatter probe transmissions.

Per-hop latency. We determine the time for a failed transmission. If
node n receives a probe after waiting for Tpw,l, it sends the data packet
and times out after Tout. Otherwise, n listens for Ton. Node n retransmits
after backing o↵ for Tb.

Tftx,l = (Tpw,l + Td + Tout)pp,l + Ton

⇣
1 � pp,l

⌘
+ Tb (2.32)

On average, node n receives a probe from its parent m after

Tpw,l = Tp +
bkc+1X

i=1

pi · Ti (2.33)

where pi is the probability that n receives the i-th probe, and Ti is the
expected time to await the i-th probe. To compute pi, we first write the
possible terms as a function of the probability p1 to receive the first probe.

pi =

(
p1 · (1 � pl)i�1 if 1  i  bkc
p1 · (1 � pl)bkc · (k � bkc) if i = bkc + 1

(2.34)
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Assuming a probe is eventually received,
Pbkc+1

i=1 pi = 1 holds, and by
expanding the sum we find an expression for p1.

p1 = pl ·
h
1 � (1 � pl)bkc ·

�
1 � pl · (k � bkc)

�i�1
(2.35)

By substituting (2.35) in (2.34), we obtain a general expression for pi. The
expected time needed to receive the i-th probe is given by

Ti =

(
(i � 1

2 ) · T if 1  i  bkc
k+bkc

2 · T if i = bkc + 1
(2.36)

The time for a successful transmission includes the time to wait for a
probe and to send the data packet.

Tstx,l = Tpw,l + Td (2.37)

Node lifetime. We determine the fractions of time in transmit and receive
mode. Both depend on the rate Farx,lc at which node n receives packets
from child c over link lc

Farx,lc =
�
Nrtx,lc + 1

� · Ftx,c · ps,lc (2.38)

where Ftx,c and ps,lc are given by (2.12) and (2.30).
Node n transmits a probe every duty cycle period T and sends d-acks

to child c with frequency Farx,lc . Further, n is in transmit mode for Ttxt,l to
send packets to m.

Dtx,n = Tp/T + Tda

X

c2Cn

Farx,lc + Ftx,n · Ttxt,l (2.39)

Node n is in transmit mode for Ttxt,l during packet transmissions for the
time needed to transmit the data packet Td if it receives a probe from its
parent m, which happens with probability pp,l.

Ttxt,l = pp,l · Td (2.40)

Node n is in receive mode when the radio is turned on but does not
transmit probes or d-acks. Additionally, node n is in receive mode for Ttxr,l

during packet transmissions.

Drx,n = (Tl � Tp)/T � Tda

X

c2Cn

Farx,lc + Ftx,n · Ttxr,l (2.41)

We define Don = Tl ·Fdc as the average fraction of time a node has its radio
turned on, where Fdc = 1/T is the duty cycle frequency. With this, we can
express the time in receive mode during packet transmissions as follows

Ttxr,l = pp,l ·
h
Tpw,l · (1 �Don) + 4 · Tturn + p2

l · Tda + (1 � p2
l ) · Tout

i

+ (1 � pp,l) · [(Ton � 2 · Tturn) · (1 �Don) + 2 · Tturn] (2.42)
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Expected time needed for transmission. To instantiate the constraint in
(2.15) to prevent MAC-dependent packet queuing, we give an expression
for the expected time needed for a single transmission attempt with LPP.

Ttx =
h
Tpw,l + 4 · Tturn + Td + Tda · p2

l + (Tout + Tb) · (1 � p2
l )
i
· pp,l

+ (Ton + Tb) · (1 � pp,l) (2.43)

2.3 System Support
pTunes must tackle several system-level challenges to obtain an e�cient
runtime operation. This section highlights these challenges and presents
the system support we design to meet them. This includes a novel
approach for collecting network state information and disseminating
new MAC parameters, and the techniques and tools we use to solve
the parameter optimization problem e�ciently.

2.3.1 Challenges
Minimum disruption. pTunes must reduce the amount of disruption
perceived by the application, particularly with respect to application data
tra�c, to avoid influencing its behavior beyond the adaptation of MAC
parameters. This is in itself a major challenge in low-power wireless
networks [CKJL09].

Timeliness. Timely collection of accurate network state, computation of
optimized MAC parameters, and their reliable and rapid dissemination
are fundamental to pTunes. Only this way pTunes can provide MAC
operating parameters that do match the current network state. However,
it is di�cult to perform the above operations in a timely manner,
especially when involving resource-constrained devices.

Consistency. pTunes requires consistent snapshots of network state,
possibly captured by all nodes at the same time. Otherwise,
optimizing MAC parameters based on information di↵erent from the
actual network conditions may even negatively a↵ect the system
performance. Coordinating distributed sensor nodes to achieve
consistency is challenging, given their bandwidth and energy constraints.

Energy e�ciency. pTunes must meet all the previous challenges while
introducing only a limited, possibly predictable, energy overhead at the
sensor nodes. To be viable, the overhead of pTunes must not outweigh
the gains obtained from adapting the MAC parameters.
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2.3.2 Collection and Dissemination
pTunes uses Glossy network floods [FZTS11] to collect network state
information and disseminate MAC parameters. In particular, pTunes
exploits Glossy’s time synchronization service to schedule and execute
both operations within short time frames, repeated every collection
period Tc. Every frame starts with a Glossy flood initiated by the sink,
which serves to time-synchronize the nodes and disseminate new MAC
parameters. Following the initial flood by the sink, each of the other
nodes initiates a flood in turn within exclusive slots, reporting network
state for the subsequent trigger decision and parameter optimization.

The collection period Tc can range from a few tens of seconds to
several minutes depending on network dynamics and application needs,
and represents a trade-o↵ between the energy overhead of pTunes and
its responsiveness to changes in the network: a shorter Tc permits more
frequent parameter updates but increases the energy consumption of the
nodes. The e�ciency of Glossy allows us to limit the length of the periodic
collection and dissemination frames, thus keeping the energy overhead
to a minimum. For instance, we measure on a 44-node testbed an average
duration of 5.2 ms for a single flood, and an average radio duty cycle
of 0.35 % due to pTunes collection and dissemination for Tc = 1 minute,
which reduces to about 0.07 % for Tc = 5 minutes. Given that state-of-
the-art low-power MAC protocols exhibit duty cycles of 3–7 % in testbed
settings comparable to ours [GFJ+09, DDHC+10], the energy overhead of
pTunes is marginal.

An alternative to our approach may be to piggyback network state on
application packets and to use a variant of Trickle [LPCS04] to disseminate
MAC parameters. We employed this approach at an early stage of
this work, but found it inadequate for our purposes. For instance,
running Trickle concurrently with data collection increases contention,
especially during parameter updates, which degrades application data
yield [CKJL09]. Moreover, piggybacking on data packets induces a
dependency on the rate and reliability of application tra�c. In low-
rate applications, it may take a very long time until network state from all
nodes becomes available for optimization. Packets may also be generated
at di↵erent times and experience varying end-to-end delays (e.g., due to
contention or routing loops), so the collected network state is likely to
be out-of-date and inconsistent. Our approach avoids these problems
by temporally decoupling collection and dissemination from application
tasks, and by leveraging consistent network state snapshots taken with
microsecond accuracy at all nodes independently of application tra�c.

In particular, pTunes collects three pieces of network state from each
node: (i) the node id and the id of the routing parent, to allow pTunes
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to learn about the current routing tree (N , M, L); (ii) the number of
packets generated per second Fn, allowing pTunes to determine the tra�c
volumes; and (iii) the ratio Hs,l/Ht,l of successful and total number of
link-layer handshakes over link l to the routing parent. There are two
handshakes in X-MAC, strobe/s-ack and data/d-ack; LPP features only
the latter (see Figs. 2.3 and 2.4). To account for parent switches and link
dynamics, a node maintains counters Hs,l and Ht,l in a way similar to an
exponentially weighted moving average (EWMA). Based on their ratio
received from each node and by taking the square root, pTunes obtains
estimates of the probability of successful transmission pl of all links in the
current routing tree. The collected information totals 6 bytes per node.

2.3.3 Optimization Tools

Applying the optimization problem in (2.1) to our X-MAC and LPP mod-
els in Section 2.2 leads to a mixed-integer nonlinear program (MINLP)
with non-convex objective and constraint functions. To solve it e�ciently,
we use the ECLiPSe constraint programming system [AW07]. Its high-
level programming paradigm allows for a succinct modeling of our
optimization problem. We use modules to separate protocol-independent
from protocol-dependent code; the latter amounts to about 100 lines for
each X-MAC and LPP.

We use the branch-and-bound algorithm coupled with a complete
search routine, both provided by the interval constraint (IC) solver of
ECLiPSe. The running time of the optimization depends to a large
extent on the size of the search space. To reduce it, we exploit the
fact that low-power MAC protocols are commonly implemented using
hardware timers. The resolution of these timers determines the maximum
granularity required for the timing parameters. We therefore discretize
the domains of Ton and To↵ considered for adaptation, letting ECLiPSe

determine values with millisecond granularity. Based on the literature
and our own experience, we set the upper bounds of N and To↵ to 10
retransmissions and 1 s; Ton is chosen such that a node listens long enough
to overlap with exactly one receiver wake-up in LPP, and with at least
one but not more than three strobe transmissions in X-MAC. For these
settings and in the scenarios we tested, representative of a large fraction
of deployed sensor networks, ECLiPSe finds optimized MAC parameters
within a few tens of seconds on a standard laptop computer. Compared
with our current approach, which leverages general-purpose algorithms
and o↵-the-shelf implementations, dedicated solution techniques and
implementations are likely to improve significantly on this figure.
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2.4 Implementation Details

On the sensor nodes, we deploy Contiki v2.3. We extended the existing
X-MAC implementation in Contiki with link-layer retransmissions and an
interface that allows to adjust the parameters in (2.16) at runtime. Since
the existing LPP implementation su↵ered from performance problems
that could bias our results, we re-implemented LPP within the Contiki
stack and extended it in the same way as X-MAC. For data collection we
use Contiki Collect, which maintains a tree-based routing topology using
the expected number of transmissions (ETX) [DCABM03] as cost metric.

The pTunes control application that runs on the base station is
implemented in Java. It retrieves collected network state from the sink,
starts the optimization process depending on the trigger decision, and
transfers new MAC parameters back to the sink for dissemination.

An important decision for pTunes is when to trigger the parameter
optimization. In general, we would like to optimize as often as possible to
make the MAC parameters closely match the changing network state. At
the same time, we would like to minimize the energy overhead of network
state collection and parameter dissemination, while taking into accout
that running the solver takes time. Therefore, pTunes includes three basic
optimization triggers to decide when to start the optimization process.
Nevertheless, pTunes users can implement their own application-specific
triggers against a set of basic interfaces we provide.

Among the triggers pTunes includes, TimedTrigger optimizes periodi-
cally, where the period is typically a multiple of the collection period Tc.
In this way, a TimedTrigger can launch the solver immediately after
the collection of network state, and pTunes can flood the new MAC
parameters in the next dissemination phase. Depending on application-
specific requirements and performance goals, users may also want to
combine a TimedTrigger with one of the following two triggers.

A ConstraintTrigger uses themodel to estimate the current network
performance based on the collected network state, and launches the solver
only if any of the constraints in (2.1) is violated. A ConstraintTrigger can
be implemented to tolerate short-term violations of a constraint, or a
violation within some threshold around the constraint. Alternatively, a
NetworkStateTrigger can infer directly from the network state if the MAC
parameters should be updated. For example, a NetworkStateTrigger may
fire if it detects a significant increase in tra�c volume, thus starting the
solver to find MAC parameters that provide higher bandwidth.
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2.5 Experimental Results
This section uses measurements from a 44-node testbed to study both the
e↵ectiveness of pTunes and the interactions of MAC parameter adaptation
with the routing protocol. Our key findings are the following:

• Validation against real measurements shows that our performance
models of X-MAC and LPP are highly accurate.

• pTunes automatically determines MAC parameters that provide
higher bandwidth in response to an increase in the tra�c load. This
avoids the occurrence of packet queuing until the network capacity
attainable in our specific setting is fully exhausted.

• In the scenarios we tested, pTunes achieves up to three-fold lifetime
gains over static MAC parameters that are carefully optimized for
the peak tra�c loads.

• In a scenario where the packet rates vary across nodes and fluctuate
over time, pTunes satisfies given end-to-end latency and reliability
requirements at peak tra�c load while simultaneously prolonging
the network lifetime at lower tra�c loads.

• During periods of controlled wireless interference, pTunes reduces
packet loss by 80 % compared to static MAC parameters that are
carefully optimized for the applied tra�c load without interference,
thus satisfying given end-to-end reliability requirements.

• By adapting the MAC parameters, pTuneshelps the routing protocol
recover from critical network changes, reducing the number of
parent switches and settling quickly on a stable routing topology.
This reduces packet loss by 70% in a scenario where multiple nodes
that are important for tree routing fail simultaneously.

2.5.1 Setting and Metrics
Testbed. Our testbed spans one floor in an ETH building [LFZ+13b,
DBK+07]. Figure 2.5 shows the positions of the 44 TelosB nodes
distributed in several o�ces, passages, and storerooms; two nodes are
located outside on the rooftop. The sink is connected to a laptop computer
that acts as the base station. Paths between nodes and the sink are between
1 to 5 hops in length. Nodes transmit at the highest power setting of
0 dBm, using channel 26 to limit the interference with co-located Wi-Fi.

Metrics. Our evaluation is based on the metrics defined in Section 2.2.1.
To measure network lifetime, we use Contiki’s energy profiler to obtain
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Figure 2.5: Layout of the testbed used to experimentally evaluate pTunes. Nodes
31 and 32 are located outside on the rooftop; the interferer is only used in Section 2.5.6.

the fractions of time the radio is in receive, transmit, and idle mode. Then,
we compute projected node lifetimes using (2.11) and current draws from
the CC2420 data sheet, assuming batteries constantly supply 2000 mAh
at 3 V. When pTunes is enabled, the measured network lifetime includes
the energy overhead of pTunes collection and dissemination, performed
every Tc = 1 minute in all experiments. We measure end-to-end reliability
based on the sequence numbers of data packets received at the sink. To
measure end-to-end latency, we exploit Glossy’s time synchronization
service and timestamp data packets at the source.

Requirements. We consider typical requirements of real-world data
collection applications: maximize network lifetime while providing a
certain end-to-end reliability [CMP+09, TPS+05]. We also enforce a
constraint on end-to-end latency, accounting for applications that require
timely delivery [CCD+11].

Maximize T(c)
Subject to R(c) � 95 % and L(c)  1 s

(2.44)

pTunes solves (2.44) at runtime to determine optimized MAC parameters.
If there exists no solution because either constraint in (2.44) is unsatisfiable
(e.g., due to low link qualities), pTunesmaximizes R without constraints.
This serves to exemplify the capabilities of pTunes; other policies can be
implemented based on the optimization triggers we provide.
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Table 2.2: Static MAC configurations of X-MAC and LPP optimized for various
performance trade-o↵s and tra�c loads given our specific testbed and setup.

Name
Parameter Values Performance Trade-O↵

[T
on

, T
o↵ ,N ] (R,L,T )

X
-M

A
C

S1 [ 16 ms, 100 ms, 8] (high, low, low)
S2 [ 11 ms, 250 ms, 5] (medium, medium, medium)
S3 [ 6 ms, 500 ms, 2] (low, high, high)
S4 [ 6 ms, 100 ms, 3] optimized for IPI = 30 s
S5 [ 11 ms, 350 ms, 2] optimized for IPI = 300 s
S6 [ 16 ms, 20 ms, 10] (very high, very low, very low)

LP
P S7 [116 ms, 100 ms, 8] (high, low, low)

S8 [266 ms, 250 ms, 5] (medium, medium, medium)
S9 [516 ms, 500 ms, 2] (low, high, high)

Methodology. We compare pTunes with several static MAC configu-
rations optimized for a variety of di↵erent tra�c loads and application
requirements, as listed in Table 2.2. We found these MAC configurations
using pTunes and extensive experiments on our testbed. Existing MAC
adaptation approaches, on the other hand, consider only per-link and per-
node metrics [PFJ10, BYAH06] or focus solely on energy [JBL07, MWZT10,
CWW10], rendering the comparison against pTunes purposeless.

2.5.2 Model Validation
Before evaluating pTunes under tra�c fluctuations, wireless interference,
and node failures, we validate our models and assumptions from
Section 2.2 on real nodes.

Scenario. We run experiments in which we let pTunes periodically
estimate the application-level metrics based on the collected network
state, and compare the model estimation e(Mi) against the actual
measurement m(Mi) by computing the absolute model error �(Mi) =
m(Mi) � e(Mi) for each metric Mi 2 {R,L,T}. Using � we assess the model
accuracy depending on MAC configuration and network state.

To evaluate the dependency on the former, we use three static MAC
configurations for each protocol (S1–S3 and S7–S9 in Table 2.2). We also
perform one run with pTunes enabled, using a TimedTrigger to adapt
the MAC parameters every 10 minute. To evaluate the dependency on
network state, in each run we progressively decrease the inter-packet
interval (IPI) at all nodes, from 300 s to 180, 60, 30, 20, 10, 5, and 2 s. In
this way, we also validate our models against di↵erent probabilities of
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Table 2.3: Average absolute errors of the network-wide performance model
in testbed experiments, with pTunes and six static MAC configurations. Our
X-MAC and LPP models are highly accurate in all metrics.

X-MAC LPP
S1 S2 S3 pTunes S7 S8 S9 pTunes

�(R) [%] -0.68 -0.18 0.09 0.24 4.77 -0.22 0.49 0.41
�(L) [s] 0.37 0.04 0.18 0.05 -0.12 0.07 0.04 0.08
�(T ) [d] 0.25 0.64 0.65 -0.50 0.37 -0.91 0.96 -0.73
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(a) Total number of queue overflows.
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(b) Goodput at the sink.

Figure 2.6: Total number of queue overflows across all nodes and goodput at
the sink with X-MAC as the tra�c increases, using pTunes and three static MAC
configurations. pTunes triples the goodput and avoids the occurrence of local packet
queuing until the network capacity is fully exhausted.

successful transmission pl: a shorter IPI increases contention and thus
lowers the link success rates. We conduct repeatable experiments by
enforcing the same static routing topology across all runs.

Results. Table 2.3 lists average model errors in R, L, and T for X-MAC
and LPP. We see that both models are highly accurate in all metrics.
For example, with pTunes enabled, our LPP models estimate R, L, and
T with average absolute errors of 0.41 %, 0.08 s, and -0.73 d. Note that
node dwell times, which are included in the measurements but ignored
in the model of L, introduce only a negligible error since pTunes aims at
avoiding packet queuing, as explained next.

2.5.3 Impact on Bandwidth and Queuing

Based on the experiments above, we study also the impact of the MAC
configuration on bandwidth and local packet queuing. To this end, we
analyze queuing statistics collected from the nodes and the goodput
measured at the sink (application packets carry 69 bytes of data).



2.5. Experimental Results 37

Results. Figure 2.6 plots total queue overflows and goodput for X-MAC as
the IPI decreases. We can see from Figure 2.6(a) that pTunes avoids queue
overflows up to IPI = 2 s, whereas S1–S3 fail to prevent overflows already
at longer IPIs. The increasing tra�c requires more and more bandwidth,
leading to local packet queuing and ultimately to queue overflows when
the bandwidth becomes insu�cient. Unlike S1–S3, pTunes tolerates such
increasing bandwidth demands by automatically adjusting the MAC
parameters to provide higher bandwidth. By doing so, pTunes avoids the
occurrence of packet queuing until even the MAC parameters providing
the highest bandwidth (S6 in Table 2.2), based on the settings and X-MAC
implementation we use, are insu�cient.

This is also confirmed by looking at the goodput seen by the sink,
which is shown in Figure 2.6(b). First, we note that pTunes achieves a
more than three-fold increase in goodput over MAC configurations S1–S3
at IPI = 5 s. When queuing occurs also with pTunes at IPI = 2 s, goodput
drops from 4.6 kbps to 3.1 kbps, because increased contention leads to
more transmission failures and queue overflows. This confirms that the
network capacity is fully exhausted at this point. To keep satisfying the
requirements in such situations, an application needs to employ higher-
layer mechanisms, such as a rate-controlled transport layer that reduces
the transmission rate in response to congestion [PG07].

2.5.4 Lifetime Gain
In real deployments, it is common practice to overprovision the MAC
parameters based on the highest expected tra�c load [KGN09]. The
goal is to provide su�cient bandwidth during periods of peak tra�c, for
example, when an important event causes nodes to temporarily generate
more sensor data. However, because such tra�c peaks are usually rare
and short compared to the total system lifetime, overprovisioning the
MAC parameters results in a significant waste of energy resources [LM10].
We now analyze how pTunes helps alleviate this problem.

Scenario. We conduct two experiments in which nodes gradually increase
the IPI from 10 s to 20 s, 30 s, 60 s, 3 minute, 5 minute, and 20 minute. In
the first experiment, we use pTunes exactly once at the very beginning
to determine MAC parameters optimized for the initial IPI of 10 s, and
then keep this overprovisioned MAC configuration until the end of the
experiment. In the second experiment, we let pTunes adapt the MAC
parameters, using a TimedTrigger with a period of 10 minute; pTunes
maximizes T subject to R � 95 % and no constraint on L. We enforce
the same static routing topology in both experiments to factor out e↵ects
related to routing topology changes, an aspect we consider in Secs. 2.5.5
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Table 2.4: Lifetime gains achieved by pTunes relative to static MAC parameters
that are carefully optimized for peak tra�c load, depending on baseline tra�c
load and the fraction of time at peak tra�c load. pTunes achieves up to three-fold
lifetime gains in settings with extremely rare tra�c peaks and low baseline tra�c.

Fraction of time X-MAC LPP
at peak tra�c Baseline IPI [min] Baseline IPI [min]
(IPI = 10 s) 1 3 5 20 1 3 5 20

75% 1.05 1.17 1.24 1.43 1.14 1.27 1.35 1.57
50% 1.14 1.36 1.50 1.88 1.24 1.50 1.65 2.08
25% 1.21 1.55 1.75 2.33 1.33 1.72 1.95 2.60
0% 1.29 1.74 2.01 2.77 1.42 1.94 2.24 3.11

and 2.5.7. We then compute the lifetime gain as the ratio between the
measured network lifetime with and without pTunes.

Results. Table 2.4 lists lifetime gains for X-MAC and LPP, including the
energy overhead of pTunes collection and dissemination phases. We see
that the lifetime gain achieved by pTunes increases as (i) the system spends
less time at peak tra�c (75–0 % from top to bottom), and (ii) the di↵erence
between the shortest, overprovisioned IPI of 10 s and the longest, baseline
IPI increases (1–20 minute from left to right). For instance, for a baseline
tra�c at IPI = 20 minute and extremely rare tra�c peaks at IPI = 10 s,
the lifetime gain is close to 2.77 for X-MAC and close to 3.11 for LPP
compared to static MAC parameters overprovisioned for peak tra�c.

The above experimental results reveal that pTunes enables significant
lifetime gains, not least due to its energy-e�cient system support (see
Section 2.3). The following sections examine how pTunes trades possible
gains in network lifetime for satisfying end-to-end reliability and latency
requirements under varying network conditions.

2.5.5 Adaptation to Changes in Tra�c Load
Tra�c fluctuations are characteristic of many sensor network applica-
tions, where the data rate often depends on time-varying external stimuli.
The following experiments investigate the benefits pTunes brings to these
applications.

Scenario. All nodes send packets with IPI = 5 minute for 5 hours.
However, during two periods of 30 minute each, two clusters of 10 and
5 spatially close nodes (14–23 and 40–44 in Figure 2.5) send packets with
IPI = 10 s, emulating the detection of an important event that deserves
reporting more sensor data.
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We run three experiments with X-MAC and dynamic routing
topologies using Contiki Collect. In the first two experiments, we use
static MAC configurations S1 and S5: S1 provides high bandwidth when
nodes send more packets, and S5 extends network lifetime at normal
tra�c (see Table 2.2). In the third experiment, we let pTunes adapt
the MAC parameters according to (2.44). We couple a TimedTrigger
with a NetworkStateTrigger as follows. When nodes transmit at low
rate, the TimedTrigger starts the solver every 10 minute. As soon as
the NetworkStateTrigger detects the beginning of a tra�c peak, it starts
the solver immediately and adapts the period of the TimedTrigger to
5 minute, setting it back to 10 minute at the end of a peak. In this way,
pTunes reacts promptly to tra�c changes, and adapts more frequently
during tra�c peaks when nodes report important sensor data.

Results. Figure 2.7 plots performance over time in the three experiments.
We see that S5 approximately satisfies the reliability and latency
requirements when nodes send at low rate, achieving also a high projected
network lifetime. However, as soon as the two node clusters start
transmitting at high rate, reliability drops significantly below 75 %. This
is because S5 does not provide su�cient bandwidth, leading to high
contention and ultimately to packet loss. Similarly, S5 violates the latency
requirement during tra�c peaks, making L exceed 2 s due to queuing
and retransmission delays. S1, instead, provides su�cient bandwidth
and satisfies the end-to-end requirements. However, network lifetime is
always below 30 d: the higher bandwidth comes at a huge energy cost,
paid also when a lower bandwidth would su�ce.

By contrast, pTunes satisfies the end-to-end requirements under high
and low rate. Moreover, when nodes transmit at low rate, the projected
network lifetime increases up to 90 d. By adapting the MAC parameters,
pTunes always provides a bandwidth su�cient to satisfy the end-to-end
requirements without sacrificing lifetime unnecessarily: at the beginning
of a tra�c peak, pTunes reduces To↵ from about 300 ms to 120 ms (and
slightly adapts Ton and N), which explains why reliability stays up and
latency is halved. Static MAC configurations lack this flexibility; they
can only be optimized for a specific workload and thus fail to trade the
performance metrics as the tra�c conditions change.

2.5.6 Adaptation to Changes in Link Quality
Unpredictable changes in link quality are characteristic of low-power
wireless [ZG03]. Adapting the MAC parameters to these changes is
important but non-trivial, as we show next.

Scenario. We use the technique by Boano et al. to generate controllable
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Figure 2.7: Performance of pTunes against two static MAC configurations as the
tra�c load changes. pTunes satisfies the end-to-end requirements at high tra�c while
extending network lifetime at low tra�c. Fixed MAC parameters optimized for a specific
tra�c load fail to meet the application requirements as the tra�c conditions change.

interference patterns [BVT+10], making the link quality fluctuate in a
repeatable manner. To this end, we deploy an additional interferer node
in a position where it a↵ects the communication links of at least one
fourth of the nodes in our testbed, as shown in Figure 2.5. When active,
the interferer transmits a modulated carrier on channel 26 for 1 ms at the
highest power setting. Then, it sets the radio to idle mode for 10 ms before
transmitting the next carrier.

All nodes generate packets with IPI = 30 s for 4 hours. The interferer
is active during two periods of 1 hours each. In a first experiment, we
use static MAC configuration S4, optimized for IPI = 30 s (see Table 2.2).
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(b) Trace of X-MAC parameters.

Figure 2.8: End-to-end reliability and trace of X-MAC parameters with pTunes as
the link qualities in the network change. pTunes reduces packet loss by 80 % during
periods of controlled wireless interference in comparison with static MAC parameters
optimized for the applied tra�c load without interference.

We enable pTunes in a second experiment, using a TimedTrigger with a
period of 1 minute to adapt the MAC parameters according to (2.44). We
deliberately enforce a static routing tree to separate e↵ects related to link
quality changes from those related to topology changes. We investigate
the latter in detail in Section 2.5.7.

Results. Figure 2.8 shows end-to-end reliability and the trace of X-MAC
parameters. Looking at Figure 2.8(a), we see that S4 and pTunes satisfy
the reliability requirement when the interferer is o↵. When the interferer
is on, reliability starts to drop below 95 %. However, as soon as pTunes
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collects network state, it detects a decrease in link quality and adapts the
X-MAC parameters accordingly. In particular, as shown in Figure 2.8(b),
pTunes increases N from 3 or 4 to values between 6 and 10. Ton is also
increased (from 6 ms to 10–16 ms) to further help satisfy the reliability
requirement. Moreover, pTunes decreases To↵ (from 100 ms to 20–90 ms)
to provide more bandwidth and combat increased channel contention,
which is a consequence of numerous retransmission attempts over low-
quality links. Indeed, these low-quality links make (2.44) temporarily
unsatisfiable (while Ton = 16 ms in the first interference phase), triggering
pTunes to instead maximize R as explained in Section 2.5.1. As a result
of these decisions, pTunes achieves an average end-to-end reliability of
95.4 % also in presence of interference.

S4, instead, fails to meet the reliability requirement when the interferer
is active: reliability ranges between 70 % and 80 %, and never recovers
while the interferer is on. In total, 2252 packets are lost with S4 during
interference. pTunes reduces this number to 418—a reduction of more
than 80 %.

2.5.7 Interaction with Routing
Several studies emphasize the significance of cross-layer interactions to
the overall system performance [DPR00]. We study this aspect between
best-e↵ort tree routing and parameter adaptation of an underlying low-
power MAC protocol with pTunes. To do so, during each of the
following experiments, we temporarily remove multiple core routing
nodes important for forwarding packets. In this way, we emulate node
failures, which are common in deployed systems [BGH+09], and force the
routing protocol to find new routes.

Scenario. We run two 4-hour experiments with Contiki Collect
and X-MAC. After 30 minute, we turn o↵ eight nodes within the
sink’s neighborhood that forward most packets in the network (1–8 in
Figure 2.5). We turn them on again after 60 minute, and repeat the on-o↵
pattern after 1 hours. Nodes generate packets with IPI = 30 s. In the first
experiment, we use static MAC configuration S4, optimized for this tra�c
load (see Table 2.2). In the second experiment, we enable pTunes and use
a TimedTrigger to solve (2.44) every minute.

Results. Figure 2.9(a) shows end-to-end reliability over time, accounting
for packets from nodes that are currently turned on. During the
first 30 minute, both S4 and pTunes satisfy the reliability requirement.
However, when nodes are removed, reliability starts to drop below 70 %.
Many packets are indeed lost since children of removed nodes fail to
transmit packets: the routing protocol needs to find new routes.
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(b) Distribution of parent switches.

Figure 2.9: End-to-end reliability and distribution of parent switches when eight
core routing nodes fail simultaneously. pTunes helps the routing protocol recover
from node failures by settling quickly on a stable routing topology, thus reducing packet
loss by 70 % compared with static MAC parameters optimized for the applied tra�c load.

We see from Figure 2.9(a) that end-to-end reliability recovers much
faster when pTunes is enabled. During the two periods when eight nodes
are removed, S4 fails to deliver in total 2673 packets from the remaining
35 nodes. pTunes reduces this number to 813—a reduction of 70 %.

To further investigate this behavior, we plot in Figure 2.9(b) the
distribution of parent switches. pTunes reduces the total number of
parent switches compared to S4 (from 631 to 165), and shifts them to
the beginning of the periods in which nodes are removed. At this point,
pTunes quickly realizes a significant drop in link quality, reported by
nodes whose parent disappeared. pTunes thus increases Ton and N to
improve reliability, and decreases To↵ to provide more bandwidth for
retransmissions and route discovery.

As a result of increasing the maximum number of retransmissions
per packet N, transmission attempts of nodes with a dead parent fail
with a higher number of retries. This causes the corresponding ETX
values to drop more severely than with S4 (which has a lower N), and
so nodes switch much faster to a new parent. Moreover, the MAC
parameters provided by pTunes help deliver packets over the remaining
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links. Delivering more packets also enables the routing protocol to quickly
detect route inconsistencies and eventually settle on a stable topology. As
the topology stabilizes, pTunes gradually relaxes the MAC parameters
(reduce Ton and N, increase To↵ ) to extend network lifetime.

These results demonstrate that, by adapting the MAC parameters,
pTunes helps the routing protocol recover faster from critical network
changes. Protocols like CTP [GFJ+09] and Arbutus [PH10] also utilize
feedback from unicast transmissions to compute the ETX. In addition,
CTP uses data path validation to detect possible loops based on ETX
values embedded in data packets [GFJ+09]. Our findings with Contiki
Collect, which uses similar techniques, suggest that these protocols could
also benefit from pTunes.

Additionally, the results demonstrate the advantage of decoupling
network state collection from application packet routing, as we argue
in Section 2.3.2. As long as the network remains connected, Glossy
provides up-to-date network state to the base station with very high
reliability [FZTS11]. Changes in the routing tree do no a↵ect network
flooding: information about faulty links is collected even when the
routing protocol fails to deliver packets from nodes whose parent died,
allowing pTunes to react promptly and thus e↵ectively.

2.6 Discussion
Designing a MAC adaptation framework involves striking a balance
between goals typically at odds with each other. We discuss some of
the trade-o↵s we make in pTunes and the implications of our decisions.

Feasibility vs. scalability. We adopt a centralized approach rather than
a likely more scalable distributed solution; in return for this, pTunes
allows users to express their requirements in terms of network-wide
metrics, which better reflect the way domain experts are used to state
performance objectives compared to per-node or per-link metrics. In fact,
distributing the tasks of collecting global information, computing MAC
parameters optimized for network-wide objectives, and coordinating the
consistent installation of new parameters would hardly be feasible, if at
all, on resource-constrained devices. Instead, pTunes exploits the better
resources of a central base station, which is already present in many real
deployments [RC08], and achieves simplicity of in-network functionality
by moving most of its intelligence from the nodes into the base station.

Flexibility vs. optimality. We focus on existing MAC protocols
rather than on the design or adaptation of cross-layer solutions (e.g.,
coupling link and network layer) which may, in principle, achieve better
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performance; in return for this, pTunes allows system designers to choose
the MAC and routing protocol independently from existing code bases.
In comparison, cross-layer solutions tend to enjoy little generality and
flexibility, as they are often designed for very specific scenarios (e.g.,
periodic, low-rate data collection [BvRW07]).

Robustness vs. optimality. We determine network-wide parameters
rather than per-node parameters, which may better match the current
role of a node in the routing tree (e.g., with respect to tra�c load); in
return for this, the parameters pTunes provides are much more robust
to changes in the routing topology. It is not unlikely that, even in the
most benign environment, slight variations in the link qualities trigger
drastic changes in the routing topology. For instance, Ceriotti et al.
observe that nodes serving many children suddenly become leaves in
the routing tree [CMP+09]. In such a case, per-node MAC parameters
become inappropriate and must be quickly updated. Similar situations
can happen frequently, even several times per minute [GGL10], which
would render per-node parameter adaptation impractical.

As a consequence of the design decisions above, pTunes represents one
particular point in a multi-dimensional design space. Corresponding to
this point is a large fraction of deployed low-power wireless networks
comprising tens of nodes, leveraging protocols such as X-MAC and
LPP, and yet failing to meet the application requirements often due to
communication issues ultimately related to inadequate MAC parameter
choices and lack of adaptiveness [RC08, KGN09]. pTunes is directly and
immediately applicable in these settings.

2.7 Related Work
pTunes uses a model to predict how changes in the MAC parameters
a↵ect the network-wide performance given the current network state.
Based on iterative runtime optimization, it selects MAC parameters
such that the predicted performance satisfies the application require-
ments. This approach is similar to the concept of model predictive
control (MPC) [GPM89], with the di↵erences that pTunes computes only
the next step of the control law and uses no information about past control
steps or measured system responses.

Several recent systems incorporate centralized control in their design,
much like pTunes does. For example, Koala implements a network-
wide routing control plane, where the base station computes end-to-end
paths used for packet forwarding [MELT08]. RACNet uses centralized
token passing to sequence data downloads [LLL+09]. In RCRT, the sink
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detects congestion and adapts the rates of individual sources [PG07]. PIP
determines schedule and channel assignment for each flow centrally at
the base station [RCBG10]. Like pTunes, these systems exploit global
knowledge and ample resources of the base station to achieve high
performance and manageability.

Looking at the large body of prior work on adaptive low-power
MAC protocols, we find solutions embedding adaptivity or separating
adaptivity from the protocol operation.

In the former category, for instance, Woo and Culler propose an
adaptive rate control mechanism, where nodes inject more packets
if previous attempts were successful and fewer packets if they
failed [WC01]. Van Dam and Langendoen introduce an adaptive listen
period in T-MAC [DL03] to overcome the drawbacks of the fixed duty
cycle of S-MAC [YHE02]. El-Hoiydi and Decotignie adapt radio wake-ups
in WiseMAC to shorten the LPL preamble [EHD04]. More recently, Hurni
and Braun propose MaxMAC, which schedules additional X-MAC wake-
ups at medium tra�c and switches to pure CSMA at high tra�c [HB10].
Such hard-coded adaptivity mechanisms can be highly e↵ective in specific
scenarios, but lack general applicability and bear no direct connection to
the high-level application demands. pTunes is more general by adding
parameter adaptation atop existing MAC protocols, thus leveraging
available implementations, and by explicitly incorporating user-provided
application requirements.

Polastre et al. instead separate adaptivity from the protocol operation
and present a model of node lifetime for B-MAC [PHC04]. Jurdak et al. use
this model to dynamically recompute check interval and preamble length,
showing substantial energy savings [JBL07]. Buettner et al. demonstrate
energy savings in X-MAC by adapting the wake-up interval to tra�c
load for one sender-receiver pair [BYAH06]. Meier et al. [MWZT10] and
Challen et al. [CWW10] extend network lifetime by adjusting the wake-up
interval to tra�c load in a static routing tree. Park et al. present numerical
results that indicate the potential of adaptation policies for IEEE 802.15.4
MAC protocols, based on per-link and per-node metrics [PFJ10]. pTunes
builds on these foundations but extends them in several ways. First,
pTunes considers multiple network-wide metrics and adapts multiple
MAC parameters. Second, our modeling is more realistic by accounting
for packet loss and ARQ mechanisms, and more flexible by isolating
protocol-dependent from protocol-independent functionality. Third, we
evaluate pTunes in real-world scenarios, including dynamic routing trees,
wireless interference, and node failures.
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2.8 Summary
This chapter presented pTunes, a novel framework that provides runtime
parameter adaptation for low-power MAC protocols. pTunes automat-
ically translates an application’s end-to-end performance requirements
into MAC parameters that meet these requirements and achieve very
good performance across a variety of scenarios, ranging from low tra�c
to high tra�c, from good links to bad links, and wireless interference to
node failures. pTunes thus greatly aids in meeting soft requirements of
real-world low-power wireless applications by eliminating the need for
time-consuming, and yet error-prone, manual MAC configuration before
every single deployment and when the network conditions change.
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3
Modeling Protocols Based on

Synchronous Transmissions
Low-power wireless networks facilitate advanced CPS applications that
use wirelessly interconnected sensors and actuators to monitor and act
on the physical world, such as environmental control, assisted living,
and intelligent transportation [Lee08]. E↵ectively employing low-power
wireless in these applications requires a thorough understanding of the
behavior of the protocols that power the network operation. For example,
the ability to estimate the energy consumption is crucial to self-sustaining
systems based on energy scavenging [MTBB10], and certain guarantees
on packet delivery are key to dependable wireless automation [BJ87].

Unfortunately, the current literature falls short in modeling multi-hop
low-power wireless protocols. Two aspects concur:

• Low-power wireless transmissions are subject to a number of un-
predictable environmental factors, including wireless interference,
presence of obstacles and persons, and temperature and humidity
changes [HRV+13]. As a result, low-power wireless links su↵er
from unpredictable packet loss that varies in time and space [SDTL10].
This, in combination with failure-prone devices (e.g., due to battery
depletion or damage), makes the network topology highly dynamic.

• To tame this unpredictability, existing multi-hop communication
protocols gather substantial information about the network state,
such as link quality estimates [GFJ+09] and the filling levels of packet
queues [RGGP06]. Protocols use this information, for example,
to form multi-hop routing paths [GFJ+09] and to adapt packet
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(a) Link-based transmissions.
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Figure 3.1: Link-based transmissions (LT) versus synchronous transmissions
(ST). Using ST, multiple nodes transmit simultaneously toward the same receiver R, as
opposed to pairwise LT 1, 2, 3, and 4 from each sender to R.

transmission rates [RGGP06]. However, the network state must
be updated at runtime against the topology dynamics.. For scalability
reasons, the network state is often distributed across the nodes, which
operate concurrently with little or no coordination.

These reasons render multi-hop low-power wireless protocols intricate
and di�cult to model [GB12]. As a result, existing models often stop at the
link layer, achieving model errors in the range of 2–7 % in real experiments
(see Chapter 2). Only a few attempts have been made to model also
higher-layer functionality [GB12, BSB+12, GCB08, YZDPHg11]; however,
validation of these models is limited to numerical simulations, which lack
precisely those real-world dynamics that complicate the modeling.

A new breed of communication protocols has emerged over the past
few years that utilize synchronous transmissions (ST) [LW09, DDHC+10,
FZTS11, WHM+12, LFZ13a, FZMT12, DCL13, CCT+13]. As illustrated
in Figure 3.1, unlike single transmissions over sender-receiver links in (a),
using ST multiple nodes transmit simultaneously towards the same receiver
in (b). Because of two physical-layer phenomena of low-power wireless
communications, constructive baseband interference [DDHC+10] and
capture e↵ects [LW09], ST vastly improve the one-hop packet reliability
compared with link-based transmissions (LT) [DDHC+10].

As we further discuss in Section 3.1, the salient features of ST enable
multi-hop communication protocols that require very little network state
and outperform LT-based protocols. The open question is whether ST
also simplify the accurate modeling of these protocols. To answer this
question, this chapter puts forward two key contributions:

1. We investigate in Section 3.2 to what extent the Bernoulli assumption
applies to ST. The assumption stipulates that subsequent packet
receptions and losses at a receiver adhere to a sequence of i.i.d.
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Bernoulli trials. Models of communication protocols often make this
assumption to simplify the specification [PHC04, ZFM+12], but prior
work suggests that this is often invalid for LT [CWPE05, SDTL10].
Up to now, nothing is known about ST in this regard. By studying
a specific flavor of ST, Glossy network floods [FZTS11], through
experiments on a 139-node testbed, we show that the Bernoulli
assumption is largely valid for ST, and way more than for LT.

2. We build upon these findings to demonstrate that modeling an ST-
based protocol is in fact simpler and yields significantly higher
accuracy than models of LT-based protocols. We do so by
considering LWB [FZMT12], a representative protocol, described
in Section 3.3, of a growing number of solutions [WHM+12,
LFZ13a, DCL13, CCT+13] that build upon Glossy. Specifically,
we present in Section 3.4 su�cient conditions for providing
probabilistic guarantees on LWB’s end-to-end packet reliability,
and in Section 3.5 a discrete-time Markov chain (DTMC) model to
estimate LWB’s expected long-term energy consumption. Results
from our validation based on real-world experiments in Section 3.6
indicate that the end-to-end reliability guarantees are correctly
matched, and that the estimates of the energy model are within
0.25 % of the real measurements. This error margin is unparalleled
in the low-power wireless literature we are aware of.

3.1 Background and Related Work
This chapter builds on recent work in low-power wireless communica-
tions. In this section, we provide the necessary background on multi-hop
protocols exploiting di↵erent flavors of ST, contrast these with the existing
literature on LT, and review related modeling e↵orts. We conclude with
an outlook on how this chapter fills the gaps in the current literature.

3.1.1 Synchronous Transmissions
Little work exists to deeply understand the behavior of ST in low-power
wireless. For example, Son et al. [SKH06] conduct an experimental study
of the capture e↵ect, a physical layer phenomenon that allows a receiver to
correctly decode a packet despite interference from other transmitters. In
low-power wireless, this is typically due to power capture, which occurs
when the received signal from a node is 3 dB stronger than the sum of
the signals from all other nodes [SKH06]. Several protocols exploit the
capture e↵ect, for example, to implement fast network flooding [LW09]
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and e�cient all-to-all communication [LFZ13a].
Precisely overlapping transmissions of identical packets enable another

phenomenon in low-power wireless: constructive baseband interference of
IEEE 802.15.4 symbols. This enables a receiver to correctly decode the
packet also in the absence of capture e↵ects, significantly boosting the
transmission reliability. Using resource-constrained devices, however,
the required timing accuracy of ST is di�cult to achieve. One way to
address this challenge is by using hardware-generated acknowledgments,
a mechanism that has been employed to better resolve contention in low-
power MAC protocols [DDHC+10, CT11].

Glossy, instead, uses a careful software design to make ST of the
same packet precisely overlap, thus taking advantage of both con-
structive baseband interference and capture e↵ects for e�cient network
flooding and time synchronization with microsecond accuracy [FZTS11].
Several protocols extend and improve Glossy, for example, in dense
networks [WHM+12], for distributing large data objects [DCL13], for
point-to-point communication [CCT+13], and for in-network processing
and all-to-all data sharing [LFZ13a]. LWB, which we use to examine
the impact of ST on modeling multi-hop protocols, e�ciently supports
multiple tra�c patterns by globally scheduling Glossy floods [FZMT12].

3.1.2 Link-based Transmissions
In contrast to ST, a large body of work exists on understanding the
behavior of LT [BKM+12]. Srinivasan et al. [SDTL10], for example,
conduct an empirical study of IEEE 802.15.4 transmissions to provide
guidelines for fine-grained design decisions such as the scheduling of
link-layer packet retransmissions. The � factor [SKAL08] measures
the link burstiness over time, which may be used by a protocol to
determine how long to pause after a transmission failure to prevent
unnecessary retransmissions. Cerpa et al. [CWPE05] examine both short-
and long-term temporal aspects to improve simulation models and for
enhancing point-to-point routing. Dually, the  factor [SJC+10] measures
the degree of correlation of packet receptions across di↵erent receivers—
hence exploring LT’s spatial diversity—which can possibly be used to
design better opportunistic routing and network coding schemes.

Despite the significant knowledge about LT, obtaining full-fledged
models of LT-based multi-hop protocols is very di�cult [GB12]. Several
attempts stop at the MAC layer, where distributed interactions span only
one hop and hence reasoning is still manageable. For example, pTunes
provides runtime tuning of MAC parameters based on application-level
performance goals, leveraging MAC protocol models (see Chapter 2).
Similarly, Polastre et al. [PHC04] present a model of node lifetime for
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B-MAC, and Buettner et al. [BYAH06] model reliability and energy in X-
MAC. Gribaudo et al. [GCB08] use interacting Markovian agents to model
a generic sender-initiated low-power MAC protocol [ZFM+12]; they also
acknowledge that the opportunistic operation of this class of protocols
greatly complicates the modeling using standard techniques.

The dynamics of the network topology render the modeling of higher-
layer functionality, where interactions typically extend across multiple
hops, very complex. As a result, accurate models of the end-to-end or
network-wide performance are largely missing. Some exceptions model
the Collection Tree Protocol (CTP) [GFJ+09] to improve its performance in
industrial scenarios [YZDPHg11], analyze swarm intelligence algorithms
for sensor networks based on the Markovian agent model [BSB+12], apply
di↵usion approximation techniques to estimate the end-to-end packet
travel times assuming opportunistic packet forwarding rules [Gel07], or
model generic multi-hop functionality through population continuous-
time Markov chains [GB12]. Nevertheless, the validation of these models
is limited to numerical simulations, which lack precisely those real-
world dynamics of low-power wireless links that make accurate protocol
modeling so complex and di�cult in the first place.

3.1.3 Outlook
Motivated by the lack of a deeper understanding of ST, in the remainder
of this chapter we provide a thorough account on the behavior of ST and
its impact on the modeling of emerging ST-based multi-hop protocols.
To this end, we start by analyzing in Section 3.2 to what extent a key,
yet sometimes illegitimate assumption in modeling low-power wireless
protocols applies to ST. We base this study upon Glossy’s specific
incarnation of ST [FZTS11], because it serves as the communication
primitive for a growing class of multi-hop protocols [WHM+12, FZMT12,
DCL13, CCT+13, LFZ13a]. We then apply the corresponding findings
while closely examining LWB [FZMT12], one specific such protocol we
illustrate in Section 4.2 that exceeds the performance, reliability, and
versatility of prior LT-based protocols. In doing so, we analyze end-to-end
packet reliability in Section 3.4 and energy consumption in Section 3.5—
two key performance indicators in low-power wireless [GFJ+09].

3.2 Bernoulli Assumption
Because wireless networks are very complex, researchers make simplify-
ing assumptions about their behavior when reasoning about a protocol.
One common assumption is the Bernoulli assumption [SDTL10]. Let the
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reception of packets sent in a sequence be a random event with success or
failure as the only possible outcomes. The Bernoulli assumption stipulates
that a receiver observes a sequence of i.i.d. Bernoulli trials. In practical
terms, success means a packet is received (with probability p), and failure
means a packet is lost (with probability 1 � p).

However, several studies have shown that the Bernoulli assumption
is not always valid in low-power wireless, because links have temporally
correlated receptions and losses when they occur close in time (i.e., on the
order of a few tens of milliseconds) [CWPE05, SDTL10]. In this section,
we show empirically that the Bernoulli assumption is (i) in fact highly
valid for ST in Glossy, and (ii) more appropriate in Glossy than for LT.

We first describe how we collect large sets of packet reception traces
on a real-world sensor network testbed. Next, we discuss our analysis
of these traces for weak stationarity, which is a necessary condition for
further statistical analysis. We then construct a statistical test for packet
reception independence based on the sample autocorrelation metric, and
use this test to assess the validity of the Bernoulli assumption in our traces.

3.2.1 Experimental Methodology
We perform 80 hours of packet reception measurements on Indriya, a large
testbed of 139 TelosB nodes deployed across three floors in the School of
Computing at the National University of Singapore [DCA11]. Indriya
provides a mixture of dense and sparse node clusters, as well as realistic
interference from the presence of people and co-located Wi-Fi.

We conduct two types of experiments that match the building blocks
of multi-hop communication in ST- and LT-based protocols:

1. ST-Type. We select 70 nodes that are equally distributed across
the three floors on Indriya and let them, one at a time, initiate
50,000 Glossy network floods. According to Glossy’s operation, the
remaining 138 nodes blindly relay the flooding packet, eventually
delivering it to all nodes in the network.

2. LT-Type. All 139 nodes available on Indriya broadcast, one at a time,
50,000 packets, while the remaining nodes passively listen. As LT
are bound by the transmission range of the broadcasting node, only
its one-hop neighbors can receive the packet.

In both types of experiments, packets are 20 bytes long and carry
a unique sequence number. The sender transmits at a fixed inter-packet
interval (IPI) of 20 ms, which corresponds to the typical minimum interval
between consecutive Glossy floods in ST-based protocols [WHM+12,
CCT+13, DCL13, FZMT12]. All other nodes record received and lost



3.2. Bernoulli Assumption 55

0 200 400 600 800 1000
0.2

0.4

0.6

0.8

1

Time (seconds)

P
a
ck

e
t 
re

ce
p
tio

n
 r

a
te

 

 

Weakly stationary 
Non−stationary 
Linear fit

Figure 3.2: Example of a weakly stationary and a non-stationary trace. Packet
reception rate is a moving average with a window size of 2,000 packets (40 s).

packets based on the sequence number. We use IEEE 802.15.4 channel
26 to reduce the influence of Wi-Fi interference, whose extent we cannot
control and is di�cult to assess afterwards [HRV+13]. We repeat both
types of experiments for two transmit powers: 0 dBm is the maximum
transmit power of a TelosB node, and -15 dBm is the lowest transmit
power at which the network on Indriya remains connected. The resulting
network diameters are 5 and 11 hops, respectively.

We record in total more than 1,200,000,000 events, grouped into packet
reception traces of length n =50,000. We represent every collected trace
as a discrete-time binary time series {xi}ni=1, where xi is 1 if the i-th packet
was received and 0 if it was lost. This time series representation forms
the basis for our statistical analysis.

3.2.2 Weak Stationarity
A necessary condition for well-founded statistical analyses of time series
is weak stationarity [BD91]. A weakly stationary time series has constant
mean, constant variance, and the autocovariance between two values
depends only on the time interval between those values. We investigate
whether our traces conform to these criteria based on the packet reception
rate (PRR), computed on a trace as a moving average of the fraction of
received packets over a window of 2,000 packets (40 s).

Visual inspection of our traces reveals obvious violations of these
criteria. For example, Figure 3.2 shows the PRR for a stationary and a non-
stationary trace. The latter has several abrupt changes and a significant
trend in the mean, as evident from the linear fit. To avoid biases in our
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Table 3.1: Number of non-stationary and weakly stationary traces.
Type Transmit power Total Non-stationary Weakly stationary

ST 0 dBm 9660 47 9613
ST -15 dBm 9660 256 9404
LT 0 dBm 4189 1418 2771
LT -15 dBm 1777 588 1189

analysis, we need to identify and exclude such non-stationary traces.
While there is a number of formal tests for stationarity, they often fail

in practice due to their inability to detect general non-stationarity [Det13].
Thus, similar to [YMKT99], we apply two empirical tests to identify non-
stationary traces. To test for trends in the mean, we compute a linear
fit using ordinary least squares and declare a trace as non-stationary if
the PRR changes by 0.015 or more over the entire trace of 50,000 packets
(1,000 s). Then, we test for non-constant variance by checking whether the
PRR decreases or rises by more than 0.05 within a window of 2,000 packets
(40 s), which we interpret as an indication of non-stationarity. Table 3.1
summarizes the sets of traces before and after applying the two empirical
tests for non-stationarity; we removed about 9 % of non-stationary traces.

3.2.3 Validating the Bernoulli Assumption
To confirm or refute the Bernoulli assumption for a given trace, we use
the sample autocorrelation, which measures the linear dependence between
values of a weakly stationary time series as a function of the interval (lag)
between those values. As we explain below, the Bernoulli assumption is
valid if the values in the time series are independent already at lag 1.

For a discrete-time binary time series {xi}ni=1 of length n, the sample
autocorrelation ⇢̂ at lag ⌧ = 1, 2, . . . ,n � 1 is

⇢̂(⌧) =

8>><>>:
�̂(⌧)/�̂(0) if �̂(0) , 0
0 if �̂(0) = 0

(3.1)

where �̂(⌧) is the estimated autocovariance given by

�̂(⌧) =
1
n

Xn�⌧

i=1
(xi+⌧ � x)(xi � x)

and x = 1/n
Pn

i=1 xi is the sample mean.
The sample autocorrelation in (3.1) ranges between -1 and 1. Negative

values indicate anti-correlation in packet reception: as more packets are
received (lost), the next packet reception is more likely to fail (succeed).
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Figure 3.3: Sample autocorrelation up to lag 20 for two of our collected packet
reception traces. The Bernoulli assumption holds for Trace 2, because its sample
autocorrelation falls within the confidence bounds starting from lag 1.

Positive values indicate positive correlation: packet receptions (losses)
tend to be followed by more packet receptions (losses).

Values close to zero indicate independence among packet receptions
at a given lag, assuming the xi are i.i.d. Bernoulli random variables. Let
{xi}ni=1 be a realization of an i.i.d. sequence {Xi}1i=1 of random variables
with finite variance. It can be shown that, for a large number of samples
n, about 95 % of the sample autocorrelation values should lie within
the confidence bounds ±1.96/

p
n [BD91]. Based on this, we define the

correlation lag as the smallest lag at which the sample autocorrelation lies
within ±1.96/

p
n. Like [YMKT99], we consider the Bernoulli assumption

valid if the correlation lag is 1. Formally: Given a time series {xi}ni=1, the
Bernoulli assumption holds at the 0.05 significance level if |⇢̂(1)|  1.96/

p
n.

As an example, Figure 3.3 plots ⇢̂ for two of our traces of length
n = 50, 000. The dashed lines at ±1.96/

p
50, 000 ⇡ ±0.0088 represent the

confidence bounds. The figures shows that Trace 1 is dependent up to lag
5, but starting from lag 6 the autocorrelation values become insignificant
except for a few stray points. By contrast, Trace 2 has an insignificant
autocorrelation already at lag 1, indicating that there is no dependence
between consecutive packets nor between any other packets in the trace.
Thus, the Bernoulli assumption holds for Trace 2 but not for Trace 1.

3.2.4 Results
Based on the above reasoning, we analyze the validity of the Bernoulli
assumption for our weakly stationary traces (see Table 3.1). Figure 3.4
shows the percentage of traces with correlation lag greater than 1 (for
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Figure 3.4: Percentage of weakly stationary traces for which the Bernoulli
assumption does not hold, for di↵erent IPIs and transmit powers. The Bernoulli
assumption is highly valid for ST, and significantly more legitimate for ST than for LT.

which the Bernoulli assumption does not hold) when examining di↵erent
IPIs in our traces. We see that the Bernoulli assumption is significantly
more legitimate for synchronous transmissions (ST-Type) than for link-
based transmissions (LT-Type). For example, at the highest transmit
power of 0 dBm, the Bernoulli assumption holds for more than 99 % of
the ST-Type traces irrespective of the IPI, whereas it holds only for 60 %
of the LT-Type traces at the smallest IPI of 20 ms.

We also see that at the lower transmit power there are more ST-Type
traces for which the Bernoulli assumption does not hold. This is mostly
because nodes have fewer neighbors and hence benefit less from sender
diversity [RHK10]. Indeed, at -15 dBm about 24 % of nodes have at most
four well-connected neighbors, which makes their reception behavior
approach the one of LT. This is also confirmed by a significant negative
Pearson correlation of -0.31 between the number of well-connected
neighbors and the percentage of traces for which the Bernoulli assumption
does not hold. Finally, Figure 3.4 shows that the autocorrelation decreases
as the IPI increases, and becomes negligible at IPI = 1 s also for LT-Type
traces. This observation is in line with prior studies on low-power wireless
links [SDTL10], thus validating our methodology.

In summary, our results show that the Bernoulli assumption holds to
a large extent for ST due to sender diversity [RHK10]. This implies that
packet receptions in Glossy can be considered largely independent, so
a single parameter is su�cient to precisely characterize the probability
of receiving a packet. By contrast, packet receptions in LT are often not
independent, which necessitates more complex models, such as high-



3.3. Low-power Wireless Bus 59

(C)

(B)

n1n1 n1

(A)
T

nnnn nn

n3

n2

n3 n3

n2 n2

t
n1

Communication rounds

n2 nnn3

Figure 3.5: LWB’s time-triggered operation. Communication rounds occur with
a possibly varying round period T (A); each round consists of a varying number
of communication slots (B); every slot corresponds to a Glossy flood (C).

order Markov chains [YMKT99], to accurately capture their behavior.
The next section describes LWB, a Glossy-based protocol that we use

throughout Sections 3.4 and 3.5 to demonstrate how the validity of the
Bernoulli assumption for ST enables simple, yet highly accurate models
of multi-hop low-power wireless protocols.

3.3 Low-power Wireless Bus
The basic idea behind LWB is to abstract a network’s multi-hop nature
by employing only ST for communication [FZMT12]. To this end, LWB
maps all communication demands onto Glossy network floods [FZTS11].
Glossy always and blindly propagates every message from one node to all
other nodes in the network, e↵ectively creating the perception of a single-
hop network for higher-layer protocols and applications. The resulting
protocol operation of LWB is similar to a shared bus, where all nodes
are potential receives of all messages; delivery to the intended recipients
happens by filtering messages at the receivers.

LWB exploits Glossy’s accurate time synchronization for a time-
triggered scheme that arbitrates access to the (wireless) bus. Nodes
communicate according to a global communication schedule. A dedicated
host node computes the schedule online based on the current tra�c
demands and distributes it to the nodes, determining when a node is
allowed to initiate a flood.

As shown in Figure 4.1 (A), communication occurs in rounds that repeat
with a possibly varying round period T. All nodes keep their radios o↵
between two rounds to save energy. Every round consists of a possibly
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Figure 3.6: Communication slots and activities during a single LWB round.

varying number of communication slots, as shown in Figure 4.1 (B). In every
slot, at most one node puts a message on the bus (i.e., initiates a flood),
while the remaining nodes read the message from the bus (i.e., receive
and relay the flooding packet), as illustrated in Figure 4.1 (C).

Figure 3.6 shows the di↵erent communication slots within one round
of length Tl. Each round starts with a slot of length Ts in which the host
distributes the communication schedule. The nodes use the schedule
to time-synchronize with the host and to be informed of (i) the round
period T and (ii) the mapping of source nodes to the following data slots
of length Td. A non-allocated contention slot of length Td follows; nodes
may contend in this slot to inform the host of their tra�c demands. The
host uses these to compute the schedule for the next round, which it
transmits in a final slot of length Ts.

The host computes the communication schedule by determining a
suitable round period T and allocating data slots to the current streams. A
stream represents a tra�c demand, characterized by a starting time and an
inter-packet interval (IPI), as LWB targets the periodic tra�c pattern typical
of many low-power wireless applications [GGB+10]. A node can source
multiple streams and individually add or remove streams at runtime.

3.4 End-to-end Reliability in LWB
End-to-end reliability refers to a protocol’s ability to deliver packets from
source to destination, perhaps over multiple hops. It is a key performance
metric in low-power wireless [GFJ+09], indicating the level of service
provided to users. Many applications do require probabilistic guarantees on
this metric, for example, to allow for post-processing of data in structural
health monitoring [CFP+06] or enable stable control loops [SSF+04].

End-to-end reliability, however, is subject to unpredictable packet
loss [SDTL10]. LT-based protocols, therefore, rely on per-hop
retransmissions to achieve a certain end-to-end reliability, yet the
necessary number of retransmissions depends on the ever-changing loss
rates of the individual links along the routing paths. Further, LT-based
protocols constantly adapt the routes in response to such changes, which
renders reasoning about end-to-end guarantees extremely complex.
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By contrast, ST-based protocols, such as LWB, often have no routes
to adapt. This facilitates reasoning about end-to-end guarantees, even
across multiple hops. To show this, we extend LWB with a retransmission
scheme and derive su�cient conditions to provide reliability guarantees.
The key insight we use is that the validity of the Bernoulli assumption for
ST greatly simplifies the specification of these conditions.

Packet retransmissions in LWB. We consider a typical data collection
setting where the LWB host is also the sink [GGB+10]. We augment LWB
with packet retransmissions by modifying the scheduling algorithm used
at the host to compute the schedule for the next round. Originally, LWB
allocates exactly one data slot for each data packet, regardless of the actual
reception at the host [FZMT12]. In our modification, the host first checks
whether in the current round it received every data packet assigned a
slot. For each lost packet, it reallocates a slot in the next round, in which
the source node retransmits the lost packet, provided that fewer than kmax

slots have already been allocated for it. Then, the host allocates data slots
for new packets as before.

Consider now an application that requires a minimum end-to-end
reliability pd > 0 on data packets. We derive su�cient conditions on the
minimum kmax and overall available bandwidth to provide such guarantee
in a probabilistic sense.

Su�cient condition #1: retransmissions. The validity of the Bernoulli
assumption for ST in Glossy allows us to consider consecutive retransmis-
sions as independent events. Thus, based on our retransmission scheme,
the probability that the host receives a packet from stream s within ks � 1
(re)transmissions is 1� (1�pd,s)ks , where pd,s is the probability that the host
receives a packet from stream s in one slot (i.e., during one Glossy flood).
To provide the desired guarantee pd > 0, we require

1 � (1 � pd,s)ks � pd (3.2)

where 0 < pd < 1 and 0 < pd,s < 1. Then, (3.2) holds if

ks �
log(1 � pd)
log(1 � pd,s)

(3.3)

Thus, the host must allocate ks slots to each packet of stream s to provide
an end-to-end packet reliability of at least pd.

Because LWB needs to set an integer upper bound kmax on the number
of data slots allocated to each packet, the reliability guarantee can only be
provided if for all existing streams s

dkse  kmax (3.4)
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Example. Assume one stream with pd,s = 0.9, and the host allocates at
most kmax = 2 slots for each packet. In this case, a reliability guarantee
of pd = 0.99 can be provided, because 1 � (1 � 0.9)2 = 0.99. To guarantee
pd = 0.9999, we need to increase kmax to dlog(1 � 0.9999)/ log(1 � 0.9)e = 4.

Su�cient condition #2: bandwidth. The bandwidth available in LWB
is a function of how often communication rounds unfold: the shorter
the round period T, the more data slots are available, yielding increased
overall bandwidth. Due to platform-specific constraints on timings and
size of the schedule packet, however, at most B data slots can be allocated
in a round.

The original scheduling policy minimizes energy while providing
enough bandwidth to all tra�c demands whenever possible. Specifically,
given N streams, the host first computes

Topt =
B

PN
s=1(1/IPIs)

(3.5)

where 1/IPIs is the number of data slots allocated to stream s per time
unit, because without retransmissions LWB allocates exactly one slot for
each packet. Then, the host obtains the new round period by computing
T = dmax(Tmin,min(Topt,Tmax))e. The lower bound Tmin ensures that T is
longer than the duration of a round Tl, and the upper bound Tmax ensures
that the nodes stay time-synchronized with the host. If Topt < Tmin, the
network is saturated, that is, the maximum bandwidth provided by LWB
is insu�cient to support the current tra�c demands. If saturation occurs,
the host sets T = Tmin and informs the nodes.

On the other hand, if a packet must be transmitted ks � 1 times to
provide a guarantee on the end-to-end packet reliability, every stream
s requires ks/IPIs data slots per time unit; and all N streams together
require

PN
s=1(ks/IPIs). Therefore, to account for packet (re)transmissions,

we modify (3.5) as follows

Topt =
B

PN
s=1(ks/IPIs)

(3.6)

As described above, Topt cannot be smaller than the minimum round
period Tmin. Therefore, the total bandwidth is su�cient for ks packet
transmissions only if XN

s=1

ks

IPIs
 B

Tmin
(3.7)

Only if both conditions (3.4) and (3.7) are satisfied, it is guaranteed
that packets are delivered with at least probability pd.

Example. Consider streams s1 and s2 that generate packets with IPI1 =
8 s and IPI2 = 12 s, and deliver packets to the host with probabilities
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pd,1 = 0.99 and pd,2 = 0.9. The host allocates up to kmax = 16 slots per
packet and up to B = 5 slots per round. The minimum round period
is Tmin = 2 s. Can LWB guarantee an end-to-end packet reliability of
pd = 0.9999 for both streams? The condition in (3.4) is satisfied for both
streams, because the required numbers of slots k1 = 2 and k2 = 4 are
smaller than kmax. The condition in (3.7) is satisfied as well, because the
optimal round period Topt =

5
2/8+4/12 ⇡ 8.57 s is longer than the minimum

round period Tmin. Thus, pd = 0.9999 can be guaranteed for both streams.

3.5 Energy Consumption in LWB
Energy is a primary concern in low-power wireless systems. Thus, the
ability to accurately model a protocol’s energy consumption is important,
for example, to dimension a system’s power sources before deployment,
or to estimate the remaining system lifetime during operation [GGB+10].

The major factor contributing to a node’s energy consumption in low-
power wireless is the time spent with the radio on, because the wireless
transceiver may draw several orders of magnitude more power than other
components [LM10]. Therefore, we use the radio on-time as a proxy for
energy in this chapter. The actual energy is obtained by multiplying the
radio on-time with the transceivers’ power draw when on.

Deriving a model that precisely estimates the radio on-time of a LT-
based low-power wireless protocol is, however, di�cult. Nodes generally
experience di↵erent radio on-times depending on their position in the
routing topology, and sudden route changes trigger actions that need to
be coordinated across di↵erent nodes [BKM+12]. ST simplify a protocol’s
operation by sparing the need for routes, thus making modeling simpler.

We now demonstrate the above for LWB. This is because a single
event—the reception of schedule packets from the host—drives most of a
node’s actions, as illustrated in Section 3.5.1. As shown in Section 3.5.2, we
can derive precise radio on-times for each of the protocol’s operational
states. The validity of the Bernoulli assumption for ST allows us to
consider consecutive schedule receptions as independent. This facilitates
computing the long-term frequency of visits to these states, as described
in Section 3.5.3, ultimately yielding the expected radio on-time.

3.5.1 Operational States of LWB
The radio on-time of a LWB node depends only on the reception of
schedules from the host, which allows a node to time-synchronize and
to learn the mapping of nodes to slots for the current round. Based on
this, a node knows when communication occurs and activates the radio
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Table 3.2: Meaning and radio on-times of FSM states in Figure 3.7.

State Description
Worst-case
radio on-time

Bb Bootstrapping: not synced, radio always on Tl

Be Bootstrapping: not synced, radio always on T � Tl

Rb Received schedule, drift not estimated Tg(m)+Ts + Tc

Re Received schedule, drift not estimated Tg(m)+Ts

Sb Synced: received schedule, drift estimated Tg(0) +Ts + Tc

Se Synced: received schedule, drift estimated Tg(0) +Ts

Mb Missed schedule at beginning of current round Tg(m)+Ts + �m1Tc

Me Missed schedule at end of previous round Tg(m)+Ts

accordingly. A node that misses a schedule in a round refrains from
communicating during that round, since communication outside of the
allocated slots (e.g., due to inaccurate time information) may cause packet
loss due to collisions with other transmissions.

Clock drift prevents a node from having perfect time information,
even when it constantly receives schedule packets [LSW09]. The
synchronization error often increases when missing several schedules
in a row, as the e↵ects of clock drift accumulate over time. To compensate
for these, a LWB node uses predefined guard times in order to turn the
radio on shortly before a round is bound to begin, and increases them
in discrete steps as it misses more schedules in a row. After more than
m consecutive missed schedules, a node permanently keeps the radio on
until it receives a schedule and time-synchronizes again.

This behavior is reflected in the finite state machine (FSM) in Figure 3.7,
which models the behavior of a LWB node depending on received (r) or
missed (¬ r) schedule packets. Table 3.2 lists the meaning of each state
and the corresponding worst-case radio on-time. Key to the model is
whether the schedule packet is received (or missed) at the end of the
previous round or at the beginning of the current round. To di↵erentiate
the two cases, a node reaches a state labeled Xb following schedules sent
at the beginning of a round, and a state labeled Xe following schedules
sent at the end of a round. We now derive the radio on-times reported in
Table 3.2 for every state in the FSM.

3.5.2 Radio On-time of LWB States
A node starts in state Be with the radio turned on until it receives a
schedule at the beginning of a round (Be ! Rb) and synchronizes with
the host. As shown in Figure 4.1, communication rounds occur every T.
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Figure 3.7: FSM modeling the behavior of a LWB node depending on received
(r) and missed (¬ r) schedules. A LWB node reaches states labeled Xb after receiving or
missing schedules sent at the beginning of a round, and states labeled Xe after receiving
or missing schedules sent at the end of a round. The number of consecutively missed
schedules m is updated on every transition to Mb or Me. When m reaches the predefined
threshold m, a LWB node returns to one of the two bootstrapping states Be or Bb.

Therefore, a node remains in Be for at most T�Tl, where Tl is the duration
of a round illustrated in Figure 3.6. If a node misses such schedule
(Be ! Bb), it keeps the radio on for Tl before it tries again to receive a
schedule at the beginning of a round (Bb ! Be).

As shown in Table 3.2, in all non-bootstrapping states the radio on-
time includes the length of a schedule slot Ts and two additional terms:
the guard time to compensate for synchronization errors and the radio
on-time due to communication.

Guard times. A platform-specific guard time function Tg(m) specifies the
guard time before a schedule slot, based on the number of consecutive
missed schedules m, with 0  m  m. Tg(m) is non-decreasing in m, since
the synchronization error typically increases with more missed schedules,
as discussed before. For example, if schedules are always received, a node
alternates between states Sb and Se using the smallest guard time Tg(0),
but switches to a longer guard time Tg(1) if it misses the schedule at the
beginning of the current round (Se ! Mb) or at the end of the previous
round (Sb !Me).

An exception to this processing occurs when a node has insu�cient
information to compute the drift of the local clock compared to the clock of
the host. This is the case in states Rb and Re, when a node has received only
one schedule sent at the beginning of a round since the last bootstrapping
state (see Figure 3.7). As a result, it cannot estimate the drift of the
local clock, because at least two time references are required [LSW09].
Therefore, a node prudently uses the largest possible guard time Tg(m) in
state Rb or Re, as shown in Table 3.2.
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Radio on-time due to communication. The radio on-time for data and
contention slots is Tc = (dr+dk)Td, where dr is the expected number of data
slots per round, dk is the average number of contention slots per round,
and Td is the length of data and contention slots (see Figure 3.6). As
shown in Table 3.2, Tc is accounted for only when a node participates in a
round, after receiving the schedule at the beginning of the current round
(state Rb or Sb) or at the end of the previous round (state Mb with m = 1;
the Kronecker delta �m1 in Table 3.2 equals 1 if m = 1 and 0 otherwise).
We now derive dk and dr.

The host schedules one contention slot every Tk > T to save energy
under stable tra�c conditions [FZMT12]. The average number of
contention slots per round is thus dk = T/Tk. The average number of data
slots per round dr depends on whether the network is saturated or not. If
saturated, the host allocates all available B slots in every round, so dr = B.
Without saturation, given that each data packet can be (re)transmitted up
to kmax times, on average ds  kmax data slots are allocated to each data
packet of stream s. The expected number of data slots allocated per time
unit to stream s is ds/IPIs. The general expression for dr is thus

dr = min(B,T
XN

s=1
ds/IPIs) (3.8)

As described in Section 3.4, the host allocates data slots for each packet
of stream s across multiple rounds until either it receives the packet or kmax

slots are allocated. Thus, the expected number of data slots ds allocated to
a packet of stream s depends on the probability pd,s that the host receives
from stream s and on the maximum number of transmissions kmax. For
0 < pd,s  1, it can be shown that the host allocates

ds =
1 � (1 � pd,s)kmax

pd,s
(3.9)

slots on average to each packet of stream s. Note that for pd,s = 1 the
host receives the packet always at the first attempt and ds = 1, whereas ds

approaches kmax as pd,s goes to 0.
Exploiting the Bernoulli assumption validated in Section 3.2, we

estimate next how frequently a LWB node is expected to visit each
operational state in the long run. This information, together with the
radio on-times we just derived for every state, allows us to estimate the
expected radio on-time per round.

3.5.3 Expected Radio On-time of a LWB Round
According to Section 3.2, packet reception with Glossy-based ST can be
modeled with high confidence as a Bernoulli trial. We thus characterize
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Figure 3.8: DTMC corresponding to FSM in Figure 3.7 for a node that receives
schedules from the host with probability ps,l and starts bootstrapping anew after
missing more than m = 3 schedules in a row.

the reception of schedules at a node through a single parameter ps,l, the
success probability of Glossy-based ST from the host. As a result, the FSM
in Figure 3.7 translates into a discrete-time Markov chain (DTMC) where
an event r (or¬ r), corresponding to a successful (failed) reception of the
schedule, occurs with probability ps,l (or 1�ps,l).

Our LWB implementation retains the original setting for m, in which
a node returns to one of the bootstrapping states after missing more than
m = 3 consecutive schedules. Figure 3.8 shows the corresponding DTMC.
States {M1b,M2b,M3b} are equivalent to state Mb in the original FSM for
m = {1, 2, 3}; the same applies to states {M1e,M2e,M3e} and state Me. Note
that the DTMC in Figure 3.8 is periodic with period 2: the host sends
schedules at the beginning and at the end of a round, thus a node always
visits state Xe after state Xb and vice versa.

Knowing the radio on-time for each LWB state as per Table 3.2, we can
compute the expected radio-on time per round

Ton = 2(ton · ⇡) (3.10)

where ton = (tonBb , tonBe , . . . , tonM3e) is a vector containing the radio on-times
of all DTMC states, · is the dot product, and ⇡ is the DTMC’s stationary
distribution. The factor 2 is because, during a round, a node always visits
two states of the DTMC as the host transmits two schedules per round.

We can obtain ⇡ by determining the normalized left eigenvector with
eigenvalue 1 of the DTMC’s transition matrix. For m = 3, we have ⇡ =
(⇡Bb ,⇡Be , . . . ,⇡M3e), where ⇡s denotes the long-run frequency of visits to
state s 2 {Bb,Be, . . . ,M3e}. Figure 3.9 plots the stationary distribution ⇡
against actual values for the probability ps,l. For example, we can see
that when ps,l approaches 1, a node visits more often states Sb and Se,
as it consistently receives schedule packets, whereas it visits more often
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Figure 3.9: Stationary distribution ⇡ of the DTMC in Figure 3.8 against the
probability of receiving a schedule ps,l.

states Bb and Be when ps,l is close to 0. Typical values for ps,l measured
in practice, however, range above 0.99 with Glossy [FZTS11], making it
very unlikely that a node ever returns to a bootstrapping state.

The DTMC in Figure 3.8 and the expression in (3.10) confirm our
hypothesis that ST simplify the modeling of multi-hop protocols. This is
due to (i) the validity of the Bernoulli assumption for Glossy-based ST,
and (ii) the absence of routes in LWB. In the following, we demonstrate
that the resulting energy model is not only simple but also highly accurate.

3.6 Validation

To verify accuracy and practicality, we compare estimates of our models
with real measurements. Prior to deployment, analyzing the su�cient
conditions for a given end-to-end reliability against foreseeable network
conditions can, for example, drive the node placement to increase
connectivity; moreover, exercising the energy model for di↵erent network
tra�c settings can help designers dimension the power sources. At
run-time, monitoring the expected network performance allows system
operators to proactively perform maintenance tasks (e.g., replacing nodes
or batteries), and to adjust system parameters in response to changes in
the network conditions. Our model validation mimics these scenarios.
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3.6.1 Settings and Metrics
We use the FlockLab testbed, which consists of 30 TelosB nodes deployed
both inside and outside a university building [LFZ+13b]. We use the
highest transmit power of 0 dBm, yielding a network diameter of 4 hops.
To reduce sources of packet loss we cannot control, we use IEEE 802.15.4
channel 26 to minimize interference from co-located Wi-Fi networks.
Instead, we artificially induce packet loss during ad-hoc experiments.
In all experiments, data packets carry a payload of 15 bytes.

We extend the original LWB implementation with packet retransmis-
sions, as described in Section 3.4, and measure: (i) the end-to-end reliability,
the fraction of generated data packets successfully delivered at the host;
and (ii) the radio on-time per round. We measure the former based on packet
sequence numbers received at the host and the latter using established
software-based methods [DOTH07]. Unless otherwise stated, we set the
maximum number of transmissions per packet kmax to 50.

Most of our model’s inputs are implementation constants: the guard
times Tg({0, 1, 2, 3}) = {1, 3, 5, 20}ms, the lengths of schedule and data
slots Ts = 15 ms and Td = 10 ms, the length of a round Tl = 1 s, and the
maximum number of data slots per round B = 45. However, a few inputs
are precisely known only at run-time:

• The probability of receiving a schedule ps,l. A node n estimates ps,n

locally based on past schedule receptions, and reports it to the host
by piggybacking it on data packets.

• The round period T and the expected number of data slots per round
dr. Both are determined by the scheduling policy, and depend on the
streams’ IPIs and the probability pd,s that the host receives a packet
from stream s. The host estimates pd,s like nodes estimate ps,n.

• The radio on-times during schedule and data slots Ts,n and Td,n,
which are generally shorter than the lengths of schedule and data
slots Ts and Td, because nodes may turn o↵ the radio before the end
of a slot depending on their position in the network [FZMT12]. Each
node n estimates Ts,n and Td,n locally, and reports them to the host
as it does for the probability ps,l of receiving a schedule.

When using our models o✏ine, one can consider conservative
estimates for ps,n, pd,s, Ts,n, and Td,n based on coarse-grained deployment
information or data from exploratory experiments [BKM+12]. From
these and the streams’ IPIs defined in the requirements specification,
one can determine T and dr based on the scheduling policy. During
system operation, one can refine these values using up-to-date run-time
estimates. Specifically, in our experiments, nodes maintain two counters
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to estimate ps,n: the number of received rs and the number of expected es

schedule packets. Nodes embed rs/es into data packets and halve both
counters whenever es reaches a threshold, which behaves similarly to an
exponentially weighted moving average (EWMA). The nodes estimate
Ts,n and Td,n in a similar way, and so does the host to estimate pd,s.

We run experiments on FlockLab to assess the accuracy of our
intentionally simple parameter estimations. To test di↵erent network
conditions, three nodes at the edge of the testbed randomly discard up
to 50 % of schedule packets. Such high loss rates are very unlikely given
Glossy’s typical reliability of more than 99 % [FZTS11]. Nevertheless, we
find that our parameter estimates are accurate to within less than 1 %
across all settings, including the case of 50 % missed schedules.

3.6.2 End-to-end Reliability
We study how significant network unreliability and changes in tra�c
load may a↵ect the guarantee on end-to-end packet reliability. To test the
former, we let 29 nodes generate packets with IPI = 7 s, while the host
discards between 0 % and 20 % of the received data packets to emulate
network unreliability. The round period is T = 6 s. To analyze changes in
tra�c load, all nodes generate packets with an increasing IPI in di↵erent
runs: from 7 s to 15 s in steps of 2 s, while the host discards 5 % of the
data packets. The round period is set to T = 10 s. Both settings mirror
conditions found in real deployments [GGB+10]. The experiments take 1.5
hours, and the maximum number of transmissions per packet is kmax = 3.

Figure 3.10 shows for both experiments the measured end-to-end
reliability and the maximum end-to-end reliability that can be guaranteed
according to our analysis in Section 3.4. As for the measured values,
the slight drop in Figure 3.10(a) is because the maximum number of
transmissions kmax = 3 is insu�cient to deliver all packets to the host,
whereas the slight drop in Figure 3.10(b) at the smallest IPI is due to
insu�cient bandwidth.

While the results confirm that our specific LWB executions never
provide an end-to-end packet reliability lower than the guaranteed values,
the figure also shows that the latter drop more severely than the measured
ones. This is expected, as the analysis for guarantees on end-to-end packet
reliability entails over-provisioning the number of data slots allocated to
a packet, although often only a small fraction thereof is actually needed
to receive it. In the experiments where we emulate network unreliability,
for example, we compute from (3.7) that the host can allocate at most
ks = 1.81 slots for a packet of each stream s. Based on (3.2), this value
guarantees an end-to-end reliability of pd = 94.57 % when 20 % of data
packets are discarded, as shown in Figure 3.10(a). However, according to
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(a) Varying percentage of artificially discarded data packets at the host.
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(b) Varying inter-packet interval (IPI) of generated data packets at the nodes.

Figure 3.10: Measured end-to-end reliability of LWB and maximum end-to-end
reliability that can be guaranteed according to the analysis of Section 3.4.

(3.9) packets are actually received after ds = 1.24 slots on average.
The conclusion is that the gap between the real executions and the

guaranteed values provides, in a sense, information in advance about how
worse the system may possibly perform under worst-case assumptions.
Thus, system operators can take appropriate countermeasures before
a problem, although highly unlikely, manifest in the measurements, to
e↵ectively satisfy the application requirements at all times.

3.6.3 Energy Consumption

We evaluate the accuracy of our energy model in 5-hour experiments: 29
nodes generate packets with IPI = 6 s, and the round period is T = 6 s.
In our model, the probabilities of receiving schedule and data packets
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Figure 3.11: Estimated and measured radio on-time per round when artificially
discarding schedule and data packets. The average model error is 0.25 %.

ps,n and pd,s are the most critical inputs. To test the model output against
di↵erent probability values, we let three nodes at the edge of the testbed
randomly discard between 0 % and 20 % of schedules, while the host
also discards the same percentage of data packets. Exercising the energy
model against di↵erent IPIs and round periods T simply scales the model
output proportionally.

Figure 3.11 plots the estimated and measured radio on-time averaged
over the three nodes. Overall, the results show that our energy model is
highly accurate, with an average relative error of 0.25 %. In comparison,
recent work on modeling LT-based multi-hop protocols reports relative
errors in energy consumption between 2 and 7 % [ZFM+12]—one order
of magnitude larger than ours. Considering also that our work spans
a complete multi-hop protocol rather than individual components, as
discussed in Section 4.1, this confirms our initial hypothesis that ST enable
highly accurate protocol modeling.

We maintain that this is mainly due to the accuracy of the parameter
estimation, as discussed in Section 3.6.1, and to the validity of the DTMC
model. To verify the latter, we additionally run a 3-hour experiment with
three nodes at the edge of the testbed discarding 50 % of schedule packets.
Using FlockLab’s tracing facility [LFZ+13b], we precisely measure the
fractions of time these nodes spend in each of the twelve DTMC states
shown in Figure 3.8. Figure 3.12 shows these measurements next to what
the DTMC model predicts for ps,l = 0.5; for better visibility, we merge
the corresponding states at the beginning and at the end of a round into
single states, leaving six instead of twelve states in the plot. We see that
expectations and measurements indeed match very well, and would do
so even better for longer experiments as the long-term behavior of the
system emerges.
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Figure 3.12: Fraction of time in FSM states when discarding 50 % of schedules,
measured on three nodes and predicted by the DTMC model. For illustration
the corresponding states at the beginning and at the end of a round are merged.

3.7 Summary
In this chapter, we studied whether ST enable simple yet accurate
modeling of multi-hop low-power wireless protocols. Our experimental
results show that the Bernoulli assumption is highly valid for ST in
Glossy and more legitimate for ST than LT. We exploit these findings
in the modeling of LWB’s end-to-end reliability and long-term energy
consumption. Our validation using real-world experiments confirms
that accurate models of ST-based protocols are feasible, demonstrating a
model error in energy of 0.25 %. We believe our contributions represent a
key stepping stone in the development and analysis of ST-based protocols.

Furthermore, our results are important for closed-loop control over
lossy wireless networks. Many control algorithms can be designed
to tolerate a small fraction of packet loss without sacrificing control
performance and stability. This, however, is based on the assumption
that packet receptions are statistically independent, that is, the few losses
do not happen as a longer burst of multiple consecutive losses [SSF+04].
We show that due to the validity of the Bernoulli assumption for ST,
such adverse packet loss bursts virtually never occur when using Glossy
to communicate packets throughout the network. Given this beneficial
property of Glossy and LWB’s bus-like operation, which is conceptually
similar to wired fieldbusses used in safety-critical embedded systems,
suggests that LWB could be a good candidate protocol to support CPS
applications with high reliability and real-time requirements.
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4
Blink: Real-time Communication

in Multi-hop Low-power Wireless
The tangible benefits of low-power wireless technology in CPS and
especially in automation and control are, by now, widely acknowledged.
Key industry players argue: ". . . the possibilities are endless:
wireless technology will unlock value in one’s process chain far
beyond merely avoiding the wiring costs" [hon]. Such benefits include
improved control safety and process reliability, lower installation and
maintenance costs, and unprecedented flexibility in selecting sensing
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and actuation points [ÅGB11, Sve]. Example applications range from
level control of dangerous liquids to protect against environmental
threats [hon] through rapid prototyping of automation solutions in
retrofitting buildings [ABD+11] to minimally invasive monitoring of
safety-critical assets [HSE]. Because of lower costs and ease of installation,
battery-powered embedded platforms with low-power wireless radio
transceivers and computationally constrained MCUs are preferred in real
deployments [hon, Sve].

A trait common to all these applications is that packets must be
delivered within hard end-to-end deadlines [But11], for example, to ensure
the stability of the controlled processes [ÅGB11]. Hard deadlines entail
that packets not meeting their deadlines have no value to the application
and hence count as lost. Support for this type of real-time tra�c is
mainstream in wired fieldbusses [CAN, Fle], but hard to attain in a low-
power wireless network. This is due to, for example, the dynamics of low-
power wireless links [BKM+12], the need for multi-hop communication
to cover large areas, and the resource scarcity of the employed devices.

Prior Work
Existing e↵orts to address these challenges can be broadly classified
depending on whether they require local or global knowledge as an input
for computing packet schedules.

Local knowledge. In SPEED [HSLA05], each node continuously monitors
other nodes within its direct radio range, for example, to detect transient
congestion. Using only this node-local information, each node computes
and follows its own transmission schedule. On a conceptual level,
this fully localized approach of SPEED is also adopted by numerous
MAC-layer solutions [GHLX09, KLS+01, LBA+02, WC01] and by systems
designed to support specific tra�c patterns [HLR03].

Albeit these solutions scale very well because of their localized nature,
they cannot support applications that rely on tra�c with hard real-time
deadlines. As described in Section 4.1, those requirements are indeed
specified from an end-to-end perspective. However, a device that reasons
based on local information and that can only influence its surroundings
is oblivious of the global picture and has limited means to a↵ect it.

Global knowledge. By contrast, the WirelessHART [har], ISA 100 [isa],
and IEEE 802.15.5e TSCH [tsc] standards and other solutions [OBB+13,
SNSW10] compute communication schedules based on global informa-
tion about the network state: the instantaneous conditions at the physical
layer that possibly enable communication between any two nodes in
the network. Global network state information thus takes the form of
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a connectivity graph, where the weight of edge A ! B represents the
quality of the link from node A to node B, for example, in terms of the
packet reception rate seen by B when receiving packets from A.

Using this global network state as an input, in WirelessHART and
similar solutions a central network manager computes and distributes
communication schedules tailored to each node, thereby forming end-to-
end routing paths from sources to destination(s). Then, each node follows
its own schedule locally. This approach has two fundamental problems:

1. Global network state is time-varying due to fluctuating low-power
wireless links [SDTL10], environmental influences [BKM+12], and
device outages or device mobility [XTLS08]. Any such change in the
network state must first be detected and then communicated to the
central manager for updating the connectivity graph and possibly
re-computing and re-distributing communication schedules to each
device. While this happens new changes may occur, requiring to
re-iterate the same processing over and over again. Meanwhile,
packets are lost because of inconsistent routing paths or miss their
deadlines because of stale communication schedules.

2. The need to compute per-node communication schedules also
causes severe scalability problems in deep multi-hop networks.
Existing works map the problem of scheduling real-time tra�c in a
wireless multi-hop network to the problem of scheduling tasks on
a multiprocessor machine [SXLC10]. As a result, in WirelessHART
networks for example, computing optimal schedules takes time at
least exponential in the network diameter [SXLC10]. Although some
attempts have been made to address this issue [CWLG11, SXLC10,
ZSJ09], WirelessHART schedulers are hardly practical in networks
that extend across more than three hops [CWLG11].

Because of these fundamental problems, any solution relying on global
network state information cannot support hard real-time applications
either. This fact is also acknowledged by major industry players who
contributed to the WirelessHART standard: ". . . none of the technologies
provide any hard guarantees on deadlines, which is needed if you should
dare to use the technology in critical applications" [Per].

Thus, the problem of providing hard real-time guarantees in multi-hop
low-power wireless networks remains unsolved.

Contribution and Road Map
This chapter introduces Blink, the first real-time low-power wireless
protocol that provides hard guarantees on end-to-end packet deadlines
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in large multi-hop networks, while simultaneously achieving low energy
consumption. Blink seamlessly handles dynamic changes in the network
state and in the application’s real-time requirements, and readily supports
scenarios with multiple controllers and actuators.

The approach we adopt in Blink is radically di↵erent from prior art:
Blink uses global knowledge to compute a single global schedule that
applies to all nodes in the network. The key idea is to detach Blink’s
operation from the global network state, whose rapid variations would
lead to the same problems we observe in prior solutions. To this aim, an
enabling factor is our choice of the LWB [FZMT12] as Blink’s underlying
communication support. As described in Section 4.2, LWB is an existing
best-e↵ort protocol that exclusively employs network-wide Glossy floods
for communication [FZTS11]. Crucially, Glossy’s operation allows us not
to consider the time-varying global network state information as an input
to the scheduling problem in Blink.

Building upon this foundation, we describe Blink’s overall design
in Section 4.3, while Section 4.4 details Blink’s e�cient protocol operation,
which rests upon three key contributions:

• Problem mapping. In LWB all nodes are time-synchronized and
communicate according to the same global schedule. Moreover,
Glossy allows us to abstract away the network state, as if it was a
virtual single-hop network. Because of these two observations, we
can treat the entire network as a single resource that runs on a single
clock. Unlike previous approaches, we can thus map the real-time
scheduling problem in Blink to the problem of scheduling tasks on
a uniprocessor, making it easier to solve than prior art [SXLC10].

• Real-time scheduling policies. We conceive scheduling policies based
on the EDF principle [LL73]. Using these policies, Blink computes
online a communication schedule that provably meets all deadlines
of packets released by a set of admitted real-time packet streams,
while minimizing the network-wide energy consumption within the
limits of the underlying LWB communication support. At the same
time, Blink tolerates dynamic changes in both the network state and
the set of streams.

• Data structures and algorithms. We design and implement a highly
e�cient priority queue data structure and algorithms that utilize it
to enable EDF scheduling on resource-constrained devices. Based
on these, we demonstrate the first implementation of EDF on low-
power embedded platforms. This is notable per se: due to its run-
time overhead, EDF has seen little adoption even on commodity
hardware, despite its realtime-optimality [But05, SAÅ+04].
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Section 4.5 reports on the evaluation of our Blink prototype on two
testbeds of up to 94 nodes [BVJ+10, LFZ+13b], three state-of-the-art MCUs,
and using a timing-accurate instruction-level emulator [EOF+09]. Our
results show that Blink meets almost 100 % of packet deadlines; the few
deadline misses are due to packet loss, which cannot be fully avoided over
a lossy wireless channel. Further, by using our dedicated data structures
and algorithms, Blink achieves speed-ups of up to 4.1⇥ compared to a
conventional implementation of our scheduling policies on state-of-the-
art MCUs, which prove to be instrumental to the viability of EDF-based
real-time scheduling on certain low-power embedded platforms.

We discuss trade-o↵s and limitations of our current Blink prototype
in Section 4.6 and conclude in Section 4.7.

4.1 Problem Statement
The scheduling problem is a function of the application requirements, the
characteristics of the deployment, and the devices employed. We discuss
these aspects next.

Applications. CPS are increasingly deployed as a means to embed
sophisticated feedback loops into the physical environment [SLMR05].
CPS devices achieve this by tightly orchestrating computing, control, and
physical elements through sensors and actuators. Example application
domains range from static installations in industrial and building
automation, process control, or smart grids [ÅGB11, Whi08] to settings
involving highly mobile autonomous computing elements [MMWG14].

These applications place hard real-time requirements on end-to-end
communication. Embedded devices periodically stream sensor data or
control signals under given timing constraints. Every device may source
multiple such streams. The data is then used for monitoring or to feed
time-critical control loops. These control loops may execute right on the
actuators that a↵ect the environment, or on a few dedicated controller
devices that periodically distribute control signals to the actuators, again
subject to hard real-time constraints.

Let ⇤ denote the set of all n streams in the network. Each stream
si 2 ⇤ releases one packet at a regular periodic interval Pi, called the period
of stream si. The start time Si is the time when stream si releases the
first packet. Every packet released by stream si must be delivered to the
destination(s) within the same relative deadline Di. The next packet is only
released after the absolute deadline of the previous packet, so deadlines
are less than or equal to periods (i.e., Di  Pi). We often refer to the
absolute deadline of a stream as a shorthand for the absolute deadline
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of the most recent packet released by the stream. Overall, each stream
si 2 ⇤ is characterized by its profile hSi,Pi,Dii. If there are k streams with
the exact same profile, we also write kh·, ·, ·i.1

The actual real-time requirements determining the stream profiles
are highly application-dependent. The physical dimension recorded
through sensors or the nature of the feedback loop often dictate a stream’s
period Pi. For example, temperature control in liquid volumes [PL10]
demands periods on the order of minutes, and coordinated multi-robot
control runs with periods of at most tens of seconds [MMWG14]. On
the other hand, compressor speed control requires periods down to a
few microseconds [ÅGB11]. Low-power wireless is applicable with the
greatest advantages in the former type of applications [Whi08]. The
monitoring or control process governs a stream’s deadline Di and starting
time Si. For example, closed-loop control typically requires shorter
deadlines than open-loop control [Oga01].

Deployments and platforms. Resource-constrained embedded devices
amplify the benefits with regards to flexibility and ease of installation
and maintenance [ÅGB11, PL10]. Typical devices feature a 16- or 32-
bit MCU, a few kB of data memory, and rely on non-renewable energy
sources [ÅGB11, Whi08]. This motivates the use of low-power wireless,
which reduces the energy costs but limits the bandwidth and makes the
system susceptible to interference and environmental factors [BKM+12].

Deployments consist of tens to hundreds of devices. The devices are
typically installed at fixed locations as determined by the application
and control requirements. Because of energy constraints that limit the
individual radio ranges, designers rely on multi-hop networking to
ensure overall connectivity. Nodes may also be added or moved on the
fly to optimize measurement locations or prototype improvements over
existing installations [XTLS08]. The network can therefore exhibit some
degree of mobility. Emerging CPS scenarios, instead, feature partially
or completely mobile networks, for example, swarms of arial drones to
enable precision agriculture [Vil12]. These characteristics further add to
the temporal dynamics of low-power wireless links [BKM+12, SDTL10].

Problem. Thus, a solution to support real-time low-power wireless must
meet the application-defined packet deadlines, while also achieving:

• scalability in terms of the number of streams, nodes, and the size of
the deployment area;

1For simplicity, we assume a stream releases one packet at a time. If a stream hSi,Pi,Dii
releases k packets at a time, we implicitly transform this into khSi,Pi,Dii streams each
releasing one packet.
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Figure 4.1: Time-triggered operation and sequence of slots in a LWB round.

• adaptiveness to accommodate dynamic changes in the set of active
streams and the global network state;

• energy e�ciency to achieve long system lifetimes in the face of limited
energy resources;

• viability with respect to the limited bandwidth and computational
resources of the employed devices.

Subject to these, we can formulate the problem as finding communica-
tion schedules such that, given n streams, n = |⇤|, for every stream si 2 ⇤,
every packet released by stream si is delivered within Di time units.

4.2 Foundation
To detach the operation of Blink from the time-varying network state, we
leverage LWB as the underlying communication support [FZMT12]. LWB
is an existing non-real-time protocol that, conceptually, turns a multi-hop
wireless network into a shared bus, where all nodes are potential receivers
of all packets. The nodes are time-synchronized and communicate in a
time-triggered fashion according to a global communication schedule. To
implement the shared bus abstraction, LWB maps all communications
onto e�cient Glossy floods [FZTS11]. Glossy propagates a packet from
one node to all other nodes within a few milliseconds. Crucially, in doing
so, Glossy’s protocol logic is independent of the network state [FZTS11],
as opposed to almost all existing low-power wireless protocols.

LWB operation. As shown in Figure 4.1 (A), LWB’s operation unfolds in a
series of communication rounds of fixed duration, executed simultaneously
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by all nodes. Nodes keep their radios o↵ between rounds to save energy.
Each round consists of a sequence of non-overlapping communication slots,
as shown in Figure 4.1 (B). All nodes engage in the communication in
every slot: the node to which a slot was assigned places a packet on the
bus (i.e., initiates a flood), and all other nodes read the packet from the
bus (i.e., receive and relay the packet), as shown in Figure 4.1 (C). At the
end of a round, only the intended receivers, which are encoded in the
packets, deliver the packet to the application.

Each round starts with a slot allocated to a specific node, called host,
for distributing the communication schedule, as shown in Figure 4.1 (B).
The schedule specifies when the next round starts and which nodes can
send application data in the following data slots; there are at most B data
slots in a round. Since nodes can only send during a round, B and the
time between rounds determine the bandwidth provided by LWB. The
shorter this time the more bandwidth is o↵ered to nodes, and vice versa.
The time between rounds is upper-bounded to let the nodes update their
synchronization state often enough to compensate for clock drifts.

If a node receives the communication schedule, it time-synchronizes
with the host and participates in the round; otherwise, it does not take
any action until the beginning of the next round. To inform the host about
their tra�c demands, nodes may compete in a final contention slot. Due
to capture e↵ects [LF76], with high probability one node succeeds despite
contention and its request reaches the host. Based on all tra�c demands
received thus far, the host computes the schedule for the next round.

A key observation is that the energy overhead of LWB is exclusively
determined by how often the communication rounds unfold over time.
Indeed, it is not necessarily the case that all B data slots in a round are
used. This occurs only when an application’s instantaneous bandwidth
demands align perfectly with LWB’s o↵ered bandwidth. Otherwise, some
data slots may remain unused, so nodes can turn o↵ their radios during
these unused slots to save energy. Thus, the energy overhead consists of
the energy needed to compute (host) and transmit schedules (all nodes).

Although this purely flooding-based approach to multi-hop commu-
nication in LWB may seem wasteful, LWB outperforms prior solutions in
end-to-end reliability and energy e�ciency; for example, LWB’s reliability
ranges above 99.9 % in real-world experiments, with energy consumption
on par with or even better than state-of-the-art solutions [FZMT12].

Benefits to Blink. Our design choice of building Blink on top of LWB as
the communication support brings three assets:

• The use of network-wide Glossy floods for all communications in
place of point-to-point transmissions creates, in essence, a virtual
single-hop network whose operational logic is independent of the state
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of individual wireless links. As a result, the host can take scheduling
decisions without considering the network state as an input.

• The previous point, together with LWB’s time-triggered operation,
allow us to abstract a multi-hop low-power wireless network as a
single resource that runs on a single clock. This, in turn, allows us
to map the real-time scheduling problem in Blink to the well-known
problem of uniprocessor task scheduling, making it simpler to solve
than the multiprocessor formulation found in prior works [SXLC10].

• LWB o↵ers useful system-level functionality. It supports di↵erent
tra�c patterns, such as one-to-many, many-to-one, and many-to-
many, which makes it an appropriate choice for scenarios involving
multiple actuators or controllers. Unlike existing solutions [har, isa],
LWB also features mechanisms to resume its operation after a host
failure, overcoming single point of failure problems [FZMT12].

4.3 Overview
Irrespective of its benefits, we need to address two issues to make LWB
ready for real-time. First, the existing LWB scheduler is oblivious of packet
deadlines, and only meant to reduce energy consumption [FZMT12]. We
must therefore conceive a suitable policy to schedule packets such that
all deadlines are met without unnecessarily sacrificing energy e�ciency.
Second, such a real-time scheduler must execute within strict time limits
on a severely resource-constrained platform. As shown in Figure 4.1 (B),
the longer it takes to compute the schedule for the next round, the fewer
data slots are available given the fixed duration of a round, thus reducing
the available bandwidth. We must thus provision an e�cient scheduler
implementation that is fully cognizant of the platform restrictions.

To this end, our design of Blink is driven by two important goals that
we must achieve simultaneously:

1. Realtime-optimal [SAÅ+04] scheduling, which entails to admit a new
stream if and only if there exists a scheduling policy able to deliver
all packets by their deadlines, and to deliver all packets released by
the admitted streams by their deadlines.

2. Minimum network-wide energy consumption, which in LWB entails to
minimize the number of rounds over any given interval, because
every round incurs a constant energy overhead regardless of the
number of packets sent in the round, as discussed in Section 4.2.
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Figure 4.2: Illustration of important problems Blink needs to address. At the end
of the current round, Blink must first compute the start time of the next round, and then
allocate pending packets to the available slots in a round. Also, before Blink can accept
a new stream or update the profile of an existing stream, it must check that the modified
stream set is schedulable (i.e., there exists a schedule such that all deadlines can be met).

Each of these goals arguably leads to a di�cult problem on its own, and
to a significant challenge if considered together. Taking on this challenge,
we require functionality in Blink that solves three interrelated problems:

1. Start of round computation. Shown at the top of Figure 4.2, at the
end of the current round Blink must decide when the next round
should start. This may happen between the time the current round
ends and the maximum time allowed between subsequent rounds
in LWB, as explained in Section 4.2. Per our two goals, Blink must
make this decision so as to meet all deadlines of packets released
by the admitted streams, while simultaneously minimizing energy
consumption. Intuitively, the earlier the next round starts, the better
it is in terms of meeting deadlines; on the contrary, the earlier a round
starts, the more energy is consumed in the long run.

2. Slot allocation. Once the start time of the next round is computed,
given a number of packets waiting to be transmitted, Blink must
decide which and how many of these packets will be sent in the
next round, as illustrated at the bottom of Figure 4.2. As mentioned
in Section 4.2, there may be fewer pending packets than the B data
slots available in a round. In case there are more pending packets
than available data slots, however, Blink needs to prioritize pending
packets of di↵erent streams in some meaningful way.

3. Admission control. The set of streams and/or their profiles can change
over time, for example, when the application requirements change
or nodes are added or removed. Thus, Blink must check at runtime
whether adding a new stream or updating the profile of an already
admitted stream leads to a modified stream set that is schedulable,
meaning that our solution to the two problems above can deliver
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Figure 4.3: Discrete-time model of LWB used throughout Section 4.4. Each round
is of unit length and comprises B data slots, each of which is either allocated to a packet
or free. Here, the i-th round with three allocated slots is scheduled to start at time ti and
thus ends at time ti + 1, where ti is a non-negative integer.

all packets of all streams by their deadlines. In essence, Blink needs
to make sure that given the modified stream set it will never be the
case that all streams together demand a bandwidth that exceeds the
maximum available bandwidth over any interval of time.

To realize these functionality, Blink builds on LWB as communication
support as well as on novel scheduling policies that are provably realtime-
optimal and minimize the network-wide energy consumption within the
limits set by LWB, and e�cient data structures and algorithms that let
the new real-time scheduling policies run “in a blink” even on a resource-
constrained platform. We discuss in the next section how these techniques
help us achieve the three necessary functionality above.

4.4 Design and Implementation
In the following, Sections 4.4.1 and 4.4.2 describe our solutions to the
slot allocation and start of round computation problems, respectively,
assuming the set of streams is schedulable. Section 4.4.3 describes how
we ensure this condition through online admission control.

Discrete-time model. Throughout the discussion, we consider a discrete-
time model of LWB in which (i) each round is atomic and of unit length,
and (ii) rounds start at an integer multiple of the unit length of a round,
as illustrated in Figure 4.3. The reason for (i) is that the single MCU on
today’s low-power wireless platforms is responsible for both application
processing and interacting with the radio. These radio interactions are
time-critical and occur frequently during a Glossy flood [FZMT12]. Since
each slot in a round consists of a Glossy flood, the MCU has very little
time for application processing during a round. So to avoid interference,
the application must release packets before a round and can only handle
received packets after a round. We thus consider rounds atomic. Further,
(ii) is beneficial in a practical LWB implementation. For example, it allows
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a node that just got out-of-sync to selectively turn on the radio in order to
receive the next schedule (and thereby time-synchronize again with the
host) rather than keeping the radio on all the time, which consumes more
energy but is unavoidable if rounds can start at arbitrary times.

Besides the specific model, our analyses and algorithms in this section
enjoy general validity. In particular, they also hold for streams with start
times Si, periods Pi, and deadlines Di that are not integer multiples of the
unit length of a round. For example, fractional packet release times are
simply postponed to the next discrete time (by taking the ceiling), and
fractional packet deadlines are preponed to the previous discrete time
(by taking the floor). Thus, the atomicity of rounds does not prevent any
packet from meeting its deadline. This is essential to the validity of our
EDF-based scheduling policies, because preemptions in the execution of
the underlying resource (i.e., the network, which we abstract as a single
resource that runs on a single clock) can only occur at discrete times.

4.4.1 Slot Allocation
For ease of exposition, let us momentarily assume that the start time of
the next round was already computed. We now need to determine the
concrete schedule for that next round, which raises two questions: With B
slots available per round, how many packets should we actually allocate?
How should we prioritize pending packets of di↵erent streams?

Algorithms. To answer the first question, we note that delaying a packet
by not sending it in an otherwise empty slot does not lead to improved
schedulability or lower energy overhead in Blink. In the following round,
the set of pending packets to schedule will be the same or larger, which
can only worsen the overall schedulability. Furthermore, as explained in
Section 4.2, the energy overhead in LWB over any given interval depends on
the number of rounds within that interval, not on the number of allocated
slots. Thus, it is best to allocate as many pending packets as possible to
the available slots in any given round.

As described in Section 4.3, the approach we adopt in Blink allows us
to abstract the entire network as a single resource that runs on a single
clock. We can thus resort to uniprocessor scheduling policies to answer
the second question. Among these, earliest deadline first (EDF) is provably
realtime-optimal [Der74]; that is, if a set of streams can be scheduled such
that all packets meet their deadlines, then EDF also meets all deadlines.
This holds also for sets of streams demanding the full bandwidth, whereas
other well-known policies, such as rate-monotonic (RM), may fail to meet
all deadlines at significantly lower bandwidth demands [LL73]. Finally,
as the packets’ priorities are computed while the system executes, EDF
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Table 4.1: Operations required on the set of streams ⇤ to e�ciently implement
EDF in Blink. The key represents the absolute deadline of a stream’s current packet.

Operation Description

Insert(s) Insert a new stream s into stream set ⇤

Delete(s) Delete stream s from stream set ⇤

DecreaseKey(s, �) Propagate an increment of � in the key of
stream s in stream set ⇤

FindMin() Return a reference to the stream with the
minimum key in stream set ⇤

First(t) Position traverser t at the stream with the
minimum key in stream set ⇤

Next(t) Advance traverser t to the stream with the next
larger key in stream set ⇤

can readily deal with dynamic changes in the set of streams [SAÅ+04],
which is crucial when the set of streams changes because of, for example,
varying application requirements or failures of nodes sourcing streams.

Using EDF in Blink entails allocating the next free data slot in a round
to the packet whose deadline is closest to the start time of the round, until
the round is full or there are no more pending packets. This seemingly
simple logic, however, bears a significant run-time overhead [But05]. To
implement EDF e�ciently, one should maintain the streams in increasing
order of absolute deadline while the latter is being updated from one
packet to the next as they are allocated to slots. This overhead is one of
the reasons why EDF is rarely used in real systems, such as operating
system kernels [But05]. We describe next how we tackle this issue.

Design and implementation in Blink. Key to enabling EDF in Blink is
the provision of a data structure that can e�ciently maintain the current
set of streams in order of increasing absolute deadline. A suitable data
structure must support all operations required to manipulate the stream
set ⇤ during EDF-based slot allocation, as listed in Table 4.1.

Besides operations to insert and delete a stream, EDF crucially requires
a FindMin() operation to retrieve the stream with the earliest absolute
deadline, which is to be served first. A priority queue is thus the most
natural choice, where streams with smaller absolute deadline are given
higher priority and hence served first. Moreover, after serving a stream s,
the absolute deadline of s needs to be set to the deadline of its next packet.
We therefore require a DecreaseKey(s, �) operation that propagates an
increment of � (typically the period of stream s) in the absolute deadline
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Figure 4.4: Example motivating EDF traversal of the set of stream during slot
allocation. Stream sj has a higher priority than stream si because it has an earlier
absolute deadline. Nevertheless, sj requires no slot in the next round starting at time t,
because it releases its next packet only after the start of the next round.

of stream s in the priority queue. The result of this operation is that the
priority of stream s is decreased relative to all other streams in the queue.

These four operations are supported by almost all standard priority
queue data structures [Bro13]. Nevertheless, because the highest-priority
stream returned by FindMin() may release its packet only after the start
of the next round, as illustrated in Figure 4.4, we also require operations
to perform an e�cient EDF traversal of the stream set while only those
streams with pending packets are updated. Specifically, it should be
possible to position a traverser t at the highest-priority stream with First(t),
and then to visit all streams in order of increasing absolute deadline
through repeated Next(t) calls. During the EDF traversal, the priority of
any stream t with a pending packet is updated using DecreaseKey(t, �).

Finding a data structure that supports all required operations e�ciently
in terms of time and memory is challenging. A review of widely used and
highly e�cient priority queue data structures, ranging from the classical
binary heap to red-black trees used in the Linux scheduler [lin], reveals
that the EDF traversal (also known as in-order traversal) is the main culprit.
In particular, updating a stream using DecreaseKey(t, �) is likely to alter
the relative ordering of streams, which triggers structural changes inside
these data structures. Thus, a runtime stack or pointers (e.g., on a threaded
binary tree) used for the traversal becomes invalid [Pfa], so the traversal
must start anew after any such change, which becomes highly ine�cient.

While looking for a practical solution to these challenges, we found
that the following properties of our specific problem allow us to use a
simple yet e�cient data structure as the basis for our priority queue:

1. A stream’s absolute deadline, henceforth referred to as the key of a
stream, is a non-negative integer.

2. The key of a stream increases monotonically as it is being updated
from one packet to the next.

3. The range of keys in the priority queue at any one time is bounded,
as stated in the following theorem.
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Figure 4.5: Illustration of the proof of Theorem 1.

Theorem 1. With ⇤ denoting the set of streams, let P be an upper bound on the
period Pi of any stream si 2 ⇤. Then, there are never more than 2P � 1 distinct
keys (i.e., absolute deadlines) in the priority queue at any one time.

Proof. Let di be the absolute deadline of stream si at some point in time; that
is, di is the deadline of si’s current packet. Since si’s relative deadline Di can
be shorter than its period Pi, the current packet may not yet have arrived
at this point in time. To determine the maximum number of distinct keys
(i.e., absolute deadlines) in the priority queue at any one time, we must
upper-bound the di↵erence between the absolute deadlines of any two
streams, that is, maximize �ij = di � dj for any two streams si, sj 2 ⇤.

The value of �ij is larger when packets with later deadlines are sent
before packets with earlier deadlines, due to the order of packet arrival.
Let us consider the example in Figure 4.5. Assume at time t the current
packet of stream si with deadline di is sent, while the current packet of
stream sj with an earlier deadline dj < di is yet to be sent. This can happen
if and only if si’s packet arrives strictly before sj’s packet; that is, at time
t, sj’s packet is yet to arrive. After sending the packet of stream si, its
absolute deadline becomes di + Pi, while the absolute deadline of stream
sj is still dj. Thus, we have �ij = di + Pi � dj. What is the upper bound
on �ij? As si’s packet has arrived by time t, we have di  t + Pi. Also, as
sj’s packet has not yet arrived by time t, we have dj > t. With these two
conditions, we can establish the following bound

�ij = di + Pi � dj < t + Pi + Pi � t  2P, (4.1)

where P is an upper bound on the period of any stream. Since absolute
deadlines are integers, the strict inequality in (4.1) implies that �ij is at
most 2P � 1. ⇤

Given the three properties above, we can consider using a monotone
integer priority queue. Similar observations apply to problems in discrete
event simulation [Bro88] and image processing [FaSdAL04] but, to the
best of our knowledge, have not been leveraged for real-time scheduling.

Specifically, we use a simple one-level bucket queue [Dia69] implemented
as a circular array B of 2P doubly-linked lists, as shown in Figure 4.6,
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Figure 4.6: Illustration of a one-level bucket queue implemented as a circular
array of 2P̄ doubly-linked lists. In this example, the largest period of any stream P is
8, so the queue consists of 2P = 16 buckets. The queue contains seven streams ordered
by increasing key as follows: s5, s2, s7, s1, s4, s3, s6. Operation FindMin() sets index L
to 14, because this bucket contains the stream(s) with the smallest key in the queue.

where P is an upper bound on the period of any stream. Stream si with
key di is stored in B[di mod 2P]. Because a stream’s relative deadline Di is
no longer than its period Pi, all keys in the bucket queue are always in the
range [dmin, dmin + 2P � 1], where dmin is the smallest key currently in the
queue. Thus, all streams in a bucket have the same key. As an example,
the keys in the bucket queue shown in Figure 4.6 are in the range [30, 45],
and the two streams in bucket B[2] have the same key, namely 34.

Because buckets are implemented as doubly-linked lists, operations
Insert(s), Delete(s), and DecreaseKey(s, �) take constant time. Insert(s)
inserts a stream s with key d into bucket B[d mod 2P].2 Delete(s) removes
stream s from the list containing it. DecreaseKey(s, �) first performs a
Delete(s) and then re-inserts stream s into bucket B[(d + �) mod 2P].

We implement FindMin() using an index L, which is initialized to 0. If
bucket B[L] is empty, FindMin() increments L (modulo 2P) until it finds
the first non-empty bucket; otherwise, it returns the first stream on the list
in bucket B[L]. First(t) works similarly, using a second index I. Next(t)
moves the traverser t to the next stream on the list in bucket B[I]. When
the end of the list is reached, Next(t) increments I (modulo 2P) until it
finds the next non-empty bucket and then lets t point to the first stream
on the list in bucket B[I]. Unlike the vast majority of priority queues, this
logic enables a smooth continuation of an EDF traversal despite stream
updates. The three operations run in O(2P) worst-case time.

2If 2P is a power of two, the modulo operation required to compute the bucket index
is equivalent to a bit-wise AND of d with 2P � 1 as the mask, which is highly e�cient.
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Algorithm 1 Perform EDF-based Slot Allocation
Input Bucket queue representing the current set of streams, where a smaller

absDeadline implies that the stream has a higher priority, the start time of the
next round ti+1, and the upper bound on any stream’s period P.

Output Allocation of packets released by ti+1 in EDF order to at most B slots.
initialize slot counter c to 0
position traverser t at highest-priority stream using First(t)
horizon = t.absDeadline + P � 1
while (c < B) and (t.absDeadline  horizon) do

if t.releaseTime  ti+1 then
allocate a slot to stream t and set c = c + 1
t.releaseTime = t.releaseTime + t.period
t.absDeadline = t.absDeadline + t.period
update t’s priority with DecreaseKey(t, t.period)

end if
advance t to next stream in EDF-order using Next(t)

end while

at most P 

ti+1 

Stream si 

time horizon 
 

dmin di  

packet arrival packet deadline 

Figure 4.7: Illustration of the second termination criterion of the while loop
in Algorithm 1. Any stream si that has an absolute deadline di greater than the
horizon = dmin + P � 1 releases its current packet after the start of the next round at
time ti+1, and hence need not be considered for slot allocation in the next round.

Using this dedicated priority queue data structure, Algorithm 1 shows
the pseudocode to allocate as many pending packets as possible to the B
available slots in the next round. The algorithm operates on the current set
of streams, maintained in a bucket queue in order of increasing absolute
deadline. Starting from the stream with the earliest absolute deadline,
it visits streams in EDF-order through repeated Next(t) calls. When it
sees a stream t with a pending packet, it allocates a slot to stream t and
updates its priority within the queue using DecreaseKey(t, t.period). The
algorithm stops when all B data slots available in a round are allocated,
or when it sees a stream with an absolute deadline larger than the horizon.

The second termination criterion using the horizon is needed because
there may be less than B pending packets by the time the next round
starts. Algorithm 1 determines the horizon initially, horizon = dmin+P�1,
where dmin is the earliest absolute deadline of all streams at this time and
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P is an upper bound on the period of any stream. As shown in Figure 4.7,
the next round starts before dmin, that is, ti+1  dmin � 1. So stream si with
absolute deadline di > horizon releases its current packet no earlier than

di � P > dmin + P � 1 � P � ti+1. (4.2)

The strict inequality in (4.2) implies that stream si releases its current
packet only after the start of the next round. Thus, stream si need not
be considered for slot allocation in the next round. As Algorithm 1 visits
streams in EDF-order, it can terminate when it sees the first such stream.

As described in the following sections, our bucket queue implementa-
tion underpins not merely the EDF-based slot allocation step, but rather all
Algorithms 1, 2, 3, and 4 required for energy-e�cient real-time scheduling
in Blink. Despite enabling a smooth EDF traversal, the e�ciency of our
bucket queue implementation stems primarily from two key properties.
First, DecreaseKey(s, �) is a frequently used operation and at the same
time extremely e�cient in our design due to its constant, short running
time. Second, the cost of searching for a non-empty bucket amortizes. To
see why, we note that Next(t) needs to increment index I in the worst case
2P�1 times; however, the following n calls to Next(t) require no searching
at all since all n streams are necessarily in B[I]. With these implementation
choices, we empower Blink to schedule hundreds of streams using EDF
on resource-constrained devices even when the system is in a continuous
state of change, which we show through experiments in Section 4.5.

4.4.2 Start of Round Computation
We now turn to the problem of computing the start time of the next round.
To illustrate the problem, we use an example with B = 5 slots available
per round and the following twelve streams with three distinct profiles:
3h0, 5, 4i, 4h2, 7, 5i, and 5h1, 15, 12i. Figure 4.8 indicates the release times
and deadlines of packets generated by these streams in the first 14 time
units. We seek an answer to the following question: Using our EDF-based
slot allocation policy from Section 4.4.1, when should a round start to meet
all deadlines while minimizing energy (i.e., the number of rounds)?

Algorithms. One option, called contiguous scheduling (CS), is to start the
next round immediately after the previous one has ended. CS o↵ers the
highest possible bandwidth and therefore necessarily meets all deadlines,
provided the set of streams is schedulable. However, CS wastes energy,
because it may trigger more rounds than necessary. Looking at Figure 4.8,
we see that 8 out of the first 14 rounds are empty (i.e., contain only free
slots) when using CS, causing unnecessary energy overhead.

Another possibility, referred to as greedy scheduling (GS), improves on
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Figure 4.8: Example execution comparing the CS, GS, and LS policies. CS

and GS waste energy by scheduling more rounds than necessary. Instead, LS meets all
deadlines while also minimizing energy (i.e., minimizing the number of rounds).

CS by delaying the next round until there are one or more pending packets
ready to be sent. GS is realtime-optimal just like CS as it schedules packets
as soon as possible. Moreover, CS can reduce the energy consumption
compared with CS in certain situations. For instance, in Figure 4.8 using
GS results in only 6 rounds in the first 14 time units. However, there are
still 8 free slots, raising the question whether we can do even better.

The crucial observation is that GS starts the next round no matter how
“urgent” it is. If there was still some time until the earliest deadline of all
pending packets, we could delay the next round further. Meanwhile, we
could await more packet arrivals and thus allocate more slots in the next
round. This strategy, however, may do more harm than good: Without
knowing the future bandwidth demand, we may end up delaying the
next round to a time where the number of packets to be sent is larger than
the available bandwidth. This situation would inevitably cause deadline
misses. To prevent this, we need to forecast the bandwidth demand.

A policy we call lazy scheduling (LS) is precisely based on this intuition.
At the heart of LS is the notion of future demand hi(t) that quantifies the
number of packets that must be sent (or served) between the end of round i
and some future time t. The future demand includes all packets that have
both their release time and deadline no later than time t, and have not been
served until the end of round i, as captured by the following definition

hi(t) =
nX

j=1

8>><>>:

j
(t � dj)/Pj

k
+ 1, if dj  t

0, otherwise
(4.3)

where Pj is the period and dj is the absolute deadline of stream sj (or more
precisely, dj is the deadline of sj’s current packet).
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Figure 4.9: Graphical illustration of how LS computes the latest possible start
time of the third round in Figure 4.8.

LS uses hi(t) to forecast the bandwidth demand and, based on this,
computes the latest possible start time of the next round without missing
any deadline. As a concrete example, say we want to compute the start
time of the third round t3 in Figure 4.8 using LS. We proceed as follows:

1. Compute h2(t). As illustrated in Figure 4.9, h2(13) = 5 because t = 13
is the absolute deadline of the 5h1, 15, 12i streams whose packets are
still pending at the end of the second round; h2(14) = h2(13)+7 = 12,
since t = 14 is the deadline of the 7 packets released by the other
streams at t = 9 and t = 10; and so on.

2. Determine a set of latest possible start times {ti
3}. For instance, h2(13) = 5

packets must be served no later than time 13. With B = 5 slots
available in each round, serving this demand takes dh2(13)/Be = 1
round. Thus, we get a first latest possible start time t1

3 = 13� 1 = 12.
We indicate this in Figure 4.9 by casting a shadow back on the time
axis. Further, h2(14) = 12 packets must be served before time 14,
which takes dh2(14)/Be = 3 rounds. So, a second latest possible start
time of the third round is t2

3 = 14 � 3 = 11. The same reasoning
repeats, thus identifying more latest possible start times.

3. Take the minimum of the computed latest possible start times as t3. Based
on the reasoning in step 2., pushing the start of the third round
beyond the beginning of the shady area at min{ti

3} = 11 in Figure 4.9
would cause deadline misses. Indeed, if we had served h2(13) =
5 packets only between times 12 and 13, we would be left with
h2(14) � h2(13) = 7 packets to serve between times 13 and 14, but
these do not fit in a round with B = 5 slots. Alternatively, an earlier
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Figure 4.10: Illustration of how far LS needs to look into the future when
computing the start time of the next round.

start time could, in the long run, lead to more rounds than needed,
thereby wasting energy. Thus, the third round should start at t3 = 11.

The example illustrates the main reasoning behind LS. Nevertheless,
we still need to address two questions: Which times t do we really need
to inspect in steps 1. and 2.? How far do we need to look into the future?

To answer the first question, we observe that the future demand hi(t)
is a step function: the value of hi(t) increases only at times of deadlines,
as visible in Figure 4.9. Thus, to speed up the computation, we can safely
skip all intervals between steps where hi(t) is constant.

The answer to the second question involves two observations. First,
as described in Section 4.2, we can delay the start of the next round by
at most Tmax time units after the start of the previous round since LWB
requires to update the nodes’ synchronization state su�ciently often to
compensate for clock drift [FZMT12]. To find out whether we can indeed
delay the next round by Tmax, we need to evaluate hi(t) for at least Tmax

time units after the end of the previous round at ti + 1, as illustrated in
Figure 4.10. Second, we also have to consider any demand arising after
t = ti+1+Tmax that could possibly prevent us from delaying the next round
by Tmax. Thus, we must evaluate hi(t) for another Tb time units beyond
t = ti + 1 + Tmax, also illustrated in Figure 4.10. The value of Tb is known
as the synchronous busy period [Spu96]. Informally, this is the minimum
time needed to serve the maximum demand that a given stream set can
possibly create.3 By looking up to t = ti + 1+ Tmax + Tb into the future, we
ultimately ensure that all deadlines are met.

The following theorem formally specifies the way LS computes the
latest possible start time of the next round without missing any deadline.

3The maximum demand arises when all streams release their packets at the same
time. CS essentially serves this demand "as fast as possible." Tb is then the time between
the simultaneous arrival of packets from all streams and the first idle time where no
packet is pending under CS scheduling.
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Theorem 2. Let Tb be the synchronous busy period of the stream set⇤, Tmax the
largest time by which the start of the next round can be delayed after the start of
the previous one, and B the number of slots available in a round. Using LS, the
start time of each round ti for all i = 0, 1, . . . is computed as

ti+1 = min(ti + Tmax,Ti), (4.4)

where t0 = �1 and Ti is given by

Ti = min
t2Di

 
t �

&
hi(t)

B

'!
. (4.5)

Di denotes the set of deadlines in the interval [ti+ 1, ti+Tmax+Tb+ 1] of packets
that are unsent until the end of round i; hi(t) is the future demand as per (4.3).

Proof. Because of time synchronization constraints imposed by the LWB
communication support [FZMT12], the start of the next round at time ti+1

can be delayed at most Tmax after the start of the previous round at time
ti. This implies the first component of the min-operation in (4.4).

We now show that the second component of the min-operation in (4.4)
ensures that all packets meet their deadlines. The number of packets that
must be sent between the end of round i and some time t � ti + 1 is given
by the future demand hi(t). The available bandwidth in the interval [ti+1, t]
is B(t� ti+1), where B is the number of slots available per round. To ensure
that all packets meet their deadlines, the future demand hi(t) must not
exceed the available bandwidth for any time t � ti + 1, that is,

B(t � ti+1) � hi(t). (4.6)

Dividing both sides by the positive quantity B,

t � ti+1 � hi(t)/B. (4.7)

Since m � x if and only if m � dxe for any integer m and real number x,

t � ti+1 � dhi(t)/Be . (4.8)

Rearranging terms,
ti+1  t � dhi(t)/Be . (4.9)

In particular,
ti+1  min

t�ti+1^ hi(t)>0
(t � dhi(t)/Be) . (4.10)

The min-operation in (4.10) is to be performed for every time t larger
than ti + 1 at which the future demand hi(t) is greater than zero. We
can restrict this in two ways. First, we need to apply the min-operation
only at every time t in the interval [ti + 1, ti + Tmax + Tb + 1], where Tb
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is the synchronous busy period of the stream set ⇤. We prove this by
contradiction. Let for some t̂ > ti + Tmax + Tb + 1,

t̂ = arg min
t�ti+1^ hi(t)>0

(t � dhi(t)/Be) . (4.11)

Let the quantity t̂ �
l
hi(t̂)/B

m
be equal to the start time of the next round

ti+1 and strictly less than ti + Tmax,

ti+1 = t̂ �
l
hi(t̂)/B

m
< ti + Tmax. (4.12)

Rearranging terms, l
hi(t̂)/B

m
= t̂ � ti+1. (4.13)

Since dxe = m if and only if m � 1 < x  m for any integer m and real
number x,

t̂ � ti+1 � 1 < hi(t̂)/B. (4.14)

Multiplying both sides by the positive quantity B,

(t̂ � ti+1 � 1)B < hi(t̂). (4.15)

We can interpret (4.15) as follows. The future demand hi(t̂) exceeds the
bandwidth available in the interval [ti+1 + 1, t̂]. This means that if one
were to contiguously serve a demand as large as hi(t̂), the required time
would exceed the length of the interval [ti+1 + 1, t̂]. We can thus consider
interval [ti+1+1, t̂] a busy period of length t̂� ti+1�1 > t̂� (ti+Tmax)�1 > Tb,
because we have ti+1 < ti + Tmax according to (4.12). However, Tb is the
length of the synchronous busy period, which is the longest possible busy
period [Spu96]. This contradicts the supposition on the existence of t̂.

Second, we need to perform the min-operation in (4.10) only at times
when hi(t) has discontinuities. In fact, hi(t) is a right-continuous function
with discontinuities only at times that coincide with packet deadlines.
Thus, we can restrict the domain of the min-operation to all deadlinesDi

in the interval [ti + 1, ti + Tmax + Tb + 1] of packets that are unsent until the
end of round i. Since (4.10) yields the largest possible ti+1 in the case of
equality, we obtain the second component of the min-operation in (4.4)

Ti = min
t2Di

(t � dhi(t)/Be) . (4.16)

Finally, because EDF is realtime-optimal [Der74, LL73], the necessary
condition in (4.16) is also a su�cient one. ⇤

We are now in the position to state the main result about the LS policy,
showing that it meets the two goals set out in Section 4.3.
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Theorem 3. The LS policy is real-time optimal and minimizes the network-wide
energy consumption within the limits set by the LWB communication support.

Proof. A schedule S specifies for each round i its start time ti and the set of
packets to be sent in the round. Let SLS denote the schedule computed by
LS. We prove this theorem by contradiction; that is, we show that there
cannot be any schedule S0 , SLS such that S0 is realtime-optimal and some
round starts later in S0 than in SLS. If we show this, it follows that amongst
all realtime-optimal schedules, SLS delays the start of each round the most
and thus minimizes the network-wide energy consumption using LWB.

Let tLS
i and t0i denote the start times of the i-th round in SLS and S0, and

let hLS
i and h0i denote the future demands after the end of the i-th round in

SLS and S0, respectively.
Assume some round in S0 starts later than in SLS. Let the m-th round

be the first such round, that is,

m = min{i | t0i > tLS
i }. (4.17)

In SLS, the m-th round starts at tLS
m since, according to Theorem 2, at

least one of the following two conditions holds:

1. tLS
m � tLS

m�1 = Tmax, where Tmax is the largest interval between the start
of consecutive rounds supported by LWB [FZMT12],

2. hLS
m�1(t⇤) > B(t⇤ � tLS

m � 1) for some time t⇤ > tLS
m .

Assume condition 1. holds. Then, from the definition of m in (4.17),
we have t0m � t0m�1 > tLS

m � tLS
m�1 = Tmax. This violates the constraint that the

time between the start of consecutive rounds in S0 does not exceed Tmax.
Assume condition 2. holds. Then, the interval [tLS

m , t⇤] is a busy period
in SLS, so the number of packets sent in this interval, denoted ⌘LS(tLS

m , t⇤),
is lower-bounded as

⌘LS(tLS
m , t

⇤) > B(t⇤ � tLS
m � 1). (4.18)

On the other hand, since t0m > tLS
m according to the definition of m in (4.17),

the number of packets transmitted in S0 in the interval [t0m, t⇤], denoted
⌘0(t0m, t⇤), is upper-bounded as

⌘0(t0m, t
⇤)  B(t⇤ � t0m)  B(t⇤ � tLS

m � 1). (4.19)

From (4.18) and (4.19) follows a strict inequality

⌘LS(tLS
m , t

⇤) > ⌘0(t0m, t
⇤). (4.20)
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Algorithm 2 Compute Start Time of Next Round According to LS
Input A bucket queue based copy of the current set of streams, where a smaller

absDeadline means that the stream has a higher priority, the start time of the
current round ti, and the synchronous busy period Tb.

Output The start time of the next round ti+1 according to the LS policy.
initialize futureDemand to 0 and minSlack to1
set s to highest-priority stream using s = FindMin()
t = s.absDeadline
while t  ti + Tmax + Tb + 1 do

futureDemand = futureDemand + 1
s.absDeadline = s.absDeadline + s.period
update priority of s using DecreaseKey(s, s.period)
set s to highest-priority stream using s = FindMin()
if s.absDeadline > t then

minSlack = min((t � ti)B � futureDemand,minSlack)
end if
t = s.absDeadline

end while
ti+1 = ti +min(bminSlack/Bc,Tmax)

We also know that ⌘LS(0, tLS
m ) � ⌘0(0, t0m), because each round 1, 2, . . . ,m�1

starts no earlier in SLS than in S0, and in SLS as many pending packets as
possible are sent in each round. Combining this with (4.20), we have

⌘LS(0, t⇤) > ⌘0(0, t⇤). (4.21)

This shows that SLS tightly meets all deadlines at time t⇤, while sending
more packets than S0. Since SLS prioritizes packets using EDF, which
is realtime-optimal [Der74, LL73], S0 necessarily misses a deadline at or
before time t⇤. This contradicts the assumption that S0 is realtime-optimal.

For either condition that impacts the choice of tLS
m , we have shown that

the assumptions on S0 are contradicted. ⇤

Design and implementation in Blink. The primary systems challenge
in leveraging LS’s optimality is to e�ciently compute the future demand
hi(t). The corresponding expression in (4.3) is obtained by applying well-
known concepts from the real-time literature [SRS98]. We implemented
this conventional method on a TelosB [PSC05] and observed prohibitive
running times due to many time-consuming divisions. This behavior is
expected also on other resource-constrained platforms that lack hardware
support for accelerating divisions. Experiments in Section 4.5.3 show that
the approach we describe next can outperform the conventional method
even on recent, powerful platforms, including a 32-bit ARM Cortex-M4.
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Figure 4.11: Example of a stream set that is not schedulable. The streams demand
16 slots between times 100 and 103, but there are only 15 slots available in this interval.

Instead of explicitly computing costly divisions, we can determine hi(t)
by performing e�cient operations on the bucket queue of streams. Based
on this idea, Algorithm 2 shows the pseudocode to compute the start time
of the next round ti+1 according to Theorem 2. The algorithm operates on
a deep copy of the current set of streams, maintained in a bucket queue
in order of increasing absolute deadline. It fictitiously serves streams in
EDF-order (as if it would allocate slots to pending packets), using variable
futureDemand to keep track of the number of streams it has served thus
far. The algorithm also maintains a variable minSlack, which ultimately
determines how far we can delay the start of the next round.

By avoiding divisions and using our bucket queue implementation,
our implementation of Algorithm 2 can achieve several-fold speed-ups
over the analytic method. As described in Appendix 4.A, we use the same
techniques to e�ciently compute the duration of the synchronous busy
period Tb, which is crucial to LS and admission control discussed in the
next section, and demonstrate similar speed-ups over an existing iterative
method [SRS98]. Experimental results in Section 4.5.3 indicate that these
improvements in processing time are instrumental to the viability of EDF-
based scheduling in Blink on certain low-power wireless devices.

4.4.3 Admission Control
So far we assumed the stream set is schedulable, yet this is not always the
case. As Figure 4.11 exemplifies, for B = 5 slots available per round, the
set consisting of 9h8, 4, 3i and 7h0, 25, 2i streams is not schedulable. The
streams require altogether 16 slots in the interval between time 100 and
time 103; however, there are only 15 slots available in this time interval,
which causes one packet to miss its deadline. We describe next how we
prevent such situations by checking prior to the addition of a new stream
whether the resulting set of streams is still schedulable.

Algorithms. As illustrated by the example above, deadlines are missed
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if, over some time interval, the demand exceeds the available bandwidth.
As explained before, the CS policy o↵ers the highest possible bandwidth.
Therefore, admission control under all scheduling policies discussed in
Section 4.4.2 amounts to checking if CS can meet all deadlines.

We must perform this check over an interval in which the demand is
highest. The intuition is that if the available bandwidth is su�cient even
in this extreme situation, we can safely admit the new stream. Precisely
identifying when this situation occurs is, however, non-trivial, in that the
di↵erent start times and periods of the streams may defer this situation
until some arbitrary time. For example, for the stream set in Figure 4.11,
it is not until time t = 100 that an interval of highest demand begins.

To tackle this problem, we deliberately create an interval of maximum
demand by forcing all streams to release a packet at time t = 0. Using
the concept of synchronous busy period Tb, we then check if CS can meet
all deadlines in the interval [0,Tb]. From this intuition follows a theorem,
whose proof descends from existing results [Spu96]:

Theorem 4. For a set of streams ⇤ with arbitrary start times Si, let ⇤0 be the
same set of streams except all start times are set to zero. With B slots available
in each round, ⇤ is schedulable if and only if

8t 2 D, h0(t)  t ⇥ B, (4.22)

whereD is the set of deadlines in the interval [0,Tb] of packets released by streams
in ⇤0, h0(t) is the number of packets that have both release time and deadline in
[0, t], and t ⇥ B is the bandwidth available in the interval [0, t].

Design and implementation in Blink. An e�cient implementation of
Theorem 4 faces the same challenges as mentioned before in Section 4.4.2.
The closed-form expression found in the literature [But11]

h0(t) =
nX

i=1

� t + Pi �Di

Pi

⌫
(4.23)

involves many costly divisions, so using (4.23) can result in a performance
hog on certain resource-constrained platforms.

For this reason, we perform admission control again by performing
e�cient bucket queue operations instead of costly divisions. Algorithm 3
takes as input a deep copy of the current set of streams, including the
new stream to be admitted, and the new synchronous busy period Tb. All
streams start at time t = 0 to trigger an interval of maximum demand, so
the absolute deadline of each stream si is initialized to the relative deadline
Di. Using a bucket queue to keep streams in EDF-order, the algorithm
repeatedly updates the absolute deadline of the highest-priority stream
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Algorithm 3 Perform Admission Control
Input A bucket queue based copy of the current set of streams including the new

stream, with s.absDeadline initialized to Di for all streams si (smaller absDeadline
implies higher priority), the utilization as well as the deadline-based utilization
of that stream set, and the new synchronous busy period Tb.

Output Whether the new stream is to be admitted or rejected.
if utilization exceeds 1 then

return "reject"
end if
if deadline-based utilization does not exceed 1 then

return "admit"
end if
initialize demand, availableBandwidth, and t to 0
while demand  availableBandwidth do

set s to highest-priority stream using s = FindMin()
if s.absDeadline > t then

if s.absDeadline > Tb then
return "admit"

end if
availableBandwidth = t ⇥ B
t = s.absDeadline

end if
demand = demand + 1
s.absDeadline = s.absDeadline + s.period
update priority of s using DecreaseKey(s, s.period)

end while
return "reject"

as if it were executing CS. In doing so, the algorithm keeps track of the
number of deadlines seen until time t, which correspond to the demand.
If this quantity exceeds the availableBandwidth in the interval [0, t] for any
t in the interval [0,Tb], the new stream cannot be admitted.

Algorithm 3 contains two optimizations that help improve its average-
case performance. First, it checks if the end of interval [0,Tb] has been
reached and updates the availableBandwidth only when t has advanced.
This avoids unnecessary processing when multiple packet deadlines
coincide. Second, the algorithm performs two simple checks before the
loop. The new stream can be rejected without further processing if the
utilization, defined as 1

B
Pn

i=1
1
Pi

, exceeds one [LL73]. Further, since Di  Pi

for any stream si, the new stream can be admitted if the deadline-based
utilization, defined as 1

B
Pn

i=1
1

Di
, does not exceed one [SRS98]. We update

both types of utilizations as streams are added and removed at runtime.
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Figure 4.12: Main steps in Blink’s real-time scheduler executed by the host at
the end of each round (see Figure 4.1). The algorithm to compute the start time of the
next round depends on whether CS, GS, or LS is used. In case of LS, the synchronous
busy period Tb is carried over to subsequent rounds unless the set of streams changes.

4.4.4 Blink in Practice
At the end of each round, the algorithms described above unfold as shown
in Figure 4.12. With a pending request for a new stream s, the scheduler
computes the (new) synchronous busy period for the stream set ⇤ [ {s}
and checks if s can be admitted. In any case, the scheduler computes the
start time of the next round and then allocates slots to pending packets.
In the worst case, a single scheduler execution needs to proceed through
all four steps in Figure 4.12. Experiments in Section 2.5 show that our
implementation can schedule hundreds of streams with a wide range of
realistic bandwidth demands within the time bounds of Blink prototype.

We implement the processing in Figure 4.12 in a Blink prototype on
top of the Contiki [DGV04] operating system. Our prototype targets the
TelosB platform available on large public testbeds, which comes with a
MSP430 MCU. We use the default settings in LWB [FZMT12], including
the fixed 1 second duration of a round that corresponds to the time unit
used throughout Section 4.4. We set the number of data slots in a round
to B = 51, which leaves about 100 ms to compute the schedule at the end
of a round. We slightly modify the time synchronization mechanism of
LWB to support frequently varying intervals between rounds in Blink.

4.5 Evaluation
In this section, we evaluate Blink along four lines: (i) the ability to deal
with dynamic changes in the set of streams, (ii) the level of real-time
service provided to applications in terms of meeting packet deadlines, (iii)
the energy e�ciency of our scheduling policies, and (iv) the scalability
properties of our implementation of the LS policy. We find that:

• Blink promptly adapts to dynamic changes in the set of streams
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without unnecessarily increasing energy consumption.

• Blink meets on average 99.97 % of the packet deadlines; misses are
entirely due to unavoidable packet loss in a wireless setting.

• LS improves the energy consumption by up to a factor of 2.5⇥ over
CS and GS, depending on the profiles of the streams.

• Using our bucket queue implementation, our implementation of
the LS policy executes up to 4.1⇥ faster than a conventional LS
implementation on state-of-the-art MCUs.

We note that dynamic changes in the network state because of, for
example, link quality changes, wireless interference, node mobility, and
node failures, are already e↵ectively dealt with by the underlying LWB
communication support, as experimentally shown in [FZMT12].

4.5.1 Adaptivity to Changes in the Set of Streams
In our first experiment, we demonstrate how Blink dynamically adapts
to runtime changes in the set of streams. We use 29 TelosB nodes on the
FlockLab testbed [LFZ+13b], which has a diameter of 5 hops. One node
acts as the host to run the scheduler, and three randomly chosen nodes
serve as destinations. The remaining 25 nodes act as sources generating
2h0, 6, 6i streams each. Eventually, we also let two of these sources request
and update a third and then a fourth stream with di↵erent profiles.

Execution. Figure 4.13(a) shows the number of slots allocated in each
round in the first 4 minutes of the experiment, while Figure 4.13(b) shows
a breakdown of the execution time of the LS scheduler in each round.

In Phase 1, the system is bootstrapping after powering on the devices.
Blink schedules rounds contiguously to enable all nodes to quickly time-
synchronize and submit their stream requests. This happens for the very
first time after 3 seconds, as visible in Figure 4.13(b) from the increase in
processing time to perform admission test and slot allocation. During the
following rounds, the host gradually receives all initial stream requests
and, consequently, admission test and slot allocation take longer.

In Phase 2, because no new stream request has recently arrived, Blink
adapts its functioning to the normal operation and starts to dynamically
compute the start time of rounds based on the LS policy. Figure 4.13(b)
shows that this takes about 10 ms. Given the profiles of admitted streams,
Blink schedules a round every 6 seconds, postponing rounds until right
before the packets’ deadlines, which minimizes energy consumption.

At the beginning of Phase 3, a request for a new stream h0, 6, 3i arrives.
Admission control executes as visible in Figure 4.13(b) at time t = 131
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seconds. Blink admits the new stream and accounts for it starting from
t = 140 seconds. Rounds are scheduled again every 6 seconds and with all
B = 51 available slots allocated. Unlike most existing systems, Blink has
accommodated a new stream without jeopardizing the existing ones, and
still maintains the minimum energy consumption. In WirelessHART, for
example, changes in the set of streams are more disruptive, likely a↵ecting
existing streams [ZSJ09], and thus take much longer to accommodate.

In Phase 4, another requests for a stream h0, 6, 6i arrives and passes
admission control. Blink allocates the first slot to the new stream starting
from t = 170 seconds. However, now there are 52 pending packets, 1 more
than the B = 51 available slots. Due to this, Blink schedules the following
rounds every 3 seconds, with the number of allocated slots alternating
between 51 and 1. This shows that Blink seamlessly copes with dynamic
changes in the stream set that result in drastic changes in its operation.

In Phase 5, the node that requested a second stream in Phase 3 extends
that stream’s deadline from 3 to 6 seconds. Thus, the current 52 streams
all have the same deadline and period. Again, because 52 packets do not
fit into a single round, Blink schedules a complete round with 51 allocated
slots 2 seconds before the packets’ deadlines, followed by another round
for the remaining packet. This shows that a seemingly minor change in
the real-time requirements of one stream can have a significant impact on
how rounds unfold over time, which Blink handles quickly and e↵ectively.

4.5.2 Meeting Packet Deadlines at Minimum Energy Cost
We next evaluate Blink’s ability to meet packet deadlines and the energy
consumption when using the LS policy compared with CS and GS.

Metrics and settings. We use two key performance metrics in real-time
low-power wireless [SXLC10]. First, the deadline success ratio measures the
fraction of packets that meet their deadlines, indicating the level of real-
time service provided to the application. We compute this figure based
on sequence numbers embedded into packets and timestamps taken at
both communication end points. Second, the radio duty cycle is defined
as the fraction of time a node has the radio on, which is widely used as a
proxy for energy consumption [GFJ+09]. This metric indicates the energy
cost Blink incurs to provide a given level of real-time service. We measure
radio duty cycles in software using Contiki’s power profiler [DOTH07].

We conduct several experiments with 94 TelosB nodes on the w-iLab.t
testbed [BVJ+10], which has a diameter of 6 hops. We let 90 nodes act as
sources, one as the host, and three as sinks, mimicking a scenario with
multiple controllers or actuators [PL10]. Each source has two streams, so
there are in total 180 streams generating packets with a 10-byte payload.
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We conduct two types of experiments. First, we set all starting times
Si to zero and vary the number of distinct periods across di↵erent runs,
resembling configurations used when combining primary and secondary
control [Oga01]. In this way, we generate varying demands between 2.9%
and 19.4% of the available bandwidth. Then, we set the period Pi of all
streams to 2 minutes and vary the number of distinct starting times from
1 to 120. This emulates situations where, for example, sources are added
to a running system over time with no explicit alignment in the packet
release times [PL10]. Deadlines are equal to periods in all runs. Each run
lasts for 50 minutes. To be fair across runs, we give nodes enough time to
submit their stream requests and start measuring only after 20 minutes.

Results. The average deadline success ratio is 99.97 %, with a minimum of
99.71 % in one of the 36 runs. These figures are noteworthy in at least two
respects. First, most modern control applications, including the ones we
mentioned in Section 4.1, can and do tolerate such small fraction of packets
not meeting their deadlines [SSF+04]. We thus demonstrate that Blink can
e↵ectively operate in several of these scenarios. Moreover, we verify that
deadline misses are entirely due to packet losses over the wireless channel,
a phenomenon that is orthogonal to packet scheduling (see Chapter 3) and
that cannot be completely avoided. Overall, these experiments confirm
the reasoning and theoretical results from Section 4.4.

Looking at radio duty cycle, Figure 4.14(a) shows the average across
all 94 nodes for LS, CS, and GS. We see that the energy costs generally
increase with the number of distinct periods, since the bandwidth demand
increases as well. Di↵erences among the policies stem from scheduling
fewer rounds. LS and GS perform similarly here: Since all streams start
at the same time and because of the choice and distribution of periods, LS
has little opportunity to spare more rounds than GS. Nonetheless, both
LS and GS significantly improve over CS—they need 2.5⇥ less energy
when all streams have the same period. This gap shrinks to 1.2⇥ with
10 distinct periods, mostly because the energy overhead of unnecessary
rounds plays a less important role at higher bandwidth demands.

Figure 4.14(b) shows the average radio duty cycle as the number of
distinct starting times increases. The bandwidth demand is constant, so
CS consumes the same energy across all settings. This time, however,
LS and GS perform di↵erently. The energy costs of GS increase as the
number of distinct starting times increases, because packets are released
at increasingly di↵erent times and hence GS schedules more and more
rounds. LS, instead, benefits from aggregating packets over subsequent
release times and sending them in the same round. As a result, the energy
costs of LS remain low and constant across all settings, whereas the energy
costs of GS increase and eventually approach those of CS.
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Figure 4.14: Average radio duty cycle of Blink with LS, GS, and CS across 94
nodes and 6 hops in the w-iLab.t testbed. Depending on the stream set, LS achieves
up to 2.5⇥ reduction in energy consumption compared with the GS and CS policies.

Overall, these results show that LS is most energy-e�cient irrespective
of the stream set, achieving severalfold improvements over GS and CS in
some settings. However, in settings with only a few distinct periods and
starting times, GS might also be an option from an energy standpoint and
also because it reduces latency by sending packets as soon as possible.

4.5.3 Scheduler Execution Time
Finally, we look at the scalability of our implementation of the LS policy.
This is an important aspect since the scheduler’s execution time is a key
parameter a↵ecting the available bandwidth. As detailed in Section 4.3
and shown in Figure 4.1 (B), the longer the scheduling takes, the fewer
data slots are available given the fixed duration of a round.

Method: overview. In the worst case, a single scheduler execution must
proceed through all four steps in Figure 4.12. A careful analysis of the
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respective Algorithms 1, 2, 3, and 4 reveals that the execution time of the
LS scheduler increases with the number of streams n, the largest possible
period of a stream P, the total bandwidth demand of the streams denoted
u, and the synchronous busy period Tb of the set of streams.

Precisely quantifying how the combination of these four parameters
determines the total running time of the LS scheduler is non-trivial. We
therefore opt for an empirical approach that confidently approximates
the worst-case execution time of the LS scheduler. Specifically, n and P
are application-specific, yet the memory available on a given platform
determines their maximum value. For example, in our Blink prototype,
memory scales linearly with n and P, and for P = 255 seconds it supports
up to n = 200 streams on a TelosB. Let N denote the maximum number
of streams supported for a given upper bound the streams’ period P.
Quantities u and Tb, instead, vary depending on the streams’ profiles.
Thus, to approximate the worst-case execution time of the LS scheduler,
we compute, for a given bandwidth demand u, N stream profiles with
periods no larger than P that maximize the synchronous busy period Tb.
Method: determining worst-case stream profiles. To this end, we solve
two integer linear programs (ILPs). The decision variables are the periods
of the streams, which are integers from the interval [1,P]. We encode the
periods through variables x1, x2, . . . , xP , where xi is the number of streams
with period i. The start times of streams are zero, and deadlines are equal
to periods. First, we minimize the bandwidth demand u of N streams,
given their synchronous busy period Tb, by solving the following ILP:

minimize
{x1,x2,...,xP }

PX

i=1

xi/i

subject to
PX

i=1

xi = N

PX

i=1

xid1/ie > B

PX

i=1

xid2/ie > 2B

...

PX

i=1

xid(Tb � 1)/ie > (Tb � 1)B

PX

i=1

xidTb/ie  TbB
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Figure 4.15: The maximum synchronous busy period Tb as a function of the
bandwidth demand, for N = 200 streams, a maximum stream period of P̄ =

255 seconds, and B = 51 data slots available per round.

The objective function is the bandwidth demand u. The inequality
constraints ensure that at the end of each interval [0, t], t 2 {1, 2, . . . ,Tb�1},
there is at least one pending packet, while there is no pending packet at
the end of interval [0,Tb].4 Solving this ILP for di↵erent values of Tb, we
obtain a function f (u) that gives the maximum Tb for a given bandwidth
demand u, as shown in Figure 4.15. We now want to invert this function,
that is, compute a stream set with a bandwidth demand as close as possible
to a given target bandwidth demand u, and with the maximum possible
Tb. To this end, we solve the following modified ILP:

minimize
{x1,x2,...,xP }

PX

i=1

xi/i

subject to
PX

i=1

xi = N

PX

i=1

xi/i � u

PX

i=1

xid1/ie > B

4Although the non-linear ceiling function appears in the ILP, it does not operate on
the variables xi and Tb is a known input. Thus, the left-hand sides of the inequalities are
linear in the variables, and the program is e�ciently solved by an ILP solver.
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PX

i=1

xid2/ie > 2B

...

PX

i=1

xid( f (u) � 1)/ie > ( f (u) � 1)B

PX

i=1

xid f (u)/ie  f (u)B

We solve the two ILPs above to determine worst-case stream profiles
considering the maximum number of streams N = 200 supported by our
Blink prototype on the TelosB for a maximum stream period of P = 255
seconds. We determine di↵erent sets of N = 200 streams for bandwidth
demands between 5 % and 95 %, with B = 51 available slots per round.
Table 4.2 lists the stream sets we compute and use for the experiments
together with their synchronous busy period Tb.

Method: comparison implementation. To assess the e↵ectiveness of our
bucket queue implementation of the LS scheduler, we also implement
the first three steps in Figure 4.12 following the conventional approach
that is based on analytical computations like those in (4.3). This includes
an implementation of the fastest analytic EDF schedulability test known
today [ZB09] for admission control.

Method: execution. We benchmark both implementations in 2.5 hours
executions with Blink. During those, requests for each of the 200 streams
are submitted one by one in consecutive rounds, and we measure in each
round the individual execution times of the four di↵erent steps in the LS
scheduler. Then, we take for each step individually the maximum execution
time we measured throughout the 2.5 hours. The results we report are
sums of these individual maximum execution times, which are higher than
the maximum total execution time we measured across all rounds.

Method: platforms. We use three diverse MCUs. A 16-bit MSP430F1611
running at 4 MHz, which is available on the TelosB and representative of
the class of MCUs currently used to achieve the lowest possible energy
consumption in the applications outlined in Section 4.1. We also consider
a 32-bit ARM Cortex-M0 clocked at 48 MHz and a 32-bit ARM Cortex-M4
running at 72 MHz. The two ARM cores o↵er higher processing power
but also incur higher energy consumption; nevertheless, yet they might
represent a viable option in scenarios where some energy overhead can
be traded for better computing capabilities [KKR+12].
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Figure 4.16: Execution time of LS scheduler against bandwidth demand on a
16-bit MSP430 running at 4 MHz, for our bucket queue-based implementation
and a conventional one. Our implementation using simple bucket queues consistently
outperforms the conventional approach that uses only analytical computations, achieving
speed-ups of up to 4.1⇥.

We compile the exact same code by using msp430-gcc v4.6.3 for the
MSP430 and IAR build tools for the two ARM cores; we always choose
the highest possible optimization level that makes the binaries still fit into
program memory. We deploy these binaries in the MSPsim time-accurate
instruction-level emulator [EOF+09] for the MSP430, and on evaluation
boards from STMicroelectronics for the two ARM cores. In all cases, we
measure execution times in software with microsecond accuracy.

Results. Figure 4.16 plots the total execution time of the two LS scheduler
implementations on the MSP430 as the bandwidth demand increases from
5 % to 95 %. We see that the total execution time increases slightly in the
beginning, but ramps up severely for the conventional implementation
as the bandwidth demand exceeds 65 %. This is due to an increase in
the times needed for synchronous busy period computation, admission
control, and start of round computation, whereas the time needed for slot
allocation remains almost constant.

As a consequence, our bucket queue-based implementation consis-
tently outperforms the conventional one, culminating in a 4.1⇥ speed-up
at 95 % bandwidth demand. At this high demand, the reduced scheduler
execution time (182 ms versus 756 ms) means there is space for 44 instead
of only 3 data slots per round. Simulating analytical computations using
our e�cient bucket queue implementation is thus mandatory for a viable
implementation of the LS policy on this class of devices, which in turn
ensures minimal network-wide energy consumption given the operation
of the underlying LWB communication support.
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While useful for approximating the worst-case execution time of the
LS scheduler, the stream sets in Table 4.2 are not often seen in low-power
wireless applications. Our review in Section 4.1 indicates that the typical
demands would rarely exceed 20 % of the maximum bandwidth. In this
regime, we measure execution times below 43 ms with the bucket queue
implementation: well below the upper bound of 100 ms in our current
Blink prototype. Thus, due to a 2.3⇥ speed-up over the conventional
implementation in this regime, there is still plenty of room for employing
more constrained ultra-low-power platforms, or for considerably scaling
up the number of streams with more available memory.

This also holds for the ARM cores. As one would expect, especially
the conventional implementation benefits from the more powerful
instruction sets, in particular on the Cortex-M4, which features a small
set of SIMD instructions and also a hardware divide. This explains
why we consistently measure scheduler execution times below 30 ms.
Nevertheless, our bucket queue based implementation achieves speed-
ups of 1.6–2⇥ on both cores for realistic bandwidth demands of up to
20 %. This is mostly because using the bucket queues, the next time t that
the loop in Algorithm 2 should examine is readily available because of the
EDF-based ordering of the streams. By contrast, using the conventional
approach, the next time t must be explicitly computed, which costs as
much as computing the future demand hi(t) itself via (4.3). In conclusion,
a bucket queue based implementation of the LS scheduler is beneficial
even on less constrained state-of-the-art platforms, allowing to increase
the bandwidth or to schedule more streams in the same amount of time.

4.6 Discussion and Limitations
Our current Blink prototype supports streams with relative deadlines
between 1 and 255 seconds. Thus, it already satisfies the needs of many
CPS applications characterized by time-critical monitoring and control
functionality, especially in case of installations with many nodes across
large areas [ÅGB11, Oga01, PL10, Whi08]. In specific closed-loop control
settings, however, the networks are often smaller containing some tens of
nodes, and tighter deadlines of 10–500 ms are commonplace [ÅGB11].

Our prototype can also support these scenarios by reducing the length
of a round. This essentially means to reduce the number and size of slots in
a round and the time allotted to the scheduler, as shown in Figure 4.1 (B).
We detail in Appendix 4.B how the former two are influenced by factors
such as packet size and network diameter. As a concrete example, in a
3-hop network, B = 20 slots per round, 40 ms for computing the schedule,
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and 10-byte packets—su�cient for sensor readings and control signals—
we can tune our Blink prototype to support deadlines as short as 200 ms.

4.7 Summary
This chapter presented Blink, the first low-power wireless protocol that
supports hard real-time tra�c in large multi-hop networks at low energy
costs. Blink overcomes the fundamental limitations of prior approaches
with respect to the scalability against time-varying network state and the
ability to smoothly adapt to dynamic changes in the application’s real-
time requirements. We demonstrated through real-world experiments
that our Blink prototype meets nearly 100 % of packet deadlines regardless
of changes in the set of streams or the network state, while maintaining
the minimum energy consumption within the limits set by LWB, which
we leverage as communication support in Blink. Our e�cient priority
queue data structure enables speed-ups of up to 4.1⇥ over a conventional
scheduler implementation based on analytical computations on popular
low-power microcontrollers. We thus maintain that our work provides a
major stepping stone towards a widespread deployment of reliable and
time-critical low-power wireless applications in emerging CPS scenarios.

4.A Synchronous Busy Period Computation
The duration of the synchronous busy period Tb is crucial to admission
control and computing the start time of the next round according to the LS
policy. It denotes the time needed to contiguously serve the maximum
demand that a given set of streams creates when all streams release a
packet at the exact same time. The real-time literature suggests computing
the synchronous busy period Tb through an iterative process [SRS98]

!0 =
n
B

and !m+1 =
1
B

nX

i=1

⇠!m

Pi

⇡
(4.24)

which terminates when !m+1 = !m; then, Tb = d!me.
As discussed in Section 4.4.2, implementing this iterative method on

a resource-constrained platform leads to prohibitive running times due
to many costly divisions. To overcome this problem, we compute Tb by
simulating the execution of CS, which essentially entails going through
the same processing that underlies (4.24) in a step-by-step manner. To
this end, we trigger the maximum demand by letting all streams release



116 Chapter 4. Blink: Real-time Communication in Multi-hop Low-power Wireless

Algorithm 4 Compute Synchronous Busy Period
Input A bucket queue based copy of the current set of streams, where

s.releaseTime is initialized to 0 for all streams si and streams with smaller
releaseTime are given higher priority.

Output The synchronous busy period Tb of the set of streams.
initialize Tb and slot counter c to 0
set s to highest-priority stream using s = FindMin()
while (s.releaseTime = 0) or (s.releaseTime < Tb and c = 0) or (s.releaseTime  Tb
and c > 0) do

if current round has only one free slot (c = B � 1) then
set Tb = Tb + 1 and c = 0 to "start" a new round

else
set c = c + 1 to "allocate" a slot in the current round

end if
s.releaseTime = s.releaseTime + s.period
update priority of s using DecreaseKey(s, s.period)
set s to highest-priority stream using s = FindMin()

end while
if current round has at least one allocated slot (c > 0) then

set Tb = Tb + 1 to round up to the next discrete time
end if

a packet at time t = 0. Using CS, we then serve this demand “as fast as
possible” until we find the first idle time where no packet is pending.

Algorithm 4 shows the pseudocode. The algorithm operates on a deep
copy of the current set of streams, maintained in a bucket queue in order
of increasing release time.5 It fictitiously allocates slots to packets in the
order in which they are released. Tb keeps track of the number of full
rounds that contain no free slot, and slot counter c keeps track of the
number of allocated slots in the current round. The algorithm executes
as long as there is a stream s whose initial packet is still to be sent (i.e.,
s.releaseTime = 0), or there is a packet that was already pending before
the new round started (i.e., s.releaseTime < Tb and c = 0), or there is any
pending packet while the current round has at least one allocated slot (i.e.,
s.releaseTime  Tb and c > 0). Otherwise, the algorithm has encountered
the first idle time, which marks the end of the synchronous busy period.

5This results in high e�ciency, because in each iteration the algorithm needs to look
at the earliest release time of all streams to check whether it has encountered the first
idle time where no packet is pending.
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Figure 4.17: Communication slots and processing in a complete LWB round in
our Blink prototype.

4.B Supporting Sub-second Deadlines
The fixed length of a round, T, determines the shortest possible period Pi

and relative deadline Di  Pi of a stream si in Blink. To make our Blink
prototype support shorter deadlines than T = 1 second, we must reduce
the length of a round while carefully considering a number of influencing
factors, as discussed in the following.

Length of a round. To reason about (a lower bound on) T, we must
consider a complete round composed of all possible slots and processing
activities. Figure 4.17 provides a zoomed-in view of Figure 4.1 (B),
showing the slots and activities in a complete round in our prototype.

Every round starts with a slot in which the host distributes the schedule
for the current round. This schedule allows each node to update its
synchronization state and specifies the nodes that send in the following
slots. Next, there is a slot in which the host sends a possible stream
acknowledgment, informing a node whether its requested stream has
been admitted or not. Nodes send their data packets in the following B
data slots. In the contention slot, nodes compete to transmit their stream
requests.6 Based on received stream requests and all streams admitted
thus far, the host computes the schedule for the next round. Finally, the
host distributes the new schedule, so nodes know when the next round
starts and can thus turn o↵ their radios until then to save energy.7

As visible in Figure 4.17, there is a small gap between consecutive
slots. This gap gives LWB just enough time to put a received packet into
the incoming packet queue (at the intended receives) and to fetch the
packet that is to be sent in the next slot from the outgoing packet queue
(at the respective senders). To enable this operation, the application

6A node uses the contention slot only to submit its first stream request. Once a node
has an admitted stream, it submits further request to add, remove, or update streams by
piggybacking on data packets [FZMT12].

7Like in the original LWB [FZMT12], Blink’s real-time scheduler allocates slots for a
stream acknowledgment and data packets as needed, and schedules the contention slot
less often if no stream request recently arrived, without changing the length of a round.
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must ensure that all released packets are in LWB’s outgoing queue before
a round starts. Conversely, LWB ensures that when a round ends, all
received packets are in the incoming queue. In fact, as mentioned earlier,
it is not until this time that the application gains control of the MCU to
process received packets.

Using the notation in Figure 4.17, we add up the durations of the
di↵erent slots, gaps, and schedule computation to obtain an expression
for the (minimum) length of round

T = 2Tsched + (B + 2)(Tother + Tgap) + Tcomp. (4.25)

From (4.25) follows that we can make a round shorter by reducing
(i) the number of data slots in a round B, (ii) the time for computing the
schedule Tcomp, or (iii) the size of schedule Tsched and other slots Tother. (i)
is an application-specific trade-o↵ between a higher energy overhead per
round (relative to the B useful data slots) and the possibility to support
shorter periods and deadlines. (ii) depends on the scheduling policy and
the processing demand induced by the application-dependent streams.
Finally, (iii) is a function of several application, deployment, and platform
characteristics, as discussed next.

Length of a slot. Each slot within a round consists of a Glossy flood. To
obtain (a lower bound on) the length of a slot, we need to briefly recap
the operation of Glossy.

As shown in Figure 4.18, the initiator (i.e., the node that is to send in a
slot according to the schedule) starts the flood by transmitting its packet,
while all other nodes, the receivers, have their radios turned on. Nodes
within the initiator’s radio range, the 1-hop receivers, receive the packet
at the same time and, by ensuring a constant processing time across all
nodes, they also relay the packet at the same time. As this operation
continues, nodes that are two, three, or more hops away from the initiator
also receive and relay the packet. To achieve reliabilities above 99.9 %,
each node transmits the packet up to N times during a Glossy flood
[FZTS11]. For example, in Figure 4.18, each node transmits N = 2 times.

The length of a slot, Tslot, should be su�cient to allow also the nodes
farthest away from the initiator to receive N times. Let H be the network
diameter (i.e., the maximum hop distance between any two nodes), and
let Thop be the time between consecutive transmissions during a flood (see
Figure 4.18). Thop is constant during a flood, since nodes do not alter the
packet size. Thus, the length of a slot such that each node in a H-hop
network gets the chance to receive the packet N times during a flood is

Tslot = (H + 2N � 2)Thop. (4.26)
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Figure 4.18: Illustration of a Glossy flood in a 3-hop network, where each node
transmits N = 2 times. The length of a slot Tslot should be su�cient to give all nodes
in the network the chance to receive the packet N times.

We obtain an expression for Thop by adding up the time required for
the actual packet transmission (or reception) Ttx, the processing delay of
the radio at the beginning of a packet reception Td, and the software delay
introduced by Glossy when triggering a packet transmission Tsw

Thop = Ttx + Td + Tsw. (4.27)

Td is a radio-dependent constant and Tsw is a constant specific to the
Glossy implementation for a given platform; Table 4.3 lists their values
for the TelosB and the CC2420 radio. The time needed by the CC2420 to
transmit an IEEE 802.15.4-compliant packet is the sum of the time needed
to calibrate the radio’s internal voltage controlled oscillator Tcal, the time
for transmitting the 5-byte synchronization header and the 1-byte PHY
header Theader, and the time for transmitting the MAC protocol data unit
Tpayload, which contains the actual payload

Ttx = Tcal + Theader + Tpayload. (4.28)

The values of Tcal and Theader are listed in Table 4.3. The time required to
transmit a payload of size Lpayload (between 1 and 127 bytes in IEEE 802.15.4)

Table 4.3: Constants specific to the CC2420 radio and the Glossy implementation
for the TelosB platform we use.

Name Value
Td 3µs
Tsw 23.5µs
Tcal 192µs

Theader 192µs
Rbit 250 kbps
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Figure 4.19: Length of a round in Blink depending on network diameter and
number of data slots in a round B.

using a radio that has a transmit bit rate of Rbit (see Table 4.3) is

Tpayload = 8Lpayload/Rbit. (4.29)

Discussion. We use the above expressions to obtain an estimate of the
length of a round T in our current Blink prototype, targeting the TelosB
platform and the CC2420 radio. T determines the shortest possible period
Pi and deadline Di of a stream in Blink. Since short periods are particularly
important in specific closed-loop control scenarios [ÅGB11], we consider
typical characteristics of those.

The networks are relatively small, containing up to 50 nodes [ÅGB11].
Assuming the number of streams in the system is on the same order, our
results from Section 4.5.3 with 200 streams suggest that the LS scheduler
completes for sure within Tcomp = 40 ms for a wide range of realistic
bandwidth demands. Discussions with control experts indicate that a
payload of Lother

payload = 10 bytes is often enough for actuation signals, sensor
readings, stream requests, and stream acknowledgments. A schedule
packet consists of a 7-byte header and a sequence of node/stream IDs, so
the payload of schedule packets is Lsched

payload = 7+2(B+2) bytes. We set Tgap =
3 ms and want every node in the network to receive the packet at least
N = 2 times—at this setting, Glossy provides a packet reliability above
99.9 % in real-world experiments with more than 100 nodes [FZTS11].

Given these settings, Figure 4.19 plots the length of a round T
depending on network diameter H and number of data slots in a round
B. For example, in a 3-hop network and B = 20 slots per round, we
can tune our Blink prototype to support periods and deadlines as short
as 200 ms. Thus, under given assumptions, Blink satisfies the needs of
specific closed-loop control scenarios in terms of high refresh rates and
hard end-to-end packet deadlines [ÅGB11].



5
Conclusions and Outlook

Collections of small, embedded devices with low-power wireless network
interfaces enable applications that are expected to have a profound impact
on the world. Data collection applications employ sensing devices that are
deeply embedded into the environment for monitoring physical processes
at unprecedented spatio-temporal resolutions, from habitats to manmade
structures. Cyber-physical systems (CPS) applications, on the other hand,
use sensing and actuating devices to control physical processes, usually
via feedback loops in scenarios such as building and factory automation.

To successfully deploy these applications, designers must ensure that
the network’s global, end-to-end performance matches given application-
specific performance goals. In particular, requirements in terms of reliable
and timely yet energy-e�cient packet delivery have to be met in the face
of severe resource constraints of the employed devices and unpredictable
and non-deterministic changes in the environment. Unfortuntely, existing
low-power wireless communication protocols and systems typically focus
on meeting a single application-defined performance goal (e.g., minimum
energy) or consider only local metrics (e.g., per-hop latency), and provide
no hard guarantees on end-to-end packet deadlines which are necessary to
use multi-hop low-power wireless networks in critical CPS applications.

5.1 Contributions
To fill these gaps, we have made three main contributions in this thesis.

pTunes. We designed pTunes, a framework that adapts the operational
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parameters of a given low-power MAC protocol at runtime in response to
dynamic changes in the network state and the tra�c load. Targeting data
collection applications employing tree-based routing, pTunes thus meets
multiple soft application requirements specified in terms of global, end-
to-end performance metrics. pTunes achieves this with a novel flooding-
based solution for e�ciently and reliably collecting consistent network
state at a central controller and distributing new MAC parameters back to
the nodes independent of the network state, and determining optimized
MAC parameters using a network-wide performance model.

Simple yet accurate modeling of ST-based protocols. Given the need for
accurate performance models and the inherent di�culties to obtain them
for protocols using link-based transmissions (LT), we examined whether
this situation improves for the rapidly growing class of protocols utilizing
synchronous transmissions (ST). Indeed, we empirically showed that the
Bernoulli assumption, which can simplify protocol modeling to a great
extent, is largely valid for ST in Glossy. We could thus devise a Markovian
model to estimate LWB’s energy costs with an unparalleled accuracy, and
su�cient conditions to provide probabilistic guarantees on LWB’s end-to-
end reliability. As a recent example that demonstrates the simplicity and
practicality of our models, Filieri et al. have successfully used them within
a runtime e�cient probabilistic model checking framework that executes
right on resource-constrained low-power wireless devices [FTG15].

Blink. Finally, we extended LWB’s best-e↵ort operation to built Blink,
which is, to the best of our knowledge, the first protocol that provides
hard guarantees on end-to-end packet deadlines in multi-hop low-power
wireless networks. LWB’s globally time-triggered operation allowed us to
abstract the entire network as a single resource that runs on a single clock.
We could thus map the scheduling problem in Blink to the well-known
problem of scheduling tasks on a uniprocessor. We devised scheduling
policies that Blink leverages to determine online a schedule that provably
meets all deadlines of admitted packet streams at minimum energy cost,
while tolerating changes in both the network state and the set of streams.
Supported by e�cient data structures and algorithms we designed, Blink
thus provides timing-predictable wireless communication across multiple
hops, which is crucial for the correctness of critical CPS applications.

5.2 Possible Future Directions
End-to-end communication performance is what really matters for many
real-world low-power wireless applications, from data collection to CPS
scenarios. We maintain that this thesis contributes key stepping stones to
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support these applications. A key lesson from our work on pTunes is that
a centralized approach is both necessary to satisfy end-to-end application
requirements and can indeed be implemented in a highly e�cient manner.
The surprisingly low energy overhead of pTunes’s runtime support based
on Glossy floods compared to the energy footprint of state-of-the-art MAC
protocols was enlightening, and partially triggered and motivated us to
really pursue the idea of a wireless bus, which is now embodied by LWB.
Conceptually, the feedback control approach we adopted in pTunes can
also be found in LWB: The host computes and distributes schedules based
on the tra�c demands and application requirements, such as minimizing
energy consumption as in the original LWB scheduler or meeting packet
deadlines at minimum energy costs as with Blink’s real-time scheduler.
However, things become way simpler in LWB, because there is no time-
varying network state to collect or consider in the scheduling decisions,
despite nodes with streams joining or leaving the network. Additionally,
the modeling becomes easier and also more accurate, owing to the validity
of the Bernoulli assumption in combination with the time-triggered and
highly deterministic behavior of a LWB node being largely independent
of the volatile network state. Like in pTunes, our models could be used
at runtime to, for example, detect violations of application requirements
or guide the scheduling decisions in LWB. In addition, we discuss here
three directions that we believe deserve further investigation.

Deeper understanding of ST. We exploited and empirically showed in
this thesis how a physical-layer innovation, namely ST in Glossy, impacts
protocol design and modeling. To further enhance the performance and
reliability of ST and take full advantage of their salient characteristics in
the design and implementation of higher-level mechanisms, we believe
it is worthwile to conduct further systematic studies of ST, both through
controlled experiments, for example, using a wireless channel emulator
or in an anechoic chamber, and using analytical models and simulations.
This could, for example, provide insights into the development of “ST-
friendly” physical layers (modulations scheme, transceiver design, etc.)
or the applicability of (analog) network coding schemes to ST.

Distributed scheduling. Although LWB includes mechanisms to resume
its operation after a host failure, a distributed scheduling approach where
every node computes the communication schedule locally could make
LWB even more resilient, more reactive, and more bandwidth e�cient. A
key challenge to realizing this idea is to ensure a consistent input to the
distributed scheduling logic across all nodes. This entails the delivery of
stream requests to and the detection of failed nodes by all nodes at the
same time, among other things. Using Chaos [LFZ13a] for these all-to-all
interactions and to keep nodes time-synchronized could be a promising
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starting point. Also, based on our experimental results with Chaos, we
believe integrating it side-by-side with Glossy into LWB could improve
the e�ciency of some distributed interactions within LWB and provide
support for even shorter deadlines than possible with our Blink prototype.

Unify delivery and real-time guarantees. Many CPS rely on real-time
communication for stable closed-loop control, as enabled by Blink. Being
resilient against failures of the controller, in turn, requires replicating the
controller across di↵erent physical devices and reliable ordered delivery
of sensor readings to all replicas, as enabled by Virtus [FZMT13]. It
appears beneficial but challenging to unify these separate solutions. For
example, Blink currently uses no packet retransmissions at all, whereas
Virtus relies on possibly infinite retransmissions per packet to provably
provide delivery guarantees. Nevertheless, we believe it is possible to
integrate the two within an extended LWB, for instance, by providing
real-time guarantees for some streams and delivery guarantees for others,
or by resorting to probabilistic versions of these guarantees based on
information about the minimum transmission reliability in the network.
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