m Institut fur
' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Diploma Thesis
DA-2003.01

Non-Repudiation of Service Consumption

in MobyDick Networks

Winter Term 2002/2003
March 13, 2003

Egon Burgener

Tutor: Hasan
Supervisor: Prof. Dr. Burkhard Stiller

Zusammenfassung

Das vorliegende Dokument préasentiert eine Losung zum Problem der Be-
weisfithrung des Dienstkonsums. Der Netzwerkbetreiber soll die Moglichkeit
haben, die Richtigkeit der Verrechnung beweisen zu koénnen. Falls er
den Dienstkonsum nicht beweisen kann, muss der Kunde die Rechnung
nicht bezahlen. Daher ist es nicht notig, dass der Kunde irgendwelche
Beweisstiicke sichern muss. Ausserdem sind manche Gerédte der Kunden
dazu nicht fahig. Die Losung ist speziell auf die MobyDick Architektur
zugeschnitten, kann aber durch wenige Veréanderungen auf andere Architek-
turen {ibernommen werden. Die MobyDick Architektur wird um drei En-
titdten dem Non-Repudiation Server, den Non-Repudiation Relay Agents
und den Non-Repudiation Clients erweitert.

Die Beweisstiicke werden vom Gerédt des Kunden generiert und mittels
des Non-Repudiation Protokolls zum Non-Repudiation Server des Netz-
werks transferiert. Die Beweisstiicke werden vom Server verwaltet und
in einer Datenbank gesichert. Es gibt zwei Typen von Beweisstiicken, die
Registration-Evidence-Token welche den Beweis zur Registration eines Kun-
den liefern und die Service-Evidence-Token welche den Beweis zur Dienstan-
forderung und zum Dienstkonsum liefern.

Zur Erstellung der Beweise werden asymmetrische Signaturen verwendet.
Die Generierung des privaten und o6ffentlichen Schliissels ist die Aufgabe des
Kunden. Das vorliegende Dokument schléagt eine Zertifizierung durch eine
“Trusted Third Party” (TTP) vor, prasentiert aber auch eine eingeschrénkte
Losung ohne TTP.

Alternativen, mogliche Attacken und Fehlverhalten werden diskutiert.

Danksagung Ich danke meinem Betreuer Hasan fiir die Unterstiitzung
und die wertvollen Ratschlige. Er stand mir stets hilfreich zur Seite.

Abstract

This document presents a solution to the problem of proving service con-
sumption. The Service Provider should be able to give proof of the cor-
rectness of the bill. If the Service Provider isn’t able to prove the service
consumption the client does not have to pay for it. Therefore the client does
not have to save any evidence tokens. Furthermore the clients devices may
not be able to save them. The solution is especially designed for the Moby-
Dick architecture and services, but can with some minor changes be adopted
to any other architecture. The MobyDick architecture has to be extended
with three entities, the Non-Repudiation Server, the Non-Repudiation Relay
Agents and the Non-Repudiation Clients.

The evidence tokens are generated by the client’s device and are transferred
to the Non-Repudiation Server using the Non-Repudiation Protocol. The
server manages and stores the evidence tokens in a database. There are
two types of tokens, the Registration-Evidence-Tokens giving proof of regis-
tration and the Service-Evidence-Tokens giving proof of service request and
service usage.

Asymmetric signatures are used to generate the evidence. It is the clients
task to generate the private and public keys. The document proposes the
use of a Trusted Third Party (TTP) to certify the public key, but presents
also a restricted solution without a TTP.

Alternatives, possible attacks and misbehaviour are discussed.

Acknowledgment I would like to give a special thank to my tutor Hasan
for the great support. He always took time to help me if needed and gave
useful advice.

Contents

1 Introduction
1.1 The MobyDick Network Architecture
1.2 Non Repudiation
1.3 Task Description and Goals of the Thesis

2 Non-Repudiation in MobyDick Networks

2.1 Requirements
2.2 The Non-Repudiation Protocol

2.2.1 The Evidence Tokens

2.2.2 The Protocol
2.3 The extended MobyDick Architecture
2.4 The Key Management
2.5 Alternatives and Optimizations
2.6 Attacks or Misbehaviour L.

3 Implementation
3.1 CAAP anddiadummy
3.2 Non-Repudiation Server Software nonrep.s
3.2.1 TheDatabase
3.3 Non-Repudiation Relay Agent Software non_rep.a.
3.4 Non-Repudiation Client Software nonrep.c

4 Future Work

A Installation and Configuration
A.1 The CAAP software
A.2 The Diameter Server
A.3 The Non-Repudiation Software
A.4 Example configuration

B Structs and Protocol Formats
B.1 Structs used by Messages
B.2 Structs used by dynamic Lists
B.3 Protocol Formats

10
10
10
11
11
15
16
16
17

20
20
23
25
26
27

30

31
31
31
32
34

List of Figures

0 O Ui W N

MobyDick Network Architecture 8
Time diagram of the Non-Repudiation Protocol 13
Extended MobyDick Architecture 15
Structure of pep6s [Sch02] 20
Structure of dia dummy L. 22
Structure of non_repso 24
ER diagram of database 26
Structure of non_rep_ao 27
Structure of nonrep.c 28
MobyDick example Network 34
Header Format of the Main Packet Type 39
TLV Format 39
ACK Packet Format 39

NAK Packet Format 40

List of Tables

S Ok W N

AVP List of NAS REQ command 21
Diameter commands and their AVPs 23
Defines of dummy.s.h L. 32
Defines of nonrep.cch o000 33
List of defined TLVs 39

List of defined NAK codes 40

1 Introduction

This section gives an overview on the topics this diploma thesis is based on.

1.1 The MobyDick Network Architecture

MobyDick is the name for the European Union (EU) project ”Mobility and
Differentiated Services in a Future IP Network”. The project is carried
out within the 5th framework of the Information Society Technology (IST)
Program. The official project identification is IST-2000-25304 [IST02a].
The goal is to define, implement and evaluate an IPv6-based mobility-
enabled end-to-end QoS architecture starting from the current IETF’s QoS
models, Mobile-IPv6 and AAA framework [MDP].The project started on
January 1, 2001 and will last until December 31, 2003. The expected
results are that the architecture supports mobile IP end-to-end communi-
cation with QoS, seamless hand-over and all necessary AAA and charging
mechanisms to satisfy the user and the network operator.

The Moby Dick Network Architecture is described in [IST02b, IST02c].
The main differences to today’s Internet Servive Provider networks is that
clients may use mobile devices with heterogenous access technologies, that
they get Quality of Service (QoS) enabled access, that seamless handover
between the Access Routers is provided, and that the clients may access
networks of foreign administrative domains.

The Access Routers (AR) are the points where the clients connect to the
network using Ethernet, WLAN (IEEE 802.11) or the 3rd generation of
mobile communication (UMTS). Since the clients may move, they may also
change their Access Router. The process of changing the Access Router is
called handover.

The users are identified by the Network Access Identifier (NAI). If a client
wants to access the network he has to register first. The registration is
needed to authenticate the client and to authorize his access. This is done
by the Authentication, Authorization, Accounting and Charging Server
(AAAC). The Mobile Terminal (MT) and the AR use a User Registration
Protocol (URP) for the registration process. The communication between
AR and AAAC Server is done by using a Authentication, Authorization
and Accounting (AAA) protocol. After registration the link between MT
and AR will be secured with the IPSec Authentication Header (AH).

As soon as the registration is successfully done, the client is able to use the
different services according to the contract (user profile). These services
are distinguished by the Differentiated Services Code Point (DSCP) field
[NBBB9S] in the IPv6 header which characterizes the QoS. There’s a QoS
Manager on each AR which controls the use of the services. If a client
begins to use a new service the QoS Manager asks the QoS Broker which

8 1 INTRODUCTION

decides whether a client is allowed to use the requested service. The Marker
software on the MT and AR sets or recognizes the DSCP field. The DSCP
flag is used to perform a service request indirectly. The client is also able
to use different services at the same time.

Figure 1 presents a possible MobyDick Network.

Customer Provider

QoS
Broker

A
B A
AAAC
Server

*
I
|
|
I

v

v

Access

Router <

Mobile
Terminal

B T p Registration messages
- —— —p Service request messages

< > User data

Figure 1: MobyDick Network Architecture

1.2 Non Repudiation

Non-Repudiation is a Security Service. With the help of generated evidence
tokens it is possible to prove a certain action. There are different types of
Non-Repudiation Services:

e Non-Repudiation of Origin (NRO).
e Non-Repudiation of Receipt (NRR).
e Non-Repudiation of Delivery (NRD).

e Non-Repudiation of Submission (NRS).

1.3 Task Description and Goals of the Thesis 9

The Non-Repudiation of Origin guards against the originator of a message
falsely denying having sent the message. It provides the recipient with the
proof of origin. The Non-Repudiation of Receipt guards against the recip-
ient of a message falsely denying having received the message. The Non-
Repudiation of Delivery and the Non-Repudiation of Submission are sup-
plied by the delivery agent. They provide the originator of the message with
evidence that the message has been delivered and submitted to the recipient
respectively [JD97].

There are two approaches in creating and collecting evidence tokens: With
or without a Trusted Third Party (TTP). In early efforts, a TTP acted
as a delivery agent to provide Non-Repudiation of Submission (NRS) and
Non-Repudiation of Delivery (NRD). Current Non-Repudiation protocols re-
duced the involvement of TTPs to deal with keys only rather than with the
content of transferred messages [JD96]. By using asymmetric cryptography
the proof of the binding between user and public key is absolute necessary.
A Non-Repudiation protocol is fair, if it provides the originator and the
recipient with valid irrefutable evidence after completion of the protocol,
without giving a party an advantage over the other party in any possible
incomplete protocol run [JD96]. Therefore a fair non-repudiation protocol
without using a TTP isn’t possible.

This diploma thesis deals with Non-Repudiation of Origin and the protocol
needs not to be fair.

1.3 Task Description and Goals of the Thesis

The main task within this diploma thesis is to design and implement a Non-
Repudiation protocol for registration, service request, and service consump-
tion, that is applicable to the MobyDick architecture and services. Involve-
ment of a TTP, if not avoidable, should be reduced to a minimum. Proving
service request and access granting is a more general case, while proving ser-
vice provisioning and service consumption is usually application-dependent.
The metering parameters describing service consumption within MobyDick
are not restricted to service duration only, but consist also of volume.

2 Non-Repudiation in MobyDick
Networks

This section gives an overview of the design without details about the Im-
plementation. First the requirements are listed. After presentation of the
solution, possible alternatives and attacks are discussed.

2.1 Requirements

As mentioned the clients may use different types of devices to connect to the
MobyDick Network, such as notebooks, desktop computers, mobile phones,
Pads and all other mobile devices. Some of them are not capable to store
a big amount of information for a long time. That this information will
be stored secured and backuped isn’t always possible. Therefore the client
can’t store any evidence tokens.

With respect to possible low computational power the amount of crypto-
graphic computations has to be minimized.

In MobyDick different services are defined. The Non-Repudiation Protocol
should consider the service with the lowest bandwith. It should not use too
much bandwidth.

On the provider’s side a system with well defined Interfaces is needed. To
make integration easier it’s important not to change the existing system too
much. There should be only extensions, but no fundamental changes.

As already explained in the previous section the client has to register to the
network before using any service. He is also able to use different services
at the same time. As soon as the client begins to use a service for the first
time the DSCP field will be set accordingly. This is known as an implicit
service request. The service consumption can be divided into three parts:
the Registration, the Service Request and the Service Usage. All of these
parts have to be secured.

2.2 The Non-Repudiation Protocol

To provide a Non-Repudiation service it’s necessary to move evidence
tokens from one party to the other. Since it’s not reasonable that the client
stores any evidence tokens the provider has to do it. As a consequence the
client is innocent as long as the provider isn’t able to prove the opposite.
In this way the client generates the evidence tokens and the provider has
to store them. To get the evidence tokens from the clients device to the
providers database a specific protocol is needed. As shown in section 1.1
”The Moby Dick Network Architecture” the clients MT communicates with
the Network only through the current AR.

10

2.2 The Non-Repudiation Protocol 11

2.2.1 The Evidence Tokens

The service consumption consists of three parts: the registration, the service
request and the service usage. The Registration-ID identifies a registration
uniquely. Therefore the Registration-ID must contain the NAT and the cur-
rent Session-ID. The User must have the Session-ID in order to be able
to generate the evidence tokens. The evidence token of registration con-
sists of the Registration-ID and the signature over it. It will be called the
Registration-Evidence-Token.

As described in section 1.1 “The Moby Dick Network Architecture” the
clients perform the service request indirectly by setting the DSCP flag in
the IPv6 header. Since the provider has to be able to prove the service us-
age, it’s necessary to generate evidence tokens periodically while using the
service. The period can be based either on time or on the amount of trans-
ferred data. If the provider chooses a too long period it would be unfair,
since the client signs the request of a period before its usage. On the other
side if a too short period is chosen it would waste computational power and
bandwidth too much.

To solve this problem and to allow shorter periods a special technique named
chained hashes will be used. A hash chain consists of m hashes. The first
hash is the digest of a random input r. The others will be computed as
follows:

Hy = Hash(r
H, = Hash(H,-1)
Hash = Hashfunction
n = l.m

It’s computational impossible to calculate H,,_1 from H,, if the random input
r is unknown. To use this technique r must be unpredictable. In section
2.6 “Attacks or Misbehaviour” possible attacks on this technique will be
discussed.

With the help of chained hashes it is possible to generate evidence tokens
without signatures and therefore of less size. In this way there is one evidence
token to provide the evidence of service request and service usage of one
service type. It will be called Service-Evidence-Token. The token consists
of the DSCP, the Registration-ID, the Hash H,,, the latest Hash H,, and
the signature over DSCP, Registration-ID and Hash H,,.

2.2.2 The Protocol

As mentioned above the provider has to store the evidence tokens. A new
entity called the Non-Repudiation Server is introduced to the architecture
to collect and to store them. The Non-Repudiation Protocol is responsible
to move the evidence tokens from the clients device through the Access

12 2 NON-REPUDIATION IN MOBYDICK NETWORKS

Router to the Non-Repudiation Server. Since the client may change the
Access Router while using the services, it’s the better choice to build the
protocol on the UDP than on the TCP. On the other hand the TCP is
reliable which makes the protocol design much easier. For this reasons
the comunication between client and access router is build on UDP and
the comunication between Access Router and Non-Repudiation Server is
build on TCP. Keeping the connection alive saves the overhead of TCP’s
connection establishment. Figure 2 shows a time diagram of the exchanged
Non-Repudiation packets.

If the client sends a Non-Repudiation packet to the network the Ac-
cess Router sends an acknowledge (ACK) back. Since ACK may be lost
and changing of the current Access Router is possible, the Access Router
may not recognize duplicates. Therefore the Non-Repudiation Server has
to recognize them.

The Non-Repudiation Server has to inform the network if a user has
sent the evidence token to use a service or if a user doesn’t send evidence
tokens anymore. An interface between Non-Repudiation Server and AAAC
Server is defined to exchange this information. The protocol used is
Diameter [P.C02]. Diameter is a AAA protocol, but can also be used for
other applications. FExtendability, easy handling and reusing of AAAC
Server’s Diameter implementation are the main reasons for using Diameter
as communication protocol to the network.

The whole communication process can be divided into three parts:
the Registration, the Service Request and the Service Usage. After
Registration one or more Service Requests follows. The refresh time of
Service Requests should be about some minutes. Many Service Usage
messages follows each Service Request. During the Registration process the
Registration-Evidence-Token will be transferred to the Non-Repudiation
Server. The Service Request messages carries a Service-Evidence-Token.
The Service Usage process moves the latest Hash H,, to the Server
which updates the corresponding Service-Evidence-Token. The following
paragraphs describe the three parts in detail.

The Registration: As described in section 1.1 “The MobyDick Network
Architecture” a URP is used to perform the Registration. After the client
received the URP response containing the current Session-ID, the client has
to send the Reg Info message.

The Reg Info packet consists of the Session-ID and NAI as the Registration-
ID and the signature over it. Information about used hash and signature
algorithm can be added optionally. At the same time the AAAC server sends

13

2.2 The Non-Repudiation Protocol

obesn =0TAISS

1sonbsy 9D0TAISS

(uotlexlstbay)
1sonboay ssooov

Yy

Yy

Ly

'are

is)
—
©

Is3oxg so)d

.A.::m.o.mww.m.m .. :
do3s 90TAIDS > '
do .
1S > MVN V."
............................. D ol Y -
A o0esn obesn
SOTALSS <+ SD0TAISS
< SDTAIDS ..
JjueIn SDTAIDS .
Juein > '
... s
> MVN '"
I I -\ gt B .
< o ER) E)
JUI=SOTAISS Av SIETSoTATSS
< ejeq ‘7
LRl Bl il sl i i il i] =
: SS900V .
' Juein > H
lnasnfesssssnsannscnnnnnnaflensnnnnnnnnnnnnnnnnnfhassnnannannnnnnnnn m-...
e MVYN ' AVN m
LEE R FE I I - I I I R R R R R NI R =
A ojurbsy
< ojurbsy
< OoJUuIl I dsayv Jdn >
dsayy DVYVY >
< bayv OVVVY
A JSERTAREE
ID9AIDS IDAIDS
dey - uoN DYVYY qvy I

Figure 2: Time diagram of the Non-Repudiation Protocol

14 2 NON-REPUDIATION IN MOBYDICK NETWORKS

a MT Info message to the Non-Repudiation Server. The Message provides
the Non-Repudiation Server with the information about the Registration-ID
and the address of the current Access Router the client is connected to. This
information about the current Access Router is necessary to know where to
send the Not-Acknowledge (NAK) messages.

As soon as the Non-Repudiation Server received a Reg Info packet, it will
check if the Registration-ID matches with the Registration-ID contained in
the MT Info packet and verifies the signature. If one of these checks fails
a NAK message will be sent to the client otherwise a Grant Access will be
sent to the AAAC Server.

The Service Request: After successful registration the client is allowed
to use different services. He does not have to do an explicit Service Request.
Instead he begins to use the service and sets the DSCP flag in the IPv6
header. At the same time the client has to send a Service Info packet for the
first time. Thenceforward the client has to send new Service Info packets
periodically depending on the chosen Service Usage Period and the number
of hashes m.

The Service Info packet contains the Registration-ID, the DSCP, the main
hash H,, of the hashchain and the signature over all of them. If the
Registration-ID matches and the signature verification was successful the
server sends a Grant Service message to the AAAC Server otherwise it sends
a NAK packet to the client containing the errorcode.

As soon as the AAAC Server received both the Grant Access and the Grant
Service messages it will send a Grant Service message to the QoS Broker
which will grant the service usage for this NAI.

The Service Usage: Within two Service Requests m Service Usage
packets has to be sent periodically. The Service Usage packets are used to
send the hashes of the hashchain in descending order (H,,, Hy—1, ...). The
length of the interval is a tradeoff between fairness and bandwidth usage.
The Service Usage packet consists of the Registration-ID, the DSCP and
the Hash H,. There’s no need of a signature because only the real client is
able to send the hash H,. Read section 2.6 “Attacks and Misbehaviour”
for more information.

If the Registration-ID mismatches or the hash verification fails, the server
sends a NAK with the corresponding errorcode back to the client and a
Stop Service message to the AAAC Server. The AAAC Server is respon-
sible to inform the QoS Broker to block the service consumption of the client.

The Non-Repudiation Server stops the service consumption after the
expiration of granted period if no Service Usage or no Service Info packet
arrived anymore. Waiting for a short time may enhance the usability since

2.3 The extended MobyDick Architecture 15

packets may be delayed.

The format of the packets described above are presented in the ap-
pendix B.3.

2.3 The extended MobyDick Architecture

In section 1.1 the MobyDick Architecture was presented. To add the Non-
Repudiation security service it’s necessary to introduce new entities: The
Non-Repudiation Client on the clients device, the Non-Repudiation Relay
Agent on each Access Router and the Non-Repudiation Server. Figure 3
presents the extended Architecture.

I Moby Dick Network I

Access Router AAAC Server

Mobil Terminal I

AAAC Client

» . < Diameterl |f| I

URP Server

Access
DB I

H
Meter 1 H
H IIIIIIIIIFI 1] QoS Manager QoS Broker I
'
Marker <: : H Diameter
| i | I I
Non-Rep >
Client I I
Non-Rep
Relay Agent
| v Ad Non-Rep| Server I

I : |
I Meter I
Evidence Token

<4——) Socket (signaling)
«------- P IPC

@ Application Data

Figure 3: Extended MobyDick Architecture

Since the clients are only able to connect to the Access Router directly, the
Relay Agent’s task is to forward the Non-Repudiation packets to the server.
The second task is to collect metering information and to send them also to
the server. The metering information are needed if the period is based on
the amount of transfered data. This information are collected by the meter
software on each Access Router.

16 2 NON-REPUDIATION IN MOBYDICK NETWORKS

The server is part of the MobyDick Network and has access to the AAAC
Server and to each Access Router. The received evidence tokens will be
stored in a database. The interface between AAAC Server and Non-
Repudiation Server is based on the Diameter protocol. The new defined
commands are: MT Info, Grant Access, Grant Service and Stop Service.
Each command carries one or more Attribute Value Pairs (AVP). The exact
list of AVP are presented in section 3.1 “CAAP and dia_dummy”.

The Non-Repudiation Client has to generate the evidence tokens and to
send them periodically. It has to communicate with the URP client to get
the current Session-1D. The Client also has to communicate with the marker
software to know when the user starts to use a service. The marker’s task is
to set the DSCP flag for the first time the user starts to use the service. The
third interface is the communication to the metering software. It is respon-
sible for the triggering of sending evidence tokens if the period is based on
the amount of transfered data. The interaction between these four entities
will be described in section 3 “Implementation”.

2.4 The Key Management

The Key Management is a general problem. This is the point the Trusted
Third Party (TTP) may come into play. The goal of the Key Management
is to give evidence that a public key belongs to a certain person. A
certificate binds the public key and the information about the person with a
signature. The signature is provided by a Certificate Authority (CA) acting
as the TTP. This type of a TTP is called an offline TTP since the TTP
doesn’t take part in the protocol. The disadvantages of the involvement of
a TTP are the costs of getting a certificate for each user and the effort of
creating the certificates.

A solution without a TTP is possible with some restrictions. Each
customer has to generate the public/private key pair on its own and has to
hand the public key over to the provider. The provider stores the public
key in a database and is sure that the public key belongs to this customer.
The problem arising is that the customer may claim the provider had
generated the public/private key pair and the evidence tokens on their
own. To hand out a certificate of the public key to the customer doesn’t
solve the problem since the problem is the advantage of the customer over
the provider. A solution is the use of a non-electronic evidence such as the
customers signature over his public key as part of the contract.

2.5 Alternatives and Optimizations

This section discusses the alternatives and optimizations to the above
presented solution. The advantages and disadvantages will be shown.

2.6 Attacks or Misbehaviour 17

One of the alternatives is the integration of the Non-Repudiation se-
curity service into the URP and AAA protocol. The URP and AAA
protocols are easily extendable by using new Type Length Value (TLV)
triples and new Attribute Value Pairs (AVP) respectively. Easier Integra-
tion since both protocols already exist, less modification of the existing
architecture and easier implementation are the main advantages of this
design. Bad modularity, dependence upon used URP and AAA protocols
and misusing of them are the disadvantages.

Another point bringing up alternatives is the question of what has to
be signed and by whom. An alternative is that the client signs the AAA
Request. The advantage of this is speedup since registration and evidence
token movement will be done simultaneous. The evidence token can only
be used to prove that the client has tried to register but not that he got
access.

Packets signed by the Provider could be added optionally. Since the clients’
devices aren’t reliable it would be a bad idea to base the Non-Repudiation
security service on packets signed by the Provider. Signing a response
to a Reg Info or to a Service Info packet provides the client with the
evidence that the access or service is granted. This is useful if the
service isn’t accessable although the client has sent the signed Service Info
packet. To prove that the provider didn’t grant the access to the service, the
client has to prove that the access was denied, which is difficult to be proved.

If the period of sending Service Usage packets is variable it has also
to be signed. For example if the period is constant within a session its value
should be added to the Registration-Evidence-Token.

Since many evidence tokens will be created an optimization would be
the use of a receipt after service usage. During the logout process the
provider would send a receipt which the client would have to sign and
return. The advantage of this optimization would be reducing of memory
usage. The provider would have to store only the signed receipt and could
remove the collected evidence tokens.

2.6 Attacks or Misbehaviour

Like all other security mechanism there could be security holes if the con-
figuration is badly chosen. This section shows the important points which
have to be treated carefully.

Attacks on the hash chain: There are two possible attacks on the hash
chain. The first is the prediction of the random input r. If the provider is

18 2 NON-REPUDIATION IN MOBYDICK NETWORKS

able to predict r it could generate the Service Usage packets on its own. The
other possible attack would be the precomputing of all possible hash chains.
As soon as the provider has received a Service Info packet containing a main
hash H,,, which is already known,the provider could generate the following
Service Usage packets. To meet these problems an unpredictable random
input is fundamental. Also important is the use of a good hash algorithm
like SHA-1 or RIPEMD160.

A possible configuration could be a provider with 1°000°000 user which are
2 hours online a day. The period is set to 10 seconds and the number of
hashes m is set to 30. The question is “how long does it take that all possible
hash values are used once”. Using SHA-1 or RIPEMD160 algorithms which
produce 160 bit long hashes it would take 4 - 1037 days.

In case of precomputing of all possible hash chains it would be necessary to
have a storage of 2169 . 20 bytes = 1.46 - 103 GB.

Attacks done by third parties: This type of attacks isn’t one the Non-
Repudiation protocol design has to concern of, since the link between the
Client and Access Router is secured by IPSec’s Authentication Header (AH).
The IPSec AH is set up while registration. Though the Non-Repudiation
Protocol protects against this sort of attacks. The Reg Info and the Service
Info packet are signed by the client which are therefore protected against
the attack since the public key is stored in the providers database and no
key exchange is needed.

Attacks on the private key: Keeping the private key secret is the most
important security measure. As soon as the private key is compromised
the signature does not give evidence and the Non-Repudiation service isn’t
provided anymore.

The private key is stored on the customer’s device. Well restricted access to
the private key is fundamental.

Session-ID: The Session-1D is created during registration and has to be
unique for each user. The signature of the Registration-Evidence-Token
signs the NAI and the Session-ID. If the Session ID isn’t unique for each
user, the provider would be able to copy the signature. The effect isn’t seri-
ous since the Registration-Evidence-Token doesn’t contain any information
about service consumption.

Lost or Missorder of Packets: The question is whether security holes
arise if packets are lost or missordered. The packets contain a sequence
number. The NAI, Session-ID and the sequence number identify the packet
uniquely. If the Non-Repudiation Server received a duplicate it drops the
packet without sending a NAK. In case of a packet which is received too

2.6 Attacks or Misbehaviour 19

early the server drops it too, but sends a NAK message to the client. The
provider may stop the service consumption as soon as a packet is lost or
misordered or it may wait for a short time before stopping.

The customer may take an advantage of this short time. He could use the
service without paying for that short time. The amount of this short time
is a tradeof between usability and lost of evidence for that time.

3 Implementation

In the following each implemented entity will be described in detail. The
used URP is the Client Authentication and Authorization Protocol (CAAP)
which is the result of Christian Schlatter’s diploma thesis “Development of
a AAA System allowing controlled Access to IPv6 Intranets” [Sch02].

As shown in figure 3 the Non-Repudiation Server (non_rep.s), the Non-
Repudiation Relay Agent (non.rep.a) and the Non-Repudiation Client
(non_rep_c) had to be implemented.

3.1 CAAP and dia_dummy

A client (pep6_c), a network access server (pep6.s) and a dummy RADIUS
Server were implemented by Schlatter. Since it was the task to use Diameter
as AAA protocol a new Diameter server (dia_-dummy) had to be written
and the network access server code (pep6_dia) had to be extended with the
Diameter protocol. On the clients’ side, only minor changes were necessary.
The adjusted client (caap_c) had to be extended with the sending of an
IPC message as soon as the Session-ID received.

pepé_s

. CLI_RECV SERV_SEND

serv_out_queue ()
FIFO aueue

»
>
>

| 1

! > session i

: > database SESS CTRL

1 Pra——

E per session:

| LA T .:L

- last sent packet frete---- Q

1

| M1

| —|>| last revd packet |<|_ :

1

b) i

! : IR -

v E. . : Y

CLI_SEND SERV_RECV
* D]]IDH::;""""""": *
Q cli_out_queue O
FIFO aueue

— protocol data * tolfrom access client
---.p protocol data (retransmissions) ** to/from AAA server
---» control data execution thread

Figure 4: Structure of pep6_s [Sch02]

In figure 4 a diagram about the pep6_s is shown. The extension

20

3.1 CAAP and dia_dummy 21

with the Diameter protocol affected the two threads SERV_SEND and
SERV_RECV. The AAA protocol used by Schlatter was RADIUS which is
based on UDP. The Diameter protocol instead uses the TCP. To implement
the Diameter protocol an Open Source library opendiameter [ODM] was
used. A new Diameter command NAS_REQ was defined. The request and
the response are composed by Attribute Value Pairs. Table 1 lists the AVPs
and their data types. The AVPs written in square brackets are optional.

Table 1: AVP List of NAS_REQ command

Request
-Session-1D octet stream
-Origin-Host octet stream
-Origin-Realm octet stream
-Destination-Realm octet stream
-Auth-Appl-1D 32 bit integer
-Chap-Challenge octet stream
-Chap-ID octet stream
-Chap-Response octet stream
-NAI octet stream

Response
-Session-1D octet stream
-Result-Code 32 bit integer
-[TSK] 2 - 128 bit LSA key
-[Access-Parameter] variable

The dia_.dummy is a simple variant of the Diameter Server. Its task
is to authenticate and authorize a single test user and to communicate with
the Non-Repudiation Server. Figure 5 shows a diagram of the internal
structure of the program. There’s a receive and a send process for the
communication with the Non-Repudiation Server. For each Access Router
one process waits for NAS_REQ packets, handles them and sends the
response packet. They also send IPC messages to the non_rep_send loop
process containing information needed to compose MT Info packets.

The main process is responsible for listening on the AAA port and creates a
new process as soon as an Access Router has connected to. The connections
between the Diameter Server and each Access Router remains up until
either part shuts down.

The non_rep_recv loop process waits for Diameter packets from the Non-

22 3 IMPLEMENTATION

.\'

init phase @ fp=====- -

I

server loop

--=-=>» fork
—p TIPC MSG

Figure 5: Structure of dia_dummy

Repudiation Server. These packets contain one of the commands listed in
table 2. The table shows also the corresponding AVPs.

If the connection to the Non-Repudiation Server breaks down the
non_rep_recv loop process tries to reconnect periodically. As soon as
the reconnection was successful it will create a new non_rep_send loop
process. This process waits for messages from any AR_handler loop process,
generates and sends the MT Info packet to the Non-Repudiation Server.
The AVPs of the MT Info packet are the following.

MT-Info
-Reg-ID grouped
-Session-1D octet stream
-NAI octet stream
-AR-Addr octet stream

The generation of a new process after reconnection is necessary since the
parent process and the client process do not share sockets created after
forking.

3.2 Non-Repudiation Server Software non_rep_s

Table 2: Diameter commands and their AVPs

Grant-Access

-Reg-1D grouped
-Session-ID octet stream
-NAI octet stream

Grant-Service

-Reg-1D grouped
-Session-1D octet stream
-NAI octet stream

-DSCP 32 bit integer

Stop-Service

-Reg-1D grouped
-Session-ID octet stream
-NAI octet stream

-DSCP 32 bit integer

3.2 Non-Repudiation Server Software non_rep_s

The Non-Repudiation Server has many tasks. First it’s responsible to
collect the evidence tokens and to verify them. It also has to communicate
with a database to store them and to get the public key of each active user.
Another task is to grant or stop service usage for each user. Taking decision
when to stop service usage is a complex task.

Figure 6 shows the internal structure of the Non-Repudiation Server.
The main process is responsible for verifying and storing of the evidence
tokens. It maintains a dynamic list with an entry for each active user. The
entry stores current information including the latest hash, latest sequence
number and public key. The exact structure of the entry is presented in the
appendix B.2.

The Interprocess Communication messages is used for transferring in-
formation from one process to the other. The main process waits for
messages from any child process and handles them. A messages is stored
in a queue until a process reads it. The queues are systemwide identified
by a key. Each message contains a type which may be used as a priority
number. Since one process can listen only on one queue, all processes who
want to send a message to the main process have to use the queue with the
fixed key NON_REP_SERVER_KEY. The types are defined as follows:

24

aaac_send |<

3 IMPLEMENTATION

aaac_listen
aaac_recv

k:AAAC_SEND_KEY
t:command_type

24
k4

k4
24

L4
L4

2

,
L4
k4
k4
k4
ys

non_rep server

k :NON_REP_SERVER_KEY
t:2

non_rep_ listen k
~
~
~
~

L) ~
L] ~

_

non_rep_recv

Database

o tee el k :NON_REP_SERVER_KEY

t:3

-----> fork t: msg type
——Pp IPC MSG k: msg key

Figure 6: Structure of non_rep_s
- Type= 1: Error Message
- Type= 2: AAA-Comunication
- Type= 3: Relay Agent Registration
- Type= 5: Received Non-Repudiation Protocol Messages

The main process instead has to use different queues for sending messages
to its child processes. The process aaac_send uses a fixed key. The
non_rep_send processes use their process IDs (pids) as the keys.

The two processes aaac_send and aaac._recv are responsible for send-
ing and receiving of Diameter packets to and from the AAAC Server.
During the initial phase the aaac_recv process listens for the connection
from the AAAC Server. As soon as the connection established the process
creates the aaac_send process. If the connection breaks down the aaac_recv

process kills the aaac_send process and listens for a new connection from
the AAAC Server.

3.2 Non-Repudiation Server Software non_rep_s 25

Since the server has to be able to communicate with each Non-Repudiation
Relay Agent there’s a receiving and a sending process for each Relay
Agent. The non_rep_listen process waits for incoming connections from any
Relay Agent. After a Relay Agent have connected to the Server two new
non_rep_recv and non_rep_send processes are created. The non_rep_send
process opens a message queue for receiving messages from the main pro-
cess. As mentioned above the key of the message queue will be the process
id. To let the main process know which key was used the non_rep_send
process has to send a Relay Agent Registration message to the main process
containing the key. The main process identifies each Relay Agent with
their internal IPv6 address and uses a dynamic list with address-key pairs
as map.

If the main process has to send a message like a NAK to a user, it searches
for the current Access Router address the client is connected to and uses
the map to get the corresponding key. The current Access Router address
is stored in the per user entry of the list of active users. As soon as
the client registers or performs a handover the AAAC Server sends the
MT-Info message containing the address of the current Access Router. The
sending of the MT-Info message is a new function to the current MobyDick
AAAC Server. Besides, the current MobyDick AAAC Server is not aware
of handover.

3.2.1 The Database

To store the evidence tokens a mysql database [MYS] is used. It has to
store the Registration-Evidence-Token for each session a user begins and for
each Registration-Evidence-Token one or more Service-Evidence-Tokens.
For this there’re three tables needed, one per user, one per Registration-
Evidence-Token and one per Service-Evidence-Token.

Figure 7 shows the Entity Relationship(ER) diagram of the database
structure. The table users stores the public key of each user. The User_id
is the NAT and is used as the primary key of the table. The Certificate field
has type of BLOB and contains the public key or the certificate in PEM
[Ken93] format.

Apart from storing of the Registration-Evidence-Token the table
Reg_evidence_tokens also stores additional information like date, time
and the used cryptographic algorithms. The date and time are added by
the Non-Repudiation Server and gives no evidence. It is added to make
queries easier.

The algorithm identifiers may be provided by the Reg Info packet. If not,
default values are taken. The Sig_alg identifier refers to the algorithm used

26 3 IMPLEMENTATION

users

User_id (P)
Certificate

Reg_evidence_tokens

m evidence_no (P)
User_id (ref)
Session_id

Date

Service_evidence_tokens

T}me m Serv_evidence_no (P)
Sig_alg :

Lo Reg_evidence_no (ref)
Sig_hash_alg DSCP

Hash_alg

Main_hash
No_of_hashes
Latest_hash
Serv_signature

Reg_signature

Figure 7: ER diagram of database

to sign the message digest, the Sig_hash_alg refers to the hash algorithm
used to generate the message digest and the Hash_alg refers to the hash
algorithm used by the hash chains.

The evidence_no is the automatic incremented primary key of the table.
The User_id references the User_id of the users table in a 1 to m relationship.
The Session_id and the Reg_signature are provided by the Reg Info packet.

The third table Service_evidence_tokens contains the evidence tokens
for the service request and service usage. The Serv_evidence no field
constitutes the primary key of the table. It is unique within all tokens.
The Reg_evidence_no references the evidence_no of the Reg_evidence_tokens
table in a 1 to m relationship. The DSCP identifies the service type and is
provided by the Service Info and Service Usage packet. The Main_hash is
the H,, of the hash chain. The Service Usage packet provides always the
newest H,, which will be stored as the Latest_hash. The No_of_hashes field
is managed by the Non-Repudiation Server and counts the number (m —n)
of hashes received since the latest Main_hash.

3.3 Non-Repudiation Relay Agent Software
non rep_a

The Non-Repudiation Relay Agents task is to forward Non-Repudiation
packets from the client to the server and vice versa. The communication
between client and Relay Agent is based on UDP and the Relay Agent has
to send an ACK back to the client for each received packet. On the other
side the TCP is used between Relay Agent and server.

Since the communication between client and server is asynchronous,

3.4 Non-Repudiation Client Software non_rep_c 27

the Relay Agent has to listen on both sides at the same time. This can be
solved in a modular way by having more than one process. Figure 8 shows
the structure of the relay agent software.

'\ non_rep_server_recv

init S R ‘)4_11‘?_

non_rep_client_send

\ 4
LDP »| non_rep_client_recv

I

non_rep_server_send —LCPp.

ack_send

--=-=>» fork
—» TIPC MSG

Figure 8: Structure of non_rep_a

After the initial phase the main process waits for UDP packets from any
Client. As soon as a packet arrives it sends the acknowledgment packet
ACK back and sends an ITPC message to the non_rep_server_send process
which is responsible for forwarding the packet through the TCP channel
to the server. The third process is the non_rep_server_recv and waits
for messages from the server. During the initial phase of this process it
connects to the server and keeps the connection alive.

If the TCP connection to the server breaks down, the non_rep_server_recv
process kills its child process non_rep_server_send and tries to reconnect
to the server. As soon as the reconnection was successful it creates a new
non_rep_server_send. This killing and recreation of the child is necessary to
share the same TCP channel which is represented by the same socket.

3.4 Non-Repudiation Client Software non_rep_c

As described in chapter 2.2 “The Non-Repudiation Protocol” the client has
to create the evidence tokens and to send them to the Network. As soon as
the registration process is done the Registration-Evidence-Token has to be
transmitted. The current implementation starts to send the Service Info
and the Service Usage packets periodically after registration.

The Non-Repudiation Client consists of three parts: The main pro-
cess, the Non-Repudiation Protocol processes and the trigger processes.

28 3 IMPLEMENTATION

time trigger URP trigger

F

init | f I non_rep_recv
L]
‘ '
1

msg_recv ‘IV

‘ —> non_rep_send

msg_handle

E

-===3» fork
— IPC MSG

Figure 9: Structure of non_rep_c

Figure 9 depicts the structure of the client.

The Non-Repudiation Protocol processes are responsible for the com-
munication with the network. The non_rep_recv process waits for any UDP
packet from the current Access Router. There are two types of possible
packets the client may receive from the network: An ACK or a NAK. If
it is a NAK the packet will be send to the main process using a message.
Otherwise if it is an ACK the process forwards it to the non_rep_send
process. It is the task of the non_rep_send process to deliver the packets
from the clients device to the current Access Router. It’s responsible for
resending the packets if no corresponding ACK was received within the
timeout time. To accomplish this task the process uses signaling and a
dynamic list of pending ACKs. The use of a specific signaling mechanism
sigqueue allows to have more than one pending ACK. In this way the sending
process does not have to wait for the acknowledgment of the previous packet.

The trigger processes have to inform the main process about certain
events. The URP trigger process sends a message as soon as the URP
client software sends the new Session-ID which means that the registration

3.4 Non-Repudiation Client Software non_rep_c 29

was successful. The time trigger sends a messsage periodically to trigger
the Service Info and Service Usage packets. The third trigger process, not
implemented yet, is the meter trigger. It has to trigger the Service Info
and the Service Usage packets if the period is based on the amount of
transferred data. The reasons not to integrate the triggers into the main
process and to use signals are modularity and better extendability.

After the initial phase the main process waits for IPC messages from
any child process. The distinction of the messages is done by using different
message types. Since the messages from the non_rep_recv process are
always NAKSs they got the highest priority and use therefore a low number
as message type.

After receiving a message from the URP trigger the main process has to
send the Reg Info packet. At this time it also creates the time trigger
process and fills the hash chain for the first time. As soon as the Service
Usage packet containing the latest hash of the hash chain was sent, it refills
the chain with new hashes. This is done to not disturb the regularity of the
periodic sending.

The formats of the IPC messages and the used structures are presented in
appendix B.3.

4 Future Work

This section presents some open issues. It’s important to mention that the
provided implementation is a prototype of the Non-Repudiation Protocol.

Currently the Non-Repudiation Client stops its work as soon as a
NAK received. To improve the usability its necessary to add a better NAK
handling. Especially the receive of NAKs caused by misordered or lost
packets wouldn’t have always to cause a stop.

The sending of the Stop Service packet to the AAAC Server is cur-
rently an open issue. Stopping of the service usage as soon as a problem
arise wouldn’t be usable. Tests and measurements are necessary to get to
know when stopping of service usage is needed. A possible solution is to
wait a short time before stopping. If the problem is caused only by a delay
of a packet there would be no reason to stop.

One may keep in mind that a too friendly configuration may arise security
holes.

The current implementation doesn’t provide a period, which is based
on the amount of transferred data. To enable this feature the Non-
Repudiation Client and the Relay Agent would have to interoperate with
the meter software. The Non-Repudiation Server would have to collect the
metering informations from the Relay Agents.

Another open issues is code optimizations. Since there are many
users using services at the same time, the server has to be fast and may not
use too much memory per active user. The server should be well scalable
to the number of active user.

30

A Installation and Configuration

To use the software you need the source code of all components. The
configurations are done by changing the defines in the header files. To
compile the source code a simple

make

is needed. @ The Diameter Server, the CAAP Server and the Non-
Repudiation Server need the opendiameter library [ODM] to link. In the
following the configuration of each software package will be described. The
section A.4 presents an example usage.

A.1 The CAAP software

The CAAP is implemented by the caap_c and the pep6_dia software pack-
ages. Both are derived from the software provided by Christian Schlatter.
Appendix B of the report of Schlatters diploma thesis [Sch02] presents the
installation and usage of the software in detail.

Before using pep6_dia it is necessary to insert the pep6_kmod module into
the kernel. Starting the software with the help option -h shows the correct
syntax.

The key to get the message queue of the Non-Repudiation Client
may be changed in the caap_c code. The key is defined in the pep6_c.h
header file as URP_NRC_MSG_KEY.

There are two port numbers to be set for the pep6_dia software. First
the port the software is listening for CAAP Clients. This port number is
defined in pepb6_s.c as SERVER_PORT. The second port number to be set is
the port the Diameter Server is listening on. The define RAD_S_PORT sets
this port number.

A.2 The simple Diameter Server dia_dummy

To configure the simple Diameter Server you may change some define values
set in the dummy_s.h header file. Table 3 lists the defines, their default
value and their meaning.

The commandline usage is as follows:

./dummy_s -q cli_secret -u cli name -s rad_secret

31

32 A INSTALLATION AND CONFIGURATION

Table 3: Defines of dummy_s.h

Define Default \ Description

DEBUG 1 | Enable Debug output

SERVER_PORT 1812 | AAA Protocol Port
NON_REP_SERVER_PORT 1814 | Port of the Non-Repudiation Server
TIMEQUT 10 | Seconds waiting before reconnecting
NO_OF_RETRIES 10 | Maximal number of reconnection tries
NON_REP_SERVER_ADDR none | IPv6 address of Non-Repudiation Server

This allows the access for one client with the cli_secret password.
The rad_secret must be the same as the one used with the CAAP Server.

A.3 The Non-Repudiation Software

The Non-Repudiation Server non_rep_s: The header File
non_rep_structs.h contains defines which may be changed. The define
NON_REP_SERVER PORT sets the port number the server is waiting for con-
nection from the AAAC Server. The second port the server is listening on
is the NON_REP_PORT. The Non-Repudiation Relay Agents have to connect
to this second port.

The define MT_IPV6_ADDR sets the IPv6 address of the client’s Mobile
Terminal. This is needed to send a NAK to the client.

The three defines DEF_SIG_ALG DEF_SIG_HASH_ALG DEF_HASH_ALG set the
default cryptographic algorithms to be used for verifying the signatures,
creating the message digests and verifying the hash chains respectively.

To start the server type
./non_rep_s

The nrdbadmin software is a tool to manage the Non-Repudiation
database. The usage is:

./nrdbadmin command command args
At the moment only the add command is implemented. It adds a
new user with the given public key file to the database. The key file has to

be in the PEM format. The usage of the add command is:

./nrdbadmin add username pubkeyfile

A.3 The Non-Repudiation Software 33

The file DB_create.sql can be used to create the database and to add
the necessary tables. To do this use the following command:

mysql -hDBhost -uusername -ppassword < DB_create.sql

The Non-Repudiation Relay Agent non_rep_a: To configure the
Relay Agent the defines in the header file non_rep_a.h have to be changed.
The define NON_REP_PORT and NON_REP_SERVER_ADDR sets the port number
and the IPv6 address the Non-Repudiation Server is listening on.

The two defines TIMEOUT and NO_OF_RETRIES define the behaviour after the
connection to the Non-Repudiation Server breaks down. To start the server

type

./non_rep_s

The Non-Repudiation Client non_rep_c: Table 4 lists all defines
which may to be changed. The defines are located in the non_rep_c.h header
file.

Table 4: Defines of non_rep_c.h

’ Define Default ‘ Description
DEBUG 1 | Enable Debug output
NON_REP_PORT 1815 | Port the Relay Agent is listening on
NON_REP_AGENT_ADDR none | IPv6 address of Relay Agent
TIMEOUT 10 | Seconds waiting before reconnecting
NO_OF _RETRIES 10 | Maximal number of reconnection tries
PRIVKEY_FILE "privkey.pem” | Location of private key file
TRIGGER_TIME 10 | Period of sending evidence tokens
NO_OF _HASHES 10 | Number of hashes per hash chain
RANDOM_SIZE 16 | Size(words) of the random input r
URP_NRC_MSG_KEY 75 | Key to URP message queue

The define URP_NRC_MSG_KEY must have the same value as the define
URP_NRC_MSG_KEY of the caap_c client.

The software keygen, part of the non_rep_c package, provides the generation
of the public and private key files. To create the files pubkey.pem and

privkey.pem use:

./keygen

34 A INSTALLATION AND CONFIGURATION

A.4 Example configuration

This section presents an example configuration. As you can see in figure
10 the configuration consists of three computers. On the MT the CAAP
Client and the Non-Repudiation Client are installed. The ARC performs
the Access Router and has the pep6_dia and the non_rep_a softwares
installed. The third computer AAAC is used as the AAAC Server and the
Non-Repudiation Server. A mysql server on the ARC is used to store the
Non-Repudiation database.

RA RB
3
| | am
— < <
DB y_’ ? Access
Router
(ARC)
.3 [ethl] .3
X X £+
RC [eth0] .1
192.168.4.0 192.168.9.0
2% 1171.2 e
[x10] .2 <ir> [x11] 2000::4 2000::9
192.168.5.0 [x12] -2
2000::5
Mobil
A — Terminal
O e] (MT)
HC

Figure 10: MobyDick example Network

All of the hosts use a RedHat Linux 7.2 with a patched standart
kernel 2.4.16 installed. The patch [SWA] is needed to run both the
FreeS/WAN and Mobile IP as modules.

To run it all start the Non-Repudiation Server and the AAAC Server
on the AAAC machine:

./non_rep_s
./dummy_s ...

After it start the Relay Agent and the CAAP Server on the ARC
machine:

./non_rep_a
./pep6_dia ...

At last start the Non-Repudiation Client and the CAAP Client:

A.4 Example configuration 35

./non_rep_c
./caap_c ...

As soon as the CAAP Client is started the client performs a Regis-
tration and sends the Reg Info packet if the client got authorized. After
Registration the client sends the Service Info and Service Usage packets
with DSCP set to 1 periodically.

To stop it CTRL-C had to be hit for each entity in reverse order they
were started. The reverse order isn’t mandatory but prevents the servers to
block the ports for the TCP Time_Wait time.

B Structs and Protocol Formats

This appendix lists the most important structs and the formats of the Non-
Repudiation Protocol packets. There’re two types of structs important to
list. The structs used to transfer information using IPC messages and the
structs to store current information in dynamic lists.

B.1 Structs used by Messages

The reg_id struct is used by the most messages.

typedef struct reg.id {
char session_id [MAX_SESSID_SIZE];
char nai[MAX_NATI_SIZE];
int naisize ;
int sessidsize ;
} reg.id.-t;

The mt_infomsg is used by the dia_.dummy software between the
AR _handler loop process and the non_rep_send loop process.

typedef struct mt_info_msg {
long type; // Must be AAA_RECV_TYPE
regid_t reg.id;
char addr[INET6_ADDRSTRLEN];
int addrlen;
} mt_info_msg_t;

The Non-Repudiation Server uses three structs: The msgbuf to send Non-
Repudiation packets to the non_rep_send process, the reg relay to register
a non_rep_send process with the main process and the aaac_send_msg to
transfer information from the main process to the aaac_send process.

typedef struct msgbuf {

long type;

char text[MAX_MSG_DATAJ;
} msgbuf_t;

typedef struct reg relay{

long type; // Must be REG_.RELAY_TYPE
struct in6_addr ar_addr;// IPv6 address of Relay Agent used as identifier
int pid; // process id of send process used as message key

} reg.relay_t ;

36

B.2 Structs used by dynamic Lists 37

typedef struct aaac_send_msg {
long type; // GRANT_-ACCESS | GRANT_-SERVICE | STOP_SERVICE
regid_t reg.id;
int dscp; // not used if type = GRANT_-ACCESS

} aaac_send_msg_t;

The Non-Repudiation Client uses the msgbuf struct to transfer Non-
Repudiation packets between the processes. The Trigger processes use the
timetriggermsg and the urptriggermsg to trigger the main process. The
timetriggermsg doesn’t contain any information. The urptriggermsg de-
scribes the messages exchanged with the CAAP client.

typedef struct timetriggermsg {
long type;
char xtext;

} timetriggermsg_t;

typedef struct urptriggermsg {

long type;

int sessid_len ;

int nailen;

char sessid; // first byte of session id, nai is appended to the session id
} urptriggermsg_t;

B.2 Structs used by dynamic Lists

The Non-Repudiation Server manages two dynamic lists. The first stores
the corresponding message key for each Access Router. The structure of an
entity is defined by ar_key.

typedef struct ar_key {

struct in6_addr ar_addr;

int key;

ar_key *next; // pointer to the next element in list
} ar key_t;

The second list stores current information about each registered user. The
nai_info defines the structure of an entity.

The Non-Repudiation Client manages one list. The list contains senditem
entities and is used by the non_rep_send process to manage the sent but not
yet acknowledged packets.

38 B STRUCTS AND PROTOCOL FORMATS

typedef struct nai_info {
// stores the nai — ar_addr relation and other nai information
char session_id [SESSION_ID_SIZE];
char nailMAX_NAI_SIZE];
int nai_size ;
struct in6_addr ar_addr;
unsigned int latest_seqno;
uint8_t sig-alg;
uint8_t sig_hash_alg;
uint8_t hash_alg;
char xlatest_hash;

nai_info *next; // pointer to the next element in list
} nai_info_t ;

typedef struct senditem {
unsigned int seqno;
int no_of_timeouts;
senditem *next;
int msglen;
char msg[MAX_MSG_LEN];
} senditem_t;

B.3 Protocol Formats

This part of the appendix presents the formats of the Non-Repudiation pack-
ets. There’re three types of packets: The main packet type to send the Reg
Info, Service Info and Service Usage packets, the ACK packet type to send
the acknowledge message from the Access Router to the Mobile Terminal
and the NAK packet type which may be send by the Non-Repudiation Server
to the Mobile Terminal through the Access Router. In the following each
packet type will be described in detail.

The main packet type: Figure 11 shows the format of this type. It
consists of one header and one or more Type Length Value triples (TLVs).
Table 5 lists all current defined TLVs.

The header consists of a 4 bit msg type field, a 4 bit reserved field,
a 16 bit totallength field containing the length of the packet including the
header, a 32 bit sequence number field, a Session-ID size field, a NAI size
field and two fields of variable length containing the Session-ID and the
NAIL A TLV consists of a 8 bit type field, a 8 bit length field containing the
length of the value field in bytes and a value field of variable length. Figure
12 presents the TLV format.

B.3 Protocol Formats 39

0 4 8 16 24 55

msg

type | res totallength | sequence number |

sess-id length| NAI length | session id < 256 Bytes '

' | NAI < 256 Bytes N

' | TLV's '

Figure 11: Header Format of the Main Packet Type

TLV
0 8 16 -
type | length | value (max. 256_byt-e-s)_ _ :
Figure 12: TLV Format
Table 5: List of defined TLVs
’ Type Length ‘ Value ‘
1 - Signature Algorithm dependent Signature
2 - HASH Algorithm dependent Hash
3 - DSCP 1 byte DSCP
4 - SIG_ALG 1 | Algorithm code
5 - SIG.HASH_ALG 1 | Algorithm code
6 - HASH_ALG 1 | Algorithm code

The ACK packet type: The ACK is kept small and consists of a 4 bit
msg type field, a 4 bit reserved field and a sequence number field. The
sequence number contains the sequence number of the packet the ACK ac-
knowledges. Figure 13 presents the format of the ACK packet.

ACK:
0 4 8 39

ms
I tyge | res I sequence number |

Figure 13: ACK Packet Format

The NAK packet type: The NAK packet will be send by the Non-
Repudiation Server and has to be forwarded by the Relay Agent. Since the
Relay Agent isn’t able to get the IPv6 address out of the NAI, the NAK
packet contains the current IPv6 address of the client.

The format of the packet is shown in figure 14. The NAK packet consists of

40 B STRUCTS AND PROTOCOL FORMATS

a 4 bit message type field, a 4 bit reserved field, a 32 bit sequence number
field containing the sequence number of the packet which caused the NAK,
a 8 bit NAK code field, a 32 bit NAK info field and a 128 bit IPv6 field.
Table 6 lists all current defined NAK codes and the corresponding content
of the NAK info field.

NACK:
0 4 8 39
ved. | wes sequence number
code NAK info
IPv6 Addr of MT o _|
' J
- T
Figure 14: NAK Packet Format
Table 6: List of defined NAK codes
| Code | NAK Info Field
01 - BAD_NAI empty
02 - NO_KEY empty
03 - NO_REG empty
04 - BAD_SESSID_LEN Correct Session ID length
05 - BAD_SESSID empty
06 - EARLY_PACKET latest hash number
07 - MISSING_TLV empty
08 - BAD_SIGNATURE empty
09 - UNSUPPORTED_ALG Type of algorithm (1=sig,
2=sig_hash, 3=hash)
10 - UNSUPPORTED _MSG_TYPE | empty
11 - NAI.NOT_REGISTERED empty
12 - BAD_HASH empty

References

[1SO97]

ISTO1]

[IST02a]

[IST02b)]

[IST02(]

[IST02d]

[JD96]

[JD97]

[Ken93]

[MDP]

[MDT]

[MYS]

ISO/IEC 13888-1. Information Technology - Security techniques -
Non-repudiation - Part 1: General. ISO/IEC, 1997.

IST-2000-25394 Project Moby Dick. Moby Dick Framework Spec-
ification. Public Deliverable (except Appendix A and B), D0101,
November 2001.

IST-2000-25394 Project Moby Dick. AAAC Design. Public Deliv-
erable, D0401, January 2002.

IST-2000-25394 Project Moby Dick. Initial Design and Specifica-
tion of a Moby Dick Mobility Architecture. Internal circulation
within the project, D0301, April 2002.

IST-2000-25394 Project Moby Dick. Initial Design and Specifica-
tion of a Moby Dick QoS Architecture. Internal circulation within
the project, D0201, April 2002.

IST-2000-25394 Project Moby Dick. Moby Dick Signaling Flow
Specification and Implementation. Specification with respect to
Mobility, QoS and AAA. Task Internal Report, October 2002.

J.Zhou and D.Gollmann. A fair non-repudiation protocol. In IEFEFE
Symposium on Security and Privacy, Oakland, California, May
1996.

J.Zhou and D.Gollmann. Evidence and non-repudiation. Journal
of Network and Computer Applications, 20(3):267-281, July 1997.

S. Kent. Privacy Enhancement for Internet Electronic Mail. Part
II: Certificate-Based Key Management. RFC 1422, February 1993.

The official MobyDick project’s web page. http://www.ist-
mobydick.org.

MobyDick project’s web page maintained by ETH Ziirich. http:
//www.tik.ee.ethz.ch/ mobydick.

MySQL - Open Source implementation of a relational Database.
http://www.mysql.org.

[NBBB98] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of

[ODM]

the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers. RFC 2474, December 1998.

opendiameter - Open Source implementation of Diameter. http:
//www.opendiameter.org.

41

42 REFERENCES

[P.C02] P.Calhoun. Diameter Base Protocol. IETF work on progress,
draft-ietf-aaa-diameter-15.txt, October 2002.

[Sch02] Christian Schlatter. Development of a AAA System allowing con-
trolled Access to IPv6 Intranets. Diploma Thesis, D-ITET and
D-INFK, ETH, Ziirich, Feb 2002.

[SSL] OpenSSL - Open Source implementation of the SSL and TLS pro-
tocol. http://www.openssl.org.

[SWA] SWAMP - Secure Wide Area Mobility Package. http://www.cwc.
nus.edu.sg/ parijat/swamp/.

