
Institut für Technische Informatik Wintersemester 02/03

Author: Kilian Stillhard Reader: Erik Wilde

Diploma Thesis

A Compact Syntax for XML
Schema

Abstract

The XML Schema language offers a variety of useful features to the XML schema
designer. But due to its XML syntax and its inherent complexity, XML Schemas are
difficult to read and understand. To reduce XML Schema’s syntactical verboseness
and complexity, a new syntax has been defined, the XML Schema Compact Syntax
(XSCS). The compact syntax is designed for the human user, by reusing well-
known programming and schema language concepts. It reduces schema size about
60%. A parser for the compact syntax has been implemented to allow conversion
from compact syntax to XML Schema and back.

Zürich, 18. March 2003

Kilian Stillhard

Contents

1 Introduction 2
1.1 XML and XML Schema . 2
1.2 Project Motivation and Goals . 3
1.3 Solution approach . 3
1.4 Related work . 4

2 XML Schema 5
2.1 Introduction . 5
2.2 Using XML Schema . 6
2.3 Theoretical Background . 6
2.4 The Schema Components . 8

3 Compact Syntax Definition 10
3.1 Design Principles . 10
3.2 Schemas and Schema Options . 11

3.2.1 Schemas as a whole . 12
3.2.2 Schema Options . 13
3.2.3 Import/Include statements 14

3.3 Describing Structures . 15
3.3.1 Common Structures . 15
3.3.2 Elements . 16
3.3.3 Attributes . 18
3.3.4 Complex Types . 19

3.4 Describing Datatypes . 22
3.4.1 Simple Types . 22
3.4.2 Facets . 23

3.5 Other Features . 25
3.5.1 Model Groups . 25
3.5.2 Attribute Groups . 26
3.5.3 Wildcards . 27
3.5.4 Identity Constraints . 27
3.5.5 Notations . 29
3.5.6 Literals . 29

Contents iii

4 Implementation 32
4.1 Introduction . 32
4.2 Evaluation . 32

4.2.1 Compact Syntax to XML . 32
4.2.2 XML to Compact Syntax . 34

4.3 Implementation Design . 35
4.3.1 Overview . 35
4.3.2 The Parser . 35
4.3.3 Serializing the DOM tree . 38

5 Summary and Outlook 39
5.1 Summary . 39
5.2 Outlook . 40

A Complete Grammar 43
A.1 Structure . 43
A.2 Literals . 47

B User Manual 48
B.1 Software Installation . 48
B.2 Conversion . 48

C Schema Components 50

List of Figures

2.1 Example for element tree . 7
2.2 Schema Components (simplified) . 9

4.1 Conversion using an XSLT style-sheet 34
4.2 Conversion using a Java component 34
4.3 Implementation design overview . 36
4.4 Class structure of the parser . 36
4.5 Class structure of the serializer . 38

List of Tables

3.1 Namespace options . 13
3.2 Final and block default settings . 14
3.3 Form default settings . 14
3.4 Version specification . 14
3.5 Import, Include and Redefine . 15
3.6 Qualifiers . 16
3.7 Extensions . 16
3.8 Allowed qualifiers and extensions for element 17
3.9 Examples for element . 18
3.10 Allowed qualifiers and extensions for attribute 19
3.11 Examples for attribute . 19
3.12 Complex content in complex types 20
3.13 Definition of the occurrence specifiers 22
3.14 Complex type examples . 22
3.15 Simple Type examples . 24
3.16 Facet examples . 26
3.17 Group examples . 26
3.18 Attribute group examples . 27
3.19 Wildcard examples . 27
3.20 Wildcard options . 28
3.21 Identity constraint examples . 28
3.22 Notation example . 29
3.23 Reserved keywords . 30

4.1 Parser generation tools . 33

5.1 Schema size reduction . 39

C.1 General Schema Component Properties 50
C.2 Simple Type Definition Schema Component 50
C.3 Complex Type Definition Schema Component 51
C.4 Element Declaration Schema Component 51
C.5 Attribute Declaration Schema Component 51
C.6 Attribute Group Declaration Schema Component 52

List of Tables 1

C.7 Attribute Use Schema Component 52
C.8 Model Group Definition Schema Component 52
C.9 Model Group Schema Component 52
C.10 Particle Schema Component . 52
C.11 Wildcard Schema Component . 53
C.12 Identity Constraint Definition Schema Component 53
C.13 Notation Declaration Schema Component 53
C.14 Facet Schema Component . 53

Chapter 1

Introduction

1.1 XML and XML Schema

XML is a standardized syntax for markup languages defined by the W3C consor-
tium. XML documents are text documents containing special character sequences,
the markup, that describe the semantics of the documents’ content. XML docu-
ments have a tree structure where the nodes are elements that can contain text
and/or other elements. Attributes are attached to elements and provide further
information about the element and its contents.

The XML standard [1] however does not define any element or attribute names
nor any semantics. To represent a particular document type, an XML application
has to be designed by describing the set of allowed documents. This can be done
using prose text, however this approach becomes impractical when computer pro-
cessing or validation of the described documents is needed. More formal ways of
describing rules for allowed document content are suitable in this case.

Many schema definition languages have been proposed, all with different advan-
tages and drawbacks. The XML standard itself contains the DTD (Document Type
Definition) language [1], but many others standards like RELAX NG [2], Schema-
tron [3], DSD [4] etc. exist. Recently, the W3C has released the XML Schema
standard [5, 6, 7], thought to replace DTD’s with a more powerful and complete
tool to describe XML document classes.

DTD, XML Schema and most other schema languages belong to the grammar-
based schema language class. Schemas in such languages describe documents by
defining allowed element and attribute names, setting content models for the ele-
ments and imposing restrictions on the text contained in elements and attributes.
Schematron is a rule-based schema language, in which a schema is a collection of
constraints that the documents have to fulfill. Further schema language concepts
have been proposed.

1.2 Project Motivation and Goals 3

DTD’s were designed to describe weakly structured documents like books or
web pages. Such documents don’t need strict datatyping as they are interpreted
by human readers. However, XML documents are more and more used in appli-
cations like business integration and data exchange. Here, heavily structured and
strictly typed data is required as these documents are usually interpreted by com-
puters. DTD’s contain only rudimentary datatyping features, therefore new means
of schema definition were necessary.

XML Schema tries to fill the gaps left by DTD’s with a strong dataype concept,
object oriented schema development concepts, namespace awareness and many more
features designed to simplify the design of schemas.

1.2 Project Motivation and Goals

The goal of this diploma thesis is to develop a new, more compact and better
readable syntax for XML Schema and to make this syntax useful by implementing
the needed tools.

XML Schema comes with a bunch of modelling concepts, an advanced type
inheritance concept and a quite complete datatype library. This, as well as the use
of an XML syntax have lead to a complex and verbose language described in a very
formal and almost unreadable standard. To describe a simple element digit that
can contain the values 0 to 9, the following construct is needed:

<xs:element name="digit">
<xs:simpleType>
<xs:restriction base="xs:nonNegativeInteger">
<xs:maxInclusive value="9"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

Therefore, more real-life schemas tend to become very large and difficult to read.
Of course, XML schema documents are mostly interpreted by computers which
don’t care about verbosity, but to develop and debug schemas, a more dense and
readable representation could be useful.

1.3 Solution approach

The XML Schema language is defined on the abstract Schema Component model
which define a schema as a set of related components having certain properties. The
XML elements and attributes described in the W3C XML Schema standard are just
the standard representation of the Schema Components, but other representations

4 1 Introduction

could be used as well to describe an XML Schema instance. Therefore, an alternative
Syntax for XML Schema must be able to represent all possible and allowed sets of
Schema Components, but it does not have to reuse the structures used for the XML
representation of XML Schema.

Main design goals for the definition of the compact syntax were:

• Good readability and compactness

• Reuse of well-known programming and schema language concepts

• Full compatibility to the XML Schema standard

• Definition in EBNF notation [8] to make automatic parser generation possible

To make the compact syntax useful, tools supporting its use have to be imple-
mented. This includes mainly a software component that is able to validate XML
instance documents against a compact syntax schema. Furthermore, conversion
from the XML syntax to compact syntax and vice versa should also be possible.

The implementation of a validating parser would however go beyond the scope
of this thesis. But as there are some implementations of parsers validating against
an XML Schema, a schema in the compact syntax can first be converted to the
XML Schema syntax and then used for document validation.

1.4 Related work

For RELAX NG, another schema language for XML documents, a compact non-
XML syntax [9] has already been defined. The standard uses a BNF notation for
the syntax definition and contains a mapping to the XML version of RELAX NG,
which defines the semantics of the language.

Chapter 2

XML Schema

2.1 Introduction

The XML Schema standard consists of two parts, Structures [5] and Datatypes
[6]. Structures contains the parts of XML Schema that deal with the structure
of XML documents, basically describing the allowed element trees and attribute
sets. Datatypes contains the parts of XML Schema that impose restrictions on the
character sequences in text nodes and attribute values. Among others, the XML
Schema standard defines the following concepts:

Schema Components An abstract data model for the various components of a
schema. Components have properties, which are either of a specific datatype,
or components themselves. The standard further defines the constraints that
apply to these properties to form a valid component. An XML Schema is a
set of Schema Components satisfying all component constraints.

XML Representation A definition of the XML elements and attributes used to
represent Schema Components. Various constraints also apply to the XML
representation of XML Schema in order to guarantee that only valid schema
component sets can be described.

Validity assessment The rules used to assess validity of an XML Information
Set using a set of Schema Components. The XML Information Set [10] is a
standardized data model of XML documents.

Information set contributions Various augmentations added to the informa-
tion set of a validated instance document. The added information contains
for example a node’s validity, the type that has been used for validation, etc.
These augmentations are called Post-Schema-Validation Infoset (PSVI).

Validity assessment and the related PSVI are essential for the implementation
of validating parsers, but not as much for the representation of XML Schemas,

6 2 XML Schema

therefore there is no further discussion of these topics. The Schema Components
are described more in-depth in section 2.4, while the XML Representation is used
for the definition of the compact syntax in chapter 3.

2.2 Using XML Schema

To benefit from the features of document description that XML Schema offers, a
schema-validating parser is needed. This software reads an XML document, looks
for an associated schema and validates the document against this schema. There are
several parsers around that support XML Schema validation, for example Apache’s
Xerces [11], XSV [12] or MSXML [13].

Before an XML Schema can be used for validation, it should be checked whether
it is correct and satisfies all constraints defined in the W3C standard. Because there
are a high number of constraints, some quite intricately worded, the use of software
tools for schema checking is inevitable. Currently, the most stable and complete
implementation is SQC [14], but Xerces can also be used for schema checking.

2.3 Theoretical Background

XML documents form a tree of elements. Wellformed XML documents allow ele-
ments to have any number of child elements as well as any number of child text
nodes. Elements can further contain an unordered collection of attributes, which
consist of a name and a string value. Grammar-based schema languages are used
to describe:

1. A collection of elements names that can be used in a document.

2. The set of allowed attribute names for every element.

3. Allowed sequences of children elements for every element (the content model).

4. Allowed string values for text nodes and attribute values.

5. Additional constraints on values like uniqueness or relations to other values
(identity constraints).

In theory, such trees of elements are described by tree grammars [15]. Differ-
ent variants of tree grammars exist with different expressiveness concerning the set
of describable trees. In [16], a Taxonomy of XML Schema Languages using For-
mal Language Theory has been established comparing the most important Schema
Languages regarding their formal expressiveness. The following text summarizes
the XML Schema related chapters of this paper. Note that not all features of XML

2.3 Theoretical Background 7

<document>
 <pagesize form="A4" orientation="portrait"/>
 <paragraph font="Courier">
 This is just text, nothing but text.
 </paragraph>
 <paragraph>
 Some more nonsense
 </paragraph>
</document> document

pagesize paragraph paragraph

emThis is ...

but

 text. This is ...

font="Courier"form="A4"

orientation=".."

Figure 2.1: Example for element tree

Schema can be covered by this view, identity constraints for example can not be
expressed with a tree grammar.

A general form of a tree grammar is the Regular Tree Grammar which is defined
as a 4-tuple G = (N,T, S, P) where:

• N is a finite set of non-terminals.

• T is a finite set of terminals.

• S is a set of start symbols, where S ⊂ N .

• P is a finite set of production rules of the form n → t r, where n ∈ N , t ∈ T
and r is a regular expression over N , the content model.

• There are no two production rules having both the same non-terminal and
terminal.

When used for XML document trees, the terminals represent element names
while the non-terminals represent element types. The document element is the ter-
minal of one of the production rules for the start symbols. Attributes and XML
constructs like processing instructions are omitted in this view.

XML Schema implements a class of tree grammars referred to as Single-Type
Tree Grammar. A Single-Type Tree Grammar is a Regular Tree Grammar with the
following restrictions:

8 2 XML Schema

1. The content models of all production rules do not contain different non-
terminals to which the same terminal is associated in a production rule.

2. All start symbol non-terminals have different associated terminals.

In XML Schema, the non-terminals are the complex types, while the terminals
are the elements. Restriction one is the equivalent to Schema Component Con-
straint: Element Declarations Consistent, while the second restriction is explained
in Names and Symbol Spaces within the XML Schema standard.

Not all schema languages implement the same tree grammar class. DTD’s [1] for
example implement an even more restrictive Local Tree Grammar which requires
different terminals for different non-terminals in all production rules. DTD does not
differentiate between terminals and non-terminals as it does not have the concept
of element types. RELAX NG [2] however has the full expressiveness of a regular
tree grammar.

2.4 The Schema Components

Figure 2.2 shows a simplified view of the component structure of an XML Schema.
Main components within a schema are the following:

Element Declares an element name and associates it with a type.

Attribute Declares an attribute name and sets a datatype for its value.

Complex Type Defines an element type, using a content model that specifies
the set of allowed child element sequences as well as the allowed attributes.
Complex types can also specify mixed content models allowing both elements
and text nodes as children.

Simple Type Defines a datatype for text nodes and attribute values.

Additional Schema Components are needed for the definition of content models,
the Model Group and Particle components. They occur within Complex Type
components. When using the DTD-style notation for content models, for example:

(a | b? | c ∗ | (d , e+)?)

a Particle component corresponds to one element name including the occurence
specifiers like +, * and ?. Several Particles connected with compositors like , or |
and grouped by parentheses form a Model Group component.

The definition of Simple Types occurs through the use of Facets, which restrict
the set of allowed values in different dimensions. Existing Simple Types can also be

http://www.w3.org/TR/xmlschema-1/#cos-element-consistent
http://www.w3.org/TR/xmlschema-1/#cos-element-consistent
http://www.w3.org/TR/xmlschema-1/#concepts-nameSymbolSpaces

2.4 The Schema Components 9

Facet

Identity-Constraint Def.

Attribute Use
XML Schema

Simple Type
Definition

Complex Type
Definition

Element
Declaration

Attribute
Declaration

Identity-Constraint Def.

Simple Type Definition or
Complex Type Definition

Simple Type Definition

Simple Type Definition or
Complex Type Definition

Simple Type Definition or
Particle

Attribute Uses

Content type

Base Type Definition

Simple Type Definition
Base Type Definition

Attribute Declaration

Facet

Type Definition

Figure 2.2: Schema Components (simplified)

combined using lists or unions. Some Facets impose lexical restrictions on datatypes,
regarding values as sequences of characters. Others restrict value spaces, regarding
values as instance of a certain datatype. For example the Pattern facet restricts
values on a lexical basis using a regular expression, while the MinInclusive facet
restricts values on a value basis using a numeric lower border.

Some other Schema Components exist for supportive purposes. The Group
component allows the definition of reusable content models, while the Attribute-
Group component can be used to define collections of attributes. Identity Con-
straints can be attached to elements to set integrity constraints. There is also
support for the DTD legacy Notation.

Chapter 3

Compact Syntax Definition

This chapter describes the compact syntax for XML Schema. It starts with a gen-
eral overview of the syntax design, followed by a more detailed description of the
compact syntax features.

The compact syntax is defined using the XML representation of XML Schema.
As the XML standard itself uses the Schema Component model to define XML
Schema, it would be an obvious approach to define the compact syntax directly
using the Schema Components. Structurally, however, the compact syntax is much
closer to the XML representation, which makes the definition of the compact syntax
much easier. Furthermore, the definition of the compact syntax is also useful for
XML Schema users that don’t know the Schema Components model (which is the
vast majority of XML Schema users).

3.1 Design Principles

An XML schema is basically a collection of Schema Components. These compo-
nents can refer to other components and they can contain components themselves.
The Schema Components can be divided into several categories. A whole schema is
described by the Schema component. This component contains the top-level com-
ponents. There are several components that can occur at the top-level of a schema.
Common to all of them is that they are named, unlike certain other components
that cannot appear at top-level. The top-level components are the following:

Element, Attribute, Simple Type, Complex Type, Model Group Defini-
tion, Attribute Group, Notation

Note that the Complex Type and the Simple Type components can also
appear unnamed (anonymous) inside other schema components. There are some
more components which only occur within other components, the inner components:

3.2 Schemas and Schema Options 11

Model Group, Particle, Wildcard, Identity Constraint, Attribute Use,
Facet (different Facet components exist).

The main design principle was to represent the top-level components using a
regular syntax of the form:

options component-type name extensions { inner components };

Options simply set or unset a specific component property. They are used for
boolean and fixed-value list properties. In the XML representation of XML Schema1,
they mostly appear as attributes with a boolean or enumerated datatype. Exten-
sions represent properties with a string, name, or reference datatype. In XML
Schema, they appear as attributes with a name or string datatype. The inner
components are the equivalent to component reference properties in the Schema
Components and mostly appear as nested elements in XML Schema.

Some of the non-top-level components use the same syntax, whereas others use
non-regular constructs. However, the overall structure is always the same: A schema
is made up of a list of components, which can contain blocks of inner components.
A block is delimited by curly brackets. Components can optionally be terminated
with a semicolon.

Another main design goal was to reuse well-known syntactical constructs to
simplify the use of the compact syntax for new users. The DTD content model
notation is certainly the best example. This notation in regular expression style
is well-known and concise for the description of element content. Other notation
reuses include the interval notation used for occurrence specifiers, and the length
and range facets. Instead of using two elements or attributes as in XML Schema, it
is much clearer and shorter to use a mathematical notation for intervals.

Some syntax elements were borrowed from programming languages like C or
Java. The grouping of multiple components with curly brackets is an example, as
well as the options and extensions constructs. Finally, the syntax for the pattern
facet was inspired by the scripting language Perl.

3.2 Schemas and Schema Options

The following grammar definition for the compact syntax uses the following con-
ventions: Non-Terminals appear italic and terminals are in bold-face. Optional
components are enclosed in square brackets [], a star * is used for zero or more rep-
etitions and the plus + denotes one or more repetitions. The vertical bar | separates
alternatives. Parentheses are used for grouping.

1In the following text, the term XML Schema is mainly used as a synonym for the XML syntax
of XML Schema, while XSCS or compact syntax are used for the newly defined compact syntax.

12 3 Compact Syntax Definition

3.2.1 Schemas as a whole

schema = [schemaOption] ∗ [schemaInclude] ∗
[schemaBody] +

(3.1)
schemaOption = targetNamespace

| namespace

| blockF inalDefault

| elementDefault

| attributeDefault

| version (3.2)

schemaInclude = include

| import

| redefine (3.3)

schemaBody = simpleType

| complexType

| element

| attribute

| group

| attributeGroup

| notation (3.4)

The schema production is the start symbol for the compact syntax. A sequence
of tokens matching this production corresponds to an XML file having xs:schema
as its document element.

SchemaOptions are used to set several attributes of the xs:schema element,
while the productions in schemaInclude and schemaBody correspond to the XML
Schema elements with the same names.

Annotations are documentation comments using the syntax /* text... */ and
can appear between every token. Depending on their position, they are mapped to a
component. The generated xs:annotation elements contain a xs:documentation
element containing the annotation text as a text node. XML markup inside anno-
tations or custom attribute values are not supported by the compact syntax.

Annotations appearing before or inside schemaOption productions or after the
last schemaBody production will become direct children of the xs:schema element.
All other annotations are mapped to the current or next following component.

3.2 Schemas and Schema Options 13

Some XML-specific constructs that can appear in XML Schema documents do
not have an equivalent in the compact syntax. XML comments, an internal DTD
subset or processing instructions will be lost when the XML syntax is translated to
the compact syntax.

3.2.2 Schema Options

targetNamespace = targetNamespace URI [;] (3.5)
namespace = namespace [Name] URI [;] (3.6)

blockF inalDefault = default qualifier [, qualifier] ∗ [;] (3.7)
elementDefault = elementDefault qualifier [;] (3.8)

attributeDefault = attributeDefault qualifier [;] (3.9)
version = version String [;] (3.10)

All schema options are used to set attribute values of the xs:schema element.
They do not represent schema components themselves, but they are used as default
values for some component properties.

Compact Syntax XML Syntax
targetNamespace URI targetNamespace="URI"

namespace Name URI xmlns:Name="URI"
namespace URI xmlns="URI"

Table 3.1: Namespace options

The targetNamespace option (table 3.1) sets the target namespace of the schema.
By default, the target namespace will also be declared as the default namespace
of the schema, but this can be overridden by explicitly specifying a prefix for the
target namespace using the namespace option.

Namespace options (table 3.1) can be used to declare additional namespace
prefixes. As default, the XML Schema namespace is mapped to the prefix xs, this
can be changed by defining another prefix for the XML Schema namespace. Note
that with the compact syntax, the only possibility to declare namespace prefixes is
within the xs:schema element. All prefixes used throughout the schema must be
declared on the top-level. It is an error for a component name or reference, a type
reference or an XPath to contain QNames with undeclared prefixes.

The default option (table 3.2) sets values for the finalDefault and blockDefault
attributes. Any combination of values is allowed, but if final or block is specified,
the #all value will always be generated.

14 3 Compact Syntax Definition

Compact Syntax XML Syntax
default final finalDefault="#all"
default final-extension finalDefault="extension"
default final-restriction finalDefault="restriction"

default block blockDefault="#all"
default block-extension blockDefault="extension"
default block-restriction blockDefault="restriction"

multiple values can be specified comma-separated

Table 3.2: Final and block default settings

Compact Syntax XML Syntax
elementDefault qualified elementFormDefault="qualified"
elementDefault unqualified nothing
attributeDefault qualified attributeFormDefault="qualified"
attributeDefault unqualified nothing

Table 3.3: Form default settings

The elementDefault and attributeDefault options (table 3.3) are used to con-
trol the target namespace property of non-global element and attribute compo-
nents. Applicable values are qualified and unqualified. They correspond to the
attributeFormDefault and elementFormDefault attributes in XML Schema. Un-
like in XML Schema, elementDefault defaults to qualified while attributeDefault
defaults to unqualified. The defaults have been changed due to the fact that most
schema editors use these settings.

Compact Syntax XML Syntax
version String version="String"

Table 3.4: Version specification

A version option (table 3.4) can be used with any string as its value. This is for
user convenience only and corresponds to the version attribute in XML Schema.

3.2.3 Import/Include statements

include = include URI [;] (3.11)
import = import URI namespace URI [;] (3.12)

3.3 Describing Structures 15

redefine = redefine URI [{ [simpleType | complexType

| group | attributeGroup] ∗ }] [;] (3.13)

The import, include and redefine statements (table 3.5) correspond to the ele-
ments with the same name in XML Schema. Include simply includes another schema
that uses the same (or no) target namespace. Redefine does the same, except that
simple types, complex types, groups and attribute groups can be redefined inside the
redefine component. Import is used to compose schemas with different namespaces.

Compact Syntax XML Syntax
include URI <include schemaLocation="URI"/>
import URI namespace URI <import schemaLocation="URI"

namespace="URI"/>
redefine URI { redefinitions } <redefine schemaLocation="URI">

redefinitions </redefine>

Table 3.5: Import, Include and Redefine

3.3 Describing Structures

3.3.1 Common Structures

qualifier = final | final-restriction | final-extension | final-list

| final-union | block | block-substitution

| block-extension | block-restriction

| qualified | unqualified

| abstract | nillable

| required | optional | prohibited (3.14)

derivation = extends Name | restricts Name (3.15)

substitution = substitutes Name (3.16)

fixedDefault = = String | <= String (3.17)

Qualifiers (table 3.6) set the values of attributes that are common to some
schema components. Multiple final and block qualifiers can be specified with one

16 3 Compact Syntax Definition

Compact Syntax XML Syntax
final final="#all"
final-extension etc. final="extension" etc.
block block="#all"
block-substitution etc. block="substitution" etc.
qualified form="qualified"
unqualified form="unqualified"

abstract abstract="true"

nillable nillable="true"

required use="required"
optional use="optional"
prohibited use="prohibited"

Table 3.6: Qualifiers

component, but qualified and unqualified as well as required, optional and prohibited
exclude each other.

The derivation, substitution and fixedDefault extensions (table 3.7) set the val-
ues of some attributes with name or string values. The derivation extension further
influences the derivation method used for a complex type derivation.

Compact Syntax XML Syntax
extends Name <extension base="Name"> ...

</extension>
restricts Name <restriction base="Name"> ...

</restriction>

substitutes Name substitutionGroup="Name"

= String fixed="String"
<= String default="String"

Table 3.7: Extensions

3.3.2 Elements

element = [qualifier] ∗ element Name

[substitution | derivation] ∗ [elementContent]
[fixedDefault] [;] (3.18)

3.3 Describing Structures 17

elementShort = Name [{ Name }] (3.19)

elementContent = { [anonSimpleType | anonComplexType

| key | keyref | unique] ∗ } (3.20)

An element component can appear either at top-level or within another element
or complexType component. When used inside another component, its name must
be referred from the contentModel of this component.

qualifiers
global final, final-extension, final-restriction, block, block-

extension, block-restriction, block-substitution, nill-
able, abstract

local block, block-extension, block-restriction, block-
substitution, nillable, qualified, unqualified
extensions

global substitution, derivation
local derivation, fixedDefault

Table 3.8: Allowed qualifiers and extensions for element

To set the type of the declared element, either a reference to an existing type,
or an anonymous simple or complex type can be used. Considering the inner com-
ponents of the element component, these alternatives are chosen as follows:

• If there is a derivation extension, an inner contentModel, inner elements
or inner attributes, then an anonymous complex type is constructed. The
xs:element element will therefore contain an xs:complexType element that
is built using the rules described in section 3.3.4.

• Else if there is an inner restriction with facets, union or list component, then
an anonymous simple type is built.

• Else if there is an inner restriction component without any facets, the base
name of the restriction will be used as the value of the type attribute of
xs:element.

• Else if there is nothing at all, the element will have neither a type attribute
nor an inner type definition.

The elementShort component is a shortcut for element which can only appear
within contentModel components (see 3.3.4). It consists of the element name and
an optional second name in curly braces which defines a type reference. When no

18 3 Compact Syntax Definition

type reference is present, the given element name is interpreted as a reference to
an existing local or global element declaration. With a type reference, an element
using the given name and type is defined.

Compact Syntax XML Syntax
element example <element name="example"/>
element example { xs:string } <element name="example"

type="xs:string"/>
element test { xs:int { [1,5] } } <element name="test">

<simpleType>
<restriction base="xs:int">
<minInclusive value="1"/>
<maxInclusive value="5"/>
</restriction>
</simpleType>
</element>

element test2 {
(a{xs:string}, b{xs:integer})*
}

<element name="test2">
<complexType>
<sequence maxOccurs="unbounded">
<element name="a"

type="xs:string"/>
<element name="b"

type="xs:integer"/>
</sequence>
</complexType>
</element>

Table 3.9: Examples for element

3.3.3 Attributes

attribute = [qualifier] ∗ attribute Name

[attributeContent]? [fixedDefault] [;] (3.21)

attributeContent = { [anonSimpleType] } (3.22)

The attribute component can appear at top-level or inside element, complexType,
or attributeGroup components. An xs:attribute element will be generated, either
with a type attribute, or an anonymous xs:simpleType child. If there is no inner

3.3 Describing Structures 19

qualifiers
global none
local qualified, unqualified, prohibited, required, optional

extensions
global fixedDefault
local fixedDefault

Table 3.10: Allowed qualifiers and extensions for attribute

type definition or reference, an attribute reference will be created for local attribute
components.

The type alternative is chosen when the attribute component contains a restric-
tion component without any facets. If there is a restriction component with facets,
a list or union component, an anonymous simple type will be declared.

Compact Syntax XML Syntax
attribute test { xs:string } <attribute name="test"

type="xs:string"/>
element ex {
xs:integer; attribute foo
}

<element name="ex">
<complexType>
<simpleContent>
<extension base="xs:integer">
<attribute ref="foo"/>

</extension>
</simpleContent>

</complexType>
</element>

Table 3.11: Examples for attribute

3.3.4 Complex Types

complexType = [qualifier] ∗ complexType Name

[derivation] [complexTypeContent] [;](3.23)

complexTypeContent = { [anonComplexType | anonSimpleType] ∗ }
(3.24)

anonComplexType = contentModel | element | attribute

| attributeWC | attributeGroup (3.25)

20 3 Compact Syntax Definition

The complexType component can appear only at top level. Complex types are
declared using a collection of inner components, which will all be used to construct
a xs:complexType element. These components can also show up in the element
component to define an anonymous complex type.

To define complex types with simple content, the restriction component has to
be used. A derivation extension must not be used, as the base type for the restriction
or extension is set by the restriction component. A restriction component with
facets defines a restriction of the given base type. In XML Schema, this corresponds
to the xs:restriction element. When no facets are present, the given name is
interpreted as the base type name for an extension (xs:extension in XML Schema).
To enforce a restriction even if there are no facets, an empty pair of curly brackets
has to be added after the base name.

When a contentModel component is present, or neither a contentModel nor
a restriction is present, complex content will be chosen for the xs:complexType
element. If a derivation extension is given, the produced complex type will be a
restriction or extension of the given base type. These three cases are displayed in
table 3.12.

Compact Syntax XML Syntax
complexType ct1
{ modelGroup attributes }

<complexType name="ct1">
modelGroup
attributes

</complexType>
complexType ct2 extends ct1
{ modelGroup attributes }

<complexType name="ct2">
<complexContent>
<extension base="ct1">
modelGroup
attributes

</extension>
</complexContent>

</complexType>
complexType ct2 restricts ct1
{ modelGroup attributes }

<complexType name="ct2">
<complexContent>
<restriction base="ct1">
modelGroup
attributes

</restriction>
</complexContent>

</complexType>

Table 3.12: Complex content in complex types

3.3 Describing Structures 21

Any attribute, attributeGroup or attributeWC components will be added inside
the xs:restriction, xs:extension or xs:complexType elements as necessary.

contentModel = (empty

| [mixed] (modelGroup | groupRef)
[occurrenceSpec]) [;] (3.26)

occurrenceSpec = ? | * | + | posIntRange (3.27)

modelGroup = ([particle [compositor particle]∗] [compositor])
(3.28)

compositor = , | | | & (3.29)

particle = (modelGroup | elementShort | groupRef | { element }
| { elementWC }) [occurrenceSpec] (3.30)

A contentModel component is used to define valid element sequences. It can be
either empty, or consist of a modelGroup or groupRef. If it is empty, no corresponding
XML elements will be generated. A groupRef creates an xs:group element with
the ref attribute set. The groupRef or modelGroup can be preceded by the mixed
keyword to allow text nodes between child elements.

A modelGroup stands either for an xs:sequence, xs:choice, or xs:all element
containing element declarations or references, group references, model groups, or
element wildcards. The compositors are , for sequence, | for choice, and & for all.
ModelGroups that do not contain a compositor (i.e., modelGroups with zero or one
particle) default to xs:sequence. Additional compositors can be added in these
cases to force xs:choice or xs:all.

A particle denotes one part of a content model, it can be either a choice or
sequence model group, an element or group reference, or a local element declaration
or element wildcard. Optionally, an occurence specifier (table 3.13) can follow to
set the number of allowed repetitions of the particle. It defaults to one and exactly
one repetition.

An elementShort particle can be used to refer or declare an element. If only a
name is given, a reference to a locally declared or global element is assumed. An
additional type name in curly brackets declares an element of this type. It is also
possible to put full element declarations inside the content model, simply add curly
braces around the element declaration component. To create a group reference, an
@ char has to be added before the group name. Element wildcards (see 3.5.3) are
defined similar to inline elements using curly brackets.

22 3 Compact Syntax Definition

Compact Syntax XML Syntax
* minOccurs="0"

maxOccurs="unbounded"
? minOccurs="0"
+ maxOccurs="unbounded"
[n] minOccurs="n" maxOccurs="n"
[n, m] minOccurs="n" maxOccurs="m"
[n,] minOccurs="n"

maxOccurs="unbounded"
[,m] maxOccurs="m"

Table 3.13: Definition of the occurrence specifiers

Element declarations can also be added inside the complexType component.
When constructing the content model, references to these elements will be replaced
with the appropriate declaration. References that have no corresponding local ele-
ment declaration will be treated as references to global elements.

Compact Syntax XML Syntax
complexType ct3 { (a, b)+;
element a { string }
element b { integer }
}

<complexType name="ct3">
<sequence maxOccurs="unbounded">
<element name="a" type="string"/>
<element name="b" type="integer"/>

</sequence>
</complexType>

complexType ct4 { @grp+
attribute test { token }
}

<complexType name="ct4">
<group ref="grp" maxOccurs="unbounded"/>
<attribute name="test" type="token"/>

</complexType>

Table 3.14: Complex type examples

3.4 Describing Datatypes

3.4.1 Simple Types

simpleType = [qualifier] ∗ simpleType Name

[simpleTypeContent] [;] (3.31)

3.4 Describing Datatypes 23

simpleTypeContent = { [anonSimpleType] } (3.32)

anonSimpleType = restriction | union | list (3.33)

A simpleType component can appear only at top-level. Anonymous simple types
however can appear also inside attributes, elements, and complex types.

restriction = (Name [{ [facet] ∗ }]
| simpleType { anonSimpleType } { [facet] ∗ }) [;]

(3.34)
union = union { [anonSimpleType] + } [;] (3.35)

list = list { anonSimpleType } [;] (3.36)

An anonymous simple type can be defined using either a restriction, list or
union component. These components can themselves contain anonymous simple
type definitions except for the first alternative of restriction.

The restriction component is the counterpart of the xs:restriction element.
The leading Name corresponds to the base attribute, unless the second variant
with an embedded simple type is used. In that case, the xs:restriction element
contains an xs:simpleType element defining the base of the restriction. Any facets
become child elements of the xs:restriction element. The case where only a
name but no facets are given is treated special in some contexts, but not inside a
simpleType component.

Union and list correspond to the XML Schema elements with the same name.
Unions and lists contain simple type definitions which are either added to the
memberTypes or itemType attributes, or attached as xs:simpleType child elements.
When only a name is given (a restriction component without facets), it is interpreted
as a type reference, otherwise a type definition is assumed.

3.4.2 Facets

fixed = fixed | fixed-minimum | fixed-maximum

(3.37)
facet = [fixed] ∗ (lengthFacet | rangeFacet

| patternFacet | enumFacet | whiteSpaceFacet

| totalDigitsFacet | fractionDigitsFacet) [;]

24 3 Compact Syntax Definition

Compact Syntax XML Syntax
simpleType int { integer } <simpleType name="int">

<restriction base="integer/>
</simpleType>

simpleType digit {
nonNegativeInteger { [,9] }
}

<simpleType name="digit">
<restriction base="nonNegativeInteger">
<maxInclusive value="9"/>

</restriction>
</simpleType>

simpleType intu {
union { integer;
token { ”undefined” } }
}

<simpleType name="intu">
<union memberTypes="integer">
<simpleType>
<restriction base="token">
<enumeration value="undefined"/>

</restriction>
</simpleType>

</union>
</simpleType>

Table 3.15: Simple Type examples

(3.38)
lengthFacet = length = (PosInt | posIntRange) (3.39)
rangeFacet = numRange (3.40)

patternFacet = / Pattern / (3.41)
enumFacet = String [, String] ∗ (3.42)

whiteSpaceFacet = whiteSpace = (preserve | collapse | replace)
(3.43)

totalDigitsFacet = totalDigits = PosInt (3.44)
fractionDigitsFacet = fractionDigits = PosInt (3.45)

posIntRange = [(PosInt [, PosInt] | , PosInt)] (3.46)
numRange = ([| () (Number [, Number] | , Number) (] |))

(3.47)

Facets are used to restrict simple types in various dimensions. Some facets can
be fixed using the fixed keyword which prohibits further modifications to the facet
in type restrictions. For the lengthFacet and the rangeFacet which can collect two
XML Schema facets specifiying a lower and upper bounds, also the keywords fixed-

3.5 Other Features 25

minimum and fixed-maximum exist.

The lengthFacet constrains the length of several datatypes. It can either be set to
a fixed value, or a range of values can be given. For a fixed value, a xs:length facet
is generated, while for the range variant, either xs:minLength or xs:maxLength
or both are used. This facet can be fixed using the fixed keyword, which sets the
fixed attribute of all generated facet elements to true. Fixed-minimum, and fixed-
maximum can be used in combination with a range to only fix minimum or maxi-
mum.

The rangeFacet is the counterpart to the xs:minInclusive, xs:minExclusive,
xs:maxInclusive, and max:Exclusive elements. Ranges have to be defined with
mathematical interval notation using parentheses () for exclusive and brackets [] for
inclusive bounds. The range facet can be applied for all ordered datatypes (see 3.64).
The fixed, fixed-minimum and fixed-maximum keywords can be applied similar to
the length facet.

Most datatypes can also be required to match a regular expression using the
patternFacet. Regular expressions must be enclosed in slashes /. Pattern facets
(xs:pattern in XML Schema) cannot be fixed.

To restrict a datatype to a list of enumerated values, the enumFacet has to
be used. A comma-separated list of quoted values has to be specified. For every
value specified, one xs:enumeration element will be generated. Enumeration facets
cannot be fixed.

WhiteSpaceFacets control the normalization of string values. The three options
preserve, collapse, and replace are available. A corresponding xs:whiteSpace el-
ement is generated. Whitespace facets can be fixed, but fixed-minimum or fixed-
maximum may not be used.

TotalDigitsFacets and FractionDigitsFacets control the number of digits that
datatypes derived from xs:decimal can have. A non-negative integer has to be
specified, and the optional fixed keyword can be used. They correspond to the
xs:totalDigits and xs:fractionDigits elements.

3.5 Other Features

3.5.1 Model Groups

group = group Name [{ [contentModel | element] ∗ }] [;](3.48)

groupRef = @ Name (3.49)

The group component is used to define reusable content models. It can be used
only at top-level. Groups can be referred to from the content model of a complex

26 3 Compact Syntax Definition

Compact Syntax XML Syntax
length=8 <length value="8"/>
length=[3,6] <minLength value="3"/>

<maxLength value="8"/>
length=[,9] <maxLength value="9"/>

[2,200] <minInclusive value="2"/>
<maxInclusive value="200"/>

(2,] <minExclusive value="2"/>
[,2000-12-02) <maxExclusive value="2000-12-02"/>

/.*test.*/ <pattern value=".*test.*"/>

”A3”,”A4”,”A5” <enumeration value="A3"/>
<enumeration value="A4"/>
<enumeration value="A5"/>

whiteSpace=preserve <whiteSpace value="preserve"/>

totalDigits=8 <totalDigits value="8"/>
fractionDigits=0 <fractionDigits value="0"/>

Table 3.16: Facet examples

type using the groupRef component. A group that does not contain a content
model implicitly contains an empty sequence model group. The corresponding XML
Schema constructs are:

Compact Syntax XML Syntax
group name { modelGroup } <group name="name">

modelGroup
</group>

@grp <group ref="grp"/>
group name <group name="name">

<sequence/>
</group>

Table 3.17: Group examples

3.5.2 Attribute Groups

attributeGroup = attributeGroup Name [{ [attribute | attributeWC

| attributeGroup] + }][;] (3.50)

3.5 Other Features 27

AttributeGroups define reusable sets of attributes for the use within complex
type definitions. When the attributeGroup appears at top-level, it is interpreted
as an attribute group definition, inside complex types or other attribute groups a
reference is generated. The corresponding XML Schema constructs are:

Compact Syntax XML Syntax
attributeGroup name
{ attributes }

<attributeGroup name="name">
attributes...

</attributeGroup>
attributeGroup ref <attributeGroup ref="ref"/>

Table 3.18: Attribute group examples

3.5.3 Wildcards

process = lax | strict | skip (3.51)
wildcardNSDecl = ##targetNS | ##other | ##local | URI (3.52)

elementWC = [process] any [namespace

wildcardNSDecl [, wildcardNSDecl]∗] [;] (3.53)
attributeWC = [process] anyAttribute [namespace

wildcardNSDecl [, wildcardNSDecl]∗] [;] (3.54)

Wildcards (table 3.20) define placeholders for arbitrary elements or attributes.
Element wildcards (elementWC) must be used within a contentModel, they cannot
be declared outside the content model like elements. Attribute wildcards are used in
complex types or attribute groups. In XML, the following constructs are generated:

Compact Syntax XML Syntax
any <any/>
anyAttribute <anyAttribute/>

Table 3.19: Wildcard examples

3.5.4 Identity Constraints

idConstrF ield = field XPath [, XPath] ∗ in XPath (3.55)
key = key Name idConstrF ield [;] (3.56)

28 3 Compact Syntax Definition

Compact Syntax XML Syntax
lax process="lax"
skip process="skip"
strict process="strict"

namespace ##targetNS namespace="##targetNamespace"
namespace ##other namespace="##other"
namespace ##local namespace="##local"
namespace URI1, URI2 namespace="URI1 URI2"

Table 3.20: Wildcard options

keyref = keyref Name

refers Name idConstrF ield [;] (3.57)
unique = unique Name idConstrF ield [;] (3.58)

Identity constraints can be used to define consistency constraints similar to the
ID/IDREF(S) feature in DTDs. Keys can be used to define values that must be
unique within the document and that have to exist, while unique constraints only
require uniqueness. Keyrefs define values that must refer to an existing key value.
XPaths are used to define which values — either attribute values or text nodes —
are used for identity constraints. An additional XPath defines the location of these
values.

Compact Syntax XML Syntax
key key1
field XPath1 in XPath2

<key name="key1">
<field xpath="XPath1"/>
<selector xpath="XPath2"/>

</key>
keyref ref1 refers key1
field XPath3 in XPath2

<keyref name="ref1" refer="key1">
<field xpath="XPath3"/>
<selector xpath="XPath2"/>

</keyref>
unique un1
field XPath4, XPath5
in XPath2

<unique name="un1">
<field xpath="XPath4"/>
<field xpath="XPath5"/>
<selector xpath="XPath2"/>

</unique>

Table 3.21: Identity constraint examples

3.5 Other Features 29

3.5.5 Notations

notation = notation Name public String system URI [;] (3.59)

Notations are supported for DTD backwards compatibility. A notation defini-
tion consists of a name, a public and a system identifier.

Compact Syntax XML Syntax
notation not1 public ”pubID”
system ”sysURI”

<notation name="not1"
public="pubID" system="sysURI"/>

Table 3.22: Notation example

3.5.6 Literals

Name = NCName | QName | \ NCName (3.60)

A Name is either a QName or NCName as defined in the XML Namespace
Standard [17]. For names that are equal to any of the keywords (see table 3.23), a
preceding backslash has to be added.

String = ” [[∧ ” \ <nl> <cr> <ff>] | \” | \\ | \n | \r | \f | \t] ”

(3.61)

Strings are enclosed in double quotes. Quotes and backslashes inside the string
must be escaped using a backslash. The XML special characters < and & can be
used literally. For newline, carriage return, form feed and tabulator, the well-known
escapes can be used.

XPath = ” Selector ” (3.62)

The XPaths used in XML Schema are a subset of the XPath specification [18]
defined in the XML Schema standard as the Selector production. XPaths must be
enclosed in double quotes.

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-QName
http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-QName
http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/xmlschema-1/#c-selector-xpath
http://www.w3.org/TR/xmlschema-1/#c-selector-xpath

30 3 Compact Syntax Definition

targetNamespace attributeGroup nillable empty
namespace anyAttribute qualified fixed
default any unqualified fixed-minimum
elementDefault notation final fixed-maximum
attributeDefault key final-extension lax
version keyref final-restriction strict
include unique final-list skip
import refers final-union length
redefine field block whiteSpace
complexType in block-substitution preserve
simpleType restricts block-restriction collapse
union extends block-extension replace
list substitutes required totalDigits
element public optional fractionDigits
attribute system prohibited
group abstract mixed

Table 3.23: Reserved keywords

PosInt = [0− 9]+ (3.63)

PosInt are positive Integers (including zero), with no leading + allowed.

Number = NumberStart [NumberChar] ∗
| INF | -INF | NaN (3.64)

NumberStart = 0− 9 | + | - | . | P (3.65)
NumberChar = 0− 9 | + | - | . | e | E | T | Z | Y | M | D | H | S

(3.66)

Number can be a literal value of all the XML Schema datatypes for which
the range facets minExclusive, maxExclusive, minInclusive, and maxInclusive can
be applied. This includes the date, time, dateTime, duration and all gregorian
calendar2 types, the decimal type, and the double and float types.

2gYearMonth, gYear, gMonthDay, gMonth, gDay

http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#time
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#duration
http://www.w3.org/TR/xmlschema-2/#gDay
http://www.w3.org/TR/xmlschema-2/#gDay
http://www.w3.org/TR/xmlschema-2/#decimal
http://www.w3.org/TR/xmlschema-2/#double
http://www.w3.org/TR/xmlschema-2/#float

3.5 Other Features 31

URI = ” anyURI ” (3.67)

URIs are strings that are valid literals of the anyURI type as defined in the
XML Schema datatypes standard.

Pattern = / regExp / (3.68)

Patterns are strings that are valid literals of the regExp production in the XML
Schema datatypes standard. As they are enclosed with slashes, any slash inside the
regular expression has to be escaped using a backslash.

http://www.w3.org/TR/xmlschema-2/#anyURI
http://www.w3.org/TR/xmlschema-2/#anyURI
http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2/#regexs

Chapter 4

Implementation

4.1 Introduction

As mentioned in the introduction, the implementation of a schema-validating XML
parser using compact syntax schemas would go beyond the scope of this thesis.
Therefore, a schema in compact syntax has to be converted to XML syntax before
it can be used for validation.

Thus, the software to be implemented has two main tasks. It must be able
to convert a schema from compact syntax to XML syntax to make it useful for
validation. Also the conversion from XML syntax to compact syntax should be
possible to allow reuse of existing schemas with the compact syntax.

4.2 Evaluation

4.2.1 Compact Syntax to XML

As most of the XML-related tools are written in the Java language, no evaluation
of XML tools in other programming languages was made. Therefore, the most
important decision was the choice of a parser generation tool. Several packages are
available for Java, mainly differing in the following characteristics:

• The supported grammar classes.

• Possibilities to embed parser action code.

Three software packages have been evaluated: SableCC [19], JavaCC [20], and
JFlex/CUP [21, 22]. Table 4.1 shows the most important features of each product.

While SableCC and CUP support LALR parsing, JavaCC supports LL gram-
mars. The main difference between those two parsing methods is the way that

4.2 Evaluation 33

SableCC JavaCC JFlex/CUP
Grammar Class LALR LL(k) LALR
Action Embedding syntax tree generation direct direct

Table 4.1: Parser generation tools

productions are matched during parsing. More information about parsing can be
found in [23].

LL parsing, also known as top-down or recursive parsing, examines the next
or the next few token and then decides to which production or alternative it has
to branch. The generated code contains a method for each production. All these
methods consume the next token and then call the appropriate production method.
Therefore, an LL grammar must be unambiguous at every choice point. This means
that at every point in the grammar where the parser has to choose which production
or alternative to follow, the next (or the few next in the case of LL(k) grammars)
token must be enough information to decide where to branch to.

LALR parsing, on the other hand, is based on a finite automaton using a table
of parser states. This table contains basically the next state for every combination
of parser state and input token. The LALR grammar class is less restrictive than the
LL class, because different productions can start with the same tokens and split up
later. But for LALR grammars there are other constraints, because the generation
of an unambiguous parser state table must be possible.

Considering the embedding of parser actions, SableCC differs strongly from the
other two solutions. It does not allow direct action embedding, but rather constructs
an abstract syntax tree, a tree-like object model for the parsed file. The advantage
of this concept is that grammar and code can be cleanly separated. However, a Java
class has to be generated for every alternative in every production, which can lead
to hundreds of generated classes for more complex grammars.

JavaCC and CUP require action code to be directly embedded into the gram-
mar file, which leads to larger and more complex grammar input files. However, it
also simplifies the execution of user code during parsing. LL parser generators like
JavaCC come with the major advantage that user code can be executed already at
the start of productions, unlike LALR parsers, where user code can be added only
at the end of a production. This is due to the fact that LALR parsers do not know
in which production they currently are until the end of a production is reached.

Finally, it was decided to use the JavaCC parser, mainly because of the simpler
concept of action embedding, which makes a step-by-step generation of the schema
much easier. The grammar for the compact syntax is not LL(1), but JavaCC offers
flexible means to specifiy expanded token lookahead at critical choice points.

34 4 Implementation

4.2.2 XML to Compact Syntax

For the conversion from XML Schema to compact syntax, basically two implemen-
tation alternatives have been considered. A solution using an XSLT stylesheet (see
Figure 4.1) has been evaluated as well as a DOM-based Java component (see Figure
4.2).

Style-sheet
ProcessorXML

Schema

XML
Schema
compact
syntax

XSLT
style-
sheet

Figure 4.1: Conversion using an XSLT style-sheet

XSLT style-sheets [24] are an XML application that defines a transformation
of an XML document into another XML, HTML, or text document. An XSLT
processor like Saxon [25] can be used to apply the transformation to documents.

XML
Schema

XML
Schema
compact
syntax

DOM
Parser

Java
Component

DOM
Tree

D
O

M
 In

te
rfa

ce

Figure 4.2: Conversion using a Java component

The Document Object Model (DOM) [26] is an API that offers a tree view
of an XML document to the programmer. All parts of an XML document can
be accessed and modified through Java methods1. The DOM specification defines
interfaces, when using it an actual implementation like Apache’s Xerces [11] has to
be used. The pros and cons of both solutions are:

• XSLT offers a better interface to XML documents through the use of XPath
expressions for XML document node tree addressing. Document tree traversal
as in DOM2 is not needed.

1many other programming language bindings exist for the DOM
2DOM Level 3 (W3C working draft at time of this writing) also offers XPath traversal.

4.3 Implementation Design 35

• String manipulation as needed for the escaping of special characters is difficult
in XSLT. The Java language offers more comfort here.

• Several algorithms, for example the decision whether an element will be de-
clared inside the content model or not (see 3.3.4), are difficult to implement
in XSLT due to the lack of modifiable variables.

• XSLT style-sheets are usually shorter and easier to maintain as a DOM-based
solution.

• XSLT lacks software engineering support for larger projects and it is tedious
to debug, partly due to its use of implicit type conversions.

The first experiments with the compact syntax have been made using XSLT,
however it has become clear that a sensible implementation will be difficult in XSLT.
Especially the problem of string escaping, but also some other issues like namespace
control for attributes (see 3.2.2) finally led to the Java-based approach.

4.3 Implementation Design

4.3.1 Overview

The compact syntax parser consists of two components, the generated parser class,
and a class that generates the DOM representation in XML Schema syntax. When
converting from compact syntax to XML, a DOM tree of the schema is first gen-
erated, and then written to a file using a standard DOM serializer module. From
XML to compact, the process starts by parsing the XML Schema file using a stan-
dard DOM parser, and then handing over the generated DOM tree to the compact
syntax serializer component.

All coding and tests have been conducted using the Xerces parser library,
however other DOM implementations could be used as well. However, some code
changes will be necessary because the DOM interface cannot boot-strap itself3. This
means that there is no implementation independent way of creating a DOMImple-
mentation object, which is needed to create new documents.

4.3.2 The Parser

Figure 4.4 shows the structure of the compact syntax parser. The parser, the lexer,
and some helper classes are generated by JavaCC from the input file XSCParser.jj.
This file contains the definition of all keywords and literals of the compact syntax,
as well as the grammar itself, including the embedded user action code.

3DOM Level 3 offers the boot-strap feature.

36 4 Implementation

XML
Schema

XML
Schema
compact
syntax

DOM
Parser

DOM
Tree

XML
Schema

XML
Schema
compact
syntax

Compact
Syntax
Parser

DOM Tree
Builder

DOM to
XML

serializer

DOM to
compact
syntax

serializer

Figure 4.3: Implementation design overview

XSCComponent
and inherited classes

XSCSimpleValue
and inherited classes

XML
Schema
compact
syntax

XSCParserTokenManager
(generated)

XSCParserTokenManager
(generated)

JavaCharStream
(generated)

ParseException
(generated)

TokenMgrError
(generated)

XSCParserConstants
(generated)

File reading buffer
Lexer class
generates Token objects

Parser class
Consumes Token objects
Sends XSCHandler events

Token
(generated)

Token
(generated)

Token constants Exception classes

All classes generated by
JavaCC from XSCParser.jj

XSCDOMBuilder
implements XSCHandler

Builds DOM tree using the
XSCComponent and
XSCSimpleValue classes
when parser sends events.

XSCDomalize Document

Contains the main() method

XSCComponent
and inherited classes

XSCSimpleValue
and inherited classes

These classes contain the code needed to assemble
the various schema elements. They are instantiated
by XSCDOMBuilder when needed.

Figure 4.4: Class structure of the parser

The interface between the parser XSCParser and the DOM generator class
XSCDOMBuilder is defined in the XSCHandler interface (see below). This interface
defines a set of events that are emitted by the parser and processed by the DOM
generator. The algorithm used by XSCDOMBuilder to assemble the DOM tree is
described in the following paragraphs.

For every component that appears in the compact syntax, a class inherited from
XSCComponent exists. These classes contain the code that interprets the compact
syntax and creates the according XML Schema elements and attributes. A shortened
version of the class XSCComponent is displayed below.

4.3 Implementation Design 37

public interface XSCHandler {
void startComponent(int type, XSCNameValue name);
void endComponent();
void extension(int type, XSCValue value);
void qualifier(int type);
void startBlock();
void endBlock();
void annotation(String text);

}

public abstract class XSCComponent extends XSCValue {
protected NodeList fNodes;
protected boolean fFrozen;

public XSCComponent() {...}
public NodeList getNodes() {...}
abstract public int getType();
public void property(XSCValue value,int subtype)
abstract protected void property_(XSCValue value,int subtype);
public void freeze() {...}
abstract protected void freeze_();

}

To build up the DOM tree of a schema in compact syntax, XSCDOMBuilder
handles the events generated by the parser as shown in the following pseudo code.
The internal state of XSCDOMBuilder consists of a component stack, the current
component, and the state (inside or outside component).

The contents of a component are assembled by multiple calls to the property()
method, either with a certain value, to set an option of that component, or with a
component, which becomes an inner component. Upon a call to the freeze() method,
the elements and attributes of the component are assembled. Using method get-
Nodes(), the parent component can get the created elements and attributes and
add them to its own elements.

startComponent: push current to stack
current = new component
send saved qualifiers and annotations to current
state = in component

endComponent: freeze current component
send current component to parent component
current = pop parent from stack
state = not in component

38 4 Implementation

extension: if in component
send to component

else
error

qualifier: if in component
send to component

else
save for next component

annotation: if in component
send to component

else
save for next component

startBlock: state = not in component

endBlock: state = in component

4.3.3 Serializing the DOM tree

The serialization module consists of two classes, XSCSerialize and XSCFormatter.
The serializer class traverses a given DOM tree and generates a sequence of to-
kens for the formatter class. The formatter inserts the appropriate whitespace and
linebreaks and writes the resulting text to a file.

DOM
Tree

XML
Schema
compact
syntax

XSCDomalize

XSCSerialize XSCFormatter

Traverses the DOM tree
and sends a sequence of
tokens to the formatter
class.

Manages whitespace,
indentation and linebreaks

Contains the main() method

Figure 4.5: Class structure of the serializer

Chapter 5

Summary and Outlook

5.1 Summary

The compact syntax [27, 28] implements the full functionality of XML Schema.
Restrictions apply only to annotations and namespace declarations, however they
only limit user comfort, but not the expressive power of the compact syntax.

The thesis has shown that it is possible and valuable to invent non-XML syn-
taxes for some XML standards. XML has its strengths in the document and data
exchange areas, but it is suboptimal for programming languages and similar tasks.

Some tests have been made using the implemented software to measure the
size reduction that the compact syntax offers to the user. The XML Schema for
XML Schema itself, as well as some other schemas available on the net have been
compared in XML and compact syntax. To guarantee fairness, all annotations and
XML comments have been stripped from the schemas before converting them to
compact syntax. Character counts do not include whitespace characters.

Lines Characters
Schema XML XSCS Savings XML XSCS Savings
datatypes.xsd 502 126 74.9% 14030 4520 67.8%
structures.xsd 936 315 66.3% 23820 9238 61.2%
dxl.xsd 2266 882 61.1% 67443 26977 60.0%
LandXML.xsd 3615 1512 58.2% 107960 42349 60.8%
logml.xsd 373 231 38.1% 12135 5330 56.1%
xgmml.xsd 323 179 44.6% 10419 4566 56.2%
spaceXML.xsd 1124 330 70.6% 28606 8760 69.4%

Table 5.1: Schema size reduction

A parser for the compact syntax and the serializer module have been successfully

http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-1
http://www.lotus.com/ldd/toolkits
http://www.landxml.org/spec.htm
http://www.cs.rpi.edu/~puninj/LOGML/
http://www.cs.rpi.edu/~puninj/XGMML/
http://www.idealliance.org/spacexml

40 5 Summary and Outlook

implemented. Some testing has been done with the software, however it is still in a
prototype stadium. Annotation handling could be improved as well as namespace
behaviour, which have been implemented in a rather simple way.

5.2 Outlook

Currently, compact syntax schemas have to be converted to the XML syntax before
they can be used for validation. For a better integration of the compact syntax
into the XML processing tool-chain, the compact syntax parser could be directly
integrated into a validating parser.

The DOM based implementation has been chosen with regard to the integration
in the Xerces parser. To validate XML documents, Xerces uses a DOM parser to
read the associated schema, and then traverses this document to create an internal
representation similar to the Schema Components data model. Therefore, only the
code that loads schemas had to be altered to allow validation against compact
syntax schemas.

The compact syntax itself could be extended, particularly in the field of anno-
tation handling, in order to achieve one-to-one compatibility with XML Schema.
Probably, further optimizations concerning user friendliness could be done by cre-
ating shortcuts for the most used parts of the language.

On the implementation side, many optimizations could be done to make the
software more user friendly and complete. Switches could be added for various con-
version options, as there is sometimes more than one possiblity for the translation
from XML to compact syntax. One example are the content models, where there is
the choice of embedding element declarations directly or to outsource them.

Extended error checking and warnings could be added to the compact syntax
parser. At the moment, only a syntax check — done by the generated parser — and
some error checking is done. The generated XML Schemas should always validate
against the Schema for Schema, but no checks are done for the various constraints
defined on the Schema Components.

Bibliography

[1] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensi-
ble Markup Language (XML) 1.0 (Second Edition). Technical report, W3C,
October 2000.

[2] James Clark and Murata Makoto. RELAX NG Specification. Technical report,
Oasis, December 2001.

[3] Rick Jelliffe. Resource Directory (RDDL) for Schematron 1.5. Technical report,
Academia Sinica Computing Centre, September 2002.

[4] Anders Møller. Document Structure Description 2.0. Technical report, BRICS,
2003.

[5] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn.
XML Schema Part 1: Structures. Technical report, W3C, May 2001.

[6] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. Technical
report, W3C, May 2001.

[7] Eric van der Vlist. XML Schema. O’Reilly & Associates, Inc., 2002.

[8] International Organization for Standardization. Information Technology – Syn-
tactic Metalanguage – Extended BNF. ISO/IEC 14977, 1996.

[9] James Clark. RELAX NG Compact Syntax. Technical report, Oasis, November
2002.

[10] John Cowan and Richard Tobin. XML Information Set. Technical report,
W3C, October 2001.

[11] Apache Software Foundation. Xerces2.

[12] HCRC, University of Edinburgh. XSV.

[13] Microsoft Corporation. MSXML.

[14] IBM Alphaworks. XML Schema Quality Checker.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/
http://www.ascc.net/xml/schematron/
http://www.ascc.net/
http://www.brics.dk/DSD/dsd2.html
http://www.brics.dk
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/
http://www.oreilly.com
http://oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/
http://www.apache.org/
http://xml.apache.org/xerces2-j/index.html
http://www.hcrc.ed.ac.uk/
http://www.ltg.ed.ac.uk/~ht/xsv-status.html
http://www.microsoft.com/
http://msdn.microsoft.com/xml/
http://www.alphaworks.ibm.com/
http://www.alphaworks.ibm.com/tech/xmlsqc

42 Bibliography

[15] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997. release October, 1rst 2002.

[16] Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy of XML Schema
Languages using Formal Language Theory. In Extreme Markup Languages,
2000.

[17] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML. Tech-
nical report, W3C, January 1999.

[18] James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0.
Technical report, W3C, November 1999.

[19] Sable Research Group, McGill University. SableCC.

[20] WebGain, Inc. JavaCC.

[21] JFlex Scanner Generator for Java.

[22] CUP Parser Generator for Java.

[23] Dick Grune and Ceriel Jacobs. Parsing Techniques - A Practical Guide. Avail-
able on: http://www.cs.vu.nl/∼dick/PTAPG.html, 1998.

[24] James Clark. XSL Transformations (XSLT) Version 1.0. Technical report,
W3C, November 1999.

[25] SAXON - The XSLT Processor.

[26] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan
Robie, Mike Champion, and Steve Byrne. Document Object Model (DOM)
Level 2 Core Specification. Technical report, W3C, November 2000.

[27] Erik Wilde and Kilian Stillhard. A Compact XML Schema Syntax. In XML
Europe, 2003.

[28] Kilian Stillhard and Erik Wilde. XML Schema Compact Syntax (XSCS) Ver-
sion 1.0. Technical report, Computer Engineering and Networks Laboratory
(TIK), ETH Zürich, March 2003.

http://www.grappa.univ-lille3.fr/tata
http://nike.psu.edu/publications/mura0619.pdf
http://nike.psu.edu/publications/mura0619.pdf
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/
http://www.w3.org/TR/xpath
http://www.w3.org/
http://www.sable.mcgill.ca/
http://www.sablecc.org/
http://www.webgain.com/
http://www.webgain.com/products/java_cc/
http://www.jflex.de/
http://www.cs.princeton.edu/~appel/modern/java/CUP/index.html
http://www.cs.vu.nl/~dick/PTAPG.html
http://www.w3.org/TR/xslt
http://www.w3.org/
http://saxon.sourceforge.net/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/
http://dret.net/netdret/docs/wilde-xmleurope2003.html
http://www.tik.ee.ethz.ch/db/tik/publications/report_list_selected_publications.php3?type=TIK+Report&submitIt=search
http://www.tik.ee.ethz.ch/db/tik/publications/report_list_selected_publications.php3?type=TIK+Report&submitIt=search
http://www.tik.ee.ethz.ch/
http://www.tik.ee.ethz.ch/
http://www.ethz.ch/

Appendix A

Complete Grammar

A.1 Structure

schema = [schemaOption] ∗ [schemaInclude] ∗
[schemaBody] +

(A.1)
schemaOption = targetNamespace

| namespace

| blockF inalDefault

| elementDefault

| attributeDefault

| version (A.2)

schemaInclude = include

| import

| redefine (A.3)

schemaBody = simpleType

| complexType

| element

| attribute

| group

| attributeGroup

| notation (A.4)

44 A Complete Grammar

targetNamespace = targetNamespace URI [;] (A.5)
namespace = namespace [Name] URI [;] (A.6)

blockF inalDefault = default qualifier [, qualifier] ∗ [;] (A.7)
elementDefault = elementDefault qualifier [;] (A.8)

attributeDefault = attributeDefault qualifier [;] (A.9)
version = version String [;] (A.10)

include = include URI [;] (A.11)
import = import URI namespace URI [;] (A.12)

redefine = redefine URI [{ [simpleType | complexType

| group | attributeGroup] ∗ }] [;] (A.13)

qualifier = final | final-restriction | final-extension | final-list

| final-union | block | block-substitution

| block-extension | block-restriction

| qualified | unqualified

| abstract | nillable

| required | optional | prohibited (A.14)

derivation = extends Name | restricts Name (A.15)

substitution = substitutes Name (A.16)

fixedDefault = = String | <= String (A.17)

element = [qualifier] ∗ element Name

[substitution | derivation] ∗ [elementContent]
[fixedDefault] [;] (A.18)

elementShort = Name [{ Name }] (A.19)

elementContent = { [anonSimpleType | anonComplexType

A.1 Structure 45

| key | keyref | unique] ∗ } (A.20)

attribute = [qualifier] ∗ attribute Name

[attributeContent]? [fixedDefault] [;] (A.21)

attributeContent = { [anonSimpleType] } (A.22)

complexType = [qualifier] ∗ complexType Name

[derivation] [complexTypeContent] [;] (A.23)

complexTypeContent = { [anonComplexType | anonSimpleType] ∗ }
(A.24)

anonComplexType = contentModel | element | attribute

| attributeWC | attributeGroup (A.25)

contentModel = (empty

| [mixed] (modelGroup | groupRef)
[occurrenceSpec]) [;] (A.26)

occurrenceSpec = ? | * | + | posIntRange (A.27)

modelGroup = ([particle [compositor particle]∗] [compositor])
(A.28)

compositor = , | | | & (A.29)

particle = (modelGroup | elementShort | groupRef | { element }
| { elementWC }) [occurrenceSpec] (A.30)

simpleType = [qualifier] ∗ simpleType Name

[simpleTypeContent] [;] (A.31)

simpleTypeContent = { [anonSimpleType] } (A.32)

anonSimpleType = restriction | union | list (A.33)

46 A Complete Grammar

restriction = (Name [{ [facet] ∗ }]
| simpleType { anonSimpleType } { [facet] ∗ }) [;]

(A.34)
union = union { [anonSimpleType] + } [;] (A.35)

list = list { anonSimpleType } [;] (A.36)

fixed = fixed | fixed-minimum | fixed-maximum

(A.37)
facet = [fixed] ∗ (lengthFacet | rangeFacet

| patternFacet | enumFacet | whiteSpaceFacet

| totalDigitsFacet | fractionDigitsFacet) [;]
(A.38)

lengthFacet = length = (PosInt | posIntRange) (A.39)
rangeFacet = numRange (A.40)

patternFacet = / Pattern / (A.41)
enumFacet = String [, String] ∗ (A.42)

whiteSpaceFacet = whiteSpace = (preserve | collapse | replace)
(A.43)

totalDigitsFacet = totalDigits = PosInt (A.44)
fractionDigitsFacet = fractionDigits = PosInt (A.45)

posIntRange = [(PosInt [, PosInt] | , PosInt)] (A.46)
numRange = ([| () (Number [, Number] | , Number) (] |))

(A.47)

group = group Name [{ [contentModel | element] ∗ }] [;]
(A.48)

groupRef = @ Name (A.49)

attributeGroup = attributeGroup Name [{ [attribute | attributeWC

| attributeGroup] + }][;] (A.50)

A.2 Literals 47

process = lax | strict | skip (A.51)
wildcardNSDecl = ##targetNS | ##other | ##local | URI (A.52)

elementWC = [process] any [namespace

wildcardNSDecl [, wildcardNSDecl]∗] [;] (A.53)
attributeWC = [process] anyAttribute [namespace

wildcardNSDecl [, wildcardNSDecl]∗] [;] (A.54)

idConstrF ield = field XPath [, XPath] ∗ in XPath (A.55)
key = key Name idConstrF ield [;] (A.56)

keyref = keyref Name

refers Name idConstrF ield [;] (A.57)
unique = unique Name idConstrF ield [;] (A.58)

notation = notation Name public String system URI [;]
(A.59)

A.2 Literals

Name = NCName | QName | \ NCName (A.60)

String = ” [[∧ ” \ <nl> <cr> <ff>] | \” | \\ | \n | \r | \f | \t] ”

(A.61)
XPath = ” Selector ” (A.62)

PosInt = [0− 9] + (A.63)

Number = NumberStart [NumberChar] ∗
| INF | -INF | NaN (A.64)

NumberStart = 0− 9 | + | - | . | P (A.65)
NumberChar = 0− 9 | + | - | . | e | E | T | Z | Y | M | D | H | S

(A.66)
URI = ” anyURI ” (A.67)

Pattern = / regExp / (A.68)

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/REC-xml-names/#NT-QName
http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/xmlschema-1/#c-selector-xpath
http://www.w3.org/TR/xmlschema-2/#anyURI
http://www.w3.org/TR/xmlschema-2/#regexs

Appendix B

User Manual

B.1 Software Installation

Copy the following files from directory impl to a local directory:

• xsc.jar

• xerces.jar

• xercesImpl.jar

• xsc2xsd.bat

• xsd2xsc.bat

The software needs Java 1.4 or later to run. The batch files for MS Windows
are provided for user convenience, on other platforms the Java Runtime has to
be started directly. Testing has been done using Apache Xerces version 2.2.1 on
Windows XP.

B.2 Conversion

To run the conversion programs, use the following commands. The examples shown
convert from compact syntax (xsc) to XML syntax (xsd), just rotate these shortcuts
for the other direction.

xsc2xsd file.xsc
converts file.xsc to XML syntax, creates file file.xsd.
xsc2xsd file1 file2
converts file1 to XML syntax and creates file file2.

http://java.sun.com/

B.2 Conversion 49

java -classpath "xsc.jar;xerces.jar;xercesImpl.jar"
noown.domain.xsc.util.XSCtoXSD file.xsc
the same for non-Windows platforms

Options for xsc2xsd:
-d output debug information
-p no indentation for the XML output file
-e encoding specify encoding of input and output file
-a skip annotations
-v validate output file with Xerces

Options for xsd2xsc:
-a skip annotations
-v validate input file (depends on parser)
-i indent number of blanks or t to be used for indentation
-n nl specify line separator (CR, LF or CR-LF)
-e encoding specify encoding for input file
-w n wrap lines after n characters

Note that the encoding names that can be specified are simply passed to the
stream reader and writer classes. Please refer to your Java documentation for the
names of the available encodings.

Appendix C

Schema Components

The following tables show the various properties of the Schema Components. All
named components have additional name and target namespace properties and all
annotated components have an additional annotation property as shown in table
C.1.

Property Value
name NCName
target namespace URI
annotation Annotation

Table C.1: General Schema Component Properties

Simple Type Definition named, annotated
Property Value
base type definition Simple Type Definition
facets list of Facet
fundamental facets list of Facet
final subset of (extension, restriction, list, union)
variety one of (atomic, list, union)
primitive type definition Simple Type Definition
item type definition Simple Type Definition
member type definitions list of Simple Type Definition

Table C.2: Simple Type Definition Schema Component

51

Complex Type Definition named, annotated
Property Value
base type definition one of (Simple Type Definition, Complex

Type Definition)
derivation method one of (extension, restriction)
final subset of (extension, restriction)
abstract boolean
attribute uses list of Attribute Use
attribute wildcard Wildcard
content type empty or Simple Type Definition or pair of (

one of (mixed, element-only) , Particle)
prohibited substitutions subset of (extension, restriction)

Table C.3: Complex Type Definition Schema Component

Element Declaration named, annotated
Property Value
type definition one of (Simple Type Definition, Complex

Type Definition)
scope one of (global, Complex Type Definition)
value constraint pair of (one of (default, fixed) , value)
nillable boolean
identity-constraint definitions list of Identity Constraint Definition
substitution group affiliations Element Declaration
substitution group exclusions subset of (extension, restriction)
disallowed substitutions subset of (substitution, extension, restriction)
abstract boolean

Table C.4: Element Declaration Schema Component

Attribute Declaration named, annotated
Property Value
type definition Simple Type Definition
scope one of (global, Complex Type Definition)
value constraint pair of (one of (default, fixed) , value)

Table C.5: Attribute Declaration Schema Component

52 C Schema Components

Attribute Group Declaration named, annotated
Property Value
attribute uses list of Attribute Use
attribute wildcard Wildcard

Table C.6: Attribute Group Declaration Schema Component

Attribute Use
Property Value
required boolean
attribute declaration Attribute Declaration
value constraint pair of (one of (default, fixed) , value)

Table C.7: Attribute Use Schema Component

Model Group Definition named, annotated
Property Value
model group Model Group

Table C.8: Model Group Definition Schema Component

Model Group annotated
Property Value
compositor one of (all, choice, sequence)
particles list of Particle

Table C.9: Model Group Schema Component

Particle
Property Value
min occurs non-negative integer
max occurs one of (unbounded, non-negative integer)
term one of (Model Group, Wildcard, Element

Declaration)

Table C.10: Particle Schema Component

53

Wildcard annotated
Property Value
namespace constraints any or pair of (not , NamespaceURI) or list of

NamespaceURI
process contents one of (skip, lax, strict)

Table C.11: Wildcard Schema Component

Identity Constraint Definition named, annotated
Property Value
identity constraint category one of (key, keyref, unique)
selector XPath (restricted)
fields list of XPath (restricted)
referenced key Identity Constraint Definition

Table C.12: Identity Constraint Definition Schema Component

Notation Declaration named, annotated
Property Value
system identifier URI
public identifier Public Identifier

Table C.13: Notation Declaration Schema Component

Facet annotated
Property Value
value depends on facet
fixed boolean

Table C.14: Facet Schema Component

	Introduction
	XML and XML Schema
	Project Motivation and Goals
	Solution approach
	Related work

	XML Schema
	Introduction
	Using XML Schema
	Theoretical Background
	The Schema Components

	Compact Syntax Definition
	Design Principles
	Schemas and Schema Options
	Schemas as a whole
	Schema Options
	Import/Include statements

	Describing Structures
	Common Structures
	Elements
	Attributes
	Complex Types

	Describing Datatypes
	Simple Types
	Facets

	Other Features
	Model Groups
	Attribute Groups
	Wildcards
	Identity Constraints
	Notations
	Literals

	Implementation
	Introduction
	Evaluation
	Compact Syntax to XML
	XML to Compact Syntax

	Implementation Design
	Overview
	The Parser
	Serializing the DOM tree

	Summary and Outlook
	Summary
	Outlook

	Complete Grammar
	Structure
	Literals

	User Manual
	Software Installation
	Conversion

	Schema Components

