
 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Felix Hauser, Philip Schaffhauser

Database-driven XML-enabled
Bibliography Management System

Diploma Thesis DA-2003.05
Winter Term 2002/2003

Tutor:
Dr. Erik Wilde

Supervisor:
Prof. Dr. Bernhard Plattner

25.3.2003

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Abstract

In this diploma thesis, a centralized bibliography management system is de-
signed and implemented. We describe an architecture that not only allows
users to share their bibliographic information, but also enables them to keep
their personal style of creating references by supporting a highly extensible
format for bibliographic data. Furthermore, the management system offers
flexible search tools, and implements a powerful concept for exporting and
thus reusing references. Our architecture is based on XML technologies (most
notably DOM, XML Schema, Schematron, and XSLT) and uses Apache’s
Web server in conjunction with PHP and MySQL.

Contents

1 Introduction 1

2 Requirements 3

3 Concept 4

3.1 Data Storage . 5

3.1.1 Document-based Approach 5

3.1.2 Native XML Database Approach 5

3.1.3 Relational Database Approach 5

3.2 Platform . 6

3.3 Design . 6

3.3.1 Import . 6

3.3.2 Search . 7

3.3.3 Export . 7

3.3.4 Normal Users versus Administrators 8

4 Implementation 9

4.1 BibXML Format . 9

4.2 Validation of BibXML Documents 17

4.2.1 Schema Languages . 18

4.2.2 BibSchema . 21

4.2.3 Dependencies between BibSchema, XML Schema, and
Schematron Schemas 27

4.2.4 Validating and Importing BibSchema Schemas 32

4.2.5 Process of Validating BibXML Documents 34

4.3 Database Structure . 37

4.4 Data Import . 41

4.5 Search . 42

4.6 Selection . 44

4.7 Export Management . 44

i

4.8 Macro Management . 46

4.9 User Management and System Access 47

5 Results 49

6 Future Work 50

7 Conclusions 52

A User Guide 54

A.1 Login . 54

A.2 Overview . 54

A.3 Search . 55

A.3.1 Simple Search . 55

A.3.2 Advanced Search . 56

A.3.3 Regular Expressions 57

A.3.4 Search Results . 58

A.4 Selection . 59

A.5 Schema Overview . 60

A.6 Data Import . 60

A.7 Macro Management . 62

B Administrator Guide 63

B.1 Overview . 63

B.2 Schema Management . 64

B.3 Export Management . 64

B.4 User Management . 66

B.5 MySQL Admin . 67

ii

C Technical Documentation 69

C.1 System Setup . 69

C.1.1 Apache . 70

C.1.2 PHP . 70

C.1.3 MySQL . 71

C.1.4 Saxon . 71

C.1.5 Xerces . 71

C.1.6 Java 2 . 71

C.1.7 Bibliography Management System 72

C.2 System Maintenance . 72

C.3 Most Common Extensions . 73

C.3.1 BibXML Extensions 73

C.3.2 Export Filters for BibTEX 74

C.4 Built-in XML Documents . 75

C.4.1 import . 75

C.4.2 schema . 76

C.5 PHP Functions . 78

C.5.1 export detail.php . 78

C.5.2 export management.php 78

C.5.3 fast search.php . 79

C.5.4 import.php . 79

C.5.5 include.php . 82

C.5.6 include export.php . 85

C.5.7 include fast search.php 85

C.5.8 include transform.php 87

C.5.9 index.php . 87

C.5.10 macro management.php 88

C.5.11 schema detail.php . 88

C.5.12 schema management.php 88

C.5.13 schema overview.php 88

iii

C.5.14 schema/validation.php 88

C.5.15 schema/xml printer.php 93

C.5.16 selection.php . 94

C.5.17 user.php . 94

C.5.18 welcome.php . 94

D CD ROM 95

iv

List of Figures

1 Conceptual Overview . 4

2 System Architecture . 7

3 Two-step Validation Process 17

4 Classification of XML Schema Languages 18

5 BibSchema, XML Schema, and Schematron 20

6 Redefined Validation Process 20

7 Validation Process Overview Indicating File Paths 29

8 Dependencies between BibSchema and XML Schema Schemas 30

9 Substitution Group 1: Entry Elements 31

10 Substitution Group 2: Field Elements 31

11 Substitution Group 3: Special Item Elements 32

12 Head Element Declarations in xmlSchemaBase.xsd 35

13 Member Element Declarations 36

14 Dependencies between BibSchema and Schematron Schemas . 36

15 Conceptual Database Schema 37

16 Data Import . 41

17 Export Mode Management Table 45

18 User Management Tables . 48

19 Login Page . 54

20 Overview Page . 55

21 Simple Search Interface . 55

22 Advanced Search Interface . 56

23 Search Results . 58

24 Selection . 59

25 Schema Overview . 60

26 Start of Data Import . 61

27 Data Import Confirmation Dialogue 61

28 Macro Management . 62

29 Administrator Overview Page 63

v

30 Schema Management . 65

31 Export Management . 66

32 User Management . 67

33 phpMyAdmin . 68

vi

List of Tables

1 BibTEX Example . 2

2 BibTEX Example . 9

3 BibXML Document Skeleton 10

4 BibXML Document Using Entry and Field Elements 10

5 BibXML Document With Two References 12

6 Improved BibXML Document Using Cross References 13

7 BibXML Macros . 13

8 BibXML Document Defining Two Macros 14

9 BibXML Document Referencing Two Macros 14

10 System Information of a BibXML Entry 15

11 BibSchema Skeleton . 21

12 Definition month Field Element 22

13 Definition of Person and Special Text Field Elements 23

14 Two Ways of Using a Person Field Element 23

15 Special Text Field . 24

16 Definition of Special Item tex 25

17 Definition of Repeatable author Field 25

18 Definition of book Entry Element 26

19 Definition of a book Entry Element by Referencing a Field
Element (ae:title) from Another Namespace 27

20 BibSchema Document To Be Transformed 33

21 Transformed Schematron Schema 33

22 Temporary XSLT Importing All Mode Stylesheets 45

23 BibTEX Translation Table (partial) 46

24 XSLT Stylesheet import/special.xsl 47

25 Regular Expression Syntax . 57

26 File Extensions . 75

27 CD ROM Contents . 95

vii

1 Introduction

A bibliography, sometimes also referred to as references, works cited, or works
consulted, is usually thought of as an organized listing of sources that the
author consulted during the research and writing process. A bibliography
can include a variety of different resources, such as books, articles, reports,
interviews, or even non-print sources like Web sites or video recordings. Each
source in the bibliography is represented by its citation information (e.g.
author(s), date of publication, title, and publisher’s name and location),
which highly depends on the type of the source. The primary function of
bibliographic citations is to assist the reader in finding the sources used in
the writing of a work.

Over the years, researchers usually gather a considerable amount of bibli-
ographic information, which often includes several thousand cited resources.
Since collecting such an amount of data is a very time consuming process,
members of an institution would be well advised to store their bibliographic
data in a centralized management system in order to make it accessible to
other employees. Assuming the management system provides efficient search
capabilities, the users of such a system could benefit from the availability of
an extensive amount of bibliographic data. Furthermore, the system could
provide the users with a Web-based interface for manipulating data, auto-
matic backup, and very flexible ways of exporting data.

Nevertheless, in an institution like the ETH Zürich, many employees man-
age their own private bibliographies, because they are not willing to stick to
predefined formats and other limitations, which usually come with a central-
ized system. A typical example for per-user bibliographies are BibTEX [5]
files. BibTEX is a widespread format for bibliographies on the Internet. It
is an extensible format in the sense that it defines several standard entry
and field types and also accepts additional user-defined entry and field types.
Many people make extensive use of this extensibility by defining their own
private entry and field types in order to store various kinds of information
about their resources. Listing 1 illustrates this situation with an example
of a BibTEX entry that uses the standard entry type misc, several standard
fields, and the two non-standard fields uri and topic. In this example, the
uri field simply contains the resource’s URI, while the topic field contains
structured information. It contains a list of weighted references to a topic
map of Web technologies1, thus categorizing the resource according to these
topics.

1Available online at http://wildesweb.com/glossary/

1

http://wildesweb.com/glossary/

@misc{xns,
author = "Tim Bray and Dave Hollander and Andrew Layman",
title = "Namespaces in XML",
howpublished = "W3C, REC-xml-names-19990114",
month = jan,
year = 1999,
uri = "http://www.w3.org/TR/1999/REC-xml-names-19990114",
topic = "xml[0.8] xmlns[1]" }

Listing 1: BibTEX Example

The consequence of the widespread use of extensible formats like BibTEX
is that if a management system should bring the members of an institution to
store their bibliographic data in a centralized repository, it is an imperative
for this system to support format extensions of the kind mentioned above.

2

2 Requirements

It was the goal of this diploma thesis to design and implement a central-
ized bibliography management system using XML technologies. This thesis
should motivate members of institutions such as the ETH Zürich to give up
their established habit of maintaining their own private bibliographies and
create an incentive to store bibliographic data in a centralized system in or-
der to make it accessible to other employees. To achieve this goal, the system
had to comply with the following requirements:

• Besides making bibliographic information accessible to the whole in-
stitution, the system should enable members of the institution to re-
tain their personal style of creating their bibliographies (see Listing 1).
Thus, the system should support a format for bibliographies that can
be extended by each user in an easy but flexible way.

• Furthermore, the bibliography management system should allow users
to still handle their bibliographic data as their intellectual property.
This requirement should be satisfied by granting users access rights.

• Users of the system should have the possibility to make use of flexible
query tools in order to find specific data. Special attention should be
given to the performance of such query tools. They should be able to
cope with thousands of works cited within a reasonable time.

• A powerful concept for exporting references should be designed and
implemented. The user should be presented with very flexible and
extensible ways of exporting the data. Therefore, the ability to install
pluggable export filters should be provided at user level. In a first step,
export filters for BibTEX and XML (in order to reuse the data) should
be implemented.

• All services of the bibliography management system should be easily
accessible via Web-based interfaces.

• Last but not least, it was an imperative to develop a system that did
not require the operator to buy any licenses. This requirement implied
the exclusive use of open source technologies.

3

3 Concept

Given the requirements described above, the following concept was devel-
oped: Firstly, to facilitate user-friendly, software-, and location-independent
system access, a Web interface should be provided. Secondly, we needed a
Web server and an appropriate programming language as a platform for all
operations to be performed. And finally, a place to store bibliographic and
other data was required. These considerations lead to the rough concept de-
picted in Figure 1.

Frontend

Platform

Backend

Web Interface

Web Server / Programming Language

Data Storage

Figure 1: Conceptual Overview

We decided to make XML [1] play an important role as data exchange
format in our system, especially in all import and export functions but also
within the system. This not only because XML is ideal to manage data in
a structured and flexible way, but also because of the large and still growing
collection of accompanying tools and technologies and the broad support in
the entire industry. Particularly schemas (e.g., W3C’s XML Schema2 [6],
Schematron3) for validating XML documents and XSLT stylesheets [3] for
transforming XML documents are of great use for many tasks.

2Information on XML Schema: http://www.w3.org/XML/Schema/
3Information on Schematron: http://www.ascc.net/xml/resource/schematron/

4

http://www.w3.org/XML/Schema/
http://www.ascc.net/xml/resource/schematron/

3.1 Data Storage

3.1.1 Document-based Approach

Several approaches for storing bibliographic data in the system are imagin-
able. A very simple possibility would be a document-based approach where
all bibliographic data is stored in a single or multiple XML documents. We
will subsequently refer to such an XML representation of bibliographic data
as BibXML (more information is given in Section 4.1). XML technologies
would be used to access and modify the documents. As such BibXML doc-
uments can become quite large (several megabytes), serious concerns about
performance, scalability, and multi-user access arise for this approach.

3.1.2 Native XML Database Approach

A database would certainly solve these scalability problems. And as XML
is already used as data exchange format in our system, an XML database
would certainly bring some advantages over a relational database like easy
document import and the possibility to query XML substructures. Unfortu-
nately, most native XML databases are commercial and those that are not
can currently not compete with the large functionality of relational databases.
Two examples of open source native XML databases are eXist4 and Apache’s
Xindice5.

3.1.3 Relational Database Approach

Another approach is to map the BibXML format to a relational database.
The advantage of this solution is that these databases are very sophisticated
and stable, have a large functionality, and are very well supported by other
software. One disadvantage is that most noncommercial relational databases
do currently not support queries to XML substructures. A very popular open
source database is MySQL6 [8]. MySQL offers good performance, stability,
and is very well supported by many programming languages. These eval-
uations lead to the decision to pursue a relational database approach and
choose MySQL to manage the bibliographic data.

4eXist homepage: http://exist.sourceforge.net/
5Xindice homepage: http://xml.apache.org/xindice/
6MySQL homepage: http://www.mysql.com/

5

http://exist.sourceforge.net/
http://xml.apache.org/xindice/
http://www.mysql.com/

3.2 Platform

The choice of MySQL was accompanied by the decision to use Apache’s7

Web server and PHP8 as programming language. This because these three
components plus Linux constitute the popular open source Web platform
LAMP (Linux/Apache/MySQL/PHP) and work very well together. (We are
using Windows instead of Linux, but since there are no Windows-specific
parts in our system, porting it to another platform is trivial.)

PHP is a widely-used scripting language that is especially suited for Web
development. PHP can be plugged into Apache’s HTTP server as a module
and then executes PHP code that is embedded into HTML documents. PHP
provides special function classes for many technologies, including MySQL,
XML, XSLT and session management, is quite easy to learn but still very
powerful. This makes it the ideal programming language for our project.

3.3 Design

In this section the design of the system is explained. Please use Figure 2 as a
visualization for all explanations. A more detailed description of the design
and the implementation of the system follows in Chapter 4.

3.3.1 Import

To import bibliographic data into the management system, users have to
write a BibXML representation of their data, and pass it to the system us-
ing the Data Import component of the Web interface. The first task of the
management system is to validate the imported document against relevant
schemas in order to ensure that the document complies with the BibXML
format. Users have the possibility to extend the BibXML format accepted by
the management system by defining their own format extensions in special-
ized schema documents. These additional user-defined schemas are imported
into the system using the Schema Management component. The system then
validates the submitted schema documents against built-in schemas, and fi-
nally stores them in the filesystem for future use. From then on, BibXML
documents using these format extensions can be imported through the Data
Import component, the Import Engine validates them using predefined and
user-defined schemas, and then inserts the data into the database.

7Apache homepage: http://www.apache.org/
8PHP homepage: http://www.php.net/

6

http://www.apache.org/
http://www.php.net/

Frontend

Platform

Backend

Validation
(using built-in Schemas)

Filesystem

Web Interface: HTML, Javascript

 Data
Import

Schema
Management

Export
Management

 Data
Search and Export

Schemas StylesheetsRelational Database: MySQL

Import
Engine

(Validation)

 Server: Apache, PHP

Search
Engine

Export
Engine

XML
Query

Result

Selection

Export File Schema Stylesheet

 Data Storage

SQL SQL SQL
Stylesheet

Schema

HTTP

Figure 2: System Architecture

3.3.2 Search

The bibliographic data in the database can be searched through the search
component of the Web interface. The Search Engine converts the search
query from the Web Interface into an SQL query for the database, takes the
results, and presents them in the Web interface. These search results can be
collected in a shopping-cart-like system for later management or export.

3.3.3 Export

The basic export back into the BibXML format is quite simple and straight
forward. The Export Engine takes the selection made by the user, collects

7

the data from the database, creates a BibXML document out of the data,
and makes the resulting document available in the Web interface.

The system can also be extended with export filters for other user-defined
formats. For this purpose, user-defined stylesheets can be uploaded using the
Export Management component. These stylesheets are checked for XSLT 1.0
conformance, and then stored in the system for future use. From then on,
the system offers data export into this user-defined format as an option.

In addition to the stylesheets, a special translation table can be uploaded
for each user-defined export format. Such a translation table is used to
convert special characters into their required representation in the export
format. The translation table can be uploaded through the Web interface, is
validated, and then stored in the system.

The export into user-defined formats is realized by the Export Engine by
applying the corresponding stylesheet and translation table to the BibXML
file generated during basic export described above. The export into the
popular BibTEX [5] format is already implemented as a first extension.

3.3.4 Normal Users versus Administrators

The bibliography management system distinguishes between normal users
and administrators of the system. The majority of the users are normal
users. They are restricted to use the system to import, search and export
bibliographic data. As opposed to normal users, administrators are desig-
nated users having unrestricted access to the system. Besides having the
possibility to import, search and export bibliographic data, they are respon-
sible for the availability of the system’s services: This includes tasks like
importing schema extensions and output filters into the system, or managing
the users of the system. A detailed description of the normal users’ and the
administrators’ possibilities and duties can be found in Appendices A, B,
and C.2. Details about the implementation of user management and system
access are included in Section 4.9.

8

4 Implementation

In the following sections, the components of our bibliography management
system and their implementation are explained. Important features will be
discussed in detail, while the reader interested in all details of the system
should additionally consult the User Guide in Appendix A, the Administrator
Guide in Appendix B, and the Technical Documentation in Appendix C.

4.1 BibXML Format

To import bibliographic data into the management system, users have to
write an XML representation of their data that the system accepts and is
able to handle. Throughout this thesis, such an XML representation of bib-
liographic data is called a BibXML document. In this section, the format
of BibXML documents is described in detail. Readers who are familiar with
BibTEX will recognize the similarities between the BibTEX and the BibXML
formats. This is because the BibTEX format was used as a template when
designing the BibXML format.

Before going into format details, we introduce some naming conventions
from the BibTEX community: References in a bibliography are called entries
of the bibliography, and the fields of such an entry correspond to the citation
information of the entry. Additionally, each entry or field is said to have a
certain type. Using this terminology, Listing 2 can be described as showing
an example of a BibTEX entry, which uses the entry type proceedings and
four fields of field types title, address, year, and booktitle.

@proceedings{iwaca92,
title = "Proceedings of the IWACA Workshop",
address = "Munich, Germany",
year = 1992,
booktitle = "Proceedings of the IWACA Workshop"

}

Listing 2: BibTEX Example

An Example BibXML Document

The BibXML format can best be described using a concrete example. Step
by step, we will compose a BibXML document and introduce the different

9

characteristics of this format.

BibXML uses XML syntax to describe the entries and fields of a bibliogra-
phy. The root element of a BibXML document is a bibliography element in
the http://bibtexml.org/base namespace. By convention, this namespace
is mapped to the prefix b, but users are free to pick another prefix if they
prefer. From this point forward, it is assumed that the prefix b is mapped
to the http://bibtexml.org/base namespace. Entries of the bibliography
are grouped in a b:entries element, which is included directly under the
b:bibliography element. This is depicted in Listing 3.

<?xml version="1.0"?>
<b:bibliography xmlns:b="http://bibtexml.org/base">
<b:entries>
<!-- entries go here -->

</b:entries>
</b:bibliography>

Listing 3: BibXML Document Skeleton

We can now take the next step in terms of composing a bibliography,
by adding entries and fields to our document. Each entry or field is repre-
sented by a certain element depending on the type of the entry or the field.
Furthermore, field elements are contained directly within the entry element
they are describing. Applying this concept, the BibTEX entry in Listing 2 is
represented in BibXML as shown in Listing 4.

<?xml version="1.0"?>
<b:bibliography xmlns:b="http://bibtexml.org/base"

xmlns:s="http://bibtexml.org/standard">
<b:entries>
<s:proceedings key="iwaca92">
<s:title>Proceedings of the IWACA Workshop</s:title>
<s:address>Munich, Germany</s:address>
<s:year>1992</s:year>
<s:booktitle>Proceedings of the IWACA Workshop</s:booktitle>

</s:proceedings>
</b:entries>

</b:bibliography>

Listing 4: BibXML Document Using Entry and Field Elements

10

At this point, it is interesting to see that the entry and field elements
are not in the http://bibtexml.org/base namespace but in a new names-
pace (http://bibtexml.org/standard). The reason for the introduction of
a new namespace is the following: As stated in Chapter 2, the management
system has to support a format for bibliographies that can be extended by
each user. Concretely, this means that users should have the possibility to
define their own entry and field elements by extending the BibXML format
accordingly. And this is exactly how the entry and field elements used in List-
ing 4 were added to the BibXML format: A user defined the entry element
s:proceedings and the four field elements s:title, s:address, s:year and
s:booktitle in the namespace http://bibtexml.org/standard, and im-
ported this definitions into the system in order to extend the BibXML format
with new elements. And we used this extension to describe our proceedings
reference. How exactly this format extension works is irrelevant at this point.
This will be the topic of Section 4.2. For now, it is only important to keep
in mind that the BibXML format can be extended by user-defined entry and
field elements. There is one more comment to be made concerning Listing 4:
The order of field elements inside the corresponding entry element (as well
as the order of entry elements inside the b:entries element) is irrelevant.

In a next step, we add a second entry to the bibliography. This time,
we want to reference an article that is part of the already referenced pro-
ceedings of the IWACA workshop. To add this reference, we make use of
the appropriate user-defined entry (s:inproceedings) and field (s:author,
s:title, s:booktitle, s:pages, s:address, s:year) elements in the http:
//bibtexml.org/standard namespace. Listing 5 shows the resulting Bib-
XML document with the two entries.

There are two things to be noticed about this BibXML document: First,
each entry element needs to have a key attribute. This mandatory attribute
needs to have a unique value among all entries of the system (entries in the
same document as well as entries which have already been imported into
the system). This key uniquely identifies each entry. Second, three fields
(s:booktitle, s:address, and s:year) of the wea92 entry are equal to fields
of the iwaca92 entry with respect to their type and their value. This equality
of certain fields is forced by the fact that the wea92 entry references an article
that is part of the proceedings of a workshop that itself is referenced by the
iwaca92 entry. This forced equality of fields becomes problematic when we
want to change the values of such fields. Suppose we wanted to complete the
address of the workshop with the postal code of Munich, the street name, and
the house number. We would have to change the value of the s:address field
of the iwaca92 entry as well as the s:address fields of all s:inproceedings

11

<?xml version="1.0"?>
<b:bibliography xmlns:b="http://bibtexml.org/base"

xmlns:s="http://bibtexml.org/standard">
<b:entries>
<s:proceedings key="iwaca92">
<s:title>Proceedings of the IWACA Workshop</s:title>
<s:address>Munich, Germany</s:address>
<s:year>1992</s:year>
<s:booktitle>Proceedings of the IWACA Workshop</s:booktitle>

</s:proceedings>
<s:inproceedings key="wea92">
<s:author>
<b:bibperson>
<b:firstname>Alfred</b:firstname>
<b:lastname>Weaver</b:lastname>

</b:bibperson>
</s:author>
<s:title>The Xpress Transfer Protocol</s:title>
<s:booktitle>Proceedings of the IWACA Workshop</s:booktitle>
<s:pages>253-259</s:pages>
<s:address>Munich, Germany</s:address>
<s:year>1992</s:year>

</s:inproceedings>
</b:entries>

</b:bibliography>

Listing 5: BibXML Document With Two References

entries referencing that workshop. This situation can be avoided by cross
referencing the iwaca92 entry from the wea92 entry as shown in Listing 6.

The special crossref attribute tells the system that the wea92 entry
inherits any fields it is missing from the entry it references, iwaca92. In this
case, it inherits the three fields s:address, s:year, and s:booktitle. Note
that, at least for the most common BibTEX styles, the booktitle information
is irrelevant for the proceedings references. The s:booktitle field appears
in the iwaca92 entry only so that the entries that cross reference it may
inherit the field. No matter how many articles from this workshop exist in
the system, this s:booktitle field needs to appear only once. Finally, it is
important to know that nesting cross references is not allowed. This means
that a cross referencing entry must not be cross referenced itself.

The BibXML format also offers a macro mechanism. Macros can be used
as shown in Listing 7.

12

<?xml version="1.0"?>
<b:bibliography xmlns:b="http://bibtexml.org/base"

xmlns:s="http://bibtexml.org/standard">
<b:entries>
<s:proceedings key="iwaca92">
<s:title>Proceedings of the IWACA Workshop</s:title>
<s:address>Munich, Germany</s:address>
<s:year>1992</s:year>
<s:booktitle>Proceedings of the IWACA Workshop</s:booktitle>

</s:proceedings>
<s:inproceedings key="wea92" crossref="iwaca92">
<s:author>
<b:bibperson>
<b:firstname>Alfred</b:firstname>
<b:lastname>Weaver</b:lastname>

</b:bibperson>
</s:author>
<s:title>The Xpress Transfer Protocol</s:title>
<s:pages>253-259</s:pages>

</s:inproceedings>
</b:entries>

</b:bibliography>

Listing 6: Improved BibXML Document Using Cross References

<?xml version="1.0"?>
<b:bibliography xmlns:b="http://bibtexml.org/base"

xmlns:s="http://bibtexml.org/standard">
<b:macros>
<b:macro name="iwaca92">Proceedings of the IWACA Workshop</b:macro>
<b:macro name="munich">Munich, Germany</b:macro>

</b:macros>
<b:entries>
<s:proceedings key="iwaca92">
<s:title><b:macro ref="iwaca92"/></s:title>
<s:address><b:macro ref="munich"/></s:address>
<s:year>1992</s:year>
<s:booktitle><b:macro ref="iwaca92"/></s:booktitle>

</s:proceedings>
</b:entries>

</b:bibliography>

Listing 7: BibXML Macros

Macros are defined using b:macro elements. The name attribute of the
b:macro element specifies the name of the macro (iwaca92 and munich in our
example), by which it can be referenced, and the text content of the b:macro

13

element specifies the value of the macro (Proceedings of the IWACA Work-

shop and Munich, Germany in our example), by which a macro reference will
be replaced. Macro definitions are grouped in a b:macros element, which is
contained directly within the b:bibliography element. As with cross refer-
ences, no nesting is allowed with macros. Macro references can be inserted
inside field elements at any place where the replacement of the macro refer-
ence with the macro value yields a valid BibXML document. Macro refer-
ences are declared using the b:macro element with a ref attribute. The ref

attribute contains the name of the macro it is referencing. It is important
to know that macro references in a BibXML document can reference macros
that are defined in the same document as well as macros that have been de-
fined in another document and have already been imported into the system.
Therefore, it would be perfectly legal to first import the BibXML document
shown in Listing 8 and then import the document shown in Listing 9.

<?xml version="1.0"?>
<b:bibliography xmlns:b="http://bibtexml.org/base"

xmlns:s="http://bibtexml.org/standard">
<b:macros>
<b:macro name="iwaca92">Proceedings of the IWACA Workshop</b:macro>
<b:macro name="munich">Munich, Germany</b:macro>

</b:macros>
</b:bibliography>

Listing 8: BibXML Document Defining Two Macros

<?xml version="1.0"?>
<b:bibliography xmlns:b="http://bibtexml.org/base"

xmlns:s="http://bibtexml.org/standard">
<b:entries>
<s:proceedings key="iwaca92">
<s:title><b:macro ref="iwaca92"/></s:title>
<s:address><b:macro ref="munich"/></s:address>
<s:year>1992</s:year>
<s:booktitle><b:macro ref="iwaca92"/></s:booktitle>

</s:proceedings>
</b:entries>

</b:bibliography>

Listing 9: BibXML Document Referencing Two Macros

The last feature of the BibXML format is the possibility to specify system
information for each entry of the document. The system information of

14

an entry contains information about the modification of this entry, as well
as information about access rights. This information is included inside a
b:system element, which is an optional child of an entry element. Listing
10 shows the full system information of an entry using all four possible child
elements of a b:system element: b:modification, b:owner, b:group, and
b:others. If the b:system element is being used to describe an entry, at
least one of these four elements needs to be present as its child.

<b:system>
<b:modification>
<b:user>smith</b:user>
<b:datetime>2002-11-11T22:22:22</b:datetime>

</b:modification>
<b:owner rights="rw">smith</b:owner>
<b:group rights="r">tik</b:group>
<b:others rights="-"/>

</b:system>

Listing 10: System Information of a BibXML Entry

The following list describes all possible element descendants (as shown in
Listing 10) of the b:system element:

• b:modification: This element contains information about the last
modification of the entry. It needs a b:user and/or a b:datetime

element child. Only the system administrator (see Section 3.3.4) is
allowed to specify this information for an entry. If a normal user does
make use of the b:modification element, it is ignored by the system
and the user gets an appropriate notice.

– b:user: The b:user child of the b:modification element con-
tains the user name of the person who last modified the corre-
sponding entry. If the entry is imported by a normal user (only
administrators are allowed to specify information about the modi-
fication) or if the importing administrator does not specify the user
who made the last modification, the user name of the importing
person (the normal user or the administrator respectively) is used
as the default value for the b:user element.

– b:datetime: The b:datetime child of the b:modification ele-
ment contains the date and time of the last modification of the
corresponding entry. Its format is determined by the built-in sim-
ple type xsd:dateTime of XML Schema [6, 7]. If the entry is

15

fhauser
Erik: ist irgendwie auch neu fuer jemanden, der das liest, weil ja die ganze idee vom importieren noch gar nicht wirklich erklaert wurde. vielleicht auch hier eine vorwaertsreferenz...Felip: Die Idee vom Importieren von bibliographischen Daten wurde im Kapitel 3.3.1 (Import) anhand von Figur 2 (System Architecture) erklärt.

fhauser
Erik: der faellt hier ein bisschen vom himmel, vielleicht sollte man zumindest eine vorwaertsreferenz machen, wo der erstaunte leser nachschauen koennte, wenn er wollte...Felip: Stimmt. Wir haben nun das Konzept von Administratoren und normalen Users im neuen Kapitel 3.3.4 eingeführt.

imported by a normal user (only administrators are allowed to
specify information about the modification) or if the importing
administrator does not specify the date and time of the last mod-
ification, the date and time of the import event are used as the
default value for the b:datetime element.

• b:owner: This element specifies the owner of the entry by containing
the appropriate user name. Only the system administrator is allowed
to set the owner of an entry. If a normal user specifies the owner, it
is ignored by the system and the user is notified with an appropriate
message. If an entry is imported by a normal user or if the importing
administrator does not specify the owner of the entry, the user name
of the importing person is used as the default value for the b:owner

element. The optional rights attribute of the b:owner element gives
the user the possibility to set access rights for the owner of the entry
(also normal users can make use of this feature). There are four possible
values for the attribute: rw (read and write rights), r (only read rights),
w (only write rights) and - (neither read nor write rights). If this
attribute is not set, the default value rw is used by the system.

• b:group: This element specifies a group that is granted special access
rights for the entry compared to other users. As with the b:owner

element, access rights are set by using the optional rights attribute.
If the element is missing in the imported entry, no group is granted
special rights. If the element specifies a certain group name but the
rights attribute is missing, the default value r is used by the system.
The b:group element can be used by normal users and administrators
in the same way.

• b:others: The b:others element is an empty element with a manda-
tory rights attribute. It serves users and administrators to set access
rights (rw, r, w, or -) for all users who are not the owner of the entry
and not part of the group having access rights for this entry. So, if for
example a user is part of the group having only read rights for a certain
entry and others are granted read and write rights, this user does not
have write but only read rights. If the b:others element is omitted,
others have read rights only.

16

fhauser
Erik: braucht man das? aber egal...Felip: Das braucht man wohl nicht dringend, aber wir haben uns einfach dem Unix Standard angepasst.

4.2 Validation of BibXML Documents

To import bibliographic data into the management system, users have to
create a BibXML representation of their data (see Section 4.1) and submit
it to the system. The first task of the management system is the validation
of the imported document. The system has to check whether the imported
document complies with the BibXML format or not. If the document is a
valid BibXML document, the management system is able to handle the spec-
ified data and accepts the document for further processing. If the document
turns out to be invalid, it is rejected. Essentially, the validation of a BibXML
document is a two-step process as shown in Figure 3.

Validation against
schemas valid / invalidDenormalization Denorma-

lized
document

Prede-
fined

schema

User-
defined

schemas

BibXML
document

Figure 3: Two-step Validation Process

In a first step, the imported document is denormalized by resolving its
macro and cross references. This denormalization also works with documents
referencing macros or entries of the database. Then, the denormalized doc-
ument is validated against a predefined schema and additional user-defined
schemas. The predefined schema is a built-in schema of the system that de-
fines the overall structure of the BibXML document. User-defined schemas
are schema extensions defined by individual users: users have the possibil-
ity to extend the BibXML format accepted by the management system by
defining their own entry and field elements in appropriate schema documents.
These additional user-defined schemas are then passed to the system and used
besides the predefined schema to validate BibXML documents (see Figure 2).

A core part of our diploma thesis was the schema design for the BibXML
structure. The following Section will first compare different schema languages
that were considered for the schema design. In Section 4.2.2, we introduce
our own definition of a specialized schema language (BibSchema) and explain

17

its relation to other schema languages (XML Schema and Schematron). Fur-
thermore, the process of importing a user-defined schema extension into the
system is described. After having explained all aspects about the schema con-
cept, the complete process of validating a BibXML document is discussed in
Section 4.2.5.

4.2.1 Schema Languages

Several XML schema languages have been proposed to describe XML data
structures and constraints. Consequently, the very first step of the schema
design was to choose the schema language(s) best meeting the demands of
our system. Figure 4 shows a classification9 of the six schema languages
considered for our schema design.

has basic support
for structure

DTD

w.r.t. XDR it has:
inheritance,

better datatyping,
modularization

SOX

w.r.t. DTD it has:
more structure,

more content models,
better datatyping

XDR

w.r.t. SOX it has:
more structure,

datatyping, inheritance,
documentation

XML Schema

w.r.t. SOX it has:
constraints,

more structure,
documentation, version

DSD

w.r.t. SOX it has:
constraints,

documentation

SchematronClass 3

Class 2

Class 1

Figure 4: Classification of XML Schema Languages

With respect to their expressive power, the six languages can be catego-
rized into the following three classes:

9This classification was introduced by Dongwon Lee and Wesley W. Chu, and is avail-
able at http://cobase.cs.ucla.edu/tech-docs/dongwon/ucla-200008.html.

18

http://cobase.cs.ucla.edu/tech-docs/dongwon/ucla-200008.html

• Class 1: DTD has the weakest expressive power. It severely lacks the
support for datatypes. A schema for bibliographic data using DTD has
been proposed by [4].

• Class 2: XDR and SOX have more expressive power than DTD. Nev-
ertheless, their support for datatypes is not sufficient (e.g., there are
no user-defined types).

• Class 3: XML Schema [6, 7], Schematron [2], and DSD have the
strongest expressive power. Whereas XML Schema supports features
for defining extensive datatypes and structure, Schematron provides a
very flexible pattern language (using XPath expressions) that can de-
scribe sophisticated constraints. DSD tries to support common features
supported by XML Schema (e.g, structures) and Schematron (e.g., con-
straints) along with some additional features.

The choice of the schema language(s) to be used has been based on three
considerations: First of all, the schema language should be extensible in or-
der to allow users to extend the schema and use these schema extensions to
import any data they are interested in. Furthermore, the language should
support a sophisticated mechanism for defining datatypes. Datatypes are es-
pecially needed when defining field types. The language should also provide
the possibility to define so-called co-constraints. Co-constraints are depen-
dencies between different parts of an XML document. These dependencies
are a central part of the way constraints are defined for entries.

In order to support the definition of datatypes, the decision was made to
use the schema language XML Schema. But XML Schema does not allow the
specification of co-constraints, and therefore a second schema language had to
be used for this purpose. We decided to make use of the Schematron schema
language, which is extensible and has its strength in letting the user define
sophisticated co-constraints, but has only poor support for datatypes. These
characteristics make Schematron the ideal complement for XML Schema.

But the usage of two relatively complex schema languages results in a
problem concerning the extensibility of the schema: It is unrealistic to ask
users to define an XML Schema and a Schematron part for each schema
extension, and it would also have been a very complex task to check and
guarantee the consistency of these distinct parts. Consequently, we designed
a specialized schema language called BibSchema, which allows users to define
datatypes and co-constraints for their extensions in an easy way. BibSchema
depends on XML Schema and Schematron in the following way (see Figure
5): In order to extend the schema, users write BibSchemas defining their

19

new entry and field types. The datatype part of this BibSchema document
is then transformed into an appropriate XML Schema document, and the
co-constraint part is transformed into a Schematron document. Theses addi-
tional XML Schema and Schematron schemas are then used by the system to
validate bibliographic data. The transformation is implemented using XSLT
stylesheets. Using this concept, Figure 3 can be refined as shown in Figure
6.

BibSchema
schema:
datatypes,

co-constraints

XML Schema
schema:
datatypes

Schematron
schema:

co-constraints

Transformation
process (XSLT)

Figure 5: BibSchema, XML Schema, and Schematron

Validation against
schemas valid / invalidDenormalization

Predefined
XML Schema

schema

Predefined
Schematron

schema

User-defined
XML Schema

schema

User-defined
Schematron

schema

Transformation

BibXML
document

Denorma-
lized

document

User-defined
BibSchema

schema

Figure 6: Redefined Validation Process

20

4.2.2 BibSchema

The schema language BibSchema has been introduced in the last section. In
this section, we describe how BibSchema can be used to define schema ex-
tensions. BibSchema uses XML syntax and is specialized for defining entry
and field types for bibliographies. Users extend the schema of the manage-
ment system by defining their own entry and field elements in a BibSchema
document. After passing the schema document to the system, they can use
their new entry and field elements to describe bibliographic data.

The root element of the BibSchema document is a schema element in the
http://bibtexml.org/bibschema namespace. By convention, this names-
pace is mapped to the prefix bs, but users are free to pick another pre-
fix if they prefer. From this point forward, it is implied that the prefix
bs is mapped to the http://bibtexml.org/bibschema namespace (Section
4.1 implied that the prefix b is mapped to the http://bibtexml.org/base

namespace). Definitions of entry and field elements are included directly un-
der the bs:schema element. This layout is shown in Listing 11.

<?xml version="1.0"?>
<bs:schema xmlns:bs="http://bibtexml.org/bibschema"

defaultRefAndTargetNS="http://bibtexml.org/my_extension">
<!-- entry and field element definitions go here -->

</bs:schema>

Listing 11: BibSchema Skeleton

As can be seen in Listing 11, the root element bs:schema has a manda-
tory defaultRefAndTargetNS attribute. This attribute serves two purposes:
Its first purpose is to declare that this schema applies to documents in the
http://bibtexml.org/my_extension namespace, which is referred to as the
target namespace of the schema document. That means that the elements de-
fined in this schema are in the http://bibtexml.org/my_extension name-
space. The second purpose of the defaultRefAndTargetNS attribute will be
explained later in this subchapter.

Defining Field Elements

The definition of a new field element is shown in Listing 12, where the field
month is declared. A field element is defined by using the bs:field element.
Its mandatory name attribute sets the name of the field element. In order

21

to define the type of the new element, one of the elements restriction,
list, union (for the definition of simple types), or sequence, choice, all
(for the definition of complex types) from the http://www.w3.org/2001/

XMLSchema namespace can be used as a child element of the bs:field ele-
ment. Just like in an XML Schema document, these six elements from the
http://www.w3.org/2001/XMLSchema namespace can be used to describe
simple and complex types. With respect to these six elements, the only dif-
ference between a BibSchema and an XML Schema document is, that in
a BibSchema document, they are children of bs:field elements instead of
simpleType or complexType elements, and that BibSchema does not allow
the user to define named types. In Listing 12, the simple type string from
the http://www.w3.org/2001/XMLSchema namespace has been restricted us-
ing facets to describe the type of the new field element month.

Furthermore, there is a special behavior of BibSchema that has to be
taken into account when defining namespaces: Only the two namespaces
http://bibtexml.org/bibschema and http://www.w3.org/2001/XMLSchema

(to be declared as the default namespace) may be declared in the document
and the declaration of these two namespaces has to be in the root element.
The reason for this restriction in declaring namespaces is the inability of most
XML Schema validators to cope with arbitrary declarations of namespaces.

<?xml version="1.0"?>
<bs:schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:bs="http://bibtexml.org/bibschema"
defaultRefAndTargetNS="http://bibtexml.org/my_extension">

<bs:field name="month">
<restriction base="string">
<enumeration value="January"/>
<enumeration value="February"/>
<enumeration value="March"/>
...

</restriction>
</bs:field>

</bs:schema>

Listing 12: Definition month Field Element

Using predefined types is a second way to define field elements: An empty
bs:field element can be used with a name attribute specifying the name of
the new field element, and a isPerson or isSpecialText attribute identi-
fying the type of the new element. The default value of the isPerson and

22

isSpecialText attributes is false. This situation is shown in Listing 13.

<?xml version="1.0"?>
<bs:schema xmlns:bs="http://bibtexml.org/bibschema"

defaultRefAndTargetNS="http://bibtexml.org/my_extension">
<!-- definition of a person field element -->
<bs:field name="author" isPerson="true"/>
<!-- definition of a special text field element -->
<bs:field name="booktitle" isSpecialText="true"/>

</bs:schema>

Listing 13: Definition of Person and Special Text Field Elements

The first definition assigns a predefined complex type for persons to an
author field element. The author element can then be used in the BibXML
document in two ways as shown in Listing 14.

<!-- using a person field element to describe a physical person -->
<author>
<b:bibperson>
<b:firstname>Michael</b:firstname>
<b:middlename>Andrew</b:middlename>
<b:lastname>Smith</b:lastname>
<b:suffix>Jr.</b:suffix>

</b:bibperson>
</author>
<!-- using a person field element to describe a corporation -->
<author>
<b:name>Macromedia, Inc.</b:name>

</author>

Listing 14: Two Ways of Using a Person Field Element

Using the b:bibperson element, persons are described with their first,
middle, and last name as well as their suffix. At least a first or a last name
is required, and a middle name is only allowed if a first name is present. An
optional suffix can be added to the last name of a person. A b:name child is
used to identify the corporation or institution where a resource was created,
rather than the individual persons who participated in the creation.

The second definition of Listing 13 declares that a booktitle field el-
ement may contain simple text mixed with b:special elements (what is
referred to as special text) as shown in Listing 15. The usage of special text

23

<booktitle><b:special><b:text>LaTeX2e</b:text><tex>\LaTeXe{}</tex>
</b:special>: A Document Preparation System</booktitle>

Listing 15: Special Text Field

inside certain field elements has the following reason: Suppose a reference
to a book with the title LATEX2ε: A Document Preparation System. Many
people write their papers in LATEX and want to have the possibility to export
their references to the BibTEX format. So, they want the mentioned title to
be output as \LaTeXe{}: A Document Preparation System using the ap-
propriate LATEX control sequence \LaTeXe{}. On the other side, users want
to be able to find their references using the search routines of the manage-
ment system. But the problem is that the system does not understand LATEX
control sequences like the one used in the mentioned title. So, should users
enter their field values with or without LATEX control sequences? The solu-
tion to this problem is the b:special element. The subtree of the b:special
element shown in Listing 15 guarantees full LATEX compatibility (when ex-
porting the reference into the BibTEX format, an appropriate stylesheet10

replaces the b:special element with the value of its tex child, \LaTeXe{}),
as well as a full compatibility with the search routines of the system (when
searching and displaying the entry, the system replaces the b:special ele-
ment with the value of its b:text child, LaTeX2e). The b:text element is
a mandatory child of the b:special element. But the tex child is a user-
defined element. We refer to such user-defined elements that can be used as
children of a b:special element as special items. The definition of a spe-
cial item like tex is very similar to the definition of field elements as can be
seen in the BibSchema document of Listing 16. Element bs:specialItem is
used for the definition of the new special item. Its mandatory name attribute
sets the name of the special item element. In order to define the type of
the new element, one of the elements restriction, list, union (for the
definition of simple types), and sequence, choice, all (for the definition of
complex types) from the http://www.w3.org/2001/XMLSchema namespace
can be used as a child element of the bs:specialItem element.

Furthermore, bs:field and bs:specialItem elements have an optional
mixed attribute. If its value is set to true (the default value is false), the
field or special item element gets a mixed content model. Obviously, this
feature can only be used if a sequence, choice, or all element is used as

10The export of bibliographic data using stylesheets is described in Section 4.7.

24

<?xml version="1.0"?>
<bs:schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:bs="http://bibtexml.org/bibschema"
defaultRefAndTargetNS="http://bibtexml.org/my_extension">

<bs:specialItem name="tex">
<restriction base="string"/>

</bs:specialItem>
</bs:schema>

Listing 16: Definition of Special Item tex

a child of the bs:field or bs:specialItem element. A bs:field element
(but not a bs:specialItem element) is also allowed to have a repeatable

attribute as shown in Listing 17. By default, each field element is only allowed
to occur once inside the same entry element. But if a field element is defined
with the repeatable attribute set to true (the default value is false), then
there is no restriction on how often the field element may occur inside the
same entry element.

<?xml version="1.0"?>
<bs:schema xmlns:bs="http://bibtexml.org/bibschema"

defaultRefAndTargetNS="http://bibtexml.org/my_extension">
<bs:field name="author" isPerson="true" repeatable="true"/>

</bs:schema>

Listing 17: Definition of Repeatable author Field

Defining Entry Elements

A new entry element is defined using a bs:entry element with a mandatory
name attribute specifying its name. By default, an entry element may con-
tain any field elements for which an appropriate BibSchema definition exists.
But usually, entry types should be more restrictive with regard to their field
information. For example, it would probably be reasonable for a book entry
to require a title, a publisher, and a year field. Furthermore, a book entry
should have either an author field or an editor field, but not both. In Bib-
Schema, there is a special mechanism for defining such dependencies, which
is introduced in Listing 18.

25

<?xml version="1.0"?>
<bs:schema xmlns:bs="http://bibtexml.org/bibschema"

defaultRefAndTargetNS="http://bibtexml.org/my_extension">
<bs:entry name="book">
<bs:field ref="title"/>
<bs:field ref="publisher"/>
<bs:field ref="year"/>
<bs:one>
<bs:field ref="author"/>
<bs:field ref="editor"/>

</bs:one>
<bs:maxOne>
<bs:field ref="volume"/>
<bs:field ref="number"/>

</bs:maxOne>
</bs:entry>

</bs:schema>

Listing 18: Definition of book Entry Element

The BibSchema document of Listing 18 has to be read like that: The book
entry element has to contain a title, a publisher and a year field element.
In addition to these elements, it must also contain exactly one of the field
elements author or editor, and at most one of the field elements volume

or number. In order to describe the content model of an entry element, field
elements are referenced using bs:field elements with a mandatory ref at-
tribute specifying the name of the referenced field. If the field names used
in ref attributes are not prefixed, then they are by default in the names-
pace specified by the defaultRefAndTargetNS attribute of the root element.
This is the second purpose of the defaultRefAndTargetNS attribute besides
declaring the target namespace of the BibSchema. In case of Listing 18, all
field elements referenced are in the http://bibtexml.org/my_extension

namespace. If we change the situation and suppose that the field element
title is not defined in the http://bibtexml.org/my_extension, but in
the http://bibtexml.org/another_extension namespace, then the Bib-
Schema of Listing 18 has to be rewritten as seen in Listing 19.

First, an uri and a prefix attribute of a bs:ns element have to be
used to link a prefix (ae) to the appropriate namespace (http://bibtexml.
org/another_extension). Then, the declared prefix can be used inside the
ref attribute of a bs:field element in order to reference field elements
from another namespace than the one set in the defaultRefAndTargetNS

attribute.

26

<?xml version="1.0"?>
<bs:schema xmlns:bs="http://bibtexml.org/bibschema"

defaultRefAndTargetNS="http://bibtexml.org/my_extension">
<bs:ns uri="http://bibtexml.org/another_extension" prefix="ae"/>
<bs:entry name="book">
<bs:field ref="ae:title"/>
<bs:field ref="publisher"/>
<bs:field ref="year"/>
<bs:one>
<bs:field ref="author"/>
<bs:field ref="editor"/>

</bs:one>
<bs:maxOne>
<bs:field ref="volume"/>
<bs:field ref="number"/>

</bs:maxOne>
</bs:entry>

</bs:schema>

Listing 19: Definition of a book Entry Element by Referencing a Field Ele-
ment (ae:title) from Another Namespace

There are three different grouping mechanisms for defining dependencies
between field elements of an entry:

• bs:one: Exactly one of the field elements referenced by the bs:field

children must be present in the entry element.

• bs:maxOne: At most one of the field elements referenced by the bs:field
children may be present in the entry element.

• bs:minOne: At least one of the field elements referenced by the bs:field
children must be present in the entry element.

4.2.3 Dependencies between BibSchema, XML Schema, and Schema-
tron Schemas

As outlined in Section 4.2.1, the BibSchema schema language depends on
XML Schema and Schematron in the following way: The datatype part of
the BibSchema document is transformed into an appropriate XML Schema
document, and the co-constraint part is transformed into a Schematron doc-
ument (see Figure 5). These XML Schema and Schematron documents are
then used by the system to validate bibliographic data. By using this con-
cept, we do not have to write a specialized BibSchema validator, but we

27

fhauser
Erik: mal eine dumme frage hierzu: ist dieses attribut in einem xml schema als qname definiert? und wenn ja, verlangt ein xml schema qname, dass der prefix deklariert ist? dann haettet ihr naemlich hier ein xml schema problem...Felip: QName ist XML qualified name: "The Prefix provides the namespace prefix part of the qualified name, and must be associated with a namespace URI reference in a namespace declaration." Wir brauchen aber den Typ “xs:Name”, womit sich dieses Problem nicht stellt.

can make use of existing XML Schema and Schematron validators. The
skeleton1-5.xsl11 implementation of Schematron 1.5 was used in conjunction
with the XSLT processor Saxon12 to validate data against Schematron doc-
uments. Unfortunately, there does not seem to exist a single XML Schema
processor that fully implements the specification. Thus, we spent a lot of
time testing different processors (mainly XSV 13, xsdvalid14, and Xerces15).
We decided to use the Xerces2 Java Parser 2.3.0 Release, because it seems
to implement the biggest subset of XML Schema.

In the rest of this section and in the following two sections (4.2.4 and
4.2.5), we introduce details about the implementation of the validation pro-
cess. These sections are intended for software developers who want to un-
derstand the implementation in detail. In order to allow developers to easily
find and study the corresponding code fractions, we explicitly name the par-
ticipating files. By convention, all relative file paths mentioned in this report
are relative to the installation directory of the management system, which
can be declared in include.php. Usually, this directory is the document root
directory of the Apache installation (htdocs) or a subdirectory of it.

The process of transforming a BibSchema document into an XML Schema
and a Schematron document includes the two stylesheets schema/xmlSchema
Transform.xsl and schema/schematronTransform.xsl. The stylesheet schema/
xmlSchemaTransform.xsl transforms the x-th user-defined BibSchema docu-
ment into the XML Schema document schema/x/x.xsd (the first imported
schema is transformed into schema/1/1.xsd, the second into schema/2/2.xsd
and so on). The stylesheet schema/schematronTransform.xsl is used to trans-
form the x-th user-defined BibSchema document into the Schematron docu-
ment schema/x/x.sch. Furthermore, the predefined XML Schema document
for validating bibliographic data is the schema/xmlSchemaBase.xsd docu-
ment and the predefined Schematron document is schema/schematronBase.sch.
This situation is illustrated in Figure 7.

A central key for understanding the schema design is the fact that the
XML Schema documents (schema/xmlSchemaBase.xsd, schema/1/1.xsd, sche-
ma/2/2.xsd, ...) and the Schematron documents (schema/schematronBase.xsd,
schema/1/1.sch, schema/2/2.sch, ...) are completely independent of each
other. First, the XML Schema documents are used for validating biblio-
graphic data, and only if the data turns out to be valid with respect to these

11Available online at http://www.ascc.net/xml/schematron/1.5/skeleton1-5.xsl
12Available online at http://saxon.sourceforge.net/
13Available online at http://www.ltg.ed.ac.uk/~ht/xsv-status.html.
14Available online at http://www.xmlmind.com/xsdvalid.html
15Available online at http://xml.apache.org/xerces2-j/index.html

28

http://www.ascc.net/xml/schematron/1.5/skeleton1-5.xsl
http://saxon.sourceforge.net/
http://www.ltg.ed.ac.uk/~ht/xsv-status.html
http://www.xmlmind.com/xsdvalid.html
http://xml.apache.org/xerces2-j/index.html
fhauser
Erik: das hier gleitet massiv in details der implementierung ab, dabei sind bisher solch konkreten dinge wie pfade von stylesheets und so nicht vorgekommen. beim lesen gibt das einen sehr harten bruch an dieser stelle.Felip: Stimmt. Wir haben nun eine kleine Einleitung vorangestellt, um einen weicheren Übergang zu erreichen und dem "oberflächlichen" Leser zu zeigen, welche Detail-Sections er überspringen kann.

Validation against
schemas valid / invalidDenormalization

schema/
xmlSchema
Base.xsd

schema/
schematron
Base.sch

schema/1/
1.xsd

schema/1/
1.sch

Transformation into
XML Schema

BibXML
document

Denorma-
lized

document

User-defined
BibSchema
document

Transformation into
Schematron

schema/
xmlSchema
Transform.xsl

schema/
schematron
Transform.xsl

Figure 7: Validation Process Overview Indicating File Paths

documents, the data is validated against the Schematron documents as well.

Dependencies between BibSchema and XML Schema Schemas

Figure 8 shows the dependencies between BibSchema and XML Schema
schemas. The schema/xmlSchemaBase.xsd schema defines the overall struc-
ture of the BibXML document, and the schema/x/x.xsd schemas (from this
point forward, it should be understood that schema/x/x.xsd stands for the
whole group schema/1/1.xsd, schema/2/2.xsd, ...) specify the individual
user-defined entry, field, and special item elements that can be used in
BibXML documents.

The connection between the schema/xmlSchemaBase.xsd and the schema/
x/x.xsd documents is implemented by declaring an appropriate substitution
group hierarchy. The substitution group mechanism of XML Schema is a
flexible way to designate element declarations as substitutes for other ele-

29

schema/
xmlSchema
Base.xsd

schema/1/
1.xsd

TransformationUser-defined
BibSchema
schema

schema/
xmlSchema
Transform.xsl

Figure 8: Dependencies between BibSchema and XML Schema Schemas

ment declarations in content models. Each substitution group consists of a
head and one or more members. Wherever the head element declaration is
referenced in a content model, one of the member elements may be substi-
tuted in place of the head. In order to allow the schema to be extended with
user-defined entry, field, and special item elements, we make use of the sub-
stitution group mechanism in the following way: In the predefined schema/
xmlSchemaBase.xsd document, we declare the abstract substitution group
heads b:entry, b:field, and b:specialItem. Further, the declarations of
entry, field, and special item elements in user-defined BibSchema documents
are transformed into declarations of according substitution group members
in the schema/x/x.xsd documents.

There are three substitution groups defined in our system. The first
substitution group (see Figure 9) has the declaration of the abstract element
b:entry as its head, and the declarations of user-defined entry elements
like me:book, me:article, and me:misc (in the http://bibtexml.org/my_

extension namespace) as its members. This means that at any place where
b:entry appears in a content model, any of the me:book, me:article, or
me:misc elements may appear in the instance.

The second substitution group (see Figure 10) has the declaration of the
abstract element b:field as its head, and the declarations of user-defined
field elements like me:title, me:author, and me:year as its members. This
means that at any place where b:field appears in a content model, any of
the me:title, me:author, or me:year elements may appear in the instance.
The same characteristics apply to the third substitution group for special
item elements, which is illustrated in Figure 11.

Listing 12 shows the relevant code sections of schema/xmlSchemaBase.xsd,

30

b:entry

me:book me:article me:misc

members
(defined in schema/x/x.xsd)

head
(defined in schema/xmlSchemaBase.xsd)

Figure 9: Substitution Group 1: Entry Elements

b:field

me:title me:author me:year

members
(defined in schema/x/x.xsd)

head
(defined in schema/xmlSchemaBase.xsd)

Figure 10: Substitution Group 2: Field Elements

where the abstract head elements b:entry, b:field, and b:specialItem are
declared and referenced. The transformed BibSchema declarations for entry,
field, and special item elements are shown in Listing 13, where three member
elements me:book, me:title, and me:tex are declared (one member for each
substitution group).

Dependencies between BibSchema and Schematron Schemas

Figure 14 shows the dependencies between BibSchema and Schematron schemas.
The schema/schematronBase.sch document defines constraints that are com-
mon to all entry, field, and special item elements. The schema/x/x.sch doc-

31

b:specialItem

me:mathml

members
(defined in schema/x/x.xsd)

head
(defined in schema/xmlSchemaBase.xsd)

me:tex

Figure 11: Substitution Group 3: Special Item Elements

uments contain specific constraints for the individual user-defined entry and
field elements. As opposed to the XML Schema documents, the predefined
and the user-defined Schematron documents are completely independent of
each other (therefore they do not have to be connected with import state-
ments or alike). That is because a Schematron schema allows everything that
is not explicitly forbidden. In contrast, XML Schema disallows everything
that is not explicitly allowed.

The transformation of a BibSchema schema into a Schematron document
is demonstrated using the simple BibSchema example shown in Listing 20.
It defines an entry element proceedings in the http://bibtexml.org/my_

extension namespace, which has to contain the mandatory fields title

and year and at most one volume or number field. These constraints are
transformed into appropriate Schematron assertions shown in Listing 21.

4.2.4 Validating and Importing BibSchema Schemas

The complete process of validating and eventually importing a BibSchema
schema is implemented by the PHP function check bib schema() in the schema/
validation.php file. At first, the user has to upload the BibSchema schema
using the Schema Management interface. The uploaded document is then
checked for well-formedness by Apache’s Xerces processor. In the next step,
the target namespace specified by the defaultRefAndTargetNS attribute of
the root element of the schema is read and the system checks that this names-
pace is not already taken by another schema extension by consulting the

32

<?xml version="1.0" encoding="UTF-8"?>
<bs:schema xmlns:bs="http://bibtexml.org/bibschema"

defaultRefAndTargetNS="http://bibtexml.org/my_extension">
<bs:entry name="proceedings">
<bs:field ref="title"/>
<bs:field ref="year"/>
<bs:maxOne>
<bs:field ref="volume"/>
<bs:field ref="number"/>

</bs:maxOne>
</bs:entry>

</bs:schema>

Listing 20: BibSchema Document To Be Transformed

<?xml version="1.0" encoding="UTF-8"?>
<sch:schema xmlns:sch="http://www.ascc.net/xml/schematron">
<sch:ns uri="http://bibtexml.org/my_extension" prefix="me"/>
<sch:pattern name="mandatory fields">
<sch:rule context="me:proceedings">
<sch:assert test="me:title">Field ’me:title’ is missing.

</sch:assert>
<sch:assert test="me:year">Field ’me:year’ is missing.

</sch:assert>
<sch:assert test="count(me:volume[1] | me:number[1])<=1">

At most one of the following fields may be present: ’me:volume’,
’me:number’.</sch:assert>

</sch:rule>
</sch:pattern>

</sch:schema>

Listing 21: Transformed Schematron Schema

database. If the specified namespace is still available, the document is vali-
dated against the Schematron document schema/schematron1ForBibSchema.sch.
This simple Schematron document ensures that the namespace declarations
in the imported document are correct (using the special conventions about
declaring namespaces in BibSchema documents from Section 4.2.2). Next,
the detailed structure of the BibSchema document is validated using the XML
Schema and Schematron schemas schema/xmlSchemaForBibSchema.xsd and
schema/schematron2ForBibSchema.sch. If the BibSchema document is valid
with respect to these two schemas, external field references are verified (the
referenced external fields need to exist), and the schema is transformed into
two temporary XML Schema and Schematron schemas using the stylesheets
schema/xmlSchemaTransform.xsl and schema/schematronTransform.xsl. The

33

system then makes sure that the two temporary schemas conform to the cor-
responding schema specifications. If they do, the system checks again that
the target namespace of the imported schema document has not been taken in
the meantime. If this check succeeds, the BibSchema document is definitively
accepted, the database is updated accordingly, and the two temporary XML
Schema and Schematron schemas are copied to the destinations schema/x/
x.xsd and schema/x/x.sch.

4.2.5 Process of Validating BibXML Documents

The process of validating a BibXML document is implemented by the PHP
function validate instance() in the schema/validation.php file. At first, the
user has to upload the BibXML document using the Data Import interface.
The uploaded document is then checked for well-formedness by Apache’s
Xerces processor. Next, the document is validated against the Schematron
schema schema/prevalidation1.sch in order to make sure that certain ba-
sic constraints are satisfied. Macro definitions of the BibXML document
are then inspected, and the system checks that they are not already de-
fined by other users, and that their name follows the BibTEX rules. In the
next step, cross referenced external entries are retrieved from the database
and merged with the uploaded BibXML document. Then, this merged docu-
ment is validated against the Schematron schema schema/prevalidation2.sch,
which makes sure that cross references are used correctly (e.g., nesting of
cross references is forbidden). Then, cross references are resolved by ap-
plying the stylesheet schema/resolveCrossrefs.xsl to the BibXML document.
In this step, entries inherit any fields they are missing from the entries
they cross reference. Next, referenced external macros are retrieved from
the database and inserted into the document. Then, macro references (all
macro references are internal at this point) are resolved by applying the
stylesheet schema/resolveMacros.xsl to the document. Now, the BibXML
document is completely denormalized, and it can finally be validated against
the predefined and user-defined schema documents of the system (schema/
xmlSchemaBase.xsd, schema/schematronBase.sch, schema/x/x.xsd, schema/
x/x.sch).

34

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://bibtexml.org/base" ... >
 <xs:element name="bibliography">
 <xs:complexType>
 <xs:all>
 <xs:element name="entries" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="entry" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 ...
 </xs:element>
 ...
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element name="entry" type="Entry" abstract="true"/>
 <xs:complexType name="Entry">
 <xs:sequence>
 <xs:element ref="field" maxOccurs="unbounded"/>
 ...
 </xs:sequence>
 </xs:complexType>
 <xs:element name="field" type="xs:anyType" abstract="true"/>
 <xs:complexType name="Special">
 <xs:choice minOccurs="2" maxOccurs="unbounded">
 <xs:element ref="specialItem"/>
 ...
 </xs:choice>
 </xs:complexType>
 <xs:element name="specialItem" type="xs:anyType" abstract="true"/>
 ...
</xs:schema>

 Figure 12: Head Element Declarations in xmlSchemaBase.xsd

35

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:b="http://bibtexml.org/base"
 targetNamespace="http://bibtexml.org/my_extension" ... >
 <import namespace="http://bibtexml.org/base"
 schemaLocation="../xmlSchemaBase.xsd"/>
 <element name="book" type="b:Entry" substitutionGroup="b:entry"/>
 <element name="title" substitutionGroup=" b:field ">
 <simpleType>
 <!-- descentants of BibSchema element bs:field with
 attribute name="title" go here -->
 </simpleType>
 </element>
 <element name="tex" substitutionGroup="b:specialItem">
 <simpleType>
 <!-- descentants of BibSchema element bs:specialItem with
 attribute name="tex" go here -->
 </simpleType>
 </element>
</schema>
 <xs:element name="specialItem" type="xs:anyType" abstract="true"/>

‘

Figure 13: Member Element Declarations

schema/
schematron
Base.sch

schema/1/
1.sch

TransformationUser-defined
BibSchema
schema

schema/
schematron
Transform.xsl

Figure 14: Dependencies between BibSchema and Schematron Schemas

36

4.3 Database Structure

For storing and managing the bibliographic data, the system uses the MySQL
database. The structure of this database is designed in a way that the
BibXML format with its extensibility and all other features is optimally
supported. We are using tables of the type InnoDB16. These special ta-
bles are available in the “max” distribution of MySQL and support foreign
key constraints with referential integrity, row level locking, and transactions.
These features are very helpful to ensure the integrity and consistency of
the database, and are unfortunately not yet implemented in the standard
MySQL tables. An overview of all tables, their attributes, and the relations
between them is shown in Figure 15. We are using italics when referring
to table or attribute names from the figure. Required attributes (which can
not be NULL) are printed in bold. PK stands for primary key, and FK for
foreign key. A detailed description of each table follows below.

grp

PK Name

Info

namespace

PK ID

URI
Info

entry

PK ID

KeyWord
FK1 EntryTypeID
FK2 Owner
FK3 Modifier
FK4 Grp

ModDate
OwnerRights
GrpRights
OtherRights

FK5 CrossRefID
HasCrossRef

person

PK ID

Firstname
Middlename
Lastname
NameSuffix

usr

PK Name

Password
Info

entrytype

PK ID

FK1 NameSpaceID
Name

usr_grp

PK,FK1 UsrName
PK,FK2 GrpName

field

PK ID

FK1 EntryID
FK2 FieldTypeID

TextValue
XMLValue

FK3 OptPersonID

fieldtype

PK ID

FK1 NameSpaceID
Name
IsPerson

export_xslt

PK ID

FK1 ModeID
Priority
Name
Info

export_mode

PK ID

Name
Info

macro

PK ID

Name
TextValue
XMLValue

FK1 Owner

Figure 15: Conceptual Database Schema

16More information about InnoDB: http://www.innodb.com/

37

http://www.innodb.com/

Table entry

This table contains all information associated with BibXML entries. The ID
attribute uniquely identifies each entry, and is used as a foreign key in the
table field, expressing that each entry has one or more fields. The attribute
KeyWord corresponds to the key used in the BibTEX/BibXML entry. The
mandatory attribute EntryTypeID is a foreign key from the table entrytype,
and specifies the type of the entry.

Owner and Modifier are foreign keys from the table usr and specify the
owner and modifier of the entry. Grp is a foreign key from the table grp and
specifies which user groups have access to the entry. ModDate contains the
modification date of the entry.

OwnerRights, GrpRights, and OthersRights specify the access rights for
the entry in the same way as on Unix systems. Possible values are “r” for
read only, “w” for write only, “rw” for read and write and “-” for no rights at
all.

CrossRefID is NULL by default, but is a foreign key when referencing
another entry. HasCrossRef is a binary attribute that is set to “1” if the
entry is referencing another entry and to “0” otherwise. HasCrossRef can
be used to detect orphaned entries because CrossRefID is set to NULL but
HasCrossRef keeps its value “1” when the referenced entry is deleted.

Table entrytype

This table is used to manage all available entry types in the system. It
contains the primary key attribute ID, the foreign key NameSpaceID from
table namespace that identifies a unique namespace, and the local name
(Name) of the entry type.

Table namespace

This table is used to manage all available namespaces. It contains the primary
key attribute ID, a unique URI (URI), and optional additional information
(Info) for this namespace.

Table field

This table contains all information associated with a BibXML field. The ID
attribute uniquely identifies each field. The attribute EntryID is a foreign

38

key from the table entry and specifies to which entry the field belongs. The
foreign key FieldTypeID from the table fieldtype specifies the type of the field.

XMLValue contains the content of the field. TextValue is the text value
generated by applying the stylesheet import/special.xsl to the content of XML
Value.

The optional foreign key OptPersonID from the table person is used if
the fieldtype is defined to be a person (IsPerson set to ”1”), and if it contains
content of the type bibperson (please see Section 4.2.2 for more information).
If the field contains information of the type person name, then the attribute
TextValue contains the information.

Table fieldtype

This table is used to manage all available fieldtypes. It contains the primary
key attribute ID, the foreign key NameSpaceID from table namespace that
identifies a unique namespace, and the local name (Name) of the fieldtype.
The binary attribute IsPerson is set to ”1” if the field type is of type person,
and to ”0” otherwise.

Table person

This table contains all information associated with a person. The ID at-
tribute identifies each person uniquely. Firstname, Middlename, Lastname,
and Namesuffix contain the respective information from the bibperson syntax
described in Section 4.2.2.

Table usr

This table is used to manage the users of the system. Primary key Name
is the actual user name. The user password is stored encrypted by a one-
way hash function in the attribute Password. Additional information can be
added in the Info attribute.

Table grp

The grp table is very simple with the group name as primary key Name, and
attribute Info for additional information.

39

Table usr grp

Table usr grp consists of the two primary keys from the tables usr and grp as
foreign keys, and associates users and groups in a many-to-many relationship.

Table macro

This table is used to manage all available macros. The primary key ID
identifies each macro uniquely. The macro can be referenced in fields by its
name (Name). The macro value is stored in XMLValue and TextValue in the
same way as described for table field above. Access rights are simplified in
such a way that only the owner (Owner as foreign key from table usr) can
manage a macro.

Table export mode

This table contains all available export modes with the primary key ID, the
name (Name) of the export mode, and additional information (Info). The ID
is used as a foreign key in the table export xslt, expressing that each export
mode has one or more XSLT stylesheets.

Table export xslt

This table contains information about all available XSLT stylesheets in the
system. The primary key ID identifies each stylesheet uniquely. The at-
tribute ModeID is a foreign key from the table export mode and specifies to
which export mode the stylesheet belongs. Priority contains the per mode
(modeID) priority of each stylesheet, a lower number means higher import
precedence. The system keeps the priorities consistent using only low num-
bers for each mode (1,...,[number of stylesheets with this ModeID]). Attribute
Name specifies the name for each stylesheet and additional information can
be added in the Info attribute.

A comment on the macro feature

As macros can appear anywhere in the value of a field, the macro feature can
not be supported by using foreign keys and referential integrity. And because
macros represent a form of normalization, it makes no sense to resolve all the
macros before inserting them into the database. Therefore, if the value of a
BibXML field like

40

<title xmlns="http://bibtexml.org/standard">
A guide to <macro xmlns="http://bibtexml.org/base" ref="db"/> design

<title>

contains references to macros, the XMLValue in the database table field, in
our case

A guide to <macro xmlns="http://bibtexml.org/base" ref="db"/> design

still contains the macro reference. This leads to some problems with the
search routine, which will be discussed in Section 4.5.

4.4 Data Import

The data import into the system is managed through the menu item Data
Import in the Web interface, and executed by import.php. The specific steps
of the import process are shown in Figure 16 and are explained below.

XSLT processor

 BibXML
data

document

XSLT
stylesheet
(biblio.xsl)

PHP
data

document

Import
procedure MySQL

database

SQL

Validation
Schemas

Figure 16: Data Import

As a first step, the user has to specify the document he would like to
import by indicating its path and choosing from some import options in
the HTML form. When the user submits the form, the import document

41

is uploaded to the server together with the selected options. If the up-
load is successful, the import document is validated with the function val-
idate instance() to ensure that the document is proper BibXML as defined
by the existing schemas. See Section 4.2 for more information about the
validation process.

If the validation is successful, the stylesheet import/biblio.xsl is applied
to the valid BibXML document through the function xslt process(). The
result of this transformation is a PHP file containing all import data and
instructions on how to import the data into the MySQL database in PHP
syntax. This PHP file is processed by the main import file (import.php)
resulting in an interactive import process that will ask the user for action if
necessary, give status information to the user, and insert all the import data
into the database.

4.5 Search

The bibliographic data in the system can be searched through the menu
item Search in the Web interface. The system provides a simple as well as
an advanced search interface, which are both described below. The general
process of searching is in both cases the same. The user enters the search
criteria in an HTML form, and submits it to the server. The search engine,
implemented in the file fast search.php, transforms this search request into
a MySQL query, queries the database, and presents the results in the Web
interface using the function display results().

In Section 4.3 we describe how macros are stored in the value of a field.
This causes serious problems for the search routine. How can the macro value
be searched for something, if only the macro reference is stored in a field?

In a first attempt to solve this problem, we tried creating a temporary
table with all entry and field information relevant for the corresponding search
query. In this temporary table the macro references were resolved, the fields
were updated with the macro values, and the table could be queried as if no
macros existed at all. Unfortunately, this solution led to serious performance
problems. Some search queries that were not very sophisticated needed more
than two minutes for a database with approximately 1600 entries. The reason
is that MySQL is very fast at reading or searching tables, but very slow at
writing or updating tables. For these reasons, we decided to choose another
approach.

Instead of trying to actually resolve the macros, which leads to slow write
operations, the system now uses a different technique with no write operations

42

at all. In a first step, the system takes the search keyword specified by the user
and searches in the attribute XMLValue of the table macro for this keyword.
That way, all relevant macros containing the keyword are found, and their
names are cached. In a second step, the system now searches the actual
entries with their fields not only for the keyword, but also for references
to the relevant macros found before. The references to macros are found
using the quite efficient search function for regular expressions (RLIKE) of
MySQL. With this technique, even not very sophisticated searches are quite
fast, and most notably much faster than with the approach described above.
A disadvantage of this approach is that search queries over macro boundaries
are not possible. Of course it is still very advisable to narrow any search as
much as possible by using the advanced search interface.

Simple Search

This simple search interface consists of a single text field where the search
keyword can be entered. The keyword does not have to be a simple word, but
can be a regular expression that allows a very sophisticated search. The exact
syntax for these search expressions is explained in the ”User Guide” in Ap-
pendix A. The system will search for the search expression in the attributes
entry.KeyWord, field.XMLValue, field.TextValue, and in all attributes of the
table person.

Advanced Search

The advanced search interface features multiple input fields for selective
search for distinct entry and field information, and supports the same search
for regular expressions as the simple search. For user convenience, many in-
put fields are implemented as drop-down menus that are dynamically created
from the database, and thus do only contain the options that actually exist
in the database. For example, if there are only entries belonging to the users
”Smith” and ”Anderson” in the system, the drop-down menu for Owner will
only contain these two options and the wildcard ”—ANY—”. The advanced
interface offers a very sophisticated way to search the database and in most
cases should be preferred over the simple interface, because the search can
be constrained better leading to faster search results.

43

Search Results

Search results are presented in a table with all found entries listed, and can be
expanded to show all fields as well. In this case, the field data is dynamically
collected from the database, and the result page is reloaded. The results can
also be sorted by various criteria, exported into all available export formats,
or added to the selection, which is explained in the next section.

4.6 Selection

The selection works like the shopping cart system used by many E-shops and
is available through the menu item Selection in the Web interface. Search
results (entries) from multiple searches can be added to the selection, and in
that way collected for later reuse or processing. In the selection, the collected
entries are presented in the same expandable table used for the direct search
results. They can be selected for export, deleted from the database (if the
user has sufficient rights), removed from the selection, and reordered with
a few mouse clicks. The system keeps track of the current content of the
selection, the content’s order, and expansion status using the PHP session
variables that will only be deleted after logout.

4.7 Export Management

Besides the export into the extensible BibXML format, the system also sup-
ports the export into user defined formats. These user defined export modes
are realized by uploading appropriate XSLT stylesheets that can be applied to
the BibXML file, generating the desired export format. The Export Manage-
ment is used to create and manage these export modes and their stylesheets.
As soon as an export mode is created and at least one stylesheet added to it,
the export mode is available as an export option for search results and the
entries in the selection. The export mode for BibTEX is already completely
implemented as an example for a user defined mode.

To create a new export mode, the user must first specify an appropriate
name and should provide some information that characterizes the mode. The
mode will then be created and stored in the database. Afterwards, the user
must upload at least one stylesheet with a suitable name to activate the
export mode. This stylesheet is stored in the file system and associated
with the corresponding mode through the database as explained in Section
4.3. If there are several stylesheets in the system for one mode, then the

44

Logge
d in
as

'pscha
ffh'.

Log
out

Lo
gin

Overv
iew

Sea
rch

Selec
tion

Dat
a

Imp
ort

Schema
Manage

ment

Export
Manage

ment

Macro
Manage

ment

User
Manage

ment

MyS
QL

Adm
in

EXPORT FORMAT MANAGEMENT
Mode Info XSLT Precedence* Translation

BibTeX The BibTeX Mode base
special
person
month
number
topic
default

up down remove details
up down remove details
up down remove details
up down remove details
up down remove details
up down remove details
up down remove details

remove details delete mode

ModeX Just an example main up down remove details delete mode

* Higher position means higher import precedence.

Mode Name* Mode Info

Add Mode

* The first 3 characters of the mode name will be the extension of the export-file for this mode.

Add XSLT with name to mode

Path: Add XSLT

Add translation table to mode

Path: Add Table

Figure 17: Export Mode Management Table

user can also specify the import precedence of each stylesheet by moving the
stylesheets up and down in the list of all stylesheets that is presented in the
Web interface (see Figure 17). The stylesheet with a higher position in the
list will also have higher import precedence. The export into a certain format
is realized by applying a temporary XSLT file that imports all stylesheets of
this mode to the BibXML file. The content of such a temporary file is shown
in Listing 22. XSLT specifies that the stylesheet that is imported last has
the highest import precedence.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:import href="stylesheet_with_low_priority.xsl"/>
<xsl:import href="stylesheet_with_medium_priority.xsl"/>
<xsl:import href="stylesheet_with_high_priority.xsl"/>
...

</xsl:stylesheet>

Listing 22: Temporary XSLT Importing All Mode Stylesheets

The system creates this temporary XSLT file dynamically by using the
information from the database. The user does never have to worry about this
temporary file or the filenames of the stylesheets. Only the XSLT stylesheet
list in the Web interface shown in Figure 17 must be ordered as desired and
the rest is taken care of by the system.

In addition to the stylesheets, a special translation table can be added to
a mode. Such a translation table is used to convert special characters into

45

their required representation in the export format. The translation table
can be uploaded through the Web interface, is validated, and then stored
in the system. An example of such a translation table that replaces special
characters like ä by their LATEX control sequences (in this case \"{a}) for
export into BibTEX, is shown in Listing 23.

<?xml version="1.0"?>
<translations xmlns="http://bibtexml.org/translations">
<translation>
<input>ä</input>
<output>\"{a}</output>

</translation>
<translation>
<input>ö</input>
<output>\"{o}</output>

</translation>
<translation>
<input>ü</input>
<output>\"{u}</output>

</translation>
...

</translations>

Listing 23: BibTEX Translation Table (partial)

The translation itself is implemented in PHP and is executed before the
XSLT stylesheets mentioned above are applied. For this purpose PHP uses
the translation table and replaces all occurrences of the strings defined in the
<input> elements by their counterparts in the <output> elements in all text
nodes of the BibXML file that needs to be exported.

Performing the character translations before the XSLT stylesheets are
applied, makes it possible to use the XML structures to translate only the
bibliographic data (in the text nodes) and spare all markup. This would be
much more difficult in a format like BibTEX.

4.8 Macro Management

As explained in Section 4.3, macros are stored in the database and have
an XML value, a text value, an owner, and a name, which is used to ref-
erence them. The XML value is the actual value of the macro. The text
value is generated mainly for search purposes by applying the stylesheet

46

import/special.xsl, which is shown in Listing 24, to the XML value. This
stylesheet generates the default text value from the XML value, and most
notably replaces all specialtext elements by the content of their text chil-
dren (see Section 4.2.2 for more information).

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:base="http://bibtexml.org/base">

<xsl:output encoding="ISO-8859-1" omit-xml-declaration="yes"/>
<xsl:template match="/*">
<xsl:apply-templates/>

</xsl:template>
<xsl:template match="base:macro">
<xsl:copy-of select="."/>

</xsl:template>
<xsl:template match="base:special">
<xsl:apply-templates select="base:text"/>

</xsl:template>
</xsl:stylesheet>

Listing 24: XSLT Stylesheet import/special.xsl

The Macro Management in the Web interface can be used to get an
overview over all available macros and their owners. New macros can be
added by specifying a macro name (which must be unique) and a macro value.
The owner of a macro or an administrator can delete the macro or delegate
ownership to another user. As always, this Web interface is dynamically
created by PHP with information from the database. Modification requests
are transmitted to the server and executed by PHP by altering the database.

4.9 User Management and System Access

User management is implemented by using the three database tables shown
in Figure 18. These tables can be managed conveniently through the menu
option User Management in the Web interface. This menu option is only
available to administrators. Administrators are the built-in user administra-
tor as well as all users who belong to the built-in group administrator. Please
consult the administrator guide in Appendix B for more information.

System access is restricted by using the session handling functions pro-
vided by PHP. Currently, PHP is configured to use cookies to keep track

47

grp

PK Name

Info

usr

PK Name

Password
Info

usr_grp

PK,FK1 UsrName
PK,FK2 GrpName

Figure 18: User Management Tables

of the user sessions. But it can be configured to use long URLs instead.
Please consult the technical documentation in Appendix C for more infor-
mation. When a user tries to log into the system, the specified login and
password are compared to the values in the database, and access will only be
granted if the login information is correct. The PHP session variables $ SES-
SION[”username”] and $ SESSION[”user is admin”] will only be set if the
user is registered and logged in correctly. The gatekeeper() function, which is
called at the beginning of each page, will use these session variables to deter-
mine if the user has access to a certain page or not. The gatekeeper() function
also generates the navigation menu on top of each page, as administrators
have more menu options available than regular users.

48

5 Results

The management system was tested extensively using an existing BibTEX
collection of 1643 entries and 450 macros. The corresponding BibTEX file
has a size of 558KB. In order to import the bibliographic data into the sys-
tem, the BibTEX file had first to be transformed into the BibXML format.
This transformation was performed using tools provided by a former diploma
thesis [4] and resulted in a 1.44MB BibXML file. The management system
was running under Windows XP and used a 1.8GHz Pentium 4 processor
and 512MB RAM. Under these conditions, it took the system 230 seconds to
import the complete BibXML document into the empty system. 110 seconds
were spent validating the document, and 120 seconds importing the data into
the database. Further, all functions of the system were successfully tested
using this imported data collection. With 1643 entries in the database, most
search queries are completed within 5 seconds. But unsophisticated search
queries can take a longer time. For example, searching for the character “e”,
which is contained in every entry of the system, takes the system 40 seconds.
Exporting all 1643 entries into the BibXML format was completed within 25
seconds and transforming this BibXML document into the BibTEX format
took the system 45 seconds.

We consider the high performance of the search routines to be a very
positive result, because the search tool is expected to be the most frequently
used tool of the system. Less impressive is the performance of the import
process, but we think that 233 seconds for importing 1643 entries is an ac-
ceptable result. Ideas for speeding up this process are presented in Section
6.

49

6 Future Work

We regard our work as a first attempt to design and implement a central-
ized bibliography management system that motivates members of institutions
such as the ETH Zürich to give up their established habit of maintaining their
private bibliographies, and motivates them to store their bibliographic data
in a centralized repository. Even though we can present a fully functioning
system, we are aware of the fact that more research should be done in this
area. Together with our tutor, Erik Wilde, we have identified the following
issues that we consider to be worth investigating in more detail:

• Web Forms for Importing and Modifying Data: The implemented man-
agement system only allows users to import data by writing and import-
ing complete BibXML documents describing the data. Furthermore, if
users want to alter an existing entry, they have to delete the entire
entry from the system, and import the new version of the entry as a
BibXML document. Users would certainly appreciate the possibility
to import and modify entries on a per-field level using dynamic Web
forms.

• BibSchema Classification and Cataloguing: Currently, no attempt is
made to prevent users from reinventing the wheel by defining multiple
schemas for the same purpose. The problem of classifying and cata-
loguing existing schemas in a way that users reuse existing schemas
is not an easy one. Our current (admittedly simple) way to deal with
this problem is to restrict schema installation to system administrators,
who are expected to check the schemas manually and thus prevent the
emergence of redundant schemas.

• Import Optimization: Importing large amounts of records into our sys-
tem is currently not performing very well due to our design of the
import process. To speed up the import process, it would be possible
to perform various optimizations. In a first step, it would be possible
to use pre-compiled XSLT (Schematron validation uses XSLT, which
could be pre-compiled). Going further, it would be possible to write
custom validation code in a regular programming language. However,
since validation must be open to extensions by new schemas, this would
be a rather complex task.

• Pluggable Import Filters: In the same way as the system now supports
pluggable export filters, it would be possible to support pluggable im-
port filters, so that users can install such an import filter and then

50

import any kind of import data17, which as part of the import pro-
cess is then transformed into the BibXML format required for internal
storage.

• XML Database Support: The system as it is implemented now is based
on a relational database, which brings with it all the problems of an
XML-based data model stored in a relational database. It would be
an interesting task to move the system to an XML database, which in
particular would be interesting if the BibSchema extensions included
complex XML structures that should be accessible via queries. Which
directly leads to the next point:

• XML Query Language (XQuery): Currently, the system accepts queries
via a Web interface and maps them to SQL queries. This is sufficient
as long as queries are targeted at field level. However, if queries need
to recognize field structures, then it would be very useful to have a
query language specialized for XML queries, such as XQuery. XQuery
support would imply an underlying database supporting it, and the
question whether this would be worth the effort highly depends on the
kind of BibSchema extensions (and in particular, features to query that
data) that should be supported. Looking at the current design of the
system, this could also involve the following:

• BibSchema Query Language: In the same way as the system currently
has its own schema language (which is mapped to XML standard tech-
nologies), the system could be extended to have its own query language,
which would be specifically designed to support BibSchema with its ex-
tension mechanism, and possibly XQuery-style queries into BibSchema
extensions.

17Depending on the support of import filters, this could either be any kind of XML
(if only XSLT would be accepted), or any kind of text-based data (if a text-processing
language such as Perl would be supported, too).

51

7 Conclusions

The concept described and implemented in this diploma thesis is a first ap-
proach towards a centralized system for managing bibliographic data. In our
opinion, members of an institution would be very well advised to store their
bibliographic data in such a centralized management system in order to make
it accessible to other employees and benefit from the powerful tools provided
by the system. Even though our implementation has proven to be a fully
functioning system, we are aware of the fact that there are many interesting
possibilities to further upgrade it with additional features.

During the design and implementation process of our project, we famil-
iarized ourself with a variety of different technologies. We put most of our
effort into choosing and applying various XML technologies like DOM, XSLT,
XML Schema, and Schematron. Furthermore, we learned a lot about PHP,
MySQL, and the creation of dynamic Web applications.

52

References

[1] Richard Anderson, Mark Birbeck, and Michael Kay. XML Professionell.
MITP-Verlag, Bonn, 2000.

[2] International Organization for Standardization. Information Technology
— Document Schema Definition Languages (DSDL) — Part 3: Rule-
based validation — Schematron. to be published as ISO/IEC 19757-3.

[3] Michael Kay. XSLT, Programmer’s Reference. Wrox Press, Birmingham,
April 2001.

[4] Brenno Lurati and Luca Previtali. BibTEXML: Design und Imple-
mentierung einer XML-basierten Lösung für BibTEX-Literaturreferenzen.
Master’s thesis, Computer Engineering and Networks Laboratory, Swiss
Federal Institute of Technology, Zürich, Switzerland, March 2001.

[5] Oren Patashnik. BibTEXing. Technical report, Sun Microsystems, Febru-
ary 1988.

[6] Eric van der Vlist. XML Schema. O’Reilly & Associates, Sebastopol,
California, June 2002.

[7] Priscilla Walmsley. Definitive XML Schema. Prentice Hall, Upper Saddle
River, New Jersey, 2002.

[8] Randy Jay Yager, George Reese, and Tim King. MySQL & mSQL.
O’Reilly & Associates, Sebastopol, California, July 1999.

53

A User Guide

This user guide explains the features and the handling of the Web interface
for the bibliography management system. For details about the various file
formats and technical information, please consult Chapter 4 (Implementa-
tion) and Appendix C (Technical Documentation). If you experience any
problems with the system or need additional information, feel free to ask the
administrator of the system. We will use italics when referring to details
depicted in the various figures of this user guide.

A.1 Login

To access the system, please obtain the URL of the system, your Login and
your Password from the administrator and access the site with a browser of
your choice. You should see the login page depicted in Figure 19. Please
enter your Login and Password and hit the Login button.

BIBLIOGRAPHY MANAGEMENT SYSTEM http://pc-3632.ethz.ch/

1 of 1 18.03.2003 16:20

Welcome to pc-3632.ethz.ch!

BIBLIOGRAPHY MANAGEMENT SYSTEM

Login:

Password:

 Login Reset

Figure 19: Login Page

A.2 Overview

After you successfully logged into the system, you see the overview page
shown in Figure 20. You can always use the navigation bar on top of the
page to access the various parts of the Web interface. In the navigation
bar, the active menu point is highlighted. In the top left corner of the page,
the active user name is displayed. The Logout command is used to end the
current session and log out of the system. The components listed on the
overview page (Search, Selection, Data Import, Schema Overview, Macro
Management) are explained in the following sections.

54

BIBTEXML DATABASE AREA http://pc-3632.ethz.ch/welcome.php

1 of 1 24.03.2003 18:19

Logged in as
'demo_user'. Logout Login Overview Search Selection Data

Import
Schema
Overview

Macro
Management

WELCOME TO THE
BIBLIOGRAPHY MANAGEMENT SYSTEM

Search

Selection

Data Import

Schema Overview

Macro Management

Figure 20: Overview Page

A.3 Search

To search the database of bibliographic information, two different search
interfaces and an optional advanced search syntax (regular expressions) are
at your disposal. These features are discussed in detail below.

A.3.1 Simple Search

The simple search interface is shown in Figure 21. It can be used for quick
and simple search requests covering all fields and the keys of all entries in the
database. Please note that unqualified search requests for words like “the” or
for single characters should be avoided as they can take a very long time. The
advanced search interface should be used whenever possible to get fast and
precise search results. You can switch between the simple and the advanced
search interface by using the appropriate link.

Search http://pc-3632.ethz.ch/fast_search.php

1 of 1 18.03.2003 16:32

Logged in as
'demo_user'. Logout Login Overview Search Selection Data

Import
Schema
Overview

Macro
Management

Simple Search
Switch to advanced search

Search

Figure 21: Simple Search Interface

55

A.3.2 Advanced Search

The advanced search interface can be used for specific searching and is shown
in Figure 22. The search interface is divided into two parts: the upper part
is used to search for information that is directly associated with entries (e.g.,
Key, Owner) and the lower part is used to search for information associated
with fields (e.g., field Value, Type). These two parts can be connected with
a logical AND or a logical OR. So, if you want to search for all entries with
a certain Key that have fields of a certain Type, you have to use AND as
connector. But if you want to search for all entries with a certain Key and for
all entries with fields of a certain Type, you have to user OR as connector. The
search options within each of the two parts can be thought of as connected
with a logical AND.Search http://pc-3632.ethz.ch/fast_search.php

1 of 1 18.03.2003 17:57

Logged in as 'demo_user'. Logout Login Overview Search Selection Data Import Schema Overview Macro Management

Advanced Search
Switch to simple search

Entry:

Key: any like exact

Owner: 'CTRL' for multiple selection

Modifier: 'CTRL' for multiple selection

Group: 'CTRL' for multiple selection

Type: 'CTRL' for multiple selection

Namespace: 'CTRL' for multiple selection

ANDAND

Entry has Field:

Value: any like

Type: 'CTRL' for multiple selection

Namespace: 'CTRL' for multiple selection

IsPerson: ---------- ANY -------------------- ANY ----------

Search Reset

---------- ANY ----------
demo_admin

---------- ANY ----------
demo_admin

---------- ANY ----------
NULL

---------- ANY ----------
article

---------- ANY ----------
http://bibtexml.org/standard

---------- ANY ----------
address

---------- ANY ----------
http://bibtexml.org/standard

Figure 22: Advanced Search Interface

The first form field, Key, is used to search for the key of an entry. If you
select the radio button any, the system will search for any key. If you choose

56

like, the system will interpret your search expression as regular expression and
if you choose exact, the system will only search for entries that exactly match
the specified key. The following five form fields (Owner, Modifier, Group,
Type, Namespace) are implemented as drop-down menus. The options of
each drop-down menu are dynamically created from the database and do only
contain the values that are actually present in the database. The additional
wildcard option —ANY— in each menu can be selected if the search should
not be restricted by the corresponding form field. You can also select multiple
options of the drop-down menu by pressing “CTRL” on the keyboard while
selecting all options.

The form field Value can be used to search for the value of a field. Again,
the option any serves as a wildcard and the option like instructs the system
to treat your search expression as a regular expression. Of course, you can
also enter a simple word and the system will find all fields containing this
word.

A.3.3 Regular Expressions

As mentioned above, several search fields support regular expressions. Please
use the examples in Table 25 as a guideline for regular search expressions or
visit the respective MySQL page18 for more information. You can use a
backslash in front of the characters used for regular expressions (e.g., +?∗)
to escape them and their special meaning.

Expression Meaning
^a Match fields beginning with a.
a$ Match fields ending with a.
. Match any character.
a∗ Match any sequence of zero or more a characters.
a+ Match any sequence of one or more a characters.
a? Match either zero or one a character.
abc|xyz Match either of the sequences abc or xyz.
(abc) Group the sequence abc (see the combined example below).
(abc)∗ Match zero or more instances of the sequence abc.

Table 25: Regular Expression Syntax

18MySQL Regular Expressions: http://www.mysql.com/doc/en/Regexp.html

57

http://www.mysql.com/doc/en/Regexp.html

A.3.4 Search Results

Search results are presented in a table showing the matching entries (see
Figure 23). Each entry can be expanded to show all its fields by clicking on
the blue + on the left of the corresponding row. To expand all entries, click
on the blue + in the top row. Please use the corresponding blue -- symbols
to collapse entries. Entries and fields can be sorted by column values by
clicking on the header of the corresponding column.Search http://pc-3632.ethz.ch/fast_search.php?expandEntry=1650

1 of 1 18.03.2003 18:15

Logged in as 'demo_user'. Logout Login Overview Search Selection Data Import Schema Overview Macro Management

Advanced Search
Switch to simple search

Search results

+ -- entry_key entry_type entry_namespace entry_owner entry_modifier entry_group

-- wil03a article http://bibtexml.org/standard demo_user demo_user

thru_ref field_type field_namespace field_textvalue field_xmlvalue person_info

author * http://bibtexml.org/standard Erik Wilde

journal http://bibtexml.org/standard iX iX

month http://bibtexml.org/standard February February

number http://bibtexml.org/standard 2 2

pages http://bibtexml.org/standard 12 12

title http://bibtexml.org/standard Bericht von der XML
2002 in Baltimore

Bericht von der XML
2002 in Baltimore

volume http://bibtexml.org/standard 16 16

year http://bibtexml.org/standard 2003 2003

+ wil03b inproceedings http://bibtexml.org/standard demo_admin demo_admin

+ wil03c techreport http://bibtexml.org/standard demo_user demo_user

What would you like to do with the selected entries?

Add to selection Delete from database Export to ----- XML ---------- XML ----- Include referenced entries in export

 Include referenced macros in export

New search
Figure 23: Search Results

To select entries for processing, use the checkboxes on the right of the
table. You can use the checkbox in the top row to toggle all checkboxes at
once. Once selected, entries can be added to the selection, deleted from the
database, or exported, by pressing the appropriate button. The details of
these operations will be explained in the following section.

58

A.4 Selection

The Selection works like a shopping cart: entries from various search results
can be collected for later reuse or processing by adding them to the selection.
The current content of the Selection is displayed in the same type of table
as used for search results (see Figure 24).Selection http://pc-3632.ethz.ch/selection.php?expandEntry=1650

1 of 1 18.03.2003 18:24

Logged in as 'demo_user'. Logout Login Overview Search Selection Data Import Schema Overview Macro Management

Selection
Current content

+ -- entry_key entry_type entry_namespace entry_owner entry_modifier entry_group

+ and01 inproceedings http://bibtexml.org/standard demo_admin demo_admin

+ bau97 phdthesis http://bibtexml.org/standard demo_admin demo_admin

-- wil03a article http://bibtexml.org/standard demo_user demo_user

thru_ref field_type field_namespace field_textvalue field_xmlvalue person_info

author * http://bibtexml.org/standard Erik Wilde

journal http://bibtexml.org/standard iX iX

month http://bibtexml.org/standard February February

number http://bibtexml.org/standard 2 2

pages http://bibtexml.org/standard 12 12

title http://bibtexml.org/standard Bericht von der XML
2002 in Baltimore

Bericht von der XML
2002 in Baltimore

volume http://bibtexml.org/standard 16 16

year http://bibtexml.org/standard 2003 2003

What would you like to do with the selected entries?
Remove from selection Delete from database Export to BibTeXBibTeX Include referenced entries in export

 Include referenced macros in export

Search entries

Figure 24: Selection

To remove entries from the Selection, select them using the checkboxes
on the right side of the table, and press the Remove from selection button.
These entries will be removed from your Selection, but not deleted from the
database. To delete entries from the database, select them and press the
Delete from database button. All selected entries will be deleted, if you have
write permission for the corresponding entry.

All available export formats are listed in the drop-down menu left to
the Export button. Please contact the system administrator if you want to
install an additional export format. To export entries, select them, choose
the appropriate export format in the drop-down menu, select the desired

59

option concerning macros and cross references, and press the Export button.
The system will generate the desired export file and provide you with a link
to access it.

A.5 Schema Overview

Before being able to import BibXML documents of a certain format, the
system must have a suitable schema to validate them. An overview over all
available schemas is available on the Schema Overview page (see Figure 20).
You can click on the Bib Schema link for each namespace to get detailed
information about the corresponding schema. Please contact the system
administrator if you need to install a new schema.SCHEMA OVERVIEW http://pc-3632.ethz.ch/schema_overview.php

1 of 1 25.03.2003 07:48

Logged in as 'demo_user'. Logout Login Overview Search Selection Data Import Schema Overview Macro Management

SCHEMA OVERVIEW

Namespace Details

http://bibtexml.org/common-extension BibSchema

http://bibtexml.org/standard BibSchema

Figure 25: Schema Overview

A.6 Data Import

Bibliographic data can be imported into the system through the menu point
Data Import in the Web Interface. When you start a new import session, the
import page looks as shown in Figure 26. You can use the Browse button to
find the BibXML file you would like to import. After selecting the behavior of
the system in case of a macro conflict through the radio buttons, you can start
the import session by pressing the Import File button. The file is uploaded
to the server and validated against the available schemas. Please be patient,
this validation process can take a few minutes for very large documents. If
the uploaded BibXML document is valid, the system begins with the actual
import into the database. You are informed about the import progress by a
status bar and additional information about each imported entry.

If the system encounters a problem because a certain entry key already
exists in the database, you will be asked for action as shown in Figure 27.

60

Data Import http://pc-3632.ethz.ch/import.php

1 of 1 18.03.2003 17:06

Logged in as
'demo_user'. Logout Login Overview Search Selection Data

Import
Schema
Overview

Macro
Management

DATA IMPORT

Please select the file you would like to import.

On macro conflict: output error use macro from database

Path: Browse... Import File

Figure 26: Start of Data Import

Please make a choice by selecting the appropriate radio button, and submit
your decision to the system to continue with the import process.Data Import http://pc-3632.ethz.ch/import.php

1 of 1 18.03.2003 17:39

Logged in as
'demo_user'. Logout Login Overview Search Selection Data

Import
Schema
Overview

Macro
Management

DATA IMPORT

Entry import status:

Importing entry number 1 with key 'wil03a'
Entry already exists! Existing entry was replaced by request.
Notice: Owner not specified. Owner has been set to 'demo_user'.
Notice: Group name not specified. The system inserted 'NULL' instead.

Importing entry number 2 with key 'wil03c'
An entry with key 'wil03c' already exists in the database.

What would you like to do with the existing entry?

 replace
 always replace
 keep
 always keep
 keep and add new entry with key

Submit

Figure 27: Data Import Confirmation Dialogue

61

A.7 Macro Management

A list of all available macro names, macro values, and macro owners is avail-
able on the macro management page (if you do not know how macros can
be used in this system, please ask the system administrator or consult Sec-
tion 4.1 for detailed information). An example of such a macro management
page is given in Figure 28. You can add a new macro by specifying a unique
macro name and a macro value in the form at the bottom of the page, and
submitting the form to the server. The macros that belong to you can be
selected through a checkbox at the right hand side of the corresponding row.
Selected macros can be deleted or ownership can be transferred to other users
through the form buttons below the macro table.Macro Management http://localhost/macro_management.php

1 of 1 18.03.2003 16:08

Logged in as
'demo_user'. Logout Login Overview Search Selection Data

Import
Schema
Overview

Macro
Management

MACRO MANAGEMENT

Macro Name Macro Value Macro Owner

berne Berne, Switzerland demo_admin

ethz Swiss Federal Institute of Technology demo_admin

london London, UK demo_admin

w3c World Wide Web Consortium demo_user

xml Extensible Markup Language demo_user

zueri Zürich, Switzerland smith

What would you like to do with the selected macros?

Delete Set owner to smithsmith

Macro Name Macro Value

Add macro

Figure 28: Macro Management

62

B Administrator Guide

The administrator guide describes the parts of the Web interface that can
only be accessed by system administrators. This includes the extended
Overview page and the management pages Schema Management, Export
Management, User Management, and MySQL Admin. All remaining pages of
the Web interface can also be accessed by normal users and are described in
Appendix A. For details about the various file formats and technical informa-
tion, please consult Chapter 4 (Implementation) and Appendix C (Technical
Documentation). We will use italics when referring to details depicted in the
various figures of this administrator guide.

B.1 Overview

After you successfully logged into the system using your administrator ac-
count, you see the overview page shown in Figure 29. You can always use
the navigation bar on top of the page to access the various parts of the Web
interface. In this navigation bar, the active menu point is highlighted. You
have the possibility to choose among all menu points introduced in the User
Guide as well as the additional menu points Schema Management, Export
Management, User Management, and MySQL Admin.BIBTEXML DATABASE AREA http://pc-3632.ethz.ch/welcome.php

1 of 1 24.03.2003 18:22

Logged in as
'demo_admin'. Logout Login Overview Search Selection Data

Import
Schema

Management
Export

Management
Macro

Management
User

Management
MySQL
Admin

WELCOME TO THE
BIBLIOGRAPHY MANAGEMENT SYSTEM

Search
Selection

Data Import
Schema Management

Export Format Management
Macro Management
User Management

MySQL Admin

Figure 29: Administrator Overview Page

63

B.2 Schema Management

As an administrator, you have the possibility to extend the BibXML for-
mat by defining new entry and field elements in BibSchema schemas. These
BibSchema schemas are imported into the management system using the
Schema Import form at the bottom of the Schema Management page (see
Figure 30). This form also allows you to only validate but not import a Bib-
Schema schemas by selecting the radio button Only validate schema. There
is one important point about importing schema extensions you should be
aware of: the management system makes no attempt to prevent adminis-
trators from defining multiple schemas for the same purpose. Consequently,
you are expected to check the schemas manually in order to prevent the
emergence of redundant schemas. The table Schema Overview above the
import form shows an overview of the imported schema extensions. For each
schema extension, the target namespace is presented and the original Bib-
Schema schemas as well as the transformed XML Schema and Schematron
documents can be viewed by following the corresponding Bib Schema, XML
Schema, or Schematron links. A schema can be removed from the system
by pressing Delete at the right side of the appropriate row. When deleting
a schema, not only corresponding schema documents are removed from the
filesystem, but also entries, fields, and special items in the target namespace
of the schema in question are deleted from the database:

• An entry is deleted with all its fields from the database, if it is in the
target namespace of the removed schema.

• An entry is deleted with all its fields from the database, if at least one
of its fields is in the target namespace of the removed schema.

• A special item is deleted from the database, if it is in the target names-
pace of the removed schema. The entry and the field containing this
deleted special item are not removed from the database, unless they
are in the target namespace of the removed schema.

B.3 Export Management

The Export Management page (see Figure 31) gives you the possibility to add
new export modes to the system. Available export modes are presented in a
table at the top of the page. In this table, each export mode is associated with

64

SCHEMA MANAGEMENT http://pc-3632.ethz.ch/schema_management.php

1 of 1 25.03.2003 07:51

Logged in as
'demo_admin'. Logout Login Overview Search Selection Data

Import
Schema

Management
Export

Management
Macro

Management
User

Management
MySQL
Admin

SCHEMA MANAGEMENT

Schema Overview
Namespace Details

http://bibtexml.org/common-extension BibSchema XML Schema Schematron Delete

http://bibtexml.org/standard BibSchema XML Schema Schematron Delete

Schema Import
Select the Bib Schema you want to import or just validate:

Import schema Only validate schema

Path: Browse... Submit

Figure 30: Schema Management

a mode name (first column of the table), additional information19 about the
mode (second column), at least one XSLT stylesheet to be applied when
exporting data (third column), and an optional translation table for the
translation of special characters (fourth column). XSLT stylesheets of a
certain mode are represented by their assigned names. They can be viewed
by following the corresponding details links and deleted from the filesystem
by pressing remove. Furthermore, the position of a stylesheet within the
table defines its precedence among other stylesheets of the same mode. The
relative precedence of a stylesheet can be changed by clicking on up or down:
up raises the precedence of a stylesheet (and the position of the stylesheet
within the table) and down lowers it. Translation tables can be viewed by
pressing details and deleted by clicking on remove in the Translation column.
Entire modes are removed from the system by pressing delete mode on the
right of the table. New modes, XSLT stylesheets, and translation tables are
added to the system by making use of the three forms in the lower half of
the Export Management page.

19For example, this additional information about a mode can include the name of the
person who created the corresponding stylesheets, special features of the mode or a version
number.

65

fhauser
Erik: und warum heisst der link dann nicht "source"? sieht man da auch noch mehr?Felip: Jawohl, das File wird durch einen Titel ergänzt, der den Typ der Details enthält (“Translation Table” oder “Stylesheet Details”) und der Name des Stylesheets bzw. des Modes wird angegeben.

EXPORT FORMAT MANAGEMENT http://pc-3632.ethz.ch/export_management.php

1 of 1 20.03.2003 10:45

Logged in as
'demo_admin'. Logout Login Overview Search Selection Data

Import
Schema

Management
Export

Management
Macro

Management
User

Management
MySQL
Admin

EXPORT FORMAT MANAGEMENT
Mode Info XSLT Precedence* Translation

BibTeX The BibTeX Mode base
special
person
month
number
topic
default

up down remove details
up down remove details
up down remove details
up down remove details
up down remove details
up down remove details
up down remove details

remove details delete mode

ModeX Example Mode base up down remove details delete mode

* Higher position means higher import precedence.

Mode Name* Mode Info
Add Mode

* The first 3 characters of the mode name will be the extension of the export-file for this mode.

Add XSLT with name to mode BibTeXBibTeX

Path: Browse... Add XSLT

Add translation table to mode BibTeXBibTeX

Path: Browse... Add Table

Figure 31: Export Management

B.4 User Management

The User Management page (see Figure 32) allows you to manage the users
of the system. Only registered users are granted access to the bibliography
management system. New users can be added to the system by specifying
their User Name, User Info, and Password in the top form of the User
Management page. The table at the top of the page lists all registered users
of the system. Apart from the built-in user administrator, each user can be
removed from the system by pressing delete user at the right of the table.
Groups can be added to the system using the form at the bottom of the
page. Entered groups are represented by their Group Name and Group Info
in the second table of the User Management page. The fourth column of this
table allows you to add registered users to a certain group, and all users of
each group are listed in the Members column. The administrator group is a
built-in group that defines the administrators of the system. Apart from the
administrator group, each group can be removed from the system by pressing
delete group at the right of the table.

66

User Management http://pc-3632.ethz.ch/user.php

1 of 1 20.03.2003 10:47

Logged in as
'demo_admin'. Logout Login Overview Search Selection Data

Import
Schema

Management
Export

Management
Macro

Management
User

Management
MySQL
Admin

USER MANAGEMENT

User Name User Info
administrator built-in db admin protected

anderson Mrs. Anderson delete user

demo_admin Demo Admin delete user

demo_user Demo User delete user

smith Mr. Smith delete user

User Name User Info Password
add user

Group Name Group Info Members
administrator built-in db admin group demo_admin remove ************************ Add protected

demo_group demo user group demo_user remove ************************ Add delete group

Group Name Group Info
add group

Figure 32: User Management

B.5 MySQL Admin

The MySQL Admin page (see Figure 33) lets you directly access the biblio
database of the management system using phpMyAdmin20. phpMyAdmin is
a powerful database management tool that allows you to create and drop
databases, create, copy, drop and alter tables, and do many more things
with MySQL databases. We recommend to use phpMyAdmin very carefully,
because you are not prevented from corrupting the management system when
directly manipulating the database.

20See http://www.phpmyadmin.net/

67

http://www.phpmyadmin.net/

biblio running on localhost - phpMyAdmin 2.3.3-rc1 http://pc-3632.ethz.ch/admin/index.php

1 of 1 21.03.2003 11:44

Home

biblio (12)biblio (12)

biblio
 entry
 entrytype
 export_mode
 export_xslt
 field
 fieldtype
 grp
 macro
 namespace
 person
 usr
 usr_grp

Database biblio running on localhost

 Structure SQL Export Search Query Drop

 Table Action Records Type Size
 entry Browse Select Insert Properties Drop Empty 1,642 InnoDB 544.0 KB
 entrytype Browse Select Insert Properties Drop Empty 16 InnoDB 48.0 KB
 export_mode Browse Select Insert Properties Drop Empty 2 InnoDB 32.0 KB
 export_xslt Browse Select Insert Properties Drop Empty 8 InnoDB 64.0 KB
 field Browse Select Insert Properties Drop Empty 10,298 InnoDB 2.2 MB
 fieldtype Browse Select Insert Properties Drop Empty 37 InnoDB 48.0 KB
 grp Browse Select Insert Properties Drop Empty 2 InnoDB 32.0 KB
 macro Browse Select Insert Properties Drop Empty 451 InnoDB 128.0 KB
 namespace Browse Select Insert Properties Drop Empty 2 InnoDB 32.0 KB
 person Browse Select Insert Properties Drop Empty 1,762 InnoDB 112.0 KB
 usr Browse Select Insert Properties Drop Empty 5 InnoDB 32.0 KB
 usr_grp Browse Select Insert Properties Drop Empty 2 InnoDB 48.0 KB

 12 table(s) Sum 14,227 -- 3.3 MB

 Check All / Uncheck All With selected:With selected:

Print view

Data Dictionary

Create new table on database biblio :
Name :

Fields : Go

Error
The additional Features for working with linked Tables have been deactivated. To find out
why click here.

Figure 33: phpMyAdmin

68

C Technical Documentation

In this appendix, the setup and the maintenance of the management system
are described, and we introduce the built-in XML documents, schema ex-
tensions for the most common entry and field types, and export filters for
the BibTEX format. Furthermore, the PHP functions used by the manage-
ment system are formally described and their interfaces are presented. The
corresponding source code can be found on the enclosed CD-ROM.

C.1 System Setup

The installation of the bibliography management system itself is very simple
and is explained in Section C.1.7. The more challenging task is to install all
required programs and software packages. The system relies on the following
software being installed and configured correctly:

• Apache (HTTP server)

• PHP (scripting language)

• MySQL (relational database)

• Saxon (XSLT processor)

• Xerces (XML parser / schema validator)

• Java 2 runtime environment (for Saxon and Xerces)

The installation guide for each of these software packages should be con-
sulted to install the software correctly. The following sections contain ad-
ditional information concerning the installation and configuration of each
package. Some information is Windows XP specific and needs to be adapted
for other platforms.

All used software packages (for Windows XP) are available in the direc-
tory Software on the CD ROM accompanying this report (please see Ap-
pendix D). The CD ROM also contains a directory Configuration with ex-
ample configuration files for Apache, PHP, and MySQL. All files required
for the bibliography management system itself are available in the directory
SystemFiles on the CD ROM.

The following installation directories for the software packages are as-
sumed: c:/apache/ for Apache, c:/php/ for PHP, and c:/mysql/ for MySQL.
If different installation directories are used, all paths in the following sections
must be changed accordingly.

69

C.1.1 Apache

Apache’s HTTP server21 must be downloaded and installed. The configura-
tion file httpd.conf should contain the following commands to load the PHP
module and process the corresponding file types:

LoadModule php4_module c:/php/sapi/php4apache.dll

AddType application/x-httpd-php .php .htm .html .xml

To correctly load the index file of the system, the following command must
be added to the httpd.conf file as well:

DirectoryIndex index.php index.htm index.html

The server should now be ready for the installation of PHP.

C.1.2 PHP

To enable the execution of PHP scripts, PHP22 (version 4.2.3 or higher) must
be downloaded and installed. The configuration file for PHP (php.ini) should
contain the following commands:

doc_root = c:/apache/htdocs/ ; specify HTTP server document root
file_uploads = On ; allow HTTP file uploads
upload_max_filesize = 20M ; maximum size for uploaded files = 20MB
extension=php_domxml.dll ; load DOM extension
extension=php_xslt.dll ; load XSLT extension
max_execution_time = 600 ; set maximum execution time to 10 minutes
memory_limit = 128MB ; limit memory consumption to 128MB

To avoid problems, Sablotron23 (PHP’s built-in XSLT processor) and Ex-
pat24 (XML parser used by Sablotron) should be upgraded to their newest
versions. This step might not be necessary for PHP versions newer than
4.2.3. Instead of downloading these upgrades, all DLLs from the directory
XSLTdlls on the CD ROM can be copied to c:/php/dlls/.

To complete the installation of PHP, all files from the directory c:/php/dlls/
should be copied to a directory where they can be found by the OS (e.g.,
c:/windows/system32/), and the Apache server must be restarted.

21Available at http://httpd.apache.org/
22Available at http://www.php.net/
23Available at http://www.gingerall.com/charlie/ga/xml/p_sab.xml
24Available at http://sourceforge.net/projects/expat

70

http://httpd.apache.org/
http://www.php.net/
http://www.gingerall.com/charlie/ga/xml/p_sab.xml
http://sourceforge.net/projects/expat

C.1.3 MySQL

MySQL25 (version 3.23.52 or higher) in its “max”distribution must be down-
loaded and installed. To enable the support for InnoDB tables, the configu-
ration file my.cnf from the directory Configuration on the CD ROM can be
used.

The directory c:/mysql/bin/ should be included in the PATH variable of
the system. To install MySQL as a service, the following command must be
executed:

mysqld-max-nt --install

The service can then be started, and the MySQL database can be queried
using the mysql client.

C.1.4 Saxon

Saxon can be downloaded from its project page26 and installed into a direc-
tory of choice. The path to all .jar files in this directory must then be added
to the CLASS PATH variable to make Saxon available to other programs.

C.1.5 Xerces

Xerces can be downloaded from its project page27 and installed into a direc-
tory of choice. The path to all .jar files in this directory must then be added
to the CLASS PATH variable to make Xerces available to other programs.

C.1.6 Java 2

Since Saxon and Xerces are implemented in Java 2, the corresponding Java
2 runtime environment (version 1.3 or higher) must be installed. It can be
downloaded from Sun28.

25Available at http://www.mysql.com/
26Available at http://saxon.sourceforge.net/
27Available at http://xml.apache.org/xerces2-j/
28Available at http://java.sun.com/

71

http://www.mysql.com/
http://saxon.sourceforge.net/
http://xml.apache.org/xerces2-j/
http://java.sun.com/

C.1.7 Bibliography Management System

To install the bibliography management system itself, the content of the di-
rectory SystemFiles needs to be copied to the Apache document root direc-
tory (e.g., c:/apache/htdocs/) or a subdirectory of it (e.g., c:/apache/htdocs/
bib).

In a next step, the bibliography database can be created using the script
file create.txt in the root directory of the system (e.g., c:/apache/htdocs/bib/
create.txt). The following command creates the database:

mysql < create.txt

Then, the first few lines of the file include.php need to be edited, so that
the PHP variable $bib_root points to the system’s root directory. Addition-
ally, a few parameters for the database connection need to be specified (see
comments in the incluce.php file itself).

As a last step, the correct host name and a few parameters for the
database connection need to be specified in the phpMyAdmin29 configuration
file (e.g., c:/apache/htdocs/bib/admin/config.inc.php). Again, all necessary
comments are given directly in the configuration file itself.

System setup is now complete! The system can be accessed through the
Web interface with the pre-defined users specified in the file create.txt. For
the sake of system security, this file should be moved to a safe place after
installation.

The administrator can now proceed to the Schema Management and up-
load the schemas schema standard.xml and schema extension.xml from the
extensions directory (e.g., c:/apache/htdocs/bib/extensions/). Additionally,
the export filters for BibTEX can be installed as described in section C.3.2.

C.2 System Maintenance

Apart from the regular management tasks like managing users, schemas,
and export filters, the system administrator should empty the session data
directory (e.g., c:/apache/htdocs/bib/session data/) from time to time to
clean up leftovers from unterminated sessions.

29More information about phpMyAdmin: http://www.phpmyadmin.net/

72

http://www.phpmyadmin.net/

C.3 Most Common Extensions

The presented management system is a highly extensible system in the sense
that it allows users to define their own entry and field elements by extend-
ing the BibXML format accordingly. Furthermore, users have the possibility
to install pluggable export filters in order to define their individual export
formats. We have implemented schema extensions and export filters for the
widely-used BibTEX format. These extensions are presented in the following
two sections. The corresponding files are located in the extensions subdirec-
tory.

C.3.1 BibXML Extensions

Standard Entry and Field Types

All standard entry and field types30 of the BibTEX format are defined by
the BibSchema document schema standard.xml in the http://bibtexml.

org/standard namespace. This includes the following 14 entry and 24 field
types:

• Standard entry types: article, book, booklet, conference, inbook, in-
collection, inproceedings, manual, mastersthesis, misc, phdthesis, pro-
ceedings, techreport, unpublished

• Standard field types: address, annote, author, booktitle, chapter,
crossref, edition, editor, howpublished, institution, journal, key, month,
note, number, organization, pages, publisher, school, series, title, type,
volume, year

Other Entry and Field Types

Besides these standard BibTEX types, there are many other entry and field
types defined by individual users. We defined the following types in the
BibSchema document schema extension.xml :

• Other entry types: collection, patent

• Other field types: affiliation, abstract, contents, copyright, isbn, issn,
keywords, language, location, lccn, mrnumber, price, size, url

It is the system administrator’s job to import these BibSchema documents
into the system using the Schema Management page.

30See http://www.eeng.dcu.ie/local-docs/btxdocs/btxdoc/btxdoc/btxdoc.html

73

http://www.eeng.dcu.ie/local-docs/btxdocs/btxdoc/btxdoc/btxdoc.html

C.3.2 Export Filters for BibTEX

Pluggable export filters for the export into the BibTEX format are imple-
mented by the following six stylesheets:

base.xsl
is the master stylesheet with a template matching the root of the
BibXML document to export. Its templates write the basic struc-
ture of the BibTEX output and then apply templates defined by other
stylesheets that match the individual field elements. Using this concept,
it is very easy to write and import new stylesheets for individual field
elements.

special.xsl
has one template that matches b:special elements and replaces them
with the value of their b:tex children. This way, special text fields are
correctly transformed into their LATEX equivalents.

person.xsl
collects in each entry all person field elements of the same type and writes
them in one BibTEX person field (of type author or editor). Special
attention had to be paid to the complex format of BibTEX person field
types.

month.xsl
matches month field elements and writes them to the output. During
this process, it takes BibTEX macros for months into account.

number.xsl
matches field elements that contain a number only. The number is output
omitting the usual brackets or quotation marks around field values.

default.xsl
matches all field elements that have not been matched by special tem-
plates.

It is the system administrator’s job to import these stylesheets into the sys-
tem using the Export Management page. When importing, it has to be paid
attention to the chosen import precedence of the stylesheets. The listing of
stylesheets above reflects the required import precedence for the presented
stylesheets: base.xsl must have the highest and default.xsl the lowest import
precedence. Furthermore, the translation table translation.xml has been im-

74

fhauser
Erik: das waere aber nicht noetig, oder? die klammern oder quotes stoeren ja nicht.Felip: Nein, nötig ist das nicht, aber üblich.

plemented. This table translates special characters to their corresponding
LATEX control sequences and can also be imported into the system using the
Export Management page.

C.4 Built-in XML Documents

This section introduces the individual built-in XML documents grouped by
their parent directories. Table 26 presents file extensions and their interpre-
tations.

File extension Interpretation
.dtd Document Type Definition
.sch Schematron document
.xml Translation table or general XML instance
.xsd XML Schema document
.xsl XSLT stylesheet

Table 26: File Extensions

C.4.1 import

Subdirectory import contains two XSLT stylesheets used during the import
and search process.

biblio.xsl
is applied to an already validated BibXML document during the import
process. The biblio.xsl stylesheet transforms the BibXML document into
a PHP document that contains all bibliographic data from the BibXML
document, as well as instructions on how to import this data into the
system. The resulting PHP document is included and executed by the
main import file import.php.

special.xsl
is used to generate the text value out of the XML value of a field or
macro. This stylesheet is used during the import process and to display
search results. Please see Sections 4.2.2 and 4.8 for more information.

75

C.4.2 schema

Subdirectory schema includes all XML documents participating in the valida-
tion of imported documents (most notably imported BibSchema and BibXML
documents).

datatypes.dtd31

is a DTD for XML Schema Datatypes. It is used to validate XML
Schema documents and can not be used on its own but is intended only
for incorporation in XMLSchema.dtd.

dummy instance.xml
is a dummy XML document that is used to validate XML Schema docu-
ments with Xerces. Xerces does not allow the direct validation of XML
Schema documents, but forces a program to create a dummy instance
and validate it against the given XML Schema document, whereby also
the schema gets validated.

merge prep exp.xsl, merge prep inst1.xsl, merge prep inst2.xsl
are used in the process of validating BibXML documents (see function
validate instance()). In order to merge an uploaded BibXML document
with its external cross referenced entries for denormalization, these three
stylesheets perform the required format transformations.

prevalidation1.sch
is a Schematron document ensuring that an imported BibXML document
meets certain basic constraints before being further processed.

prevalidation2.sch
is a Schematron document ensuring that an imported BibXML document
does not cross reference undefined entries or nest cross references.

resolveCrossrefs.xsl
resolves all cross references of a BibXML document by defining appro-
priate templates.

resolveMacros.xsl
resolves all macro references of a BibXML document by defining appro-
priate templates.

31Available online at http://www.w3.org/2001/datatypes.dtd

76

http://www.w3.org/2001/datatypes.dtd

schematron1-5.xsd32

is used together with xml.xsd to validate Schematron documents.

schematron1ForBibSchema.sch
ensures that namespace declarations in the imported BibSchema docu-
ment are correct (recall the special conventions about declaring names-
paces in BibSchema documents from Section 4.2.2).

schematron2ForBibSchema.sch
is used with xmlSchemaForBibSchema.xsd to validate the detailed struc-
ture of an imported BibSchema document.

schematronBase.sch
is used with xmlSchemaBase.xsd to validate the basic document struc-
ture that is common to all imported BibXML documents.

schematronTransform.xsl
implements the transformation of a valid, user-defined BibSchema doc-
ument into an appropriate Schematron document.

skeleton1-5.xsl33

is an XSLT implementation of Schematron 1.5 that is used in conjunction
with the XSLT processor Saxon.

translation.xsd
is an XML Schema document that defines the format of a translation
table.

xml.xsd34

is used together with schematron1-5.xsd to validate Schematron docu-
ments.

XMLSchema.dtd35

is a DTD for XML Schema Structures. It is used to validate XML
Schema documents and incorporates datatypes.dtd.

XMLSchema.xsd36

is an XML Schema schema for XML Schema Structures. It is used to
validate XML Schema documents.

32Available online at http://www.ascc.net/xml/schematron/schematron1-5.xsd
33Available online at http://www.ascc.net/xml/schematron/1.5/skeleton1-5.xsl
34Available online at http://www.w3.org/2001/xml.xsd
35Available online at http://www.w3.org/2001/XMLSchema.dtd
36Available online at http://www.w3.org/2001/XMLSchema.xsd

77

http://www.ascc.net/xml/schematron/schematron1-5.xsd
http://www.ascc.net/xml/schematron/1.5/skeleton1-5.xsl
http://www.w3.org/2001/xml.xsd
http://www.w3.org/2001/XMLSchema.dtd
http://www.w3.org/2001/XMLSchema.xsd

xmlSchemaBase.xsd
is used with schematronBase.sch to validate the basic document struc-
ture that is common to all imported BibXML documents.

xmlSchemaForBibSchema.xsd
is used with schematron2ForBibSchema.xsd to validate the detailed
structure of an imported BibSchema document.

xmlSchemaTransform.xsl
implements the transformation of a valid, user-defined BibSchema doc-
ument into an appropriate XML Schema document.

C.5 PHP Functions

In this section, the PHP files used by the management system are introduced,
and their functions are formally described.

C.5.1 export detail.php

When clicking on a details link associated with a certain stylesheet or transla-
tion table on the Export Management page, the PHP script export detail.php
creates a new window displaying the corresponding stylesheet or translation
table.

C.5.2 export management.php

This file generates the page to upload and manage the export modes, their
stylesheets, and translation tables. It includes the files include.php and
schema/validation.php and makes use of the functions described below:

change priority
void change_priority(int xslt_id, string up_or_down)

is used to change the priority of the XSLT stylesheet identified by xslt id.
The variable up or down determines whether the priority should be
raised or lowered.

clean xslt()
functionType clean_xslt()

is used to clean up the priorities of all stylesheets by assigning the lowest
possible integer priority (unique in each mode) to each stylesheet.

78

C.5.3 fast search.php

This PHP file generates the simple and the advanced search interfaces, han-
dles search requests, and presents search results. It includes the files in-
clude.php, include fast search.php, and include export.php.

search
void search(string type)

calls the search functions simple search() or advanced search() accord-
ing to the value of type (“simple” or “advanced”). As soon as the
search results are available, they are presented using the function dis-
play results().

C.5.4 import.php

This file implements the rather complicated import process. Please consult
Section 4.4 for an abstract view of the entire procedure. The file includes
include.php to restrict access to the import page and schema/validation.php
to validate import files.

ask replace opt
void ask_replace_opt(string key)

asks the user to make a decision if the key of an import entry al-
ready exists in the database. The function makes use of the function
user has write rights() to determine the available options in the gener-
ated HTTP form.

display progress bar
void display_progress_bar()

generates the dynamic import status bar that informs the user about the
import progress.

init entry vars
void init_entry_vars()

initializes the global variables used in the temporary import PHP file
generated by the import/biblio.xsl stylesheet.

79

init import session
void init_import_session()

initializes the session variables used during an import session.

insert entry
int insert_entry(int typeid)

is called from the temporary import PHP file generated by the im-
port/biblio.xsl stylesheet. It inserts a new entry into the database. The
function uses the global variables set by the temporary import PHP file
to generate an appropriate MySQL query. The variable typeid defines
the type of the new entry. The function returns the ID of the inserted
entry or false if the insertion fails.

insert field
int insert_field(int entryid, int fieldtype, string fieldvalue)

is called from the temporary import PHP file generated by the im-
port/biblio.xsl stylesheet. It inserts a new field with entry ID entryid,
value fieldvalue, and type fieldtype into the database. The function re-
turns the ID of the inserted field or false if the insertion fails.

insert macros
functionType insert_macros(array macros)

inserts all macros in the array macros into the database. The array
macros contains the macro name as index and the macro value as value.

insert person
int insert_person(string firstname, string middlename, string lastname, string namesuffix)

inserts the person characterized by firstname, middlename, lastname,
and namesuffix into the database. The function returns the ID of the
inserted person or false if the insertion fails.

process insert entry
int process_insert_entry(int typeid)

uses the global variable entry key and checks if this entry key already
exists in the database. If yes, the function asks the user for advice by
calling the function ask replace opt() and processes the answer by calling
process replace submit(). If no, the function inserts the entry by calling
the function insert entry() with parameter typeid. The function returns
the ID of the inserted entry or false if the insertion fails.

80

process replace submit
void process_replace_submit()

processes the users decision concerning the replacement of an entry.

restart import
void restart_import()

displays a link to start a new import session.

terminate import session
void terminate_import_session(string message, bool restart)

deletes all temporary files and variables associated with the current
import session and displays the message string message. If restart is
true, the function offers a link to start a new import session by calling
restart import().

verify entry
int verify_entry(string typename, string typenamespace, string key, string &crossref)

verifies the entry type name (typename) and the entry type namespace
(typenamespace) of an entry that needs to be inserted and returns the
correct entry type ID if the type exists or false otherwise. The string key
is only needed to display a meaningful message to the user if problems
occur. The variable crossref can contain the key of a cross referenced
entry. If this key is correct, the value of crossref is changed to the ID of
the cross referenced entry.

verify field name
int verify_field_name(string typename, string typenamespace)

verifies the field type name (typename) and the field type namespace
(typenamespace) of a field that needs to be inserted and returns the
correct field type ID if the type exists or false otherwise.

verify group
bool verify_group(string groupname)

returns true if the specified groupname exists in the table grp and false
otherwise.

verify user
bool verify_user(string user_name, string user_description)

returns true if the specified user name exists in the table usr and false
otherwise. The string user description is only needed to display a mean-
ingful message to the user if problems occur.

81

C.5.5 include.php

This PHP file is included in almost any other PHP file. It starts or resumes
a PHP session, it creates a connection to the database, and provides a col-
lection of frequently used functions.

clean person
void clean_person()

deletes all persons (from table person) that are no longer referenced by
a field.

clean string
string clean_string(string string)

replaces single and multiple occurrences of spaces, tabs, line breaks, and
carriage returns in string by a single white space, and strips leading and
trailing whitespace.

clear namespace
void clear_namespace(int id)

deletes the namespace with ID id (and all entries and fields with this
namespace) from the database.

create dropdown
void create_dropdown(string name, string query, string display_first, string value_first, int

size, bool selected, bool multiple)

dynamically creates a drop-down menu for HTML forms from the
database. The name of the form field is specified by name. The MySQL
query string query must select two attributes that are used as name and
value for the options of the drop-down menu. A default option with
name display first and value value first can be specified (NULL for no
default option). The size of the drop-down menu is determined by size.
If selected is true, the first option of the field will be selected by default.
To enable the selection of multiple options, multiple must be set to true.

delete all
void delete_all(string file)

deletes the file or entire directory specified by the path file.

82

delete entry by id
void delete_entry_by_id(int id)

deletes the entry with ID id from the database and makes use of the
function clean person() to delete all persons that are no longer refer-
enced.

delete entry by key
void delete_entry_by_key(string key)

deletes the entry with key key from the database and makes use of the
function clean person() to delete all persons that are no longer refer-
enced.

delete import session files
void delete_import_session_files()

deletes all temporary session files of the current session that are used
during data import.

delete session files
void delete_session_files()

deletes all temporary session files of the current session that are not used
during data import.

empty dir
void empty_dir(string file)

deletes all files and subdirectories in the directory specified by the path
file. This function is used by the function delete all().

file upload
bool file_upload(string relative_file_save_path, string form_intro_message, string form_send

_button_label, string upload_ok_message, string upload_failed_message, string mode)

creates a HTML form for file upload or handles an uploaded file. The ex-
act behavior of the function is determined by the selected mode. For more
information about the several modes, please consult the documented
source code of the function. After a successful file upload, the function
will return true and false otherwise. The uploaded file can be found at
bibroot/relative file save path. The rest of the parameters influence the
appearance of the upload form and are self-explanatory.

83

gatekeeper
void gatekeeper(bool user_must_be_admin)

is called for each page and restricts the access to the page. If
user must be admin is true, only administrators have access to this page.
The function uses the session variables $ SESSION[”username”] and
$ SESSION[”user is admin”] to restrict access and generate the navi-
gation bar on top of each page dynamically.

get from db
string get_from_db(string table, string column, string id_value)

returns the value of attribute column from database table table where
the ID attribute is equal to id value.

get textvalue
string get_textvalue(string xmlvalue)

returns the text value of the XML string xmlvalue. This text value
is generated by applying the stylesheet import/special.xsl to the XML
string.

getmicrotime
float getmicrotime()

returns the actual PHP system time in seconds. This function is used
for performance measurements in the search routine.

my exit
void my_exit()

closes the HTML tags body and html and stops program execution.

sql escape
string sql_escape(string string)

is just an alias for the built-in PHP function mysql escape string() and
is used to escape special characters in MySQL queries.

user has write rights
bool user_has_write_rights(string username, string key)

determines whether the user username has write permission for the entry
specified by key.

user is in group
bool user_is_in_group(string username, string groupname

determines whether user username is a member of the group groupname.

84

C.5.6 include export.php

This file contains important functions for data export. It includes the files
schema/xml printer.php and include transform.php.

data export
string data_export(array &entries, string id_or_key)

is the main routine to generate the export BibXML document. It calls
export entries() as an important subroutine. The array entries identifies
the entries that need to be exported. The variable id or key specifies
whether the array entries contains the IDs or the keys of the entries.
The function returns the created export document as an XML string.

display export result
void display_export_result()

calls the export routine data export() to generate the export document
as a string. The function then creates the appropriate export files and
displays the export result message, which contains links to the export
files.

export entries
void export_entries(array &entries, array &prefixes, string &xml)

is a subroutine of data export() and used to attach the BibXML repre-
sentation of all entries defined in entries to the XML string xml. The
array prefixes is used to determine the appropriate prefix for each name-
space. The function makes use of the subroutine export fields() to export
all fields of an entry.

export fields
void export_fields(int entry_id, array &prefixes, string &xml)

is used to attach the BibXML representation of all fields from the entry
defined by entry id to the XML string xml. The array prefixes is used
to determine the appropriate prefix for each namespace.

C.5.7 include fast search.php

This file contains important functions to search the database, present the
search results in a HTML table, and resolve macros.

85

advanced search
array advanced_search()

takes the various HTTP $ POST[...] variables coming from the submit-
ted advanced search form, generates an appropriate MySQL query out
of them, queries the database, and returns the IDs of all retrieved entries
as an array.

display results
void display_results(array entries, string search_or_selection)

presents the entries with the IDs specified in the array entries as an
expandable HTML table, including checkboxes to select each entry for
processing. The exact design of the table is determined by the variable
search or selection. Please consult the documented source code of this
function for more details.

export select
void export_select()

generates the form parts needed to export selected entries into the desired
export format.

init simple search
void init_simple_search()

initializes the various session variables used to store the actual status of
the search process and the result table.

search resolve macros
string search_resolve_macros(string xml_string, string text_or_xml, bool add_remove_dummy_root,

array &used_macro_names)

returns the string xml string with all macros in it being resolved. The
variable text or xml (must be set to “text” or “xml”) determines if the
macro reference is replace by the XML value, or by the text value of the
macro. If add remove dummy root is true, the system will add a dummy
root element to the xml string before processing it. All retrieved macros
are added to the array used macro names.

simple search
array simple_search(string string)

searches all entries that have a key or a field value matching the search
expression string. The IDs of all retrieved entries are returned in an
array.

86

C.5.8 include transform.php

The PHP functions included in the include transform.php file are used for
transforming exported BibXML documents into user-defined formats like
BibTEX.

prepare document
void prepare_document(string input_document_filename, string output_document_filename)

prepares an XML document input document filename for transfor-
mation into user-defined formats. The result is written to out-
put document filename.

transform
bool transform(string source_document_filename, string dest_document_filename, int mode_id)

transforms a BibXML document source document filename into the the
export format specified by mode id. The result of the transformation is
stored to dest document filename. transform() returns true if the trans-
formation succeeded, and false otherwise.

translate
bool translate(string filename, int mode_id)

translates the content of file filename according to the translation table
that is associated with the export mode with id mode id. translate()
returns true if the translation succeeded, and false otherwise.

write importing stylesheet
bool write_importing_stylesheet(string destination_filename, int mode_id)

creates an XSLT stylesheet that imports all user-defined stylesheets as-
sociated with export mode mode id, and saves the resulting stylesheet
to destination filename. write importing stylesheet() returns false if no
stylesheets can be found for the specified mode, and true otherwise.

C.5.9 index.php

This file is automatically loaded as index file by the Apache server. It in-
cludes the file include.php and provides the login screen, validates the login
information, and redirects the user to the overview page (welcome.php) if the
login is correct.

87

C.5.10 macro management.php

This file generates the overview over all macros from the database. Each
macro can be deleted or macro ownership can be delegated to another user
by the current owner or an administrator. New macros can be added through
a Web form at the bottom of the generated page.

C.5.11 schema detail.php

When clicking on a BibSchema, XML Schema, or Schematron link asso-
ciated with a certain schema on the Schema Management page, the PHP
script schema detail.php creates a new window displaying the corresponding
schema.

C.5.12 schema management.php

The PHP script schema management.php implements the Schema Manage-
ment page used by the administrator. For this purpose, it uses functions
defined in schema/validation.php to import, validate, and delete individual
schemas.

C.5.13 schema overview.php

The PHP script schema overview.php implements the Schema Overview page,
which can be visited by normal users. It displays information about available
schemas using the function schema overview() of the schema/validation.php
file.

C.5.14 schema/validation.php

The PHP functions included in the schema/validation.php file are used by
the system for validating various kinds of XML documents (most notably,
BibXML and BibSchema documents).

88

check bib schema
void check_bib_schema(bool import)

creates the input form of the Schema Management page, which allows
administrators to upload their BibSchema documents. If the import
argument is set to true, check bib schema() validates BibSchema docu-
ments and inserts valid documents into the system. If import is false,
documents are only validated, but not inserted into the system.

check external field refs
bool check_external_field_refs()

ensures that external field types referenced by the BibSchema
document session data/session id().bs exist in the database.
check external field refs() returns true if all references are valid,
and false otherwise.

check xslt
bool check_xslt(string stylesheet_filename)

checks whether the XSLT stylesheet stylesheet filename conforms to the
XSLT 1.0 specification or not. If it does, check xslt() returns true and
otherwise false.

contains forbidden chars
bool contains_forbidden_chars(string string)

checks whether string contains characters that are not allowed when
defining macro names in BibTEX (illegal characters: ” # % ’ () , = { }
space). If it does, check xslt() returns true, and otherwise false.

delete schema
void delete_schema()

fully removes a BibSchema schema with all its corresponding information
from the system. The document to be deleted is chosen on the Schema
Management page and an identifier for this document is passed to the
delete schema() function using the HTTP protocol.

get external refs
mixed get_external_refs(object dom_instance)

returns all external cross references of a BibXML document
dom instance (an object of class “Dom document”) as an array. If cross
references are external and internal (i.e., they cross reference an entry in
the database as well as an entry in the imported BibXML document),
false is returned.

89

get ids for schemas
mixed get_ids_for_schemas()

returns an array of schema identifiers (an identifier for each BibSchema
document in the system). If there are no BibSchema documents in the
system, the value -1 is returned in place of the array.

get instance namespaces
mixed get_instance_namespaces(object dom_instance)

returns an array of all namespaces that are used in the BibXML docu-
ment dom instance (an object of class“Dom document”). If the BibXML
document makes use of a namespace that is not known to the manage-
ment system (only the base namespace http://bibtexml.org/base and
the target namespaces of the imported BibSchema documents are known
to the system), get instance namespaces() returns -1.

get new macros
mixed get_new_macros(object dom_instance, bool prefer_db_macros)

returns an array that contains an entry for each macro definition of the
BibXML document dom instance (an object of class “Dom document”).
The names of the new macros are used as the index of the array, and
the values of the macros as the array values. If the macro names do
not conform to the BibTEX specifications for macro names (i.e., spaces
and the following characters are not allowed: ” # % ’ () , = { }),
false is returned. If prefer db macros is true, dom instance is allowed
to declare macro names that are already declared in the system. If
prefer db macros is false, the redeclaration of macro names is not allowed
and results in the return value false.

get root element attribute
string get_root_element_attribute(string document_filename, string attribute)

returns the value of the attribute attribute of the root element of the
XML document document filename. If this attribute does not exist, the
empty string is returned.

insert bib schema
bool insert_bib_schema(string namespace)

inserts the target namespace namespace of a BibSchema schema into
the database and saves the BibSchema schema with this target name-
space and its transformed XML Schema and Schematron schemas in a
corresponding subdirectory of schema. insert bib schema() returns true
if the insertion succeeds, and false otherwise.

90

insert types into db
bool insert_types_into_db(int id)

inserts entry and field types defined by the BibSchema schema with
identifier id into the database. insert types into db() returns true if the
insertion succeeds, and false otherwise.

is external field
bool is_external_field(string ref, array uri)

checks whether the specified field type exists in the database or not.
ref is the prefixed name of the field type and the array uri has
namespace prefixes as its index, and namespace URIs as its values.
is external field() returns true if the field type exists in the database,
and false otherwise.

is new namespace
bool is_new_namespace(string bib_schema_filename)

checks whether the target namespace of the BibSchema docu-
ment bib schema filename is already taken by another schema.
is new namespace() returns true if the namespace is still available, and
false otherwise.

is wellformed
bool is_wellformed(string document_filename)

ensures that the XML document document filename is well-formed. If
it is, is wellformed() returns true, otherwise false.

output saxon error
void output_saxon_error(array error)

formats and outputs the error message specified by error, which is an
array filled with every line of output from the Saxon processor.

output xerces error
void output_xerces_error(array error, string code, string allowed_msg)

formats and outputs the error message specified by error, which is an
array filled with every line of output from the Xerces processor. al-
lowed msg defines a line of of output from the Xerces processor that
should be ignored in the output. code is a string that is appended at the
front of every line of output from the Xerces processor.

91

remove dir
void remove_dir(int id)

removes all directories that are associated with the BibSchema document
with identifier id.

remove ns and dir
void remove_ns_and_dir(int id)

removes all database entries and directories that are associated with the
BibSchema document with identifier id.

resolve macros
bool resolve_macros(string document_filename, bool &has_entries)

resolves the macro references of the BibXML document docu-
ment filename and sets has entries to true, if the BibXML document
contains at least one entry. resolve macros() returns false if it is not
able to resolve all macro references, and true otherwise.

schema overview
void schema_overview(string type)

If type is set to administrator, schema overview() creates a table for ma-
nipulating imported BibSchema schemas on the Schema Management
page. If type is set to administrator, it creates a table showing infor-
mation about imported BibSchema schemas on the Schema Overview
page.

schematron check with saxon
bool schematron_check_with_saxon(string document_filename, string schematron_filename)

validates an XML document document filename against a Schematron
schema schematron filename. schematron check with saxon() returns
true if document filename is valid, and false otherwise.

simple xerces validation
bool simple_xerces_validation(string document_filename, string xml_schema_filename)

validates an XML document document filename against an XML Schema
xml schema filename. simple xerces validation() returns true if docu-
ment filename is valid, and false otherwise.

validate bib schema
bool validate_bib_schema(string bib_schema_filename)

validates a BibSchema schema bib schema filename against the specifica-
tions for the BibSchema schema language. validate bib schema() returns
true if bib schema filename is valid, and false otherwise.

92

validate denorm instance
bool validate_denorm_instance(string instance_filename)

validates a denormalized BibXML document instance filename against
the predefined and user-defined schemas of the system. vali-
date denorm instance() returns true if instance filename is valid, and
false otherwise.

validate instance
bool validate_instance(string instance_filename, bool prefer_db_macros)

validates a BibXML document instance filename (compared with vali-
date denorm instance(), instance filename does not have to be denor-
malized) against the predefined and user-defined schemas of the system.
validate instance() returns true if instance filename is valid, and false
otherwise. If prefer db macros is true, instance filename is allowed to
declare macro names that are already declared in the system. If pre-
fer db macros is false, the redeclaration of macro names is not allowed
and results in the return value false.

xml schema check
bool xml_schema_check(string document_filename)

accepts only BibSchema, XML Schema, or Schematron schemas as pa-
rameter document filename, and validates document filename against
the appropriate built-in schemas. xml schema check() returns true if
document filename is valid, and false otherwise.

C.5.15 schema/xml printer.php

The PHP functions included in the schema/xml printer.php file are used for
displaying XML documents in a browser window.

schema format
string schema_format(string xml)

reformats an XML string xml and returns a structured XML string that
can be displayed in a browser window.

xml format
string xml_format(string xml)

translates all characters of the XML string xml that have HTML charac-
ter entity equivalents into these entities, and returns the resulting XML
string.

93

C.5.16 selection.php

This file generates the selection, which can be used like a shopping cart to col-
lect multiple search results for later processing or export. It uses the function
display results() from the file include fast search.php to present the collected
entries in an expandable HTML table. The file includes include export.php
to offer all the export functions already known from the search pages.

init select session
void init_select_session()

initializes all session variables used to remember the status of the current
selection (entries in the selection, expanded or collapsed).

C.5.17 user.php

This file generates the user management page. It uses the gatekeeper() func-
tion from the included file include.php to grant access to administrators only.
The user management page provides an overview over all registered system
users and groups, and is dynamically created from the database. Adminis-
trators can add, remove, and manage users and groups.

C.5.18 welcome.php

This PHP file generates the overview page for users and administrators. The
file only includes include.php to restrict access to the system and generate
the navigation bar.

94

D CD ROM

This CD ROM contains all necessary files to install and configure the bibli-
ography management system. The contents of the CD ROM are described
in Table 27. Instructions for the system setup are given in Section C.1.

Directory Contents
Configuration Example configuration files for Apache, MySQL, and PHP
Presentation Powerpoint presentation of the diploma thesis
Report This report in the pdf format
Software All software necessary to install the system on a Windows

XP platform
SystemFiles The files of the bibliography management system

Table 27: CD ROM Contents

95

	Introduction
	Requirements
	Concept
	Data Storage
	Document-based Approach
	Native XML Database Approach
	Relational Database Approach

	Platform
	Design
	Import
	Search
	Export
	Normal Users versus Administrators

	Implementation
	BibXML Format
	Validation of BibXML Documents
	Schema Languages
	BibSchema
	Dependencies between BibSchema, XML Schema, and Schematron Schemas
	Validating and Importing BibSchema Schemas
	Process of Validating BibXML Documents

	Database Structure
	Data Import
	Search
	Selection
	Export Management
	Macro Management
	User Management and System Access

	Results
	Future Work
	Conclusions
	User Guide
	Login
	Overview
	Search
	Simple Search
	Advanced Search
	Regular Expressions
	Search Results

	Selection
	Schema Overview
	Data Import
	Macro Management

	Administrator Guide
	Overview
	Schema Management
	Export Management
	User Management
	MySQL Admin

	Technical Documentation
	System Setup
	Apache
	PHP
	MySQL
	Saxon
	Xerces
	Java 2
	Bibliography Management System

	System Maintenance
	Most Common Extensions
	BibXML Extensions
	Export Filters for BibTeX

	Built-in XML Documents
	import
	schema

	PHP Functions
	export_detail.php
	export_management.php
	fast_search.php
	import.php
	include.php
	include_export.php
	include_fast_search.php
	include_transform.php
	index.php
	macro_management.php
	schema_detail.php
	schema_management.php
	schema_overview.php
	schema/validation.php
	schema/xml_printer.php
	selection.php
	user.php
	welcome.php

	CD ROM

