
 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Wintersemester 2002/03

Authors: Supervisor:
Andreas Moser Matthias Bossardt
Roman Hoog Antink

Professor: Co-Supervisor:
Prof. Dr. Bernhard Plattner Lukas Ruf

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Diploma Thesis DA-2003.06

Service Composition for Active
Networks

Abstract

Within the area of active networks, the problem of installing and configuring soft-
ware components in complex and heterogeneous node environments is a major is-
sue. This thesis comprises design and implementation of an active node. A standard
Linux installation on a PC has been used as platform. The framework managing
the node is called service creation engine. Its task is to map an incoming node-
independent service request to the particular node architecture. This includes re-
solving internal dependencies of the requested service by consulting a remote service
server and installing the required software components in the available runtime en-
vironments of the node, called execution environments. Currently two execution
environments have been integrated. The first is based on Java and allows service
composition for userspace in a simple and flexible way. The second runs in ker-
nelspace and features high performance needed for packet forwarding. It consists of
the Click Modular Router which provides numerous different service components.
Measures which allow these two execution environments to communicate with each
other have been taken. By this means, services which run in both execution envi-
ronments at the same time may be installed.

The active node has been designed in such a way that new execution envi-
ronments may be added without the need for modifications of the service creation
engine. In addition, the problem of demultiplexing packets coming from the network
interface cards has also been addressed within the scope of this thesis.

Contents

1 Introduction 3

2 Architecture 5
2.1 Proposals . 6

2.1.1 Netfilter with Ipqmpd . 6
2.1.2 Without Netfilter . 6

2.2 Final Architecture . 6
2.3 Inter-EE communication . 7

3 Service Creation Engine 9
3.1 Building the Service Tree . 9

3.1.1 Service Tree: General Introduction 9
3.1.2 Phase I: Building a Service Tree 11

3.1.2.1 Parameters . 12
3.1.2.2 Demultiplexing Rules 13

3.1.3 Phase II: Node Validation . 14
3.1.4 Phase III: Port Validation and Routing 15

3.1.4.1 Subservices . 15
3.1.4.2 Specifications . 17

3.1.5 Phase IV: Building a Validation Map 18
3.1.5.1 Design of Validation Nodes 18
3.1.5.2 Introduction to Algorithms Iterating the Validation

Map . 19
3.1.5.3 Expanding Validation Nodes 21
3.1.5.4 Entry and Exit Points 24
3.1.5.5 “Floating” Nodes . 25

3.1.6 Phase V: Connection Validation 26
3.1.7 Phase VI: Evaluating Routes 27

3.1.7.1 The Idea . 27
3.1.7.2 Computing All Routes 28
3.1.7.3 Selecting One Route 29

3.1.8 Phase VII: Translation into an Implementation Map 30
3.2 Installing the Service . 31

Contents iii

3.2.1 Deployment Engine . 31
3.2.2 Demultiplexer Configurator 31
3.2.3 EE Configurators . 32
3.2.4 Code Fetcher . 34

3.3 Utilities . 35
3.3.1 Code Server . 35
3.3.2 Service Server . 35

4 Active Node Platform 36
4.1 Demultiplexer . 36

4.1.1 Configuration . 36
4.1.2 Architecture . 36
4.1.3 Demultiplexer Implementation for Click 39
4.1.4 Promethos . 39

4.2 EE Specific Configurators . 40
4.2.1 Click Configurator . 40
4.2.2 JEE Configurator . 41

4.2.2.1 Inter-EE Configuration 42
4.3 Chameleon Java Execution Environment (J2E) 42

4.3.1 Elements Overview . 43
4.3.2 Elements Provided . 44
4.3.3 Writing new JEE Elements 44

4.4 Click Execution Environment . 45
4.4.1 Click Netlink Module . 45

5 Conclusion 46
5.1 Service Composition . 46
5.2 EE Integration . 47
5.3 Demultiplexer . 47

6 Known Bugs and Future Work 48
6.1 Major Issues . 48
6.2 Minor Issues . 48

A Installation Guide 52
A.1 Requirements . 52
A.2 Installation steps . 52

A.2.1 Preparing the kernel . 52
A.2.2 Java environment . 53

B User Guide 54
B.1 Running the Active Node . 54
B.2 Integrating new EEs . 54
B.3 XML Files . 55

iv Contents

B.3.1 Node Description . 55
B.3.2 Service Descriptions . 58

B.3.2.1 Service Specification 58
B.3.2.2 Service Implementation 64

B.3.3 Service Request . 66

C Introduction to Netfilter 67
C.1 Netfilter/Iptables Concept . 67

C.1.1 Netfilter . 67
C.1.2 Iptables . 68

C.2 NAT . 69
C.2.1 DNAT . 69
C.2.2 SNAT . 69
C.2.3 Masquerading . 69

C.3 Data structures . 69

D Assignment 71

E Schedule 78

List of Figures

1.1 Active Network Overview . 3

2.1 Active node architecture . 5
2.2 Architecture proposal with Ipqmpd 6
2.3 Architecture proposal without Netfilter 7
2.4 Final architecture . 8

3.1 SCE overview . 10
3.2 Example of a service tree . 11
3.3 Resolved service tree . 11
3.4 Concept of parameter passing . 13
3.5 Connection descriptors in a specification 15
3.6 Storage of routing information . 16
3.7 Routing problem with specifications 17
3.8 An implementation may have several successors 19
3.9 Validation Map . 20
3.10 Building a Validation Map . 21
3.11 Updating connections to successors 22
3.12 Actions on border nodes at the entry while expanding 23
3.13 Actions on border nodes at the exit while expanding 24
3.14 Special situation for the expand algorithm 24
3.15 Entry and exit points . 25
3.16 Access to floating nodes in the validation map 25
3.17 Routes of a validation map . 27
3.18 Example situation for computing routes 28
3.19 Raw route lists . 28
3.20 Route lists after merging . 29
3.21 Route list after combining . 29
3.22 Demultiplexer configurator architecture 31
3.23 Inter-EE situation . 33
3.24 not working inter-EE situation . 34

4.1 EE entry adapter elements . 37
4.2 Handling packets from demux/Netfilter to Click 39

vi List of Figures

4.3 Click configurator architecture . 40
4.4 JEE architecture . 43

6.1 Mixed Click push/pull semantics with agnostic ports 48

B.1 XML node description graph . 57
B.2 XML service specification and service request graph 63
B.3 XML service implementation graph 65
B.4 XML simple service request graph 66

C.1 Netfilter hooks . 67
C.2 Iptables: tables, chains and rules . 68

List of Tables

3.1 Specification of EE configurator in node description 31
3.2 Parameter expansion macros of configurator 33

4.1 Demux rule definition in XML node description 37
4.2 Problematic demux rules . 38
4.3 Final demux rules . 38
4.4 Click configuration example . 41
4.5 Parameter expansion example . 42
4.6 Provided JEE elements . 44

B.1 Example of a complete node description 60
B.2 Example of a service specification . 61
B.3 Example of service implementations 62
B.4 Example of a simple service request 66

Acknowledgments

We would like to thank Matthias Bossardt and Lukas Ruf for their reliable and
dedicated supervision.
Lots of kudos to the Computer Engingeering and Networks Laboratory of the ETH
for providing hardware and support.
Thanks to our wives and girlfriends Jérémie and Viola for bearing us during the
stressful times of the thesis.
Special thanks to Yvonne Schnetzler, the designer of our marvelous cover picture.

Zurich, March 18th 2003 Andreas Moser
Roman Hoog Antink

Chapter 1

Introduction

The research of Active Networks is still ongoing. Whereas some standards have been
already designed many issues still remain open. Active networks make possible
things never seen before but they also introduce new problems that demand a
solution in order to make active networks become a reasonable approach for network
related applications.

Active networks are based on the infrastructure known at present and extend
them with new functions. As depicted in figure 1.1 an active network may contain
both so called active nodes (surrounded by bold boxes) and ordinary nodes (sur-
rounded by rectangles). The bold dashed lines are network connections between
nodes for application data transfer.

SCE

SCE SCE

NodeNode

Service Server

Code Server

Service Requester Active Node

Active Node Active Node

2

3

4

1

EEs

EEs EEs

Figure 1.1: Active Network Overview

4 1 Introduction

The purpose of an active node is to provide services to users. A service can be
anything which processes network data. Typical applications are multimedia stream
recoding, web caching, intrusion detection and so forth.

Services are installed upon user requests during runtime on active nodes. The
program code which provides those services is downloaded and installed dynamically
from the network. The numbers 1-4 in figure 1.1 show the order of events when a
service is established and which components are required for doing so. Note that
many different models of active nodes exist. Some details discussed in this chapter
might be specific to our diploma thesis. The events 1-4 in figure 1.1 are:

1. The user requests the installation of a service on the active node.

2. The active node resolves all internal service dependencies. Services may be
structured in a hierarchical way, thus they can consist of a host of subservices.
The service server provides descriptions of services. By this means the active
node is able to determine the structure and internal requirements of services.

3. The code of the specific services and subservices may be downloaded from the
code server.

4. After the installation of the service, the application data flowing through the
network is processed on each active node. As usual, packets travel through
the network from source to destination. On their way they encounter active
nodes where they might be manipulated, dropped or redirected depending on
the installed services.

An active node basically consists of a local service creation engine (SCE) also
referred as management EE in literature, and one or more execution environments
(EEs) where services are running in. The SCE manages and installs the services on
the local active node. The EEs are the “living rooms” for services.

Performance is an important issue on active nodes. Therefore the integration of
a kernel-based EE was one of our objectives. We also integrated a Java-based EE
which allows service composition in a flexible and simple way. Due to the typical low
performance of Java applications, our Java EE’s task is basically to process non-
time-critical control data1. In contrary, the kernel EE mainly processes time-critical
application data.

In chapter 2 the architecture of the active node is explained.
Chapter 3 focusses the SCE which includes the resolution of service requests and
installing services.
In chapter 4 the patform specific concepts and mechanisms needed for a successful
service deployment are discussed.
Chapter 5 summarizes the achievements of our thesis, whereas chapter 6 states
what could be done next.

1For example routing table information or scoring data.

Chapter 2

Architecture

Figure 2.1 shows the overview of an active node. This represents the basic architec-
ture and starting point of the implementation of our active node. As development
platform we used the Linux kernel. In the following, the particular components of
the active node are described (see figure 2.1):

Network Network

Local Service Creation Engine (SCE)

Demultiplexer (EEs)
Execution Environments

Figure 2.1: Active node architecture

Network The hardware network interface cards (NIC) where network packets
come from and go to.

Demultiplexer Network packets coming from a NIC have to be directed to the
appropriate destination service. This is done by the demultiplexer.

Service Creation Engine The management EE providing an interface for service
composition and installation. It configures both the services in the EEs and
the demultiplexer.

EEs The active node provides various EEs in which service components can run.

6 2 Architecture

2.1 Proposals

Starting from this basic architecture, we evaluated several design proposals for the
demultiplexer. The following two architecture proposals have been under consider-
ation together with the final architecture presented in section 2.2.

2.1.1 Netfilter with Ipqmpd

As depicted in figure 2.2, the Click router environment sees incoming packets first.
If they are meant for a userspace EE, they are passed to Netfilter, which in turn
forwards them to the accurate userspace EE via Ipqmpd.

Click EE

Local SCE

Netfilter

ipqmpd Java Service EE

Userspace

Kernelspace

Interface0

Interface1
proc/netlink/...

mark value

socket/ipqmpd

Figure 2.2: Architecture proposal with Ipqmpd

The necessity of also using the Click EE as demultiplexer makes this architecture
less flexible and asymmetric. Furthermore, Ipqmpd1 is still a short time hack and
not very well documented.

2.1.2 Without Netfilter

Another possibility is shown in figure 2.3. Demultiplexing is done also with Click
but there is no need for Netfilter. Packets meant for a userspace EE are passed over
directly.

As the proposal with Ipqmpd this architecture might be optimal if Click is
an obligate component of the active node, since packets destined for Click do not
travel through an extra demux level. Even though Click is a well developed piece
of software and many people are using it, Netfilter overtops in both criterions.

2.2 Final Architecture

Using Netfilter as demultiplexer, any combination of EEs may be running on the
active node without depending of a special one which also provides the demulti-

1To be found at http://www.advogato.org/proj/ipqmpd/

2.3 Inter-EE communication 7

Click EE

Local SCE Java Service EE

Userspace

Kernelspace

Interface0

Interface1
proc/netlink/...

socket

Figure 2.3: Architecture proposal without Netfilter

plexing. That way the active node may run with or without Promethos and Click.
Figure 2.4 shows how the various EEs are integrated symmetrically.

Due to Netfilters modular design, it is a simple task to extend the demultiplexer
for newly added EEs. Demultiplexing is done by means of a special Iptables target
for each EE.

2.3 Inter-EE communication

In order to combine different EEs in a single active node and allow inter-EE com-
munication, inter-EE adapter elements must be implemented. They contain the
intelligence how to transfer data to or read data from other EEs. The configura-
tors must insert these adapter elements into the configuration in order to establish
interEE communication. Refer to section 4.2.2 for details about how this is done
between our Java EE and Click.

8 2 Architecture

Local SCE

Userspace

Click EE

Java EE

Promethos EE

Kernelspace

Hardware

Network Interfaces

Netfilter Demux

Figure 2.4: Final architecture

Chapter 3

Service Creation Engine

In this chapter the service creation engine (SCE) is described. Its task is to map a
service request which is node-independent to the concrete node on which the SCE
is running. Section 3.1 describes the order of events in terms of seven phases (I to
VII). Section 3.2 is concerned about the installation of the service and is structured
in terms of the involved components.

3.1 Building the Service Tree

Picture 3.1 shows an overview of the SCE components. As can easily be seen a
centralized approach has been chosen. The specification processor represents the
center of the framework. This means that it contains the whole intelligence about
the processing of an incoming packet. The other components act as various services
for the specification processor. More details can be taken from the following sections.
All procedures are explained in the order of events which is more comprehensible
than pure concept-oriented considerations.

3.1.1 Service Tree: General Introduction

In order to understand the succeeding sections the the concept of service trees has
to be introduced first. The basic idea is to resolve a simple incoming service request
into a more extensive service tree, which represents all possible implementations of
a service as a whole. An example of a simple service tree is depicted in figure 3.2.

The two different node-types appearing are called specifications and implemen-
tations. A specification is a node which describes the relations of a set of subser-
vices. Consequently specifications are just descriptions which have to be resolved,
whereas implementations are final nodes and thus always leaves of the service tree.
There are properties which both specifications and implementations have in com-
mon. Examples for these are: service name, provider and ports. Other properties
are specific for specifications or implementations. For example specifications always
contain a description of their subservices and some information on how they are

10 3 Service Creation Engine

Implementation
Validator

Node
Description

valid
Implementation Map Deployment

Engine

Code Server

Code Fetcher

Service
Server

Registry
Service
Local

Mapping
Policy

Demux
Configurator

Request
Service

Specification
Processor

Specification
Parser

ServiceTreeNode

ServiceRequest

SubServiceDesc

status

Configurator
EE−

EE x

Figure 3.1: SCE overview

connected with each other. In contrast, implementations must provide declarations
about the OS and execution environment they run in.

For resolving a service request, first the root node which always has to be a spec-
ification (see 3.1.2) must be resolved into its subservices. Referring to figure 3.2, the
root node SW Dictionary is resolved into the subservices Packet Processor, Dictio-
nary and Queue. For each of these there may be one or more nodes representing
the according subservice. In the example the Packet Processor is available in two
different versions. One is an implementation, the other one a specification node. In
the next step those specifications are resolved which have been added to the tree
in the former step. Doing this the service tree of figure 3.2 is transformed into the
one shown in figure 3.3.

This procedure continues until all specifications are resolved and thus each
branch ends up in an implementation as a leaf. Regarding the service tree in fig-
ure 3.3 there are two possible ways of deploying the service SW Dictionary. The
primary consists of the implementations Packet Processor, Dictionary and Queue.

3.1 Building the Service Tree 11

Dictionary Queue

SW
Dictionary

Packet
Processor

Processor
Packet

Figure 3.2: Example of a service tree

Packet
Classifier

Packet
Dropper

Dictionary Queue

SW
Dictionary

Packet
Processor

Processor
Packet

Figure 3.3: Resolved service tree

The secondary uses the same ones, with the difference that the Packet Processor
is replaced by the Packet Classifier and the Packet Dropper. By this means a re-
quested service can be implemented in possibly many ways, so the service creation
engine has to select one for the deployment.

3.1.2 Phase I: Building a Service Tree

All activities of the service creation engine are initiated by an incoming service
request. In earlier papers and theses, the TIK Laboratory has proposed to implement
these requests using the XML-Format. We have decided to adopt this proposition
mainly for two reasons: firstly each XML-file represents a logical tree structure which
is a suitable approach for structuring the various declarations of a service request.
Secondly XML is presently a widespread format so that the general acceptance and
the availability of appropriate Java-APIs are ensured.

12 3 Service Creation Engine

More details and some examples about the usage of these XML-requests are
included in the User Guide, section B.3.

The incoming service request is either a specification or a simple request which
can be resolved into a specification. Therefore the root node must always be a
specification. The SCE does not allow implementations as root nodes.

Beginning the processing of a request the specification processor forwards the
XML data to the specification parser without modifying it in any way (see fig-
ure 3.2). It is the task of the parser to read the incoming request, parse it and
commute the resulting information into a Java-internal representation of service
tree nodes being managed by a service tree. The specification processor is now able
to read information from this node and thus begin resolving it. For this purpose the
first subservice described in the root specification is read out and forwarded to the
local service registry, which is responsible for fetching some XML data describing
the requested subservice. Again, the incoming XML data is directly forwarded to
the specification parser which repeats the same procedure as seen above. However,
there is one difference: in the current case the XML data might include information
about more than one node. This comes from the fact that a subservice might be
deployed in various different ways. For example, the Packet Processor in figure 3.2
might be regarded. On all accounts, the parsed service tree nodes are added to the
service tree as children or children nodes1 of the root specification.

This procedure is done for each subservice until the service tree is expanded to
the new depth of 1. At this new level each specification can be regarded as if it was
the root specification and thus be resolved as described above. Implementations are
left unmodified because they represent the leaves of the service tree. Therefore, the
service tree is completed if all branches end up in an implementation.

There are two more concepts which need to be focussed within the scope of
building the service tree. They are described in the following two subsections.

3.1.2.1 Parameters

Any node or service in the service tree may be configured by some parameters. For
example, a service called Filereader may need parameters such as a filename or
a number of bytes to be read. For this purpose we have introduced two kinds of
parameters which can be specified in the XML description of each service:

Expected Parameters only have a name without a value set in the considered
node. They expect the parent specification to set the value. For a successful
deployment it is necessary that a specification passes the right number of
expected parameters to each of its children nodes. In order to be able to do
so, each service has a specific number of expected parameters which must be
“well-known”. If there is more than one expected parameter which is passed
from parent to child, the assignment is performed order-sensitive.

1In the following the terms subservice, child and child node are used exchangeably

3.1 Building the Service Tree 13

constant
constant

constant
constant

Port 8080
Time 12
File /proc/input4
Option 5

Name Value Type

Parameters:

Specification A

Parameters:

Name Value Type

expected

constant
expected

2000
12
5

Year
Seconds
Option

C (expects 2 parameters)

Name

File

ProxyPort
Version 3.1

/proc/input4

Value

8080

Type

constant
expected

expected

Parameters:

/proc/input4
8080 12

5

B (expects 2 parameters)

Figure 3.4: Concept of parameter passing

Constant Parameters have both name and value set in the considered node. The
parent specification does not need to know about those parameters.

Specifications are allowed to pass both expected and constant parameters to
their children nodes. For better illustration of this concept, figure 3.4 shows an
example setting. For the deployment engine, only the order of the parameters is
relevant. It has no knowledge about where they came from and how their values
were set. This results in that the whole concept of parameter passing is only an
issue of the processings of the specification processor. A second consequence is the
fact that the names are not of global relevance but only valid within the scope of the
considered node. An expected parameter can have different names in the parent and
the child node. This is important because different subservices may use parameters
with the same name but different meanings.

3.1.2.2 Demultiplexing Rules

Similar to parameters demultiplexing rules are attributes of services. They address
the issue of which packets are or are not destined for this service. In order to be
able to make this decision, the deployment engine must configure the demultiplexer
and therefor needs some rules. In contrast to the parameters described in section
3.1.2.1, the Service Creation Engine can handle them in a simpler way: wherever
demultiplexing rules appear in a service they are to be passed to all its children and

14 3 Service Creation Engine

children’s children (for further details see section 4.1.2, page 37). As a result they
stay in the nodes as one of various attributes and can be handled by the deployment
engine.

3.1.3 Phase II: Node Validation

Though an extensive service tree has been built with possibly many ways to deploy
it, it can not be passed to the deployment engine yet. It is the task of the service
creation engine to do extensive checks and validation steps to ensure that the service
is deployable on this node. According to this concept the deployment engine must
only deploy a service and is not concerned about whether it is deployable at all.

The first and most simple check is the node validation. In the context of this step
all implementations have to be tested whether they can be installed and run on this
node. Specifications need not be examined because they only serve as construction
plan.

The node validation includes checks for the following attributes:

• OS name

• OS version

• EE name

• EE version

• Types of the in- and outports

For doing so the specification processor recursively goes through the service tree
and passes all implementations to the implementation validator (see figure 3.1) .
This component is responsible for checking whether the attributes belonging to the
passed implementation are supported on this node. As can be seen in figure 3.1
the implementation validator consults the node description for performing the tests
itemized above. As return the specification processor receives the simple decision
whether the passed implementation can be deployed or not. If not, the service tree
node concerned is marked as invalid . At the same time the specification processor
must verify whether the parent specification of the invalid node is still deployable.
It is undeployable if the implementation concerned is the only available variant
for a particular subservice. In this case, the considered specification also has to be
flagged as invalid.

This recursive check for deployability goes back until the root node is reached.
At that time, the decision can be taken whether the service as a whole can still
be deployed. If negativ, the service requester gets a short message informing him
about the failure. If positiv, the processing of the requested service can go on.

As a last step, provided the service is still deployable, the invalid nodes have
to be removed. This is performed by a simple algorithm which recursively goes

3.1 Building the Service Tree 15

through the whole service tree and removes all nodes concerned. Removing means
that the specifications lose their links to the invalid children.2

The removing algorithm does not perform any checks for deployability.

3.1.4 Phase III: Port Validation and Routing

At present, the nodes have been validated separately, leaving aside any interactions
between them. In this section the next step called port validation is described. It
is the first of two validation steps concerning the connections between implemen-
tation nodes. The second one is called connection validation and is illustrated in
section 3.1.6.

3.1.4.1 Subservices

3

2

1

Name TypeSrc

Push_outWriter Push_inReader

Dest Name Type

Queue queue_out Pull_out Writer Pull_in

Pull_outraw_outReader Counter Pull_inbinary

Specification

Figure 3.5: Connection descriptors in a specification

The objective of the port validation is to check whether the service tree is con-
sistent in respect of ports. The node validation described above (see 3.1.3) has
validated that all port types of an implementation node exist within the scope of
its execution environment. This time another problem is focussed: each specifica-
tion node defines connections between its children nodes. This implies predications
about number, names and types of the subservices’ ports. The port validation is
responsible for proving these predications.

See figure 3.5 for an example of such connection definitions. The regarded spec-
ification node contains a list of connection descriptors. Each of them specifies a
data path connection or transport connection between two children nodes. Such

2In Java it is not possible to free the memory of those “removed” nodes.

16 3 Service Creation Engine

connections always lead from an outport of the source node to an inport of the des-
tination node. These ports are specified by their name (optional) and type (manda-
tory). Therefore two matching ports have to be found for each connection descriptor.
If all these assignments can be fulfilled all children nodes of this specification can
be connected in the specified way concluding in the validation of the ports.

Connection
Descriptor:

Connection
Descriptor:

Outport 0: 2

Outport 1: 5

Inport 0: 5

Inport 1: 2

2

5

Specification Specification

Figure 3.6: Storage of routing information

However, as can easily be seen, more than that has been achieved: beside the
port validation, the problem of routing is solved as well. The assignment from a
connection descriptor to an out- and an inport also means that those two ports have
been connected to each other via the transport connection. It is for this reason that
the assignment

outport index → transport connection → inport index

is not only theoretically proven but also stored for later use. Figure 3.6 illustrates
how this routing information is filed in the nodes.

The algorithm performing the assignment from a connection descriptor to the
ports of the child node is the following:

1. Assign all ports with names.

2. Assign ports after type. If there is more than one take the first one.

3. For the remaing ports check whether their type is declared optional.

Firstly, it is important to know that in- and outports are always treated sepa-
rately. Therefore an inport and an outport can coexist although they have the same
name.

Assigning ports by name or type always means that the according designation
must match perfectly without any exceptions. Names have been introduced in case
a node has more than one port with the same type but with a different function.
Therefore the names must be globally “well-known” and serve as unique identifier.

In case a node has more than one port with the same type and all of them
having the same function, the assignment is done based on the order of appearance
(see second instruction).

3.1 Building the Service Tree 17

If a child node has ports remaining unassigned after the second instruction it
has to be checked whether their type is declared “optional”. This feature is used in
case there are ports which can remain unconnected, as for example procfs ports in
Click elements. These are ports that typically stay unconnected. The check can be
performed by consulting the implementation validator as described in section 3.1.3.

In order that the above algorithm can work, a set of conditions must be applied
for port names and types. Those for the port names are the following:

• Ports of specification or implementation nodes can have a name but it is not
mandatory.

• A connection descriptor of a specification does not have to specify a name for
source and destination port. Even if the matching port of the child node does
have a name.

For port types the following rules obtain:

• Each port of a specification or implementation node must have a type.

• Each connection descriptor of a specification must specify the type of both
the source port and the destination port.

3.1.4.2 Specifications

1

Specification

3 Subservice

Figure 3.7: Routing problem with specifications

Until now one problem has been left aside: children nodes of specifications may
be specifications again. This has consequences on the task of routing. For illustration
of this problem see figure 3.7.

Specifications can be regarded as containers and its subservices as nodes within
them. Therefore transport connections can be inside or outside of a specification.
The challenge of routing now consists of assigning an outside connection to the
correct inside connection. In the example of figure 3.7, the outside connection 1

18 3 Service Creation Engine

has to be assigned to the inside connection 3. In order to ensure the uniqueness
of this assignment global identifiers or IDs had to be introduced for transport
connections. Consequently the routing problem in respect of specifications is solved
by the assignment

ID of outside connection → port index → ID of inside connection.

As described in 3.1.4.1 outside connections are described in the parent specifi-
cation. In contrast, inside connections are specified by connection descriptors of the
considered specification node itself. Therefore, the step of port validation includ-
ing assignment of connection descriptors to ports, has to be done not only for all
children nodes, but also for the specification node itself.

The same procedure of removing invalid nodes as described in section 3.1.3 is
followed after the port validation. Now the remaining nodes in the service tree are
not only valid, but also contain all information needed for routing.

3.1.5 Phase IV: Building a Validation Map

After all nodes and ports have been validated and the routing information is avail-
able in all implementation nodes, there is no need for the service tree anymore.
For the deployment engine does not expect any kind of tree from the specification
processor but solely an implementation map. This is a linked list of implementa-
tions. Thus, the “vertical structure” of the service tree must be converted into a
“horizontal” one. It is because some more checks have to be done that the imple-
mentation map cannot be created yet. Therefore we were confronted with the task
to design such a “horizontal” structure called validation map which is suitable to
the processing steps still to be done.

This section describes how the validation map has been designed and how it is
created by the service creation engine.

3.1.5.1 Design of Validation Nodes

Figure 3.8 illustrates that each port of an implementation can be connected to
possibly various different succeeding (for outports) or preceding (for inports) im-
plementations. This results from the fact that there may be several possibilities for
each subservice of a specification (see 3.1.1).

Designing the validation map can be reduced to the task of finding a suitable
structure for the individual nodes. These so called validation nodes are the elemen-
tary nodes of the validation map. We found two possible approaches:

1. A new structure is introduced.

2. The existing implementations are used.

We have decided in favor of the second approach for one major reason: introduc-
ing a new structure would it make necessary to copy various data structures from

3.1 Building the Service Tree 19

B

E F

A C

C

E F

BA
D

Figure 3.8: An implementation may have several successors

the implementations to the new nodes. Furthermore, it would always have been nec-
essary to provide a static assignment from implementations to those nodes. Last
but not least an expensive retransformation into implementation nodes would have
been inevitable for building the final implementation map.

Choosing the variant of using the existing implementations includes that they
have to be extended by some data structures. The main part of this additions
is responsible for the connection management to succeeding nodes which are also
called successors. Some smaller additions include a few flags indicating different
states. But these are not relevant for our conceptual considerations.

3.1.5.2 Introduction to Algorithms Iterating the Validation Map

The whole service structured in such a “horizontal” way is called validation map.
There are various processing steps in the following sections which need to go through
the map. Thus, all those algorithms have been implemented with the same iteration
logic which is described in this section. The iteration logic means the control path
of the algorithm whereas the processing logic represents the data path which is the
issue of each algorithms’ section.

Figure 3.9 shows an example of a validation map. The root node at the left is
no node in terms of specifications or implementations. It is a logical component
of the validation map which has been introduced as interface for the access to the

20 3 Service Creation Engine

A B C

D

E

Root

Figure 3.9: Validation Map

nodes. For this reason it is also called root interface. All algorithms iterating the
validation map are initiated in the root interface.

It is important to be aware that the nodes A, B and C are the only possibilities
for their service. In contrast, node D and E are two possibilities of the same service.
This can be recognized by the fact that the latter ones come from the same“outport”
of the root node and lead to the same inport of node B. The outports of the root
node represent access points to the validation map. Section 3.1.5.5 and figure 3.16
explain these access points in more detail.

All algorithms iterating the validation map consist of the same structure which
is outlined in the following:

1 Go through all outports i
2 Go through all possibilities j of outport i
3 Trigger the algorithm in the successor identified by (i,j)
4 Get the return of the successor triggered in 3
5 Execute the logic of the algorithm
6 Return the result of 5

For better illustration, the subsequent procedure is given, which is the result of
applying the above algorithm to the example map in figure 3.9. “Triggering a node”
means that the algorithm is activated in the appropriate node.“Executing the logic”
concerns the processing logic explained above.

Root triggers A
A triggers B
B triggers C
C executes the logic and returns to B
B executes the logic and returns to A
A executes the logic and returns to Root
Root triggers D
D triggers B

3.1 Building the Service Tree 21

B triggers C
C executes the logic and returns to B
B executes the logic and returns to D
D executes the logic and returns to Root
Root triggers E
etc.

It depends on the concrete algorithm whether the root node executes the pro-
cessing logic at the end or not. Also it is the concern of each particular algorithm
how to handle the multiple triggering of nodes with more than one preceder (nodes
B and C in the example).

3.1.5.3 Expanding Validation Nodes

Root

E

F

DC

DC

Root

Expansion II

Expansion I

Root

A B

Figure 3.10: Building a Validation Map

Building the validation map turned out to be a challenging task. Remember
that all routing information is basically available in the nodes. Our first idea was to
build the validation map by one recursive algorithm. However, doing so we under-
estimated the complexity of routing nodes which are nested. Therefore we decided
to choose an iterative approach. Regard figure 3.10 for the following explanations
of this algorithm.

The basic idea is to expand all specifications step by step. Thus in the beginning
the validation map consists of nothing but the root specification. In the first step
this root node is expanded, which means that it is replaced by all its children nodes.
Those need to be routed correctly for this purpose. The expand algorithm in turn

22 3 Service Creation Engine

expands all specifications of the resulting validation map. This algorithm is repeated
until all specification nodes are expanded leaving the validation map to consist of
nothing but connected implementations.

The expand algorithm is implemented as described in section 3.1.5.2 and there-
fore contains logic for iterating the validation map. In the following its actual pro-
cessing logic is outlined:

A C D E

Expand B

A
C ED

B

Figure 3.11: Updating connections to successors

1. Specifications have to be expanded which implies:

• Update connnections to successors if they have been expanded.

• Connect children nodes with each other.

• Border nodes at the entry: update connection ID belonging to the ap-
propriate inport.

• Border nodes at the exit: hand connections to successors of this specifi-
cation down to border nodes (inheritance) and update the connection ID
belonging to the appropriate outport.

2. Implementations update their connections to successors if they have been
expanded.

Apparently only forward-leading connection logic is stored. There is no need for
iterating the validation map backward.

Both specifications and implementations have to update their connections to
successors if those have been expanded. This situation is shown in figure 3.11. The
red connection going out from node A has to be redirected from destination node B
to C, provided the node B has been expanded the way shown. Figure 3.12 illustrates
the actions to be done in respect of border nodes at the entry of specification nodes.
The connection ID which node A has assigned to its only inport must be updated

3.1 Building the Service Tree 23

12
Specification A

B

Inport 0:

Transport
Connection

3
C 543

C 54

Expand A

B

Inport 0:

Transport
Connection

12
12

Figure 3.12: Actions on border nodes at the entry while expanding

from 3 to 12 because 3 was only the inside connection ID of the specification A used
as temporary routing information (see 3.1.4.1 and 3.1.4.2).

The last situation to be considered is that of border nodes at the exit of specifi-
cation nodes. It is shown in figure 3.13. Two actions have to be done: the first one
is to provide that the border node C “inherits” the connection to node D. Similar to
the situation of figure 3.12 the correct successor has to be found via the mapping
of the inside connection ID 5 to the outside connection ID 12. The second action
is to update node C’s assignment from its outport to the outgoing connection ID
which is newly 12 instead of 5.

In section 3.1.5.2 at page 21 the problem has been mentioned that the algorithm
is triggered multiple times in nodes with more than one preceder (no matter if it
has one or more inports). This is shown in figure 3.14. The specification C is tried
to be expanded by both nodes A and B. While the expansion can be performed as
usual the first time (e.g. coming from node A) the second try (e.g. coming from
node B) has to be treated in a special way:

• Node C does not have to be expanded once more. In order to inhibit a second
expansion node C must memorize that it has already been expanded.

24 3 Service Creation Engine

Specification A

12 D

4B
Transport
Connection

C

5Outport 0:

3 5

4B D3
Transport
Connection

C

Outport 0: 12

12

Expand A

Figure 3.13: Actions on border nodes at the exit while expanding

• Node B nevertheless needs to get its new successors.

3.1.5.4 Entry and Exit Points

There is an issue which has been left aside so far: the deployment engine needs to
know the entry and exit points of the whole service. An entry point is an inport
which is not connected with an ordinary node. Instead it builds an entry to the
whole service to be deployed. Exit points are outports with the analogical property
at the exit of the service. Each service may have several entry or exit points. In the
example shown in figure 3.15 the deployment engine would have to know that there

Specification C

A

B

Figure 3.14: Special situation for the expand algorithm

3.1 Building the Service Tree 25

C

A B

Figure 3.15: Entry and exit points

is an entry point at node A and an exit point at node B but none at node C.
This information arises from the root specification and is handed down to its

children and children‘s children during the expand algorithm described above (see
section 3.1.5.3).

3.1.5.5 “Floating” Nodes

B C

ARoot

Connection to Floating Node
Connection to Entry Point

Legend:

B C

A

Figure 3.16: Access to floating nodes in the validation map

Nodes without inports or none of them connected to anything, are called “float-
ing” nodes. Their only link to the other service components is via one or more
connected outports. They need a special treatment because the validation map
only contains forward-leading connections and thus they are omitted by iterating
algorithms.

During the port validation (see section 3.1.4) floating nodes are recognized as
subservices of the root specification. At that time they are registered in a dedicated
data structure of the root specification. By this means they are detected when the
root specification is expanded building the validation map. In order to get access
to them, the root node of the validation map treats them like entry points. This

26 3 Service Creation Engine

means that an “outport” of the root interface is inserted and connected to the
floating node (see also section 3.1.5.2, page 20). Therefore each “outport” of the
root interface leads either to an entry point or a floating node. Refer to figure 3.16
for an illustration.

This special treatment of floating nodes has hardly any consequence for the
algorithms iterating the validation map. The only algorithm which has been affected
is the expand algorithm because floating nodes need to be connected to an“outport”
of the root interface. For simplicity a special expand algorithm for entry nodes has
been introduced. However, the differences to the ordinary expand algorithm are
minimal.

3.1.6 Phase V: Connection Validation

One of the reasons why a validation map has been built, is the connection validation.
Its objective is to remove all transport connections between implementations which
cannot be deployed on this system.

Therefor, the implementation validator serves as an interface to the node de-
scription as seen e.g. in section 3.1.4.1. For this connection check the following
parameters are needed of both the source and the destination implementation:

• EE name

• Types of the involved ports

Remember there are no longer specification nodes. The algorithm performing
the connection validation again iterates the validation map as described in sec-
tion 3.1.5.2. Its processing logic can be outlined like this:

• If a successor turns out to be invalid the connection leading to it is removed.
A node is invalid if at least one connection going out from it is invalid and it
has no more connections left for the affected outport.

• Validate all connections going out from the current node to its successors and
remove all invalid ones.

• Check whether this node is still valid and memorize the result. The definition
for invalid nodes is given in the first item.

• To the preceding node (where the iteration came from) the information is
returned, whether this node is valid or not.

The problem of multiple executions of an algorithm (addressed in section 3.1.5.2)
must also be solved here. It can be handled by memorizing the flag saying whether
a node is valid or not (see item 3). Thus, it can be returned to each preceding node
and it is not necessary to repeatedly continue the iteration through the validation
map.

After the algorithm has finished there is no need to remove invalid nodes because
all connections to invalid nodes have already been removed (see item 1 and 2).

3.1 Building the Service Tree 27

3.1.7 Phase VI: Evaluating Routes

At this point all validations have been completed. The list of connected implemen-
tation nodes potentially yields a great number of possibilities how the requested
service may be installed. It is the last task of the specification processor to select
one of these and pass it to the deployment engine. In the following three sections
this evaluation and selection is discussed.

3.1.7.1 The Idea

A

D

B

C

E

1 2

3 4

Figure 3.17: Routes of a validation map

The various possibilities of service installations are represented by the different
available routes leading through the validation map. Regard figure 3.17 for an ex-
ample. All red connections build one route, the blue ones build another. Through
this the definition of a “route” can be recognized: It is the summary of all involved
connections of one possible service installation. In the example of figure 3.17 the red
route consists of the connections 1, 2 and 4. The blue one is built by the connections
3, 2 and 4. This can be written as:

Red route: {AB, BC, BE}

Blue route: {DB, BC, BE}

Obviously the different routes can contain partially the same connections (BC
and BE in the example).

The basic idea is now to first compute all routes contained in the validation
map and store them. By this means it becomes possible to do the route evaluation
“offline”. The evaluation algorithm does not need to iterate the validation map on
its own. Thus, if a new mapping policy is added (discussion of mapping policies in
section 3.1.7.3) the new algorithm only has to implement an appropriate operation
on this route list. Control path and data path are separated in an elegant way.

28 3 Service Creation Engine

3.1.7.2 Computing All Routes

The algorithm computing all routes is the third and last algorithm which uses the
iteration logic described in section 3.1.5.2. Its funcionality is described for node A
in the example depicted in figure 3.18. As first step node A gets one route list

A E

B C D

F

G

Figure 3.18: Example situation for computing routes

from each successor (node B, E and G). These route lists contain all possible routes
“behind” the appropriate node. Figure 3.19 shows how they are sorted by outports
and possible successor.

BC, CF

BC, CD
Port 0:

Port 1:
EC, CF

EC, CD GC, CD

GC, CF

Possibility 0: Possibility 1:

Figure 3.19: Raw route lists

There are two processing steps necessary: Merging and Combining. The first
step means that the different lists belonging to one outport are merged into one.
The second in turn combines the routes of the resulting lists in a way that one more
list remains at the end. See figures 3.20 and 3.21 for the list states after the first
and the second step.

Note to figure 3.20: during the merging process the connection from the current
node to the appropriate successor is also added.

Note to figure 3.21: the combine algorithm has to ensure that connections are
omitted which are behind a node whose route list has already been added. In the

3.1 Building the Service Tree 29

AE, EC, CD

AE, EC, CF

AG, GC, CD

AG, GC, CF

Port 0:
AB, BC, CD

AB, BC, CF

Port 1:

Figure 3.20: Route lists after merging

AB, BC, CD, AG, GC

AB, BC, CD, AE, EC

AB, BC, CF, AE, EC

AB, BC, CF, AG, GC

Node A:

Figure 3.21: Route list after combining

example this problem occurs with node C. Like in the connection validation algo-
rithm all nodes can memorize their route list once computed in order to inhibit
redundant multiple executions.

Now the route list of the current node is complete and can be returned to the
preceding node which in turn does the same. Note that the merging and combining
procedure has also to be done in the root node of the validation map. After this
the route list of the whole service is complete.

3.1.7.3 Selecting One Route

The route list of the whole service can now be evaluated. In order to select one
out of the possible routes a mapping policy is needed. This policy contains the
criterions based upon which the selection is done. The mapping policy component
of figure 3.1) contains the currently configured policy. In the scope of our thesis we
have implemented one mapping policy. It is called “Minimize EE transitions” and
analyzes the available routes in respect of EE transitions. It selects the route which
implies the least number of EE transitions. If more than one is found the first one
is taken.

The data structures involved in the route selection are conceived in such a way
that other mapping policies can be added easily. Note that the SCE’s component
“mapping policy” (see figure 3.1) does not contain the actual logic of a policy which
iterates and evaluates the route list. This component is solely in charge of storing

30 3 Service Creation Engine

the currently configured policy in an encoded way.

3.1.8 Phase VII: Translation into an Implementation Map

In section 3.1.5 it has been mentioned that the deployment engine expects an im-
plementation map from the specification processor. Therefore, after having done all
necessary validation steps and having selected one possibility of implementing the
requested service, the according route has to be translated into an implementation
map.

As seen in section 3.1.5.1 the validation map consists of nothing but linked imple-
mentation nodes. And so does the implementation map. Therefore the translation
from the selected route into an implementation map mainly implies a transforma-
tion of some data structures. The main difference between these data structures is
the fact that those of the validation map allow multiple successors for one outport.
This is not true for the implementation map.

Once the translation has been completed the valid implementation map is passed
to the deployment engine.

3.2 Installing the Service 31

3.2 Installing the Service

Now that the requested service has been expanded according to our active node
capabilities and is validated, it can be installed.

3.2.1 Deployment Engine

The deployment engine gets an implementation map to be configured and is trig-
gered by the specification processor. It calls the demultiplexer configurator. And
furthermore it creates and starts the configurators of all EEs addressed in the im-
plementation map.

<xsi:EE xsi:name="CLICK" xsi:configurator="click" [...]>

Table 3.1: Specification of EE configurator in node description

Each supported EE must specify the name suffix of their configurator class in
the XML node description as shown in table 3.1. The deployment engine computes
the name of the configurator corresponding to an EE by appending that suffix to
the constant string configurator_. In addition the package path is prepended. For
our two EEs this results in the configurator names:

• ch.ethz.ee.tik.chameleon.sce.Configurator jee.class

• ch.ethz.ee.tik.chameleon.sce.Configurator click.class

3.2.2 Demultiplexer Configurator

Implementation map
from deployment engine (SCE)

iptables

exec

RMIRMI

Demux configurator Process running as root

Figure 3.22: Demultiplexer configurator architecture

Figure 3.22 shows the architecture of the demultiplexer configurator based on
RMI which is very similar to the Click configurators architecture (see section 4.2.1).

32 3 Service Creation Engine

In both issues RMI has been chosen for the same reason: Iptables must run as system
user root. The main tasks of the demultiplexer configurator are:

• Connect all service entry ports to the EE specific entry adapter element.
These are all input ports of services where packet processing of newly arrived
packets starts. Therefore the demultiplexer configurator inserts EE specific
entry adapters (as specified in the node description) into the implementation
map.

• Connect all service exit ports to the host network stack. This results in packets
continuing their travel after being processed by the active node services.

• Set the required Iptables rules in order to connect the demultiplexer to the
EE entry adapters.

• Set additional Iptables rules to prevent packets from circulating between the
demultiplexer and the services after being processed3.

Until now Click demux entry points must be push in ports. If not the case, the
demux configurator will insert the FromNetfilter element without checking for port
semantics. Therefore the Click installer will fail later on. A solution to this problem
would be to insert a SimpleQueue element between the FromNetfilter element and
the entry port translating from push to pull semantics.

See chapter 4.1 for more details.

3.2.3 EE Configurators

A configurator receives an implementation map and installs those elements which
belong to the EE the configurator is in charge of (native EE elements). Special
care must be taken for native elements that are connected to elements from other
EEs. Configurators must insert special adapter modules for this so called inter-EE
communication.

As depicted in figure 3.23, this might lead to tricky port semantics. The procfs
output port of the click service Counter is connected to the push input port of
the JEE service ToFile. The node description must specify this kind of inter-EE
connection as valid, since the JEE configurator inserts an adapter which has the
accurate port semantics for this situation.

Connecting a Click procfs output port with a JEE pull input port might lead
to problems since the JEE inter-EE adapter FromFile has a push output port (see
figure 3.24). After insertion of elements by the configurator, the implementation
map is not validated again. Therefore a Click procfs output to JEE pull input is
not specified in the node description, in order to inhibit such situations.

Configurators always extend their base class Configurator. They provide a con-
figure method called by the deployment engine.

3Packets passing through the demultiplexer are marked as seen by means of setting the socket
buffers mark value.

3.2 Installing the Service 33

procfs
output

push
input

push
input

procfs
output

push
output

Counter ToFile

Counter ToFileFromFile

inter−EE processing
of configurator

Click JEE

Click JEE JEE

Figure 3.23: Inter-EE situation

Macro expands to
$INSTANCES$ The instance name of the implementation.
EE The name of the EE this implementation belongs to.
$SERVICE$ The service name of the implementation.

Table 3.2: Parameter expansion macros of configurator

Service parameters may consist of dynamic strings. We implemented a macro ex-
pansion for parameters. The Configurator base class provides a method parseMacro
to expand macros in a parameter value string. It supports the macros listed in ta-
ble 3.2.

However, by calling the Configurator base class’ method addMacro, EE spe-
cific configurators may add further macros. This is done for example by the Click
configurator for the CLICKFSPATH macro.

The EE specific configurators we implemented in our thesis are described in
chapter 4.2.

EEs may provide their service’s code modules locally or in a distributed manner
on the code server. If code modules need to be downloaded from the code server
the configurator has to use the code fetcher to do so.

34 3 Service Creation Engine

procfs
output

procfs
output

push
output

Counter ToFile

Counter ToFileFromFile

inter−EE processing
of configurator

pull
input

pull
input

Click JEE

Click JEE JEE

Figure 3.24: not working inter-EE situation

3.2.4 Code Fetcher

The code fetcher is the client application for the code server as depicted in the
overview figure 3.1. Several code servers may be configured in the HostConstants
class. The public method fetch takes an Implementation as argument and returns
the binary code of the requested implementation after probing all configured code
servers. The code module is taken from the first reachable code server providing it.
Probing all known code servers has two advantages:

• Code modules may be spread over several code servers by EE, manufacturer
or version etc. This may help solve licencing situations where a software man-
ufacturer does not allow alternative download locations4.

• Redundancy can be provided by copying code modules to different code
servers.

4E.g. nVidia graphic card drivers for Linux

3.3 Utilities 35

3.3 Utilities

The code server and the service server, described in this section, are not actually
part of the SCE but serve as utilities for distributed service description and code
storage management.

3.3.1 Code Server

The code server provides the code fetcher with code modules for the services. It is
basically a multi-threaded TCP server. The server waits for requests that consists
primarily of a single line containing the path of the code module. The response is
plain binary without any status code. If the desired module could not be found,
the connection is closed immediately. Thus clients can detect that case if no byte
is sent back.

3.3.2 Service Server

The service server provides service descriptions.
It responds to requests from the local service registry, consisting of a single line

containing the name of the desired service. The response is a service description list
in XML format containing implementations and specifications.

If more than one description is available for the desired service, they are packed
in one XML document and sent back. If no service description is available, nothing
is returned.

Let me now shortly describe the internal functionality. The server reads all XML
files from the configured5 file system path, storing service descriptions in memory
to be passed over to the local service registry when queried.

5in the HostConstants java class

Chapter 4

Active Node Platform

This chapter tells about the platform specific parts of the active node.

4.1 Demultiplexer

As already depicted in figure 2.4 demultiplexing of data packets to the running ser-
vices is done by Netfilter. This offers great opportunities to integrate any userspace
and kernelspace EE since Iptables supports passing packets to userspace. Further-
more new Iptables targets can be written easily due to Iptables’ modular design.

4.1.1 Configuration

Configuring the demultiplexer is done by the SCE demux configurator. This sets
various Netfilter rules in such a way that data packets concerning a certain service
are passed to the running service’s EE.

All examples in this chapter treat the Click-demux1 case, since presently it is
the only EE which can receive packets from Netfilter.

4.1.2 Architecture

Entry elements need to be connected with the demultiplexer, which is Netfilter/Ipt-
ables in our case. Each EE, which should receive packets from the demultiplexer,
has to provide an entry adapter element and a demux Iptables target string. Such
an adapter element is specified in the node description and is inserted by the demux
configurator into the implementation map.

We assume an entry adapter element to be unique within an EE. Each entry
element is connected to an output port of that one and only entry adapter element,
as shown in figure 4.1. The output ports of the entry adapter elements must corre-
spond with the right demux Iptables rules. This assignment is done by appending
an ID to the Iptables demux target.

1This means connecting the demultiplexer to services running in the Click EE.

4.1 Demultiplexer 37

entry adapter
(inserted by demux
configurator)

iptable demux rule: −−dport 80 −j CLICK −−click−wire 0
iptable demux rule: −−dport 81 −j CLICK −−click−wire 1

another service entry
element

first service entry

element

Implementation mapIptables demux rulework

wire id

wire id

Figure 4.1: EE entry adapter elements

A service description must communicate which packets it is interrested in by
means of demux rules. A demux rule is needed for each entry port of the service.
Demux rules are specified in XML service descriptions as option strings conforming
to Iptables’ syntax, e.g. in table 4.1. Demux rules spread over all three configuration
levels (the request, the specifications and the implementations) are cumulated by
the specificaton parser for the deployment engine during traversal of the service
tree. Local demux rules (in respect of the currently iterated service tree node)
always precede demux rules from higher service tree nodes. E.g. demux rules in an
implementation will precede demux rules from the request.
...
<SERVICE xsi:type="...">

...
<DEMUX_RULE>-p tcp --dport 80</DEMUX_RULE>
...

</SERVICE>
...

Table 4.1: Demux rule definition in XML node description

However to actually build a valid Iptables rule, the Iptables target is required
as well. And since we support services with more than one entry port, we need to
assign demux rules somehow to ports. This means, we need a target description
string in the node description, telling what the EE specific Netfilter target looks
like. For Click EE it is:

<xsi:EE xsi:name="CLICK" xsi:demux_target="-j CLICK --click-wire ">

Assignment of demux rules to entry ports is done with the wire ID. Whenever
the demux configurator builds a rule, the current ID is simply appended to the rules
target2. To complete our example, the resulting rule for a Click service demux rule

2That is why the trailing space in the target definition is required.

38 4 Active Node Platform

would be this: -p tcp --dport 80 -j CLICK --click-wire 0
Nevertheless it is not yet a fully qualified Iptables rule due to the lack of a table

and chain specification. The demultiplexer places its rules into the mangle table for
two reasons. First we need to mark packets which can only be done here. Secondly
the mangle table has the highest Netfilter hook priority and hence sees packets first
of all tables. See appendix C for more details about Netfilter.

*mangle
:PREROUTING ACCEPT [335:24525]
:INPUT ACCEPT [324:23405]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [322:27683]
:POSTROUTING ACCEPT [322:27683]
-A PREROUTING -m mark --mark !0x1d -j MARK --set-mark 0x1d
-A PREROUTING -m mark --mark !0x1d -p tcp --dport 80 -j CLICK --click-wire 0
COMMIT

Table 4.2: Problematic demux rules

The explanations so far would lead the attentive reader to the assumption that a
full running demux configuration would run Iptables rules as shown in table 4.2. But
without further counter measures we get stuck in a type of chicken-egg problem.
Marking packets just before passing them to Click inhibits the second rule from
taking any packets, due to the marking. Not marking packets at all would lead to
packet loops between Netfilter, Click and the hosts network stack3.

*mangle
:PREROUTING ACCEPT [335:24525]
:INPUT ACCEPT [324:23405]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [322:27683]
:POSTROUTING ACCEPT [322:27683]
:andemux - [0:0]
-A PREROUTING -m mark --mark !0x1d -j andemux
-A andemux -m mark --mark !0x1d -j MARK --set-mark 0x1d
-A andemux -p tcp --dport 80 -j CLICK --click-wire 0
COMMIT

Table 4.3: Final demux rules

The final solution is a user defined chain andemux in the mangle table as shown
in table 4.3. At present packets get into our user chain only if they are not yet

3We use the Click element ToHost to pass packets back to the network stack. But then Netfilter
sees those packets again.

4.1 Demultiplexer 39

marked. In the user chain they are marked just before being given to Click. If a
packet does not match any demux rule in the user chain, it returns to the PRE-
ROUTING chain and its fate depends on other Iptables rules and the hosts network
stack.

4.1.3 Demultiplexer Implementation for Click

Netfilter Demux

Target CLICK
−−click−wire 2

Target CLICK
−−click−wire 0

...
Interface1

Interface0

Kernelspace

Click EE

2

1

0

FromNetfilter
Element

Figure 4.2: Handling packets from demux/Netfilter to Click

In order to pass packets from Netfilter to Click two small software components
had to be developed. On the Netfilters side we wrote a new Iptables target CLICK.
For Click a new element FromNetfilter was required which registers itself for
packet reception with Netfilter by calling a global function ipt_click_register.

For the sake of simplicity only one element FromNetfilter may be configured
at the same time. Otherwise we would have to multiply packets if several instances
of the FromNetfilter element are expected to receive packets.

Without any further measures taken, this would mean that we are not able to
distinguish which Iptables rule was triggered and all packets handled over to Click
would be treated exactly the same way from then on. But by introducing the wire
parameter to Iptables CLICK target, we can demultiplex at the Click side again.
Since with the wire parameter, which is differently defined for each Iptables rule,
the output number of the FromNetfilter element at the Click side can be chosen
arbitrarily, illustrated by figure 4.2.

4.1.4 Promethos

Since Promethos fits seamlessly into Netfilter, no additional code is necessary to
support the kernel EE Promethos. Promethos provides its own set of Iptable targets
to receive packets from the Netfilter framework. As described in section 4.1.2 the
demux configurator appends a wire ID to each demux rule. This might be unde-
sirable for EEs other than Click. This problem could be solved by introducing a
flag in the node description which tells whether an EE needs a wire ID appended.
Another solution is proposed in chapter 6 on page 48.

40 4 Active Node Platform

4.2 EE Specific Configurators

The following sections describe the implemented EE specific configurators.

4.2.1 Click Configurator

Click configurator

RMI

Implementation map
from deployment engine (SCE)

RMI

Process running as root

Click installer

exec

Figure 4.3: Click configurator architecture

The Click configurator parses the implementation map and compiles a Click
configuration language file4. A Click configuration consists of:

Elements The elements a service consists of are specified with their instance name
and service name. The instance name is configured by the user. The service
name must be the name of an existing Click element and is specified in the
XML service description.

Connections The connections specify which port of the source element is con-
nected to which port of the destination element. Port names, existing in the
SCE, have no meaning to Click but they are required for inter-EE communi-
cation as described in section 4.2.2.1.

Parameters Click parameters have no name. They are assigned by means of their
position5.

An example is given in table 4.4. The order of service parameters is preserved
by the SCE. Comparatively in our example the user gave a service description to
the SCE where the first parameter for the classifier element filters TCP/Port 80
traffic and the second filters TCP/Port 81 traffic.

Inter-EE adapters are not (yet) available for the Click EE. To pass network pack-
ets from kernel Click to userspace a userspace library, which is able to handle socket

4As described in [Click]
5Parameter names configured by the SCE are ignored.

4.2 EE Specific Configurators 41

Elements syntax: <instance name>::<element name>(<parameter list>);
cl::Classifier("tcp port 80", "tcp port 81");
count1::Counter();
count2::Counter();
giveBack::ToHost("eth0");

Connection syntax: <instance name>[<output port index>] -> \\
<instance name>[<input port index>] ...;
cl[0] -> count1 -> [0] giveBack;
cl[1] -> count2 -> [1] giveBack;

Table 4.4: Click configuration example

buffers, is needed. We did not spend much time on that issue (see section 4.4.1)
but concentrated on passing control information by means of the proc filesystem to
userspace, as described in section 4.2.2.1.

Furthermore the Click installer6 must be executed in order to tell the Click
kernel module to implement the configuration. Since the Click installer must be
run as system user root, we split the Click configurator into a server and a client,
talking to each other by RMI as depicted in figure 4.3. Hence only the RMI server
must run as root.

The RMI client simply calls a single method on the server side, passing along
the compiled Click configuration, which is then saved into a temporary file where
the Click installer reads and implements it.

4.2.2 JEE Configurator

The JEE configurator has to perform three main tasks:

1. Establish inter-EE communication links by inserting inter-EE adapters.

2. Download java byte code of all configured JEE elements from the code server.

3. Call RMI methods to install the JEE services.

In contrary to Click element parameters, JEE element parameters have no def-
inite position but require a definite name. Parameter semantics are described in
more detail in section 3.1.2.1.

Every JEE XML service implementation description has to specify the code
location of the element. This is the path of the class file (containing java byte code)
on the code server. Downloading the byte code is done by using the code fetcher
(section 3.2.4).

6Provided with the Click distribution at [Click].

42 4 Active Node Platform

<PORTS>
<OUT_PORT xsi:type="procfs_out" xsi:name="procfs_byte_count"/>

</PORTS>
<PARAM xsi:name="procfs_byte_count"
xsi:value="$CLICKFSPATH$/$INSTANCE$/byte_count"/>

Table 4.5: Parameter expansion example

4.2.2.1 Inter-EE Configuration

Whenever the JEE configurator encounters a connection from another EE, it inserts
a FromFile element, which has to read from a procfs file and forward the data to
its push outport. But how does the FromFile element know from which procfs file
it should read?

As described in section 3.1.2.1, service parameters may have names as do con-
nection ports. The trick is to define a name for every Click procfs port, which
corresponds to a service parameter of the same name containing the full procfs
file path as its value. However parameters who’s names start with procfs_ are re-
served for this purpose only and not passed further on to the EE. Table 4.5 shows
an example of how that part of a service specification looks.

For inter-EE connections to another EE, the ToFile element is inserted. The
same kind of file parameter assignment is done as described above.

4.3 Chameleon Java Execution Environment (J2E)

We adapted most of the JEE from [sdafann02]. The concept of elements and ports
is the same. However our JEE runs in a separate process. Configuration is done
with RMI. Figure 4.4 depicts the architecture.

One of our design goals was a single process standalone JEE. In order to separate
the JEE from the configurator we wrote a RMI interface, providing a basic set
of remote methods to manage the configuration of the JEE. The RMI interface
provides the following methods:

add Adds a JEE service element to the current configuration. The element is rep-
resented as a byte array, containing a fully qualified java class object.

The instantiation and initialization of the element is done on the RMI server
side. This approach does not require the element class to be serializable, thus
we were not required to change the existing base classes much.

start Starts all service threads. Service elements may implement own java threads,
as explained in section 4.3.1.

connect Connect two already added elements.

4.3 Chameleon Java Execution Environment (J2E) 43

Configurator_jeeImplementation map
from SCE

RMI client RMI server

JEE Process

running services

classif. drop

queue

source

Figure 4.4: JEE architecture

reset Stop all service threads and remove all service elements from the configura-
tion.

haveInstance Tell whether an element with the given instance name has already
been added.

4.3.1 Elements Overview

The JEE supports two kinds of ports: push and pull. Their semantics are the same
as described in [sdafann02].

We dropped the concept of compound containers and their special ports link,
since we only support simple elements. Any service specifications are resolved into
implementations7 by the SCE’s specification processor (see section 3.1.2), long be-
fore an implementation map reaches our JEE configurator.

The configuration string, passed to element constructors, can be analyzed by
java Properties objects. This is prepared in our framework class Container. The
XML service description of a JEE element must name its parameters8.

JEE elements may run their own java threads, by implementing the Runnable
java interface. Elements should not call the start() method on their own, since it is
done by the JEE configurator for all elements at the same time. The threads (the
run() method) should check for the stop flag, which will be set by the configurator
as soon as an element is no longer used. By setting the running flag accordingly,
elements must report their running status to the configurator. Both flags are part
of the Container base class.

7Implementations are always leave nodes of a service tree.
8In contrary to the Click Router EE, where parameters are assigned according to their position.

44 4 Active Node Platform

4.3.2 Elements Provided

Name Parameters Ports Purpose
FromFile file, interval 1 OutPush Reads data from a file every inter-

val milli seconds.
ToFile file 1 InPush Writes data to a file.
Rate 1 InPush,

1 OutPush
Expects a byte counter value as
string in the input packet and tells
the current rate in byte/s to the
output packet.

EMARate 1 InPush,
1 OutPush

Expects a byte counter value as
string in the input packet and
tells the exponential moving aver-
age rate in byte/s to the output
packet.

Shaper factor 1 InPush,
1 OutPush

Reads a single input number and
multiplies it with the configured
factor.

Table 4.6: Provided JEE elements

All these elements (see table 4.6) can not handle real socket buffers due to
the lack of a userspace wrapper library. They process simple information patterns
instead as typical control information. E.g. a single number in byte stream rep-
resentation or the raw packet data without any kernel specific data structures or
pointers.

4.3.3 Writing new JEE Elements

Your own element should...

• extend the base class ch.ethz.ee.tik.chameleon.jee.Container

• implement the constructor <element>(String name, String config)

• call the super class’ constructor super(name, in_port_type,
number_of_in_ports, outport_type, number_of_outports, config)

• read any configuration parameters from the protected Properties object of
the Container class by calling its method getProperty(String name)

• implement simpleAction(DataPacket p) which returns the processed data
packet

4.4 Click Execution Environment 45

If your element needs its own java thread, implement the Runnable interface
but do not call start() from your constructor. It will be called from the RMI server
for all elements at the same time for the sake of synchrony.

4.4 Click Execution Environment

Other than the Click configurator we did not need any code to integrate Click into
our SCE. However we thought of another inter-EE communication facility, described
in the following section.

4.4.1 Click Netlink Module

We attempted to implement a netlink connection between Click and the JEE. This
function requires two modules: a Click element which connects click with a netlink
socket and a native java implementation for the userspace side.

The Click element9 has not been tested acceptedly, nevertheless it is capable
of transmitting and receiving packets via netlink. The native java library is not
runnable10.

We ceased development of this module, due to low priority and lack of time.
Inter-EE communication is still possible by means of the procfs interface described
in section 4.2.2.1.

9To be found in our archive in an/click netlink/
10In our archive in an/java/jee netlink/

Chapter 5

Conclusion

This chapter summarizes all goals achieved in respect of the three issues service
composition, EE integration and the demultiplexer. As conclusion about the whole
thesis we can state that every single component of the implemented active node
platform has been designed as flexible and modular as possible. However, it was
our experience that for practical reasons, not every detail can be abstracted and
designed in a completely generic way. Decisions had to be made which are specific
for our two EEs. It would be illusionary to assume that an active node platform
could be implemented in such a generic way that any addition and modification of
it could be done without the need of any implementation-specific measures.

Nevertheless, we think that our active node is a well designed and flexible frame-
work which implies a maximum of usability and a minimum of complexity.

5.1 Service Composition

The service creation engine has been implemented as Java application running in
userspace. In its idle state, the SCE waits for an incoming service request which
is processed in turn. The major processing steps done by the SCE include the
resolution of all internal dependencies, various validation steps, selection of one
implementation by consulting the mapping policy and finally the installation of all
service components in the available EEs.

For the sake of adaptility and readability, service requests and descriptions are
formatted in XML. The resolution of internal dependencies leads to a hierarchical
structure of the service components. This allows the processing and installation of
arbitrarily complex services.

As overall function, the SCE is responsible for mapping the node-independent
service request against the node capabilities. The latter are represented by the node
description which are stored as an XML file. This concept results in a very flexible
node administration in case of platform changes, like adding new EEs or upgrading
the OS.

The final selection of one implementation can be influenced by specifying an ap-

5.2 EE Integration 47

propriate mapping policy. Currently, one mapping policy is supported which mini-
mizes the EE transitions.

Service descriptions and service code may be stored separately on different hosts
in the network. As a result distributed resources and redundance can be provided.

5.2 EE Integration

We adapted the Chameleon Java EE from [sdafann02] in order to integrate it into
our active node platform as a stand-alone process. Some features were stripped off
since the enhanced SCE covers them and some minor functions were added to fit
into our RMI-based EE architecture. Services may be implemented easily for this
EE whereas performance is not of much importance like in any Java application.

The integration of the Click modular router as a kernel EE not only features high
performance. The Click router project already provides a huge number of services.
They may be used by solely editing appropriate XML service descriptions. Refer
to [Click] for more details.

Furthermore, inter-EE communication has been implemented which makes ser-
vices more flexible. During validation of the service tree, services which are provided
by several EEs, may be selected based on the mapping policy described above.

5.3 Demultiplexer

The Netfilter/Iptables-based demultiplexer allows simple extensions for new EEs.
Network packets addressing a particular service may be forwarded appropriately by
means of the large and powerful rule set of Iptables.

Chapter 6

Known Bugs and Future Work

6.1 Major Issues

• Click does not allow mixed push/pull semantics for agnostic ports, as shown
in figure 6.1. This constraint is not checked by the validator since it requires
redesigning service description semantics.

• The Click EE can not be considered as stable since the active nodes kernel
crashes upon a second service configuration. The reason for this could be a
reinitialization bug in our FromNetfilter Click module or another bug in the
official Click distribution. We could not investigate the reason for this bug
due to lack of time and because the kernel oops1 could not be written to a
file for further analysis by means of ksymoops.

ToDeviceCounterFromDevice
agnstic out

pull inagnstic in

push out

Figure 6.1: Mixed Click push/pull semantics with agnostic ports

6.2 Minor Issues

• The design of the SCE does not allow configuration of additional services
nor selective removal of services from the running configuration. This fea-
ture would require significant changes to the SCE framework. Configurators

1A kernel error message which is issued whenever the kernel encounters an internal critical
situation. This happens very rarely on original (not patched) kernels.

6.2 Minor Issues 49

would neccesitate storing the current configuration and distinguishing services
that must be newly created from services already running. The demultiplexer
would have to perform a similar task, reconfiguring EE entry points as far as
required. Special care has to be taken when adapter elements are inserted (at
service entry and exit points or inter-EE borders).

• Since Iptables configuration commands are executed as root, passing Ipta-
bles filter rules from the XML service description and the node description
directly and unchecked to the demux configurator bears a security risk (see
section 3.2.2). A solution to this problem could be a new demux configura-
tion language which is translated into Iptables commands by a strict parser,
checking for shell escape characters.

• The demux adapter elements and also inter-EE adapters have to consist of
a single implementation. For more complex EEs, which might be supported
in the future, whole service specifications containing subservices could be of
interest. Changes would be required in the demux configurator and the EE
configurators, where adapter elements are inserted into the implementation
map.

• The current way of service deployment does not revalidate a service tree
after insertion of adapter elements by the EE configurators and the demux
configurator. Bogus XML configurations might not lead to clearly stated error
messages. Some configurators might simply fail to deploy services instead,
even though the service request had been validated successfully by the SCE.

A known bug consists of the fact that service entry points with pull semantics
cause trouble which is not detected by the demux configurator, as explained
in section 3.2.2.

• Some future EEs might need to avoid the wire ID appended to demux Iptables
rules. An (untested) solution might be appending a ’#’ to the demux rule
target specification in the node description. This should make the wire ID
look like a comment to the shell, inhibiting Iptables from seeing it.

• As mentioned in section 11 on page 40 and section 4.4.1 the netlink interface
for the JEE has not yet been finished.

• In some cases the SCE crashed when specifications are used as service re-
quests. We had no time to care about it. The SCE works perfectly if simple
requests are used.

• If a service contains a specification as floating node, the according specifica-
tion must not have entry points. In other words, the specification node only
contains floating nodes and their direct and indirect successors.

• In [SDA] the concept of funnels and tubes is introduced. Our SCE handles
both as the same kind of transport connections.

50 6 Known Bugs and Future Work

• After changing any XML configuration files the SCE need to be restarted.
This means services and EEs can not be added at runtime. Adding services
at runtime needs minor changes to the code server which presently scans XML
service description upon first instantiation only. Adding new EEs at runtime
has been prepared already by means of loading the configurator classes dy-
namically as described in section 3.2.1. Minor changes to the service server
are necessary to rescan service descriptions more often.

• The SCE has to iterate trees and maps at different times. Maybe this task
could be unified by means of a single iterator which knows how to traverse
all the main data structures. This approach already has been chosen in the
configurators whereas our iterator ImplementationMapIterator is not resistant
against changes of the data structures during traversal.

Bibliography

[SDA] Matthias Bossardt A Service Deployment Architecture for Heterogenous Ac-
tive Nodes;
ETH DITET TIK, 2002.

[sdafann02] Florian Kaufmann Service Deployment for a Java-based Active Net-
work Node;
ETH DITET TIK, 2002.

[Click] The Click Router Project http://www.pdos.lcs.mit.edu/click/

[Netfilter] Netfilter / Iptables Project http://www.netfilter.org/

Appendix A

Installation Guide

A.1 Requirements

• Linux Kernel 2.4.20 from http://www.kernel.org/

• Click router from http://www.pdos.lcs.mit.edu/click/ (CVS)

• Iptables userspace tools 1.2.7a from http://www.netfilter.org/

A.2 Installation steps

Note: you can find every software required on the CDROM archive additionally.

A.2.1 Preparing the kernel

1. Unpack the kernel sources to /usr/src/linux. Unpack also click and Iptables
sources.

2. Make sure the following symbolic links point at these places in the unpacked
kernel sources:

/usr/include/linux -> /usr/src/linux/include/linux
/usr/include/asm -> /usr/src/linux/include/asm-i386

3. Patch the kernel with the appropriate click patch to be found in the unpacked
click source in etc/linux-2.4.20-patch.

4. Patch the kernel again with the Click-Netfilter patch
click_netfilter/kernel-2.4.20.diff found in our software package.

5. Configure the kernel making sure the Netfilter CLICK-Target and both the
MARK-Target and the MARK-match are enabled as module and install new
kernel.

A.2 Installation steps 53

6. Patch the Iptables userspace tools with the click netfilter patch from our
software package.

7. Build and install new Iptables userspace tools.

8. Boot the new kernel.

9. Copy fromnetfilter.{hh,cc} and netlink.{hh,cc} into click/elements/local

10. Configure, build and install click. Pass --enable-local to the configure
script.

A.2.2 Java environment

1. Make sure JDK 1.4 or higher is installed (from your Linux distribution).

2. Get and install jdom (betha 8) from http://www.jdom.org.

3. Find our java source code in our archive at an/java.

4. Get and install xerces (2.2.1) from http://xml.apache.org.

5. Get and install the XPath evaluator jaxen (1.0) from
http://jaxen.sourceforge.net/
Note: We needed jaxen-full.jar and lib/saxpath.jar to be in the CLASSPATH.
Jaxen might get integrated into jdom soon.

6. Adjust your CLASSPATH environment variable so that it contains those jar
archives and the top directory of the java source code.

7. Adapt ch/ethz/ee/tik/chameleon/util/{HostConstants,Constants}.java to
your needs. You should adapt HostConstants.java to reflect your file paths.
Or you can create a symlink from an/xml to /tmp/an. Make sure
CODE SERVER BINARYS PATH points to the directory where the JEE
services are. This should be an/java/jee/services.

8. Build java software, using the makefile in the java top directory. Simply type
make.

Appendix B

User Guide

B.1 Running the Active Node

The shell script run.sh in the java subdirectory launches the basic framework. It
starts the following processes:

Service creation engine The SCE main process, waiting for TCP service re-
quests. See section 3.

Code server The code server, maybe running on another host. See section 3.3.1.

Java EE The java EE (J2E), see chapter 4.3.

Service server Maintaining an XML based database of service descriptions. May
run on another host. See section 3.3.2.

Click configuration server Runs as root as RMI server, see section 4.2.1.

Demux configurator Runs as root as RMI server, see section 3.2.2.

Now you may request services as shown in the example implementation
ch.ethz.ee.tik.chameleon.sce.ServiceRequester. See also the sample service requests
in xml/servicerequester/.

Note: run.sh also inserts the kernel module ipt CLICK.o since Click depends
on it even when there are no Iptables rules set using the target CLICK.

For the demonstration we used the script an/demo/rundemo.sh. See its code for
the various startup modes. Each command line option fulfills a single task needed
for the complete demonstration.

B.2 Integrating new EEs

To integrate a new EE, the following minimal tasks are required:

• Write a Configurator like those described in section 3.2.3. Make sure, it fulfills
the minimal set of tasks:

B.3 XML Files 55

– Insert inter-EE adapters into the implementation map.

– Download code modules by means of the code fetcher if the EE supports
dynamic code loading.

– Reset its EE to stop old services.

– Install the new implementation map considering services, their param-
eters, and connections. Port assignment must be preserved. Refer to
our implementations Configurator jee and Configurator click to see how
node iteration is done correctly in order to fetch all connections.

• Add the new EE to the node description, see section B.3.1. Add a single EE
element and as many EE CONNECTIONS as required in order to reflect your
EE’s port semantics to the node description.

• Write service descriptions as explained in section B.3.2 for integration of your
EE’s services.

B.3 XML Files

This section describes the structure of all XML files needed to run services on the
AN. It shows how to write new service descriptions and other features covered by
XML configuration files.
Some notes about the XML graphs:

• Elements are surrounded by ellipses.

• Attributes are encircled by a hexagon.

• Doubly surrounded Elements may appear more than once.

• Dashed arrows point to optional XML nodes. Solid arrows mark nodes as
mandatory.

B.3.1 Node Description

Table B.1 shows an example node description. The meanings of the XML nodes
depicted in figure B.1 are:

NODE DESCRIPTION The root element of the node description.

OS Compound element for the supported OSs of this node.

OS:name The name of our OS.

OS:version Our OS’ version.

EE Compound element for an EE description.

56 B User Guide

EE:name The name of the EE.

EE:configurator The suffix of the Configurator class for this EE (see section 3.2.3).

EE:demux target If the EE should get packets from the demux, it must specify
the Iptables target passing packets to that EE (see section 4.1.2, page 37).

EE:version The EE’s version.

PORT A port description of a single kind of ports.

Port:type The type name of that port.

Port:flag Optional port flags. Currently only optional is supported. A port with
the optional flag set may be left unconnected in the implementation map as
described in section 3.1.4.1 on page 16.

EE CONNECTION Compound element for service connections. As normal case
you have one per EE, describing intra-EE connections (fromEE and toEE both
contain the current EE’s name) and one per inter-EE connections.

fromEE The name of the originating EE of the listed connections.

toEE The name of the destination EE these connections go to.

CONNECTION A connection that comes from fromEE and goes to toEE.

fromPort The name of the kind of source port for a connection. Contains a valid
port name, specified in the EE elements type attribute.

fromPort The name of the kind of destination port for a connection. Contains a
valid port name, specified in the EE elements type attribute.

B
.3

X
M

L
F
iles

57

Figure B.1: XML node description graph

58 B User Guide

B.3.2 Service Descriptions

As mentioned in section 3.1.1, two different kinds of service descriptions are known,
which may appear mixed in one file:

Specification A compound description, containing one or more subservices.

Implementation The atomic description of a service, representing a single service
element of an EE.

Table B.2 shows an example of a specification, table B.3 shows an example of
implementations.

B.3.2.1 Service Specification

Description of the elements (see figure B.2):

SERVICE LIST XML root element.

SERVICE Compound element of a service.

SERVICE:type The type of this service. For specifications always SPECIFICA-
TIONS.

DESCRIPTION Compound element.

servicename The name of this service.

PROVIDER The manufacturer of this service.

VERSION The service version.

DEMUX RULE Demux rule pattern (Iptables rule options) for service entry
points (see section 4.1.2 on page 37).

PORTS Compound element for the port list.

IN PORT An input port and its type.

IN PORT An output port and its type.

PARAM A service parameter. Parameter inheritance and handling is described
in section 3.1.2.1.

PARAM:name The name of a parameter. Parameters are inherited by order.
Some EEs need parameter names, some other discard it (e.g. Chameleon J2E).

PARAM:value The optional value of a parameter.

SUB SERVICE Compound element.

B.3 XML Files 59

SUB SERVICE:name The service name of a subservice.

SUB SERVICE:instance name The uniq instance name of the service.

SUB SERVICE:PARAM A parameter reference. Its name must correspond to
an existing parameter among the service parameters.

TRANSPORT CONNECTION Compount element for a connection between
subservices.

SRC PORT Source port of a transport connection.

DEST PORT Destination port of a transport connection.

{SRC,DEST} PORT:name Optional port name, used for routing (see
section 3.1.4.1).

{SRC,DEST} PORT:instance name Instance name of the connected service.

60 B User Guide

<?xml version=”1.0” encoding=”UTF−8”?>
<NODE DESCRIPTION xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
xsi :noNamespaceSchemaLocation=”C:\Chameleon\XML\chameleon.xsd”>

<!−− configurator: name of java class configuring this EE
name: name of this EE, corresponds to service descriptions

−−>
<xsi:OS xsi:name=”Linux” xsi:version=”2.4.20”/>
<xsi:OS xsi:name=”Linux” xsi:version=”2.4.19”/>
<xsi:OS xsi:name=”Linux” xsi:version=”2.4.18”/>
<xsi:OS xsi:name=”AS400” xsi:version=”23.4.56.pre12 patchlevel 5”/>
<xsi:EE xsi:name=”JEE” xsi:configurator=”jee” xsi:version=”1”>

<xsi:PORT xsi:type=”pull in”/>
<xsi:PORT xsi:type=”push in”/>
<xsi:PORT xsi:type=”pull out”/>
<xsi:PORT xsi:type=”push out”/>

</xsi:EE>
<xsi:EE xsi:name=”CLICK” xsi:configurator=”click” xsi:version=”1”

xsi :entry module=”FromNetfilter” xsi:exit module=”ToHost”
xsi :demux target=”−j CLICK −−click−wire ”>

<xsi:PORT xsi:type=”pull in”/>
<xsi:PORT xsi:type=”push in”/>
<xsi:PORT xsi:type=”pull out”/>
<xsi:PORT xsi:type=”push out”/>
<xsi:PORT xsi:type=”agnostic in”/>
<xsi:PORT xsi:type=”agnostic out”/>
<xsi:PORT xsi:type=”procfs in” xsi:flag=”optional”/>
<xsi:PORT xsi:type=”procfs out” xsi:flag=”optional”/>

</xsi:EE>
<xsi:EE CONNECTIONS xsi:fromEE=”CLICK” xsi:toEE=”JEE”>

<xsi:CONNECTION xsi:fromPort=”procfs out” xsi:toPort=”push in”/>
</xsi:EE CONNECTIONS>
<xsi:EE CONNECTIONS xsi:fromEE=”JEE” xsi:toEE=”CLICK”>

<xsi:CONNECTION xsi:toPort=”procfs in” xsi:fromPort=”push out”/>
</xsi:EE CONNECTIONS>
<xsi:EE CONNECTIONS xsi:fromEE=”CLICK” xsi:toEE=”CLICK”>

<xsi:CONNECTION xsi:fromPort=”pull out” xsi:toPort=”pull in”/>
<xsi:CONNECTION xsi:fromPort=”push out” xsi:toPort=”push in”/>
<xsi:CONNECTION xsi:fromPort=”pull out” xsi:toPort=”agnostic in”/>
<xsi:CONNECTION xsi:fromPort=”push out” xsi:toPort=”agnostic in”/>
<xsi:CONNECTION xsi:fromPort=”agnostic out” xsi:toPort=”agnostic in”/>
<xsi:CONNECTION xsi:fromPort=”agnostic out” xsi:toPort=”push in”/>
<xsi:CONNECTION xsi:fromPort=”agnostic out” xsi:toPort=”pull in”/>

</xsi:EE CONNECTIONS>
<xsi:EE CONNECTIONS xsi:fromEE=”JEE” xsi:toEE=”JEE”>

<xsi:CONNECTION xsi:fromPort=”pull out” xsi:toPort=”pull in”/>
<xsi:CONNECTION xsi:fromPort=”push out” xsi:toPort=”push in”/>

</xsi:EE CONNECTIONS>
</NODE DESCRIPTION>

Table B.1: Example of a complete node description

B.3 XML Files 61

<?xml version=”1.0” encoding=”UTF−8”?>
<SERVICE LIST xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
xsi :noNamespaceSchemaLocation=”C:\Chameleon\XML\chameleon.xsd”>
<SERVICE xsi:type=”SPECIFICATION”>

<DESCRIPTION xsi:servicename=”bandwidth checker” xsi:option=”normal”>
<PROVIDER>ETH</PROVIDER>
<VERSION>2.1</VERSION>

</DESCRIPTION>
<PORTS>

<IN PORT xsi:type=”push in”/>
<OUT PORT xsi:type=”push out”/>

</PORTS>
<PARAM xsi:name=”file” xsi:value=”/tmp/count”/>
<SUB SERVICE xsi:name=”Counter” xsi:instance name=”counter”>
</SUB SERVICE>
<SUB SERVICE xsi:name=”ToFile” xsi:instance name=”result writer”>

<PARAM xsi:name=”file”/>
</SUB SERVICE>
<TRANSPORT CONNECTION>

<SRC PORT xsi:service instance=”this” xsi:type=”push in”/>
<DEST PORT xsi:service instance=”counter” xsi:type=”agnostic in”/>

</TRANSPORT CONNECTION>
<TRANSPORT CONNECTION>

<SRC PORT xsi:service instance=”counter” xsi:name=”procfs byte count”
xsi :type=”procfs out”/>

<DEST PORT xsi:service instance=”result writer” xsi:type=”push in”/>
</TRANSPORT CONNECTION>
<TRANSPORT CONNECTION>

<SRC PORT xsi:service instance=”counter” xsi:type=”agnostic out”/>
<DEST PORT xsi:service instance=”this” xsi:type=”push out”/>

</TRANSPORT CONNECTION>
</SERVICE>

</SERVICE LIST>

Table B.2: Example of a service specification

62 B User Guide

<?xml version=”1.0” encoding=”UTF−8”?>
<SERVICE LIST xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
xsi :noNamespaceSchemaLocation=”C:\Chameleon\XML\chameleon.xsd”>
<SERVICE xsi:type=”IMPLEMENTATION”>

<DESCRIPTION xsi:servicename=”FromFile” xsi:option=”normal”>
<PROVIDER>ETH</PROVIDER>
<VERSION>2.1</VERSION>

</DESCRIPTION>
<ENVIRONMENT>

<OS>
<NAME>Linux</NAME>
<VERSION>2.4.19</VERSION>

</OS>
<EE>

<NAME>JEE</NAME>
<VERSION>1</VERSION>

</EE>
</ENVIRONMENT>

<CODE LOCATION>FromFile.class</CODE LOCATION>
<PORTS>

<OUT PORT xsi:type=”push out”/>
</PORTS>
<PARAM xsi:name=”file”/>
<PARAM xsi:name=”interval” xsi:value=”510”/>

</SERVICE>
<SERVICE xsi:type=”IMPLEMENTATION”>

<DESCRIPTION xsi:servicename=”ToFile” xsi:option=”normal”>
<PROVIDER>ETH</PROVIDER>
<VERSION>2.1</VERSION>

</DESCRIPTION>
<ENVIRONMENT>

<OS>
<NAME>Linux</NAME>
<VERSION>2.4.19</VERSION>

</OS>
<EE>

<NAME>JEE</NAME>
<VERSION>1</VERSION>

</EE>
</ENVIRONMENT>

<CODE LOCATION>ToFile.class</CODE LOCATION>
<PORTS>

<IN PORT xsi:type=”push in”/>
</PORTS>
<PARAM xsi:name=”file”/>
<!−− PARAM xsi:name=”debug” xsi:value=”1”/ −−>

</SERVICE>
</SERVICE LIST>

Table B.3: Example of service implementations

B
.3

X
M

L
F
iles

63

Figure B.2: XML service specification and service request graph

64 B User Guide

B.3.2.2 Service Implementation

Figure B.3 shows how an XML service implementation looks like. The following list
only mentions the differences to the service specification in section B.3.2.1.

ENVIRONMENT Compound element.

OS, NAME, VERSION Must match the same fields in the node description.

EE, NAME, VERSION Must match an EE descriptor in the node description.

PARAM:value Parameters with given values in implementations are constant
parameters. They can not be overwritten by service specifications.

B
.3

X
M

L
F
iles

65

Figure B.3: XML service implementation graph

66 B User Guide

B.3.3 Service Request

Whenever the user wants to request the installation of a service, she has to submit
a service request to the SCE. Service requests may appear in two different forms,
as described in section 3.1.2. The simple form is self-explanatory and shown in
figure B.4. The more complex form is just a full service specification, explained in
section B.3.2. Table B.4 shows an example of a simple service request.

Figure B.4: XML simple service request graph

<?xml version=”1.0” encoding=”UTF−8”?>
<SERVICE xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”
xsi :noNamespaceSchemaLocation=”C:\Chameleon\XML\chameleon.xsd”>

<DESCRIPTION xsi:servicename=”bandwidth checker”/>
<DEMUX RULE>−p tcp −−dport 80</DEMUX RULE>

</SERVICE>

Table B.4: Example of a simple service request

Appendix C

Introduction to Netfilter

Netfilter/Iptables is the official packet filter shipped with the linux kernel version
2.4. Its main advantages over the old Ipchains packet filter are the modular archi-
tecture and the less intrusive kernel interface making extensions easier and more
stable.
A lot of documentation can be found on [Netfilter].

C.1 Netfilter/Iptables Concept

The Netfilter framework provides hooks for examining packets traveling through
the local network node at different points in the kernel. You may think of hooks as
of checkpoints where decisions are made about the packets fate or where packets
get altered. Iptables uses these hooks in order to apply its filter rules.

C.1.1 Netfilter

One of the main goals of the design of Netfilter was changing as little code of the
existing IP stack as possible. Figure C.1 shows the five checkpoints where packet
inspection may take place.

1 2

4 5

3 Interface outInterface in

Local in Local out

Routing

Routing

Figure C.1: Netfilter hooks

68 C Introduction to Netfilter

1. PREROUTING Packets coming from other machines over the network can
be checked out here just before the routing decision is to be met. A typical
application of this hook is DNAT1. See also section C.2.

2. FORWARD Packets that came from outside and which are destined for an-
other host pass through this hook.

3. POSTROUTING All packets leaving our host are inspected by this hook.
SNAT2 and masquerading are done here usually. See also section C.2.

4. INPUT Packets destined for the local host pass this hook just before being
given to the application layer.

5. OUTPUT This hook sees packets generated locally just before routing is done.

C.1.2 Iptables

As already known from other packet filters also Iptables holds the filter rules in
chains. The user configures the rules in chains whereas the order of rules is a decisive
factor. Since each packet is compared to the match criterions of each rule, starting
at the first rule of a chain. If a rule matches, the rules action (target) is taken
emmediately and rule processing stops for this packet with few exceptions.

Iptables introduces a specific concept of tables holding several chains. Each chain
of a table is connected with a Netfilter hook, except user defined chains. Figure C.2
depicts the default tables and their chains.

Input
Output
Forward
Prerouting
Postrouting

Prerouting
Postrouting

Output

Input
Output
Forward
Prerouting
Postrouting

ChainsTables Rules

NAT

Filter

Mangle

source ip=129.132.0.0/16 DROP
proto=UDP source port=137−139 REJECT
dest ip=64.0.0.0/8 ACCEPT
...

Figure C.2: Iptables: tables, chains and rules

1Destination Network Address Translation
2Source Network Address Translation

C.2 NAT 69

Since several tables hold Input chains, the chains of the same hook are hooked
into Netfilter according to their tables priority defined by the implementation of
Iptables. NAT chains are hooked before filter chains for example.

Filter is the standard table where packets mainly are rejected or accepted.

Nat The address of packets are changed here.

Mangle This table is meant for all other kinds of manipulations like changing the
TTL value of an IP packet.

C.2 NAT

Network address translation means changing the source or target address of a packet
in general. Two sub methods can be distinguished: SNAT and DNAT.

C.2.1 DNAT

DNAT changes the destination address of packets. This is usefull for example if a
firewall should pass incoming connection to a server in the DMZ.

C.2.2 SNAT

SNAT changes the source address of outgoing packets. This method is usefull for
network renumbering since that way hosts addresses appear in networks without
really having such an address.

C.2.3 Masquerading

Masquerading is a special case of SNAT where the source address of outgoing pack-
ets are rewritten to the address of the outgoing interface of the firewall. That way
hosts from the inner network are hidden to the outside world.

The routing of reply packets into the inner network is done automatically before
they pass the prerouting hook.

This method is very usefull for large local networks needing internet access
since all the inner hosts only need one public internet address which is given to the
firewall.

C.3 Data structures

The following sections discuss some of the more important data structures of Ipta-
bles in kernel version 2.4.18.

The file net/ipv4/netfilter/ip tables.c demonstrates the basic architecture of
Iptables.

70 C Introduction to Netfilter

static LIST_HEAD(ipt_target);
104 static LIST_HEAD(ipt_match);

static LIST_HEAD(ipt_tables);

These three lists exist globally and uniquely.

tables Tables hold chains holding rules.

New tables are registered by the function ipt register table3. The hooking
(section C.1.1) into Netfilter has to be done explicitly afterwards.

match This list holds data structures of all known matches that may be used by
rules. Mainly these structures hold pointers to functions performing the actual
match (e.g. comparing source address with given pattern).

target The target list is similar to the match list. If a packet matches some rule, the
Iptables code looks into this list for the appropriate function which provides
the rules action. The return value of those target functions determins the fate
of the packet; e.g. whether it will be accepted or rejected.

3net/ipv4/netfilter/ip tables.c:1378

72 D Assignment

Appendix D

Assignment

73

74 D Assignment

75

76 D Assignment

77

Appendix E

Schedule

Zeitplan DA – 2003.06

Roman Hoog Antink
Andreas Moser

Task Woche 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

04.-8.11. 11.-15.11. 18.-22.11. 25.-29.11. 2.-6.12. 9.-13.12. 16.-20.12. 6.-10.01. 13.-17.01. 20.-24.01. 27.-31.01. 03.-07.02. 10.-14.02. 17.-21.02. 24.-28.02. 03.-07.03. 10.-14.03.

Einarbeiten Beginn Abschluss

Wahl der Komponenten Beginn Abschluss

Kernel-EE: Click unter 2.4 Beginn Abschluss

Kernel-EE: Interface US Beginn Abschluss

Kernel-EE: Translation Beginn Abschluss

SCE: Design Beginn Abschluss

SCE: Core Beginn Abschluss

SCE: Data Management Beginn Abschluss

SCE: Service Server Beginn Abschluss

SCE: Code Server Beginn Abschluss

SCE: Service Requester Beginn Abschluss

SCE: Customer Beginn Abschluss

SCE: Translation Engine Beginn Abschluss

Validierung des AN Beginn Abschluss

Dokumentation Beginn Abschluss

Vortrag Beginn Abschluss

Index

active networks, 3
active node, 3

chains, 68
Click, 39, 45

installer, 41
code server, 35

probing, 34
configurator, 31, 32, 40, 41
connection validation, 26

demultiplexer, 6, 13, 36
demux configurator, 31
demux rule, 13
deployment engine, 13, 18
DNAT, 68, 69

EE
integrating new, 54

expand algorithm, 21

filter, 69
floating nodes, 25
FromNetfilter, 39

hooks, 67

implementation map
translation into, 30

implementation node, 9
implementation validator, 14
Installation Guide, 52
inter-EE, 42, 56
intra-EE, 56
invalid nodes, 14
Ipqmpd, 6
Iptables, 32, 39

target, 37, 56

iteration, 50
algorithms, 19
of validation map, 19

JEE
configuration string, 43
element, 43
parameter, 43
RMI, 42
threads, 43

mangle, 69
mapping policy, 29

minimize EE transitions, 29

NAT, 69
Netfilter, 36, 39

Introduction, 67
netlink, 45
node

implementation, 9
specification, 9

node description, 14, 55
node validation, 14

parameter passing, 12
port, 43
port validation, 15
Promethos, 39

renumbering, 69
RMI, 42
root interface, 20
root node, 10
routes

computing, 28
evaluating, 27

80 Index

idea of, 27
selection, 29

routing, 21
of specifications, 17
of subservices, 15

service
description, 35, 58
entry point, 24, 32, 37
exit point, 24, 32
installation, 31
request, 11, 66

service creation engine, 9
service server, 35
service tree

building, 9
SNAT, 68, 69
specification node, 9
subservice, 9, 15
succeeding nodes, 19

table, 38, 70
TCP server, 35

User Guide, 54
utilities, 35

validation map
building, 18

validation nodes
design of, 18
expanding, 21

wire, 39

XML files, 55

	Introduction
	Architecture
	Proposals
	Netfilter with Ipqmpd
	Without Netfilter

	Final Architecture
	Inter-EE communication

	Service Creation Engine
	Building the Service Tree
	Service Tree: General Introduction
	Phase I: Building a Service Tree
	Parameters
	Demultiplexing Rules

	Phase II: Node Validation
	Phase III: Port Validation and Routing
	Subservices
	Specifications

	Phase IV: Building a Validation Map
	Design of Validation Nodes
	Introduction to Algorithms Iterating the Validation Map
	Expanding Validation Nodes
	Entry and Exit Points
	``Floating'' Nodes

	Phase V: Connection Validation
	Phase VI: Evaluating Routes
	The Idea
	Computing All Routes
	Selecting One Route

	Phase VII: Translation into an Implementation Map

	Installing the Service
	Deployment Engine
	Demultiplexer Configurator
	EE Configurators
	Code Fetcher

	Utilities
	Code Server
	Service Server

	Active Node Platform
	Demultiplexer
	Configuration
	Architecture
	Demultiplexer Implementation for Click
	Promethos

	EE Specific Configurators
	Click Configurator
	JEE Configurator
	Inter-EE Configuration

	Chameleon Java Execution Environment (J2E)
	Elements Overview
	Elements Provided
	Writing new JEE Elements

	Click Execution Environment
	Click Netlink Module

	Conclusion
	Service Composition
	EE Integration
	Demultiplexer

	Known Bugs and Future Work
	Major Issues
	Minor Issues

	Installation Guide
	Requirements
	Installation steps
	Preparing the kernel
	Java environment

	User Guide
	Running the Active Node
	Integrating new EEs
	XML Files
	Node Description
	Service Descriptions
	Service Specification
	Service Implementation

	Service Request

	Introduction to Netfilter
	Netfilter/Iptables Concept
	Netfilter
	Iptables

	NAT
	DNAT
	SNAT
	Masquerading

	Data structures

	Assignment
	Schedule

