
Topology and Position Estimation
in Bluethooth Ad-hoc Networks

Diploma Thesis
Urs Frey

Supervisors
Jan Beutel, Matthias Dyer

Winter Semester 2002/2003, DA-2003-09

 Institut für Technische Informatik
 und Kommunikationsnetze
 Computer Engineering and Networks Laboratory

Abstract

Position awareness can be valuable extension for mobile devices. GPS is not always
suitable for that purpose. Distributed algorithms that use range estimates between
nodes can provide another solution to the positioning problem. The goal of this thesis
was to study positioning algorithms and implement such a system for a Bluetooth
ad-hoc network.

The BTnodes, a Bluetooth enabled small-scale prototyping platform were used as
network nodes. As a part of the project, service routines for Bluetooth ad-hoc networks
were developed. This included a Bootloader that allows selective network flooding
for reprogramming remote devices. xHop, a multihop protocol, was implemented to
make remote configuration and debugging possible. Experiments have been carried
out to analyse xHop performance in a Bluetooth network. The results showed a large
improvement over earlier implementations.

Finally, the distributed positioning algorithm Hop-TERRAIN has been implemented
for the BTnodes. It showed that a good scheduling of Bluetooth connection establish-
ment plays a crucial role for the Refinement phase of Hop-TERRAIN. A way to achieve
such a scheduling is proposed.

Contents

1 Introduction 1

2 Triangulation 3
2.1 Angles . 4
2.2 Distances . 4
2.3 Proposals of Positioning Algorithms . 6

2.3.1 Grid Based . 6
2.3.2 Convex Position Estimation . 6
2.3.3 Local Coordinate Systems . 7
2.3.4 Other Related Work . 7

2.4 Hop-TERRAIN . 8
2.4.1 Start-Up Algorithm . 8
2.4.2 Refinement Algorithm . 9

3 Platform: BTnode 13
3.1 Overview . 13
3.2 ATmega128 . 14

3.2.1 IO interfaces . 14
3.2.2 Memory Sections . 14

4 Bluetooth 18
4.1 Overview . 18
4.2 Specific Bluetooth Terminology . 19
4.3 Protocol Layers . 20
4.4 Distance Measurement . 23
4.5 Bluetooth Ad-Hoc Network . 23

5 Software Implementation 26
5.1 BTnode System Software Stack . 26
5.2 Application as a Command Line Interface 27
5.3 Application Specific Protocol Layers . 27
5.4 Connection Manager . 28

5.4.1 Inquiry Scheduler . 29
5.4.2 Packet Forwarding and Connection Management 29

vi CONTENTS

5.5 RDSR Routing in Ad-Hoc Networks . 31
5.5.1 xHop Packet Format and Commands 32
5.5.2 Results . 34

5.6 Bootloader Application . 34
5.6.1 Intel Hex File . 36
5.6.2 Selective Network Flooding . 37
5.6.3 Reprogramming the Flash . 39
5.6.4 Results . 40

5.7 Positioning with Hop-TERRAIN . 40
5.7.1 Start-up Phase . 40
5.7.2 Refinement Phase . 41
5.7.3 Results . 43
5.7.4 BTerrain . 44

6 Conclusion 50

A Source Files 52

B Glossary 53
References . 54

List of Figures

2.1 Node types . 3
2.2 Triangulation with angles . 4
2.3 Triangulation with distances . 4
2.4 Grid based Positioning . 7
2.5 Bounding boxes . 8
2.6 Building up local coordinate systems . 9
2.7 Start-up phase, broadcasting anchor positions 10
2.8 Start-up phase, triangulation . 11
2.9 Refinement phase . 12
2.10 Sound nodes . 12

3.1 BTnode hardware . 13
3.2 UART ports . 14
3.3 Memory sections . 15
3.4 Section placement . 17

4.1 Hardware partitioning . 21
4.2 Upper protocol layers . 22
4.3 Connection types . 24
4.4 Network consisting of dumbbell connections 25

5.1 BTnode System Software . 27
5.2 Custom layers on top of L2CAP . 28
5.3 Connection manager . 30
5.4 Pending packets structure . 31
5.5 xHop example . 32
5.6 xHop packet format . 32
5.7 Experiment setup . 34
5.8 xHop per-hop-delay . 35
5.9 Bootloader data in SRAM . 37
5.10 First Bootloader hop . 38
5.11 Bootloader init command . 38
5.12 Bootloader data command . 38
5.13 CMD_ANCHOR . 41
5.14 CMD_HT_ANCHOR . 41

viii LIST OF FIGURES

5.15 CMD_REF_REQ . 41
5.16 CMD_REF_MEASURE . 42
5.17 Answer for CMD_ANSWER_RSSI . 42
5.18 Answer for CMD_ANSWER_POSI . 43
5.19 Refinement experiment setup . 44
5.20 Slot allocation arrays . 45
5.21 Range - connectivity relationship . 46
5.22 Allocation failures for 1.5, 2.0 and 2.5 seconds 46

Preface

I would like to thank Prof. Dr. L. Thiele that I was able to write this thesis in his
research group at TIK/ITET, ETH Zurich.

I would also like to thank my supervisor Jan Beutel who introduced me to the
MICS-NCCR project. He let me find may own way through the thesis and he could
always help out when I could not see a solution to a problem. I would like to thank him
that I was able to go with him to EPF Lausanne once for a BTnode demonstration.
In February, an MICS-NCCR meeting was hold in Zurich were I could attend. Apart
from several interesting talks, I got an insight into the organisation structure of such a
national research project.

At the institute of Prof. Dr. F. Mattern at the Computer Science Department, I
would like to thank Oliver Kasten for his introduction to the BTnode system software
and for many useful software engineering tips. I would also like to thank Matthias
Ringwald; we had several interesting discussions about the BTnodes that let me see
the problems from a different perspective and were good inspiration for new ideas.

I would also like to thank Philipp Scherler who assisted me during a memory de-
bugging session and when there were some hardware fixes to do. Thanks also to the
Service group at TIK for the good organisation of the thesis and their administrative
support.

Finally, I would like to thank my parents for their love and support during my time
as a student at ETH Zurich.

Urs Frey Zurich, 14th March 2003

Chapter 1

Introduction

A large demand for wireless communication anywhere and anytime arose in the last
few years, as small, battery-powered devices got available. One mean to support such
communication will be through mobile ad-hoc networks. These networks are systems of
autonomous mobile nodes, connected by wireless links that are free to move randomly
and to organize themselves arbitrarily.

It will often be important for the devices to know about their position and the
topology of their surrounding neighbours. Many applications can make use of such
information. In sensor networks, this information can be used to tag the measured
data with the corresponding position. For routers in such ad-hoc fashioned networks,
topology and position information can be used to forward incoming packets. On mobile
phones and other handheld devices, this information could be provided to the user or
applications running on them. This is just to mention a few.

One possibility to obtain position information is to use the satellite based GPS [1] or
mobile phone GSM network. However, GSM may not provide accurate enough position
estimates and GPS cannot easily be used inside buildings. Another reason that may
prevent the use of GPS is the additional cost occurring for receivers.

In wireless ad-hoc networks, there is another possibility to achieve position aware-
ness. The communication links between two devices provide some geometrical infor-
mation that can be used to triangulate a position estimate.

The goal of this thesis was to implement such a distributed positioning algorithm
for a Bluetooth ad-hoc network. The BTnodes, a small-scale Bluetooth prototyping
platform, equipped with an AVR microcontroller, were used as mobile network nodes.

The main part of the work included implementing service functions to maintain large
BTnode networks. A connection manager was written to support the chosen Bluetooth
centred topology of the network. To allow configuring remote nodes that are out of
range from the main development node, xHop has been implemented. xHop allows
multihopping along a predefined route and it provides a mean to execute commands on
remote nodes. With xHop, it got possible to configure remote nodes without attaching
them to a computer and it made reading out status information feasible too.

Developing code and testing it within a BTnode network was rather cumbersome

2 CHAPTER 1. INTRODUCTION

at the beginning as prior to executing the code on several nodes, every single node had
to be collected and attached to the programming interface to download the new code.
Therefore, a Bootloader was implemented that allows to remotely reprogramming a
BTnode network with one single command at the developing station.

With support of the these service functions, Hop-TERRAIN, a distributed position-
ing algorithm, was then implemented for the BTnodes. Some experimentation revealed
that a good scheduling is required for fast position updates in a Bluetooth network.

Chapter 2 introduces the concept of positioning in wireless networks. It describes
a few positioning possibilities, before Hop-TERRAIN is explained in detail. Chapter 3
then presents the BTnode platform with focus on the memory sections supplied by the
AVR and the node. The wireless technology Bluetooth employed for the ad-hoc network
is introduced in Chapter 4. Finally, Chapter 5 explains the implemented service and
positioning functions before Chapter 6 concludes the report.

Chapter 2

Triangulation

Triangulation is a term coined by land survey and geodesy. If we can measure the
angles of a triangle, then we can use simple trigonometric laws and calculate the length
of the vertices and the coordinates of the edges. The term is so widely used for any
positioning method, that it will be used throughout this report to describe any kind of
positioning, even if it is not based on angles in a triangle.

Any location discovery approach is based on two phases: a measurement or data
acquisition phase followed by a phase that combines the measured data [2].

@

Anchor Node
(known position: GPS, fixed, ...)

Free Node
(unknown position)

Free Node
(position estimate)

Figure 2.1: Node types

The following positioning figures differentiate between three types of nodes, see
Figure 2.1. Anchor (or beacon) nodes have a known location, which they obtain by
different means then through the ad-hoc network, e.g. by using GPS or a fixed posi-
tion. Free nodes start a priori without a known location and can only obtain a position
through one of the triangulation method discussed below. The free nodes, shaded or-
ange, already calculated their positions and can therefore be used in following iterations
to derive triangulation solutions. Typically, these nodes store a value that states how
accurate their position estimate is. The green ones symbol free nodes without any
position estimate and are therefore called unknown nodes.

Section 2.1 and 2.2 describe triangulation methods for the two categories of geo-
metric constraints; angles and distances. Following, several positioning algorithms are
presented, before the one chosen for implementation on BTnodes is described in Section
2.4.

4 CHAPTER 2. TRIANGULATION

2.1 Angles

a

g

b

@

Figure 2.2: Triangulation with angles

Angles are used by Angle of Arrival (AoA) based systems and can for example be
measured with antenna arrays. However, such systems are usually considerably more
expensive then the ones described below. When using angles, the second phase typically
employs simple laws of trigonometry to calculate position estimates.

2.2 Distances

@

r1

r2
r3

Figure 2.3: Triangulation with distances

Distance estimations can be retrieved in several ways. Measuring the Received

2.2. DISTANCES 5

Signal Strength Indicator (RSSI) provides a rough estimation of the distance between
a sender and a receiver node. Based on a known transmit power and propagation loss
a distance can be calculated. This method is mainly used for RF signals. Time based
methods like Time of Arrival (ToA) and Time Difference of Arrival (TDoA) use the
known propagation speed of the signal to calculate a distance. These methods can be
applied to many different signals, such as RF, acoustic, infrared and ultrasound ones,
but they require fast and precise signal processing.

Once the data acqusition phase is over, distances can be combined to a position
estimate with one of the following approaches. Hyperbolic triangulation is the intuitive
method of intersecting circles (2D) or spheres (3D) to obtain a position. In two dimen-
sions, the minimum of distance measurements required is three, in three dimensions it
is four. If there are more measurements available then the minimum required, a Max-
imum Likelihood estimation is typically applied. The position is calculated such that
the differences between the measured distances and the distances from the estimated
position to the known nodes are minimised. As shown in [3] this can be done by using
a traditional least squares algorithm.

The equation system to be solved for n reference points in 3D looks like:

(x1 − ux)2 + (y1 − uy)

2 + (z1 − uz)
2

(x2 − ux)2 + (y2 − uy)
2 + (z2 − uz)

2

...
(xn − ux)2 + (yn − uy)

2 + (zn − uz)
2

 =

r2
1

r2
2
...

r2
n

 (2.1)

With (xi, yi, zi) representing the three dimensional coordinates of the ith refer-
ence point and (ux, uy, uz) those of the unknown node, for which the triangulation
is performed. ri are the distances between the unknown node and the corresponding
reference points and ei the error which is minimized. The system can be linearised by
subtracting the last row. The following relations results after some arithmetic shuffling:

Ax = b + e (2.2)

with

A = −2

(x1 − xn) (y1 − yn) (z1 − zn)
(x2 − xn) (y2 − yn) (z2 − zn)

...
(xn−1 − xn) (yn−1 − yn) (zn−1 − zn)

 (2.3)

u =

 ux

uy

uz

 (2.4)

6 CHAPTER 2. TRIANGULATION

b =

r2
1 − r2

n − x2
1 + x2

n − y2
1 + y2

n − z2
1 + z2

n

r2
2 − r2

n − x2
2 + x2

n − y2
2 + y2

n − z2
2 + z2

n
...

r2
n−1 − r2

n − x2
n−1 + x2

n − y2
n−1 + y2

n − z2
n−1 + z2

n

 (2.5)

and the solution:

x̂ =
(
AT A

)−1
AT b (2.6)

This is a system with three unknowns and therefore at least three rows are required
for a unique solution. We have n − 1 rows for n measurements; consequently, at least
four measurements are required. Often it will be of use to assign a weight to each
measurement. For uncorrelated measurements, this will result in a diagonal matrix
C with the measurements’ weights in the corresponding rows. As the last row was
subtracted for linearisation, its weight is implicitly set to 1. The solution of the weighted
system is:

x̂ =
(
AT CA

)−1
AT Cb (2.7)

which typically involves a QR decomposition using Gram-Schmidt or the Cholesky
algorithm [4].

2.3 Proposals of Positioning Algorithms

This section will present some of the extisting positioning concepts. The algorithm that
was finally chosen to be implemented on the BTnodes is called Hop-TERRAIN and is
explained in more detail in Section 2.4.

2.3.1 Grid Based

The GPS-less system [5] is an RF-based positioning method that requires a number of
nodes to be placed at known positions that form a regular mesh and transmit periodic
beacon signals containing their respective positions. This algorithm does not need any
accurate distance measurements; it only uses the information if a node is in range or out
of range of a certain beacon node, see Figure 2.4. It has the advantage of simplicity,
scalability and low power consumption. However, it is coarse grained and needs a
considerable amount of infrastructure.

2.3.2 Convex Position Estimation

The authors of [6] propose a method based exclusively on connectivity-induced con-
straints. Know peer-to-peer communication in the network is modelled as a set of
geometric constraints on the node positions.

2.3. PROPOSALS OF POSITIONING ALGORITHMS 7

Figure 2.4: Grid based Positioning

The geometric constraints can be of an angular (node in/out of sight for e.g. optical
transmission) or radial nature (in/out of range for RF, ultrasound or similar systems).
The problem is solved with a Linear Program (LP), evaluating every single geometric
constraint. Additionally, a method for placing a rectangular bound around the possible
positions is presented. Using LP to solve the problem has the advantage of getting an
exact solution, or an exact bounding box, see Figure 2.5.

2.3.3 Local Coordinate Systems

The algorithm presented in [7, 8] uses distance measurements to estimate positions, see
Figure 2.6. As long as there are no anchor nodes in view, unknown nodes build up their
own local coordinate systems. The first unknown node just assumes to be on position
(0, 0, 0), a second will be placed on the positive x axis at position (r, 0, 0). When a
first anchor node comes in view of the locally built coordinate system, a translation of
the local system will be required. For a second anchor a rotation and eventually a flip
for the third (in 3D a second rotation will follow before an eventual flip) is required.

2.3.4 Other Related Work

The RADAR system [9] is an RF based system for indoor localisation, where a few base
stations will measure signal strength and a centralised server localises the nodes based
on signal strength maps. The Cricket location support system [10] uses ultrasound
instead of RF signals. Fixed beacons inside buildings distribute geographic information.
Another ultrasound system is BAT [11], which uses fixed receivers to pick up signals
from mobile nodes. AHLoS [2] is system using ultrasound and RF and does not rely
on an infrastructure setting.

A positioning approach for ad-hoc networks is taken in the PicoRadio project at

8 CHAPTER 2. TRIANGULATION

x

y

Figure 2.5: Bounding boxes

UC Berkley [12]. It provides a geolocation scheme for an indoor environment, based
on RF received signal strength measurements and pre-calculated signal strength maps.
Another algorithm within the PicoRadio project is Hop-TERRAIN, which is explained
in the following section.

2.4 Hop-TERRAIN

Hop-TERRAIN [13] is a distributed ad-hoc algorithm proposed at the Berkeley Wireless
Research Center. The decision to implement Hop-TERRAIN on the BTnodes (see
Chapter 3) was based on the algorithm’s simplicity, the absence of any infrastructure
and its distributed nature. This section explains the algorithm, implementation details
and results can be found in Section 5.7.

Hop-TERRAIN is a two-stage algorithm. The first phase is called Start-up phase
and addresses the problem of sparse anchor nodes. The second, called Refinement
phase, will then improve the inaccurate initial position estimates.

2.4.1 Start-Up Algorithm

The purpose of the Start-up phase it to solve the sparse anchor problem, which comes
from the need for at least four reference points with known locations in a three-
dimensional space in order to uniquely determine the location of an unknown object.
Too few reference points result in ambiguities that lead to underdetermined systems of
equations. Usually, most nodes will start without known locations and only a few ran-
domly distributed anchors will exist. It is therefore highly unlikely that any randomly

2.4. HOP-TERRAIN 9

@

@

@

x l

y l

X G

Y G

Figure 2.6: Building up local coordinate systems

selected node in the network will be in direct range with a sufficient number of anchor
nodes to derive its own position. Hop-TERRAIN solves this problem by trading off
accuracy for consistency. The Start-up phase will provide rough guesses of the nodes’
initial positions. It is shown in [13] that this is enough as an input to the second phase
for refining the position estimates.

The algorithm works as follows: At large time intervals, each of the anchor nodes
launches the Hop-TERRAIN algorithm by initiating a broadcast containing its known
location and a hop count of 0. All of the one-hop neighbours surrounding the anchor will
record the anchor’s position and a hop count of 1. Then they perform another broadcast
containing the anchor’s position and a hop count of 1. This process continues until each
anchor’s position and an associated hop count value have been spread to every node
in the network, see Figure 2.7. It is important that nodes receiving these broadcast
packets only store and rebroadcast a certain anchor’s position if they have not received
such a packet with the same or smaller hop count before.

Once a node has received data regarding at least four (3D) anchor nodes, it is able
to perform a triangulation to estimate its location, see Figure 2.8. This will of course
only be a very rough estimation of the actual positions.

2.4.2 Refinement Algorithm

With the initial position estimates of Hop-TERRAIN in the Start-up phase, the objec-
tive of the Refinement phase is to obtain more accurate positions, using the estimated
ranges between nodes, see Figure 2.9.

Refinement is an iterative algorithm in which the nodes update their positions in

10 CHAPTER 2. TRIANGULATION

1 2

2

3

3

3
4

4
4

A

B

CD

Figure 2.7: Start-up phase, broadcasting anchor positions

a number of steps. At the beginning of each step, a node broadcasts its position
estimate, receives the positions and corresponding range estimates from its neighbours
and computes a least squares triangulation solution to determine its new position.
Often the constraints imposed by the measured distances will force the new positions
towards the true location of the node. Refinement stops and reports the final result
once updates become small.

Without any prevention, the large errors induced by RSSI measurements will prop-
agate fast throughout the network. Therefore, a confidence metric was included in the
Refinement algorithm. Instead of solving the unweighted least squares (equation 2.6)
the weighted version is solved (equation 2.7). Each node assigns a confidence weight
between 0 and 1 to its position estimate. Anchors immediately start with a confidence
value of 1. Unknown nodes start with a low value (0.1) and may raise their confidence
after subsequent Refinement iterations. Whenever a node performs a successful trian-
gulation, it sets its confidence level to the average of its neighbours levels. In general,
this will raise the confidence level. It is shown in [13] that including confidence levels
improved the Refinement phase considerably.

A second improvement to the Refinement phase was necessary in order to detect
ill-connected groups of nodes.

Detecting that a single node is ill-connected is easy: if the number of neighbours is
less then four in 3D (three in 2D) then the node is ill-connected. However, detecting
that a group of nodes is ill-connected is more complicated, since some global perspective
is necessary. A heuristic is employed that operates in an ad-hoc fashion, yet is able
to detect most ill-connected nodes. The underlying premise for the heuristic is that a
sound node has independent references to at least four in 3D (three in 2D) anchors.
That is, the multi-hop routes to the anchors have no link in common. For example,

2.4. HOP-TERRAIN 11

@

@

@

@

@@
@

@

@

A

B

CD

4

2 1

3

Figure 2.8: Start-up phase, triangulation

node 1 in Figure 2.10 meets these criteria and is considered sound (2D). However, node
2 does not.

In the Start-up phase, the Hop-TERRAIN algorithm floods the anchors positions
through the network and nodes record the hop count of the shortest path to each anchor.
Hop-TERRAIN also records the neighbour IDs on the shortest path. These IDs are
collected in a set of potentially sound neighbours. When the size of this set reaches four
in 3D (three in 2D) a node declares itself sound and may enter the Refinement phase.
The neighbours of the sound node add its ID to their sets and may in turn become
sound, etc.

12 CHAPTER 2. TRIANGULATION

@

@

@

@

@
@

@

@

A

B

CD

@

r3

r2

r1

r4

Figure 2.9: Refinement phase

@
1

2

A

B

C2'

Figure 2.10: Sound nodes

Chapter 3

Platform: BTnode

3.1 Overview

The BTnodes [14] are a mobile Bluetooth platform developed within the NCCR-MICS
[15] project with the intention to prove several aspects of mobile ad-hoc computing in
practice.

Figure 3.1: BTnode hardware

The platform is equipped with an Ericsson ROK Bluetooth module [16], an AT-
mega128 [17] as a host controller, an external SRAM memory and a few components for
power management, see Figure 3.1. The choice of Bluetooth as a radio interface makes
the BTnodes available for a wide range of applications, as it is an industrial standard.
On the local side, the ATmega offers several general-purpose interfaces to connect the
node to sensors, displays and other hardware. Otherwise, the node is intentionally kept
simple.

There are two main advantages of using such a platform to prove mobile ad-hoc
concepts. Firstly, compared with a laptop computer equipped with a radio interface,
such a platform is really mobile. Battery powered, it can operate standalone for several
days. As a proof of concept, it can be attached to everyday items, like clothes, door
locks, teacups [18], egg boxes [19] and so one. Secondly, it can be deployed in large
quantities, due to a substantial lower cost compared with laptop or handheld devices.

14 CHAPTER 3. PLATFORM: BTNODE

3.2 ATmega128

The ATmega128 is a low-power CMOS 8-bit microcontroller based on the AVR en-
hanced RISC architecture. By executing instructions in a single clock cycle, the AT-
mega128 achieves throughputs approaching 1 MIPS per MHz.

The ATmega128 features several different memories introduced in Section 3.2.2, a
instruction set of 133 instructions, 32 8-bit general purpose registers, a 2-cycle multi-
plier, several timers and counters, a real time counter (RTC) with separate oscillator,
two 8-bit PWM channels, six sleep modes and it supports JTAG. Among the peripheral
interface are some standard IO interfaces explained in Section 3.2.1. The chip operates
at 2.7V to 5.5V and at a speed up to 8MHz.

3.2.1 IO interfaces

The ATmega has several IO interfaces apart from other general-purpose IO pins. The
chip has a JTAG interface, a byte oriented two-wire serial interface, two programmable
serial UARTs, a master/slave SPI interface and several ADC inputs.

For the BTnode the two serial UARTs are of great importance. One is used to
communicate with the Ericsson Bluetooth module and serves as a programming inter-
face during Flash reprogramming. The other UART is not used by the node itself and
can be used for applications. The positioning application uses this port as a debug
and control interface, see Figure 3.2. Status and debug information are written to the
serial port and can e.g. be displayed with minicom under Linux. In the other direction,
commands can be sent to the nodes through this port. The application is therefore
implemented as a command line interface.

minicom
Initializing data structures

Locally supported PSM: 101, 103, 105, 107

Local BT address: 00:80:37:17:4d:02

[00:80:37:17:4d:02] > UART 1 UART 0

Figure 3.2: UART ports

3.2.2 Memory Sections

The AVR architecture has two main memory spaces, the data memory and the program
memory. In addition, the ATmega128 features a 4kB EEPROM memory for non-
volatile data storage. On the BTnode, the memory structure is slightly extended with
an external 256kB SRAM. Figure 3.3 shows the basic structure, Figure 3.4 shows the
section placement and Table 3.1 lists the main features of the different memory sections.

The Flash memory is exclusively used to store program data, like instructions and
constants. The Flash can be self reprogrammed, which is used for the Bootloader, see

3.2. ATMEGA128 15

ATmega128SRAM

SRAM 4kB

EEPROM
4kB

Flash
128kB

Latch

60kB60kB 60kB 60kB

A[7:0] PA[7:0]

D[7:0]

A[15:8] PC[7:0]

PG2G

DQ

PG1RD
PG2WR

PE7
PD7

A16 A17

Figure 3.3: Memory sections

Section 5.6. The EEPROM can be used to store features associated with a certain
BTnode. The EEPROM is a non-volatile memory; therefore, the data will still be
available after power has been switched off and on again. The advantage of having an
EEPROM on board is the possibility to store a feature, which may differ from node
to node individually and load an identical program to all nodes. The appropriate code
sections are then executed depending on the features stored in the EEPROM. For the
positioning application this is used to store whether a node is an anchor or not and if
it is a fixed anchor its position will be stored in the EEPROM as well.

The SRAM deserves some special attention. The ATmega128 comes with an internal
SRAM of 4kB, whereof the first 256 addresses are assigned special functions and mapped
to registers. In addition, the architecture features an external memory interface, which
drives the ports A, C and G when enabled. The processor will automatically access the
external SRAM when instructions access data with addresses greater or equal 0x1100.
Addresses are 16 bit wide; therefore, the maximal supported external RAM is 64kB,
whereof the first 4kB will never be accessed as those addresses are mapped to the
internal RAM. However, most BTnodes are equipped with a 256kB external SRAM.
To give access to the additional 180kB, not addressable via the standard interface,
two general purpose I/Os have been used. It can be used with an extended memcopy
routine xcopy, partly written in assembler, which controls the two additional I/O lines.
Addresses are 32 bit wide and span over a range from zero to about 180kB.

To make efficient use of the memory on bank 0, the linker can be told where to
place which section [20]. There are four different sections, which are important for
memory placement. The first one is the stack, that stores function calls, local variables
and return addresses. It is important to keep this section within the internal memory,
as it is used frequently and a fast access is important. The .data section is where
initialised variables are placed. .bss contains uninitialised global or static variables.
These variables will however be set to zero on start up if they are not explicitly declared
as .noinit. The last section is the heap, which is only important when using malloc()
and free(). As using those functions is tricky on microcontrollers they are not used
in this project.

16 CHAPTER 3. PLATFORM: BTNODE

Memory Size Reset Power

Down

Access

Time

Write Time Write Cy-

cles

Registers 32b overwritten volatile 1 cycle 1 cycle unlimited

SRAM

intern

(Stack)

4kB initialised volatile 2 cycles 2 cycles unlimited

SRAM ex-

tern (Data

section)

60kB initialised volatile 3 cycles 3 cycles unlimited

SRAM

extern

(additional

banks)

180kB retain

data

volatile xcopy (˜20) xcopy (˜20) unlimited

Flash 128kB retain

data

non-

volatile

instruction

1 cycle,

data 3

cycles

SPM (per

page ˜4ms)

100

cycles

EEPROM 4kB retain

data

non-

volatile

CPU halted

for 4 cycles

CPU halted

for 2 cycles

(write time

8.5ms)

100000

cycles

Table 3.1: Memory sections

It is important to know what code is executed after a reset, but prior to the jump
to the main() routine. Without modifications, the stack is initialised first, then data is
copied from the flash to the .data section and the .bss is zeroed out, before execution
of main() starts. When using an external RAM, the access interface must be enabled
before data is initialised, which means it should be done in .init0. For a 256kB RAM
as on the BTnodes, care must also be taken to set the additional control lines early
enough.

3.2. ATMEGA128 17

internal RAM external RAM

ba
nk

 0
ba

nk
 1

ba
nk

 2
ba

nk
 3

mapped to internal RAM

mapped to internal RAM

mapped to internal RAM

registers

0x
00

00
0x

00
FF

xc
op
y

0x
00

00
0

xc
op
y

0x
2C

CF
F

0x
01

00

0x
10

FFstack

0x
FF

FF

0x
11

00 .data
variables

.bss
variables

Figure 3.4: Section placement

Chapter 4

Bluetooth

4.1 Overview

New technologies and application are now emerging that use wireless communication.
The IEEE 802.11 standard as the accepted choice for the networking community sup-
ports handovers and high data rates. However, this technology is expensive and there-
fore not compatible with price-conscious consumer products. Therefore, Bluetooth [21]
was designed to provide a mean to create wireless, low power, cost-effective and ad-hoc
connectivity between all kinds of devices.

Bluetooth provides a standard radio interface for short distance communication. It
can be used for numerous applications, like PC peripherals, headsets, handhelds, door
locks, just to name a few. Bluetooth operates in the 2.4GHz band, known as the Indus-
trial Scientific and Medical (ISM) band. It is free for unlicensed use in most parts of the
world, however this freedom has a price, many other technologies use this band as well:
802.11b, Home RF, some DECT variants and others [22]. Additionally, Bluetooth is
subject to interference from a variety of other sources: microwave ovens, sodium lights,
thunderstorms, overhead cables, communication in other bands (GSM, CDMA) and
poorly suppressed engines. To achieve a degree of robustness to interference Bluetooth
utilises a frequency-hopping scheme: Frequency Hopping Spread Spectrum (FHSS).
During a connection, devices hop 1600 times a second, which ensures that packets sub-
ject to interference can be retransmitted on a different frequency. Though providing
robustness, this hopping results in longer times to build up a connection, as devices
have to meet each other on the same frequency and synchronise prior to establishing a
connection.

The process of discovering other devices is called inquiry. The inquiring device will
then hop with double speed and therefore meet the surrounding devices after a while.
When establishing a connection the devices will synchronise to the pseudo random
hopping scheme of the master device, which is based on the master’s Bluetooth address.

4.2. SPECIFIC BLUETOOTH TERMINOLOGY 19

4.2 Specific Bluetooth Terminology

• Inquiry and Inquiry Scanning
To discover other nearby devices, a Bluetooth device conducts an inquiry. It is
possible to issue single inquiry commands or to tell the module to conduct a pe-
riodic inquiry.
The listening mode for inquiry is called inquiry scan. Only devices in inquiry scan
will respond to inquiries. It is possible to hide from other devices by not enabling
inquiry scan. Inquires or inquiry scans can be carried out as an unconnected
device, a master or a slave. However, a slave’s responsibility to regularly listen
for master transmissions means it will not be able to devote as much of its time
to the procedure.
In the current BTnodes Bluetooth stack operation mode and with the ROK mod-
ules, slaves do not perform inquiry scan and are therefore not reported to inquiring
devices. A device that is performing an inquiry will not simultaneously perform
an inquiry scan and is therefore not discoverable either.

• Paging and Page Scanning
To create a connection between Bluetooth devices one device pages another de-
vice, which must be in page scan to respond. A successful page (connection
creation) results in an ACL connection between the paging device, which, by de-
fault, becomes the master and the paged device, the slave. A connection handle
is returned to the upper stack layers.
As devices need to synchronise, creating a connection requires some time. If the
remote device’s clock offset is known, it can be used by the paging device and
connection time can be as little as 4 ms. However, when not in a link, device
offsets drift. The longer the elapsed time since the last connection between two
devices, the less accurate the offset information. It will take longer to connect next
time. If one device has been powered off and on between connections, the offset
information is useless, no better than a random guess. The theoretical worst-case
duration for a page is just over five seconds. Interference or the presence of SCO
links may extend this time. The default timeout time is 5.12 seconds.

• ACL - Asynchronous Connection Less
This is a low-level Bluetooth data connection.

• SCO - Synchronous Connection Oriented
This is a low-level Bluetooth duplex voice connection. To set up a SCO connec-
tion, an ACL connection must be established first.

• Hold Mode
A device in hold mode is temporarily inactive until a hold timer expires. A
master might use hold mode to allow slaves to save power if it knows it will not
communicate with them for a while, e.g. when it is connecting to a new slave.

• Park Mode

20 CHAPTER 4. BLUETOOTH

A device in park mode has given up the active member address that identifies
it as a part of a piconet, see Section 4.5. It is inactive expect for occasional
beacon slots when it wakes up to listen for unpark messages that can be used to
reactivate it. Parked devices are allocated special access window slots in which
they can request the master to reactivate them by unparking.

• Sniff Mode
A low-power mode where a device only wakes up to listen for data in periodic
sniff slots.

4.3 Protocol Layers

BTnodes use a hosted software stack implementation, which means that the lower stack
resides on the ROK Bluetooth module and the upper stack layers are implemented in
software that runs on a PC or on the AVR microcontroller. Implementing the upper
layers in software offers the widest flexibility. The lower layers that format the over-air
transmissions, handle error detection and re-transmission and manage the links between
devices, reside in the ROK module. There is no access to those parts of the Bluetooth
layers.

Figure 4.1 shows the chosen model. Section 5.1 explains the system software imple-
menting the upper layers in more detail.

The Host Controller Interface (HCI) sits between the upper layers and the lower
layers of the stack. The two most common physical transports are UART and USB,
whereas the BTnodes use the UART mode.

Figure 4.2, which is based on [22], shows the upper Bluetooth protocol layers in
more detail.

The layers shaded in light blue are described in the Bluetooth Specifications and
the Bluetooth Profiles [21]. The boxes in dark blue symbolise layers that are common
to most applications, however are not specified in the Specifications. The application
part is shown in orange.

Following a short description of the most commonly used Bluetooth protocols and
layers:

• L2CAP
Logical Link Control and Adaptation Protocol multiplexes upper layer data onto
the single Asynchronous Connectionless (ACL) connection between two devices
and, in the case of a master device, directs data to the appropriate slave. It also
segments and reassembles the data into chunks that fit into the maximum HCI
payload. Locally, each L2CAP logical channel has a unique Channel Identifier
(CID), although this does not necessarily match the CID used by the remote
device. CIDs 0x0000 to 0x003F are reserved with 0x0000 being unused, 0x0001
carrying signalling information and 0x0002 identifying received broadcast data.
The stack layers that sit above L2CAP can be identified by a Protocol Service
Multiplexer (PSM) value. Remote devices request a connection to a particular

4.3. PROTOCOL LAYERS 21

BT
 H

os
t -

AT
me

ga
12

8/L
inu

x
BT

 H
ard

wa
re

- R
OK

Baseband Controller

Link Manager

HCI

UART Driver

HCI Driver

L2CAP

Physical UART Bus

RF Link

Software

Hardware

Firmware

HCI Interface

Figure 4.1: Hardware partitioning

PSM, and L2CAP allocates a CID. There may be several open channels carrying
the same PSM. Each Bluetooth defined layer above L2CAP has its own PSM:

◦ SDP - 0x0001

◦ RFCOMM - 0x0003

◦ TCS-BIN - 0x0005

◦ TCS-BIN-CORDLESS - 0x0007

• RFCOMM
RFCOMM emulates full 9-pin RS232 serial communication over an L2CAP chan-
nel. It is based on the TS 07.10 standard for a software emulation of the RS232
hardware interface. Version 1.1 of the Bluetooth Specification has added to the
capabilities of the standard TS 07.10 specification by providing flow control ca-
pabilities.

• OBEX
The Object Exchange standard (OBEX) was developed by the Infrared Data
Association (IrDA) to facilitate operations common to IR-enabled devices.

22 CHAPTER 4. BLUETOOTH

Application

TCP/IP

PPP
OBEX

RFCOMM

L2CAP

Au
dio

De
vic

e M
an

ag
er

Connection
Manager

Security
Manager

TCS SDP

Bluetooth Specification,
Profiles

Application Specific

Common Layers

Figure 4.2: Upper protocol layers

OBEX allows users to put and get data objects, create and delete folders and
objects, and specify the working directory at the remote end of the link.

• PPP
The Point-to-Point Protocol (PPP) is the existing method used when transferring
TCP/IP data over modem connections. The Bluetooth Specification reuses this
protocol in the LAN Access Profile to route network data over an RFCOMM
port.
Work is already underway on a TCP/IP layer that will sit directly above L2CAP,
bypassing and removing the overhead of PPP and RFCOMM.

• TCS
Telephony Control Protocol Specification (TCS), is based on the International
Telecommunication Union-Telecommunication Standardization Sector (ITU-T)
Q.931 standard for telephony call control. It includes a range of signalling com-
mands from group management to incoming call notification, as well as audio
connection establishment and termination. It is used in both the Cordless Tele-
phony and Intercom profiles.

• SDP
The Service Discovery Protocol differs from all other layers above L2CAP in that
it is Bluetooth-centred. It is not designed to interface to an existing higher layer
protocol, but instead addresses a specific requirement of Bluetooth operation:
finding out what services are available on a connected device. The SDP layer
acts like a service database. The local application is responsible for registering
available services on the database and keeping records up to date. Remote devices
may then query the database to find out what services are available and how to
connect to them.

• Management Entities

4.4. DISTANCE MEASUREMENT 23

Device, Security and Connection Managers are not protocol layers so much as
function blocks. The Device Manager handles the lower level operation of the
Bluetooth device. The Connection Manager is responsible for coordinating the
requirements of different applications using Bluetooth channels and sometimes
automating common procedures. The Security Manager checks that users of the
Bluetooth services have sufficient security privileges.

4.4 Distance Measurement

HCI Specification [21] offers a command to read the Received Signal Strength Indicator
(RSSI) from a Bluetooth module; HCI_Read_RSSI. The command will read the differ-
ence between the measured RSSI and the limits of the Golden Receive Power Range
for a connection handle to another Bluetooth device. Any positive RSSI value returned
by the Host Controller indicates how many dB the RSSI is above the upper limit, any
negative value indicates how many dB the RSSI is below the lower limit. Zero indicates
the RSSI is inside the Golden Receive Power Range.

How accurate the dB values will be depends on the Bluetooth hardware, the only
requirement is that the hardware is able to tell whether the RSSI is above, in or below
the Golden Receive Power Range. It shows that with the used Ericsson ROK modules
only very rough distance estimates can be made solely based on the RSSI value [23].

There exists another HCI command to get the link quality of a Bluetooth connection;
HCI_Get_Link_Quality. However, the Ericsson module does not support it. The ROK
modules come with an Ericsson specific command to read error rates for a certain link;
ERICSSON_BER. Currently, no effort has been made to use this command for distance
estimates.

4.5 Bluetooth Ad-Hoc Network

Networks are structures consisting of devices that are in some way connected to each
other. Ad-hoc networks have the special feature that they can build up and change
the topology of the network autonomously. In a Bluetooth ad-hoc network the links
between the individual devices are RF connections. A Bluetooth link can be regarded
as a radio wire. Even though wireless, connections have to be established, resembling
the process of plugging in cables. As in a cable network, interconnecting the devices
takes a considerable amount of time compared with the data rate that can be used once
a connection is established. This is because Bluetooth uses FHSS, hopping around 79
bands of each 1 MHz. Devices have to synchronise to the same hopping scheme before
being able to transmit data.

When two Bluetooth devices are connected, one of the devices acts as a master
and the other devices acts as a slave. There is no direct master-master or slave-slave
communication. On the other hand, a device can perform the role of a master and a
slave simultaneously.

24 CHAPTER 4. BLUETOOTH

Figure 4.3 shows the three different possibilities when building up a Bluetooth
network.

S

M

S

SS

M

S

S
S

M

M

M

S S

S

S

Point to Point
connection

Piconet
Scatternet

Figure 4.3: Connection types

The simplest situation is a single connection between a master and a slave. When
a master is connected to several slaves, we speak of a piconet. One piconet consists
of one master and up to seven slaves. When connecting several piconets together we
get a scatternet. This can be achieved by devices that are shared in two piconets. A
device can be a slave in several piconets but be a master in only one piconet. A device
can be shared either when taking part in two piconets as a slave, or when being master
in one piconet and slave in the other. These Bluetooth constraints impose challenges
for Bluetooth ad-hoc networking. In [24] a Bluetooth scatternet formation algorithm
is presented. It is a distributed, ad-hoc algorithm that involves electing leader devices
and performs merge and migrate procedures. A merge will merge two piconets together
to one. A migrate moves slaves from one piconet to another one.

Building up a scatternet for the proposed positioning algorithm was not imple-
mented because of the following reason. It is important for positioning that the nodes
are as highly interconnected as possible. The more connections we can build up, the
more geometric constraints we can use to calculate a position. In a scatternet topology,
this high connectivity cannot be provided. Hardware limitations prohibit devices to
take part in an unlimited amount of piconets. Therefore, many devices that would be
in range of each other will not be able to establish a connection.

Another reason that prevented the scatternet approach is that it is currently not
clear to what degree the used Ericsson ROK modules support scatternets. Several
manufacturers now support the limited form of scatternet required for a master/slave
role switch while master of an existing piconet, but maintaining the scatternet for any
length of time is still problematic. The Bluetooth Specification gives no way for a slave
to demand hold, sniff or park modes (see Section 4.2) from a master; they must always
be requested. The master is entitled to refuse such requests, so it is impossible to
guarantee that a slave in one piconet will be granted the time required to participate in

4.5. BLUETOOTH AD-HOC NETWORK 25

another piconet as a master or a slave. Even if devices choose to simply switch between
piconets as they see fit, ignoring the normal request procedures, there are still problems
with how to time these switches in order to maintain multiple connections [22].

The solution that was therefore chosen to build up an ad-hoc Bluetooth network
was that of many single dumbbell like connections, see Figure 4.4.

S

S
M

M

M

M S

M

S

S

Figure 4.4: Network consisting of dumbbell connections

In an idle state, there are no open connections in the network. Connections will
only be opened if there is data that has to be sent from one to another node. After
successfully connecting, the data will be sent. If there is no pending data for an open
connection it is closed immediately again. Obviously, this approach does not allow fast
multihop data transmission as paging is a lengthy process (see Section 4.2). On the
other hand, it allows us to open all connections that are possible among devices, which
are in range of each other. This is an absolute necessity for positioning algorithms
as errors induced by RSSI measurements can be averaged out this way. Section 5.7.4
present a proposal how a dumbbell like ad-hoc network could be scheduled.

Chapter 5

Software Implementation

The software for the BTnodes is written in standard C. It consists of two parts, the
BTnode system software described in the next section and the application code de-
scribed in Sections 5.3 - 5.7. The system software comes as a library of functions that
provide access to the BTnode resources. The software can be compiled with the avr-
libc [20] to run on the ATmega128 or with a standard C library to emulate a BTnode
on any PC like system. The two main hardware interfaces used on the BTnodes are
the two serial ports (see Figure 3.2), which can be easily emulated on a PC. One of
the ports interfaces to the Bluetooth hardware, therefore a Bluetooth module must be
connected via a serial port to the computer for emulation. The other port is mainly
used for printing status information or as a command line interface. When emulating
on a PC, this port is simply mapped to the standard IO. The possibility to compile the
software for a PC is a great advantage, as it remarkably speeds up the development
time. The software can be immediately executed after compilation without need for
reprogramming the Flash. Debugging is far easier under Linux than on an embedded
system as well.

5.1 BTnode System Software Stack

The BTnode system software is an event-driven, lightweight operation system made
up of three different parts [25, 26]. Figure 5.1 shows a simplified block diagram of the
system.

The boxes shown in light green are low-level hardware drivers that interface directly
to the BTnode hardware. These drivers currently consist of a real time clock (RTC)
that is driven by a separate oscillator, allowing for long timeouts consuming the lowest
possible power. Another driver interfaces to the two serial ports, one of those is used
for the HCI interface and the other can be used by the application. There is support of
the standard printf function. I2C is supported by yet another driver, e.g. to attach
a sensor board to the BTnodes. Other low-level drivers include a LED driver, a power
mode driver and an AD converter driver.

The second part of the system software is the dispatcher shown in yellow. It im-

5.2. APPLICATION AS A COMMAND LINE INTERFACE 27

BTnode

Di
sp

atc
he

r

Application

RTC UART

HCI Driver

L2CAP

GP I/OIC2 ADC

Figure 5.1: BTnode System Software

plements cooperative multitasking. Only one task (event handler) can be active at any
time. Events are processed in the order they appear. Therefore, every event handler
depends on the previous event handler to terminate in time. Low-level drivers or other
software components can generate an event to notify other system components to take
some action. The dispatcher mainly consists of a FIFO queue that stores the events
that occurred and calls the corresponding event handlers to process them.

The third and largest system software part is shown in light blue. It implements a
custom-made, reduced Bluetooth protocol stack [25]. At the moment, there is support
for most HCI commands and the L2CAP layer is implemented. RFCOMM and SDP
are currently under development.

5.2 Application as a Command Line Interface

As explained above, the application has been implemented as a command line interface.
Commands can be sent to the BTnodes over the second serial port of the AVR micro-
controller, see Figure 3.2. Several commands have been added to the Bluetooth testing
commands that come with the BTnode system software. Some of those commands are
only used for testing and debugging. Other commands need to read from files and can
therefore only be issued on a PC emulation of the software, marked with (*) in Table
5.1, that gives an overview of all commands.

5.3 Application Specific Protocol Layers

All the applications implemented during this thesis build on top of the L2CAP layer, as
shown in Figure 5.2. The part in light blue is provided by the BTnode system library.
The green parts are part of the application, which is shown in orange, but may be
included in the system software in a future version.

The connection manager handles all communications with the Bluetooth specific
L2CAP layer and is described in following section. Currently, only very basic forms of

28 CHAPTER 5. SOFTWARE IMPLEMENTATION

L2CAP

Connection Manager

xHopRoute
Home

Bootloader
Positioning

Remote
Configure

and Debug

Single
HopRo

uti
ng

Application

System Software Library

To include in the
System Software Library

Flooding

Figure 5.2: Custom layers on top of L2CAP

routing have been implemented. xHop is part of a dynamic source routing protocol and
supports multihopping along a predefined route. It is described in Section 5.5. Another
routing scheme is to forward packets home to a main development node. This method
will not scale to large ad-hoc networks; however, it is useful for small networks with one
single PC node that is used for code development. The protocol is used to signal the
development node that a BTnode has been successfully reprogrammed and rebooted
after network flooding with new code, see Section 5.6. At the moment, there is also
the possibility to send data over one hop without an xHop header. With support for
larger L2CAP packets, this could be dropped as then adding an xHop header for one
hop, which is 15 bytes long, will not be of significance.

Flooding, that is used for the Bootloader, makes use of both single hop and route
home packets. Positioning uses single hop packets for the Start-up and Refinement
phase of the algorithm. However, anchor configuration and position estimate queries
can be made both by single hop or xHop packets. The same is true for other remote
queries and configuration commands.

5.4 Connection Manager

To facilitate data transmission between devices a connection manager has been imple-
mented that sits immediately above the L2CAP layer and is responsible for all data
transmission in the network. The chosen ad-hoc network topology throughout this
thesis is the one of a dumbbell like structure as described in Section 4.5. In such a
network, sending data is closely coupled with opening and closing connections.

The connection manager consists of two parts. The first part is the inquiry scheduler
that periodically performs inquires and maintains a list of known devices that can
be queried by the upper layers. The other part is the actual connection manager
that accepts data packets from upper layers and is responsible for opening and closing
connections and delivering the packets.

5.4. CONNECTION MANAGER 29

5.4.1 Inquiry Scheduler

The inquiry scheduler is implemented in the files“known dev.c/h”. It performs inquiries
in a periodic interval and manages a list with the found devices. The list contains the
known device’s Bluetooth address, their clock offset, a time stamp of the last time the
node was reported and a status byte.

The routine also checks the remote’s CoD (Class of Device), which is used to decide
whether the remote device is a BTnode or not. A special CoD was chosen to represent
the BTnodes and which is set when booting the nodes. However, this approach does
not conform to the Bluetooth Specifications as the unused CoDs are reserved for future
applications/profiles and may not be used for custom purposes [21]. It was still decided
to do so as SDP is currently not implemented and as the CoD can be read during an
inquiry without the need to open a connection to the remote device. Another simple
possibility to identify BTnodes would be to set a specific local name which could then
be read from a remote device. However, this requires opening a connection.

The function btaddr_get_index returns an index into the list of known devices for
a given Bluetooth address. Devices that are once found during an inquiry are removed
from the list if they did not respond to inquiries for DEVICE_LOST_TIMEOUT ms.

5.4.2 Packet Forwarding and Connection Management

The basic scheme for sending data in the dumbbell like network structure works the
following way. The application registers a data packet that has to be sent to a given
Bluetooth address with a function call to register_packet. The application tags
the packet with a timeout constant and a maximal number of retries in case of a
forwarding failure. The data is copied to buffers inside the connection manager and the
function returns immediately. The connection manager repeatedly calls the function
forward_pending_packets that checks for open connections and for pending packets.
If there is an open connection to a remote device and there is data to send to that
device, then it will send it. Otherwise, it chooses a packet among the pending ones and
tries to open a connection to the destination device. Currently, the process of choosing
a pending packet to send next is random. However, adding a priority to pending packets
and choose packets according to their priority would be an easy and useful extension.

The connection manager is also responsible to close a connection if there are no
pending packets for the device on the other end of the connection. As the command for
closing a connection immediately disconnects without regarding ongoing data transmis-
sions, care had to be taken when disconnects can be issued. The device that receives
data will process it immediately and if it has an answer to the sending device, it will
send it on the still open connection. Once there are no answers for data that was re-
ceived a device will disconnect from the remote device. This ensures that a connection
is closed after all data was sent. Bluetooth is a wireless technology and there are many
possibilities for failures that may occur. The device to which data was sent may fail
to disconnect. As it is not the sender’s responsibility to close connections it may be
left open. A slave in an open connection is no longer able to respond to connection
requests from other masters and is therefore blocked for further data transmissions.

30 CHAPTER 5. SOFTWARE IMPLEMENTATION

Care had to be taken that even on disconnection failures, open, unused connections
will still be closed as soon as possible. Figure 5.3 shows a simplified block diagram
for the connection manager. Pending data packets are stored within the connection
manager as depicted in Figure 5.4.

register data packet

check pending packets

pending
packet for an open

connection?

y

check pending packets

open connection?

L2
CA

P

Ap
pli

ca
tio

n

Co
nn

ec
tio

n M
an

ag
er

/ R
ou

tin
g

send data

send data
send
data

connection
event

delay

chose packet,
open connection

check pending
packets

n

y

connection
request

destination?
process

commands
109 - Single Hop

107 - xHop

111 - Route Home

answer
data

forward packet

y

y

n

n

received
data

close
connection

disconnect

pending packets

n
PSM

connection
cleanup

immediate
forwarding

Figure 5.3: Connection manager

Several different packet types are possible for pending packets. The rssi and mul-
tipoint types are used for positioning and explained in Section 5.7.

The two figures 5.3 and 5.4 are explained with an example of a remote position
query over two hops. On a PC emulation of the software, named node A, the command
for a position query on node C, is issued with the xHop route ABC that requires two
hops. The generated packet is registered by the application layer within the connec-
tion manger of node A. As currently no connection is open, the packet cannot be sent
immediately. Rather, it is delayed until the connection manager chooses it among the
other pending packets. It will then initiate a request to open a connection to node B.
Once the Bluetooth module sends the event that a connection could be established, the
connection manager loops through all the pending packet and will find the one that
caused the connection request. This packet will then be sent to the remote device. On
node B, the incoming packet arrives at the routing layer carrying the PSM for xHop
packets. As it is a 2-hop packet, it has not yet arrived at the destination node. The
packet is modified for the second hop and registered as a pending packet. Simultane-

5.5. RDSR ROUTING IN AD-HOC NETWORKS 31

00:80:37:17:4d:30 2normal103at 502.13

data_idxtypepsmtimeoutretriesBT address length data ...

00: 0:
00:80:37:17:4d:02 1rssi103at 881.511:

02:
03:

00:80:37:17:4d:1a 3multipoint103at 820.714:
00:80:37:17:4d:30 3multipoint103at 820.725:

......

46 data ...1:
31 data ...2:

252 data ...3:

......

Figure 5.4: Pending packets structure

ously, the connection to the PC emulation node A is closed. As the packet should not
be delayed for too long, immediate packet forwarding is requested from the connection
manager which causes a connection request to the destination node C of the packet.
Once, the connection is established, the packet is sent over the last hop. On the routing
layer of the destination node C, the packet is forwarded to the application layer, which
will start to process the commands. As the command sequence requests to send the
answer back to the node that issued it, the connection is not yet closed. Rather, an
answer packet is registered for node B. As the connection to node B is still open, this
packet can be sent immediately. Arriving on node B, this node will do the same job for
the packet just in the opposite direction as it did when the packet arrived first. This
involves a connection request to node A and the closure of the connection to node C.
Finally, the packet carrying the answer arrives at node A that will process the answer
data. As there is no answer to the received packet, the connection to node B is closed.

5.5 RDSR Routing in Ad-Hoc Networks

During the semester thesis [27], several existing routing concepts for ad-hoc networks
have been compared and analysed for their suitability for Bluetooth networks. Dynamic
Source Routing (DSR) was chosen as a basis of a routing concept and a reduced version
RDSR was proposed. The implementation of RDSR on Linux consisted of the packet
forwarding part of RDSR, which is a scheme how packets can be sent along a known
route over several hops. A packet format that corresponds to the source route option
of RDSR was presented and named xHop. xHop provides a mean for multihopping and
a script like command language for remote command execution. During the semester
thesis [28], xHop was implemented to run on the BTnodes, however without the support
of the BTnode system software (see Section 5.1).

RDSR is an on-demand routing protocol, which means that routes are not updated
continuously. When a node requires sending data, it first needs to initiate a route
discovery process before it can use the retrieved route to send the data with xHop.

To allow remote configuration and remote data queries over several hops in a BTn-
ode network, xHop was implemented for the positioning application. An application
example of xHop is given in Figure 5.5. Node A sends an xHop packet to nodes D

32 CHAPTER 5. SOFTWARE IMPLEMENTATION

G

A

F

E

D

C

B

r3

r5

r2

r1

r4

xhop(ABCD):
CMD_INQ

xhop(AEFG):
CMD_REF_MEASURE
CMD_ANSWER_RSSI
CMD_FW_RETURN

Figure 5.5: xHop example

and one to node G. It requests node A to perform an inquiry. In the other packet, it
requests node G to perform a Refinement iteration and return the triangulated position
on the reverse xHop route back to node A.

5.5.1 xHop Packet Format and Commands

param
len

route
pos

route
len

option
type dataroute

data
len

param
len

cmd
type

cmd
len

xhop
header

data

answer dataparameters cmd
type parameters

cmd
type

header,
cmds

sourde
address

data
len datacmd

type
sourde

address

...

...

xHop packet:

remote commands:

answer data:

1 1 1 route_len * 6 max(64kB - header_len)

2 1 2 param_len

1 1 6 data_len

1 2 param_len

1 1 6 data_len

Figure 5.6: xHop packet format

The xHop packet format in the current implementation mostly conforms to the one
presented in [27], see Figure 5.6. The source route is contained in the xHop header.
The route len field specifies the length of the route, the route pos points to the current
position within the route. When a node receives an xHop packet it increments the
route pos field and if it matches route len, then the packet reached the destination

5.5. RDSR ROUTING IN AD-HOC NETWORKS 33

node and the commands are processed. Otherwise, the node forwards the packet to the
address to which the incremented route pos pointer points.

In the payload of the packet, commands are stored in a script like fashion. After
a field containing the total length of all commands, several commands with their pa-
rameters can follow. The destination node starts with executing the first command.
Once it is processed, it is removed from the packet and processing continues with the
next command. If a command is reached that generates an answer, this answer is ap-
pended to the end of the packet. Some commands require forwarding the packet to
other devices. If such a command is reached, the packet is sent without the commands
that were already processed. No commands following the forwarding command will
be processed until the packet reaches the node specified by the command that caused
the forwarding. This mechanism allows executing commands on the route of an xHop
packet and collecting data from several nodes along the route.

In the current implementation, an xHop packet can be launched with the command
xhop on the BTnode command line (hop sends a command packet without xHop header
over one single hop). The command can only be issued on a PC emulation of the appli-
cation as it involves reading files that contain the xHop route and the xHop commands.
The xHop route is read from the file “xhop.route” in the current directory. An example
file could look like:

00:80:37:17:4d:01

00:80:37:17:4d:05

00:80:37:17:4d:30

00:80:37:17:4d:1a

00:80:37:17:4d:30

00:80:37:17:4d:2a

The Bluetooth address of the node that launches the xHop packet must not be sup-
plied as it is read from the attached device and inserted automatically at the beginning
of the route.

The commands can be specified in the file “cmd.bat”. An example that queries a
remote node for its estimated position and prints the string “pc requests position” on
the remote device looks like:

CMD_PRINT pc requests position

CMD_ANSWER_POSI

CMD_FW_RETURN

Currently the commands listed in Table 5.2 are implemented.

The commands used for positioning and the Bootloader are explained in more detail
in the corresponding sections, as well as their answer format. Some of the commands
used for the Bootloader or for positioning cannot be specified in the “cmd.bat” file.

34 CHAPTER 5. SOFTWARE IMPLEMENTATION

5.5.2 Results

To measure the performance of the xHop implementation some experiments have been
carried out. Figure 5.7 shows the route over which the xHop packets have been sent.
The setup involved one Linux PC (node A) and four BTnodes (nodes BCDE). Node
A launched an xHop packet with the route ABCDEBCDEA that requires 9 hops to
reach the destination, which is in this case again node A. Node A measures the time
difference from the launching until the packet reaches the destination. As the connection
manager performs periodic inquires, during which a node is not able to build up a new
connection, packets can get delayed. The inquiries were scheduled to take places every
195 ± 15 seconds and require a time of 6 seconds. There was always at maximum
one xHop packet in the network. Out of 57 launched xHop packets 55 reached the
destination node. Two got lost due to expired timers or used up retries counters within
the connection manager.

A

E D

CB

xhop(ABCDEBCDEA)

Figure 5.7: Experiment setup

The remaining 55 packets have a per-hop-delay distribution between 1 and 6 seconds
as shown in Figure 5.8. The average time spent for one hop was 2.1 seconds. Even
though this is still quite a long time for one hop, if compared to the speed data can be
sent once a connection is open, it is remarkably faster then on previous implementations
[27, 5]. This is probably mainly due to the newer Bluetooth hardware used and due to
improvements in the Bluetooth system software.

5.6 Bootloader Application

To simplify maintenance and application development of BTnode ad-hoc networks a
Bootloader was developed. The name Bootloader is actually misleading, as the routine
is rather some kind of network program distribution method and it is not called during
booting the node. The name comes from the fact that the Flash section within the
ATmega where code is located that is able to write the Flash itself is called Bootloader
section.

The goal of the Bootloader is to selectively flood a network with newly available
program code, rewrite the node’s program memory and restart the nodes.

The routine consists of three components. The first component runs only under
Linux and reads an Intel HEX file containing the executable program code, the second

5.6. BOOTLOADER APPLICATION 35

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

4

5

6

7

8

per hop delay [s]

of

 p
ac

ke
ts

Figure 5.8: xHop per-hop-delay

component is responsible for the selective network flooding and the third part rewrites
the microcontroller’s Flash memory and reboots the nodes.

There are two different approaches to reprogram remote nodes. The first possibil-
ity implements a tiny Bluetooth stack inside the AVR bootloader section, which will
reprogram the Flash as it receives code over the air. This has the advantage that no
additional RAM is required to store program code temporarily and that code segments
can be selectively replaced, only requiring to send to appropriate code segments. How-
ever, implementing a tiny Bluetooth stack is tricky, especially as the Bluetooth stack
in the system software is still frequently undergoing changes. The other problem would
be that a transmission failure due to one device leaving the transmission range would
result in inconsistent program code. This could however be detected by the bootloader
and the program would not be executed. Rather, the Bootloader, which will never
be rewritten over the air, will request the code again. Until the new code could be
successfully reprogrammed, the application will not be available anymore though.

The other possibility, which was implemented, makes use of the external RAM for
temporary storage of program code before the Flash is reprogrammed. The advantage
is that on unsuccessful transmission, the old application will not be overwritten and
can still be executed. There is also no need for an additional Bluetooth stack solely
for the Bootloader application. The only code that resides in the Bootloader section
of the Flash is a simple RAM to Flash copy routine that is never reprogrammed over
the air. Care must however be taken that modifications at the Bluetooth stack and the
Bootloader code are carefully inspected before the network is flooded, as otherwise the
reprogrammed nodes may not be anymore able to execute the Bootloader function and
can therefore not be reprogrammed again. Nodes would then have to be collected and
reprogrammed with functional code with cable programmers. As with the approach
explained above, it is possible to replace code in the Flash selectively. However, com-
pilation and linking may contain caveats for that purpose, as code not replaced must
be located in the same way for the new and old program.

The Bootloader routine is started with the command program on the BTnode com-

36 CHAPTER 5. SOFTWARE IMPLEMENTATION

mand line.

5.6.1 Intel Hex File

The starting point for the network reprogramming is the complied source code as an
Intel HEX file. This format stores executable instruction code in a readable hexadec-
imal format. Therefore, four 8-bit ASCII characters are required to store one 16-bit
instruction. In a first version of the Bootloader, only bank 0 of the external SRAM was
available (see Section 3.2.2), therefore, memory was a limited resource. One memory
bank is 64kB (including the internal memory) that must be shared for the Bootloader
application and for the system software. The Flash may take up to 128kB of program
code. Reprogramming in two steps was considered difficult, as it would have to be
ensured that the first part is able to perform all Bootloader functions for retrieving
the second part. However, the applications at that time were significantly smaller then
60kB. It was decided to stored program code within the SRAM in a more compressed
form then it is done in an Intel HEX file. The Bootloader therefore performs some
minor shuffling when reading an Intel HEX file.

Intel HEX files are composed of records of different types. Each record is made up
of five fields that are arranged in the following format:

:llaaaatt[dd...]cc

Each group of letters corresponds to a different field, and each letter represents a
single hexadecimal digit. Each field is composed of at least two hexadecimal digits-
which make up a byte-as described below:

• : is the colon that starts every Intel HEX record.

• ll is the record-length field that represents the number of data bytes (dd) in the
record.

• aaaa is the address field that represents the starting address for subsequent data
in the record.

• tt is the field that represents the HEX record type, which may be one of the
following:

◦ 00 - data record

◦ 01 - end-of-file record

◦ 02 - extended segment address record

◦ 04 - extended linear address record

• dd is a data field that represents one byte of data. A record may have multiple
data bytes. The number of data bytes in the record must match the number
specified by the ll field.

5.6. BOOTLOADER APPLICATION 37

• cc is the checksum field that represents the checksum of the record.The checksum
is calculated by summing the values of all hexadecimal digit pairs in the record
modulo 256 and taking the two’s complement.

The gnu-avr utilities make use of the data, end-of-file and extended segment address
records. Extended addresses are required to place code at address greater then 64k.

L2CAP provides reliable data transmission, therefore, when reading from the HEX
file the checksum field is dropped. To get a slightly more compressed format, program
data is stored in the following way on the BTnode’s SRAM:

LLLAAA[DDDD...]

where LLL is the record length in bytes, AAA the starting address and D the program
code (LLL times). Here, letters represent one byte. Addresses and length fields are
24-bits therefore.

5.6.2 Selective Network Flooding

All nodes that should be reprogrammed can be specified in the file “bt addrs.txt” on
the PC emulation of the software. A header is then composed which is added in front
of the program data section in the simulated additional SRAM banks on the PC. The
data is laid out in the following format:

total length active version BT addresses program data crc# of BT
addresses crc

4 121 6 * #bt_addrs 2 total_len - 6*bt_addrs-12 2

Figure 5.9: Bootloader data in SRAM

The total length field specifies the amount of program data together with the header
size. The active field is a flag byte that is set to 1 if the data in the SRAM is still to be
processed and 0 once the data has been processed. This is necessary as after all data
has been received, the Bootloader is called, which will, after successful reprogramming
the Flash, reset the node. On booting the node, it will check if it contains active
Bootloader data to forward to other nodes. Once finished, this flag is set zero, so that
after a later reset the Bootloader will not start an unintended flooding. This is also the
reason for the added CRC fields. After power down and up again, the node can check
if the data in the SRAM is valid Bootloader data or not. Two CRC fields are added
as the program data can be rather long and usually checking the header is enough to
detect corrupted data.

Currently, only nodes specified in the Bootloader header address field take part in
the flooding algorithm. After reprogramming and rebooting a node, it will therefore
only send program data to devices listed in its SRAM. The node will remove itself from
the list once it reprogrammed itself. It would be a simple extension, to add a flag for
every address that states, whether a node should be programmed or not. Nodes could

38 CHAPTER 5. SOFTWARE IMPLEMENTATION

then take part in flooding the network without being reprogrammed. The version field
is read from a file and incremented every time the bootloader is started. It could be
modified to use a hashed format of the current time and date, to remove the need for
a special version file. The version is stored in the devices EEPROM after successful
reprogramming. It could be included during compilation time in the program code
itself, as program version is a feature concerning the actual program.

The actual sending of the program data is done in two steps. First, the initiating
node asks the one to which it wants to forward its program data if it has already loaded
the current version or not. The reason for this two-step procedure is that sending
program code of several 10kB, is a rather lengthy process and should be omitted if not
necessary. Figure 5.10 illustrates the procedure for the first hop from an emulation on
a PC to a BTnode.

check version

accept/deny

send program data

Figure 5.10: First Bootloader hop

The packet that initiates the process contains the header of the Bootloader data,
as it is stored in the SRAM:

CMD_BL_INIT p_len

1 2

total length active version BT addresses# of BT
addresses crc

4 121 6 * #bt_addrs 2

Figure 5.11: Bootloader init command

The remote device then sends an answer packet either accepting the reprogramming
or denying it due to an already ongoing reprogramming or because the current version
is already loaded. If the remote node denied, its address will be removed from the list
of devices to be reprogrammed. Otherwise, it will be removed after sending program
data has successfully finished.

Data is sent in packets like the ones depicted in Figure 5.12.

CMD_BL_DATA p_len

1 2

starting
address program data (crc)

4 p_len-4

Figure 5.12: Bootloader data command

5.6. BOOTLOADER APPLICATION 39

Data is sent in chunks that fit into the maximum allowed L2CAP packets. The
maximum specified in the Bluetooth Specifications is 64kB. However, with the current
implementation, smaller packets are sent. Currently 256 bytes per packet is the maxi-
mum. This is also the reason that sending Bootloader packets with xHop is not feasible.
A program size of 80kB (which the application is) requires more then 300 packets, this
amount will take far too long to send with xHop. Over one hop the packets can be sent
quite fast though. However, sending subsequent packets on the same link required some
modifications to the connection manager. Usually, the receiving device is responsible
to close a connection if it has no answer to send back to the initiator, see Figure 5.3.
As the initiator now wants to send many packets, the receiving device is not allowed
to close the connection. This is achieved by registering a special packet among the
pending packets in the connection manager. It will cause the connection to stay open;
however, this special packet will not be sent to the remote device. The packet type is
called keep_open and will be removed after it expired. Such a packet is registered when
the first Bootloader data packet is received. Once the last data packet is received, the
application will directly close the connection to the sender.

5.6.3 Reprogramming the Flash

The third step in reprogramming a BTnode network is to rewrite the contents of the
Flash on the AVR devices. For this purpose, a routine has been written that copies the
program data from the SRAM to the Flash.

Code that is able to rewrite the Flash must be located in the Bootloader section of
AVR Flash memory [17]. Some flags can be set for different bootloader section sizes.
They must be set to a section size of 4kB. The bootloader section then starts at the
address 0x1F000. It can be executed by jumping to the section with

asm volatile ("jmp 0x1E000"::).

The flags are set in a way, that after a reset, the code in the application section
is executed and not the bootloader section. The bootloader section is only executed
with the above code issued in the application section. When copying finished, program
execution is continued at the start of the application section, which has the same result
as pressing the reset button.

The code in the bootloader section copies data to the Flash in a page like manner,
using the spm instruction. This section is not reprogrammed over the air. It has to
be downloaded once by cable. Some care has to be taken when downloading the boot-
loader code and application code. It can be done the following way:

cd linux

make //to compile the application for Linux

cd ../avr

make //to compile the application for the avr

make boot //to compile the Bootloader program section

uisp -dprog=stk500 -dserial=/dev/ttyS0 -dpart=ATme ga128 --erase --upload if=main.hex

//download program

40 CHAPTER 5. SOFTWARE IMPLEMENTATION

uisp -dprog=stk500 -dserial=/dev/ttyS0 -dpart=ATmega128 --upload if=btnode_boot.srec

//download bootloader section

cd ../linux

main -u0 /dev/ttyS1 57600 fc -u1 stdio //start the system software

program //to initiate the bootloader on BTnode command line

5.6.4 Results

Here a few numbers to give a hint at the Bootloader’s performance. Downloading a
80kB by uisp [29] and the STK500 [17] takes approximately 30 seconds. Sending 80kB
by Bluetooth could be as faster then 1 second. In the current implementation, it takes
approximately 8 seconds.

Reprogramming the Flash takes about 5 seconds. For secure network flooding
several waits were included. After program has been sent to all nodes, it takes some
time for the flooding to settle, as nodes will check some neighbour’s program version,
even though they were already reprogrammed. No large-scale experimentation has been
carried out, however a few numbers in Table 5.3:

The time required for four nodes is only slightly faster then reprogramming by
cable. However, using the bootloader has the advantage that nodes do not need to be
collected. Reprogramming only requires to type the command program and then gives
time to get a cup of coffee. Reprogramming by cable needs plugging in and out cables
every 30 seconds.

5.7 Positioning with Hop-TERRAIN

A three dimensional version of the Hop-TERRAIN algorithm (see Section 2.4) was
implemented for the BTnodes. Coordinates are the three float values (x, y, z). The
algorithm has been implemented according to the specifications given in [13]. Ex-
perimentation was carried out with the Refinement part of the positioning method,
presented in Section 2.4.2.

The procedure of the algorithm differentiates between anchor and free nodes. An-
chor nodes could use a GPS based position or a fixed position. To set an anchor’s fixed
position remotely the command CMD_ANCHOR was implemented. It can be specified in
the “cmd.bat” file in one of the two following ways:

CMD_ANCHOR posX posY posZ //set anchor to posX, posY, posZ

CMD_ANCHOR off //free anchor

It can be sent with either xhop or hop. The command in a packet has the format
shown in 5.13, either for setting an anchor or for freeing it again.

5.7.1 Start-up Phase

During the Start-up phase of the algorithm, the anchor positions are flooded into the
network and and it is determined if a node is sound or not. This is done with the

5.7. POSITIONING WITH HOP-TERRAIN 41

CMD_ANCHOR x y z

4 4 4

p_len=12

1 2

or CMD_ANCHOR p_len=0

1 2

Figure 5.13: CMD_ANCHOR

following command.

CMD_HT_ANCHOR xanchor
device address y z hop count

6 14 4 4

p_len=19

1 2

Figure 5.14: CMD_HT_ANCHOR

It can be sent from the anchors at long time intervals. If a node received a packet
containing this command, and it has not received one from the same anchor with a
smaller hop count, it will broadcast the same packet to all surrounding nodes with
the hop count increased by one. To simplify broadcasting to all known devices, the
connection manager was enhanced by the function register_flooding_packet. The
function will register a pending packet of the type multihop for all devices listed in the
inquiry scheduler (see Section 5.4.1). The data for those pending packets is however
only stored once, see Figure 5.4.

5.7.2 Refinement Phase

The Refinement phase requires that position information is exchanged between neigh-
bouring devices and that the RSSI value is measured for the corresponding connection
handles. The request to a known device for its position is issued with the command
shown in Figure 5.15.

CMD_REF_REQ x y z confidence

44 4 4

p_len=17

1 2

flags

1

Figure 5.15: CMD_REF_REQ

It contains the issuing node’s position, its confidence level, which states how accurate
its position is and some flags. The flags specify if the node is an anchor and if not, then
it states if the node is sound or not. The remote device will answer to this request with
a packet containing the same information for the remote device.

Again, these packets are registered within the connection manager at a certain time
interval to be sent to all surrounding devices. Another flag is set for this packets, which
requests the connection manager to read the RSSI value once the desired connection
has been opened.

42 CHAPTER 5. SOFTWARE IMPLEMENTATION

The time interval at which Refinement is initiated can be specified with the two
following commands on the BTnode command line:

ref_set interval

ref_start

ref_set sets the Refinement interval to the given amount of seconds. Refinement
is then issued at this interval ± REF_PERIODE_VAR seconds, to ensure that not always
all nodes will issue the command in the same order. Setting ref_set to zero will stop
the Refinement after it is launched the next time. It can be restarted with ref_start.
A single Refinement measurement to all surrounding nodes can also be issued remotely
with the following command:

CMD_REF_MEASURE p_len=0

1 2

Figure 5.16: CMD_REF_MEASURE

or just CMD_REF_MEASURE in “cmd.bat”.
Once enough geometric constraints have been collected to surrounding nodes, a tri-

angulation will be performed, resulting in the node’s position estimate. Currently, this
can only be done on a Linux emulation of the software. GSL [30] was used to solve the
least squares problem. To overcome this limitation, a command has been implemented
that reads out a remote nodes RSSI measurements and returns it to a Linux PC where
the calculation can be done. In the “cmd.bat” file the command sequence for this, looks
like:

CMD_ANSWER_RSSI

CMD_FW_RETURN

Both of this commands do not need any arguments. The first will write the measured
RSSI values into the packet’s answer space. The second returns the packet to the sender,
either using single hop or xHop with the reverse route.

The answer for such a request has the format shown in Figure 5.17.

CMD_ANSWER_RSSI distance

6 4 4

data_len

1 1

source
address

of
measurments

6

remote
address

time
stamp

4

distance

46

remote
address

time
stamp

4

...

Figure 5.17: Answer for CMD_ANSWER_RSSI

When the answer is processed by the destination device, it will print the information
like shown below:

< < < < < XHOP PACKET > > > > >

---- xhop route --------

5.7. POSITIONING WITH HOP-TERRAIN 43

| 0b:4d:17:37:80:00 |

| 00:4d:17:37:80:00 |

| -> 30:4d:17:37:80:00 |

xhop packet reached destination, process...

process answer for CMD_ANSWER_RSSI ...

--

received rssi data from BTnode 0b:4d:17:37:80:00

distance to 30:4d:17:37:80:00 0.20m, about 609s ago

distance to 09:4d:17:37:80:00 0.79m, about 0s ago

--

close connection to 00:4d:17:37:80:00, no packet pending to this device

A last command CMD_ANSWER_POSI without any parameters is used to read out a
remote device’s position information. The answer has the following structure:

CMD_ANSWER_POSI

6

data_len

1 1

source
address x y z confidence

44 4 4

flags

1

Figure 5.18: Answer for CMD_ANSWER_POSI

resulting in a print out like

< < < < < XHOP PACKET > > > > >

---- xhop route --------

| 0b:4d:17:37:80:00 |

| 00:4d:17:37:80:00 |

| -> 30:4d:17:37:80:00 |

xhop packet reached destination, process...

process answer for CMD_ANSWER_POSI ...

--

received position data from BTnode 0b:4d:17:37:80:00

position: (X=3.50 / Y=10.02 / Z=1.73), confidence=0.81, sound

--

close connection to 00:4d:17:37:80:00, no packet pending to this device

when processed.

5.7.3 Results

Some experiments have been carried out with the Refinement part of the Hop-TERRAIN
algorithm. The setup was like shown in Figure 5.19.

All nodes wer doing Refinement. Time was started when the centre node entered
the setup. It was stopped when this node acquiered enough information to perform a
triangulation, which means that it had to collect the RSSI information to all nodes in
the setup. With the Refinement interval set to 60 seconds, the first triangulation could

44 CHAPTER 5. SOFTWARE IMPLEMENTATION

@

@

@

@

Figure 5.19: Refinement experiment setup

be performed after 5 minutes 30 seconds. In a second and third try the node failed
to acquire enough RSSI measurements. With the interval set to 100 seconds six tries
were measured, three of them failed to calculate the position. The fasted result was
obtained after 1 minute and 15 seconds, the slowest after more then 4 1

2 minutes. Out
of 5 experiments with the interval set to 120 seconds only one failed. The fastest time
at which triangulation was performed was 1 minute 25 seconds, the slowest slightly less
then 4 minutes.

Closer inspections of the not very promising results reveal that the long times for
Refinement are mainly caused by a scheduling problem. As explained in Section 4.5, the
approach of building up connections before sending data and immediately disconnecting
after the data has been sent is used. However, connecting requires rather long as the
devices have to synchronise (Section 4.2) before data can be sent.

When periodic inquires are done, the Bluetooth module keeps track of the surround-
ing devices clock offset, which greatly helps to speed up connection establishment. How-
ever, during an inquiry the devices are not able to answer to a connection request from
a remote device, which means that the remote device that requested the connection
has to wait until the request returns with the status indicating the connection failed.

5.7.4 BTerrain

As the main cause for the long times presented in Section 5.7.3 for a single Refinement
iterations is a scheduling problem, a way the cope with that was studied. The algorithm
presented here was however not implemented on the BTnodes and was only roughly
simulated to estimate its feasibility for a Bluetooth ad-hoc network.

One way to cope with the scheduling problem is to collect some information from
the surrounding devices and agree on a shared schedule to send data. Such an algorithm
must run in an ad-hoc, distributed fashion. Synchronising the whole BTnode network
to a global time is not feasible and not necessary. A local synchronisation of the nodes
on either side of a connection is not resource consuming and can be done accurately
enough. Synchronisation of connection requests and inquiries does not ask for very high

5.7. POSITIONING WITH HOP-TERRAIN 45

precision, a precision of some 100ms should be enough. Once a connection is open, data
can be sent rather fast without long delays, therefore a synchronisation with accuracy
in the ms region can be achieved by sending the local time of one BTnode to the other.

The proposed algorithm is a simple extension of the Hop-TERRAIN algorithm to
make it feasible for Bluetooth networks with long connection times.

Time is divided into periods of Tp. Every node will be able to perform one Refine-
ment step in one such period. Every period Tp is further divided in ns slots of duration
Tp

ns
and every node will keep an array with ns entries for slots allocation. When an

inquiry on a device reports a new neighbouring device, it will try to open a connection
to that device. Once this connection could be established, the two devices agree on a
certain amount of slots ndata they will use for future low priority communication, like
Refinement data packets. This in done in the following way; the node that opened
the connection will send its slot allocation array to the remote device together with its
time offset into the current period. The remote device will then merge its own array
with the one just received. It will shift the allocation arrays according to the received
time offset. It will then randomly choose the required amount of slots needed for data
communication among those slots that are empty on both devices. The remote device
then sends back which slots have to be reserved for future communication.

The two devices also have to agree upon which one is responsible for opening the
connection. Figure 5.20 shows three nodes with their slot allocation arrays.

T P

T/nPS

t12

t13

1

2

3

t

...

...

...

...

Figure 5.20: Slot allocation arrays

In Figure 5.20, the period Tp of 90 seconds is divided into 45 slots of tdata = 2
seconds. Opening a connection, sending data and disconnecting it takes approximately
2 seconds (see Section 5.5.2); therefore, three slots are allocated for a data packet. This
is because the slots are only synchronised to the precision of one slot. An interval of
slightly more then one slot may use up three slots. On node 1, the slots reserved for
communication with node 2 are shaded in red, the ones for node 3 in green and vise
versa for the other nodes. The slots shaded yellow are the places where an inquiry

46 CHAPTER 5. SOFTWARE IMPLEMENTATION

could take place. A proposal is to schedule the inquiry anew for every period among
the free slots on the local device. It may still collide with inquiries and communication
slots on neighbouring devices though.

Obviously, for highly connected networks, the slots may be filled up quickly and
allocating slots may become impossible. Some simple simulation and statistic analyses
give a hint at the time that is required for one period so that all nodes are able to allocate
communication slots. Simulations have been done with 200 nodes placed within an area
of 100m times 100m. The communication range of the devices was varied from 10m to
16m to provide networks for different connectivity. At border regions, the network will
have a smaller connectivity then at more centred regions. However, the range simply
translates into the network connectivity. Figure 5.21 shows the maximum connectivity
and the average connectivity for the situation described above.

100 110 120 130 140 150 160
10

20

30

range

m
ax

 c
on

ne
ct

iv
ity

max connectivity
average connectivity

100 110 120 130 140 150 160
5

10

15

av
er

ag
e

co
nn

ec
tiv

ity

Figure 5.21: Range - connectivity relationship

The period length is now varied from 120 seconds down to 40 seconds, divided in 240
slots. It was counted how many connections between two nodes could not be allocated
due to filled up slot allocation arrays. Figure 5.22 shows the result for a data packet
length of tdata = 1.5s, 2.0s and 2.5s.

100

110

120

130

140

150

160
40

60

80

100

120

0

20

40

60

80

100

periode in sec
range

al
lo

ca
tio

n
fa

ilu
re

s

100

110

120

130

140

150

160
40

60

80

100

120

0

20

40

60

80

100

periode in sec
range

al
lo

ca
tio

n
fa

ilu
re

s

100

110

120

130

140

150

160
40

60

80

100

120

0

20

40

60

80

100

periode in sec
range

al
lo

ca
tio

n
fa

ilu
re

s

Figure 5.22: Allocation failures for 1.5, 2.0 and 2.5 seconds

A good connectivity for positioning algorithms with large errors on distance mea-
surements is about seven or more [3]. For the simulated situation, this results in a
communication range of about 11 meters. Assuming a rather pessimistic tdata of 2 sec-
onds and not tolerating any allocation failures the middle graph of Figure 5.22 shows

5.7. POSITIONING WITH HOP-TERRAIN 47

that a period of approximately 60 seconds provides enough time for successful slot
allocation. Given the total number of slots ns = 240, a period of tp = 60 seconds
and tdata = 2 seconds, a communication will need ndata = 10 slots, requiring a syn-
chronisation accuracy of 250ms. The average node will therefore use 70 slots for low
priority Refinement packets, or a mere 30%. Peak nodes that are highly connected
approximately use 140 slots or about 60%.

60 seconds for one Refinement iterations is already quite a lot faster then the results
shown in Section 5.7.3, which are even based on experiments with a low connectivity
of 4.

As learned during this diploma thesis, only implementing such an algorithm will
prove that the BTerrain approach is feasible and what performance can be achieved.

48 CHAPTER 5. SOFTWARE IMPLEMENTATION

Command Description Explatiation

inq execute inquiry, print results
print print previously discovered devices
bbcon idx open baseband connection to device

with idx

bbdisc hdl disconnect baseband connection
con idx psm open l2cap channel to device with

idx on psm

disc l_cid disconnect l2cap channel with l_cid

send l_cid len send on l2cap channel a chunk of
legth len

rname idx request remote name of device with
idx

role hdl discover role for connection handle
hdl

switch hdl role switch role for hdl to role {0, 1}
name name change local name to name

txpower hdl read transmit power to handle hdl

rssi hdl read rssi of connection hdl page23
ref_start start Refinement iterations page 41
ref_set set refimenet interval in sec (0 =>

stop)
page 41

memcpy test external SRAM and with xcopy

routine
page 14

eeprom print EEPROM contents
(*) hop compose single hop packet from files

and send
page 32

(*) xhop compose xhop packet from files and
send

page 32

(*) program selective network reprogramming page 34
(*) now log time stamp

Table 5.1: BTnode commands

5.7. POSITIONING WITH HOP-TERRAIN 49

Command Constant in “cmd.bat” Description

CMD_INVALID 0 invalid com-
mand

CMD_PRINT 1 CMD_PRINT text print a string
CMD_ANSWER_PRINT 3 CMD_ANSWER_PRINT

text

put string in an-
swer space

CMD_FW_RETURN 14 CMD_FW_RETURN return to sender
CMD_BL_INIT 20 bootloader init
CMD_BL_DAT 21 bootloader data
CMD_ANCHOR 31 CMD_ANCHOR x y z

CMD_ANCHOR off

remote anchor
configuration

CMD_HT_ANCHOR 32 Hop-TERRAIN
anchor broad-
casting

CMD_REF_REQ 40 Refinement
request

CMD_REF_MEASURE 41 CMD_REF_MEASURE measure RSSI
CMD_ANSWER_RSSI 50 CMD_ANSWER_RSSI RSSI -> answer
CMD_ANSWER_POSI 51 CMD_ANSWER_POSI position -> an-

swer

Table 5.2: xHop/hop packet commands

of nodes approximate time forwarding path
1 30 seconds Linux->BTnode
2 60 seconds Linux->BTnode->BTnode
3 110 seconds Linux->BTnode->BTnode

Linux->BTnode
4 120 seconds Linux->BTnode->BTnode

Linux->BTnode
Linux->BTnode

Table 5.3: Bootloader result

Chapter 6

Conclusion

I would like to present some ideas of what I think should or could be done in the
future concerning the BTnode project and positioning. The currently available system
software showed quite good result to handle the Bluetooth modules. However, quite a
lot of effort must be spent to make the software more stable and to implement additional
Bluetooth layers. Layers like RFCOMM and SDP would be useful for communication
to industrial Bluetooth products, which is one of the main advantages to use Bluetooth
as a wireless interface. There are some bugs within the system software that should be
fixed and a more consistent error handling should be implemented.Sophisticated use of
the Bluetooth hold, park and sniff modes will be required for low power applications
and Scatternet operations.

Concerning the application development throughout this thesis, the connection
manager needs some rewriting. The connection manager is currently slightly inter-
woven with the routing layer. These two layers should be separated completely. There
are many more commands that could be implemented for real remote configuration
and debugging. Some mean of logging events should be provided by either the system
software or the application itself. The application currently uses a simple EEPROM
API, however meanwhile there is a more powerful EEPROM handling API available
for the system software.

If possible, the Bootloader and the connection manager should be made available
to the BTnode freaks community. These functions could maybe be included in the
system software. However, both have some special requirements not shared among all
BTnode users. The Bootloader makes use of the whole 256kB external memory, which
requires patching the board with two wires. The connection manager is only useful for
dumbbell like networking, and does not provide any use for scatternetting.

Real position awareness is still very challenging in Bluetooth networks. The results
and some Bluetooth analyses showed that fast position updates required for mobile
nodes (walking speed or faster) are not possible with Bluetooth due to its limitations.
However, Bluetooth may provide positioning in quasi-static environments, were mobile
nodes can be located at times they do not move. The scheduling approach presented
in Section 5.7.4 may provide a solution to the scheduling problem in a dumbbell like

51

network. This approach could be simulated with NetSim [31] to reveal its limitations.
It would maybe prove useful to implement an accurate Bluetooth node simulation in
the NetSim environment, that takes into account all the special Bluetooth limitation,
like master-slave relationships, connection establishment times, inquires and so on.

For fast position updates required for real mobile nodes, the BTnodes could be en-
hanced with a radio interface for positioning purposes. Such a radio may allow more
precise RSSI measurements and faster connection times. For fast data communication
and interfacing to consumer electronics, Bluetooth will still be useful on the boards.

During my diploma thesis, I could gain a good understanding of the wireless Blue-
tooth technology. I could learn about its many advantages, like the simple API it
provides through the HCI interface, but I soon also saw the difficulties of such a tech-
nology. Wireless communication is an error-prone mean to interconnect devices, which
the Bluetooth module cannot completely hide from the user. Connections may not get
established and they may suddenly, unintentionally disconnect. It is therefore impor-
tant to implement good error handling for wireless communication.

Positioning algorithms for ad-hoc networks are quite a challenge to be implemented
on an 8-bit microcontroller Bluetooth platform like the BTnodes. Even though my
application does not yet allow real position awareness, I was glad that I could calculate
position estimates at all in the end, even though it requires a rather long time. On the
other hand, I was surprised myself how powerful the Bootloader and xHop turned out
for BTnode network maintaining.

Appendix A

Source Files

File Flash Size Description

src/anchor.c(h) 544 Remote anchor configuration
src/avr-boot.h SPM Flash write routines
src/boot defs.h Record type definitions
src/bootloader.c(h) 4465 Application part of the Bootloader
src/bt cmds.c(h) 8528 BTnode command line
src/btnode boot.c 1122 Bootloader Section
src/crc.c(h) 440 CRC
src/ee cntr.c(h) 679 EEPROM API for Linux (AVR)
src/file log.c(h) 2 Event logging
src/hop terrain.c(h) 953 Broadcast anchor positions
src/known devs.c(h) 1621 Inquiry scheduler
src/main.c(h) 2087 Main
src/packet forwarding.c(h) 6576 Routing and Connection Manager
src/positioning.c(h) 592 Coordinate definitions
src/process packets.c(h) 3159 Process xHop commands
src/ram banks.c(h) 836 xcopy routines
src/ram bank asm.S Assembler part of xcopy

src/ram port def.h IO defines for xcopy

src/refinement.c(h) 5320 Hop-TERRAIN Refinement
src/triangulate.c(h) Triangulation (Linux only)
avr/Makefile AVR Makefile
linux/Makefile Linux Makefile
linux/bt addrs.txt Nodes to reprogram (Bootloader)
linux/cmd.bat xHop commands
linux/eeprom.dat Linux EEPROM emulation
linux/hop.route hop destination
linux/prog version.txt Current program version
linux/xhop.route xhop route

Appendix B

Glossary

ACL Asynchronous ConnectionLess
ADC Analog to Digital Converter
AoA Angle of Arrival
BT Bluetooth
CDMA Code Division Multiple Access
CID Channel Identifier
CoD Class of Device
DECT Digital Enhanced Cordless Telecommunications
DSR Dynamic Source Routing
EEPROM Electrically Erasable Programmable Read-Only

Memory
FHSS Frequency Hopping Spread Spectrum
GPS Global Positioning System
GSM Global System for Mobile Communication
HCI Host Controller Interface
I2C Intelligent Interface Controller
ISM Industrial, Scientific and Medical (radio spectrum)
JTAG Joint Test Action Group
L2CAP Logical Link Control and Adaptation Protocol
LAN Local Area Network
LP Linear Program
MANET Mobile Ad Hoc Network
OBEX Analog to Digital Converter
PPP Point-to-Point
PSM Protocol Service Multiplexer
PWM Pulse Width Modulation
RDSR Reduced Dynamic Source Routing
RFCOMM RF-oriented emulation of the serial COM
RF Radio Frequency communication
RSSI Received Signal Strength Indicator

54 APPENDIX B. GLOSSARY

RTC Real Time Clock
SCO Synchronous Connection Oriented
SDP Service Discovery Protocol
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
TCP/IP Transmission Control Protocol / Internet Protocol
TCS Telephony Control Protocol Specification
TDoA Time Difference of Arrival
TERRAIN Triangulation via Extended Range and Redundant

Association of Intermediate Nodes
ToA Time of Arrival
UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus
XHOP Multihopping Protocol

Bibliography

[1] Gps. http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html.

[2] Andreas Savvides, Chih-Chieh Han, and Mani B. Strivastava. Dynamic fine-
grained localization in ad-hoc networks of sensors. Technical report, University
of California, Networked and Embedded Systems Lab, 2001.

[3] Jan Beutel. Geolocation in a picoradio environment. Master’s thesis, ITET ETH
Zurich, Computer Science UC Berkeley, 1999.

[4] G. Strang and K. Borre. Linear algebra, geodesy and GPS. Wellesley-Cambridge
Press, 1997.

[5] Bulusu N., Heidemann J., and Estrin D. Gps-less low-cost outdoor localization for
very small devices. IEEE Personal Communications, 7(5):28–34, Oct. 2000.

[6] L. Doherty, K.S.J. Pister, and L. El-Ghaoui. Convex position estimation in wireless
sensor networks. In Proceedings IEEE INFOCOM 2001, volume 3, pages 1655–
1663, 2001.

[7] S. Capkun, M. Hamdi, and P. Hubaux-J. Gps-free positioning in mobile ad-hoc
networks. In R.H. Sprague, editor, Proceedings of the 34th Annual Hawaii Inter-
national Conference on System Sciences, 2001.

[8] Chris Savarese, Yashesh Shroff, and Greg Lawrence. Triangulation in ad-hoc net-
works: An energy efficient solution. Technical report, CS252, EECS Department,
UC Berkeley, 2001.

[9] P. Bahl and V.N. Padmanabhan. Radar: an in-building rf-based user location and
tracking system. In Proceedings IEEE INFOCOM 2000, volume 2, pages 775–784,
2000.

[10] N.B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-
support system. In MobiCom 2000, pages 32–43, 2000.

[11] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy of a
context-aware application. In MobiCom’99, pages 59–68, 1999.

http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html

56 BIBLIOGRAPHY

[12] I. O’Donnel etal. Picoradio working group. http://bwrc.eecs.berkeley.edu,
1999.

[13] Chris Savarese, Jan Rabaey, and Koen Langendoen. Robust positioning algorithms
for distributed ad-hoc wireless sensor networks.

[14] Jan Beutel. Btnodes. http://www.tik.ee.ethz.ch/~beutel/bt_node.html.

[15] Nccr-mics: Mobile information and communication systems, terminodes. http:
//www.terminodes.org.

[16] Ericsson rok 101 001 bluetooth module. http://www.tik.ee.ethz.ch/~beutel/
projects/datasheets/ericsson/rok10100\%7.pdf.

[17] Atmel avr microcontrollers. http://www.atmel.com.

[18] Mediacup @ teco. http://mediacup.teco.edu/, 1999.

[19] Frank Siegemund. Smart-its on the internet - integrating smart objects into the
everyday communication infrastructure. Technical report, ETH Zurich, September
2002.

[20] Avr libc. http://savannah.nongnu.org/download/avr-libc/doc/
avr-libc-user-manual/.

[21] BlueTooth Special Interest Group. http://www.bluetooth.com.

[22] David Kammer, Gordon McNutt, and Brian Semese. Bluetooth Application De-
veloper’s Guide. Syngress, 2002.

[23] Stefan Tschumi. Sa - positioning an ad-hoc networks. Master’s thesis, TIK, ETH
Zurich, 2002.

[24] Ching Law and Kai-Yeung Siu. A bluetooth scatternet formation algorithm. Tech-
nical report, MIT, 2001.

[25] Oliver Kasten. Btnode system software. http://www.inf.ethz.ch/vs/res/proj/
smart-its/btnode.html\#sw.

[26] J. Beutel, M. Dyer, O. Kasten, M. Ringwald, F. Siegemund, and L. Thiele. Blue-
tooth smart nodes for mobile ad-hoc networks. submitted for publication ACM
MobiSys.

[27] Lars Wernli and Riccardo Semadeni. Sa - blootooth unleashed, wireless netzwerke
ohne grenzen. Master’s thesis, TIK, ETH Zurich, 2001.

[28] Egon Burgener und Peter Fercher. Sa - grenzenlose piconetze mit bluetooth. Mas-
ter’s thesis, TIK, ETH Zurich, 2002.

http://bwrc.eecs.berkeley.edu
http://www.tik.ee.ethz.ch/~beutel/bt_node.html
http://www.terminodes.org
http://www.terminodes.org
http://www.tik.ee.ethz.ch/~beutel/projects/datasheets/ericsson/rok10100% 7.pdf
http://www.tik.ee.ethz.ch/~beutel/projects/datasheets/ericsson/rok10100% 7.pdf
http://www.atmel.com
http://mediacup.teco.edu/
http://savannah.nongnu.org/download/avr-libc/doc/avr-libc-user-manual/
http://savannah.nongnu.org/download/avr-libc/doc/avr-libc-user-manual/
http://www.bluetooth.com
http://www.inf.ethz.ch/vs/res/proj/smart-its/btnode.html#sw
http://www.inf.ethz.ch/vs/res/proj/smart-its/btnode.html#sw

BIBLIOGRAPHY 57

[29] Avr in-system programmer - uisp. http://savannah.nongnu.org/projects/
uisp/.

[30] Gsl - the gnu scientific library. http://sources.redhat.com/gsl/.

[31] Ernesto Wandeler. Sa - netsim. Master’s thesis, TIK, ETH Zurich, 2002.

http://savannah.nongnu.org/projects/uisp/
http://savannah.nongnu.org/projects/uisp/
http://sources.redhat.com/gsl/

	Titel Page
	List of Figures
	Table of Contents
	Introduction
	Triangulation
	Angles
	Distances
	Proposals of Positioning Algorithms
	Grid Based
	Convex Position Estimation
	Local Coordinate Systems
	Other Related Work

	Hop-TERRAIN
	Start-Up Algorithm
	Refinement Algorithm

	Platform: BTnode
	Overview
	ATmega128
	IO interfaces
	Memory Sections

	Bluetooth
	Overview
	Specific Bluetooth Terminology
	Protocol Layers
	Distance Measurement
	Bluetooth Ad-Hoc Network

	Software Implementation
	BTnode System Software Stack
	Application as a Command Line Interface
	Application Specific Protocol Layers
	Connection Manager
	Inquiry Scheduler
	Packet Forwarding and Connection Management

	RDSR Routing in Ad-Hoc Networks
	xHop Packet Format and Commands
	Results

	Bootloader Application
	Intel Hex File
	Selective Network Flooding
	Reprogramming the Flash
	Results

	Positioning with Hop-TERRAIN
	Start-up Phase
	Refinement Phase
	Results
	BTerrain

	Conclusion
	Source Files
	Glossary
	References

