Eidgendssische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ziirich Swiss Federal Institute of Technology Zurich

Computer Engineering and Networks Laboratory Winter term 02/03

Diploma Thesis 2003.11

Reconfigurable OS Prototype

Ruppen Michael

Advisors:

Herbert Walder
Matthias Dyer

Supervisor:
Prof. Dr. Lothar Thiele

Computer Engineering and Networks Laboratory (TIK)

Abstract

When thinking of an Operating System, most people think of a Personal Computer
running Microsoft Windows or any Linux distribution. The task of such Operating
Systems is to provide an execution environment for applications and share the avail-
able resources between these applications. Furthermore, most Personal Computers
have one CPU and this single CPU must be shared, too. Now, today’s Multime-
dia application must perform calculation-intensive tasks, for example filtering or
streaming, and the performance of the whole system suffers from these calculations.
These Audio-Filters, for example, can be implemented in hardware. The hardware
can run the different calculation-steps in parallel, whereas the CPU only provides
sequential calculation. This parallel-mode highly increases performance and, be-
sides, saves precious resources like the CPU, for example.

Since it would be quite expensive to develop a specific hardware (so-called ASIC,
Application Specific Integrated Circuit) for each single task, FPGAs (Field Pro-
grammable Gate Array) have been developed to overcome some drawbacks (time-
to-market, price...). Furthermore, today’s FPGAs are able to accomodate very
large circuits (for example, a 128-bit parallel AES encryption circuitry). Recent
generations of FPGAs provide a very interesting and useful feature, called Partial
Reconfiguration. Partial Reconfiguration makes it possible to re-configure only a
subset of the available chip area while the remaining circuitry keeps on running.
Thus, these FPGAs can be seen as dynamically allocatable resource. Unfortunately,
they do not provide infinite resources and, thus, there is the need of a higher instance
which controls these resources, a Hardware Operating System. This Hardware Op-
erating Systems is different to "normal” Operating System for two main reasons:
First, the Operating System itself is split into a hardware and a software part
and, second, execution runs in parallel. Such a Hardware Operating System has
been implemented and this report shows the features of the Hardware Operating
System.

ii

Abstract

Contents

1 Introduction
1.1 Overview o e
1.2 Motivation: Why implementing a Hardware OS-Frame
1.3 The Hardware OS-Frame
1.3.1 Terms e
1.3.2 The Hard- and Software Parts of the OS-Frame
1.4 The Hard- and Software Tool-Set
1.4.1 The Hardware
1.4.2 The Software Lo

2 The XESS XSV-800 Prototyping Board
2.1 The Features of the XESS Board
2.2 The Allocated Resources
221 The AudioCodec
2.2.2 The RS232 Interface,
2.2.3 The 10-segment Bargraph LED
2.24 The ParallelPort L.
2.2.5 The Expansion Headers

2.3 SUmMmary e e e e e

3 The XILINX® Virtex™ Architecture
3.1 Architecture Overview oL
3.1.1 Input/Output Blocks (IOBs)
3.1.2 Configurable Logic Blocks (CLBs)
3.1.3 Programmable Routing Matrix

iv Contents
3.2 Configuration Flow for the Virtex FPGA 19
3.2.1 Initialization and Timing 20
3.2.2 The SelectMAP Mode 20
3.2.3 The Configuration Flow 22
3.2.3.1 Configuration Addressing 23

3.2.3.2 Writing Configuration Data to the FPGA 25

3.2.3.3 Configuration Registers 25

3.3 Summary 28
4 The OS-Frame on the FPGA 31
4.1 Organization of the FPGA 31
4.2 Communication via the BusMacro 32
4.2.1 The structure of the BusMacro 33
4.2.2 The Location of the BusMacros 33
4.2.3 Common Pitfalls 00 oL 34
4.2.3.1 VCC and GND: The safe method 34

4.2.3.2 Handling of Open Outputs 35

4.3 The Standard Task Interface (STI) 36
4.3.1 Why definingan STI. 36
4.3.2 The current Standard Task Interface (STI) 37

44 The Tasks o o 39
5 The Software of the OS-Frame 41
5.1 The Application o 41
5.1.1 The GUI of the Application 41
5.1.2 The Task-Pool and The Scheduler/Resource-Manager 43
5.1.2.1 The Scheduler 43

5.1.2.2 The Resource-Manager 44

5.2 Implementation Details 000, 45
52.1 Class Task 45
5.2.2 Class TaskQueue, 46
5.2.3 Class TaskManager 48
5.24 Summary i e e e e 50

5.3 Communication between Host-PC and Hardware: The PC-Interface. 51

Contents v

5.3.1 The In- and Outputs of the PC-Interface o1
5.3.2 The Control Commands 53
5.3.2.1 The ’Config’ Command 53
5.3.2.2 The 'ResetReader’ Command 54
5.4 Summary oo e e e e e 55
6 The Modular Design Flow 57
6.1 Modular Design Entry and Synthesis o7
6.2 Modular Design Implementation 58
6.2.1 Initial Budgeting Phase 58
6.2.2 Active Module Implementation 59
6.2.3 Assembling the Modules 61
6.3 Modules for Partial Reconfiguration 62
6.4 Modular Design: A Cookbook, 63
6.4.1 Preparations 63

6.4.2 Example Flow: The Initial Budgeting, Active Module Imple-
mentation and the Assembling Phases 64
7 The Testbed, Conclusions and Related Work 67
7.1 The Testbed 67
7.2 Conclusions e 67

7.3 Related Work e 68

vi

Contents

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6

The two parts of the OS-Frame 5
Photograph of the XESS XSV-800 7
Blockdiagram of the XESS Board 9
Virtex Architecture Overview 16
Virtex Input/Output Block (IOB) 17
The two slices of a Configurable Logic Block (CLB) 18
Horizontal Routing Resource: Tri-State Lines 18
Global Clock Distribution 19
SelectMap Configuration Setup for Virtex™ devices 21
The BUSY signal during configuration (above 50 MHz) 22
Virtex™ Configuration Column Example 23
Addressing scheme for Virtex™ devices: Major Addresses 24
CLB block type frame oo 0L 24
RAM block type frame o 25
Command Header Format 26
Frame Address Fields, 27
Configuration Example (excerpt) 29
The organization on the FPGA 32
Usage of the AREA_GROUP constraint 32
The BusMacro 33
The location constraint oL 34
Instantiation of a BusMacro 35

The 'open-output-workaround”, 36

viii

List of Figures

4.7
4.8
4.9

5.1
5.2
5.3

5.4
9.5
0.6
0.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1

The multiplexer design 37
The in- and outputs of the STT 38
Signal routing on the FPGA, 38
The Main-Window of the Application 42
The ’Add New Task’-Window 43
The Inputs (on the left hand) and Outputs (on the right hand) of

the PC-Interface 51
The Structure of a 'Config’ Command 54
A typical 'Config’ command sequence 54
The Structure of the 'ResetReader’ command Header 55
The Timing-Diagram for the 'ResetReader’ Command 55
The Initial Budgeting Phase 58
Sample User Constraints File (excerpt) 59
The Active Module Implementation Phase 60
The Assembly Phase 61
Options file for the OS-Frame 62
The recommended directory structure 64
The recommended directory structure for the example 65
The User Constraints File for the Example 65
The Testbed 68

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

The available resources on the XESS Board
The Audio Codec Pin connections
The RS232 Pin connections
Pin assignement to connect the RS232 to the FPGA
10-segment Bargraph Pin assignment
CE signal for the SRAM banks

Virtex Configuration Modes
Configuration Column Types
Configuration Register Address
Configuration Commands

Block Type Codes

The Resources on the FPGA,
The fields of class Task
The fields of class TaskQueue
The fields of class TaskManager
The Inputs and Outputs of the PC-Interface.
The inputs of the PC-Interface
The output of the PC-Interface
The supported commands and their corresponding 8-bit Code

Generation of the Control Signals out of the configuration bits

List of Tables

Chapter 1

Introduction

This chapter gives an introduction to my diploma thesis "Reconfigurable OS Pro-
toype”. The first section gives a short overview of the structure of this report. Then,
I would like to talk about the motivation on implementing such a Hardware Oper-
ating System. The third section defines the terms OS-Frame and task and throws a
light on the different part such an operating system consists of. The fourth section
gives an overview of the hard- and software tools that were used during this thesis.
Finally, the last section defines the goal of this diploma thesis.

1.1 Overview

This report is intended to represent the work done during my diploma thesis. The
second chapter deals with the main hardware part, the XESS Board. The third
chapter reveals the inside of the XILINX® Virtex™ FPGA architecture and its
configuration peculiarities. The fourth chapter introduces the hardware side of the
OS-Frame and shows the approaches that have led to the current implementation.
The fifth chapter illuminates the software side on the Host-PC, namely the classes
and data structures that have been implemented to obtain the desired functionality.

1.2 Motivation: Why implementing a Hardware OS-
Frame

Today’s Embedded Systems may consist of a large variety of different processing el-
ements, memories and I/O devices. These processing elements can be implemented
in so-called ASIC’s (Application Specific Integrated Circuits) but there are some
drawbacks. ASIC’s have a long time-to-market span and they are static processing
elements. Static means that they cannot be adapted to new tasks without changing

4 1 Introduction

the whole implementation. These circumstances lead to the introduction of pro-
grammable hardware devices such as FPGAs.

Today’s FPGAs can accomodate very large circuits. Moreover, new series of
FPGA’s make it possible to reconfigure only a specific part of the available chip
area; this is called partial reconfiguration. Partial reconfiguration can be done dur-
ing runtime without affecting the other parts of the chip. For instance, imagine
three circuits A, B and C. A and B are currently running. One can now replace
circuit A by C without affecting the running circuit B.

Because of this partial reconfigurability of recent FPGA’s, they can be viewed
as dynamic allocatable resources. One can imagine, that the correct replacement
of circuits and the control of the chip’s resources should be carried out under a
higher instance, the so-called Hardware OS-Frame. The allocation and sharing of
the available resources of today’s FPGAs make the usage of a controlling instance
unavoidable.

1.3 The Hardware OS-Frame

1.3.1 Terms

The term Hardware OS-Frame, or OS-Frame for short, denotes the composition
of interacting hard- and software components and services running on the FPGA
and the Host-PC, respectively. The fact that the Hardware OS-Frame is split into
a hardware part running on the FPGA and a software part running on a Host-PC
distincts this kind of operating system from pure software operating systems such
as Linux, Windows etc. Another important property of the Hardware OS-Frame
is its real-time characteristic. Since different circuits on a FPGA run in parallel,
the operating system should run in real-time, too, in order to provide the desired
functionality. The second term that is important in this context is called hardware
task or just task for short. A task is a part of an application’s functionality, for
instance a FIR filter or a decoding algorithm (further examples will be introduced
in section 4.4). The two terms OS-Frame and task are used throughout the whole
report.

1.3.2 The Hard- and Software Parts of the OS-Frame

In order to provide different services to the task developers, the OS-Frame is split
into two parts: The hardware on the FPGA and the software on the Host-PC. Fig.
1.1 depicts this splitting. There are several services the OS-Frame should provide,
for instance buffers for intertask communication (see [10]), I/O Pin allocation etc.

Fig. 1.1 does not intent to show too much details, since the different parts of
the OS-Frame will be introduced in the following chapters.

1.4 The Hard- and Software Tool-Set 5

software part

TaskManager

Task-Pool

'

Resource
Manager Scheduler

FPGA
hardware part

Figure 1.1: The two parts of the OS-Frame

1.4 The Hard- and Software Tool-Set

1.4.1 The Hardware

There are three main hardware parts that have been used during this thesis, namely
the XESS XSV-800 Developement Board, a PCI7200 I/O Card and a x86 Host-PC.
Since the XESS Board is somewhat a complex Developement Board, a seperate
chapter (see 2) is dedicated to it. The PCI7200 I/O Card provides 32 programmable
inputs and 32 programmable outputs, as well. It is shipped with the corresponding
C++ classes and libraries to provide a defined programming interface. This I/O
card was used to configure the FPGA on the XESS Board and to send runtime-
configuration-data to the OS-Frame on the chip. The Host-PC was a generic Intel
Pentium III processor with a clock frequency of 1 GHz. It was equipped with 512
MB of RAM and 20 GB of harddisk memory. Well, these are the most important
hardware components that were used during the diploma thesis.

6 1 Introduction

1.4.2 The Software

As one can imagine, different software toolsuites were used to produce the bit-
streams for the FPGA on one hand and to develop the Host-PC software on the
other hand. The bitstreams were generated by the XILINX® ISE 5.0 Foundation
Software. This package supports the whole VHDL design flow, that means it builds
the correct bitstream out of the VHDL code. Besides, this software was extended
with the recently released Modular Design Feature, also published by XILINX® .
This packages allows a team of designers to independently develop different parts
of the design and merge (or assemble) them into one design, or one bitstream. It
also allows to produce partial bitstreams and that was the main reason why we had
chosen this specific software package.

To obtain a running application on the Host-PC that is able to control to OS-
Frame on the FPGA, we’ve chosen Microsoft Visual C++ 6.0 Professional as soft-
ware developement tool. This toolsuite is able to produce executables out of C++
code. We've chosen C++ as main programming language, since the PCI7200 I/0O
Card is delivered with a C++ API (classes and libraries) which allows the user to
make use of its I/O ports in a very convenient way.

Chapter 2

The XESS XSV-800
Prototyping Board

This chapter is intended to give a short summary of the features the XESS XSV-800
Prototyping Board provides, as well as the restrictions that come along when using
this board. Fig. 2.1 shows a photograph of the XESS Board. Since there are quite a
lot of features, only the important ones are covered in this chapter. To obtain more
information about the various interfaces, the interested reader is refered to [1].

S oC
Jack FParailel

Port 16 Mbit

Flash garial

512K x 16 SRAM 4 g R | s, Fort \ideo
3 e ; Jacks

ATX Fower Supply
Connectar

Prototyping Header
Fushbulromns

Stereo Codec

Video
Decoder

Stereo fnpuf &
Durput Jacks

100 MHz Prog.
Qscillatar

TOTO0 Ethadmer Fart

Figure 2.1: Photograph of the XESS XSV-800

8 2 The XESS XSV-800 Prototyping Board

2.1 The Features of the XESS Board

As one can see in Fig. 2.1, the XESS Board provides a lot of interesting features to
developers. Table 2.1 shows the available resources:

‘ Chip ‘ Description ‘

XILINX® Virtex
XCV800 FPGA

The programmable device with 888 Kgates in a 240-pin
HQPF package

XILINX® X(C95108
CPLD

CPLD to manage the configuration flow of the FPGA

Dallas DS1075 oscil-
lator

Programmable oscillator to generate the clock signal
for the FPGA & CPLD

Intel 28F016S5 Flash
RAM

Flash RAM, accessible by FPGA & CPLD

Winbond AS7C4096
SRAM

Two independant SRAM banks with 512K x 16 bits of
memory

Philips SAAT1I13
Video Decoder

Digitizes NTSC, SECAM and PAL video signals

BT481A RAMDAC

Generates video signals for VGA monitors with 24-bit
color depth

AK4520A
Codec

Audio

Digitizes two analog inputs for the FGPA and/or con-
verts serial bit streams from the FPGA into two analog
output signals

LXT970A Ethernet
PHY

Manages the physical Ethernet (LAN) Layer

Expansion Headers

Two Expansion Headers with 25 pins to connect exter-
nal systems to the FPGA and vice versa

10-segment bargraph
LED

LEDs that can be used by the FPGA & the CPLD

7-segment LED dig-
its

Two T7-segment LED digits that can be used by the
FPGA & the CPLD

Philips
PDIUSBP11A
USB Interface

high-speed and low-speed USB interface connected to
the FPGA

Parallel Port

Parallel Port interface connected to the CPLD that is
used for the configuration of the FPGA & the CPLD

Serial Port (RS232)

Serial Port interface connected to the CPLD

Table 2.1: The available resources on the XESS Board

There are only a few features that are relevant in the context of this thesis.
These are the Audio Codec, the RS232 interface, the 10-segment bargraph LED
and the Expansion Headers. These resources are statically allocated by the OS-
Frame. As mentionned above, there are some restrictions coming along when using

2.2 The Allocated Resources 9

these resources. The following section explains the allocated features in detail and
hints at the resulting restrictions.

2.2 The Allocated Resources

Fig. 2.2 shows the different components and their interconnections on the XESS
Board. Obviously, there are some components that are connected to the same
FGPA-pin’s and these circumstances lead to some problems, for instance, the SRAM
banks are connected to the same pins as the Expansion Headers are. If one would
like to use the Expansion Headers, the SRAM banks must be disabled, since the
outputs of the SRAM chips are in a floating state per default.

Paraliel Serial Video
Port Port in

Ethernet Video
Lt R4S Out

Figure 2.2: Blockdiagram of the XESS Board

2.2.1 The Audio Codec

Table 2.2 shows the interface of the AK4520A Audio Codec chip.

The are two operations the Audio Codec supports: First, it takes two analog
input channels from the jack J1 (Stereo IN), digitizes these values and sends them
via the SDOUT pin to the FPGA as a serial bit stream and, second, it accepts
a serial bit stream from the FPGA and converts this bit stream into two analog
signal that are sent to jack J2 (Stereo OUT). The FPGA sends the serial clock to
the SCLK pin and the Codec synchronizes the bit streams with this serial clock.

10 2 The XESS XSV-800 Prototyping Board

| Audio Codec Pin | Virtex FPGA Pin |

MCLK 3
LRCK 4
SCLK 5
SDIN 6
SDOUT 7

Table 2.2: The Audio Codec Pin connections

The LRCK is used to select either the left or the right channel as source/destination
of the serial data. The MCLK synchronizes all operations done within the Audio
Codec.

The FPGA’s pins 3, 4, 5, 6 and 7 are only used to connect to the Audio Codec
and vice versa, so there don’t exist any conflicts with the remaining circuitry of
the XESS Board. This means, one can use the Audio Codec without any resulting
restrictions.

2.2.2 The RS232 Interface

As one can see in Fig. 2.2 there are no direct connections between the RS232 port
and the Virtex FPGA. The RS232 port is only connected to the CPLD and this
means, that the CPLD must be configured accordingly to re-direct data streams
from the RS232 RD port to the FPGA on one hand, and from the FPGA to the
RS232 TD pin on the other hand. Table 2.3 depicts the connections between the
RS232 port and the CPLD.

| RS232 Pin | CPLD Pin |

RTS 82
TD 81
CTS 85
RD 80

Table 2.3: The RS232 Pin connections

Since the current implementation only makes use of the TD and RD pins, we
neglect the RTS and CTS pins in further discussions. By programming the CPLD
accordingly, the connection between the RS232 and FPGA can be established. Table
2.4 shows the pins that have been used to re-direct the RS232 signals from the CPLD
to the FPGA and vice versa.

Pins 80 and 81 of the CPLD are only connected to the RS232 port and, thus,
no problems can occur when allocating these pins. However, pins 19 and 20 of the
CPLD and pins 141 and 144, as well, are connected to other circuitry, too. FPGA-
Pin 141 is connected to CPLD-Pin 19, to one pin of the right 7-segment digit LED

2.2 The Allocated Resources 11

| RS232 signal | CPLD Pin | CPLD re-direct Pin | FPGA Pin |

TD 81 20 144
RD 80 19 141

Table 2.4: Pin assignement to connect the RS232 to the FPGA

(S4) and to pin A3 of the Flash RAM. FPGA-Pin 144 is connected to CPLD-Pin
20, to one of pin of the right 7-segment digit LED (S5) and to pin A4 of the Flash
RAM. Since both 7-segment pins (S4 & S5) are input pins and both Flash RAM
pins (A3 & A4) are input (address) pins, there are not severe problems. The only
restriction is that the Flash RAM and the mentioned 7-segment digit pins cannot
be allocated for other use, since they should not be driven by multiple sources.

2.2.3 The 10-segment Bargraph LED

The last resource that has been allocated as a general-purpose I/O resource is the
10-segment bargraph LED. Table 2.5 shows the FPGA-Pins that are connected to
these 10 LED’s:

‘ Bargraph Pin ‘ Virtex FPGA Pin ‘

BARO 152
BAR1 154
BAR2 157
BARS3 160
BARA4 162
BARS 169
BAR6 168
BAR7Y 173
BARS 131
BARY 171

Table 2.5: 10-segment Bargraph Pin assignment

Again, there are some restrictions that come along when using the 10-segment
bargraph LED: All pins are connected to the FPGA on one hand and to some pins
of the Flash RAM on the other hand. This results once more in that the Flash
RAM cannot be used for other purpose and must, therefore, be disabled.

2.2.4 The Parallel Port

Another resource that has statically been allocated is the Parallel Port. The Parallel
Port is used to configure, or program, the CPLD and the Virtex FPGA. Since the
Parallel Port is not connected to the Virtex FPGA directly, the CPLD must be

12 2 The XESS XSV-800 Prototyping Board

configured correctly in order to download bitstreams on the FPGA.

The CPLD only supports the JTAG configuration mode. This mode uses four
signals to program the chip. The Virtex FPGA supports different programming
modes, or programming interfaces. One of them is called the Select MAP® interface.
This configuration interface needs eight data lines and, thus, the CPLD must re-
direct the signals coming from the Parallel Port to the SelectMAP interface. In
addition to the eight data lines, this interface needs some controlling lines. The
SelectMAP configuration flow and its corresponding signals are introduced in the
next chapter and are not discussed here.

Since this SelectMAP interface is quite important for the configuration of the
Virtex FPGA, there are a few dedicated connections between the CPLD and the
Virtex’ SelectMAP pins, but, again, there is some circuitry that must be disabled
when using the Select MAP interface, namely the left 7-segment digit LED and the
Flash RAM’s data pins.

2.2.5 The Expansion Headers

The last important resource on the XESS Board that has been allocated are the
two Expansion Headers. Each of them provides 25 I/O pins that can be used as
general purpose I/0O. In the context of this thesis, they have been allocated to
control the OS-Frame on the FPGA via the Host-PC. The protocol of this PC-
Interface is discussed in chapter 5. There is one problem that appears when using
the Expansion Headers: These are connected to the same FPGA-Pins as the SRAM
banks are, and, thus, the SRAM chips must be disabled. In this case, the chip select
(CE) signal of the SRAM must be asserted (this disables the SRAM chips) since
the data pins of the SRAM chips are floating when no proper address is applied
and this can disturb the functionality of the PC-Interface. Table 2.6 shows the two
CE signal of the SRAM banks:

| SRAM bank | Virtex FPGA Pin |

CE (left) 186
CE (right) 109

Table 2.6: CE signal for the SRAM banks

Since only the Expansion Headers and the SRAM banks are connected to the
same FPGA-Pins, no other circuitry affects the PC-Interface and by disabling the
SRAM banks with the CE signals, the proper functionning of the PC-Interface can
be guaranteed.

2.3 Summary 13

2.3 Summary

This chapter has introduced the features of XESS XSV-800 Prototyping Board
used during this thesis. This board offers quite a lot of interesting options, but also
brings along some restrictions we had to take into consideration. There are a few
features that have been cut out to guarantee a correct and stable functionning of
the OS-Frame. The disabled circuitry consists of the Flash RAM, the SRAM banks
on both sides and both 7-segment digit LEDs.

Chapter 3

The
XILINX® Virtex™ Architecture

This chapter is dedicated to the most important resource on the XESS XSV-800
Prototyping Board: The Virtex™ XCV800 FPGA. The next few sections are in-
tended to give an introduction on the inside of the Virtex on one hand and on
the configuration flow on the other hand. There are some special qualities that
come along when starting to partially (re-)configure the FPGA and that’s why
this chapter has been inserted in this report. This chapter merely covers ’thesis-
specific’ features and, thus, the reader is advised to read the application notes [2],
[3] and [5] in order to obtain more detailed information on the Virtex’ inside and
the configuration flow.

3.1 Architecture Overview

This section reveals the architecture of the Virtex FPGA. Fig. 3.1 depicts a very
coarse overview of the Virtex architecture. The Virtex device contains a certain
amount of configurable logic blocks, so-called CLBs, input-output blocks (IOBs),
block RAMs, clock resources, programmable routing and configuration circuitry.

The next three subsections cover the most important parts of the Virtex FPGA,
namely the IOBs, the CLBs and the routing resources.

3.1.1 Input/Output Blocks (I0Bs)

Fig. 3.2 depicts the internal structure of an IOB. One I0B provides three storage
elements which function either as level sensitive latches or as edge-triggered D-type
flip-flop. The flip-flops share the same clock signal but each of them has a seperate
CE (clock enable) signal. Additionally, the storage elements share a Set/Reset signal
which can either be of a synchronous or asynchronous manner.

16 3 The XILINX® Virtex™ Architecture

DLL| P I0Bs DLL
. A
= Es
g |5 @ | =
= o @
(=] T i = e
= 2 CLBs ?L? 3
- | 2 x| P
2 o
T =
2 £
DLL I0Bs DLL

Figure 3.1: Virtex Architecture Overview

Furthermore, each 10B provides a weak pull-up resistor and a weak pull-down
resistor, respectively. These resistors make it possible to force the pad’s state either
into a logic high or a logic low level. Another advantage of this capability is that
these pads are able to generate a defined logic level for the circuitry the user has
programmed; this fact becomes important when using the XILINX® Modular De-
sign Tools (see chapter 6). The exact usage of the pull-up, or pull-down, primitives
will be explained in a later section (see 4.2.3.1).

3.1.2 Configurable Logic Blocks (CLBs)

A Configurable Logic Block, or CLB for short, consits of several parts that should
be examined in this subsection. Fig. 3.3 shows a such a CLB. A CLB consists of
two slices which contain the same elements.

The basic building block of a CLB is the so-called logic cell (LC). Each LC
contains a 4-input function generator (implemented as 4-input look-up table), carry
logic and a storage element (D-Type flip-flop). A CLB includes four LCs, organized
in two equal slices (see Fig. 3.3).

Look-Up Tables Each look-up table, or LUT for short, supports two operation
modes: First, it can operate as a function generator as stated above, or, second,
each LUT provides a 16 x 1-bit synchronous RAM. Besides, the two LUTs of a slice
can be combined to provide either a 16 x 2-bit or 32 x 1-bit synchronous RAM or
a 16 x 1-bit dual-port synchronous RAM.

Storage Elements The storage elements in a Virtex slice can be configured
either as edge-triggered d-type flip-flop or as level-sensitive latches. The D inputs

3.1 Architecture Overview 17

Weak
Keeper

PAD

OBUFT

o
o L %
o
4/\\/\\/\ v
VIV

PO
i =
4 Q Q D Programmable
CE Delay
IBUF
Vref
SR

sR %74
CoLK
lice

Figure 3.2: Virtex Input/Output Block (I0B)

can either be driven by the LUTs or directly from the slice inputs.

Furthermore, the flip-flops of a slice provide a Clock Enable signal and one either
synchronous or asynchronous Set/Reset signal. Altering one of those control signal
affects both flip-flops of a slice.

BUFTs Each Virtex CLB contains two 3-state drivers (BUFTSs) that are con-
nected to on-chip busses. Each BUFT has an independant 3-state enable pin and
an independant input pin. These BUFT's are connected to horizontal Tri-State Lines
as depicted in Fig. 3.4.

Block SelectRAM The Virtex architecture provides two BlockRAM columns,
one being on the left side and the other on the right side of the die. They both extend
the full height of the device. Both columns consists of several memory blocks with
one memory block being four CLBs high. Thus, the Virtex XCV800 which has 56
CLB-rows, has got 14 memory blocks on each side and, thus, a total of 28 blocks.

3.1.3 Programmable Routing Matrix

There are several routing resource available on the chip. These resource are allocated
according to the timing constraints or other purpose that should be fulfilled. Those
different routing 'classes’ are introduced in this subsection.

18 3 The XILINX® Virtex™ Architecture

couT couT
YB YB
v y
Bt} = =P Ga - - SP
i LUT Carry & 0D a Yoo LUT Carry & D Q Ya
az Contral e Gz Contral EC
1 G
BY al BY EC
XB XB
Fa X pa» X
3 — SP 3 1] 5P
Fa > LUT Carry & D Q S F_' LUT Carry & o o XQ
Fz Caontrol Ec XQ F2 Control
Fi > Fi >
Bx A BX A
Slice 1 Slice

CIM CIM

Figure 3.3: The two slices of a Configurable Logic Block (CLB)

I\ } Tri-State
T P
£ 35 Lines

iR

mh
w U
4l
A

mEA I
b |

CLB CLB CLB CLB

Figure 3.4: Horizontal Routing Resource: Tri-State Lines

General Purpose Routing Most signals are routed on the general purpose
routing. The general routing resources are located in vertical and horizontal routing
channels associated with the rows and columns of the CLB matrix.

Global Routing Global routing resources distribute clock signals and other sig-
nal with very high fanout throughout the device. There are two nets that provide
this high fanout routing:

e The primary global routing resources consist of four dedicated global nets
with their corresponding input pin to distribute high-fanout clocks with a
very low skew. Each of them can drive every CLB, IOB and RAM clock pins.

e The secondary global routing resources consist of 24 backbone lines. They are
intended for a more general global routing since they are not restricted to
drive clock pins.

3.2 Configuration Flow for the Virtex FPGA 19

Dedicated Routing Some classes of signals require dedicated routing resources.
Virtex devices support two major signal classes which make use of these dedicated
resources:

e Horizontal routing resources provide 3-state busses. Per CLB row, four bus
lines are available. These lines, so-called Tri-State Lines, are driven by the
BUFTs as explained above (see Fig. 3.4).

e Two dedicated nets per CLB carry signals vertically to the adjacent CLB.

Clock Distribution Virtex devices provide four high-fanout clock distribution
nets with very low skews (primary global routing resource). Each of them is driven
by a global buffer, two on top center and two on the bottom center of the device.
Furthermore, there are four dedicated clock pins that drive the corresponding global
buffer (see Fig. 3.5).

GCLKPAD3 E GCLKPADZ2
Global Clock Rows GCLKBUF3 GCLKBUF2 Global Clock Column

i
<hi= <Hi> <>
<Hi> <Hi> <Hi=>

— U < <Hi>
<hi- <H <
<H{> <H{> i
é.; iEs ér\ @q— Global Glock Spine
<M <Hi shi
< <Hi> I
<H{= <Hi> s
<HE> <ht> R
<HE <H> <>

GCLKBUF1 é é GCLEBUFO
GCLKPADA GCLKPADO

Figure 3.5: Global Clock Distribution

3.2 Configuration Flow for the Virtex FPGA

This section gives an overview of the configuration of the Virtex FPGA. There are
eigth different configuration modes as shown in table 3.1. The current configuration
mode is chosen by asserting the proper signals to pins M2, M1 and M0. Apart from
the four basic modes (the first four ones in the table), the user can force the IOBs

20 3 The XILINX® Virtex™ Architecture

into a logic high level during configuration. After configuration, the pull-ups are
de-asserted and the IOBs fall back into their previous state.

‘ Configuration Mode | M2 | M1 | MO | Pull-ups |
Master Serial 0 0 0 No
Slave Serial 1 1 1 No
SelectMAP 1 1 0 No
Boundary Scan (JTAG) 1 0 1 No
Master Serial (w/pull-ups) 1 0 0 Yes
Slave Serial (w/pull-ups) 0 1 1 Yes
SelectMAP (w/pull-ups) 0 1 0 Yes
Boundary Scan (JTAG) (w/pull-ups) | 0 0 1 Yes

Table 3.1: Virtex Configuration Modes

NOTE: This section only covers the SelectMAP configuration mode since this is
the one being used during the thesis.

3.2.1 Initialization and Timing

The initialization sequence is quite simple: Upon power-up, the FPGA configures
the internal circuitry. The INIT signal is held low during this initialization sequence.
As soon as the INIT signal goes high, the configuration may start.

3.2.2 The SelectMAP Mode

Fig. 3.6 depicts the situation when configuring the Virtex™ FPGA via the Se-
lectMAP interface. There are quite a lot of signals that must be controlled during
configuration.

As one can see, the Select MAP interface provides an 8-bit parallel configuration
interface. These eight data lines are bidirectional, that means they can be used for
configuration and readback.

DATA Pins (D[0:7]) The pins DO through D7 work as an 8-bit wide, bidi-
rectional bus when using the SelectMAP mode. Thus, configuration bitstream are
written byte-wise to the data pins with DO being the Most Significant Bit (MSB).
The WRITE signal controls the direction of the bus.

WRITE When this signal is asserted low, configuration data is written to the
data bus and, thus, when WRITE is asserted high, configuration data is read from
the bus. This means, the device is being configured when WRITE is low.

3.2 Configuration Flow for the Virtex FPGA 21

DATA[D:7] =~y
COLK a———————
WRITE -———

BUSY -——

.

M1 M2

Mo
VIRTEX
SelectMAP

||}—‘

i D[07]

CCLK

\’J|

W
=

| PROG

__{—— DOMNE |
DOME ———

IMIT
FROGRAM

A
y

MIT

Figure 3.6: SelectMap Configuration Setup for Virtex™ devices

CS The Chip Select input (CS) enables the Select MAP data bus. When reading
or writing data from or to the data bus, CS must be asserted low. When the signal
is high, the data bus is disabled.

BUSY This signal is only to be taken into consideration when the CS signal is
asserted low (when the data bus is enabled). If BUSY is low, the FPGA reads
the next byte on the next rising clock edge of the CCLK signal where both CS
and WRITE are asserted low. When BUSY is driven high, this indicates, that the
internal configuration circuitry is not ready and, thus, the current byte is ignored
and must be reloaded as soon as BUSY gets low again (see Fig. 3.7). BUSY is
tri-stated when CS is not asserted.

This BUSY signal is only needed when one wants to configure the FPGA with
frequencies above 50 MHz. When CCLK is below the 50 MHz border, the BUSY
signal needn’t be taken into account.

CCLK The CCLK pin is an input clock pin that synchronizes all loading and
reading of the data bus for configuration and readback. Besides, the CCLK drives all
internal configuration circuitry. The CCLK may be driven either by a free running

22 3 The XILINX® Virtex™ Architecture

PROGRAM _/
N __f
cs \ /-
WRITE T\ /-
DATA[0:7] Moo o Xever X_eve Xoen| ever| Kovena)
Busy T\ /T /-

Device Byte O Byte n Byte n
Ready Loaded lgnored Loaded

Figure 3.7: The BUSY signal during configuration (above 50 MHz)

oscillator or an externally-generated signal.

3.2.3 The Configuration Flow

The configuration data format of the Virtex family is independant from the con-
figuration mode; it follows always the pattern: Imagine the Virtex configuration
memory as a rectangular array of bits. The bits are grouped in one-bit wide por-
tions, so-called frames. Thus, frames are the smallest unit that can be written (or
read back).

Frames are grouped together into larger units called columns. There exist five
different types of columns as depicted in table 3.2.

‘ Column Type | # of frames | # per Device ‘
Center 8 1
CLB 48 # of CLB columns
10B 54 2
Block SelectRAM Interconnect 27 # Block SelectRAM columns
Block SelectRAM Content 64 # Block SelectRAM columns

Table 3.2: Configuration Column Types

As mentioned above, configuration data is separated into frames and the frames
are grouped together into columns. Fig. 3.8 depicts the configuration columns for
a standard Virtex device.

There’s one center column which consists of 8 frames. This center column con-
tains the configuration data for the four global clock buffers and their corresponding
clock nets. Two IOB columns hold the configuration for the IOBs on the left and

3.2 Configuration Flow for the Virtex FPGA 23

2 2 2 2 2
0B I0B | GCL | IOB 10B
]] K]]
T w
— @) —
c =8]|=¢ c =c|=8 |t
E_ISE IS8 |c ~ Bl |'E - c~€ 08I E |5~
szl lzs|Es EzlEw|E3 Eglzs s |23
CECN R RN ERC =2l |58 ENCE SR R
OE o J0& |5 E = E £ |5 E SEla |85 £
aflz2les|8¢ SEleslSE Of|zT |zl |52
Ou— (V3] o mﬂ) mu— mu— 5= mu— m\.._ N D (7 QU—
ol Sl Ell ol s 22 |le=2 |28 J2lsslss |2
T lesles e o= T e~ O-leg|eE |~
— o) o o c |3
@3 mE 2tlzg (&
E =
2 2 2 2 2
10B 10B | GCL | IOB 10B
] s K]]

Figure 3.8: Virtex™ Configuration Column Example

right side of the die. The CLB columns contain the configuration for the CLBs
and the adjacent IOBs on the top and the bottom, respectively. The remaining
two column types contain information about the Block SelectRAM; one contains
interconnection-data and the other one contains the content-related parts.

3.2.3.1 Configuration Addressing

The total address space is divided into two different block types: RAM and CLB.
The RAM block type only contains the Block SelectRAM content columns, whereas
the CLB block type contains all other column types (Center, CLB, IOB and Block
SelectRAM Interconnect). Both address spaces are divided into major and minor
address. Each column has its own, unique major address within the RAM or CLB
address space. Each frame has its unique minor address within its configuration
column.

For Virtex devices, the major addressing scheme starts with 0 for both, the
RAM and CLB address space. Thus, the center column of the CLB address space
has major address 0. The ascending major addresses alternate between the right
and left side of the die, that means the first CLB column of the right side has major
address 1 and the first CLB column on the left side of the die has major address
2 and so on. Thus, odd major addresses point to CLB columns of the right side
of the die, whereas even major addresses point to those on the left side. After the
CLB columns, the IOBs on the right and left side follow and, finally, the Block
SelectRAM Interconnect columns follow the IOB cofiguration columns. Fig. 3.9
depicts this situation: First, the center column with major address 0, then the CLB
columns with alternating major addresses up to 24, third, the IOB columns with
major address 25 on the right side and 26 on the left side of the die and, finally,
the Block SelectRAM Interconnect columns with major addresses 27 on the right
side and 28 on the left side. This consecutive order (Center, CLB, IOB, BlockRAM

24 3 The XILINX® Virtex™ Architecture

Interconnect) must be followed when configuring the device.

2 2 2 2 2
|0Bs |OBs | GCL | 10Bs IOBs
K
0 é SL g
c = o = = EpE= o |E
E-EEEE |- c-E |~ c-EBEES E __
=N © S £ w sw Is% le @ Ew r ‘_E Bcn
cl o= [BH |58 S lEe |58 S 2 oIS kK3 2
O E o o= |5 E S E B eIt SE ooy £
n S voe Jog pOE O B I & ko & O oo B E
Ou— = ko § =] = |5 & o= E = s
P ILE e Po Moo = 00 o |l C
0 o [Sc B A R s =l =GR =
chll S5 ER:N o N SN 2 5
L = o v
[S |:r:|E mgmox
= =
2 2 2 2 2
|0Bs |OBs | GCL | 10Bs |OBs
K
= o 5 — =
&= o g] - E
5 = o = N o2 £ 3 o = 2
2 O = = e [d
¢ ¥ = 5 g o S & £ ¢
M.A. 26 0 28 24 2 0 1 23 27 1 25

Figure 3.9: Addressing scheme for Virtex™ devices: Major Addresses

RAM block type columns are addressed in the same manner as CLB columns are:
The major address for the left Block SelectRAM reads 0 and the major address
for the right one reads 1 (Virtex™ devices only contain two Block SelectRAM
resources).

Frames Since frames are the atomic unit of the configuration data of the Virtex
device, let’s have a closer look at them: Frame size depends on the number of CLB
rows of the current device: the more rows the larger the frames. The frame size can
be calculated using the following formula: 18 x (#CLB_rows+2). To this calculated
size, a certain amount of padding zeroes are added to fit in 32-bit words. For the
FPGA used in this thesis, the Virtex™ XCV800 which has 56 CLB rows, the frame
size calculates to 1088 bits and the number of 32-bit words, thus, is equal to 34.

Fig. 3.10 depicts the frame organisation of the CLB block type frames: The first
18 bits are used for the top IOB, then the bits for the CLBs follow, and, finally, the
last 18 bits are reserved for the bottom 10B.

Top 2 10Bs CLB R1 CLBR2 CLEB Rn Bottom 2 |0Bs

18T M 18T M 18T = = 18 18

Figure 3.10: CLB block type frame

Fig. 3.11 depicts the organisation of the RAM block type columns: First, there

3.2 Configuration Flow for the Virtex FPGA 25

are 18 padding bits, then the content data of the RAM cells follow and, finally,
there are again 18 padding bits.

Pad RAM RO RAM R1 RAM Rn Pad

1B T2 72— ™ w2 18 =

Figure 3.11: RAM block type frame

3.2.3.2 Writing Configuration Data to the FPGA

Virtex configuration can be seen as a sequence of commands and corresponding
configuration data. For an initial configuration, the following sequence of commands
and data must be followed:

1. Issue one or more pad words (FF FF FF FF in hexadecimal)
2. Issue Sync word (AA 99 55 66 in hexadecimal)

3. Reset CRC register (this register is intended to check the correctness of the
written data)

Set configuration specific flags (see [3] for more details)
Set the FAR (see below) to the starting address
Issue a WCFG (write configuration, see below) to the CMD register

Write the number of words to be written to the FDRI register (see below)

N> oo

Write data frames

A command is organized as a packet with a command header and, depending
on the command, with optional data words. For the Virtex™ series, a variety of
commands have been defined. In this report, only a few of them are introduced:

3.2.3.3 Configuration Registers

The general command header format is depicted in Fig. 3.12. The first three bits
identify this command header by setting the type bits to 001. The OP bits specify
whether this command issues a read (01) or write (10) operation. Then, bits 26
through 17 are set to zero. The next four bits, 16 through 13, specify the configu-
ration register address (see table 3.3 for the appropriate values). Bits 12 and 11 are
set to zero and the last 11 bits, bits 10 through 0 specify the amount of data words
that follow the current command (max. value is 2047 words).

26 3 The XILINX® Virtex™ Architecture

Type | OP ‘ Register Address ‘ RSV | Word Count
31 30 29 28(27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0
0 01 x/x 0 0 0jJ]0 0O O O0J0 0 0 x|x x x 0|0 x x x|[x X x X[x x X x

Figure 3.12: Command Header Format

‘ Register Name ‘ Mnemonic ‘ R/W ‘ Binary Address ‘

CRC CRC R/W 0000

Frame Address FAR R/W 0001
Frame Data Input FDRI W 0010
Frame Data Output FDRO R 0011
Command CMD R/W 0100
Control CTL R/W 0101
Control Mask MASK R/W 0110
Status STAT R 0111
Legacy Output LOUT W 1000
Configuration Option COR R/W 1001
Frame Lentgh FLR R/W 1011

Table 3.3: Configuration Register Address

The Command Register (CMD) The content of the Command Register is
interpreted by configuration state machine. This register controls the operation of
the configuration state machine, the Frame Data Register (FDR), and some of the
global signals. The effect of each command is shown in table 3.4.

Thus, the command header for the Command Register has always the same
structure: 30 00 80 01 (written in hexadecimal format, so each digit represents
four bits of the command header). The 1 at the end tells the configuration state
machine that one word out of the collection depicted in table 3.4 (Note: Table
3.4 is not complete, please refer to [3] on page 18 for a complete list of available
commands) follows the CMD. For example, if one wants to reset the CRC register,
the following sequence must be performed:

30 00 80 01 CMD
00 00 00 07 Code for Reset CRC as shown in table 3.4

If one wants to write some configuration data, the following command sequence
must be issued:

30 00 80 01 CMD

00 00 00 01 Write Configuration Data (WCFQG)

30 00 20 01 FAR (Frame Address Configuration Register)
0- — — — Block Type CLB (00); Major/Minor Address

3.2 Configuration Flow for the Virtex FPGA 27

‘ Cmd

‘ Code ‘ Description

WCFG

0001

Write Configuration Data - Used prior to writing configu-
ration data to the FDRI. This command is followed by a FDRI
configuration command which specifies the number of words to
be written.

RCFG

0100

Read Configuration Data - Used prior to reading configura-
tion data from the FDRO.

START

0101

Begin Startup Sequence - This command starts the Startup
Sequence. This command is also used to start a shutdown se-
quence prior to partial re-configuration. The Startup Sequence
begins with the next successful CRC check.

RCRC

0111

Reset CRC - Used to reset the CRC register. This register
contains the Cyclic Redundancy Check value of the bitstream.

SWITCH

1001

Switch CCLK Frequency - This command is used to change

the frequency of the Master CCLK.

Table 3.4: Configuration Commands

30 00 4- — FDRI (Frame Data Input Configuration Register) + Word
Count

Fig. 3.14 shows a complete configuration example with an initial Shutdown Se-
quence, Reconfiguration of the CLB Address Space and a typical Startup Sequence.

Frame Address Register (FAR) The Frame Address Register holds the ad-
dress of the current frame. This address is subdivided into three parts: First, the
Block Type (CLB or RAM), second, the major address and, third, the minor ad-
dress. Fig. 3.13 depicts the structure of the Frame Address Fields.

Block Major Address Minor Address

Type (Column Address) (Frame Address)
31 30 29 28|27 26 25 24(23 22 21 20(19 18 17 16|15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0
0 0 0 0|0 x x X|[Xx X X X|x X x X|x x x x|x x x 0]J]0 0 0 0|0 0 0 O

Figure 3.13: Frame Address Fields

Table 3.5 shows the two possible values for the Block Type bits in the Frame
Address Fields (Fig. 3.13. The major address selects the column within the address
space defined by the Block Type field. The minor address selects the frame within
the column specified by the major address. If the CLB address space has been
chosen, the minor address is incremented automatically each time a full data frame
has been read from the FDRI. If the last frame of the current column has been read,
the major address is incremented and the minor address is set to zero. This address
adjustments are done automatically by the configuration state machine. However,

28 3 The XILINX® Virtex™ Architecture

the major address is not incremented automatically if the RAM address space has
been chosen. This means, one has to set the proper major address each time a data
frame is to be written.

‘ Block Type ‘ Code ‘

CLB 00
RAM 01

Table 3.5: Block Type Codes

Configuration Example Fig. 3.14 shows a complete configuration flow for a
(partial) reconfiguration. In this excerpt, only the CLB address space is re-written,
BlockRAM contents remain unaffected. The first 13 lines initiate a Shutdown Se-
quence of the target device. Then, a new configuration for the CLBs is written to
the device and, in the end, the obligate Startup Sequence is issued.

3.3 Summary

This chapter does not claim to be a complete description of the configuration (and
readback) flow of the Virtex™ FPGA. Interested readers are refered to [2] and [3]
for further information. For example, major and minor address are calculated with
specific formulae and those are defined and explained in the references. Besides,
Application Notes 138 and 151 include some more examples about configuration-
related stuff.

3.3 Summary 29

FFFF FFFF Dummy Waord
ARGS9 GRES Sync Word. Does not realign an already synchronized SelectMap port
3001 2001 COR

0080 FF2F Shutdown bit set, optionally set bit 29 DRIVE_DONE
Alternately COR may be read. bit 15 set, and written back

3000 8001 CMD

0000 0005 Start Shutdown

3000 8001 CMD

0000 0007 Reset CRC

0000 0000

0000 0000 Clock shutdown sequence

0000 Q000
0000 0000

3000 8001 CMD

0000 0008 Assert GHIGH

3000 8001 CMD

0000 Q001 Write Configuration

3000 2001 FAR

D--- ---- Block Type CLB (00); Major/Minor Address

3000 4--- FDRI + Word Count if count is <1024. Otherwise use Typell Header.

Write FRAME DATA
If CLB Frames are not written to non-consecutive addresses repeat FAR word, followed
by new Major/Minor Address followed by FDRI + Word Count and then Frame Data.

3000 0001 Write CRC
———————— CRC

3000 8001 CMD

0000 0003 LFRM

3000 4--- FDRI + Word Count

Write PAD FRAME

3001 2001 COR
0080 2F2D Default COR Options

Alternately COR may be read, bit 15 cleared, and written back
3000 8001 CMD

0000 0005 Begin Startup
3000 0001 Write CRC
———————— CRC

0000 Q000
0000 0000 4 Dummy Words

0000 Q000
0000 0000

Figure 3.14: Configuration Example (excerpt)

Chapter 4

The OS-Frame on the FPGA

This chapter provides a detailed look at the structure of the OS-Frame on the
FPGA. The OS-Frame consists of several components which will be explained in
this chapter. Section 4.1 treats the organization of the available chip area, the sec-
ond section (4.2) describes the most important communication means being the
BusMacro, section 4.3 deals with the STT (Standard Task Interface) and the corre-
sponding PADs that have been allocated and section 4.4 introduces the tasks that
have been written to test the OS-Frame.

4.1 Organization of the FPGA

As introduced in chapter, the FPGA consists of hundreds of CLB’s which are dis-
tributed all over the chip area. This area can now be divided into several sub-areas.
To achieve this, one can use the AREA_GROUP constraint in the constraints file.

Figure 4.1 shows the different sub-areas of the FPGA. The leftmost module is
part of the OS-Frame. In this current version (V0.2), there’s no logic functionality
implemented in this module. The only thing it is used for, is to provide the Standard
Task Interface (STI) to task_slot 0 and to route some internal signals to the PADs.
The STT will be introduced in section 4.3. The module called task_slot 0 is intended
for being a reconfigurable area where the tasks can be loaded into. The tasks must
conform to the STI, otherwise the system doesn’t work properly any more. The
module in the middle is, again, part of the OS-Frame. This part implements the
interface between OS-Frame and Host PC; implementation details and the protocol
specification are described in section 5. Furthermore, this module provides the STI
for task_slot 1. The module task slot 1 is again reconfigurable which means, that
different tasks can be loaded into this area. The right-most module is again part of
the OS-Frame. There, no logic is implemented since this module only connects the
internal signals to the PADs.

32 4 The OS-Frame on the FPGA

Task left Task right

OS left OS middle OS right

Figure 4.1: The organization on the FPGA

To divide the FPGA into these five areas, one can make use of a certain con-
straint, called AREA_GROUP. The syntax of this contraints is as follows:

INST "mame of instance” AREA_GROUP ’"name of the area group’™
AREA_GROUP "mame of area group” RANGE = "CLBzgyo:CLBz1y,”

With the first line, the instance “name of instance” of a specific module, say
os_left, and all related logic is wrapped up in an AREA_GROUP with name "name
of area group”. The second line specifies the CLB-range, where all related logic is
put into, that means the range defines the boundaries of the module. The third
line (see Fig. 4.2) is specific to the Modular Design Flow (this design flow will be
introduced in chapter 6). For an example see Fig. 4.2.

INST “os_left” AREA_GROUP = “os_left” ;
AREA_GROUP “os_left” RANGE = “CLB_R1C1:CLB_R56C8" ;
AREA_GROUP “os_left” ROUTE_AREA = RECONFIG DISALLOW_BOUNDARY_CROSSING RECONFIG_MODE ;

Figure 4.2: Usage of the AREA_GROUP constraint
Note: The corresponding logic of a module is only placed inside the module

boundaries when the amount of required CLB’s is smaller or equal than the number
of the CLB’s provided by the area group range.

4.2 Communication via the BusMacro

Imagine the following situation: You have two modules and one of those is partially
reconfigurable. Furthermore, these modules want to communicate which each other.

4.2 Communication via the BusMacro 33

Now, when another module is loaded into the FPGA, it is not sure, that the connec-
tion points match, that means signals may not be routed correctly across module
boundaries. To prevent that fault, XILINX® has published a special macro, the
BusMacro. This section is dedicated to this special macro as it is the main commu-
nication means.

4.2.1 The structure of the BusMacro

As described in chapter 3, the Virtex FPGA provides an certain amount of TriState
lines (depending on the size of the FPGA, for example 216 TriState lines for the
Virtex XCV800). The BusMacro uses these TriState lines to communicate across
the module boundaries. Figure 4.3 shows, how the BusMacros connect to these
TriState lines.

CENTER
(Boundary) between B angc

LO [3:0] RO [3:0]
Li[3:0] Rl [3:0]
LT [3:0] RT [3:0]

Figure 4.3: The BusMacro

As one can see in Fig. 4.3, each BusMacro uses eight TriState Buffers which
provide four inputs on the left side and four inputs on the right side. Each input
can be enabled seperately, but one cannot enable input 1/r(0) on the left and right
side at the same time, you can only enable the input 0 on either the left or the right
side of the macro. The outputs are available on both sides, but are only routed to
side where they are used (left input 1i(0) and right input ri(0) belong to output o(0),
that means if one connects to input ri(0) on the right side, output o(0) is routed to
the left side).

4.2.2 The Location of the BusMacros

Since this BusMacro is the point the modules connect to, it must be at certain
locations on the FPGA. This means, the programmer has to assure, that they are
always positioned at the same location. Again, this is done in user constraints file
with a constraint called LOC. This constraint is applied in the following way:

INST "name of BusMacro instantiation” LOC = "CLBx_0y_0”;

34 4 The OS-Frame on the FPGA

This constraint is called location or placement constraint. With this location
constraint, the BusMacro is placed at a certain position on the FPGA and this
reference point’ is never altered. Thus, the modules only need to connect to that
fixed points and the communication can take place. Fig. 4.4 shows an excerpt of
the user constraints file used for the OS-Frame.

INST “bm_task_left_inst0” LOC = “TBUF_R52C5.0" ;

Figure 4.4: The location constraint

Thus, the connections between two modules never reach the module bound-
aries and are, because of that, never routed unpredictably. So, the connection is
established and communication can take place.

4.2.3 Common Pitfalls

In this section, the two main problems that come along when using BusMacros
are explained. The first one is how secure VCC and GND signals can be achieved
(4.2.3.1) and the second one is how open outputs are handled correctly (4.2.3.2).

4.2.3.1 VCC and GND: The safe method

Fig. 4.5 shows an example of how this BusMacro is used in the OS-Frame. As one
can see, there are lot of GND and VCC signals required, to either enable or disable
a certain input on either the left or the right side. Assuming we have two mod-
ules of which the left one is called os_left and the right one task_left. Now, if the
programmer wants input 0 of the left side to be enabled, (s)he has to enable that
input by assigning a logic ’0’ to the signal 1t(0) (active low). To get this logic 0,
the Place and Route tool provided by Xilinx sets a PAD into a PULLDOWN state
and routes this signal to the BusMacro. Maybe, there are a lot of other BusMacro
which require a logic '0’ and because of that, the tool routes this logic ’0’ across the
module boundaries and this won’t work if someone tries to reconfigure the FPGA.
To avoid this problem, one has to allocate two PADs for each module, one being
a logic ’0’ and the second one being a logic '1’. In this case, the signals are routed
inside the module area and do not cross the module boundaries. This method is
safe, whereas the first method can lead to an unpredictable state.

Again, there’s a certain constraint to attach a PULLDOWN, or PULLUP re-
spectively, property to a certain PAD. Assuming that the net which delivers the
BusMacro with a logic "0’ is called gnd_os_left, the constraint looks as follows:

NET ’“gnd_os_left’ PULLDOWN ;
NET 7gnd_os_left’ LOC = "P###” ;

4.2 Communication via the BusMacro 35

bm_task_left_inst0: component bm_4b

port map (
li(3) =>t0_reset_carrier,
li(2) =>gnd_os_left,
li(1) =>t0_enable_carrier,
1i(0) =>gnd_os_left,
1t(3) =>gnd_os_left,
1t(2) =>vcc_os_left,
It(1) =>gnd_os_left,
1t(0) =>vcc_os_left,
ri(3) =>gnd_task_left,
ri(2) =>t0_finished_carrier,
ri(1) =>gnd_task_left,
ri(0) =>t0_ledbar_carrier(9),
rt(3) => vcc_task_left,
rt(2) =>gnd_task_left,
rt(1) => vcc_task_left,
rt(0) =>gnd_task_left,
o(3) =>t0_reset_from_bm,
o(2) =>t0_finished_from_bm,
o(1) =>t0_enable_from_bm,
o(0) =>t0_ledbar_from_bm(9)

)

Figure 4.5: Instantiation of a BusMacro

The first line attaches the PULLDOWN to a net and the second line defines the
PAD this signal is coming from. PULLUP’s are generated in the same way (just
write PULLUP instead of PULLDOWN).

4.2.3.2 Handling of Open Outputs

The second problem that comes along with the usage of the BusMacro are open
outputs: If a certain input is not used on neither the left nor the right side of the
BusMacro, an open output will result. The programmer is not allowed to leave
this output open, since the Modular Design Tools won’t handle this circumstance
properly. Thus, the implementation of the modules will fail. To avoid this failure,
there exists a certain technique which handles this problem properly. This work-
around can be described as follows: Let’s say, output o(3) of a certain BusMacro is
open, that means it has no input on neither the left nor the right side. Thus, this
ouput is not needed and the output signal must be patched. To achieve this goal,
one needs two signals with the first one connected to the open output o(3) and the
second one being the patching signal. The patch is done in a process which simply
assigns the first signal to the second one at each rising (or active) clock edge. Since
the Xilinx Synthesis Tool (XST) would remove the signals and the flipflop generated
by this process (they don’t have any meaning for the XST), the programmer has
to make sure, that this optimization step doesn’t occur. This can be done with the
usage of the keep attribute. The keep attribute must be applied to the signal that
is connected to the open output. For an example, see Fig. 4.6.

36 4 The OS-Frame on the FPGA

— attribute declaration
attribute keep : string ;

— the required signals
signal input_connect, input_patch : std_logic ;

— apply the attribute to the signals
attribute keep of input_connect : signal is “true” ;
attribute keep of input_patch : signal is “true” ;

... —other VHDL code

patcher: process(clock, input_connect)
begin
if(clock’event and clock = ‘1) then
input_patch <= input_connect ;
end if ;
end process patcher ;

Figure 4.6: The ’open-output-workaround’

4.3 The Standard Task Interface (STI)

In this section, the Standard Task Interface (STI) of the current OS-Frame V0.2 is
introduced. The STI defines, which resources can be accessed by a task.

4.3.1 Why defining an STI

Chapter 3 has introduced the XILINX® Virtex Architecture. It’s obvious, that the
available resources on the chip are limited according to the size of the chip. These
resources have to be shared between OS-Frame and the tasks. Thus, the signals from
the PADs to the tasks cannot be routed freely. We’ve figured out several possibilities
to keep the system as scalable as possible. The first possibility consisted of a routing
matrix (crossbar-switch) that would have provided a highly scalable system, since
each single input could have been connected to a certain output. In fact, this routing
matrix has used too much resources of the available chip area (for example, a 32x32
matrix has used 50% of the area). Thus, we’ve thrown away this possibility.

The second possibility looked as follows: The number of in- and outputs of a task
were limited to a certain amount, let’s say 10 inputs and 10 outputs, and the PADs
(the amount and their location) were fixed, too. That means we allocated certain
PADs and the tasks could only connect to these PADs. The appropriate outputs
of the different tasks were driven into a multiplexer, for example output 0 of task
0 and task 1 were driven into one multiplexer, and the output of the multiplexer
was connected to the PAD. The inputs were handeled in the same manner, that
means the signal coming from the PAD was connected to the multiplexer and the
outputs of the multiplexer were routed to the tasks. Thus, this solution consisted
of 20 multiplexers, 10 of them with two inputs and one output the other 10 of them
with one input and two outputs respectively (see Fig. 4.7).

There were two main reasons why we’ve thrown away this design: First, during
the design phase of the project, more than two tasks were foreseen and that would

4.3 The Standard Task Interface (STI)

37

P Task Controller 0 |
STI (Standard Task Interface)

Core Controller

Task Slot 0

w

cl
7

Task Controller 1
STI (Standard Task Interface)

Task Slot 1

_/—\

Multiplexer Control Signals

Figure 4.7: The multiplexer design

D IOB (PIN)

\—D IOB (PIN)

\—D IOB (PIN)

have led into a large routing overhead and, second, all these multiplexers have to be
set when a new task is loaded into the OS-Frame and, thus, there’s a remarquable

configuration overhead.

The design we’ve chosen is introduced in the next section. It is a simplified

variant of the second possibility.

4.3.2 The current Standard Task Interface (STI)

The Standart Task Interface of the current OS-Frame Version 0.2 defines the fol-
lowing outputs: 10 Ledbar outputs, the Codec Audio outputs and the RS232 TX
output. Furthermore, it defines the following inputs: The Codec Audio input and

the RS232 RX input (see Fig. 4.8).

The ledbar outputs are shared between both tasks, that means task left and task

38 4 The OS-Frame on the FPGA

Task

Figure 4.8: The in- and outputs of the STI

right can use the ledbar outputs at same time (this doesn’t lead to any problems).
The other outputs are restricted, that means only one task, either the left or the
right one, is allowed to use the Codec Audio or the RS232 TX outputs. For example,
if task left is "talking” to the Codec Audio chip, the right task is not allowed to "talk”
to that chip at the same time. This resource management is done on the Host-PC.
The software on the Host-PC (introduced in chapter 5) controls the whole OS-
Frame and decides, whether a task is allowed to be loaded into a certain slot or
not, depending on the resources the current task in the other slot is using. Since
this resource management is done on the Host-PC, the signals of task left and
task right are simply ORed before they are routed to the PADs (see Fig. 4.9).
These circumstances lead to a easier hardware but, on the other hand, to a more
complicated software.

‘)

Ored output

LED-Bar

STI V0.2
(Standard Task Interface)

Figure 4.9: Signal routing on the FPGA

Apart from the general purpose I1/O described so far, there are two control
signals: t_reset and t_enable. The first one is used the reset the task during runtime
and the second one can be used to either enable or disable the clock signal. The
t_finished output is used by the OS-Frame. During runtime, t_finished should be ’0’
and as soon as a task has finished its work, t_finished must be asserted high. This

4.4 The Tasks 39

is registered by the application on the Host-PC and the task can be replaced by
another one.

4.4 The Tasks

This section introduces the tasks that have been written in order to test the func-
tionality of the OS-Frame. There are eight different tasks which can be downloaded
onto the FPGA. As you can imagine, they are not very complicated, since the
purpose is merely to test the OS-Frame and this can be done with quite simple
task.

KnightRider and KnightRider single These two tasks require the 10-segment
bargraph LED. They produce the following light pattern: LED 0 is illuminated
and all other LEDs are dark. Then, the second LED is illuminated and all other
(including LED 0) LEDs are dark and so on. When the top has been reached,
it produces the same pattern from top to bottom. The only difference between
these two tasks is, that the KnightRider task never stops voluntarily, whereas the
KnightRider single task once goes from bottom to top and back again. Having done
so, the t_finished signal is set to high and the task has finished.

Audio Low, Audio Low single, Audio High and Audio High single These
four tasks require the Audio Codec resource. They generate a data streams which
can be heard as a single tone coming out of the speakers. The difference between
the Audio Low and Audio High tasks is that the frequency of the generated is
different (the latter ones generated a tone with a higher frequency). The difference
between Audio Low/High and Audio Low/High single is that Audio Low/High
single generates a short beep, whereas Audio Low/High never comes to an end.
Again, when Audio Low single has come to its end, it asserts high the t_finished
signal.

RS232 single This tasks writes the string "Hello World” to the RS232 interface
with baud-rate of 115200. Having done this, the task finishes and asserts t_finished
high.

Up-Down single This task generates another light pattern on the 10-segment
bargraph LED. The generated pattern represents 10 bits of common up-counter.
When the counter has reached its maximum value, it starts counting down and the
same 10 bits are displayed on the bargraph. When the task has finished its work
(the count value has reached zero again), the t_finished signal is asserted and the
task supsends.

Chapter 5

The Software of the OS-Frame

This chapter introduces the software that runs on the Host-PC in order to control
the hardware that runs on the FPGA. The application is written in C++, since
the PCI7200 is delivered with a C++ interface (header files and the corresponding
library). This chapter is subdivided into the following sections: Section 5.1 shows
what actions the application performs, section 5.2 provides detailed information
about the implemenation and, finally, section 5.3 shows the way the Host-PC and
the hardware communicate with each other.

5.1 The Application

The application has a variety of features in order to provide full control over the
hardware part of the OS-Frame on the FPGA. Remember, the application is part
of the OS-Frame, too, since the Hardware OS-Frame consists of hard- and software
parts. This section gives an overview of the actions that can be performed with this
application.

5.1.1 The GUI of the Application

Fig. 5.1 shows the main window of the application. As one can see, there are a few
checkboxes and buttons which let the user interact with the OS-Frame. When the
application is started, the hardware part of the OS-Frame is downloaded to the
FPGA. This initial configuration contains the PC-Interface (5.3) and two dummy-
tasks which don’t do anything. When the initial configuration has been downloaded,
the OS-Frame is ready.

After downloading the bitstream, the are two operation modes provided by the
application: First, the application automatically controls the hardware by schedul-
ing a new task when one of the currently running tasks has finished and, second,
the user can manually select a task for downloading. When automatic scheduling

42 5 The Software of the OS-Frame
EZHW-0S Demo ¥0.2 B] JE3|
Control About, ..
— 05 Functions
Load Operating Systemn Frame / Initial Bitgtream
¥ Global Resst [~ TOFeset [™ T1Reset
W TOEnable [T1Enable
™ Enable automatic scheduling
— Task Loader
Slot #0 Slat #1
Kright-Fider | Kright-Fider
Knight-Fiider [z] | Knight-Rider [z)
Audio Low | Audio Low
fudoLowls) | Budio Low [s]
Audic High | Audic High
Audio High [z] | Audio High [3]
RS5232 s | R5232 (s
Up-Down (3] | Up-Down [z]
Diurarny | Dy
— Tazk States
Taszk in Slat 0: Taszk in Slat 1:
I Dhuararmy I Dy
Cuiratt State: Current State:
I TURhing I Tunhing

Figure 5.1: The Main-Window of the Application

is enabled, the application automatically selects a task which does not cause any
resource conflicts.

Another important part of the application is the ability to dynamically add new
tasks to the Task-Pool during runtime. When the user issues the ’Add New Task’
command, a new window appears. This window is shown in Fig. 5.2. As one can
see, there are a few values that must be specified when adding a new task to the
Task-Pool: The paths of the bitfiles (one for the left and one for the right slot, the
name of the task, then the initial values for the reset and enable signals and, finally,
the resources the current tasks uses during runtime.

5.1 The Application 43

ol %]

File:

=~ Task Infarmation:

Mame of left Bitfle: |

Mame of right Bitfle: |

Taszk Mame: I
I Beset oninit [Enable on irit
Pricrity Level: iNDrmaI Pririty ;1

— Task Resources:
Tazk requires Ledbar [
Tazk requires Codec Audio Chip [only once available] [

Tazk requires R5232 Interface [only once availablg] [

— Scheduling Information:

Tazk Slat: !Both Slots possible

2
Abbrechen |

Figure 5.2: The ’Add New Task’-Window

5.1.2 The Task-Pool and The Scheduler/Resource-Manager

Basically, the Task-Pool consists of a linked list of available Tasks. It is subdivided
into two queues: One High-Priority queue and one Normal-Priority queue. Inside
the queue, the tasks are maintained in a double-linked list of Task objects (see 5.2).
There are two reasons for which the scheduler is invoked: First, one of the running
tasks has finished its work and, second, the user wants to download a new task. The
second case merely invokes the Resource-Manager, but since the Resource-Manager
and the scheduler have a narrow relationship they are considered the same in this
context.

5.1.2.1 The Scheduler

The scheduler is invoked prior to downloading a new task onto the FPGA. It chooses
one task of the Task-Pool for downloading (in the case of automatic scheduling)
and sends it to the FPGA or, in the case of a user action, checks whether resource-
conflicts may occur and if not, downloads the chosen task onto the chip. Basically,
the scheduler performs the following actions:

1. First, it checks if the left task slot is empty. If so, it sets a flag to indicate that
a new task may be downloaded. If the left task_slot is not empty, the scheduler
checks the state of the left task and if its status is TASK_FINISHED, sets

44 5 The Software of the OS-Frame

a flag to indicate that a new task could be downloaded. If the status is not
TASK_FINISHED, the left task_slot remains unaffected.

2. The same as in 1. for the right task_slot.

3. It selects the first TaskQueue for searching for new tasks (in the current
implementation the first queue is the HIGH_PRIORITY TaskQueue.

4. If the left task_slot has been chosen in 1. for receiving a new task, the scheduler
invokes the Resource-Manager that looks for a feasible task in the current
TaskQueue. If one has been found, this task is downloaded to the FPGA. If
no task has been selected, a second flag is set to indicate that the left task_slot
has not received a new task so far.

5. The same as in 4. for the right task_slot.

6. If both task_slots have received a new task or no more TaskQueues are avail-
able, the scheduler finishes its work. If one (or even both) task_slot(s) is not
satisfied, the scheduler chooses the next TaskQueue, in this case this is the
NORMAL_PRIORITY TaskQueue, and goes again to 4.

5.1.2.2 The Resource-Manager

The work the Resource-Manager has to do can be explained in the following way:
Imagine, the left task_slot contains a task that has some allocated resources. If the
right task_slot is to receive a new task, the resources of the left (running) task are
checked against the resources the right (waiting) task would allocate. If there results
any conflict, the task may not be downloaded onto the FPGA.

Currently, there are three resources that can be allocated by any task. These are
the 10-segment bargraph LED, the Audio Codec and the RS232 Interface. Table 5.1
shows where resource conflicts may occur: If the resource is declared Shared’, there
are no consequences when downloading the new task. Otherwise, if the resource is
declared 'Restricted’, the second task may not be downloaded since the resources
are explicitly assigned to one running task.

‘ Resource ‘ Mode ‘
10-segment bargraph LED Shared
Audio Codec Restricted
RS232 Interface Restricted

Table 5.1: The Resources on the FPGA

The 10-segment bargraph LED can be used by two tasks at the same time. Thus,
this resource is declared ’Shared’. Since the Audio Codec cannot process two serial
data streams at the same, this resource must be 'Restricted’. The RS232 Interface
is not allowed to be driven by two different sources at the same time and, thus, this
resource is 'Restricted’, too.

5.2 Implementation Details 45

5.2 Implementation Details

This section is intended to give a detailed overview of the implemented classes.
Basically, there are three classes that have been implemented during this thesis:
class Task, class TaskQueue and class TaskManager. Each of these classes is
going to be handled separately in this section.

5.2.1 Class Task

Each time a task enters the application, a class Task is allocated for this specific
task. This class contains all the information related to that certain task: The paths
of the bitfiles (one for the left task_slot and one for the right task slot), the name
of the task, the resources this task requires, its status Table 5.2 describes the
elements shown in the code excerpt below:

class Task

{
public:
Task() ;
virtual “Task();
Task(...);
bool operator==(Task b);
struct Resources {
bool ledbar;
bool codec;
bool rs232;
};
struct Resources TaskResources;
void setPriority(int);
int getPriorityQ);
void setStatus(int);
int getStatus();
void setPathLeft (char *);
void setPathRight (char *);
charx getPathLeft () ;
charx getPathRight () ;
void setName (char x);
charx getName () ;
Taskx next;
Tasks* prev;
bool reset;
bool enable;
bool loadable;
// the slot(s) the task can be loaded into
int slot;
private:

int priority;

46 5 The Software of the OS-Frame

int status;
char path_left[255];
char path_right [255];
char name [255] ;
bool check();
};
Field ‘ Description
reset Gives the initial value for the reset signal. This value is asserted
immediately after downloading the task.
enable Gives the initial value for the enable signal. This value is as-

serted immediately after downloading the task.

loadable This flag indicates whether the task can be downloaded or not.
slot This field indicates the possible slot(s) the task can be loaded
into. Possible values are: BOTH_SLOTS, LEFT_SLOT and
RIGHT_SLOT.

priority This value holds the priority of the task and defines in
which TaskQueue this task is enqueued. Possible values are:
HIGH_PRIORITY and NORMAL_PRIORITY.

status This integer stores the current status of the task. Possible values
are: TASK_WAITING (for being scheduled), TASK_READY
(to be scheduled), TASK_RUNNING and TASK_FINISHED.
path_left This string holds the path of the bitfile for the left task_slot.
path_right | This string holds the path of the bitfile for the right task slot.
name This string identifies the task by its name.

Table 5.2: The fields of class Task

There are a set of functions provided by this class Task, too. These functions
are used the alter the information (or fields) of the current task. For example,
SetStatus alters the status value of the current task.

There are two pointers inside the class: next and prev. These pointers are used
to implement a double-linked list, called a TaskQueue (see next subsection).

5.2.2 Class TaskQueue

As mentioned above, the application maintains a Task-Pool where all available

task are put into. This Task-Pool itself consists of one or more TaskQueues with

different priorities. In the current application, two TaskQueues are supported, one
HIGH_PRIORITY and one NORMAL_PRIORITY queue. Tasks that have a HIGH_PRIORITY
are enqueued into the first TaskQueue and tasks with a lower, or 'normal’, priority

are enqueued in the latter one. The code inserted below shows the API of the class
TaskQueue:

5.2 Implementation Details 47

class TaskQueue

{
public:
TaskQueue() ;
virtual ~“TaskQueue();
int enqueue (Task *);
Tasks dequeue() ;
// for the scheduler
Tasks* getNextFeasibleTask(Task %, int);
void setPriority(int);
int getPriorityQ);
bool queueContains(Task *);
void deleteTaskFromQueue(Task %, bool);
Task* getTaskByName (char *) ;
int getCount () ;
// only for debugging purpose
void printQueue();
TaskQueue *prev, *next;
private:
bool checkFeasibility(Task *, Task %, int);
Taskx first;
Taskx* last;
int priority;
int count;
};
Field ‘ Description ‘

priority | This value is set to either set to HIGH_PRIORITY or NOR-

MAL_PRIORITY. When a task is to be enqueued into the cur-
rent queue, the task’s priority is compared against the priority
of the current queue. If this comparison fails, the task is not
enqueued and an error is reported.

count This values indicates the number of tasks that are enqueued in

the current queue.

This

Table 5.3: The fields of class TaskQueue

API provides some functions, that are used by the scheduler. These are

the following:

getNextFeasibleTask Imagine the following situation: The scheduler has been
invoked and it notices, that the task in the left slot has finished its work
and can be replaced by another one whereas the task in the right slot is still
running. The task in the right slot has some resources assigned to it. In this

48

5 The Software of the OS-Frame

example, getNextFeasibleTask takes the following two parameters: a pointer
to the task that is currently running in the right slot and an integer that
specifies the slot the feasible task should be loaded into (in this case, the
left slot). getNextFeasibleTask goes through the list of tasks and compares
the resources of each entry to the resources of the task in the right slot. If
one entry has been found that does not cause any resource conflict with the
currently running task in the right slot, this task is returned. If no task could
have been found, NULL is returned.

getTaskByName This function takes a string parameter which holds the name

of the task that should be looked for. This function goes through the list and
compares the name value of each entry to the parameter. If one of the entries
matches, the matching task is returned, otherwise, NULL is returned.

checkFeasibility This function takes three arguments: Two tasks and a integer

value which depicts a slot. The two tasks are checked against each other for
possible resource conflicts. If there is such a conflict, the function returns
FALSE (this indicates, that the tasks cannot run in parallel). Otherwise, if
no conflicts may occur, the slot value of the first task argument (see Table
5.2 is examined: If the task can be loaded into both slots (BOTH_SLOTS)
the function returns TRUE and everything is ok. Otherwise, if the slot value
of the first task parameter (either LEFT_SLOT or RIGHT_SLOT) does not
match the integer parameter, the function returns FALSE. This function is
invoked every time a user manually chooses a task to be downloaded (see
Fig. 5.1). For example, if the left task_slot is occupied by a task that requires
the Audio Codec, then the user is not allowed to choose a task for the right
task_slot that would require the same resource.

5.2.3 Class TaskManager

This API is something like the control-center of the Task-Pool. It maintains a variety
of TaskQueues, flags and states. This API implements the scheduling algorithm
described in 5.1.2.1. New tasks can be added to or removed from the Task-Pool via
this API. The code inserted below shows the definiton of the API and Table 5.4
describes the most important fields in detail:

class TaskManager

{

public:

TaskManager (void %, int);
virtual “TaskManager();

void addNewTask(...);
int requeueTask(Task *);
void delTask(Task x*);

void delTask(char *);

5.2 Implementation Details 49

void removeTaskFromQueue (Task x) ;
void schedule();
void reloadFinishedTasks();
void readTaskStates(int, int);
void loadTask(char *, int);
Tasks* searchTaskByName (char *);
private:
bool checkFeasibility(Task *x, Task %, int);
Tasksx running left;
Tasks* running right;
// the next queues are used for scheduling purpose
TaskQueuex ready;
TaskQueuex finished;
TaskQueuex waiting; // not used yet!!!
int nofReadyQueues;
// store the pointer to the application
voidsx app;
int PCI_Card_ID;
};
‘ Field ‘ Description ‘
running_left | This fields points to the task that is currently running in the
left task_slot. If no task is running inside the left slot, this value
is set to NULL.
running_right | This field points to the task that is currently running in the
right task_slot. Again, this value is set to NULL if no task is
currently running in the right slot.
ready This value points to the first TaskQueue that holds some
task with status TASK_READY. In the current version,
the pointer is set to the HIGH_PRIORITY TaskQueue.
The HIGH_PRIORITY TaskQueue then points to the
next TaskQueue, in this version the NORMAL_PRIORITY
TaskQueue. Thus, with this field, all TaskQueues that contain
TASK_READY tasks can be reached.
finished If one task has finished its work, the scheduler is invoked.
The scheduler then puts the finished task into the finished-
TaskQueue. Finished task are, thus, not put into the ready
queue immediately, they are first enqueued in the finished-
TaskQueue.
waiting This field is not used in the current version.

Table 5.4: The fields of class TaskManager

Again, this API provides a set of functions to manage the Task-Pool. The ap-

50 5 The Software of the OS-Frame

plication should take actions on the Task-Pool only via the TaskManager API. The
most important functions are described below:

addNewTask This function requires quite a lot of arguments. When the user
wants to add a new task to the Task-Pool, the window in Fig. 5.2 appears
and the user must specify the task’s properties. If the user then confirms
his values, addNewTask is invoked. This function creates a new class Task
object and sets the parameters specified by the user. Finally, the new task is
enqueued into the proper ready queue and can be scheduled.

schedule This function implements the scheduling algorithm described above (see
5.1.2.1).

reloadFinishedTasks This function empties the finished queue and the enqueues
the tasks in the corresponding ready queue again.

readTaskStates This function is invoked periodically by a timer. Since the PCI7200
I/O Card does not support interrupt handling, the task states must be read
manually. This function reads the states of both tasks and, when one task has
finished its work, changes the status of that task to TASK_FINISHED. Each
time, a task has finished its work and this is detected by readTaskStates, the
scheduler is invoked in order to replace the finished task by a new one.

loadTask This function takes two arguments: The first one is the name of the task
that should be loaded and the second one indicates the slot this task should
be loaded into. When the resources have been checked, this function starts
the partial reconfiguration of the FPGA (see 3) and loads the task.

5.2.4 Summary

The scheduler is implemented in one single function that follows the algorithm de-
picted in 5.1.2.1. The Resource-Manager is splitted into two functions: getNextFea-
sibleTask (invoked by the scheduler) implemented in the TaskQueue API and check-
Feasibility(. ..) implemented in the TaskManager API. This has been implemented
this way in order to distinct between the two operation modes of the application:
the automatic and manual scheduling. Automatic scheduling demands proper queue
handling and, thus, the Resource-Manager should be part of the queues, whereas

manual scheduling does not require the queueing mechanisms of the TaskManager
APIL.

5.3 Communication between Host-PC and Hardware: The PC-Interfagé

5.3 Communication between Host-PC and Hardware:
The PC-Interface

The PC-Interface has been implemented to establish the communication between
the Host-PC and the FPGA. It works as follows: The application sends a command
to the FPGA (and optional data) and the PC-Interface on the FPGA interprets this
command and performs the desired action. Currently, two commands are supported
(see 5.3.2. The next subsection describes the in- and outputs and their specific
meaning.

5.3.1 The In- and Outputs of the PC-Interface

First, let’s have a look at the Inputs and Outputs of the PC-Interface. Fig. 5.3
depicts the inputs (on the left hand) and outputs (on the right hand). The meaning
of each signal is described in detail in table 5.5.

— fpga_t0 fin fpga 10 en —
— fpga_t1_fin fpga t0 rst —
— pc_clk_in fpga 11 _en ——
— pc_data_in fpga t1 rst —
— pc_read_en pc_data out —
— pc_write_en reset reader ——

Figure 5.3: The Inputs (on the left hand) and Outputs (on the right hand) of the
PC-Interface

The PC-Interface consists of six inputs and six outputs. The inputs fpga_t0_fin
and fpga_t1_fin come from the tasks and are, thus, internal signals (the t_finished

52 5 The Software of the OS-Frame

‘ Signal ‘ Description ‘
fpga_t0_fin | This input indicates whether the task in the left
task_slot has finished its work or not.

fpga_t1_fin | This input indicates whether the task in the right
task_slot has finished its work or not.

pc_clk_in | Thisis the Master Clock of the PC-Interface. Each data
transmission is synchronized to this clock. This signal
is generated by the Host-PC.

pc_data_in | This is the data line from the Host-PC to the FPGA.
All data is transmitted serially and synchronous to the
Master Clock.

pc_read_en | Read-Enable is asserted high by the Host-PC, when
data is read from the Host-PC.

pc_write_en | Write-Enable is asserted high by the Host-PC, when
data is written from the Host-PC to the FPGA.
fpga_tO_en | This is the enable signal of the STT for task left.
fpga_tO_rst | This is the reset signal of the STI for task left.
fpga_tl_en | This is the enable signal of the STI for task right.
fpga_t1_rst | This is the reset signal of the STI for task right.
pc_data_out | This is data from the FPGA to the Host-PC. All data
is transitted serially and synchronous to the Master
Clock.

reset_reader | This signal is described later in this text.

Table 5.5: The Inputs and Outputs of the PC-Interface

signal of the left task is connected to fpga_tO_fin and the t_finished signal of the
right task is connected to fpga_t1_fin). The following signals come from the Host-
PC: pc_clk_in, pc_data_in, pc_read_en and pc_write_en. Table 5.6 shows this inputs
signals and their corresponding FPGA-PADs.

‘ Signal ‘ FPGA Pin ‘ Expansion Header Pin ‘

pc_clk_in 86 D12 (right)
pc_data_in 93 D14 (right)
pc_read_en 209 D6 (left)

pc_write_en 87 D13 (right)

Table 5.6: The inputs of the PC-Interface

The six outputs are divided into external and internal signals, too. There’s only
one external signal, namely pc_data_out. Table 5.7 shows the PIN assignment for
this external signal. The other outputs are internal signals. The signals fpga_tO_en,
fpga_tO_rst, fpga_tl_en and fpga_t1 rst satisfy the STI in the meaning that they
deliver the tasks with the control signals t_enable and t_reset (t0 corresponds to

5.3 Communication between Host-PC and Hardware: The PC-Interfasad

the left task and t1 corresponds to the right task).

‘ Signal ‘ FPGA Pin ‘ Expansion Header Pin ‘
| pe_data_out | 94 \ D15 (right) |

Table 5.7: The output of the PC-Interface

5.3.2 The Control Commands

The current version of the PC-Interface supports two commands: First, a ’Config’
command and, second, a 'ResetReader’ command. A command consists of 8-bit
wide code. The codes for the two supported commands are depicted in table 5.8.

‘ Command ‘ 8-bit Code ‘

Config 00000001
ResetReader 00000010

Table 5.8: The supported commands and their corresponding 8-bit Code

5.3.2.1 The Config’ Command

The 'Config’ command has been implemented to set the values for the control
signals, t_enable and t_reset, of the tasks. A new task-configuration is written to
the FPGA in the following way:

1. Assert pc_write_en high prior to a rising clock edge of the pc_clk_in.

2. At each following active clock edge, one bit is read. Note: The first bit is
already read when the pc_write_en signal is asserted high.

3. When the command code 00000001 is read, write the task-configuration bits
to the FPGA (Note: pc_write_en remains high.

4. When 8 bits are read, de-assert pc_write_en. After an additional clock cycle,
the new task-configuration is passed to the internal circuitry of the OS-Frame
and the tasks obtain the new configuration.

Fig. 5.4 shows the bitstream that has to be written sequentially to the FPGA
in order to change the task-configuration. The outputs fpga_tO_en, fpga t0_rst,
fpga_tl_en and fpga t1_rst are then set corresponding to the configuration bits
of the bitstream. Table 5.9 shows how the control signals are generated out of the
configuration bits of the bitstream.

The Enable control signals are assigned immediately, whereas the Reset control
signals are generated out of two configuration bits. The Reset control signal is an

54 5 The Software of the OS-Frame

Global Task left Task left Taskright ~ Task right

Reset ResFt Enable Res?t Enable

olofojolalolofn].. 1. . [XIXIX]

—>
Configuration bits

Figure 5.4: The Structure of a "Config’ Command

| Control Signal | Generation |
fpga_tO_en "Task left Enable”
fpga_tO_rst "Global Reset” AND "Task left Reset”
fpga_tl_en "Task right Enable”
fpga_t1_rst "Global Reset” AND "Task right Reset”

Table 5.9: Generation of the Control Signals out of the configuration bits

asynchronous, active low reset. Thus, both configuration bits, Global Reset and
Task left /right Reset must be ’1” in order the de-assert the Reset control signal
(that’s why the corresponding configuration bits are ANDed).

Fig. 5.5 shows a ’Config’ command sequence. As one can see, the first bit is
written at the same time the pc_write_en signal is asserted high (it is ’1’, since the
bits must be written in the reverse order, that means LSB first). Then, seven '0’s
follow and after the command header, the configuration bits follow (again 8 bits,
however the last 3 bits are unused). Then, pc_write_en is de-asserted and with the
last clock cycle, the new configuration is published to the FPGA circuitry.
podkin LT a 3 4 5 3 & B 9 10
pe_write_en 3> : . .

0 i | | |
pe_read_en = |b | | | | | | | | |
pe data in = |

Figure 5.5: A typical ’Config’ command sequence

5.3.2.2 The 'ResetReader’ Command

The second command that is supported by the PC-Interface is the 'ResetReader’
command. When one of the tasks finishes its work, it publishes this by asserting
high the t_finished control signal of the STI. When the PC-Interface detects a high
finished signal, it informs the Host-PC about the new situation with the pc_event
signal. The Host-PC then reads both task states and, thus, finds out which task
has finished its work. The reading of the task states is done in the following way:

5.4 Summary 55

1. Assert pc_read_en high.

2. Read one bit at each active clock edge of the pc_clk_in Master Clock. This
happens twice, once for the t_finished signal of task left and once for the
t_finished signal of task right.

3. De-assert pc_read_en.

Fig. 5.6 depicts the header for the 'ResetReader’ command. As shown in table
5.8, this command consists of an 8-bit wide code: 00000010. Fig. 5.7 shows the
timing diagram for this command: First, pc_write_en is asserted high and the first
bit of the command code is applied. Then, for the next seven clock cycles, each
bit is read serially. Then, after reading the 8th bit, pc_write_en is de-asserted and
as the result of this command, the reset_reader output of the PC-Interface goes
high. The last, 9th, clock cycle finishes the 'ResetReader’ command and pulls the
reset_reader ouptut down again.

0lofojolalaf1]0]

Figure 5.6: The Structure of the 'ResetReader’ command Header

peclk in L|fT 2 3 q 5 6 7 B 9 0\ fi1 2
pewiteen B0 A 1 T 1 1 |
pe_read en = [p 1 1 | 1 Il 1 1 | | 1 |
pe_datain = [[b | I B |

Figure 5.7: The Timing-Diagram for the 'ResetReader’ Command

The reset_reader output must be high for one clock cycle (from the 8th to th
9th) in order to reset the pc_event signal that has previously informed the Host-PC
about the finishing of a task. This must be done each time a task finishes its work.
If this was not done immediately, no other events could be traced and this would
result in serious functional bugs.

5.4 Summary

This chapter has described the software that has been written for the OS-Frame.
Furthermore, the in- and outputs of the PC-Interface as well as the supported
commands have been introduced.

Chapter 6

The Modular Design Flow

This chapter covers a special VHDL/Verilog design flow, called Modular Design.
This design flow has some advantages over the common XST VHDL/Verilog design
flow: Modular Design provides independent work to the developers of a group.
Each programmer can develop his module independent from other developers, and,
in the end of the design phasis, the different modules can be merged into one,
full design which provides the desired functionality. Furthermore, Modular Design
offers a quite simple way to make a module partially reconfigurable and that’s
the main reason, why we’ve chosen this special design flow. The first section covers
Modular Design Entry and Synthesis, the second section deals with Modular Design
Implementation, the third section introduces the specialities one has to take into
account when programming modules for partial reconfiguration, the last section
provides a cookbook for this Design Flow illustrated with an example.

6.1 Modular Design Entry and Synthesis

Again, imagine a group of developers who want to build a hardware system that
provides a certain functionality. This system can now be divided into several pieces,
called 'modules’, and then be merged into one FPGA design. Each developer can
independentely work on ’his’ module without affecting the work of other members
of the team. In the beginning of the design flow, the team leader defines a top
level design. This top level design specifies the in- and outputs of the whole system,
the number of modules the system is seperated into (including the interfaces of
the different modules) and the way these modules are interconnected. Modules are
instantiated as 'black boxes’ defined by their interface.

Then, the developers create the modules by using either VHDL or Verilog and
synthesize their code to obtain a netlist. The netlist of each module is needed for
the further Modular Design flow steps.

58 6 The Modular Design Flow

6.2 Modular Design Implementation

Modular Design Implementation includes three steps which are described in this
section. The first step is called Initial Budgeting Phase (6.2.1), Active Module
Implementation (6.2.2) and Assembly Phase (6.2.3). At the end of the last phase,
a bitstream which can be used to program the FPGA is generated.

6.2.1 Initial Budgeting Phase

In this phase, the team leader has to do the following work:
e Position all global logic

e Size and position each module

e Position the input and output ports

]

|

i B B B
m U U U
- S S S
| M M M
A A A
M C C C
= R R R
L O 0O 0O
| S S S

S

|

Figure 6.1: The Initial Budgeting Phase

.T I

Global logic is implemented in the top-level HDL file and should, hence, be
positioned in the global User Constraints File. The size and the position of each
module are parts of the top-level User Constraints File, as well. The input and
output ports are 'glued’ together with PAD’s in the top-level .ucf file, again.

Having synthesized the top-level logic, this netlist has to be translated into a
Xilinx file format using the following command:

ngdbuild -modular initial design_name.ngc

6.2 Modular Design Implementation 59

The files, that should be in the directory to perform this translation, are the
following: a netlist (either an EDIF netlist or a NGC netlist) and the top-level
User Constraints File which contains the positions of all global logic, the positions
and sizes of the modules and the PIN assignments. See Fig. 6.2 for a sample User
Constraints File containing an example of a module positioning and sizing and a
PIN assignment.

— module positioning

INST "task_left_inst" AREA_GROUP = "task_left";

AREA_GROUP "task_left" RANGE = "CLB_R1C9:CLB_R56C36";

AREA_GROUP "task_left" ROUTE_AREA = RECONFIG DISALLOW_BOUNDARY_CROSSING RECONFIG_MODE;

... — position all modules
— the positions of all busmacros

INST "bm_task_left_inst0" LOC = "TBUF_R52C5.0";
INST "bm_task_left_inst1" LOC = "TBUF_R53C5.0";
INST "bm_task_left_inst2" LOC = "TBUF_R54C5.0";
INST "bm_task_left_inst3" LOC = "TBUF_R55C5.0";

INST "bm_task_left_inst4" LOC = "TBUF_R56C5.0";

... — other busmacros
— PIN assignment

NET "rs232_tx" LOC = "P144",
NET "rs232_rx" LOC = "P141";

... — all PIN assignments

Figure 6.2: Sample User Constraints File (excerpt)

After issuing the command mentioned above, the Initial Budgeting Phase is
finished and the team can start with the next phase called Active Module Imple-
mentation.

6.2.2 Active Module Implementation

During this phase, the developers implement the top-level design with only the ”ac-
tive” module expanded. Active refers to the module the teams is currently working
on. There are some files needed to perform Active Module Implementation: The
netlist (either EDIF netlist or NGC netlist) of the active module and the top-level
User Constraints File!. To translate your active module, issue the following com-
mand:

ngdbuild -modular module -active module_name
top_level_design_directory_path/design_name.ngd

Tn the Xilinx Development System Reference Guide, see [6], it is recommended that the top-
level UCF is renamend from top-level.uct into module-name.ucf, but we’ve figured out, that the
translation works without renaming the UCF, too. In the context of this report, renaming the UCF
is not applied and the showns commands are changed accordingly.

60 6 The Modular Design Flow

—

Partial Glto
Reconfigurable

Recd Logic

Fixed
Logic

Fixed
Logic

Figure 6.3: The Active Module Implementation Phase

The next step one has to perform is to issue the next command. This command
maps the logic of the top-level design with the active module expanded:

map design_name.ngd

The mapped design is stored in the file called design_name.ncd. The next step
the developers have to do is placing and routing the design. This is done by issuing
the following command:

par -w design name.ncd design_name_routed.ncd

The target file is stored in design_name_routed.ncd and, hence, does not over-
write the mapped design. The -w option ensures that any previous version of the
design_name_routed.ncd are replaced by the new design.

Running the TRACE command on the implemented design verifies whether the
top-level timing constraints are met or not. Issue the following command:

trce design_name_routed.ncd

As a last step, the implemented module file has to be published to centrally
local PIMs directory set up by the team leader:

6.2 Modular Design Implementation 61

pimcreate pim_directory_path -ncd design_name_routed.ncd

This command copies the implemented module files (NGO, NGM and NCD)
into the specified PIMs directory. The PIMs directory is used for Assembly Phase
of the Modular Design Flow. The Assembly Phase merges all active modules into
one final design which can be used to generate a bitstream. More details on this
Assembly Phase are introduced during the next subsection.

6.2.3 Assembling the Modules

S

B B B
N U U U B
= S S S —
H II.:olxge|: '\A/l Reco':;irgi;lﬂ:able M RecoPr::irSS:able M Eg(e_d H
Logic A Logic A 9ic
N C C C I
m R R R B
L O O O H
] S S S |

L W

Figure 6.4: The Assembly Phase

In this last phase of the Modular Design Flow, the team leader assembles the
previously implemented modules into one design. To do so, one has to change to the
top-level design directory (/top/assemble) and, again, translate the whole design
with the following command:

ngdbuild -modular assemble -pimpath pim_directory_path
design_name.ngd

Ngdbuild generates and NGD file from the top-level UCF file (must be in this

directory, too), the top-level design’s NGD file and each PIM’s NGD file. The next
step, the team leader has to perform is to map the logic of the full design:

map design_name.ngd

Then, the whole design must be placed and routed by issuing the following
command:

62 6 The Modular Design Flow

par -w design_name.ncd design_name_routed.ncd

The are no Modular Design specific options required, since the information is
encoded in each PIM’s NCD file. To chech the timing constraint (if applied), the
team leader has to invoke the TRACE command:

trce design name_routed.ncd

Then, implementation is finished and the design is ready to be translated into
a Virtex conform bitstream which then can be downloaded to the device. The
bitstream is generated by issuing the following command:

bitgen -f bitgen.ut design_name_routed.ncd

This command needs some special options that are written inside bitgen.ut. Fig.
6.5 shows the options file we’ve used for the OS-Frame.

3*+%

-g ReadBack

-g DebugBitstream:No
-g ConfigRate:4

-g CclkPin:PullUp

-g MOPin:PullUp

-g M1Pin:PullUp

-g M2Pin:PullUp

-g ProgPin:PullUp

-g DonePin:PullUp

-g DriveDone:No

-g PowerdownPin:PullUp
-g TckPin:PullUp

-g TdiPin:PullUp

-g TdoPin:PullNone

-g TmsPin:PullUp

-g UnusedPin:PullDown
-g UserlD:0xFFFFFFFF
-g StartUpClk:Cclk

-g DONE_cycle:4

-g GTS_cycle:5

-g GWE_cycle:6

-g GSR_cycle:6

-g LCK_cycle:NoWait
-g Security:None

-g Persist:Yes

-g DonePipe:No

-g Binary:no

Figure 6.5: Options file for the OS-Frame

6.3 Modules for Partial Reconfiguration

This section shows the specialities the programmer has to account for. Otherwise,
Module Implementation will fail:

6.4 Modular Design: A Cookbook 63

Module Width should always be n x 4 (this is because of the BusMacro) CLBs
wide. The size of the module is defined by the AREA_GROUP constraint
specified in the User Constraints File.

Module Height Since the smallest configuration unit is the frame and frames
always extend the full height of the device, all modules should extend the full
height of the device, too. Again, this is specified in the User Constraints File.

I0Bs The I0Bs on the top and the bottom are part of the module. All adjacent
IOBs are reconfigured when a module is downloaded.

These are the most important guidelines that always should be followed in order
to obtain a working circuitry. The first two points show that the area that is to be
reconfigured must be a rectangular with one side being n x 4 CLBs long and the
the other side extending the full height of the device.

6.4 Modular Design: A Cookbook

This section is intended to provide a cookbook for the Modular Design Flow. With
the steps below, modules for partial reconfiguration can be obtained (NOTE: "Nor-
mal” modules can be implemented in the same way, however, the commands are
slightly different.?).

6.4.1 Preparations

Before starting with Modular Design Entry and Synthesis (see above), the directory
structure depicted in Fig. 6.6 should be created.

hdl This directory contains all source code (in this case VHDL code).
ise This directory contains the project files (ISE project) of the top level logic.
modules This directory only contains sub-directories, one per module.

pims This directory contains the files required for assembling the full design. pim-
create automatically creates the sub-directories and copies the recommended
files of each module in its corresponding sub-directory.

top This directory, again, only contains two sub-directories called initial and as-
semble. The ’initial’ sub-directory is used for the Initial Budgeting and con-
tains the top-level files required for the translation (the top-level.ngc and the
top-level.ucf User Constraints File). The ’assemble’ sub-directory contains
the same files as the ’initial’ sub-directory.

2The standard design flow is depicted in the "Development System Reference Guide-ISE 5”
provided by XILINX®

64 6 The Modular Design Flow

=l _'-] WO, 2
-] hdl
+ J isE
[=] _| rodules
-] os_left
-] os_middle
-] os_right
-] task_left
1+ kask_right
_| pims
=11 tap
i] assemble
- initial

* [

Figure 6.6: The recommended directory structure

6.4.2 Example Flow: The Initial Budgeting, Active Module Imple-
mentation and the Assembling Phases

As an example, we take two modules called module_1 and module_2 and the top-
level design called top. Fig. 6.7 shows the resulting directory structure.

The ’hdl’ directory contains the following files: module_1.vhd, module_2.vhd and
top.vhd. These are the source code files. The ’ise’ directory contains the XILINX
ISE project called top. The next step is the synthesis of the top-level design. This
top-level design contains all global logic and two component instantiations, called
module_1_inst and module_2_inst. These two modules communicate with each other.
As depicted in chapter 4, to guarantee the communication the BusMacro has to
be used. In this example, there is one BusMacro required for the communication
between the modules. Fig. 6.8 shows the User Constraints File for this example. It
contains the positions and sizes of the modules, the BusMacro location and a few
PIN assignments.

The modules are both 16 CLBs wide and extend the full height of the Virtex
XCV800 FPGA (56 rows). The BusMacro is placed in the middle of the modules.
Since the BusMacro requires 8§ TBUFs while four of them belong to the left module
and four of them belong to the right module, and the location of the BusMacro is
specified by the position of the leftmost TBUF, we have to substract 4 (because of
the four TBUF's belonging to the left module) of the right frontier of the left module
(in this example, the right frontier is the 16th CLB column) and this calculates
to 13 (16 included). Thus, the TBUF column is the 13th. The row needn’t be
calculated, it can be freely chosen, for example 5. Thus, the location is specified by

6.4 Modular Design: A Cookbook 65

=143 ModDesignExample
] hdl
;l ise
=] modules
] miodule 1
] module_Z
j pims
=] tep
] assemble
_ | initial

Figure 6.7: The recommended directory structure for the example

— The sample User Constraints File

— Size and positions of the modules

INST “module_1_inst” AREA_GROUP = “module_1_group”;

AREA_GROUP “module_1_group” RANGE = “CLB_R1C1:CLB_R56C16” ;

AREA_GROUP “module_1_group” ROUTE_AREA = RECONFIG DISALLOW_BOUNDARY_CROSSING RECONFIG_MODE ;

INST “module_2_inst” AREA_GROUP = “module_2_group” ;
AREA_GROUP “module_2_group” RANGE = “CLB_R1C17:CLB_R56C32" ;
AREA_GROUP “module_2_group” ROUTE_AREA = RECONFIG DISALLOW_BOUNDARY_CROSSING RECONFIG_MODE ;

— BusMacro location
INST “bus_macro_inst” LOC = “TBUF_R5C13.0”;

— PIN assignment
NET “sample_signal” LOC = “Pxxx” ;

Figure 6.8: The User Constraints File for the Example

TBUF_R5C13.0 (the .0 comes because of the two slices, and two TBUFs, a CLB
consists of. .0 chooses the left TBUF).

When the top-level design is synthesized, the source code files of the modules
mustn’t be included in the project. This has the effect, that the components, or
modules, are treated as black boxes and remain unexpanded. Having synthesized
the top-level design, the top.ngc has to be copied in the /top/initial directory. With
this .ngc file, the User Constraints File top.ucf and the BusMacro file bm_4b.nmc
(provided on the XILINX® homepage) the translation of the top-level design can
be done with the following command:

ngdbuild -p xcv800-hq240-5 -modular initial top.ngc

By issueing this command, the Initial Budgeting Phase is complete. The next
phase is the Active Module Implementation. First, copy top.ucf and bm_4b.nmc
into both module sub-directories. Furthermore, the options file bitgen_par.ut de-
picted in Fig. 6.5 must be copied into each sub-directory. Then, both modules have

66 6 The Modular Design Flow

to be synthesized seperately and the resulting two files module_1.ngc and mod-
ule_2.ngc must be copied into their appropriate module sub-directory. Then, to
implement the module, the following command sequence has to be issued (NOTE:
The implementation of module_2 is done in the same way):

ngdbuild -p xcv800-hq240-5 -modular module -active module_1
..\..\top\initial\top.ngc

map -pr b top.ngd -o top_map.ncd top.pcf

par -w -0l 5 -n 1 -s 1 top_map.ncd mppr.dir top.pcf

copy mppr.dir\5_5_1.ncd top.ncd

bitgen -d -f bitgen_par.ut -g ActiveReconfig:yes top.ncd

trce top.ncd top.pcf

pimcreate -ncd top.ncd -ngm top_map.ngm ..\..\pims

Having done this, the Active Module Implementation phase is finished. The
bitfiles for partial reconfiguration are in the modules’ sub-directories and called
top.bit. They can now be renamed into a more appropriate one. Thus, the last
step, the Assembly phase, can take place. To do so, first copy the following files
into the /top/assemble directory: top.ngc, top.ucf, bm_jb.nmec and bitgen_par.ut.
Having copied these files, the following command sequence must be performed:

ngdbuild -p xcv800-hq240-5 -modular assemble
-pimpath ..\..\pims top.ngc

map -pr b top.ngd -o top_map.ncd top.pcf

par -w top_map.ncd top.ncd top.pcf

bitgen -f bitgen_par.ut top.ncd

trce top.ncd top.pcf

When these commands have been worked through, the top-level bitfile is created
and ready to be downloaded on the device. The bitfile is called top.bit and for a
Virtex XCV800 about 576 KBytes big, whereas the bitfiles of the modules are
considerably smaller (about 50-100 KBytes, depending on the size of the module).

Chapter 7

The Testbed, Conclusions and
Related Work

This chapter gives a summary of the achieved goals. The first section shows how
the Host-PC and the XESS Board were interconnected during the tests and the
second section draws some conclusions.

7.1 The Testbed

Fig. 7.1 depicts the testbed that has been used during this thesis. First, there’s the
Host-PC with the running application and, second, there’s the XESS Prototyping
Board (see chapter 2). The Host-PC and the XESS Board are connected to each
other. The PCI7200 I/O Card provides the main in- and outputs on the PC’s side:
the Parallel Port of the XESS Board and the Controlling Signals to the Expansion
Headers are feeded with signals coming from (or going to) this PCI7200 I/O Card.
The serial port of the Host-PC is connected to the serial port of the XESS Board
directly (directly means, that these signals do not pass the PCI7200 I/O Interface).

7.2 Conclusions

With the application described in chapter 5, the OS-Frame and the Tasks (described
in chapter 4) the tests could have begun. The tests have revealed that the applica-
tion runs stable, that means the software has never crashed. Furthermore, the two
modes (manual and automatic scheduling) do their corresponding work properly.
This implies that the Resource-Manager detects resource-conflicts whenever they
occur and handles them properly.

The main goal of this thesis was to implement and test a Hardware OS-Frame
and this has been reached. This thesis shows that it is possible to implement a

68 7 The Testbed, Conclusions and Related Work

The controlling signals: B
pc_read_en, pc_event I

The controlling signals:
pc_clk, pc_write_en,
pc_data_in, pc_data_out

Figure 7.1: The Testbed

general platform for Hardware Tasks when accepting some restrictions. The restric-
tions come from the XESS Board and the limited resources such an FPGA provides.
With the introduction of the Standard Task Interface (STI), task programmers are
bound to the in- and output limitations this STI brings along.

7.3 Related Work

The current OS-Frame only supports stand-alone Tasks. That means, the Tasks can-
not communicate with each other. In further versions, this InterTask-Communication
should be implemented with FIFO-Buffers or similar techniques!. Apart from that,
InterTask-Communication can also be implemented in software, but this would only
satisfy non-time-critical communication.

By using a different Development Board, some severe restrictions that come
along when using the XESS Board could be eliminated (it would be best to develop
a board which is custom-made to the demands of such a Hardware OS-Frame).

!This has already been implemented in another diploma thesis (see [10]). They have exented
the STI and implemented the FIFO-Buffer approach

Acknowledgements

I would like to thank a couple of people who have made this diploma thesis possible.
First, I would like to thank my advisor Herbert Walder for the many hours of intro-
duction to this research topic, for the valuable discussions on the concepts and for
helping me with VHDL and C++ programming difficulties. Second, I would like to
thank Matthias Dyer for his additional help on VHDL coding. I would like to thank
Andres Erni and Stefan Reichmuth for the coorporation with the definition of the
STT and, last but not least, I would like to thank Michael Lerjen for his previous
work. He has implemented the main C++ routines for configuring the FPGA via
the PCI I/O card.

Finally, I would like to thank Prof. Dr. Lothar Thiele and the Computer Engi-
neering and Networks Laboratory (TIK) for providing the premises and materials
used during the thesis. Thank you all.

Bibliography

[1] XSV Board Manual, V1.1 9/21/2001

[2] Virtex FPGA Series Configuration and Readback, XILINX® XAPP138 v2.3,
October 4, 2000

[3] Virtex FPGA Series Configuration Architecture =~ User Guide,
XILINX® XAPP151 v1.5, September 27, 2000

[4] Two Flows for Partial Reconfiguration: Module Based or Small Bit Manipula-
tions, XILINX® XAPP290 v1.0, May 17, 2002

[5] Virtex™ 2.5 V Field Programmable Gate Arrays, XILINX® DS003-2, v2.7,
July 19, 2000

Development System Reference Guide, (© Copyright 1994-2002 Xilinx, Inc.
Michael Lerjen, Chris Zbinden: Reconfigurable Bluetooth/Ethernet Bridge

]
]
| Matthias Dyer et al: Partially Reconfigurable Cores for Xilinx Virtex
| Matthias Dyer, Marco Wirz: Reconfigurable System on an FPGA

]

Andres Erni, Stefan Reichmuth: Inter-Task-Communication in Reconfigurable
Operating Systems

