
Institut für
Technische Informatik und
Kommunikationsnetze

Adrian von Bidder

Key Exchange (KX) – A Next Generation
Protocol to Synchronise PGP Keyservers

16.7.2003
Semester Thesis SA-2003.04
Winter Term 2002/2003

Supervisor: Nathalie Weiler
Professor: Bernhard Plattner



2



Abstract

In the Internet, securing email has always been an important issue. Various standards and products
have been created. One of the most successful standards is OpenPGP, which uses public key
cryptography (RSA and others) and is implemented in systems like Pretty Good Privacy, GNU
Privacy Guard, Hushmail and others.

A well-known difficulty with the use of public key cryptographic systems is the verification and
distribution of the public keys. OpenPGP solves the problem of verifying the authenticity of a
public key by having users certify each others keys, building a “Web of Trust” by bundling these
key certificates with each users public key. Therefore, adding a new public key and updating an
existing public key (or replacing it by a new version) are the two most important operations of
any PGP public key repository.

To allow easy distribution of PGP public keys, the OpenPGP community established a network
of open access public keyservers, allowing users of OpenPGP software to freely exchange public
keys. The nodes of this keyserver network synchronise their database by exchanging new public
keys and key updates amongst each other, virtually building one global key database. At the
moment, this synchronisation is done with an inefficient and ineffective email based protocol.
This semester thesis describes the implementation of an alternative protocol – KX – based on
direct TCP connections between the keyservers and unambiguous identifiers for every key update
or new key. By dropping the dependency on a working mail system and using improved error
halndling mechanisms, KX is a lightweight alternative in terms of used network, disk and CPU
resource useage.
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Zusammenfassung

Die Sicherheit von Email-Kommunikation war im Internet schon immer wichtig, daher gab und
gibt es diverse Lsungen fr dieses Problem. Einer der am weitesten verbreitetsten Standards ist die
Public Key Verschlsselung mit OpenPGP, implementiert in Produkten wie PGP, GPG, Hushmail
etc.

Zwei der wichtigsten Probleme im Gebrauch von Public-Key Kryptosystemen sind die Ver-
teilung und die Verifikation der Public Keys. OpenPGP authentisiert die Public Keys, indem
jeder Benutzer die Keys von andern Benutzern berprft und unterzeichnet und so deren Echtheit
besttigt. Diese Unterschriften werden dann mit den Public Keys zusammen verteilt und bilden
ein “Web of Trust”. Das hinzufgen von neuen Public Keys und das ergnzen eines Public Keys um
neue Unterschriften sind daher die wichtigsten Operationen auf jedem Public Key Repository.

Um einfachen Zugang zu OpenPGP Public Keys zu ermglichen besteht ein Netzwerk von PGP
Public Key Servern im Internet, die gegenseitig neue Keys und Unterschriften austauschen und
so eine globale Public Key Datenbank darstellen. Das gegenwrtigverwendete Synchronisation-
sprotokoll zwischen diesen Servern ist recht ineffizient und soll durch das in dieser Semesterarbeit
vorgestellte Protokoll – KX – ersetzt werden. Die Email-basierte Kommunikation wird dabei durch
direkte TCP-Verbindungen zwischen den Keyservern abgelst, was bessere Fehlerbehandlung sowie
Einsparungen bei der CPU, Disk- und Netzwerkbelastung erlaubt.
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Preface

Computer security, and in particular email security and PGP (Pretty Good Privacy) have always
interested me. Writing a semester thesis on this topic was therefore quite the obvious thing to do,
especially when I met Nathalie Weiler and learned that she had been involved with running the
Swiss PGP keyserver for a time.

Shortly after I started working on this semester thesis in October 2002, Nathalie asked me if I
would present my work as a conference paper at the “IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises”1 (WETICE), so the main part of this
report is the paper we submitted for the workshop (which subsequently was accepted and which
I presented successfully at the conference in Linz, Austria). The appendices contain some more
detailed implementation notes which I couldn’t include in the WETICE paper because of space
constraints and because WETICE has too broad a scope for the audience to be interested in these
details.

Finally, I’d like to thank all the people who made this project possible. Of course, it is
impossible to list everybody by name, but I’d like to specifically mention Patrick Feisthammel,
Diana Senn, Marcel Waldvogel, Jason Harris and Richard Laager (no particular order). And of
course, I want to thank Prof. Bernhard Plattner and Dr. Nathalie Weiler for supervising me and
being infinitely patient regarding my rather relaxed attitude towards the original schedule for this
project.

1http://wetice.jpl.nasa.gov/wetice03/; in case this link is not valid: the conference proceedings will be archived
in the IEEE digital library at http://ieee.org.
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Abstract
In the Internet, securing email has always been an important

issue. Various standards and products have been created. One of
the most successful standards is OpenPGP [4], which uses public
key cryptography (RSA [13] and others) and is implemented in
systems like Pretty Good Privacy [15], GNU Privacy Guard [8],
Hushmail [1] and others.

A well-known difficulty with the use of public key crypto-
graphic systems is the verification and distribution of the public
keys. OpenPGP solves the problem of verifying the authenticity
of a public key by having users certify each others keys, building
a “Web of Trust” [5] by bundling these key certificates with each
users public key. Therefore, adding a new public key and updating
an existing public key (or replacing it by a new version) are the
two most important operations of any PGP public key repository.

To allow easy distribution of PGP public keys, the OpenPGP
community established a network of open access public keyservers
[7], allowing users of OpenPGP software to freely exchange pub-
lic keys. The nodes of this keyserver network synchronise their
database by exchanging new public keys and key updates amongst
each other, virtually building one global key database. At the mo-
ment, this synchronisation is done with an inefficient and ineffec-
tive email based protocol. This paper describes the implementation
of an alternative protocol – KX – on the popular pksd keyserver
[6], based on direct TCP connections between the keyservers and
unambiguous identifiers for every key update or new key. With the
dropping of the dependency on a working mail system and the im-
proved fault mechanisms, KX is a lightweight alternative in terms
of used network, disk and CPU resources.

Keywords: OpenPGP, Keyserver, Secure Synchronisation
Protocol, E-Mail Security.

1 Introduction
With the advent of protection mechanisms for e-mail

such as PGP (Pretty Good Privacy) [15] or S/MIME (Secure
Multipart Message Exchange) [12] based on public key cryp-
tography, a need arose for a method to exchange and dis-
tribute the necessary public keys. While S/MIME relies on
the existence of a public key infrastructure (PKI), PGP uses a
world wide distributed keyserver network: the public keys
are published on a keyserver, i.e. they are collected on a key-
server where they can be retrieved by the interested user. In
order to provide a useful service, the keyservers synchronise
their public key databases among themselves.

The synchronisation protocol has seen little evolution
over the last years since its development by Marc Hor-
rowitz. Basically, every new PGP public key or new signa-
ture on a PGP public key triggers a flooding of the infor-
mation through the keyserver network. Although new syn-
chronisation protocols using multicast [3, 14] or a whole new
approach to build a keyserver [9] have been proposed, the
authors did not succeed to get their solutions deployed in
the current keyserver network. The main reason was a reluc-
tance of the around thirty keyserver maintainers to switch to
whole new keyserver untested under normal operation. Ad-
ditionally, the lacking backward compatibility made it diffi-
cult to make it a convincing alternative. So, instead of get-
ting rid of the cumbersome, error prone original synchroni-
sation protocol, the maintainers stick to the old system.

In this paper, we present an alternative approach to a
better synchronisation protocol for the keyserver network.
Our Key Exchange KX achieves a significant reduction of the
flooding with less errors than the original protocol while
still sticking to the “old” keyserver software and network
structure. KX needs not be run by all keyservers, mak-
ing a smooth transition possible and guaranteeing back-
ward compatibility. Thus, we believe that KX will be easily
adopted into the current keyserver network – a belief con-
firmed by private communication with several keyserver
maintainers.

In the remainder of the paper we will first describe the
shortcomings of both the current keyserver software and the
synchronisation protocol used among the keyservers, and
we will discuss related work in Section 2. Section 3 details
the design of our protocol KX and Section 4 describes the
implementation. Finally, Section 5 compares KX to the exist-
ing protocol. We conclude with the further implementation
plan into the operational keyserver network in Section 6.

2 The Past and the Present
This section describes the various existing solutions for

exchanging OpenPGP public keys between keyservers.

2.1 Key Exchange by Email

The key propagation protocol defined by Marc Horowitz’
pksd keyserver software is the only one in widespread use
today ([6, 2]). The protocol synchronises the keyservers by
distributing key updates via email using a relatively simple
flooding algorithm:
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else stop

Figure 1. Flow of a key update (or new key) through pksd.

Every keyserver configuration contains a list of peers
that should receive a key update message (INCREMENTAL)
whenever a key changes or a new key is submitted (by a
user submission, or by an incoming key update message). To
avoid excessive redundancy, pksd places X-Keyserver-Sent
headers in the email messages, and does not resend a key
update to servers that were already listed in the incoming
message.

Because this protocol is currently in widespread use, its
problems are well known1:

Duplicates: Keyservers with many peers will often receive
the same update message over and over again, despite
the X-Keyserver-Sent header. While obviously only the
first message changes the key and causes further up-
date messages to be sent, every update message has
to be processed fully, a waste not only of network
bandwidth, but also of considerable CPU power. The
major problem is that mail delivery is quite resource
intensive in terms of process creation and disk I/O.
This is easily seen in Figure 1: the mail transport sys-
tem spawns a pks-mail.sh shell script for every
new message which writes it to a queue directory. The
pks-queue.sh script picks this message up and, us-
ing the pksdctl command, feeds it to the keyserver
process. Outgoing update messages are again pro-
cessed by the local mail system which usually writes
the message into a spool directory before sending it off
to the target mail system.

Unreliable transport: When an email fails to be delivered,
a delivery failure notification is sent back to the origi-
nator of the message. But as these reports are not stan-

1The pksd keyserver also has some other shortcomings, e.g. cor-
ruption of some keys in certain versions; these are not discussed
here.

dardised, it is very difficult to track which update mes-
sage failed. So, pksd does not use these error messages
at all and thus does not detect lost updates (due to key-
server, mail server or network outages). The result is a
divergence of the keyserver databases over time.

No flow control: The problematic error reporting of email
delivery failures is also the cause of pksd’s bad be-
haviour on network or server outages: pksd will con-
tinue to send email to dead (or temporarily offline) re-
mote servers, causing mail messages to pile up on in-
termediate mail servers. Once the remote server comes
online again, it is confronted with a flood of incoming
messages, causing load problems and usually requir-
ing manual intervention.

2.2 Using Multicast

The solutions proposed by Baumer [3] and Waldvogel,
Mohandas, Shi [14] use multicast to distribute key updates
and new keys in a more efficient manner. Baumers Binary
Keyserver Protocol was implemented as an addition to pksd
and used IP Multicast, while the Efficient Keyserver using
ALMI (EKA) is an independent keyserver implementation
and uses the application level multicast library ALMI [11].
The idea behind both proposals is that key updates should
be identified by a globally unique number, which is gener-
ated by combining a (globally unique) issuer id and a (local)
serial number. The state of a node thus consists of the high-
est serial number seen from each issuer.

In addition to the problems of unavailability of IP mul-
ticast in large parts of the Internet (a problem for BGP)
or the dependency on a Java environment and a relational
database system (as with EKA), both approaches suffer from
the need to track all other keyservers. Once keyservers be-
come very common, synchronising the server status re-
quires exchanging serial numbers of possibly thousands of



issuers, and a malicious attacker might be able to introduce
millions of bogus issuer IDs which would spread over the
whole network.

2.3 Set Reconciliation

The Synchronising Keyserver [9] uses a completely differ-
ent approach to the problem of synchronising keyservers.
Instead of solving the problem of reliably distributing new
keys and key updates, it uses a set reconciliation algorithm
[10] to synchronise the key databases directly, with commu-
nication costs being linear in the number of differences be-
tween the databases, independently of the database size.

SKS is actively developed, and some of its initial prob-
lems – such as the inability to synchronise with the email
based pksd keyserver network – have been solved or are
being solved.

Currently, the main problem with SKS is that it is very
new and not in widespread use, and therefore not as well
tested as the current pksd keyserver. Thus, the keyserver
maintainer are reluctant to change to SKS2.

Also, with its focus on reconciling whole databases, set-
ting up partial keyservers (like keyring.debian.org, carrying
only keys of Debian developers – it does not allow new keys
to be added, but it allows updates to existing keys) still re-
quire status information about the full database (this sta-
tus information is much smaller than the actual key data,
though.)

3 Our Solution
Our proposed protocol must, of course, solve the main

problems of the current email based scheme: (1) the high
processing cost of redundant update messages and (2) the
bad behaviour on errors. We do not address most issues that
can be attributed to implementation problems with the cur-
rent pksd, specifically the issues with the database code, as
this is out of the scope of this paper.

3.1 The Basic Idea

The fundamental idea of the proposed protocol is that
new key data is exchanged on the keyserver network in
two stages: first, the availability of a new key update3 is an-
nounced, and only in a second stage the actual key data is
distributed. Processing these announcement in the first step
is cheap in both communication and processing cost – just
check if a particular update has already been received. Only
in a second stage, the full update message with the key data
is transmitted and processed. The configuration of the key-
server network has not changed from the current protocol:
the list of neighbours is manually configured at each key-
server4.

2We believe that our approach will be given a better acceptance
in the community, because we “only” propose replacements for
malfunctioning parts in the keyserver and not a whole new design.
The past shows that none of the new designs [3, 14] were adopted
for similar reasons by the community.

3The terms key update or update message as used in this paper refer
to both a new key or an update to an existing key.

4The graph of the current keyserver network can be retrieved at
on http://www.rediris.es/keyserver/graph.en.html.

Since we focus on reliably distributing key updates,
as the current protocols [14, 3] do, a way to unambigu-
ously identify a key update is needed. We have shown in
Section 2.2 that using global version numbers with an issuer
ID is problematic in an open network like the keyserver net-
work. KX solves this problem by using a hash value over the
key data (we’ll discuss details in Section 4.2) to identify key
updates, so that – if the current keys in the key databases
are identical – the identical update will be generated regard-
less of the location of injection5. When key updates are an-
nounced, this hash value is used to identify each update
message. Additionally, the fingerprint of the affected key
is announced and each update is assigned a local sequence
number.

To keep track of key updates, it stores the highest se-
quence number of each neighbour to make sure that it hasn’t
missed an update, and – when new updates are announced
– requests updates with previously unseen hash values,
while ignoring those with hash values it has already seen.

Since this two step process is somewhat asynchronous
– after an update message has been announced, other key-
servers may want to retrieve it at any time – keyservers us-
ing KX are required to store the update message for at least
72h after the initial announcement (this value was chosen
arbitrarily, real world experiences may show that a smaller
value is sufficient, or that a bigger value is necessary.)

3.2 Protocol design

The core of KX consists of four basic messages, with in a
few additional messages (such as CLOSE and ERROR) being
specified but not discussed in this document. Likewise, the
exact syntax of the messages is not discussed here – the pro-
tocol specification will be contained in another document
which is yet to be published.

LIST requests a directory of available key updates (within
a specified range of sequence numbers) from the peer,
which responds by sending a corresponding IHAVE
message.

IHAVE announces the availability of one or multiple up-
date messages. Each update message is specified with
its sequence number, fingerprint of the affected key,
and the hash value over the whole message. Note that
IHAVE is used both as answer to a LIST request and
spontaneous to notify keyservers when a new update
is present.

GETUPDATE requests a specific update message, identi-
fied by its sequence number.

UPDATE delivers an update message as requested with
GETUPDATE. For easy debugging, key data is ex-
changed in ASCII armored form. If network bandwidth
proves to be an issue, a next protocol version might
want to switch to binary format.

The typical pattern of interaction between neighbours us-
ing KX is shown in Figure 2: When the keyserver is notified

5A mechanism to reconcile key databases in the cases where dif-
ferences have accumulated in the past is being thought about.
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Figure 2. Exchange of key updates with KX.

by a neighbour that a new key update is available, it looks
in its database of recently received key updates whether an
update with the same hash value has already been received.
If so, no further action is necessary. If the update is new,
a GETUPDATE message is sent to the neighbour who has
announced this update. In the current implementation, this
happens immediately. As keyservers are required to store
key updates for at least 72h, a keyserver can send this re-
quest at a later time, for example when the network load is
lower. When the UPDATE is received, the keyserver assigns
it a local sequence number, stores it in the update database
and announces it to all other neighbours. Of course, the up-
date is also merged into the key database of the keyserver.

Storing the incoming update directly into the update
database (instead of merging it into the key database first,
and regenerating the update from the results of the merge)
has the advantage that the key distribution mechanism does
not depend on particular features or a particular version
of the key merging code – for example, when keyservers
with support for photographic userids on public keys be-
come available, the photoid will be distributed in the key-
server network even when most keyservers cannot use this
data yet. The downside is, of course, that bogus data cre-
ated by some buggy keyserver implementation is propa-
gated through the whole network and not filtered at the first
hop.

Another type of interaction occurs on connection setup:
when a new connection between keyservers is established,
both keyservers spontaneously announce the highest avail-
able sequence number in an IHAVE message. If a keyserver
detects that it is missing some updates, it requests the di-
rectory of the missing updates with a LIST message, which
again gets answered by an IHAVE message. From this point,
processing is the same as above.

Interaction with the world outside of KX – with users
submitting new or updated keys, or with the legacy pksd
protocol – is shown in Figure 3. A update message is gener-
ated from the output of the key merger (this is the same mes-
sage that is sent out in the email based pksd protocol, then
stored in the update database and announced with IHAVE

update dbkey db

pksd
key update IHAVE

?

if new data

merge

else stop

Figure 3. Interaction of KX with legacy protocols.

messages to the other keyservers.

4 Implementation
KX has been implemented on top of Marc Horowitz’

pksd [6] – a project continued on Sourceforge [2]. The cur-
rent version (0.9.6) has been released in February 2003, with
frequent new releases correcting many long standing prob-
lems in the near future.

One aim with the design and implementation of KX has
been to avoid any additional dependencies on external li-
braries – this is the main reason why the protocol is a simple
line oriented text protocol and does not use a standardised
(and more generic) network protocol, for instance the XML
based SOAP protocol or the Network News Transport Pro-
tocol (NNTP), as has been suggested in discussion on the
pgp-keyserver-folk@flame.orgmailing list.

The implementation is entirely done within the one-
process model of pksd – no additional process is created,
and no multi threading is introduced. The two major build-
ing blocks are the update database and the algorithm for the
update hash. The third one is the state machine to handle
the protocol, which, in this implementation, is quite sim-
ple: all activities are carried out immediately, no batching
or scheduling of activities to times of low activity is being
done. This is purely a property of this implementation, and
does not result directly from the protocol specification.

4.1 Update Database

As the update database is relatively constant in size and
not really big (a few thousand update messages) but with
content that totally changes after approx. 72h, because old
entries are expired, a very simple design has been chosen:
each update message is stored in a plain file, with the asso-
ciated hash value as filename. Additionally, there is an index
file to allow access to the updates by the sequence number.
Expiry of old entries is done by a simple cron job that just
removes the files older than 72h.

The update database is accessed in the following ways as
messages come in:

� The processing of LIST messages needs read access by
sequence numbers.



� IHAVE messages result in a stat(2) system call, check-
ing if an update with a specific hash value (the file-
name of the update message) is already known in the
database.

� GETUPDATE messages cause an update message
(identified by its sequence number) to be read from its
file.

� An UPDATE message causes a new file to be written
and inserted into the index file with the next available
sequence number.

4.2 The Update Hash

The definition of an unambiguous hash value over an
OpenPGP public key is probably the single most important
detail in the specification of KX. At this point it is necessary
to delve into the format of the key data, as specified in [4].
The RFC specifies a partial order of key packets: primary
key and direct key signatures, then userids with their sig-
natures, and subkeys with their signatures at the end. An
order between signatures belonging to the same userid or
subkey, or between userids and between subkeys, is not de-
fined, though. So, for the purposes of hashing the key data,
the packets are ordered by directly comparing the binary
data of the key packets, without its length specifier. This re-
spects the constraints given by the RFC, a key with packets
ordered by this algorithm is still a valid OpenPGP key. The
length specifier is being left out because the same length can
be encoded in different ways – see sections 4.2.1 and 4.2.2
of [4]. Ordering by binary comparison (memcmp) has been
chosen because it’s efficient and does not require any pars-
ing of the data, and because the ordering has no significance
outside of KX, so there’s nothing to be gained by using a
more ‘sensible’ approach like ordering by keyid, time stamp,
or userid.

Because the current KX implementation does not change
an update message after it has been generated, the ordering
step could have been omitted altogether. But the goal was
to generate the same update hash if two updates contain
the same key packets, regardless of the state of the database
at the server issuing the update. This also allows KX im-
plementations in which update messages are not explicitly
stored outside the key database, but are regenerated on the
fly.

5 Evaluation
This section compares KX with the classical email based

key distribution method (referred to as the pksd protocol here
for lack of a better name). No benchmarking of other key
servers with their protocols (EKA [14], SKS [9] or BGP [3])
could be done, as these are not in widespread enough use
today that significant data could be gained.

5.1 CPU and Network Costs

The biggest performance gain between KX and the email
based protocol originates from the difference in the used
transport mechanisms: pksd sends key updates per email, and
this means that for every message a number of processes

and at least one TCP connection are created (as already in-
troduced in Figure 1). In KX, direct and persistent TCP con-
nections between the pksd processes are used – this means
that no process and at most one TCP connection (in the un-
likely event that the connection has broken down or timed
out) has to be created. Also, since no mailer is involved, disk
I/O from and to spool directories does not occur outside of
pksd.

Another problem with the pksd protocol is the number of
duplicated messages: An analysis of 10 days of the server log
files of wwwkeys.ch.pgp.net showed more than 40000 in-
coming ‘incremental’ key updates, but only 9000 of these
contained new key data and thus caused update messages
sent to the other key servers. In KX, we expect a similar ra-
tion between the IHAVE and UPDATE messages, the big
difference is that an IHAVE message is much cheaper to
process: the message itself is smaller, and the decision if a
GETUPDATE/UPDATE step is necessary does not require
much computation – with the current implementation, the
check if this update has already been seen is done by check-
ing if the corresponding file does exist.

5.2 Error behaviour

The mail based pksd protocol does simply not handle
transmission errors - email bounces are not handled, so
the keyservers do not notice lost key updates and the key
databases diverge over time. Also, when a server (or its In-
ternet connection) is down, its neighbours will continue to
send email and causing update messages to pile up on inter-
mediate mail servers, possibly resulting in mail server prob-
lems, and in any case causing high network and CPU load
spikes when the server comes back online.

The use of direct TCP connections between the key-
servers allows the implementation to detect these problems
easily. On most problems, our implementation of KX just
closes the connection. When the next update has to be an-
nounced, the connection will be reestablished, and during
the connection set up, the two servers will detect if any key
updates failed to transmit and request these again – there is
no retransmit mechanism; on the public keyserver network,
key updates happen frequently enough, so this should not
be a problem. On a private (corporate) keyserver network,
this part of the protocol implementation probably needs re-
examination. If a key update is not available anymore, the
administrator of the keyserver is notified (through the usual
syslog mechanism) and will have to take action manually,
either examinating the server log files on the sending server
or by using pksd’s LAST command (returns keys modified
in the last n days). As stated above, this should only happen
if a server has been unable to retrieve a key update for more
than 72h.

5.3 Security considerations

Currently, the KX protocol operates on unencrypted TCP
connections, and authentication is only done on the basis of
IP addresses, accepting only connections from configured,
i.e. known peers. So, our KX implementation is vulnerable



to IP spoofing attacks. While this could (and should) be cor-
rected (by using authenticated and encrypted connections,
with SSL for instance) in a future version of KX, we do not
regard this as a serious flaw, since the possible damage by
injection of malicious data is only minor6. Currently, in an IP
spoofing attack, a malicious attacker could inject arbitrary
IHAVE messages (with sequence numbers, update hashes
and key fingerprints) or arbitrary key update messages, and
suppress the circulation of a certain amount of upgrade mes-
sages:
(1) Injecting a very high sequence number appearing to come

from some keyserver K can cause the target keyserver
to ignore some key updates in some circumstances. In
most cases, however, when K announces the next regu-
lar update (with a low sequence number), the target key-
server will detect that the sequence number must have
wrapped around on the 31 bit boundary and will just re-
quest all available updates from K (as it has apparently
missed the updates between the spoofed, high sequence
number and the current one). As this can be done with
only a few small messages, it is not even a strong Denial
of Service attack - at most, all stored update messages
are transmitted in one batch, which could block a server
for a few minutes.

(2) An attack on keyservers by injecting arbitrary update data
is equally possible with todays email and web fron-
tends, and so it is not discussed here.

(3) By inserting a well designed and well timed UPDATE
message in a KX connection between two keyservers, an
attacker can suppress one update. If the attacker is in a po-
sition to do this for all connections leading to the target
keyserver, the update can be suppressed totally – but in
that case we must assume that the attacker is very close
to the keyserver and has total control over the network,
and could do much worse. If the attacker can do this
only on one connection, this attack will be harmless if
the target keyserver is directly connected to more than
one neighbour, as it will retrieve the same update from
a different neighbour.

While this section certainly is no formal analysis of the
security of the KX protocol and its implementation, we be-
lieve that the protocol should be robust enough for use in
the public keyserver network.

6 Conclusion
In this paper, we described a synchronisation protocol for

the popular PGP keyserver network. The current protocol
has some serious performance drawbacks resulting in a lack
of global sycnhronisation of the PGP public key database.
KX is a new design and implementation of an alternative
protocol for the popular pksd keyserver. It concentrates on
reliability and scalability and replaces the email based trans-
port mechanism by direct communication between the key-
servers through TCP connections. It uses a two stage mech-

6By minor we mean: restricted to only few updates or only few
keyservers. Of course, one single missed revocation certificate can
be disastrous to a key user, but it doesn’t affect the keyserver net-
work.

anism: first it announces the availability of new data, and
only in a second step, and only when necessary, is the actual
key data retrieved. By this approach, we could significantly
lessen the CPU, disk and network load caused by key syn-
chronisation.

The implementation is currently working, and we are
planning to (1) further test it, (2) integrate it with the of-
ficial pksd sources [2] and (3) have it actually used in the
public keyserver network, so the email based protocol can
finally be retired. Naturally, it will be important to maintain
the implementation as pksd evolves or new bugs are dis-
covered.
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Appendix A

The KX Protocol

Where the conference paper could only give a brief overview of the KX protocol messages, this
section will provide more details on what these messages actually look like on the network.

A.1 General Message Format

While the protocol uses two way communication between the keyservers, the communication is
completely asynchronous and can without problems be implemented on top of a packet oriented
transport layer. Also, the protocol specification itself does not require an error correcting, lossless
transport protocol, although the current implementation is only available on TCP.

Messages are human readable to ease debugging (encoding overhead is not a problem with
key updates, so a more compact binary message format does not buy any great advantage). All
messages are as self contained as possible, to minimize the state to be kept on the keyservers. The
general schema of a message is

<tag>

<command>

<zero or more lines of data>

.

with the usual CRLF sequence as line separator, and commands never having any arguments (on
the same line, that is). Tag is any sequence of 4 printable ASCII characters and is used to associate
responses to requests. Of course, tags have to be unique for each session (for connection oriented
transport mechanisms) or at least within a reasonable timeframe.

The data is also in ASCII form whenever possible (right now: always). For comands that
are interepreted as replies to previous requests, the first line of data is the tag of the associated
request.

A.2 The KX Protocol Messagers

As the four basic messages (LIST, IHAVE, GETUPDATE and UPDATE) are already described in the
WETICE paper, only the syntax of these messages is described here. More space is dedicated to
the HELO, ERROR and CLOSE messages.

A.2.1 LIST

Request a listing of available updates. Each data line is a sequence number or a range of sequence
numbers (<low>-<high>), potentially open-ended.

17



18 APPENDIX A. THE KX PROTOCOL

A.2.2 IHAVE

Is sent in answer to a LIST request (first data line is the tag of the LIST request) or spontaneously
(first data line is NOTIFY) when a new update becomes available. From the second data line:
<sequence number> <key fingerprint> <update hash> (but see the notes in the next chapter
about including the key fingerprint).

A.2.3 GETUPDATE

Data is one sequence number per line.

A.2.4 UPDATE

First line is the tag of the respecitve GETUPDATE message, second line is the update specification as
in the IHAVE command, third and subsequent lines contain the OpenPGP key material in ASCII
armored form.

A.2.5 HELO

The HELO message is used as a greeter and is sent from both ends of the connection as soon as the
connection is set up1. As soon as each end of the connection receives the peer’s HELO, an IHAVE

message is sent announcing the newest available key update.
The HELO message has one data line, the version of the protocol, which is set to 1.0 in this

specification.

A.2.6 ERROR

The ERROR message carries three data lines: the tag of the offending command (or NOTIFY if the
error was not caused by a command2), a numerical error code and in the third line a short human
readable error message.

In the current implementation, the following error codes are used:

500 Error code 500 is used when a generic error is encountered, where it is not expected that
a peer can handle the error condition sensibly anyway. Usually, closing and re-establishing
the connection is the only possible solution.

501 Problem handling this error When a previous error message could not be handled by the
recipient, this error is sent back. This will usually be followed immediately by a CLOSE
message and breaking the connection. Normally, error messages

551 Command sequence error At command startup, each participient in the cnnection expects
an HELO – IHAVE sequence from the other side. If this protocol is not followed, this error is
sent.

A.2.7 CLOSE

When one side of a KX communication wants to close down, it sends a CLOSE message without
any data, which is then answered by a CLOSE message of the other party with the tag of the first
message as the only data line, before the connection is effectively tore down.

Implementations may chose (as the current implementation does) not to send close messages
at all but to close the connection immediately, when the transport mechanism is able to deliver an
indication of when this is the case. In any case, an implementation must be prepared to receive
and correctly handle CLOSE messages.

1If the protocol is used in a connection-less setting, the sections regarding the HELO and CLOSE message will have
to be revised.

2This is currently not used
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A.3 Example Conversation

The following is an example message showing a connection set up between two keyservers. It
is assumed that the ‘right’ keyserver is up to date while the ‘left’ keyserver (sending everything
prepended with >) missed everything after the IHAVE message with the sequence number 40.
However, it recieved the actual update data of most missed IHAVEs from some other source and
thus only needs to retrieve the update 43 from on this connection.

Note, too, that for better readability the process is shown as a proper dialogue. In practice, the
two half-connections are completely independent, and the keyservers don’t wait until the remote
end has finished sending a message before sending its own message.

< 0001

< HELO

< 1.0

< .

> 100a

> HELO

> 1.0

> .

< 0002

< IHAVE

< NOTIFY

< 45 EFE396F418F58D65849428FC1438516892082481 59f02366fe4cb14d3af6cf4e01d2f998

< .

> 100b

> IHAVE

> NOTIFY

> 190 97FC36318F175FBA6CF28FEF33F1B866BE769BDF 34d6e61ce50208d01723cfa61965b0e4

> .

> 100c

> LIST

> 41-

> .

< 0003

< IHAVE

< 100c

< 41 3E200377663F6B09E474FDAE801568FC 9b4f7cbf22b6def1f8d579b969fd4d58

< 42 DCAF16D5BB56B970A8F9EC88E4CE6199D0980A99 762d242bf97d3e5e2f5a269e7b3c661d

< 43 11C294DF1D6C9698FEFE231D3BF609C68BAFCDBD 0beaa9e85391ecad4ebf1a9ce9d51455

< 44 96A65F711C438423D9AE02FDA71197BA 4d85fbcf7c1360fc59c35f4b8513cf7e

< 45 EFE396F418F58D65849428FC1438516892082481 59f02366fe4cb14d3af6cf4e01d2f998

< .

> 100d

> GETUPDATE

> 43

> .

< 0004

< UPDATE

< 100d

< 43 11C294DF1D6C9698FEFE231D3BF609C68BAFCDBD 0beaa9e85391ecad4ebf1a9ce9d51455

< -----BEGIN PGP PUBLIC KEY BLOCK-----

< Version: PGP Key Server 0.9.5

<

< mQGiBDsdr9ARBADdPp6U5CAo9VuohkkdNonZ77VO0Hd+Dr1Jh5yMVH9hSW6FsXfj
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< 5c1/S0+77sXJw1GpayoUkqOqP8SAKJxyP2bNAIoeB71b1IxczXiKUSWgPQhrDz4r

...

< iisP9jMcgcYRMIhGBBgRAgAGBQI7Ha/UAAoJEDv2CcaLr829b7IAoNdYzJdNtzbm

< pOMHf5xxeCFSOVBxAJ96i8ES0jzmbN+r2jWgPpL1dUwWZw==

< =W4X1

< -----END PGP PUBLIC KEY BLOCK-----

< .

As soon as the two first IHAVE messages are received, the connection is initialized and will be used
regularly to exchange key updates with IHAVE (NOTIFY) messages (and successive (GET)UPDATE
messages, if necessary).



Appendix B

Implementation

This project was started shortly after Richard Laager put the pksd source code into the repository
on sourceforge1 and collected the various patches, releasing pksd version 0.9.5. The project cvs
repository on the CD-ROM contains copies of the upstream code on the sourceforge branch,
with cvs yyyymmdd tags. At the end of my work on the KX project, pksd 0.9.6 was out but the
sourceforge cvs had already developed quite a bit further.

The major part of the code is in the three new files pks sync.c, sync cs.c and sync db.c

and the associated header files, with only minor modification to the existing code. The following
sections give a file-by-file overview of all code modifications done for KX.

B.1 mail req.c and pks www.c

These files contain the web and mail frontend to pksd. A call to pks sync post() was added, to
send out KX messages when a new update is received by the email or web frontend.

B.2 multiplex.c

The multiplexer listens on open connections with the Posix select(2) system call, and uses
callback functions to communicate with the other program modules. The mp add write again()

function was added. It buffers data to be written to a filedescriptor where some data is already
waiting.

B.3 pks config.c

The configuration file parser was extended to recognize the new tcp syncaddr, tco syncport,
tcp syncsite and sync db dir directives KX uses. Also, the log terminal directive is new,
used to direct all logging information to stdout instead of syslog to aid debugging.

B.4 pks sync.c

This new file contains the implementation of the KX protocol: the execute() function to interepret
and act on incoming messages, and the pks sync post() function to announce new updates to
the other servers. The database to track the sequence numbers of all neighbours (tcp syncsites)
also is in this file.

1http://pks.sf.net
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B.5 sync db.c

Also a new file, it contains the database of key updates. In this implementation, key updates are
stored as files in a directory, with the MD5 hash of the update as filename. Additionally, there is
an index file mapping sequence numbers to filenames.

B.6 sync cs.c

The third new file contains a simple OpenPGP key parser, and the sorting algorithm which defines
the canonical ordering of a key to determine the update hash value.
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1 Einführung

Pretty Good Privacy (PGP) ist eine auf hybrider Verschlüsselung basierende Software, die haupt-
sächlich im Bereich der authentischen und vertraulichen E-Mailübertragung eingesetzt wird [Sta94,
CDFT98]. PGP hat sich auf dem Markt etanliert als ein Open Source Produkt, welches die geheime
und authentische Übertragung von Daten ermöglicht. Der Erfolg von PGP basiert auf seinem dezen-
tralen Schlüsselmanagement und dem imhm zugrunde liegenden Web of Trust [Fei97], in dem jeder
durch seinen Schlüssel die Authentizität anderer Schlüssel bestätigen kann. Die Schlüssel potentieller
Kommunikationspartner können auf unterschiedliche Art und Weise verfügbar gemacht werden:

1. Man kann den eigenen Public Schlüssel in der Finger-Information oder auf einer WWW-Seite
ablegen.

2. Man sendet den eigenen Public Schlüssel an einen der Keyserver [Keya, Keyb], welche unter-
einander diese Information austauschen, so dass jeder Schlüssel auf jedem Server vorhanden sein
sollte. Dort kann er dann von Interessierten bezogen werden.

In einen nächsten Schritt muss dann die Authenzitität eines Schlüssels vom Benützer überprüfbar
sein. Üblicherweise werden für diesen Zweck die angehängten Zertifikate rekursiv verfolgt. Dazu exi-
stieren zur Zeit zwei Möglichkeiten:

1. Die Überprüfung erfolgt beim Einbinden des Schlüssels in die eigene PGP-Schlüsselsammlung
(“Keyring”); allfällige Verbindungsschlüssel, d.h. Schlüssel von anderen vertrauenswürdigen Be-
nützern, müssen manuell gesucht und in den Keyring eingefügt werden.

2. Ein dedizierter, vertrauenswürdiger Server kann mit der Anfrage betraut werden [RS97, RS]. Wenn
diesem Server nicht vertraut wird, kann man sein Ergebnis nachprüfen. So sind aber nur fälschlich
angegebene Vertrauenspfade erkennbar, ausgelassene Pfade können so nicht erkannt werden.



Das internationale Netz von Keyservern kennt jedoch diverse Schwächen: 1. Die Anzahl der Schlüs-
sel wächst so schnell, dass die dem Keyserver zugrunde liegende Datenbanksoftware ihre Leistungsgren-
zen erreicht. 2. Die Verteilung der Schlüssel unter den Keyservern funktioniert nicht immer so zuverlässig
wie gewünscht. 3. Bestehende Keys und Signaturen können nicht mehr verändert werden, weil das Sy-
stem nur Additionen erlaubt. Einzig sogenannte Revocation Zertifikate sind möglich: Der Besitzer eines
Schlüssels muss dazu einen speziell generierten PGP Key an die Keyserver senden.

Um diese Probleme anzugehen, wurden folgende Initiativen ergriffen:

Datenbankgrösse: Es wurde vorgeschlagen, die unterliegende Datenbank zu überarbeiten, und den Rest
des Systems beizubehalten; bis jetzt hat sich aber noch niemand bereit erklärt, diese Arbeit zu
übernehmen.

Verteilung: Es ist geplant, die Schlüssel der Benutzer in das bestehende Domain Name System (DNS)
[Moc87] einzubinden [Gil97, EK97]. Die durchgängige Realisierung dieser längerfristig skalier-
baren Lösung wird jedoch mehrere Jahre in Anspruch nehmen. Auch danach wird es noch DNS-
Domains geben, die keine PGP-Schlüssel unterstützen werden sowie Schlüssel, die nicht in das
definierte DNS-Namensschema passen.

Authentisierte Keys: Müsste sich derjenige, welcher einen Schlüssel an einen Keyserver schickt, ge-
genüber diesem authentisieren, bestände die Möglichkeit diese Keys auch nachträglich wieder auf
Wunsch des Besitzers von den Keyservern zu löschen. Dieses Verfahren wurde auch die Möglich-
keit geben, Signaturen von Schlüsseln zu entfernen.

Synchronisation: Als Ersatz für die aktuell via E-Mail erfolgende Synchronisation wurde zuerst ver-
sucht einen zuverlässiger Dienst unter Ausnutzung von IP Mulitcast [FJM

�

95, PSB
�

95] zu erar-
beiten [Bau98]. Ein neuer Ansatz ist der Inhalt dieser Semesterarbeit

2 Aufgaben

Im Rahmen dieser Semesterarbeit soll die bestehende Keyserver Software konzeptionell so erweitert
werden, dass die Synchronistaion der Schlüssel über ein einfaches und effizientes Protokoll abgewickelt
werden kann.

. . . To be filled in
Die Aufgaben, die in dieser Semesterarbeit erfüllt werden sollen umfassen:

1. eine Untersuchung des aktuellen Systemes,
2. eine Analyse möglicher Lösungen, u.a. die Aspekte Machbarkeit, Effizienz und Integrierbarkeit in

die bestehende Keyserver Software,
3. den Entscheid für die beste Lösung,
4. die Erstellung des Designs dieser Lösung,
5. die Umsetzung dieses Designs in Software,
6. sowie Tests der realisierten Implementation und eine Performance Evaluation.

3 Vorgehen
� Machen Sie sich mit der Umgebung und speziell der Dokumentation und vorhandenen Software

zu den Themen PGP, Keyservern und Authentisierungsverfahren.

� Evaluieren Sie die unterschiedlichen Möglichkeiten zur Lösung der gestellten Anforderungen.

� Treffen Sie die Entscheidung für eine der Möglichkeiten und begründen Sie sie.

� Erstellen Sie ein Design der von Ihnen gewählten Lösung.
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� Implementieren und testen Sie diese Lösung.

� Auf eine klare und ausführliche Dokumentation wird besonderen Wert gelegt. Es wird empfoh-
len, diese laufend nachzuführen und insbesondere die entwickelten Konzepte und untersuchten
Varianten vor dem definitiven Variantenentscheid ausführlich schriftlich festzuhalten.

4 Organisation der Arbeit
� Mit der Betreuerin sind in der Regel wöchentliche Sitzungen zu vereinbaren. In diesen Sitzun-

gen soll der Student mündlich über den Fortgang der Arbeit und die Einhaltung des Zeitplanes
berichten und anstehende Probleme diskutieren.

� Am Ende der zweiten Woche ist ein Zeitplan für den Ablauf der Arbeit vorzulegen und mit der
Betreuerin abzustimmen.

� Nach der Hälfte der Arbeitsdauer soll ein kurzer mündlicher Zwischenbericht abgegeben werden,
der über den Stand der Arbeit Auskunft gibt. Dieser Zwischenbericht besteht aus einer viertel-
stündigen, mündlichen Darlegung der bisherigen Schritte und des weiteren Vorgehens gegenüber
Professor Plattner.

� Am Ende der Arbeit ist eine Präsentation von 15 Minuten im Fachgruppen- oder Institutsrahmen
fällig. Anschliessend an die Schlusspräsentation soll die Arbeit Interessierten praktisch vorgeführt
werden.

� Bereits vorhandene Software kann übernommen und gegebenenfalls angepasst werden.

� Die Dokumentation ist entweder mittels des Satzsystemes LATEX oder mit dem Textverarbeitungs-
programm FrameMaker zu erstellen.

� Es ist ein Schlussbericht über die geleisteten Arbeiten abzuliefern (2 Exemplare). Dieser Bericht
ist in Deutsch oder Englisch zu halten und beinhaltet sowohl eine deutsche wie auch eine eng-
lische Zusammenfassung, die Aufgabenstellung und den Zeitplan. Der Bericht besteht aus einer
Einleitung, einer Analyse über verwandte und verwendete Arbeiten, sowie einer vollständige Do-
kumentation der Programme und Tools, die für weitere, darauf aufbauende Arbeiten praktisch
brauchbar ist.

� Die Arbeit wird als CDrom archiviert werden. Der Student kann die vorhandene Infrstruktur aus-
nützen um seine Arbeit auf CDrom zu brennen.
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