
Design and Implementation

of a Presentation Tool for an

Educational delivery platform

Term Project

Nadir Weibel (nad@nadnet.ch)

Prof. Dr. B. Plattner

Supervisor: Georgios Parissidis

Institute for Technical Informatics and Communication Networks

Swiss Federal Institute of Technology - Zurich

Version 1.0
Last Update February 5, 2003

Copyright c©2003 Nadir Weibel

Abstract

Nowadays, information and communication technology is used progressively more for teach-
ing and learning purposes. A lot of universities around the world are opening their campus
offering distance learning courses. Distance learning occurs when the lecturer and the stu-
dents are separated in physical distance, and delivery systems (i.e. voice, video and data)
are used to bridge the instructional gap.
The objective of the present thesis is design and implement a Presentation Tool as a com-
ponent of a Synchronous Distance Learning System (SDLS), which will provide learning
facilities to students geographically located far away from the lecturer. Such a system must
be reliable, platform independent, flexible, scalable and user-friendly.
For satisfying the aforementioned requirements, this thesis presents a Java-based Presen-
tation Tool to be used as a collaborative medium by both the tutor and the student. This
tool gives the opportunity to the tutor to give a lecture showing a presentation, interacting
with the students with an embedded whiteboard and managing the students during the
lecture. The tutor can also manage the presentations (upload new presentations, download
a presentation) directly from the tool. Moreover students can communicate with the tutor
or among them using either the integrated Chat Mechanism or requesting access to the
whiteboard or the pointer.
Such an environment satisfies both the requirements imposed by an educational lecture and
a conferencing system.

Heutzutage, werden Information und Kommunikation auch in Bereich der universitären Bil-
dung immer wichtiger. Universitäten der ganzen Welt versuchen ihren Campus zu öffnen
und Online-kurse anzubieten. Den Studenten wird die Möglichkeit gegeben standortun-
abhängig Vorlesungen zu folgen. Um das Problem der physische Trennung zu lösen ex-
istieren verschiedene technische Möglichkeiten (Sprache, Video und Data).
Die Projektabsicht ist die Entwicklung, Implementierung und Aufbau eines Presentation
Tools, als Komponent eines Synchronen Distanz Lern System (SDLS). Diese Applikation soll
zuverlässig, betriebssystem-unabhängig, flexibel, skalierbar und benutzer-freundlich sein.
Um diese Anforderungen zu erfüllen, wird ein Java-basiertes Presentation Tool entwickelt ,
das, sowohl von einem Lehrer als auch von den Studenten, als Medium zur Zusammenarbeit
benutzt werden kann. Dieses Tool erlaubt den Lehrern eine Vorlesung zu leiten, in dem er
eine Präsentation durchführt, und, dank dem integrierten Whiteboard, mit den Studenten
interagiert. Der Lehrer kann damit auch die Präsentationen administrieren: er kann neue
Präsentationen aufladen oder existierende herunterladen und zeigen. Zusätzlich können die
Studenten mit dem Lehrer oder untereinander kommunizieren in dem sie den integriertes
Chat-Mechanismus benutzen oder den Zugriff auf das Whiteboard beantragen.
Diese Umgebung erfüllt sowohl die educational-lecture- als auch die conferencing-system-
Anforderungen.

ii

Acknowledgments

My thanks to the Department of Information Technology and Electrical Engineering specif-
ically to the Institute of Technical Informatics and Communication Networks (TIK), Prof.
Bernhard Plattner and my supervisor Georgios Parissidis for the great support and the
excellent working conditions during the whole project, for giving me the possibility to gain
more experience with the Java GUI implementation and with such an interesting topic.

— Nadir Weibel, D-Infk, ETH Zurich, 2003

iv

Contents

1 Introduction 3

2 Prototype 5

2.1 Programming Language . 5

2.2 Functionality and Architecture . 5

3 Research 7

3.1 Web Browsing Technologies . 7

3.1.1 HotJava Browser 3.0 and HTML Components[1] [2] 7

3.1.2 Mozilla and WebClient [3] . 8

3.1.3 BrowserG! [4] . 9

3.1.4 IceSoft IceBrowser [5] . 9

3.1.5 Jazilla and JRenderer [6][7] . 10

3.1.6 XBrowser [8] . 10

3.1.7 NetBrowser [9] . 11

3.1.8 DocZilla [10] . 11

3.1.9 NetClue Browser [11] . 12

3.1.10 Calpa CalHTMLPane Java Component [12] 12

3.1.11 Technology choice . 13

3.2 Data Exchange . 13

3.2.1 Java Shared Data Toolkit . 14

4 Design and Implementation 15

4.1 Starting Point . 15

vi CONTENTS

4.2 The 3 main Components (ContenRenderer, ChatLine, WhiteBoard) 17

4.2.1 ContentRenderer . 19

4.2.2 ChatLine . 23

4.2.3 WhiteBoard . 26

4.3 JSDT . 33

4.4 JSDT Channel Consumers and Data Flow 36

4.5 GUI and Utilities . 38

5 Conclusion and Future Work 41

A User Guide 43

A.1 Requirements . 44

A.2 Installing, configuring and starting the Presentation Tool 44

A.3 Using the Presentation Tool . 45

A.3.1 Tutor . 45

A.3.2 Student . 50

A.3.3 Access-point, Whiteboard and Chat 50

List of Figures

1.1 Graphical User Interface of the synchronous educational delivery platform . 4

4.1 General Class Structure Overview (UML) 16

4.2 GUI and Utilities Class Structure Overview (UML) 39

A.1 The GUI of the Presentation Tool . 43

A.2 The Components of the Presentation Tool 45

A.3 Selecting a course (teacher side) . 46

A.4 Publishing a new presentation (teacher side) 46

A.5 Opening a new presentation (teacher side) 47

A.6 Opening a new connection (teacher side) . 48

A.7 Managing the connected students (teacher side) 49

A.8 Using the whiteboard . 51

A.9 Whiteboard Buttons and Chat Panel . 52

2 LIST OF FIGURES

Chapter 1

Introduction

Distance Learning Systems (DLS) are a known alternative solution for learning when the
tutor and the students are separated by geographical distance. In the past, such systems
have been realized delivering educational content with email’s, cd’s, video-tapes or web-
based learning management systems. All these methods present a common disadvantage:
there is no direct feedback and collaboration between the lecturer and the students.

Nowadays with the large expansion of the internet and the advance of the information
and communication technologies, is possible to develop a system for Collaborative Distance
Learning. What does this mean? We don’t need anymore a standard lecture with physical
presence of the students? One obvious answer could be no! DLS are thought only as an
help for those people which could not be present in a specified location at a specific time
to follow the course. Anyway this solution could be also the basis for a complete online
diploma program, but this is more an ethical and organizational question and it won’t be
answered in this thesis.

Distance Learning Systems consist usually of three interworking components:

• Brokerage System: used to resolve queries about the services provided by a DLS,
as for example available courses, lecturers participating, etc.

• Learning Management System: used by the lecturer to design course modules
or generally speaking to ”wrap knowledge into an appropriate form so as for it to
be delivered to students in an educational manner and to assure reusability, ease of
maintenance and portability to heterogeneous delivery platforms”.

• Delivery Platform: used to deliver the input from the Learning Management Sys-
tem to the students and to enable interaction between the participants. Typical ex-
amples are real-time delivery platforms (conferencing systems adapted to educational
scenarios) and web-based platforms.

There are two categories of DLS, asynchronous and synchronous, depending on whether the
participants are separated in time or not, respectively. Asynchronous DLS does not require
the simultaneous participation of students and instructors and the instructional material
can be delivered with e-mails, cds, video-tapes or web-based learning management systems

4 Introduction

(LMS). On the contrary, synchronous instruction requires the simultaneous participation
of all students and instructors, creating a virtual classroom where the participants of the
lecture are able to interact in ”real-time”. In that case, high-quality audio, video, presenta-
tion and annotation tools constitute the standards for a synchronous educational delivery
platform (fig 1.1), imitating and duplicating in a way the classic methods for tutoring.
In this synchronous educational delivery platform we will be focusing on the design and
development of a Presentation Tool that will be used as a medium to deliver educational
content from the tutor to students. Using this Presentation Tool as an embedded com-
ponent of an educational delivery platform, the tutor will be able to present a slide-show
synchronously to all the participants [13].

Figure 1.1: Graphical User Interface of the synchronous educational delivery platform

A synchronous educational delivery platform can be seen as an educational content mul-
timedia conferencing system, enhanced with additional features in order to satisfy the
requirements imposed by an educational lecture. The participants of such a conferencing
system are divided in two categories:

1. the tutor

2. the students

As described also above, the tutor is using the Presentation Tool as a medium to distribute
the educational content to the students separated in physical distance. The developed
application is conforming to the requirements of a conferencing system and an educational
lecture.

Chapter 2

Prototype

As first step, in this chapter the base prototype for the Presentation Tool will be defined.
This prototype is the base of the following design and implementation phases and contains
all the requirements to be satisfied.

2.1 Programming Language

The whole project is written in the Java Programming Language [14]. This allows portabil-
ity among different operating systems and usage over the internet (Java applets). Java is
also known to be robust, secure, scalable, distributed and dynamic, all important features
for this project. Moreover the Java Programming Language allows to easily embed already
written code and libraries.

2.2 Functionality and Architecture

How would the Presentation Tool really look like and work? There are some important
features which define its functionality:

• The educational content is provided and guided by the tutor. The tutor lets the
course be accessible by setting the IP address of the running course into the common
access-point file, located on a known server, and by uploading on the system’s server
the presentation material. Thus, when a student wants to participate in the offered
course, the application (during the initialization phase) checks the status of the course
(online/offline), downloads and saves the content of the presentation on the worksta-
tion of the participant. As the flow of the presentation is operated by the lecturer,
the advancement of slides on the students’ side is synchronized. Furthermore, the
application is synchronizing students, who join the conference later than its start, to
the actual status of the presentation.

• Students are accessing the presentation slides by downloading them from a known
server. The server’s address is transmitted to the students by the tutor at the time

6 Prototype

they connect to the selected course. The location (IP address) of the course, can
be obtained by looking in the common access-point file. For being able to download
the slides and thus to follow the presentation, each student must provide a login and
a password to access the given server. This trivial mechanism, is used as a sort of
student’s authentication protocol.

• The application essentially consists of a web-browser embedded in the application,
that must be capable of supporting cross-platform widely accepted content format, as
HTML and XML. Furthermore, for those tutors using Microsoft’s PowerPoint as their
presentation production tool and that want to maintain animations or sound effects
in their presentation material, the use of a special conversion tool 1, that transforms
files in PowerPoint format to a browser-independent and thus cross-platform format
should be taken into consideration.

• The general educational conference is controlled by a custom Conference Control
Protocol (CCP), currently being developed in TIK institute based on requirements
posed by an educational content multimedia conferencing system. The aforementioned
protocol tries to combine and unify in a common interface of conference management
two distinct tasks: conference setup (including conference discovery) and conference
course control. The Presentation Tool as a component of the conferencing system is
developed comparable to the architectural aspects of the CCP protocol.

• The application contains an indicator (pointer) offering to the tutor the ability to
point into the presentation material. The indicator is shown only in the moments
of pointing by the tutor or the student. The students can make use of the indicator
under the appropriate tutor’s permission. Furthermore, a whiteboard is provided: is
placed over the presentation slides as a transparent component, so that the tutor (or
the students if allowed) can draw over them for underlying some important aspects.

• Above all, the distributed application is scalable and reliable and fulfils certain tempo-
ral synchronization constraints among all the participants. Therefore, the application
is not depending on the number of participants and supports the registration and
deregistration during the conference, without implications to the flow of the presenta-
tion. Reliability is achieved using a reliable transport protocol, i.e. the Transmission
Control Protocol (TCP).

1Examples of such technologies can be found in [15] [16] [17]

Chapter 3

Research

Before starting the real design and implementation phases, is useful to have an overview of
the existing technologies that can be used as underlaying base for the prototype described
in chapter 2.

3.1 Web Browsing Technologies

As specified in chapter 2, the essential part of the Presentation Tool is a web-browser
embedded into the application, capable of displaying HTML and XHTML documents.
Actually, the implementation of such a browser is out of the scope of the present thesis,
so a through research of existing Java browsers has been done so as to satisfy the posed
requirements of the application.

In the following sections some of the most important embeddable Java browser alternatives
are analyzed and, as a result of the research, the advantages and the drawbacks of each
technology are referred.

3.1.1 HotJava Browser 3.0 and HTML Components[1] [2]

HotJava is a product developed by the Sun Microsystems Laboratories and is intended as an
highly-customizable modular solution for creating and deploying web-enabled applications
across a wide array of environments and devices.

This solution offers a modern browser with HTML capabilities, comparable with Netscape
Navigator 3.0. The HTML rendering is achieved by using the Hotjava HTML Components
(a JavaBean component).
This technology offers a ”modern” look-and-feel user interface and supports most of the
general purpose Java applets. JavaScript (Full ECMA 1.4 standard), the HTTP 1.1 protocol
and the HTTP authentication mechanism are supported by HotJava.
HTML is supported up to version 3.2++ with persistent cookies mechanism.

8 Research

Advantages

• JavaScript Support

• HTTP 1.1 Compliant

• HTTP Authentication

• Cookies and Session Management Capabilities

Drawbacks

• Not HTML 4.0 Compliant

• Based on JDK 1.1.6 (HTML Components do not run with Java2)

• HTML Components are end-of-lifed (No further development)

• No XML support

3.1.2 Mozilla and WebClient [3]

Mozilla is a known and widely-used browser. For the Java environment, Mozilla has devel-
oped a product called WebClient which can be embedded in a Java application allowing the
application to use all the capabilities of the major browsers by means of a multi-browser im-
plementation (Mozilla Milestone 9, Internet Explorer 5, HotJava Browser Bean). It provides
a browser-neutral Java API that enables generic web-browsing capability like web-content
rendering, navigation, a history mechanism, and progress notification.
WebClient can be programmatically included in a Java application by using it as a library
(jar archive) or as a JavaBean (by embedding it using a bean enabled development tool).
It supports JDK 1.1.7, JDK 1.2.1 and greater from Sun Microsystems.
This product has Java world-class HTML rendering capabilities: super-fast, fully-functional,
fully-standard-supporting, well supported, widely used, well tested, etc. It can be seen as
a ”thin layer” of software on top of a browser supporting Bookmarks, Caching, Cookies,
Copy/Paste, DOM Access, Event Handling, History, HTML 4.0, JavaScript, various proto-
cols, Window manipulation and XML (if native browser supports it).

Advantages

• Supports all features of most recent browsers

• Easy-to-use interface

• Java world-class HTML rendering capabilities

• Latest JDK

Drawbacks

• Not Browser independent (requires native browser installation)

• Difficult to build

3.1 Web Browsing Technologies 9

3.1.3 BrowserG! [4]

BrowserG! is a Java-based desktop application that provides important functionality and
enhances the existing habits of the common web surfer. It is essentially an extension of the
Mozilla WebClient (is based on WebClient 1.1 Technology, see section 3.1.2) and therefore
provides the same characteristics of this product.

Advantages

• Look at WebClient (section 3.1.2)

Drawbacks

• Look at WebClient (section 3.1.2)

3.1.4 IceSoft IceBrowser [5]

IceBrowser is a fully functional, 100% Java-based web-browser supporting all of the latest
standards. It can act as a stand-alone Java application, or be integrated into an application
or product as a ”browser window”. Its architecture is designed to handle any content, such
as HTML or XML, with its proprietary interface known as the ”pilot interface”. IceBrowser
supports JavaScript 1.5 as scripting language (through Rhino [32], the Mozilla ECMAScript
implementation) and implements the DOM API provided by W3C[18] for direct Java access
to the document (W3C standard DOM Level 2 Core). It also supports XML Namespaces
and XSLT, CSS and XHTML 1.0.
This software is intended to be used with Java2 and supports Java Applets. Other important
features are the HTTP 1.1 and HTTPS support and the Session Management capacity
(Cookies).

Advantages

• Full Java Integration

• Java2 support

• HTML/XHTML/XML/XSLT support

• JavaScript + CSS + Applets support

• HTTPS

Drawbacks

• Commercial Product

• No support for external plugins

10 Research

3.1.5 Jazilla and JRenderer [6][7]

Jazilla, thanks to the JRenderer Module, implements a Java version of Netscape’s Navigator
5.0 source code (committed to free software and the public availability of source code). The
Jazilla Source code is released under the Mozilla Public License (MPL), but still no final
or beta release-date is planned: the product is still in development (actually it is a defunct
and reborn project). Theoretically Jazilla should support HTML 4.01, XHTML, CSS1 and
CSS2. The content representation should follow a defined data-flow: HTML-XML-XHTML
(JTidy, SAX).
This product is meant to look like Mozilla, but it has no support for external interfaces (as
WebClient); Jazilla supports only a very simple interface called ”IRenderer”. Rendering is
achieved by using a hierarchy of Swing Components and utilizing only Java2.
The objective of the project is to build a Fast, Simple Design, Lightweight, 100% pure Java,
Open-Source product.

Advantages

• Full Java

• XML/XHTML support

• Full HTML 4.01

• Java2

• Open-Source

Drawbacks

• Defunct Project

• Not usable

• No support for external web client

3.1.6 XBrowser [8]

XBrowser is a totally free and open-source Java application for browsing the web sup-
porting Java2. It is Multithreaded and implements an History Mechanism, a Bookmarks
and Page Contents mechanism, Import/Export Facility, Auto-Complete + Domain Com-
pletion Plugins. It supports Plugins and Extension, JavaScript and the Cookies. The whole
configuration is done in XML and the interface is Multi-Language.

Advantages

• Free and Open-Source

• Supports Java2

• Supports JavaScript

3.1 Web Browsing Technologies 11

• Configuration in XML

• Cookies and session management

Drawbacks

• No XML support

• Too sophisticated (History, bookmarks, printing, ...)

3.1.7 NetBrowser [9]

NetBrowser is a fully functional stand-alone Java browser which merges the JRenderer
platform(section 3.1.5) and the XBrowser interface (section 3.1.6)

Advantages

• All the advantages of JRenderer and XBrowser

Drawbacks

• The project is still on work (No available software)

3.1.8 DocZilla [10]

DocZilla is a Mozilla-based SGML/XML/HTML- browser. It handles SGML, HTML,
XML, CSS, DTD, XSLT and supports the use of JavaScript and XLinks . The software
is free for personal, non-commercial use, the sources of Mozilla’s components are available,
the sources for DocZilla components not.

Advantages

• SGML/XML support

• JavaScript support

Drawbacks

• No sources available

• Not fully in Java developed

12 Research

3.1.9 NetClue Browser [11]

NetClue is a fully-integrated, pure Java solution. Its components can be easily integrated to
provide browser capabilities and rendering of XML, XHTML and HTML to any application.
NetClue components support XML Namespaces, CSS, XSLT, JavaScript, DOM and SSL.
This software also integrates a cache mechanism, printing, navigation and history facilities,
Cookies and Session Management and is meant for using HTTP 1.1 with proxy capability.
The product is presented with 3 different packages (Basic, Professional and X Edition) each
one with its own supported technology.

Advantages

• XML, XHTML, XSLT support (X Edition)

• CSS, JavaScript and DOM support

• Plugins support

• Easy and extended Configuration capability

• Developer-friendly software solution

• Simple jar file to be included in the libraries

• Extended API

Drawbacks

• Commercial Product

• Full support only with the best package (X edition)

• No source code available

3.1.10 Calpa CalHTMLPane Java Component [12]

CalHTMLPane is a sub-component of a Java development package named Calpa, and is
built to provide instant HTML access without the need to start up a native web-browser.
CalHTMLPane allows Java application builders to incorporate HTML documents into a
GUI display. Based on the Java Foundation Classes (better known as Swing), the CalPane
supports a wide range of HTML3.2 and HTML4.0 tags so that documents can be authored
with standard HTML editors and immediately displayed within a Java application.
The CalHTMLPane provides built-in document history and caching, fast parser and pro-
grammable API for customization.

Advantages

• Free to use and lightweight

• Easy to integrate (importable jar file)

3.2 Data Exchange 13

• HTML 4.0 and partially XHTML support

• Easily extendable

• Fast rendering

• Extended API

Drawbacks

• No JavaScript support

• No CSS support

• No XML/XSLT support

3.1.11 Technology choice

After the analyze of the characteristics, advantages and drawbacks of the described tech-
nologies, it’s now possible to take a decision about the browsing technology to be used. As
we saw, there are a lot of candidate technologies that fulfil the requirements of the project,
but there are also others which can not be taken into consideration.
On one hand, HotJava is ”obsolete” and cannot be used in an environment using the recent
versions of Java, the WebClient of Mozilla and BrowserG! are not browser independent (re-
quire a native browser installation), Jazilla is not working properly and is a defunct project,
XBrowser is too sophisticated and doesn’t fulfil the imposed requirements, NetBrowser is
still in development and doesn’t provide a stable release and DocZilla is not developed
entirely in Java and doesn’t provide sources or API. On the other hand IceBrowser, Net-
Clue and Calpa CalHTMLPane seem to be a good choice for the project. IceBrowser and
NetClue are more complete and provide a more enhanced environment, but are both com-
mercial product; Calpa, instead, provides a more restricted interface, but is free-to-use and
the provided interface can be easily extended to support i.e. XML.
Calpa CalHTMLPane is therefore the best choice among the current technologies, for dis-
playing HTML and browsing between the slides of the implemented Presentation Tool.

3.2 Data Exchange

A very important issue in a distributed application is the exchange of data among the users
of the application. The Presentation Tool is essentially based on the known internetworking
paradigm, providing unicast, multicast and broadcast communication capabilities.
The JSDT toolkit for collaborative computing, provided by Sun Microsystems, has been
selected so as to carry out the underlying interconnection between the users. The JSDT has
been defined to support highly interactive collaborative applications, written in the Java
programming language, and thus, it constitutes the appropriate solution.

14 Research

3.2.1 Java Shared Data Toolkit

The Java Shared Data Toolkit1 software is a development library allowing developers to
easily add collaboration features to applets and applications written in the Java program-
ming language [19]. With the help of this tool a developer can integrate in network-centric
applications (shared whiteboards, chat environments, presentation tools) a mechanism for
easily communicating between the users.
For achieving its purpose, JSDT implements a multipoint data delivery service, providing
the basic abstraction of a Session and supporting full-duplex multipoint communication
among an arbitrary number of connected application entities, all over a variety of different
networks [20]. JSDT provide also a token-based distributed synchronization mechanism, to
ensure mutually exclusive access or atomic signaling.
Moreover JSDT provides also the ability for sharing byte arrays between the users connected
to the same session.

A JSDT network needs a unique JSDT server in some known location (access-point) for
managing the Registry. The JSDT Registry contains a transient database that maps names
to JSDT objects: it is used to register new sessions and new users within a session and to
retrieve the information about the connected users.
Each session can provide more communication channels, and each user logged into the
session can subscribe one or more channels as consumer (it actually receives all the broadcast
messages sent over this channel, all the messages directly addressed to him and can send
uni-/multi-/broadcast messages to the users subscribed to the same channel).

A JSDT session can be initialized by using 3 different implementations each of them using
its own protocol:

socket - uses TCP/IP Sockets

http - uses HTTP connections

lrmp - uses a Lightweight Reliable Multicast Protocol (LRMP)

The use of one of this protocols depends on the requirements of the users; i.e. gener-
ally a TCP/IP socket can not pass through most of the common firewalls, but an HTTP
connection can usually do it.

Two different type of data can be sent over a channel: Strings and JSDT Data Objects; a
JSDT Data Object is simply a Java object, serialized into the JSDT Data class.

The Presentation Tool utilizes JSDT as basis for the whole communication paradigm and
a series of extensions of the basis JSDT classes for managing the different situations. For
more detailed description of the used classes, please refer to Chapter 4

1For more information about JSDT, refer to [19] and [20]

Chapter 4

Design and Implementation

As defined in the Prototype (chapter 2), the Presentation Tool is entirely written in Java
[14]. Java is an object-oriented (O-O) programming language and this implies an approach
to programming in which the program is created from a series of items interacting with each
other in pre-determined ways. The analysis and design of object-oriented software systems
involves the identification of self-contained components which can be linked together to
produce a complete application. These components achieve the encapsulation of data and
function, the ability to inherit things from other components, and can communicate with
each other by sending messages back and forth.
The entire design of the Presentation Tool is based on a predefined model, representing
the functionality of the whole system. As a Graphics User Interface (GUI) application, it
is actually utilizing some specific classes defined in the Java Core: the Java Foundation
Classes, specifically the Swing Toolkit.
The Java Foundation Classes (JFC) are a set of Java class libraries provided as part of
J2SE to support building GUI and graphics functionality for Java technology-based client
applications. JFC include an extensive set of technologies that enable developers to create
a rich, interactive user experience for client applications [21]. The Swing toolkit is a fully-
featured GUI component library, implemented entirely in the Java programming language.
J2SE’s javax.swing package uses the windowing functionality of AWT (the Abstract Window
Toolkit [22]) and the rendering capabilities of Java 2D [23] to provide sophisticated and
highly extensible GUI components.

The most general class-structure of the Presentation Tool is represented in the diagram of
Figure 4.1. In this diagram is possible to see how all the different classes interact among
them.

4.1 Starting Point

The starting point of the whole application is the startApplication class. This class
allows to start the application as a tutor or as a student, by specifying it at the command-
line. startApplication constructs a new myClient instance: depending on the type of
client to be constructed (teacher or student) the relative constructor is called.

16 Design and Implementation

Figure 4.1: General Class Structure Overview (UML)

4.2 The 3 main Components (ContenRenderer, ChatLine, WhiteBoard) 17

The aforementioned process is very important and is one of the first statement of the
startApplication class:

if(user.equals("Teacher")){
client=new teacher(rendererType, null, hostname,
port, connection, jsdtname, frame);

...
}
else{ //user is a student

client=new student(rendererType, null, port,
connection, jsdtname, frame);

...
}

From the UML diagram of Figure 4.1, should be clear that both classes teacher and
student extend myClient. This means they both have a common core, but they are ex-
tended with some distinct features. Examples of these features on the teacher side can be the
setAccessPoint method (sets the access point of the relative lecture), the slide navigation
methods (restart, getNext, getPrevious) or the slide publishing method (publish)1.

The myClient class implements 4 interfaces:

• myBrowser: describes the required methods for using the Browser (see section 4.2)

• myChat: describes the required methods for using the ChatLine (see section 4.2)

• myWhiteBoard: describes the required methods for using the WhiteBoard (see section
4.2)

• Client: required for the JSDT communication (see section 4.3)

The implementation of these classes allows the myClient class to build a platform on which
initiate a Distance Learning Session.

4.2 The 3 main Components (ContenRenderer, ChatLine,
WhiteBoard)

The Presentation Tool architecture is based on three components: a ContentRenderer
(section 4.2.1), rendering the content of the tutor’s presentation slides, a ChatLine (sec-
tion 4.2.2), allowing the student and the teacher to communicate exchanging messages
in a textual form, and a WhiteBoard (section 4.2.3), offering drawing capabilities, over
the presentation content. These 3 components interact, by implementing the 3 relative
interfaces (myBrowser, myChat and myWhiteBoard), defining the methods to be used for
constructing a Presentation Tool. The base class is myClient, which implements all three
interfaces, constructing an object able to use these three components.

1The detailed description of these and other methods can be found directly in the source code

18 Design and Implementation

Beyond the functionality definition of the components (the methods defined in the inter-
faces), myClient, using the three components, creates real objects to be integrated into the
application:

• The contentRenderer interface

• The drawingArea class

• The chatLine class

These objects are therefore the GUI components which are inserted in the main application
(startApplication), by recalling them from the myClient class (where they were actually
created):

//Get the constructed Renderer from the client
JLayeredPane renderer=client.getLayeredPane();

//Create a scroller to contain the renderer
JScrollPane scroller= new JScrollPane(renderer);

//Get the Drawing Area for the Whiteboard
drawingArea dArea=client.getDrawingArea();

//Get the Chat for the Whiteboard
chatLine chat=client.getChat();

//Construct a new Panel containing the overlaying contentRenderer and drawingArea
JLayeredPane contentPanel=new JLayeredPane();
OverlayLayout layout=new OverlayLayout(contentPanel);

contentPanel.setLayout(layout);
contentPanel.setLayer(scroller, -1);
contentPanel.setLayer(dArea, 0);
contentPanel.add(scroller, -1);
contentPanel.add(dArea, 0);

JScrollPane mainScroller=new JScrollPane(contentPanel);

//Add the components to the main frame
frame.getContentPane().add(mainscroller, "Center");
frame.getContentPane().add(chat, "South");

A more detailed explanation of these elements is done in the relative sections (4.2.1, 4.2.2,
4.2.3).

4.2 The 3 main Components (ContenRenderer, ChatLine, WhiteBoard) 19

4.2.1 ContentRenderer

The ContentRenderer is responsible for rendering the content of the presentation slides.
The ContentRenderer component is a Java HTML browser reading the HTML version
of the presentation’s slides and presenting them by adding navigation functionality and
presentation management (opening, uploading, downloading, ...). The whole functionality
is essentially defined in the myBrowser interface:

package presentation;

import com.sun.media.jsdt.Data;
import javax.swing.JLayeredPane;
import myGui.presentation.manageButtons;
import myGui.presentation.navButtons;

public interface myBrowser{

/**
* Send data to the defined user over the Browser channel
* @param to The destination user(s)
* @param data The data to be sent
*/
public void useBrowserChannel(String to, Data data);

/**
* Return the content Renderer
* @return The renderer
*/
public contentRenderer getContentRenderer();

/**
* Return the renderer as a JLayeredPane
* @return The renderer (as a JLayeredPane)
*/
public JLayeredPane getLayeredPane();

/**
* Return the navigation buttons
* @return The navigation buttons
*/
public navButtons getNavButtons();

/**
* Return the management buttons
* @return The management buttons
*/
public manageButtons getManButtons();

20 Design and Implementation

/**
* Open the next presentation’s slide
*/
public void getNext();

/**
* Open the previous presentation’s slide
*/
public void getPrevious();

/**
* Reload the current slide
*/
public void reload();

/**
* Set the current presentation’s slide
* @param slide The current slide number to be set
*/
public void setCurrentSlide(int slide);

/**
* Get the current presentation’s slide number
* @return The current slide number
*/
public int getCurrentSlide();

/**
* Open a new Presentation
* @param path The path of the presentation’s directory
* @param slide The slide number to be opened
*/
public void openDoc(String path, int slide);

/**
* Set the presentation’s name
*/
public void setPresName(String presName);

/**
* Return the presentation’s status
* @return True if the presentation is opened, False otherwise
*/
public boolean isOpen();

}

4.2 The 3 main Components (ContenRenderer, ChatLine, WhiteBoard) 21

A class which wants to implement the Presentation Tool have first to implement this inter-
face.

After having defined the main functionality of the content renderer, as described be-
fore, we need a class defining a new object to be integrated into the application. The
contentRenderer interface plays this role by allowing the use of different Content Render-
ers for displaying the presentation’s slides. The real implementation of the methods which
are using this interface is defined in another class implementing this interface.
The contentRenderer interface is defined as follows:

package presentation;

import javax.swing.JLabel;

public interface contentRenderer{
/**
* Open a new presentation
*/
public String openDoc();

/**
* Open one of the slide of the presentation
* @param path The path where to find the presentation
* @param slide The slide number to be opened
* @return The presentation Name
*/
public String openDoc(String path, int slide);

/**
* Set the current presentation’s slide
*/
public void setCurrentSlide(int slide);

/**
* Get the current presentation’s slide
*/
public int getCurrentSlide();

/**
* Show the previous slide
*/
public void getPrevious(JLabel label);

/**
* Show the next slide
*/
public void getNext(JLabel label);

22 Design and Implementation

/**
* Restart the presentation from the beginning
*/
public void restart();

/**
* Reload the current slide
*/
public void reload();

}

The methods just described are the essential methods to be implemented for running
a presentation; all classes featuring this capability should implement this interface. In
this version of the Presentation Tool, only one Content Renderer has been defined: the
CalpaHTMLPane. The myCalHTMLPane class is extending the given rendering class
(CalHTMLPane) and implementing the contentRenderer interface. In practice it acts
as a bridge for translating the methods defined in the Calpa class to be used by the
contentRenderer interface.
The architecture, anyway, is thought to be used in the future with other types of Content
Renderers: a new Content Renderer class should only implement the contentRenderer
interface and is ready to be used into the application.

The content renderer to be used is then selected, through a name-based selection mecha-
nism, into the client creation phase (teacher / student), by passing to the constructor the
rendererType String:

//Constructing the renderer, based on the browser’s type
if(renderer.equals("Calpa")){

CalHTMLPreferences prefs=new CalHTMLPreferences();
prefs.setOptimizeDisplay(CalHTMLPreferences.OPTIMIZE_ALL);
if(this.pane==null)this.pane =

new myCalHTMLPane(prefs, new myCalHTMLObserver(label), null);
if (url != null) {

((myCalHTMLPane)pane).showHTMLDocument(url);
}

}
else if(renderer.equals("..."){

}

...

else{
System.out.println("Renderer " + renderer + " not recognized! Exiting ...");
System.exit(1);

}

4.2 The 3 main Components (ContenRenderer, ChatLine, WhiteBoard) 23

4.2.2 ChatLine

The ChatLine is a text-based communication environment. It is giving the opportunity to
the Presentation Tool users (tutor and students), to exchange messages in a textual form.

The core functionality of the ChatLine is described in the myChat interface:

package chat;

import com.sun.media.jsdt.Data;

public interface myChat{

/**
* Send data to the defined user over the Chat channel
*/
public void useChatChannel(String to, Data data);

/**
* Return the chatLine
* @return The chatLine
*/
public chatLine getChat();

}

As evident from the source code, the only defined method is getChat, which just returns
the newly created object.

The real functionality of this class is implemented in the more extended chatLine class:
this class initializes all the GUI elements (Swing) and, by implementing the well-known
Java actionListener interface, gives the users the possibility to select font colors, types
and sizes and send the desired message, as a broadcast message, over the JSDT channel
(section 4.3 for more details about this process).

This class defines two important methods. One of them is the sendButton_mousePressed
method, which sends over the JSDT channel the written message by encapsulating it in a
JSDT Data object and using the chat channel (useChatChannel) for the transmission to
the destination (the String ”all” is defined as an alias for broadcasting the message over
the channel).
The class defines also a receiveDataChat method, called by the chatConsumer (see section
4.4), for allowing the textArea of the chat panel to receive and display the messages sent
by other users:

24 Design and Implementation

package chat;

import client.myClient;
...

public class chatLine extends JPanel{

...

/**
* MouseListener, called when the send button is pressed:
* sends the message broadcast
*/
void sendButton_mousePressed(MouseEvent e) {
int temp;
if (wbu.getDrawtype() == "Text"){

//The text will be displayed into the drawingArea of the Whiteboard object
}
else if (modeSelected.equals("ChatMode")){
sendString = editorPane.getText();
if(!sendString.endsWith("\n")) sendString=sendString + "\n";
String action=String.valueOf(wbu.getDrawcolor().getRGB()) + " "

+ editorPane.getFont().getStyle() + " "
+ editorPane.getFont().getName()+ " "
+ editorPane.getFont().getSize() + " "
+ editorPane.getText() + " ";

//sends the chat message to all subscribed users
wbu.useChatChannel("all", new Data(action));

try {//Display the chatUserName in the appropriate color.
if(wbu.getName().equals("Teacher"))

StyleConstants.setForeground(userStyle, Color.RED);
else StyleConstants.setForeground(userStyle, Color.blue);
StyleConstants.setFontSize(userStyle, 10);
doc.insertString(0, wbu.getName() + ":> ", userStyle);

//Display the text.
defaultStyle = getFontStyle(wbu.getDrawcolor(),
editorPane.getFont().getStyle(), editorPane.getFont().getName(),

editorPane.getFont().getSize());
doc.insertString(wbu.getName().length()+3 , sendString, defaultStyle);
editorPane.setText("");
chatTextArea.setCaretPosition(0);

} catch (BadLocationException ble) {
System.err.println("Couldn’t insert chat text.");

}
}

}

4.2 The 3 main Components (ContenRenderer, ChatLine, WhiteBoard) 25

...

/**
* Called by the chatConsumer class:
* receives the data to be used for the chat,
* displays and formats them in the right way
*/
public synchronized void receiveDataChat(String receivedata) {

StringTokenizer tok = null;
String clientName = null;
String chatString = null;
String drawcommand = null;
String temp = null;

while (receivedata != null) { //Create the tokenizer
tok = new StringTokenizer(receivedata, " \r\t");
receivedata = null;
clientName = tok.nextToken();

}
try {//Display the chatUserName in the appropriate color.

if(clientName.equals("Teacher"))
StyleConstants.setForeground(userStyle, Color.RED);

else StyleConstants.setForeground(userStyle, Color.blue);
StyleConstants.setFontSize(userStyle, 10);
doc.insertString(0, clientName + ":> ", userStyle);

//Display the text.
receivedStyle = getFontStyle(Color.decode(tok.nextToken()),

Integer.parseInt(tok.nextToken()),tok.nextToken(),
Integer.parseInt(tok.nextToken()));

String text="";
while(tok.hasMoreTokens()){

text=text + " " + tok.nextToken();
}
doc.insertString((String.valueOf(clientName)).length()+3 ,
text, receivedStyle);

editorPane.setText("");
chatTextArea.setCaretPosition(0);

} catch (BadLocationException ble) {
System.err.println("Couldn’t insert chat text.");

}
}

...

}

26 Design and Implementation

This object, as the other GUI-based objects, will be inserted as a Swing JPanel into the
Presentation Tool GUI.
The aforementioned method is the most important of the whole class, because it really
enables the communication between the users connected to the JSDT channel.

4.2.3 WhiteBoard

The WhiteBoard is an extension of the presentation’s slides, in the sense it can extend
them by adding some extra-features: the possibility to trace a line, to draw, to write some
comments or to move a pointer over the slides. This is done (in the startApplication
class) by placing a transparent layer over the presentation slide (actually by using the AWT
OverlayLayout class).

// Construct a new Panel containing the overlaying
// contentRenderer and the drawingArea

JLayeredPane contentPanel=new JLayeredPane();
OverlayLayout layout=new OverlayLayout(contentPanel);
contentPanel.setLayout(layout);
contentPanel.setLayer(scroller, -1);
contentPanel.setLayer(dArea, 0);
contentPanel.add(scroller, -1);
contentPanel.add(dArea, 0);

JScrollPane mainScroller=new JScrollPane(contentPanel);

This transparent layer is always highlighted and has no actual interaction with the below-
layered presentation: they are 2 distinct objects, each of them working alone. The result
of merging these two objects is surprisingly: it simulates a real interaction between the
whiteboard and the slides.

From a more technical point of view, the WhiteBoard functionality is described (as for the
chatLine and the contentRenderer) in an interface, specifically the myWhiteBoard interface:

package whiteboard;

import com.sun.media.jsdt.Data;
import java.awt.Color;
import myGui.whiteboard.whiteBoardButtons;

public interface myWhiteBoard{

/**
* Send data to the defined user over the Whiteboard channel
* @param to The destination user(s)
* @param data The data to be sent

4.2 The 3 main Components (ContenRenderer, ChatLine, WhiteBoard) 27

*/
public void useWBChannel(String to, Data data);

/**
* Get the whiteboard management buttons
*/

public whiteBoardButtons getWButtons();

/**
* Return the whole drawing area
*/

public drawingArea getDrawingArea();

/**
* Set the sender mode (use of the token)
*/

public void setSenderMode(boolean sender);

/**
* Return the senderMode status
*/

public boolean isSenderMode();

/**
* Get the color set for the drawing area
*/

public Color getDrawcolor();

/**
* Set a new color for the drawing area
*/

public void setDrawcolor(Color color);

/**
* Get the last used drawingType
*/

public String getDrawtype();

/**
* Set the drawingType to be used
*/

public void setDrawtype(String type);

/**
* Format and write the jsdt messages on the Whiteboard channel
*/

public void writeLine(String line);
}

28 Design and Implementation

This interface defines the core methods to be implemented in order to use the WhiteBoard
into a real application.
The writeLine method, in particular, is very important in this class: in the same way as
the sendButton_mousePressed method of the chatLine, this method, which is used in the
drawingArea class and implemented in the myClient class, allows the whiteboard events
to be sent as a line (as a String), over the whiteboard channel to the subscribed users
(broadcast over the channel):

/**
* Write a message on the Whiteboard channel
* (invoked by the whiteboardConsumer class)
*/
public void writeLine(String line) {

if (isConnected) {
String message=this.jsdtName + " " + line;

try {
data = new Data(message);
data.setPriority(Channel.HIGH_PRIORITY);
useWBChannel("all", data);

} catch (Exception e) {
System.err.print("Caught exception in ");
System.err.println("WhiteBoardUser.writeLine(): " + e);
System.err.flush();
e.printStackTrace();

}
}

}

The drawingArea class constructs a new object to be incorporated into the application
as a whiteboard. It initializes all the GUI components and listens for actions over it
(by implementing the MouseListener and the MouseMotionListener interfaces). This
class implements a lot of important methods, but for obvious reasons, it is impossible to
present all of them2. Three of them are anyway very important: the mouseReleased, the
receiveData and the paintComponent methods.

package whiteboard;

import client.myClient;
...

public class drawingArea extends JPanel
implements MouseListener, MouseMotionListener{

...
//Implementing the interface: action on mouse release

2For a better explanation take a look to the documentation in the Javadoc

4.2 The 3 main Components (ContenRenderer, ChatLine, WhiteBoard) 29

public void mouseReleased(MouseEvent event) {
if(wbu.isSenderMode()){
mouseReleased=true;
String drawtype=wbu.getDrawtype();
System.out.println(drawtype);
int shapeCount = shapeList.size();
if(offScreenGraphics!=null && s!=null) s.draw(offScreenGraphics);

if (drawtype== "Rect") {
wbu.writeLine("Rect " + String.valueOf(drawcolor.getRGB()) +

" " + anchorPoint.x + " " + anchorPoint.y +
" " + event.getX() + " " + event.getY() + "\n");

repaint();
}
else if (drawtype == "Oval") {

wbu.writeLine("Oval " + String.valueOf(drawcolor.getRGB()) + " " +
anchorPoint.x + " " + anchorPoint.y + " " +
event.getX() + " " + event.getY() + "\n");

repaint();
}

else if(drawtype == "..."){
...

}

...

}
}

...

// Processing of received data
public synchronized void receiveData(String receivedata) {
StringTokenizer tok = null;
String clientName = null;
String textString = null, fontTextName=null;
int fontTextStyle=0, fontTextSize=10;
int shapeListIndex;

while (receivedata != null) {
tok = new StringTokenizer(receivedata, " \n\r\t");
receivedata = null;
clientName = tok.nextToken();
drawcommand = tok.nextToken();
receivedColor = Color.decode(tok.nextToken());
px1 = Integer.parseInt(tok.nextToken());
py1 = Integer.parseInt(tok.nextToken());

30 Design and Implementation

if(drawcommand.equals("Text")){
textString = tok.nextToken();
fontTextStyle = Integer.parseInt(tok.nextToken());
fontTextName = tok.nextToken();
fontTextSize = Integer.parseInt(tok.nextToken());

}
else{

px2 = Integer.parseInt(tok.nextToken());
py2 = Integer.parseInt(tok.nextToken());

}
}

receivedData = true;

if (drawcommand.equals("Rect")) {
s = new HollowRectangle();
s.color = receivedColor;
s.boundsBox = new DragRect();
dragRect = s.boundsBox;
dragRect.setBounds(px1,py1,px2-px1,py2-py1);
dragRect.normalize();
shapeListIndex= shapeList.size();
shapeList.insertElementAt(s, shapeListIndex);
((Shapes)shapeList.get(shapeListIndex)).color = receivedColor;
repaint();

}

else if(drawcommand.equals("...")){
...

}
...

}

...

//Method called automatically to refresh the drawing area
public synchronized void paintComponent(Graphics g) {

super.paintComponent(g);

Graphics2D g2d = (Graphics2D)g;

int j=0;
while(j<shapeList.size()){

j++;
}
//System.out.println(j + " elements in the Shape List");

4.2 The 3 main Components (ContenRenderer, ChatLine, WhiteBoard) 31

Dimension d = getSize();

if((offScreenGraphics == null) ||
(d.width != offScreenDimension.width) ||
(d.height != offScreenDimension.height)) {

offScreenDimension = d;

offScreenImage = new BufferedImage(d.width, d.height,
BufferedImage.TYPE_INT_ARGB);

offScreenGraphics=offScreenImage.createGraphics();
offScreenGraphics.setRenderingHint(
RenderingHints.KEY_ALPHA_INTERPOLATION,
RenderingHints.VALUE_ALPHA_INTERPOLATION_QUALITY);

offScreenGraphics.setComposite(
AlphaComposite.getInstance(AlphaComposite.CLEAR, 0.0f));

Rectangle2D.Double rect =
new Rectangle2D.Double(0,0,d.width, d.height);

offScreenGraphics.fill(rect);
offScreenGraphics.setComposite(AlphaComposite.SrcOver);
offScreenGraphics.setStroke(new BasicStroke(5.5f));
g2d.setStroke(new BasicStroke(5.5f));

}

if (offScreenImage != null) {
g2d.drawImage(offScreenImage, 0, 0, this);

}

if (receivedData){
System.out.println("Drawing " + drawcommand);

if (drawcommand.equals("Rect") ||
drawcommand.equals("Oval") ||
drawcommand.equals("Line") ||
drawcommand.equals("FilledRect") ||
drawcommand.equals("FilledOval") ||
drawcommand.equals("Text")){
receivedData = false;
s.draw(offScreenGraphics);

}
g2d.drawImage(offScreenImage, 0, 0, this);
if (drawcommand.equals("Pointer"))
g.drawImage(image1,currentPointX-5,currentPointY-5,this);

if (drawcommand.equals("Delete")){
for(int i=0; i<shapeList.size(); i++) {

s = (Shapes) shapeList.elementAt(i);
drawcolor = null;
s.draw(offScreenGraphics);

32 Design and Implementation

}
}

}

if (!receivedData){
String type=wbu.getDrawtype();
if (type == "Rect" || type == "Oval" || type == "Line" ||

type == "FilledRect" || type == "FilledOval"){
g2d.setStroke(new BasicStroke(5.5f));
s.draw(g2d);

}
if (type == "Pointer"){

g2d.drawImage(image1,currentPointX-5,currentPointY-5,this);
}
if (type == "Clear"){

g2d.drawImage(offScreenImage, 0, 0, this);
}
if (type == "Text"){

s.font = fontText;
s.color = drawcolor;
s.draw(g2d);

}
if (type == "Delete"){

for(int i=0; i<shapeList.size(); i++) {
s = (Shapes) shapeList.elementAt(i);
s.draw(offScreenGraphics);

}
}

if (mouseReleased) g2d.drawImage(offScreenImage, 0, 0, this);
}

}
}

The mouseReleased method is called when the mouse is released, that is when a new
object has been designed onto the drawing area. At this time, the method constructs a
new String and sends it out on the whiteboard channel by using the writeLine method
described above. The newly constructed string is different for every selected type of drawing,
so that the destination drawingArea can recompose the drawn element and draw it also
locally. The recomposing process is done by the receiveData method: this method is
synchronized for keeping the right sequence of events and constructing a new object (for
example an HollowRectangle) for each different received type of drawing, when invoked
by the whiteBoardConsumer (see later in section 4.4). The color, the size and all attributes
of the figure sent as a String by the mouseReleased class are here extracted and assigned
to the newly constructed object.
The last method, paintComponent, is called automatically by Swing each time the method
repaint() is called; it just repaints the whole drawing area, by actualizing the view to the
current state (adding new drawings and deleting the deleted ones). This process has been

4.3 JSDT 33

implemented by using a technique called Double Buffering : composing the image off-screen
and then drawing the buffered image on the screen. This technique avoids annoying flicker
that results from drawing and erasing everything on-screen. This is accomplished by using
the BufferedImage and the Graphics2d classes of AWT.

4.3 JSDT

The Java Shared Data Toolkit is a very important component of the whole application,
because it constitutes the medium for intercommunication among the users.
As mentioned in chapter 3, thanks to JSDT is possible to join sessions and subscribe to
channels. Sessions and channels are first initialized by the myClient class through the
jsdtServer class:

/**
* Start a new jsdt registry server (if the client is a teacher),
* create/joinsa jsdt session, start/join the Browser, Whiteboard
* and Chat channel and subscribe (addComsumer) to these channels.
*
*/
public void connect(){

//Setting all the action done to false
boolean registryStarted=false;
boolean sessionStarted=false;
boolean bConsumerAdded=false;
boolean wConsumerAdded=false;
boolean cConsumerAdded=false;

if(this.isConnected) {
String label="You are already connected!";
warningDialog dialog=new warningDialog("Warning", label);

}
else{

//Create a new Connection dialog to write the messages in
connectionDialog dialog=new connectionDialog(this);

//Create a new jsdt server to initialize the connection
server = new jsdtServer(this,dialog);

//Start the registry
if(isTeacher) registryStarted = server.startRegistry();
else registryStarted=true;

//Start/Join the session
if(registryStarted)

sessionStarted=server.startSession("TikSession");

34 Design and Implementation

//Create/join the 3 channels
if(sessionStarted){

bChannel=server.createChannel("browser");
wChannel=server.createChannel("whiteboard");
cChannel=server.createChannel("chat");

}

//Add the client to the 3 channels as consumer
if(bChannel!=null && wChannel!=null && cChannel !=null){

jsdtClient bClient=new jsdtClient(this, bChannel, "browser", dialog);
bConsumerAdded=bClient.addConsumer();
jsdtClient wClient=new jsdtClient(this, wChannel, "whiteboard", dialog);
wConsumerAdded=wClient.addConsumer();
jsdtClient cClient=new jsdtClient(this, cChannel, "chat", dialog);
cConsumerAdded=cClient.addConsumer();

}
if(bConsumerAdded && bConsumerAdded && cConsumerAdded){

this.isConnected=true;
disableButtons();

}
dialog.enable(true);

}
}

The called jsdtServer class implements essentially three distinct tasks with three distinct
methods:

• startRegistry: Starts the JSDT registry

• startSession: Starts a new session into the JSDT community

• createChannel: Creates a new channel based on the type given as a parameter

package jsdt;

import client.myClient;
...

public class jsdtServer{

...

/**
* Start the registry for the jsdt session
* @return True/False depending if the registration is ok
*/
public boolean startRegistry(){

4.3 JSDT 35

try {
RegistryFactory.startRegistry(connection);
String label="Registry started";
dialog.add(true, label);
return true;

}catch (NoRegistryException nre) {
String label="Couldn’t start a Registry of this type.";
dialog.add(false, label);
System.out.println("Registry exception: " + nre.getMessage());
return false;

}catch (RegistryExistsException ree) {
String label="The Registry was already running.";
dialog.add(true, label);
return true;

}
}

/**
* Start a new session and register it on the Registry server
* @return True/False depending if the session starting is ok
*/
public boolean startSession(String sessionName){

try {/* Resolve the session. */
URLString url =

URLString.createSessionURL(hostname, port, connection, sessionName);
session = SessionFactory.createSession(this.client, url, true);

/* Need to setup a unique number for this client.
* A simple cheap way is to determine how many clients
* are joined to the session, and use that.
*/

clientNames = session.listClientNames();
clientNo = clientNames.length;
String label="JSDT Session opened";
dialog.add(true, label);
return true;

}catch (Exception ex) {
String label="Unable to connect the client! Session not yet Opened";
dialog.add(false, label);
client.getNavButtons().resetCourse();
System.out.println("Session exception: " + ex.getMessage());
return false;

}
}

36 Design and Implementation

/**
* Create a new channel of a defined type to be used for sending jsdt messages
* @param type The type of channel to be created (Name)
* @return True/False depending if the channel creation is ok
*/
public Channel createChannel(String type){

try{
Channel channel = session.createChannel(this.client, type, true, true, true);
String label=type + " channel opened";
dialog.add(true, label);
this.channels.add(channel);
return channel;

}
catch(Exception ex){

String label="Unable to open " + type + " channel";
dialog.add(false, label);
System.out.println(type + " channel exception: " + ex.getMessage());
ex.printStackTrace();
return null;

}
}

...

}

After the initialization done by the jsdtServer, each user can now connect itself to the
session and subscribe to the channels, by calling the same methods (startSession and
createChannel); these methods, if a session with the same name already exists in the
given registry, just join the existing session. The same mechanism applies to the channels.

4.4 JSDT Channel Consumers and Data Flow

After joining a channel, a user should subscribe itself to this channel to receive notifications
(messages) sent over it. This is done in the jsdtClient class, using the Channel Consumers.

package jsdt;

import chat.chatConsumer;
...

public class jsdtClient{

public jsdtClient(myClient client, Channel channel,
String type, connectionDialog dialog) {

this.client=client;

4.4 JSDT Channel Consumers and Data Flow 37

this.channel=channel;
this.dialog=dialog;
this.type=type;

if(type.equals("browser"))
this.consumer=new browserConsumer(client);

else if(type.equals("whiteboard"))
this.consumer=new whiteBoardConsumer(client);

else if(type.equals("chat"))
this.consumer=new chatConsumer(client);

}

/**
* Add a new consumer of the given type to the defined channel
*/
public boolean addConsumer(){

try{
channel.addConsumer(client, consumer);
String label=this.type + " consumer added";
dialog.add(true, label);
return true;

}
catch(Exception ex){

String label="Adding " + this.type + " consumer failed";
dialog.add(false, label);
System.out.println(this.type + " consumer exception: " + ex.getMessage());
return false;

}
}

}

The jsdtClient creates a new consumer for each of the existing channels (browser, chat
and whiteBoard channels), by constructing the relative object:

• browserConsumer

• chatConsumer

• whiteBoardConsumer

These three consumers implement the JSDT ChannelConsumer interface, by defining the
dataReceived method. This method is called each time a new JSDT Data object has been
sent over the channel. The three consumers have different behavior in relation to the Data
received from the channel; anyway all of them make a first distinction between the user
receiving the message: is it a teacher or a student?
As an example an extract of the browserConsumer class:

38 Design and Implementation

package presentation;

import client.myClient;
...

public class browserConsumer implements ChannelConsumer{

/**
* Construct a new consumer and set the global variables
* @param client The client using this consumer
*/
public browserConsumer(myClient client){

this.client=client;
if(client instanceof teacher) this.isTeacher=true;

}

/**
* Invoked automatically when a user subscribed to this consumer
* get a new data over the channel
*/
public synchronized void dataReceived(Data data){

if(isTeacher){//teacher defined actions
...

}
else{//student defined actions

...
}

}
}

4.5 GUI and Utilities

Apart from the core application classes there are a number of utility classes defined for
developing the GUI and the numerous specialities of the Presentation Tool. An overview
of these classes can be seen in figure 4.2.

All the listeners are just an implementation of the AWT class MouseListener: in practice
they are listener for a specific type of objects (menu, dialog, ...).

The dialogs extend the JDialog Swing class for having more structured dialog windows for
some frequent events (errors, warnings, ...).

The buttons and panel classes extend the JPanel Swing class for creating different button
panels for the various part of the GUI.

The 2 distinct menu classes (one for the teacher, one for the student) extend the Swing
JMenuBar class by specifying the correct menu items for the two type of users.

4.5 GUI and Utilities 39

Figure 4.2: GUI and Utilities Class Structure Overview (UML)

40 Design and Implementation

Finally there are some utilities like the myFTPClient extending the FTPClient class pro-
vided by enterprisedt.net.ftp (to add ftp facilities to the application), the httpReader class
(performing an HTTP connection and reading the output), the fileParser class (for read-
ing the configuration files by parsing their content) and the desEncrypter class (used to
encrypt the ftp password saved into the configuration files). These classes help to build the
whole application, but are just utilities and will not be further discussed here3.

3For more information look at the Javadoc documentation of the single classes

Chapter 5

Conclusion and Future Work

The main goal of this thesis was to develop a Presentation Tool to be integrated in a Syn-
chronous Distance Learning System (SDLS). The developed application represents such a
tool, and particularly it is a stand-alone Java application which can be used as a Tool for
presentations in an online distance lecture.
The tool allows the management of the presentation by the tutor, the interaction with
the connected users and focuses on the intercommunication capabilities between tutor and
students.
The innovative idea of an overlaying, common whiteboard, improves the interaction, trans-
forming the course in a new collaborative experience for building a real learning environ-
ment.

The offered functionalities fulfil the requirements imposed by a distance online lecture and
all the main tasks have successfully been implemented. But, of course, there are some small
details which are still in development, or needs to be implemented. These tasks can be seen
as future stimulus for extending and improving the implemented application:

• At the current status, the integrated renderer is only capable of showing HTML
documents and partially XHTML files. But it is very easy to integrate into the
Presentation Tool a new renderer. For these reasons an essential improvement is the
integration of a new renderer capable to show XML documents (by transforming them
through XSLT) or a Flash Player for animations and dynamical presentations.

• By inserting new renderers it will be possible to implement a multi-renderer mecha-
nism, for allowing the different users to select the preferred renderer. The basis of this
mechanism is already implemented into the application and should just be extended
with the real implementation of the various rendering possibilities.

• The overlaying mechanism through which the whiteboard is working is not optimal.
In some distinct situations the interaction with the Swing refreshing mechanism is
not working. A new mechanism, or an improvement of the current one, is required.

• The authentication mechanism is currently very trivial and the FTP login is not
satisfying strictly all the security aspects. The integration of the Presentation Tool
into the extended Conference Control Protocol (CCP), is essential. In this way the

42 Conclusion and Future Work

students will have real accounts and their personal information will be transfered in
a secure way (i.e. Secure FTP).

• The user management on the tutor side is very important. At the current status,
the tutor can only control the interaction of the students with the whiteboard. A
more extensive controlling and management mechanism is important and should be
developed in the future.

• The Presentation Tool is based, by definition, on the presentation of a sequence of files
exported from a presentation software like Microsoft’s PowerPoint. An interesting
feature is to integrate into the tool the possibility to open directly a PowerPoint
file, which will be then transformed in a sequence of HTML files, XML files or in an
animation (Flash) depending on the used renderer.

• The implemented courses’ status publication via the access-point and the IP addresses
is just a proposal. A more detailed, extended and secure mechanism for manage the
various courses is advisable.

As final remark, the aim of this thesis has to be analyzed: why do we need such a tool? Is
really important to build an application like this?
In the last years everything is getting faster and the world is getting smaller. This means
that there are people that either are moving from their home location frequently, or they
are not wishing to change their home location for educational reasons. In both cases, the
need of a Presentation Tool as a component in an educational delivery platform is therefore
clear: why do we have to move people when is possible to move information?
Unfortunately the present technologies are not yet presenting a complete working product
for offering the experience of a real course, being away. This lack has to be solved.
The implemented Presentation Tool is not meant to fulfil all the needs of such a situation,
but is just a first step, from which we can start building a new educational environment.

Appendix A

User Guide

In this small chapter we will focus on the requirements, the installation, the configuration
and the use of the Presentation Tool.
This is not the final version of the application, so remember that it is possible to find some
small bugs or errors.

Figure A.1: The GUI of the Presentation Tool

44 User Guide

A.1 Requirements

General Requirements

• Running Java Virtual Machine (JVM) implementing the j2sdk1.4 Java version [24]

• Internet connection

• Some space on the hard disk to save the downloaded presentations

Technichal Prerequisites

• Running Web Server and FTP Server to be used for the course registering:

– The student should have access to the web server: the server name and the path
to the access-point’s index page should be saved into the config/accessPoint.xml
file of the student application (it can be done through the GUI).

– The teacher should have access to the web server and to the ftp server to change
the location (IP Address) of the given course: the server name, the web path, the
ftp path, the ftp server’s login and the ftp server’s password should be saved in
the config/accessPoint.xml file of the teacher application (it can be done through
the GUI).

– For each course, on the ftp server you must provide a file called NameOfThe-
Course.text which will contain the current IP address of the given course.

– The index.php file in this directory shows all the given courses followed by the
current IP address or null if the course is off-line.

• Running FTP Server to publish/download the presentation files: each user (teacher
and student) should have access to this server on the same account with different login
and password (should be provided to the student when subscribing to the course).
This server acts therefore also as an authentication service. The presentations can be
published through the GUI to the selected FTP Server, but they must be encapsulated
in a directory named as the presentation.

• Mechanism for exporting presentations to HTML files. The subsequent files should be
ordered alphabetically, so that each slide can be automatically loaded when pressing
the next (previous) button.

A.2 Installing, configuring and starting the Presentation Tool

To start the presentation tool as a user, you have to be connected to the internet and install
Java on your system. The Java installation process is described in [25].

After that let the class startApplication run (java startApplication), specify the class-
path (by including the ”classes” directory, the ”lib/calpahtml.jar”, the ”lib/ftp.jar” and
the ”lib/jsdt.jar” libraries) and the type of user you want to run (-Student/-Teacher).
Alternatively you can use the included scripts for starting a Teacher or a Student on a
Windows or Linux environment.

A.3 Using the Presentation Tool 45

A.3 Using the Presentation Tool

When starting the Presentation Tool, an application like the one represented in Figure A.1
will be opened. This is the starting point for managing a presentation (as a teacher) or
following a lecture (as a student).
Keep in mind that you are not the only person using this tool at the same time, so try to
be as fair as possible in using the whiteboard and the chat.

In Figure A.2, is possible to see all the basic application’s components.

Figure A.2: The Components of the Presentation Tool

Depending on how you use the application (as a Tutor or as a Student) you should follow
a different sequence of steps.

A.3.1 Tutor

1. Selecting a course to be given

To select a course you have basically to click on the COURSES button on the top left
of the application window. You also have the choice to select the course by going in
the menu to File - Select Course (see Figure A.3).

• Click the Courses button on the top-left of the window

• The default access-point is contacted and the course list is retrieved

• A new dialog window with a list of courses will appear

46 User Guide

Figure A.3: Selecting a course (teacher side)

• Select the course you want to give and click choose

• The selected courses will be updated at the default access-point and the current
IP address will be set

• On the center of the upper panel (on the navigation bar) appears the name of
the selected course

2. Publishing a new Presentation

To publish a presentation click the PUBLISH button in the button list on the left
size of the window or go to the File menu and click Publish (see Figure A.4).

Figure A.4: Publishing a new presentation (teacher side)

A.3 Using the Presentation Tool 47

• Click the Publish button on the top-left side of the window
• An ftp dialog window appears; select the ftp server where do you want to put

your presentation or write a new one in the field. To add or delete servers from
this list go to the Options menu and select FTP Servers. To log into the FTP
server, in the appeared dialog window you also have to provide your username
and password

• Insert all values and click Connect
• The connection is in progress, if everything is ok, a message will advise you. If

you are logged in, click Publish to publish your presentation
• A new dialog window appears inviting you to select the directory containing

your presentation; the presentation must be saved in a sequence of files ordered
alphabetically and saved in a directory with the name of the presentation

• Select the PRESENTATION DIRECTORY you want to publish and click Open
• If a presentation with the same name already exists on the server, it will be

overwritten by this new one. A message will advise you if everything is going
well

3. Opening a new Presentation

To open a new presentation press the OPEN button on the top-left of the window,
just below the ”Courses” button. Alternatively you can go to the File menu and select
Open presentation (see Figure A.5).

Figure A.5: Opening a new presentation (teacher side)

• Click the Open button
• A new dialog Window will appear; here you can choose the ftp server from where

you want to download your presentation or writing a new one just inside. To add
or delete servers from this list go to the Options menu and select FTP Servers.
To log into the FTP server, in the appeared dialog window you also have to
provide your username and password

48 User Guide

• Insert all values and click Connect

• The connection is in progress, if everything is ok, a message will advise you. If
you are logged in, click Open new Presentation to open your presentation

• A new dialog will appear with the list of presentation saved on this server. Select
one of them.

• The presentation is loaded and the first slide will be shown in the browser’s main
window

4. Opening a new Connection

To open a new connection and begin giving a course click the CONNECT button in
the button list on the left size of the window or go to the File menu and click Connect
(see Figure A.6).

Figure A.6: Opening a new connection (teacher side)

• Click the Connect button to initialize a new connection

• After a while will appear a new dialog window confirming you that you are
successfully connected

• Close the window and look at the ”Connect” button: now a button click will
Disconnect you from the session

• If you disconnect, the presentation will be closed and all participants will be
removed from the session

5. Managing the users

The panel on the right side, contains the list of all students currently connected to
this session.
By clicking on the selected student you can manage him (see Figure A.7).

When a new user is connected to the session, its name will be displayed on the panel
with a Cyan Background. Different background colors have different meanings:

A.3 Using the Presentation Tool 49

Figure A.7: Managing the connected students (teacher side)

• CYAN: The color of a new user

• PINK: The user is requesting the access to the whiteboard

• GREEN: The user has access to the whiteboard

• ORANGE: You delayed the access to the whiteboard for this user

• RED: The access to the whiteboard has been refused for this user

If you click on a student you can perform different tasks:

• Killing him if you don’t want to see him in your application anymore

• Giving him access to the whiteboard

• Refusing him access to the whiteboard

• Let the user waiting for the whiteboard access

As soon as a student will disconnect (or will be killed), its name disappear from the
users’ list.

6. Adding/Removing FTP Servers

The application provides some predefined ftp servers to log on for publishing or down-
loading presentations. However you can define your own default servers by going to
the menu Options and clicking FTP servers. Here you can add new servers by clicking
new... or removing the already defined ftp servers by picking them up from the list
under ”delete”.

50 User Guide

A.3.2 Student

1. Selecting a course to follow

To select a course you have basically to click on the COURSES button on the top left
of the application window. You also have the choice to select the course by going in
the menu to File - Select Course (see Figure A.3).

• Click the Courses button on the top-left of the window
• The default access-point is contacted and the course list is retrieved
• A new dialog window with a list of courses will appear
• Select the course you want to follow and click choose
• The selected course’s IP Address will be set from the retrieved list
• On the center of the upper panel (on the navigation bar) appears the name of

the selected course

2. Connecting to a presentation

To resolve an existing connection and following a course click the CONNECT button
in the button list on the left size of the window or go to the File menu and click
Connect (see Figure A.6).

• Click the Connect button to resolve the connection
• After a while a new dialog window appears, confirming you that you are suc-

cessfully connected
• Click the Close button; a new dialog window will appear, asking you to login

into an ftp server for downloading the presentation
• Insert your login and your password for the server indicated on the dialog window

and click Connect
• The presentation is loaded at the current running status and you can begin to

follow the course
• Look at the Connect button: now a button click will disconnect you from the

session
• If you disconnect, the presentation will be closed and the tutor will be informed

of that

A.3.3 Access-point, Whiteboard and Chat

• Updating the access-point

The access-point is the only fix point of the whole application: it has to be known
to all participants, so keep in mind that changing it can cause potentially fails of the
whole application. A teacher has a double access to the access-point: on one side
he’s accessing the Web Server for reading the courses IP addresses, on the other he’s
accessing the FTP server to update the current IP address. The FTP server provides
a list of text files, named as the courses and containing the IP addresses of the teacher
applications teaching the selected course.

As teacher you can modify 5 parameters:

A.3 Using the Presentation Tool 51

– HOSTNAME: The name of the server (both FTP and HTTP)

– WEB PATH: The path of the file providing access-point information for the users

– FTP PATH: The internal path of the FTP server where to find/put the modified
IP files

– LOGIN: The login needed to access the FTP server

– PASSWORD: The password needed to access the FTP server

As student you can only modify the parameter you need (HOSTNAME and WEB
Path).
To modify these parameters go to the Options menu and click Access Point configu-
ration. By opening this menu a dialog window containing the current value of these
5 parameters will be displayed. You can change the parameters and save them by
clicking on Change.

• Whiteboard and Chat

The presentation tool provides a Whiteboard, placed over the presentation slides,
and a Chat line. These 2 components let the teacher interact with the students. The
teacher has always access to the whiteboard, the student per default not.

Figure A.8: Using the whiteboard

Using the users’ panel, the teacher can manage the students and give them access to
the whiteboard. For requesting such an access the students should click the token
button in the whiteboard button’s panel. The color of this button indicates whether
the student has access to the whiteboard (green) or not (red). The other buttons

52 User Guide

allow the users to draw different drawings with different colors on the drawing area
placed over the presentation slides (see Figure A.8 and Figure A.9).

The chat line is placed at the bottom of the window and can be used by any user
connected to the session to send messages to all other users (see Figure A.9). It is
possible to change the size, the font or the style (bold/italic) of the written text. In
the Chat panel all the sent messages will be displayed indicating the respective sender
(teacher always in red, students always in blue).

For writing text in the whiteboard, a user has first to select the T button in the
whiteboard button’s panel, then can write and format the text in the chat panel and
finally can click with the mouse on the whiteboard, at the place where he wants to
insert the text.

A user can also point something on the slides: for doing that just select the pointer
button in the button’s panel and hold the mouse button pressed dragging the mouse
over the drawing area.

Figure A.9: Whiteboard Buttons and Chat Panel

Bibliography

[1] HotJava Browser Product Family (at Sun Microsystems).
http://java.sun.com/products/hotjava/.

[2] HotJava HTML Component (at Sun Microsystems).
http://wwws.sun.com/software/htmlcomponent/.

[3] Mozilla.org Web Client. http://www.mozilla.org/projects/blackwood/webclient/.

[4] BrowserG! Version 1.3. http://browserg.mozdev.org/.

[5] Java Browser Technology, Components for Enterprise, and Embedded Application De-
velopers. http://www.icesoft.no/.

[6] The Jazilla Project. http://jazilla.sourceforge.net/.

[7] JRenderer Design Document. http://jazilla.sourceforge.net/products/jrenderer/.

[8] XBrowser Extended Web Browser. http://xbrowser.sourceforge.net.

[9] Netbeans Module Netbrowser. http://netbrowser.netbeans.org.

[10] Citec DocZilla. http://www.doczilla.com.

[11] Clue Browser for Desktop/Server Applications. http://www.netcluesoft.com.

[12] Calpa Java Package Homepage. http://www.netcomuk.co.uk/∼offshore/index.html.

[13] S. Shirmohammadi, A. El Saddik, N.D. Georganas, and R. Steinmetz. Web-based
multimedia tools for sharing educational resources. ACM J. of Educational Resources
in Computing (JERIC), 1(1):13, March 2001.

[14] The Source for Java Technology. http://java.sun.com.

[15] The PPT2HTML PowerPoint to HTML Converter.
http://www.rdpslides.com/ppt2html/.

[16] CZ-Ppt2Htm V1.0. http://www.convertzone.com/ppt2htm/.

[17] Microsoft PowerPoint Web Publishing Accessibility Wizard.
http://www.rehab.uiuc.edu/ppt/.

[18] World Wide Web Consortium. http://www.w3.org/.

54 BIBLIOGRAPHY

[19] Java Shared Data Toolkit Home Page. http://java.sun.com/products/java-
media/jsdt/index.html.

[20] Rich Burridge. Java Shared Data Toolkit user guide. Technical report, Sun Microsys-
tems, Inc., October 1999.

[21] Java Foundation Classes: Cross-Platform GUIs and Graphics.
http://java.sun.com/products/jfc/.

[22] Abstract Window Toolkit (AWT). http://java.sun.com/j2se/1.4.1/docs/guide/awt/.

[23] Java 2D API. http://java.sun.com/products/java-media/2D/.

[24] Standard Edition (J2SE) Java 2 Platform. http://java.sun.com/j2se/1.4.1/download.html.

[25] version 1.4.1 Documentation Installation Instructions for Java 2 Platform, Stan-
dard Edition. http://java.sun.com/j2se/1.4.1/install-docs.html.

[26] Ronan Sorensen. Java sockets push. what’s possible. Visual Basic Programmer’s
Journal, pages 111–113, December 1997.

[27] Jane Hunter and Suzanne Little. Building and indexing a distributed multimedia
presentation archive using SMIL. Master’s thesis, University of Queensland, Australia,
2002.

[28] Klaus H. Wolf, Konrad Froitzheim, and Schulthess Peter. Multimedia application
sharing in a heterogeneous environment. ACM Multimedia 95, November 5-9 1995.
San Francisco, California.

[29] The Application Sharing Technology. http://www.motifzone.com/tmd/articles/XpleXer/XpleXer.html.

[30] Collaborative browsing in Information Resources.
http://www.tik.ee.ethz.ch/∼cobrow/home.html.

[31] Cay S. Horstmann and Gray Cornell. Core Java 1.2. Prentice Hall, 1999.

[32] Rhino: JavaScript for Java. http://www.mozilla.org/rhino/.

