
Reto Zürcher, Andreas Mühlemann

Pattern-based Service Deployment
in Active Networks

Semester Thesis SA-2003.13
November 2002 to February 2003

Supervisor: Matthias Bossardt
Co-Supervisor: Lukas Ruf

Professor: Bernhard Plattner

II

Abstract

The functionality of current networks concentrates mainly on routing and
forwarding. Active networks are a novel approach to network architecture
in which the nodes allow to have distributed computation on them. This
rapidly evokes new services, which are not possible in traditional networks.
The usage of these services requires firstly the search of suitable nodes and
secondly the installation on these nodes. This is definitively an error-prone
and expensive work. We therefore thought about the following questions:
How can we find appropriate nodes? How can we do this efficiently? And,
since we not only have to find the nodes, but also to install the services on
them: Is it possible to automate the whole service deployment?
That led us to the concept of deployment patterns from Koon-Seng Lim
and Rolf Stadler. These patterns allow to classify the deployment of active
services based on their deployment requirements. On the one hand, we
provide a survey of services in active networks and their classification. On
the other hand, we implemented some patterns and compared them to a
central approach in different network structures. The simulation testifies
that deployment patterns reduce the amount of sent data in the network
compared to a traditional approach.

Zusammenfassung

Heutige Netzwerke zeichnen sich vor allem dadurch aus, dass sich ihre Haupt-
funktionalität auf einfaches Routing und Forwarding beschränkt. Aktive
Netzwerke sind ein neuer Forschungsansatz, der es erlaubt, auf den akti-
ven Knoten verteilte Programme auszuführen. Das führt zu neuen Services,
die in traditionellen Netzen nicht möglich sind.
Die Nutzung dieser Services erfordert die Installation und Konfiguration auf
geeigneten, aktiven Router. Diese Suche und die anschliessende Installation,
was Deployment genannt wird, ist eine aufwendige und fehlerbehaftete Ar-
beit. Deshalb stellen sich unweigerlich die folgenden Fragen: Wie können
diese geeigneten, aktiven Router gefunden werden? Wie kann Effizienz er-
reicht werden? Und da nicht nur geeignete Knoten gefunden werden müssen,
sondern auch noch eine Installation erforderlich ist: Wie kann das gesamte
Deployment von Services automatisiert werden?
Das führte uns zum Konzept der Deployment Pattern von Koon-Seng Lim
und Rolf Stadler. Diese Pattern erlauben es, Services nach ihren Deploy-
ment Anforderungen zu klassifizieren. Pattern wurden in Software imple-
mentiert und mit einem Simulator getestet. Es wurde ein zentralistischer
Lösungsansatz in verschiedenen Netzwerken mit einem Pattern basierten
Ansatz verglichen. Es konnte gezeigt werden, dass Deployment Pattern die
Menge versendeter Daten stark reduzieren können und somit die Netzwerk-
ressourcen möglichst nachhaltig verwenden.

Semester Thesis CONTENTS

Contents

English Abstract III

German Abstract IV

Table of Contents V

List of Figures VII

List of Tables VIII

1 Introduction 1

1.1 Motivation . 1
1.1.1 Active Networks . 1
1.1.2 Pattern-based Service Deployment 2

1.2 Organization . 3

2 Survey of Active Services 5

2.1 Active Reliable Multicast . 5
2.2 Web caching . 6
2.3 Wave Video . 6
2.4 Monitoring . 7
2.5 Information fusion . 7
2.6 Congestion control . 8
2.7 Application security gateway 8
2.8 Transcoding . 9
2.9 Firewall . 9
2.10 Tunnel . 10
2.11 Overlay . 11
2.12 VPN . 11

V

CONTENTS Semester Thesis

3 Service deployment patterns 12
3.1 Representation of patterns . 12

3.1.1 Navigation patterns 12
3.1.2 Aggregator patterns 14

3.2 Classification of active services 15
3.3 Scout pattern . 15
3.4 DoOnScoutDestination pattern 16
3.5 Flood pattern . 18
3.6 FindBest-DoOnScoutDestination pattern 20
3.7 DoAfterLastEcho . 22
3.8 TeleFlood pattern . 23
3.9 Flood-MultipleTeleFlood pattern 23
3.10 FindBest-Inform pattern . 25
3.11 PathFinder pattern . 27
3.12 DoOnPath pattern . 29
3.13 NodeFinder pattern . 29

4 Simulation Results 34

4.1 Description of the simulation environment 34
4.2 The simulation . 35
4.3 The simulation Results . 39

5 Conclusion and future work 44

5.1 Conclusion . 44
5.2 Future work . 45

A Appendix 47
A.1 The SIMPSON Simulator . 47
A.2 Problems with the SIMPSON Simulator 48

B Appendix 49
B.1 The number of hops . 49

C Appendix 51
C.1 Enclosed CD-Rom . 51

Bibliography 52

VI

Semester Thesis LIST OF FIGURES

List of Figures

3.1 The type of state transition 13
3.2 The hierarchy of the navigation patterns 14
3.3 The hierarchy of the aggregator patterns 15
3.4 FSM of the Scout navigation pattern 17
3.5 FSM of the Flood navigation pattern 19
3.6 FSM of the TeleFlood navigation pattern 24
3.7 FSM of the Flood-MultipleTeleFlood navigation pattern . . . 26
3.8 FSM of the Pathfinder navigation pattern 28
3.9 FSM of the NodeFinder navigation pattern 32

4.1 The network for the worst-case scenario 37
4.2 The network for the best-case scenario 37
4.3 The network for “the Grid” 38
4.4 The number of sent messages in the worst-case scenario . . . 40
4.5 The number of sent messages in the best-case scenario 41
4.6 The number of sent messages in the “the Grid” scenario . . . 42

VII

LIST OF TABLES Semester Thesis

List of Tables

3.1 Overview of classified services 33

4.1 The number of sent messages and bytes in the worst- and
best-case scenario . 39

4.2 The number of sent messages and bytes in “the Grid” 43

B.1 The number of hops in the central approach 50

C.1 Content of the CD-Rom . 51

VIII

Introduction Chapter 1

Chapter 1

Introduction

This chapter presents the introduction and motivation for the research de-
scribed in this thesis. Section 1.1 provides first the motivation for thinking
about a classification of active services and developing specific navigation
and aggregator patterns on this base class . It furthermore introduces into
the advantages of active networks and describes the pattern-based service
deployment approach used in this thesis.
The last section sketches the organization of this thesis.

1.1 Motivation

The installation, configuration and setup of software is often a boring, repet-
itive, expensive and even error-prone task. Lot of effort is payed on automa-
tion and classes are identified to solve similar tasks with one solution.
That is exactly the main goal for the deployment of active services in this
thesis. The task of deployment is simply reduced by applying one pattern,
if general patterns for each class of active services are implemented.
Before describing our survey of these services and their classification, an
overview of active networks and the pattern-based service deployment is
given.

1.1.1 Active Networks

Traditional computer networks are limited in their functionality. The major
task of routers is mainly to deliver packets from one host to another. Pro-
cessing within the network is limited basically to passive congestion control

1

Chapter 1 Introduction

and quality of service (QOS) [1]. Other tasks like transcoding, active con-
gestion control and fusion of data, which could be computed more efficiently
on the nodes between, have to be performed on one of the end hosts. Such
“passive” networks lead to some difficulties of integrating new technologies
and standards into the shared network infrastructure, poor performance due
to redundant operations at several protocol layers and difficulty in accom-
modating new services in the existing architectural model [1].
Active networks (AN) are a new approach to network architecture. The
services are deployed either in-band or out-of-band. In-band deployment
on the one hand refers to a system, where the service logic is distributed
in the same packet as the payload data. Out-of-band deployment, on the
other hand, refers to an architecture where both deployment and payload
data use distinct communication channels [2]. Since the deployment in the
former is given by the use of the service itself, this thesis considers solely
services, which are deployed out-of-band.
Routers can perform computations on active packets, modify the packets
content and users are able to include new programs into the network. To-
day, routers may modify a packet’s header, but pass the user data opaquely
without examination or modification [3].
Active Routers are based on a classical router. On top of this router exist
one or more execution environments (EE) to execute the code or programs
of the active packets [2]. If a passive packet arrives at an active node, it
will be routed and forwarded in the common way. Only active packets are
checked if they contain any program or data to be executed. Active packets
should be routeable by passive nodes too, to combine active and passive
networks.

1.1.2 Pattern-based Service Deployment

Koon-Seng Lim and Rolf Stadler proposed a pattern-based network manage-
ment. It is based on the methodical use of distributed control schemes [4].
They specify the key concept of “navigation and aggregator patterns”, which
describes the flow of control during the execution of a distributed manage-
ment program. A navigation pattern determines the degree of parallelism
and internal synchronization of a distributed management operation. This
concept has two main benefits.

2

1.2 Organization Chapter 1

• It allows the analysis of management operations with respect to per-
formance and scalability

• Two patterns which belong together allow to separate the semantics
of a management operation from the control flow of the operation

Navigation patterns should be as generic as possible to be used for differ-
ent management tasks, according to different performance objectives. Lim
and Stadler developed an approach that will free the management applica-
tion programmer from developing distributed algorithms, allowing to focus
on the specific management task. He only has to select a navigation pattern
that captures the requirements for that task [4].
This work is directly influenced by the work of Kim and Stadler because
of the idea of the pattern-based approach and the simulation program to
develop these patterns.

The structure of a pattern-based management program
A pattern-based management program consists of three abstract object
classes.

• A navigation pattern, which describes how the messages get from
node to node during its execution.

• An aggregator, which specifies the operations executed on each node
and how the results are aggregated.

• An operator, which provides a platform independent interface to
state and control variables of a network node.

Our classification uses the navigation and aggregator patterns. The op-
erator provides information of the nodes and is used as a utility.

1.2 Organization

This thesis is organized as follows:
Chapter 2 presents a survey of active services to show the differences to
nowadays standards in networking.
Chapter 3 describes our navigation and aggregator patterns, which classify

3

Chapter 1 Introduction

all the active services described in the last chapter.
In Chapter 4, the simulation and the gained results are shown, which were
built competing the patterns against a central approach.
Chapter 5 gives a summary of this thesis and the conclusions. It describes
the future work as well.

4

Survey of Active Services Chapter 2

Chapter 2

Survey of Active Services

This chapter provides a survey of services in active networks. It will be useful
to understand the gained flexibility in using active networks. Furthermore, it
acts as a base for the classification in the next chapter. This thesis focuses on
the deployment of the services and not on the services themselves. Therefore,
this chapter solely presents a collection of summaries of other works.

2.1 Active Reliable Multicast

Lehmann, Garland and Tennenhouse describe Active Reliable Multicast
(ARM) as follows. “Provide a reliable service for multicast, avoiding NACK
explosion and multiple retransmission of the same packet from the source.” [5]
The reliable multicast service is provided on a best-effort internetwork. If a
NACK occurs in a passive network, it climbs up the multicast tree to the
root. On lossy or congested networks, multiple hosts in the same branch
may send a NACK for the same packet. All NACK’s are then separately
sent to the root node. In big multicast trees, that can result in an overload
of the source.
An ARM network handles NACK packets differently. If the sequence num-
ber of the NACK is not known, it is saved and propagated back to the
source. When the requested packet arrives, it is sent to the destination and
saved on the node as well. The advantage comes out if another NACK with
the same sequence number arrives. It is not propagated because the packet
can be immediately resent. This reduces the total traffic in the network. In
the downstream direction, active routers reduce the traffic of resent packets
and they reduce duplicate NACK’s in the upstream direction.

5

Chapter 2 Survey of Active Services

As a result of the last paragraph, the best places to install an ARM service
are fork nodes on the multicast tree. Lehman, Garland and Tennenhouse
estimated in their paper [5] good results if at least 35% of the nodes, ran-
domly selected, are active.

2.2 Web caching

The idea of Active Reliable Multicast can be generalized. Not only the data
of the ARM, but the whole data of the web communication can be stored
within the network. This results in a caching of web contents. Data is
stored and retransmitted directly from there. Active nodes act like proxy
servers in passive networks. Proxy servers are used in big LAN’s to control
the web traffic that is entering or leaving them. They cache often used
websites to reduce the outgoing and incoming traffic [6]. Web caches provide
shorter response times, less network traffic, no source overloading and load
distribution. They have to hold time stamps next to the data to have a
criteria of the up-to-date-ness of the required data. Active routers need a
big cache and a sophisticated caching policy.
The placement of active web caches is a sophisticated task, since it is hard to
determine the flux of the web traffic. Although supported by the existence
of smart places. Imaging a local network with many webservers inside,
the overall traffic within can significantly be reduced by placing active web
caches at the border.

2.3 Wave Video

Distributing video streams over the Internet poses many difficulties. Two
important factors for video transportation are bandwidth and maximum
delay [7]. Usual networks can’t guarantee neither the one nor the other. In
case of congestion, packets are dropped and have to be retransmitted again,
without any regards if they will arrive too late or not.
In the case of congestion in an active network, some packets are not only
dropped, but the wavelet-based active router plug-in is also able to scale the
data rate in a sophisticated manner. It reduces the bandwidth of the video
stream by dropping the unimportant information of the video just at the

6

2.4 Monitoring Chapter 2

place where the congestion occurs. The rest of the distribution tree will not
be affected by this reduction. The resulting movie is not jerky, but reduced
in quality of the details.
To achieve this quality of service, every node where congestion may occur,
must be able to reduce the bandwidth of the video stream. Therefore, every
node on the path or in the multicast tree, must be active.

2.4 Monitoring

Monitoring is one of the most important services in networks. Someone can
not decide how good a network is, if he does not have any valuable informa-
tion about it. Controlling of each node is necessary to identify the possible
point of failures. In general, monitoring is an application that collects some
statistical data and publishes it on one single, central machine. To reduce
the transmission overhead of the data collection, it is necessary that the
application is not polling its sensors. Useless data has to be filtered out as
soon as possible and the rest of the data should be as compact as possible.
Active nodes have to perform some data fusion and filtering before sending
them compactly to the central management station.
To achieve a good compensation between centralization and decentraliza-
tion, active nodes should collect and collate data by themselves, filtering
uninteresting data out and sending a compact summary to the management
host. Active nodes can monitor themselves as well as their active or passive
neighbors. Best results should be achieved, if as many as possible nodes are
active.
The best places for this service are the fork nodes of the established tree.

2.5 Information fusion

Information fusion is similar to monitoring. Information is collected from
various nodes and sent to one specific node. The difference lies in the origin
of the data. While monitoring controls more the behavior of the network
itself, information fusion supervises primarily the applications or services
running in this network, e.g. on line auctions: lower, delayed bids can be
proceeded directly in the network to free up server resources for competitive
bids [8].

7

Chapter 2 Survey of Active Services

Uninteresting, useless data or data that is out of date, has to be filtered
out as soon as possible. Information fusion nodes try to reduce the used
bandwidth, destination overload and offer a wide range of scalability. As in
monitoring, information fusion scales better the more nodes are part of this
service. The service is best placed on fork nodes of the established tree.

2.6 Congestion control

Congestion is a big problem in networks. Bottleneck links overfill, the flow
of data is congested and results in large delays or interruption of communi-
cation [9]. The prediction of congestion is very difficult or impossible and
only fast reaction to a congested situation can prevent communication links
from interruption.
Nowadays, routing algorithms react quite slowly to congestion. They are
optimized to react on topology changes. It is not possible to prevent links
from congestion. The only thing you can do is to design your network with
adequate bandwidth for the next years and hope it will be enough.
Congestion control in an active network discovers the aggregation of data
flows and prevents bottleneck links from overfilling. New routes through a
network are chosen fastly and allow communication links to persist. There-
fore it is possible to prevent communication failures and reduce the delay for
time sensitive transmissions. Active nodes are used as triggers that indicate
congestion control, flow state is examined for advice about how to reduce
the quantity of data. They aggregate traffic information about themselves
and their neighbor nodes. According to reduction techniques (i.e. wave-
video) they prevent links from congestion and choose new routes for data
flows. If a network must be prevented from congestion, all routers need to
participate in the active service to be efficient.

2.7 Application security gateway

There are two different ways to gain security in communication networks,
securing the communication link itself like VPN, or securing the application
(i.e. SSH). VPNs will be discussed later in this work.
Application security gateways (ASG) are specialized nodes in a network
that handle all traffic for a single application. Each application uses its own

8

2.8 Transcoding Chapter 2

ASG which can exist on the same node as the one for another application.
They filter all the outgoing and incoming traffic and decide what to do with
it. Such gateways should be as transient as possible for the user, not to
complicate the use of the application. A node must be capable to serve
as an ASG and there are normally just a few of them, because they are
equipped with security hardware. Therefore the service is set up on just one
node within the network.

2.8 Transcoding

The sending hosts have to send data in different ways, to allow different
systems to access the same data. The network only transmits the provided
data packets. If a website should present its content for both HTML and
WAP, the same content has to be stored in both formats. The same problem
occurs for different video or sound formats (i.e. MJPEG, H.261 and other).
Transcoding can solve this problem by converting data somewhere within
the network. The gained flexibility can be used by programmers to develop
their own transcoding schemes for new services or formats and install them
directly in the active network. Transcoding enables to accommodate fixed
and mobile network users without the need of storing data in all possible
formats.
Active routers between the end hosts only need to know the transcoding
scheme from one format or protocol to another. They can choose an ap-
propriate location to transcode the data packets, together with the net-
work status information (bandwidth, delay, free resources). If the needed
transcoding scheme is not known on the transcoding node, it can be down-
loaded from another node or a scheme database and installed just in time.
E. Amir, S. McCanne and R. Katz described such a node as a “Media Gate-
way” (MeGa) [10].

2.9 Firewall

In the time of daily attacks to computer networks, firewalls have become
more and more a must for network security. They implement filters that
determine which packets should pass [3]. Firewalls can be implemented in
that way they are transparent to the user or not.

9

Chapter 2 Survey of Active Services

While a firewall can be set up quite fast for simple and small networks, their
installation and maintenance is very complicated for large networks like a
LAN of a university or a multinational company. As the user asks for more
flexibility, the administrator will complain about the difficulty in the firewall
support. If more than one firewall is used to secure the local network from
the Internet, it is very important to hold the firewall rules actual and to
check them regularly.
The whole scenario becomes even more complicated, if someone does not
want to check only data packets but also complete data streams. Fragmen-
tation divides data into multiple packets, of which each alone is safe, but
all together can be dangerous (i.e. viruses). Firewalls need a cache to store
incoming packets and check all other packets for the same session. The more
traffic a firewall has to handle, the bigger the cache must be.
Active nodes can offer this service perfectly. They offer a cache and also com-
puting power in their EE. As they are placed on usual routers for passive
networks, there is no need of extra hardware. Temporary firewalls become
also possible and are set up in a very short time, without any interruption
of the communication. They can update the implemented rules automati-
cally (with the appropriate security standards) without any operation of an
administrator. Any update for new protocols or automated adaption (by
allowing applications from approved vendors to authenticate themselves to
the firewall and inject the appropriate modules into it) can be performed
right in time and not only after a long process of standardization.
A firewall has to be placed and configured at the border of a domain.

2.10 Tunnel

Tunnels are point-to-point connections and used very often to enable secure
transactions between two hosts. They have to be set up and closed in a
minimum of time to offer flexibility to the user. Until now, the user has to
define the two hosts, where he will put up the tunnel. This work could be
done by the active network itself, which searches two appropriate nodes to
establish a connection between. The only thing the user still has to do, is to
define between which networks the tunnel has to be set up and provide some
additional parameters (i.e. maximum hops in between, security standard,
maximum delay). The active network will automatically search two possible

10

2.11 Overlay Chapter 2

nodes in two different networks and set up the tunnel.

2.11 Overlay

Overlay networks are similar to tunnels. They are placed on top of a usual
network, but it seems to be a different network with a different configuration
(i.e. grade of networking, number of nodes). The setup is very difficult
because the user has to choose the hosts for this network and to send them
their neighbor identity.
Active networks install overlay networks automatically. The user has to
define network regions where overlay nodes must be placed (i.e. company
LANs) and some additional parameters (i.e. grade of networking). The
deployment of the service will search for appropriate nodes in the specified
areas and connect them.

2.12 VPN

VPNs are a kind of overlay networks or tunnels. They offer a grade of secu-
rity for data transmission. Users can apply them by authenticating people
or hosts. All data transactions are encrypted in between the end points of
this virtual network (which is sitting on top of a communication network).
Active nodes can be used very easily to implement a VPN. The authentica-
tion is done as in traditional VPNs, but offering more flexibility, especially
for mobile users (routers could hand over connections transparently to the
user). To set up a fixed or temporary VPN, no new hardware is needed.
Only enough free resources on the active nodes must be provided to use the
appropriate standard of security and the service is ready to run.

11

Chapter 3 Service deployment patterns

Chapter 3

Service deployment patterns

This chapter describes service deployment patterns, which classify the ser-
vices listed in the last chapter. The first section describes the representation
used to describe navigation and aggregator pattern. The next section in-
troduces the classification scheme, and the last sections finally describe all
navigation and aggregator patterns and assign appropriate services to them.
The table at the end of the chapter summarizes the classification.

3.1 Representation of patterns

The key concept of pattern-based service deployment was introduced in sec-
tion 1.1.2 and is developed in [4]. This section presents some parts which are
needed to understand the way of of how navigation and aggregator pattern
are described in this thesis in detail.

3.1.1 Navigation patterns

The navigation pattern describes the flow of messages. Therefore, it needs
to know its location. As otherwise, it can not deliver messages properly.
Furthermore, it must take care of messages that have visited its location.
To support these two requirements, a navigation pattern can be best im-
plemented on a network node as a Finite State Machine (FSM), which is
triggered by messages. This was shown by Kim and Stadler in [4].
This chapter presents a FSM for each navigation pattern and the parameters
needed for the proper navigation.

12

3.1 Representation of patterns Chapter 3

Init
State

Node
State1

Final
State

mState [localCondition] mState [localCondition]

mState [localCondition]

OnInitState()
 send mState

OnNodeState1() OnTermination()

Node
State2[localCondition]

OnNodeState2()

mState [localCondition]

Figure 3.1: The type of state transition

Figure 3.1 shows an example of such a FSM. The boundaries of the states
specify their type as initial, if there are two circles, as final with a bold circle
or as normal with a single narrow circle. The transition from one state to
another depends on the mState, the mobile state of the arriving message
and local conditions which are indicated in square parentheses afterwards.
If there is only a condition at the edge, it acts as a guard. This means
that the transition to that state takes place if the condition is true and no
message is needed for triggering.
If a message arrives at a node in a state where no handling for that mState
message is given, no transition occures and the node remains in the same
state.
We developed base navigation patterns and patterns which are inherited
from those. The meaning of inheritance in this navigation pattern-based
view is the joint of all states into one FSM, except XXXPatternTermi-

nated and XXXBegin. They are private states and XXX indicates a
certain pattern. Each pattern has them as its own private states.
At inheritance, transitions and conditions between states from parent pat-
terns have to be added or adapted. The merging of the states is explained in
the corresponding navigation pattern description. The resulting hierarchy
is shown in Figure 3.2.

On the right bottom of each state, the aggregator function is indicated.
The FSM’s shows all possible aggregator functions. This aggregator func-
tions are executed solely on entering or reentering the state by a transition.

13

Chapter 3 Service deployment patterns

Scout

TeleFlood

Flood

Flood-Multiple
TeleFlood

PathFinder

NodeFinder

Figure 3.2: The hierarchy of the navigation patterns

The actions of the navigation pattern is indicated below the aggregator
function.

3.1.2 Aggregator patterns

Aggregator patterns define the operations executed on each state and the
way how the information is aggregated. This makes them dependent on
their corresponding navigator, although the pattern hierarchy allows an in-
heriting navigation pattern to use the aggregator of its parents.
There is also a inheritance tree of aggregator patterns, as shown in Fig-
ure 3.3. Inheriting methods in an aggregator based view means, that all
functions keep their functionality. Furthermore, every function is inherited
or overridden, except XXXPatternTermination() and XXXBegin(), for the
same reason as explained above.
The description of aggregator patterns in this chapter includes identifying
states with their functions, which must be implemented, and describing their
scope.

14

3.2 Classification of active services Chapter 3

DoOnScout
Destination

FindBest-
DoOnScoutDest

ination

DoAfter
LastEcho

DoOn
Path

FindBest-
Inform

Figure 3.3: The hierarchy of the aggregator patterns

3.2 Classification of active services

This section introduces our classification scheme, which groups services ac-
cording to their type of deployment in the network.
Since two different patterns have to be implemented, it results in a two di-
mensional classification.
On the one hand, there is the navigation classification. It groups the ser-
vices according to the topology of the nodes involved. There are e.g. services
which need one node in the local domain and a second one in another do-
main. This must be distinguished from a further service, which requires all
nodes in between for the execution of the service.
On the other hand, the aggregator dimension of the classification classifies
what the deployment has to do on the nodes. For example, it puts a service
that needs execution on each node into another class, than a deployment
that executes a method just on one single node.
The following patterns build the classification of all introduced services in
the previous chapter. Each pattern description lists its class of deployment.
A list of all services and their corresponding pattern classification is given
at the end of this chapter in table 3.1.

3.3 Scout pattern

The first pattern to be described is the Scout navigation pattern. Its FSM
is depicted in Figure 3.4. The main goal of this pattern is travelling from a

15

Chapter 3 Service deployment patterns

start node to a destination node and returning back to the origin. The work
to be done on each node, to collect and distribute information, is the scope
of a suitable aggregator. It is described in the next section.
At the very begin, each node is in the Init state. On an arriving message, the
FSM changes into one of the four states. The two states with the underlined
names are used by nodes where the travelling message passes. They have no
impact on the pattern and are only shown for the reason of completeness.
They can be passive nodes as well and are omitted in the following.
The pattern starts as soon as the first message mScoutBegin reaches a node,
which becomes the start and administration node of the pattern. It jumps
into ScoutBegin and sends out the Scout message with the mobile state
mScout. This message goes its way towards the destination according to
the routing algorithm in the network. It brings each visited node into the
state Travel as long as it has not reached the destination node and the
node is active. Reaching the target causes the node to jump into Scout-

Destination, which invokes the return trip. Back on the start node, the
mScoutBack triggers the FSM from ScoutBegin into ScoutTerminated.
This state is used from an aggregator to clean up the pattern and to obtain
the ability of inheritance. Without any conditions, the final and private
state ScoutPatternTermination is triggered and the pattern ends.
The pattern must be started with a parameter, that specifies the destina-

tion of the mScout. In nowadays networks, that is an IP address.
This class of services has two nodes involved. On on side, it is the start node
and on the other side it is a distant destination node. The path between
has no relevance to the service and may consist of active or passive nodes.
Actually, no services are assigned to this class. Although, it is a navigation
class, because it is used for several inheritances.

3.4 DoOnScoutDestination pattern

The preceding section described the Scout navigation pattern. This section
introduces a corresponding aggregator.
As it is shown in the following patterns, there are a lot of situations where
some computed data has to be displaced to a far node, or a node has to be
notified about a decision another node had made. This is best solved with
a message that triggers a function with some parameters on that node. The

16

3.4 DoOnScoutDestination pattern Chapter 3

mScout [node == mDest] mScoutBack

BackTravel

OnBackTravel()

Scout
Destination

OnScoutDestination()
 send mScoutBack

Init

mScout [node != mDest]

OnTravel()

Travel

OnScoutTermination()

ScoutBegin

mScoutBack

OnScoutBegin()
 send mScout

mScoutBegin

Scout
Pattern

Terminated

Scout
Terminated

OnScoutPatternTermination()

Figure 3.4: FSM of the Scout navigation pattern

following methods are implemented by this pattern:

OnScoutBegin() This method is executed at the beginning of the Scout
pattern. Therefore, it identifies the number and destination of all
mScout messages that it has to send. In addition, it sets a unique
pattern identification to differentiate it from other patterns.

OnScoutDestination() This function is used to execute a piece of code on
the destination node or to let the node know, that the arrived message
contains data which has to be handled. It is also possible to start an
external application with it.

OnScoutTermination() This function is called when the mScoutBack re-
turns to the start node. It is responsible to handle the content of the
message e.g. evaluating the success of the deployment.

OnScoutPatternTermination() Since this method is executed on the
start node after the pattern has terminated, it is used to commu-
nicate with the application which called the deployment pattern. It is
intended for implementation dependent resource freeing.

17

Chapter 3 Service deployment patterns

This pattern, being in its not-inherited appearance, is not used by any ser-
vices. It is listed anyway, because it tightly fits to the Scout navigation
pattern and is used for inheritance. It classifies services deployments which
need to notify or get some information about other nodes in distance.

3.5 Flood pattern

The Flood pattern is a navigation pattern and inherits the states from the
Scout pattern.
It’s outlet is divided into three steps. First, a group of nodes is flooded. This
group is either a restricted network like a domain or an overlay network of
a multicast tree. The second step lets messages gathering together in the
shape of a tree. This makes sure to visit all nodes and an aggregator is able
to gather information properly. The last step is the inherited Scout pattern
and aims to one or more nodes selected by the aggregator. This proceeding
is called gather-compute-scatter and was taken out of the work of Y. Chae,
S. Merugu et al. in [11]. It is used in several of the following deployment
patterns.
The flood pattern is implemented in the FSM in Figure 3.5. At the begin,

the start node changes into FloodBegin and sends out a mExplorer mes-
sage to each connected link if they are within the group. This is actually the
job of every node when the first mExplorer arrives and it jumps into First-
Explorer. The first mEcho triggers the node into EchoOnNode, where
the node waits for all mEcho messages from its neighbors of the group,
except the explored link. The explored link is defined as the link where
mExplorer arrived. If a subsequent mExplorer visits the node, it has to
notify the sender that it has already been explored by sending a mExplored.
This is in the state SubsequentExplorerOnNode.
The nodes have their jobs done and terminate at NodeTerminated in two
different cases. Either if all mEcho messages have arrived or if they are leaf
nodes. That is the case if they have no neighbors in the same domain. In
this termination state, the node has to send a mEcho on the explored link,
which leads the pattern to gather in the shape of the desired tree.
If the start node has collected all mEcho messages in EchoOnStartNode
as well, it changes into FloodTerminated. A corresponding aggregator
pattern sets the boolean NoScout, which decides whether or not to send

18

3.5 Flood pattern Chapter 3

InitmExplorer
[!allEchoArrived()]

FloodBegin

OnFloodBegin()
 send mExplorer

First
Explorer

OnFirstExplorer()
 send mExplorer

mFloodBegin
Init

mEcho

Flood
Pattern

Terminated

mEcho

EchoOn
Node

[allEchoArrived()]

AfterLastEcho()
send mEcho to explored link

Node
Terminated

mEcho EchoOn
StartNode

[allEchoArrived()]

OnEcho()
 send mEcho

OnEcho()

OnFloodTermination()

mExplorer
[allEchoArrived()]

Flood
Terminated

OnFloodPattern
Termination()

ScoutBegin

OnScout
Termination()

mScoutBackScout
Terminated

[!NoScoutToSend()]

OnScoutBegin()
 send mScout

[allScoutBack()]

[NoScoutToSend()]

OnScoutDestination()
 send mScoutBack

Scout
Destination

mScout [node == mDest]

Subsequent
Explorer
OnNode

mExplorer

Subsequent
Explorer

StartOnNode

mEcho
mExplorer

OnSubsequent
Explorer
OnStartNode()
 send mExplored

OnSubsequent
Explorer
OnNode()
 send mExplored

mEcho

mEcho

mScoutBack

Figure 3.5: FSM of the Flood navigation pattern

19

Chapter 3 Service deployment patterns

mScout messages. If it is TRUE, mScout’s are sent as the last step of the
Flood pattern. As soon as the Scout pattern comes to the end, the FSM
on the start node terminates in FloodPatternTerminated. At this point,
every FSM on each node has terminated. The kind of information and how
it is collected from each node is within the scope of the aggregator and de-
scribed in the next section.
The only parameter that must be passed to the Flood pattern is a domain
identity. It is used by the nodes to identify their neighbors, since mExplorer
messages are only sent within the desired area. Furthermore, all nodes have
to calculate the numbers of mEcho they are waiting for, based on the do-
main identity of their neighbors.
This pattern classifies the deployment of the services in the navigation di-
mension. It characterizes its members due to the fact that it floods an entire
domain and visits every node. Therefore all service deployments in this class
search or use specific nodes in a group.
A member is e.g. Active Reliable Multicast. The use of the flood pattern
is based on the assumption that the multicast tree has already been estab-
lished and acts as an overlay network.
Another active service is Congestion Control. Since an administrator of a
local network wants to deploy this service in his network, the flood pattern
is used to visit all nodes for starting and configuring.
The installation or configuration of an Application Security Gateway (ASG)
also needs to check each node for its ability to act as an ASG. Furthermore
it finally has to install the application on one able node.
Each of this deployment examples uses the Flood pattern as the navigation
deployment scheme. The entire list of all services is provided in the table 3.1
at the end of this chapter.

3.6 FindBest-DoOnScoutDestination pattern

The FindBest-DoOnScoutDestination pattern is an aggregator and fits all
navigation patterns that are inherited from the Flood pattern. Moreover, it
inherits all the functions of the DoOnScoutDestination aggregator.
Its purpose is finding appropriate nodes in the flooded area and deploy some
information to them.
The pattern needs a simple procedure how to rate all competing nodes

20

3.6 FindBest-DoOnScoutDestination pattern Chapter 3

against each other. Proposed is a local method on the platform independent
operator, which can be executed by the aggregator and returns a scalar or
just a binary. Indeed, multiple parameters may be passed to the pattern
which are forwarded to this function. In the following, they will be called
property.
The following methods are needed from the Flood pattern above:

OnEcho() This function is called on an arriving mEcho, which either con-
tains references to the searched nodes of its part of the branch or is
empty. Therefore, OnEcho() has to store this value plus the references
to the nodes.

AfterLastEcho() This method is called after collecting all mEcho mes-
sages. It is responsible for evaluating all nodes from the collected
mEcho messages and itself. The result is attached to the new mEcho
message, which is sent down to the root by the navigation pattern.
This function may contain implementation specific code. This is free-
ing allocated resources.

OnFloodTermination() When each branch reported its best node to the
start node, this method is called. It is used to do the last evaluation
and to select nodes to pass them to the Scout pattern.

OnFloodPatternTermination() This function is called when the Flood
pattern terminates. Therefore, it reports the termination of the pat-
tern or unlocks the application which is waiting for the full establish-
ment of the pattern.

Inherited functions Function OnScoutDestination(), OnScoutBegin() and
OnScoutTermination() are inherited from the Scout pattern and suffice
the same requirements.

Administrative functions All functions above contain implementation
specific code. In special, OnFirstExplorer() and OnFloodBegin() may
prepare the node for the forthcoming evaluation and the arriving of
mEcho messages.

The only parameters, that must be passed to the aggregator are the proper-
ties of the node to search. That may be requirements for installed software,

21

Chapter 3 Service deployment patterns

plugged hardware components or processor usage of the nodes. This list is
not complete and depends on the application.

3.7 DoAfterLastEcho

DoAfterLastEcho is also an aggregator and fits with all children of the Flood
navigation pattern. Its purpose is to execute a method on well specified
nodes in the flood area. It does not make use of the Scout pattern as the
third step mentioned above. Therefore the boolean NoScout is constantly
set to TRUE. The nodes, on which to execute some code, are set by a pa-
rameter, that is passed to the aggregator. Possible values are ALLNODES,
BORDERNODES and FORKNODES. ALLNODES executes the method on
each node and BORDERNODES on all nodes that have at least one node
in another domain. Fork nodes are identified as nodes which have received
at least two mEcho messages from other nodes and are specified with the
parameter FORKNODES. This parameter is passed further to the After-
LastEcho() function.
The following methods need to be implemented:

AfterLastEcho() The Flood navigation pattern calls this function either
just after the last mEcho arrived at the node or, if the node has only
neighbors from other domains, on the arrival of the first mExplorer
message. Therefore the function can distinguish whether it is a leave
node, whether it is a fork node in a multicast tree, or if it is a border
router of a specified network. These tree specifications are the possible
parameters mentioned above.

OnEcho() This method must be implemented if the success of the exe-
cution on each node has to be reported. In this case, it is the same
method as in the previous pattern.

OnFirstExplorer() This method provides a speed optimization if the ex-
ecution takes a long time. One disadvantage of code execution in this
state is, that the node does not know yet which part of the tree it will
become.

All other functions need no implementation and return without any compu-
tation.

22

3.8 TeleFlood pattern Chapter 3

Service deployment patterns performing a task on each node, depending on
its location in the network, take part of this class. Nowadays, active services
need to decide between border and all nodes. In the case of multicast, good
algorithms exist to build a tree to act as an overlay network. This makes all
multicast service deployment to be treated as a normal network.
This is for example ARM, which ideally starts the ARM service on each fork
node in the multicast tree. In contrast, the deployment of the active Con-
gestion Control is not constructed upon an overlay and needs to be deployed
to each node on the network.

3.8 TeleFlood pattern

The TeleFlood pattern is a navigation pattern. It is similar to the flood pat-
tern, except that the start node is not part of the flood area. This pattern
does not classify the service deployment, but leads to the background of the
following navigation pattern.
The fact that the start node is not in the flood area, but still must be the
origin of a possible Scout pattern, makes some changes necessary. The FSM
is depicted in Figure 3.6. The termination of the flooding in the far domain
must trigger an mTeleFloodBack message to the pattern start node with the
aggregated information. Therefore, the FSM terminates there on Flood-
Terminated. The message travels back to the start node and triggers it
into TeleFloodTerminated. At this state, NoScout() is called. If it re-
turns TRUE, Scouts are sent and on FALSE, the pattern terminates without
a Scout. Hence, the moving of the deciding node is the only change from the
Flood pattern and the rest of the functionality of the FSM remains. The
new state TeleFloodPatternTerminated comes to the place of Flood-
PatternTerminated and is triggered as soon as the mScoutBack returns
to the start node. The only parameter that must be passed to the pattern
is the foreign domain identity to specify the destination of the mTeleFlood
and to restrict the flooding.

3.9 Flood-MultipleTeleFlood pattern

Flood-MultipleTeleFlood is also a navigation pattern. As its name already
betrays, two or more domains are flooded. Both, the local and, as already

23

Chapter 3 Service deployment patterns

Init
mExplorer

FloodBegin

OnFloodBegin()
 send mExplorer

First
Explorer

OnScoutDestination()
 send mScoutBack

TeleFlood
Pattern

Terminated

TeleFlood
Begin

OnTeleFloodBegin()
 send mTeleFlood

EchoOn
Start

mEcho

OnEcho()

EchoOn
Node

mEcho

OnEcho()

[allEchoArrived()]

AfterLastEcho()
send mEcho to Explorer link

Node
Terminated

mEcho

[allEchoArrived()]

mTeleFlood [node == mDest]

Scout
Destination

mScout [node == mDest]

OnFirstExplorer()
 send mExplorer

mExplorer
[allEchoArrived()]

OnFloodTermination()
 send mTeleFloodBack

OnTeleFlood
PatternTermination()

ScoutBegin

OnScout
Termination()

Scout
Terminated

OnScoutBegin()
 send mScout

mTeleFloodBegin

[NoScoutToSend()]

mTeleFloodBack

mScoutBack

Flood
Terminated

TeleFlood
Terminated

[!NoScoutToSend()]

OnTeleFloodTermination()

Subsequent
Explorer
OnNode

mExplorer

Subsequent
Explorer

OnStartNode

mEcho

mExplorer

OnSubsequent
Explorer
OnStartNode()
 send mExplored

OnSubsequent
Explorer
OnNode()
 send mExplored

mEcho

mEcho

Figure 3.6: FSM of the TeleFlood navigation pattern

24

3.10 FindBest-Inform pattern Chapter 3

introduced in the previous section, the distant domains reached by a mTele-
Flood message. Since these two parts have already been introduced, the new
pattern can be built by inheritance.
The resulting FSM, as shown in Figure 3.7, is described in the following
and corresponds in general to the joining of all parent states. Three new
termination states and one adapted for the beginning have been added.
FloodMultipleTeleFloodBegin is the new beginning state on the pattern
start node and activates the deployment. All mTeleFlood and mExplorer are
sent out. Whenever a local Flood message or a TeleFlood response returns to
the start node, it is triggered into the corresponding state taken from its par-
ent pattern. FloodTerminated is triggered when the local flooding has ter-
minated and MultipleTeleFloodTerminated when all mTeleFloodBack
have flooded their domains. Both states need to be visited to cause the FSM
to jump into Flood-MultipleTeleFloodTerminated. At this state, every
node of all desired domains have been flooded and a corresponding aggrega-
tor is able to decide whether and where to send mScout messages. The en-
tire FSM terminates in Flood-MultipleTeleFloodPatternTerminated

when all these mScoutBack messages have returned.
Parameters to be passed to this navigation pattern are the domain identi-

ties solely.
This navigation pattern classifies all service deployments, which need to
gather information on each node of more than one domain and after that,
revisit some picked nodes. This is for example a construction of an overlay
between several domains. The service deployment pattern needs to figure
out the nodes and to inform each about its neighbors. More examples are
depicted in the table.

3.10 FindBest-Inform pattern

The FindBest-Inform aggregator pattern corresponds to the Flood-Multiple-
TeleFlood navigation pattern. It classifies deployment patterns of services
in the information flow dimension. Multiple nodes selected out of domains,
are notified about their peers. One service in a classical manner is the
deployment of an overlay network.
The following methods need to be implemented:

OnFlood-MultipleTeleFloodBegin() At the beginning, this function iden-

25

Chapter 3 Service deployment patterns

InitmExplorer
[!allEchoArrived()]

mScout [node == mDest]

Flood-Multiple
TeleFlood

Begin OnFlood-MultipleTeleFloodBegin()
 send mExplorer
 send mTeleFlood

mFlood-MultipleTeleFloodBegin

Echo
OnStartNode

OnEcho()

TeleFlood
Terminated

Scout
Destination

OnScoutDestination()
 send mScoutBack

Multiple
TeleFlood
Terminated

OnFlood-MultipleTele
FloodTermination()

Flood
Terminated

[allEchoArrived()]

OnTeleFloodTermination()
 send mScout

mTeleFloodBack

[MultipleTeleFloodTerminated == VISITED
AND

FloodTerminated == VISITED]

[allTeleFloodBack()]

mEcho

mEcho

mTeleFloodBack

OnMultipleTeleFlood
Termination()

mTeleFlood [node == mDest]

Flood-
Multiple

TeleFlood
Pattern

Terminated OnFlood-MultipleTele
FloodPatternTermination()

ScoutBegin

OnScout
Termination()

mScoutBackScout
Terminated

OnScoutBegin()
 send mScout

[allScoutBack()]

[NoScoutToSend]

OnFloodTermination()

Flood-Multiple
TeleFlood
Terminated

mScoutBack

mEcho

mTeleFloodBack

[!NoScoutToSend()]

FloodBegin

OnFloodBegin()
 send mExplorer

First
Explorer

EchoOn
Start

mEcho

OnEcho()

EchoOn
Node

mEcho

OnEcho()

[allEchoArrived()]

AfterLastEcho()
send mEcho to Explorer link

Node
Terminated

mEcho

[allEchoArrived()]

OnFirstExplorer()
 send mExplorer

mExplorer
[allEchoArrived()]

OnFloodTermination()
 send mTeleFloodBack

Flood
Terminated

Subsequent
Explorer
OnNode

mExplorer

Subsequent
Explorer

OnStartNode

mEcho

mExplorer

OnSubsequent
Explorer
OnStartNode()
 send mExplored

OnSubsequent
Explorer
OnNode()
 send mExplored

mEcho

mEcho

Figure 3.7: FSM of the Flood-MultipleTeleFlood navigation pattern

26

3.11 PathFinder pattern Chapter 3

tifies where to send all the mTeleFlood messages. It allocates resources
as well to handle the returned messages.

OnTeleFloodTermination() It evaluates the arrived mTeleFloodBack and
makes them readable for the following method.

OnFlood-MultipleTeleFloodTermination() This function is called when
the local flooding and all teleflooding information has been aggregated.
It therefore prepares the information to be sent out with the Scout
pattern.

OnFlood-MultipleTeleFloodPatternTermination() Since this function
is a PatternTermination function, it is responsible to communicate
with the application which called the pattern.

Inherited functions All methods from the FindBest-DoOnScoutDestina-
tion are inherited: OnEcho(), AfterLastEcho(), OnFloodTermination(),
OnScoutDestination(), OnScoutTermination(), OnScoutBegin() On-
FirstExplorer() and OnFloodBegin().

3.11 PathFinder pattern

Until this point, navigation patterns were used for investigating nodes in
one or more closed domains. That forced the navigation pattern to visit
each node and the aggregator to carry that information back to the start
node. This was done by building a tree out of the network topology. The
PathFinder works different in the way that it does not collect information
of each node, but searches a path from one node to another.
The criteria how the path has to be searched is given by the local operator
method Ability(). It must be implemented to return TRUE if the node
can become a member of the path.
The FSM of the PathFinder pattern is shown in Figure 3.8. The pattern
starts by sending mPathFinderBegin to the start node, which begins to find
a way through the network by sending a mTrial message into the direction
of the destination node. This forces a node to check its ability and to send a
mFlop back on FALSE. On TRUE, it propagates the finding of the path by
passing the mTrial on. A negative mFlop message tells the prior node there
is no way on that link and triggers a new mTrial on another link. mFlop

27

Chapter 3 Service deployment patterns

Init

mTrial [node != mDest && Ability()]

PathFinder
Pattern

Terminated

OnDestination()
send mAccept

OnPathFinderBegin()
send mTrial

TryingLinksOn
Node

mFlop [!linkLeft()]

OnFlop()
 send mFlop

Flop

Path
Finder
Begin

mPathFinderBegin

mTrial [node == mDest]

mAccept

OnPathFinder
 PatternTermination()

Accept

mAccept

OnAccept()
send mAccept

mTrial [node != mDest && !Ability()]

Destination

Pattern
Failed

OnPatternFailure()

OnTryingLinksOnNode()
 send mTrial

TryingLinksOn
Startnode

mFlop [linkLeft()]

OnTryingLinksOnStartNode()
 send mTrial

mFlop [linkLeft()]
mFlop [linkLeft()]

mFlop [!linkLeft()]

Figure 3.8: FSM of the Pathfinder navigation pattern

messages are also sent if there are no more links available, except the link
where the mTrial cames in.
As soon as mTrial has reached the Destination node, the pattern has found
a way corresponding to the previously defined Accept() method. All the
nodes on the path are still in the state TryingLinksOnNode and must be
informed about the success. Therefore, a mAccept message is sent to prop-
agate back to the start node and trigger each node into Accept state. The
PathFinder navigates to a destination which must be passed as a parameter.
Since the PathFinder is a navigation pattern, it classifies on the navigation
dimension. Its members need to have a path through the network, on which
each node satisfies a given criteria.
An example is the deployment of the WaveVideo application. It needs to
run its service on each node from the source to the destination.

28

3.12 DoOnPath pattern Chapter 3

3.12 DoOnPath pattern

The aggregator that fits to the previous navigation pattern is DoOnPath.
If the PathFinder travels to the destination, it leaves each node in Try-
ingLinksOnNode. To build the path, each node gets the knowledge about
its neighbors, when the mAccept propagates back. On one side, it is where
the message came from and on the other side, it is the link which triggered
it into TryingLinksOnNode.
It implements the following methods of the previous navigation pattern:

OnAccept() is called from the Scout navigation pattern when it travels
back to the start node. It may reserve some resources needed for
the service and establish a firm connection to its neighbors on the
path. Furthermore it must attach a reference to itself on the outgoing
mAccept.

TryingLinksOnNode()/TryingLinksOnStartNode() They are called
if the pattern tries to make this node a part of the path. Therefore,
these functions reserve some resources, if needed by the service.

OnFlop() This method is called if there exists no way through the network
including this node. It is used to free possibly reserved resources.

OnPatternFailure() This method is called when the pattern was not able
to construct a path to a given destination. It reports a failure to the
application, from which the pattern was called.

OnPathFinderPatternTermination() If the pattern successfully ends,
this function is called. It reports this to the application.

The parameter, which must be passed to the PathFinder is the constraint of
the nodes. It is the parameter of the Ability() function as mentioned above.
This pattern is the only aggregator that corresponds to the PathFinder and
is used for the same services.

3.13 NodeFinder pattern

The NodeFinder navigation pattern is similar to the one discussed in the
preceding section. The PathFinder is searching for a path through the net-
work, where each node must have a special ability. In contrast, this pattern

29

Chapter 3 Service deployment patterns

is searching for a number of nodes with defined abilities, which do not have
to be directly connected. This may be the case if the desired node ability
is very rare and no direct connection of the nodes is necessary. This is used
in the deployment of an active transcoding service. If, for example, a web-
server sends data to a PDA and both do not speak the same protocol, a
node in the middle must be found to transcode the data. The final result
of the NodeFinder navigation pattern is therefore an overlay network from
a starting node to the destination node, where each node has a previously
defined ability. A parameter that must be passed is the address of the des-
tination node.
Before going into detail, the next paragraph shows the concept of this pat-
tern.
Supposing the aim to have an overlay network from the start node to the
end node over another node, which has to convert the traffic data to make
it readable for the destination. A way to find such a middle node with the
required ability, is to send a message to a node in the middle and flood the
environment from there. The flood scope must be constantly increased, till
it finds an adequate node. This action is called Bubbling due to the fact, it
looks like the middle node is building increasing bubbles. The algorithm for
this is taken from the Scope navigation pattern of the tutorial of the SIMP-
SON simulator [12] and is based on the Chang algorithm. Finally, after
reporting the result to the two other nodes, the overlay can be established.
This is exactly how the FSM in Figure 3.9 works. As well as each naviga-
tion pattern, it is started by sending mNodeFinderBegin to the start node.
It does an evaluation where to send mScout messages and waits for their
mScoutBack. There are many possible destinations to send the Scout pat-
tern to. It depends on the application and also on the network topology.
A general solution is to divide the number of hops through the number of
desired nodes. This can be done with the Scout navigation pattern and a
counting aggregator.
If the mScout messages reach their destinations, they trigger the node into
IncreaseScope, which becomes the administrator node of the Bubbling.
The node remains in this state untill all mEcho got back. Depending on
whether a node was found or not, it either increases the mobile variable
m MaxScope and continues the Bubbling or terminates and reports its de-
cision to all reserved nodes and to the start node.

30

3.13 NodeFinder pattern Chapter 3

The rest of the FSM is handling the Bubbling and the reservation of the
nodes. It is inspired by the Flood navigation pattern in section 3.5. If an
mExplorer arrives and the mobile m Scope variable is bigger than m Max-
Scope, the scope is reached and an mEcho is sent back on the mExplorer
link. Otherwise it increases m Scope and continues the flooding. The pat-
tern gathers like the Flood pattern in the type of a tree. Each node checks
his Ability(), which the pattern is looking for, before it reports its part of
the tree back to the root node. In case of FALSE, the node has no more to
do as to send mEcho. On TRUE, the node jumps into PreReservation and
waits for the decision of the Bubbling administration node. This is either
a mForget, if it decided to take another node for this task, or a mReserve,
if this node has been selected. In this case, the node still has to wait for
the mScout message of the initial start node. It contains information of the
neighbors, necessarily to establish an overlay network.

31

Chapter 3 Service deployment patterns

Init

OnNodeFinderBegin()
 send mScout’s

Node
Finder
Begin

mNodeFinderBegin

OnAllmScoutBack()

Increase
Scope

Found

Expecting
Scouts

mScoutBack

OnScoutBack()

[allScoutBack()]

mEcho [!allEchoArrived()]

mScoutBack

OnFound()
 send mScoutBack
 send mReserve
 send mForget

Pre
Reservation

OnBubbling()
 increase m_MaxScope and
 flood with mExplorer

Reservation

mReserve

AfterLastEcho()
OnPreReservation()
 send mEcho to Explorer link

OnReservation()

Scout
Destination

mScout
[node == mDest]

OnScoutDestination()
 send mScoutBack

EchoOn
StartNode

[allEchoArrived()
 && !Nodefound()]

Reservation
Disabled

mForget

OnReservationDisable()

send mEcho

MaxScope
mExplorer

[m_Scope ==m_MaxScope]

OnEcho()

mExplorer [m_Scope < m_MaxSscope]

First
Explorer

OnFirstExplorer()
 increase m_Scope
 send mExplorer

mEcho

EchoOn
Node

AfterLastEcho()
send mEcho to Explorer link

Node
Terminated

mEcho

OnEcho()

mEcho
[!allEchoArrived()]

[allEchoArrived()
 && Nodefound()]

mScout[mDest == node()]

NodeFinder
Terminated

[allScoutBack()]

OnNodeFinder
PatternTermination()

[allEchoArrived() &&
 !Ability()]

[allEchoArrived() &&
Ability()]

OnScout
Termination()

mScoutBack

OnScoutBegin()
 send mScout

ScoutBegin
Scout

Terminated

NodeFinder
Pattern

Terminated

mScoutBack

Subsequent
Explorer
OnNode

mExplorer

OnSubsequent
Explorer
OnNode()
 send mExplored

mEcho

Figure 3.9: FSM of the NodeFinder navigation pattern

32

3.13 NodeFinder pattern Chapter 3

S
er

v
ic

e
N

av
ig

at
io

n
P
at

te
rn

P
ar

am
et

er
s

A
gg

re
ga

to
r

P
at

te
rn

P
ar

am
et

er
s

A
ct

iv
e

R
el

ia
bl

e
M

ul
ti

ca
st

F
lo

od
M

ul
ti

ca
st

ID
D

oA
ft

er
L
as

tE
ch

o
F
O

R
K

N
O

D
E

S
C

on
ca

st
F
lo

od
D

om
ai

n
ID

D
oA

ft
er

L
as

tE
ch

o
F
O

R
K

N
O

D
E

S
W

av
eV

id
eo

-
as

m
ul

ti
ca

st
F
lo

od
M

ul
ti

ca
st

ID
D

oA
ft

er
L
as

tE
ch

o
A

L
L
N

O
D

E
S

-
as

un
ic

as
t

P
at

hF
in

de
r

D
es

ti
na

ti
on

D
oO

nA
cc

ep
t

A
L
L
N

O
D

E
S

W
eb

C
ac

hi
ng

F
lo

od
D

om
ai

n
ID

D
oA

ft
er

L
as

tE
ch

o
B

O
R

D
E

R
N

O
D

E
S

M
on

it
or

in
g

F
lo

od
M

ul
ti

ca
st

ID
D

oA
ft

er
L
as

tE
ch

o
F
O

R
K

N
O

D
E

S
C

on
ge

st
io

n
C

on
tr

ol
F
lo

od
D

om
ai

n
ID

D
oA

ft
er

L
as

tE
ch

o
A

L
L
N

O
D

E
S

F
ir

ew
al

l
F
lo

od
D

om
ai

n
ID

D
oA

ft
er

L
as

tE
ch

o
B

O
R

D
E

R
N

O
D

E
S

A
pp

lic
at

io
n

se
cu

ri
ty

ga
te

w
ay

F
lo

od
D

om
ai

n
ID

F
in

dB
es

t-
D

oO
nS

co
ut

D
es

t
pr

op
er

ty

T
ra

ns
co

di
ng

-
be

tw
ee

n
ne

tw
or

ks
F
lo

od
-

M
ul

ti
pl

eT
el

eF
lo

od
D

om
ai

n
ID

D
oA

ft
er

L
as

tE
ch

o
B

O
R

D
E

R
N

O
D

E
S

-
al

l
no

de
s

on
a

pa
th

P
at

hF
in

de
r

D
es

ti
na

ti
on

D
oO

nA
cc

ep
t

pr
op

er
ty

-
on

a
fe

w
no

de
s

N
od

eF
in

de
r

D
es

ti
na

ti
on

F
in

dB
es

t-
D

oO
nS

co
ut

D
es

t
ar

ra
y

of
pr

op
er

ti
es

T
un

ne
l

F
lo

od
-

M
ul

ti
pl

eT
el

eF
lo

od
D

om
ai

n
ID

s
F
in

dB
es

t-
In

fo
rm

pr
op

er
ty

O
ve

rl
ay

F
lo

od
-

M
ul

ti
pl

eT
el

eF
lo

od
D

om
ai

n
ID

s
F
in

dB
es

t-
In

fo
rm

pr
op

er
ty

V
P

N
F
lo

od
-

M
ul

ti
pl

eT
el

eF
lo

od
D

om
ai

n
ID

s
F
in

dB
es

t-
In

fo
rm

pr
op

er
ty

T
ab

le
3.

1:
O

ve
rv

ie
w

of
cl

as
si

fie
d

se
rv

ic
es

33

Chapter 4 Simulation Results

Chapter 4

Simulation Results

In this chapter we describe the simulation of the Flood-MultipleTeleFlood
pattern compared to a central approach. After describing services and the
appropriate deployment patterns, the task was to measure the effort to de-
ploy a service in different networks.

4.1 Description of the simulation environment

The simulation is based on the SIMPSON simulator by Lim and Stadler
[12]. This handy tool offers an environment to simulate the performance of
navigation and aggregator patterns.
Because SIMPSON doesn’t offer any routing algorithms, it was necessary to
implement own routing algorithms to study the patterns in the network.
SIMPSON measures the used execution time and counts the messages. It
does not count the number of messages from the source to the destination,
but all messages that are sent over a link. E.g. a data packet has to traverse
an intermediate node, SIMPSON will display a message count of 2. One
from the start node to the intermediate node and one from the intermedi-
ate node to the end node. The traffic complexity shows the message count
multiplied by the message size.
The main goal of the simulation was to compare the pattern based approach,
whose nodes are active, against a traditional central approach in a passive
network. Our patterns implement a strategic aggregation of node informa-
tion, while the central approach just sends a query-message to each node,
since it has no possibility for computation.
To compare the performance of each pattern, two different network struc-

34

4.2 The simulation Chapter 4

tures were chosen. The two structures represent the best and the worst
case. In the best case, each node is directly connected to the central node,
where the pattern is started. In the worst case, all nodes are aligned, so the
pattern has to cross each node in the network.
All links were defined as 100Mbit/s (12500000 bytes/s) links, to simulate
uncongested Local Area Networks. First, it was planned to define a wide
area link between the two domains with a lower bandwidth. In contrary to
the expected results, SIMPSON does not handle congested links. All mes-
sages can pass in parallel, while in a real congested network messages pass
one after the other.
The chosen size of messages is 200 bytes in the central approach and 400
bytes for the patterns. The messages in the central approach contain only
the destination address, the source address, the requested information and
the corresponding values. A message in the pattern contains mobile states
and the entire aggregated information. This messages have to be bigger than
the messages from the central approach. Ethernet-, IP- and TCP-headers
generate an overhead of 74 Bytes. 200 (or 400) bytes should be a good av-
erage size to exchange some useful information and not to waste too much
bandwidth on messages. TCP is needed for reliable transmission and cannot
be displaced by UDP. In reality the message size is flexible, dependent on
the chosen service, number of nodes, and number of requested parameters.

4.2 The simulation

The main goal of the simulation was to compare the amount of sent mes-
sages during the execution of the two different approaches. The Flood-
MultipleTeleFlood pattern was expected to send less messages than the
centralistic approach, which sends a unique message to each single node
in the local and the distant domain. The two network structures are shown
in figure 4.1 and 4.2.
The patterns were started on all nodes in both scenarios. Therefore it is
possible to analyze the dependence on the network structure and to see the
changes in the amount of sent messages depending to the start node. In
the worst and best-case scenario, the patterns explored both domains and
returned the best nodes, since all nodes were rated with a scalar value. A
polling approach congests the link even more, because it sends messages all

35

Chapter 4 Simulation Results

the time, even if the deployment of this service is not requested. As SIMP-
SON doesn’t support polling patterns, it was not possible to simulate this
approach.
Because the two simulated networks are only a special case and far from re-
ality, a second simulation should compare the Flood-MultipleTeleFlood and
the central pattern in a more realistic network. As SIMPSON doesn’t offer
any routing algorithm and it is not the scope of this work to do so, a regular
network as seen in figure 4.3 was chosen. The Grid allows a simple routing
algorithm and can give a good impression of the behavior in a bigger net-
work. The routing algorithm calculates the number of links in vertical and
horizontal direction and chooses randomly one of this two directions. This
routing algorithm obviously doesn’t simulate a real IP-roting, but it was not
possible to implement a routing algorithm like OSPF. In this scenario the
interesting point is mainly the message count itself, than it’s dependence
from the network structure. As both patterns use the same routing algo-
rithm, the comparison will provide fair results.
The patterns deploy an overlay network between 3 domains. The minimum
distance from the upper left to the lower left is 11 hops. From the lower
left to the lower right 9 hops and from the upper left to the lower right 20
hops. the number of hops for 3 different simulation runs are listed in table
B.1. This shows that the routing algorithm finds the shortest path from
the start node to the destination. In this scenario, called “the Grid”, the
patterns had to send the best nodes an initial message to start the overlay
network. In each domain, one node was defined as the “best”, by assigning
the highest value to it. These nodes were number 63, 324 and 358.
The main goal of the patterns is to reach the domains, find the “best” node
(with the highest value set) and send its address back to the start node. The
start node aggregates all values and chooses the node with the highest. Af-
terwards it sends them a message to establish the overlay. The two distant
nodes send an ACK back to the start node, to confirm the success.

36

4.2 The simulation Chapter 4

Figure 4.1: The network for the worst-case scenario

Figure 4.2: The network for the best-case scenario

37

Chapter 4 Simulation Results

Figure 4.3: The network for “the Grid”

38

4.3 The simulation Results Chapter 4

4.3 The simulation Results

To simplify the reading of the simulation results, the central approach is
called “central” and the Flood-MultipleTeleFlood pattern “FMTF”. The
regular network is named “the Grid”.

start
node

worst - case best - case
central FMTF central FMTF

msg bytes msg bytes msg bytes msg bytes

0 380 76000 56 22400 56 11200 38 15200
1 344 68800 54 21600 92 18400 40 16000
2 312 62400 52 20800 92 18400 40 16000
3 284 56800 50 20000 92 18400 40 16000
4 260 52000 48 19200 92 18400 40 16000
5 240 48000 46 18400 92 18400 40 16000
6 224 44800 44 17600 92 18400 40 16000
7 212 42400 42 16800 92 18400 40 16000
8 204 40800 40 16000 92 18400 40 16000
9 200 40000 38 15200 92 18400 40 16000
10 200 40000 38 15200 56 11200 38 15200
11 204 40800 40 16000 92 18400 40 16000
12 212 42400 42 16800 92 18400 40 16000
13 224 44800 44 17600 92 18400 40 16000
14 240 48000 46 18400 92 18400 40 16000
15 260 52000 48 19200 92 18400 40 16000
16 284 56800 50 20000 92 18400 40 16000
17 312 62400 52 20800 92 18400 40 16000
18 344 68800 54 21600 92 18400 40 16000
19 380 76000 56 22400 92 18400 40 16000

Table 4.1: The number of sent messages and bytes in the worst- and best-
case scenario

Table 4.1 shows the number of sent messages and the traffic complexity
in the worst-case and best-case for all start nodes. Figures 4.4 and 4.5 illus-

39

Chapter 4 Simulation Results

Figure 4.4: The number of sent messages in the worst-case scenario

trate the gain in using the FMTF pattern for deploying a network service.
In the worst-case scenario, the central pattern decreases the number of sent
messages by a factor of approximately 2, by shifting the start node from the
end to the center of the domain, while the FMTF patterns message count
rests approximately constant. The difference is smaller in the best-case sce-
nario. Here the central approach generates only 16 messages more than the
FMTF pattern on start node 0 and 10. For all other start nodes, the differ-
ence of sent messages is 52.

As expected, the central approach generates much more network traffic
than the FMTF pattern, which sends only one explorer to the distant do-
main, aggregates the information of all nodes and sends one message back to
the start node. Except in the best-case scenario, where the central approach
transmits less data because of the smaller message size, the FMTF pattern
uses less network resources than its centralized competitor. Only on start
nodes 0 and 10 in the best-case scenario, the difference of sent messages
is small enough to make the central approach look better. As soon as the
network structure differs from the best-case, the FMTF pattern transmits
less data, e.g. if the pattern is started on one of the nodes on the circle
around the central node.
The number of messages depends strongly on the network structure. If the
degree of cross-linking is high, most messages can be sent directly to the

40

4.3 The simulation Results Chapter 4

Figure 4.5: The number of sent messages in the best-case scenario

destination node, while in a sparely-linked network all messages have to be
forwarded by one or more intermediate nodes. The amount of data is pro-
portional to the number of messages. The more messages are generated, the
more data has to be transported.
Most benefit will be achieved when the pattern has to travel over a congested
wide area link (i.e. the Internet). Instead of sending a separate message for
each single node, the FMTF pattern sends one message to the distant do-
main, aggregates the information from all requested nodes and sends the
complete report in a single message back through the congested link to the
start node. In the central approach, all messages have to wait in front of the
congested link, which will end in a huge delay for the execution time and
result in a even higher grade of congestion on this link.

Table 4.2 shows the number of sent messages in “the Grid”. Figure 4.6
shows the number of sent messages graphically for both patterns. As in
the two preceding scenarios, the FMTF pattern generates less traffic in the
regular network. In a congested network, or on a congested wide area link,
the central pattern would have a big delay in the execution time.
Pattern based service deployment in active networks can simplify the de-
ployment process significantly. On the one side it is possible to save time,
because of the flexibility of the patterns. On the other side, it allows you to
save bandwidth, because of the lower amount of sent data, especially over

41

Chapter 4 Simulation Results

Figure 4.6: The number of sent messages in the “the Grid” scenario

congested wide area links.

42

4.3 The simulation Results Chapter 4

start
node

start
node

central FMTF central FMTF
msg bytes msg bytes msg bytes msg bytes

42 1370 274000 332 132800 342 950 190000 274 109600
43 1310 262000 324 129600 343 890 178000 262 104800
44 1278 255600 318 127200 344 858 171600 260 104000
45 1274 254800 314 125600 345 854 170800 264 105600
62 1320 260400 322 128800 314 986 197200 298 119200
63 1242 248400 316 126400 315 1018 203600 302 120800
64 1210 242000 308 123200 316 1062 212400 308 123200
65 1206 241200 306 122400 317 1118 223600 312 124800
82 1254 250800 316 126400 318 1186 237200 320 128000
83 1194 238800 308 123200 334 990 198000 294 117600
84 1162 232400 300 120000 335 1022 204400 298 119200
85 1158 231600 300 120000 336 1066 213200 308 123200

302 902 180400 266 106400 337 1122 224400 312 124800
303 842 168400 258 103200 338 1190 238000 318 127200
304 810 162000 258 103200 354 1034 206800 298 119200
305 806 161200 260 104000 355 1066 213200 304 121600
322 906 181200 268 107200 356 1110 222000 310 124000
323 846 169200 258 103200 357 1116 223200 316 126400
324 814 162800 260 104000 358 1234 246800 324 129600
325 810 162000 258 103200

Table 4.2: The number of sent messages and bytes in “the Grid”

43

Chapter 5 Conclusion and future work

Chapter 5

Conclusion and future work

At the end of this thesis, the conclusion is developed and future work is
indicated.

5.1 Conclusion

Active Networks are a new and very interesting research area. Future
network-technology can profit a lot by introducing new concepts from active
networks. Most will result in a better usability for the end user and a more
sparing handling with the existing resources.
The benefit of pattern-based service deployment is, that it allows to develop
classes of the same deployment scheme. The fact that navigation patterns
do not contain any service specific operation makes this possible. In this the-
sis, we have developed navigation and aggregator patterns for each class of
service deployment and assigned existing services to them. The navigation
patterns are FSM and therefore completely specified. Otherwise the aggre-
gators. There are also classes of aggregators in general, but they can not be
completely implemented. They all need a service specific implementation of
its class. At the first glimpse this seems to be against our main goal of this
thesis. But aggregators are also significantly less complex than navigation
patterns and therefore do not need a lot of knowledge to be implemented.
In the simulation it was possible to show the differences between a deployment-
pattern and a central approach. Instead of sending a message to each node
in a distant network, the deployment pattern generates less traffic by send-
ing a scout to the network and start the flooding from there.
Pattern-based service deployment is still in development, but it can be one

44

5.2 Future work Chapter 5

of the key concepts in future networks.

5.2 Future work

Although this thesis had to come to an end, the research on pattern-based
service deployment is not finished at all. SIMPSON offers some nice fea-
tures to implement and simulate deployment patterns. Unfortunately we
struggled with some points that could have simplified the handling. An
extensive tool to simulate and test deployed patterns can simplify and set
some standards for future research.

• Adding routing algorithms to SIMPSON: active nodes are based
on standard routers. Therefore they must offer the functionality of
a common router in today’s networks. If SIMPSON offered routing
algorithms from modern networks, it would be possible to concentrate
more on the pattern itself than on its distribution in the network.

• Adding queuing to SIMPSON: SIMPSON does not queue patterns
in front of congested links. Therefore it was not possible to measure
exactly the execution time. In a realistic network, data packets would
have to wait in front of congested links to be able to pass. This would
result in a delay of the pattern during it’s execution.

• Implementing other deployment-patterns: Not all deployment
patterns for the described services were implemented. So it was not
possible to compare all of them in the simulation. To receive a good
overview on service deployment in active networks it would be neces-
sary to have them all implemented.

• Comparing to a polling-approach: As SIMPSON doesn’t support
polling patterns, the deployment-patterns couldn’t be compared to a
polling approach. The difference in the number of messages should be
even bigger than in a central approach. This would result in a even
higher degree of congestion.

• Describing new services for active networks: The given survey
doesn’t enclose all possible future services in active networks. New
services will be invented and may result in the development of new

45

Chapter 5 Conclusion and future work

patterns. Taking them into consideration will ask for new deployment-
patterns.

• Porting the patterns into the network: The management pro-
grams are written in such a manner that they can be executed on the
simulator as well as on a planned prototype platform. It is a future
task to have the services deployed in reality.

46

Appendix Appendix A

Appendix A

Appendix

A.1 The SIMPSON Simulator

SIMPSON stands for “a SIMple Pattern Simulator fOr Networks”. It was
developed by Koon-Seng Lim and Rolf Stadler to serve as a workbench for
the construction and testing of management programs, as well as the obser-
vation of their performance characteristics [12].
It is possible to define an own network with all definitions for a simula-
tion (i.e. bandwidth per link, message size, protocol/OS delay, network
delay per hop) and also include a background image to present a realistic
scenario. The navigation pattern and aggregator are included and loaded
as dynamic-link libraries (DLL’s in MS Windows). The simulation can be
paused and resumed during run-time, to get debugging information from
the debug console. SIMPSON prints all information from the patterns on
the debug console (i.e. execution time, message count, traffic complexity
and number of faults) and also all information printed out by the patterns.
The start node, the delay of each event and the pattern arguments have to
be defined at the beginning of a simulation. The simulator then calculates
the needed execution time in the network. To check the flow of the navi-
gator pattern, the color of the visited nodes can be changed by executing a
log node event() in the navigation pattern. For full description see also the
SIMPSON tutorials [13].

47

Appendix A Appendix

A.2 Problems with the SIMPSON Simulator

The SIMPSON Simulator is a handy tool to develop patterns for active net-
works. But it can’t solve all problems you’re running across.

• SIMPSON doesn’t provide any routing algorithms. Therefore own
routing algorithms have to be implemented into the navigation pat-
tern. In a real active network, the patterns would choose the next hop
by selecting the appropriate IP-address and the routing would be done
by the network.

• SIMPSON only can handle patterns. It is not possible to implement
a program which runs all the time on a node (i.e. for a polling ap-
proach). The patterns are activated by incoming messages and they
finish by sending out new messages. So it wasn’t possible to compare
the pattern based approach to a polling one. The central pattern used
in the simulation is based on a navigation pattern which implements
a central approach.

48

Appendix Appendix B

Appendix B

Appendix

B.1 The number of hops

To approve the used routing algorithm in “the grid”, the pattern from the
central approach was modified to count the number of hops that a message
needs to travel from the start node to the destination and back.
Therefore it was possible to check, if the routing algorithm found the short-
est path to the destination, even if not all messages took the same path from
one network to another. In traditional networks, all messages for the same
network usually travel the same path, which is given by the routing algo-
rithm. Table B.1 shows the number of hops for messages for three different
start nodes. E.g. from node 63 to node 337: 14 necessary hops in horizontal
and 13 hops in vertical. This makes a total of 27 hops or 54 hops back and
forth. From node 302 to 358, 16 hops in horizontal and 2 hops in vertical
direction makes a total of 18 hops or 36 hops back and forth.

49

Appendix B Appendix

destination start node destination start node

63 302 315 63 302 315
42 4 26 52 342 30 4 30
43 2 28 50 343 28 6 28
44 4 30 48 344 30 8 26
45 6 32 46 345 32 10 24
62 2 24 50 314 46 24 2
63 0 26 48 315 48 26 0
64 2 28 46 316 50 28 2
65 4 30 44 317 52 30 4
82 4 22 48 318 54 32 6
83 2 24 46 334 48 26 4
84 4 26 44 335 50 28 2
85 6 28 42 336 52 30 4

302 26 0 26 337 54 32 6
303 24 2 24 338 56 34 8
304 26 4 22 354 50 28 6
305 28 6 20 355 52 30 4
322 28 2 28 356 54 32 6
323 26 4 26 357 56 34 8
324 28 6 24 358 58 36 10
325 30 8 22

Table B.1: The number of hops in the central approach

50

Appendix Appendix C

Appendix C

Appendix

C.1 Enclosed CD-Rom

The enclosed CD-Rom contains the following directories:

Directory / File Content

/readme Description and usage of the content of
this CD

/programs Used Programs

/programs/simpson SIMPSON Simulator v16a
SIMPSON Bugfix
SIMPSON User Guide
SIMPSON Programming Tutorial

/programs/compiler Digital Mars Compiler
/paper Pdf version of this thesis

/src Source Code of our patterns

/dll Dynamic link libraries of our patterns

/scenarios Our scenario files

Table C.1: Content of the CD-Rom

51

Appendix BIBLIOGRAPHY

Bibliography

[1] Konstantinos Psounis. Active Networks: Applications, Security, Safety
and Architectures. IEEE Communications Surveys, (First Quarter),
1999.

[2] Matthias Bossardt, Takashi Egawa, Hideki Otsuki, and Bernhard Plat-
tner. Integrated Service Deployment for Active Networks. In James
Sterbenz, Osamu Takada, Christian Tschudin, and Bernhard Plattner,
editors, Proceedings of the Fourth Annual International Working Con-
ference on Active Networks IWAN, number 2546 in Lecture Notes in
Computer Science, Zurich, Switzerland, December 2002. Springer Ver-
lag.

[3] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie,
David J. Wetherall, and Gary J. Minden. A Survey of Active Network
Research. IEEE Communications Magazine, 35(1):80–86, 1997.

[4] Koon-Seng Lim and Rolf Stadler. Developing Pattern-based Manage-
ment Programs. Technical Report 503-01-01, CTR, 2001.

[5] Li-Wei H. Lehman, Stephen J. Garland, and David L. Tennenhouse.
Active Reliable Multicast. In IEEE INFOCOM, March, April 1998.

[6] David Wetherall, Ulana Legedza, and John Guttag. Introducing New
Internet Services: Why and How. IEEE Network Magazine, Special
Issue on Active and Programmable Networks, July 1998.

[7] Ralph Keller, Suomi Choi, Marcel Dasen, Dan Decasper, George
Frankhauser, and Bernhard Plattner. An Active Router Architecture
for Multicast Video Distribution. In IEEE INFOCOM, March 2000.

52

BIBLIOGRAPHY Appendix

[8] Ulana Legedza, David Wetherall, and John Guttag. Improving the
Performance of Distributed Applications Using Active Networks. In
IEEE INFOCOM, March, April 1998.

[9] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura. An
Architecture for Active Networking. In HPN, pages 265–279, 1997.

[10] Elan Amir, Steven McCanne, and Randy H. Katz. An Active Service
Framework and Its Application to Real-Time Multimedia Transcoding.
In SIGCOMM, pages 178–189, 1998.

[11] Y. Chae, S. Merugu, E. Zegura, and S. Bhattacharjee. Exposing the
Network: Support for Topology Sensitive Applications, 2000.

[12] Koon-Seng Lim and Rolf Stadler. SIMPSON - A Simple Pat-
tern Simulator for Networks. http://comet.ctr.columbia.edu/adm/
software.htm.

[13] Koon-Seng Lim and Rolf Stadler. Distributed Management Project.
http://2g1331.imit.kth.se/.

53

