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A Simulation Framework for Multiprocessor SoC

Abstract

System-on-Chip designs are the answer to the demand of real time multimedia applications for high

performance architectures. Such architectures comprise of multiple processing units, memories and

input-output devices interconnected by advanced communication infrastructure. Design exploration is

the complex process of finding an optimal mapping of the application to the SoC architecture. In order

to reduce design cycles, developers rely on sophisticated evaluation tools. The goal of this project was

to build a simulation framework which combines an instruction set simulator with a hardware

description language in order to analyze multimedia streaming applications. In this work the

SimpleScalar instruction set simulator tool set was integrated into a SystemC hardware simulation

environment. With this framework, designers are able to run customized applications on the processing

units in their simulated system. In addition, this framework can be used to validate simulation results

acquired with analytical evaluation techniques.
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Introduction

Today's embedded real time multimedia applications demand for high performance and flexible

hardware architectures. System-on-Chip (SoC) designs made these architectures affordable, since they

allow to integrate an entire system on a single die. These systems may comprise of multiple processing

units, memories and input-output devices, interconnected by sophisticated communication

infrastructure. Specializing these architectures for a given application, allows to achieve even higher

performance. 

Many different designs must be considered when choosing a specific architecture. Many different

alternatives must be evaluated in order to find an optimal mapping of the application to the SoC

architecture. Thus, this kind of design space exploration is usually a very complex process and relies on

advanced performance evaluation techniques. Since building a real system or an emulation for each

interesting variant is not feasible due to the high simulation time involved, performance estimation

models are commonly used to predict system properties.

Two classes of performance estimation models exist, those based on analytical methods and those

based on simulation. Though analytical methods are usually superior in terms of execution time, they

tend to be less accurate than simulations, due to the limited scope of system properties they can capture.

Recently at the Computer Engineering and Networks Laboratory an analytical method has been

developed based on the theory of real time calculus (RTC) [1]. An analytical framework has been

established which can be used in initial stages of the design space exploration. A reference system-level

model of a network processor architecture has been chosen and was evaluated both by using a known

analytical model and also by detailed simulation. By comparing these results, it was shown that the

analytical method was accurate for this simple packet processing application. However, it is not clear

whether this also holds true for multimedia real time applications. To answer this question, the

analytical results will be compared to data acquired from simulations. The analytical framework is quite

flexible and can easily be re targeted to a new application domain. The network processor simulator on

the other hand, is not suited for simulation of interesting multimedia streaming applications. A new

simulation framework needs to be created. This new framework will also be useful for the comparative

studies as well as for multimedia SoC software and hardware architectural research.
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Requirements

• Simulation of multiprocessor architectures

In order to evaluate System-on-Chip architectures the simulation framework must be able to

simulate multiple parallel processing units and peripheral subsystems. Its task is to provide information

about the requirements for resources, hot spots and bottlenecks in the system, the extendability with

additional hardware and the sensitivity to input traffic [2].

The goal of this project is to present a simulation framework for multiprocessor Systems-on-Chip

• Efficient Performance Estimation

During design cycles, fast performance estimation is required in order to evaluate a maximum of

possible design variants. Due to the complexity of such design variants simulation is very time

consuming. The performance of the evaluation tools have an enormous influence on the length of

design cycles. 

The goal of this project is to design an efficient simulation framework.

• Support for variable layers of abstraction

In order to achieve a reduction of simulation time, the evaluation tool needs to provide the flexibility

to change the level of detail. Since more detailed examination requires additional computation, there is

always a trade off between accuracy and simulation speed. If the simulator does not fulfill the

requirements concerning simulation time, it must be possible to compromise the level of detail for a

higher speed. Different layers of abstraction give the designer the opportunity to concern only about the

necessary details of the evaluation. Simulation of the entire system with high details is not feasible, and

usually not necessary. 

The simulation framework should support various levels of abstraction for individual modules. 

• Capability of HW/SW co simulation

Integrating processor models into hardware simulation environments allows designers to execute

their software on the hardware models. This gives the possibility to analyze the effect of the target

application on the system. In addition, co-simulation of hardware and software enables the verification

of application code running on processor models in conjunction with accurate models of the hardware

system. [3]. Co-simulation/verification of hardware and software has been proposed for a number of

environments such as [4] [5] and is also offered commercially by companies such as Mentor Graphics

[6], Synopsys [7] and others. 
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The simulation framework should allow execution of custom applications on a hardware simulator.

• Support for various processor models

The simulation framework should not be constrained to a particular processor model. It should

provide the flexibility to use different instruction-simulators such as: Shade [8], ARMPhetmaine,

tARMac, SimARM [9], ARMulator [10] and ARMSim [11]for ARM processors; MINT for MIPS

R3000 [12]; Xtensa ISS for Xtensa processors [13] and SimpleScalar[14] which supports multiple

platforms. The framework must also support processor simulator of a higher abstraction level, for

example simulators based on SystemC.

The simulation framework should allow to integrate various instruction-set simulators.

• Implementation with SystemC and SimpleScalar

The idea arose, to write both the instruction set architecture model and the remaining hardware

models in the same language. The anticipated executable specifications would possess a very high level

of flexibility and facilitate the entire HW/SW co-design. There exist two open source projects which are

written in closely related language: SystemC [15] and SimpleScalar [14]

The project required to use SystemC as the hardware modeling language. SystemC is a C++ library

with a simulation core based on discrete event systems. It was chosen for this project for its support of

multiple layers of abstraction.

Another predefined requirement was to use SimpleScalar instruction-set simulator. It's sequential

execution makes it a very fast. SimpleScalar models a variety of instruction-sets and features

exchangeable simulation cores with different levels of detail. Since it is written in C, it is easier to

combine it with SystemC.
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Instruction Set Simulators and Hardware Models

The SystemC modeling language

SystemC is a set of modeling constructs entirely based on C/C++. It allows RTL and behavioral

modeling similar to modeling within an hardware description language (HDL) such as Verilog or

VHDL. Similar to these HDLs its simulation core is based on a discrete event system. Using modules,

ports and signals, users can construct structural design. 

Modules can be instantiated within other modules, thus creating a hierarchical design. Different

levels of abstraction are possible, ranging from high level abstraction models to low level register

transfer level models. Signals connected to ports allow communication between modules. The designer

can choose from a rich set of signal types on various levels of abstraction. They can be as detailed as

bit-vectors as well as abstract as to represent entire data structures. The SystemC simulation kernel

contains routines to trace these signals and dump the waveforms to a file. After completion of the

simulation, a typical waveform viewer can display them.[16]

Concurrent behaviors are modeled through processes. A module can contain several parallel

processes. Such a process is like an independent thread of control and is sensitive to predefined signals.

Whenever the values of these signals change, the process performs some action. Afterward, it suspends

execution and transfers the control to the next process. 

Communication can be even more generalized by using channels, interfaces and events. A channel is

an object, that serves as a container for communication and synchronization. Channels are the

implementation of one or more interfaces. The access methods to the channels are specified within the

interfaces, but the interfaces do not provide the implementation. An event is a synchronization primitive

used to construct other forms of synchronization without physically connecting signals. Events do not

have a type or transmit a value, they only transfer control form one thread to another. [17]

The SystemC 2.0 standard also includes elementary library models such as timers, FIFO, buses, etc.,

which are widely applicable.

SystemC is an open source project under the Open Community Licensing model. Designers are

allowed to create, validate and share their models within the community. There are no licensing fees for

either internal nor commercial use. The driving force behind SystemC is the Open SystemC Initiative

(OSCI), a non-profit organization run by a broad number of universities and companies including

Fujitsu, Motorola, STMicroelectronics, Synopsys, CoWare and Cadence[15].
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The SimpleScalar tool set

The SimpleScalar instruction-set simulator (ISS) provides an infrastructure for simulation and

architectural modeling. It is used to build benchmark applications for performance analysis, micro

architectural modeling and hardware software co-verification. SimpleScalar provides the tools to model

various platforms, from simple unpipelined processors to detailed dynamically scheduled micro

architectures with multiple-level memory hierarchies. 

The simulators use interpreters to reproduce the processing units. The interpreters are fully

customizable and already support several popular instruction sets such as Alpha, PowerPC, x86 and

ARM. Using its own compiler, a variant of the Gnu C compiler, the designer can write his own

modeling applications, in order to test the instruction set architecture.

Table 1 shows an excerpt of the various simulator cores for SimpleScalar. The fastest yet the least

detailed simulator is sim-fast. sim-fast just executes each instruction sequentially without any

accounting for time. It is the fastest simulator, but it supports only rudimentary profiling. In fact, it

simply executes the program and counts the number of committed instructions. sim-cache and sim-

cheetah are two functional cache simulators which are ideal for fast simulation of caches if the effect of

cache performance on execution time is not needed. 

sim-profile generates detailed profiles on instruction classes and addresses, text symbols, memory

accesses, branches and data segment symbols. Without taking cache timing into account and support for

only in-order issue of instructions, sim-profile cannot measure the timing effects of executed programs. 

Out of order simulation

The most detailed simulator in the distribution is sim-outorder. This simulator supports out-of-order

issue and execution based on the register update unit (RUU) [18]. The RUU scheme uses a reorder

buffer to automatically rename registers and hold the results of pending instructions. The processor's

memory system employs a load/store queue (LSQ). Store values are placed in the queue if the store is

speculative. Loads are dispatched to the memory system when the addresses of all previous stores are

known. The simulator uses an event queue that holds the operations which can be written back to the

register file in the future. sim-outorder employs a ready queue which holds all operations that are ready

to be issued to a functional unit.
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Simulator Description Speed
Sim-Fast Speed optimized functional simulator 7 MIPS
Sim-Profile Dynamic Program Analyzer 4 MIPS
Sim-Outorder Detailed micro architectural timing model 0.3 MIPS

Table 1: SimpleScalar simulator models
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Since this simulation core was used in this project, its functionality is described here with more

detail.

A register update unit (RUU) station is a reservation station which captures results from the register.

If all operations are ready, the instruction is issued to a functional unit. The load and store queue (LSQ)

holds the loads and stores in program order and indicates their status of access.

Figure 2 shows one simulation cycle in sim-outourder. The cycle starts by checking both the RUU

and the LSQ for completed instructions. These are committed and removed from the queue. In case of

stores, the cache is accessed and if a miss occurs, it writes back and replaces the accessed block. 

The writeback function then services completed results, such as memory references, from the event

queue and puts these operations int the ready queue. It broadcasts the result to consuming operations

and updates the branch prediction.

Afterward, memory operations that are ready to be executed are located in the LSQ and are inserted

in the ready queue.

If the an operation's register dependencies are satisfied and a functional unit is available, the

functional unit is allocated and the operation issued. After scheduling the writeback event, it begins

execution. For loads, the latency is calculated through access of the cache, where also cache miss

penalties are handled. Store operations are not scheduled, since SimpleScalar assumes an infinite

number of write buffers.
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The dispatch function decodes and dispatches new operations. Operations with any dependencies are

put directly into the ready queue. Otherwise the function updates the input and output dependencies and

allocates an register update unit and in case of loads and stores a link in the LSQ. 

At the end of a cycle, in case the fetch unit is available, the simulator performs an instruction cache

access and fetches new instructions, thereby blocking the fetch unit for the number of cycles according

to the memory access latency.
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Design

Layers of Abstraction

Simulation Time versus Accuracy

During the development of a system, the designer needs to have

access to detailed yet slow simulators, in order to detect

misbehavior and to evaluate performance. In order to reduce

development cycle time, the designer also asks for fast simulators.

Higher levels of detail ask also for more computation time.

Therefore, a simulator cannot yield a fast simulation time and a

high level of accuracy at the same time. Since it is not feasible to

model the entire system in detail, it must be possible to model non

relevant parts with more abstraction. Details are compromised in order to obtain a faster simulation. If

the simulator supports different levels of abstraction for each module, then the designer is able to

accurately investigate the point of interests, without wasting simulation time for unimportant parts of

the system.

Levels of Detail

During the design cycle of an SoC, designers use a variety of simulators These simulators model the

design at different levels of abstraction and become slower as the design progresses to lower levels of

abstraction[19]. 

The highest level of system design is the specification of the algorithm or protocol that the system is

targeted to perform. The designer can verify the correct functionality of the algorithms and protocols.

Instruction-set simulators allow to evaluate the effects of the instruction-set on the application's

execution time. The integration of an ISS into a hardware model even allows to simulate the effects of

the instruction-set on the target system.
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Design Level Description
language

Primitives Host cycles per
simulated cycle

Algorithm HLL Instructions 100 - 100
Architecture HLL Functional Blocks 1000 - 10'000
Register Transfer HLL, HDL RTL primitives 1M - 10M
Logic HDL, Netlist Logic gates 10M - 100M

Table 2: layers of abstraction

Illustration 2: speed vs. abstraction
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The architecture level concerns about the definition of the main functional blocks and their

estimation of performance. An example of these blocks the processor interacting with the memory

system or processing hardware units.

At the register transfer level the goal is to model all the components in the system in enough detail

such that performance and correctness can be modeled to the nearest clock cycle. At this level of

abstraction the simulator accurately models all the concurrency and resource contention in the system.

At the logic level all the nets and gates in the system are defined. Such high level of detail requires

an enormous amount of computation. This level is not discussed in this project, since the slowdown of

the simulation would not be acceptable.

Incrementally Refining a Model

SystemC supports incremental refining of models. First, models are implemented on a high level of

abstraction. In case more detail is needed, a refined model substitutes the abstract model. This gradual

refinement applies to all models, including communication. Following the interface-based design

methodology[20] communication on the system bus is modeled through the passing of tokens. A token

represents a complete communication between two or more entities. Through successive refinement of

the models higher levels of detail can be achieved. Increasing the level of abstraction gives the option of

increasing simulation speed.

Whenever the instruction-set simulator communicates with the system, it issues a token. This token

contains the information about the communication: target address, the length of the data,  type of

command (read or write), bus access parameters and the id of the issuing cpu. After the communication,

the token is marked completed, thereby informing the ISS about the end of the communication.
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Interfaces

In order to provide the support for different levels of abstraction, the models in the framework access

other models through interfaces. Interfaces provide the access functions to model and hide their

implementation at the same time. The user of an interface calls functions, without concerning about

their implementation. 

One interface defines the communication between the hardware model written in SystemC and the

instruction-set simulator. Using this interface allows to integrate many different ISS into the SystemC

environment. With this interface, the ISS can be started and clock cycles can be evaluated one at a time.

Through this interface, the hardware model receives tokens, which represent a communication on the

system. Also, he hardware model signals the ISS when these transactions have completed through this

interface. 

Another interface models memory references on the system, using tokens. The interface accepts

tokens and marks them as completed when the memory access is finished. The interface only provides a

read and a write function, and a function to show whether the interface is busy. Without the use of any

signals or clocks or similar, the implementation can be very abstract. 

A third interface provides access to the simulated memory space. This memory space holds the data

of the instruction-set simulator, such as the program code,and the simulated heap and stack. This

provides the flexibility to split up the memory space into smaller pieces called memory banks. For the

ISS the simulated memory space looks always the same, while the organization of the memory can be

changed. The use of such an interface allows to redirect memory transactions to different parts of the

memory space, without having to change the instruction-set simulator.

These interfaces allow to change the level of abstraction of certain parts of the system, without

having to adapt the rest of the system.
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Encapsulation of the Instruction Set Simulator

Combination of cycle accurate ISS with discrete event simulation

This project's approach is to use instruction-set simulators to model the processing units. Usually,

instruction set simulators are written in a high level language (HLL). The cycle based ISS do not

account for timing constraints, one clock cycle being the smallest unit of time. Typical modeling

languages for hardware are hardware description languages (HDL) such as Verilog or VHDL. These

modeling languages use a simulation core based on a discrete event simulation (DES). DES are not

constrained to a time frame with regular intervals. DES calculate at the occurrence of an event, at what

points in the future the system will change its state. Due to the large simulation overhead of DES, a

processor model would be too slow for reasonable simulation. The sequential programming of the cycle

accurate models produces a much faster simulator. The goal of this project was to combine a cycle

accurate instruction set simulator with a hardware simulator based on a DES.

SystemC Wrapper

The wrapper's task is to integrate the instruction-set simulator into the

SystemC environment. Since it communicates with the ISS through an

interface, it is possible to replace SimpleScalar with a different ISS.

The wrapper synchronizes the ISS with the hardware simulator and

guarantees the proper order of events. Basically, a processing unit is a finite

state machine. It calculates its next state and its output in dependence of the

current state and the input. The ISS executes sequentially and models one

clock cycle inside a loop. The wrapper has to break up this loop and tie the execution of the application

to the system clock. Each clock cycle, the wrapper translates incoming events from the system and

evaluates the next state of the ISS. The question is how the wrapper is suppose to behave in case more

than one event is pending at the input, for example more than one token has completed. This two

solutions are possible:

• The wrapper schedules events and sends only one to the ISS. The advantage is that the wrapper

relieves the ISS of evaluating unimportant events. This improves the ISS's performance, since no

time is wasted for ineffective events. Deprecated of the information about the other events, the ISS

may not  correctly calculate its next state, which results in misbehavior. The ISS can avoid this by

referencing the wrapper for the state of the essential ports. This leads to a significant increase of

complexity and requires substantial changes to the ISS in order to ensure correct behavior. Such

complicated communication between the ISS and the wrapper generates unnecessary simulation

overhead. 
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• The wrapper sends all events to the ISS. With this solution the complexity moves to the ISS. Not the

wrapper but the ISS evaluates the signals for their importance. Taking every event into account

increases the stability of the instruction set simulator. Although this demands for additional code to

the ISS the wrapper is reduced in complexity. 

The latter solution was implemented, because it also bears the advantage that the interface does not

depend on the implementation of the ISS. 

The instruction-set simulator puts tokens for memory accesses into a queue. The wrapper checks this

queue for uncompleted events. Through a memory map the wrapper selects the corresponding memory

interface and if it is available, it issues the token. When the transaction has completed, the wrapper

marks them as completed.

When the wrapper invokes the ISS, it evaluates one simulation cycle. At the beginning of each

cycle, the ISS checks the memory access queue for completed tokens and uses this information to

calculate its next state.

Instruction Set Simulator Interface

The evaluation of one cycle on the ISS comprises of four steps:

1. The wrapper sends events from the hardware model to the ISS.

2. The wrapper hands over control to the ISS

3. The ISS calculates the new events and transfers them to the wrapper

4. The ISS returns control to the wrapper

There are three variants to give the instruction set architecture access to the events:

Page 17
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Callback functions

The ISS registers a callback function inside the wrapper. The wrapper calls this function in order to

evaluate one cycle of the ISS. The advantage is that this approach yields a high level of flexibility

because the ISS can change the callback function during runtime. It is questionable whether this

flexibility is an improvement to the overall simulator since there is no reason why the callback function

should change during runtime. In any case, it has the disadvantage of increasing the complexity.

Direct access to SystemC ports

The wrapper registers pointers to its ports in the ISS. The the ISS is able to access the ports

directly[21] which reduces the simulation overhead. The wrapper and the ISS are not separated

anymore and the independence of these two are not provided anymore. This leads to a substantial

reduction of flexibility. In addition, whenever a different ISS is being used, significant adaption is

required in order to maintain compatibility

Abstract interface class

All access methods are defined within an interface class. The class of the ISS is inherited from this

abstract base class Declaring the methods pure virtual constrains the programmer of the ISS to provide

the implementation of these methods. The clear definitions simplify the implementation and the pure

virtual functions assure consistence throughout the source code. Although due to the predefinition of

the methods the flexibility of the implementation of the ISS is reduced, these constraints guarantee the

wrapper's independence of the ISS. These are the reasons why this solution has been chosen.
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SimpleScalar's Emission of Tokens

Whenever SimpleScalar simulates a cache miss, it puts a token into the memory access queue. This

token does not contain any data. Its sole purpose is to calculate the memory access latency, the time

after which the transaction has completed. 

In case of an instruction fetch, SimpleScalar blocks the fetch unit until the load of the instructions

has completed.

At the beginning of a cycle, SimpleScalar scans the memory access queue for completed memory

transactions. 

If an instruction fetch has completed, SimpleScalar frees the fetch unit and fetches a new instruction.

If a load instruction has completed, SimpleScalar puts the operation into the event queue in order to

write back the result and retire the instruction. 

Completed store transactions are ignored and are not handled by SimpleScalar. In order to correctly

model behavior of the processor, SimpleScalar must also provide a mechanism to model delays on store

instructions. One solution is to block the particular load/store unit, until the write transaction has

completed. As long as the load/store unit is blocked, it will not accept a new instruction to execute.

However, this mechanism has not been implemented yet.
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Memory Space

SimpleScalar's Virtual Memory

SimpleScalar separates the timing modeling of the memory from its

functionality. The content of the memory is not simulated in the

SystemC memory model. SimpleScalar stores the values of the simulated

memory in different memory model. The simulator allocates its

simulated memory space in the host's memory. SimpleScalar's page

tables translate the logical addresses of the simulated memory references

to the host's memory logical addresses. The host's page tables translate

these addresses again to physical addresses.

SimpleScalar encapsulates its simulated memory space. It is important that the instruction-set

simulators have access to a common memory space, since in multiprocessor architectures processors

one method of exchanging data is through shared memory. In order to share data through memory, the

simulated memory space and its organization is extracted from SimpleScalar and is encapsulated in its

own, independent object. The simulated memory space is subdivided into smaller memory spaces called

memory banks. One memory bank can represent a shared memory, a tightly coupled memory, a FIFO

or a memory mapped I/0. 

Memory Interface

The interface base class provides the semantics of the memory access functions. By hiding the

memory space from the simulator, the simulator does not rely on the implementation of the simulated

memory space.

The interface consults a memory map in order to select the appropriate memory bank, depending on

the address. 
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text 0x00000000

heap
↓

↑
stack 0x7FFFFFFF

Illustration 7: SimpleScalar's
memory organization

Illustration 8: encapsulating the memory space into an independent class with multiple memory banks
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The memory can be organized in two different ways:

• All memory banks reside inside a memory pool. The memory pool assigns an interface to each cpu.

This interface also holds the memory map for its assigned cpu. The entire memory space is

encapsulated inside this memory pool with the advantage that the wrapper and the simulated

memory are separated. The disadvantage is that this also results in limitations to the interface, since

each memory map depends on the connected cpu.

• The memory interface is part of the wrapper. The interfaces to the available memory banks are

registered inside the wrapper. The wrapper holds the memory map and selects the appropriate

memory bank, depending on the address. The wrapper's memory interface translates the ISS's

memory accesses and forwards them to the corresponding memory bank. 
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Illustration 9: memory pool

Illustration 10: wrapper holds the memory interface
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The second design has been chosen, since it takes into account that each cpu needs its own specific

memory map. In addition, with more sophisticated memory layouts, this design proofs to be more

flexible. Additional memory banks are more easily integrated into the system. 

Memory Map

Two memory interfaces can access the same memory bank. This is called shared memory. The two

interfaces can map their addresses to the same range or can overlap only partially.

An address range of the instruction-set simulator does not necessarily have to map to the same

address range on the memory bank. Even more, it is possible that two different address ranges map to

the identical address range on the memory bank. This memory address translation is not yet

implemented in the simulation framework, but it is possible to improve the memory interfaces to

support this feature. Figure 12 shows one possible memory mapping in a two processor system with

multiple memory banks.
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Illustration 12: example of memory mapping
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Memory Coherence

The simulation framework's task is to preserve the correct order of events. This also applies to the

order of accesses to the memory. The order of accesses to the simulated memory space must correspond

to the order of access to the memory modeled with SystemC. 

Possible inconsistencies occur when two processors try to access the same memory location during

the same cycle. If at least one of these processors is writing to the memory location, there is a chance

that the order of access to the simulated memory does not correspond to the order of memory accesses

simulated with SystemC. SystemC's simulation core does not guarantee the order in which the modules

are executed in the same clock cycle. Thus, whichever processor model is executed first, accesses the

simulated memory first. Which module is granted access to the bus and accesses the SystemC memory

model, depends on the arbiter. Possibly these two orders are not the same, which causes an inaccuracy

in the simulation.

Let us consider three scenarios involving two processors P1 and P2 accessing the same memory

location. 

Page 23



A Simulation Framework for Multiprocessor SoC

Scenario 1: Memory accesses not in the same cycle

This scenario shows the case when P1 and P2 do not access the shared memory during the same

cycle. P2 performs the memory transaction after P1.

Cycle Processor 1 Processor 2

1

P1 writes to the simulated memory and issues

a memory access token. 

The arbiter grants access to the bus. 

2

P1 accesses the bus and performs a write

transaction on the memory.

P2 reads from the simulated memory and

issues a memory access token. 

The arbiter denies access to the bus.
n P1 completes the bus transaction

n+1 The arbiter grants access to the bus. 

P2 accesses the bus and performs a read

transaction on the memory.

In this scenario the order of events is preserved.

Page 24

Illustration 13: coherence scenario1: P2 accesses the memory one cycle later
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Scenario 2: Memory accesses  not in the same cycle, order preserved

In this scenario the memory accesses occur in the same cycle. P1 is called first by SystemC and also

has a higher bus access priority than P2.

Cycle Processor 1 Processor 2

1

P1 writes to the simulated memory before P2

and issues a memory access token. 

The arbiter grants access to the bus. 

P2 reads from the simulated memory after P1

and issues a memory access token. 

The arbiter denies access to the bus.

2

P1 accesses the bus and performs a write

transaction on the memory.
n P1 completes the bus transaction

n+1 The arbiter grants access to the bus. 

P2 accesses the bus and performs a read

transaction on the memory.

In this scenario the order of memory accesses is also preserved.
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Illustration 14: coherence scenario 2: P1 and P2 access the memory during the same cycle
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Scenario 3: Memory accesses  not in the same cycle, order not preserved

In the last scenario, SystemC calls P1 first and P1 writes to the memory. But P2 has a higher bus

access priority and thus performs the bus transaction before P1. 

Cycle Processor 1 Processor 2

1

P1 writes to the simulated memory before P2

and issues a memory access token. 

The arbiter denies access to the bus. 

P2 reads from the simulated memory after P1

and issues a memory access token. 

The arbiter grants access to the bus.

2

P2 accesses the bus and performs a read

transaction on the memory.
n P2 completes the bus transaction

n+1 The arbiter grants access to the bus. 

P1 accesses the bus and performs a read

transaction on the memory.
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Illustration 15: coherence scenario 3: P1 and P2 access the memory during the same cycle
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In this scenario the processors do not access the simulated memory in the same order as they

perform the transactions on the SystemC model. Although P2 reads from the memory location after P1

has written to it, in the SystemC model it performs the transaction before P1 and thus causes an

inaccuracy in the simulation.

This issue has not been resolved in the presented framework. The hazard can be avoided by omitting

that both processors access the memory during the same cycle. 

Page 27



A Simulation Framework for Multiprocessor SoC

System Model

Bus Model

Multiple master and slave modules connect to the bus. Whereas master modules initiate a

transaction, slave modules can only perform an action after being invoked by a master. In case more

than one master is requesting a bus transaction, an arbiter selects one according to the arbitration

scheme. 

Since the bus model was not the main focus of the project, the Simple Bus library which is part of

the SystemC 2.0 release, has been chosen as sample solution. Its description follows in the

implementation chapter.

Processor Model

The different parts of the processor model are collected in one container. This container comprises

of the wrapper including the instruction-set simulator, SystemC memory interfaces, interfaces to the

simulated memory banks, ports for input and output signals and ports for clock and reset. 
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Illustration 16: bus architecture
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SystemC Memory Interface

The SystemC memory interface receives the tokens from the wrapper and accesses the

corresponding memory on the system. This memory can be directly connected to the interface, as in

case of a tightly coupled memory, or it is connected over a bus or over some other kind of interconnect.

The wrapper does not have to concern about the location of the memory and how it is connected to

the processor. From the wrapper's point of view, the interface accepts a token for either a read or a write

transaction. Until the interface has completed the transaction, the memory interface signals that it is not

ready to accept new tokens. After completion, it marks the token as completed.
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Illustration 17: SystemC memory interface
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Implementation of the Simulation Framework
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Illustration 18: UML diagram of the simulation framework
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Encapsulation of the Instruction-Set Simulator

From C to C++

In order to use the SimpleScalar simulator inside a C++ environment, the source code requires

several adjustments. Beside syntax changes, the entire program needs to be put inside a class. This class

is called simplescalar_simulation. Since the source code is scattered over many files, the

functions must have access to global variables and external functions. In C this problem is solved by

declaring those functions and variables as external. In C++ this does not apply anymore. There are three

alternatives: 

1. All functions and global variables are part of a common name space.  Because name spaces can be

split over multiple files, they do not create a redefinition[22]. Thus the modification of the source

code is kept to a minimum. The downside this approach is that only works if the SimpleScalar

simulator is singleton[23], the object being the only instance of its class. Since every instance has

access to the same name space, they would access the same variables, thus writing into each others

memory space. 

2. The simulator has its own class and the functions and global variables are members of this class.

This way, the simulator is isolated and the different instances do not interfere with each other. The

original source code of SimpleScalar uses many header files in order to improve readability. C++, on

the other hand, does not allow to spread a class definition over multiple files. Either all header files

are copied into a single file, resulting in a not very manageable file. Or somewhat unusual, the

header files are included inside the class, which also calls for some restrictions in C++. In addition,

the SimpleScalar simulator makes wide use of callback functions, which would involve major

changes to the source code in order to maintain the functionality.

3. The solution is the combination of the previous two. This

way, the simulator is able to use the methods, defined in the

common name space iss. The global variables are defined

within the class sim_state, which is a member of the

simplescalar_simulation class. The sim_state

class preserves the state of the simulator whenever control

moves out of its scope. It also initializes the variables with

their respective value. The reference to this state is passed to every function within the names space

iss, because the function cannot otherwise determine which instance of ISS is calling it nor its

current state. 
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Illustration 19: using name spaces
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The source file main.c is transferred to the file simplescalar_main.cpp and the function

main() changes its name to sim_start(). It is called either right after instantiation or whenever

the programmer wishes to start the ISA simulation. The simulator core routines are implemented in the

file sim-outorder.cpp. Substitution of this source file with other implementations such as sim-

fast.cpp or sim-profile.cpp exchanges the simulator core with the respective implementation.

This modular structure facilitates “rolling your own” simulator[24]. However, so far only sim-

outorder.cpp was integrated in the framework.

The Module sc_wrapper

The wrapper is a SystemC module with the name sc_wrapper which has interfaces to the memory

banks and to the instruction set simulator. It also has single signal ports which can be used to flag

events such as interrupts and ready signals. 

The wrapper contains only one process with the name HandleEvents. This SystemC method is

sensitive to the positive edge of the clock and to the reset signal. In case the reset signal goes high, the

wrapper deletes the instructions set simulator, instantiates a new ISS and restarts the simulation.

Every clock signal, the wrapper forwards all input signals to the ISS. After evaluating one cycle of

the ISS, the wrapper maps all outgoing signal from the ISS to their respective ports. If the a signal has

not changed since the last cycle, it will not generate an event on SystemC. Then the wrapper checks all

tokens in the memory access queue whether their corresponding interface is able to perform a

transaction. By issuing memory accesses to all available memory interfaces, the wrapper is able to

model concurrent memory transactions.

The wrapper has input ports for clock and reset. It also features input and output signal lines, as well

as multiple interfaces to SystemC memory banks. One of these interfaces is the connection to the bus

interface model. 

The wrapper's constructor requires following arguments: The name of the SystemC module, the

pointer to the first element of an array of memory interfaces, the number of memory interfaces, the

command line parameters for the ISS, whether to turn on verbose output.
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Illustration 20: the module sc_wrapper
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ISS interface

The abstract base class which defines the interface to the ISS is called iss_if. The instruction set

simulator must provide three functions: 

1. The function start_sim starts the simulation. Its arguments are the ISS parameters argc,

argv and envp. They are the same as if SimpleScalar were called on the command line.

2. The function eval_cycle evaluates one cycle on the ISS. Its parameters are signalin_array

and signalout_array, the pointers to the single signal arrays; mem_access_queue_head,

the pointer to the first element of the memory access queue and mem_access_queue_length,

the reference to the number of elements in the memory access queue.

3. The function show_stats displays the statistics of the ISS. It does not require any parameters.

The class simplescalar_simulation, the encapsulated

SimpleScalar instruction-set simulator, is one implementation of

the interface class iss_if.

 The wrapper and the ISS exchange events using the class iss_event to

store data. This class is a template depending on the type of data being used.

In case of single signals, booleans are used. For the more abstract memory

accesses, the type in use is the class mem_access_token which contains

the information about memory transaction such as address, length of data, id
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class iss_if {

public:

virtual int  start_sim(int argc, char **argv, char **envp)=0;

virtual void 

eval_cycle(iss_event<bool> *signalin_array[NUM_INSIGNAL], 

iss_event<bool> *signalout_array[NUM_OUTSIGNAL], 

iss_event<mem_access_token> **mem_access_queue_head, 

int *mem_access_queue_length)=0;

virtual void show_stats(void)=0;

};

Source Code 1: Interface to the ISS

Illustration 22: the class
iss_event

Illustration 21: interface class iss_if
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of the cpu, bus access parameters and whether it is a read or a write transaction. The token also contains

flags that show if the token has been issued to a memory interface and if the transaction has been

completed. 

The single signal events are organized in two arrays, one for input ports and one for output ports. 

This organization simplifies the handling of the signals. The memory access events are stored as

tokens in queue called mem_access_queue. The class iss_event comes with a special constructor

which put the instantiated element at the end of the queue. 

At the beginning of each cycle, the SimpleScalar checks the event queue for completed memory

references. Write transaction are not handled, since SimpleScalar assumes an infinite number of output

buffers. If the completed read transaction accessed the instruction memory, SimpleScalar fetches new

instructions. If the completed read transaction accessed the data memory, it puts the completed event

into its own event queue. The ISS writes changes to the outgoing signals directly into the array. In case

of memory accesses it stores the event at the end of the memory access queue. After updating the

internal state machine, the ISS returns control to the wrapper. 
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Simulated Memory Space

Memory Banks

Data, such as program code, heap and stack is stored in the host's memory in a struct, which holds all

the page tables. SimpleScalar accesses its virtual memory through functions defined in the source file

memory.c. The simulator creates page tables where it stores the logical address of its data in the host's

memory. More details on SimpleScalar's memory organization are described in SimpleScalar's source

code [14].

The outsourced memory must provide the same functionality as the original implementation of

SimpleScalar. In order to avoid many changes to the SimpleScalar code, the memory object must

provide the same methods that were previously defined in the file memory.c. The question was

whether to make the page tables public or private.

• Making the page tables public does not require much change to the SimpleScalar code. But there is

no separation between the simulator and the implementation of the memory.

• Making the page tables private increases the complexity, since the simulator cannot access the page

tables directly, but only by using certain interface methods. This solution increases the safety as well

as the flexibility. The implementation of the memory is independent of the simulator and vice versa. 

In favor of the option to easily exchange the implementation of the memory, the second solution has

been chosen.

With the encapsulation of the memory space, the memory access function is a member function of

the memory object. The method's implementation depends heavily on the implementation of the

memory bank. Therefore generic memory access functions are no longer supported.

Interfaces

Interface class memory_if

All memory implementations are inherited from the class memory_if. This results in a common

interface to all memory banks. This interface provides the semantics of the memory access functions.

The memory interface contains the start and the end address of its memory space. Besides accessor

functions for memory statistics, the interface provides functions for the translation of an address to the

host memory address (mem_translate) and a function for the allocation of a new memory page

(mem_newpage). Most importantly it provides a generic access function (mem_access) and several

memory accessor routines such as string copy (mem_strcpy) and copy of n bytes (mem_bcopy).
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Memory access through the wrapper

From the instruction set simulator's point of view, the memory space

behaves like a single memory bank. The simulator accesses the memory

space through the wrapper. The wrapper contains the memory interface

iss_mem_if. Although this class is inherited from memory_if, it does

not provide the implementation of the memory space. It only decides on behalf of the address, to which

memory bank    the transaction is forwarded to. By hiding the memory space from the instruction set

simulator, the simulator does not rely on the implementation of the memory bank and how the content

is stored.

SimpleScalar's memory implementation

The memory class memory_t is inherited from the abstract base

class memory_if. This class provides the implementation which was

previously used in SimpleScalar. This is the place where the simulator

finally commits the transaction to the host's memory. More details are

provided in the SimpleScalar source code [14].
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memory_if
simmem
start_adress, end_address
mem_ptab
mem_bus_width
mem_translate(addr)
mem_newpage(addr)
mem_access(cmd, addr, *vp, nbytes)
mem_strcpy(cmd, addr, *s)
mem_bcopy(cmd, addr, *vp, nbytes)

Table 3: members and Methods of the
interface class memory_if

Illustration 24: class memory_t

Illustration 23: class
iss_mem_if
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SystemC system model

The Module sc_processor

The processor model, the module sc_processor, does not contain any processes itself. It is a

container for the various SystemC components which model the processor: sc_wrapper that contains

the instruction-set simulator, sc_bim which models the interface to the bus, sc_tcmem_if the

interface to tightly coupled memory, other derivatives of the memory interface sc_mem_if, clock and

reset ports and ports for input/output signals.
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Illustration 25: UML chart of the processor model

Illustration 26: the module sc_processor
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Interface to SystemC memory models

The class sc_mem_if defines the interface methods to the memory

banks modeled in SystemC. It comprises of following methods:

read(*token) performs a read transaction, write(*token) performs a

write transaction and ready() shows whether the interface is busy or not. 

Bus Interface Model

The purpose of the bus interface model is to connect the wrapper

with the bus. The class sc_bim is inherited from the class
sc_mem_if.

When the bus interface model receives a memory access token, it issues a read or a write event

respectively. Two threads are sensitive to these events, one to read events and one to write events. After

receiving the events they execute the read_bus method and the write_bus method respectively.

These methods perform a blocking or non blocking bus transaction, depending on the mode defined in

the token. The bus interface requests access to the bus, and when the arbiter grants access, the interface

performs the memory transaction. After completion of the transaction, the bus interface model sets the

completed flag of the token.

The module has an input port for the clock and three interface ports to the bus: one for direct access

to the memory, one for non blocking transactions and one for blocking transactions. The bus interface

model can only use one interface at a time.

Interface model to tightly coupled memory

The interface connects directly to a memory, in the projects case a

memory module of the Simple Bus library. It is also inherited from the

SystemC memory interface class sc_mem_if. The behavior of the

module sc_tcmem_if is the same as the behavior of the bus

interface model. Except that the interface model to tightly coupled memory does not have to issue a

request and wait for admission. The interface is able to access the memory model immediately. 
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Illustration 27: members
and methods of the
module sc_mem_if

Illustration 28: class sc_bim

Illustration 29: class sc_tcmem_if
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The Simple Bus Library

For the bus and memory model, the Simple Bus library has been chosen. The Simple Bus library is

part of SystemC version 2.0 [25]. The Simple Bus model consists of master and slave modules, a bus

module and an arbiter module. Modules communicate via channels. Channels are a set of interface

methods. They can be hierarchical. 

The bus module is such a channel. Multiple master modules connect to the bus through ports. When

one or more bus transactions are requested, the bus calls the arbiter in order to select a master. In the

Simple Bus library, the arbiter is based on a priority scheduling scheme. The arbiter grants access to the

master with the highest priority.

Memories are connected to the bus as slave modules. Slave modules are also channels and feature

certain interface methods. In case of a memory, these are read and write, and direct_read and

direct_write. The bus provides the following interfaces to master modules: a direct interface, a

non blocking interface and a blocking interface. 

The direct interface allows instantaneous access to the slave without advancing the simulation clock.

It should only be used for debugging purposes. The non blocking interface allows a single transaction

on the bus. The blocking interface allows burst transactions over the bus, enabling a series of

transactions without being interrupted.
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Performance of the Simulation Framework

Performance Determinant Parameters

Simulation speed depends heavily on the host's performance. Not only CPU speed is important, but

also memory size and access time and because of the use of virtual memory, the hard disk drive

throughput. Following parameters of the host computers have been measured:

Parameters of the simulated system influence also the simulator's performance. Following

parameters can be adjusted on simulator's architecture:

Host computers

Comparison between the two host computers:

Host 1 is a Dell Precision 340 workstation with a Intel P4 processor. Host 2 is a Dell Inspiron 8100

notebook with a Intel PIII mobile processor.
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device parameters
CPU clock speed cache size MIPS
RAM capacity memory bus speed throughput
HDD throughput

Table 4: host computer parameters

module parameters
application frequency of memory references
instruction set architecture cache properties number of memory ports
memory space number of memory banks latency of the memory banks
system architecture number of processors number of busses

Table 5: architecture parameters



A Simulation Framework for Multiprocessor SoC

Page 41

CPU clock speed cache size MIPS
Host 1 2000 MHz L1: 8kB; L2 512 kB 5300 MIPS
Host 2 1200 MHz L1 16kB, L2 512 kB 3200 MIPS

RAM capacity memory bus speed throughput
Host 1 512 MB 800 MHz 2400 MB/s
Host 2 256 MB 133 MHz 850 MB/s

HDD throughput
Host 1 22 MB/s
Host 2 8.2 MB/s

Table 6: comparison between the host computers
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Measurements

Experiment 1

The simulated system consisted of two processing units with their own memory which was accessed

over a shared bus. The benchmark application was a floating point computation called test-fmath which

is part of the SimpleScalar tool set.

The chart shows the number of simulated instructions per second for Host 1 and Host 2. In total,

200'000 cycles were simulated on the system. 

These measurements show that this simulator is between 3 to 4 magnitudes slower than the stand-

alone instruction-set simulator.
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Charts 2-4: the effect of the memory latency on the simulator's performance (simulation time: 50k cycles)

Illustration 30: setup for experiment 1 Chart 1: simulation speed for 200'000 simulated cycles
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Chart 2 shows that a memory latency of nearly zero, yields a very high simulation speed, since the

processors block the bus for only a very short time. Since only few cycles are wasted for memory

transactions, the processors work almost in parallel and commit nearly the same number of instructions,

as seen in the left chart. A high memory latency also results in a high simulation speed, since the

processor with the higher priority (CPU 1) constantly accesses the bus and the requests of the second

processor are never handled. The processor with the lower priority is starving and the system behaves

like a uniprocessor architecture. In multiprocessor systems, a starvation of a processor cannot be

tolerated and therefore memory latencies must be kept to a minimum.

Experiment 2

In the second experiment, each processor has direct access to its dedicated instruction memory. The

program used for this experiment is an integer benchmark call test-math, which is also part of the

SimpleScalar tool set.

In this setup, the processors only have to access the bus for data transaction while instruction fetches

are executed in parallel. This reduces bus congestion significantly, but also puts higher demand on the

simulator, since up to three memory transactions are performed concurrently. 

Compared to the standalone SimpleScalar simulator, the slowdown amounts to approximately 4

magnitudes.
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Chart 5: Simulation Speed for 200'000
simulated cycles

Illustration 31: setup for experiment 2
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Conclusion

Results

The simulation framework implemented in this project allows designers of multiprocessor Systems-

on-Chip to thoroughly explore their architecture. Through the use of interfaces, the framework allows

using diverse levels of abstraction for modeling different parts of the system. 

The integrated SimpleScalar tool set supports customized applications, thus designers can run their

own dedicated programs on the simulated system. The presented framework allows analysis of system

behavior with deep insight into the instruction set architecture.

In this project the SimpleScalar instruction-set simulator was integrated in SystemC. The framework

is not limited to the use of SimpleScalar, other instruction-set simulators can also be integrated. 

Besides co verification of hardware and software, this framework also facilitates measurement of

various metrics of the simulated architecture such as bus performance, memory usage and overall

throughput. It even supports detailed analysis of processor statistics like branch prediction and cache

performance. 

Future Work

The presented framework can be used in the future for the analysis of sophisticated Systems-on-

Chip. Especially multimedia network processors are of big interest. Application specific benchmarks

can be written for the instruction-set architecture such as real time decoding of data streams in

multimedia systems or packet routing in network processor. 

Follow up projects can integrate other instruction-set simulators and compare their performance with

SimpleScalar.

The modules have been designed with the focus on correct behavior of the the simulation

framework. Yet, there is still room for a more efficient implementation. Especially memory usage can

be improved. By eliminating accesses to the swap space on the hard disk drive, considerable

improvement to simulation speed can be achieved.

The simulator's results can be compared to results acquired with analytical methods. Thus it can be

verified whether analytical methods are applicable to real time multimedia applications. 
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Appendix

Appendix A: Command Line Parameters

The compiled simulation executable sim-outorder.exe requires two parameters for each

processor model. The first parameter represents the path to the configuration file for the instruction-set

simulator. The second parameter represents the path to the binary, that is executed by the instruction-set

simulator. These two parameters are repeated for each processor model.

Information on the syntax of the configuration file is provided in the SimpleScalar source code [14]. 
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usage:
sim-outorder config binary [config binary] [config binary] [ ...]

config specifies the configuration file

binary specifies the executed binary file

Command line parameters
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Appendix B: Acronym Dictionary

BIM Bus Interface Model

DES Discrete Event Systems

FIFO First In, First Out

HDL Hardware Description Language

HLL High Level Language

ISA Instruction Set Architecture

ISS Instruction Set Simulator

LSQ Load/Store Queue

OSCI Open SystemC Initiative

RUU Register Update Unit

SoC System-on-Chip
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