
Semester Thesis

Ad-Hoc Services

Marc Schiely, Clemens Schroedter
maschiel@student.ethz.ch, clschroe@student.ethz.ch

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich

Winter 2002 / 2003

Prof. Dr. Roger Wattenhofer

Distributed Computing Group
Advisor: Aaron Zollinger

Contents

1 Introduction 2

2 Performance Measures 3

2.1 Testing what? . 3
2.2 Testing communication with a small amount of data 3
2.3 Testing communication with a big amount of data 3
2.4 Conclusion . 3

3 A Framework for System Wide Accessible Services 6

3.1 Demands . 6
3.2 Architecture . 6
3.3 Changing the Communication Technology 8
3.4 Open Problems . 8

4 Service Compiler for RMI Framework 9

4.1 Purpose of Compiler . 9
4.2 Description of Finite State Machines . 9
4.3 Usage of Compiler . 9
4.4 Requirements of Compiler . 10

5 Implementing new Services 12

5.1 Requirements of Service . 12
5.2 Implementing a new Service . 12
5.3 Using Services in Applications . 12

6 Ad-Hoc-Services 13

6.1 General design . 13
6.2 Basic Ad-Hoc-Services . 14

6.2.1 Neighborhood service . 14
6.2.2 Forwarding service . 14
6.2.3 Sniffer service . 15

6.3 Non-Basic Ad-Hoc-Services . 15
6.3.1 Flooding service . 15
6.3.2 Messaging service . 15
6.3.3 Notifier service . 15

7 Conclusions 17

1

Chapter 1

Introduction

Marc Schiely

The objective of this thesis was to implement some basic ad-hoc services which can
be used by Java applications running on the system. To realize this task, we needed a
framework which allows applications to access the functions of the services. The services
should be started at the start-up of the machine and run in the background.

One of the demands was that the applications should not need to know anything
about the kind of communication that is used between the application and the service.
It should be possible to add new services to the existing framework, too. Another
requirement was that it is possible to easily exchange the communication technology
without changing services and applications. Chapter 3 describes the architecture of the
framework we designed for those demands. Chapter 4 describes the compiler which is
used to add new services to the machine.

Another aspect we paid attention to was performance. For selecting the right com-
munication, we measured different kinds of communication for the messaging between
the two Java Virtual Machines (Application - Services). In chapter 2 the results of these
measurements are described.

2

Chapter 2

Performance Measures

Clemens Schroedter

2.1 Testing what?

To find the best communication between the different Java Virtual Machines we first
considered the internet to get an overview of the possible communication technologies.
Basically we found the possibilities of using RMI (Remote Method Invocation) or Corba.
We also implemented our own communication layer using sockets.

2.2 Testing communication with a small amount of data

The next question was how to test the different communication methods. Therefore, we
implemented a very simple Calculator which we used to test the performance for a small
amount of data. First we established the communication and then we called the remote
procedure 10 times. The Calculator received 2 integers and passed back one integer via
the tested communication layer.

2.3 Testing communication with a big amount of data

The next test we performed was about the speed of transmission of large data. Therefore
we sent in each call an array of 10’000 bytes.

2.4 Conclusion

Looking at the data, it was obvious to us not to use Corba. We were able to set up the
fastest communication with our own implementation. But designing and implementing
an own communication layer would have exceeded the scope of this thesis. One more
reason against implementing the communication layer by ourselves was, that the own
final implementation would probably be slower than the communication layer we tested.
Thinking that the main effort should lie in the ad-hoc services and the framework design,
we decided to use the RMI solution.

3

Figure 2.1: Measurements with small amount of data, implementation in Java, times in
ms

4

Figure 2.2: Measurements with big amount of data, implementation in Java, times in
ms

5

Chapter 3

A Framework for System Wide

Accessible Services

Marc Schiely

3.1 Demands

For the design of the framework we had to fulfil various demands. Beside performance
and platform independence, it was important that the communication technology used
in the framework could easily be exchanged. The application should not know about
the way it communicates with the service. This problem was solved by the introduction
of stubs. The task of the stubs is to abstract from the used kind of communication
technology.

Another demand was that new services could be plugged into the system without
rewriting neither the framework nor the applications. The new service also should not
know about the kind of communication technology. This abstraction was done by writing
a compiler which generates the needed files for the new service with RMI-specific code
inside.

The implemented services should run in the background. At the start-up of the
machine, the services that are frequently used should be started. This way they would
be accessible to the applications without additional delay when first used.

3.2 Architecture

Because of the measures we made, we decided to implement the framework using RMI.
Figure 3.1 shows the architecture of the framework.

First the Servicer must be started (1). It binds the Registry to a name so that it
can be accessed by RMI. An application which wants to use a service needs the object
AH-Stub. This stub provides a method getService(String) which can be used to get the
service which is correlated to the service name (2).

If the service is not yet started, the registry starts it and binds it to the name which
is found in the file Services.txt. For further requests for this service, the registry returns
the name of the implementation of the service.

With the name the AH-Stub gets from the registry, it can create an RMI-Stub of
the service. This is returned to the application. Now the application can call methods

6

...

JVM 2

JVM 1

JVM n

...

...

...

...

������� � �	�	
�� ���� ������� � ������� �����

��� � !#"�$&% '�(*) +#,�-&.

/103254�687:9;/1< =8>@?1ACBEDGF8H:IJ?LK M8N O1P3Q5R3S8T:UJO1V WYX Z1[C\E]G^8_:`;Z1a b8c

dfe�g�h i1j�k l

m8n�o prq s	n�ot#uwv xry z�u|{ }8~w� �r� ��~��

�8��� �r� ���|�
�&���f� �����

�#�w� �r� �����
���5�f� � ��¡

¢�£�¤¦¥#£w§ ¨r© ª�£ « ¬ ®�¯ °¦±8¯�² ³r´ µ�¯ ¶ · ¸

¹Lº¦»�¼ º	½ ¾ ¿

À�Á�Â Á�Ã�Ä�Å¦Á Æ Ç È

ÉËÊ�Ì Ì3Í8Î�Ï ÐrÑ Ò�Î Ó Ô Õ

Figure 3.1: Framework for System Wide Accessible Services

7

as they are defined in the interface (4). The calls are delegated from the RMI-Stub to
the RMI-Implementation (5) which calls the method on the real implementation and
returns the result to the application.

3.3 Changing the Communication Technology

The following classes have to be newly implemented, in order to exchange the commu-
nication technology used.

• Servicer: still starts the registry and makes it accessible to the AHStub.

• AHStub: provides a method getService(String) which returns an instance of a
service.

• Registry: the interface between the services and the AHStub.

• AHSCompiler: if needed, a new compiler has to be written. This has to generate
the files containing the specific code for the communication technology.

The applications using the services have to use the new AHStub. The service files
specific to a communication technology must be adapted.

3.4 Open Problems

The framework does not allow any callbacks. Therefore the services can not call methods
on applications. This may be implemented in a future work.

8

Chapter 4

Service Compiler for RMI

Framework

Marc Schiely

4.1 Purpose of Compiler

The demand of not knowing about the communication technology leads to the require-
ment that the service should not contain any RMI-specific code. So we need a compiler
that inserts the code needed into the classes and generates the stubs that are used for
the communication between applications and services.

The so-called AHSCompiler takes the interface and the name of a new service as its
input and generates three needed classes and a skeleton for the implementation of the
service.

4.2 Description of Finite State Machines

Figure 4.1 contains the schemas of the finite state machines that are used in the compiler.

• The FSMInterfaceScanner is used to generate the interface with RMI specific code.
This interface is needed by the RMI compiler.

• The FSMStubScanner generates the stub, which is used by the applications to
communicate with the services.

• The FSMSkeletonScanner generates a skeleton for the implementation of the ser-
vice which is compiled.

4.3 Usage of Compiler

Because the compiler generates files and has to put them into the right directory, it
must be run from the directory where the package ad-hoc is placed.

The parameters to start the compiler are the following:

• Fully qualified interface name of the new service.

9

• Name of the implementation class file without package path – if an implementation
does not exist, then a skeleton is built with the specified class name.

The new service has to be registered in the file Services.txt in the directory “adhoc”.
The form of the entry must be: ServiceInterfaceName=ImplementationClassName

• ServiceInterfaceName must be the fully qualified Java name of the service interface.

• ImplementationClassName must be the class name of the implementation without
the package name.

If the service should be started at the start-up of the Servicer, then it must also be
registered in the file BasicServices.txt. The form of this entry must be: ServiceInter-
faceName=1

• ServiceInterfaceName again has to be the fully qualified Java name of the service
interface.

4.4 Requirements of Compiler

• The compiler uses rmic and javac, which must be installed on the machine.

• It is important that each service provides a constructor with exactly one parameter,
namely an Integer representing the ad-hoc address of the machine.

10

1

3

2

4

0 Copy Code

Copy Code

Copy Code

[interface] Insert Interface Name

[extends | {] Insert RMI Code

[)] Insert RMI Code

FSMInterfaceScanner

3

2

4

0 [EOL] Write EOL

Copy Code

[import |
package]

Insert RMI Code

Insert RMI Code

5

1

7

6

Copy Code

[;]

[public]

[(]

[,]

Add Param

[(]

[)] Insert RMI-Code

FSMStubScanner

3

2

4

0 [EOL] Write EOL

Copy Code

[import |
package]

Insert RMI Code

1Copy Code

[;]

[public]

[;] Write Type

FSMSkeletonScanner

Figure 4.1: Finite State Machines used in the AHSCompiler

11

Chapter 5

Implementing new Services

Marc Schiely

5.1 Requirements of Service

The services must follow some guidelines:

• Each service must implement an interface which extends the interface AdHocSer-
vice.

• A constructor with exactly one parameter, namely an Integer representing the
ad-hoc address of the machine must be provided.

5.2 Implementing a new Service

First the class name of the implementation has to be entered into Services.txt. After
writing the interface for the service the files must be compiled with the AHSCompiler.
If an implementation was provided before the AHSCompiler was run, then no further
compilation is needed. Else a skeleton for the implementation is generated which can
be used.

More than one implementation can be used. When changing the implementation
of a service, the name of the implementation has to be entered in the file Services.txt.
Afterwards, the service must be recompiled with the AHSCompiler. No more changes
are needed.

To start the Servicer which provides the services, use the file ”Servicer.bat” on
Windows platforms or ”Servicer” on UNIX platforms. These files are located in the
directory “adhoc”.

5.3 Using Services in Applications

A service can be used in any application by calling getService(String) on an instance
of AHStub which encapsulates the registry mechanism of the employed communication
technology. The parameter is the fully qualified java name of the interface of the service.
On the instance returned, method calls can be made as usual.

12

Chapter 6

Ad-Hoc-Services

Clemens Schroedter

6.1 General design

The class AHSocketImpl extends the class AdHocNotifier and implements the socket for
our ad-hoc services. The AHSocketImpl has an inner class, the ReceiverThread. This
Thread is listening to the AHSocketImpl. Each service has to implement the interface
AdHocService. If the service should receive anything, the service needs a Listener which
implements the interface AHSocketListener. This Listener then has to be registered
with AHSocketImpl.addAHSocketLister(AHSocketListener). Once registered, the Lis-
teners are getting notified if a packet with the same type as returned by the method
AHSocketListener.getType() has been received. The packets should be generated with
the PacketFactory. In this class all packet and listener types are defined. There are two
different packetformats: PacketImpl, MHPacketImpl. The PacketImpl is for sending
a packet in the single hop modus. The MHPacketImpl is for sending a packet in the
multiple hop modus.

type
1 byte

ID
1 byte

Data
variable length

origin
sender address
2byte

origin
receiver address
2 bytes

receiver address
2 bytes

sender address
2 bytes

MHPacketImpl

sender address
2 bytes

receiver address
2 bytes

type
1 byte

ID
1 byte

Data
variable length

PacketImpl

Figure 6.1: The format of single and multiple hop packets, implemented by PacketImpl
and MHPacketImpl

13

6.2 Basic Ad-Hoc-Services

6.2.1 Neighborhood service

The task of a neighborhood service is to deliver the actual neighbors. By actual neighbors
we mean the communication partners which can be reached directly, they are all in the
range of the WLAN card. Therefore the neighborhood service must run a thread in the
background to be up to date. This service is a basic service.

NHServiceImpl1

The neighborhood service uses 2 classes, NHActivator and NHListener to check the
environment. The NHActivator starts the process of discovering the area with sending
pings. Pings are sent every 3 seconds by default. This can be changed with the method
NHService.setBound(int ub). The NHListener registers neighbors in the Neighbour class
and answers a ping with a pong. The Neighbour class removes old neighbors, if there
was no ping or pong heard within a specified time. The time can be set with the method
NHService.setRuntime(long time); the default time is 10 seconds.

NHServiceImpl2

This is a dummy testing service. It returns the Vector [1,2].

6.2.2 Forwarding service

The nature of this service is absolutely reactive. If a multihop or flooding packet is
received, this service has to ensure that the packet is forwarded. To prevent that a
packet is being forwarded multiple times, it is necessary that the service remembers all
packets it forwarded once. With this information, it can distinguish whether or not
it has to forward this message. The identification of a packet is made by the tuple
(OriginSenderAddress, packetid). The tuple window has a size of 1’000 entries.

ForwardingServiceImpl1

The ForwardingListener forwards the packet, if it is for somebody else and the hop
counter (TTL) is not zero. If a packet has been forwarded, the hop counter is decreased.
The packet is forwarded as a MHPacketImpl. These packets are sent via broadcast, this
means the receiver address is set to zero. The TTL can be set in the class Hops. This
information will statically be used.

ForwardingServiceImpl2

The ForwardingListener2 forwards the packet if it is for somebody else and if the hop
counter (TTL) is not zero. If the OriginReceiver is directly reachable, the packet is being
unpacked to a single hop packet (PacketImpl) and is directly sent to the OriginReceiver.
If the OriginReceiver is not in the neighborhood, the packet is being forwarded as
MHPacketImpl. To know whether the OriginReceiver is directly reachable or not the
neighborhood service is being used.

14

6.2.3 Sniffer service

It may be of interest to know who has been reachable during the time we run the
AdHocServices. Therefore, this reactive service sniffes all received packets. By knowing
all sender and OriginSender addresses, we know everybody who was ever reachable. Of
course this service has to be started when the AdHocServices are started to be sure that
all addresses are sniffed.

SnifferServiceImpl1

All sniffed addresses are returned as a Vector by the method getAllSniffedAddresses().

6.3 Non-Basic Ad-Hoc-Services

6.3.1 Flooding service

With this service, it is convenient to send a flooding message. The flooding service may
be used by other services.

FloodingServiceImpl1

This service uses a multihop packet, in which there is a flooding packet encapsulated.
Receiving a flooding packet, the packet is being unpacked and all waiting services with
the same type as the unpacked message will be notified.

6.3.2 Messaging service

The messaging service is thought to be used to exchange messages.

MessagingServiceSHImpl

With this service, the messages are sent in a single hop packet. This is only useful if one
knows surely that the communication partner is close enough. To return the message
to the application of the receiver, it uses the notifier service.

MessagingServiceSMHopImpl

In this service, multihop packets are being used if necessary. To check if a receiver is
reachable within one hop, the neighborhood service is used.

6.3.3 Notifier service

An application can register itself if it implements the interface AdHocApplication. To
register, the application has to pass a reference to itself to the service. The application
can also unregister passing its id. To get unique ids, the id should be generated with the
class ApplicationId. A service, e.g. the messaging service, can call the notify method to
pass the received message to the waiting applications. The advantage of this mechanism
is, that the application does not have to perform polling. The disadvantage is that the
application is now running in the Java Virtual Machine of the Notifier service. A callback
mechanism which allows the service to notify the application is not implemented.

15

NotifierServiceImpl

To keep track of who wants to be notified this implementation uses a Vector to store
the corresponding applications.

16

Chapter 7

Conclusions

We first considered different technologies for communicating between different Java Vir-
tual Machines. We implemented an environment for testing these. Remote Method
Invocation (RMI) had the best performance.

The next step was to design a framework for system wide accessible services. A main
requirement was to abstract from the communication technology we have chosen (RMI).
Therefore, we used the concept of stubs. With this framework it is now possible to change
the communication technology without rewriting neither services nor applications. An
open problem is the usage of callbacks. In our framework it is not possible that services
call methods on applications. This could be done using the same concept as we used for
method calls on services. New stubs could be introduced.

We implemented a compiler which makes it possible, to write new services without
using RMI-specific code. This makes it easy to integrate new services into the system.

The second half of the semester thesis we identified some important ad-hoc services
and implemented them. The most important basic services we implemented are a neigh-
borhood discovering service, a forwarding service and a sniffer service. Afterwards we
used these basic services for more advanced services like a flooding service, a messaging
service and a notifier service. These can be used in multihop environments.

We focussed on the design and implementation of the framework. Therefore this
took us some weeks more than planned. This was also the part of the semesterthesis we
learned the most, thanks Aaron.

17

