
Improved “GOAFR” Algorithm for Geometric Ad-Hoc Routing

December 21, 2002

Abstract

In this short paper, we present GOAFRPC, an
improvement of the GOAFR algorithm for geo-
metric ad-hoc routing. We show that GOAFRPC

is average-case more efficient, while it keeps the
asymptotical worse-case optimality of GOAFR.

1 Introduction

The geometric ad-hoc routing problem was origi-
nated from mobile ad-hoc networks. Each node in
a mobile network has a geometric location and a
transmission range—a disk centered at this node
with fixed communication radius. For simplicity,
we assume that all nodes have the same communi-
cation radii. Two nodes can communicate directly
if and only if they are in mutual transmission range,
i.e. their Euclidean distance is less than or equal to
the communication radius. The routing problem
arises if two nodes cannot communicate directly. In
this case, their messages need to be relayed through
a series of intermediate nodes such that any two
consecutive nodes can communicate directly.

Routing is performed in a distributed manner,
i.e. each intermediate node makes its own decision
and there is no centralized control in the network.
A node makes decisions based on its own local in-
formation and on the information carried by the
message. The decisions consist of the next node for
routing and the change of the information in the
message. A message only has O(1) spaces to carry
such information.

In an ad-hoc network, a node only knows about
its neighbors, the nodes with which it can commu-
nicate directly. A node has no knowledge about the
topology of other parts of the network. Specifically,
there is no traditional routing table inside a node.

For a geometric ad-hoc routing algorithm, a node

knows the geometric location of its neighbors and
of itself. Furthermore, the sender knows the geo-
metric location of the destination and stores this
information in the message for the routing.

There are various algorithms for this problem.
The simple greedy algorithm behaves well in dense
networks. But it fails for very simple configura-
tions. The Face Routing (FR) algorithm[3] is the
first one that guarantees success if the source and
the destination are connected. However, the worst-
case cost of FR is proportional to the size of the
network. The first algorithm that can compete
with the best route in the worst-case is the Adap-
tive Face Routing (AFR) algorithm[2]. Moreover,
by a lower bound argument, AFR is shown to be
asymptotically worst-case optimal. But AFR is not
average-case efficient. The Greedy Other Adaptive
Face Routing (GOAFR) algorithm[1] combines the
greedy and a variance of AFR called Other Adap-
tive Face Routing (OAFR) algorithm and achieves
both worst-case optimality and average-case effi-
ciency. For a more complete survey, see [1].

Based on the simulation results of GOAFR (see
[1]), there are several ways to further improve the
average-case performance. This paper will present
one of them. The name of the new algorithm is
GOAFRPC, where “PC” denotes “partially close”.

In Section 2, we state model and preliminaries.
Section 3 will look at the original GOAFR algo-
rithm. In Section 4, we will explain the GOAFRPC

algorithm in detail and analyze its worst-case cost.
The simulation results will be shown in Section 5
to illustrate the average-case behavior. And at last,
we conclude the results in Section 6.

2 Model and Preliminaries

Without loss of generality, we assume the commu-
nication radius is the unit distance, i.e. 1. Then, we

1

model the geometric routing problem by the Unit
Disk Graph (UDG) G = (V, E). A node u ∈ V de-
notes the node as well as the geometric location in
the network. For any two nodes u, v ∈ V , there is
an edge e = (u, v) ∈ E if and only if u and v could
communicate directly, i.e. if the Euclidean distance
between u and v is less than or equal to 1.

The routing problem is to find a path from the
source s to the destination t. The cost of a path
is the sum of the costs of its edges. There are
three measures for the cost of an edge e. They
are the hop metric (cl(e) := 1), the Euclidean met-
ric (cd(e) := |e|) and the energy metric (ce(e) :=
|e|2). Since |e| ≤ 1, we have cd(e) = O(cl(e))
and ce(e) = O(cl(e)). Moreover, under the Ω(1)
model (see below), these three metrics are equiva-
lent up to a constant factor, i.e. cd(e) = Θ(cl(e))
and ce(e) = Θ(cl(e)). Since we only consider the
Ω(1) model in GOAFRPC (this is also the model for
AFR and GOAFR), we will focus our attention on
the hop metric. Arguments for other metrics then
holds automatically.

2.1 The Ω(1) Model

The Ω(1) model makes the following assumption.
The Euclidean distance between any two nodes is
bounded from below by a constant number, i.e.
|(u, v)| ≥ d0, where 0 < d0 ≤ 1 is a constant. The
Ω(1) model features the following properties:

1. All three metrics mentioned above are equiv-
alent up to a constant factor. See Lemma 3.1
in [2] for the proof.

2. The number of vertices inside a convex region
is bounded from above by the area of the re-
gion, i.e. |V ∩ R| = O(area(R)), where R is
a convex region of any shape, e.g. a cycle, an
ellipse or a polygon. See Lemma 4.2 in [2] for
the proof.

3. The Unit Disk Graph is a sparse graph, i.e.
|E| = O(|V |) since the degree of a vertex is
bounded by a constant.

2.2 Gabriel Graphs

In general, a Unit Disk Graph is not necessarily a
planar graph, even under the Ω(1) model. However,

planarity is essential in the series of face-based rout-
ing algorithms since planar graphs feature faces. To
achieve planarity, we employ the Gabriel Graph.
For a Unit Disk Graph G = (V, E), the Gabriel
Graph built on G is GG = (V, EG), where e ∈ EG

if and only if (a) e ∈ E, and (b) the cycle with e
as diameter only contains the two endpoints of e.
The Unit-Disk Gabriel Graph features the following
properties.

1. The Gabriel Graph is a planar graph since it
is a subgraph of the Delaunay Triangulation.

2. A Unit-disk Gabriel Graph can be computed
locally. To find the adjacent edges, a node only
needs to know the geometric locations of the
nodes with distances less than or equal to 1.

3. The Gabriel Graph is connected if and only if
the original Unit Disk Graph is connected.

4. Under the Ω(1) model, the shortest path in
a Gabriel Graph is only by a constant factor
longer than in the original Unit Disk Graph.
See Lemma 4.4 in [2] for the proof.

All routing algorithms in this paper, i.e. Greedy,
OFR, OAFR, GOAFR and GOAFRPC run on the
Unit-Disk Gabriel Graph, under the Ω(1) model.

3 The GOAFR Algorithm

We will briefly review the key points of GOAFR in
this section. For a complete description, see [1].

3.1 Greedy Routing

The greedy algorithm always picks the neighbor
closest to t to be next node for routing. It can be
easily stuck at some local minimum, i.e. no neigh-
bor is closer to t than the current node.

3.2 Other Face Routing — OFR

Since GOAFR combines the Greedy algorithm and
OAFR — a variance of AFR, we will directly in-
troduce the corresponding variance of FR, called
Other Face Routing (OFR) here.

OFR utilizes the face structure of planar graphs.
The message is routed from s to t by traversing a
series of face boundaries. We denote these faces

2

by f1, f2, . . . , f`. Let si(1 ≤ i ≤ `) be the starting
node of the traversing in fi (s1 = s). At node si,
OFR chooses fi to be the face that contains the
line segment sit in the immediate environment of
si. Then the message is routed along the entire
boundary of fi. The aim is to find the best node
on the boundary, i.e. the closest node to the desti-
nation t. When finished, the message returns to si,
and we denote ti the best node on the boundary of
fi. There are two possibilities:

1. ti is si.

2. ti is not si, i.e. |tit| < |sit|.
It can be proven that for a Unit-Disk Gabriel
Graph, case 1 implies that si and t are discon-
nected, i.e. OFR guarantees to find a better node
(case 2) if t is reachable. So, if the result is case 1,
OFR simply reports “Destination Unreachable”. If
it is case 2, OFR chooses si+1 to be ti, the starting
node for the next face. OFR routes the message
along the boundary from si to si+1 and starts to
traverse the next face at si+1. From above, we can
see that OFR always reaches t if t is indeed reach-
able. The cost of OFR is O(|V |) since it visits each
edge constant number of times.

3.3 Other Adaptive Face Routing —
OAFR

The main reason for the high cost of OFR is
that the message may traverse extremely huge face
boundaries because we have no knowledge about
the correct direction that should be taken. The
Other Adaptive Face Routing (OAFR) algorithm
tackles this problem by using a bounding ellipse.

We first describe the procedure of Other Bounded
Face Routing (OBFR). We introduce a bounding
ellipse. The two foci of the bounding ellipse are s
and t. The length of its major axis is some given
constant number c. In general, OBFR is OFR that
runs on the subgraph within the bounding ellipse.
The details are as follows. At each starting node
si, OBFR determines fi in the same way as OFR,
i.e. fi is chosen to be the face that contains sit
in the immediate environment of si. When OBFR
routes the message along the boundary, it also tries
to find the best possible node. But it may not be
able to explore the entire face boundary because
of the bounding ellipse. If OBFR does not hit the

bounding ellipse, its behavior is exactly the same
as for OFR.

Let us consider the case that OBFR hits the
bounding ellipse. When this happens for the first
time, OBFR goes back to si and continues to ex-
plore the boundary in the other direction until it
hits the bounding ellipse again. Note that it is im-
possible for OBFR to hit the bounding ellipse only
once. As soon as OBFR hits the bounding ellipse
for the second time, the best possible node by using
OBFR has been found. The part of the boundary
visited by OBFR is a chain. We also denote ti the
best node on this chain. There are again two pos-
sibilities.

1. ti is si.

2. ti is not si.

But this time, case 1 only implies that t is unreach-
able for the subgraph within the bounding ellipse.
Is it because the bounding ellipse is too small, or
because t is unreachable at all? We do not know.
That is where OAFR comes in. We summarize the
behavior of OBFR as follows.

1. The bounding ellipse is not hit and no better
node is found: report “Destination Unreach-
able”.

2. The bounding ellipse is hit twice and no better
node is found: report “Destination Unreach-
able inside the Current Bounding Ellipse”.

3. Otherwise: go to the best node ti and start to
traverse the next face.

Now assume we know the cost c∗ of an optimal
route. We let the major axis of the bounding el-
lipse be c = c∗, and run OBFR. Since the cost of
any route that contains nodes outside the bound-
ing ellipse is greater than c∗, the optimal route(s)
must be completely inside the bounding ellipse. So,
OBFR guarantees to reach the destination along a
route completely inside the bounding ellipse. From
Property 2 of the Ω(1) model, the total number
of nodes inside the bounding ellipse is O((c∗)2).
Hence, the cost of the route found by OBFR is
O((c∗)2).

The problem is that we do not know c∗. OAFR
first guesses the optimal cost, sets c = 2|st| and
starts OBFR with this c value. If OBFR re-
ports “Destination Unreachable inside the Current

3

Bounding Ellipse”, OAFR doubles the value of c
and continues OBFR from the face where it is de-
tained. Since the value of c increases exponentially,
the total cost of OAFR is still bounded by O((c∗)2).

3.4 GOAFR — Greedy+OAFR

GOAFR combines the Greedy Routing and OAFR,
such that it is both average-case efficient and worst-
case optimal. In general GOAFR does Greedy
Routing as long as possible and only uses OAFR
to tackle the local minima. The details of GOAFR
are as follows. GOAFR also has a bounding ellipse.
Initially, the length of the major axis is c = 2|st|.
The algorithm starts by Greedy Routing inside the
bounding ellipse. There are two cases to interrupt
a Greedy Phase.

1. The bounding ellipse is too small, i.e. the cur-
rent node does have neighbors closer to t, but
all such neighbors lie outside the bounding el-
lipse.

2. The current node is indeed a local minimum,
i.e. it has no neighbor closer to t in the entire
graph.

In the former case, we double the length of c, and
continue the Greedy Routing inside the larger el-
lipse. In the latter case, we have to use OAFR. An
OAFR Phase of GOAFR only traverses one face
boundary to get around the local minimum. After
that, GOAFR returns to the Greedy Routing im-
mediately. The details of an OAFR Phase is the
same as the original OAFR algorithm. It tries to
find the best possible node inside the bounding el-
lipse and doubles the major axis when necessary.
Note that the bounding ellipse never shrinks after
GOAFR returns to the Greedy Routing.

The cost of all OAFR Phases is dominated by
the original OAFR algorithm, i.e. O((c∗)2). So,
we only need to analyze the Greedy Phases. Draw
a cycle centered at t with radius |st|. All nodes
visited during Greedy Phases are completely inside
this cycle. From Property 2 of the Ω(1) model,
the number of nodes in this cycle is O((|st|)2) =
O((c∗)2). So, the cost of all Greedy Phases is
O((c∗)2) since Greedy Routing visits each node at
most once. The total cost of GOAFR then follows.

4 The GOAFRPC Algorithm

We are now ready to improve the GOAFR algo-
rithm. GOAFR is average-case efficient because it
makes use of the greedy strategy. The algorithm
only uses OAFR when it has to. Otherwise, it al-
ways use Greedy Routing. However, GOAFR ex-
plores the entire face boundary in an OAFR Phase.
This is the starting point for our improvement. The
idea is not to look at the entire face boundary in an
OAFR Phase.

At the end of [1], another algorithm has already
been proposed for the same purpose. The algo-
rithm was called GOAFRFC where “FC” denotes
“First Close”. GOAFRFC falls back to the Greedy
Routing immediately when meeting the first closer
node to t in an OAFR Phase. The simulation re-
sults have shown evident improvement in average-
case over the original GOAFR algorithm. But
GOAFRFC loses the asymptotical optimality in the
worst-case.

To understand why this happens, we need to look
at the worst-case arguments for GOAFR again. It
is easy to see that the cost of all Greedy Phases re-
mains unchanged in GOAFRFC. Let c1, c2, . . . , ch

denote the lengths of the major axes of the bound-
ing ellipses from the beginning to the end, i.e.

ci = 2i|st|, 1 ≤ i ≤ h (1)

and

ch ≥ c∗ (2)
ch−1 < c∗ (3)

We divide the whole routing process into different
periods according to the size of the bounding el-
lipse. Period i is the time interval when the routing
is bounded by the ellipse of size ci. The following
lemma shows a sufficient condition for the worst-
case optimality.

Lemma 1 The cost of the algorithm is O((c∗)2), if
in each period, the cost of all OAFR Phases on any
face f is O(|f |), where |f | is the number of edges
of f .

Proof : Since the cost of all Greedy Phases is
O((c∗)2), we only need to show the cost of all
OAFR Phases is also O((c∗)2).

Consider period i. During this period, the major
axis of the bounding ellipse is ci. From Property

4

2 of the Ω(1) model, the number of nodes inside
the bounding ellipse is O(c2

i). Since G is a planar
graph, the number of edges inside the bounding
ellipse is also O(c2

i). So, the total cost in this period
is ∑

f

(cost on f) =
∑

f

|f | = O(c2
i)

Sum over all periods, we obtain the cost of all
OAFR Phases

h∑

i=1

c2
i = O(c2

h)

From (1)–(3), we have c2
h ≤ (2c∗)2 = O((c∗)2). The

lemma follows. 2

The OAFR Phases of GOAFR satisfies Lemma 1
since the original OAFR algorithm visits a face at
most once when the bounding ellipse is fixed.

How about GOAFRFC? Fig. 8 in [1] showes a
counterexample; GOAFRFC can visit a face many
times in one period.

4.1 The GOAFRPC Algorithm

Like GOAFRFC, GOAFRPC is the same as GOAFR
except for an additional criterion for OAFR Phases
to return faster. The details are as follows. First,
we introduce a constant r, the exit-ratio. Let si de-
note the local minimum where a new OAFR Phase
starts. We maintain two variables p and q where

• p is the number of nodes closer to t than si in
the current OAFR Phase.

• q is the he number of nodes farther from t than
si in the current OAFR Phase.

Initially, when the message is at si, p = q = 0.
When a node v occurs, if v has not been visited
since the current OAFR Phase starts from si, we
do the following.

• Increase p by 1, if v is closer to t than si

• Increase q by 1, if v is farther from t than si

If p ≥ rq at some node — r is the exit-ratio
— the algorithm returns to the Greedy Routing.
GOAFRPC also memorizes the best node, i.e. the
closest node to t during an OAFR Phase. When the

algorithm is about to return to the Greedy Rout-
ing, it first goes back to this best node and then
returns.

We call the new algorithm GOAFRPC. “PC” or
“Partially Closer” means that it returns to Greedy
when a constant portion of the nodes are closer. It
is easy to see that GOAFRPC is fully distributed
and only needs O(1) spaces in the message.

4.2 Worst-case Analysis

As in the GOAFRFC algorithm, GOAFRPC is pos-
sible to visit a face many times in one period. How-
ever, the following lemma shows that the cost on
any face f is still O(|f |) in each period.

Lemma 2 In one period, the cost of all OAFR
Phases on any face f is (1 + 1/r)|f |, where r is
the exit-ratio.

Proof : Consider the cost in one period. Assume
there are k OAFR Phases is on f .

Let s1, s2, . . . , sk denote the starting nodes of
each time.

For the ith time, (1 ≤ i ≤ k), we define

Ti := {v : v is visited in the ith time}
Pi := {v ∈ Ti : |vt| < |sit|}
Qi := {v ∈ Ti : |vt| > |sit|}
Ri := {v ∈ Ti : v is visited before}
Ni := {v ∈ Ti : v is not visited before}

Clearly,

|Ti| = |Pi|+ |Qi|+ 1 = |Ri|+ |Ni|. (4)

Since GOAFRPC always chooses the closest node
to t when switching to a Greedy Phase and the
Greedy Phase can only get closer, we have

|sit| < |vt| ∀v ∈
⋂

j<i

Tj

So, all re-visited nodes are farther from t than si,
and all nodes closer to t have not been visited be-
fore, i.e.

Ri ⊆ Qi

Pi ⊆ Ni

5

Hence,

|Ri| ≤ |Qi| (5)
|Pi| ≤ |Ni| (6)

From the algorithm, we have

|Pi| ≥ r|Qi| (7)

Put (5)–(7) together, we obtain

|Ri| ≤ |Qi| ≤ |Pi|
r
≤ |Ni|

r
(8)

The intuitive meaning of (8) is that the re-visited
nodes cannot be too many more than the new nodes
in each phase. Sum over i, we obtain the total cost
on this face

k∑

i=1

|Ti| =
k∑

i=1

(|Ri|+ |Ni|)

≤
k∑

i=1

(
|Ni|
r

+ |Ni|)

= (1 +
1
r
)

k∑

i=1

|Ni|

≤ (1 +
1
r
)|f |

The last equation follows from the fact
∑k

i=1 |Ni| ≤
|f |. 2

Combine Lemma 1 and Lemma 2, we obtain the
following theorem.

Theorem 1 Under the Ω(1) model, the total cost
of GOAFRPC is O((c∗)2) in the worst-case, where
c∗ is cost of an optimal route. This is asymptoti-
cally optimal.

5 Simulations

6 Summary

References

[1] Worst-Case Optimal and Average-Case Ef-
ficient Geometric Ad-Hoc Routing. Unpub-
lished.

[2] F. Kuhn, R. Wattenhofer and A. Zollinger.
Asymptotically Optimal Geometric Mobile Ad-
Hoc Routing. In Proc. of the 6th International
Workshop on Discrete Algorithms and Meth-
ods for Mobile Computing and Communica-
tions (DIALM), Atlanta, Georgia, September
2002.

[3] E. Kranakis H. Singh, and J. Urrutia. Com-
pass Routing on Geometric Networks. In Proc.
of the 11th Canadian Conference on Computa-
tional Geometry, Vancouver, Canada, August
1999.

6

