
 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Daniela Brauckhoff

Patterns for Service Deployment
in Programmable Networks

Diploma Thesis DA-2003.03
November 2003 to August 2004

Supervisor: Matthias Bossardt
Co-Supervisor: Lukas Ruf

Professor: Bernhard Plattner

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Abstract

New network services such as firewalls, video scaling, and load balancing have been
introduced in the last years. These services require packet processing functionality for
filtering, forwarding, or transforming packets to be placed within the network. Programmable
networks offer this functionality in a very flexible way. In addition to the packet forwarding
mechanisms provided in conventional networks, programmable networks enable application-
specific packet handling. Deploying new services in programmable networks, however, poses
many challenges. Service logic has to be installed on multiple routers distributed all over
the network. Moreover, routers that are suitable to host a service must be identified. Manual
deployment of distributed services is a time consuming and error-prone process. Thus, there
is a clear need for automation.

In this work we present a service deployment framework that automates the identifica-
tion of suitable nodes, and initiates the installation of service logic on a set of selected
nodes. We have implemented a novel pattern-based approach that allows tailoring of resource
discovery strategies to service-specific needs. Moreover, network resources are saved by
exclusively gathering information relevant to the deployment of the service in question. We
define a generic format for specifying the information that is to be gathered from candidate
nodes. To evaluate the utility and performance of our implementation, we conducted system
tests with an example set of deployment patterns in a local testbed, and in the large-scale
PlanetLab test environment. We deployed the ASD framework on all available PlanetLab
nodes, and successfully used the implemented example patterns to identify a node that is
suitable to deploy our example tunnel service. To optimize the performance of the ASD
framework considering resource discovery latency and traffic, service-specific patterns must
be developed that gather relevant information in a way that is suited to the network condi-
tions, e.g. network size and connectivity. This implementation provides the fundamentals for
developing and testing service-specific patterns.

i

Contents

1 Introduction 1
1.1 Service Deployment Challenges . 1
1.2 Claims . 2
1.3 Outline of the Thesis . 2

2 Related Work 4
2.1 Network-Level Service Deployment . 4
2.2 Resource Discovery . 5
2.3 Further Related Concepts . 6
2.4 Positioning of our Work . 6

3 Design Considerations 8
3.1 Scenario and Design Requirements . 8
3.2 Target Service Overview . 10

3.2.1 Overlay Networks . 10
3.2.2 Packet Filtering . 11
3.2.3 Packet Forwarding . 12
3.2.4 Payload Data Transformation . 12

3.3 Service Deployment Patterns . 12
3.3.1 General Remarks . 13
3.3.2 Navigation Patterns . 13
3.3.3 Aggregation Patterns . 14
3.3.4 Capability Functions . 15

3.4 Architecture Overview . 15

4 Service Description 17
4.1 Conceptual Overview . 17
4.2 Generic Service Description Template . 18
4.3 Service-specific Descriptor Template . 20
4.4 Service Description Language . 21

5 Automated Service Deployment Protocol 22
5.1 Conceptual Overview . 22
5.2 ASD Protocol Messages . 24

5.2.1 Message Format . 24

ii

CONTENTS iii

5.2.2 Message Types . 25
5.3 Interfaces . 28

5.3.1 User Interface . 28
5.3.2 OTG Protocol Interface . 29
5.3.3 Node-level Deployment Interface 29

6 Implementation 30
6.1 Overview . 30
6.2 ASD Network Management Station . 31

6.2.1 ASDUserInterface . 31
6.2.2 ASDManager . 32
6.2.3 MngTimeoutQueue . 35

6.3 ASD Daemon . 36
6.3.1 ASDController . 37
6.3.2 SDParser . 42
6.3.3 DmnTimeoutQueue . 42
6.3.4 OverlayGeneration . 43
6.3.5 NodeLevelDeployment . 44
6.3.6 NavigationPattern . 44
6.3.7 AggregationPattern . 46
6.3.8 Capability Function . 47

6.4 ASD Messages . 47
6.5 ASD Exceptions . 49
6.6 Support Classes . 50
6.7 Example Patterns . 50

6.7.1 ConstrainedRemoteEcho . 51
6.7.2 FindBestInform . 54
6.7.3 MaxLoadAvg5minNetwork . 54

7 Evaluation 56
7.1 ASD Framework Utility . 56
7.2 Functional Resource Discovery Tests . 57

7.2.1 General Functionality . 57
7.2.2 Node Failure Tolerance . 58
7.2.3 Timeout Handling . 60
7.2.4 Fully Connected Graphs . 61

7.3 Resource Discovery Performance Tests . 62
7.3.1 PlanetLab Network Analysis . 62
7.3.2 Test Setup . 65
7.3.3 Test Results and Evaluation . 66

7.4 Service Deployment Tests . 69
7.5 Comparison with related Approaches . 72

CONTENTS iv

8 Conclusion 75
8.1 Review of Claims . 75
8.2 Critical Assessment . 76
8.3 Future Work . 76

A Task Description 78

B Generic Description Template 83

C Example Configuration Files 86

D ASD Directory Structure 88

Acknowledgments

I would like to thank Prof. Adam Wolisz, head of the Telecommunication Networks Group
at the Technical University of Berlin, and Prof. Bernhard Plattner, head of the Computer
Engineering and Networks Laboratory at the Swiss Federal Institute of Technology Zürich,
for rendering this thesis possible.

I am also particularly grateful to Matthias Bossardt, my supervisor, who always took
the time to listen to my concerns and questions. Our weekly discussions proved to be
inspiring, constructive, and problem-solving.

Lukas Ruf, my co-supervisor, and the Service Group members helped me through the
course of this thesis, providing the infrastructure and additional support.

I would also like to thank my former supervisor at the Technical University of Berlin,
Morten Schläger, for teaching me the lesson that the presentation of your work is as important
as the work itself.

v

Chapter 1

Introduction

1.1 Service Deployment Challenges

In the last years numerous distributed network services such as firewalls, video scaling,
and load balancing have been proposed by the research community. These services require
the installation of service logic on multiple routers at specific locations, for instance on
bottleneck links, within the network. In addition to these topological requirements, services
require certain resources such as bandwidth, CPU power, or memory space to be available
on routers that host the services. Lastly, routers must provide the functionality to install
and run the service logic. The complexity of deployment for these services challenges
conventional service deployment mechanisms. Manual deployment of distributed services
is time consuming and error-prone. The only feasible solution is to automate the service
deployment process.

Service deployment, manual or automatic, involves two successive phases, the network-level
and the node-level deployment. At the network level, nodes that are suitable to deploy
a particular service have to be identified, then a subset of all suitable nodes has to be
selected, and finally the node-level deployment has to be initiated on the selected nodes.
Node-level deployment includes the installation of service logic on the selected nodes, and
service-specific configuration of these nodes.

This thesis concentrates on network-level functionality. To identify a set of suitable
nodes, node status data for all candidate nodes has to be evaluated. Most of the existing
approaches to network-level service deployment focus on continuous distribution of node
status data, which is evaluated at deployment time. However, for networks that potentially
support a broad range of services, continuous distribution of all relevant node status data
is inefficient or even impossible. Moreover, for many services the number of nodes to be
queried is restricted at deployment time. An alternative approach more suited for the given
scenario is on-demand service deployment. On-demand refers to the fact that all service
deployment steps are executed at deployment time.

1

Claims 2

1.2 Claims

In general terms, we implement and validate an automatic, on-demand service deployment
framework targeting the network-level. This framework provides an interface to node-level
deployment protocols. Hence, it can be integrated with existing approaches to service
deployment that target the node level.

Our approach proposes a secure, flexible, and modular deployment protocol that is
based on exchangeable patterns. This enables tailoring of the resource discovery mechanisms
to the topological requirements of a particular service. Moreover, its extensibility allows the
protocol to be adapted to upcoming services.

We introduce a generic format for specifying service deployment requests. This generic
format includes service requirements related to resource discovery, as well as installation
and configuration specific requirements. We claim that it supports all network-level service
deployment steps, and thus enables automation of the whole service deployment process.

1.3 Outline of the Thesis

In Chapter 2, related research activities are explored. We examine approaches that target
network-level service deployment, as well as research activities addressing related areas
such as resource discovery, overlay networks, and distributed management. Furthermore, we
position our work in the context of related research activities.

Chapter 3 focuses on design decisions made during the development process. Pro-
ceeding on a target scenario, we define the design requirements for the Automated Service
Deployment (ASD) framework. Furthermore, we analyze target services of the framework,
and introduce the concept of patterns for service deployment. This chapter concludes with an
overview of the architecture derived from the design requirements.

Our approach to service description is introduced in Chapter 4. We present the generic
service description template as a general format for the definition of service deployment
requirements. Moreover, we favor a layered approach to service description that allows for a
separation of static and dynamic service deployment requirements. We illustrate our idea of
service description with an example.

In Chapter 5 the ASD protocol specification is presented. We address protocol-specific
design requirements such as security, reliability, and modularity. The defined ASD message
types are described in detail. Moreover, functionality provided by the user interface, and
interfaces to other protocols such as the Overlay Topology Generation and the Node-level
Deployment protocol are specified.

Chapter 6 describes our implementation of the ASD framework in detail. We present
the implementation of the ASD management station and the ASD daemon that provide

Outline of the Thesis 3

the core ASD protocol functionality. Moreover, the example patterns, which we have
implemented, are described.

In Chapter 7 we present a comprehensive evaluation of our work. The utility of the
ASD framework is evaluated considering its support for the usage and development of dif-
ferent service-specific patterns. Furthermore, functional and performance tests are described,
and results are evaluated. The tests include the deployment of an example service, as well
as resource discovery in a large-scale research network. Finally, the ASD framework is
compared with related approaches.

The contributions of this thesis are summarized in Chapter 8. Moreover, our work is
analyzed from a critical viewpoint to identify open problems and potential tasks for further
improvement. The thesis is concluded with a discussion of future work.

Chapter 2

Related Work

In this chapter we present related research activities. Since our work targets automated service
deployment at the network level, competing approaches to service deployment concentrating
on the identification of nodes able to run service components will be analyzed. Other ap-
proaches concerned with identifying nodes matching certain requirements, not necessarily in
a context of service deployment, are summarized in the section Resource Discovery. Further
related areas that contribute to service deployment in a broader sense are Overlay Networks
and Distributed Network Management. We conclude this chapter by positioning our work in
the field of research activities.

2.1 Network-Level Service Deployment

The Hierarchical Iterative Gather-Compute-Scatter (HIGCS) algorithm [6] is an approach
to automated network-level service deployment addressing programmable networks. An
hierarchical overlay is constructed in order to aggregate information (e.g. node capabilities)
collected from nodes. Aggregation results are distributed via signaling messages within the
network. However, the optimization of these hierarchies for service deployment is not further
specified. The main contribution of this approach is the introduction of service categories
for deployment strategies. Service deployment for these categories was implemented in a
simulation environment. Furthermore, XML is proposed as the specification language for
service requirements, but the actual evaluation process is not described.

Our work owes much of its design philosophy to Pattern-based Service Deployment
[2] which uses a service-specific deployment protocol that is constructed from reusable
protocol building blocks, namely navigation patterns and aggregators. Whereas navigation
patterns describe the flow of information between nodes, aggregators determine the infor-
mation to be collected from nodes and the algorithms used to summarize this information.
Information is gathered on-demand to support a broad range of services. Navigation patterns
and aggregators tailored to certain service categories have been implemented and simulated.
This thesis will propose a framework that enables the usage of different navigation patterns
and aggregators. Moreover, the simulated patterns will be extended with a failure handling
mechanism and serve as test patterns for the framework.

4

Resource Discovery 5

In [3] a service framework featuring Self-configuring active services is presented. It
provides an active network control software (ANCS) that accepts demands from applications
using a network programming interface. Discovery of available processing resources is in
fact realized using the OSPF approach described in the next section. A signaling protocol
is then used to set up the service by deploying code on the selected nodes. Active pipes are
proposed as a network programming interface that allows the specification of communication
and processing requirements. However, the interface distinguishs only modules that are to be
installed exactly once within the network, and modules that are to be installed on all matching
nodes. Moreover, installation conditions must be specified for each module separately, since
node groups are not supported.

2.2 Resource Discovery

Resource Discovery is concerned with locating an appropriate subset of a system to host a
service, computation, or experiment. Approaches described in this section do not provide
service deployment functionality themselves, but could be used along with an independent
service deployment tool.

SWORD [7] proposes a scalable resource discovery service especially targeting large-
scale infrastructures. It supports an expressive query language that allows users to specify the
ranges of resource quantities their application needs. When more nodes than needed are avail-
able, candidate nodes are filtered. Reporting nodes periodically send measurement reports for
a predefined set of single-node attributes to distributed SWORD server nodes handling user
queries. Additional attributes must be distributed to all reporting nodes before they can be
used. After all relevant single-node attributes have been retrieved, inter-node measurements
for the nodes meeting the single-node constraints are obtained. The SWORD server combines
single- and inter-node measurement results. Finally, the optimizer maps the selected nodes
to the node groups specified in the query. SWORD implements three different patterns for
distributing query requests. Furthermore, those patterns are not aware of any service topolo-
gies. Contrary to our requirements, SWORD does not provide any security or privacy features.

In Dissemination of Application Specific Information [8] an approach to resource dis-
covery using OSPF is described. The OSPF routing protocol was extended to enable
external applications to distribute their own attributes using the OSPF protocol. Each node
periodically sends information about its available resources to adjacent neighbors using
the OSPF protocol. Received information is stored in the node’s network information
base. This approach is similar to the one previously described as it also uses distributed
databases to store information about individual nodes. Hence, it shows the same drawback:
Information about nodes is gathered continuously. Moreover, the proposed approach does
not provide any flexibility regarding the distribution of information since it makes only use
of the flooding-based dissemination protocol of OSPF. And in comparison with SWORD, the
specification and distribution of requests (here between OSPF routers) is not as sophisticated.

Further Related Concepts 6

2.3 Further Related Concepts

Further related concepts can be found in the area of distributed network management, as well
as in connection with overlay networks. Research activities that are not directly concerned
with service deployment or resource discovery are presented in this section.

Sophia [11] proposes a distributed system, a so-called shared Information Plane, for
managing and controlling complex, large-scale networks. It uses a declarative logic language
(Prolog) to express statements about the actual and desired system state. Sensors running
on nodes throughout the network collect data about aspects of the system. Statements are
evaluated in a distributed programming environment, and a set of actuators performs actions
on evaluation results. The core implementation can be extended with loadable user modules
adding new functionality. However, Sophia addresses network monitoring and management
and does not support a comprehensive resource query language.

The X-Bone [9] is a system for rapid, automated deployment and management of over-
lay networks. Furthermore, a framework for application deployment within virtual networks
using the X-Bone was presented in [10]. While traditionally virtual networks were used to
support network-level services, such as multicast and QoS, the developed framework enables
the deployment of arbitrary applications. However, a node selection or resource discovery
process is not supported by the current implementation.

2.4 Positioning of our Work

This thesis proposes a network-level service deployment framework. We specifically address
automated service deployment in overlay networks. Our approach can be characterized as
distributed, out-of-band, and on-demand. One of the main contributions is the introduction of
a service description language which allows the specification of service-specific deployment
requests.

Based on previous work that explored service categories, and navigation patterns and
aggregators for service deployment, we implement an extensible ASD framework archi-
tecture supporting service-specific deployment patterns. Extensibility is addressed by
providing (i) clearly defined interfaces between the patterns and the ASD framework, and
(ii) a mechanism for loading locally unavailable patterns from a pattern server at run-time.
Furthermore, example patterns will be implemented for testing purposes.

The ASD protocol provides end-to-end reliability and security using TCP on the trans-
port layer combined with TLS authentication and encryption. Moreover, our approach will
provide a node-level interface that enables integration with existing node-level deployment
tools such as Chameleon [4].

Resulting from the analysis of related research efforts, we reason that no other ap-
proach features all of the described characteristics. In particular, this thesis appears to be the

Positioning of our Work 7

first attempt to introduce service description on the network-level.

Chapter 3

Design Considerations

This chapter focuses on the design decisions made during the development process. We de-
fine a target scenario that helps us gathering design requirements for the service deployment
framework. Furthermore, we analyze target services for the framework and their service re-
quirements. This will influence the design of the service descriptor. Finally, we investigate
into navigation and aggregation patterns, and capability functions, since the ASD framework
must support all kinds of patterns.

3.1 Scenario and Design Requirements

In our target scenario a network manager wants to deploy a virtual private network (VPN)
in three geographical separated networks. Deployment of a VPN involves the following
steps: (i) specification of node requirements for hosting the VPN, (ii) identification of nodes
matching these requirements in each network, and (iii) configuration of the selected nodes to
set up the VPN. The goal of this thesis is to provide a framework that automates the process
of service deployment as much as possible.

The specification of node requirements must be done by the network manager. But in
order to automate the remaining deployment steps, the ASD framework must provide a
service description language that defines the form in which node requirements are to be
specified. Also, assuming one of the three networks hosts much more nodes than the others,
the network manager might want to select a node with higher CPU power to deploy the
VPN in this network. Hence, the service description must support node groups allowing the
specification of multiple requirement sets.

In order to identify a set of suitable nodes, we need to obtain information about the re-
quested characteristics from (eventually) all nodes within the three networks. Our approach
favors on-demand collection of node status data. We argue that distributing node status data
continously is less efficient for the given scenario for three main reasons: First, services such
as a VPN are not to be deployed that frequently. Thus, the frequency of network state changes
is likely to be higher than the rate of deployment requests. Second, the ASD framework is
tailored to support a broad range of services resulting in a huge amount of node status data

8

Scenario and Design Requirements 9

to be distributed. Third, the set of nodes from which node status data is to be collected can
be restricted at deployment time. For instance, to deploy the VPN service only nodes within
one of the three target networks are queried. Moreover, we prefer distributed evaluation to a
central approach in order to avoid the concentration of status data messages and computations
on a single node.

Resource discovery tasks to be performed by the ASD protocol can be inferred from
the design requirements. For the given scenario these are (i) distribution of service requests
in the three target networks, (ii) evaluation of the specified VPN node capabilites, and (iii)
aggregation of the gathered information. We reason that modularity achieved by separating
these tasks from each other guarantees flexibility and extensibility of the framework. Using
different navigation patterns the distribution of service requests can be optimized for the
service to be deployed, and navigation patterns can be tailored to user demands. For instance
one pattern is used to find a suitable node to deploy the VPN service, and a different pattern is
used to find the best node out of all suitable nodes. Also, in each case a different aggregation
pattern is used. Capability functions specify how node requirements are mapped to the actual
capabilities. Hence, the use of different capability functions enables an infinite set of node
requirements.

Since forwarding mechanisms are used to distribute service requests within the target
networks we reason that the propagation of ASD messages must be reliable. Moreover, we
want to address how much of its control over the network the network manager is willing to
pass to the ASD framework. We argue that the network manager wants to keep control over
the final selection of nodes. Thus, the framework must present resource discovery results to
the network manager before node-level deployment is initiated. We believe security is a key
factor for the acceptance of automated service deployment.

Network Manager Service Developer

ASD framework

Provide patterns

Specify service req.

Specify user req.

Select patterns

Initiate resource disc.

Select nodes

Initiate deployment

Verify results

Figure 3.1: Use case diagram modeling the context of the ASD framework

The use case diagram in Figure 3.1 illustrates the interaction of the network manager with

Target Service Overview 10

the ASD framework. It also introduces the service developer entity which provides descrip-
tion templates, deployment patterns, and the service components for one or more services.
Description templates specify the requirement attributes necessary to deploy a service. The
VPN service descriptor for instance would specify a target network attribute. Static service
requirements can be included in the template as well. This further facilitates the interaction of
the network manager with the ASD framework.

Requirement Specification

Distributed evaluation general
On-demand distribution general
Extensibility general
Service description language description-specific
Descriptor templates description-specific
Node groups description-specific
Modularity protocol-specific
Security protocol-specific
Reliability protocol-specific

Table 3.1: Design requirements for the ASD framework

Finally, requirements to be met by the design of the service deployment framework are sum-
marized in Table 3.1. They define the characteristics of the final system, and serve as a guide-
line for the conceptual work.

3.2 Target Service Overview

The ASD framework is supposed to support a broad range of services. In this section we
analyze target services in order to identify their service requirements. One group of target
services are overlay networks, including previously discussed virtual private networks. Other
target services provide more packet-based services, such as filtering, forwarding, and trans-
formation.

3.2.1 Overlay Networks

Tunnels are the most basic form of overlay networks. They provide a virtual point-to-point
connection between two nodes in different networks. To set up a tunnel automatically, the
network manager must assign a name to identify the tunnel, specify a tunnel mode (e.g.
IPv6-in-IPv4), and its endpoints. Additionally, QoS parameters, such as maximum number
of hops between tunnel endpoints, and a minimum bandwidth for the tunnel may be defined.
According to the given parameters, tunnel endpoints will be selected to deploy the tunnel
service upon them.

Virtual Private Networks provide secure connections between multiple networks by

Target Service Overview 11

combining tunneling mechanisms and IP security. The network manager must specify the
security mode, a name for the VPN, and the members participating in the VPN. Furthermore,
the service user may determine QoS constraints, such as CPU power and memory for security
functions on VPN nodes, or bandwidth requirements. This service has to be deployed on
each endpoint of the VPN.

In peer-to-peer networks a different approach is used. Autonomous peers located at
the edge of the Internet form application-specific virtual networks. Typical applications of
p2p networks are file sharing (i.e. Napster, Gnutella), and distributed storage or computation.
In [12] the authors argue that the lack of centralized control in p2p networks results in a
tremendous amount of signaling traffic between peers. Furthermore, they describe a service
providing effective management for p2p networks through the use of active networking
technology at the application layer. Hence, management of p2p networks is also a potential
target service for automated service deployment.

3.2.2 Packet Filtering

Active Reliable Multicast (ARM) is a service that combines packet filtering with forwarding
mechanisms. In the upstream direction, negative acknowledgments (NACKs) from multiple
users are filtered to suppress NACK implosion. In the downstream direction, routers are able
to perform retransmissions of previously cached multicast data [13]. Topology-wise this
service is best to be deployed on fork nodes of the multicast tree.

Concast is a programmable network layer service, providing information fusion in the
upstream direction, e.g. to collect feedback from multicast applications [14]. Concast extends
the filtering functionality, as provided in ARM to control NACK implosion, by allowing
the receiver to specify the mapping from sent datagrams to delivered datagrams. Hence,
topological requirements are identical for both services.

Active Monitoring is another similar service. By filtering the collected data before sending
it to the central management station, transmission overhead is reduced. Nodes running this
service must be able to collect data and filter out irrelevant information, before sending a
compact summary to the monitoring station. Again, the same topological requirements as for
ARM apply.

Firewalls provide security for networks, filtering data packets and streams that leave
and enter the network. For large networks, several firewalls must be set up and configured.
Firewalls are best to be deployed at the network border. Required memory for caching data
streams is proportional to the traffic handled by the firewall. Hence, the network manager
might want to select nodes providing a maximum of free memory to deploy the firewall.

Application Security Gateways provide another type of security service. They handle
all incoming and outgoing traffic for a single application (e.g. SSH), providing security for
its users. This service has to be deployed on exactly one secure node within the network.

Service Deployment Patterns 12

Moreover, this node must provide sufficient bandwidth to handle all user traffic.

Video Scaling services improve the quality of video distribution by scaling the data
rate of video streams as congestion occurs in the network. Video Scaling is realized by either
decreasing the image resolution or modifying the frame rate. In [15] an approach to video
scaling based on WaveVideo encoding is presented. Each indivdual packet of the video
stream is labeled with a tag. This allows for selectively dropping packets with high-frequency
coefficients. Thus, the image quality can be reduced by eliminating high-frequency parts of
the video stream. Smart locations to deploy the WaveVideo Scaling service are nodes where
congestion is likely to occur, for instance bottleneck links in a path or multicast tree. In [16]
a service similar to WaveVideo Scaling is proposed. Under congestion an Intelligent Discard
mechanism is used to reduce the bandwidth in a way tailored to application requirements.
More specifically, an active congestion mechanism for handling MPEG is presented.

3.2.3 Packet Forwarding

Web caching services reduce network traffic through caching of web contents on intermediate
network nodes. A typical application where web caching can be advantageous is the
provision of stock quotes. Client requests are intercepted at intermediate nodes to check if
the desired quotes are available in the local cache. Otherwise, the request is forwarded to
the server. As this service involves caching, available memory becomes a service requirement.

Load balancing services distribute accesses from clients to popular servers among geo-
graphically dispersed replication servers. In [18] an approach to load balancing using Active
Anycast is presented. Clients send their requests to a group of servers, identified by anycast
addresses. A load balancing node receiving this request, selects a suitable server from the
viewpoint of load balancing and changes the anycast address to the unicast of the selected
server. Load information can be piggybacked with the data exchanged between clients and
servers and collected when passing load balancing nodes.

3.2.4 Payload Data Transformation

Real-time Multimedia Transcoding [19] is an application layer service allowing different sys-
tems to access the same data, which is converted into the appropriate format within the net-
work. The best location to deploy this service depends on network status information, such as
bandwidth, delay, and free resources.

3.3 Service Deployment Patterns

Modularity of the deployment protocol is one of our design requirements. Therefore, the
network-level service deployment protocol is constructed from reusable components, namely
navigation patterns, aggregation patterns, and capability functions. As our objective is to
support the exchangeability of these patterns, we have to explore similarities and differences
between the various patterns of each group.

Service Deployment Patterns 13

3.3.1 General Remarks

The concept of navigation patterns and aggregators was first introduced in [20]. Patterns are
distributed programs running in parallel on nodes within the network. Navigation patterns de-
scribe the flow of control among these nodes. Whereas operations, to be performed on visited
network nodes, are specified by aggregators. The use of navigation patterns and aggregators
for service deployment was studied in previous work [2]. In this thesis a further separation
of the aggregator functionality is introduced. In our approach the aggregation pattern is re-
sponsible for aggregating information gathered in one node. Mapping of node requirements
against actual node capabilities, however, is taken over by the capability function.

3.3.2 Navigation Patterns

As we stated earlier, one reason for making patterns exchangeable is the usage of service-
specific navigation patterns. To classify services according to their topology requirements
has the advantage that services of the same group can share navigation patterns. We extend
the basic topology categories defined in [6] with a new category, named tree-based topology.

Path-based topologies require deployment of service functionality on nodes on a path
between source and destination. One subgroup are continuous path-based topologies. They
require the same functionality to be deployed on each node on the path. This topology is
for instance used to deploy the unicast WaveVideo service. In contrast, sparse path-based
topologies require certain (possibly different) functionality components to be present on a set
of nodes on the path. An example for this category is Transcoding between end users, where
service functionality is deployed on one node on the path.
Fence-based topologies require service deployment on nodes along a path orthogonal to the
data path. This category applies to services acting on traffic crossing network borders such as
firewalls.
Node-based topologies require functionality to be deployed on single nodes. Services
that fall into this category are Application Security Gateways, overlay networks, and Web
Caching.
Tree-based topologies, finally, require service components to be deployed on nodes forming
a tree structure. Services belonging to this category are Active Reliable Multicast, Concast
and Monitoring.

In general, most of the previously identified topology categories are best served with a
navigation pattern that first explores the network to find suitable nodes, then summarizes the
collected information at a central point, and finally informs the selected nodes to carry out
the node-level deployment. Only continuous path-based topologies are better served with
a pattern applying a sequential summarization and selection of nodes as it follows the path
from the source to the destination. In order to identify the input parameters for navigation
patterns, we examine two example patterns as described in [2].

The scout navigation pattern visits a destination node, and returns back to its origin af-
ter some action has been taken on the destination node. An mScoutBegin message containing

Service Deployment Patterns 14

the address of the destination node is sent to trigger the scout pattern. The node that receives
this message selects a node on the path to the destination based on its IP-forwarding table, and
sends an mScout message to the selected node. This procedure is repeated until an mScout
reaches the destination node. After the corresponding aggregation function has been executed
on the destination node, an mScoutBack message is sent back towards the originating node.

The constrained-remoteEcho navigation pattern comprises three phases. In the expan-
sion phase the network is flooded with mExplorer messages. Each node that receives
such a message forwards it to all neighbor nodes, except the one the mExplorer message
was received from. The contraction phase starts as a subsequent mExplorer message is
received by a node. An mEcho message is sent to the upstream node. After the upstream
node has received mEcho messages from all nodes it has sent an mExplorer message to, it
generates itself an mEcho message. This continues until the originating node is reached.
In the last phase the scout pattern is used to contact individual nodes. Furthermore, the
sending of mExplorer messages can be constrained to specific network domains or multicast
groups. These domains can be explored remotely by using part of the scout navigation pattern.

Common to both example navigation patterns is that they need a specific target. This
can be an individual node as for the scout pattern, or a group of nodes forming a domain or
multicast tree as for the constrained-remoteEcho pattern. Another parameter for the latter
pattern might be a timeout value, if we extend the pattern to handle failures during navigation
pattern operation.

3.3.3 Aggregation Patterns

Aggregation patterns are executed on visited nodes. They define functions for aggregating
information obtained on the local node with information gathered at other visited nodes.
Which aggregation function is executed in a particular case depends on the state of the
navigation pattern. Hence, the aggregation pattern must always match the navigation pattern
that it is used with. As an example we describe a modified version of the findBest-Inform
aggregation pattern proposed in [2].

The findBest-Inform aggregation pattern matches the previously described constrained-
remoteEcho navigation pattern. In general, it returns exactly one node per node group that
matches best the node requirements. On arrival of an mExplorer or mEcho message the
aggregation function corresponding to the actual state of the navigation pattern is executed.
The onEcho aggregation function triggers the associated capability function to determine
whether the visited node fulfills the node requirements. During the contraction phase of the
constrained-remoteEcho pattern, mEcho messages contain information about the node that
matches best the node requirements. The onEcho aggregation function compares this node‘s
score with the one of the local node, and remembers the one with the higher score for future
evaluation. Furthermore, the onTimeout aggregation function is executed when a timeout has
occurred.

Architecture Overview 15

The described aggregation pattern only returns one node per node group. But some
services might need to be deployed on multiple nodes meeting the same requirements. In this
case another aggregation pattern must be used. Hence, we reason that for each node group
the number of required nodes must be given as parameter to the aggregation pattern.

3.3.4 Capability Functions

We introduce capability functions to separate the aggregation of collected information
from the evaluation of node capabilities. Capability functions are, as aggregation patterns,
executed on visited nodes. In fact, the result of the capability function is used as input for
the aggregation pattern. Hence, it is important to define a clear interface between both. In
contrast to aggregation patterns, capability functions are unaware of the navigation pattern’s
actual state, and must not match the navigation they are used with.

Since capability functions define rules for the mapping node requirements to actual
node capabilities, parameters given to the capability function are identical with the node
requirements. For instance, a capability function evaluating the CPU load of nodes could take
a minimum value, or even a range of CPU load values as input parameter.

3.4 Architecture Overview

Finally, we present an overview of the architecture derived from the gathered requirements.
Figure 3.2 illustrates the identified system components.

User

ASD Protocol

Navigation Pattern

Capability Function

Aggregation Pattern

Service
Descriptor Result

Deployment

Figure 3.2: Overview of the ASD framework architecture

The service descriptor, specifying the service requirements, is to be defined by the user e.g.
a network manager. The ASD protocol, constructed from navigation patterns, aggregation
patterns, and capability functions, distributes the service descriptor within the network, and

Architecture Overview 16

gathers evaluation and deployment results. The obtained results are then presented to the user
for verification.

Chapter 4

Service Description

In this chapter our approach to service description is introduced. We describe the layered
structure of the service descriptor in detail, and illustrate its use with an example. Furthermore,
XML is introduced as the service description language.

4.1 Conceptual Overview

The definition of a general service description is one of the main contributions of this thesis.
Our approach to service description favors a layered design employing templates. The three
description layers are depicted in Figure 4.1.

Service Descriptor
Network
Manager

information
Instance−specific

Service−specific
information

Template

Service
Provider

Template

General
Specification Generic Service Description

Service−specific Description

Figure 4.1: Layered design of service description

The generic service description template specifies a general form for describing service re-
quirements. Service providers add service-specific information such as the required patterns
to the generic service description template. The resulting service-specific description tem-
plates are provided to network managers. At deployment time the network manager adds the

17

Generic Service Description Template 18

instance-specific information such as target network addresses to the service-specific descrip-
tion template. The resulting service descriptor is then processed by the ASD framework.

4.2 Generic Service Description Template

The definition of a general service description is very challenging, since it must be guaranteed
that it serves all existing and future services. We address these needs with a high degree of
extensibility. The structure of the proposed generic service description template is illustrated
in Figure 4.2.

Service Name:

Navigation Pattern:

Aggregation Pattern:

NavigationParameters [n]

option Network
Tree
Router

ParameterList:

Target Address:

Service Component Name:

Number of nodes:

Name:

ParameterList:

Configuration ParameterList:

Node Group:

AggregationParameters [n]

Capability Function

Figure 4.2: Structure of the generic service description template

According to our analysis of target services and patterns, we identify four main service
requirement categories: (i) general requirements such as pattern and service names, (ii)
topological requirements such as target addresses, (iii) aggregation requirements such as the
required number of nodes, and (iv) resource requirements such as the maximum CPU load.
Moreover, to meet the design requirements the service description must support node groups.

Topological requirements are addressed by navigation patterns, since they control which
nodes are visited during discovery. Thus, topological requirements represent the input
parameters for navigation patterns. One navigation parameter identified in the target scenario
is the target address. The analysis of target services showed that the node search can be
restricted to parts of an overlay network. This can be either a subnetwork, a tree structure,
or a single router. Furthermore, we identified a need for specifying multiple target addresses
as for the VPN service. To address other possible navigation parameters such as the timeout
value for the constrained-remoteEcho navigation pattern, we included a parameter list which
can hold a restricted number key and value pairs.

We decided to arrange aggregation and resource requirements in node groups, since re-
quirements such as the number of nodes or a CPU load maximum are indeed always specific
to a certain node group. The service description supports multiple node groups. Thus, a node

Generic Service Description Template 19

group parameter is needed to distinguish between multiple groups. This parameter is actually
redundant information. An alternative would be to compute a hash over the parameters of
each node type. Since this method would require the computation of a hash every time a node
is selected, we prefer sending the node group parameter in the service descriptor. From a
service deployment viewpoint, node groups can be used to specify node requirements tailored
to the service functionality that is to be installed on nodes of that group. Hence, the service
component name and the number of nodes can be specified in the service description for each
node group. Moreover, a configuration parameter list can hold configuration information for
the selected nodes of each node group.

Resource requirements represent the input parameters for the capability function. To
support a high degree of flexibility, the service description provides the possibility to specify
not only different node requirements but also different evaluation rules. Therefore, the
capability function name and another extensible parameter list containing the resource
requirements can be specified for each node group.

We argue that the presented service description covers all network-level service de-
ployment steps as depicted in Figure 4.3. Part of this figure was presented in [6], and the
distinction between network and node level was added in [2].

Solicitation Summarization Installation AdvertisementDissemination

Network Level Node Level
Level

Network

Figure 4.3: Service Deployment Steps

In the solicitation step of service deployment a set of suitable nodes is identified. This
means that all nodes that are potential candidates for deploying the service must be visited
and queried. The following parameters are applied in the solicitation step: The navigation
pattern name specifies the navigation pattern that is used for distributing the service request
to all candidate nodes. The target address can constrain the number of candidate nodes
visited. The capability function name specifies the evaluation rules for a certain node group,
and the extensible parameter list specifies desired node capabilities. Furthermore, the node
group parameter allows the definition of different node requirement sets. For evaluation the
suitability of a node, a test deployment for the specified service component might be necessary.

Gathered information is aggregated in the summarization step of service deployment.
The result is a set of nodes suitable to deploy a certain service. Parameters applying to the
summarization step are the aggregation pattern name, and the number of nodes required for
each node type. The aggregation pattern summarizes the gathered information according to
the given node groups and numbers.

Service-specific Descriptor Template 20

In the dissemination step of service deployment, selected nodes are requested to install
the service components. Hence, the service component name is needed in the dissemination
step. Moreover, some services might require additional configuration of nodes. Configuration
information is provided in the form of an extensible parameter list.

Finally, the advertisement step informs whether the service deployment was successful.
The service descriptor, however, does not participate in this step.

4.3 Service-specific Descriptor Template

In order to define service-specific description templates, the service provider adds service
specific-information to the generic template. This service-specific information usually in-
cludes the service name, and the patterns to be used. Moreover, navigation and aggregation
parameter attributes are tailored to the requirements of the pattern in use. We want to illustrate
this refinement considering as example a unidirectional tunnel overlay service.

Configuration ParameterList

Remote Address:

Tunnel Mode: sit / gre / ipip

Tunnel Name:

Config Script: tunnel.pl

Assigned Address:

Local Device:

Route:

AggregationParameters

const−remoteEcho

findBest−Inform

Service Name:

Navigation Pattern:

Aggregation Pattern:

NavigationParameters

option Network
Target Address:

none

1

Service Component Name:

Number of nodes:

Capability Function

Parameter List

Node type: 1

Unidir. Tunnel Overlay

maxLoadAvg−Nework

Max Load Avg:

Address Mask:

Network Address:

Name:

Parameter List

Address Mask:

Timeout Value:

Figure 4.4: Descriptor template for a unidirectional tunnel overlay service

In Figure 4.4 the description template for a unidirectional tunnel service is depicted. To
describe this particular service, the service and the pattern names are included in the template.
We decided to use the example patterns described in 3.3, since they target overlay services
such as tunnels. The maxLoadAvg-Network capability function is used to find a node with a

Service Description Language 21

certain maximum load average in a given network.

Furthermore, navigation parameters are limited to one column, since the service is
only to be deployed within one network. The target address is further limited to network
addresses, as we are not interested to search a multicast tree or a single router. Moreover, the
parameter list is tailored to the constrained-remoteEcho pattern which needs a timeout value
and an address mask as input.

Aggregation parameters are also limited to one column, or node group. This is because the
unidirectional tunnel service is only to be deployed on one node. Hence, for a bidirectional
tunnel service either two nodes of the same node group (with the same requirements) or two
different node groups and one node per node group could be specified. Obviously, for the
unidirectional tunnel service the required number of nodes is one. Furthermore, no service
component name is specified in the description template, since no node-level functionality
needs to be deployed on the tunnel endpoint. Instead, the once selected node has to be
configured to set up the tunnel overlay. Hence, configuration information necessary to set up
the tunnel such as tunnel name and mode is specified in the corresponding parameter list.

The capability function parameter list is tailored to the maxLoadAvg-Network capabil-
ity function. The network manager is requested to specify the network where the tunnel
endpoint is to be deployed and the maximum CPU load value for the selected node. One
could claim that this information is already given with the target address. But notice that in
contrast to the target address the capability network parameter is node group specific.

4.4 Service Description Language

We decided to use XML as the service description language, since it provides a structured,
easily extensible, and platform-independent way for specifying information. Moreover, the
XML Schema Definition Language can be used to constrain the contents of XML documents.
Thus, the layered structure of service description as presented in Figure 4.1 can be realized
using XML documents and schemes.

In general, templates will be implemented as XML schemes and descriptors as XML
documents. Since the generic service description template only specifies attributes but no ac-
tual values for these attributes, it can be represented by an XML schema. The service-specific
description template, however, specifies constraints on the attributes but also attribute values
such as the service name. Thus, the service-specific description template is represented by
an XML schema and a corresponding XML document. This service-specific XML document
is completed with instance-specific information such as a particular target address by the
network manager at deployment time.

Chapter 5

Automated Service Deployment Protocol

In this chapter the ASD protocol specification is described. We present the ASD protocol stack
that is designed to meet the previously defined protocol-specific requirements. Furthermore,
the ASD protocol messages are described in detail. We define a general message format and
introduce the different message types. Finally, interfaces provided by the ASD protocol are
presented.

5.1 Conceptual Overview

From the given target scenario we extracted three protocol-specific requirements: (i) reliabil-
ity, (ii) security, and (iii) modularity. The easiest way to address reliability is to rely on TCP
which offers end-to-end reliability to the application layer. Security is also addressed by exist-
ing protocols such as IPSec [22] and TLS [21]. We favor the TLS protocol, since it provides
security tailored to the transport layer including end-to-end privacy and data integrity between
applications. The resulting protocol stack is depicted in Figure 5.1.

TCP

IP

TLS−SSL
Security Layer

Transport Layer

Network Layer

OTG Protocol
Application Layer

ASD Protocol

Figure 5.1: Overview of the protocol stack

Moreover, we specified that the ASD framework targets overlay networks. Thus, the genera-
tion of overlay network topologies must be supported by the framework. Overlay topologies

22

Conceptual Overview 23

can be generated based on different criteria such as bandwidth or delay measurements. In
this case, two nodes would become direct neighbors in the overlay if the delay on the link
connecting the nodes is smaller than the specified maximum. We decided to separate this
functionality from the actual ASD protocol, since it is not an integral part of network-level
service deployment. Overlay related functionality such as the generation of overlay topolo-
gies, and determination of direct neighbors in the generated topology, is provided by the
Overlay Topology Generation (OTG) protocol.

Modularity is addressed by the previously described distribution of deployment func-
tionality to navigation patterns, aggregation patterns, and capability functions. Since patterns
are exchangeable, the ASD protocol must provide a unified interface to all patterns. However,
patterns are only used in the solicitation and summarization step of service deployment, or
in other words only for resource discovery. The ASD protocol does not use patterns in the
dissemination step, since service installation is a lot simpler than resource discovery. In order
to install a service the selected nodes are requested to install the service components and
configured as specified in the service descriptor. Furthermore, our target analysis showed that
usually only a few nodes are required to deploy a service.

XML
Desc

Result

ASD Management
Station

ASD Daemons

deploy
status

ResultSelect
Nodes

ASD Management
Station

ASD Daemons

NP AP CF

request
reply

a) Resouce Discovery b) Service Installation

Network Manager Network Manager

User Interface

ASD protocol

Figure 5.2: ASD protocol design overview

In Figure 5.2 the ASD protocol design is illustrated. We defined two protocol entities: the
ASD management station that provides the user interface, and distributed ASD daemons.
Protocol operation for the resource discovery step is depicted in Fig. 5.2a. The network
manager initiates a deployment operation via the user interface on the management station
specifying a start node for resource discovery. The management station sends a discovery

ASD Protocol Messages 24

request to the ASD daemon running on the given start node. Resource discovery is governed
by distributed patterns (NP, AP, CF) running on the ASD daemons. Finally, a reply is send
back to the management station and the discovery result is displayed via the user interface.
Hence, most of the protocol logic for the resource discovery step is provided by the patterns.
Protocol operation for the service installation step is depicted in Fig. 5.2b. The network
manager selects the nodes on which the service is to be deployed. The management station
sends installation requests directly to all selected nodes. On reception of an installation request
the ASD daemon running on the node carries out the installation and configuration and sends
a reply back. Finally, the deployment result is displayed via the user interface.

5.2 ASD Protocol Messages

ASD protocol messages carry (i) information exchanged by the ASD management station and
ASD daemons running on nodes within the managed network, and (ii) information exchanged
between ASD daemons. Since different patterns can be used for resource discovery, ASD
messages also serve as an abstraction for pattern-specific messages.

5.2.1 Message Format

Each ASD message is preceeded by a header with the byte structure given in Figure 5.3. The
total length of the ASD message header is 6 bytes.

sion
ver−

type

0

payload (variable length)header (6 bytes)

serviceID
payload
length payloadTTL

1 42 6

Figure 5.3: ASD protocol message format

The first byte specifies the protocol version and the message type. Both message fields are
defined as 4-bit integers. In this thesis version 1 of the ASD protocol is described. Moreover,
four different message types are defined and presented in the remainder of this section.

Field Type Description

version 4-bit unsigned integer Current protocol version
type 4-bit unsigned integer Message type
ttl 8-bit unsigned integer Time to live
service ID 16-bit unsigned integer Unique service ID
payload length 16-bit unsigned integer Length of payload in bytes

Table 5.1: ASD message header fields

ASD Protocol Messages 25

The second byte specifies a ttl value. This field is defined as an unsigned 8-bit integer. We
included a maximum life time for ASD messages in the header as a security measure to avoid
endless forwarding of messages in case a pattern fails. The third and fourth byte specify the
service ID. This field is defined as an unsigned 16-bit integer. Since the specified service
ID must be unique within the managed network, ASD messages are unambiguously assigned
to service deployment operations. The fifth and sixth byte specify the payload length. This
field is also defined as an unsigned 16-bit integer. Due to the variable length of the different
message types, we explictly need to specify the number of bytes contained in the payload of
ASD messages. In Table 5.1 the header field properties are summarized.

5.2.2 Message Types

We defined four different message types. Each message type applies to a certain service
deployment step. Request messages (0x00) are used for solicitation of nodes. For summa-
rization of the gathered information reply messages (0x01) are exchanged. Deploy (0x02)
and status (0x03) messages are used for the dissemination of installation requests.

Request messages are exchanged (i) between the ASD management station and the the
start node, and (ii) between the ASD daemons. The purpose of sending request messages is to
query nodes whether they fulfill the service requirements. The encoding of payload fields in
request messages is presented in Table 5.2. Two sections can be identified: the mobile states
list, and the service descriptor.

Field Type Description

mobile states length 8-bit unsigned integer Length of mobile states list in bytes
key 16-bit unsigned integer Key for mobile state
value length 8-bit unsigned integer Length of value in bytes
value array of unsigned 8-bit int Value of mobile state

sd length 16-bit unsigned integer Length of service descriptor in bytes
service desc array of unsigned 8-bit int Service descriptor XML file

Table 5.2: Encoding of payload fields for request messages

The mobile states list contributes to the fact that different patterns can be used during resource
discovery. It provides a unification of pattern-specific information which is specified as a
list of key and value pairs. The mobile states length field of the 8-bit unsigned integer type
determines the list length in bytes. Hence, the number of key and value pairs is limited by the
list length (128 bytes). Each mobile state is identified by a key that must be unique within the
space of a distinct pattern. One key (0x01), however, is reserved for communication between
the ASD management station and the start node. The variable-length value field specifies
the actual value of the corresponding mobile state key. The length of the value field must be
explicitly specified in the value length field.

In the second part of a request message the service descriptor is sent. The service

ASD Protocol Messages 26

desc field contains the descriptor as an array of 8-bit integers. Due to the variable length of
the service descriptor, the sd length field is required. Since this field is of the 16-bit unsigned
integer type, the service descriptor is restricted to a length of 65.536 bytes.

Reply messages are exchanged (i) between ASD daemons, and (ii) between ASD dae-
mons and the ASD management station. In general, reply messages are sent in reply to
request messages to report the evaluation result. The encoding of payload fields in reply
messages is presented in Table 5.3. Reply messages can be divided into three sections: the
mobile state list (explained above), the suitable nodes list, and the occurred errors list.

Field Type Description

mobile states length 8-bit unsigned integer Length of mobile states list in bytes
key 16-bit unsigned integer Key for mobile state
value length 8-bit unsigned integer Length of value in bytes
value array of unsigned 8-bit int Value of mobile state

node list length 16-bit unsigned integer Length of node list in bytes
node address 32-bit unsigned integer IP address of node
node group 8-bit unsigned integer Node group this node is suitable for
result 16-bit unsigned integer Evaluation result for this node
configuration length 8-bit unsigned integer Length of configuration list in bytes
key 16-bit unsigned integer Key for node-specific configuration parameter
value length 8-bit unsigned integer Length of value in bytes
value array of 8-bit unsigned int Value of node-specific configuration parameter

error list length 16-bit unsigned integer Length of error list in bytes
error generator 32-bit unsigned integer IP address of error generator
pattern type 2-bit unsigned integer type of error generator pattern
severity 2-bit unsigned integer Severity of error
reserved bits 4-bit unsigned integer reserved for future use
error ID 8-bit unsigned integer Identification of error
parameter length 8-bit unsigned integer Length of error parameter list in bytes
key 16-bit unsigned integer Key for error parameter
value length 8-bit unsigned integer Length of value in bytes
value array of 8-bit unsigned int Value of error parameter

Table 5.3: Encoding of payload fields for reply messages

The suitable nodes list specifies information about nodes that are suitable to deploy the
service in question. The nodes list length field of the 16-bit unsigned integer type indicates
the byte length of the list. Information that must be specified for each node in the list
includes the node address, the node group a node is suited for, and the evaluation result.
Furthermore, for certain services it might be necessary to gather configuration information
for suitable nodes. For instance, when deploying the unidirectional tunnel overlay service,
information about interfaces on suitable nodes can be gathered during resource discovery.
This information is stored in the configuration list which has the same format as the mobile

ASD Protocol Messages 27

states list. The configuration length field defines the length of the configuration list in bytes.
The key field holds the key for a particular configuration parameter and the value fields holds
the actual parameter value for the corresponding key.

The occurred errors list contains information about occurred errors. The error list
length field of the 16-bit unsigned integer type holds the length of the occurred errors list in
bytes. For each occurred error, the IP address of the error generator, and the pattern id of
the pattern that generated the error are specified. An error can be caused by an ASD daemon
(0x00), a navigation pattern (0x01), a capability function (0x02), or an aggregation pattern
(0x03). Furthermore, the severity field indicates whether the error message is an info (0x00),
a warning (0x01) or a severe error (0x02). The error type must unambiguously identify a
particular error. Error types for the ASD daemon will be presented in the implementation
chapter. For each error an error parameter list can be specified. The error parameter list also
has the same format as the mobile states list.

Deploy messages are exchanged between the ASD management station and ASD dae-
mons. The purpose of sending a deploy message is to request a node to install the required
service components, and to configure it according to the service requirements. In Table 5.4
the message format for deploy messages is depicted.

Field Type Description

configlist length 8-bit unsigned integer Length of configuration list in bytes
key 16-bit unsigned integer Key for configuration parameter
value length 8-bit unsigned integer Length of value in bytes
value array of 8-bit unsigned int Value of configuration parameter

nodegroup sd length 8-bit unsigned integer Length of nodegroup descriptor in bytes
nodegroup service desc array of unsigned 8-bit int Node-group-specific descriptor

Table 5.4: Encoding of payload fields for deploy messages

Deploy messages contain two sections: the configuration parameter list and the node-group-
specific service descriptor. We already described the format of the configuration parameter
list in connection with the suitable nodes list. Since deploy messages are sent directly to the
selected nodes, additional node information such as the node address must not be specified.
The node-group-specific service descriptor contains the subset of the attributes in the service
descriptor that is necessary for the installation of service components and for configuration of
an individual node. These are the service component name and the configuration parameters
for the node group of the contacted node.

Status messages are exchanged between the ASD daemons and the ASD management
station. According to the protocol specification, status messages are sent in reply to deploy
messages. The message format of status messages is presented in Table 5.5. Status messages
contain two sections: the deployment status and the occurred errors list. The deployment
status field, defined as an 1-bit unsigned integer, indicates whether service deployment and

Interfaces 28

configuration were successful. The occurred errors list specifies errors that occurred during
installation or configuration. We already explained the format of the occurred errors list in
connection with reply messages

Field Type Description

deployment status 1-bit unsigned integer Status of service deployment

error list length 16-bit unsigned integer Length of error list in bytes
error generator 16-bit unsigned integer IP address of error generator
pattern type 2-bit unsigned integer Type of error generator pattern
severity 2-bit unsigned integer Severity of error
reserved bits 4-bit unsigned integer reserved for future use
error ID 8-bit unsigned integer Identification of error
parameter length 8-bit unsigned integer Length of parameter list in bytes
key 16-bit unsigned integer Key for error parameter
value length 8-bit unsigned integer Length of value in bytes
value array of 8-bit unsigned int Value of error parameter

Table 5.5: Encoding of payload fields for status messages

5.3 Interfaces

The Automated Service Deployment protocol provides a user interface that facilitates the ini-
tiation and control of a service deployment operation. Furthermore, it interfaces the Overlay
Topology Generation protocol on the application layer. Since one task of network-level ser-
vice deployment is the initiation of node-level service deployment on selected nodes, the ASD
protocol provides an interface to node-level deployment protocols.

5.3.1 User Interface

The user interface utilizes the ASD protocol functionality to automatically deploy services on
behalf of a user. The ASD protocol provides the findNodes() function to initiate the resource
discovery. The calling thread (a console or graphical user interface) is blocked until the
function returns. Thus, only one service can be deployed at a time. For concurrent service
deployment means for reserving resources on nodes would be required. Later versions of the
protocol could support the deployment of multiple services at a time providing the necessary
resource allocation mechanisms. The service descriptor, a unique service ID, and the IP
address of the start node must be given as parameters when calling the function. The function
returns a list of nodes which are suitable to deploy certain service components, and a list of
errors that occurred during deployment.

This information could be displayed via a graphical user interface or simply a console.
Important is that the interface provides the means for a user to either select nodes to deploy

Interfaces 29

service components, or to stop the deployment process. If nodes are selected, the deploy-
OnNodes() function can be used to contact the nodes and initiate node-level deployment and
configuration. The list of nodes that have been selected must be given to the function as
parameter. Additionally, functions to unload, deactivate, or reconfigure a deployed service
can be implemented, but this is out of the scope of this thesis.

5.3.2 OTG Protocol Interface

The Overlay Topology Generation (OTG) protocol provides the ASD protocol with overlay
topology information. The getNeighbors() function is used by the ASD protocol to request
a list of its direct neighbors within a certain range. An IP address, and an address mask
that restrict the range to a particular domain or multicast tree are given to the function
as parameter. The function returns a list of all identified neighbors and their associated
cost within the given range. This cost information can apply to delay, jitter, or bandwidth
on the link to the neighbor. Experiments with the ASD protocol will show which metrics
are of interest for the patterns. An empty list is returned, if no valid neighbor can be identified.

Furthermore, the ASD protocol uses the getNodeInDomain() function to request a random
node within a certain range. This function is used for instance by the constrained-remoteEcho
pattern to flood a certain domain from a node that resides outside of this domain. An IP
address and an address mask identifying the range are given as parameter to the function. The
function returns the address of one node within the range.

5.3.3 Node-level Deployment Interface

Node-level service deployment protocols are interfaced by the ASD protocol to request the in-
stallation of service components on individual nodes. The testDeployment() function is used
by the ASD protocol during resource discovery to determine whether the node provides the
functionality that is needed to install the requested service component. The deployService-
Component() function is used by the ASD protocol to install a requested service component
on a selected node. Both functions take as parameter the name of the service component that
is to be installed, and return a boolean value that specifies whether the (test) deployment was
successful.

Chapter 6

Implementation

In this chapter we present the actual Java-implementation of the ASD protocol. Firstly, the
implementation of the core ASD protocol, including the ASD network management station
and the ASD daemon, is presented. Secondly, we introduce the implementation of an example
navigation pattern, aggregation pattern and capability function.

6.1 Overview

In Fig. 6.1 an overview of the implemented packages is presented. We subdivided the ASD
framework functionality into six packages. Dashed arrows represent import dependencies.
Hence, two of main packages in the first row import classes from the packages in the second
row. For reasons explained in the remainder of the chapter, we implemented the ASD protocol
using the latest Java version which was only available as a beta-version (J2SE 5.0 Beta 2).
Hence, when the final version of J2SE 5.0 is available, eventually adjustments have to be
made.

asd

daemon patterns

messages support

mgmtstation

exceptions

Figure 6.1: Overview of the implemented packages

30

ASD Network Management Station 31

The asd.daemon package defines the core ASD daemon functionality including interfaces to
navigation patterns, aggregation patterns, and capability functions. The core ASD manage-
ment station functionality is provided by the asd.mgmtstation package. The different ASD
message types are defined in the asd.messages package, and ASD exceptions for failure han-
dling can be found in the asd.exceptions package. Support classes used by the ASD man-
agement station and the ASD daemon are provided in the asd.support package. Finally, the
example patterns are defined in the asd.patterns package.

6.2 ASD Network Management Station

Functionality provided by the ASD management station was specified in the last chapter.
We implemented this functionality in four different packages: asd.mgmstation, asd.messages,
asd.exceptions, and asd.support. Classes provided by these packages and their import depen-
dencies are illustrated in Fig. 6.2. However, this section concentrates on the asd.mgmtstation
package, since it provides the core ASD management station functionality. For description of
the other classes refer to the corresponding sections.

ASDUserInterface ASDManager

+findNodes():

+deployOnNodes():

SSLDetails Defragmenter

ASD Management Station

MngTimeoutQueue

ASDExceptionASDMessage

Figure 6.2: Class diagram of the ASD management station

The asd.mgmtstation package provides three classes: ASDUserInterface, ASDManager,
and MngTimeoutQueue. The ASDUserInterface class defines the user interface. It in-
stantiates the ASDManager class to utilize its findNodes() and deployOnNodes() methods. The
ASDManger on the other hand instantiates the MngTimeoutQueue class, and classes provided
by other packages(ASDMessage, ASDException, SSLDetails, and Defragmenter).

6.2.1 ASDUserInterface

The ASDUserInterface provides a basic user interface, and thus the means for a network
manager to interact with the ASD framework. We previously identified functionality that the

ASD Network Management Station 32

user interface must provide: (i) specification of service requirements, (ii) initiation of resource
discovery, (iii) selection of suitable nodes or interruption of the deployment operation, and
(iv) verification of deployment results. The interface is realized as a simple console that
displays information to the user, and waits until the user enters requested information. In a
later version this simple interface can be replaced with a graphical user interface offering
more comfort.

Remind that service requirements are to be specified in an XML document called the
service descriptor. However, the basic ASDUserInterface does not include means for
generating the service descriptor. The service descriptor must be generated beforehand, and
made available to the ASDUserInterface by specifying the filename in a configuration
file. Other required start-up arguments to be specified in the configuration file are the start
node that administrates the automatic service deployment, and a unique service ID for this
deployment operation. Optionally, the port ASD daemons are supposed to be running on can
be changed by specifying a different port. The default port is 5000. An example configuration
file is presented in the Appendix . Resource discovery can be initiated by starting the
ASDUserInterface with a valid configuration file as argument.

Before the ASDUserInterface instantiates the ASDManager it creates the pattern er-
ror ID mappings. For each pattern a properties file must be specified that contains one entry
(errorID = error message) for each exception it defines. To start the resource discovery
the ASDUserInterface invokes the findNodes() method provided by the ASDManager.
This method returns a list of suitable nodes and a list of error messages occurred during
resource discovery. The ASDUserInterface displays the list of error messages using the
previously created pattern error ID mappings. To generate the daemon error ID mappings,
it uses the constructErrorIDMappings() method provided by the ASDException class. The
returned list of all suitable nodes is displayed on the console, and the user is asked whether
the deployment should be continued. If the answer is ’yes’, the user is requested to make his
selection. Otherwise the ASDUserInterface is terminated.

To start the installation and configuration of the selected nodes the ASDUserInterface

invokes the deployOnNodes() method provided by the ASDManager. This function returns
a list of deployment results for all selected nodes. The ASDUserInterface displays
this list on the console and exits with a zero-status. In contrast, if an exception occurs
the ASDUserInterface immediately exits with a non-zero status indicating abnormal
termination.

6.2.2 ASDManager

The ASDManager implements the core functionality of the ASD management station protocol
entity. Thus, its main task is to communicate with the distributed ASD daemons. According
to the protocol specification the ASDManager uses TCP on the transport layer combined with
the TLS protocol to guarantee data integrity and privacy for its connections. Furthermore,
we decided to implement the ASDManager in a single thread, since concurrent deployment

ASD Network Management Station 33

operations are not supported by the ASD framework. Refer to Figure 5.2 for an overview
of the communication between the ASD management station and the ASD daemons during
resource discovery and service installation and configuration.

Resource discovery

Resource discovery functionality of the ASD management station is provided by the find-
Nodes() method. This functionality includes sending of a discovery request to the ASD
daemon running on the start node, and waiting for a reply from the contacted start node.
The setup of an TLS/SSL connection to a particular node involves multiple steps. First
an SSLContext is generated using the getSSLContext() method. A KeyStore for the
previously created client keys is instantiated. Subsequently, an SSLSocketFactory is
created, and an SSLSocket connected to the start node on the specified port is obtained.
Finally, the socket must be configured to use the client mode.

The discovery request is generated by the constructInitialRequest() method. The pay-
load encoding of request messages is given in Table 5.2. To construct the mobile states
list, methods provided by the ASDMessage class are utilized. The service descriptor is
serialized by the serializeServiceDesc() method and placed in the request message. Finally,
the header fields are specified and the message itself is serialized. To send the request an
OutputStream on the previously created socket is obtained, and the message is written to
it. Furthermore, a timeout is set to limit the time the ASDManager is waiting for a reply from
the start node.

To read the reply message from the socket an InputStream is obtained. Data is read
from the input stream until a whole message is received. Methods provided by the
ASDMessage class are used to de-serialize the received message. The ASDManager checks
whether the received message is of the expected message type. If this is not the case, an
exception is thrown by the ASDManager. Otherwise a FindNodesResult is constructed
from the received list of suitable nodes and the received errors list. Finally, the socket is
closed. The constructor for the FindNodesResult class in given in Table 6.1, since it is part
of the ASD frameworks user interface.

public FindNodesResult(ASDMessage.SelectedNodesList shList,

ASDMessage.OccurredErrorsList oeList){

this.shList = shList;

this.oeList = oeList;

}

Table 6.1: Constructor for the FindNodesResult class

Installation and Configuration

Installation and configuration functionality of the ASD management station is provided by
the deployOnNodes() method. This functionality includes sending of installation requests

ASD Network Management Station 34

to all selected nodes, and waiting for the replies from all contacted nodes. We anticipate
that for distributed services usually more than one node is selected to deploy a service.
Hence, we decided to send installation requests simultaneously applying nonblocking I/O for
performance reasons. To combine nonblocking I/O and TLS security was one of the most
challenging parts of the implementation. Since this combination is not supported by the
actual Java version (J2SE 1.4.2), we had to use the J2SE 5.0 Beta 2 version which provides
the desired functionality. But naturally, there was no example code available how to combine
nonblocking I/O and TLS security using the beta-version.

Nonblocking I/O (without TLS support) in Java is provided by the java.nio.channels
package. For each socket a SocketChannel is created and put into nonblocking mode. A
Selector can be used to monitor the registered channels. The javax.net.ssl package provides
TLS support for Java. In the J2SE 5.0 version new classes have been added to this package
that enable transport independent usage of TLS. The SSLEngine class operates on input and
output streams, independent of the transport mechanism. Hence, to attain our objective we
use normal sockets supporting nonblocking I/O as the underlying transport mechanism.

Usage of the SSLEngine requires four buffers. One for (i) outbound application data,
(ii) outbound network data, (iii) inbound network data, and one for (iv) inbound application
data. Application data, or plaintext, is data which is consumed or produced by an application.
Its counterpart is network data, which consists of either handshaking and/or ciphertext data,
and is destined to be transported via an I/O mechanism [23]. In our implementation the
SSLEngine and its associated buffers are held by the SSLDetails class. The ASDManager
uses a HashMap to map SSLDetails instances to particular channels.

To send the installation request one channel per selected node is created and registered
with the selector. Furthermore, the deploy message is generated and a copy is put in the
outbound application data buffer of the SSLEngine associated with each channel. The rest
of the code is enclosed in a while loop that is only interrupted when replies from all selected
nodes have been received, or the channels have timed out. In each iteration all registered
channels are polled and a list of all channels that are ready for I/O is obtained. For each
channel in the list, we determine the kind of I/O operation the channel is ready for. Supported
operations are connect, read, and write I/O operations. Accept operations are not handled by
the ASDManager, since the client mode was used when connecting to the selected nodes. At
the end of each iteration timed out channels are closed.

Connect I/O operations are handled by the handleSocketConnect() method. For non-
blocking channels finishConnect() is called to complete the TCP connection before using it.
Remind that we use normal sockets. Thus, the SSL handshake must be handled separately by
the SSLEngine.

Write I/O operations are processed by the handleSocketOutput() method. Before the
deploy message can be send on a channel, however, the SSL handshake must be finished.
Handshake data is generated by the SSLEngine and encrypted, like application data, by the

ASD Network Management Station 35

engine’s wrap() method. Encrypted data is put in the outbound network data buffer, and
subsequently written to the channel. Each call to wrap() returns an SSLEngineResult

which indicates the status of the SSLEngine and (optionally) how to interact with the
engine to make progress in the SSL handshake. Application data has been sent if the
SSLEngineResult status indicates that the SSL handshake is finished. In this case a timeout
must be set for the deploy message that has been sent. Therefore, the MngTimeoutQueue

class is used. Moreover, we turn off the OP_WRITE bit for this channel, since we are not
interested to write more data.

Read I/O operations are processed by the handleSocketInput() method. Again, only af-
ter the SSL handshake is finished application data can be received. All input data on a channel
is first copied to the associated engine’s inbound network data buffer. To decrypt the received
data the engine‘s unwrap() method is called. If the received data is SSL handshake informa-
tion the handshake advance is handled by the SSLEngine. Otherwise, the decrypted data is
put in the corresponding inbound application data buffer. Moreover, the SSLEngineResult
returned by the call to unwrap() must be checked. This is necessary, since the SSLEngine

requires the creation of a delegated task for any operation that potentially may block. It also
indicates when the peer has sent an SSL closure handshake message. If application data
has been received the Defragmenter class is used to obtain a complete message which
is then processed by the handleStatusMessage() method. Since no more data will be sent
on this channel, the engine’s closeOutbound() method is called to generate an SSL closure
message. Finally, the write interest option is turned on again to send the closure message on
the channel.

public Entry(String address, boolean status,

ASDMessage.OccurredErrorsList oeList){

this.hostAddress = address;

this.status = status;

this.oeList = oeList;

}

Table 6.2: Constructor for the DeployOnNodesResult.Entry class

Handling of a received message requires verification of the message type, de-serializing the
message, generation of a DeployOnNodesResult.Entry instance, and canceling the time-
out. The DeployOnNOdesResult.Entry contains information extracted from the received
status message (see Table 6.2). If the timer for a channel expires before a message is received,
an error message is generated and added to the occurred errors list of the entry for this chan-
nel. Moreover, the deploy status for the contacted node is set to false. An ArrayList of
these entries (one per channel) is returned by the deployOnNodes() method.

6.2.3 MngTimeoutQueue

The timeout mechanism provided by the Socket class is sufficient for the findNodes()
method. For the deplyOnNodes() method, however, a more sophisticated mechanism is

ASD Daemon 36

required, since multiple channel timeouts have to be managed. Therefore, we created the
MngTimeoutQueue class which provides a sorted list of TimedSelectionKey objects. A
TimedSelectionKey instance holds a SelectionKey identifying a particular channel,
and the associated timeout value.

The MngTimeoutQueue class provides the isEmpty() method that can be used to check
whether any timeouts are set, and the containsKey() method that allows to check whether a
timeout is set for a particular key. Moreover, a setTimeout() method and a cancelTimeout()
method are implemented. Both methods utilize the binarySearch() method provided by the
Collections class. A Comparator that defines the order of the sorted list must be passed
to the binarySearch() method, since the list entries do not implement Comparable. To obtain
a list of all timed out keys, the getTimedOutKeys() method can be used.

6.3 ASD Daemon

As for the ASD management station, functionality provided by the ASD daemon was specified
in the last chapter. We implemented the pattern-independent part of this functionality in four
packages: asd.daemon, asd.message, asd.exceptions, and asd.support. Classes provided by
these packages and their import dependencies are illustrated in Fig. 6.3.

ASD Daemon

NavPattern AggPatternCapFunction

SDParser DmnToQueue

ASDController

NodeLevelDepl OverlayGeneration

SSLDetails ASDMessage DefragmenterASDException

Figure 6.3: Class diagram of the ASD daemon

However, this section concentrates on the asd.daemon package, since it provides the core
ASD daemon functionality. For description of the other classes refer to the corresponding

ASD Daemon 37

sections. The asd.daemon package comprises six classes: ASDController, SDParser,
OverlayGeneration, NodeLevelDeployment, DmnTimeoutQueue, and the abstract
classes NavigationPattern, AggregationPattern, and CapabilityFunction.

The ASDController class provides the main server loop. Therefore, it instantiates
SDParser, NodeLevelDeployment, DmnTimoutQueue, and subclasses of the ab-
stract AggregationPattern, NavigationPattern, and CapabilityFunction

classes. Moreover, it instantiates different classes from other packages (SSLDetails,
Defragmenter, ASDException, and ASDMessage).

6.3.1 ASDController

This class implements the core ASD daemon functionality. Hence, it provides means for the
communication between ASD daemons and for communicating with the ASD management
station. Moreover, pattern loading and management mechanisms are provided by the
ASDController. Like for the ASDManager, TCP is used together with TSL to provide
data integrity and privacy for the daemon’s connections. Since we did not implement a TLS
key distribution mechanism, all daemons use the same client and server keys. We decided to
implement the ASDController single-threaded, since concurrent deployment operations are
not supported. Furthermore, simultaneous message processing for one deployment operation
is not required, since navigation patterns rely on finite state machines.

Before a service deployment operation can be initiated on the ASD management sta-
tion, ASD daemons must be started, ideally, on all nodes within the managed network.
Therefore, the main class of the ASD daemon, the ASDController, is started with a valid
configuration file as argument. This configuration file can optionally specify the port ASD
daemons are running on, a local pattern directory, a remote pattern directory, and the pattern
server’s IP address. If no values are specified the default configuration presented in Table
6.3 is used. Where homeDirectory identifies the home directory of the ASD daemon
implementation.

private class DefaultConfiguration {

public String port = “5000”;

public String localPatternDir = homeDirectory + “/classes”;

public String remotePatternDir = “/∼brauckhoff/”;

public String patternServer = “pc-4207.etzh.ch”;

}

Table 6.3: Default configuration values

The ASDController implements a continuously-running server that accepts connections
from other daemons and from the ASD management station. Moreover, it opens connections
to other ASD daemons (acting as a client) to forward resource discovery requests. In
order to reduce the overhead we decided to use the same connection for request and reply
messages, instead of closing connections and opening a new connection for the reply. Hence,

ASD Daemon 38

the ASDController must manage multiple connections to different nodes. To achieve
this we use the same concept as introduced in 6.2.2. The only difference is that also a
ServerSocketChannel is registered with the selector to accept connections. Hence, in
addition to connect, read, and write operations, accept I/O operations must be handled by the
ASDController.

Incoming connection requests are processed by the handleSocketAccept() method. The
connection is accepted, and the resulting socket channel is configured to use the nonblocking
mode. Furthermore, a Defragmenter is attached to the channel to hold incomplete ASD
messages before the channel is registered with the selector. SSLDetails holding the
corresponding SSLEngine and buffers are created and stored in a hash using the channel’s
SelectionKey.

The handleSocketConnect() method is identical to the one used on the ASD manage-
ment station (see 6.2.2 for the details). Also the structure of the handleSocketInput() method
remains unchanged, apart from the fact that application data is handled by a method which
is much more complex than the one used on the ASD management station. Only the
handleSocketOutput() method had to be extended with functionality to send SSL closure
messages on behalf of the patterns.

Processing of application data is handled by the handleServiceDeployment() method.
This method processes all received request, reply, and deploy messages. Firstly, received
messages are de-serialized and the service ID contained in the message header is added to
a hash using the channel’s SelectionKey. This is necessary to identify the patterns to be
used for processing a message that belongs to a particular deployment operation (identifiyed
by a unique service ID). The method proceeds with (i) obtaining the set of pattern instances
for the received service ID, (ii) processing messages according to the message type, and (iii)
handling the result of the message processing.

Request Message Processing

Request message processing is implemented in the handleRequestMsg() method. First, the
SDParser is used to parse the service descriptor that is received in each request. Refer to
6.2.2 for a detailed description of the SDParser class. Moreover, if this request is the first
message of a particular deployment operation (identified by the service ID) the set of pattern
instances required to process the message is loaded. As specified in the requirements, a
pattern loading mechanism must provide the means to load locally unavailable patterns from
a pattern server.

In order to load patterns from a remote server, each pattern must be identified by a
unique name. We decided to use a scheme similar to Java namespaces. The example patterns
we have implemented are preceeded with the unique prefix ‘ch.ethz.ee.tik.asd.patterns’.
The pattern loading mechanism is implemented in the createPatternDetails() method. A
PatternDetails object holds the loaded pattern instances. The object itself is stored
in hash using the service ID to associate the pattern instances with a particular service

ASD Daemon 39

deployment operation.

To load the requested classes specified in the service descriptor, the getInstance()
method provided by the PatternLoader class is used. This method, in fact, utilizes
the URLClassLoader, which attempts to load the requested class from a local URL (local
pattern directory), or a remote URL (remote pattern server). If the requested class can be
loaded it is instantiated, and the obtained object is returned. Finally, the returned object
is casted to the corresponding abstract pattern class. Remind that capability functions are
node-group-specific. Hence, eventually multiple capability functions must be loaded. To
address this, capability function instances are stored in a hash together with additional
information such as the corresponding node group.

Second, the TTL value of the received request message must be examined. This value
is decremented each time a request message is forwarded by an ASD daemon to limit the
range of the node search. Thus, if a request with a zero TTL value is received the maximum
range is reached, and an immediate reply must be sent in response. This is achieved by
throwing a TTLExeededException. Exception handling mechanisms of the ASD daemon
are explained in the remainder of this section.

Third, the patterns are used to process the received request message. Each of the loaded
capability functions is started in oder to determine whether this node fulfills the service
requirements for the corresponding node group. Pattern interfaces are defined by the abstract
classes NavigationPattern, AggregationPattern, and CapabilityFunction.
Refer to the corresponding sections for details. The navigation pattern is used to determine
the aggregation function that is suitable for the actual pattern state and the received mobile
state. Remind that the aggregation pattern must always match the navigation pattern. After
the identified aggregation function has been executed the navigation pattern is started to
determine the further protocol processing (e.g. sending of a message or closing a channel).
Finally, a pattern result is generated based on the information returned by the patterns.

Reply Message Processing

The processing of reply messages is implemented in the handleReplyMsg() method. Each
reply message (see Table 5.3) contains an occurred errors list. On reception of a reply message
the received errors list is merged with the local errors list, which is held by the previously
created PatternDetails objects. Since node capabilities are only evaluated for request
messages, the execution of capability functions is not necessary when a reply message is
received. As for request messages, the navigation pattern is used to determine the aggregation
function to execute, and the selected function is started. Moreover, the navigation pattern is
started, and a pattern result is generated with the information returned by the aggregation and
navigation pattern.

ASD Daemon 40

Deploy Message Processing

Deploy message processing is implemented in the handleDeployMsg() method. As we
explained in the protocol specification, patterns are not involved in the installation and
configuration step. The processing of deploy messages is handled completely by the ASD
daemon. Hence, on reception of a deploy message the PatternDetails object for this
deployment operation is released. In each deploy message a node-group-specific service
descriptor, which contains the configuration and installation information, is sent. As for the
service descriptor, the SDParser class is used to extract this information from the received
byte stream.

The deployServiceComponent() method provided by the NodeLevelDeployment in-
terface is used to install the service component specified in the node-group-specific service
descriptor. The interface must handle the case that no valid service component is specified.
Node configuration is handled by the configureNode() method. Actually, this method imple-
ments node-level functionality. Since the ASD framework will not be tested together with
a node-level service deployment protocol, we implemented the node configuration ourself
to verify the deployment of the example tunnel service. The ASDController executes a
configuration script, which must be specified in the node-group-specific service descriptor.
Configuration information extracted from the service descriptor, and from the configuration
parameter list in the received deploy message is temporarely saved in a configuration
file. This file is used as input for the configuration script. In order to be executed by the
ASDController the script must use Pearl as the scripting language, and have the tainted
mode enabled. An overview of the ASD directory structure is given in the Appendix.

According to the protocol specification, a status message specifying the deploy status
and the occurred errors is generated, and sent back to the ASD management station. The
deploy status includes only the node-level deployment result, but not the configuration result.
Since configuration is a node-level task, it might be handled by the node-level deployment
protocol anyway. In the actual implementation correct operation of the configuration script
has to be verified on the particular node. After the status message has been sent, the
corresponding channel is closed by the ASDController.

Pattern Result Processing

The pattern result generated from information returned by the patterns on reception of a
request or reply message is handled by the handlePatternResult() method. Patterns can
specify a list of tasks that the ASD daemon executes on their behalf. The five defined tasks
are (i) sending a request or reply message, (ii) setting a pattern timeout, (iii) canceling a
pattern timeout, (iv) closing a channel and (v) setting a release timeout.

For sending a message the pattern must specify a list of recipients, and the message
type. The ASDController constructs a message of the requested type. If a request message
is to be sent a new connection is established. In contrast, for sending reply messages existing
connections are used. We follow the paradigm that on each channel that is opened by an ASD

ASD Daemon 41

daemon exactly one request message is sent and one reply message is received. Thus, the
getSelectionKey() method is used to search all keys registered with the selector for a channel
that is connected to the node in question to send the reply message to. Only if no key is
found, for instance in case the connection was already closed, a new connection is set up to
send the reply. Further investigations into patterns will show whether it is really necessary to
send reply messages although no connection is available. For setting up the socket channel a
method very similar to the setupSocketChannel() method of the ASDManger is used. To send
the message, it is simply put in the outbound application data buffer of the corresponding
engine.

The ASD daemon provides a timeout mechanism that can be utilized by the patterns.
We call it pattern timeout, since only one timer is used per pattern on a node. We decided not
to use individual channel timeouts (as for the ASDManager) because for the ASD daemon
timeouts are pattern-specific. For setting the timeout the pattern must specify a timeout value.
For canceling a timer no information is needed, since the ASDController maintains an
association between each pattern and its started timers.

If the pattern wants to close a channel it must specify the node for which the channel
is to be closed. This is due to the fact, that patterns are not aware of communication details
such as channels. They only deal with IP addresses. The ASDController determines
the channel that belongs to the specified IP address and sets the closeOutbound flag in
the ChannelDetails. This flag signals the SSLEngine that the application has finished
sending data. It is evaluated each time the handleSocketOutput() method is called. Thus, a
channel can only be closed by a pattern after some data has been sent on that channel.

Since patterns are only needed for the resource discovery, their state can be released
after the last discovery message has been sent. The patterns must signal the ASDController
when they are finished. We decided to use a timeout mechanism for releasing the pattern
state. This allows delayed request messages to be handled by the pattern. The release timer is
implemented utilizing theăTimer class provided by the java.util package. This requires the
definition of a TimerTask class which specifies the task that is scheduled for execution in
the future. MyTimerTask implements the abstract run() method defined by TimerTask.

Pattern Timeouts

Pattern timeouts are managed by the DmnTimeoutQueue (see 6.3.2). At the end of each
select() call a list of all expired pattern timers is obtained using the getTimedOutPatterns()
method provided by the DmnTimeoutQueue. Since timers are started on behalf of a pattern,
expired timers must be handled by the pattern as well. Each navigation pattern must imple-
ment the handleTimeout() method defined by the abstract NavigationPattern class. For
patterns that do not utilize timers, this method does not need to provide any functionality. The
handleTimeout() method returns a pattern result, which is processed by the handlePatternRe-
sult() method as for request and reply messages.

ASD Daemon 42

Exception Handling

For exception handling we implemented the ASDException class that subclasses
Exception. Exceptions thrown by the ASD daemon are presented in 6.4. Of course, also
patterns can throw ASDExceptions. All exceptions are forwarded to the handleASDExcep-
tions() method provided by the ASDController. Since an exception on one of the channels
can effect the pattern state, all exceptions thrown either by the daemon or by the patterns must
be signaled to the navigation pattern. Each navigation pattern is required to implement the
handleASDExceptions() method defined by the abstract NavigationPattern class, which
is called by the ASDController. In case the pattern has already been released the channel
on which the exception occurred is simply closed. Otherwise, an error message is added to the
occured errors list, and the navigation pattern result is handled by the handlePatternResult()
method. Independent of the pattern result, the ASDController closes the socket channel on
which the exception occurred.

6.3.2 SDParser

The SDParser provides functionality to extract information from the serialized service
descriptors. It uses the SAXBuilder provided by the org.jdom.input package to convert the
byte stream into a JDOM document. Elements and attributes are read from this document
using the functionality provided by the org.jdom package. Hence, this package must be
available on each ASD daemon.

The SDParser class provides two public methods: parseServiceDesc() and parseN-
odeTypeDesc. Whereas the first method can be utilzed to extract information from the service
descriptor, the second method implements functionality to extract information from the
node-group-specific service descriptor. Extracted information is stored in the instance fields
of the SDParser class. Both methods utilize the getRootElement() method in order to extract
the root element from the descriptor. Since the SAXBuilder requires a file structure as input,
the serialized descriptor is temporarely stored in a File object.

Information extracted from the service descriptor includes the service name, the navi-
gation pattern name, and the aggregation pattern name. Moreover, navigation parameters,
aggregation parameters, and the capability function information are extracted. We present
the structure of navigation parameters, aggregation parameters, and capabliity function
information in Figure 6.4, since they are passed to the corresponding pattern. From the
node-group-specific service descriptor the service component name and the configuration
parameter list, which is stored in a Properties object, are extracted.

6.3.3 DmnTimeoutQueue

The DmnTimeoutQueue is very similar to the MngTimeoutQueue. It provides the same
methods, and uses as well binary search to insert and delete elements. The only difference is

ASD Daemon 43

AggregationParameters

(from SDParser)

+parameters:ArrayList

NavigationParameters

(from SDParser)

+parameters:ArrayList

CapFunctionInfo

(from SDParser)

+name:String

+parameterList:Properties

Parameter

(from SDParser::AggregationParameters)

+nodeGroup:String

+serviceComponent:String

+numberOfNodes:int

+capFunction:capFunctionInfo

+configParameters:Properties

Parameter

(from SDParser::NavigationParameters)

+targetAddress:String

+parameterList:Properties

Figure 6.4: Class diagrams of the pattern parameter classes

that the DmnTimeoutQueue manages multiple pattern timeouts instead of multiple channel
timeouts. Hence, the TimedSelectionKey object is replaced with a TimedPattern object.
For a detailed description of the methods provided by the DmnTimeoutQueue refer to 6.2.2.

6.3.4 OverlayGeneration

The OverlayGeneration class implements the OTG protocol described in the protocol
specification. This is the only class which is not instantiated by the ASDController (see
Figure 6.3). Instead, the patterns instantiate the OverlayGeneration class directly in case
they need to utilize the provided functionality.

We implemented a very basic OTG protocol that can be replaced with a more sophisti-
cated approach in a later version. The overlay topology must be generated manually and
stored in a file (named topology.txt in the /tmp directory) with a predefined structure. The
OverlayGeneration class simply reads and interprets the topology information defined in
this file. The file structure is illustrated in Table 6.4. For each node taking part in the overlay
an entry (one per line) specifying the node’s direct neighbors is needed. The node and its
neighbors are separated by space characters. Moreover, for each neighbor an associated cost
value (e.g. the round-trip time) is given, separated from the neighbor address by an at symbol.

152.3.136.2 152.3.136.1@0.234 152.3.136.3@0.222
152.3.136.3 152.3.136.1@0.244 152.3.136.2@0.188

Table 6.4: Extract from an example topology file

The OverlayGeneration class provides the getNeighbors() and the getNodeInDomain()
method. Both methods return a list of nodes that fulfill the topology restrictions, and their
associated cost values. Furthermore, the class method isNodeInDomain() can be used by the

ASD Daemon 44

patterns to determine whether a node resides within a given domain identified by a network
address and an address mask.

6.3.5 NodeLevelDeployment

The NodeLevelDeployment class implements the node-level deployment interface speci-
fied in the protocol description. It defines the testDeployment() and the deployServiceCompo-
nent() method. Both methods take a string specifying the service component to be installed as
parameter. These methods have to be implemented by the node-level deployment protocol. In
our implementation both methods simply return true, since we concentrated on network-level
functionality.

6.3.6 NavigationPattern

The abstract NavigationPattern class defines the interface between the ASD dae-
mon and the navigation pattern. Each navigation pattern must subclass the abstract
NavigationPattern class, and thus implement the methods defined by the abstract
class. Moreover, navigation patterns inherit the fields and inner classes defined by the
NavigationPattern class.

NavigationPattern

+errors:OccurredErrorsList

#patternState:int

+selectAggFunction(msList:ParameterList,localHost:InetAddress):String

+handleReceivedMsg(msList:ParameterList,navParam:NavigationParameters,peerHost:InetAddress,localHost:InetAddress):Result

+handleTimeout():Result

+handleASDExceptions(error:ASDException,peerHost:InetAddress):Result

Result

(from NavigationPattern)

+msList:ParameterList

+taskList:LinkedList

+messageType:byte

TaskDescription

(from NavigationPattern)

+addresses:LinkedList

+todo:byte

+timeoutValue:long

Figure 6.5: Class diagram of the abstract NavigationPattern class

The NavigationPattern class defines two instance fields: an errors list and the pattern
state. The error list is used to communicate soft errors during pattern execution, which do
not cause ASDExceptions, to the ASD daemon. The pattern state is needed, since each
navigation pattern represents a finite state machine. Moreover, the NavigationPattern

class provides a constructor for all its subclasses. When instantiating a concrete subclass of
NavigationPattern, the actual pattern state is set to the initial pattern state defined by the
subclass. An overview of the NavigationPattern class is presented in Figure 6.5.

ASD Daemon 45

Each pattern must implement the selectAggregationFunction() method. This method
selects the aggregation function to be executed based on the local pattern state, which is
stored in the instance field patternState, and the mobile pattern state, which is received
in the msList and given as parameter to the method. The name of the selected aggregation
function is returned as a string. The service provider has to assure that the aggregation pattern
implements all aggregation functions requested by the navigation pattern. An empty string
signals the ASDController that the execution of an aggregation function is not required for
the actual state.

The handleReceivedMessage() method processes received messages based on the local
and mobile pattern state. Parameters given to this method are: the mobile states list
(msList), the navigation parameters (navParam) extracted from the service descriptor, and
the address of the local host (localHost) and of the peer host (peerHost) at the other end
of the socket channel. However, for reply messages not all parameters are specified. Since
reply messages do not comprise a service descriptor, no navigation parameters are specified.
Also the address of the local host is omitted.

The return value of this method is defined by the inner class Result. The navigation
pattern can specify a mobile states list, a tasks list, a message type, and a timeout value for the
message to be sent. The tasks list is defined as a list of TaskDescription objects. For each
task the address of the node that the task refers to is specified. The task itself is represented
by a combination of todo flags (see Table 6.5). When the SET_TIMEOUT flag is set, a timeout
value must be specified by the navigation pattern. If an empty task list is returned, no actions
are taken by the ASDController.

SEND = 0x01
CLOSE_CHANNEL = 0x02
SET_RELEASE_TO = 0x04
CANCEL_TIMEOUT = 0x08
SET_TIMEOUT = 0x10

Table 6.5: Todo flags for the TaskDescription

Each navigation pattern must also implement the handleASDException() method. This
method provides the processing of ASDExceptions for the navigation pattern. It takes the
occurred exception (error), and the address of the peer host (peerHost) at the other end of
the channel on which the exception occurred as parameters. Based on this information the
navigation pattern can decide how to deal with the timeout, and return a Result specifying
the actions to be taken by the ASDController.

The handleTimeout() method informs the navigation pattern that a pattern timeout oc-
curred. Each navigation pattern can implement its own timeout mechanism in this method.
The return value is again of the previously described Result class. Thus, the pattern can
specify actions to be taken by the ASDController to handle the timeout.

ASD Daemon 46

6.3.7 AggregationPattern

The abstract AggregationPattern class defines the interface between the ASD dae-
mon and the aggregation patterns. Each aggregation pattern must subclass the abstract
AggregationPattern class, and, consequently, implement the methods defined by the
abstract class. Moreover, aggregation patterns inherit the fields and inner classes defined by
the AggregationPattern class.

The AggregationPattern class defines one instance field: a list of errors that oc-
curred during aggregation pattern operation. This list can be used by the aggregation patterns
to communicate error messages to the ASD daemon. When sending a reply message, these
error messages will be included in the reply by the ASDController. The same applies
for navigation pattern and capability function error lists. The startAggregationFunction()
method is called by the ASDController if the selectAggregationFunction() method of
the navigation pattern returned a non-empty string. Hence, the aggregation pattern must
implement all aggregation functions that can be requested by the navigation pattern it is used
with. An overview of the AggregationPattern class is presented in Figure 6.6.

AggregationPattern

+errors:OccurredErrorsList

+startAggFunction(patterParam:Parameters):SelectedNodesList

Parameters

(from AggregationPattern)

+functionName:String

+localHost:InetAddress

+rcvdHostsList:SelectedNodesList

+aggParam:AggregationParameters

+capFunctionResults:HashMap

Figure 6.6: Class diagram of the abstract AggregationPattern class

Parameters passed to the startAggregationFunction() method are defined by the Parameters
class. The name of the function to be executed is specified as a string. Moreover, the ad-
dress of the local host, the selected nodes list received in a reply message, the aggregation
parameters extracted from the service descriptor, and the results of the capability functions
are specified. Since a selected nodes list is only received in reply messages, this parameter
is not specified when a request message was received. In turn, aggregation parameters and
capability function results are specified for request messages but not for reply messages. The
AggregationParameters class is depicted in Figure 6.4. Capability function results are
given in a HashMap that associates CapFunctionInfo objects with a Short value repre-
senting the score returned by the capability function. The method returns the (eventually)
modified SelectedNodesList, which is used to update the selected nodes list held by the
ASDController.

ASD Messages 47

6.3.8 Capability Function

The abstract CapabilityFunction class defines the interface between the ASD dae-
mon and the capability functions. Each capability function must subclass the abstract
CapabilityFunction class, and thus implement the methods defined by the abstract
class. Moreover, capability functions inherit the error list field defined by the abstract
CapabilityFunction class. For a description of the error list field refer to 6.3.6. An
overview of the CapabilityFunction class is presented in Figure 6.7.

CapabilityFunction

+errors:OccurredErrorsList

+startCapabilityFunction(parameterList:Properties,localHost:InetAddress):Short

Figure 6.7: Class diagram of the abstract CapabilityFunction class

Each capability function must implement the startCapabilityFunction() method. Parameters
passed to this method are the capability function parameters (parameterList) extracted
from service descriptor, and the address of the local host (localHost). The Properties

object holding the capability function parameters contains exactly the key and value pairs
defined in the service descriptor. The address of the local host is required to generate error
messages, since the error generator (see Table 5.3) must be specified for each error message.
This applies also to navigation and aggregation patterns. The return value of this method is
defined as a Short value representing the score for this node. Since this value is used as input
for the aggregation pattern, there must be an aggreement between the aggregation pattern and
the capability function about the values the score can take.

6.4 ASD Messages

The four ASD message types are implemented in the asd.messages package. The structure
of this package is illustrated in Figure 6.8. We implemented each message type as a single
class, each subclassing the ASDMessage class. The ASDMessage class provides methods
for serializing and de-serializing the ASD header. Moreover, inner classes of ASDMessage
implement the message parts: mobile states list, selected nodes list, and occurred errors list
described in 5.2.1. Also, methods for serializing and de-serialing these message parts are
provided. The classes that implement a particular message type utilize this functionality for
serialing and de-serializing the messages.

In Table 6.6 we present the constructor of the ParameterList.Entry class. A
ParameterList.Entry object is passed to the addEntry() method, which is utilized
by the subclasses of ASDMessage to construct a parameter list. Since the pattern interface

ASD Messages 48

classes import the asd.messages package, this method can also be utilized by the patterns
for instance to generate a mobile states list. In this case the key parameter specifies the
mobile state key for this entry. The valueLength parameter specifies the length of the value
in bytes, and the value parameter defines the corresponding value. Furthermore, the total
length of the entry in bytes (length) must be specified.

messages

RequestMessage

+serializeRequest():

+deserializeRequest():

StatusMessage

+serializeStatus():

+deserializeStatus():

ASDMessage

+serializeHeader():

+deserializeHeader():

ReplyMessage

+serializeReply():

+deserializeReply():

DeployMessage

+serializeDeploy():

+deserializeDeploy():

Figure 6.8: Class diagram of the asd.messages package

In Table 6.7 the constructor of the SelectedNodesList.Entry class is presented. A
SelectedNodesList.Entry object is passed to the addEntry() and deleteEntry() meth-
ods which can be used, for instance, by the aggregation pattern to modify a selected nodes
list. The hostAddress parameter is defined as an array of bytes. To obtain the IP address
as an array of bytes for an InetAddress object, the getAddress() method can be used. The
configList parameter is defined as a ParameterList object. Hence, it can be generated
using the addEntry() method provided by the ParameterList class described above.

public Entry (short length, short key,

byte valueLength, byte[] value) {

this.byteLength = length;

this.key = key;

this.valueLength = valueLength;

this.value = value;

}

Table 6.6: Constructor of the ASDMessage.ParameterList.Entry class

An ASDException object can be passed to the addEntry() method provided by the
OccurredErrorsList.Entry class. This method can be utilized by the patterns to gen-
erate an occurred errors list. ASDExceptions are introduced in the next section.

ASD Exceptions 49

public Entry (byte[] hostAddress, byte nodeGroup,

short aggResult, ParameterList configList) {

this.hostAddress = hostAddress;

this.nodeGroup = nodeGroup;

this.aggregationResult = aggResult;

this.configParameters = configList;

}

Table 6.7: Constructor of the ASDMessage.SelectedNodesList.Entry class

6.5 ASD Exceptions

ASD exceptions thrown by the ASD daemon, or the ASD management station are defined
in the asd.exceptions package. In Table 6.8 all ASD exceptions defined in this package are
listed. Only the MANAGER_TIMEOUT exception is thrown by the management station, all other
ASD exceptions occur at the daemon side. ASD exceptions that occur on the daemon are
severe errors that stop the ASD protocol from correct operation. They are handled by the
handleASDExceptions() method of the ASDController (see 6.2.2).

Error ID Value Description

MANAGER_TIMEOUT 0x01 Timeout on management station
TTL_EXEEDED 0x02 Received TTL equals zero
NTD_PARSING_FAILED 0x03 Failed to parse the node type descriptor
NLD_FAILED 0x04 Node-level deployment failed
NODE_CONFIG_FAILED 0x05 Node configuration failed
CONNECT_FAILED 0x06 Connection establishment failed
SSLD_NOT_FOUND 0x07 No SSL details found for connection
SOCKET_READ_FAILED 0x08 Exception during read operation
UNWRAP_FAILED 0x09 Exception during unwrap operation
WRAP_FAILED 0x0a Exception during wrap operation
SOCKET_WRITE_FAILED 0xab Exception during write operation
MSG_TYPE_UNKNOWN 0x0c Unknown message type
INVALID_PRES 0x0d Pattern result invalid
PDG_FAILED 0x0d Pattern details generation failed
SD_PARSING_FAILED 0x0f Failed to parse the service descriptor
CHANNEL_SETUP_FAILED 0x10 Channel setup failed
PATTERN_NOT_FOUND 0X11 Pattern details not found

Table 6.8: Error IDs for the ASD daemon and management station

Patterns can throw ASD exceptions as well. Each exception defined by the patterns is
required to subclass the ASDException class. Soft errors that do not stop the daemon from
normal operation can be caught by the patterns and simply added to the error list with the
addEntry() method provided by the ASDMessage.OccurredErrorsList class. Severe

Support Classes 50

erorrs, however, must be forwarded to the ASDController. ASD exceptions defined by our
example patterns will be described in the corresponding sections.

The ASDException class also provides the constructErrorMappings() method that is
used by the ASDUserInterface to map the error IDs to strings. These are used for
displaying error messages on the management station. Displayed error messages include,
additionally to the error string, the ID of the pattern that caused the exception. Exceptions can
be caused either by the ASD daemon (0x00), the management station (0x01), the navigation
pattern (0x02), the capability function (0x03), or the aggregation pattern (0x04).

6.6 Support Classes

The asd.support package defines two support classes that are used on the ASD management
station as well as on the ASD daemons. The first class, SSLDetails, holds the SSLEngine
and its associated buffers. The second class, Defragmenter, is used to hold incomplete
messages received by the management station or an ASD daemon.

The SSLDetails constructor requires the following parameters: an SSLContext, a
host name and port, and two options (useClientMode and requireClientAuth). The
first option specifies whether the client mode is used for the engine, and the second option
specifies whether clients are required to authenticate themselves to the server. This option,
obviously, makes only sense if the engine is configured to use the server mode. When creating
an SSLDetails object also the four buffers needed for utilizing the engine (see 6.2.2) are
allocated.

The Defragmenter class is utilized by the deployOnNodes() method of the ASDManager

on the ASD management station, and by the ASDController on the daemons. It is needed
in case a message gets fragmented. This can happen when a message is transported over a
network which can only handle packets smaller than the packet size. When the message is
read from the socket buffer on the receiving node, eventually, only part of the message has
already reached the destination. The getCompleteMessage() method of the Defragmenter

is called each time application data is received to assure that the received message is
complete. The received message bytes are added to the end of a buffer maintained by the
Defragmenter. When the message in the buffer is complete, according to the payload
length defined in the message header, it is returned by the method. The buffer is compacted
to delete the already completed messages.

6.7 Example Patterns

The example patterns we have implemented were briefly introduced in 3.3. The most com-
plex of the example patterns is the ConstrainedRemoteEcho navigation pattern. It is im-
plemented as a finite state machine. The FindBestInform aggregation pattern matches the

Example Patterns 51

example navigation pattern. Furthermore, the implemented MaxLoadAvg5minNetwork ca-
pability function is adapted to the example aggregation pattern.

6.7.1 ConstrainedRemoteEcho

The ConstrainedRemoteEcho navigation pattern is the most complex pattern of the imple-
mented. It subclasses the abstract NavigationPattern class and implements all its meth-
ods. In Figure 6.9 the finite state machine, the pattern is based on, is presented.

INIT

do/onFirstExplorer

FORWARD

do/onEcho

FIRST_EXPLORER

do/onEcho/SubExpl

TERMINATED

do/onSubExplorer

[isInDomain()=true & leaf node]
mInit or mExplorer

WAIT_FOR_ECHO

do/onEcho/SubExpl

mEcho or mExplored

[all replies rcvd]
mEcho, mExplored, or TImeout

[all replies rcvd]
mEcho, mExplored, or Timeout

[all replies rcvd]
mEcho or Timeout

mExplorer mExplorer, mEcho, or mExplored

mEcho or Timeout

[isInDomain()=false]

mInit

mInit or mExplorer

Figure 6.9: Statechart diagram of the ContrainedRemoteEcho navigation pattern

The initial pattern state, which is passed to the navigation pattern constructor, is the INIT

state. When a service deployment operation is started on the ASD management station all
participating nodes are in the INIT state. Furthermore, four mobile states are exchanged
between nodes: mInit, mExplorer, mEcho, and mExplored. As an example we describe the
transition from the INIT state to the FORWARD state. A node in the INIT state transits into
the FORWARD state only if two conditions are fulfilled: an mInit message is received, and the
node is not part of the target network.

The ConstrainedRemoteEcho class implements the selectAggregationFunction() method
defined by the abstract NavigationPattern class. According to the actual pattern state
and the mobile pattern state of the received message, this method determines the aggregation
function to be executed by the aggregation pattern. In Figure 6.9 these functions are illustrated
as do-actions for the particular state. Aggregation functions that must be provided by the
aggregation pattern are: onFirstExplorer, onSubExplorer, and onEcho. These functions are
described together with the FindBest-Inform aggregation pattern. In the FIRST_EXPLORER

and WAIT_FOR_ECHO state one of two functions is selected according the received mobile
state. If an mExplorer message was received the onSubExplorer aggregation function is

Example Patterns 52

executed. Otherwise, for mEcho and mExplored messages, the onEcho aggregation function
is executed.

After execution of the aggregation function, the handleReceivedMessage() method is
called by the ASDController. This method determines the new pattern state and saves it in
the patternState instance field. Furthermore, actions to be taken by the ASDController
are determined. Since these leave-actions are not illustrated in Figure 6.9, we will describe
them in detail.

Init State

At the beginning of a service deployment operation all nodes should be in the INIT state.
Messages received from the management station, or from other nodes are processed by the
handleInitState() method. First, the timeout budget is extracted from the service descriptor
(for mInit messages), or from the mobile states list (for mExplorer messages). Next, for each
target network specified in the service descriptor the isNodeInDomain() method provided
by the OverlayGeneration class is used to determine whether this node is part the target
network.

If the node does not reside within the target network the getNeighborInDomain() method
provided by the OverlayGeneration class is used to determine the IP address and
associated cost of one node within the target network. An mExplorer message is send to the
identified node. If no node within the target network can be identified an exception is thrown.
Since the ConstrainedRemoteEcho pattern uses a timeout mechanism, a timer is started,
with the received timeout budget as timeout value, when the mExplorer message is sent.
Moreover, the pattern transits into the FORWARD state.

If the node resides within the questioned target network, however, the getNeighbors()
method provided by the OverlayGeneration class is used to determine all direct neighbors
within the target network. This method might, in case of a symmetrical overlay topology,
return the node that we received the mExplorer message from as one of the neighbors. The
address of this node was previously saved in the firstExplorer instance field. Hence, it
can be filtered out from the list of direct neighbors.

The mExplorer message is forwarded to all identified direct neighbors, and a pattern
timeout is started. All nodes the message is forwarded to are added to the list of
unanwseredExplorers. Moreover, the timeout bugdet must be decremented. For comput-
ing the new timeout budget the maximum cost of all links a message is sent out on (plus an
additional margin) is subtracted from the received timeout budget. This is necessary to make
sure the timeout occurs first on the node that experienced a problem, and not on some other
downstream node. The pattern transits into the FIRST_EXPLORER state.

If no direct neighbor, or node within a target domain could be identified, this node is a
leaf node in the overlay topology. In this case the received message can not be forwarded,
and instead an mEcho message is sent immediately to the first explorer node. The pattern

Example Patterns 53

transits directly into the TERMINATED state.

Other States

Messages received in any other pattern state than INIT are processed by the handleOther-
States() method. If an mExplored or mEcho message was received, the node that sent the
message is deleted from the list of unansweredExplorers. Furthermore, it is determined
whether this message was the last oustanding reply. If this is not the case the pattern waits
for the other replies before sending a reply message itself. Moreover, it transits into the
WAIT_FOR_ECHO state in case the actual pattern state is FIRST_EXPLORER. In contrast, if
all replies have already been received an mEcho message is sent to the firstExplorer,
and the pattern timeout is canceled. In this case the pattern transits into the TERMINATED state.

On reception of an mExplorer message an mExplored message is sent back in reply.
This signals the sender that the node has already been explored by another node. More-
over, each time a reply message (mEcho or mExplorer) is sent the pattern requests the
ASDController to close the corresponding channel and set the release timeout.

Timeout Mechanism

Pattern timeouts are handled on behalf of the patterns by the ASDController. When a
timeout occurred the ASDController calls the handleTimeout() method of the navigation
pattern. The ConstrainedRemoteEcho pattern handles timeouts, independent of the actual
pattern state, by sending an mEcho message to the first explorer node. Moreover, it requests
the ASDController to close all channels on which the node waits for outstanding reply mes-
sages, and to set the release timeout. When a timeout occurred the pattern transits immediately
into the TERMINATED state.

Exception Handling

The described methods of the ConstrainedRemoteEcho pattern can throw ASD excep-
tions. These exceptions are caught by the ASDController (see 6.2.2). However, the
protocol processing in case of exceptions is pattern-specific, and, consequently, handled by
the handleASDExceptions() method of the navigation pattern.

Five different ASD exceptions are defined by the ConstrainedRemoteEcho class. A
MobilePatternState exception is thrown if the mobile pattern state, extracted from the
received mobile states list, is not valid for the actual pattern state. A NeighborDiscovery

exception is thrown in case an error occurred during execution of the Overlay Topology
Generation protocol. If the initial timeout value specified in the serivce descriptor is smaller
than zero a TimeoutValueException is thrown. If the timeout budget, extracted from
the mobile states list, is smaller than a minimum amount an TimeoutBudgetException

is thrown, because a further reduction would probably result in a negative value. Only the
TimeoutException is not thrown by the ConstrainedRemoteEcho class. Instead, it is
added to the occurred errors list by the handleTimeout() method. This is due to the fact that a

Example Patterns 54

timeout does not interrupt the normal protol operation.

If the ConstrainedRemoteEcho pattern is alredy in the TERMINATED state ASD ex-
ceptions are ignored by the handleASDExceptions() method. Otherwise, the peer host is
removed from the list of unansweredExplorers. In case the list is empty after the peer
host has been removed, a reply message (mEcho) is sent to the first explorer, and the pattern
transits into the TERMINATED state. If the list is non-empty nothing needs to be done, since
the channel on which the exception occurred is closed automatically by the ASDController.

6.7.2 FindBestInform

The FindBestInform aggregation pattern subclasses the abstract AggregationPattern
class, and, consequently, implements the startAggregationFunction() method. To match the
ContrainedRemoteEcho navigation pattern, it provides the onFirstExplorer, onEcho, and
onSubExplorer aggregation functions. A list of selected nodes, which is updated and returned
by the aggregation functions, is stored in an instance field.

The onFirstExplorer() method is executed on reception of the first mExplorer message
in order to evaluate the capability function results. Each result corresponds to a particular
node group. A test deployment of the associated service component is executed for all results
with a score greater than zero. Therefore, the testDeployment() method provided by the
NodeLevelDeployment class is utilized. If the test deployment was successful an entry for
this node is added to the selected nodes list.

The FindBestInform aggregation pattern selects only one (the best) node per node
group. Thus, on reception of an mEcho or mExplored message the local selected nodes list
might need to be updated. This is handled by the onEcho() method. If the local selected
nodes list is empty the received list is simply copied. Otherwise, the scores for each node
group are compared and the better node is added to, or rather resides in the local list. The
method returns the updated selected nodes list.

The onSubExplorer() method is executed when a subsequent mExplorer message is
received. It returns the local selected nodes list, which is sent on behalf of the navigation pat-
tern by the ASDController is an mExplored message. The FindBestInform aggregation
pattern does not define or throw any ASD exceptions.

6.7.3 MaxLoadAvg5minNetwork

The MaxLoadAvg5minNetwork capability function subclasses the abstract
CapabilityFunction class, and thus implements the startCapabilityFunction() method
defined by its superclass. The capability parameter list, which is passed to this method
requires three parameters for the MaxLoadAvg5minNetwork class: (i) the maximum
allowed load average, (ii) a network or domain address, and (iii) the corresponding address
mask.

Example Patterns 55

The method first checkes whether all required parameters have been correctly extracted
from the service descriptor. If any of the three parameters specified above is not available
an ParametersNotFoundException is thrown. Moreover, it is determined whether
the node is part of the specified network or domain. An exception thrown by the
isNodeInSubnet() method of the OverlayGenreation class is caught and in turn an
IsNodeInSubnetException is thrown by the MaxLoadAvg5minNetwork capability
function. If the node is not part of the network a zero score is returned. Otherwise, the load
average in the last 5 minutes is read from the ‘/proc/loadavg’ file. Hence, we anticipate that
a linux environment is available on all nodes. If the file cannot be found or any other error
occurs during reading an ReadLoadAvgException is thrown. Finally, the load average
value is be turned into a score, and the score is returned.

Chapter 7

Evaluation

We commence this chapter with a qualitative evaluation of the ASD framework’s utility for
automated service deployment and resource discovery. In the following sections, system tests
with the implemented example patterns are described and a detailed functional and perfor-
mance evaluation of the results is presented. The resource discovery part of the ASD frame-
work was tested on PlanetLab [24]. The deployment of an example service, the setup of a
unidirectional tunnel, was tested in a local testbed for reasons explained in the remainder of
this chapter. Finally, the ASD framework is compared to related approaches regarding the
provided functionality.

7.1 ASD Framework Utility

The strength of the ASD framework lies in the strict separation of discovery logic provided
by the patterns from underlying communication mechanisms. Thus, the service-specific
discovery logic (navigation, aggregation, capabilities) can be exchanged very easily by
adapting the service descriptor. Only the pattern names and the parameters required by the
selected patterns need to be modified. Furthermore, patterns are not required to be available
on all nodes participating in the service deployment. A pattern loading mechanism is used
to fetch unavailable patterns from a nearby server. This further supports the idea of pattern
exchangeability.

The ASD framework is also helpful for the design of service-specific patterns. Devel-
opers can concentrate on the complex pattern-logic while the ASD framework provides the
required infrastructure. This is on one hand the service descriptor, which provides a format
for specifying deployment requests. On the other hand, the distribution of request and reply
messages is handled by the ASD framework.

We specified clearly defined interfaces between the patterns and the ASD framework.
Thus, patterns can delegate tasks such as sending of messages, and closing of connections, to
the framework. Moreover, pattern-relevant information is extracted from received messages
by the framework and passed to the patterns. Security is also provided by the ASD framework,
since TLS authentication and encryption are used for all connections.

56

Functional Resource Discovery Tests 57

7.2 Functional Resource Discovery Tests

For the functional tests we deployed the ASD framework on four PlanetLab nodes at the
ETH Zurich site, and two local nodes. The overlay configuration for each test was generated
according to the test objective and transferred to each ASD daemon. In test (I) the general
operation of the implementation is tested. whereas in tests (II) and (III) error situations are
investigated. Finally, in test (IV) the pattern is tested on a fully connected network graph.

Primergy

Primergy

Primergy

Primergy

Primergy

planetlab03.ethz.ch

planetlab04.ethz.ch

planetlab02.ethz.ch

planetlab01.ethz.ch

Network Management Station
pc−4207.ethz.ch

pc−4209.ethz.ch
Start Node

Figure 7.1: Testbed setup for test (I)-(III)

The testbed setup for tests (I)-(III) is depicted in figure 7.1. The ASD management station
resides on local node pc-4207.ethz.ch, all other nodes run ASD daemons. As start node serves
the local node pc-4209.ethz.ch.

7.2.1 General Functionality

Objective: The objective for test (I) is to verify the general functionality of the ASD
framework under normal conditions.

Assumptions: We made the following assumptions regarding the navigation parame-
ters: We defined one target network (129.132.57.0) which comprises all PlanetLab nodes
in the testbed that run ASD daemons. The initial timeout value is set to 30 seconds, in
order to prevent timeouts under normal operation (no errors). Regarding the aggregation
parameters, we assume that only one node group is requested. Furthermore, only one node
of this node group is required. As we do resource discovery tests, no service component and
no configuration information is specified. Assumptions about capability function parameters
include: a maximum load average in the last 5 minutes of less than 5.0, and a network address
and mask identical with the target network. On the management station pc-4207.ethz.ch was
selected as start node. In the daemon start-up arguments the start node is specified as pattern
server.

Functional Resource Discovery Tests 58

ASD Manager Start Node ASD Daemon ASD Daemon ASD Daemon ASD Daemon

planetlab01.ethz.chpc−4209.ethz.chpc−4207.ethz.ch planetlab02.ethz.ch

(1) Initial Request

(2) Request

(10) Reply

(9) Reply

(6) Reply

(3) Request

(4)Request

(8) Reply

(7) Reply

(5) Request

planetlab04.ethz.ch planetlab03.ethz.ch

Figure 7.2: Sequence diagram for test setup (I)

Progression: The test progression is summarized in a sequence diagram (Fig. 7.2). On
starting the test, the management station sends an initial request (1) to the start node, which is
processed by the ASD daemon running on that node. As the start node itself is not within the
target network, it forwards the ASD request (2) to one node within the target domain (planet-
lab01.ethz.ch). This node forwards the ASD request (3, 4) to all its neighbor nodes within the
target network (planetlab03.ethz.ch and planetlab04.ethz.ch). Node planetlab04.ethz.ch has
no further neighbors in the target network. Thus, it immediately generates a reply message
(6) and sends it back to planetlab01.ethz.ch. Node planetlab03.ethz.ch forwards the ASD
request (5) to its neighbor node planetlab02.ethz.ch, which in turn sends an immediate reply
(7) back since it has no further neighbors within the target network. On reception of this reply
message, node planetlab03.ethz.ch generates itself a reply (8) message and sends it back
to node planetlab01.ethz.ch. Then, node planetlab01.ethz.ch has received all outstanding
reply messages, and sends its reply message (9) to the start node. Finally, the start node
has received replies from all nodes it forwarded a request message to, and thus it sends a
reply (10) message back to the ASD management station. The resource discovery result is
displayed on the management station.

Results: No exceptions occurred during the test. One suitable node was identified and
displayed to the user. Thus, the basic operation of the ASD framework and the example
patterns, as well as the interaction between them, is verified. Furthermore, the remote pattern
loading mechanism worked correctly on all nodes.

7.2.2 Node Failure Tolerance

Objective: The objective of test (II) was to verify the correct behavior of the ASD framework
in case some of the nodes are not responding or down. This scenario is considered very
common in real-world networks.

Assumptions: The ASD daemons on node planetlab04.ethz.ch and planetlab02.ethz.ch

Functional Resource Discovery Tests 59

are not started in order to simulate unreachable nodes. Apart from that, assumptions are
identical with those in test (I).

Progression: The sequence diagram in Fig. 7.3 depicts the test progression. The progression
is identical to the test under normal operation until node planetlab01.ethz.ch forwards the
request (3) to node planetlab04.ethz.ch, which simulates one of the failed nodes. When node
planetlab01.ethz.ch attempts to establish the connection, an ASDSocketConnectException
is thrown. Nevertheless, the request (4) is forwarded to node planetlab03.ethz.ch as under
normal operation. On node planetlab03.ethz.ch the same exception occurs (5) when the
second inactive node, planetlab02.ethz.ch, is contacted. Since planetlab03.ethz.ch has no
further neighbors within the target domain, it sends its reply message (6) immediately after
the exception. On reception of this reply message node planetlab01.ethz.ch can send its
reply (7) to the start node. The further progression is again identical to the test under normal
operation. But this time, the resource discovery result displayed on the management station
includes two error messages.

planetlab01.ethz.ch: Exception occurred during connection establishment

planetlab03.ethz.ch: Exception occurred during connection establishment

ASD Manager Start Node ASD Daemon ASD Daemon

planetlab01.ethz.chpc−4209.ethz.chpc−4207.ethz.ch planetlab02.ethz.ch

(1) Initial Request

(2) Request

(3) Request

(4)Request

(5) Request

planetlab04.ethz.ch planetlab03.ethz.ch

(6) Reply

(7) Reply

(8) Reply

Figure 7.3: Sequence diagram for test setup (II)

Results: The test showed that the ASD framework can handle node failures. ASDSocket-
ConnectExceptions are processed by the ASD daemon. The handleASDException() method,
which handles all ASD exceptions, successfully generated an error message and called the
ConstrainedRemoteEcho navigation pattern’s exception handling method. Furthermore, is
was verified that the exception handling method of the ConstrainedRemoteEcho pattern works
correctly. A reply message is sent only if all outstanding replies have been received. The
test also showed that error messages are displayed correctly to the user on the management
station.

Functional Resource Discovery Tests 60

7.2.3 Timeout Handling

Objective: The objective of test (III) was to verify the timeout handling of the ASD frame-
work and the example patterns.

Assumptions: We decreased the initial timeout value for the ConstrainedRemoteEcho
navigation pattern to 5000 ms to force the occurrence of timeouts. Apart from that, the same
assumptions as in test (I) apply.

Progression: Depending on the actual load of the network, and on the particular nodes
the timeout occurs on different nodes. If the time between start of the timer on pc-
4209.ethz.ch and start of the timer on planetlab01.ethz.ch is greater than a certain value the
timer on pc-4209.ethz.ch expires first. If the time is smaller than this value the timer on plan-
etlab01.ethz.ch expires first. Assuming the timeout occurs first on pc-4209.ethz.ch, see Fig.
7.4a, it causes a reply message (3) to be sent to the ASD management station immediately.
Furthermore, the connection to planetlab01.ethz.ch is closed which automatically cancels
the timeout on this node. Eventually, the timeout on planetlab01.ethz.ch occurs before the
connection is closed. In this case a reply message is sent to pc-4209. This reply message,
however is ignored by the ASD daemon on pc-4209. Assuming the timeout expires first on
node planetlab01.ethz.ch, see Fig. 7.4b, the timeout causes a reply message (3) to be sent
to pc-4209.ethz.ch immediately. If the timer on pc-4207.ethz.ch is not already expired it
is canceled on reception of the reply message, and a reply message (4) is sent to the ASD
management station. In both cases, an error message is displayed to the user on the ASD
management station.

a) pc-4209.ethz.ch: Timeout occurred.

b) planetlab01.ethz.ch: Timeout occurred.

a) b)Start Node

planetlab01.ethz.chpc−4209.ethz.chpc−4207.ethz.ch

50
00

 m
s

Start Node

planetlab01.ethz.chpc−4209.ethz.chpc−4207.ethz.ch

50
00

 m
s

ASD Manager ASD Daemon ASD Manager ASD Daemon

30
00

 m
s

(4) Reply

(3) Reply

30
00

 m
s

(1) Initial Request

(2) Request

(3) Reply

(1) Initial Request (2) Request

Figure 7.4: Sequence diagrams for test setup (III)

Results: Starting, canceling, and expiration of timeouts is handled correctly by the ASD dae-
mon. As expected, the ConstrainedRemoteEcho navigation pattern sends an immediate reply

Functional Resource Discovery Tests 61

message in case of a timeout. Moreover, the timeout budget is decreased correctly each time
a request is forwarded by the ConstrainedRemoteEcho pattern. The mapping of error IDs to
error messages for patterns, which is based on configuration files, was verified.

7.2.4 Fully Connected Graphs

Objective: The objective of test (IV) was to verify the correct operation of the ASD
framework and the example patterns on a fully connected network graph.

Assumptions: The overlay configuration for this test, depicted in Fig. 7.5, is based on
a fully connected graph. We restricted the overlay to three ASD daemons because otherwise
the sequence diagrams would get too complex. In contrast to the preceeding tests, we
specified a node that is part of the target network (planetlab01.ethz.ch) as start node.

Primergy

Primergy

Primergy

Network Management Station
pc−4207.ethz.ch

Start Node
planetlab01.ethz.ch

planetlab02.ethz.ch

planetlab03.ethz.ch

Figure 7.5: Testbed setup for test (IV)

Progression: The management station sends a request to the start node planetlab01.ethz.ch,
which is part of the target network. Thus, it forwards the request to its neighbor nodes plan-
etlab02.ethz.ch and planetlab03.ethz.ch. According to the fully connected graph topology,
these nodes are neighbor nodes as well. Thus, each node is forwarding the request to the
other node, respectively. When a request is received by one of the nodes, this node replies
with sending an mExplored message back. This indicates that already a request message
from another node was received. Changing loads on the individual nodes and in the network
result in different message orders. In Fig. 7.6 one of the observed progressions is is depicted
representatively.

Results: The test showed that the ASD daemon is capable of handling multiple con-
nections to the same node. Furthermore, it was verified that the ConstrainedRemoteEcho
navigation pattern handles fully connected graphs correctly by sending mExplored messages
to subsequent explorers.

Resource Discovery Performance Tests 62

planetlab01.ethz.ch

Start Node ASD Daemon

planetlab02.ethz.ch

Reply
Request

ASD Manager ASD Daemon

pc−4207.ethz.ch planetlab03.ethz.ch

di
sc

ov
er

y
tim

e

Figure 7.6: Example sequence diagram for test setup (IV)

7.3 Resource Discovery Performance Tests

To evaluate the large-scale functionality of the ASD framework and the implemented example
patterns, we used the PlanetLab platform. PlanetLab is a globally distributed platform for
developing and testing network services under conditions as experiences in the real Internet.

For testing the ASD framework we have to generate an overlay topology on top of
PlanetLab. The idea is to generate the overlay based on round-trip-times between the
individual PlanetLab nodes. That means, two nodes become direct neighbors in the overlay
topology only if the round-trip-time for these nodes is smaller than a specified maximum.
Hence, PlanetLab network characteristics such as the delay between nodes, influence the
generated overlay topology. We analyze this influence of PlanetLab network characteristics
on the overlay topology in order to draw conclusions for the test setup.

7.3.1 PlanetLab Network Analysis

Scriptroute [25] is a general network measurement interface that provides access to the
underlying raw sockets on PlanetLab. A great number of PlanetLab nodes is running
Scriptroute servers. These servers host measurement scripts that can be executed remotely to
send network probes (e.g. ICMP requests) to a number of specified nodes. Hence, Scriptroute
can be used to measure the round-trip-times between PlanetLab nodes.

Round-trip-time (RTT) measurements with the Scriptroute tool are continuously (every
half hour) conducted for all PlanetLab nodes by Jeremy Stribling. This All-Pairs-Pings data
is published at [26]. Naturally, we use this data for generating the overlay topology. Round-
trip-times are measured between all PlanetLab nodes that run Scriptroute servers resulting
in a N x N matrix (where N is the number of Scriptroute servers). Since PlanetLab provides
real Internet conditions, some of the theoretically available servers might be unreachable at

Resource Discovery Performance Tests 63

the time measurements are conducted. Hence, measurement results are reduced to an n x
m matrix (where n is the number of Scriptroute servers that send ICMP probes, and m the
number of Scriptroute servers that answer ICMP probes).

We analyze the All-Pairs-Pings data for the week 07/01 to 07/07 to observe how the
matrix varies over time. For each data set (in total 48 sets per day) the number of Scriptroute
servers (n), that executed the measurement script successfully, is determined. Results are
illustrated in Figure 7.7.

 50

 100

 150

 200

 250

07/01 07/02 07/03 07/04 07/05 07/06 07/07

N
um

be
r

of
 a

va
ila

bl
e

N
od

es

Date/Time

"statistics.dat" using 1:3

Figure 7.7: Number of available Scriptroute servers (n) from 07/01 to 07/07

On an average 210 Scriptroute servers, out of 280 deployed on PlanetLab, executed
the measurements scripts. The number of servers available for the measurements has
a variation of about 5% during one day. Considering the whole week, the number of
available servers decreases between 07/03 and 07/04 reaching a minimum of 192 available
servers. Moreover, for 5 data sets, distributed over the week, even less than 180 servers
yielded results. Consequences for the overlay topology are examined at the end of this section.

Another interesting network topology characteristic is the average vertices degree. Con-
sidering the All-Pairs-Pings data, the vertices degree corresponds to the average number
of Scriptroute servers that responded to ICMP requests. Hence, N-1 equals the maximum,
theoretically possible, vertices degree. We determined the average vertices degree for
different maximum RTT values. That means, the number of n servers responding to the
requests is reduced to servers that answered with an RTT less than the specified maximum.
Naturally, the average vertices degree is proportional to the maximum RTT value. Figure
7.8 depicts the average vertices degree vs. the maximum round-trip-time (RTTmax) over

Resource Discovery Performance Tests 64

the week from 07/01 to 07/07. We randomly selected the All-Pairs-Ping data set measured
at 11:00 Eastern Time for the analysis. Thus, for each RTTmax value seven average degree
values (one value per day) are computed.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600

A
ve

ra
ge

 V
er

tic
es

 D
eg

re
e

RTTmax/[ms]

"maxcosts.dat" using 4:5

Figure 7.8: Average vertices degree vs. RTTmax from 07/01 to 07/07 at 11:00

As we expected, the resulting curve shows a proportional relation between the average
vertices degree and the maximum RTT value. For RTTmax values greater than approximately
300 msec the curve flattens, and the maximum vertices degree averages around 270 reachable
servers. Hence, the average maximum number of servers (m) that answer ICMP requests
sent by another server is larger than the maximum number of servers (n) that actually send
requests. According to Jeremy Stribling this is due to login-problems on Scriptroute servers
when starting the measurement scripts. However, for smaller RTTmax values the number of
sending servers (n) is larger than the number of responding servers (m).

We will generate overlay topologies based on All-Pairs-Pings data for varying RTTmax
values. Since the measurement result matrix is asymmetrical, the generated overlay topology
will be asymmetrical as well. The maximum number of nodes participating in the overlay is
determined either by n or by m, which ever is larger for a particular RTTmax value and data
set. Moreover, each node participating in the overlay generated from a particular data set can
have up to m-1 neighbors. To determine whether the resulting network graph is connected,
or to determine the number of subgraphs, is non-trivial. However, it is not required for this
work.

Resource Discovery Performance Tests 65

7.3.2 Test Setup

For the performance measurements we deployed the ASD daemon on all practically available
(reachable via SSH) PlanetLab nodes. To achieve this in an efficient way, we utilized the
Nixes Tool Set [27] developed at the Northwestern University. Nixes provides a set of bash
scripts to install, maintain, control and monitor applications on PlanetLab. All scripts take a
as argument a list of nodes. The ASD management station was deployed one PlanetLab node
at the ETH Zurich site.

We used one All-Pairs-Pings data set, generated on 07/27 at 05:15 Eastern Time, for
all measurements. For this data set we generated overlay topologies for varying (from 10
msec to 90 msec with an interval of 10 msec) RTTmax values. A detailed description of the
overlay generation mechanism is given in 7.3. The topology was stored in a configuration
file with the structure required by the OTG protocol (refer to 6.3.3). We transfered the file
to our repository, and utilized the plcmd script provided by Nixes to download it to all nodes
participating in the overlay.

Depending on the maximum round-trip-time value used to generate the overlay topol-
ogy, the number of nodes that can be reached from one point (start node) within the network
can vary. Moreover, the number of reachable nodes varies for different start nodes, since
the topology is not fully connected. We selected planetlab1.inria.fr, a PlanetLab node at the
INRIA Sophia Antipolis site, as start node, because it was the closest node that Scriptroute
data was available for. The number of reachable nodes from planetlab1.inria.fr for the
generated overlay topologies vs. the maximum round-trip-time used for the generation is
depicted in Figure 7.9.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 r

ea
ch

ab
le

 n
od

es

RTTmax/[ms]

"testdata.dat"

Figure 7.9: Number of reachable nodes vs. RTTmax for start node planetlab1.inria.fr

Resource Discovery Performance Tests 66

As we expected, the number of nodes that can be reached from the start node increases with
RTTmax. Four nodes can be reached with a round-trip-time of less than 10 msec. These
nodes probably reside at the same or a nearby PlanetLab site. The maximum number of
nodes, indeed all 280 nodes that run Scriptroute servers, can be reached with an RTTmax
value of 73 msec or more. The gradient of the curve is largest between 72 msec and 73 msec.
We reason that for RTTmax values smaller than 72 msec only nodes at European sites can be
reached. Whereas for RTTmax values larger than 73 msec all nodes on other continents (most
of them at North American sites) can be reached as well. This requires only one oversea
link, since most of the nodes will be connected among each other as well. We expect that the
number of reachable nodes has an influence on the measurement results.

We can summarize that each test setup is characterized by static parameters such as
the used All-Pairs-Pings data set, and the start node, as well as varying parameters such as the
RTTmax value used to generate the overlay topology. For each test setup we measured the

• total discovery latency on the ASD management station

• total traffic generated for one resource discovery

Based on the analysis of PlanetLab network characteristics (Fig. 7.8), and the exploration
of reachable nodes statistics (Fig. 7.9), we decided to vary RTTmax in the range from 20
msec to 70 msec with an interval of 10 msec. Moreover, test results are averaged over 10
measurements, and for each result the standard deviation is given.

ASD daemons were restarted for each test setup, since the topology configuration file
had to be updated on all daemons. For starting the daemons we utilized the Nixes plcmd
script again. The service descriptor was adapted to resource discovery tasks. Thus, node
configuration information was omitted, since it is not needed for resource discovery. The
initial timeout budget was set to 30 seconds, since this was about the expected time for a
resource discovery over a maximum of 83 nodes to complete if no timeouts occur.

Moreover, the ConstrainedRemoteEcho navigation pattern requires a target network that is
used as a restriction for the discovery. The network in which all PlanetLab nodes participate,
indeed, is the Internet, as nodes are hosted by globally distributed institutions each using
its own address space. Thus, we have to use a ’pseudo’ target address (0.0.0.0) and address
mask (0.0.0.0) to be able to reach all PlanetLab nodes using the ConstrainedRemoteEcho
navigation pattern.

7.3.3 Test Results and Evaluation

First, we present the test results for the discovery latency measurements. In Fig. 7.10
measured resource discovery latencies as a function of RTTmax are depicted. The values for
mean, and standard deviation (rounded to one digit) are given in table 7.1.

In contrast to our expectations, the resource discovery latency is not proportional to
RTTmax. We anticipated that the discovery latency increases with RTTmax, since an

Resource Discovery Performance Tests 67

increasing RTTmax value results in an increasing number of visited nodes, and an increasing
average degree of these nodes. We expected the average degree to have an influence on
the discovery latencies (and on the generated traffic), because the ConstrainedRemoteEcho
pattern forwards discovery requests to all direct neighbor nodes in order to flood the target
network.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 20 30 40 50 60 70

R
es

ou
rc

e
D

is
co

ve
ry

 T
im

e/
[m

s]

RTTmax/[ms]

"deploy_times.dat"

Figure 7.10: Resource discovery latencies vs. RTT max

For all measurements with an RTTmax value larger than 20 msec, except one, resource dis-
covery completed in between 30 and 41 seconds. This can be explained with the more realistic
conditions (node failures, high loads etc.) in the PlanetLab network, and the larger number
of nodes participating in the performance tests compared to the functional tests. Thus, the
probability of timeouts is much higher than in the functional tests. Indeed, only one resource
discovery with an RTTmax value larger than 20 msec completed before a timeout occurred.
This was due to the fact that during this test a large number of nodes was unreachable via
SSH, and the discovery request could only be forwarded to a small subset of the theoretically
reachable nodes.

Latency statistics 20 msec 30 msec 40 msec 50 msec 60 msec 70 msec

Mean 4076.4 31772.5 32783.9 33932 33533.6 33382.5
Standard deviation 2980.1 3052.9 598.8 950.3 1825.9 2392.9

Table 7.1: Mean and standard deviation for resource discovery latencies

We reason a decreased initial timeout budget would be more efficient. Ideally, the timeout
occurs after all reachable nodes have sent their reply messages. The generated traffic for

Resource Discovery Performance Tests 68

different initial timeout budgets could be analyzed to determine the optimum timeout value.
This, however, is left for further research.

Moreover, we observed that the first resource discovery lasted significantly longer than
subsequent discoveries (see Fig. 7.10). This effect causes a high standard deviation value for
a maximum RTT value of 20 msec. For measurements with an RTTmax value larger than 20
msec the standard deviation is not effected by this because the resource discovery is stopped
after a timeout has occurred. However, standard deviation values are high due to inconsistent
network conditions. Since ASD daemons had to be restarted before the first measurement
with a particular setup, we believe this difference is due to the just-in-time (JIT) compilation
mechanism of the Java Virtual Machine (VM). JIT compilation is used to increase the Java
VM performance by speeding up the execution of code that is run repeatedly. However, if
the simple OTG protocol we implemented, which requires static topology data in form of
a configuration file, is replaced with a dynamic approach, ASD daemons do not need to be
restarted anymore in case the overlay topology changes.

Second, we present the traffic measurement results. We differentiate between the total
generated traffic, the TLS authentication traffic, and the ASD-related traffic (ASD messages
including TLS encryption header). Measurement results are presented in Fig. 7.11. The
three curves show the generated ASD traffic (blue), TLS authentication traffic (green), and
total traffic (ASD + TLS, red) for varying maximum RTT values. In table 7.2 the mean and
standard deviation for the overall traffic, and the average number of opened TLS connections
(rounded to one digit) is given for each measurement.

 0

 100

 200

 300

 400

 500

 20 30 40 50 60 70

T
ra

ffi
c/

[k
B

]

RTTmax/[ms]

"traffic.dat"
"traffic.dat" using 1:3
"traffic.dat" using 1:4

Figure 7.11: Generated traffic (total, ASD, TLS) vs. RTT max

Service Deployment Tests 69

TLS authentication traffic, ASD traffic, and consequently the overall traffic increases with
RTTmax. This is due to the fact that with an increasing number of visited nodes, and an
increasing average degree of nodes more TLS connections are to be opened, and more ASD
messages are to be send. TLS authentication traffic makes up approximately 60% of the over-
all traffic. Only the remaining 40% are TLS encrypted ASD message bytes. TLS and ASD
traffic curves have a very similar progression. In fact, TLS as well as ASD traffic increases
linearly with the average number of opened connections (see Table 7.2).

Traffic statistics 20 msec 30 msec 40 msec 50 msec 60 msec 70 msec

Mean 4.5 153.1 139.8 242.8 254.8 462.8
Standard deviation 0 12.8 4.5 48.3 82.6 78.6
Opened connections 1 44.7 47.8 79.1 77.1 172.4

Table 7.2: Mean, standard deviation, and opened connections for traffic measurements

For the ConstrainedRemoteEcho pattern the number of opened connections, in addition to
the number of visited nodes, also depends on the average vertices degree of nodes. This is
due to the fact, that each node forwards resource discovery requests to all direct neighbor
nodes in order to flood the network. Hence, to further evaluate the large-scale characteristics
of the ConstrainedRemoteEcho pattern, the number of opened connections as a function the
average vertices degree of the visited nodes can be interesting to analyze. Remark that the
average vertices degree of the visited nodes does not equal the average degree of all nodes
participating in the overlay. This is due to the fact that the overlay topology can consist of
several subgraphs, and only nodes in the same subgraph as the start node can be visited.
Moreover, the number of visited nodes does not equal to the number of theoretically reachable
nodes, since node failures are very common. If one node fails, and this node represents the
only link to a subnetwork of N nodes, the number of visited nodes is decreased by N+1.

The conducted tests produced first performance measurement results for the Constraine-
dRemoteEcho navigation pattern. In a test network that experiences real Internet conditions
like PlanetLab, however, measurement results are highly dependent on factors such as net-
work latency, and node CPU loads. Nevertheless, the tests have shown that a flooding-based
navigation pattern such as the ConstrainedRemoteEcho pattern runs into scalability problems
for large networks. Further analysis of the generated traffic for different network sizes and
average degrees is required in order to make more precise statements about the scalability of
flooding-based navigation patterns. The strength of the ASD framework is the support for
different patterns. Thus, patterns tailored to specific service needs and network conditions
can be developed, and used together with the ASD framework.

7.4 Service Deployment Tests

Since the ASD framework was not integrated with a node-level deployment service such
as Chameleon, the deployment of service components could not be tested. Instead, we
implemented node configuration functionality within the ASD daemon to deploy an example

Service Deployment Tests 70

service that does not require the installation of service components on nodes. This example
service is a unidirectional tunnel between two nodes residing in different networks.

Moreover, we could not utilize the PlanetLab platform for this test. PlanetLab pro-
vides, for security reasons, only a very restricted environment to its users. This restricted
environment does not allow the setup of tunnels on PlanetLab. Thus, the deployment of the
unidirectional tunnel was tested in a local testbed. The test scenario is illustrated in Figure
7.12.

Primergy

Primergy

Start NodeNetwork Management Station
pc−4209.ethz.ch

pc−4207.ethz.ch

Tunnel "test"
IP−in−IP
Unidirectional

Figure 7.12: Service deployment test scenario

We decided to use a very simple overlay topology configuration, since resource discovery
functionality has already been tested extensively. Only one node (pc-4209.ethz.ch) partic-
ipates in the overlay. This node is also selected as start node. The objective of the test
is to setup a unidirectional ip-in-ip tunnel from the start node to another node residing in
a different network, which is specified in the service descriptor. The service descriptor
contains additional configuration information required for automatically deploying a tunnel.
In Table 7.3 an extract from the service descriptor is presented that illustrates the specified
configuration information.

Configuration information is specified as a list of key and value pairs, which we call
the configuration parameter list. Refer to Chapter 3 for details on the service description
format. The configuration parameter list used for the service deployment test specifies seven
keys and the corresponding values. Mandatory for all configuration parameter lists is only
the Script key. This key specifies the name of the setuid-perl script that is to be executed
in order to configure a node. The Name key specifies the name of the tunnel that is to be
deployed, and the Mode key the tunnel mode. The tunnel mode for this tunnel is ip-in-ip.
The RemoteAddress key specifies the remote tunnel endpoint, which is node pc-4207.ethz.ch

Service Deployment Tests 71

for this test. Furthermore, an IP address can be assigned to the tunnel interface using the
AssignedAddress key. Which traffic will be directed through the tunnel has to be specified
with the Route key. Finally, the LocalInterface key is used to explicitely force the tunnel to
connect to the specified local interface.

<configurationParameterList>

<key>Script</key>

<value>tunnel.pl</value>

<key>Name</key>

<value>test</value>

<key>Mode</key>

<value>ipip</value>

<key>RemoteAddress</key>

<value>129.132.57.107</value>

<key>AssignedAddress</key>

<value>192.168.1.1</value>

<key>Route</key>

<value>129.132.57.0/24</value>

<key>LocalInterface</key>

<value>eth0</value>

<configurationParameterList>

Table 7.3: Configuration parameter list for the tunnel service

The configuration script, in this case the tunnel.pl file, has to be available on the node that is
to be configured. Moreover, the script is required to be setuid by the root of this node. This is
necessary because commands executed in the script such as ip tunnel, require root privileges.
Note that all scripts, in order to be executed by the ASD daemon, must enable Perl‘s taint
mode [28]. We have to admit that this is not suitable in case a larger number of nodes
needs to be configured. However, node configuration is node-level specific functionality.
Consequently, it should be handled by a node-level service deployment protocol.

Finally, we briefly describe test progression. Since node pc-4209.ethz.ch is the only
node participating in the overlay, it is selected as suitable node and returned in a reply
message to the ASD management station. On the management station we select node
pc-4209.ethz.ch for deployment of the unidirectional tunnel service. A deploy message,
containing the node-group-specific service descriptor, is sent to the selected node. On
pc-4209.ethz.ch the tunnel.pl script is executed and the tunnel is setup. Node pc-4209.ethz.ch
sends a status message back to the management station, and the deployment result “Service
deployment on node pc-4209.ethz.ch succeeded” is displayed to the user. However, whether
the tunnel has been setup correctly has to be verified manually on node pc-4209.ethz.ch.

Comparison with related Approaches 72

7.5 Comparison with related Approaches

To give a qualitative evaluation of our work we compare the ASD framework with four com-
peting approaches targeting the same or related areas. SWORD and Sophia have in common
that they do not provide means for service deployment. SWORD targets resource discov-
ery in large-scale networks, and Sophia proposes an approach for distributed management.
HiGCS and Self-Configuring Active Services (SCAS) provide automatic service deployment
in programmable networks. In Table 7.4 resource discovery functionalities of the different
approaches are explored. The SCAS approach is not listed, since its resource discovery mech-
anism shows characteristics similar to SWORD (see Chapter 2).

Functionality ASD SWORD Sophia HiGCS

Distributed evaluation distributed DHT distributed distributed
On-demand collection on-demand continuous on-demand on-demand
Query language XML XML Prolog not specified
Range queries supported supported not supported not supported
Node groups supported supported not supported not supported
Exchangeable strategies supported not supported not supported simulated
Extensibility req./strategies requirements requirements requirements
Failure handling fault reports fault tolerance fault tolerance not specified
Service-specific queries supported not supported not supported not supported
Service-specific strategies supported not supported not supported supported

Table 7.4: Comparison of resource discovery functionalities

All listed approaches use distributed evaluation mechanisms. For ASD, Sophia evaluation is
distributed over all queried nodes. SWORD, in contrast, uses distributed hash tables to store
node status data and evaluation results on so-called DHT server nodes. Hence, SWORD does
not apply on-demand collection of node status data. Instead, reporting nodes continuously
send node status data reports to the DHT server nodes. For ASD, Sophia, and HiGCS node
status data is collected on-demand.

ASD and SWORD use XML as query language. Moreover, both approaches support
range queries and node groups. Sophia uses Prolog to express information about actual and
desired system state. Since Sophia targets network management, its query language does
not offer special resource discovery support such as range queries or node groups. HiGCS
suggests the usage of XML as query language, but a particular query format is not specified.

Exchangeable strategies for resource discovery are only supported by ASD. Navigation
and aggregation patterns, implementing different discovery strategies, can be exchanged very
easily. SWORD implements three different range search techniques, but exchangeability
is not supported. Sophia supports only one discovery strategy applying flooding mecha-
nisms. The idea behind HiGCS is to use optimized hierarchies for querying nodes. To the
best of our knowledge, different algorithms for creating these hierarchies have been simulated.

Comparison with related Approaches 73

All approaches support the extension of node requirements by specifying additional
query parameters in one or the other way. However, as described in the last paragraph,
only ASD allows the extension of discovery strategies by applying different navigation and
aggregation patterns. Failure handling mechanisms are supported by ASD, Sophia, and
SWORD. The HiGCS approach does not specify failure handling mechanisms. Whereas,
Sophia and SWORD provide fault tolerance, which means the system survives node failures,
ASD additionally provides fault reports to inform a network manager about failures during
discovery.

Service-specific query formats are solely supported by ASD. Service-specific templates,
implemented as XML schemes or documents, provide means for defining service-specific
query formats. As mentioned beforehand, three approaches (ASD, SWORD, and HiGCS)
support multiple discovery strategies. However, only for ASD and HiGCS the strategies are
defined under consideration of service-specific requirements.

A comparison of the ASD framework with the HiGCS and the SCAS approach regard-
ing the provided service deployment functionality is presented in Table 7.5. SWORD and
Sophia are not listed, since they do not provide service deployment functionality.

Functionality ASD HiGCS SCAS

Node-level interface implemented not specified implemented
Node configuration implemented implemented implemented
Deployment interruption supported not specified not specified
Security/Privacy TLS auth/enc. not specified not specified

Table 7.5: Comparison of service deployment functionalities

The SCAS approach provides node-level functionality such as installation of code and
node configuration. It provides a node-level interface to the plugin loader that implements
the node-level functionality together with the PromethOS plugin framework. The HiGCS
approach also provides node-level functionality. An Intermediate Representation (IR) is
proposed to map Linux netlink configuration commands to the programming model provided
by network processors. An IR prototype providing node configuration is implemented.
However, to the best of our knowledge a node-level interface, linking resource discovery
and node-level deployment functionality is not specified. ASD provides functionality for
executing node configuration scripts on selected nodes. Installation of service components on
selected nodes can be initiated using the provided node-level interface.

Deployment interruption is implemented by ASD in order enable human control of the
otherwise automated service deployment process. Resource discovery results are displayed
on the user interface, and the final node selection, or interruption of the deployment operation
is executed by the service provider. HiGCS and SCAS do not specify means for external
control. ASD uses TLS authentication and encryption to provide security and privacy for its

Comparison with related Approaches 74

users. ASCS and HiGCS do not specify security measurements at all.

Chapter 8

Conclusion

8.1 Review of Claims

The aim of this work was to provide a flexible, and extensible framework for the automatic,
on-demand deployment of network services in programmable networks. Two main tasks
are to be performed by the framework. First, suitable nodes to deploy a service have to be
identified. Second, the selected nodes have to be configured, and the installation of distributed
service logic has to be initiated.

We have introduced a comprehensive service deployment architecture that automati-
cally, performs the network-level service deployment tasks described above. The developed
architecture features on-demand deployment, since the individual deployment steps are
executed sequentially at deployment time. The idea of service-specific deployment is
reflected (i) by the service description model, and (ii) by the defined deployment protocol.
Service-specific description templates define the static service requirements such as the
requested number of nodes and the node capabilities to be evaluated. We specified a general
deployment protocol that distributes discovery requests to all candidate nodes, and installation
requests to all nodes selected to deploy a service. This general protocol is extended with
service-specific discovery mechanisms that are implemented as patterns, and can be loaded
into the framework at runtime. Moreover, we have implemented a prototype of the developed
architecture, which has been tested extensively in a large-scale network.

We have introduced a secure, flexible, and modular deployment protocol that supports
service-specific deployment mechanisms. Security is achieved by using TLS encryption and
authentication. Flexibility is addressed by supporting different discovery strategies which are
implemented as patterns, as well as a mechanism to dynamically load these patterns. By com-
posing service-specific deployment protocols from reusable patterns we address modularity.
We defined three pattern types implementing different discovery functionality. Navigation
patterns are responsible for the exploration of candidate nodes. Capability functions define
rules for the evaluation of node capabilities on candidate nodes, and aggregation patterns
provide functionality for aggregating the evaluation results.

75

Critical Assessment 76

We defined a layered service description model that supports service-specific discovery
requests. This includes a (i) generic description template for specifying service deployment
requests, a (ii) service-specific description template that defines static service requirements,
and (iii) the instance-specific service descriptor that defines values for the parameters
specified by the corresponding template. Moreover, the introduced generic description
format supports all network-level deployment steps. Hence, the solicitation, summarization,
dissemination, and advertisement step are handled autonomously by the ASD framework.

8.2 Critical Assessment

One objective for implementing the ASD framework was to facilitate the development and
testing of service-specific resource discovery mechanisms. To achieve this, we compose
deployment protocols from reusable components, namely navigation patterns, aggregation
patterns, and capability functions. When developing an example discovery mechanism we
considered this separation very helpful, since the ASD framework provides a clearly defined
interface for each pattern. For the implemented example patterns these interfaces offer
sufficient flexibility. However, we cannot exclude that other patterns might be constrained by
the defined interfaces. This we will only find out when further patterns are developed.

We experienced that the navigation pattern implements the most complex functionality
of the three patterns. It must be designed to explore a network in an efficient way, tailored to
the service needs and network conditions such as network size or connectivity. Additionally,
node and network failures must be handled by the navigation pattern. We have implemented
a flooding-based navigation pattern, which is suitable for exploring smaller overlay networks.
Node failures are handled by the pattern using a timeout mechanisms. However, the pattern
can be improved to offer better performance, i.e. lower latencies, by optimizing the timeout
mechanisms for a particular network setup.

Since our implementation is a prototype, the user interface serves only the most essen-
tial needs. The user interacts with the ASD framework (i) when specifying the service
requirements, (ii) when defining the overlay topology, and (iii) when selecting the nodes.
The ASD framework in its current version does not offer any support to the user regarding
(i) and (ii). The service descriptor XML document has to be generated manually by the
user according to the defined templates (XML schemes). Also the overlay topology used
for the automatic deployment has to be generated, and distributed to all participating nodes
manually.

8.3 Future Work

The most interesting and challenging part of future work will be the development of service-
specific patterns to support the deployment of a broad range of services with a reasonable
performance. In order to further facilitate the testing of different patterns with the ASD
framework, the PlanetLab test environment should be extended. It would be very convenient

Future Work 77

to have diagnostic tools that automatically observe the state of the distributed service. Also a
sophisticated mechanism for collecting measurement data from the distributed nodes would
enhance the testing comfort.

Moreover, the ASD protocol interfaces can be enhanced to provide more comfort to
the user. A graphical user interface should be implemented that supports service-specific
description templates. That means, the GUI constrains the parameters to be specified by the
user according to the service-specific description templates. Also, the implemented Overlay
Topology Generation protocol can be replaced with a more sophisticated approach. For
instance, the round-trip-times between all nodes participating in an overlay can be measured
locally on the nodes, and based on that information each node can generate its own topology
view. In this case, a mechanism for distributing the overlay topology is not required, since
it is generated in a distributed fashion. Moreover, the user would only have to specify the
maximum round-trip-time for two nodes to be connected by a direct link in the generated
overlay topology.

Appendix A

Task Description

78

79

Institut für
Technische Informatik und
Kommunikationsnetze

Winter 2003/2004

Diplomarbeit
für

Daniela Brauckhoff

Supervisor: Matthias Bossardt
Co-Supervisor: Lukas Ruf

Ausgabe: 21.10.2003
Abgabe: 31.8.2004

Patterns for Service Deployment in Programmable
Networks

1 Introduction

Programmable or active networks contain routers, which allow users to dynamically install pro-
grams. Such programs are typically part of a distributed service deployed in the network. Pro-
grammable routers enable the customization of packet handling in a very flexible way. Possible
services include packet filtering, Web caches, as well as specialised multicasting protocols, load
balancing and video scaling.

At TIK, we pursue an approach that composes services from service components. As a
consequence, service components must be deployed on one or more programmable routers. We
developed a service deployment architecture, which performs node level service deployment.
That is, it allows to identify and deploy service components that must be executed on a specific
router [1, 2].

The goal of this thesis is to extend the service deployment architecture to the network level.
That is, programmable routers being able to execute service components must be identified
according to multiple criteria, such as available bandwidth, processing power, location, etc. The
most appropriate set of routers is then selected, and node level service deployment is triggered.

80

Analyzing existing services for active and programmable networks, patterns that guide the
deployment of the services can be identified. Services may be classified according to their re-
quirements on service topology, location, required resources, etc. As a consequence, service
deployment must only deal with the different classes of services, instead of each service in-
dividually. With each class of service, a pattern may be developed that guides the details of
deployment on the network level.

This project investigates a pattern based approach to gathering the necessary information
and triggering the deployment of service components on the programmable routers. Service de-
ployment is performed in a distributed way on behalf of the network manager. A preceding study
yielded encouraging results [3]. Such an approach may be useful for automatizing the service
deployment task, which is less error-prone and possibly more efficient in terms of deployment
time and signalling protocol overhead than the traditional, centralized and human-controlled
procedure.

2 Assignment

2.1 Objectives

The following objectives are expected to be met by this thesis.

� A network level service descriptor is to be defined allowing a formal description of the
service deployment. It may specify topological and resource requirements of the service.
A distinction of static requirements and configuration information known at deployment
time should be considered.

� A basic protocol defining the interaction among the distributed deployment agents is to
be specified and implemented. Using patterns, the protocol must allow to identify appro-
priate routers being able to execute the service components.

� The protocol should be based on the pattern based service deployment approach. That is,
the protocol should be executed among the programmable routers, using their processing
capabilities. Relevant deployment information should be aggregated whenever reasona-
ble.

� The protocol should be executed in a management execution environment that allows to
extend the protocol functionality by downloading code. This is necessary, if new deploy-
ment patterns are introduced and must be supported.

� An evaluation of the protocol includes a comparison with other approaches described in
the literature and discusses its advantages and drawbacks.

2.2 Tasks
� Get familiar with active networks and service deployment concepts.

� Study the properties of active services relevant for their deployment.

� Deduce a list of requirements based on your findings from above.

2

81

� Get familiar with the concepts of pattern based management and pattern based service
deployment.

� Define the format of a service descriptor that allows to specify deployment requirements.
Get familiar with similar approaches (e.g. for Web services, IST-FAIN project, etc.).

� Based on pattern based service deployment concepts, describe the architecture and design
of the system.

� Implement the basic protocol and management execution environment.

� Identify and implement at least one deployment pattern. Consider previous work on that
subject [3].

� Compare the pattern-based approach to other approaches found in literature.

� Document your work in a detailed and comprehensive way. We suggest you to continually
update your documentation. New concepts and investigated variants must be described.
Decisions for a particular variant must be justified.

3 Deliverables and Organisation
� If possible, students and advisor meet on a weekly basis to discuss progress of work and

next steps. If problems/questions arise that can not be solved independently, the students
may contact the advisor anytime.

� At the end of the third week, a detailed time schedule of the semester thesis must be given
and discussed with the advisor.

� At half time of the diploma thesis, a short discussion of 15 minutes with the professor and
the advisor will take place. The student has to talk about the major aspects of the ongoing
work. At this point, the student should already have a preliminary version of the table of
contents of the final report. This preliminary version should be brought along to the short
discussion.

� At the end of the diploma thesis, a presentation of 15 minutes must be given during the
TIK or the communication systems group meeting. It should give an overview as well as
the most important details of the work. Furthermore, it should include a small demo of
the project.

� The final report may be written in English or German. It must contain a summary written,
the assignment and the time schedule. Its structure should include an introduction, ana-
lysis of related work, and a complete documentation of the developed software. Related
work must be correctly referenced. See http://www.tik.ee.ethz.ch/.ury/tips.html for more
tips. Three copies of the final report must be delivered to TIK.

� Documentation, presentations and software must be delivered on a CDROM.

3

82

Literatur

[1] Bossardt, Matthias and Ruf, Lukas and Stadler, Rolf and Plattner, Bernhard. A Service
Deployment Architecture for Heterogeneous Active Network Nodes. In IFIP Internatio-
nal Conference on Intelligence in Networks (SmartNet), Kluwer Academic Publishers,
Saariselka, Finnland, April 2002.

[2] Bossardt, Matthias and Hoog Antink, Roman and Moser, Andreas and Plattner, Bernhard.
Chameleon: Realizing Automatic Service Composition for Extensible Active Routers. In
Proceedings of the Fifth Annual International Working Conference on Active Networks,
IWAN 2003, Springer Verlag, Lecture Notes in Computer Science 2982, Kyoto, Japan,
December 2004.

[3] Bossardt, Matthias and Muehlemann, Andreas and Zuercher, Reto and Plattner, Bernhard.
Pattern Based Service Deployment for Active Networks. In Proceedings of the Second
International Workshop on Active Network Technologies and Applications, ANTA 2003,
Osaka, Japan, May, 2003.

Zürich, den 24.10.2003

4

Appendix B

Generic Description Template

<xs:schema

xmlns:xs="http://www.w3.org/2001/ XMLSchema"

elementFormDefault="qualified">

<xs:element name="genericDescriptionTemplate">

<xs:complexType>

<xs:sequence>

<xs:element ref="xs:serviceName"/>

<xs:element ref="xs:navigationPattern"/>

<xs:element ref="xs:aggregationPattern"/>

<xs:sequence maxOccurs="unbounded">

<xs:element ref="xs:navigationParameters"/>

</xs:sequence>

<xs:sequence maxOccurs="unbounded">

<xs:element ref="xs:aggregationParameters"/>

</xs:sequence>

</xs:sequence>

</xs:complexType>

</xs:element

<xs:element name="serviceName" type="xs:string"/>

<xs:element name="navigationPattern" type="xs:string"/>

<xs:element name="aggregationPattern" type="xs:string"/>

83

84

<xs:element name="navigationParameters">

<xs:complexType>

<xs:sequence>

<xs:element ref="xs:targetAddress"/>

<xs:sequence minOccurs="0">

<xs:element ref="xs:parameterList"/>

</xs:sequence>

</xs:sequence>

</xs:complexType>

</xs:element

<xs:element name="aggregationParameters">

<xs:complexType>

<xs:sequence>

<xs:element ref="xs:nodeGroup"/>

<xs:element ref="xs:serviceComponentName"/>

<xs:element ref="xs:numberOfNodes"/>

<xs:element ref="xs:capabilityFunction"/>

<xs:element ref="xs:configurationParameterList"/>

</xs:sequence>

</xs:complexType>

</xs:element

<xs:element name="targetAddress">

<xs:complexType>

<xs:simpleContent>

<xs:restriction base="xs:string">

<xs:enumeration value="Router"/>

<xs:enumeration value="Tree"/>

<xs:enumeration value="Network"/>

</xs:restriction>

</xs:simpleContent>

</xs:complexType>

</xs:element

<xs:element name="parameterList">

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element ref="xs:key"/>

<xs:element ref="xs:value"/>

</xs:sequence>

</xs:complexType>

</xs:element

85

<xs:element name="nodeGroup" type="xs:short"/>

<xs:element name="serviceComponentName" type="xs:string"/>

<xs:element name="numberofNodes" type="xs:integer"/>

<xs:element name="capabilityFunction">

<xs:complexType>

<xs:sequence>

<xs:element ref="xs:capFunctionName"/>

<xs:element ref="xs:parameterList"/>

</xs:sequence>

</xs:complexType>

</xs:element

<xs:element name="configurationParameterList">

<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element ref="xs:key"/>

<xs:element ref="xs:value"/>

</xs:sequence>

</xs:complexType>

</xs:element

<xs:element name="capFunctionName" type="xs:string"/>

<xs:element name="key" type="xs:string"/>

<xs:element name="value" type="xs:string"/>

</xs:schema

Appendix C

Example Configuration Files

The config file must be available in the <ASD_HOME>/bin/ directory. It defines the ASD install
directory and the home directory of a JDK 1.5.0 VM or higher.

The managerarg.txt file must be available in the <ASD_HOME>/input/txt/ directory on
the ASD management station. It defines the startup arguments for the ASD management
station.

The daemonarg.txt file can be available in the <ASD_HOME>/input/txt/ directory on the
ASD daemon in case the default settings need to be changed.

###

Install Configuration File

###

#

install directory

ASD_HOME=/home/ethz_chameleon/asd

#

location of JDK 1.5 or higher

JAVA_HOME=/usr/java/jdk1.5.0

#

###

Table C.1: /home/ethz_chameleon/asd/bin/config

86

87

###

Management Station Configuration Parameters

###

#

The default settings are changed

for all given parameters!

#

startNode and serviceID must always be specified!

#

startNode = planetlab04.ethz.ch

serviceID = 4545

#

descriptorFile =

port =

#

###

Table C.2: /home/ethz_chameleon/asd/input/txt/managerarg.txt

###

Daemon Configuration Parameters

###

#

The default settings are changed

for all given parameters!

#

port =

localPatternDirectory =

remotePatternDirectory =

patternServerIPAddress =

overlayConfigFile =

#

###

Table C.3: /home/ethz_chameleon/asd/input/txt/daemonarg.txt

Appendix D

ASD Directory Structure

asd/ - ASD home directory

asd/src/ - ASD implementation source code
asd/make/ - Makefiles for ASD daemon and management station
asd/jars/ - Jar files (asd-1.0.0.jar and jdom.jar)
asd/input/ - Input files for the ASD daemon and management station
asd/bin/ - ASD daemon start script
asd/daemon/ - Temporary daemon files
asd/manager/ - Temporary management station files
asd/docs - Java documentation files
asd/templates - Generic and service-specific description templates

asd/input/txt - Configuration files and pattern error ID mappings
asd/input/cert/ - TLS certificates and keys
asd/input/xml/ - Service description XML documents
asd/input/pl/ - Node configuration Perl scripts

88

Bibliography

[1] Matthias Bossardt, Takashi Egawa, Hideki Otsuki, and Bernhard Plattner. Integrated
Service Deployment for Active Networks. In Proceedings of the Fourth Annual Interna-
tional Working Conference on Active Networks IWAN, number 2546 in Lecture Notes
in Computer Science, Zurich, Switzerland, December 2002. Springer Verlag.

[2] Matthias Bossardt, Andreas Mühlemann, Reto Zürcher, and Bernhard Plattner. Pattern
Based Service Deployment for Active Networks. In Proceedings of the Second Inter-
national Workshop on Active Network Technologies and Applications (ANTA 2003),
Osaka, Japan, May 2003.

[3] Ralph Keller, Bernhard Plattner. Self-Configuring Active Services for Programmable
Networks. In Proceedings of Fifth Annual International Working Conference on Active
Networks (IWAN 2003), Kyoto, Japan, December 2003.

[4] Matthias Bossardt, Lukas Ruf, Rolf Stadler, Bernhard Plattner. A Service Deployment
Architecture for Heterogeneous Active Network Nodes. Kluwer Academic Publishers,
In Proceedings of 7th Conference on Intelligence in Networks (IFIP SmartNet 2002),
Saariselkä, Finland, April 2002.

[5] T. Egawa, K. Hino, and Y. Hasegawa. Fast and Secure Packet Processing Environment
for Per-Packet QoS Customization. In Proceedings of the IFIP-TC6 Third International
Working Conference (IWAN 2001), September 2001.

[6] R. Haas, P.Droz, and B.Stiller. Distributed Service Deployment over Programmable Net-
works. In DSOM 2001, Nancy, France, 2001.

[7] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Scalable Wide-Area Resource
Discovery. UC Berkeley Technical Report UCB//CSD-04-1334, July 2004.

[8] Ralph Keller. Dissemination of Application-Specific Information using the OSPF Rout-
ing Protocol. Technical Report Nr. 181, TIK, ETH Zurich, Switzerland, November 2003.

[9] Joe Touch and Steve Holtz. The X-Bone. Third Global Internet Mini-Conference at
Globecom’98, Sydney, Australia, November 1998.

[10] Yu-Shun Wang and Joe Touch. Application Deployment in Virtual Networks using the
X-Bone. DARPA Active Networks Conference and Exposition, May 2002.

89

BIBLIOGRAPHY 90

[11] Mike Wawrzoniak and Larry Peterson. Sophia: An Information Plane for Networked
Systems. In Proceedings of HotNets-II, Cambridge, MA, USA, November 2003.

[12] H. de Meer, K. Tutschku. Dynamic Operation of Peer-to-Peer Overlays. In Proceedings
Fourth Annual International Working Conference on Active Networks IWAN, Zürich,
Switzerland, December 2002.

[13] L.H. Lehman, S.J. Garland, D.L. Tennenhouse. Active Reliable Multicast. In Proceed-
ings of IEEE Infocom’98, San Francisco, CA, March 1998.

[14] K.L. Calvert, J. Griffioen, B. Mullins, A. Sehgal, and S. Wen. Concast: Design and
Implementation of a New Network Service. In Proceedings of 1999 International Con-
ference on Network Protocols, Toronto, Ontario. 1999.

[15] R. Keller, S. Choi, M. Dasen, D. Decasper, G. Fankhauser, and B. Plattner. An Ac-
tive Router Architecture for Multicast Video Distribution. In Proceedings of IEEE Info-
com’2000, Tel Aviv, Israel, March 2000.

[16] S. Bhattacharjee, K.L. Calvert and E.W. Zegura. An Architecture for Active Networking.
In Proceedings of High Performance Networking (HPN’97), White Plains, NY, April
1997.

[17] D. Wetherall, U. Legedza, and J. Guttag. Introducing New Internet Services: Why and
How. IEEE Network, Special Issue on Active and Programmable Networks, July 1998.

[18] M. Yamamoto, H. Miura, K. Nishimura, and H. Ikeda. A Network Supported Server Load
Balancing Method: Active Anycast. IEICE Transactions on Communications, Special
Issue on New Development on QoS Technologies of Information Networks, June 2001.

[19] E. Amir, S. McCanne, and R. Katz. An Active Service Framework and its Application
to Real-time Multimedia Transcoding. In Proceedings of ACM SIGCOMM, Vancouver,
Canada, August 1998.

[20] Koon-Seng Lim and Rolf Stadler. Developing pattern-based management programs. In
Proceedings of 4th IFIP/IEEE International Conference on Management of Multimedia
Networks and Services (MMNS 2001), Chicago, USA, Novemeber 2001.

[21] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246, January 1999.

[22] S. Kent, R. Atkinson. Security Architecture for the Internet Protocol RFC 2401, Novem-
ber 1998.

[23] Java 2 Platform Standard Edition 5.0 API Specification. SSLEngine Class.
http://java.sun.com/j2se/1.5.0/docs/api.

[24] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe, T.
Spalink, and M. Wawrzoniak. Operating System Support for Planetary-Scale Services.
In Proceedings of the First Symposium on Network Systems Design and Implementation
(NSDI), March 2004.

BIBLIOGRAPHY 91

[25] Neil Spring, David Wetherall, and Tom Anderson. Scriptroute: A Public Internet Mea-
surement Facility. USENIX Symposium on Internet Technologies and Systems (USITS),
2003.

[26] Jeremy Stribling. All-Pairs-Pings for PlanetLab. http://www.pdos.lcs.mit.edu/.

[27] Stefan Birrer. The Nixes Tool Set. http:///www.aqualab.cs.northwestern.edu/.

[28] Nicolas Clark. Perl Security. http://search.cpan.org/∼nwclark/perl/

