
a

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Samuel Nobs

Reconfigurable Hardware OS
Prototype - Part CPU
Masters Thesis DA-2004-04
Winter Term 2003/2004
Tutor: Herbert Walder
Supervisor:
Prof. Dr. Lothar Thiele
30.4.2004

a

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

2

Preface

This text is the report of the development work done in the framework of my master’s thesis at the
Computer Engineering and Networks Lab (TIK) at the ETH Zürich. The duration of this thesis was
6 months including report generation. This time span allows for a deep insight into the topic at hand
and a lot of work to be done. Therefore this document is rather lengthy, however, it does not include
all details.

The subject of this thesis was the development of an operating system that could be used with recon-
figurable hardware based on FPGAs. This development both includes software and hardware design.
Reconfigurable hardware operating systems are a new field of research and a subgroup of the subject
matterEmbedded Systems.

Chapter 1 of this report offers insight into the background and motivation for this thesis. The goals to
be achieved are mentioned also there.

A veryshort discussion of related work is done inchapter 2, looking both at the hardware and software
approaches.

An overview of the system and its components is given inchapter 3. Both the hardware and software
components are mentioned and placed in the big picture there.

Chapter 4 explains the scheduling approach used in the system to allow for time sharing of the CPU.
A description of the processes and their statuses is given there too.

The usage of the various memory technologies on the board is discussed inchapter 5. Memory
allocation and protection are two other topics of this chapter.

OS elements that are not complex enough to be dedicated their own chapters are compiled inchapter6:
the user interface, the OS bridge and the configuration of the second FPGA in the system.

The documentation of all hardware developed for this system is made available inchapter 7, a detailed
explanation of the software is given inchapter 8.

The knowledge needed to start as fast as possible developing your own hard- and software is transferred
in chapter 9.

A rich appendix finally gives you additional background information to on the system at hand.

Throughout this text, you may encounter the following signs which are meant to give additional infor-
mation to the user or any developer continuing my work:

3

4

Notes point out things that might be interesting to explore further.

Warnings indicate potential pitfalls and errors which should be avoided by any
means.

Samuel Nobs
Zürich, April 30, 2004

Contents

1 Introduction 21

1.1 Background and Motivation. .21

1.2 Thesis Assignment. .22

1.3 Development Platform. .23

1.3.1 FPGAs .23

1.3.2 Peripherals. .23

1.3.3 Memory. .26

1.4 Development Environment. .26

2 Related Work 29

2.1 Previous Work at the Computer Engineering and Networks Lab. 29

2.2 Linux Ports .29

2.3 Stretch S5000 Family. .30

3 System Overview 31

3.1 Hardware Elements. .31

3.1.1 MicroBlaze CPU. .31

3.2 Peripherals and Peripheral Drivers. 32

3.3 Software Components. .35

3.4 System Startup. .36

4 Scheduler 39

4.1 CPU Scheduling in General. .39

4.2 CPU Scheduling in the XF-Board OS. 42

5

6 Contents

4.2.1 Round-Robin Scheduler. .42

4.2.2 Process Control Blocks (PCB). 43

4.2.3 Process Statuses. .46

4.3 HW Scheduling in the XF-Board OS. 47

5 Memory 49

5.1 Memory Layout. .49

5.1.1 BlockRAM Memory. .49

5.1.2 SRAM Memory. .51

5.1.3 SDRAM Memory. .52

5.2 Memory Allocation .52

5.2.1 malloc andfree .52

5.2.2 Stack Allocation and Management. 53

5.3 Memory Protection. .55

5.3.1 Stack Monitoring. .55

5.3.2 Read-only protection. .56

6 Services 57

6.1 User Interface. .57

6.1.1 Command User Interface: Shell. 57

6.1.2 Graphics Manager. .58

6.2 OS Bridge. .59

6.3 Configuration of the R-FPGA. .59

7 Hardware Documentation 61

7.1 LMB BlockRAM Interface Controller. 61

7.1.1 Introduction. .61

7.1.2 Parameters. .61

7.1.3 I/O Signals .62

7.1.4 Core Operation. .62

7.1.5 Driver .64

7.1.6 Software .64

Contents 7

7.2 LMB Text Display Driver. .66

7.2.1 Introduction. .66

7.2.2 Parameters. .66

7.2.3 Insertion of the Core. .66

7.2.4 I/O Signals .67

7.2.5 Driver .67

7.2.6 VGA Core Operation. .67

7.2.7 Software .72

7.2.8 Outlook. .74

7.3 OPB Clock Generator. .75

7.3.1 Introduction. .75

7.3.2 Parameters. .75

7.3.3 I/O Signals .75

7.3.4 Core Operation. .75

7.3.5 Software .77

7.3.6 Outlook. .78

7.4 OPB Test-And-Set Lock. .79

7.4.1 Introduction. .79

7.4.2 Parameters. .79

7.4.3 I/O Signals .79

7.4.4 Core Operation. .79

7.4.5 Outlook. .80

7.5 OPB MIDI Interface .81

7.5.1 Introduction. .81

7.5.2 Parameters. .81

7.5.3 I/O Signals .82

7.5.4 Core Operation. .82

7.5.5 Software .83

7.6 OPB OS Bridge. .84

7.6.1 Introduction. .84

7.6.2 Parameters. .84

8 Contents

7.6.3 I/O Signals .84

7.6.4 Core Operation. .85

7.6.5 Software .88

7.6.6 Outlook. .88

7.7 OPB PS/2 Keyboard Driver. .89

7.7.1 Introduction. .89

7.7.2 Parameters. .89

7.7.3 I/O Signals .90

7.7.4 Core Operation. .90

7.7.5 Software .91

7.7.6 Outlook. .91

7.8 OPB Register Watcher. .92

7.8.1 Introduction. .92

7.8.2 Parameters. .92

7.8.3 I/O Signals .93

7.8.4 Core Operation. .94

7.8.5 Driver .94

7.8.6 Software .94

7.8.7 Outlook. .95

7.9 OPB SRAM Controller. .96

7.9.1 Introduction. .96

7.9.2 Parameters. .96

7.9.3 I/O Signals .96

7.9.4 Driver .96

7.9.5 Software .96

7.9.6 Timing for Memory I/O Signals. 99

7.9.7 Outlook. .100

7.10 OPB Temperature Module. .101

7.10.1 Introduction. .101

7.10.2 Parameters. .101

7.10.3 I/O Signals .101

Contents 9

7.10.4 Driver. .101

7.10.5 Core Operation. .101

7.10.6 Software .102

7.11 OPB Timer .103

7.11.1 Introduction. .103

7.11.2 Parameters. .103

7.11.3 I/O Signals .103

7.11.4 Core Operation. .104

7.11.5 Driver. .105

7.11.6 Software .105

7.12 OPB Interrupt Controller. .106

7.12.1 Introduction. .106

7.12.2 Parameters. .106

7.12.3 I/O Signals .106

7.12.4 Core Operation. .107

7.12.5 Software .108

7.13 OPB Time Counter. .111

7.13.1 Introduction. .111

7.13.2 Parameters. .111

7.13.3 I/O Signals .111

7.13.4 Core Operation. .111

7.13.5 Software .112

7.14 OS Bridge, Part R-FPGA. .113

7.14.1 Introduction. .113

7.14.2 OS Bridge Bus Master. .113

7.14.3 OS Bridge Slaves. .115

8 Operating System Code 117

8.1 XF-Board Operating System Data Structure Documentation.117

8.1.1 BITS Struct Reference. .117

8.1.2 CommandEntry_t Struct Reference. .118

10 Contents

8.1.3 ContextDescriptor_t Struct Reference. .118

8.1.4 GraphicListItem_t Struct Reference. .119

8.1.5 MemoryBlock_t Struct Reference. .119

8.1.6 StackDescriptor_t Struct Reference. .120

8.1.7 TaskDescriptor_t Struct Reference. .120

8.1.8 XContactInfo Struct Reference. .121

8.1.9 XF_PFDL_t Struct Reference. .122

8.1.10 XF_VFDL_t Struct Reference. .122

8.1.11 XFFAT Struct Reference. .123

8.1.12 XPacketData Struct Reference. .123

8.1.13 XPacketData8 Struct Reference. .123

8.1.14 XPacketInfo Struct Reference. .124

8.1.15 XPortListener Struct Reference. .124

8.2 XF-Board Operating System File Documentation.125

8.2.1 boot.c File Reference. .125

8.2.2 clockman.c File Reference. .126

8.2.3 clockman.h File Reference. .128

8.2.4 cui.c File Reference. .129

8.2.5 cui.h File Reference. .134

8.2.6 graphix.c File Reference. .137

8.2.7 graphix.h File Reference. .141

8.2.8 kbd_layout_en.c File Reference. .143

8.2.9 kbd_layout_en.h File Reference. .144

8.2.10 keyboard.c File Reference. .146

8.2.11 keyboard.h File Reference. .147

8.2.12 lock.h File Reference. .149

8.2.13 memory.c File Reference. .150

8.2.14 memory.h File Reference. .153

8.2.15 messagewin.c File Reference. .156

8.2.16 messagewin.h File Reference. .157

8.2.17 mmu.c File Reference. .157

Contents 11

8.2.18 mmu.h File Reference. .162

8.2.19 network.c File Reference. .166

8.2.20 network.h File Reference. .174

8.2.21 osbridge.h File Reference. .179

8.2.22 scheduler.c File Reference. .179

8.2.23 scheduler.h File Reference. .184

8.2.24 selectmap.c File Reference. .187

8.2.25 selectmap.h File Reference. .191

8.2.26 srec.c File Reference. .193

8.2.27 srec.h File Reference. .195

8.2.28 user.c File Reference. .196

8.2.29 user.h File Reference. .201

8.2.30 util.c File Reference. .202

8.2.31 util.h File Reference. .204

8.2.32 vga.c File Reference. .205

8.2.33 vga.h File Reference. .212

8.2.34 xfinclude.h File Reference. .215

8.3 XF-Board Operating System Page Documentation.217

8.3.1 Todo List .217

8.3.2 Deprecated List. .218

8.3.3 Bug List. .218

9 Skill Forwarding 221

9.1 How to Build the System. .221

9.2 How to Write User Functions. .224

9.3 How to Write an OPB Core. .226

9.3.1 VHDL Module .226

9.3.2 Additional Files:*.mhs and*.pao .229

9.3.3 File Names and Directory Structure. .231

10 Outlook and Acknowledgements 233

10.1 Future Work and Improvements. .233

12 Contents

10.2 Acknowledgements. .234

A xfintc Driver 235

A.1 File Documentation. .235

A.1.1 xfintc_l.c File Reference. .235

A.1.2 xfintc_l.h File Reference. .236

A.1.3 xfintc_lg.c File Reference. .239

A.1.4 xfintc_lowLevelHandler.c File Reference. .239

A.2 Data Structure Documentation. .240

A.2.1 XFVectorTableEntry Struct Reference. .240

B User Code Generation 241

C Scripts 245

C.1 codeupload.pl .245

C.2 debug.pl .246

C.3 readback.pl .247

C.4 mb-disassemble.pl .248

D XF OS Configuration GUI 249

E R-FPGA MMU Draft 251

E.1 Available Resources. .251

E.2 Basic Structure .252

F VHDL Issues 255

F.1 Coding Guidelines .255

F.2 VHDL Error Hotlist .256

G Contents of the CD 259

H Bibliography 261

List of Figures

Introduction

1-1 Block Diagram of the XF-Board. .24

1-2 Photo of the XF-Board. .25

Related Work(no figures)

System Overview

3-1 µBlaze Data Endianness. .32

3-2 MicroBlaze System Hardware. .33

Scheduler

4-1 Scheduler Flow Chart. .41

4-2 Process Control Block. .44

4-3 Process Status Transitions. .48

Memory

5-1 Memory Map .50

5-2 Stack Overflow Scenario 1. .54

5-3 Stack Overflow Scenario 2. .55

Services

6-1 R-FPGA Configuration. .60

Hardware Documentation
LMB BlockRAM Interface Controller

7-1 Example Connection Scheme. 62

7-2 Example Waveforms. 63

7-3 Core Registers. 64

LMB Text Display Driver

13

14 LIST OF FIGURES

7-4 Example Connection Scheme. 69

7-5 Core Internals. 70

OPB Clock Generator

7-6 Example Waveforms. 77

7-7 Core Registers. 78

OPB Test-And-Set Lock

OPB MIDI Interface

7-8 MIDI Schematic. 82

7-9 Core Register. 82

OPB OS Bridge

7-10 OSB Write Comands. 86

7-11 OSB Read Command. 86

7-12 Write Waveforms. 87

7-13 Read Waveforms. 87

OPB PS/2 Keyboard Driver

7-14 PS/2 Waveforms. 90

OPB Register Watcher

7-15 Wiring Example. 93

7-16 Core Registers. 94

7-17 Protected Memory Map. 94

OPB SRAM Controller

7-18 Timing Waveform for Write Cycle. 99

7-19 Timing Waveform for Read Cycle. 99

OPB Temperature Module

OPB Timer

7-20 Core Registers. .102

7-21 Example Connection Scheme. .104

7-22 Example Waveforms. .104

OPB Interrupt Controller

7-23 Example Connections. .107

L IST OF FIGURES 15

7-24 Core Registers. .108

7-25 Example Waveforms. .109

OPB Time Counter

7-26 Core Registers. .112

7-27 OS Bridge. .114

Operating System Code

8-1 Clock Display. .219

8-2 FiFo Fill-Level Graphics Element .219

8-3 Vertical History Bargraph Graphics Element.219

8-4 Example Display of the Memory Allocation Map. 219

8-5 R-FPGA Occupancy Display. .220

8-6 Ethernet Status Display. .220

8-7 Temperature Display. .220

Skill Forwarding

9-1 System Directory Overview. .222

9-2 XF-Board Basic Connections. .223

9-3 Screen After Startup. .224

9-4 Example OPB Core. .226

9-5 OPB Core Example Waveforms. .230

9-6 Directory Structure of OPB Cores. .232

Outlook and Acknowledgements
xfintc Driver (no figures)

User Code Generation

B-1 User Code Generation. .243

B-2 SREC File Format. .243

Scripts

C-1 Packets Sent bycodeupload.pl .246

C-2 Packets Sent byreadback.pl .247

XF OS Configuration GUI

D-1 XF OS Configuration GUI .250

16 LIST OF FIGURES

R-FPGA MMU Draft
E-1 MMU Entity .253

E-2 MMU Block Diagram. .254

VHDL Issues(no figures)

Contents of the CD(no figures)

Bibliography(no figures)

List of Tables

Introduction(no tables)

Related Work(no tables)

System Overview(no tables)

Scheduler(no tables)

Memory(no tables)

Services(no tables)

Hardware Documentation
LMB BlockRAM Interface Controller

LMB Text Display Driver

7-1 BlockRAM Interface Controller Parameters. 65

7-2 Core Parameters . 68

7-3 I/O Signals . 69

7-4 Core Registers. 71

OPB Clock Generator

7-5 Core Parameters . 76

OPB Test-And-Set Lock

7-6 Core Parameters . 79

OPB MIDI Interface

7-7 Core Parameters . 81

OPB OS Bridge

7-8 Core Parameters . 84

7-9 Core Signals. 85

OPB PS/2 Keyboard Driver

17

18 LIST OF TABLES

7-10 Core Parameters. 89

7-11 Core Signals. 90

OPB Register Watcher

7-12 Core Parameters. 92

7-13 Core Signals. 93

OPB SRAM Controller

7-14 Core Parameters. 98

7-15 Core Signals. 98

OPB Temperature Module

7-16 Core Signals. .102

OPB Timer

7-17 Core Parameters. .103

7-18 Core Signals. .104

OPB Interrupt Controller

7-19 Core Parameters. .106

7-20 Core Signals. .107

OPB Time Counter

7-21 Core Parameters. .111

7-22 OS Bridge Master Signals. .113

7-23 OS Bridge Slave Signals. .115

Operating System Code(no tables)

Skill Forwarding(no tables)

Outlook and Acknowledgements
xfintc Driver (no tables)

User Code Generation

B-1 Makefile Targets. .242

Scripts(no tables)

XF OS Configuration GUI(no tables)

R-FPGA MMU Draft(no tables)

VHDL Issues

L IST OF TABLES 19

F-1 Coding Style DZ for VHDL. .256

Contents of the CD(no tables)

Bibliography(no tables)

20 LIST OF TABLES

1Introduction

In this introduction, the background and motivation for this work is mentioned. The assignment of this
thesis is discussed too, and some notes on the development environment are given.

1.1 Background and Motivation

Silicon process technologies used for FPGA design have been constantly improved over years: layout
densities and clock frequencies have been significantly increased and, in the meantime, reached a level
where a 32 bit CPU including controllers and peripherals fits into such an FPGA without even using all
available resources. For example, the XILINX Virtex-II family is built on a 0.15 micron, 8-layer metal
process with high speed 0.12 micron transistors. The largest device in this family, the XC2V8000,
offers 8 million system gates1 in 23’296 configurable logic blocks (CLB), and the highest speed grade
is suited for clock frequencies above 200 MHz.

Furthermore, current FPGA technologies allow for partial reconfiguration. This allows a device being
altered in certain areas at runtime, leaving other areas untouched. So FPGAs are in a position now to
be used as dynamically allocatable resources. Computationally complex hardware tasks that might be
inefficiently treated by a general purpose microprocessor can be implemented in dedicated hardware
and loaded or unloaded on demand, boosting performance by orders of magnitude if the time lapse
needed for (re-)configuration can be kept short.

The special forms of resource allocation needed in the above-mentioned application of FPGAs ask for
a reconfigurable hardware operating system (RHWOS) providing an abstraction from the underlying
technology by offering services like device drivers for I/O components (Ethernet, Audio), doing the
bookkeeping about free user space on the FPGA and assign this space to HW-Tasks to be loaded, and

1System gates are a combination of logic, memory, and custom circuit resources that would be utilized in a typical design.
This term is used as a measure of FPGA density

21

22 BADGER, MUSHROOM, SNAKE CHAPTER 1. INTRODUCTION

managing task requests to internal (block RAM, FiFos)and external memory. For more details about
RHWOS’ you might want to refer to [23].

Configurable boards with FPGAs and CPLDs have become an important means for rapid prototyping
and system development. A huge number of manufacturers (XESS, BURCHED, XESYS, MEMEC

DESIGN, SUNDANCE, etc.) are exploiting this market and offer a broad range of such prototype
boards. None of the products found in this range fulfills the special board architecture demands of a
RHWOS.

Due to the limitation of partial reconfiguration of the XILINX FPGAs to chip scanning2 and the desired
topology of the architecture inside the FPGA, all I/O devices should be connected to an OS frame on
the left and the right side of the FPGA. These OS frames will be left untouched during the reconfigu-
ration process, so the connections to the I/O devices will persist. None of the commercially available
boards respects this constraint.

To maximise the usability of such a board, all I/O devices and memory modules should be addressable
independently, a requirement that is not consequently met on the board currently at hand, the XSV
Board by XESS Corp.[25]: e.g. to use the LED bar, you have do disable the FlashRAM on the board.

That is where the [10][19][20] comes into play, which has been designed to avoid the
disadvantages being inherent to all other boards available so far. This board, being the development
platform for this thesis, is being looked at closer in section1.3.

Once the hardware is done, an operating system (OS) doing the bookkeeping about the resources avail-
able on the reconfigurable entity and performing the scheduling of the tasks is needed. Such operating
systems exist, but as this type of OS’ need to be perfectly adapted to the underlying architecture, it
seems to be more promising and instructional to design an OS from scratch than to dig into the depths
of an existing OS and adapt it to the architecture. Additionally, these OS’ are generally oversized due
to their huge amount of features.

1.2 Thesis Assignment

In this thesis, I was advised to figure out a concept for a RHWOS that runs on the .
Elements and services made available by the CPU and its peripherals should be implemented. The
software representing the OS kernel must be designed. These are the subtasks to be performed:

• Define which type of applications should be realized on this platform. Which are the key data
of the applications? How do they behave?

• Specify the RHWOS services. How do they cooperate? Operating sequence: power-on-reset→
system and OS boot→ application start→ user interaction→ task management . . .

• Perform a partitioning of the OS-Elements. What is going to be implemented in hardware, what
in software?

2Column-wise reconfiguration

1.3. DEVELOPMENT PLATFORM 23

• Specify and design system and OS elements. Define interfaces an the communication between
CPU and the reconfigurable resource.

• Evaluate the performance of applications and the operating system.

1.3 Development Platform

The hardware platform used for the development process is the I designed in a term
thesis[10]. Due to the fact that I was the one that made this hardware, I have enough in-depth knowl-
edge about the hardware to make the OS tightly fit into the constraints imposed by the components
present on the . The Board consists of two FPGAs, peripherals and memory modules. A
block diagram of the board can be seen in figure1-1, a photograph is provided in figure1-2.

1.3.1 FPGAs

Instead of a standard CPU (e.g. ARM, PIC, MCore), a XILINX Virtex-II XC2V1000 FPGA is present
to implement a CPU soft core on it. This brings in much more flexibility since these cores can be fine
tuned, and their detailed implementation may evolve during the lifetime of the board. Using a soft
CPU, the hardware drivers can be designed on-chip. XILINX offers a 32 bit RISC processor that fits
on the FPGA, theµBlaze soft processor core [27]. The CPU will be implemented on this FPGA to
execute the software part of the OS.

The reconfigurable resource on the board is represented by a XILINX Virtex-II XC2V3000 FPGA,
which is called R-FPGA. This FPGA is offered the same 50 MHz clock as the CPU FPGA (C-FPGA)
can derive 4 additional clock signals from the system clock, which are fed to the R-FPGA.

1.3.2 Peripherals

For the communication from the external host to the FGPAs, mainly used for the transmission of
configuration data (C-FPGA) and for streaming and networking applications (R-FPGA), two 100 Mbps
fast ethernet transceivers with an RJ45 connector are installed.

To download the bit stream to the configuration PROM, a JTAG test access port is present. The C-
FPGA is also connected to this JTAG chain to allow for an emergency configuration if all other means
failed. For the same reason, the R-FPGA is accessible through a separate JTAG port.

A general purpose I/O (GPIO) bus is provided to enable communication between the two FPGAs. This
GPIO is 40 bits in width, e.g. for 32 bit data and 8 control signals. Additional 32 bits, the optional
general purpose I/O (OGPIO), may be used if partial reconfiguration of the R-FPGA is not needed.
Moreover, two 16 pin expansion headers are connected to the OGPIO bus that may be used by the
C-FPGA even when partial reconfiguration of the R-FPGA is used.

24 BADGER, MUSHROOM, SNAKE CHAPTER 1. INTRODUCTION

VirtexII 1000
C-FPGA

VirtexII 3000
R-FPGA

SDRAM Left
16M X 16

SDRAM Right
16M X 16

SRAM Left
1M X 32

SRAM Right
1M X 32

SDRAM
16M X 32

SRAM
1M X 32

FlashRAM
4M X 32 BootPROM

Ethernet
PHY

Ethernet
PHY

Audio
CoDec

Video
DAC

8-LED Bar

2 LEDs
2 Switches

2 LEDs
2 Switches

JTAG

JTAG

VGA Out

VGA Out

Ethernet

Et
h

er
n

et
PS

/2
PS

/2

RS-232

RS-232 RS-232

A
u

d
io

 In
 1

A
u

d
io

 In
 0

Audio OutExpansion Slot

Expansion Slot

Data Signals Configuration Signals Generated Clocks System Clock

Osc

Figure 1-1: Block Diagram of the XF-Board. The components not being subject of this
work are below the dash-dotted line and drawn in pale colours.

1.3. DEVELOPMENT PLATFORM 25

Figure 1-2: Photo of the XF-Board. The C-FPGA is in the center of the board, the R-FPGA
below. Most of the board is covered with RAM modules of different technologies. The board
is 174mm× 160mm in size.

26 BADGER, MUSHROOM, SNAKE CHAPTER 1. INTRODUCTION

The following debugging channels are provided: for a very basic input and output, two push-buttons
and two LEDs are attached to each FPGA. For advanced CPU debugging, two PS/2 connectors for a
mouse and a keyboard and a simple 8 color VGA Output are connected to the C-FPGA. For debugging
using a host PC, two RS-232 ports can be accessed using the C-FPGA, and an additional port is
accessible via the R-FPGA. An 8-LED bar monitors the level of 8 out of the 40 GPIO signals; this
LED bar may be used for visual feedback. The two 16-pin headers connected to the OGPIO are
available for debugging purposes, too.

For video and audio applications, the R-FPGA is equipped with a video DAC being capable of dis-
playing 24 bit true-color on a VGA monitor, and an audio CoDec featuring two inputs and one output.

Temperature sensors to monitor the core temperature of both FPGAs are installed, and a 36 pin header
is provided to extend the R-FPGA by custom peripherals.

Power can be fed using either a standard PC power supply attached to the board’s ATX connector or a
+5 V supply. Additional voltages are derived on-board.

1.3.3 Memory

There are four memory technologies present in the system. The fastest memory available on the board
are be the FPGA’s built-in BlockRAM blocks. The fact that these RAMs are dual-ported is responsible
for a substantial speed-up. The available amount of BlockRAM in the C-FPGA is large enough to
contain a simple OS with basic services on the C-FPGA. On the R-FPGA, a few high-speed but not
overly memory consuming tasks can be served.

To allow for fast tasks with slightly higher memory requirements, the R-FPGA has access to 4 MB of
16 bit wide SRAM memory. To store larger amounts of data, 64 MB of 16 bit wide SDRAM memory
are present. The memory width of 16 bits is consistent with most signal processing applications.

As there will be the need to store additional program code and various bit streams in memory, the
C-FPGA is equipped with the same amounts of SRAM memory and SDRAM memory, but organized
in 32 bits due to theµBlaze’s architecture. FlashRAM is present as non-volatile storage.

1.4 Development Environment

This section does offer an overview of the software being used to develop the system intended to run
on the platform described above in section1.3. To generate the software and the bit streams to be
downloaded to the , the following software tools provided by XILINX have been used:

Platform Studio / EDK 6.1.2. The EDK is a tool suite that contains the tools to generate a bit stream
from VHDL. The hardware of a system is being described in the microprocessor hardware spec-
ification file *.mhs . The systems designed with EDK commonly consist of aµBlaze CPU with
some peripheral devices, the so called cores. After being defined in the*.mhs file, the VHDL
or net-list descriptions of the cores and theµBlaze are combined using a wrapper and then syn-

1.4. DEVELOPMENT ENVIRONMENT 27

thesized and converted into a bit stream. Now the software is being generated. The software
libraries are described in the*.mss microprocessor software specification file and accordingly
compiled. Then the user’s source code for the program gets compiled and then linked with the
libraries. The executable code obtained so far is merged into the bit stream, which is then ready
to be downloaded to the target FPGA.

To compile, assemble and link the software, a port of the GNU C compilergcc , in EDK called
mb-gcc , and a port of the so called binutils, are used.

EDK also includes a GUI to compose such systems, which is a great help to get familiar with
the environment, but does not suffice the needs of more advanced users.

X ILINX also ships a large library of cores such as memory controllers and peripheral drivers.
This library can be extended by user-defined cores which have to be written in VHDL alongside
with a bunch of files that contain the information needed by EDK to include these cores in a
microprocessor system.

Project Navigator / ISE 6.1. The is a tool suite used to synthesize and implement designs for the
X ILINX FPGAs and CPLDs. I used this tool suite to implement designs that did not fit into the
EDK design flow.

The Project Navigator is a GUI that merges the various tools of the ISE into one front end.

In addition to these commercial tool suites, a number of freely available programs have been used. To
download data via ethernet, PERL has been used. JAVA has been used to design a simple graphical OS
configuration tool. The editor of choice was the almighty EMACS.

28 BADGER, MUSHROOM, SNAKE CHAPTER 1. INTRODUCTION

2Related Work

A short note on work related to this thesis shall be given in this chapter.

2.1 Previous Work at the Computer Engineering and Net-
works Lab

A top-down approach to reconfigurable hardware OSs has been demonstrated in [22]. Design concepts
have been described, and OS services have been defined in a device-independent way. An application
case study has been delivered alongside these concepts.

A reconfigurable OS prototypehas been developped in [14]. This OS was not implemented as a
standalone system, because only one FPGA being the reconfigurable resource was used. The role that
is played by the C-FPGA on the was assigned a host PC attached to the board.

Propositions of an online scheduling system allocating tasks to a block-partitioned reconfigurable de-
vice are discussed in [21]. Several scheduling approaches and placement strategies have been ex-
plored. Placement and partitioning algorithms are presented in [24]. The interdepence of scheduling
and placement is discussed in[17].

2.2 Linux Ports

There exist various projects which have ported LINUX to run on reconfigurable hardware. Two of them
shall be mentioned here.

M EMEC [7] andM IND [9] have ported Linux and RedBoot[12] to the MEMEC Virtex-II Pro platform.
RedBoot is a complete bootstrap environment for embedded systems and allows download and execu-

29

30 BADGER, MUSHROOM, SNAKE CHAPTER 2. RELATED WORK

tion of embedded applications via serial or ethernet.

uClinux [1] is a derivative of the Linux kernel intended for microcontrollers without memory man-
agement units. TheMicroblaze uClinux project has succeeded in porting this small kernel to the
X ILINX µBlaze. They even succeeded in performing device self-reconfiguration using the ICAP in-
ternal configuration access port by defining a device in the filesystem which can be written bitstreams
to.

2.3 Stretch S5000 Family

The approach made by STRETCH INC.[18] is interesting from the hardware point of view. Their new
device family, the S5000, is a software-configurable processor which embeds programmable logic
within the processor. This is in contrast to theXilinx ’ approach to include processors within an
FPGA (Virtex-II Pro). Unfortunately, at the time writing only a press release on this device family
existed, and this section has been written based on that information. Therefore, you are kindly invited
to read these lines with reservations.

Developers using C/C++ not only program the CPU but also create new instructions ideally matched
to their applications’ needs. So calledhot spots, which are sequences of operations that must be
repeated many times, are reduced into single instructions. On conventional processors such as DSPs,
optimization of hot spots is usually done by a programmer using low-level assembly code, which
directly represents the sequence of processor operations one by one. Compilers automate this task, but
only with a significant loss in performance. Further, because each operation is very simple, tens to
hundreds of assembly instructions are needed to implement each hot spot.

When working with these S5000 processors, the software developer identifies such hot spots using a
profiling tool. The source code from these hot spots is automatically compiled into a so called ISEF
configuration. The ISEF is a software-configurable data-path based on proprietary programmable
logic. This configuration is the used to create a single custon instruction that implements the entire hot
spot.

This approach pairs the advantages of a general purpose processor with the speed gains yielded by
specialized and dedicated hardware.

3System Overview

In this chapter, an overview of the hardware and the software elements implemented in the C-FPGA
shall be given. Some components have been placed at the disposal by XILINX , but a huge number
of cores were to be designed by myself. A more detailed discussion of these elements is due in the
following chapters. Large and important elements will be dedicated their own chapters, smaller parts
will be combined into one chapter.

First, a summary of the hardware elements of the OS being implemented in the C-FPGA is given, then
the software components are discussed shortly. The partition of hardware and software is intrinsic to
the system: generally, device drivers are implemented in hardware, the rest is implemented in software.

3.1 Hardware Elements

The hardware of the system mainly consists of a XILINX µBlaze[29] with a large number of periph-
erals, like I/O drivers, and memory controllers. Due to the fact that an FPGA is used for the CPU, all
these peripherals can be implemented on-chip side by side with theµBlaze CPU.

3.1.1 MicroBlaze CPU

As stated above, the central element of the system is a CPU soft core, theµBlaze. The key information
about the architecture and the conventions of this processor shall be given in this section. For more
detailed insights into theµBlaze please refer to [29].

This RISC processor has a 32 bit big-endian architecture and is optimised for the use with XILINX

FPGAs. Have a look at figure3-1 on how the bits are ordered. This endianness brings in a lot of
potential pitfalls at the borderline between theµBlaze and eventual user cores, because most VHDL
designers are used to have the most significant bit at position 0, which contrasts with the actual MSB

31

32 BADGER, MUSHROOM, SNAKE CHAPTER 3. SYSTEM OVERVIEW

0 7 8 15 16 2324 31

n n + 1 n + 2 n + 3
}

Byte Address

0 1 2 3
}

Byte Label

MSByte LSByte
}

Byte Significance

MSBit LSBit
}

Bit Significance

Figure 3-1: µBlaze Data Endianness. TheµBlaze is organised in a 32 bit big-endian
architecture. In contrast to the bit order most VHDL programmers are used to, the most
significant bit is bit 31.

position 31.

TheµBlaze has a32 × 32 bits register file plus 2 special registers, and a 3-stage pipeline; each stage
is active on each clock cycle, so three instructions can be executed simultaneously. The pipeline ef-
fectively completes (in general) one instruction per clock cycle; instructions performing accesses to
external devices normally take a longer time lapse. The start of the program code is expected to be at
address 0x0. However, if no valid instruction is found there, the processor’s program counter is incre-
mented until an executable instruction is found. The stack grows towards lower memory addresses.

One interrupt input is present, which forces theµBlaze to jump to a fixed address where a branch to
the interrupt handler is expected to be found. If more than one interrupt is to be used, an interrupt
controller has to be implemented. In addition to that interrupt input, signals that offer information
about theµBlaze’s internal state are available, e.g. the register contents can be read.

The processor’s two local memory bus (LMB) ports are used to access on-chip BlockRAM memory.
The instruction side LMB port is used to read instructions from memory and is therefore a read-only
port, the data side LMB port is used to read and write data to the memory. The BlockRAM is a dual-
ported memory technology, so the same memory cells can be accessed from the data side port and the
instruction side port. The VGA driver’s text memory is also connected to the LMB.

The µBlaze also features an on-chip peripheral bus (OPB), which is used to access external mem-
ory using the appropriate memory controllers, and to communicate with the drivers for the various
I/O peripherals present on the . Although it is an on-chip bus, it is mainly used here to
communicate with drivers for off-chip peripherals which results in higher bus-turnaround times.

3.2 Peripherals and Peripheral Drivers

To access the various memory technologies, the system incorporates the memory controllers needed.
Two LMB BlockRAM interface controllers are present, one for the instruction side LMB and one for
the data side LMB. On the instruction side, theLMB BRAM Interface Controller[28] placed at the
disposal by XILINX was useful for this system. The controller for the data side LMB is a custom

3.2. PERIPHERALS ANDPERIPHERAL DRIVERS 33

µBlaze

Extended BRAM
ControllerBRAM Controller

SRAM Controller

SDRAM
Controller

PS/2 Keyboard
Controller

Test-And-Set

Timer

Temperature

GPIO: SelectMAP

ETH Controller

Stack Watcher

Time Clock

OS Bridge

Interrupt
Controller

Clock Manager

BlockRAM

BRAM ControllerDLMB

VGA Controller

RS-232 UART

MIDI Interface

ILMB

OPB

VGA

MIDI

SDRAM

RS-232

ETH

SMBUS

SRAM

OS Bridge Bus SelectMAP

Keyboard

Figure 3-2: MicroBlaze System Hardware. This figure offers an overview of the hardware
implemented in the R-FPGA. The data side and the instruction side OPB are connected to
used the same memory modules for data and instructions.
Legend:

Open Peripheral Bus (OPB).
Local Memory Bus (LMB).
Clock signals fed to the R-FPGA.
Interrupt signals.
Register Contents.
Cores provided byX ILINX .
BlockRAM. The VGA controller is seen as a BlockRAM module.
Custom Cores

34 BADGER, MUSHROOM, SNAKE CHAPTER 3. SYSTEM OVERVIEW

extended version of this controller to include an interrupt output which informs the system about
intended write accesses to the read-only section at the beginning of the memory. The SRAM memory
modules are controlled using a core made available by XILINX . The SRAM memory modules are
accessed using a custom made SRAM controller. BlockRAM memory is used to store program code.
SRAM memory is also used for program memory, and the stack and dynamically allocated memory is
stored here. The main use of the SRAM is to store bit streams. A detailed memory map and a rationale
for the partition of the memory technologies is given in chapter5; there you also get information on
the memory protection mechanisms in the system, namely the stack watcher that protects the system
from stack overflows, and the above-mentioned extensions to the LMB interface controller.

The RS/232 UART has been inserted in earlier stages of the development process. The UART core
also was available in the XILINX library. In the beginning, when no other means for communication
where implemented yet and the VGA display was not put into service, the UART was handy to com-
municate with the system, because read and write operation to its interface were easy to implement,
and most of the software routines are delivered with the core. Debugging messages have been printed
to a terminal application on the host PC, and data have been uploaded through this rather slow and
inefficient channel. Due to the presence of faster communication facilities, the UART has almost be-
come obsolete. It is still included in the system because it does not use a lot of resources and therefore
does not compromise the rest of the system at all. In addition to that, there still may exist applications
where an UART is welcome due to its simple protocol.

To send and receive data via ethernet, an ethernet MAC provided by XILINX , theOPB Ethernet Lite
Media Access Controller[30], has been included in the system. The ethernet port is used to transfer
large amounts of data from and to the board, e.g. executable program code or bit streams are sent to
the board. As soon as the ethernet interface has been introduced in the system, it took over the role
that has been played by the UART before.

A VGA controller offers the services to write text to a display. Thanks to a custom adapted character
set, simple graphical elements can be drawn. The VGA controller is basically accessed by writing to
a memory location used as text memory. This text memory is implemented using BlockRAM which
is accessed via a second BlockRAM interface controller attached to the data side LMB. The VGA
controller is capable of displaying1024 × 768 pixels in 8 colors; however, only 3 colors can be used
at a time: a background color, and two foreground colors. The VGA controller is a custom core. The
core documentation can be found in section7.2.

A PS/2 keyboard driver is available to get textual user input. Most of the system is controlled using
the keyboard. The controller generates an interrupt when the escape key is hit on the keyboard; an
explanation of the special use of the escape key is given at the end of section6.1.1. To allow for sound
applications, a MIDI interface is also present. This interface implements only an input port; the board
is not able (yet) to send MIDI data. As no audio output is connected to the C-FPGA, the MIDI data
most probably will be forwarded to the R-FPGA and be processed there. Both the MIDI controller and
the PS/2 keyboard controller are custom designs. The documentation of the two cores can be found in
sections7.5and7.7, respectively.

As a means to configure the R-FPGA with bit streams and eventually reconfigure it partially and

3.3. SOFTWARE COMPONENTS 35

dynamically1, access to its SelectMAP port is provided using a GPIO port. Due to the fact that a GPIO
has been used, the whole protocol was implemented in software. This software solution therefore does
not run at full speed. In addition to that, the CPU is being occupied for the execution of a simple
protocol, which is not desirable. Refer to chapter6.3for more details.

To exchange data with the R-FPGA, a so called OS bridge controller has been implemented. The OS
bridge controller sends and receives data using a simple command interface to a receiver entity in the
R-FPGA, which then forwards the commands or data to the element being responsible to handle the
command. The C-FPGA and the R-FPGA counterparts of the OS bridge have been designed together
and are described in chapter6.2. The OPB core on the C-FPGA side is also discussed in the core
documentation in section7.6.

In the designs configured into the R-FPGA, it most probably is not going to suffice to have only one
clock frequency available. Generating the clock signals in the R-FPGA is possible, but their frequency
must be set at synthesis time, so the simplest approach is to derive them from the system clock in the
C-FPGA using counters and to forward them to the R-FPGA to allow for run-time configuration of
these clocks. Four such clock signals are offered by the custom designed clock manager documented
in section7.3.

An interrupt controller has been designed that merges the interrupt signals present in the system into
one global interrupt signal fed to theµBlaze. To get knowledge about the interrupts that actually have
been triggered, theµBlaze can poll a register in the interrupt controller. Interrupts can also be masked
using this controller. The interrupt controller core is documented in section7.12

Last but not least three more trivial cores are to be mentioned. A test-and-set variable is available
in the core documented in section7.4, the timer needed for the process scheduler is documented in
section7.11, and a simple clock period counter used to count the clock periods completed since the
last system reset with more details available in section7.13.

3.3 Software Components

The basic operating system includes only the most important software components, as only very lim-
ited memory space is available in the BlockRAM. These basic elements need to reside in the Block-
RAM, as this is the only memory that can be guaranteed to contain valid program code when power is
applied.

The OS is a multi-tasked system. A number of processes in a process list are scheduled
following a simple round-robin scheme. Each process is assigned a certain number of time quanta
during which it may execute on the CPU before being pre-empted. Processes may yield the CPU at
any time, activating the process being next in the list. The functions needed to manage the processes
are also implemented: processes can be killed, suspended, assigned a different number of time quanta,
and the process list can be displayed.

1actually, the development on the R-FPGA side has not yet reached the point where partial reconfiguration with complex
tasks can be performed.

36 BADGER, MUSHROOM, SNAKE CHAPTER 3. SYSTEM OVERVIEW

Command User Interface To launch processes and configure system parameters, a command user
interface, the so called shell, is provided. The shell implements basic features such as tab completion2

and a command history. In general, all keyboard input is catched by the shell, but certain commands
are able to suspend the shell and process the keyboard input themselves. The shell also is able to start
processes whose code is stored in external memory. The software functions representing the shell are
discussed in section8.2.4.

Ethernet Daemon An ethernet daemon constantly checks for received packets and dispatches them
to the according process. It responds to pings and implements a UDP stack. Additionally, software
routines are offered to processes which can be used to send packets. The network software has been
taken from [5], adapted and extended by additional functionality. Refer to section8.2.19.

Graphics Functions to comfortably print to the VGA displays are implemented (see section8.2.6).
The display is vertically divided into a text section in the left half, which is mainly used for the shell,
and a graphics section, which is used for displaying ASCII-art graphics. The graphic display is multi
paged. The graphic manager bothers with the graphical elements to be displayed and is responsible to
allocate pages in the graphics section for the information to be displayed there.

Memory Management A memory manager cares about the allocation of stack memory to the pro-
cesses to be executed. Using the memory manager, a process can dynamically allocate additional
memory. A graphical representation of the memory map is shown in the display’s graphics column.
The memory manager is discussed thoroughly in chapter5, its functions are described in section8.2.13.

Configuration To configure and erase the R-FPGA using the SelectMAP port, a collection of func-
tions is offered by the system (section8.2.24). Communication with the tasks in the R-FPGA can be
achieved using the macros defined to read from and write to the OS bridge. The routines to config-
ure the MMU in the R-FPGA and to exchange data with this MMU, e.g. read or write FiFos, make
extensively use of these OS bridge macros.

The functions or macros to access all other hardware peripherals not explicitly mentioned here are
made available by the operating system, e.g. macros to write to the OS bridge. Refer to the OS code
documentation in chapter8 for the remaining functions and macros.

3.4 System Startup

A the beginning of the code, a short sequence performing the system bring-up is executed. In this
phase, all services mentioned above are initialised, and a short welcome message is printed to the
screen. Also, some parameters playing a key role in memory protection are set. The process list gets

2The completion of a partially entered command string into the full command when the tab key is hit is termedtab
completion

3.4. SYSTEM STARTUP 37

populated with some services that will be running in the background during the whole system up-time:
the ethernet daemon, the shell and the graphic manager. Then, all interrupts are demasked and the full
control is handed over to the round-robin scheduler.

38 BADGER, MUSHROOM, SNAKE CHAPTER 3. SYSTEM OVERVIEW

4Scheduler

As the system is planned to be able to execute multiple processes at the same time, a process scheduler
is included. I first want to summarize the various scheduling approaches commonly used in operating
systems, and then discuss the scheduling scheme used in the OS.

4.1 CPU Scheduling in General

Having some processes running at all times is the objective of multitasking. The CPU should be
switched among processes so frequently that users can interact with each program while it is running.
If you have, let’s say, a shell running, it seems (or at least should seem) like this shell is able to react at
any time on your keyboard input. Actually, the shell is not running at any time because other processes
are assigned the CPU rather frequently. The interval between the moments where the shell is indeed
running on the CPU are kept so short that you won’t even notice that the shell was not active when you
input some data using the keyboard; the shell reads this input when it is active the next time, i.e. some
10 to 100 milliseconds in general, depending on the CPU load1. This time lapse is short enough not to
be perceived by the user.

All processes to be executed are put into a job queue, or, to say it in other words, added to a process
list. This list needs to hold information about the process, which is commonly referred to as the
process control block (PCB). This information is mainly needed to (re)activate processes which are
not currently running on the CPU. Examples for this information would be

• state of the process; is the process new, running, halted, etc. ?

• program counter; at which location does the process start/continue when launched / reactivated?

• CPU registers; which data was currently being treated when the process was taken the CPU?
1the CPU load is nearly proportional to the number of processes the CPU is switched among

39

40 BADGER, MUSHROOM, SNAKE CHAPTER 4. SCHEDULER

• CPU scheduling information; what priority does this process have, or how long is it allowed to
be active on the CPU?

The information being present in such PCBs heavily depends on other OS features and on the schedul-
ing scheme used in this OS, therefore the contents of a generic PCB cannot be listed exhaustively
here.

When a process terminates, voluntarily recedes from the CPU or is forcibly removed from the CPU
by the scheduler, the contents of this process’ PCB need to be updated. Then, the next process to be
assigned the CPU is selected from the process list using one of various selection schemes. A variety
of such scheduling algorithms shall be mentioned here:

first-come, first-served schedulingis the simplest scheduling approach. The process that entered the
process list first assigned the CPU first. The process is not removed forcibly from the CPU and
can stay there as long as it wants to. This scheduling approach is called non-preemptive. A
process could possibly occupy the CPU forever.

shortest-job-first scheduling is an approach that selects the process with the shortest execution time
to be assigned the CPU. This algorithm is probably optimal as it minimizes the average waiting
time for a given set of processes. However, it is very difficult to estimate the duration of the
execution time of a process. This scheduling scheme can be preemptive or non-preemptive.

priority scheduling selects the processes according to their priority. This method brings in the ad-
vantage, that important processes are executed first. The problem to define a measure of priority
arises. Why is a process more important than another? This scheduling scheme can be preemp-
tive or non-preemptive.

round-robin scheduling really shares the CPU among various processes. A process is assigned the
CPU for a small unit of time, called a time quantum, and then the CPU is switched to the next
process. When the scheduler arrives at the end of the process list, it wraps around and starts
again from the beginning of the list. This scheduling algorithm is preemptive.

Bothshortest-job-firstandpriority scheduling can be implemented in a non-preemptive or preemptive
manner. They are preemptive when the currently executing process is removed from the CPU as soon
as a shorter process or one with a higher priority arrives. Long processes or processes with low priority
can possibly be blocked indefinitely.

Refer to [15] for a detailed discussion of processes and their scheduling.

4.2. CPU SCHEDULING IN THE XF-BOARD OS 41

Enter
scheduler

Process
running?

Save register
context

Process
terminated?

Mark descriptor
(PCB) as unused.

Release allocated
resources

Yes

Yes

Set process status
to readyNo

Get next PCB from
list

PCB unused or
process killed or

suspended?

Process
new in list?

Allocate stack
memory

Allocation
successful?

Yes

Exit scheduler

Start process

Dispatch
process

Set process status
to running

Set process status
to running

No

No

No

Yes

No

Yes

Figure 4-1: Scheduler Flow Chart. This flow charts shows the actions performed when the
scheduler is called upon time slice completion of a process. The current process’ context is
saved, and the next process ready to execute is selected from the list.

42 BADGER, MUSHROOM, SNAKE CHAPTER 4. SCHEDULER

4.2 CPU Scheduling in the OS

4.2.1 Round-Robin Scheduler

The scheduling scheme selected for the OS is a round-robin scheduler, because this is the
simplest implementation of a time sharing system. As stated in the introduction to this chapter, more
than one process at a time needs to be executed on the CPU, so a time sharing and preemptive approach
is indeed mandatory. The pool of processes available to be scheduled is represented by a process list
of fixed size, i.e. an upper limit for the number of process that can share the CPU is given. This upper
limit is set to 15 in the current build of the OS. The process list is represented by an array of PCBs (see
section4.2.2for details on these PCBs). The index of a process’ PCB is, at the same time, the process
ID by which the process is referenced.

4.2.1.1 Scheduler Flow

In a round-robin scheduler, the CPU is switched between a number of process in fixed intervals. The
shorter these intervals are, the higher is the degree of process concurreny perceived by the user. For
very short intervals, the time actually needed to perform the switch between two processes is dominant.
Therefore, a tradeoff between short switching intervals and low switching overhead exists.

Each process in the OS is assigned a number of time quanta to execute on the CPU. One
such quantum is a time slice of approximately 1.3 milliseconds, which is the minimum value making
any sense, because the time needed for the context switch is in the same order of magnitude. As soon
as this number of time quanta is up, the timer generates an interrupt and an interrupt handler gets
executed. This interrupt can also be forced by the process; such a forced interrupt can be achieved by
letting the timer expire. This is done when a process finishes execution or yields the CPU, e.g. when
it waits for I/O.

The interrupt handler stores the content of all CPU registers in its stack, and then the scheduler gets
activated, performing the following steps:

1. The scheduler checks whether the actual process is still running. If this check is positive, the
register context stored in the calling interrupt handler’s stack is copied to the PCB of this process.
If the check is negative, which means that the process is either killed, suspended or blocked, the
context in the PCB is either unused2 or unchanged since the last context save, so the flow is
continued with step3.

2. If the process has not yet finished and is in the ready status, the flow is continued at point3.
If the process has finished, which means that the program counter stored in the register context
points to the location where the exit function3 resides in memory, the PCB is marked as unused

2The kill function which is used to put a process in the killed status has already deallocated all resources, including the
stack memory.

3The exit function is implemented as an empty endless loop.

4.2. CPU SCHEDULING IN THE XF-BOARD OS 43

and returned to the pool of process list entries that can be assigned to new processes added to
the list.

3. The scheduler now looks at the PCB with the next higher index in the list. If the process de-
scribed by this PCB is unused, killed or suspended, it cannot be assigned the CPU. Therefore
step3 is performed again.

4. If the process described by the PCB is new, step5 is performed. Otherwise, the process is put
into the running status, and the dispatcher is called. The dispatcher writes the contents of the
register context back to the originating registers; as soon as the program counter is restored too,
the execution of this process is continued and the scheduler isexited.

5. As the process described by the current PCB is new, stack memory needs to be allocated (see
section5.2.2). If this memory allocation succeeds, the arguments submitted with the process
are moved to the argument registers, and the program counter is set to the process entry point
stored in the PCB and. So the process’ execution is initiated and the scheduler isexited. If stack
memory allocation failed, the scheduler is activated again, which means that the next process
ready to execute is searched for. As soon as some memory large enough for the previously failed
stack allocation has been freed, the process can be executed.

4.2.1.2 Adding a New Process

When a new process is to be launched, an unused PCB entry (or the entry of a killed process) needs
to be found in the process list. The list is searched from the beginning at index 1, because index 0
is occupied by the system idle process4. As soon as a PCB is found, the addition of this process is
successfully completed. If no unused PCB can be found, the process cannot be started, and an error
message is printed.

4.2.2 Process Control Blocks (PCB)

The processes in the OS are represented using a structure that holds all the information
needed by the round-robin scheduler to correctly handle these processes (see figure4-2). For every
process, there exists an instance of such a structure in the process list. Each such instance makes the
following information available:

Process entry point. The process entry point is a pointer to the address where the function represent-
ing this process starts in the code. This field of the PCB is only used for tasks that have newly
been added to the process list and are waiting to be launched for the very first time.

Register context. The register context holds a snapshot of the contents of all relevant registers. The
snapshot is taken when the process gets removed from the CPU. Therefore, the register context

4A system idle process is always needed because the process list must not be empty as the CPU always needs to be fed
with valid instructions. The idle process executes dummy instructions.

44 BADGER, MUSHROOM, SNAKE CHAPTER 4. SCHEDULER

0 7 8 15 16 2324 31

Process Entry Point

Contexthhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhh

hhhhhhh
hhhh


33 Registers×
4 Bytes

Process Status

Number of Quanta

Susp. Shell Name (ptr)

Pointers to the Arguments

Copy of the Argumentshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhh

hhhhhhh
hhhh

 64 bytes

No. of Args

Figure 4-2: Process Control Block. A process control block in the OS is
213 bytes in size. To optimize the memory requirements, changing the way the arguments
are stored is most promising. The amount of memory used by the register contents in the
context is mandatory and cannot be reduced.

4.2. CPU SCHEDULING IN THE XF-BOARD OS 45

is empty for new processes that have never been active on the CPU before. The register context
is needed to let the process continue exactly at the same point where it has been interrupted.

Stack information. The information about the stack size and its location in memory is needed by the
scheduler only the first time a process is launched, because at that moment the memory for the
stack needs to be allocated. Afterwards, the only information used by the scheduler is the value
of the stack pointer, which is stored in the register context. As the stack dimensions still might
be informative for the user, this stack information is kept in the process list.

Process status.The scheduler needs to know the status of a process to take the according action when
browsing the process list. A process can be in one of the following states:

• unused

• new

• running

• ready

• blocked

• suspended

• killed

The exact meaning of these states is discussed in section4.2.3.

Number of quanta. The number of time quanta a process is allowed to have exclusive access to the
CPU is needed by the scheduler to set the timer accordingly when the process is started or
reanimated.

Suspend shell flag.When this flag is set, the corresponding process suspends the shell5 to catch key-
board input which would otherwise be consumed by the shell. This information is not actually
needed for scheduling purposes; it is mainly used to be displayed when the process list is re-
quested by the user.

Name of the process.The string representing the name of the process only is used for displaying
purposes.

Argument list. The argument list of a process is needed the first time when it gets activated by the
scheduler, as the arguments need to be forwarded to the function to be executed. Afterwards
they remain in the process list for the case the user wanted to display them.

As the process list wastes a respectable amount of memory when implemented that way, the memory
usage of such a PCB could be reduced in future. To have a full copy of the arguments in the PCB
is maybe not the best approach, but it was the easiest to implement at the time the scheduler was

5Actually, the shell process is not put into thesuspendedstatus. It is self-suspending because it checks for shell-
suspending processes whenever it isrunningand voluntarily yields the CPU whenever such a process is present.

46 BADGER, MUSHROOM, SNAKE CHAPTER 4. SCHEDULER

developped. The arguments need to be stored somewhere for the time span between adding a command
to the process list and its actual execution on the CPU. If they are not stored in a statically allocated
field in the PCB, the memory to keep them needs to be allocated dynamically, but dynamic memory
allocation was introduced in the system later in the development process.

4.2.3 Process Statuses

Now a detailed description of the various process statuses is due. A diagram with the transitions
possible between the statuses is to be found in figure4-3. When a process enters either the unused or
the killed state, its stack and memory gets deallocated and all other used resources are released.

Unused Process

The termunused processis not a real process status. In fact, this means that this PCB entry in the
process list is empty and not currently in use. As a consequence, entries marked to beunusedare in
the pool of PCBs that can be assigned to new processes added to the process list. There are to ways a
PCB entry can become unused:

• The PCB has never been used. On system startup, all process list entries are initialized to be in
theunusedstatus.

• The process has completed.

New Process

A process that has been newly added to the process list is in this status. Such a process has never been
active on the CPU and therefore most fields of its PCB are empty. This status can only be entered and
left due to scheduler activity. The only status that con follow thenewstatus is therunningstatus.

Running Process

A running process is currently executing on the CPU. Obviously, only one process at a time can be in
this status. A process beingrunningcan change to the following statues:

ready: the ready status can be entered either voluntarily by the process by yielding the CPU or forcibly
by the scheduler when the process’ time quantum is over.

unused: the unused status is reached when the process finishes internally. This state is not entered
when the process is killed!

blocked: the process is blocked when it calls LOCK() while another process is owning the lock.

4.3. HW SCHEDULING IN THE XF-BOARD OS 47

suspended: the process may be suspended by the user. Suspension can be achieved by hitting the
escape key on the keyboard. However, only processes suspending the shell can be suspended, as
the suspension state is used as a means to escape to the shell from such processes.

killed: when the process is behaving ill, it can be killed by the OS to prevent the system from getting
unstable.

Ready Process

A process that is ready to be executed on the CPU is in the ready state. Ready processes can only enter
two status: they can be moved to the running status by the CPU, or they can be killed by user input.

Blocked Process

A blocked process also can be assigned the CPU, because only the process itself is allowed to perform
the transition fromblockedto running. To be able to perform this transition, the process must be
executing on the CPU. If the process decides to keep staying in the blocked state, it immediately yields
the CPU. A blocked process can be killed by the user.

Suspended Process

A suspended process is never assigned the CPU. The process is only allowed to leave the CPU when
the user decides to resume the process. A resumed process is put into the ready status.

Killed Process

When a process is killed, its PCB is returned into the pool to be used for new processes.

4.3 Hardware Scheduling in the OS

As the OS is meant to be an OS for reconfigurable hardware, an additional scheduler
that switches the R-FPGA’s resources between various hardware tasks would be interesting. Such
a scheduler is needed if the R-FPGA can be partially and dynamically reconfigured. This partial
reconfiguration cannot be achieved yet, therefore no such scheduler has been designed.

For previous work on this topic, refer to section2.1.

48 BADGER, MUSHROOM, SNAKE CHAPTER 4. SCHEDULER

new

running

ready

killed

suspended

blocked

unused

Figure 4-3: Process Status Transitions. This graph shows all transitions that can occur
between the various process statuses. The edges in the graph are colored; the colors
indicate who can be responsible for the corresponding transition.

Legend:
−→ Scheduler and scheduling utility functions
−→ Running process
−→ User (by keyboard input)
−→ Operating system component other than scheduler

Process states creating an empty and reusable entry in the process list

5Memory

5.1 Memory Layout

As stated in the introduction in section1.3.3, there are 4 types of memory present on the board:
BlockRAM, FlashRAM, SRAM and SDRAM. These memory technologies greatly vary in size and
access speed, therefore each technology may serve better for some purpose while being inappropriate
for another. This section helps you figure out which memory type is used for what purpose and offers
an explanation for this partition. A memory map is drawn in figure5-1. At the time writing, the
FlashRAM has not been in use yet.

The numeric values given for the memory locations apply for the OS build I
submitted with this documentation. These values may have changed due to
future edits in the source code.

5.1.1 BlockRAM Memory

The BlockRAM memory is used store the program code for the operating system. The OS’ variables
are stored here, and the stacks of the functions being executed during system bring-up and of the
interrupt handler and scheduler are placed here.

The main reason to have the OS code in BlockRAM is the speed of execution. OS functions should be
executed as fast as possible to allow for efficient system operation, as OS function are likely to be used
rather often. Similar arguments lead to the decision to have system variables and the various allocation
tables and lists in the BlockRAM, in spite of the hard size constraints given by the BlockRAM’s
dimensions considered later in this section. Also, it is mandatory to execute the scheduler and the

49

50 BADGER, MUSHROOM, SNAKE CHAPTER 5. MEMORY

0x00000000

Basic OS Memory

0x0000FFFF

 BlockRAM, 64 kB

0x00001000

0x80000000

128 kB Allocatable Memory

0x8001FFFF

0x80020000

3.875 MB Program Memory

0x803FFFFF


SRAM, 4 MB

0x80040000

0x81000000

Bit Stream Memory

0x813FFFFF

 SDRAM, 64 MB

Figure 5-1: Memory Map. This memory map shows which memory types are used for what
purpose and the physical addresses of the used regions. In the grayed regions, no memory
is present; these regions are either unused or occupied by the LMB or OPB cores.

5.1. MEMORY LAYOUT 51

interrupt handler at the maximum speed achievable, as they are called very frequently, so even the
stacks of these functions are held in BlockRAM; the stacks of all other functions are kept in SRAM
(see section5.1.2).

BlockRAM is the fastest memory accessible in the system, because it is attached to the LMB (see sec-
tion 3.1.1) which is dedicated to the data transfer betweenµBlaze and BlockRAM. As a consequence,
there is no other traffic on the bus, in contrast to the OPB bus which is connected to a lot of peripheral
components generating traffic on the system. In addition to that, BlockRAM is dual ported memory,
one port of which is connected to the port theµBlaze fetches the instructions, and the other port is
connected to the port it reads data from memory. So data can be read or written at the same time an
instruction is fetched.

The second reason to keep the OS program code in the BlockRAM is the fact that the memory cells
can be assigned a default value which is set in the bit stream. This means that the content of the
BlockRAM is configured the same time the hardware is uploaded to the FPGA: once the hardware is
ready, the software may start to be executed. If one of the other memory technologies were used to
contain the OS, the program code would need to be uploaded in a separate step.

Although the BlockRAM brings in these significant advantages, it’s limited size is an unpleasant draw-
back. The Virtex-II XC2V1000 offers 96 kB of BlockRAM memory, but due to the fact that the amount
of memory to be used for program code has to be of the form2n as imposed by EDK, the maximum
that can be instantiated for that purpose is 64 kB. Being in the know of this limit, it is obvious that
only the most important parts of the OS can be stored in the BlockRAM.

5.1.2 SRAM Memory

As the amount of BlockRAM memory is unlikely to satisfy the need of space for more complex
programs, the OS provides means to upload program code into SRAM. Extensions to the basic OS get
stored in SRAM, as does the code of custom user programs. 3.875 MB of memory are reserved for
this additional code1. External programs are uploaded in the MOTOROLA SREC format via ethernet;
refer to section9.2and appendixB where this process is explained in more detail.

128 kB are used for storing huge amounts of data usingmalloc() and the stacks of the processes in
the system, which also consume large memory chunks. This way to use the memory infers the need
for allocation schemes which are discussed in section5.2.

The SRAM does not support dual-ported access, thus requests for instructions and data get serialized.
As a result, the code is executed much slower, and data residing in the SRAM cannot be accessed as
fast as in the BlockRAM. Another factor that slows down the access to this memory is the traffic on
the OPB bus, as the controller for the SRAM modules is attached to this bus.

Enabling theµBlaze’s cache possibly reduces these effects. However, this fea-
ture has not been used yet, so no additional information can be offered on that
topic.

1When speaking of code here, the global variables and initialized data are included too.

52 BADGER, MUSHROOM, SNAKE CHAPTER 5. MEMORY

5.1.3 SDRAM Memory

SDRAM memory is used only to store bit streams to be configured into the R-FPGA. As these bit
streams consume large amounts of memory (a full bit stream is 1.2 MB in size), the SDRAM is
adequate for that purpose. SDRAM can be accessed in bursts, which is ideal to download configuration
data to the R-FPGA.

The burst access feature of the SDRAM cannot be used with the actual con-
figuration solution in software. This feature will become interesting as soon
as a DMA controller is implemented which will perform the download to the
R-FPGA

The bit streams to store in memory are sent over the ethernet, as explained in section6.3.

5.2 Memory Allocation

5.2.1 malloc and free

When a process needs large amounts of memory, it is not practical to statically allocate the space
needed by creating variables in the according size. Often, the exact size of the memory needed can
not be predicted at compile time. This means that enough memory would be allocated to satisfy the
maximum demands by the process, which is probably far more than an average pass of the process
might need. It is much better to dynamically allocate memory in the size actually needed as soon as it
is used and to deallocate it as when it is no longer needed. An that is exactly what the SRAM is used
for in the OS.

The memory is divided into a number of blocks of equal and fixed size to simplify the allocation and
management algorithms. When a process requests memory usingmalloc , a contiguous set of blocks
is searched for which is large enough to contain memory in the requested size. In the OS,
there are 512 blocks, each having a size of 256 bytes.

These dimensions only apply for the build I submitted with this documentation.
Most probably, they will be adjusted in future to allow for more memory to be
dynamically allocated.

If a memory chunk of 400 bytes is requested, 2 blocks are returned, representing 512 bytes. Assuming
uniformly distributed sizes of the memory requests, this approach with fixed-sized blocks brings in the
disadvantage of allocating too much memory: due to the round-up process, half of a block is wasted
in average, a problem commonly termedinternal fragmentation. The lower the block size, the less
memory is wasted.

5.2. MEMORY ALLOCATION 53

A table is managed which contains an entry for every block in that memory. Each entry holds the
following information:

Owner PID: the system needs to which process a memory block is assigned. This information is
needed for the cleanup when a process exits or is killed, as all memory used by this process
needs to be deallocated.

Memory type: a memory block can either be free, used for memory allocated usingmalloc , or used
as stack memory (see section5.2.2.

Last block: This flag marks the last block of a contiguous region composed of a number of blocks.

This table is referred to as the memory allocation table (MAT). The size of memory used to hold
this table is proportional to the number of blocks being managed. So choosing an appropriate block
size the memory is divided into is a trade-off between minimal internal fragmentation and minimal
management complexity.

When memory is requested by a process, the MAT is searched for a contiguous region, or hole, that
fits the requested size. As discussed in [16], this search can be performed using one of the following
approaches:

First fit: Allocate the first hole that is big enough. Searching can start either at the beginning of the
MAT or where the previous search ended. The search can be stopped as soon as a free hole being
large enough is found.

Best fit: Allocate the smallest hole that is big enough. To find this hole, the whole MAT must be
searched. This approach increases the search time, but produces the smallest leftover hole, but
small holes eventually cannot be used anymore.

Worst fit: Instead of the smallest hole, the largest hole is searched for. This approach comes with the
same search overhead as thebest fit, but the large leftover holes are more likely to be reusable.

As first fit searches and best fit searches are shown to be comparable in terms of storage utilisation, the
first fit approach is used in the OS because it is generally faster.

When memory is not used anymore, it can be deallocated by the process that owns this memory.
Deallocation is performed by executingfree on a pointer to the beginning of the memory region.
The memory is then marked as free in the MAT up to the entry flagged as the last block of this region.

5.2.2 Stack Allocation and Management

Let’s start thinking at the at the assembly language level: each time a subroutine gets called, the stack
gets enlarged by the amount of stack memory this subroutine needs. When the subroutine is returned

54 BADGER, MUSHROOM, SNAKE CHAPTER 5. MEMORY

OS Program
Code

Main Routine

OS Program
Code

Main Routine

Main Routine

OS Program
Code

Main Routine

Main Routine

Subroutine

0x00000000

High Address

SP

SP

SP

t

Figure 5-2: Stack Overflow Scenario 1. A process is running, having stack allocated for the
current function. Then, a new process is launched with its own stack. Later, the first process
is on the CPU again and calls a subroutine. The stack pointer is decremented and grows
into the stack of the second process.

from, the stack is shrinked by the same amount of stack memory. These size adjustments are performed
by changing the value of the stack pointer. Depending on the stack convention of the system, the stack
pointer initially points to a low address and is incremented when the stack grows, or the stack pointer
initially points to a high address and is decremented when the stack grows. The latter stack convention
is the one used in theµBlaze.

This works well in an environment where the CPU is not shared among various processes, and where
recursive function calls are guaranteed not to occur. But what happens when time sharing is performed?
A number of processes are being scheduled, every one with its own stack, but none of them is informed
about the position of the stack of the other processes. When a subroutine is called in a process, the stack
pointer is decremented, and eventually grows into the stack of another process, unwantedly changing
the content of this stack. Most probably, the system will show erroneous behavior.

Otherwise, if no such error occurs, terminated processes will leave unused memory where their stack
resided. As the stack pointer is alway decremented for each new process or subroutine, it tends to
indefinitely grow to lower memory. Sooner or later, the stack pointer reaches the program code which
is located at the beginning of the memory, and overwrite this code with bogus data. The system will
crash. Many more catastrophic scenarios could be thought of, as the system’s behavior would be rather
indeterministic. Two such scenarios are depicted in figures5-2and5-3.

It is obvious, that stack memory must be managed. In the OS, every PCB contains infor-
mation on the stack. This information contains the size of the stack needed for the process. When the
process gets started by the scheduler, stack memory is allocated using the allocation scheme discussed

5.3. MEMORY PROTECTION 55

OS Program
Code

OS Program
Code

OS Program
Code

0x00000000

High Address

SP

SP

SP

t

Figure 5-3: Stack Overflow Scenario 2. Some processes are running. Terminated processes
eventually leave unused memory at the location their stack resided, as the stack pointer only
can be decremented. It is only a question of time for the stack to grow into the program code

in section5.2.1. Assuming that the stack size given in the PCB is correct, stack overflows should not
occur. Due to the fact that the stack memory is managed and clearly defined, the stack will not grow
into the program code at the beginning of the memory.

Be sure to correctly calculate the amount of memory needed for the stack when
implementing your own processes. If these numbers are not correct, the system
might kill your process as described in the next section!

5.3 Memory Protection

Memory is not generally protected in the OS, as the CPU does not provide the hardware
needed for this purpose. Any process can overwrite and read the data of any other process. Still, a
minimum of protection can be done.

5.3.1 Stack Monitoring

In section5.2.2I mentioned that the stack size of each process must be known. Of course, the estimate
of this size can be too small, or a subroutine could be called recursively, making the stack grow beyond
its expected boundaries and therefor compromise other processes by overwriting their stack. As the

56 BADGER, MUSHROOM, SNAKE CHAPTER 5. MEMORY

OS should not rely on these estimates which are made by the programmer of the process, a means to
monitor the stack is mandatory.

Additional hardware has been developed to watch the location the stack pointer is pointing at. As the
PCB contains the information where the stack of the process is located in memory, this core can be
informed about the values the stack pointer is allowed to assume. This information is written to the
core by the scheduler when a process gets activated. As soon as the stack pointer leaves the allowed
region, an interrupt is raised and the process is killed, which prevents the other processes and the OS
from being corrupted. The core that has been developed for that purpose is theopb_xfcregwatch
described in section7.8.

5.3.2 Read-only protection

As stated above, every process can write to the variables used by other processes. These erroneous
accesses cannot be easily avoided, and sometimes processes need to communicate with each other
using common variables.

Processes even have write access to the read-only memory section where the OS program code and
the constants reside, which is fatal. This access could be forbidden by locking the according memory
section for write accesses via the LMB bus. The address range to be locked is not practical to be
statically configured into the system at hardware synthesis time, because the software may change,
and therefore the limits of this read-only memory section are not fixed. Whenever these limits change,
the hardware would need to be generated again.

This problem is solved by adding additional functionality to the memory controller connecting the
LMB (see section7.1) which protects the read-only section of the BlockRAM memory from write
accesses. If such an erroneous write is about to occur, an interrupt is raised and the process performing
this access is killed. As the instruction side LMB anyway supports the read direction only, this special
controller must be inserted at the data side LMB only.

The region containing read-only code can be easily determined. It starts at address 0x0 in the program
memory, and it ends at the position pointed at by the_erodata . This symbol gets assigned a value
when the OS code is linked. When the system starts, this value is written to the BlockRAM controller.

As only the read-only section of the OS code and data is proteced from un-
wanted accesses, processes might write to other code sections unintentionally
and compromise system stability. Be careful with those accesses!

6Services

This chapter shall mention additional OS services and elements that are not interesting or complex
(from a conceptual point of view) enough to be dedicated their own chapters.

6.1 User Interface

Making use of the text capabilities provided by the VGA core (section7.2) and the functions to write
to this display (section8.2.32), a simple textual user interface has been implemented which executes
commands entered using the keyboard. The keyboard driver is discussed in sections7.7 and8.2.10.
The display is vertically divided into two columns. The left column is used to enter commands, the
right column is used to display ASCII-art fashioned graphics.

6.1.1 Command User Interface: Shell

The left column of the text display is used to implement a command user interface commonly referred
to asshell. Using this shell, the user can enter commands which start new processes or control the
system behavior. The shell includes a history which contains the recently entered commands. This
history can be accessed using theup anddownkeys on the keyboard. The history is a circular buffer
of fixed size. The shell is also enabled to expand partially entered commands. This expansion can be
accomplished by hitting thetabulator key. When nothing has been entered yet, hitting thetabulator
key results in a list of all available commands being displayed. When some characters have been
entered and then thetabulator key is hit, the shell tries to find commands beginning with the same
substring. If more than one such command can be found, all possible completions are listed; if only
one such command exists, the characters entered so far are expanded to the full command. Command
completion does work not only with built-in commands, but also with user defined commands. Refer
to section9.2on how to add your own commands to the system.

57

58 BADGER, MUSHROOM, SNAKE CHAPTER 6. SERVICES

Be sure to define the commands to be added to the shell correctly and in alpha-
betical order. Unwanted behavior and even shell instability may occur if not
doing so!

The left column implements a scrolling function which is activated as soon as the bottom of the screen
is reached.

Whenever the shell is running on the CPU and waiting for input, it consumes all characters entered
using the keyboard. Therefore, when a process wants to get keyboard input reliably, it must be defined
to be able to suspend the shell. An explanation on how to do this is given in section9.2.

The keyboard driver forwarding the characters to the shell implements the mapping of raw scan codes
sent by the keyboard to the real characters. It also performs the handling of special keys:

F-Keys: commands including their arguments can be mapped to the F-Keys on the keyboard. When
such an F-Key is hit, the corresponding command is executed. This is useful for often used
commands.

Page up, Page down:these keys are used to browse through the pages of the graphics manager, see
section6.1.2.

Print Screen: this key calls a print screen function that dumps the content of the screen to the UART.

The escape key also experiences special treatment, but it is catched in the hardware of the keyboard
driver. When a process is running that is suspending the shell, the escape key can be hit to generate
an interrupt which suspends the process to enable to escape to the shell. The process that has been
suspended using the escape key can then be resumed later, again suspending the shell.

The functions representing the shell are discussed in section8.2.4.

6.1.2 Graphics Manager

As mentioned above, the right column of the display is used to display simple ASCII graphics. A
graphics manager is implemented that cares about displaying these graphics. This graphics manager
provides a number of pages to display these graphics. Using thepage upandpage downkeys naviga-
tion through these pages is achieved.

For every graphics element to be displayed, a hook-up function must be written providing the number
of lines needed in the display and the code to actually draw this element. This hook-up function must
then be installed into the graphics manager.

Whenever a hook-up function is to be installed into the graphics manager, the graphics manager first
tries to fit the graphics into the first page of the graphics display. If there is no room for this graphics
element, it continues searching on page two, and so on. If no room is available on any of the pages,
the graphics element cannot be installed.

6.2. OS BRIDGE 59

When the graphics manager is running on the CPU, it subsequently calls all drawing functions installed
in the currently active page. As soon as all elements are drawn, it yields the CPU.

6.2 OS Bridge

The OS bridge enables the communication with hardware OS elements present in the R-FPGA. Data
can be transferred to and from the R-FPGA. Configuration data can be written to OS elements, and
status information can be polled. Also, it can be used for debugging purposes.

The OS bridge provides an abstraction from the interfaces and protocols used by the OS elements to be
communicated with. Instructions and data are written to a master controller in the R-FPGA which then
distributes this information to the according slaves implementing the interface to the OS elements. For
read accesses, the information is collected from these slaves.

The OS bridge is documented in sections7.14and7.6. As the documentation there is rather detailed,
I don’t dig any deeper into the OS Bridge’s internals here.

6.3 Configuration of the R-FPGA

Bit streams to be configured into the R-FPGA can be uploaded to the system’s SDRAM via ethernet.
At the beginning of the SDRAM memory space, a table of contents holding information on all currently
present full and partial bit streams is located.

The configuration process is currently implemented in software. The software reads a bit stream from
the SDRAM and writes it to the R-FPGA using the SelectMAP port. This software approach is very
slow: it takes about 2.5 seconds to configure a full bit stream. Furthermore, the CPU is loaded during
the whole process. A solution to this problem is the use of a DMA controller which is delegated the
configuration process. The DMA controller would directly read the bit stream from memory and write
it to the R-FPGA autonomously. This controller is currently being developed in a further master’s
thesis. A graphical comparison of these two different approaches is given in figure6-1.

The software routines performing the configuration are discussed in section8.2.24.

60 BADGER, MUSHROOM, SNAKE CHAPTER 6. SERVICES

C-FPGA

R-FPGA

µBlaze

Bit Streams

SDRAM

(a) Software Approach

C-FPGA

R-FPGA

µBlaze DMA

Bit Streams

SDRAM

(b) DMA Approach

Figure 6-1: R-FPGA Configuration. The current implementation of the R-FPGA configu-
ration mechanism is a software approach with limited speed (a). A better and faster solution
would be a DMA controller which is delegated the configuration process. Furthermore, the
CPU is not loaded during the configuration.

7Hardware Documentation

Having discussed the conceputal ideas behind the various peripheral hardware components being at-
tached to the process, this chapter shall present the hardware components actually designed for the

OS. Sections7.1 to 7.13 describe hardware components attached to theµBlaze in the
C-FPGA, i.e. LMB and OPB cores, and section7.14describes hardware designed for the R-FGPA.

7.1 LMB BlockRAM Interface Controller

Core Name:lmb_xfbram_if_cntlr

7.1.1 Introduction

This core extends the corelmb_bram_if_cntlr by a function that traps all LMB write accesses
that point to a location below a lower limit. These access violations raise an interrupt.

7.1.2 Parameters

All parameters are inherited from the corelmb_bram_if_cntlr . For your convenience, these
parameters are still explained here.

The range specified by C_BASEADDR and C_HIGHADDR must comprise a complete, contiguous
power-of-two range, such that range =2n, and then least significant bits of C_BASEADDR must be
zero. The decode mask determines which bits are used by the LMB decode logic to decode a valid
access to LMB. If using EDK, this bit can be automatically set byplatgen and users do not need to
setup the value. The address mask indicates which bits are used in the LMB decode to decode that a

61

62 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

Figure 7-1: Example Connection Scheme. This is an example on how to connect the
µBlaze’s two LMB busses to two BlockRAM interface controllers. In this setup, the data
side LMB bus is protected from illegal write accesses to the BlockRAM

valid address is present on the LMB. Any bits that are set to 1 in the mask indicate that the address bit
in that position is used to decode a valid LMD access. All other address bits are considered don’t cares
for the purpose of decoding LMB accesses. The platform generation tool may limit the user’s choice
for the address mask: the most restrictive case is that only a single bit may be set in the mask. Consult
the platform generation tool documentation and informational messages for more information.

7.1.3 I/O Signals

The added functionality of this interface controller implies that the pool of the LMB signals is extended
by an interrupt line, theERRIRPTXSO. This is a high active interrupt that is asserted high for one clock
period whenever a LMB write access falls below a lower address limit. For sake of clarity, an example
setup involving the data side and the instruction side of theµBlaze’s LMB is displayed in figure7-1.
As the instruction side only performs read accesses, the standard controller is used for this side.

7.1.4 Core Operation

Read and write accesses are treated exactly the same way as with the corelmb_bram_if_cntlr
as long as the address for write accesses don’t fall under the lower address limit. This lower address
limit can be written via LMB bus to the register in figure7-3. This register can be written only once to
prevent its content from being changed unwantedly.

As soon as a write access violation is detected, the interrupt is raised for one clock cycle, and the write
enable line to the BlockRAM is forced to 0. The address that was to be written during this forbidden
access is stored in a register that can be read from the software (figure7-3).

Timing diagrams for allowed and forbidden accesses are depicted in figure7-2.

7.1. LMB BLOCKRAM I NTERFACECONTROLLER 63

LMB_Clk

LMB_Abus

LMB_AddrStrobe

LMB_BE

LMB_WriteDBus

Sl_DBus

LMB_WriteStrobe

LMB_ReadStrobe

Sl_Ready

BRAM_Addr_A

BRAM_WEN_A

BRAM_Dout_A

BRAM_Din_A

ERRIRPTXSO

���������
�VV�UU�VV�UUUU
�HH�LL�HH�LLLL
�VV�UU�VV�UUUU
�VVVVVV�UUUUUUUU
UUUUUUUUUUUU�VV�
�HHHHHH�LLLLLLLL
LLLLLLLL�HHHHHH�
LLLL�HH�LL�HH�

�VV�UU�VV�UUUU
LLLL�HH�LLLLLLLL
VVVVVVVV�UUUUUUUU
UUUUUUUUUUUU�VV�

LLLLLLLLLLLLLLLLLL
(a) Write Followed by Read

�������
�VV�UUUUUUUU
�HH�LL�HHHH
�VV�UUUUUUUU
�VVVVVV�UUUU
UUUUUUUUUUUUUU
�HHHHHH�LLLL
LLLLLLLLLLLLLL
LLLL�HH�LLLL

�VV�UUUUUUUU
LLLLLLLLLLLLLL
�VVVVVV�UUUU
UUUUUUUUUUUUUU

LLLL�HH�LLLL
(b) Write Access Error

Figure 7-2: Example Waveforms. On the left, a write access is followed by a read access.
On the right, a write access error occurs and an the interrupt is triggered. The upper of
signals are connected to the LMB bus, the lower group is connected to the BlockRAM.

64 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

0 31

lower address limit
}

C_HIGHADDR - 0x3

address of last violation
}

C_HIGHADDR - 0x7

Figure 7-3: Core Registers. These registers can be read via the OPB bus. The address limit
can be written only once, the address of the last violation is read-only-

7.1.5 Driver

To assign an interrupt handler to the interrupt line, a driver supporting this feature is needed, e.g.
timerint .

7.1.6 Software

In your program, you possibly want to protect the read-only section at the beginning from any write
access. This can be done using this code snippet:

1 // at the beginning of your code, write the
2 // high addressof the read−only section to the
3 // register containing the lower address limit
4 *((Xuint32 *)(XPAR_DLMB_BRAM_HIGHADDR-3)) = (Xuint32)&_erodata;
5

6 // later , e.g . in an interrupt handler, you might
7 // want to print the addressof the last violation
8 printf(" Last access violation occurred at address 0x%08x" ,
9 *((Xuint32 *)(XPAR_DLMB_BRAM_HIGHADDR-7));

XPAR_DLMB_BRAM_HIGHADDR is assumed to be the high LMB address of this interface con-
troller. The symbol_erodata gets defined at link time and points to the end of read-only data.

7.1. LMB BLOCKRAM I NTERFACECONTROLLER 65

description parameter name allowable values default value VHDL type

LMB BRAM base ad-
dress

C_BASEADDR valid address none std_logic_vector

LMB BRAM high ad-
dress

C_HIGHADDR valid address none std_logic_vector

LMB data bus width C_LMB_DWIDTH 32 32 integer

LMB address bus width C_LMB_AWIDTH 32 32 integer

LMB decode mask C_MASK valid decode mask 0x008000000 std_logic_vector

Table 7-1: BlockRAM Interface Controller Parameters. These are the parameters that can
be set for the core. The data and address withs cannot be actually changed as they must fit
the LMB bus architecture.

66 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

7.2 LMB Text Display Driver

Core Name:lmb_xfcvga

7.2.1 Introduction

This VGA text display core is a custom-tailored LMB core for the C-FPGA being part of the X-Forces
project. Using this core, text and simple ASCII graphic output can be displayed with 8 colors on a
monitor. A display with these capabilities is adequate for a debugging terminal and a simple user
interface to control and monitor the system’s state. To be able to display an acceptably large amount
of information, the trade-off between many colors and many pixels has been settled in favor of a high
resolution.

7.2.2 Parameters

You may tailor this core by adjusting parameters listed in table7-2. The default values for the scanning
parameters defining the video mode (C_H_FRONT_PORCH through C_V_RIGHT_BORDER in table
7-2) are correct for the XGA mode described in section7.2.6. The settings for the clock divider
are adequate for a 50 MHz system clock. To support another video mode, you may change these
parameters; however, the core has been tested with the default values only.

The parameters printed in dimmed colors are present only to let the core appear as a normal BlockRAM
module (again, see section7.2.6) and should be left untouched.

7.2.3 Insertion of the Core

As this core is attached to the LMB bus and shall be seen as a BRAM block, some additional remarks
are due. To connect this core to the LMB, an instance of the LMB controller (lmb_bram_if_cntlr) is
needed. The controller must be attached to the DLMB port of the processor. The address range of the
controller is restricted to be a power of 2 and must be at least 0x1800 in size (see section7.2.6for a
rationale). If the desired address range is represented by2n, then then least significant bits of the base
address must be 0. For the high address, then least significant bits must be 1, so the size of 0x1800
has to be expanded to the next valid value. A valid configuration would be 0x00700000 for the base
address and 0x00701FFF for the high address.

As soon as both the LMB controller and the VGA core are inserted into your design, some manual
adjustments to the project’s*.mhs file have to be performed to attach the VGA core to the LMB
controller.

1. open thesystem.mhs in an editor and find the instance of the LMB controller

2. add the lineBUS_INTERFACE BRAM_PORT = conn_vgato the instance.

7.2. LMB TEXT DISPLAY DRIVER 67

3. find the corresponding instance of the VGA core and add the lineBUS_INTERFACE
TEXTMEM = conn_vga. The stringconn_vga is arbitrary, but it must be unique within
the*.mhs file.

As thesystem.mhs has been edited outside the Platform Studio, you have to close your project and
reopen it to make these changes active.

7.2.4 I/O Signals

The I/O signals for the VGA core are listed in table7-3. Only five signals are needed to drive a CRT
or TFT display. Please note the recommended ranges for the signals as they exactly fit to the number
of pins available in the user constraints file for the C-FPGA!

7.2.5 Driver

No special driver is recommended, the drivergeneric may completely satisfy your needs.

7.2.6 VGA Core Operation

As mentioned above, the VGA core is designed to be seen as a BlockRAM module by the MicroBlaze.
Therefore, this core is commonly connected to the DLMB of the CPU. When doing so, printing to the
screen becomes as simple as assigning a variable a value in the C code. For a reference have a look at
figure7-4 where the display driver is used in a generic MicroBlaze environment; unnecessary details
have been omitted in the drawing.

The core supports the XGA standard, which is an extension to the commonly known VGA:

pixels per line : 1024
lines : 768

pixel clock : 75.0 MHz
horizontal frequency : 56.48 kHz

vertical frequency : 70.1 Hz

As this VGA core is meant to be driving the VGA connector attached to the C-FPGA on the XF-Board,
only 8 colors can be displayed1. These colors arered,green,blue,cyan,magenta,yellow plus black
and white.

To save BlockRAM, the core is designed to support text output only instead of giving access to each
and every pixel on the screen. It consists of a text memory and a character lookup table. The text
memory holds a 9 bit value for each character: 8 bits for the ASCII representation of the character,

18=23: three 1-bit lines represent the color information

68 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

description
param

eter
nam

e
allow

able
values

default
V

H
D

L
type

horizontalfrontporch
C

_H
_F

R
O

N
T

_P
O

R
C

H
any

pixelcount
24

natural

horizontalsync
pulse

C
_H

_S
Y

N
C

any
pixelcount

136
natural

horizontalback
porch

C
_H

_B
A

C
K

_P
O

R
C

H
any

pixelcount
144

natural

horizontalleftborder
C

_H
_LE

F
T

_B
O

R
D

E
R

any
pixelcount

0
natural

horizontalactive
region

C
_H

_A
C

T
IV

E
any

pixelcount
1024

natural

horizontalrightborder
C

_H
_R

IG
H

T
_B

O
R

D
E

R
any

pixelcount
0

natural

verticalfrontporch
C

_V
_F

R
O

N
T

_P
O

R
C

H
any

line
count

3
natural

verticalsync
pulse

C
_V

_S
Y

N
C

any
line

count
6

natural

verticalback
porch

C
_V

_B
A

C
K

_P
O

R
C

H
any

line
count

29
natural

verticalleftborder
C

_V
_LE

F
T

_B
O

R
D

E
R

any
line

count
0

natural

verticalactive
region

C
_V

_A
C

T
IV

E
any

line
count

768
natural

verticalrightborder
C

_V
_R

IG
H

T
_B

O
R

D
E

R
any

line
count

0
natural

totalcharacters
per

line
C

_C
H

A
R

S
_P

E
R

_LIN
E

≤
C

_H
_A

C
T

IV
E

/8
128

natural

characters
in

textcolum
n

C
_C

H
A

R
S

_IN
_T

E
X

T
note

1
64

natural

characters
in

graphics
colum

n
C

_C
H

A
R

S
_IN

_G
R

A
P

H
note

1
63

natural

num
ber

oftextlines
C

_N
U

M
B

E
R

_O
F

_LIN
E

S
≤

C
_V

_A
C

T
IV

E
/16

48
natural

clock
divisor

C
_C

LK
_D

IV
ID

E
note

2
2

integer

clock
m

ultiplicator
C

_C
LK

_M
U

LT
IP

LY
note

2
3

integer

B
lockR

A
M

size
C

_M
E

M
S

IZ
E

don’talter
8092

integer

B
lockR

A
M

data
w

idth
C

_P
O

R
T

_D
W

ID
T

H
don’talter

32
integer

B
lockR

A
M

address
w

idth
C

_P
O

R
T

_A
W

ID
T

H
don’talter

32
integer

B
lockR

A
M

N
o.

ofw
rite

enables
C

_N
U

M
_W

E
don’talter

4
integer

note
1:

C
_C

H
A

R
S

_IN
_T

E
X

T
+

C
_C

H
A

R
S

_IN
_G

R
A

P
H

=
C

_C
H

A
R

S
_P

E
R

_LIN
E

-
1

note
2:

the
range

ofvalid
values

highly
depends

on
the

system
clock

frequency

Table
7-2:

C
ore

P
aram

eters.
T

h
e

se
a

re
th

e
p

a
ra

m
e

te
rs

th
a

t
ca

n
b

e
a

d
ju

ste
d

fo
r

th
is

co
re.

H
o

w
eve

r,
b

e
su

re
th

a
t

th
e

p
a

ra
m

e
te

r
co

m
b

in
a

tio
n

re
p

re
se

n
ts

a
va

lid
d

isp
la

y
sta

n
d

a
rd

.
T

h
e

g
reye

d
-o

u
t

p
a

ra
m

e
te

rs
sh

o
u

ld
b

e
le

ft
u

n
to

u
ch

e
d

a
s

th
ey

n
e

e
d

to
p

e
rfe

ctly
fitth

e
L

M
B

bu
s

a
rch

ite
ctu

re,w
h

ich
is

fixe
d

.

7.2. LMB TEXT DISPLAY DRIVER 69

signal name I/O recommended width description

RxDO O 1 red color
GxDO O 1 green color
BxDO O 1 blue color
HSYNCxSBO O 1 horizontal synchronization, active low
VSYNCxSBO O 1 vertical synchronization, active low
RSTxRI I 1 reset input

Table 7-3: I/O Signals. Except for the reset input, all signals are outputs that can be directly
fed to the VGA / XGA display

Figure 7-4: Example Connection Scheme. In this example, the VGA core’s text memory
is connected to the data side LMB bus of theµBlaze. The other signals are fed to a VGA
connector.

and an additional bit to choose either the primary or the secondary text color. In the character lookup
table, the bitmaps for the characters are stored. As there are many control characters in the 8 bit ASCII
character set, these control characters are replaced by custom bitmaps to be used for simple ASCII-art
drawing, i.e. for graphical control and monitoring elements.

One character is 8 pixels in width and 16 pixels in height, which results in 128 characters per line and
48 text lines. As a consequence, a total of 6144 characters can be displayed on the screen. Given the
coordinates (x,y)2 of a pixel, its value can be calculated and looked up the following way:

• get indexitextmem into text memory

2(0,0) is the top left corner

70 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

Figure 7-5: Core Internals. This figure gives an overview of the VGA core’s internals.
Given the pixel coordinates, an index into text memory is calculated. The pixel value for
these coordinates is then read from the bitmap for the character being stored at this index.

itextmem =
⌊x

8

⌋
+ 128 ·

⌊ y

16

⌋
• the ASCII number of the character to display is stored in the text memory at this index

• then the pixel value at rowr and columnc in the bitmap representing this ASCII number is
returned

r = x mod8

c = y mod16

Refer to figure7-5 for an illustration of these steps.

As mentioned above, this approach reduces memory usage. To have full control over all pixels on the
screen,

3 bits · 1024 pixels· 768 lines= 2′359′296 bits = 288 kB

of memory would be needed. Splitting up into text memory and character bitmap memory, this number
shrinks down to a mere

6144 characters· 9 bits+ 256 characters· 8 columns· 16 rows= 88′064 bits = 10.75 kB

of memory and LUT resources.

7.2. LMB TEXT DISPLAY DRIVER 71

offset description

0 color configuration:
b8 . . . b6: background color
b5 . . . b3: secondary text color
b2 . . . b0: primary text color

4 scrolling offset
8 cursor position, lower bits
12 cursor position, upper bits

Table 7-4: Core Registers. These are the registers that can be configure via the LMB bus.
The registers are appended to the end of the address range of the text memory, so their offsets
are relative to the end of this range.

To have two more or less independent screen partitions for text and graphics, the display is split into
two columns. The left side of the screen is used for text display, therefore a simple scrolling mechanism
is implemented for this column. Scrolling is performed automatically whenever the text reaches the
bottom of the screen. Assuming the default values for the parameters in table7-2, the characters for the
text column are written to the first64 · 48 = 3072 positions in the text memory, i.e. the address range
from C_BASEADDR to C_BASEADDR+4·(C_CHARS_IN_TEXT·C_NUMBER_OF_LINES−1);
the factor 4 is inserted due to the MicroBlaze’s 32-bit addressing scheme. This memory section is
written circularly: whenever the end of the memory section is reached, it starts being overwritten at
the beginning. To emulate scrolling, the memory section is then displayed with an offset. There is no
scrollback buffer, so only the text currently displayed remains in the memory. In the text column, a
blinking cursor can be displayed. The cursor’s position must be updated in the software.

The right side of the screen is used for graphics display. As this core is character oriented,
graphics must be composed from ASCII characters. For the graphics column, no scrolling
is implemented. The blinking cursor can be moved to the graphics side of the display too.
The characters for the graphics column are located in the address range C_BASEADDR+ 4 ·
(C_CHARS_IN_TEXT·C_NUMBER_OF_LINES) to C_BASEADDR+4·((C_CHARS_IN_TEXT+
C_CHARS_IN_GRAPH) · C_NUMBER_OF_LINES− 1).

One character column is left empty to separate the text partition from the graphics partition. As a con-
sequence, C_NUMBER_OF_LINES memory entries at the end of the memory remain empty. These
locations are used to store some configuration data. The memory locations for the configuration are
listed in table7-4. The offset is relative to the address C_BASEADDR+4 · (C_CHARS_IN_TEXT+
C_CHARS_IN_GRAPH) · C_NUMBER_OF_LINES. The configuration settings may be altered at
runtime writing to the corresponding address from the C program.

72 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

7.2.7 Software

Some basic functions to write to the screen and set up configuration data are given in the following
listing. The code in this listing is working, but you may want to extend it as it only covers the most
trivial aspects of a text display:

• initializing the display

• printing a character

• printing newlines

• updating the cursor

• setting up colors

Some functions are referred to in the code without being implemented. They are marked with the
keywordtbi3 in the comment.

1 #include " ctype . h"
2 #include " xbasic_types . h"
3 #include " xparameters . h"
4

5 #define CHARS_PER_LINE128
6 #define CHARS_IN_TEXT 64
7 #define CHARS_IN_GRAPH63
8 #define NUMBER_OF_LINES48
9 #define TEXT_MEM_HIGHADDRXPAR_VGA_BASEADDR+ NUMBER_OF_LINES* \

10 (CHARS_IN_TEXT + CHARS_IN_GRAPH)*4
11 #define COL_REG TEXT_MEM_HIGHADDR
12 #define LIN_REG TEXT_MEM_HIGHADDR+ 4
13 #define CUR_REG TEXT_MEM_HIGHADDR+ 8
14

15 volatile Xuint32 *textMemory;
16 Xuint32 currentLine, colorMask, textMemLineOffset = 0;
17 Xboolean incrementLineOffset = XFALSE;
18

19 void vga_updatecursor (){
20 volatile Xuint32 *memAddr;
21 memAddr = (Xuint32 *)(CUR_REG); // herethecursorpositionis stored
22 *memAddr = ((Xuint32)textMemory - XPAR_VGA_BASEADDR) / 4; // write lowerbits
23 memAddr++;
24 *memAddr = (((Xuint32)textMemory - XPAR_VGA_BASEADDR) / 4) >> 9; // write upperbits
25 }
26

27 void vga_newline (){
28 Xuint32 *memAddr;
29 currentLine++;

3to be implemented

7.2. LMB TEXT DISPLAY DRIVER 73

30 currentLine %= NUMBER_OF_LINES; // keepinsidememoryrange
31 if (currentLine == textMemLineOffset) // wereachedthebottomof thescreen
32 incrementLineOffset = XTRUE; // activate scrolling
33 currentLine %= NUMBER_OF_LINES; // keepinsidememoryrange
34 if (incrementLineOffset){ // weare scrolling
35 textMemLineOffset++; // increment scroll offset
36 vga_clearline (); // erase the line (tbi)
37 memAddr = (Xuint32 *)(LIN_REG); // herethescroll offsetis located
38 *memAddr = textMemLineOffset; // write offsetto offset register
39 }
40 textMemory = (Xuint32 *)(XPAR_VGA_BASEADDR+ 4 * currentLine * CHARS_IN_TEXT);
41 }
42

43 void vga_init (){
44 textMemory = (Xuint32 *) XPAR_VGA_BASEADDR;
45 while ((Xuint32)textMemory < XPAR_VGA_BASEADDR+
46 4 * NUMBER_OF_LINES* CHARS_PER_LINE){
47 *textMemory=(Xuint32)0; // init memorywith 0
48 textMemory++;
49 }
50 textMemory = (Xuint32 *) XPAR_VGA_BASEADDR; // resettextinsertionpoint
51 currentLine = 0; // set up line counter
52 colorMask = 0; // reset color mask
53 vga_setupColors (0x7,0x2,0x0); // setup colors: white, green, black
54 }
55

56 void vga_setupColors (Xuint32 textcol1, Xuint32 textcol2, Xuint32 bgcol){
57 volatile Xuint32 *memAddr;
58 Xuint32 color;
59 memAddr = (Xuint32 *)(COL_REG); // here the color config is stored
60 color = textcol1 + (textcol2 << 3) + (bgcol << 6); // composevalue
61 *memAddr = color; // save value
62 }
63

64 void vga_putc (unsigned char c){
65 if (c == ’ \ n’ || c == ’ \ r ’) // treat newlinesandbackspaces
66 vga_newline ();
67 else if (c == ’ \ b’)
68 vga_backspace (); // tbi
69 else {
70 *textMemory = (Xuint32)c + colorMask; // write characterto screen
71 textMemory++;
72 if ((Xuint32)textMemory % (CHARS_IN_TEXT * 4) == 0) // treat line−wrappingcorrectly
73 vga_newline ();
74 }
75 vga_updatecursor ();
76 }
77

78 void vga_setColor (int col){
79 if (col == 0)
80 colorMask = 0; // primarycolor
81 else
82 colorMask = 256; // secondarycolor, set9th bit
83 }

74 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

7.2.8 Outlook

In a future release, additional configuration possibilities may be introduced, i.e. separate color setup
for the graphics column. Moving the character bitmap to BlockRAM instead of keeping a hard-wired
LUT might be interesting too. An option for installing custom fonts might be implemented then.

7.3. OPB CLOCK GENERATOR 75

7.3 OPB Clock Generator

Core Name:opb_xfcclockman

7.3.1 Introduction

This clock generator derives four additional clocks from the system clock and delivers them to the
R-FPGA. The clock frequencies can be set in software, and the clock signals can be disabled.

7.3.2 Parameters

You can tailor this core by adjusting the parameters listed in table7-5. Most of the parameters are
described in more detail in section7.3.4. The address range of the core is restricted to be a power of
2. If the desired address range is represented by2n, then then least significant bits of the base address
must be 0. As there are only 4 registers present in the system to hold the configuration data, only 4
addresses need to be decoded by the core. Due to the fact that theµBlaze is a 32 bit processor, this
means that a minimum memory range of 0xF is needed. Therefore, a valid configuration would be a
base address of 0xFF000000 and a high address 0xFF00000F.

7.3.3 I/O Signals

There is only one output signal: the four clock lines are combined toCLKxCO, which is defined on the
entity asstd_logic_vector(0 to 3) .

7.3.4 Core Operation

To generate the 4 clock signals, the basic clock is divided using a counter. Deriving the new clock sig-
nal using a counter does not violate the basic principles of synchronous, single-edge triggered design
as the signal is not used as a trigger for any flip-flop inside the R-FPGA. It is fed to a clock input of
the C-FPGA where a clock buffer is available to create a valid clock net.

As an example, the calculation of the frequency of one such clock is done next. Assuming a base clock
frequencyfsys and a divisor valued0 stored in the register, the frequencyfout0 output at the pin for
clock 0 is

fout0 =
fsys

2 · (d0 + 1)

The counter counts up tod0 and then restarts with zero; therefored0 must be increased by 1 to
get the divisor. An additional factor 2 is included because output signal gets toggled each time the
counter reachesd0. To get a full clock period, the signal must be toggled twice. The offset tod0 gets

76 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

description
param

eter
nam

e
allow

able
values

defaultvalue
V

H
D

L
type

S
R

A
M

m
em

ory
base

address
C

_B
A

S
E

A
D

D
R

any
valid

address
notoverlapping

w
ith

the
m

em
ory

space
of

other
cores

or
m

em
ories

none
std_logic_vector

S
R

A
M

m
em

ory
high

address
C

_H
IG

H
A

D
D

R
address

range
m

ust
be≥

0xF
and

a
pow

er
of2

none
std_logic_vector

M
axim

um
w

idth
for

divider
C

on-
stants

C
_D

IV
_M

A
X

_W
ID

T
H

any
num

ber
betw

een
(and

including)
1

and
31

5
integer

Initialdivider
value

C
_D

E
FA

U
LT

_D
IV

any
value

that
can

be
represented

w
ith

C
_D

IV
_M

A
X

_W
ID

T
H

bits
5

integer

D
efaults

for
enable

bits
C

_D
E

FA
U

LT
_E

N
A

any
value

from
0000

to
1111

1111
std_logic_vector

S
ystem

clock
m

ul-
tiplication

factor
C

_B
A

S
E

_M
U

LT
IP

LY
depends

on
the

com
bination

of
base

frequency,
m

ultiplicator
and

divisor
values.

R
efer

to
X

ilinx’
D

C
M

docu-
m

entation.

5
integer

S
ystem

clock
divi-

sor
C

_B
A

S
E

_M
U

LT
IP

LY
depends

on
the

com
bination

of
base

frequency,
m

ultiplicator
and

divisor
values.

R
efer

to
X

ilinx’
D

C
M

docu-
m

entation.

1
integer

S
ystem

clock
pe-

riod
C

_P
E

R
IO

D
the

period
in

nanoseconds
20.0

real

Include
D

C
M

flag
C

_IN
C

LU
D

E
_D

C
M

true
boolean

Table
7-5:

C
ore

P
aram

eters.T
h

is
is

a
listo

fa
llp

a
ra

m
e

te
rs

th
a

tm
a

y
b

e
a

d
ju

ste
d

fo
r

th
e

clo
ck

ge
n

e
ra

to
r

co
re.

Fo
r

d
e

ta
ils

o
n

th
e

va
lid

ra
n

ge
s

o
fth

e
d

iviso
r
a

n
d

th
e

m
u

ltip
lica

tio
n

fa
cto

r
re

fe
r
to

X
IL

IN
X

’d
o

cu
m

e
n

ta
tio

n
o

fth
e

D
C

M
s

in
th

e
V

irtex-II
u

se
r

g
u

id
e

[32].

7.3. OPB CLOCK GENERATOR 77

CLKxCI

ENA0

CLK0xCO

Counter

L�����������������������������H
HHHHHHHHHHHHHHHHHHHH�LLLLLLLLLLLLLLLLLLLLLL�HHHHHHHHHHHHHH
HHHHH�LLLLLLLLLL�HHHHHHHHHH�LLLLLLLLLLLLLLLLLLLLLL�HHHHH
V�VV�VV�VV�VV�VV�VV�VV�VVVVVVVVVVVVVV�VV�VV�VV�V2 0 1 2 0 1 2 0 0 1 2 0 1

Figure 7-6: Example Waveforms. This is an example for clock 0, which is configured to
divide the system clock by2 · 3, which means thatd0 = 2. The divided clock is being
disabled and then enabled again. The current period is being terminated before actually
being disabled.

compensated when being set via software, but the compensation does not apply for the initial value
C_DEFAULT_DIV. If you want to have the clock divided by2 · 6, you need to set C_DEFAULT_DIV
to 5; if you want to set the value using the software, you need to write a 6 to the register.

If you know that you are not going to use large divisor values, you may want to use a smaller
value for C_DIV_MAX_WIDTH which basically defines the counter width and thus significantly
affects the combinational path from the output of the counter registers to its input. The larger
C_DIV_MAX_WIDTH is, the more logic levels are used for the adder and the compare logic, which
results in a lower maximum operation frequency of the clock generator.

To get clock frequencies above the system clock frequency and to have a better frequency in lower
frequencies, a digital clock manager (DCM) can be used by setting C_INCLUDE_DCM totrue.
Using a DCM, the base frequency can by multiplied by C_BASE_MULTIPLY and divided by
C_BASE_DIVIDE. Assuming a multiplicatorn and a divisord the above equation can be rewritten:

fO0 = fsys ·
n

d
· 1
2 · (d0 + 1)

As mentioned in the introduction, the 4 clock signals can be enabled and disabled separately. To
guarantee valid clock signals, the current clock period is being finished when a clock is changed from
the enabled to the disabled state. An example is given in figure7-6, where clock 0 is being disabled
and then enabled again.

7.3.5 Software

To configure the clock generator, you simply have to write a 32 bit word to the OPB bus. Bit 0 (the
MSB in theµBlaze architecture) is the enable flag, the remaining bits represent the clock divisor as
shown in figure7-7.

((Xuint32)(XPAR_CLOCK_BASEADDR + 4)) = 0x80000000 || 9 ;

78 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

0 1 31

E
N
0

divisor (d0+1)
}

C_BASEADDR
E
N
1

divisor (d1+1)
}

C_BASEADDR+0x4
E
N
2

divisor (d2+1)
}

C_BASEADDR+0x8
E
N
3

divisor (d3+1)
}

C_BASEADDR+0xC

Figure 7-7: Core Registers. These configuration registers hold the divisor constants and
the enable flags for all four clock outputs. The registers can be read from and written to via
the OPB bus from within the software.

is an example code line that sets the clock generator for clock output 1 to divide the frequency output
by the DCM by2 · 9. The generator is enabled by setting bit 0 which can be achieved by OR’ing the
value 9 with 0x80000000. Disabling the clock, but keeping the divisor 9 in the register (for whatever
reason...) would have resulted in a line similar to

((Xuint32)(XPAR_CLOCK_BASEADDR + 4)) = 9 ;

Writing these code examples, I assumed that XPAR_CLOCK_BASEADDR is the base address of the
clock generator.

7.3.6 Outlook

This version of the clock generator only includes very basic features. Extending the generator to
support enabling clocks for a certain number of periods and then have them disabled again by the
generator would probably be interesting and useful.

7.4. OPB TEST-AND-SET LOCK 79

7.4 OPB Test-And-Set Lock

Core Name:opb_xfclock

7.4.1 Introduction

This core implements a hardware structure that can be tested and set atomically. Such structures
are often used in systems where one or more critical code section exist; in such systems it must be
guaranteed that only one process at a time is allowed to have access to such a critical section.

7.4.2 Parameters

The only parameters that must be set for this core are those listed in table7-6. The address range of
the core is restricted to be a power of 2. If the desired address range is represented by2n, then then
least significant bits of the base address must be 0. As there is only 1 register which represents the lock
variable, only 1 address needs to be decoded by the core. Due to the fact that theµBlaze is a 32 bit
processor, this means that a minimum memory range of 0x4 is needed. Therefore, a valid configuration
would be a base address of 0xFF000000 and a high address 0xFF000003. Detailed documentation on
the MIDI protocol can be found in [8].

description parameter name allowable values default value VHDL type

Test-and-set core
base address

C_BASEADDR any valid address not overlap-
ping with the memory space
of other cores or memories

none std_logic_vector

Test-and-Set core
high address

C_HIGHADDR address range must be≥ 0xF
and a power of 2

none std_logic_vector

Table 7-6: Core Parameters. The only parameters that must be set define the test-and-set
core’s OPB address range

7.4.3 I/O Signals

This is an internally used core; therefore no I/O signals are used.

7.4.4 Core Operation

The lock variable is implemented using a register that can be read from and written to. Reading from
the register performs a test-and-set access, writing to the register results in a clear access. When the
core is written to, two scenarios may be encountered:

80 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

• The lock is not set

If the lock is not set at the moment the register is being read, a 0 is returned, and at the same
time, the register’s content is set to 1, which means that the lock is set.

• The lock is set

If the lock is set at the moment the register is being read, a 1 is returned and the register’s content
is not altered

To unlock, the register can be written with a any value, which sets its content to 0.

7.4.5 Outlook

In a future version, this core may implement more than one lock variable. Also, it might be useful
not to restrict the range of values of the register’s content to 0 and 1 only, e.g. to store the PID of the
process requesting the lock.

7.5. OPB MIDI INTERFACE 81

7.5 OPB MIDI Interface

Core Name:opb_xfcmidi

7.5.1 Introduction

This OPB Midi interface simply reads in serial MIDI data and writes them parallel into a FiFo which
can be read from the OPB bus. It does not perform any data filtering, therefore all MIDI bytes for all
16 MIDI channels are catched. Any filtering has to be performed in software. This MIDI interface is
based on the MIDI synthesizer designed in [11].

7.5.2 Parameters

The only parameters that must be set for this core are those listed in table7-7. The address range of
the core is restricted to be a power of 2. If the desired address range is represented by2n, then then
least significant bits of the base address must be 0. As this core is sort of a FiFo which can be read,
only one address needs to be decoded by the core. Due to the fact that theµBlaze is a 32 bit processor,
this means that a minimum memory range of 0x4 is needed. Therefore, a valid configuration would be
a base address of 0xFF000000 and a high address 0xFF000003.

The FiFo address width C_FIFO_AWIDTH governs the numbern of entries that can be stored in the
FiFo:

n = 2C_FIFO_AWIDTH− 1

The clock frequency C_CLOCK_FREQ is needed to synchronize the receiver to the clock used in the
MIDI standard, which is 31.25 kHz.

description parameter name allowable values default value VHDL type

MIDI core base ad-
dress

C_BASEADDR any valid address not overlap-
ping with the memory space of
other cores or memories

none std_logic_vector

MIDI core high ad-
dress

C_HIGHADDR address range must be≥ 0xF
and a power of 2

none std_logic_vector

FiFo address width C_FIFO_AWIDTH unbounded; only limited by the
maximum number of registers
available

6 natural

System Clock Fre-
quency

C_CLOCK_FREQ the clock frequency in Hz 50000000 integer

Table 7-7: Core Parameters. These are the parameters that must be set for the MIDI core.

82 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

Figure 7-8: MIDI Schematic. This schematic is a suggestion on how to connect the MIDI
cable to the FPGA pin. The PC900V is an optocoupler used as a current-to-voltage con-
verter. It also galvanically isolates the MIDI system from the FPGA.

0 22 23 24 31

D
A
V

MIDI byte

Figure 7-9: Core Register. The data word that can be read via OPB bus contains the actual
MIDI byte plus a data-valid flag.

7.5.3 I/O Signals

The MIDI interface uses only one external input signal that feeds the MIDI signal,MIDISERXDI,
which is ofstd_logic . The MIDI signal cannot be directly fed to the FPGA; instead, an optocoupler
is needed to convert the corrent of about 5 mA delivered by the MIDI cable into a voltage. Also, the
optocoupler serves to galvanically isolate the MIDI cable from the FPGA to prevent possible electrical
problems. An example circuit is given in figure7-8.

7.5.4 Core Operation

MIDI data being fed serially to the core is converted to bytes using a shift register and then written to
a FiFo. If the FiFo is full, newly received bytes are discarded. When the core gets an OPB read access,
it tries to pop a value off the FiFo. If the FiFo is not empty, this value gets returned in bits 24 to 31 of
the data bus, and bit 23, being the data valid flag, is set. If the FiFo is empty, bits 24 to 31 are cleared;
the data valid flag is cleared too. This flag is needed due to the fact that 0x00 is a valid MIDI byte too.
Bits 0 to 22 are never used, as shown in figure7-9.

7.5. OPB MIDI INTERFACE 83

7.5.5 Software

Reading the FiFo from within the software is easy. The code snippet below waits for MIDI data
and prints the received bytes. In the code, the core is assumed to be assigned the base address
XPAR_MIDI_BASEADDR.

1 Xuint32 data;
2 Xuint8 midibyte;
3 while (1){
4 do{ // loop until valid MIDI dataare available
5 data = *((Xuint32 *) XPAR_MIDI_BASEADDR);
6 } while (!(data & 0x100)); // thedatavalid flag: bit 23
7 // strip the data valid flag
8 midibyte = data & 0xFF;
9 // print the MIDI byte

10 printf(" Received MIDI byte : 0 x%02x\ n" ,midibyte);
11 }

84 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

7.6 OPB OS Bridge

Core Name:opb_xfcosbridge

7.6.1 Introduction

The OS Bridge is meant as a communication interface between C-FPGA and R-FPGA. Using a simple
instruction set, data and configurations can be written to and read from hardware modules on the R-
FPGA, e.g. FiFos could be monitored and dumped. This OPB core represents the C-FPGA part of the
OS Bridge. Documentation on the R-FPGA part can be found in section7.14. The OS bridge has been
introduced in [19].

7.6.2 Parameters

The only parameters that must be set for this core are those listed in table7-8. The address range of
the core is restricted to be a power of 2. If the desired address range is represented by2n, then then
least significant bits of the base address must be 0. The core needs to be assigned an address range of
at least 256 addresses (see section7.6.4for a rationale), which means thatn = 8. Therefore, a valid
configuration would be a base address of 0xFF000000 and a high address 0xFF0000FF.

description parameter name allowable values default value VHDL type

OS bridge base ad-
dress

C_BASEADDR any valid address not overlap-
ping with the memory space of
other cores or memories

none std_logic_vector

OS bridge high ad-
dress

C_HIGHADDR address range must be≥ 0xF
and a power of 2

none std_logic_vector

Table 7-8: Core Parameters. An address range of minimal size 0x100 must be set for the
OS Bridge.

7.6.3 I/O Signals

The signals needed by this core are listed in table7-9. OSBXDIO is a bidirectional signal used to write
instructions and data to the R-FPGA and read data from the R-FPGA. When instructions or data are
written, OSBWXEO is asserted to tell the OS bridge counterpart present in the R-FPGA that data is
being written. To prevent this counterpart from driving the data bus, the tristate signalOSBTRSTEXTO
connected to the R-FPGA’s output buffers is asserted too. When data is being read,OSBTRSTEXTO
is deasserted to allow the R-FPGA to drive the bus. The R-FPGA then assertsOSBRXEI as soon as
the data is ready to be fetched from the bus.

7.6. OPB OS BRIDGE 85

signal name I/O recommended width description

OSBXDIO IO 16 data / instruction bus
OSBTRSTEXTO O 1 tristate control signal
OSBWXEO O 1 write enable, active high
OSBRXEI I 1 read enable, active high

Table 7-9: Core Signals. All I/O signals of the OS bridge are directly connected to the R-
FPGA via the system’s GPIO bus. The CPU is the master and therefore controls the tristate
signal.

7.6.4 Core Operation

The core basically translates the 32 bit accesses over the OPB bus into 16 bit accesses over the OS
bridge. These 16 bit accesses are performed in a sequential manner.

For writing to the R-FPGA, there are 3 command types which only differ in the amount of data being
written. The opcodes used are 8 bits in length. Given the bus width of 16 bits, there are 8 bits remaining
which can be used to transfer data. If more than 8 bits need to be written, one or more additional 16-bit
words are transferred to the R-FPGA. The 3 command types (see figure7-10) are as following:

type 0 commandsconsist of a single word sent over the OS bridge. The upper 8 bits represent the
opcode, the lower 8 bits are the data payload.

type 1 commandsare used to transfer up to 24 bits of data. Type 1 commands are transmitted using
2 OS bridge words. The upper 8 bits of the first word again represent the opcode, the lower 8
bits are the most significant byte of the 24 bits of data, and the second word consists of the two
least significant bytes.

type 2 commandscan write up to 32 bits of data, which is the maximum amount of date that can be
written using a single instruction. Type 2 commands result in 3 OS bridge words being written to
the bus. The upper 8 bits of the first word contain the opcode, the lower 8 bits are not used. Word
2 and word 3 contain the upper halfword and the lower halfword of the data being transmitted,
respectively.

The command type is encoded in the two most significant bits of the opcode, i.e.00XXXXXXfor type
0 commands,01XXXXXXfor type 1 commands, and10XXXXXXfor type 2 commands.

The timing diagram for a type 2 write command is depicted in figure7-12. Here, a base ad-
dress of 0xF0000000 is assumed, and the opcode 0x80 is executed, writing the random 32 bit word
0x0600C0C3 to the OS bridge bus.

For reading from the R-FPGA, there is only one command that can get up to a maximum of 16 bits

86 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

0123456789101112131415

0 0 C5
. . . C0 D24 . . . D31Type 0 Command

{
0123456789101112131415

0 1 C5
. . . C0 D8

. . . D15

}
1st Word

D16
. . . D31

Type 1 Command

{ }
2nd Word

0123456789101112131415

1 0 C5
. . . C0

}
1st Word

D0
. . . D15

}
2nd Word

D16
. . . D31

Type 2 Command

 }
3rd Word

Figure 7-10: OSB Write Comands. There are 3 types of commands to write data to the
R-FPGA using the OS bridge. The difference between the commands is the number of words
being written. The type is deducted from the 2 most significant bits of the command’s opcode.

0123456789101112131415

C7
. . . C0Command (written)

{
0123456789101112131415

D16
. . . D31Data (read)

{

Figure 7-11: OSB Read Command. Only one command is defined to read data from the
R-FPGA using the OS bridge. With this command, 16 bits of data can be read.

of data. First, the 8-bit opcode is written to the bus, then the core waits for the R-FPGA’s read enable
signal and then reads 16 bits of data from the bus.

A timing diagram for a read command is given in figure7-13, again with a base address 0xF0000000.
The opcode is 0x81, and 0xAF is an example how the R-FPGA might answer this request.

Now let’s focus on a basic problem. A write access to the OPB is done using a variable assignment
in C, which then is translated into asw instruction in assembly language. Similarly, a read access is
translated into alw instruction, which does not take any arguments except the address being read and
the register being written with the value read at this address. The specification described above states
that an opcode must be written to the bus before the actual data can be read. To avoid an additional
write instruction that writes the opcode to the bus before every read instruction, a simple trick is used:
the instruction being written in a read access is encoded in the address to be read. The OPB address
AOPB being read can be calculated using

7.6. OPB OS BRIDGE 87

OPB_Clk

OPB_ABus

OPB_DBus

OPB_Select

OPB_xferack

OSBXD

OSBWXE

OSBRXE

OSBTRSTEXT

L����������������
U�VVVVVVVVVVVVVVVVVVVVVV�UUUUUU
U�VVVVVVVVVVVVVVVVVVVVVV�UUUUUU
L�HHHHHHHHHHHHHHHHHHHHHH�LLLLLL
LLLLLLLLLLLLLLLLLLLLL�HH�LLLLLL
ZZZZZ�VVVVVV�VVVVVV�VVVVVV�ZZ
LLLLLLL�HH�LL�HH�LL�HH�LLLL
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

0xF0000080

0x0600C0C3

0x8000 0x0600 0xC0C3

Figure 7-12: Write Waveforms. Example waveforms of a OS bridge write cycle using a type
2 command is given here. A 16-bit word containing the opcode is sent, then two such words
containing data are written to the bus.

OPB_Clk

OPB_ABus

Sln_DBus

OPB_Select

OPB_xferack

OSBXD

OSBWXE

OSBRXE

OSBTRSTEXT

L������������������L
U�VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV�UUU
ZZLLLLLLLLLLLLLLLLLLLLLLLLLLL�VV�ZZZ
L�HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH�LLL
LLLLLLLLLLLLLLLLLLLLLLLLLLLLL�HH�LLL
ZZZZZ�VVVVVV�ZZZZZZZZZZ�VVVVVV�ZZZ
LLLLLLL�HH�LLLLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLLLLLLLLL�HHHHHH�LLL
HHHHHHHHHHHHH�LLLLLLLLLLLLLLLLLL�HHH

0xF0000081

0x8100 0xAF

0xAF

Figure 7-13: Read Waveforms. 16 bits of data are being read. First, the opcode is sent,
then the bus is set into read direction, and the data from the R-FPGA are being awaited.

88 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

AOPB = Abase + opcode

with Abase being the base address andopcode being the opcode. Thanks to the fact that in section
7.6.2it has been stated that the 8 least significant bits of the base address need to be 0, the address can
be calculated more easily (easy is here meant in terms of hardware complexity)

AOPB = Abase(0 to 23) & opcode(0 to 7)

written in pseudo-HDL with& being the concatenation operator and(a to b) being the bit selection
operator extracting bitsa to b. This simple trick also improves write accesses to the OS bridge because
now accesses with an 8-bit opcodeand32 (instead of 24) bits of data are feasible.

7.6.5 Software

Writing to and reading from the R-FPGA using the OS bridge is as simple as writing to or reading
from a single OPB address. One possibility is to use two simple macros for reading and writing:

1 // three exampleopcodes
2 #define OPCODE_WRITE_SRAM 0x81// type2 opcode
3 #define OPCODE_WRITE_GPIO 0x32// type0 opcode
4 #define OPCODE_READ_GPIO 0x32// readopcode
5 // macrosfor reading and writing
6 #define OSBRIDGE_WRITE(opcode, value) \
7 *((Xuint32 *)(XPAR_OSBRIDGE_BASEADDR| opcode) = value
8 #define OSBRIDGE_READ(opcode) \
9 *((Xuint32 *)(XPAR_OSBRIDGE_BASEADDR| opcode)

These example macros are given with the assumption that XPAR_OSBRIDGE_BASEADDR holds
the base address of the OS bridge OPB core.

7.6.6 Outlook

Currently, the communication over the OS bridge is rather slow: 6 clock cycles are needed to trans-
fer an opcode and 32 bits of data. With some changes in the timing of this core and its R-FPGA
counterpart, this number might be reduced to 3 clock cycles.

7.7. OPB PS/2 KEYBOARD DRIVER 89

7.7 OPB PS/2 Keyboard Driver

Core Name:opb_xfcps2key

7.7.1 Introduction

This OPB keyboard driver simply reads in serial PS/2 scan codes and writes them parallel into a FiFo
which can be read from the OPB bus. Apart from that, it generates a level-sensitive, high active
interrupt when the scan code for the escape key has been detected.

7.7.2 Parameters

description parameter name allowable values default value VHDL type

Keyboard core base
address

C_BASEADDR any valid address not overlap-
ping with the memory space of
other cores or memories

none std_logic_vector

Keyboard core high
address

C_HIGHADDR address range must be≥ 0xF
and a power of 2

none std_logic_vector

FiFo address width C_FIFO_AWIDTH unbounded; only limited by the
maximum number of registers
available

6 natural

FSM reset period C_RESET_PERIOD the number of clock periods af-
ter which the FSM is reset

8192 integer

Table 7-10: Core Parameters. These are the parameters that must be set for the PS/2
keyboard interface.

The only parameters that must be set for this core are those listed in table7-10. The address range of
the core is restricted to be a power of 2. If the desired address range is represented by2n, then then
least significant bits of the base address must be 0. As this core is sort of a FiFo which can be read,
only one address needs to be decoded by the core. Due to the fact that theµBlaze is a 32 bit processor,
this means that a minimum memory range of 0x4 is needed. Therefore, a valid configuration would be
a base address of 0xFF000000 and a high address 0xFF000003.

The FiFo address width C_FIFO_AWIDTH governs the numbern of entries that can be stored in the
FiFo:

n = 2C_FIFO_AWIDTH− 1

90 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

signal name I/O recommended width description

PS2CLKXCI I 1 PS/2 clock input
PS2DATXDI I 1 PS/2 data
INTERRUPTXSO O 1 interrupt line, level-sensitive, active high
INTACKXSI I 1 interrupt acknowledge

Table 7-11: Core Signals. The core has 2 PS/2 signals. The interrupt line and its acknowl-
edge signal are used to inform theµBlaze about the escape key being pressed.

PS2CLKXCI

PS2DATXDI

HHHHHHHH����������������������HHHHHH
HHHHHHHH�LL�VV�VV�VV�VV�VV�VV�VV�VV
LL�HHHHHHHH

start
bit b0 b1 b2 b3 b4 b5 b6 b7

stop
bit

Figure 7-14: PS/2 Waveforms. As we only want to read data from the keyboard, the protocol
is really simple: 8 bits with a start and stop bit are sent over the data line, alongside with a
synchronisation clock only being active during the data transfer.

7.7.3 I/O Signals

The PS2KBD interface uses two external input signals that feed the PS/2 data signal and the PS/2
clock. Additionally, internal signals for interrupt handling are available. These signals are listed in
table7-11.

7.7.4 Core Operation

PS/2 scan codes being fed serially to the core are sampled and then converted to bytes using a shift
register implemented as an FSM that waits for the start bit and then shifts in the following 8 bits. These
bytes are then written to a FiFo. When the FiFo is full, newly received scan codes are discarded. As
there exists no scan code with the value 0x00, this value is returned whenever the FiFo is empty.

As the PS/2 keyboard sends a clock along with the data, no special synchronization has to be done; the
core works with all clocks that are significantly faster than the PS/2 clock which is at 10.9 - 16.7 kHz.
A timing diagram explaining how the data is sent using the PS/2 protocol is drawn in figure7-14.
According to the PS/2 standard, the devices at both ends of the PS/2 lines are allowed to write and read
data; sensing is done using the clock line. Fortunately, we only want to read data from the keyboard,
so no sensing is needed.

If the PS/2 data signal is too noisy or contains errors, the FSM might be in a bogus state. As a remedy,
the FSM is forced back into its init state every C_RESET_PERIOD cycles.

Whenever a scan code for the escape key is detected, an interrupt is generated. The interrupt stays
asserted until it is being acknowledged usingINTACKXSI.

7.7. OPB PS/2 KEYBOARD DRIVER 91

7.7.5 Software

Reading the FiFo from within the software is easy. The code snippet below waits for PS/2 data
and prints the received bytes. In the code, the core is assumed to be assigned the base address
XPAR_KEYBOARD_BASEADDR.

1 char scancode;
2 while (1){
3 do{ // loop until a scancode is available
4 scancode = *((Xuint32 *) XPAR_KEYBOARD_BASEADDR);
5 } while (!scancode);
6 // print the scancode
7 printf(" Received scan code : 0 x%02x\ n" ,scancode);
8 }

As the PS/2 core returns scan codes and not the ASCII code for the keys being pressed, you might want
to implement a FSM that interprets the scan codes received and maps them to your keyboard layout.

7.7.6 Outlook

Sometimes a wrong scan code gets detected. At the time writing, it is not known whether this is a bug
on the hardware side or on the software side. Some time should be spent to track down this bug.

92 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

7.8 OPB Register Watcher

Core Name:opb_xfcregwatch

7.8.1 Introduction

The OPB register watcher monitors the value of aµBlaze register and raises an interrupt if the value
of the register is outside of a certain range. The range of allowed values can be configured at runtime
from the software. As an example, this core can be used to detect stack violations by looking at the
stack pointer.

7.8.2 Parameters

description parameter name allowable values default value VHDL type

Register watcher
base address

C_BASEADDR any valid address not over-
lapping with the memory
space of other cores or
memories

none std_logic_vector

Register watcher
high address

C_HIGHADDR address range must be≥
0xF and a power of 2

none std_logic_vector

Hard lower limit of
the address range
to be watched

C_HARD_LOWER_LIMIT any valid address <
C_HARD_UPPER_LIMIT

0x00000000 std_logic_vector

Hard upper limit of
the address range
to be watched

C_HARD_UPPER_LIMIT any valid address >
C_HARD_LOWER_LIMIT

0xFFFFFFFF std_logic_vector

Register number to
be watched

C_REG_NUM any value from 0x00 to
0x1F

0x01 std_logic_vector

Table 7-12: Core Parameters. Using these parameters, the address range being watched
can be adjusted. The register to be monitored must be defined at synthesis time.

The parameters that must be set for this core are those listed in table7-12. The address range of the
core is restricted to be a power of 2. If the desired address range is represented by2n, then then least
significant bits of the base address must be 0. There are two registers to be accessed by this core: the
lower limit of the allowed range and the upper limit of the allowed range. Thus a total of 2 addresses
need to be decoded by the core. Due to the fact that theµBlaze is a 32 bit processor, this means that
a minimum memory range of 0x8 is needed. Therefore, a valid configuration would be a base address
of 0xFF000000 and a high address 0xFF000007.

To restrict the address range to be monitored to a subrange, it can be limited using a hard upper limit
and a hard lower limit. The number of the register to be watched too has to be defined at synthesis

7.8. OPB REGISTERWATCHER 93

signal name I/O recomm. width description

REGNUMX DI I 5 Register number
REGVALX DI I 32 Register value
VALID INSTRXSI I 1 High if the currently executed instruction is valid
REGWEXEI I 1 High if the current register is being written.
INTXSO O 1 Interrupt
ACKXSI I 1 Interrupt acknowledge

Table 7-13: Core Signals. The core only uses internal I/O signals that are connected either
to theµBlaze or to an interrupt controller. If used with and interrupt controller, the interrupt
signal must be assigned an interrupt handler other than the default handler.

Figure 7-15: Wiring Example. This figure is a suggestion on how to connect the register
watcher to theµBlaze without the use of an interrupt controller.

time.

7.8.3 I/O Signals

The signals used by this core are listed in table7-13. The signalREGNUMX DI is assigned the number
of the register that has recently been read from or written to by theµBlaze. It should be connected
to the µBlaze’s REG_ADDR output.REGVALX DI is the value currently being stored in register
REGNUMX DI. This signal should be tapped at theµBlaze’s NEW_REG_VALUE port. AsVALID IN-
STRXSI shows the validity of the instruction executed at the moment, these register values are mean-
ingful only if this signal is high.VALID INSTRXSI should be connected to the VALID_INSTR port of
theµBlaze. If REGWEXEI is high, the registerREGNUMX DI is being written.REGWEXEI should
be connected to the REG_WRITE output of theµBlaze. For sake of clarity, these connections are
depicted in figure7-15.

94 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

310

soft upper limit
}

C_BASEADDR

soft lower limit
}

C_BASEADDR + 0x4

Figure 7-16: Core Registers. The upper limit and the lower limit of the memory range the
monitored register is allowed to point at can be configured via OPB into these two registers.

→ 0x00000000 → hard lo limit→ soft lo limit soft hi limit← hard hi limit← 0xFFFFFFFF←

Figure 7-17: Protected Memory Map. As soon as the monitored register points to a lo-
cation inside thedisallowedregion, the interrupt is asserted high. The two hard limits are
configured at synthesis time, the soft limits can be moved at runtime.

7.8.4 Core Operation

The core simply monitors the register selected with C_REG_NUM and raises an interrupt as soon
as its value leaves the range between the soft lower limit and the soft upper limit. These limits are
termedsoftbecause they can be set using the software in contrast to C_HARD_LOWER_LIMIT and
C_HARD_UPPER_LIMIT. The soft limits are stored at the address locations given in figure7-16.
The value of the register is only compared against the range of valid values whenVALID INSTRXSI
andREGWEXEI are both 1.

To allow for more flexibility, the hard limits can be used to furher limit the range of disallowed values
as depicted in figure7-17, i.e. to monitor only part of the address range. If you don’t want to use
these hard limits, set C_HARD_LOWER_LIMIT to 0x00000000 and C_HARD_UPPER_LIMIT to
0xFFFFFFFF.

7.8.5 Driver

To assign an interrupt handler to the interrupt line, a driver supporting this feature is needed, e.g.
timerint .

7.8.6 Software

The following code snippet provides macros to set the soft limits and to disable the register watcher
core. XPAR_REGWATCH_BASEADDR is assumed to be set to the OPB base address of the register
watcher core.

7.8. OPB REGISTERWATCHER 95

1 // macroto set the limits for the allowed addressrange
2 #define SET_REGWATCH_LIMITS(upper,lower) WRITE_UPPER_LIMIT(upper);\
3 WRITE_LOWER_LIMIT(lower)
4 // macroto disable the register watcher
5 #define DISABLE_REGWATCH() SET_REGWATCH_LIMITS(0xFFFFFFFF,0)
6 // low level macrosused in the abovemacros
7 #define WRITE_UPPER_LIMIT(val) *((Xuint32 *)(XPAR_REGWATCH_BASEADDR)) = val
8 #define WRITE_LOWER_LIMIT(val) *((Xuint32 *)(XPAR_REGWATCH_BASEADDR+ 0x4)) = val

7.8.7 Outlook

In a future version, this core may backup the values of all registers, which then could be read for
debugging purposes.

96 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

7.9 OPB SRAM Controller

Core Name:opb_xfcsram

7.9.1 Introduction

This memory controller is a custom-tailored OPB core for the C-FPGA being part of the .
This core completely replaces the v2.00.a solution, because it doubles access speed due to the fact
that the IPIF (Intellectual Property Interface) provided by Xilinx has been replaced by custom logic.
This speed increase is necessary because this controller will be also used to fetch instrucions where
maximum efficiency is desired. There are no major changes due in your XPS project when upgrading
to v3.00.a as the interface remained the same. The MIR register addresses that have been mandatory
in v2.00.a are no longer used.

7.9.2 Parameters

You may tailor this core by adjusting parameters listed in table7-14. The address range of the memory
is restricted to be a power of 2. If the desired address range is represented by2n, then then least
significant bits of the base address must be 0. As the capacity of the SRAM modules [2] attached to
the C-FPGA sums up to 4 MB =222 = 0x3FFFF, a valid configuration would be a base address of
0xFFC00000 and a high address of 0xFFFFFFFF, or 0xF0000000 and 0xF03FFFFF.

7.9.3 I/O Signals

The I/O signals for the SRAM memory controller are listed in table7-15. Please note the recommended
ranges for these signals as these ranges exactly fit to the number of pins available in the user constraints
file for the C-FPGA. The SRAM interface formed by the I/O signals is extended by an additional signal
as the SRAM modules on the expect address bit 19 to be present both in its normal and
its inverted state due to some hardware specialities[10].

7.9.4 Driver

No special driver is recommended, the drivergeneric may completely satisfy your needs.

7.9.5 Software

The SRAM core now supports word, half-word and byte access. An example C source that fills the
SRAM with counter values and reads these values back from the memory is given below.

7.9. OPB SRAM CONTROLLER 97

1 #include " xuartlite_l . h"
2 #include " xgpio_l . h"
3 #include " xbasic_types . h"
4 #include " xio . h"
5 #include " xparameters . h"
6

7 main() {
8 Xuint32 i,j,w,e,c;
9 Xuint32 * ptr;

10

11

12 xil_printf(" \ n\ n\ n\ n\ n\ n\ n\ n\ n\ n\ n\ n\ n\ n\ n\ n\ n\ n");
13 xil_printf(" test of the opb sram controller \ n");
14 xil_printf(" -------------------------------\ n");
15 xil_printf(" >\ n");
16

17 while (1){
18 while (XGpio_mReadReg(XPAR_SWITCH_BASEADDR,0)==0);
19

20 xil_printf(" >writing ...\ n");
21 i=0;
22 ptr=(Xuint32 *)(XPAR_SRAM_BASEADDR); // setstart address
23 while (ptr <= XPAR_SRAM_HIGHADDR){ // theconstantsfor thebase
24 // and the high addressare defined
25 // iff you use the xfcsram driver
26 *ptr=(Xuint32)(i); // write valueto ram
27 ptr++; // increment address
28 i++; // increment value
29 }
30

31 xil_printf(" >reading ...\ n");
32 i=0; // value
33 e=0; // erroneousreads
34 c=0; // correct reads
35 ptr=(Xuint32 *)(XPAR_SRAM_BASEADDR);
36 while (ptr <= XPAR_SRAM_HIGHADDR){
37 w=*ptr;
38 if (w!=i){ // error
39 e++;
40 xil_printf(" error at %08X: \ texpected :%08X \ tactual :%08X\ n" ,ptr,i,w);
41 }
42 else { // no error
43 c++;
44 }
45 ptr++; // increment address
46 i++; // increment value
47 }
48 xil_printf(" done with %d correct words and %d errors \ n" ,c,e);
49 }
50 }

98 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

description parameter name allowable values default value VHDL type

SRAM mem-
ory base
address

C_SRAM_BASEADDR any valid address not
overlapping with the
memory space of other
cores or memories

none std_logic_vector

SRAM mem-
ory high
address

C_SRAM_HIGHADDR address range must be
≥ 0x3FFFFF and a
power of 2

none std_logic_vector

Table 7-14: Core Parameters. The only parameters that have to be adjusted for the SRAM
controller are the limits of the memory range.

signal name I/O recommended width description

AXDO O 20 memory address bus
A19XDBO O 1 inverted MSB of the address bus
DXDIO IO 32 bidirectional memory data bus
WXEBO O 4 write enable, low active

Table 7-15: Core Signals. The inputs and outputs of the memory controller form a regular
SRAM interface except for the special treatment of address bit 19 which also needs to be
present in the inverted state.

7.9. OPB SRAM CONTROLLER 99

OPB_Clk

AXDIO

DXDIO

WXEBO

OPB_xferack

OPB_select

HH�L�H�L�H�L�H�LL
LLLLL�VVVVVVVVVV
LLLLL
LLLLLLLLLLL�VVVV
LLLLL
HHHHHHHHHHH�LLLL�HHHHH
LLLLLLLLLLL�HHHH�LLLLL
LLLLL�HHHHHHHHHH�LLLLL

Figure 7-18: Timing Waveform for Write Cycle. These are the waveforms of the relevant
SRAM controller signals for a write access. The duration of a write cycle is 2 clock periods.

OPB_Clk

AXDIO

DXDIO

WXEBO

OPB_xferack

OPB_select

HH�L�H�L�H�L�H�LL
LLLLL�VVVVVVVVVV
LLLLL
UUUUUUUUUUU�VVVV�UUUUU
LLLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLLL�HHHH�LLLLL
LLLLL�HHHHHHHHHH�LLLLL

Figure 7-19: Timing Waveform for Read Cycle. These are the waveforms of the relevant
SRAM controller signals for a read access. The duration of a read cycle is 2 clock periods.

7.9.6 Timing for Memory I/O Signals

The total length of write and read operations is exactly two OPB bus cycles (see figures7-18and7-
19). From the moment the OPB bus assigns a valid address and the select signal, the controller needs
one cycle to change into the write or read state plus one cycle to write or read the data from or to
the memory and, at the same time, acknowledging the completion of the operation to the OPB, which
finally deasserts the select signal.

As can been seen in the timing diagrams, the address is applied to the memory about two clock cycles
(40 ns), which is sufficient due to the memory access time of 15 ns.

100 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

7.9.7 Outlook

Also, it might be possible to reduce access times to one clock cycle by directly feeding the OPB signals
to the SRAM modules. However, first experiments with one clock access times failed, but still it might
be possible with more in-depth explorations.

7.10. OPB TEMPERATUREMODULE 101

7.10 OPB Temperature Module

Core Name:opb_xfctemp

7.10.1 Introduction

This module is a ready-to use OPB core that allows reading from the temperature sensors [6] installed
on the . It accesses these controllers via their SMBus interface.

7.10.2 Parameters

The only parameters available are the OBP address limits. Although the module only needs one address
location, the address range is restricted to be a power of 2. If the desired address range is represented
by 2n, then then least significant bits of the base address must be 0.

7.10.3 I/O Signals

The I/O signals for the SRAM memory controller are listed in table7-16. Please note the recommended
ranges for these signals as these ranges exactly fit to the number of pins available in the user constraints
file for the C-FPGA!

7.10.4 Driver

No special driver is recommended, the drivergeneric may completely satisfy your needs.

7.10.5 Core Operation

First, the address of the temperature sensor attached to the C-FPGA is written to the SMBus to let the
sensor know that it is the target of the following command. Then a command is written meaning that
the temperature of the C-FPGA will be polled next. Again, the address of the temperature sensor must
be written to the bus due to the change of dataflow direction. Now the temperature is read as an 8-bit
signed integer. The same sequence is repeated for the R-FPGA. As soon as both temperatures are read,
their bit sequences are concatenated and stored in a register that can be read via the OPB bus; only the
bits 0 to 15 are used as shown in figure7-20.

102 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

signal name I/O recommended width description

SMBDxDIO IO 1 SMBus bidirectional data line
SMBCLKxCO O 1 SMBus clock

Table 7-16: Core Signals. The IO signal of the temperature module connects to the SMB
bus attached to the temperature ADCs.

7.10.6 Software

Accessing the temperature register is very simple as can be seen in the code snipped below:

1 Xuint32 temp;
2 Xint32 temp_c, temp_r;
3

4 temp =*((volatile Xuint32 *) XPAR_TEMPERATURE_BASEADDR); // readtemperature
5 temp_c = (Xint32)((temp>>24) & 0xFF); // bits 0 to 15
6 temp_r = (Xint32)((temp>>16) & 0xFF); // bits 16 to 23

0 7 8 15 16 31

Temperature C-FPGA Temperature R-FPGA

Figure 7-20: Core Registers. The temperature module uses one register which holds the
temperatures of both FPGAs. Obviously, this register is read-only.

7.11. OPB TIMER 103

7.11 OPB Timer

Core Name:opb_xfctimer

7.11.1 Introduction

This is a simple timer that raises an interrupt when a certain amount of time has elapsed. The amount
of time can be programmed in the software by accessing a register in this core. Such timers are often
used in systems combined with a process scheduler.

7.11.2 Parameters

description parameter name allowable values default value VHDL type

Timer base address C_BASEADDR any valid address not overlap-
ping with the memory space of
other cores or memories

none std_logic_vector

Timer high address C_HIGHADDR address range must be≥ 0xF
and a power of 2

none std_logic_vector

Table 7-17: Core Parameters. The only parameters that need to be adjusted are the limits
of the timer’s memory range.

The only parameters that must be set for this core are those listed in table7-17. The address range of
the core is restricted to be a power of 2. If the desired address range is represented by2n, then then
least significant bits of the base address must be 0. There is only one register used by this core, so a
single address needs to be decoded. Due to the fact that theµBlaze is a 32 bit processor, this means
that a minimum memory range of 0x4 is needed. Therefore, a valid configuration would be a base
address of 0xFF000000 and a high address 0xFF000003.

7.11.3 I/O Signals

The signals used by this core are listed in table7-18. INTXSO is the level-sensitive, high active
interrupt,ACKXSI is the signal used to acknowledge this interrupt. As depicted in figure7-21, the
interrupt should be connected toµBlaze’s INTERRUPT port, and the interrupt acknowledge to its
INTERRUPT_TAKEN port.

104 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

signal name I/O recommended width description

INTXSO O 1 Interrupt
ACKXSI I 1 Interrupt acknowledge

Table 7-18: Core Signals. The register watcher’s I/O signals.

Figure 7-21: Example Connection Scheme. This figure shows how to connect the timer’s
interrupt signals to theµBlaze. Alternatively, an interrupt controller such as the one dis-
cussed in section7.12could be used instead of directly connecting the two modules.

7.11.4 Core Operation

The internal counter is incremented up to a maximum valuecmax · 216, then the interrupt signalIN-
TXSOis asserted high. The interrupt remains high until it is acknowledged usingACKXSI; now the
counter restarts from zero. This process is depicted in figure7-22. The valuecmax can be set using the
software. Ascmax can be set to zero to force the timer to raise the interrupt,cmax is reset to its default
value 1 as soon as the interrupt is acknowledged; this measure must be taken to prevent the core from
being stuck in the interrupt state.

Assuming a system clock at 50 MHz, one unitcmax equals to a time interval of about 1.31 milliseconds.
The maximum value forcmax is 0xFFFF, which is approximately 86 seconds.

OPB_Clk

Counter

INTXSO

ACKXSI

H�����-L������-������L
VVV�VV�VV-V�VVVVVVVVVV-VVVV�VV�VVV
LLLLLLLLLLL-L�HHHHHHHHHH-HHHH�LLLLLLL
LLLLLLLLLLL-LLLLLLLLLLLLL-�HH�LLLLLLL

0 1 2 cmax · 216 0 1

Figure 7-22: Example Waveforms. In this example, the timer reaches its maximumcmax·216

and asserts the interrupt. After a certain time, the interrupt is being handled and acknowl-
edged.

7.11. OPB TIMER 105

7.11.5 Driver

To assign an interrupt handler to the interrupt line, a driver supporting this feature is needed, e.g.
timerint .

7.11.6 Software

The timer’s maximumcmax can be set by writing to the base address of the timer, e.g.

((Xuint32)XPAR_TIMER_BASEADDR) = 0x3;

sets the time interval to3 ·1.31ms= 3.93ms, assuming that XPAR_TIMER_BASEADDR is the core’s
base address.

106 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

7.12 OPB Interrupt Controller

Core Name:opb_xfintc

7.12.1 Introduction

This core is a simple, parametrized interrupt controller that, along with the appropriate bus interface,
attaches to the OPB. It is able to handle up to 32 interrupts and merge them to one single interrupt
signal forwarded to theµBlaze. Information about the interrupts that have occurred can be read from
the core’s status register.

7.12.2 Parameters

description parameter name allowable values default value VHDL type

Interrupt controller
base address

C_BASEADDR any valid address not overlap-
ping with the memory space of
other cores or memories

none std_logic_vector

Interrupt controller
high address

C_HIGHADDR address range must be≥ 0xF
and a power of 2

none std_logic_vector

Number of inter-
rupt inputs

C_NUM_INTERRUPTS 1 to 32 1 integer

Table 7-19: Core Parameters. Besides the limits of the memory range, the number of inter-
rupts the controller is able to handle is parametrized.

The parameters that must be set for this core are those listed in table7-19. The address range of the
core is restricted to be a power of 2. If the desired address range is represented by2n, then then least
significant bits of the base address must be 0. A total of 3 registers need to be accessible via OPB; thus
a 3 addresses need to be decoded by the core. Due to the fact that theµBlaze is a 32 bit processor, this
means that a minimum memory range of 0xC is needed. Therefore, a valid configuration would be a
base address of 0xFF000000 and a high address 0xFF00000B.

The interrupt controller can handle up to 32 interrupt inputs. The number of actually used inputs must
be set using C_NUM_INTERRUPTS.

7.12.3 I/O Signals

The signals used by this core are listed in table7-20. INTXSO should be connected to the INTER-
RUPT port of theµBlaze. INTRXSI andACKXSOhave to be connected to the cores generating the

7.12. OPB INTERRUPTCONTROLLER 107

signal name I/O recommended width description

INTRXSI I C_NUM_INTERRUPTS Interrupt inputs, level-sensitive, high active
INTXSO O 1 Interrupt output, level-sensitive, high active
ACKXSO O C_NUM_INTERRUPTS Acknowledge outputs

Table 7-20: Core Signals. The interrupt controller’s I/O signals.

Figure 7-23: Example Connections. This figure shows an example wiring of two cores
able to generate interrupts with the interrupt controller. The interrupt controller merges all
interrupt signals into a single interrupt, which is then forwarded to theµBlaze.

interrupts. For sake of clarity, the wiring of theµBlaze and the interrupt controller including 2 cores
generating interrupts is depicted in figure7-23.

7.12.4 Core Operation

As soon as the interrupt controller detects an interrupt at its input, it sets the bit corresponding to this
input in its internal interrupt registerINTXDP. To be detected by the core, the interrupt input must be
high for at least one clock cycle. Once a bit is set, it can be cleared only by setting the corresponding
bit in the ACKXDP, which can be achieved by writing via OPB to this register. Whenever a bit in
INTXDP is set and the corresponding enable bit inENAXDP is set too, the core asserts its interrupt
outputINTXSO. SoENAXDP is used to mask the interrupts inINTXDP. The interrupt mask can be
configured via OPB. The registers that can be read from and written to are depicted in figure7-24.

To help understand the core operation, a detailed example shall be explained using figure7-25. The
example is divided into 5 phases, denoted asT0 to T4:

T0 Initially, no interrupt is active and no interrupt is masked. Then, an interrupt is detected onIN-
TRXSI(0) which results in the corresponding bit being set inINTXDP. As a consequence, the

108 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

31 0

I
N
T
31

I
N
T
30

I
N
T
29

I
N
T
28

I
N
T
27

I
N
T
26

I
N
T
25

I
N
T
24

I
N
T
23

I
N
T
22

I
N
T
21

I
N
T
20

I
N
T
19

I
N
T
18

I
N
T
17

I
N
T
16

I
N
T
15

I
N
T
14

I
N
T
13

I
N
T
12

I
N
T
11

I
N
T
10

I
N
T
9

I
N
T
8

I
N
T
7

I
N
T
6

I
N
T
5

I
N
T
4

I
N
T
3

I
N
T
2

I
N
T
1

I
N
T
0

}
C_BASEADDR

E
N
A
31

E
N
A
30

E
N
A
29

E
N
A
28

E
N
A
27

E
N
A
26

E
N
A
25

E
N
A
24

E
N
A
23

E
N
A
22

E
N
A
21

E
N
A
20

E
N
A
19

E
N
A
18

E
N
A
17

E
N
A
16

E
N
A
15

E
N
A
14

E
N
A
13

E
N
A
12

E
N
A
11

E
N
A
10

E
N
A
9

E
N
A
8

E
N
A
7

E
N
A
6

E
N
A
5

E
N
A
4

E
N
A
3

E
N
A
2

E
N
A
1

E
N
A
0

}
C_BASEADDR + 0x4

A
C
K
31

A
C
K
30

A
C
K
29

A
C
K
28

A
C
K
27

A
C
K
26

A
C
K
25

A
C
K
24

A
C
K
23

A
C
K
22

A
C
K
21

A
C
K
20

A
C
K
19

A
C
K
18

A
C
K
17

A
C
K
16

A
C
K
15

A
C
K
14

A
C
K
13

A
C
K
12

A
C
K
11

A
C
K
10

A
C
K
9

A
C
K
8

A
C
K
7

A
C
K
6

A
C
K
5

A
C
K
4

A
C
K
3

A
C
K
2

A
C
K
1

A
C
K
0

}
C_BASEADDR + 0x8

Figure 7-24: Core Registers. The core offers three registers that can be read or written
via the OPB bus. The first contains the bits corresponding to the interrupts that have been
triggered, the second contains the interrupt mask, and the third one is used to acknowledge
the interrupts.

core’s interrupt outputINTXSOgets asserted high. Let’s assume thatINTRXSI(0) comes from
a core that expects an acknowledge, so this interrupt will stay high as long as it is not acknowl-
edged.

T1 Later, the interrupt handler in the software becomes active and acesses the interrupt register via
OPB to see which of the individual interrupts triggered the system interrupt. The core answers
with 0x00000001 (signal Sln_Dbus) becauseINTRXSI(0) was triggered. As this interrupt still
waits for an acknowledge, it remains active.

T2 Now the core connected toINTRXSI(1) generates an interrupt. This core does not expect the
interrupt to be acknowledged and asserts the signal for only one clock cycle. The interrupt
gets detected by the interrupt controller, and the corresponding bit is set inINTXDP. As a
consequence, bits 0 and 1 are set, which is equal to 0x00000003.

T3 In this period, the interrupt handler acknowledges interrupt 0 by writing 0x00000001 to the ac-
knowledge registerACKXDP. Bit 0 in INTXDP gets cleared, and the acknowledge signal is
forwarded to the core that raisedINTRXSI(0), which in turn deasserts theINTRXSI(0). Be-
cause the interrupt register still contains bits that are set,INTXSOremains high.

T4 In the last period of our example, the softare masks all interrupts by writing 0x00000000 to the
enable registerENAXDP. This results inINTXSObeing deasserted. The contents ofINTXDP
don’t get altered as the interrupts are masked and not cleared.

7.12.5 Software

Using the interrupt controller from within the software is easy if the driverxfintc is linked to the
code. For details on this driver refer to its documentation in sectionA. The most important elemtents

7.12. OPB INTERRUPTCONTROLLER 109

O
P

B
_C

lk

O
P

B
_A

bu
s

O
P

B
_D

bu
s

S
ln

_D
bu

s

O
P

B
_R

N
W

O
P

B
_s

el
ec

t

S
ln

_x
fe

ra
ck

IN
T

X
D

P

A
C

K
X

D
P

E
N

A
X

D
P

IN
T

R
X

S
I(

0)

IN
T

R
X

S
I(

1)

IN
T

X
S

O

A
C

K
X

S
O

(0
)

A
C

K
X

S
O

(1
)

L�
�
�
�
-L�

�
�
�
�
�
�
�
-L�

�
�
�
-L�

�
�
�
�
�
�
�
�
�
�
�
-L�

�
�
�
�
�
�

UU
UU
UU
UU
U-U
�
VV
VV
VV
�
UU
UU
UU
-UU
UU
UU
UU
U-U
�
VV
VV
VV
�
UU
UU
UU
UU
UU
UU
UU
-U�

VV
VV
VV
�
UU
UU

UU
UU
UU
UU
U-U
UU
UU
UU
UU
UU
UU
UU
UU
-UU
UU
UU
UU
U-U
�
VV
VV
VV
�
UU
UU
UU
UU
UU
UU
UU
-U�

VV
VV
VV
�
UU
UU

LL
LL
LL
LL
L-L
�
VV
VV
VV

LL
LL
LL
-LL
LL
LL
LL
L-L
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
-LL
LL
LL
LL
LL
LL
LL
L

LL
LL
LL
LL
L-L
�
HH
HH
HH
�
LL
LL
LL
-LL
LL
LL
LL
L-L
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
-LL
LL
LL
LL
LL
LL
LL
L

LL
LL
LL
LL
L-L
�
HH
HH
HH
�
LL
LL
LL
-LL
LL
LL
LL
L-L
�
HH
HH
HH
�
LL
LL
LL
LL
LL
LL
LL
-L�

HH
HH
HH
�
LL
LL

LL
LL
LL
LL
L-L
LL
LL
�
HH
HH
HH
�
LL
-LL
LL
LL
LL
L-L
LL
LL
�
HH
HH
HH
�
LL
LL
LL
LL
LL
-LL
LL
L�
HH
HH
HH
�

LL
LL
L�
VV
-VV
VV
VV
VV
VV
VV
VV
VV
V-V
VV
VV
�
VV
-VV
VV
VV
VV
V�
VV
VV
VV
VV
VV
VV
VV
-VV
VV
VV
VV
VV
VV
VV
V

LL
LL
LL
LL
L-L
LL
LL
LL
LL
LL
LL
LL
LL
-LL
LL
LL
LL
L-L
LL
LL
�
VV
VV
VV

LL
LL
LL
LL
LL
-LL
LL
LL
LL
LL
LL
LL
L

VV
VV
VV
VV
V-V
VV
VV
VV
VV
VV
VV
VV
VV
-VV
VV
VV
VV
V-V
VV
VV
VV
VV
VV
VV
VV
VV
VV
VV
VV
VV
-VV
VV
V

LL
LL
LL
LL

L�
HH
HH
HH
-HH
HH
HH
HH
HH
HH
HH
HH
H-H
HH
HH
HH
HH
-HH
HH
HH
HH
HH
HH
H�
LL
LL
LL
LL
LL
-LL
LL
LL
LL
LL
LL
LL
L

LL
LL
LL
LL
L-L
LL
LL
LL
LL
LL
LL
LL
LL
-L�

HH
�
LL
-LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
L-L
LL
LL
LL
LL
LL
LL
LL

LL
LL
L�
HH
-HH
HH
HH
HH
HH
HH
HH
HH
H-H
HH
HH
HH
HH
-HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
H-H
HH
HH
�
LL
LL
LL
LL

LL
LL
LL
LL
L-L
LL
LL
LL
LL
LL
LL
LL
LL
-LL
LL
LL
LL
L-L
LL
LL
LL
LL
�
HH
HH
HH
HH
HH
�
LL
-LL
LL
LL
LL
LL
LL
LL
L

LL
LL
LL
LL
L-L
LL
LL
LL
LL
LL
LL
LL
LL
-LL
LL
LL
LL
L-L
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
LL
-LL
LL
LL
LL
LL
LL
LL
L

0x
F

00
00

00
0x

F
00

00
08

0x
F

00
00

04

0x
00

00
00

1
0x

00
00

00
0

0x
00

00
00

1

0x
00

00
00

1
0x

00
00

00
3

0x
00

00
00

2

0x
00

00
00

1

0x
F

F
F

F
F

F
F

F

T
0

T
1

T
2

T
3

T
4

F
ig

ur
e

7-
25

:
E

xa
m

pl
e

W
av

ef
or

m
s.

T
h

e
se

si
g

n
a

lw
a

ve
fo

rm
s

sh
o

w
a

n
ex

a
m

p
le

in
te

rr
u

p
t

sc
e
n

a
ri
o

.
A

d
e

sc
ri
p

tio
n

o
n

th
e

va
ri
o

u
s

p
h

a
se

s
T

0
to

T
4

is
g

iv
e

n
in

th
e

te
xt

.

110 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

of the driver are described here. The interrupt vector table and its element are defined as follows:

1 // declaration of the interrupt vector table
2 XFVectorTableEntry xfintc_interruptVectorTable[];
3

4 // entry in the interrupt vector table
5 typedef struct
6 {
7 XInterruptHandler handler; // functionpointerto theinterrupthandler
8 void *callBackRef; // pointer to the baseaddressof the interrupting core
9 } XFVectorTableEntry ;

This interrupt vector table gets populated automatically with the functions defined as interrupt handler
in the driver settings for the cores that are connected to the interrupt controller.

For your convenience, the driver also defines some useful macros to access the registers in the interrupt
controller:

1 // register offsets to the interrupt controller ’ s baseaddress
2 #define XFINTC_INT_REG_OFFSET 0 // addressoffsetof theinterrupt register
3 #define XFINTC_ENA_REG_OFFSET4 // addressoffsetof theenablemaskregister
4 #define XFINTC_ACK_REG_OFFSET8 // addressoffsetof theacknowledgeregister
5

6 // macroto get bit pattern denoting the active interrupts
7 #define XFINTC_GET_INT_REG(BaseAddress) \
8 XIntc_In32((BaseAddress) + XFINTC_INT_REG_OFFSET)
9

10 // macroto get bit pattern denoting the enabled interrupts
11 #define XFINTC_SET_ENA_REG(BaseAddress, EnableMask) \
12 XIntc_Out32((BaseAddress) + XFINTC_ENA_REG_OFFSET, (EnableMask))
13

14 // macroto acknowledgeinterrupts using a bit pattern
15 #define XFINTC_ACK_INT(BaseAddress, AckMask) \
16 XIntc_Out32((BaseAddress) + XFINTC_ACK_REG_OFFSET, (AckMask))

7.13. OPB TIME COUNTER 111

7.13 OPB Time Counter

Core Name:opb_xftime

7.13.1 Introduction

This core counts the number of periods since the last system reset.

7.13.2 Parameters

description parameter name allowable values default value VHDL type

Interrupt controller
base address

C_BASEADDR any valid address not overlap-
ping with the memory space of
other cores or memories

none std_logic_vector

Interrupt controller
high address

C_HIGHADDR address range must be≥ 0xF
and a power of 2

none std_logic_vector

Table 7-21: Core Parameters. The only parameters that can be adjusted for the time counter
are the limits of the memory range.

The parameters that must be set for this core are those listed in table7-21. The address range of the
core is restricted to be a power of 2. If the desired address range is represented by2n, then then least
significant bits of the base address must be 0. The only registers that need to be accessible via OPB
are the upper and the lower word of the counter; thus 2 addresses need to be decoded by the core. Due
to the fact that theµBlaze is a 32 bit processor, this means that a minimum memory range of 0x8 is
needed. Therefore, a valid configuration would be a base address of 0xFF000000 and a high address
0xFF000007.

7.13.3 I/O Signals

This core does not use any signals additional to those needed for the OPB.

7.13.4 Core Operation

The number of clock periods since the last system reset is counted using a 43-bit register, therefore
it is able to count243 = 8.7 · 1012 clock periods before wrapping over. Assuming a system clock
at 50 MHz, this yields a time span of about 48 hours and 52 minutes. The counter can be read by
accessing the registers in figure7-26via OPB.

112 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

0 31

lower word
}

C_BASEADDR

upper word
}

C_BASEADDR + 0x4

Figure 7-26: Core Registers. The core uses to registers containing the upper and the lower
part of the number of clock cycles completed since power-up or reset. These registers are
read-only.

7.13.5 Software

Below is a code sample that prints the time elapsed since the last system reset. The time is printed in
hours, minutes and seconds. This code sample has been written with the assumptions that the system
clock is at 50 MHz and XPAR_TIME_BASEADDR is the OPB base address of the time counter.

1 void print_time(){
2 Xuint32 tHi,tLo;
3 Xuint32 sec,min,hr;
4 // get lower word
5 tLo = *((Xuint32 *)(XPAR_TIME_BASEADDR))/50000000;
6 // get upper word
7 // (85899/1000)approximates(0x100000000/50000000)to prevent numerical problems
8 tHi = *((Xuint32 *)(XPAR_TIME_BASEADDR+4))*(85899/1000);
9 sec = tLo+tHi;

10 min = sec/60;
11 hr = min/60;
12 // now print the time
13 printf(" %3d:%02d:%02d" ,hr,min%60,sec%60);
14 }

7.14. OS BRIDGE, PART R-FPGA 113

7.14 OS Bridge, Part R-FPGA

7.14.1 Introduction

The OS Bridge is meant as a communication interface between C-FPGA and R-FPGA. Using a simple
instruction set, data and configurations can be written to and read from hardware modules on the R-
FPGA, e.g. FiFos could be monitored and dumped. The hardware component described in this section
represents the R-FPGA part of the OS Bridge. Documentation on the C-FPGA part can be found
in section7.6. The OS bridge has been introduced in [19]. This part consists of an OS bridge bus
master and a number of slaves. The instruction written to the OS bridge are interpreted by these slaves
and forwarded to the corresponding system component in the R-FPGA. For every component to be
controlled using the OS bridge, a new OS bridge slave has to be designed. An overview of the OS
bridge is given in figure7-27.

7.14.2 OS Bridge Bus Master

signal name I/O recommended width description

OSBXDIO IO 16 data / instruction bus
OSBTRSTEXTI I 1 tristate control signal
OSBWXEI I 1 write enable, active high
OSBRXEO O 1 read enable, active high

OSBBUSOPCODEXDO O 8 opcode
OSBBUSDXDO O 32 data (write)
OSBBUSDXDI I 16 data (read)
OSBBUSSELXSO O 1 bus select
OSBBUSRNWXSO O 1 read / not write
OSBBUSRDYX SI I 1 data ready

Table 7-22: OS Bridge Master Signals. The upper group of I/O signals is directly connected
to the R-FPGA via the system’s GPIO bus. The lower group connects to the OS bridge slaves,
forming a down-sized version of the OPB.

The OS bridge bus master reads the opcodes and data written from the C-FGPA and converts them to
be put on the OS bridge bus which is a down-sized version of the OPB used in theµBlaze system. The
same conversion is also performed in the opposite direction. The signals connecting to the C-FPGA
and to the slaves are listed in table7-22.

When a write operation is performed by the C-FPGA, the bus master detects which command type
is being written by looking at the two most significant bits of the first word, and reads in the data
according to this command type. The data are split into an 8-bit opcode and a 32-bit data word and
then written to the according bus signals. The bus select line is pulled high to inform the slaves that

114 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

C-FPGA

R-FPGA

OS Bridge Controller

OS Bridge Bus Master

Read Enable

W
rite Enable

Direction

OPB
BUS

Data
16

OSB
Slave 1

Opcode

Wr Data

Select

Direction

8

32

OSB
Slave n

Rd Data Ready

...

to custom logic to custom logic

Figure 7-27: OS Bridge. The OS bridge as a complete system consists of an OPB OS bridge
controller on the C-FPGA and an OS bridge bus master with a number of slaves attached
on the R-FPGA. Commands are written by the controller and then forwarded to the slaves
by the bus master. The slaves then interpret the opcodes an the data and communicate with
the custom logic connected to them.

7.14. OS BRIDGE, PART R-FPGA 115

signal name I/O recommended width description

OSBBUSOPCODEXDI I 8 opcode
OSBBUSDXDI I 32 data (write)
OSBBUSDXDO O 16 data (read)
OSBBUSSELXSI I 1 bus select
OSBBUSRNWXSI I 1 read / not write
OSBBUSRDYX SO O 1 data ready

Table 7-23: OS Bridge Slave Signals. These are the signals that connect to the OS bridge
bus. The signals that connect to the hardware module to be communicated with are not listed
as they are custom defined and varying from slave to slave.

opcode and data are ready, pullingOSBBUSRNWXSOlow which means that data are being written.
The bus master does not expect the write process to be acknowledged. Instead, the bus select signal is
active only one clock cycle. Opcode and data are left on the bus until new data arrive.

If a read operation is performed by the C-FPGA, the opcode gets fetched and written to the OS bridge
bus. As it is a read operation,OSBBUSRNWXSO is high now. The select signal is asserted high.
Now the bus master wait for a slave to reply to the operation by assertingOSBBUSRDYX SI. The
ready signal has to be pulled high within 14 clock cycles starting from the rising edge of the select
signal to prevent the master from timing out. If the ready signal is asserted in time, 16 bits of data are
read from the read data bus and written to the C-FPGA via the GPIO bus, pullingOSBRXEO high to
inform the OPB OS bridge controller that data are ready to be read.

7.14.3 OS Bridge Slaves

For every opcode being used in the system, an OS Bridge Slave must be present being able to perform
the actions requested by this opcode. For read operations, there must be exactly one slave replying;
write operations may be interpreted by more than one slaves. A slave is often able to interpret more
than one opcode. OS bridge slaves form the interfaces between the OS bridge and the hardware module
in the R-FPGA to be communicated with by the CPU.

The inputs of the slaves can be directly connected to the outputs of the OS bridge bus master. As a
signal cannot be multiply driven, the outputs of the slave may not be connected directly to the inputs
of the bus master, except for the case when only one slave is in the system. Instead, they are combined
using an-input OR gate whose output is connected to the input of the bus master. As a consequence,
slaves not being active have to pull all their outputs to zero.

Two examples of OS bridge slaves shall be given:

example 1: a slave could translate the OS bridge bus protocol into a protocol to communicate with or
read to and write from another element in the R-FPGA.

116 BADGER, MUSHROOM, SNAKE CHAPTER 7. HARDWARE DOCUMENTATION

example 2: a slave could use the data written by the OS bridge to update internal registers whose
outputs are used as configuration signals, e.g. to enable / disable hardware elements.

Whenever the bus select signalOSBBUSSELXSI is active, the slaves have to check whether they can
handle the opcode present on the bus. When a slave is able to do so and the operation is a write request,
it reads the data from the bus and communicates with the custom logic attached. If it is a read request,
the slave gathers the data from the custom logic or from internal registers (depending on the opcode
and the purpose of the slave) and writes them to the bus, pulling the ready signal high. As soon as the
select signal is released by the master and thus the operation is terminated, the slave should pull all
their outputs to zero.

8Operating System Code

8.1 XF-Board Operating System Data Structure Documen-
tation

8.1.1 BITS Struct Reference

8.1.1.1 Detailed Description

This struct describes a bitstream present in memory. It holds all information needed for the configura-
tion.

Data Fields

• charName[32]
Name of the bitstream.

• Xuint32Type
Type of the bitstream: full / partial.

• Xuint32SpanFrom
First task slot occupied by the bitstream.

• Xuint32SpanTo
Last task slot occupied by the bitstream.

• Xuint32MemLoc
Memory Location of the bitstream.

• Xuint32MemLength
Length of the bitstream.

117

118 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

8.1.2 CommandEntry_t Struct Reference

8.1.2.1 Detailed Description

This structure describes a built-in command that can be executed the shell. Every command meant to
be accessible from the shell has to be installed in the OS using an instance of this structure. The func-
tions that can be called using a shell command commonly have a signature likemy_command(char
∗∗argv, Xuint32 argc) .

Data Fields

• const charname[32]
Name of the command. This string must be entered in the shell to execute the command.

• constFunctionPointerfunc
Pointer to the function that has to be called when the command is entered.

• Xuint32stackSize
Minimal stack requirements for the above function.

• Xuint32quanta
Number of scheduler time quanta.

• Xuint32suspendShell
Define whether command suspends shell or not.

8.1.3 ContextDescriptor_t Struct Reference

8.1.3.1 Detailed Description

The task context descriptor is used for the context switches performed by the scheduler. As soon as
a task is pre-empted, its register contents, the context, are stored in its task context descriptor to be
loaded back into the registers the next time the task is activated. You should not change this struct
without adjusting the file scheduler.s as the functions implemented there rely on the order and the
presence of all members of the context descriptor

Data Fields

• Xuint32sp
R1, stack pointer.

• Xuint32 rosdaa
R2, read-only small data area anchor.

• Xuint32 ret [2]
R3, R4, return values.

• Xuint32par[6]
R5-R10, passing parameters / temporaries.

• Xuint32 tmp [2]

8.1. XF-BOARD OPERATING SYSTEM DATA STRUCTUREDOCUMENTATION 119

R11, R12, temporaries.

• Xuint32 rwsdaa
R13, read-write small data area anchor.

• Xuint32 ri
R14, return address for interrupt.

• Xuint32 rs
R15, return address for sub-routine.

• Xuint32 rt
R16, return address for trap.

• Xuint32 re
R17, return address for exceptions.

• Xuint32 res
R18, reserved for assembler.

• Xuint32nv [13]
R19-R31, non-volatiles.

• Xuint32pc
PC, program counter.

• Xuint32 rmsr
Machine status register.

8.1.4 GraphicListItem_t Struct Reference

8.1.4.1 Detailed Description

An item in theGraphicList contains information on the graphics hook-up function that will be
called by thegfx_graphicManager() and the state of this item. The state information is needed
to allocate space on the screen for a graphics hook-up.

Data Fields

• GFXHookPtrgfxHook
Pointer to a graphics hook-up function.

• Xuint8 blockState
State of the item.

• Xuint8 ownerPID
Owner PID of the item.

8.1.5 MemoryBlock_t Struct Reference

8.1.5.1 Detailed Description

Descriptors of memory blocks are used to build the memory allocation tableMemAllocTable . A
memory block descriptor contains information needed for the allocation algorithms, such as the type

120 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

of the memory block and its owning process. It also provides information to delimit blocks belonging
together to form segments.

Data Fields

• Xuint8 ownerPID
Owner of the memory block.

• Xuint8 memType
Type of the memory block.

• XFbool lastBlock
Flag: last block of a contiguous memory segment.

8.1.6 StackDescriptor_t Struct Reference

8.1.6.1 Detailed Description

This structure describing the dimensions of the stack memory of a process is used mainly for the
allocation routinemem_allocStack(Xuint32, StackDescriptor) . When this function is
called, the membersize needs to be assigned a value, and then the two other fieldsloAddr andhi-
Addr , defining the borders of the memory segment used as stack memory by a process, are assigned
the actual values.

Data Fields

• Xuint16size
Minimal size needed for the stack.

• Xuint32 loAddr
Lowest address of actual stack memory.

• Xuint32hiAddr
Highest address of actual stack memory.

8.1.7 TaskDescriptor_t Struct Reference

8.1.7.1 Detailed Description

The task descriptor, which is used as a placeholder for a task / process in theTaskList , holds
important information about a process such as a backup of its context and its arguments, to name
only a few. A placeholder is either empty (STATUS_UNUSEDor STATUS_KILLED) and can be
assigned to a new task, or it is occupied (STATUS_NEW, STATUS_RUNNING, STATUS_READYor
STATUS_BLOCKED). You should not change the order of the the first three members of this struct
without adjusting the file scheduler.s as the functions implemented there strongly rely on the order and
the presence of these members of the task descriptor

8.1. XF-BOARD OPERATING SYSTEM DATA STRUCTUREDOCUMENTATION 121

Data Fields

• FunctionPointerentryPoint
Start point in the program code.

• ContextDescriptorcontext
Structure for storing the context.

• StackDescriptorstack
Descriptor of the task’s stack.

• ProcessStatusstatus
Status of the process or placeholder.

• Xuint32quanta
Number of Scheduler quanta.

• XFbool suspendShell
Flag controlling shell suspension.

• char∗ name
Name of the process.

• char∗ argv[CUI_MAXARGS]
Array of pointers to the arguments.

• charargbuf[CUI_COMMANDLENGTH]
Buffer containing a copy of the arguments.

• Xuint8 argc
Number of arguments.

8.1.8 XContactInfo Struct Reference

8.1.8.1 Detailed Description

A structure of this type holds relevant information about the contact. This information is commonly
needed to answer to a request.

Data Fields

• XbooleanisBroadcast
If true, the transfer is a broadcast message.

• XPacketTypepacketType
Type of the packet.

• XIPTypeipType
Protocol type.

• XARPTypearpType
ARP type; only applies for ARP packets.

• XbooleanisMACAddrValid
The value in the fieldMACAddr is valid.

• XbooleanisIPAddrValid
The IP address is valid.

122 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

• Xuint8 MACAddr [6]
MAC address.

• Xuint8 IPHeader[20]
Copy of the IP header.

• Xuint8 ICMPPacket[8]
Copy of the ICMP packet.

8.1.9 XF_PFDL_t Struct Reference

8.1.9.1 Detailed Description

An item in the physical FiFo descriptor list contains information about the type and the dimensions of
a FiFo physically present in the design.

Data Fields

• Xuint32PFID
ID of the physical FiFo.

• Xuint32 type
Type of the FiFo.

• Xuint32baseAddr
Base address of the FiFo (in blocks).

• Xuint32size
Size of the FiFo (in blocks).

• Xuint32 rdPtr
Read pointer (in bytes), relative to the base address converted to bytes.

• Xuint32wrPtr
Write pointer (in bytes), relative to the base address converted to bytes.

8.1.10 XF_VFDL_t Struct Reference

8.1.10.1 Detailed Description

An item in the virtual FiFo descriptor list contains information about the mapping between tasks and
the read / write interfaces of the FiFos listed in the physical FiFo descriptor list.

Data Fields

• Xuint8 TID
ID of the task connected to the FiFo.

• Xuint8 TRFID
Task-relative FiFo ID.

8.1. XF-BOARD OPERATING SYSTEM DATA STRUCTUREDOCUMENTATION 123

• Xuint8 direction
Access direction: read (0), write (1).

• Xuint8 PFID
ID of the physically connected FiFo.

8.1.11 XFFAT Struct Reference

8.1.11.1 Detailed Description

This struct implements a table of bitstreams.

Data Fields

• Xuint32NumOfBits
Number of bitstreams in memory.

• BITS Bits [16]
Array of bitstream descriptors.

8.1.12 XPacketData Struct Reference

8.1.12.1 Detailed Description

This structure holds the relevant information about the data inside a packet.

Data Fields

• Xuint16 intSourcePort
Source port.

• Xuint32∗ ptrData
Pointer to a buffer containing the actual data.

• Xuint16 intDataLength
Length of the data in the buffer (in bytes).

• Xuint16 volatileintDestinationPort
Destination port.

8.1.13 XPacketData8 Struct Reference

8.1.13.1 Detailed Description

This structure holds the relevant information about the data inside a packet.

124 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Data Fields

• Xuint16 intSourcePort
Source port.

• Xuint8 ∗ ptrData
Pointer to a buffer containing the actual data.

• Xuint16 intDataLength
Length of the data in the buffer (in bytes).

• Xuint16 volatileintDestinationPort
Destination port.

8.1.14 XPacketInfo Struct Reference

8.1.14.1 Detailed Description

This structure holds the relevant information about the network contact belonging to a packet.

Data Fields

• Xuint8 bytMACAddress[6]
Buffer for the source address.

• Xuint8 bytIPHeader[20]
Buffer for the IP header.

• Xuint8 bytIPAddress[4]
Buffer for the IP address of the source.

8.1.15 XPortListener Struct Reference

8.1.15.1 Detailed Description

This structure represents an element in the port listener list. Port listeners are used by user processes
to get UDP data from a given port number.

Data Fields

• Xuint32port
Port being listened to.

• char∗ buffer
Buffer for the data being received.

• Xuint32 length
Length of the buffer.

• Xuint32ownerPID

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 125

PID of the process owning the listener.

• volatile Xbooleandone
This flag is set as soon as a packet is received and copied to the buffer.

8.2 XF-Board Operating System File Documentation

8.2.1 boot.c File Reference

8.2.1.1 Detailed Description

In this file, the main routine to bring up the operating system is defined.

Author:
Samuel Nobs

Date:
2004-03-31
Revision

1.19

Functions

• void welcome()
Welcome Screen.

• int main()
OS Main Function.

Variables

• Xuint32_erodata
Points to the end of the read-only memory section. Needed for the Memory protection.

8.2.1.2 Function Documentation

int main ()

This function starts the operating system. First, the address of the end of the read-only memory section
is written to the memory controller which uses this information to protect this memory section from
unwanted accesses. Note: this information can be written only once.

Now, the following services are initialized:

126 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

• VGA display

• scheduler

• graphics manager

• SelectMAP configuration port

• network

• memory manager

Optionally, the SRAM memory can be filled up with all zeroes. This code is inserted only if the
constantMEM_INIT is defined, i.e. the compiler is started with-DMEM_INIT .

Then, a welcome screen is displayed usingwelcome() .

Next, the following actions are performed:

• the graphics managergfx_graphicManager() , the shellshell() and the ethernet dae-
mon inetd() get started, i.e. added to the tasklist. Actually, they do not start being executed
until the scheduler activates them.

• the graphics display gets populated with a message windowmsg_messageWin() , a dis-
play of the memory mapmem_display() , an overview of the R-FPGA usageselmap_-
display() , information on the clock outputscm_clockDisplay() , and a temperature
monitor for both FPGAstemperature() .

Then, all interrupts get enabled and the scheduler is started. The function never returns as it loops
forever after starting the scheduler.

void welcome ()

Prints a simple welcome screen.

8.2.2 clockman.c File Reference

8.2.2.1 Detailed Description

This file implements the function used with the core that generates the 4 additional clock signals for
the R-FPGA.

Author:
Samuel Nobs

Date:
2004-03-31
Revision

1.2

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 127

Functions

• Xuint32cm_clockDisplay(Xuint32 vpos)
Display Clock Settings.

• Xuint32cm_setClockFrontend(char∗∗argv, Xuint32 argc)
Set Clock Configuration (shell command).

8.2.2.2 Function Documentation

Xuint32 cm_clockDisplay (Xuint32vpos)

This graphic hook-up function displays the frequency and the on / off state of all 4 clock signals.

Parameters:
vpos the vertical position of the message window. If equal to GFX_GET_SIZE defined in

graphix.h, this means that the caller wants to know the number of lines needed for this
graphics element

Returns:
0 in normal mode, the number of lines needed if asked for

Xuint32 cm_setClockFrontend (char∗∗ argv, Xuint32 argc)

This command sets the frequencies and the on / off states of the 4 clocks output to the R-FPGA.

usage: setclk [-e <ena>] [-f <freq>] <clocknum>

-e : enable/disable
<ena> : enable (1), disable (0)

-f : set frequency
<freq>: frequency number, 0-31

<clocknum>: clock number, 0-3

Parameters:
argv the pointer to the argument list

argc the number of arguments

Returns:
0

128 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

8.2.3 clockman.h File Reference

8.2.3.1 Detailed Description

This is the header file forclockman.c

Author:
Samuel Nobs

Date:
2004-03-31
Revision

1.2

Defines

• #defineCM_ENABLE_MASK 0x80000000
The mask used to enable / disable the clock.

• #defineCM_BASE_FREQ125
The base frequency used for calculation of the clock frequency.

• #define CM_SET_CLOCK(clock, val) ∗((Xuint32∗)(XPAR_CLOCKMAN_-
BASEADDR+4∗(clock))) = (val)

Configure Clock Manager.

• #define CM_GET_CLOCK(clock) ∗((Xuint32∗)(XPAR_CLOCKMAN_-
BASEADDR+4∗(clock)))

Get Clock Configuration.

• #defineCM_ENABLE_CLOCK(clock) (CM_SET_CLOCK(clock,(CM_GET_CLOCK(clock)
| CM_ENABLE_MASK)))

Enable clock numberclock .

• #define CM_DISABLE_CLOCK(clock) (CM_SET_CLOCK(clock,(CM_GET_-
CLOCK(clock) &∼CM_ENABLE_MASK)))

Disable clock numberclock .

Functions

• Xuint32cm_clockDisplay(Xuint32 vpos)
Display Clock Settings.

• Xuint32cm_setClockFrontend(char∗∗argv, Xuint32 argc)
Set Clock Configuration (shell command).

8.2.3.2 Define Documentation

#define CM_GET_CLOCK(clock)∗((Xuint32∗)(XPAR_CLOCKMAN_BASEADDR+4∗(clock)))

Reads the configuration value of clock numberclock . The MSB ofval is the enable / disable flag.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 129

Parameters:
clock the clock number

#define CM_SET_CLOCK(clock, val) ∗((Xuint32∗)(XPAR_CLOCKMAN_-
BASEADDR+4∗(clock))) = (val)

Configures the clock numberclock with the valueval . The MSB ofval is the enable / disable
flag.

Parameters:
clock the clock number

val the configuration value

8.2.4 cui.c File Reference

8.2.4.1 Detailed Description

This file implements a basic command user interface (shell) including tab completion, a command
history, and function keys that can be assigned commonly used commands. Other special keys are
handled as well. All user interaction is done using this shell, except for functions that catch keyboard
input themselves.

Author:
Samuel Nobs

Date:
2004-02-01
Revision

1.16

Functions

• CommandEntry ExtOsCommandList[CUI_NUMBER_OF_EXTERN_COMMANDS] __-
attribute__((section(".extos_commands")))=

List of External OS Commands.

• void cui_addtohistory(char∗bufPtr)
Add Command to History.

• void cui_gethistory(Xuint32 index, char∗bufPtr)
Get History Entry.

• char∗ cui_complete(char∗commBuffer, char∗bufPtr)
Complete Command.

• void cui_getcommand(char∗commBuffer, char∗∗argv, Xuint32∗argc)
Get Command from Input.

130 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

• void shell()
Command Shell.

• Xuint32 fkey (char∗∗argv, Xuint32 argc)
Assign Function Keys (shell command).

• Xuint32cui_escapeKeyInterruptHandler()
Escape Key Interrupt Handler.

• charcui_readKeyboard()
Read from Keyboard.

• Xuint32cui_resume(char∗∗argv, Xuint32 argc)
Resume Task (shell command).

Variables

• charcui_history[CUI_HISTORYLENGTH][CUI_COMMANDLENGTH]
Circular history buffer containing recently entered commands.

• Xuint32cui_histWritePos= 0
Actual position in the history buffer, i.e. where the command entered next has to be stored.

• char∗ prompt= CUI_PROMPT
The prompt used by theshell() .

• Xuint32PIDsuspendingShell
The PID of the process suspending the shell.

• constCommandEntryCommandList[CUI_NUMBER_OF_COMMANDS]
List of Built-In Commands.

• CommandEntry∗ UserCommandList
Pointer to the list containing the user commands.

• CommandEntry∗ ExtOsCommandList
Pointer to the list containing the external OS commands.

• Xuint32∗ NUserCommands
Pointer to the number of user commands.

• char∗ MagicKeyword
Pointer to the magic keyword used to determine wether code is loaded or not.

• charFKeyMapping[12][CUI_FKEY_COMM_LEN]
Function key command mapping list.

8.2.4.2 Function Documentation

CommandEntry ExtOsCommandList [CUI_NUMBER_OF_EXTERN_COMMANDS] __-
attribute__ ((section(".extos_commands")))

This is a list containing all external commands recognized by theshell() . However, this list must
be included in the external code by giving the option -DEXTERNAL_OS_CODE to the compiler. It is
not included in the core OS code present in the block RAM. Refer to the linker script for information
on where this list is put in the code, i.e. the code section .extos_commands .

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 131

void cui_addtohistory (char∗ bufPtr)

Adds a command to the circular history buffercui_history at the position pointed at bycui_-
histWritePos , which then gets incremented.

Parameters:
bufPtr pointer to the string representing the command to add to the history

char∗ cui_complete (char∗ commBuffer, char ∗ bufPtr)

Complete a command entered in theshell() . This function searches theCommandList and the
UserCommandList andExtOsCommandList (only if available) for commands starting with the
string pointed at by the arguments. If no match is found, a pointer to the end of the string entered so
far is returned. If various matches are found, the string is completed as long as it is common to the
beginning of all matching commands, then a pointer to the end of the completed string is returned.
If only one match is found, the string is completed to the end of the matching command, and then a
pointer to the end of the completed string is returned.

Parameters:
commBuffer pointer to the beginning of the string to be completed

bufPtr pointer to the end of the string to be completed

Returns:
pointer to the end of the completed string

Xuint32 cui_escapeKeyInterruptHandler ()

This is the interrupt handler that gets called whenever the escape key gets hit. It first looks whether
a task is currently suspending the shell. If no such task can be found, the interrupt handler exits.
Otherwise, a dialog is shown letting the user decide whether to kill the task, suspend the task (and thus
giving control back to the shell), or continuing the task.

Returns:
0

void cui_getcommand (char∗ commBuffer, char ∗∗ argv, Xuint32 ∗ argc)

This function gets character input from the keyboard and completes this input usingcui_-
complete(char ∗, char ∗) whenever the tab key is hit. It also listens to the up / down arrow
keys to get a command from the history usingcui_gethistory(Xuint32, char ∗) . It also
treats moving forward and backward using the left / right arrow keys and deleting using backspace.
However, all key inputs work in insert mode so far, e.g. when backspace is hit in the middle of a string,
the characters to the right of the cursor are not shifted to the left.

132 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Additionally, the page up and page down keys tell the graphic manager to go to the next / previous
page by callinggfx_nextPage() or gfx_prevPage() .

As soon as the user hits the return key, the string entered is added to the history usingcui_-
addtohistory(char ∗) , then it is split into one command and a list of arguments. Arguments
with one or more blanks have to be enclosed by single quotes.

Parameters:
commBuffer buffer where the characters are written to

argv pointer to the list of arguments

argc pointer to the number of arguments

void cui_gethistory (Xuint32index, char ∗ bufPtr)

Gets a command from the history buffercui_history at the position specified. As a second argu-
ment, a buffer is needed. A copy of the command found in the history is returned in this buffer. Make
sure to allocateCUI_COMMANDLENGTHbytes for this string.

Parameters:
index position in the history buffer

bufPtr pointer to a buffer that will be filled with the command

char cui_readKeyboard ()

Whenever a user task suspending the shell is reading the keyboard, this function should be used instead
of kbd_getc() because it filters the page up / page down keys and forwards them to the graphics
manager. This means that the graphics display can still be paged through although the shell (which
normally handles the paging) is suspended.

Returns:
the character read from the keyboard

Xuint32 cui_resume (char∗∗ argv, Xuint32 argc)

Whenever a task has been suspended, it can be again put into service using this command. The com-
mand takes one conditionally optional argument, a process ID; this ID is not necessary as long as
there is only one command currently being suspended. As soon as the result of calling this command
without argument is ambiguous, the PID to be resumed is requested.

Parameters:
argv pointer to the argument list

argc argument count

Returns:
0

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 133

Xuint32 fkey (char∗∗ argv, Xuint32 argc)

This command assigns a comment including arguments to a function key on the keyboard. The first
argument in the list is expected to be a number between 1 and 12, denoting the number of the function
key the string given as a second argument will be assigned to. If no argument is given, the current
function key mapping is printed to the screen.

usage: fkey <fkeynum> <commandstr>

put a shortcut to <commandstr> on F<keynum>

If the command to be mapped exceedsCUI_FKEY_COMM_LENit is truncated. If a command includes
white space, it must be enclosed by single quotes, i.e.’command using space’ . These quotes are
not accounted for when calculating the string’s length.

Parameters:
argv pointer to the argument list

argc argument count

Returns:
0

void shell ()

This is a loop representing the command user interface (shell) of the os. It prints theprompt string to
the screen, then it waits to get a command and a list of arguments fromcui_getcommand(char ∗,
char ∗∗, Xuint32 ∗) . If the command is empty, the nextprompt is printed and a new command
is waited for. If the command is not empty, it is searched for in theCommandList . If the command
is found in the list, it is added to the task list, including the argument list, the argument count, the name
of the command, the number of scheduling time quanta and the minimal stack size required. This step
is done using the scheduler functionsch_addToTaskList(FunctionPointer, char ∗∗,
Xuint32, char ∗, Xuint32, Xuint32, Xboolean) . A message about the absence of a
built-in command matching the command entered is printed if the command could not be found in the
CommandList .

8.2.4.3 Variable Documentation

constCommandEntryCommandList[CUI_NUMBER_OF_COMMANDS]

Initial value:

{
{"bitslist", (FunctionPointer)&bitslist, 2048,10,XTRUE},
{"cls", (FunctionPointer)&vga_cls, 500,10,XFALSE},

134 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

{"config", (FunctionPointer)&config, 500,SCH_INFINITE_QUANTA,XFALSE},
{"context", (FunctionPointer)&context, 500,20,XTRUE},
{"fkey", (FunctionPointer)&fkey, 500,10,XTRUE},

{"inetd", (FunctionPointer)&inetd, 1024,SCH_DEFAULT_QUANTA,XFALSE},

{"ipconfig", (FunctionPointer)&net_ipconfig, 500,10,XTRUE},
{"kill", (FunctionPointer)&kill, 500,10,XTRUE},
{"ps", (FunctionPointer)&ps, 800,20,XTRUE},
{"resume", (FunctionPointer)&cui_resume, 800,20,XFALSE},
{"setquanta", (FunctionPointer)&setquanta, 500,10,XTRUE},

}

This is a list containing all built-in commands recognized by theshell()

char FKeyMapping[12][CUI_FKEY_COMM_LEN]

Initial value:

{

"config 0\0",
"config 1\0",
"bitslist\0",
"ps\0",
"cls\0",
"\0",
"\0",
"\0",
"\0",
"\0",
"\0",
"fkey\0",

}

8.2.5 cui.h File Reference

8.2.5.1 Detailed Description

This is the header file forcui.c .

Author:
samuel nobs

Date:
2004-02-01

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 135

Revision
1.14

Data Structures

• structCommandEntry_t
Command Entry.

Defines

• #defineCUI_COMMANDLENGTH 64
Maximum length of a command.

• #defineCUI_ARGLENGTH17
Maximum length of an argument string.

• #defineCUI_MAXARGS 6
Maximum number of arguments.

• #defineCUI_HISTORYLENGTH10
Length of the command history.

• #defineCUI_PROMPT">XF-%d>"
String used for the prompt.

• #defineCUI_PROMPT_ASK"XF-?>"
String used for the prompt for ambiguous results on tab completion.

• #defineCUI_FKEY_COMM_LEN21
Maximum length of the commands being mapped to the F-Keys (including string terminator).

• #defineCUI_NUMBER_OF_COMMANDS11
Number of built-in commands.

• #defineCUI_NUMBER_OF_EXTERN_COMMANDS3
Number of built-in commands in extern memory.

• #defineCUI_PROGRAM_LOADED_KEYWORD"badger "
Magic keyword to determine whether program has been loaded or not.

• #defineCUI_PROGRAM_LOADED_KEYWORD_LEN8
Lengt of the magic keyword, including terminator.

• #defineXF_COMMAND_LIST
User Command List.

Typedefs

• typedefCommandEntry_tCommandEntry
Command Entry.

Functions

• void cui_getcommand(char∗commBuffer, char∗∗argv, Xuint32∗argc)

136 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Get Command from Input.

• Xuint32 fkey (char∗∗argv, Xuint32 argc)
Assign Function Keys (shell command).

• void shell()
Command Shell.

• Xuint32cui_resume(char∗∗argv, Xuint32 argc)
Resume Task (shell command).

• charcui_readKeyboard()
Read from Keyboard.

Variables

• Xuint32PIDsuspendingShell
The PID of the process suspending the shell.

8.2.5.2 Define Documentation

#define XF_COMMAND_LIST

Value:

char theKeyword[CUI_PROGRAM_LOADED_KEYWORD_LEN] \
__attribute__((section(".magic_keyword")))= CUI_PROGRAM_LOADED_KEYWORD;\
Xuint32 UserCommandCount \
__attribute__((section(".command_count"))) = XF_NUMBER_OF_COMMANDS;\
CommandEntry MyCommandList[XF_NUMBER_OF_COMMANDS] \
__attribute__((section(".user_commands")))

This macro can be used in programs that are intended to reside in external memory. It adds user-
defined commands and the external OS commands to theshell() . To enable these user commands,
this macro builds a table containing all the information necessary to call the user-defined functions.
This table is then inserted at the correct location by the linker, the .user_commands section. This
where it is expected to be by the OS. The macro also defines the magic keyword that is written to the
memory. This keyword is used by theshell() to determine whether external code is available or
not.

8.2.5.3 Typedef Documentation

typedef structCommandEntry_tCommandEntry

This structure describes a built-in command that can be executed the shell. Every command meant to
be accessible from the shell has to be installed in the OS using an instance of this structure. The func-
tions that can be called using a shell command commonly have a signature likemy_command(char
∗∗argv, Xuint32 argc) .

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 137

8.2.6 graphix.c File Reference

8.2.6.1 Detailed Description

This file contains graphics routines such as the graphic manager and graphical elements. All functions
are meant to be used for the graphics column of the display.

Author:
Samuel Nobs

Date:
2004-01-31
Revision

1.12

Functions

• void gfx_init ()
Initialize Graphic Manager.

• void gfx_clearline()
Clear Line.

• void gfx_hline(Xuint8 vpos)
Draw Horizontal Line.

• Xuint32gfx_graphicManager()
Graphic Manager.

• void gfx_nextPage()
Go to Next Page.

• void gfx_prevPage()
Go to Previous Page.

• XFErrorgfx_addHook(GFXHookPtrhook)
Add Graphics Display Hook-Up.

• XFErrorgfx_removeHooksForPID(Xuint32 pid)
Remove hooks for PID.

• void gfx_fifofill (const char∗label, Xuint32 val, Xuint32 lim, Xuint32 lowthres, Xuint32 high-
thres, Xuint32 size)

FiFo fill-level monitor.

• void gfx_verticalBargraph(Xuint32 val, Xuint32 max, Xuint32 hpos, Xuint32 vpos, Xuint32
size)

Vertical Bargraph.

• void gfx_historyBargraph(Xuint32 val, Xuint32∗hist, Xuint32 histlen, Xuint32 max, Xuint32
hpos, Xuint32 vpos, Xuint32 height)

Vertical History Bargraph.

• void gfx_time()
Draw Up-Time.

138 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Variables

• Xuint8 gfx_displayedPage
The page currently displayed by the graphic manager.

• Xuint8 gfx_lastDisplayedPage
The last page displayed by the graphic manager.

• GraphicListItemGraphicList[GFX_NUMBER_OF_PAGES][GFX_NUMBER_OF_LINES]
The list containing the graphics hook-up functions.

• const chargfx_fifoBar [9] = {0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8}
The character set for horizontal bars.

• const chargfx_vBar[9] = {177,19,20,21,22,23,24,25,219}
The character set for vertical bars.

8.2.6.2 Function Documentation

XFError gfx_addHook (GFXHookPtr hook)

Install a graphics display hook-up in theGraphicList which is called bygfx_graphic-
Manager() to draw accordingly to the screen. To allocate enough room for the hook-up installed, it
is asked for it’s desired size by callinghook(GFX_GET_SIZE) . Then, a free slot in theGraphic-
List is searched using a simple first-fit algorithm.

Parameters:
hook graphics display hook-up function to add

Returns:
an XFError code:

• ERR_NONE if hook-up was successfully attached

• ERR_NO_FREE_GFXSLOT if no free slot was found

void gfx_clearline ()

Clears the current line. The text insertion point must reside at the beginning of the line when this
function is called.

void gfx_fifofill (const char∗ label, Xuint32val, Xuint32 lim , Xuint32 lowthres, Xuint32highthres,
Xuint32 size)

This is a function displaying the fill-level of a FIFO queue in a manner compareable to a progress bar,
including a text representing the fill-level as a percentage. In contrast to the progress bar, this graphics
element is open on the right side.

Parameters:
label a label for this graphics element

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 139

val the value representing the fill-level of the FIFO queue

lim the maxium value being displayed

lowthres if val is below this threshold, the percentage text is highlighted

highthres if val is above this threshold, the percentage text is highlighted

size the size of the bar (in characters)

Xuint32 gfx_graphicManager ()

This is the graphic manager used by the operating system. Before it is started, it has to be initialized
usinggfx_init() . First, it disables all interrupts as interrupting the graphic manager might mess up
the look of the display. Next, it draws the page numbers, highlighting the number of the page currently
displayed. Then, it loops through theGraphicList and calls the hook-ups for the actual page found
there, passing the vertical position as an argument. Then it recedes from the CPU and waits for being
given CPU time again to start redrawing.

Returns:
0

void gfx_historyBargraph (Xuint32val, Xuint32 ∗ hist, Xuint32 histlen, Xuint32 max, Xuint32
hpos, Xuint32 vpos, Xuint32 height)

Generates a vertical bargraph including information about the past. The buffer containing the history
must be given as an argument, i.e. if the last 20 values should be displayed, a buffer of length 20 should
be allocated. The function then shifts left the contents of this buffer, inserting the newest value to the
right of the buffer. So the most recent value is displayed on the right side of the display; the right side
represents the array element with the highest index. The user does not need to care about the content
of the history buffer as it gets managed by the function. To get reasonable results,val should be in the
range of0 to max.

Parameters:
val the actual value

hist the history buffer of sizehistlen

histlen the size ofhist , i.e. the width of the graph (in characters)

max the upper limit forval

hpos the horizontal position of the graph (in characters)

vpos the vertical position of the bottom of the graph (in lines)

height the height of the graph (in lines)

140 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

void gfx_hline (Xuint8vpos)

This function draws a horizontal line across the graphics column to separe the display vertically.

Parameters:
vpos vertical position in lines, starting with 0

void gfx_init ()

Before using the graphic managergfx_graphicManager() , this function must be called to ini-
tialize the variablesgfx_displayedPage andGraphicList .

void gfx_nextPage ()

Tells the graphic manager to display the next page on redraw. This is done by incrementinggfx_-
displayedPage .

void gfx_prevPage ()

Tells the graphic manager to display the previous page on redraw. This is done by decrementing
gfx_displayedPage .

XFError gfx_removeHooksForPID (Xuint32pid)

Removes all graphics hook-up function associated with a certain PID. This function is used for clean-
ing up when a task terminates or is killed.

Parameters:
pid PID whose hooks should be removed

Returns:
0

void gfx_time ()

This function draws the up-time to the screen in the formatHHH:MM:SS

void gfx_verticalBargraph (Xuint32val, Xuint32 max, Xuint32 hpos, Xuint32 vpos, Xuint32 size)

This is a function used to display a value as a vertical bar. To get a reasonable result,val should be in
the range of0 to max.

Parameters:
val the value to be displayed

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 141

max the upper limit for this value

hpos the horizontal position of the graph (in characters)

vpos the vertical position of the bottom of the graph (in lines)

size the height of the graph (in lines)

8.2.7 graphix.h File Reference

8.2.7.1 Detailed Description

This is the header file forgraphix.c.

Author:
Samuel Nobs

Date:
2004-01-31
Revision

1.8

Data Structures

• structGraphicListItem_t
Item in theGraphicList .

State Constants

States of aGraphicListItem

• #defineGFX_BSTATE_FREE0
Item is free and can be allocated.

• #defineGFX_BSTATE_USED1
Item is used.

• #defineGFX_BSTATE_LAST2
Item is the last item of a group of used items.

Defines

• #defineGFX_NUMBER_OF_PAGES3
Number of pages being managed.

• #defineGFX_NUMBER_OF_LINES(VGA_NUMBER_OF_LINES - 3)
Number of lines per page.

142 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

• #defineGFX_BASELINE(VGA_NUMBER_OF_LINES - 2)
Start of the baseline comments (pages, up-time...).

• #defineGFX_TIME_COLUMN53
Column at which the time gets displayed.

• #defineGFX_TIME_LEN9
Length of the time string displayed.

• #defineGFX_GET_SIZE255
Command used to request size from a graphic hook-up.

Typedefs

• typedef Xuint8GFXHook
Type of a graphic hook-up function.

• typedefGFXHook(∗ GFXHookPtr)(Xuint8)
Pointer on a graphic hook-up function taking one argument.

• typedefGraphicListItem_tGraphicListItem
Item in theGraphicList .

Functions

• void gfx_init ()
Initialize Graphic Manager.

• void gfx_nextPage()
Go to Next Page.

• void gfx_prevPage()
Go to Previous Page.

• void gfx_time()
Draw Up-Time.

• void gfx_clearline()
Clear Line.

• XFErrorgfx_addHook(GFXHookPtrhook)
Add Graphics Display Hook-Up.

• XFErrorgfx_removeHooksForPID(Xuint32 pid)
Remove hooks for PID.

• Xuint32gfx_graphicManager()
Graphic Manager.

• void gfx_fifofill (const char∗label, Xuint32 val, Xuint32 lim, Xuint32 lowthres, Xuint32 high-
thres, Xuint32 size)

FiFo fill-level monitor.

• void gfx_verticalBargraph(Xuint32 val, Xuint32 max, Xuint32 hpos, Xuint32 vpos, Xuint32
size)

Vertical Bargraph.

• void gfx_historyBargraph(Xuint32 val, Xuint32∗hist, Xuint32 histlen, Xuint32 max, Xuint32
hpos, Xuint32 vpos, Xuint32 height)

Vertical History Bargraph.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 143

Variables

• GraphicListItemGraphicList[GFX_NUMBER_OF_PAGES][GFX_NUMBER_OF_LINES]
The list containing the graphics hook-up functions.

• Xuint8 gfx_displayedPage
The page currently displayed by the graphic manager.

8.2.7.2 Typedef Documentation

typedef structGraphicListItem_tGraphicListItem

An item in theGraphicList contains information on the graphics hook-up function that will be
called by thegfx_graphicManager() and the state of this item. The state information is needed
to allocate space on the screen for a graphics hook-up.

8.2.8 kbd_layout_en.c File Reference

8.2.8.1 Detailed Description

This file contains the key mapping for an english keyboard layout.

Author:
Samuel Nobs

Date:
2004-02-03
Revision

1.3

Variables

• charkbd_keymap[2][128]
Character map.

8.2.8.2 Variable Documentation

char kbd_keymap[2][128]

Initial value:

{{

144 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,’\t’, ’‘’, 0 ,
0 , 0 , 0 , 0 , 0 , ’q’, ’1’, 0 , 0 , 0 , ’z’, ’s’, ’a’, ’w’, ’2’, 0 ,
0 , ’c’, ’x’, ’d’, ’e’, ’4’, ’3’, 0 , 0 , , ’v’, ’f’, ’t’, ’r’, ’5’, 0 ,
0 , ’n’, ’b’, ’h’, ’g’, ’y’, ’6’, 0 , 0 , 0 , ’m’, ’j’, ’u’, ’7’, ’8’, 0 ,
0 , ’,’, ’k’, ’i’, ’o’, ’0’, ’9’, 0 , 0 , ’.’, ’/’, ’l’, ’;’, ’p’, ’-’, 0 ,
0 , 0 ,’\’’, 0 , ’[’, ’=’, 0 , 0 , 0 , 0 ,’\n’, ’]’, 0 ,’\\’, 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 ,’\b’, 0 , 0 , ’1’, 0 , ’4’, ’7’, 0 , 0 , 0 ,

’0’, ’.’, ’2’, ’5’, ’6’, ’8’, 0 , 0 , 0 , 0 , ’3’, 0 , 0 , ’9’, 0 , 0
},
{

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,’\t’, ’~’, 0 ,
0 , 0 , 0 , 0 , 0 , ’Q’, ’!’, 0 , 0 , 0 , ’Z’, ’S’, ’A’, ’W’, ’@’, 0 ,
0 , ’C’, ’X’, ’D’, ’E’, ’$’, ’#’, 0 , 0 , , ’V’, ’F’, ’T’, ’R’, ’%’, 0 ,
0 , ’N’, ’B’, ’H’, ’G’, ’Y’, ’^’, 0 , 0 , 0 , ’M’, ’J’, ’U’, ’&’, ’*’, 0 ,
0 , ’<’, ’K’, ’I’, ’O’, ’)’, ’(’, 0 , 0 , ’>’, ’?’, ’L’, ’:’, ’P’, ’_’, 0 ,
0 , 0 ,’\"’, 0 , ’{’, ’+’, 0 , 0 , 0 , 0 ,’\n’, ’}’, 0 , ’|’, 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 ,’\b’, 0 , 0 , ’1’, 0 , ’4’, ’7’, 0 , 0 , 0 ,

’0’, ’.’, ’2’, ’5’, ’6’, ’8’, 0 , 0 , 0 , 0 , ’3’, 0 , 0 , ’9’, 0 , 0
}}

This matrix maps scan codes to characters.kbd_keymap [0] contains the characters for keys being
pressed without the shift key whilekbd_keymap [1] stands for the keys being pressed when the shift
key is held down.

8.2.9 kbd_layout_en.h File Reference

8.2.9.1 Detailed Description

Author:
Samuel Nobs

Date:
2004-02-03
Revision

1.6

Modifier and Navigation Keys Scan Codes

• #defineKBD_LSHIFT 0x12
Left shift key.

• #defineKBD_RSHIFT0x59
Right shift key.

• #defineKBD_UARROW0x75
Up arrow key.

• #defineKBD_DARROW0x72

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 145

Down arrow key.

• #defineKBD_LARROW 0x6B
Left arrow key.

• #defineKBD_RARROW0x74
Right arrow key.

• #defineKBD_TAB 0x0D
Tabulator key.

• #defineKBD_PAGEUP0x7D
Page up key.

• #defineKBD_PAGEDN0x7A
Page down key.

Function Keys Scan Codes

• #defineKBD_F10x05
F1 Key.

• #defineKBD_F20x06
F2 Key.

• #defineKBD_F30x04
F3 Key.

• #defineKBD_F40x0C
F4 Key.

• #defineKBD_F50x03
F5 Key.

• #defineKBD_F60x0B
F6 Key.

• #defineKBD_F70x83
F7 Key.

• #defineKBD_F80x0A
F8 Key.

• #defineKBD_F90x01
F9 Key.

• #defineKBD_F100x09
F10 Key.

• #defineKBD_F110x78
F11 Key.

• #defineKBD_F120x07
F12 Key.

Special Scan Codes

• #defineKBD_BREAK 0xF0
Break scan code, sent when a key is released.

• #defineKBD_EXTEND_CODE0xE0

146 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Extension scan code, prepended to some keys’ scan codes.

• #defineKBD_PRTSC0x7C
Print screen key scan code.

• #defineKBD_ESCAPE0x76
Escape key scan code.

• #defineKBD_PLUS0x79
Plus key (num pad) scan code.

• #defineKBD_MINUS 0x7B
Minus key (num pad) scan code.

Variables

• charkbd_keymap[2][128]
Character map.

8.2.9.2 Variable Documentation

char kbd_keymap[2][128]

This matrix maps scan codes to characters.kbd_keymap [0] contains the characters for keys being
pressed without the shift key whilekbd_keymap [1] stands for the keys being pressed when the shift
key is held down.

8.2.10 keyboard.c File Reference

8.2.10.1 Detailed Description

This file provides functions that represent the software part of the keyboard driver.

Author:
samuel nobs

Date:
2004-01-31
Revision

1.10

Functions

• charkbd_getc()
Get Character.

• Xuint32kbd_scan()
Fetch Scan Code.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 147

8.2.10.2 Function Documentation

char kbd_getc ()

Gets a character from the keyboard. Regularly printable characters available on a standard keyboard are
returned using their corresponding ASCII value. Values not used for regular keyboard characters are
returned to inform the caller about special keys being hit on the keyboard, i.e. arrow keys or function
keys. Basically, this function is a state machine fetching the scan codes !=0 from the keyboard and
treating special cases (shift key, break codes etc.).

Returns:
a number representing a keyboard input:

• numbers< 200 are standard ASCII values

• numbers>= 200 refer to special keys (seekeyboard.h)

Xuint32 kbd_scan ()

This low level function fetches a scan code from the keyboard using a non-blocking read. If no scan
code is present, 0 is returned.

Returns:
a scan code or 0

8.2.11 keyboard.h File Reference

8.2.11.1 Detailed Description

This file is the header forkeyboard.c

Author:
samuel nobs

Date:
2004-02-01
Revision

1.9

Arrow and Navigation Keys

These constants are returned bykbd_getc() when an arrow / navigation key was hit on the key-
board.

• #defineKBD_UPKEY 200

148 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Up arrow key.

• #defineKBD_DOWNKEY 201
Down arrow key.

• #defineKBD_LEFTKEY 202
Left arrow key.

• #defineKBD_RIGHTKEY 203
Right arrow key.

• #defineKBD_TABKEY 204
Tabulator key.

• #defineKBD_PGDNKEY205
Page down key.

• #defineKBD_PGUPKEY206
Page up key.

Function Keys

These constants are returned bykbd_getc() when a function key was hit on the keyboard

• #defineKBD_F1KEY 210
F1 key.

• #defineKBD_F2KEY 211
F2 key.

• #defineKBD_F3KEY 212
F3 key.

• #defineKBD_F4KEY 213
F4 key.

• #defineKBD_F5KEY 214
F5 key.

• #defineKBD_F6KEY 215
F6 key.

• #defineKBD_F7KEY 216
F7 key.

• #defineKBD_F8KEY 217
F8 key.

• #defineKBD_F9KEY 218
F9 key.

• #defineKBD_F10KEY219
F10 key.

• #defineKBD_F11KEY220
F11 key.

• #defineKBD_F12KEY221
F12 key.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 149

Defines

• #defineKBD_PRTSCKEY222
Print screen key.

• #defineKBD_ESCAPEKEY223
Escape key.

• #defineKBD_PLUSKEY224
Plus key (num pad).

• #defineKBD_MINUSKEY 225
Minus key (num pad).

Functions

• charkbd_getc()
Get Character.

• Xuint32kbd_scan()
Fetch Scan Code.

8.2.12 lock.h File Reference

8.2.12.1 Detailed Description

This file provides low-level macros used for working with the hardware test-and-set structure

Author:
Samuel Nobs

Date:
2004-04-05
Revision:

1.1

Defines

• #defineLOCK()
Lock a task.

• #defineLOCK_OWNER() ∗((volatile Xuint32∗)(XPAR_HWLOCK_BASEADDR))
Get PID of the locking task.

• #defineUNLOCK()
Unlock a task.

150 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Variables

• Xuint32 runningTask
PID of the task currently running.

8.2.12.2 Define Documentation

#define LOCK()

Value:

sch_block();\
while(*((volatile Xuint8 *)(XPAR_HWLOCK_BASEADDR + runningTask)))

#define UNLOCK()

Value:

sch_unblock();\
((volatile Xuint32)(XPAR_HWLOCK_BASEADDR))=0

8.2.13 memory.c File Reference

8.2.13.1 Detailed Description

This file implements a simple memory manager for allocating memory for the stack and for larger
amounts of data.

Author:
Samuel Nobs

Date:
2004-02-09
Revision

1.8

Functions

• void mem_init()
Initialize memory manager.

• void mem_allocStack(Xuint32 pid,StackDescriptor∗stack)
Allocate stack memory.

• Xuint32mem_dealloc(Xuint32 pid)

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 151

Deallocate memory.

• void ∗ malloc(Xuint32 size)
Allocate Memory.

• void free(void ∗ptr)
Free memory.

• Xuint32mem_display(Xuint8 vpos)
Display memory allocation map.

• void errorLMBInterrupt()
LMB Error Interrupt Handler.

• void errorStackInterrupt()
Stack Error Interrupt Handler.

Variables

• MemoryBlockMemAllocTable[MEM_NUM_BLOCKS]
The table keeping track of the memory blocks.

• Xuint32_erodata
Points to the end of the read-only memory section. Needed for the Memory protection.

8.2.13.2 Function Documentation

void errorLMBInterrupt ()

This function gets called whenever the corresponding interrupt has been triggered by an LMB memory
access error, i.e. someone tried to write to the read-only sections. This interrupt calls this handler,
which kills the task and sends a debugging message to the host computer’s debug port. The debugging
message consists of the program counter.

Todo
A future version of this interrupt handler may send more detailed debugging information.

void errorStackInterrupt ()

The core watching the stack pointer generates an interrupt whenever it points to memory outside the
allowed range. This interrupt calls this handler, which kills the task and sends a debugging message to
the host computer’s debug port. The debugging message consists of the program counter.

Todo
A future version of this interrupt handler may send more detailed debugging information.

void free (void∗ ptr)

Memory that has been allocated usingmalloc(Xuint32) can be returned to the pool of free mem-
ory blocks by calling this function. Starting from the location pointed to by the argument, all blocks

152 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

up to the one marked as being the last block of the segment are declared as free (MEMTYPE_FREE) if
they are owned by the calling process.

Parameters:
ptr pointer to the memory section being freed

void∗ malloc (Xuint32size)

This function tries to find a memory segment being an integer multiple ofMEM_BLOCKSIZE, large
enough to fulfill the requirements stated by the argumentsize. For every memory block allocated,
theMemAllocTable is updated accordingly: the block is marked as being malloced (MEMTYPE_-
MALLOC), then it is assigned the ID of the currently running task, i.e. the caller of this function, and
the block at the highest address of the segment is marked as being the last block of the segment, which
simplifies freeing usingfree(void ∗) .

As this function needs to be fast and efficient, the first-fit algorithm is used which yields the best results
with respect to the tradeoff between low fragmentation and low complexity.

Parameters:
size size of the memory segment in bytes

Returns:
a pointer to the newly allocated memory segment on success, 0 on failure

void mem_allocStack (Xuint32pid, StackDescriptor∗ stack)

Whenever a new task is going to be launched, memory for its stack variables is allocated using
this function. The desired amount of memory is rounded up to the next integer multiple ofMEM_-
BLOCKSIZE. If a contiguous memory segment is found, theloAddr andhiAddr fields ofstackare
adjusted to point to the start and to the end of the segment, respectively. If no segment was found, these
fields are set to 0. For every memory block allocated for the stack, the allocation table is updated: the
block is marked as being stack memory (MEMTYPE_STACK), and it is assigned the PID of the owning
process.

As this function needs to be fast and efficient, the first-fit algorithm is used which yields the best results
with respect to the tradeoff between low fragmentation and low complexity.

Parameters:
pid ID of the process whose stack will reside in the memory segment asked for

stack StackDescriptor containing the desired memory size

Xuint32 mem_dealloc (Xuint32pid)

Deallocate all memory blocks owned by a certain process. This function is useful for cleanup when a
task terminates or is killed. All blocks belonging to the process are marked as being free and therefore
are available for other processes.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 153

Parameters:
pid ID of the process whose memory will be deallocated

Returns:
0

Xuint32 mem_display (Xuint8vpos)

This is a graphics hook-up function displaying the memory allocation map including a legend. This
function can be added to the pool of graphics functions handled by thegfx_graphicManager() .

Parameters:
vpos Vertical position of the message window. If equal toGFX_GET_SIZE defined in

graphix.h , this means that someone wants to know the number of lines needed for this
graphics element

Returns:
0 in normal mode, the needed size if asked for

void mem_init ()

Before using the memory manager, its allocation tableMemAllocTable must be initialized using
this function. All available blocks are declared as free, and the owner’s PID is set to 0.

8.2.14 memory.h File Reference

8.2.14.1 Detailed Description

This is the header file formemory.c

Author:
Samuel Nobs

Date:
2004-02-09
Revision

1.6

Data Structures

• structMemoryBlock_t
Descriptor of a Memory Block.

• structStackDescriptor_t
Stack Descriptor.

154 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Types of Memory Blocks

• #defineMEMTYPE_FREE0
Block is free.

• #defineMEMTYPE_STACK1
Block is used for stack.

• #defineMEMTYPE_MALLOC 2
Block has been allocated usingmalloc(Xuint32) .

Defines

• #defineMEM_BASEADDR(XPAR_SRAM_BASEADDR)
Base address of the memory being managed.

• #defineMEM_SIZE0x00020000
Size of the memory being managed.

• #defineMEM_EXT_CODE(MEM_BASEADDR + MEM_SIZE)
Base address of the memory that is used for external program code.

• #defineMEM_BLOCKSIZE0x00000100
Size of the blocks the memory is organized in.

• #defineMEM_NUM_BLOCKS(MEM_SIZE/MEM_BLOCKSIZE)
Number of blocks the memory is split up into.

• #defineMEM_DISPLAY_BLOCKSPERLINE43
Number of blocks displayed per line in the memory allocation map.

Typedefs

• typedefMemoryBlock_tMemoryBlock
Descriptor of a Memory Block.

• typedefStackDescriptor_tStackDescriptor
Stack Descriptor.

Enumerations

• enumMemoryBlockGFXState{ blockFree= 176,blockMalloc= 178,blockStack= 219 }
ASCII codes for the characters used for displaying the allocation map.

Functions

• Xuint32mem_dealloc(Xuint32 pid)
Deallocate memory.

• Xuint32mem_display(Xuint8 vpos)
Display memory allocation map.

• void free(void ∗ptr)

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 155

Free memory.

• void mem_allocStack(Xuint32 pid,StackDescriptor∗stack)
Allocate stack memory.

• void mem_init()
Initialize memory manager.

• void ∗ malloc(Xuint32 size)
Allocate Memory.

Variables

• MemoryBlockMemAllocTable[MEM_NUM_BLOCKS]
The table keeping track of the memory blocks.

8.2.14.2 Typedef Documentation

typedef structMemoryBlock_tMemoryBlock

Descriptors of memory blocks are used to build the memory allocation tableMemAllocTable . A
memory block descriptor contains information needed for the allocation algorithms, such as the type
of the memory block and its owning process. It also provides information to delimit blocks belonging
together to form segments.

typedef structStackDescriptor_tStackDescriptor

This structure describing the dimensions of the stack memory of a process is used mainly for the
allocation routinemem_allocStack(Xuint32, StackDescriptor) . When this function is
called, the membersize needs to be assigned a value, and then the two other fieldsloAddr andhi-
Addr , defining the borders of the memory segment used as stack memory by a process, are assigned
the actual values.

8.2.14.3 Enumeration Type Documentation

enumMemoryBlockGFXState

Enumeration values:
blockFree Block is free.

blockMalloc Block is malloced.

blockStack Block is used as stack.

156 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

8.2.15 messagewin.c File Reference

8.2.15.1 Detailed Description

This file provides the functions for displaying messages in the graphics column using the memory
manager.

Author:
Samuel Nobs

Date:
2004-01-30
Revision

1.1

Functions

• Xuint8 msg_messageWin(Xuint8 vpos)
Draw Message Window.

• Xuint32msg_printMsg(char∗msgStr)
Print Message.

Variables

• charmsg_MessageBuffer[MSG_NUM_LINES][VGA_CHARS_PER_LINE-1]
Text buffer containing the messages.

• Xuint32msg_numOfLines= 0
Number of lines that have been written to the message window so far.

8.2.15.2 Function Documentation

Xuint8 msg_messageWin (Xuint8vpos)

This is the hook-up for drawing the message window. It gets called by the graphics manager. It can
be used to display status messages in the graphics column that will not interfere with theshell() in
the text column.

Parameters:
vpos Vertical position of the message window. If equal to GFX_GET_SIZE defined ingraphix.h,

this means that the caller wants to know the number of lines needed for this graphics element

Returns:
0 in paint mode, the needed size if being asked for

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 157

Xuint32 msg_printMsg (char∗ msgStr)

Print a message to the text buffermsg_MessageBuffer to be displayed in the message window.
The current up-time is prepended to the message.

Todo
The current version of this function does not support formatted string. This feature may be enabled
in a future version.

Parameters:
msgStr the string to be printed

8.2.16 messagewin.h File Reference

8.2.16.1 Detailed Description

This is the Header file formessagewin.c

Author:
Samuel Nobs

Date:
2004-01-30
Revision

1.1

Defines

• #defineMSG_NUM_LINES15
Number of lines displayed in the message window.

Functions

• Xuint8 msg_messageWin(Xuint8 vpos)
Draw Message Window.

• Xuint32msg_printMsg(char∗msgStr)
Print Message.

8.2.17 mmu.c File Reference

8.2.17.1 Detailed Description

This file implements a configuration and debug interface to the memory management unit on the R-
FPGA.

158 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Author:
Samuel Nobs

Date:
2004-04-01
Revision

1.4

Functions

• void mmu_readVFDL(XF_VFDL ∗vfdlPtr, Xuint32 length, Xboolean sequential)
Read VFDL.

• void mmu_writeVFDL(XF_VFDL ∗vfdlPtr, Xuint32 length, Xboolean sequential)
Write VFDL.

• void mmu_readPFDL(XF_PFDL∗pfdlPtr, Xuint32 length, Xboolean sequential)
Read PFDL.

• void mmu_writePFDL(XF_PFDL∗pfdlPtr, Xuint32 length, Xboolean sequential)
Write PFDL.

• Xuint32mmu_writeToFifo(XF_PFDL∗pfdlPtr, Xuint16 value, Xboolean first)
Write to FiFo.

• Xuint32mmu_readFromFifo(XF_PFDL∗pfdlPtr, Xboolean first)
Read from FiFo.

• Xuint32mmu_fifoFillLevel(XF_PFDL∗pfdlPtr)
Get FiFo Fill-Level.

• void mmu_dumpFifo(XF_PFDL∗pfdlPtr, Xuint32 start, Xuint32 end)
Dump FiFo Contents.

8.2.17.2 Function Documentation

void mmu_dumpFifo (XF_PFDL ∗ pfdlPtr , Xuint32 start, Xuint32 end)

This function dumps the values between indexstart andendwithout affecting the FiFo’s read / write
pointers.

Parameters:
pfdlPtr the pointer to aXF_PFDLelement describing the FiFo to get the fill-level from

start the index where to start the dump

end the index where to stop the dump

Xuint32 mmu_fifoFillLevel (XF_PFDL ∗ pfdlPtr)

The fill-level of a FiFo defined by the descriptionpfdlPtr is pointing at can be read using this function.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 159

Parameters:
pfdlPtr the pointer to aXF_PFDLelement describing the FiFo to get the fill-level from

Returns:
the fill-level of the FiFo

Xuint32 mmu_readFromFifo (XF_PFDL ∗ pfdlPtr , Xbooleanfirst)

This function can be used to read a value from the FiFo defined by the descriptionpfdlPtr is pointing
at. If the first flag is set to true, the address in the MMU to read from is set. As the OS bridge
core implements support for array read mode,first can be set to false for write accesses following
immediately. This allows faster reading the FiFo. Be sure to guarantee that no other access to the
MMU changed the address in the meantime due to the system’s being scheduled!

Todo
Currently, this function changes the read pointer of the FiFo in the MMU. Its functionality could
be extended by supporting a read mode leaving the read pointer untouched. This task can be ac-
complished by explicitly reading the memory at the location the FiFo resides at, but this approach
is not too comfortable.

Parameters:
pfdlPtr the pointer to aXF_PFDLelement describing the FiFo to read from

first the flag to control writing of the address

Returns:
the value read from the fifo

void mmu_readPFDL (XF_PFDL ∗ pfdlPtr , Xuint32 length, Xbooleansequential)

This function reads information from the physical FiFo description list in the MMU. There are two
methods to read data from the PFDL, both of which assume a list of typeXF_PFDLof lengthlength
being created in advance:

• thePFID field of the first element is assigned a value and thesequential argument is set to
MMU_SEQUENTIAL. The function then fills in the information starting at the PFID defined in
the first element of the list. This is the fastest way to get consecutive entries from the PFDL as
the OS bridge core supports a special array read mode for successive addresses.

• thePFID fields of all elements of the list are assigned a value; the values do not need to be in
a specific order. When the function is called with thesequentialflag set toMMU_PUNCTUALor
!MMU_SEQUENTIAL, the information for the PFIDs is fetched from the VFDL. This approach
is less effective as the address for each PFID must be sent to the MMU because the PFIDs are
not consecutive.

160 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Parameters:
vfdlPtr the pointer to a list ofXF_PFDLentries

length the number of entries in this list

sequential the flag to choose between sequential mode and punctual mode

void mmu_readVFDL (XF_VFDL ∗ vfdlPtr , Xuint32 length, Xbooleansequential)

This function reads information from the virtual FiFo description list in the MMU. There are two
methods to read data from the VFDL, both of which assume a list of typeXF_VFDLof lengthlength
being created in advance:

• the TID and TRFID fields of the first element are assigned a value and thesequential
argument is set toMMU_SEQUENTIAL. The function then fills in the information starting at the
TID / TRFID pair defined in the first element of the list. This is the fastest way to get consecutive
entries from the VFDL as the OS bridge core supports a special array read mode for successive
addresses.

• the TID andTRFID fields of all elements of the list are assigned a value; the values do not
need to be in a specific order. When the function is called with thesequentialflag set toMMU_-
PUNCTUALor !MMU_SEQUENTIAL, the information for the TID / TRFID pairs are fetched
from the VFDL. This approach is less effective as the address for each pair must be sent to the
MMU because the pairs are not consecutive.

Parameters:
vfdlPtr the pointer to a list ofXF_VFDLentries

length the number of entries in this list

sequential the flag to choose between sequential mode and punctual mode

void mmu_writePFDL (XF_PFDL ∗ pfdlPtr , Xuint32 length, Xbooleansequential)

This function writes information to the physical FiFo description list in the MMU. There are two
methods to write data to the PFDL, both of which assume a list of typeXF_PFDLof length length
being created and filled in thetype , baseAddr , size , rdPtr andwrPtr in advance:

• thePFID field of the first element is assigned a value and thesequential argument is set to
MMU_SEQUENTIAL. The function then feeds the information to the MMU, starting at the PFID
defined in the first element of the list. This is the fastest way to copy consecutive entries to the
PFDL as the OS bridge core supports a special array write mode for successive addresses.

• thePFID fields of all elements of the list are assigned a value; the values do not need to be in
a specific order. When the function is called with thesequentialflag set toMMU_PUNCTUALor
!MMU_SEQUENTIAL, the information for the PFIDs is written to the VFDL. This approach is
less effective as the address for each PFID must be sent to the MMU because the PFIDs are not
consecutive.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 161

Parameters:
vfdlPtr the pointer to a list ofXF_PFDLentries

length the number of entries in this list

sequential the flag to choose between sequential mode and punctual mode

Xuint32 mmu_writeToFifo (XF_PFDL ∗ pfdlPtr , Xuint16 value, Xbooleanfirst)

This function can be used to write a value in the FiFo defined by the descriptionpfdlPtr is pointing at. If
thefirst flag is set to true, the address in the MMU to write to is set. As the OS bridge core implements
support for array write mode,first can be set to false for write accesses following immediately. This
allows faster filling the FiFo. Be sure to guarantee that no other access to the MMU changed the
address in the meantime due to the system’s being scheduled!

Parameters:
pfdlPtr the pointer to aXF_PFDLelement describing the FiFo to write to

value the value to be written to the FiFo

first the flag to control writing of the address

Returns:
0

void mmu_writeVFDL (XF_VFDL ∗ vfdlPtr , Xuint32 length, Xbooleansequential)

This function reads information from the virtual FiFo description list in the MMU. There are two
methods to write data to the VFDL, both of which assume a list of typeXF_VFDLof length length
being created and filled in thedirection andPFID fields in advance:

• the TID and TRFID fields of the first element are assigned a value and thesequential
argument is set toMMU_SEQUENTIAL. The function then feeds the information to the MMU,
starting at the TID / TRFID pair defined in the first element of the list. This is the fastest way to
write consecutive entries to the VFDL as the OS bridge core supports a special array write mode
for successive addresses.

• the TID andTRFID fields of all elements of the list are assigned a value; the values do not
need to be in a specific order. When the function is called with thesequentialflag set toMMU_-
PUNCTUALor !MMU_SEQUENTIAL, the information for the TID / TRFID pairs are written to
the VFDL. This approach is less effective as the address for each pair must be sent to the MMU
because the pairs are not consecutive.

Parameters:
vfdlPtr the pointer to a list ofXF_VFDLentries

length the number of entries in this list

sequential the flag to choose between sequential mode and punctual mode

162 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

8.2.18 mmu.h File Reference

8.2.18.1 Detailed Description

This is the header file formmu.c.

Author:
Samuel Nobs

Date:
2004-04-01
Revision

1.3

Data Structures

• structXF_PFDL_t
Physical FiFo Descriptor List Item.

• structXF_VFDL_t
Virtual FiFo Descriptor List Item.

MMU Macros

• #define OSB_MMUSETADDR(addr, res) OSB_WRITE(OSBOPC_-
MMUSETADDR,(addr+((res)<<MMU_OFF_RES)))

Set address and resource ID.

• #defineOSB_MMUVFDLADDR(tid, trfid) (trfid+((tid)<<MMU_OFF_TID))
Calculate address from task ID and task relative fifo ID.

• #defineOSB_MMUPFDLADDR(pfid, fld) (fld+((pfid)<<MMU_OFF_PFID))
Calculate address from physical FiFo ID and the requested field in the List.

• #defineOSB_MMUXFIFO_EMTPY(data) ((data) & MMU_MSK_XFI_EMPTY)
Check for Xilinx CoreGen FiFo’s empty flag.

• #defineOSB_MMUXFIFO_FULL(data) ((data) & MMU_MSK_XFI_FULL)
Check for Xilinx CoreGen FiFo’s full flag.

• #defineOSB_MMUXFIFO_LEVEL(data) ((data) & MMU_MSK_XFI_FILL)
Get Xilinx CoreGen FiFo’s fill-level.

• #defineOSB_MMUSETADDR_PFDL(pfid, fld)
Set address to write to PFDL.

• #defineOSB_MMUSETADDR_VFDL(tid, trfid)
Set address to write to PFDL.

• #defineMMU_READ() OSB_READ(OSBOPC_MMUREAD)
Read from MMU.

• #defineMMU_WRITE(val) OSB_WRITE(OSBOPC_MMUWRITE, val)
Write to MMU.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 163

Opcodes for MMU

• #defineOSBOPC_MMUSETADDR0x44
Write address / resource ID to MMU.

• #defineOSBOPC_MMUREAD0x45
Read from MMU.

• #defineOSBOPC_MMUWRITE0x45
Write to MMU.

MMU Resource IDs

• #defineMMU_RES_VFDL0
Virtual FiFo description list.

• #defineMMU_RES_PFDL1
Physical FiFo description list.

• #defineMMU_RES_SRAM12
SRAM, bank 1.

• #defineMMU_RES_SRAM23
SRAM, bank 2.

• #defineMMU_RES_BRAM4
BRAM.

• #defineMMU_RES_XFIFO5
Xilinx CoreGen FiFo.

FiFo Types

• #defineMMU_FTYPE_SRAM10
FiFo implemented in SRAM bank 1.

• #defineMMU_FTYPE_SRAM21
FiFo implemented in SRAM bank 2.

• #defineMMU_FTYPE_BRAM2
FiFo implemented in BlockRAM.

• #defineMMU_FTYPE_XILINX 3
Xilinx CoreGen FiFo.

MMU Physical FiFo description list fields

• #defineMMU_FLD_TPSZ0
Type.

• #defineMMU_FLD_BASE1
Base address.

• #defineMMU_FLD_RDPT2
Read pointer.

• #defineMMU_FLD_WRPT3
Write pointer.

164 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

MMU Xilinx CoreGen FiFos

• #defineMMU_XFI_ETHTX 0
ETH transmit FiFo.

• #defineMMU_XFI_ETHARP1
ETH ARP FiFo.

• #defineMMU_XFI_ETHUDP12
ETH UDP FiFo 1.

• #defineMMU_XFI_ETHUDP23
ETH UDP FiFo 2.

• #defineMMU_XFI_UARTTX 4
RS-232 transmit FiFo.

• #defineMMU_XFI_UARTRX 5
RS-232 receive FiFo.

• #defineMMU_XFI_AUDIOTX 6
Audio transmit FiFo.

• #defineMMU_XFI_AUDIORX1 7
Audio receive FiFo 1.

• #defineMMU_XFI_AUDIORX2 8
Audio receive FiFo 2.

Data Masks

• #defineMMU_MSK_XFI_FILL (1<<4)
Flag to read Xilinx CoreGen FiFo’s fill-level information.

• #defineMMU_MSK_XFI_EMPTY (1<<15)
Mask for the Xilinx CoreGen FiFo’s empty flag.

• #defineMMU_MSK_XFI_FULL (1<<14)
Mask for the Xilinx CoreGen FiFo’s full flag.

• #defineMMU_MSK_XFI_COUNT0x3FFF
Mask for the Xilinx CoreGen FiFo’s fill-level.

• #defineMMU_MSK_TID 0x7
Mask for the task ID.

• #defineMMU_MSK_TRFID 0x7
Mask for the task-relative FiFo ID.

• #defineMMU_MSK_SIZE0x3F
Mask for the physical FiFo size.

• #defineMMU_MSK_TYPE0x7
Mask for the physical FiFo type.

• #defineMMU_MSK_VFDLDIR 0x10
Mask for the direction bit in the VFDL.

• #defineMMU_MSK_VFDLPFID 0xF
Mask for the physical FiFo ID in the VFDL.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 165

Offsets

• #defineMMU_OFF_TID 3
Offset of task ID.

• #defineMMU_OFF_PFID2
Offset of physical FiFo ID.

• #defineMMU_OFF_TYPE6
Offset of physical FiFo type.

• #defineMMU_OFF_VFDLDIR4
Offset of the direction bit in the VFDL.

• #defineMMU_OFF_RES20
Offset of resource ID.

Defines

• #defineMMU_MIN_FIFO_SIZE0x100
Minimum size of a FiFo (in bytes).

• #defineMMU_FIFO_BLOCK_SIZEMMU_MIN_FIFO_SIZE
Block size for FiFos.

• #defineMMU_MAX_FIFO_SIZE0x4000
Maximum size of a FiFo.

• #defineMMU_SEQUENTIAL XTRUE
Constant to initiate a sequential read / write access to the MMU.

• #defineMMU_PUNCUTAL XFALSE
Constant to initiate a punctual read / write access to the MMU.

Typedefs

• typedefXF_VFDL_t XF_VFDL
Virtual FiFo Descriptor List Item.

• typedefXF_PFDL_tXF_PFDL
Physical FiFo Descriptor List Item.

Functions

• void mmu_readVFDL(XF_VFDL ∗vfdlPtr, Xuint32 length, Xboolean sequential)
Read VFDL.

• void mmu_writeVFDL(XF_VFDL ∗vfdlPtr, Xuint32 length, Xboolean sequential)
Write VFDL.

• void mmu_readPFDL(XF_PFDL∗pfdlPtr, Xuint32 length, Xboolean sequential)
Read PFDL.

• void mmu_writePFDL(XF_PFDL∗pfdlPtr, Xuint32 length, Xboolean sequential)
Write PFDL.

• Xuint32mmu_writeToFifo(XF_PFDL∗pfdlPtr, Xuint16 value, Xboolean first)

166 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Write to FiFo.

• Xuint32mmu_readFromFifo(XF_PFDL∗pfdlPtr, Xboolean first)
Read from FiFo.

• Xuint32mmu_fifoFillLevel(XF_PFDL∗pfdlPtr)
Get FiFo Fill-Level.

• void mmu_dumpFifo(XF_PFDL∗pfdlPtr, Xuint32 start, Xuint32 end)
Dump FiFo Contents.

8.2.18.2 Define Documentation

#define OSB_MMUSETADDR_PFDL(pfid, fld)

Value:

OSB_MMUSETADDR(\
OSB_MMUPFDLADDR(pfid,fld),MMU_RES_PFDL)

#define OSB_MMUSETADDR_VFDL(tid, trfid)

Value:

OSB_MMUSETADDR(\
OSB_MMUVFDLADDR(tid,trfid),MMU_RES_VFDL)

8.2.18.3 Typedef Documentation

typedef structXF_PFDL_t XF_PFDL

An item in the physical FiFo descriptor list contains information about the type and the dimensions of
a FiFo physically present in the design.

typedef structXF_VFDL_t XF_VFDL

An item in the virtual FiFo descriptor list contains information about the mapping between tasks and
the read / write interfaces of the FiFos listed in the physical FiFo descriptor list.

8.2.19 network.c File Reference

8.2.19.1 Detailed Description

This file includes all functions needed for network handling, like ping, UDP/ICMP/ARP reply, and
other basic IP functions. Most functions can be put into a mode of higher verbosity, i.e. for debugging,
by defining the symbolNET_DEBUG

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 167

Author:
Marco Kuster, Samuel Nobs

Date:
2004-04-01
Revision

1.10

Functions

• void net_init()
Initialize Network.

• void net_setphymode(Xboolean mode)
Set PHY chip’s operation mode.

• XbooleanIsPacketAvailable()
Packet Availability.

• void PacketAnalyzer()
Analyze Packet.

• void net_PingReply(XContactInfo∗contactInfo)
Ping Reply.

• void net_RecvUDP(XContactInfo∗contactInfo)
Receive UDP Packet.

• XbooleanXFNetCmdWriteRAM(Xuint16 cmdseqnr, Xuint8∗srcadr, Xuint8∗destadr, Xuint16
len,XContactInfo∗contactInfo)

XFNet Command: Write RAM.

• XbooleanXFNetCmdReadRAM(Xuint16 cmdseqnr, Xuint8∗srcadr, Xuint16 len,XContact-
Info ∗contactInfo)

XFNet Command: Read RAM.

• XbooleanSendUDPTo(Xuint8 bytDestinationIP[4], Xuint8 bytDestinationMAC[6], Xuint16
intDestinationPort, Xuint8∗ptrDataBuffer, Xuint16 DataLength)

Send UDP Packet.

• void SetMDIO(Xboolean bit)
Set MDIO.

• void DoMDIOClk ()
Generate MDIO Clock.

• Xuint16ReadMDIO(Xuint8 reg)
Read MDIO.

• void WriteMDIO (Xuint8 argReg, Xuint16 argValue)
Write MDIO.

• void net_setMAC(Xuint8 ∗mac)
Set MAC Address.

• void net_setIP(Xuint8 ∗ip)
Set IP Address.

• void net_ARPReply(XContactInfo∗contactInfo)
ARP Reply.

168 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

• Xuint16calc_checksum32(Xuint32∗buf, Xuint16 len)
Calculate Checksum.

• Xuint16calc_UDPchecksum(Xuint32∗buf, Xuint16∗PseudoHeader, Xuint16 DataLength)
Calculate UDP Checksum.

• Xbooleannet_compareIP(Xuint32∗ipPtr)
Compare IP.

• XPortListener∗ net_installPortListener(char∗buffer, Xuint32 size, Xuint32 port)
Install Port Listener.

• Xuint32net_removePortListener(Xuint32 pid)
Remove Port Listener.

• Xuint32net_ipconfig(char∗∗argv, Xuint32 argc)
Configure Ethernet Interface (shell command).

• void net_parseMAC(char∗strMAC, Xuint8∗MAC)
Parse MAC Address.

• void net_parseIP(char∗strIP, Xuint8∗IP)
Parse IP Address.

Variables

• XPacketInfoReceivedPacketInfo
Information about the packet recently received.

• Xuint32outword
Shared variable holding configuration data written to the configuration port of the PHY chip.

• Xuint8 net_IPBoardAddress[4]
The C-FPGA’s IP address.

• Xuint8 net_MACBoardAddress[6]
The C-FPGA’s MAC address.

• XPortListenerPortListenerList[NET_MAX_PORTLISTENERS]
Table containing the port listeners.

• Xuint32net_numPacketsSent
The number of packets sent.

8.2.19.2 Function Documentation

Xuint16 calc_checksum32 (Xuint32∗ buf, Xuint16 len)

This function calculates the checksum of the data in the bufferbuf .

Parameters:
buf the buffer containing the data to calculate the checksum of

len the length of the data buffer

Returns:
the checksum

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 169

Xuint16 calc_UDPchecksum (Xuint32∗ buf, Xuint16 ∗ PseudoHeader, Xuint16 DataLength)

This function calculates the checksum of a UDP packet including the pseudo header.

Parameters:
buf the buffer containing the packet

PseudoHeaderthe packet’s pseudo header

DataLength length of the packet’s payload

Returns:
the checksum

void DoMDIOClk ()

This function writes a rising and a falling clock edge to the MDIO interface.

Xboolean IsPacketAvailable ()

This function simply checks the PHY chip’s control register to see whether a packet is available or not.

Returns:
XTRUEif a packet is available,XFALSEotherwise

void net_ARPReply (XContactInfo∗ contactInfo)

ARP requests are handled using this function. It sends a reply to the requester described incontact-
Info .

Parameters:
contactInfo the information about the sender of the ARP request

Xboolean net_compareIP (Xuint32∗ ipPtr)

This function compares the IP pointed at by ipPtr with the board’s IP.

Parameters:
ipPtr the pointer to the IP to be compared

Returns:
XTRUEif IPs match,XFALSEif they don’t

void net_init ()

This function must be called prior to the use of the network services. It initializes the global variables
containing the IP and MAC addresses of the board and writes the MAC to the PHY chip. It set the
PHY chip’s operation mode and initializes the port listener table.

170 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

XPortListener∗ net_installPortListener (char∗ buffer , Xuint32 size, Xuint32 port)

If a task needs to receive UDP packets, it may install a port listener listening to portport . This
function checks whether there is a free slot in the port listener list and allocates a slot if a free one can
be found. To guarantee consistency of this list, the interrupts get disabled before accessing it to avoid
other function to change its contents. The port listener description is returned to the calling function,
which then needs to poll thedone flag of the descriptor to see whether a packet has been received. If
another packet is being expected, thedone flag can simply be cleared again.

If more than one listener for the same port are installed and ready, the one at the lowest index in the
list is used when a packet is received.

Parameters:
buffer the buffer where the data being received should be written to

size the size of the buffer

port the port to be listened to

Returns:
the description of the port listener if a free slot in the list could be found, 0 otherwise

Xuint32 net_ipconfig (char∗∗ argv, Xuint32 argc)

This shell command can be used to configure the IP and MAC addresses of the C-FPGA and to display
the IP and MAC addresses of both FPGAs.

usage: ipconfig <set> <C> <MAC|IP> <Addr>

Todo
The configuration of R-FPGA’s ethernet interface must be included.

Parameters:
argv pointer to the argument list

argc number of arguments

Returns:
0

void net_parseIP (char∗ strIP , Xuint8 ∗ IP)

This function parses an IP address from a string. The string is expected to contain the IP address in
decimal format, the bytes being separated by dots.

Parameters:
strIP the string to be parsed

IP the buffer to be filled in the IP address

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 171

void net_parseMAC (char∗ strMAC , Xuint8 ∗ MAC)

This function parses a MAC address from a string. The string is expected to contain the MAC address
in hexadecimal format, the bytes being separated by colons.

Parameters:
strMAC the string to be parsed

MAC the buffer to be filled in the MAC address

void net_PingReply (XContactInfo∗ contactInfo)

This function simply replies an ICMP ping request with 32 bytes.

Parameters:
contactInfo the information about the contact requesting the ping reply

void net_RecvUDP (XContactInfo∗ contactInfo)

This function analyzes an incoming UDP packet. If the packet is an XFNet command, i.e. it is sent
to the port number0xF0CE, the command is getting executed; it is either a read RAM command, a
write RAM command or a write program code command. If the packet does not represent a XFNet
command, the list of port listeners is checked to see whether a function waits for data to be received
for the current port. If a listener is found, the data of the packet is copied to the buffer of the listener,
and a flag is set that this buffer has been filled. If the packet could not be interpreted at all, i.e. no
port listener was installed for the packet’s destination port or the done flag of the listener of this port is
already set, a message is printed to the message window.

Parameters:
contactInfo the information about the contact sending the packet

Xuint32 net_removePortListener (Xuint32pid)

When a process does not need it’s port listeners anymore, it can remove them from the list. Calling
this function removes all listeners associated with the given PID.

Todo
A function to remove the port listeners more selectively may be useful.

Parameters:
pid the PID of the process whose port listeners are to be removed

Returns:
0

172 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

void net_setIP (Xuint8∗ ip)

Using this function, the IP address pointed at by the argument can be copied to the global variable
containing the IP address of the C-FPGA,net_IPBoardAddress .

Parameters:
ip the pointer to the array containing the IP address

void net_setMAC (Xuint8∗ mac)

This function sets the global variable containing the MAC address of the C-FPGA,net_MACBoard-
Address , and writes it to the PHY chip.

Parameters:
mac the pointer to the array containing the MAC address

void net_setphymode (Xbooleanmode)

This function sets the PHY chip’s operation mode. It resets the device and selects MDDIS to MDIO
control mode. Then it activates the device and waits for at least 0.3 ms. If mode is set to PHY_-
MODE_AUTO, auto-negation is enabled, advertising that 10 Mbps and full/half duplex is supported.
Otherwise, the PHY is configured to 10Mbps half-duplex mode without auto-negotiation.

Parameters:
mode the flag activating auto-negotiation

void PacketAnalyzer ()

The packet analyzer checks the packet and protocol type and calls the according handler functions.
Currently, only ARP requests, Pings and UDP packets are supported.

Todo
Additional protocols and packet types could be supported.

Xuint16 ReadMDIO (Xuint8reg)

The MDIO registerreg can be read using this function.

Parameters:
reg number of the register to be read

Returns:
the value read from the register

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 173

Xboolean SendUDPTo (Xuint8bytDestinationIP[4], Xuint8 bytDestinationMAC [6], Xuint16 int-
DestinationPort, Xuint8 ∗ ptrDataBuffer , Xuint16 DataLength)

To send a UDP Packet to a host the IP and MAC addresses are known of, this function can be used.

Todo
As the system does not have an ARP table, the full information about the communication partner
needs to be known, i.e. the IP and MAC addresses. Additional effort could be invested to include
such an ARP table to make sending of packets easier.

Parameters:
bytDestinationIP[4] the IP of the destination

bytDestinationMAC[6] the MAC of the destination

intDestinationPort the destionation port

ptrDataBuffer the buffer containing the data to be transmitted

DataLength the length of the data to be transmitted

Returns:
XTRUE

void SetMDIO (Xbooleanbit)

This is a simple function to set or clear the MDIO flag.

Parameters:
bit the state of the MDIO to be written

void WriteMDIO (Xuint8 argReg, Xuint16 argValue)

Write the valueargValue to the MDIO registerargReg .

Parameters:
argReg number of the register to be written to

argValue value to be written

Xboolean XFNetCmdReadRAM (Xuint16cmdseqnr, Xuint8 ∗ srcadr, Xuint16 len, XContactInfo
∗ contactInfo)

This function handles incoming XFNet commands for read access to the RAM. It sends the data stored
at the address defined in the command to the sender of the command, repeating the sequence number
of the command.

Parameters:
cmdseqnr the sequence number of the command

174 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

srcadr the address where to send the data from

len the length of the data to be sent

contactInfo information about the sender of the command

Returns:
XTRUE

Xboolean XFNetCmdWriteRAM (Xuint16cmdseqnr, Xuint8 ∗ srcadr, Xuint8 ∗ destadr, Xuint16
len, XContactInfo∗ contactInfo)

This function handles incoming XFNet commands for write access to the RAM. It writes the payload
of the packet to the address defined in the command and sends back a confirmation containing the
sequence number to the sender.

Parameters:
cmdseqnr the sequence number of the command

srcadr the pointer to the packet data

destadr the address where to store the data

len the length of the data to be stored

contactInfo information about the sender of the command

Returns:
XTRUE

8.2.20 network.h File Reference

8.2.20.1 Detailed Description

This is the header file fornetwork.c

Author:
Marco Kuster, Samuel Nobs

Date:
2004-04-01

Revision
1.11

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 175

Data Structures

• structXContactInfo
Contact Information.

• structXPacketData
Packet Data, 32 Bit Version.

• structXPacketData8
Packet Data, 8 Bit Version.

• structXPacketInfo
Packet Info.

• structXPortListener
Port Listener.

Port Definitions

• #defineXFBoard_CommandPort0x22B8
Port for commands.

• #defineXFBoard_DataPort0x22B9
Port for data.

• #defineXFBoard_UDPPort0x22
UDP port.

• #definePC_SOURCEPORT0xF0CE
Port for XFNet commands.

• #defineXFBoard_DebugPort0xFDE8
Debug port.

Network Commands

• #defineNETCMD_WRITERAM0x1000
Write data to RAM.

• #defineNETCMD_READRAM0x1001
Read data from RAM.

• #defineNETCMD_WRITEPROG0xC0DE
Write program code in motorola srec format to RAM.

Defines

• #defineNET_SPAWN_SEPARATE_TASKS
Let the ethernet daemon spawn a separate analyzer task for each packet received.

• #defineCNET_IPADDRESS{192,168,1,111}
IP address of the C-FPGA.

• #defineCNET_MACADDRESS{0xF0,0xCE,0x00,0x00,0x00,100}
MAC address of the C-FPGA.

• #defineRNET_IPADDRESS{192,168,1,214}

176 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

IP address of the R-FPGA.

• #defineRNET_MACADDRESS{0x00,0x01,0x03,0xd8,0x08,0xf7}
MAC address of the R-FPGA.

• #defineHOST_IPADDRESS{192,168,1,10}
IP address of the host.

• #defineHOST_MACADDRESS{0x00,0x0A,0x5E,0x04,0x4D,0x03}
MAC address of the host.

• #defineTX_BASEADDRXPAR_ETHERNET_LITE_BASEADDR
Base address of the transmit buffer in the ethernet core.

• #defineRX_BASEADDR(XPAR_ETHERNET_LITE_BASEADDR+0x2000)
Base address of the receive buffer in the ethernet core.

• #defineRX_CTL_ADDR(XPAR_ETHERNET_LITE_BASEADDR+0x3FFC)
Address of the ethernet core’s control register, receiver side.

• #defineTX_LEN_ADDR (TX_BASEADDR+0x1FF4)
Address pointing to the lower byte of the length of the packet to be transmitted.

• #defineTX_LEN_ADDR_HIGHER(TX_BASEADDR+0x1FF4)
Address pointing to the higher byte of the length of the packet to be transmitted.

• #defineTX_CTL_ADDR (TX_BASEADDR+0x1FFC)
Address of the ethernet core’s control register, transmit side.

• #definePHY_MODE_AUTOXTRUE
Enable auto-negotiation.

• #definePHY_MODE_FIXXFALSE
Disable auto-negotiation.

• #defineNET_MAX_PACKETLENGTH1500
Maximum length of a packet.

• #defineNET_MAX_PORTLISTENERS5
Maximum number of port listeners.

Enumerations

• enumXPacketType{ packetTypeNONE= 0x0, packetTypeARP= 0x0806,packetTypeIP=
0x0800 }

Packet types.

• enumXIPType{

ipTypeNOIP= 0, ipTypeICMP= 1, ipTypeIGMP= 2, ipTypeGGP= 3,

ipTypeTCP= 6, ipTypeEGP= 8, ipTypeUDP= 17 }
Protocol Type.

• enumXARPType{ arpTypeREQ= 0x0001 }
Type of ARP packet.

Functions

• XbooleanIsPacketAvailable()
Packet Availability.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 177

• XbooleanSendUDPTo(Xuint8 bytDestinationIP[4], Xuint8 bytDestinationMAC[6], Xuint16
intDestinationPort, Xuint8∗ptrDataBuffer, Xuint16 DataLength)

Send UDP Packet.

• XbooleanUDPReply (Xuint16 DestinationPort, Xuint32∗ptrDataBuffer)
• Xbooleannet_compareIP(Xuint32∗ipPtr)

Compare IP.

• Xuint16ReadMDIO(Xuint8 reg)
Read MDIO.

• Xuint16calc_UDPchecksum(Xuint32∗buf, Xuint16∗PseudoHeader, Xuint16 DataLength)
Calculate UDP Checksum.

• Xuint16calc_checksum32(Xuint32∗buf, Xuint16 len)
Calculate Checksum.

• Xuint16calc_chksum(Xuint8 ∗buf, int len)
• void DoMDIOClk ()

Generate MDIO Clock.

• void PacketAnalyzer()
Analyze Packet.

• void SetMDIO(Xboolean bit)
Set MDIO.

• void WriteMDIO (Xuint8 argReg, Xuint16 argValue)
Write MDIO.

• void net_ARPReply(XContactInfo∗contactInfo)
ARP Reply.

• void net_PingReply(XContactInfo∗contactInfo)
Ping Reply.

• void net_RecvUDP(XContactInfo∗contactInfo)
Receive UDP Packet.

• void net_init()
Initialize Network.

• void net_setIP(Xuint8 ∗ip)
Set IP Address.

• void net_setMAC(Xuint8 ∗mac)
Set MAC Address.

• void net_setphymode(Xboolean mode)
Set PHY chip’s operation mode.

• XbooleanXFNetCmdReadRAM(Xuint16 cmdseqnr, Xuint8∗srcadr, Xuint16 len,XContact-
Info ∗contactInfo)

XFNet Command: Read RAM.

• XbooleanXFNetCmdWriteRAM(Xuint16 cmdseqnr, Xuint8∗srcadr, Xuint8∗destadr, Xuint16
len,XContactInfo∗contactInfo)

XFNet Command: Write RAM.

• XPortListener∗ net_installPortListener(char∗buffer, Xuint32 size, Xuint32 port)
Install Port Listener.

• Xuint32net_removePortListener(Xuint32 pid)

178 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Remove Port Listener.

• Xuint32net_ipconfig(char∗∗argv, Xuint32 argc)
Configure Ethernet Interface (shell command).

• void net_parseMAC(char∗strMAC, Xuint8∗MAC)
Parse MAC Address.

• void net_parseIP(char∗strIP, Xuint8∗IP)
Parse IP Address.

Variables

• Xuint8 net_IPBoardAddress[4]
The C-FPGA’s IP address.

• Xuint8 net_MACBoardAddress[6]
The C-FPGA’s MAC address.

• Xuint32net_numPacketsSent
The number of packets sent.

8.2.20.2 Enumeration Type Documentation

enumXARPType

Enumeration values:
arpTypeREQ ARP request.

enumXIPType

Enumeration values:
ipTypeNOIP No IP packet.

ipTypeICMP Internet control message protocol.

ipTypeIGMP Internet group management protocol.

ipTypeGGP Generic gateway protocol.

ipTypeTCP Transmission control protocol.

ipTypeEGP Exterior gateway protocol.

ipTypeUDP User datagram protocol.

enumXPacketType

Enumeration values:
packetTypeNONE no specific type

packetTypeARPARP packet.

packetTypeIP IP packet.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 179

8.2.21 osbridge.h File Reference

8.2.21.1 Detailed Description

This file defines the macros for the communication with the R-FPGA. Some of the opcodes needed for
the communication are described in this file, but most of them can be found in the header files of the
service they are belonging to.

Author:
Samuel Nobs

Date:
2004-02-06

Version:Revision
1.4

General Macros

• #define OSB_WRITE(opcode, val) (∗((Xuint32∗)(XPAR_OS_BRIDGE_-
BASEADDR+opcode))=(Xuint32)val)

Write to OS Bridge.

• #define OSB_READ(opcode) (Xuint32)(∗((Xuint32∗)(XPAR_OS_BRIDGE_-
BASEADDR+opcode)))

Read from OS Bridge.

Defines

• #defineOSBOPC_TASKCIFWRITE0x40
Write to the Task Control Interface.

• #defineOSBOPC_TASKCIFREAD0x40
Read from the Task Control Interface.

• #defineOSBOPC_TAKSCIFFREEZE0x00
Write freeze signal.

8.2.22 scheduler.c File Reference

8.2.22.1 Detailed Description

This file contains algorithms for simple round-robin scheduling and the dispatching mechanisms for
saving and restoring the context of a task.

180 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Author:
Samuel Nobs

Date:
2004-02-10
Revision

1.11

Functions

• void sch_idle()
Idle Task.

• void sch_dispatch(TaskDescriptor∗task, Xuint32 stackHiAddr, Xuint32 stackLoAddr)
Dispatch Task.

• void sch_saveContext(TaskDescriptor∗task)
Save Task Context.

• void sch_start(char∗∗argv, Xuint32 argc,TaskDescriptor∗task, Xuint32 stackHiAddr, Xuint32
stackLoAddr)

Start Task.

• void sch_schedule()
Round Robin Scheduler.

• void sch_init()
Initialize Scheduler.

• XFError sch_addToTaskList(FunctionPointertask, char∗∗argv, Xuint32 argc, char∗name,
Xuint32 quanta, Xuint32 stackSize, Xboolean suspendShell)

Add Task to Task List.

• void sch_finished()
Task Finished.

• void sch_setStackWatch()
Set Stack Watch.

• void sch_block()
Mark Task as Blocked.

• void sch_unblock()
Mark Task as Running.

• void sch_kill (Xuint32 pid)
Kill Process.

• void sch_context(Xuint32 pid)
Dump Process Context.

Variables

• TaskDescriptorTaskList[SCH_TASKLIST_LENGTH]
A list describing the tasks being scheduled.

• Xuint32 runningTask
PID of the task currently running.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 181

8.2.22.2 Function Documentation

XFError sch_addToTaskList (FunctionPointer task, char ∗∗ argv, Xuint32 argc, char ∗ name,
Xuint32 quanta, Xuint32 stackSize, XbooleansuspendShell)

This function adds a task being referred to by aFunctionPointer to theTaskList . The list is
searched for a free task placeholder represented by aTaskDescriptor with its fieldstatus set to
STATUS_UNUSEDor STATUS_KILLED. Then, the placeholder’s fields are filled in the information
given in the arguments.

Todo
This function is also used by processes to spawn child processes. The OS must be extended to do
some bookkeeping about the dependencies between processes and their childs.

Parameters:
task the pointer to the function beginning in the program code

argv the array containing the argument strings

argc the number of arguments

name the name of the task

quanta the number of time quanta assigned to the task

stackSizethe minimal stack requirements

suspendShellthe flag used to determine if the command suspends the shell

Returns:
An XFError :

• ERR_NONEif task was successfully added to theTaskList

• ERR_NO_FREE_TASKSLOTon failure, i.e. no free placeholder was found.

void sch_block ()

This function is called to set thestatus of the current task’sTaskDescriptor to STATUS_-
BLOCKED

void sch_context (Xuint32pid)

To dump the register context of a process, this function can be called. It simply prints out the values
that have been saved in the descriptor of the process.

Parameters:
pid the ID of the process

182 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

void sch_dispatch (TaskDescriptor∗ task, Xuint32 stackHiAddr , Xuint32 stackLoAddr)

This function is actually written in assembly language and can be found in scheduler.s. It restores the
context of a task by saving the contents of the fieldcontext of the tasksTaskDescriptor back
to their original registers. Additionally, it writes the limits of the memory space used for the process’
stack to the core watching the stack pointerr1 . As the program counter is restored too, the execution
of the program continues exactly where it was stopped before.

Parameters:
task TaskDescriptor of the task to be dispatched

void sch_finished ()

This helper function is called by every task who finishes execution: the timer is set to 0 to recede from
CPU.

void sch_init ()

Before the scheduler is started, theTaskList has to be set to its initial state with all task placeholders
empty (STATUS_UNUSED) except for the placeholder atTaskList [0] which is assigned the system
idle task.

void sch_kill (Xuint32pid)

To properly kill a process with PIDpid, this function should be called. It marks the process with the
statusSTATUS_KILLED in the process list, deallocates all its memory, removes its graphic hooks
from the graphic manager, removes all its port listeners and finally returns the lock if this process
owned it.

Todo
This kill function does not yet check the process dependencies. It mus be extended to kill child
processes of a process too. However, it is the OS that does not keep track of such dependencies
either.

Parameters:
pid the ID of the process to be killed

void sch_saveContext (TaskDescriptor∗ task)

This function is written in assembly language and can be found in the file schedule.s. The register
contents of the task that has been pre-empted by the scheduler before are saved to the fieldcontext
of the task’sTaskDescriptor . It is a tedious challenge to gather these contents due to the

following:

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 183

• as every call to the scheduler is preceded by an interrupt, some of the registers of the task being
interrupted are put on the stack of theinterrupt_handler()

• as thesch_schedule() function being executed next uses some additional registers, their
content is stored in the stack ofsch_schedule()

• some of the registers are not touched by theinterrupt_handler() and sch_-
schedule() , therefore they have not been saved so far. Their content is still unchanged.

This means that the values of the registers have to be grabbed from three different locations. As a result,
scheduler.s must be compared with the assembly language listing of thesch_schedule() function
whenever a change in the scheduler’s source code has been performed, becausesch_schedule()
now might use other registers, which means that their values will be stored somewhere else than before.
The same measure must be applied when the compiler’s optimization level is altered from-O3 .

Parameters:
task TaskDescriptor of the task whose context is to be saved

void sch_schedule ()

This function is the actual scheduler. It is called through theinterrupt_handler() whenever
the timer has reached 0. To figure out how it works, its course of action is described here:

• first, the task currently running on the CPU is pre-empted

• if the task was in the stateSTATUS_RUNNINGand has not yet reached the end of execution,
its context is stored usingsch_saveContext(TaskDescriptor ∗) and its state is set to
STATUS_READY

• if the task has terminated, which means that it has reached the end of execution, its placeholder
is set toSTATUS_UNUSEDand the memory that has been allocated is freed usingmem_-
dealloc(Xuint32) . So the task is physically removed from theTaskList now. If the
task did not release a lock that it has taken, this lock is now released by the scheduler.

• then theTaskList is searched for the next task that is ready for execution on the CPU

• if the task found has been newly added to theTaskList and is assigned the CPU for the
first time, memory for its stack is allocated usingmem_allocStack(Xuint32, Stack-
Descriptor ∗) . Then it is started by setting the program counter to the task’s start point in
the program code.

• if the task is not new, its context is restored, and then the execution is continued at the very point
it has been interrupted.

184 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

void sch_setStackWatch ()

This function is called whenever a process is started for the first time or resumed on the beginning of
its next time slice. It is called to set the upper and the lower limit of the memory space used for the
stack of the process. The OPB core watching the stack raises an interrupt as soon as the stack pointer
r1 points to a location outside of this memory space. The function is written in assembly language;
the arguments are stored in registersr8 (upper limit) andr9 (lower limit)

void sch_start (char∗∗ argv, Xuint32 argc, TaskDescriptor∗ task, Xuint32 stackHiAddr , Xuint32
stackLoAddr)

When a task is started for the first time, this function is used to pass the arguments, adjust the stack
pointer and finally jumping to the start position in the program code, setting the return address tosch_-
finished()at the same time. Adjusting the stack pointer also includes writing the upper and the lower
limit of the memory space valid for the stack to the hardware that observes the stack pointerr1 .

Parameters:
argv Pointer to the argument list

argc Number of arguments

task Pointer to theTaskDescriptor of the task about to be started

stackHiAddr High address of the stack memory

stackLoAddr Low address of the stack memory (for future use)

void sch_unblock ()

This function is called to set thestatus of the current task’sTaskDescriptor to STATUS_-
RUNNING

8.2.23 scheduler.h File Reference

8.2.23.1 Detailed Description

This is the header file forscheduler.cand scheduler.s.

Author:
Samuel Nobs

Date:
2004-02-10
Revision

1.12

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 185

Data Structures

• structContextDescriptor_t
Task Context Descriptor.

• structTaskDescriptor_t
Task Descriptor.

Status of a Task or it’s Placeholder

• #defineSTATUS_UNUSED0
Task placeholder is empty.

• #defineSTATUS_NEW1
Task has been added to theTaskList , but has not been started yet.

• #defineSTATUS_RUNNING2
Task is currently running on the CPU.

• #defineSTATUS_READY3
Task is ready for being executed.

• #defineSTATUS_BLOCKED4
Task is blocked, e.g. due to a call toLOCK() .

• #defineSTATUS_SUSPENDED5
Task is suspended.

• #defineSTATUS_KILLED 6
Task has been killed.

Defines

• #defineSCH_TASKLIST_LENGTH15
Maximum number of tasks handled by the scheduler.

• #defineSCH_DEFAULT_QUANTA1
Default number of time quanta assigned to a newly launched task.

• #defineSCH_INFINITE_QUANTA0xFFFFFFFF
Maximum number of time quanta that can be assigned to a task.

• #defineSCH_RECEDE() ∗((volatile Xuint32∗)XPAR_TIMER_BASEADDR)=0
Recede from CPU by setting timer maximum to 0.

• #defineSCH_RECEDING_LOCK()

Typedefs

• typedefContextDescriptor_tContextDescriptor
Task Context Descriptor.

• typedefTaskDescriptor_tTaskDescriptor
Task Descriptor.

186 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Functions

• XFError sch_addToTaskList(FunctionPointertask, char∗∗argv, Xuint32 argc, char∗name,
Xuint32 quanta, Xuint32 stackSize, Xboolean suspendShell)

Add Task to Task List.

• void exit ()
• void sch_saveContext(TaskDescriptor∗task)
• voidsch_start(char∗∗argv, Xuint32 argc,TaskDescriptor∗task, Xuint32 stackHiAddr, Xuint32

stackLoAddr)
• void sch_block()

Mark Task as Blocked.

• void sch_finish()
• void sch_finished()

Task Finished.

• void sch_init()
Initialize Scheduler.

• void sch_schedule()
Round Robin Scheduler.

• void sch_setStackWatch()
Set Stack Watch.

• void sch_unblock()
Mark Task as Running.

• void sch_kill (Xuint32 pid)
Kill Process.

• void sch_context(Xuint32 pid)
Dump Process Context.

Variables

• Xuint32 runningTask
PID of the task currently running.

• TaskDescriptorTaskList[SCH_TASKLIST_LENGTH]
A list describing the tasks being scheduled.

• Xuint32PIDsuspendingShell
The PID of the process suspending the shell.

8.2.23.2 Define Documentation

#define SCH_RECEDING_LOCK()

Value:

sch_block();\
asm volatile("LA_%=:\n"\
"lwi r12, r0, %0\n"\

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 187

"beqi r12, LB_%=\n"\
"swi r0, r0, %1\n"\
"bri LA_%=\n"\
"LB_%=:\n"\
:: "i" (XPAR_HWLOCK_BASEADDR), "i" (XPAR_TIMER_BASEADDR)\
:"r12")

Lock, and recede from CPU if already locked by another task. This macro is partially written in
assembly language as the compiler generates garbage when it is coded in C

8.2.23.3 Typedef Documentation

typedef structContextDescriptor_tContextDescriptor

The task context descriptor is used for the context switches performed by the scheduler. As soon as
a task is pre-empted, its register contents, the context, are stored in its task context descriptor to be
loaded back into the registers the next time the task is activated. You should not change this struct
without adjusting the file scheduler.s as the functions implemented there rely on the order and the
presence of all members of the context descriptor

typedef structTaskDescriptor_tTaskDescriptor

The task descriptor, which is used as a placeholder for a task / process in theTaskList , holds
important information about a process such as a backup of its context and its arguments, to name
only a few. A placeholder is either empty (STATUS_UNUSEDor STATUS_KILLED) and can be
assigned to a new task, or it is occupied (STATUS_NEW, STATUS_RUNNING, STATUS_READYor
STATUS_BLOCKED). You should not change the order of the the first three members of this struct
without adjusting the file scheduler.s as the functions implemented there strongly rely on the order and
the presence of these members of the task descriptor

8.2.24 selectmap.c File Reference

8.2.24.1 Detailed Description

In this file the functions used for the configuration of the R-FPGA using the SelectMAP port are
implemented.

Author:
Herbert Walder, Samuel Nobs

Date:
2004-04-05
Revision

1.8

188 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Functions

• Xbooleanselmap_init()
Initialize SelectMAP.

• void selmap_erase()
Erase.

• Xbooleanselmap_Configure(Xuint32 startadr, Xuint32 len, Xuint32 type)
Configure.

• void SetCS(Xboolean value)
Set Chip Select.

• XbooleanGetInit ()
Get Init Bit.

• void SetProgram(Xboolean value)
Set Program Bit.

• void SetRDRW(Xboolean value)
Set Direction.

• XbooleanGetDone()
Get Done Bit.

• Xuint32selmap_display(Xuint8 vpos)
Display R-FPGA Occupancy.

• Xuint32selmap_installInGui(char∗bitName, Xuint32 startslot, Xuint32 endslot)
Install Bitstream in Display.

Variables

• Xuint32 volatileselmap_output
Shared variable holding the data written to the SelectMAP port.

• Xuint32selmap_slotTable[SELMAP_NUM_SLOTS]
Table containing the mapping between task slot number and task number.

• charselmap_slotNames[SELMAP_NUM_SLOTS][SELMAP_GFX_HEIGHT]
List containing the names of the bitstreams configured to the various task slots.

• Xuint32selmap_uniqueID= 1
Counter variable used to assign unique IDs to the tasks configured to R-FPGA.

• Xuint32selmap_hStringPos[7]
Array containing the positions of the strings in the R-FPGA display.

• Xuint32selmap_hLinePos[7]
Array containing the positions of the vertical lines in the R-FPGA display.

8.2.24.2 Function Documentation

Xboolean GetDone () [inline]

This helper function monitors the done bit of the SelectMAP port. It is declared as an inline function
as it needs to be executed as fast as possible.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 189

Returns:
XTRUEif the done bit is set,XFALSEotherwise

Xboolean GetInit () [inline]

This helper function reads the init bit from the SelectMAP port and returns its value. It is declared as
an inline function as it needs to be executed as fast as possible.

Returns:
XTRUEif the init bit is high,XFALSEotherwise

Xboolean selmap_Configure (Xuint32startadr , Xuint32 len, Xuint32 type)

This function writes the configuration of lengthlen found at addressstartaddr to the R-FPGA using
the SelectMAP port. It supports partial and full bitstreams which are distinguished using the argument
type.

Todo
The approach to configure the R-FPGA by setting the SelectMAP data lines by software is rather
slow. A DMA controller for this task is being developped. As soon as this controller is ready, this
function must be adapted accordingly.

Parameters:
startadr the start address of the biststream

len the length of the bitsream

type the type of the bitstream: full (1) or partial (0) bitstream

Returns:
XTRUE

Xuint32 selmap_display (Xuint8vpos)

This is a graphics hook-up function displaying the occupancy of the R-FPGA. The task slots being
currently used are shaded and labelled with the name of the bitstream currently being configured
into. This function can be added to the pool of graphics functions handled by thegfx_graphic-
Manager() .

Parameters:
vpos the vertical position of the display. If equal toGFX_GET_SIZEdefined ingraphix.h ,

this means that someone wants to know the number of lines needed for this graphics element

Returns:
0 in normal mode, the needed number of lines if asked for

190 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

void selmap_erase ()

This function completely removes the configuration of the R-FPGA and empties the configuration
tableselmap_slotTable .

Xboolean selmap_init ()

Before starting to write any configuration data to the SelectMAP port, it must be initialized using this
function. This means setting the correct port direction and assigning meaningful default values to the
lines connecting to the R-FPGA. Theselmap_slotTable is set to all empty.

Returns:

Xuint32 selmap_installInGui (char∗ bitName, Xuint32 startslot, Xuint32 endslot)

Whenever a bitstream is configured to the R-FPGA, its name and the area it is occupying can be
added to the display using this function. The lists and tables holding the data relevant for the display,
selmap_slotNames , selmap_slotTable , selmap_hLinePos and selmap_hString-
Pos are updated according to the information given in the arguments.

Parameters:
bitName the name of the bitstream

startslot the first slot occupied by the bitstream

endslot the last slot occupied by the bitstream

Returns:
0

void SetCS (Xbooleanvalue) [inline]

This helper function sets or clears the chip select signal according tovalue. It is declared as an inline
function as it needs to be executed as fast as possible.

Deprecated
This function will be meaningless as soon as the DMA configuration controller will be included
in the design.

Parameters:
value 0: set chip select, 1: clear chip select

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 191

void SetProgram (Xbooleanvalue) [inline]

This helper function sets or clears the program bit according to the parametervalue. It is declared as
an inline function as it needs to be executed as fast as possible.

Parameters:
value 0: set program bit, 1: clear program bit

void SetRDRW (Xbooleanvalue) [inline]

This helper function sets the direction of the access to the SelectMAP port. Whenvalueis equal to 1,
this means that the port should be configured for a read access. Ifvalue is 0, this means that a write
access is about to occur. The function is declared as an inline function as it needs to be executed as
fast as possible.

Parameters:
value 0: write, 1: read

8.2.25 selectmap.h File Reference

8.2.25.1 Detailed Description

This is the header file forselectmap.c .

Author:

Date:
2004-04-05
Revision

1.6

Data Structures

• structBITS
Bitstream Descriptor.

• structXFFAT
Bitstream Allocation Table.

Defines

• #defineSELMAP_XFFAT_BASEADDRXPAR_SDRAM_BASEADDR
Base address of the bitstream allocation table.

192 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

• #defineSELMAP_DATA_MASK 0xFF
Mask for the data lines of the GPIO connected to the SelectMAP.

• #defineSELMAP_CLOCK_MASK0x100
Mask for the clock line of the GPIO connected to the SelectMAP.

• #defineSELMAP_WRITE_MASK0x2400
Mask used to set the GPIO’s tristate buffers for writing data.

• #defineSELMAP_READ_MASK0x24FF
Mask used to set the GPIO’s tristate buffers for reading data.

• #defineSELMAP_GETSTATUS0
Constant for getting the status register’s content usingselmap_getStatus(Xuint32) .

• #defineSELMAP_GETCONFIG1
Constant for getting the configuration options register’s content usingselmap_getStatus(Xuint32) .

• #defineSELMAP_GFX_FRAME_WIDTH29
Width of the frame used for the R-FPGA display (in characters).

• #defineSELMAP_GFX_SLOT_WIDTH4
Width of the slots in the R-FPGA display (in characters).

• #defineSELMAP_GFX_HEIGHT13
Height of the area inside the frame used for the R-FPGA display (in lines).

• #defineSELMAP_GFX_HOFFSET18
Horizontal offset of the R-FPGA display (in characters).

• #defineSELMAP_NUM_SLOTS7
Number of task slots in the R-FPGA.

• #defineSELMAP_CLOCK()
Clock Macro.

Functions

• Xbooleanselmap_init()
Initialize SelectMAP.

• Xbooleanselmap_Configure(Xuint32 startadr, Xuint32 len, Xuint32 type)
Configure.

• Xuint32selmap_getStatus()
• void selmap_erase()

Erase.

• void WriteByte (Xuint8 argByte)
• void SetCS(Xboolean value)

Set Chip Select.

• XbooleanGetInit ()
Get Init Bit.

• void SetProgram(Xboolean value)
Set Program Bit.

• void SetRDRW(Xboolean value)
Set Direction.

• XbooleanGetDone()
Get Done Bit.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 193

• Xuint32selmap_display(Xuint8 vpos)
Display R-FPGA Occupancy.

• Xuint32 testConfig(char∗∗argv)
• Xuint32selmap_installInGui(char∗bitName, Xuint32 startslot, Xuint32 endslot)

Install Bitstream in Display.

8.2.25.2 Define Documentation

#define SELMAP_CLOCK()

Value:

selmap_output |= SELMAP_CLOCK_MASK;\
XGpio_mWriteReg(XPAR_SELECTMAP_BASEADDR, XGPIO_DATA_OFFSET, selmap_output);\
selmap_output &= ~SELMAP_CLOCK_MASK;\
XGpio_mWriteReg(XPAR_SELECTMAP_BASEADDR, XGPIO_DATA_OFFSET, selmap_output);\

This macro creates a rising and a falling clock edge on the SelectMAP port. As it is used rather
frequently, this function is defined as a macro to be directly included in the code to avoid the context
switches being inherent to regular function calls.

8.2.26 srec.c File Reference

8.2.26.1 Detailed Description

This file implements the functions used to handle code being uploaded in the Motorola SREC format.

Author:
Samuel Nobs

Date:
2004-04-05
Revision

1.7

Functions

• int decode_srec_line8(Xuint8 ∗buffer, Xuint32 len)
Decode SREC Line from UDP.

• int decode_srec_line(char∗buffer)
Decode SREC Line.

• void srec_initForDisplay(Xuint32 srecLen)
Initialize for Display.

194 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

• Xuint32srec_installStatusHook()
Install Status Display.

• Xuint32srec_loadingStatus(Xuint32 vpos)
Display Status.

Variables

• volatile Xuint32srec_numberOfLines= 0
Number of SREC lines to be sent in the current upload.

• volatile Xuint32srec_lineCount= 0
Number of SREC lines uploaded so far.

8.2.26.2 Function Documentation

int decode_srec_line (char∗ buffer)

This function decodes an SREC line and writes its contents to memory. As the length of the line is
included in the SREC format, no buffer length needs to be given.

Parameters:
buffer the buffer containing the code in SREC format

Returns:
the number of 32 bit words decoded and written to memory

int decode_srec_line8 (Xuint8∗ buffer , Xuint32 len)

As the data received by the ethernet core are in a special format, this function is to be used to decode
an SREC line received in a UDP packet. The ethernet core stores the bytes received in the packet in a
32 bit word. These bytes are first copied to a buffer of 8 bit words and then submitted todecode_-
srec_line(char ∗) to do the SREC decoding.

Parameters:
buffer the buffer containing the SREC line

len the length of the buffer

Returns:
the number of 32 bit words decoded

void srec_initForDisplay (Xuint32srecLen)

Prior to using the upload status display, the shared variables keeping track of the upload progress must
be initialized with this function.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 195

Parameters:
srecLen number of SREC lines being uploaded

Xuint32 srec_installStatusHook ()

This is a wrapper function that installs the code upload status display and removes it as soon as the
upload is complete.

Bug
Sometimes the display is not shown. Until now I was not able to track down the exact problem.

Returns:
0

Xuint32 srec_loadingStatus (Xuint32vpos)

This graphics hook-up function is used to display the progress of the code upload currently being per-
formed. It can be added to the pool of graphics functions handled by thegfx_graphicManager() .

Parameters:
vpos the vertical position of the display. If equal toGFX_GET_SIZEdefined ingraphix.h ,

this means that someone wants to know the number of lines needed for this graphics element

Returns:
0 in normal mode, the needed number of lines if asked for

8.2.27 srec.h File Reference

8.2.27.1 Detailed Description

This is the header file forsrec.h .

Author:
Samuel Nobs

Date:
2004-04-05

Revision
1.4

196 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Functions

• int decode_srec_line(char∗buffer)
Decode SREC Line.

• int decode_srec_line8(Xuint8 ∗buffer, Xuint32 len)
Decode SREC Line from UDP.

• Xuint32srec_installStatusHook()
Install Status Display.

• Xuint32srec_loadingStatus(Xuint32 vpos)
Display Status.

• void srec_initForDisplay(Xuint32 srecLen)
Initialize for Display.

8.2.28 user.c File Reference

8.2.28.1 Detailed Description

This file mainly implements shell commands and display hook-up functions. It represents the basics
for user interaction in combination with the command user interface defined incui.h . The strings to
start the various shell commands are given in the descriptions, however, these strings are defined in the
command lists incui.c .

Author:
Samuel Nobs

Date:
2004-04-05
Revision

1.14

Functions

• Xuint32ps()
Process Status (shell command).

• Xuint32setquanta(char∗argv[2], Xuint32 argc)
Set Number of Quanta (shell command).

• Xuint32kill (char∗argv[1], Xuint32 argc)
Kill Process (shell command).

• Xuint32context(char∗argv[1], Xuint32 argc)
Print Process Context (shell command).

• Xuint32setcolors(char∗argv[3], Xuint32 argc)
Setup Colors (shell command).

• Xuint8 temperature(Xuint8 vpos)
Temperature Display.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 197

• Xuint32 inetd(char∗argv[1], Xuint32 argc)
Ethernet Daemon (shell command).

• Xuint8 ETHStatusDisplay(Xuint8 vpos)
Ethernet Status Display.

• Xuint32config(char∗argv[2], Xuint32 argc)
Configure R-FPGA (shell command).

• Xuint32bitslist ()
List of Bitstreams (shell command).

• Xuint32printScreen()
Print Screen.

8.2.28.2 Function Documentation

Xuint32 bitslist ()

This command prints a list of the bitstreams currently present in the memory. The information dis-
played for each bitstream is the following:

• bitstream id

• name of the file that contained the bitstream on the host computer

• type of the bitstream: full / partial

• span of task slots occupied by this bitstream

• memory location of the bitstream

• length of the bitstream (in bytes)

The command is started by simply enteringbitslist in the shell.

Returns:
0

Xuint32 config (char∗ argv[2], Xuint32 argc)

This command can be used to configure the R-FPGA with a bitstream that has been previously loaded
to the external memory or to erase the configuration currently present. Additionally, the command can
be used to read the status register and the configuration options register of the SelectMAP port of the
R-FPGA. However, these register functions are only included in the code when theCONFIG_DEBUG
symbol is defined at compile time.

Usage: config <BID|OPTION>
BID: bitstream id (number)

198 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

OPTION: -r,--erase: erase R-FPGA
-s,--getStatus: get Status Register
-c,--getConfOpt: get Configuration Options

Parameters:
argv pointer to the arguments list

argc number of arguments

Returns:
0

Xuint32 context (char∗ argv[1], Xuint32 argc)

This command is a frontend wrapper tosch_context(Xuint32) defined inscheduler.c and
is used to dump the register context of the process associated with the PID entered as an argument.

usage: context <pid>

Parameters:
argv pointer to the arguments list

argc number of arguments

Returns:
0

Xuint8 ETHStatusDisplay (Xuint8vpos)

This graphics hook-up function displays basic information about the status of the C-FPGA’s ethernet
interface and the daemon. The hook-up can be added to the pool of graphics functions handled by the
gfx_graphicManager() . It displays the following information:

• link state: up / down

• full / half duplex

• 10Mbit/s / 100Mbit/s

• number of received and transmitted packets

Parameters:
vpos the vertical position of the display. If equal toGFX_GET_SIZEdefined ingraphix.h ,

this means that someone wants to know the number of lines needed for this graphics element

Returns:
0 in normal mode, the needed number of lines if asked for

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 199

Xuint32 inetd (char∗ argv[1], Xuint32 argc)

Although defined as a shell command, this function does not normally need to be started from the shell
as it gets launched automatically during system bringup. However, it sometimes might be unavoidable
to kill the process and start it again from the shell.

This function waits for a packet and calls the packet analyzer as soon as a packet is available. IfNET_-
SPAWN_SEPARATE_TASKSis defined, the packet analyzer is started as a separate process, otherwise
it is started as a regular subroutine call.

When the daemon is started, it installs an instance of theETHStatusDisplay in the graphics man-
ager.

If the function is called withargc> 0, it returns the number of packets received so far.

Parameters:
argv pointer to the arguments list

argc number of arguments

Returns:
0

Xuint32 kill (char ∗ argv[1], Xuint32 argc)

This command is basically a frontend wrapper tosch_kill(Xuint32) defined inscheduler.c
and is used to kill a process with a given PID.

usage: kill <pid>

Parameters:
argv pointer to the arguments list

argc number of arguments

Returns:
0

Xuint32 printScreen ()

This function is used to dump the content of the text memory displayed on the screen via the RS-232
interface. The function is attached to the print screen button on the keyboard.

Returns:
0

200 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Xuint32 ps ()

This command prints the status of all processes currently in the listTaskList . It can be started
without additional arguments in the shell using the stringps . The following information is printend:

• the name of the process

• its process ID

• the number of scheduler time quanta assigned to this process

• the low and the high address of the stack memory

• the status of the process

• if the process suspending the shell or not

For a description of the process statuses have a look at the documentation ofscheduler.h .

Returns:
0

Xuint32 setcolors (char∗ argv[3], Xuint32 argc)

This command is a frontend wrapper tovga_setupColors(Xuint32,Xuint32,Xuint32)
and is used to setup the color configuration of the vga display. Using this command, the colors for
the primary and secondary text and for the background can be set. The code for this function is not
included in the core code of the OS. It must be compiled into the user program by giving the option
-DEXTERNAL_OS_CODEto the compiler.

usage: setcolors <textcol1> <textcol2> <backgroundcol>

black:0 blue :1 green: 2 cyan :3
red :4 magenta:5 yellow:6 white:7

Parameters:
argv pointer to the arguments list

argc number of arguments

Returns:
0

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 201

Xuint32 setquanta (char∗ argv[2], Xuint32 argc)

This shell command can be used to adjust the number of scheduler time quanta assigned to a process
with a given PID.

usage: setquanta <pid> <quanta>

One time quantum corresponds to a time lapse of about 1.3 milliseconds.

Parameters:
argv pointer to the arguments list

argc number of arguments

Returns:
0

Xuint8 temperature (Xuint8vpos)

This graphics hook-up function displays the junction temperature of both C-FPGA and R-FPGA. The
hook-up can be added to the pool of graphics functions handled by thegfx_graphicManager() .

Bug
Sometimes both displays show a junction temperature of zero degrees or another bogus value. I
currently assume that the problem might be found in the communication between the C-FPGA
and the temperature ADCs. Normally, this effect vanishes after an additional reset.

Parameters:
vpos the vertical position of the display. If equal toGFX_GET_SIZEdefined ingraphix.h ,

this means that someone wants to know the number of lines needed for this graphics element

Returns:
0 in normal mode, the needed number of lines if asked for

8.2.29 user.h File Reference

8.2.29.1 Detailed Description

This is the header file foruser.c.

Author:
Samuel Nobs

Date:
2004-04-05Revision:
1.1

202 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Functions

• Xuint32bitslist ()
List of Bitstreams (shell command).

• Xuint32config ()
• Xuint32context ()
• Xuint32crashme()
• Xuint32 inetd(char∗argv[1], Xuint32 argc)

Ethernet Daemon (shell command).

• Xuint32kill ()
• Xuint32malloctest()
• Xuint32ping (char∗argv[2], Xuint32 argc)
• Xuint32ps()

Process Status (shell command).

• Xuint32 ram ()
• Xuint32printScreen()

Print Screen.

• Xuint32setcolors()
• Xuint32setquanta()
• Xuint32uartd ()
• Xuint8 ETHStatusDisplay(Xuint8 vpos)

Ethernet Status Display.

• Xuint8 temperature(Xuint8 vpos)
Temperature Display.

8.2.30 util.c File Reference

8.2.30.1 Detailed Description

This file contains commonly used utility functions.

Author:
Samuel Nobs

Date:
2004-04-05Revision:
1.1

Functions

• unsigned charnybble_to_val(char x)
Convert Nybble to Value.

• int grab_hex_byte(char∗buffer)

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 203

Get Hexadecimal Byte.

• unsigned intgrab_hex_word(char∗buffer)
Get Hexadecimal Word.

• unsigned intgrab_hex_dword(char∗buffer)
Get Hexadecimal Word.

• Xuint32parseInteger(char∗str)
Get Integer from String.

• charasc(Xuint8 n)
Return Character.

8.2.30.2 Function Documentation

char asc (Xuint8n)

Returns printable ASCII representation of a number. If the charater is not printable, replaces it with a
dot.

Parameters:
n the number to convert

Returns:
the character

int grab_hex_byte (char∗ buffer)

Grabs a hexadecimal byte from a string and returns its integer value.

Parameters:
buffer the string to grab the byte from

Returns:
the integer value found in the string

unsigned int grab_hex_dword (char∗ buffer)

Grabs a hexadecimal doubleword from a string and returns its integer value.

Parameters:
buffer the string to grab the doubleword from

Returns:
the integer value found in the string

204 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

unsigned int grab_hex_word (char∗ buffer)

Grabs a hexadecimal word from a string and returns its integer value.

Parameters:
buffer the string to grab the word from

Returns:
the integer value found in the string

unsigned char nybble_to_val (charx)

Convert a hex digit to a value.

Parameters:
x the hex digit to convert

Returns:
the conversion result

Xuint32 parseInteger (char∗ str)

Converts a number given as a string into an integer value.

Parameters:
str string to convert into integer number

Returns:
the integer found in the string

8.2.31 util.h File Reference

8.2.31.1 Detailed Description

This is the header file forutil.c .

Author:
Samuel Nobs

Date:
2004-04-05Revision:
1.1

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 205

Functions

• unsigned charnybble_to_val(char x)
Convert Nybble to Value.

• int grab_hex_byte(char∗buffer)
Get Hexadecimal Byte.

• unsigned intgrab_hex_word(char∗buffer)
Get Hexadecimal Word.

• unsigned intgrab_hex_dword(char∗buffer)
Get Hexadecimal Word.

• void fill_hex_dword (char∗str)
• void sleep(Xuint32 n)
• charasc(Xuint8 n)

Return Character.

• Xuint32parseInteger(char∗str)
Get Integer from String.

8.2.32 vga.c File Reference

8.2.32.1 Detailed Description

This file provides functions that represent the software part of the VGA (XGA) driver.

Author:
Samuel Nobs

Date:
2004-02-02
Revision

1.14

Functions

• void vga_outbyte(char c, Xuint8 col)
Put byte on screen.

• void vga_updatecursor()
Update cursor position.

• void vga_clearline(Xboolean keepPosition, Xuint8 col)
Clear line.

• void vga_newline()
New line.

• void vga_init()
Initialize VGA driver.

• Xuint32vga_cls()

206 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Clear screen.

• void vga_cgfx()
Clear graphics column.

• void vga_setupColors(Xuint32 textcol1, Xuint32 textcol2, Xuint32 bgcol)
Set up color configuration.

• void vga_tab()
Tabulator.

• void vga_backspace()
Backspace.

• void vga_printstr(char∗text, Xuint8 col)
Print unformatted string.

• void vga_cursorfwd()
Move cursor forward.

• void vga_cursorbwd()
Move cursor backward.

• void vga_setdeletestop()
Set delete stop marker.

• void vga_todeletestop()
Jump to the delete stop marker.

• void vga_putc(unsigned char c, Xboolean updateCursor, Xuint8 column)
Put character on screen.

• void vga_setColor(int col)
Set text color.

• void vga_padding(const int l_flag, Xuint8 col)
Pad output.

• void vga_outs(char∗lp, Xuint8 col)
Move string to output buffer.

• void vga_outnum(Xuint32 numl, Xuint32 base, Xuint8 col)
Move number to output buffer.

• int vga_getnum(char∗∗linep)
Get number from format string.

• void vga_setlocation(Xuint32 xPos, Xuint32 yPos)
Set insertion point.

• void vga_printf(Xuint8 col, const char∗ctrl1,...)
Print formatted string.

Variables

• volatile Xuint32∗ vga_textMem[2]
Two pointers to the VGA driver’s text memory: one for the text column, one for the graphics column.

• Xuint32vga_currLine
Line the text column’s insertion point currently resides at.

• Xuint32vga_txtMemLineOffs= 0
Offset by which the text column gets scrolled.

• Xbooleanvga_incLineOffs= XFALSE

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 207

Determines whether to increment the scroll offset or not.

• Xuint32vga_colorMask
Determines whether to use the primary or the secondary text color.

• Xuint32∗ vga_deleteStop
Position up to which text can be deleted using the backspace key.

• int vga_doPadding
Determines whether to pad numbers printed to screen or not.

• int vga_leftFlag
A flag used in context of padding.

• int vga_len
Used in context of padding: containts the length of a number as string.

• int vga_num1
Temporary variable used by various functions.

• int vga_num2
Temporary variable used by various functions.

• charvga_padChar
The character used for padding.

8.2.32.2 Function Documentation

void vga_backspace ()

When a backspace character is found in a string to be printed, this function is called. The character
to the left of the insertion point is deleted, then the insertion point moves back one character. If the
cursor is at the beginning of the line, is moved to the end of the previous line.

void vga_cgfx ()

Clears the graphics column’s text memory without affecting the text column.

void vga_clearline (XbooleankeepPosition, Xuint8 col)

Clears a line by filling it with 0 starting at the actual text insertion position until the end of the line.
An additional argument tells whether to keep the actual text insertion position or to move it to the
beginning of the next line.

Parameters:
keepPositionpreserve actual text insertion point

col the screen column:

• VGA_TXTfor the text column

• VGA_GFXfor the graphics column

208 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Xuint32 vga_cls ()

This function clears the text memory of the text and the graphics column and resets all scrolling
information. The text insertion point and the cursor are moved to the upper left corner of the text
column.

Returns:
0

void vga_cursorbwd ()

Moves the cursor backward.

void vga_cursorfwd ()

Moves the cursor an forward.

int vga_getnum (char∗∗ linep)

This routine gets a number from the format string. It is a helper function forvga_printf (Xuint8,
const char∗, ...).

Parameters:
linep handle to the format string

Returns:
number parsed from the format string

void vga_init ()

Initializes the VGA driver by clearing the text memory usingvga_cls() and resetting thevga_-
colorMask to its default value 0, meaning that the primary text color will be used. Also, the color
configuration is set to its default state, i.e white as the primary text color, red as secondary text color,
black as the background color. This function should be called before using any other VGA driver
function.

void vga_newline ()

Performs a line break in the text column, including the handling of the scroll feature.

void vga_outbyte (charc, Xuint8 col)

Function used byvga_printf (Xuint8, const char∗, ...) to print a byte to the screen by simply
forwarding the arguments tovga_putc(unsigned char, Xboolean, Xuint8) .

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 209

Parameters:
c the character / byte to print

col the screen column:

• VGA_TXTfor the text column

• VGA_GFXfor the graphics column

void vga_outnum (Xuint32numl, Xuint32 base, Xuint8 col)

This routine moves a number to the output buffer as directed by the padding and positioning flags
vga_len andvga_leftFlag . It is a helper function forvga_printf (Xuint8, const char∗, ...).

Parameters:
numl number to output

base base of the number system: 2 to 16

col the screen column:

• VGA_TXTfor the text column

• VGA_GFXfor the graphics column

void vga_outs (char∗ lp, Xuint8 col)

This routine moves a string to the output buffer as directed by the padding and positioning flags,
vga_len andvga_leftFlag . It is a helper function forvga_printf (Xuint8, const char∗, ...).

Parameters:
lp pointer to the string to pad

col the screen column:

• VGA_TXTfor the text column

• VGA_GFXfor the graphics column

void vga_padding (const intl_flag, Xuint8 col)

This routine puts pad characters into the output buffer. It is a helper function forvga_-
printf (Xuint8, const char∗, ...).

Parameters:
l_flag if > 0, padding is performed

col the screen column:

• VGA_TXTfor the text column

• VGA_GFXfor the graphics column

210 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

void vga_printf (Xuint8col, const char∗ ctrl1 , ...)

This routine operates just like a printf/sprintf routine without the overhead most run-time libraries
involve.. It outputs a set of data under the control of a formatting string. Not all of the standard C format
control are supported. The ones provided are primarily those needed for embedded systems work.
Primarily the floaing point routines are omitted. Other formats could be added easily by following the
examples shown for the supported formats.

Supported format modifiers:

• %c prints a single character

• %s prints a string

• %d prints a decimal number

• %x prints a hexadecimal number

• %h prints following characters with secondary text color

• %n prints following characters with primary text color

If a number is found between the percent sign and the x or d modifier, this number is interpreted as the
length the printed number will be padded to using white spaces. If a zero is found between the percent
sign and this number, 0’s will be used for padding instead of the white spaces.

Parameters:
col the screen column:

• VGA_TXTfor the text column

• VGA_GFXfor the graphics column

ctrl1 pointer to the format string

... variable number of arguments

void vga_printstr (char∗ text, Xuint8 col)

Prints an unformatted string to the screen. Currently, line wrapping is not correctly handled, so this
function is recommended to be used in the graphics column only. If you want to print a formatted
string, you have to usevga_printf (Xuint8, const char∗, ...) instead.

Parameters:
text pointer to the string to be printed

col the screen column:

• VGA_TXTfor the text column

• VGA_GFXfor the graphics column

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 211

void vga_putc (unsigned charc, XbooleanupdateCursor, Xuint8 column)

Prints a character on the screen, treating special characters like backspace, newline or tab. In the text
column, line wrapping is treated correctly.

Parameters:
c character to print

updateCursordetermines whether to advance the cursor or not

column the screen column:

• VGA_TXTfor the text column
• VGA_GFXfor the graphics column

void vga_setColor (intcol)

Set either the primary or the secondary text color to be used.

Parameters:
col color to use for printing:

• 0: use primary text color
• 1: use secondary text color

void vga_setdeletestop ()

Marks the actual position as the current delete stop, i.e. forthcoming characters can be deleted using
backspace up to this point. For example, this is used to prevent theshell() prompt from being
deleted when a command is backspaced.

void vga_setlocation (Xuint32xPos, Xuint32 yPos)

Set the coordinates of the text insertion point in the graphics column.

Parameters:
xPos x coordinate / line number, starting at 0

yPos y coordinate / character, starting at 0

void vga_setupColors (Xuint32textcol1, Xuint32 textcol2, Xuint32 bgcol)

Sets the colors for the primary and the secondary text and for the background.

Parameters:
textcol1 primary text color

textcol2 secondary text color

bgcol background color

212 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

void vga_tab ()

This function is called byvga_printf (Xuint8, const char∗, ...) to move the text insertion point to
the next tab stop. There are no tab stops defined in the graphics column, so this function only applies
for the text column.

void vga_todeletestop ()

Moves the cursor to the delete stop marker.

void vga_updatecursor ()

Updates the cursor position in the text column by writing the actual text insertion position to the cursor
register located atVGA_CUR_REG. No cursor shall be displayed in the graphics column, that’s why
this function applies for the text column only.

8.2.33 vga.h File Reference

8.2.33.1 Detailed Description

This file is the header forkeyboard.c.

Author:
Samuel Nobs

Date:
2004-02-02

Revision
1.9

Text Display Constants

• #defineVGA_CHARS_PER_LINE128
Total characters per line.

• #defineVGA_CHARS_IN_TEXT64
Characters per text column line.

• #defineVGA_CHARS_IN_GRAPH63
Characters per graphics column line.

• #defineVGA_NUMBER_OF_LINES48
Number of lines on display.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 213

Color Constants

• #defineVGA_BLACK 0
Black color.

• #defineVGA_RED4
Red color.

• #defineVGA_GREEN2
Green color.

• #defineVGA_BLUE 1
Blue color.

• #defineVGA_YELLOW (VGA_RED+VGA_GREEN)
Yellow color.

• #defineVGA_CYAN (VGA_GREEN+VGA_BLUE)
Cyan color.

• #defineVGA_MAGENTA (VGA_RED+VGA_BLUE)
Magenta color.

• #defineVGA_WHITE (VGA_RED+VGA_GREEN+VGA_BLUE)
White color.

Text Memory Constants

• #defineVGA_TEXT_MEM_BASEADDRXPAR_DLMB_VGA_BASEADDR
Base address of the text memory.

• #defineVGA_TEXT_MEM_HIGHADDR
Highest address in the text memory, at the end of the graphics column.

• #defineVGA_GRAPH_BASEADDR
Base address of the text memory for the graphics column.

Register Constants

• #defineVGA_COL_REGVGA_TEXT_MEM_HIGHADDR
Register containing the color information.

• #defineVGA_LIN_REG(VGA_TEXT_MEM_HIGHADDR+4)
Register containing the line offset for scrolling.

• #defineVGA_CUR_REG(VGA_TEXT_MEM_HIGHADDR+8)
Register containing the cursor position.

Position Keeping Constants

• #defineVGA_KEEP_POSXTRUE
Preserve insertion point when clearing a line.

• #defineVGA_CHANGE_POSXFALSE
Update insertion point after clearing a line.

214 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Display Columns

• #defineVGA_TXT 0
Text column.

• #defineVGA_GFX 1
Graphics column.

Printing Macros

• #defineprintf(format,) vga_printf(VGA_TXT,format, ## __VA_ARGS__)
Formatted printing to the text column.

• #definegprintf(format,) vga_printf(VGA_GFX,format, ## __VA_ARGS__)
Formatted printing to the graphics column.

• #definedebug(format,)
Formatted debug message, including file name and line number.

• #definegputc(c) vga_putc(c,XFALSE,VGA_GFX)
Print a single character to the graphics column.

• #definegset(x, y) vga_setlocation(x,y)

Defines

• #defineVGA_TABSIZE 16
Tab stop spacing.

Functions

• Xuint32vga_cls()
Clear screen.

• void vga_cgfx()
Clear graphics column.

• void vga_clearline(Xboolean keepPosition, Xuint8 col)
Clear line.

• void vga_cursorbwd()
Move cursor backward.

• void vga_cursorfwd()
Move cursor forward.

• void vga_init()
Initialize VGA driver.

• void vga_printf(Xuint8 col, const char∗ctrl1,...)
Print formatted string.

• void vga_printstr(char∗text, Xuint8 col)
Print unformatted string.

• void vga_putc(unsigned char c, Xboolean updateCursor, Xuint8 column)
Put character on screen.

8.2. XF-BOARD OPERATING SYSTEM FILE DOCUMENTATION 215

• void vga_setColor(int col)
Set text color.

• void vga_setdeletestop()
Set delete stop marker.

• void vga_setlocation(Xuint32 xPos, Xuint32 Ypos)
Set insertion point.

• void vga_setupColors(Xuint32 textcol1, Xuint32 textcol2, Xuint32 bgcol)
Set up color configuration.

• void vga_todeletestop()
Jump to the delete stop marker.

8.2.33.2 Define Documentation

#define debug(format)

Value:

vga_printf(VGA_TXT,"%s, %s(), line %d:",__FILE__,__func__,__LINE__);\
vga_printf(VGA_TXT,format, ## __VA_ARGS__)

#define VGA_GRAPH_BASEADDR

Value:

(XPAR_DLMB_VGA_BASEADDR + \
VGA_NUMBER_OF_LINES*VGA_CHARS_IN_TEXT*4)

#define VGA_TEXT_MEM_HIGHADDR

Value:

(XPAR_DLMB_VGA_BASEADDR + \
VGA_NUMBER_OF_LINES * \
(VGA_CHARS_IN_TEXT+VGA_CHARS_IN_GRAPH)*4)

8.2.34 xfinclude.h File Reference

8.2.34.1 Detailed Description

This file contains various global definitions and commonly used types.

Author:

216 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Date:
2004-04-05Revision:
1.1

Error Constants

• #defineERR_NONE0
No error.

• #defineERR_NO_FREE_TASKSLOT0x00004000
Scheduler error: no free task slot available.

• #defineERR_NO_FREE_GFXSLOT0x00005000
Graphic manager error: no free graphics slot.

• #defineERR_UNDEF0xFFFFFFFF
Undefined error.

Defines

• #defineUSE_ARG(n) n=n
This macro can be used to avoid theunused argumentscompiler warnings.

Typedefs

• typedef Xuint32XFError
Type for errors.

• typedef Xuint8XFbool
8 bit boolean

• typedef Xuint32(∗ FunctionPointer)(char∗∗argv, Xuint32 argc)
Type for functions used for shell commands.

• typedef Xuint32ProcessStatus
Type for process status.

Functions

• void microblaze_enable_interrupts(void)
Enable interrupts.

• void microblaze_disable_interrupts(void)
Disable interrupts.

8.3. XF-BOARD OPERATING SYSTEM PAGE DOCUMENTATION 217

8.3 XF-Board Operating System Page Documentation

8.3.1 Todo List

Global errorLMBInterrupt () A future version of this interrupt handler may send more detailed
debugging information.

Global errorStackInterrupt () A future version of this interrupt handler may send more detailed
debugging information.

Global msg_printMsg(msgStr) The current version of this function does not support formatted
string. This feature may be enabled in a future version.

Global mmu_readFromFifo(pfdlPtr, first) Currently, this function changes the read pointer of the
FiFo in the MMU. Its functionality could be extended by supporting a read mode leaving the
read pointer untouched. This task can be accomplished by explicitly reading the memory at the
location the FiFo resides at, but this approach is not too comfortable.

Global net_ipconfig(argv, argc) The configuration of R-FPGA’s ethernet interface must be in-
cluded.

Global net_removePortListener(pid) A function to remove the port listeners more selectively may
be useful.

Global PacketAnalyzer() Additional protocols and packet types could be supported.

Global SendUDPTo(bytDestinationIP[4], bytDestinationMAC[6], intDestinationPort,
ptrDataBuffer, DataLength) As the system does not have an ARP table, the full infor-
mation about the communication partner needs to be known, i.e. the IP and MAC addresses.
Additional effort could be invested to include such an ARP table to make sending of packets
easier.

Global sch_addToTaskList(task, argv, argc, name, quanta, stackSize, suspendShell)This func-
tion is also used by processes to spawn child processes. The OS must be extended to do some
bookkeeping about the dependencies between processes and their childs.

Global sch_kill(pid) This kill function does not yet check the process dependencies. It mus be ex-
tended to kill child processes of a process too. However, it is the OS that does not keep track of
such dependencies either.

Global selmap_Configure(startadr, len, type) The approach to configure the R-FPGA by setting
the SelectMAP data lines by software is rather slow. A DMA controller for this task is being
developped. As soon as this controller is ready, this function must be adapted accordingly.

218 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

8.3.2 Deprecated List

Global SetCS(value) This function will be meaningless as soon as the DMA configuration controller
will be included in the design.

8.3.3 Bug List

Global srec_installStatusHook() Sometimes the display is not shown. Until now I was not able to
track down the exact problem.

Global temperature(vpos) Sometimes both displays show a junction temperature of zero degrees or
another bogus value. I currently assume that the problem might be found in the communica-
tion between the C-FPGA and the temperature ADCs. Normally, this effect vanishes after an
additional reset.

8.3. XF-BOARD OPERATING SYSTEM PAGE DOCUMENTATION 219

Figure 8-1: Clock Display

Figure 8-2: FiFo Fill-Level Graphics Element

Figure 8-3: Vertical History Bargraph Graphics Element

Figure 8-4: Example Display of the Memory Allocation Map

220 BADGER, MUSHROOM, SNAKE CHAPTER 8. OPERATING SYSTEM CODE

Figure 8-5: R-FPGA Occupancy Display

Figure 8-6: Ethernet Status Display

Figure 8-7: Temperature Display

9Skill Forwarding

This chapter is meant as a collection of HOW-TOs to allow for a quick development start. For most
of the processes there exit lengthy explanations, either in documents provided by XILINX or in other
sections in this report. The most important points of these documents are resumed here.

9.1 How to Build the System

This section shall guide you through the basic steps to get the OS up and running.

To build the OS hardware and software under Windows1, copy the directory
CD/Projects/RHWOS_v1/ from the CD. Be sure to place this directory at a location with no
spaces in the path name. Copying the directory to your Desktop is a bad idea, as the path to the Desk-
top contains spaces:C:/Documents and Settings/you/Desktop . This condition should
be met because some of the XILINX programs don’t work when they see spaces in the path.

The contents of this directory, the project directory, are listed in figure9-1.

Now, verify that the correct version of the XILINX software is present on your system: XILINX Em-
bedded Development Kit 6.1.2, Platform Studio Version 6.1.03i. Newer versions may also work. If
the software is not present as needed, install or update it.

Check that the system environment variable %XILINX_EDK% is present and points to the location
where EDK indeed is installed. Also check that %XILINX_EDK% is included in the %PATH% vari-
able.

The ATX power supply, the JTAG download cable, a VGA monitor capable to display 1024× 768
pixels at least, and a PS/2 keyboard (preferably with US American layout) must be connected. The

1unfortunately, no other operating system is currently supported. The XILINX software is available for Unix and Linux
too, but with these systems, the configuration via JTAG is not supported.

221

222 BADGER, MUSHROOM, SNAKE CHAPTER 9. SKILL FORWARDING

RHWOS_v1

__xps microblaze_i_compiler.opt

code

data system.ucf

debug.pl

drivers

etc

bitgen.ut

codeupload.pl

download.cmd

fast_runtime.opt

program_linker_script

prom.cmd

promerase.cmd

promupload.cmd

symgen.sed

implementation

system.bit

system_bd.bmm

mb-disassemble.pl

microblaze_i

include

lib

pcores

program.make

readback.pl

src

symbols.sym

system.make

system.mhs

system.mss

system.pbd

system.xmp

xfboard_os.mcs

XFOSConfig.bat

XFOSConfig_app XFOSConfig.jar

xygwin.bat

Contains information that is needed
by the bitgen program to generate
the bit stream

A perl script to upload user
program code and external OS
code. This script is explained in
chapter Scripts

Contains the source code and the
header files for the OS

A debug script used to interpret
debug messages sent by the board.
More information is available in the
chapter Scripts

Contains device drivers for some
hardware in the system, mainly the
driver for the interrupt controller

Contains the settings of the mb-gcc
compiler

A script used by the iMPACT
program to download the bit
stream containing the base system
to the board

Contains settings for the
implementation and synthesis
process in EDK

This linker script is used to link the
external OS code and the user
program code

A script used to generate a PROM
file containing the bit stream with
the base OS using iMPACT

A script to erase the PROM on the
board using iMPACT

A script to upload the PROM file to
the board using iMPACT

A sed (stream editor) script that
extracts the symbols of a code
dump

The bit stream being merged with
the program. After the merge, a
donwload.bit file is present which
can be uploaded to the board.

Contains information about the
location of the BlockRAM cells
which are filled with program code
when system.bit is merged with the
code

Contains the header files which
need to be included in the system

Contains the libraries which need to
be linked with the system

Contains the LMB and OPB cores
used in the system

The makefile to compile, link and
upload user program code and
external OS code. Also used to
create a PROM file

A script that is able to read back
memory contents of the board and
dump them to a file. See chapter
Scripts

Contains the source code for user
programs

Contains the symbols defined in the
base OS code. This file is generated
using the symgen.sed script

The makefile generated by EDK.
Mainly used to synthesize and
implement the hardware and
compile the bas OS code

The microprocessor hardware
specification. Contains information
on the hardware elements used in
the system. Generated by EDK

The microprocessor software
specification. Contains information
on the software and libraries used
in the system. Generated by EDK

Contains schematic information on
the system. Used by EDK to display
a system overview

The EDK / Platform Studio project
file.

The PROM containing the hardware
and software of the base OS

A batch script used to start the
XFOSConfig GUI

A batch script that starts the bash
shell for those preferring the
command line to the EDK GUI or
the XFOSConfig

A disassembler script that is able to
create an assembly language listing
of binary program code. See
chapter Scripts

The user constraints file contains
the pin mappings and the
placement and timing constraints
of the system

A GUI to configure some OS
parameters, compile the OS and the
user programs, and upload the bit
stream, code or PROM file.

Figure 9-1: System Directory Overview. This figure provides an overview of the directory
containing the OS including a short description of the files and folders.

9.1. HOW TO BUILD THE SYSTEM 223

Figure 9-2: XF-Board Basic Connections. To run the OS, the ATX power
supply, a VGA monitor with a minimal resolution of 1024× 768 pixels, a PS/2 keyboard
and a JTAG download cable must be connected.

locations of the connectors used are highlighted in figure9-2.

Now that all preliminaries are met, the system is ready to be built using one of three approaches: the
Platform Studio, from the command line using a makefile, and using a Java GUI.

Build Using Platform Studio Open the projectsystem.xmp either by double-clicking the docu-
ment in the explorer or using the menufile →Open Project in Platform Studio. As soon as the project
is open, chooseTool →Download to build the system and upload it to the board. This approach is
recommended for everyone new to the EDK flow.

Build Using the Command Line For advanced EDK users, a bash shell can be started by double-
clicking the batch filexygwin.bat . In this shell, typemake -f system.make download to
build the system and upload it to the board.

Build Using the Java GUI A Java GUI to configure the OS and upload it to the board has been
designed. Java must be installed on the host computer to run this GUI. The GUI can be started by

224 BADGER, MUSHROOM, SNAKE CHAPTER 9. SKILL FORWARDING

double-clicking the batch fileXFOSConfig.bat . However, this GUI is in beta state and not fully
tested. Refer to appendixD for details about this GUI.

After having successfully built and uploaded the OS, your VGA monitor connected to the board should
look like figure9-3.

Figure 9-3: Screen After Startup. This figure is a screenshot of the monitor connected to
the . Your screen should look similar after sucessfully building and uploading
the OS.

9.2 How to Write User Functions

This section shall offer the knowledge needed to write your own C functions for the OS
and add them as commands to the shell. It does not explain how the code is compiled and linked,
because this topic is offered a separate chapter in appendixB.

There is no special rule on how to write functions to be run on the except for the functions
that need to be accessed from within the shell. Functions to be installed into the shell are expected to
have the following signature:

1 Xuint32 functionName(char ** argv, Xuint32 argc);

The argumentargc will contain the number of arguments entered in the shell,argv will hold the list
of arguments entered in the shell.argc andargv can be omitted if the function does not take any
arguments.

To install this function in the shell, the OS needs to be given some additional information. A string is
needed which will be entered in the shell to start the function. Then, a pointer is needed that holds the

9.2. HOW TO WRITE USERFUNCTIONS 225

address of the start of the function. The stack size of the function must be defined, as the scheduler
will try to allocate stack memory for the function when it is started as a process (section4.2.1.2). The
number of time quanta must be included in the information on the function too. Finally, a flag must be
set if the function is able to suspend the shell to get keyboard input.

Be sure to correctly calculate the amount of memory needed for the stack when
implementing your own processes. If these numbers are not appropriate, the
system might kill your process as described in the next section! This warning
is already mentioned in section5.2.2. However, due to its high importance, it
may be a good idea to repeat it here.

The information on the functions to be added to the shell needs to be entered in a list using a predefined
macro,XF_COMMAND_LIST. The constantXF_NUMBER_OF_COMMANDSneeds to be defined to the
number of functions added to the shell. An example for one such function is given in the following
code snippet, which can be found in the fileCD/Projects/RHWOS_v1/src/system.c on the
CD:

1 #include <xbasic_types.h>
2 #include " scheduler . h"
3 #include " vga . h"
4

5 Xuint32 helloWorld(char ** argv, Xuint32 argc);
6

7 // this is howto addyour functions to the commanduser interface
8 #define XF_NUMBER_OF_COMMANDS1
9 XF_COMMAND_LIST=

10 {
11 { " hello " , // string to be typed in the shell
12 (FunctionPointer)&helloWorld, // pointerto thefunctionto beexecuted
13 512, // minimal stack size neededby function (in bytes)
14 SCH_DEFAULT_QUANTA, // numberof scheduler time quanta
15 XFALSE // xtrue if commandsuspendsshell, xfalse otherwise
16 }
17 };
18

19 Xuint32 helloWorld(char ** argv, Xuint32 argc){
20 Xuint32 i;
21 printf(" hello %hworld %n!\ n");
22 printf(" you entered %d arguments \ n" ,argc);
23 for (i=0;i<argc;i++){
24 printf(" argv [%d] = %s\ n" ,i,argv[i]);
25 }
26 return 0;
27 }

This represents ahello world program which can be started from the shell using the stringhello .
Everything that is entered after the string but before hitting thereturn key is interpreted as arguments
to the function. These arguments are then dumped to the screen, one by one.

226 BADGER, MUSHROOM, SNAKE CHAPTER 9. SKILL FORWARDING

For the strings to be started the commands with, be sure that they are unique in
the system. No built-in command should be present that is started with the same
string, as your function will never be called; built-in commands are searched
first when a string is entered in the shell. Also be sure that your commands are
sorted alphabetically to allow the command completion mechanism (section
6.1.1) to work properly

9.3 How to Write an OPB Core

This section shall give you the hints needed to create your own OPB core in a minimum of time.
This explanation shall help you to navigate around all the pitfalls I fell in. XILINX offer a tutorial on
writing custom OPB cores [26], but I still want to offer an explanation in my own words, being able to
emphasize the points I found to be important.

9.3.1 VHDL Module

Let’s assume that you want to create a core calledcorename that connects to the OPB and has
one bidirectional, 32 bits wide port and an additional output (see figure9-4). When a read access is
performed on this core, data are read from this bidirectional port. When a write access is performed,
data are written to this bidirectional port, and the additional output is pulled to 1.

corename
OPB

32

1

Figure 9-4: Example OPB Core. This figure schematically depicts the OPB core to be
designed in this section. The core connects to the OPB and has a 32 bits wide bidirectional
port and another 1-bit output.

In addition to the mandatory generic parametersC_BASEADDRand C_HIGHADDR, this core uses
another parameter,C_INVERT, which decides whether the data are written inverted or regular. These
generic parameters are resolved at synthesis time and are therefore fixed in the implemented design.

9.3. HOW TO WRITE AN OPB CORE 227

C_BASEADDRandC_HIGHADDRdenote the address range in which the core shall respond to ac-
cesses. This means, that address decoding logic is required. XILINX offers a helper module which
includes this decoding logic[31], the IPIF core, but as this logic also includes many other features
which are not needed for simple OPB cores, it is far too complex. Also, it infers an additional latency
of two clock cycles for every read and write access. Therefore I suggest to implement the decode
logic using compare functions provided by VHDL. These comparisons do not result in a large hard-
ware overhead as long as you spend some seconds on finding good choices for the base and the high
address.

An example: if you want to design a core that needs2n addresses, the base address of this core should
have then least significant bits to zero. The address relative to the base address then consists of theses
n least significant bits; stripping thesen bits does not require a lot of hardware resources.

A VHDL file that performs all tasks of such a core is given in the following code listing. However, as
only one OPB address is used, the decoding is trivial.

1 library IEEE;
2 use IEEE. numeric_std . all ;
3 use IEEE. std_logic_1164 . all ;
4 use IEEE. std_logic_misc . all ;
5 library Unisim;
6 use Unisim. all ;
7

8 entity corename is
9 generic

10 (
11 −− thestandardsfor every OPBcore
12 C_BASEADDR : std_logic_vector (0 to 31) := X"FFFFFFFF";
13 C_HIGHADDR : std_logic_vector (0 to 31) := X"00000000";
14 −− anadditional generic parameter
15 C_INVERT : boolean := true
16);
17 port (
18 −−requiredOPBbusports, do not add to or delete
19 OPB_ABus : in std_logic_vector (0 to 31); −− OPBaddressbus
20 OPB_BE : in std_logic_vector (0 to 3); −− OPBbyteenable
21 OPB_Clk : in std_logic ; −− OPBclock
22 OPB_DBus : in std_logic_vector (0 to 31); −− OPBdatainput
23 OPB_RNW : in std_logic ; −− OPBdirection, read / not write
24 OPB_Rst : in std_logic ; −− OPBreset
25 OPB_select : in std_logic ; −− OPBbusselect
26 OPB_seqAddr : in std_logic ; −− OPBsequentialaddress
27 Sln_DBus : out std_logic_vector (0 to 31); −− coredataoutput
28 Sln_errAck : out std_logic ; −− coreacknowledge
29 Sln_retry : out std_logic ; −− coreretry
30 Sln_toutSup : out std_logic ; −− coretimeoutsuppress
31 Sln_xferAck : out std_logic ; −− coretransactionacknowledge
32 −−userPorts
33 −− bidirectional data signal . the buffer is then inserted by EDK
34 DataxDIO_i : in std_logic_vector (31 downto 0);
35 DataxDIO_o : out std_logic_vector (31 downto 0);
36 DataxDIO_t : out std_logic ;

228 BADGER, MUSHROOM, SNAKE CHAPTER 9. SKILL FORWARDING

37 −− regular output
38 WriteEnablexEO : out std_logic
39);
40 end corename;
41

42

43 architecture rtl of corename is
44 begin −− rtl
45

46 read_or_write : process (DataxDIO_i , OPB_ABus, OPB_DBus, OPB_RNW, OPB_select)
47 begin
48 −− defaults
49 Sln_DBus <= (others => ’0’); −− don’ t drive thebus
50 Sln_xferAck <= ’0’; −− don’ t acknowledge
51 DataxDIO_t <= ’1’; −− 1: read, 0: write
52

53 −− nondefaults
54 if OPB_ABus = C_BASEADDRand OPB_select = ’1’ then
55 if OPB_RNW= ’1’ then −− read
56 Sln_DBus <= DataxDIO_i ; −− readdata
57 else −− write
58 if C_INVERT = true then
59 DataxDIO_o <= not (OPB_DBus); −− write inverteddata
60 else
61 DataxDIO_o <= OPB_DBus; −− write regulardata
62 end if ;
63 DataxDIO_t <= ’0’; −− enablebuffer for writing
64 WriteEnablexEO <= ’1’; −− enableexternalcomponentfor writing
65 end if ;
66 Sln_xferAck <= ’1’; −− acknowledgethe transfer
67 end if ;
68 end process read_or_write;
69

70 Sln_retry <= ’0’; −− no retry
71 Sln_errAck <= ’0’; −− noerror
72 Sln_toutSup <= ’0’; −− no timeoutsuppress
73

74 end rtl;

It possibly would be a better approach to buffer all input and output data signals using registers, but
this would be a question of good coding style and not a question of how to create a minimal OPB core.

Some remarks on the purpose of the OPB signals:OPB_ABUS is the OPB address to which the
request is made.OPB_BEis the byte enable signal that tells the core on which bytes of a 32 bit word
the operation has to be performed.OPB_DBUS holds the data being written to the core.OPB_RNW
is used to tell whether a read or write process is about to occur.OPB_SELECT is used to select the
OPB bus. When the OPB bus is selected, every core attached to the bus is expected to check if an
access to its address range is about to occur. These signals are valid and constant untilSLN_XFERACK

is seen high at a rising clock edge. If no such acknowledge is seen within 15 clock cycles, the bus
times out. For write accesses, the acknowledge can be set as soon as the core has read the data from
the bus. For read accesses, the acknowledge should be set as soon as the data are written to the bus by

9.3. HOW TO WRITE AN OPB CORE 229

the core. Data and acknowledge should stay high until the transaction is completed by theµBlaze by
releasingOPB_SELECT.

Your core should under no circumstances assign values other than zero to
the OPB bus when either the OPB address is not inside the range defined
by C_BASEADDR and C_HIGHADDR or the bus is not currently selected
(OPB_SELECT = 1) as thiswill prevent the system as a whole from working
as expected!

If you intended to use sequential logic in your core, the OPB bus provides a clock signal (OPB_CLK)
and an active high reset input (OPB_RST). Your core may also include additional VHDL modules.

The waveforms of an example read and write access are shown in figure9-5.

9.3.2 Additional Files:*.mhs and *.pao

The*.mhs file is used to inform EDK about the ports available in this core and the generic parameters
used. At the beginning of the file, declaration of the core’s name and the bus interface is located. Then,
a list of all parameters, their default values and the data types of these parameters is included:

BEGIN corename
OPTION IPTYPE = PERIPHERAL
OPTION IMP_NETLIST=TRUE

BUS_INTERFACE BUS = SOPB, BUS_STD = OPB, BUS_TYPE = SLAVE

Generics for VHDL or Parameters for Verilog
PARAMETER c_baseaddr = 0xFFFFFFFF, DT = std_logic_vector,\

MIN_SIZE = 0x4
PARAMETER c_highaddr = 0x00000000, DT = std_logic_vector
--USER-- Add user core parameters
PARAMETER c_invert = true, DT = boolean

The line break in the declaration ofC_BASEADDRis inserted for typographical reasons only, you
should not insert such line breaks in the file. Now, a list containing all signals on the VHDL entity is
to be supplied. Cores that connect to a signal already present in the system are assigned to this signal
using theequalssign, i.e. the signals of the OPB bus. Signals that can be connected to a user defined
system are assigned using “ “. Then the direction of the signal must be given, and, if it’s a vector, the
range of the signal. Signals belonging to a special group of signals, such as the OPB signals, need to
be defined accordingly:

Ports

230 BADGER, MUSHROOM, SNAKE CHAPTER 9. SKILL FORWARDING

OPB_ABUS

OPB_BE

OPB_CLK

OPB_DBUS

OPB_RNW

OPB_RST

OPB_SELECT

OPB_SEQADDR

SLN_DBUS

SLN_ERRACK

SLN_RETRY

SLN_TOUTSUP

SLN_XFERACK

DATAX DIO_I

DATAX DIO_O

DATAX DIO_T

DATAX DIO

WRITEENABLEX EO

UUU�VVVVVV�UUUUU-UUU�VVVVVV�UUUUU
UUU�VVVVVV�UUUUU-UUU�VVVVVV�UUUUU
LLL�HH�LL�HH�L-LLL�HH�LL�HH�L
UUUUUUUUUUUUUUUUUU-UUU�VVVVVV�UUUUU
LLL�HHHHHH�LLLLL-LLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLL-LLLLLLLLLLLLLLLLLL
LLL�HHHHHH�LLLLL-LLL�HHHHHH�LLLLL
LLLLLLLLLLLLLLLLLL-LLLLLLLLLLLLLLLLLL
LLL�VVVVVV
LLLLL-LLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLL-LLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLL-LLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLL-LLLLLLLLLLLLLLLLLL
LLL�HHHHHH�LLLLL-LLL�HHHHHH�LLLLL

UUU�VVVVVV�UUUUU-UUU�ZZZZZZ�UUUUU
LLLLLLLLLLLLLLLLLL-LLL�VVVVVV
LLLLL
HHHHHHHHHHHHHHHHHH-HHH�LLLLLL�HHHHH

VVVVVVVVVVVVVVVVVV-VVV�VVVVVVVVVVVV
LLLLLLLLLLLLLLLLLL-LLL�HHHHHH�LLLLL

0x80000000 0x80000000

0xF 0xF

0x12345678

0x12345678

0x12345678

0x87654321

0x87654321

0x87654321

Figure 9-5: OPB Core Example Waveforms. This figure provides example waveforms for
the corename OPB core for a read access (left) and a write access (right). The core is
assumed to have a base address of0x80000000 . 0x87654321 is read from the bus,
0x12345678 is written to the bus. The data being written are not inverted, i.e. the param-
eterC_INVERT is set tofalse. Most of the OPB signals are not used, but they are included
in the diagram for sake of completeness and to eliminate possible questions on the values of
these signals. Most of them are unlikely to be used in designs of moderate complexity. The
only additional signal I ever used for the cores I designed was the byte enable.

9.3. HOW TO WRITE AN OPB CORE 231

PORT opb_abus = OPB_ABus, DIR = IN, VEC = [0:31], BUS = SOPB
PORT opb_be = OPB_BE, DIR = IN, VEC = [0:3], BUS = SOPB
PORT opb_clk = "", DIR = IN, SIGIS = CLK, BUS = SOPB
PORT opb_dbus = OPB_DBus, DIR = IN, VEC = [0:31], BUS = SOPB
PORT opb_rnw = OPB_RNW, DIR = IN, BUS = SOPB
PORT opb_rst = OPB_Rst, DIR = IN, BUS = SOPB
PORT opb_select = OPB_select, DIR = IN, BUS = SOPB
PORT opb_seqaddr = OPB_seqAddr, DIR = IN, BUS = SOPB
PORT sln_dbus = Sl_DBus, DIR = OUT, VEC = [0:31],BUS = SOPB
PORT sln_errack = Sl_errAck, DIR = OUT, BUS = SOPB
PORT sln_retry = Sl_retry, DIR = OUT, BUS = SOPB
PORT sln_toutsup = Sl_toutSup, DIR = OUT, BUS = SOPB
PORT sln_xferack = Sl_xferAck, DIR = OUT, BUS = SOPB
--USER-- change to user core ports
PORT DataxDIO = "", DIR = INOUT, VEC = [31:0]
PORT WriteEnablexEO = "", DIR = OUT
END

The*.pao file is needed to inform EDK about the order in which the VHDL files are to be compiled
and loaded. For every VHDL file, a line in the following form has to be included in the*.pao file.

lib corename_v1_00_a corename

Be sure to list your files in the correct order! First list the files representing your submodules, and at
the end, the top file of your core must be listed.

As a general hint I recommend to copy the files of an existing core and adapt them to your design.

9.3.3 File Names and Directory Structure

As EDK is rather intolerant regarding file names and directory names, the directory structure and
naming conventions expected by EDK are given here. An illustration of this structure can be found in
figure9-6. The base directory is named using the core’s name and the version number (that you can
freely assign) of this core. An example would becorename_v1_00_a designating a core named
corename with version v1.00.a. This is the version number finally shown in the EDK. This naming
convention is mandatory. This directory then contains 3 subdirectories:

doc holds the documentation on this core, which should be namedcorename.pdf to be accessible
from within the EDK GUI.

hdl contains directories for the hardware description language used:vhdl for VHDL files, verilog
for verilog files. Assuming a VHDL workflow, thevhdl directory is expected to hold a top level
description of your core namedcorename.vhd . It this top architecture includes other entities,
these may also be put in this directory.

232 BADGER, MUSHROOM, SNAKE CHAPTER 9. SKILL FORWARDING

data holds two files that are needed by EDK. The filecorename_v2_1_0.mpd contains infor-
mation on the input and output signals of the core, thecorename_v2_1_0.pao contains
information for the synthesis of the core.

The version number of the*.mpd and*.pao files isalways2.1.0, regardless
of the version number of your core. The version number of these files desig-
nates the version of the parser tool used to read the files. This is not obvious at
all, and it took me one afternoon to get behind it.

corename_v1_00_a

data

doc

hdl
vhdl

corename_v2_1_0.mpd
declares the core's I/O signals
and its generic parameters

corename_v2_1_0.pao
declares the order in which
the source files are synthesized

corename.pdf
documentation to the core,
not mandatory, but recommended

corename.vhd
the top VHDL module of the
core.

submodule.vhd
the top VHDL module of the
core.

Figure 9-6: Directory Structure of OPB Cores. This directory structure is mandatory when
writing custom OPB cores. EDK will fail loading the core if you don’t follow this structure,
sometimes even without an error message!

To include the core in your EDK design, create directory namedpcores at the same level your EDK
projectsystem.xmp resides. Copy the directorycorename_v1_00_a into pcores . Now, your
OPB core should show up in theAdd/Edit Cores. . .dialog. If your project is opened, it must be closed
and opened again to make EDK search thepcores directory. When you change the contents of the
*.mpd or *.pao files, you also need to close and reopen the project.

10Outlook and Acknowledgements

In this short chapter, some final remarks are due. I want to give some hints for future improvements
of the OS, tell what I learned during my work, and thank all those people that gave me a
hand during this master’s thesis.

10.1 Future Work and Improvements

Generally, some optimization steps could be performed. There exist elements in the system where a
quick and straightforward approach has been used to get things working as soon as possible.

Theschedulercould be analyzed for efficiency. Is a round-robin scheduler based on time slices ap-
propriate? It possibly would be better to introduce process priorities to allow for real-time behaviour.
The memory requirements of the process control blocks an therefore the process list as a whole are
immense and could be optimized. Does each and every register need to be saved when task switches
occur? Is there a better way to handle the arguments for the process than having them stored in the
PCB? Instead, memory for the arguments could be dynamically allocated.

Memory protection could be improved, e.g. by making a difference between user process permissions
and kernel process permissions. Some time should be spent on the FlashRAM on the board. This
memory technology has not been used yet, but it would be great to store configuration data beyond
power interruptions.

Theshell could be improved regarding useability. Editing of the strings entered in the command line
could be improved, possibly using shortcuts as known from other systems. The backspace key is
not implemented correctly: when backspace is hit in the middle of a word, the cursor is moved left,
deleting the character to the left, but the text to the right of the cursor is not moved left too. So editing
is possible only in theoverwritemode.

TheOS bridgecould be optimized for speed as it currently runs with a lackadaisical timing. The effort

233

234 BADGER, MUSHROOM, SNAKE CHAPTER 10. OUTLOOK AND ACKNOWLEDGEMENTS

spent on the OS bridge will be very profitable as the OS bridge is the bottleneck of the communication
between C-FPGA and R-FPGA.

Configuration of the R-FPGA could be sped up using a DMA controller; this DMA controller is
currently being developed in [4].

The OPB and LMB cores for this system could be improved; most of them have a separateoutlook
section in their documentation in section7. Refer to these section for details on what could be done
better in future. A similar statement applies for the OS software functions: you may want to refer to
section8.3.1on future work. The OS configuration GUI mentioned in appendixD is far from being
finished and needs to be completed.

Special services fordynamic partial reconfiguration should be developed. Such services include a
hardware scheduling scheme, a hardware resource manager, and a task preparation unit that saves and
restores the context of hardware tasks.

Of course,application that fully use the features made available by the OS must be implemented.

10.2 Acknowledgements

First of all, I want to thank Herbert Walder, my advisor, for guiding me through this project. His ideas
and his experience with reconfigurable OS and the corresponding hardware have been very helpful.

Many thanks go to other assistants that have been bothered with my concerns.

I want to thank the students working in the same room who helped in resolving minor and major
problems and offered useful tips for working with the software environment. Thebrain-pool formed
by the “inhabitants” of the ETZ G-69[13] room was amazing.

A thank you is aimed at the Support Group (Dienstgruppe) for helping with and installing the computer
environment. Luckily, they perform a daily incremental backup of the home directories. . .

I wish to thank Prof. Dr. Lothar Thiele for being my supervisor and for his confidence in this project.

AAppendix
xfintc Driver

A.1 File Documentation

A.1.1 xfintc_l.c File Reference

A.1.1.1 Detailed Description

This file contains low-level driver functions that can be used to access the device. The user should
refer to the hardware device specification for more details of the device operation. The contents of this
file are derived from xintc_l.c by meinelte/Xilinx Inc.

Author:
Samuel Nobs

Date:
2004-02-18
Revision

1.2

Functions

• void xfintc_defaultHandler(void ∗unusedInput)
Default interrupt handler.

• void xfintc_enableInterrupts(Xuint32 mask)
Enable interrupts.

• Xuint32xfintc_getEnabledInterrupts()
Get enabled interrupts.

235

236 BADGER, MUSHROOM, SNAKE APPENDIX A. X F I N T C DRIVER

A.1.1.2 Function Documentation

void xfintc_defaultHandler (void∗ unusedInput)

This function is a default interrupt handler for the low level driver of the interrupt controller. It allows
the interrupt vector table to be initialized to this function so that unexpected interrupts don’t result in a
system crash.

Parameters:
unusedInput is an unused input that is necessary for this function to have the signature of an

input handler.

void xfintc_enableInterrupts (Xuint32mask)

This function can be used to enable / disable individual inputs. Calls the macroXFINTC_SET_-
ENA_REGdefined inxfintc_l.h .

Parameters:
mask is a 32-bit mask that defines the interrupts being enabled / disabled

Xuint32 xfintc_getEnabledInterrupts ()

This function is used to check which interrupts are enabled. Calls the macroXFINTC_GET_ENA_-
REGdefined inxfintc_l.h .

Returns:
a 32-bit mask denoting the interrupts being enabled / disabled

A.1.2 xfintc_l.h File Reference

A.1.2.1 Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to
access the device. The user should refer to the hardware device specification for more details of the
device operation. The contents of this file are derived from xintc_l.h by meinelte/Xilinx Inc.

Author:
Samuel Nobs

Date:
2004-02-18
Revision

1.2

A.1. FILE DOCUMENTATION 237

Data Structures

• structXFVectorTableEntry
Entry in the Interrupt Vector Table.

Defines

• #defineXINTC_L_H

• #defineXFINTC_INT_REG_OFFSET0
Address offset to access the interrupt register of theopb_xfintc core.

• #defineXFINTC_ENA_REG_OFFSET4
Address offset to access the enable mask register of theopb_xfintc core.

• #defineXFINTC_ACK_REG_OFFSET8
Address offset to access the acknowledge register of theopb_xfintc core.

• #defineXIntc_In32XIo_In32
Wrapper macro for reading a 32 bit word, target is defined inxio.h .

• #defineXIntc_Out32XIo_Out32
Wrapper macro for writing a 32 bit word, target is defined inxio.h .

• #defineXFINTC_SET_ENA_REG(BaseAddress, EnableMask) XIntc_Out32((BaseAddress) +
XFINTC_ENA_REG_OFFSET, (EnableMask))

Enable specific interrupts in the interrupt controller.

• #define XFINTC_GET_ENA_REG(BaseAddress) XIntc_In32((BaseAddress) + XFINTC_-
ENA_REG_OFFSET)

Get enabled interrupts in the interrupt controller.

• #define XFINTC_ACK_INT(BaseAddress, AckMask) XIntc_Out32((BaseAddress) +
XFINTC_ACK_REG_OFFSET, (AckMask))

Acknowledge interrupts in the interrupt controller.

• #define XFINTC_GET_INT_REG(BaseAddress) XIntc_In32((BaseAddress) + XFINTC_-
INT_REG_OFFSET)\

Get asserted interrupts in the interrupt controller.

Functions

• void xfintc_defaultHandler(void ∗UnusedInput)
Default interrupt handler.

• void xfintc_enableInterrupts(Xuint32 mask)
Enable interrupts.

• Xuint32xfintc_getEnabledInterrupts()
Get enabled interrupts.

• void xfintc_lowLevelInterruptHandler(void)
Low level interrupt handler.

238 BADGER, MUSHROOM, SNAKE APPENDIX A. X F I N T C DRIVER

Variables

• XFVectorTableEntryxfintc_interruptVectorTable[]
Declaration of the interrupt vector table.

A.1.2.2 Define Documentation

#define XFINTC_ACK_INT(BaseAddress, AckMask) XIntc_Out32((BaseAddress) + XFINTC_-
ACK_REG_OFFSET, (AckMask))

Acknowledge interrupts in the interrupt controller

Parameters:
BaseAddressis the base address of the device

AckMask is the 32-bit value to write to the acknowledge register. Each bit of the mask corre-
sponds to an interrupt input signal that is being acknowledged using its acknowledge output
signal if the bit for this acknowledge is set

Returns:
none

#define XFINTC_GET_ENA_REG(BaseAddress) XIntc_In32((BaseAddress) + XFINTC_ENA_-
REG_OFFSET)

Get enabled interrupts in the interrupt controller

Parameters:
BaseAddressis the base address of the device

Returns:
a 32-bit mask denoting the interrupts currently being enabled in the interrupt controller

#define XFINTC_GET_INT_REG(BaseAddress) XIntc_In32((BaseAddress) + XFINTC_INT_-
REG_OFFSET)\

Get asserted interrupts in the interrupt controller

Parameters:
BaseAddressis the base address of the device

Returns:
a 32-bit mask denoting the interrupts currently being asserted high at the input of the interrupt
controller

A.1. FILE DOCUMENTATION 239

#define XFINTC_SET_ENA_REG(BaseAddress, EnableMask) XIntc_Out32((BaseAddress) +
XFINTC_ENA_REG_OFFSET, (EnableMask))

Enable specific interrupts in the interrupt controller

Parameters:
BaseAddressis the base address of the device

EnableMask is the 32-bit value to write to the enable register. Each bit of the mask corresponds
to an interrupt input signal that is connected to the interrupt controller (INT0 = LSB). Only
the bits which are set in the mask will enable interrupts

Returns:
none

A.1.3 xfintc_lg.c File Reference

A.1.3.1 Detailed Description

This file contains the generated configuration data for the low level driver of the interrupt controller.
Basically, it is used as a template bylibgen and gets populated with the interrupt vector table. The
contents of this file are derived fromxintc_lg.c by jhl/Xilinx Inc.

Author:
Samuel Nobs

Date:
2004-02-18
Revision

1.2

Variables

• XIntc_VectorTableEntry XIntc_InterruptVectorTable [XPAR_INTC_MAX_NUM_INTR_-
INPUTS]

Declaration of the interrupt vector table.

A.1.4 xfintc_lowLevelHandler.c File Reference

A.1.4.1 Detailed Description

This file contains the low level interrupt handler.

240 BADGER, MUSHROOM, SNAKE APPENDIX A. X F I N T C DRIVER

Author:
Samuel Nobs

Date:
2004-02-18
Revision

1.2

Functions

• void xfintc_lowLevelInterruptHandler(void)
Low level interrupt handler.

A.1.4.2 Function Documentation

void xfintc_lowLevelInterruptHandler (void)

This function is an interrupt handler for the low level driver of the interrupt controller. It must be
connected to the interrupt source such that it is called when an interrupt of the interrupt controller is
active. It will resolve which interrupts are active and call the appropriate interrupt handler, starting
with the interrupt that is connected to the LSB input of the interrupt controller. It acknowledges the
interrupt after it has been serviced by the interrupt handler.

This function assumes that an interrupt vector table has been previously initialized bylibgen . It
does not verify that entries in the table are valid before calling an interrupt handler.

A.2 Data Structure Documentation

A.2.1 XFVectorTableEntry Struct Reference

Data Fields

• XInterruptHandlerhandler
Function pointer to the interrupt handler.

• void ∗ callBackRef
Pointer to the OPB address of the core that raises this interrupt.

BAppendix
User Code Generation

This chapter explains how user programs are merged with program code intended
for external memory and then uploaded to the . All tasks are performed
by the makefile CD/Projects/RHWOS_v1/program.make and the linker script
CD/Projects/RHWOS_v1/etc/program_linker_script . Table B-1 contains a list
of the targets available in this makefile. Following are the steps that are executed when theupload
target is made, i.e.make -f program.make upload is entered in the command prompt of the
host computer. You may want to refer to figureB-1 for an overview of this process.

First, the source files for the user programs and the source files of the OS code are compiled. From
the source code for the OS, only the code sections within the#ifdef EXTERNAL_OS_CODE ...
#endif pragma is being compiled as only this code is intended for use in external memory.

When adding your source files with user code to the system, be sure to edit the
makefile accordingly. ThePROGRAM_SOURCESvariable should include all
your source files. The files are separated by a blank. Also update the list of
object files,PROGRAM_O.

Now the object files are linked with the libraries. As the user programs may use functions and
variables that are defined in the code already present in the OS, these symbols are extracted from
the OS code using the scriptCD/Projects/RHWOS_v1/etc/symgen.sed and written to a
file which is linked with the user program code. During the linker process, the linker script
CD/Projects/RHWOS_v1/etc/program_linker_script cares about the memory location
of the various code sections. It generates a list of the user commands and the external OS commands
at the beginning of the SRAM memory used for external program code (see figure5-1). First, a magic
keyword (badger plus string terminator) is written, then the number of user commands is appended,
and then the lists of the external OS commands and the user commands is appended. Now the actual
code and variables follow. Refer to section9.2on the structure of the list containing user commands.

241

242 BADGER, MUSHROOM, SNAKE APPENDIX B. USERCODE GENERATION

target description

upload Uploads the user program code and the external OS program code. If
this code is not present yet, it is generated first (→ program)

upload_os Compiles and links and merges the code to the bit stream, which is
then uploaded using impact. This is a standard EDK flow and is not
explained any further

prom Generates a PROM file from the OS bit stream. If the bit stream is not
present, it is generated first

upload_prom Uploads the OS PROM file. If it is not present, it is generated first (→
prom)

erase_prom Erases the PROM on the
program Compiles and links the source code for the user programs and the ex-

ternal OS code and then generates the according MOTOROLA SREC
file

programclean Cleans up by deleting the SREC file and all temporary and intermediate
files related to theprogram target

Table B-1: Makefile Targets. This table contains the main targets that this makefile is
able to build. A target is built by enteringmake -f program.make <target> in the
command prompt of the host computer. This table does not include all intermediate targets
and does not claim to be an explanation on writing makefiles. [3] is an example for a good
resource to get information on makefiles and themake program.

The list with the external OS commands uses the same structure.

When the object files are linked into theprogram.elf file, this file gets dumped into a MOTOROLA

SREC file (see figureB-2 for a description of the records in such a file). This file is then uploaded
using theCD/Projects/RHWOS_v1/etc/codeupload.pl script.

To successfully upload the program code, be sure that theBOARD_IPvariable
in the makefile is set to the actual IP address of your board. Additionally, the
PERLvariable should be set to the path where your Perl program is installed.

243

Figure B-1: User Code Generation. This is a simplified visualization of the code genera-
tion flow performed by the makefile, depicting the steps from the C-sources to the final SREC
file that may be uploaded to the .

Figure B-2: SREC File Format. An S-record line always starts with the character ’S’,
followed by a character ’0’-’9’ defining the type of the record. Then the record length is
given in two hex characters. This length includes the following address, the data, and the
2-byte checksum at the end of the record. The length of the address depends on the type;
the type being most interesting in our context is the type ’3’ which contains a 32-bit address
encoded in 8 characters. The address specifies in which memory location the data has to be
loaded into. The S-record line is terminated by 2 bytes representing the one’s complement
of the 8-bit checksum.

244 BADGER, MUSHROOM, SNAKE APPENDIX B. USERCODE GENERATION

CAppendix
Scripts

This section explains some scripts being useful when working with the OS. Some of them
are in a very experimental state and mentioned only for sake of completeness. However, they are still
a good starting point to write more sophisticated procedures.

C.1 codeupload.pl

This Perl script, located atCD/Projects/RHWOS_v1/etc/codeupload.pl , is used to upload
program code in MOTOROLA SREC format to the . It’s synopsis is as follows:

perl codeupload.pl -a|--address|--host <BOARD_IP> <SREC_FILE>

If no IP for the board to send the code to is given, the default value will be used, which is
192.168.1.111 . The data are sent to port number0xF0CE of the board.

First, the length of the SREC code about to be transmitted is sent. The data in the inSREC_FILE
are then sent line by line, each line forming a separate UDP packet. See figureC-1 for the format of
these packets. These packets are assigned a sequence number which has to be sent back by the board
to acknowledge the reception of the packet. When this acknowledge is not received within one second,
the packet is sent again. After three such retries, the program dies. As soon as the acknowledge is
received, the next packet is sent, containing the next SREC line. When all lines are sent, the program
exits.

245

246 BADGER, MUSHROOM, SNAKE APPENDIX C. SCRIPTS

0 7

0xC0

0xDE

Length, upper byte

Length, lower byte

(a) Length Packet

0 7

0xC0

0xDE

Seq. number, upper byte

Seq. number, lower byte

SREC linehhhhhhhhhhhhhhhhhhhhh
hhhhhhh

(b) SREC Line Packet

Figure C-1: Packets Sent bycodeupload.pl . Displayed here are the payloads of the
UDP packets sent by the script. First, the length of the SREC code to be transmitted is sent
(a), then the code is sent line by line (b), alongside a sequence number which has to be sent
back by the board.

C.2 debug.pl

This Perl script, located atCD/Projects/RHWOS_v1/debug.pl , is used for debugging pur-
poses. It acts as a daemon to receive debug messages from the . It is started by simply
typingdebug.pl and then waits for such debug messages.

Currently, debug messages are only sent when a process has been killed by the OS due to a memory
access error. These debug messages are sent to port0xFDE8 and contain the value of the program
counter.

As soon as such a debug message is received, the program counter is read in. Then, the*.elf files
of both the OS code and the user program code are dumped, parsed into HTML format and opened in
a browser, currently MOZILLA .

Any browser that can be started from the command line, taking the file to be
opened as an argument, could be used. The path to the browser is hard-coded;
please adjust$browserpath to the one fitting your needs. I know that hard-
coding variables is bad coding style, but this script is a dirty hack anyway. . .

The line corresponding to the position pointed at by the program counter is highlighted and scrolled
to.

The script mainly consists of a huge number of regular expressions which highlight the assembly code
to make it more readable and create links to the addresses in the code.

C.3. R E A D B A C K. P L 247

0 7 8 15 16 23 24 31

0x10 0x01 Seq. number, upper byte Seq. number, lower byte

MSB start address LSB

MSB length LSB

Figure C-2: Packets Sent byreadback.pl . The script sends UDP packets that start with
0x1001 , which is the command to read back memory contents. Next, the address where to
start memory readback is sent, then the number of bytes to be read from memory is sent.

C.3 readback.pl

This Perl script, located atCD/Projects/RHWOS_v1/readback.pl can be used to read mem-
ory contents back from the . Its synopsis is as follows:

perl readback.pl -a|--address|--host <BOARD_IP>
-s|--start <START_ADDR>
-l|--length <LENGTH>
-p|--packlen <PACKET_LENGTH>
<OUT_FILE>

BOARD_IPis the IP address of the , START_ADDRis the address in memory where to
start the readback,LENGTHis the number of bytes to be read back,PACKET_LENGTHis the length
of the packets the memory contents are sent in.OUT_FILE is the path to the file to be written and is
the only mandatory argument. For the other arguments, the following defaults apply:

BOARD_IP: 192.168.1.111
START_ADDR: 0
LENGTH: 1000
PACKET_LENGTH: 10000

All numbers must be entered as decimal values.

The code is requested from the OS by sending a request packet to port0xF0CE and,
as soon as it is received, written in binary format to the fileOUT_FILE. The packet format of these
requests is given in figureC-2.

Most often, program code is read back using this script. As binary program code is not very informa-
tive, the script described in sectionC.4can be used to disassemble the code.

248 BADGER, MUSHROOM, SNAKE APPENDIX C. SCRIPTS

C.4 mb-disassemble.pl

As no utility was provided by XILINX that was able to dump binary program code into an assembly
language listing and no such program was found on the Internet either, I decided to write such a tool
by myself. The synopsis of this Perl script is as follows:

perl mb-disassemble.pl [-r|--include-raw]
[-l|--include-line-numbers]
<BIN_FILE>

The -include-raw switch tells the script to include the raw instructions in the dump,
-include-line-numbers prepends the offset in the file to the lines. The disassembly is printed
to standard output.

The disassembler supports allµBlaze instructions that are officially documented. It can be found at
CD/Projects/RHWOS_v1/mb-disassemble.pl on the CD.

DAppendix
XF OS Configuration GUI

To easily configure the parameters of the OS, a Java GUI has been developed. Basic
scheduler networking and scheduler parameters can be adjusted, and the command user interface can
be customized to a certain degree. Apart from that, the following tasks can be started from within the
GUI, which simply calls the according makefiles:

generate Config generates a filed namedconfig.h placed in thecode directory of the system.
This file will be used to compile the system source files.

upload OS sends the base OS including the according hardware to the . If no such hard-
ware is present, it is generated first.

upload PROM stores the PROM file in the on-board EEPROM. If no such PROM file exists, it is
generated first.

erase PROM is used to remove the PROM file currently present in the EEPROM.

upload User Code compiles and links the user code and the external OS code and then uploads it to
the board.

clear Messageserases all messages displayed in the messages tab.

The GUI is mentioned in the appendix only as it is far from being finished. Only a subset of the
parameters can be adjusted, and the whole program is suspended when a background process is be-
ing executed. This means that no messages show up in the messages tab until a process has been
completed. This problem could be solved by adding multithreading to the program.

The sources of the GUI can be found on the CD:CD/Projects/XFOSConfig/ .

249

250 BADGER, MUSHROOM, SNAKE APPENDIX D. XF OS CONFIGURATION GUI

(a) Network Tab

(b) Scheduler Tab

(c) User Interface Tab

Figure D-1: XF OS Configuration GUI. Using this GUI, some key parameters of the OS
can be adjusted. Build and upload processes can be started too using this GUI.

EAppendix
R-FPGA MMU Draft

To manage the various memory technologies in the R-FPGA and to offer the hardware tasks services
to access these memory modules as shared memory or FiFos, the need for a memory management unit
(MMU) arose. I have combined the requirements for such a memory management unit and stated a
draft on how to implement this MMU in hardware. This draft has been meant as a suggestion and
has not been implemented by myself; the work has been delegated to Kristofer Jonsson who has been
doing his master’s thesis in the same project group. Due to the fact that I only suggested the draft and
that it was sort of off-topic1 in my thesis, I decided to put it into the appendix of this report. Overmore,
the actual implementation may differ from the specifications stated in the draft.

Following is the paper I submitted to a team meeting we held on the MMU. The paper has been
composed in note form, therefore I had to extend the formulations to include it in the report.

E.1 Available Resources

The MMU has to organize and manage the following memory technologies:

SRAM: 4 MB in total, organized as220 words· 16 bits · 2 banks

BlockRAM: 216 kB, organized as214 words· 16 bits

The SDRAM also being available has been neglected as it seems not being suitable for building fast
FiFos due to its more complicated access protocol in column and row addresses.

1the MMU belongs to the OS elements on the R-FPGA

251

252 BADGER, MUSHROOM, SNAKE APPENDIX E. R-FPGA MMU DRAFT

E.2 Basic Structure

To simplify the allocation and control hardware, a minimum and a maximum FiFo depth are defined.
All Fifos can be a multiple of this minimum depth in size. This minimum depht is termedblock size:

• minimum FiFo depthblock size

28 · 16 = 0.5 kb

• maximum FiFo depth

214 · 16 = 32 kb, which is enough for buffering audio data (2ch, 16 bit, 44.1 kHz) for 0.186 s

To organize the access to the FiFos, the connections between tasks and FiFos are listed in the VFDL
(virtual FiFo description list) containing the following information:

TID (task ID) TRFID (task-relative FiFo ID) Direction PFID (physical FiFo ID)

3 bits 3 bits 1 bit 4 bits

The task-relative FiFo ID is a virtual FiFo number in contrast to the physical FiFo ID. The width of the
information in this table is based on the assumptions that a maximum of 5 tasks can be present at the
same time and each task will use no more than 8 FiFos. 4 bits for the PFID results in a maxmimum of
16 FiFos being managed by the MMU.

In a second table, the MMU holds some details about the physically present FiFos:

FiFo ID Type BaseAddr Size Rd Ptr Wr Ptr

4 bits 3 bits 12 bits 6 bits 14 bits 14 bits

The FiFos are implemented using circular memory. For every write access, a write pointer is being
incremented. For every read access, a read pointer is being incremented. The FiFo is empty when the
read pointer points to the same address as the write pointer. The FiFo is full when the write pointer
incremented by 1 points to the same location as the read pointer.

3 bits for the type are needed as we have 5 types of FiFos:

• single-ported FiFo in SRAM bank 1

• single-ported FiFo in SRAM bank 2

• dual-ported FiFo in BlockRAM

• single-ported FiFo in BlockRAM accessible for read (directly accessed for write by a driver)

• sinlge-ported FiFo in BlockRAM accessible for write (directly accessed for read by a driver)

The 12 bit base address results from the difference between the SRAM address width 20 and the
minimum block size of width 8. The size of the fifo can be described with 6 bits due to the difference
of the maximum block size of width 14 and the minimum block size of width 8. The width of the read
an write pointers equals the width of the maximum block size.

E.2. BASIC STRUCTURE 253

MMU MFIR MFIW

DFIR0 DFIRN DFIW0 DFIWN

ENTI
D

TR
FI
D

ER
R

DOAC
K

ENTI
D

TR
FI
D

ER
R

DIAC
K

ER
REN DO ER
REN DO ER
REN DO ER
REN DO

... ...

... ...

MEMORY

Figure E-1: MMU Entity . The ports of the MMU are displayed here. The MMU should
provide access to the FiFo using a bus write interface (MFIW) and a bus read interface
(MFIR). Accesses over these busses are time-multiplexed, so no two read or write accesses
can occur at the same time. As there are device drivers which do not accept latencies when
accessing a FiFo, direct read access FiFo interfaces (DFIR) and direct write access FiFo
interfaces are dedicated to these drivers.

254 BADGER, MUSHROOM, SNAKE APPENDIX E. R-FPGA MMU DRAFT

TID

TRFID

ACK

DO

ERR

EN

TID

TRFID

ACK

DI

ERR

EN

VFDL

PFDL

DFWPR DFRPR

Dual Ported BlockRAMDP-BRAMDP-BRAM

Write Interface

Read Interface

CONTROLLER

DFWC

DFWC

ER
R

EN

DO

ER
R

EN DIDF
IW

0

DF
IR

0... ...

SRAM Bank

SRAM Bank

Figure E-2: MMU Block Diagram. A view of the inside of the MMU is given here. The
VFDL and the PFDL are implemented as look-up tables with read/write access. These
look-up tables should be dual ported to allow for reasonable speed.

DFWC: direct FiFo write controller DFRC: direct FiFo read controller
DFWPR: direct FiFo write pointer register DFRPR: direct FiFo read pointer register
VFDL: virtual FiFo description list PFDL: physical FiFo description list

FAppendix
VHDL Issues

F.1 Coding Guidelines

For VHDL coding I have used the coding guidelines of the Microelectronics Design Center of ETH.
As a recapitulation I like to give a short overview over the main rules:

Constant Names

• Useupper-caseletters and "_" only (e.g.,WIDTH, RAM_DEPTH, LFSR_INIT).

• Avoid "_" in generics(synthesis attaches generic names to other names with "_" as delimiter).

Signal Names

• Start with anupper-caseletter.

• Have asuffix with syntax "x[CRESDTAZ][IO]?B?" ("[...]" denotes a choice, "?" means op-
tional).

• The suffix part "[CRESDTAZ]" indicates the class of the signal:

• The suffix part "[IO]?" indicatesinput andoutputsignals of an entity (e.g.,COEFFXDI, FUL-
LX SO)

• The suffix part "B?" indicates activelow signals.

255

256 BADGER, MUSHROOM, SNAKE APPENDIX F. VHDL I SSUES

Class Char Example Description

clock C CLKX C clock

reset R RSTXRB asynchronous reset

enable E LOADCNTXE, STARTCTRLXE trigger some synchronous event

control/status S SELINPUTXS, FULLX S static control signals, status signals

data/address D SAMPLEXD, RAM ADRXD data and address signals

test T SCANENXT, RAM ISOLXT test signalsa

asynchronous A asynchronous signals

three-state Z three-state bus signals

Table F-1: Coding Style DZ for VHDL. These are the suffixes suggested by the DZ to
differentiate between the various signal types

ain contrast to these guidelines, I have used the T suffix for tri-state control signals

Variable Names

• Start with alower-caseletter (e.g., temp, i, currentState).

• Haveno suffix(as opposed to signal names).

Type Names

• Have asuffix"Type" or a name that implies a type (e.g. stateType, stdLogicArray).

FSM Names

• Have aprefix"st" and a name that implies the state(e.g.,).

File Names

• Have the same name as the contained design unit (possibly with the first or all letters in lower
case).

• Have file suffix ".vhd" or ".vhdl".

F.2 VHDL Error Hotlist

When intensely modelling circuits in VHDL, the following pitfalls are commonly encountered:

F.2. VHDL ERRORHOTLIST 257

1. default assignments

It must not be possible to go through a VHDL process statement without having all signals
assigned a defined value. The most secure approach is to make a default assignment for all
signals used at the beginning of the process.

2. reset polarity

Some systems use active high reset signals, others use active low signals. If you don’t respect
the actual reset polarity, you may risk your system stuck in the reset state. And,no, this is not
easily seen in the behaviour of the system!

3. sensitivity list

The sensitivity list is a syntax element of minor relevance for the synthesis process. It is, how-
ever, very important for the simulation tool. The simulation can only be guaranteed to behave as
the synthesized circuit does if attention is payed on correct sensitivity lists.

4. correct user constraints file (*.ucf)

Having the wrong*.ucf file assigned to the project is fatal: often, no error message is spawned
during the implementation process, but the design might still not work as the pins are not located
as expected.

258 BADGER, MUSHROOM, SNAKE APPENDIX F. VHDL I SSUES

GAppendix
Contents of the CD

CD

Documentation

cores

da

doxygen

Presentation.pdf

Projects

MidiSynth

OSBridge

pcores

RHWOS_v1

XFOSConfig

Report.pdf

Repositories

cvs

nobssa_cvs

XFCodeReference.html

XFCodeReference.pdf

Slides of the final presentation of
this master's thesis

Final report of this master's thesis

Browseable HTML operating system
code reference

Operating system code reference

Documentation LaTeX source for
the OPB and LMB cores

Documentation LaTeX source for
the report and the presentation
slides

Operating system code reference,
doxygen sources for PDF and HTML

MIDI synthesizer adapted for the R-
FPGA

OS bridge R-FPGA components

OPB and LMB cores

The RHWOS hardware and software
and the according makefiles and
Platform Studio Project

Source code for the Java
XFOSConfig GUI

Copy of the whole project CVS
repository, taken on April 29, 2004

Copy of the documentation CVS
repository, taken on April 29, 2004

259

260 BADGER, MUSHROOM, SNAKE APPENDIX G. CONTENTS OF THECD

HAppendix
Glossary

ASIC Application-Specific Integrated Circuit. An integrated circuit with functionality customised for
a particular use, rather than being for general-purpose use.

ATX An industry-wide specification for a desktop computer’s motherboard. The standard also defines
the connector for the power supply.

C-FPGA CPU FPGA. The FPGA on the board which is used as a CPU

CLB Configurable Logic Block. A block that can be used to implement some logical and state ma-
chine functionality. It consists of a number of look-up tables, multiplexers, and flip-flops. FP-
GAs are basically an array of CLBs.

CoDec Coder/Decoder. Device being DAC and ADC at a time.

CPLD Complex Programmable Logic Device. A combination of a fully programmable AND/OR
array and a bank of macro-cells. CPLDs are non-volatile.

CPU Central Processing Unit. The central unit in a computer system containing the logic circuitry
that performs the instructions of a computer’s programs.

EDK Embedded Development Kit. A software environment provided by XILINX to develop embed-
ded systems for their FPGA products.

FiFo First-In, First-Out. A list of data items implemented in a way that the oldest item is returned
next when a read access occurs. A FiFo is often used as a buffer, e.g. to exchange data between
tasks which process data at a different speed. FiFos can be implemented either in hardware or
in software.

FlashRAM Flash Random Access Memory. Retains data bits in memory even when power is re-
moved. It is organized so that a section of memory cells is erased in a single action or “flash”.

261

262 BADGER, MUSHROOM, SNAKE APPENDIX H. GLOSSARY

The protocol to read and write data is rather complex. FlashRAM is slower and more expensive
than SRAM.

FPGA Field-Programmable Gate Array. An integrated circuit that can be programmed in the field
after manufacture. FPGAs are volatile.

GPIO General Purpose I/O. Inputs and outputs that can be used for arbitrary data transfer.

GUI Graphical User Interface. An interface used for human-computer interaction that is based on
graphical rather than textual elements, i.e. buttons and menus.

ICAP Internal Configuration Access Port. An FPGA configuration method that is available to the
internal logic resources after the device is configured. The ICAP block emulates the SelectMAP
configuration protocol.

ISE Integrated Software Environment. A software environment provided by XILINX to synthesize
and implement designs for their configurable logic devices (FPGAs, CPLDs). It also includes
tools to perform timing analyses and to view the designs graphically.

ISEF Instruction Set Extension Fabric. A software-configurable data-path based on proprietary pro-
grammable logic defined by Stretch, Inc. Isef can be used to extend a processor instruction set
and define new instructions using C/C++ code.

JTAG Joint Test Action Group. IEEE Standard 1149.1-1990 circuitry that may be built into an inte-
grated circuit to assist in the test, maintenance, and support of assembled printed circuit boards.
In the FPGA context, this circuit is used to download configuration data (in-system program-
ming) and to perform debugging actions. The circuit is named after their developers.

LED Light Emitting Diode.

LMB Local Memory Bus. The bus used inµBlaze systems for fast access to on-chip BlockRAM.

MAT Memory Allocation Table. The table holding the information which blocks in the memory are
currently being used for which purpose.

MMU Memory Management Unit. A hardware device performing the run-time mapping from virtual
to physical addresses.

OPB IBM CoreConnect On-chip Peripheral Bus. A bus structure used to access on-chip peripherals
such as memory controllers and I/O device drivers.

OS Operating System. The program that, after being initially loaded into the computer by a boot
program, manages all the other programs in a computer. These other programs, the applications,
are offered services by the OS, e.g. management of memory and access to attached devices.

PCB Process Control Block. Representation of a process in the operating system. The PCB holds
information about the process’ state, register contents, scheduling information, I/O status infor-
mation etc.

263

PROM Programmable Read-Only Memory. Memory that can be modified once by a user. As this
leaves no margin for error, most PROM chips are so called EPROMS which are erasable and
reprogrammable.

R-FPGA Reconfigurable FPGA. This FPGA is used as the reconfigurable resource in the system

RHWOS Reconfigurable Hardware Operating System. A specialised operating system (OS) that
deals with the resource allocation and scheduling problems that come with a system involving
reconfigurable hardware (FPGA’s).

RISC Reduced Instruction Set Computer. A CPU that is designed to perform a smaller number of
types of computer instruction so that it can operate at a higher speed. Since each instruction
type that a computer must perform requires additional transistors and circuitry, a larger set of
computer instructions tends to make the CPU more complicated and slower in operation.

SDRAM Synchronous Dynamic Random Access Memory. Retains data bits in memory as long as
power is being supplied. Bits are stored in small capacitances. Due to charge loss in these
capacitances, the cells need to be refreshed periodically. This memory technology is slower but
cheaper than the SRAM technology. The protocol to access the data is more complicated than
the one used for SRAMs.

SRAM Static Random Access Memory. Retains data bits in memory as long as power is being ap-
plied. Bits are stored in a register-like structure. Fast but expensive memory technology.

UART Universal Asynchronous Receiver/Transmitter. Controller of a computer’s interface to its at-
tached serial devices. Specifically, it provides the computer with the RS-232 interface so that it
can “talk” to and exchange data with modems and other serial devices.

VGA Video Graphics Array. The accepted minimum standard for PC monitors. Introduced by IBM
in 1987.

VHDL VHSIC Hardware Description Language. Design-entry language for FPGAs and ASICs in
electronic design automation.

VHSIC Very-High-Speed Integrated Circuit. A type of very fast digital logic used for current designs.

264 BADGER, MUSHROOM, SNAKE APPENDIX H. GLOSSARY

IAppendix
Bibliography

[1] Microblaze uClinux. http://www.itee.uq.edu.au/~jwilliams/
mblaze-uclinux .

[2] Alliance Semiconductor.AS7C4096/AS7C34096, 5V/3.3V 52K x 8 CMOS SRAM, v.1.8 edition,
March 2002.http://www.alse.com/pdf/sram.pdf/fa/AS7C34096.pdf .

[3] Free Software Foundation, Inc.GNU Make. http://www.gnu.org/software/make/ .

[4] Kristofer Jonsson. Component and Services for Reconfigurable OS. Master’s thesis, ETH Zürich,
May 2004.

[5] Marco Kuster. Firmware for Reconfigurable Hardware OS Platform. Master’s thesis, ETH
Zurich, Computer and Networks Lab, December 2003.

[6] Maxim Integrated Products.Remote/Local Temperature Sensor with SMBus Serial Interface,
March 1998.http://pdfserv.maxim-ic.com/arpdf/MAX1617.pdf .

[7] Memec, Inc.http://www.memec.com .

[8] MIDI Manufacturers Association. MIDI Protocol Specification.http://www.midi.org/
about-midi/specshome.shtml .

[9] Mind NV. http://mind.be .

[10] Samuel Nobs. Prototype Board for Reconfigurable OS. Term thesis, ETH Zurich, Computer and
Networks Lab, July 2003.

[11] Samuel Nobs and Daniel Engeler. VLSI Design Project: MIDI Synthesizer. Term thesis, ETH
Zurich, Integrated Systems Laboratory, February 2003.

[12] RedBoot.http://sources.redhat.com/redboot .

265

http://www.itee.uq.edu.au/~jwilliams/mblaze-uclinux
http://www.itee.uq.edu.au/~jwilliams/mblaze-uclinux
http://www.alse.com/pdf/sram.pdf/fa/AS7C34096.pdf
http://www.gnu.org/software/make/
http://pdfserv.maxim-ic.com/arpdf/MAX1617.pdf
http://www.memec.com
http://www.midi.org/about-midi/specshome.shtml
http://www.midi.org/about-midi/specshome.shtml
http://mind.be
http://sources.redhat.com/redboot

266 BADGER, MUSHROOM, SNAKE APPENDIX I. B IBLIOGRAPHY

[13] Katja Reider and Silvio Neuendorf.Wald-Detektiv Dario Dax. Coppenrath Verlag, 2004.

[14] Michael Ruppen. Reconfigurable OS Prototype. Master’s thesis, ETH Zurich, Computer and
Networks Lab, 2003.

[15] Abraham Silberschatz, Peter Galvin, and Greg Gagne.Applied Operating System Concepts,
chapter 4 and 6. John Wiley & Sons, Inc., 1 edition, 2000.

[16] Abraham Silberschatz, Peter Galvin, and Greg Gagne.Applied Operating System Concepts,
chapter 9. John Wiley & Sons, Inc., 1 edition, 2000.

[17] Christoph Steiger, Herbert Walder, and Marco Platzner. Heuristics for Online Scheduling Real-
time Tasks to Partially Reconfigurable Devices. InProceedings of the 13rd International Confer-
ence on Field Programmable Logic and Application (FPL’03), pages 575–584. Springer, Septem-
ber 2003.

[18] Stretch, Inc.http://stretchinc.com/ .

[19] Herbert Walder, Samuel Nobs, and Marco Platzner. XF-BOARD: A Prototyping Platform for
Reconfigurable Hardware Operating Systems. Submitted to ERSA 04, 2004.

[20] Herbert Walder, Samuel Nobs, and Marco Platzner. XF-Board: Prototype Platform for Recon-
figurable Hardware Operating System. Technical Report TIK Nr. 193, Swiss Federal Institute of
Technology (ETH), Zurich, March 2004.

[21] Herbert Walder and Marco Platzner. Online Scheduling for Block-partitioned Reconfigurable
Devices. InProceedings of the International Conference on Design, Automation and Test in
Europe (DATE), pages 290–295. IEEE Computer Society, March 2003.

[22] Herbert Walder and Marco Platzner. Reconfigurable Hardware Operating Systems: From Design
Concepts to Realizations. InProceedings of the 3rd International Conference on Engineering of
Reconfigurable Systems and Architectures (ERSA), pages 284–287. CSREA Press, June 2003.

[23] Herbert Walder and Marco Platzner. Reconfigurable Hardware OS Prototype. Technical Report
TIK Nr. 168, Swiss Federal Institute of Technology (ETH), Zurich, April 2003.

[24] Herbert Walder, Christoph Steiger, and Marco Platzner. Fast Online Task Placement on FPGAs:
Free Space Partitioning and 2D-Hashing. InProceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS) / Reconfigurable Architectures Workshop (RAW),
page 178. IEEE Computer Society, April 2003.

[25] Xess Corp. XSV Board V1.1 Manual, May 2001. http://www.xess.com/manual/
xsv-manual-v1_1.pdf .

[26] Xilinx, Inc. Designing Custom OPB Slave Peripherals for MicroBlaze, February
2002.http://www.xilinx.com/ipcenter/processor_central/microblaze/
doc/opb_tutorial.pdf .

http://stretchinc.com/
http://www.xess.com/manual/xsv-manual-v1_1.pdf
http://www.xess.com/manual/xsv-manual-v1_1.pdf
http://www.xilinx.com/ipcenter/processor_central/microblaze/doc/opb_tutorial.pdf
http://www.xilinx.com/ipcenter/processor_central/microblaze/doc/opb_tutorial.pdf

267

[27] Xilinx, Inc. MicroBlaze Hardware Reference Guide, March 2002. http://www.xilinx.
com/ipcenter/processor_central/microblaze/doc/hwref.pdf .

[28] Xilinx, Inc. LMB BlockRAM Interface Controller, 1.5 edition, November 2003.

[29] Xilinx, Inc. MicroBlaze Processor Reference Guide, 6.1 edition, September 2003.

[30] Xilinx, Inc. OPB Ethernet Lite Media Acess Controller, 1.8 edition, November 2003.

[31] Xilinx, Inc. OPB IPIF Architecture, 1.3 edition, January 2003.http://www.xilinx.com/
ipcenter/catalog/logicore/docs/opb_ipif.pdf .

[32] Xilinx, Inc. Virtex-II Platform FPGA User Guide, 1.8 edition, April 2004. http://www.
xilinx.com/bvdocs/userguides/ug002.pdf .

http://www.xilinx.com/ipcenter/processor_central/microblaze/doc/hwref.pdf
http://www.xilinx.com/ipcenter/processor_central/microblaze/doc/hwref.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/opb_ipif.pdf
http://www.xilinx.com/ipcenter/catalog/logicore/docs/opb_ipif.pdf
http://www.xilinx.com/bvdocs/userguides/ug002.pdf
http://www.xilinx.com/bvdocs/userguides/ug002.pdf

	Introduction
	Background and Motivation
	Thesis Assignment
	Development Platform
	FPGAs
	Peripherals
	Memory

	Development Environment

	Related Work
	Previous Work at the Computer Engineering and Networks Lab
	Linux Ports
	Stretch S5000 Family

	System Overview
	Hardware Elements
	MicroBlaze CPU

	Peripherals and Peripheral Drivers
	Software Components
	System Startup

	Scheduler
	CPU Scheduling in General
	CPU Scheduling in the XF-Board OS
	Round-Robin Scheduler
	Process Control Blocks (PCB)
	Process Statuses

	HW Scheduling in the XF-Board OS

	Memory
	Memory Layout
	BlockRAM Memory
	SRAM Memory
	SDRAM Memory

	Memory Allocation
	malloc and free
	Stack Allocation and Management

	Memory Protection
	Stack Monitoring
	Read-only protection

	Services
	User Interface
	Command User Interface: Shell
	Graphics Manager

	OS Bridge
	Configuration of the R-FPGA

	Hardware Documentation
	LMB BlockRAM Interface Controller
	Introduction
	Parameters
	I/O Signals
	Core Operation
	Driver
	Software

	LMB Text Display Driver
	Introduction
	Parameters
	Insertion of the Core
	I/O Signals
	Driver
	VGA Core Operation
	Software
	Outlook

	OPB Clock Generator
	Introduction
	Parameters
	I/O Signals
	Core Operation
	Software
	Outlook

	OPB Test-And-Set Lock
	Introduction
	Parameters
	I/O Signals
	Core Operation
	Outlook

	OPB MIDI Interface
	Introduction
	Parameters
	I/O Signals
	Core Operation
	Software

	OPB OS Bridge
	Introduction
	Parameters
	I/O Signals
	Core Operation
	Software
	Outlook

	OPB PS/2 Keyboard Driver
	Introduction
	Parameters
	I/O Signals
	Core Operation
	Software
	Outlook

	OPB Register Watcher
	Introduction
	Parameters
	I/O Signals
	Core Operation
	Driver
	Software
	Outlook

	OPB SRAM Controller
	Introduction
	Parameters
	I/O Signals
	Driver
	Software
	Timing for Memory I/O Signals
	Outlook

	OPB Temperature Module
	Introduction
	Parameters
	I/O Signals
	Driver
	Core Operation
	Software

	OPB Timer
	Introduction
	Parameters
	I/O Signals
	Core Operation
	Driver
	Software

	OPB Interrupt Controller
	Introduction
	Parameters
	I/O Signals
	Core Operation
	Software

	OPB Time Counter
	Introduction
	Parameters
	I/O Signals
	Core Operation
	Software

	OS Bridge, Part R-FPGA
	Introduction
	OS Bridge Bus Master
	OS Bridge Slaves

	Operating System Code
	XF-Board Operating System Data Structure Documentation
	BITS Struct Reference
	CommandEntry_t Struct Reference
	ContextDescriptor_t Struct Reference
	GraphicListItem_t Struct Reference
	MemoryBlock_t Struct Reference
	StackDescriptor_t Struct Reference
	TaskDescriptor_t Struct Reference
	XContactInfo Struct Reference
	XF_PFDL_t Struct Reference
	XF_VFDL_t Struct Reference
	XFFAT Struct Reference
	XPacketData Struct Reference
	XPacketData8 Struct Reference
	XPacketInfo Struct Reference
	XPortListener Struct Reference

	XF-Board Operating System File Documentation
	boot.c File Reference
	clockman.c File Reference
	clockman.h File Reference
	cui.c File Reference
	cui.h File Reference
	graphix.c File Reference
	graphix.h File Reference
	kbd_layout_en.c File Reference
	kbd_layout_en.h File Reference
	keyboard.c File Reference
	keyboard.h File Reference
	lock.h File Reference
	memory.c File Reference
	memory.h File Reference
	messagewin.c File Reference
	messagewin.h File Reference
	mmu.c File Reference
	mmu.h File Reference
	network.c File Reference
	network.h File Reference
	osbridge.h File Reference
	scheduler.c File Reference
	scheduler.h File Reference
	selectmap.c File Reference
	selectmap.h File Reference
	srec.c File Reference
	srec.h File Reference
	user.c File Reference
	user.h File Reference
	util.c File Reference
	util.h File Reference
	vga.c File Reference
	vga.h File Reference
	xfinclude.h File Reference

	XF-Board Operating System Page Documentation
	Todo List
	Deprecated List
	Bug List

	Skill Forwarding
	How to Build the System
	How to Write User Functions
	How to Write an OPB Core
	VHDL Module
	Additional Files: *.mhs and *.pao
	File Names and Directory Structure

	Outlook and Acknowledgements
	Future Work and Improvements
	Acknowledgements

	xfintc Driver
	File Documentation
	xfintc_l.c File Reference
	xfintc_l.h File Reference
	xfintc_lg.c File Reference
	xfintc_lowLevelHandler.c File Reference

	Data Structure Documentation
	XFVectorTableEntry Struct Reference

	User Code Generation
	Scripts
	codeupload.pl
	debug.pl
	readback.pl
	mb-disassemble.pl

	XF OS Configuration GUI
	R-FPGA MMU Draft
	Available Resources
	Basic Structure

	VHDL Issues
	Coding Guidelines
	VHDL Error Hotlist

	Contents of the CD
	Bibliography

