m Eidgendssische Technische HochschuleZiirich
Swiss Federal Institute of Technology Zurich

Olivier Salama

High-Performance Computing mit
TIKDIMM

Diplomarbeit DA-2004-06
Wintersemester 2003/2004

Betreuer: Christian Plessl

Verantwortlicher:
Prof. Dr. Lothar Thiele

10.3.2004

I Institut fiir Technische Informatik und Kommunikationsnetze
' ¥ Computer Engineering and Networks Laboratory

ETH ——
' . Technische Informatik und

Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Wintersemester 2003/2004

DIPLOMARBEIT
for

Herrn Olivier Salama (D-ITET)

Main Reader: Christian Plessl|

Issue Date: 3. November 2003
Submission Date: 10. Marz 2004

High-Performance Computing mit TIKDIMM

Contents

1 Problem Task 6
1.1 Background 6
1.2 ProblemTask. e 7
1.3 Tasks e e 7
1.4 Organization e e e e e 8

2 Introduction 9
2.1 Hardware e 9
2.2 Software COMPONENtS... o e 9
2.3 Acknowledgements e e 9

3 Architecture 10
3.1 Hardware Summary o 10
3.2 System OVEIVIEW o e e e e e 10
3.3 Device Driver. e e 13
3.4 TKDMLibrary e 13

3.4.1 Functional Principle 13
3.4.2 JobProcessing 14

4 Detailed Implementation 17

4.1 Firmware e e 17
4.1.1 PageZeroController 17
4.1.2 MemoryBackend 17
4.1.3 SelectMAP Controller 18
414 Frmwareversion 7o e 18
415 LatestFirmwareversion 20
4.1.6 RegisterBlock. 20

4.2 Target FPGA e 23
4.2.1 Connectiontothe SDRAM. 23

4.3 The GNU/Linuxdevicedriver e 23
4.3.1 Kernel - Mode Programming Interface TKM 31
432 SystemCalls e 34
433 Qoct ... e 34
434 read e 36
435 Write e 37
4.3.6 Usage ofthe Driver,anexample 37

4.4 Library APL .. . o e 38
4.4.1 Initialisation 38
442 Mainfunctions. 38
4.4.3 MoreMethods. 39
4.4.4 Lengthoftheoutputdata... 40
4.45 Functions related to the Target FPGA. 40

4.5 Reference Application. e 41

4.6 Servicemodule. e 43

5 Status and Future Work

5.1 StatusS. e e e e e
5.1.1 Initial firmware and driver version

5.1.2 Latest firmware and driverversion. o oo e
5.1.3 TKDMLibrary
5.2 Future Work

A Recovering from an oop’s error

B Benchmark

45
45
45
45
45
45

47

47

List of Figures

1 The TIKDIMM expansion module.

2 the connection of the FIFOs in the Abstraction Layer FPGA.
3 Architecture of the Tikdimm

4 Environment of thedriver

5 Dataflowofajob L

6 Write process of th&ait() function

7 Read process of th&ait() function.

8 Firmware Units.

9 Demultiplexer for the SDRAM commands...

10 The main state machine of the memory controller
11 Read state machine of the memory controller.

12 Write state machine of the memory controller.

13 Refresh state machine of the memory controller.

14 Structural connection of the four memory controller FSMs.
15 Schematic of the Target FPGAtop levelentity

List of Tables

1 Virtualladdressspace... e

2 Writableregisters

3 The Target general-purpose registers configuration register
4 Readableregisters

5 Value and meaning of the bus switch control byte.
6 loctl commans for the servicemodule

11
12
13
14
15
16
17

22

24

25
26

27

28

29

12

20
20

21
35

Abstract

The TKDM module is a PC expansion card for reconfigurable computing applications. It is
FPGA-based and provides on-board memory. The card is realised as DIMM module.

Reconfigurable computing takes advantage of the combined strengths of hardware and software.
The computationally-intensive part of an application is migrated to the reconfigurable hardware.

This thesis presents a toolkit for the TKDM platform. It includes a driver and a library to write
user space applications in a simple way. Furthermore, a design template for the FPGA which holds
the reconfigurable processing unit is presented. The TKDM module firmware is discussed.

After an introduction on the background of the TKDM module and the motivation of this thesis,
the hardware architecture is summarised. The functional principal of the library is explained.

A further part gives an overview of the firmware units and their function. The initial version of
the firmware has caused some problems. They concern the memory controller. One solution which
is discussed restricts the refresh abilitie of the memory controller. This makes it impossible to write
an efficient driver. An improved memory controller is presented that doesn't limit the driver.

A function reference of the driver APl is given. The library interface is discused in detail. Finally
reference application demonstrates the functionality of the TKDM library.

Zusammenfassung

Das TKDM Modul ist eine PC-Erweiterungskarte fiir Reconfigurable Computing Applikationen. Sie ist
FPGA basiert und bietet eingebauten Speicher. Die Karte ist als DIMM Modul realisiert.

Reconfigurable Computing bezieht seine Vorteile aus der kombinierten Starke von Hard- und Soft-
ware. Der rechenintensieve Teil der Applikation wird in die reconfigurierbare Hardware migriert.

Diese Diplomarbeit prasentiert ein Toolkit fur die TKDM Plattform. Dieses umfasst einen Treiber
und eine Bibliothek, die es ermdglicht Applikationen auf einfache Weise zu programmieren. Des Weit-
eren wird ein design Template fur das FPAG, das die reconfigurable computing Applikation implemen-
tiert, besprochen. Die TKDM firmware wird vorgestellt.

Nach einer Einfuhrung zum Hintergrund des TKDM Moduls und der Motivation dieser Arbeit, wird
eine Zusammenfassung der Hardware Architektur gegeben. Das Funktionsprinzip der Bibliothek wird
erlautert.

Ein weiterer Teil gibt eine Ubersicht der Firmware Teile und deren Funktion. Die urspriingliche
Version der Firmware hatte einige Schwierigkeiten mit dem Memory Controller. Eine Lésung, die be-
sprochen wird, schrankt die Refresh Fahigkeit ein. Das macht es unmdglich einen effizienten Treiber zu
schreiben. Danach wird ein verbeserter Memory Controller vorgestellt, der den Treiber nicht einschrankt.

Es gibt eine Funktionsreference der Trreiber API. Die Funktionen der Bibliothek werden im De-
tail erklart. Schlussendlich wird die Funktionalitdt der Bibliothek anhand einer Referenz Applikation
demonstriert.

1 Problem Task

This section describes the problem task for my diploma thesis.

1.1 Background

The basic idea of Reconfigurable Computing is to use reconfigurable hardware elements for the accel-
eration of compute intensive algorithms. Often it is not feasible or simply inefficient to map complete
applications to the reconfigurable device. Thus, frequently a system that combines a general purpose
CPU and a reconfigurable device is used. Typically, the sequential and control-flow dominated parts of
applications are executed on the CPU, whereas the data-flow oriented parts of the application are mapped
to the reconfigurable device. The reconfigurable device serves as an application specific co-processor,
that is reconfigured on-demand.

Reconfigurable computing systems have been studied for several years and many research systems
have been built. Most of these systems are attached to or integrated in a PC. Most high-end systems use
PCl extension cards that provide reconfigurable devices—usually FPGAs—and interface logic. Low-end
systems use other, slower interfaces like USB, parallel or serial ports. When building custom reconfig-
urable computing systems, reconfigurable devices are usually attached to the system memory or |O-bus.

Since the the gap between CPU core speed, the memory subsystem speed and 10 bus speed is getting
larger, attaching reconfigurable units to a peripheral bus like PCI is getting less attractive, due to high
latencies and slow speed in comparison with the CPU core frequency. This limits the application of
reconfigurable computing systems attached to 10-busses to applications that show moderate sensitivity
to communication latency and restricted bandwith constraints.

For applications that require a closer interaction of CPU and the reconfigurable device another option
for coupling is desireable. An interessting idea is to use the system memory bus for that purpose. As
main memory access speed and latency is a key issue in the design of fast computing systems, all CPUs
have advanced, fast memory interfaces. Attaching reconfigurable devices to the memory bus of the CPU
has the potential of delivering much lower communication latency and higher bandwidth compared to
PCI attached solutions.

The idea of integrating reconfigurable logic in standard PCs by using memory modules has emerged
only recently. To our knowledge there is only one research group that has persued this idea in depth: the
group of Philipp Leong has developed thigchard system [3]. Pilchard is a 133 MHz DIMM SDRAM
compatible module that uses a Virtex-300 FPGA. Pilchard does not provide on-board RAM and is con-
figured via an attached JTAG programmer. Pilchard has been used in a large number of projects [8][1][2].

In a previous diploma thesis conducted by Andreas Schweizer [7] an FPGA module that attaches to
the DIMM bus calledTKDM (pronounce: tik-dimm) has been built. TKDM provides several architec-
tural and technological enhancements over Pilchard:

e TKDM uses the latest Xilinx Virtex-Il FPGA technology
e TKDM features 64MB on-board SDRAM to provide sufficient memory for data-buffers

e TKDM can be configured and powered over the DIMM memory bus, thus no external connectors
are needed

e TKDM provides a firmware layer, that facilitates the development of applications by abstracting
many system integration details

The TKDM hardware design and an initial TKDM firmware has been completed in the diploma the-
sis by Andreas Schweizer. The hardware design is fully debugged and tested and the basic firmware and
driver functions have been implemented.

Meanwhile, the driver and the firmware have been extended such that a proof-of-concept system
is running now. We have published a paper on the TKDM project and its current status that will be
published at the FPT'03 conference this year in December [5].

1.2 Problem Task

The goal of this thesis is to build on this proof-of-concept demonstrator developed in the previous work.
While the existing demonstrator has shown, that the TKDM system is working there are three open
issues, that shall be tackled in this work:

1. TKDMtoolkit: Overall, the driver and firmware framework is working, but a careful restructuring
will make the framework much easier to use. To facilitate the implementation of a real application
a TKDM toolkit is needed. The toolkit shall provides both, a useful driver APl and user libraries
for TKDM access, as well as reconfigurable IP cores for the implementation of application specific
co-processors on the FPGA.

2. Application: The use of the the TKDM toolkit shall be demonstrated with a real compute intensive
application. This application running on the host CPU and TKDM shall show a clear speedup when
compared to a CPU only solution. Possible fields of application are hardware-accalerated filters
for image-processing, video decoding, data compression or hashcode algorithms.

3. Performance: There are some unresolved communication performance issues that result from
the interaction of the chipset (northbridge controller) of the PC’s Pentium 3 mainboard with the
TKDM board. The problem arises due to the deactivation of caching for the memory area used by
TKDM. We are confident, that switching to a Pentium 4 based mainboard can help here, due to
thee finer degree of cache control available in Pentium 4 CPUs.

1.3 Tasks

1. Background FPGAs and tools

Make yourself familiar with Xilinx Virtex-1l FPGAs. The Virtex-Il data-sheet [9] is a good starting
point. Make yourself familiar with the Xilinx ISE development tools for FPGA design. Recently
our department aquired a number of licenses for Synplify Pro, a state-of-the-art FPGA synthesis
tool. It makes sense to switch to Synplify for synthesis early in the project.

2. TKDM board

Read the documentation on TKDM as provided in the thesis report [7] and in the FPT'03 paper.
In particular, make sure that you have a good understanding how the firmware is working. This is
the area where you will work in. Make yourself familiar with the implementation (VHDL code)

of the firmware and with the Linux device driver for TKDM.

3. Implement application withing current firmware

Start with the implementation of an application that needs only small modifications to the current
firmware and drivers. The experience from this implementation will help to define a good TKDM
toolkit.

4. Definition and implementation of the TKDM toolkit

1.4

Define a TKDM toolkit based on your experience with the current firmware, drivers and the imple-
mentation of the demo application. Write a design-document that describes the interfaces provided
by the toolkit in detail. Implement the TKDM toolkit according to the specification.

Implement application

Find a suitable application that can be implemented on the TKDM system. The application should
have one or several compute intensive kernels that can be mapped to the TKDM board. The
resulting application should show a significant speedup when compared to the CPU only system.
Port to Pentium 4 mainboard

In the previous Diploma thesis it has been found that the communication performance of TKDM
in a Pentium 3 based system is limited because of problems with the mainboards chipset. Initial
tests for a different, Pentium 4 based mainboard, have shown that the performance can be largely
increased.

Port the TKDM firmware to this mainboard. The mainboard uses the same DIMM memory-bus
protocol but runs at 133MHz instead of 100MHz and uses a different address mapping. The current
version of the firmware is slightly to slow to run at 133MHz

Organization

Schedule

Make a realistic schedule for your project at the beginning of your work and discuss it with your
advisor. Define reasonable milestones and keep track of the work progress underway.

Meetings

Fix a time for a weekly meeting with your advisor. Prepare for this meeting and present a short
summary of the current state of your work and a plan for the next steps. Current problems shall be
discussed. Additional meetings will be held on demand.

Documentation

Please keep in mind that the thesis report is consideredragon part of your work. Take your
time to do a careful documentation. A thesis report is a scientific report. This implies the use of a
specific language and methodology.

The main goal of the thesis report is to explain to the reader these points:

— What is the problem?

— What has been done by others so far?
— What are the design alternatives?

— Why did you chose your design?

— How does your design work?

Of course not every detail can be discussed in great detail, but it should be possible to get a good
idea of how things work without going to look into the code oneself.

2 Introduction

2.1 Hardware

The TKDM module was designed in a previous diploma thesis conducted by Andreas Schwiezer ([7]).
It is a PC expansion card for the DIMM bus and provides a FPGA, which acts as application specific
CO-processor.

2.2 Software Components

The thesis presents the TKDM library. It is suitable for writing applications which wants to use the
TKDM module. It provides an easy to use interface. The different steps which are necessary to use the
module are hidden from the application.

The driver which supports the library is presented. It is a Linus kernel module. lIts interface to the
user space is discussed in detail. The reference Application demonstrates the usage of the TKDM library.
It also serves as template.

The TKDM module is run by the firmware. The thesis gives an overview of this vhdl design. Espe-
cially the parts, which caused problems are explained in great detail.

2.3 Acknowledgements

In spite of the enormous lack of time during the last weeks of the work, it was a lot of fun. It was very
interesting to see the interactions of the firmware, driver and user space application.

| wish to express my most sincere thanks to Christian Plessl who was my supervisor for this work.
He was always helpful and provided new ideas. | wish to thank Prof. Lothar Thiele for being my super-
vising professor. Thanks to the institute, TIK, for providing the working environment.

3 Architecture

3.1 Hardware Summary

TIKDIMM is an expansion card for the DIMM slot. It has four 16MB SDRAM blocks on-board. The
Abstraction Layer FPGA (Xilinx Virtex-11) implements the firmware. It controls memory transfers from

and to the on-board memory and comunicates through the DIMM bus with the northbridge controller
of the main board. The Target FPGA is reserved for the reconfigurable computing application. Figure
1 shows the essential hardware components and their interaction regarding the data flow. The on-board
memory consists of four 16MB SDRAM blocks. Two of them, the X-side SDRAM, is connected over

an bus exchange switch to the Target FPGA and the Abstraction Layer. The Y-side is constructed analo-
gously. A detailed hardware description is given in [7].

AX

> TARGET] AY
SDRAM SDRAM
—> Bus o —> Bus —
exchange exchange
—SWi tCh |e—m —SWi tch |ee
- Abstraction -
BX || Layer o BY
SDRAM SDRAM
A
A\ 4
DI MM SI ot

Figure 1: The TIKDIMM expansion module

3.2 System Overview

The hardware of the TIKDIMM platform is connected to the PC through the DIMM bus. The card is
controlled over a register block which is mapped to the PC’s virtual address space. Figure 3 illustrates the
data flow between the DIMM bus and the on-board SDRAMs. There are four on-board memory blocks
AX, BX, AY and BY. Each one has its own memory controller and a FiBGffer for writing and one

for reading operations.

There are two bus exchange switches, one for the X-side and one for the Y-side. They switch the
data bus of the SDRAM blocks. Each has two positions plain and crossover. The control buses of all
four SDRAMs are connected to the Abstraction Layer FPGA.

In position plain the AX SDRAM data bus is connected to the Target FPGA and the BX SDRAM to
the Abstraction Layer. This FPGA implements a switch which connects the BX SDRAM to the assigned

LFirstin first out buffer

10

pair of FIFOs. Depending whether it is a read or write operation one of the FIFOs is used. Figure 2 illus-
trates the connection of the FIFOs to the data bus that leads to the bus exchange switch. This components
(exept the bus exchange switch) are implemented through the Abstraction Layer FPGA. The position of
the switch with the lable "switch" is always the same as the bus exchange switch.

A B
SDRAM SDRAM
A A
M A
Control Iine] Tar get
- — » Bus exchange switch FPGA
Switch position
A } Y
r-r—-—-—--"-"--r- - - - - - - - - - - - --r¥r " - - - - -—-=-"=—-=-- - - - - - - - =-=-—=-=-= hl
| \ 4 |
| Abstraction Layer
| > Swi tch FPGA |
| |
| A A |
| |
| \ 4 \ 4 |
|
: Operation Switch Operation Switch |
| |
/'Y /'Y /'Y /'Y
| |
| |
| A A A A |
| FI FO FI FO FI FO FI FO |
| for witing for reading for witing for reading |
| to the A SDRAM to the A SDRAM to the B SDRAM to the B SDRAM |
| |
| |

Figure 2: the connection of the FIFOs in the Abstraction Layer FPGA.

If the bus exchange switch is set to crossover the BX SDRAM is connected to the Target FPGA nad
the AX SDRAM to the Abstraction Layer. The Y-side is constructed the same way.

In the figure 3 the FIFO buffer for writing and the FIFO for reading operations are displayed as sin-
gle block with the lable "FIFO AX" etc. The block "Bus Switch" represents the physical bus exchange
switch and the "switch” of figure 2.

The bus exchange switch connect either the AX FIFO to the AX SDRAM or the BX FIFO to the BX
SDRAM. So for a certain position of the bus switch only one of the FIFO buffers of the X-side is in use.
Therefore, it's not reasonable to access the other. The SDRAM block that is assigned to the unconnected
FIFO is connected to the Target FPGA. The same applies to the Y-side.

The input port of the FIFO for writing and the output port of the FIFO for reading operations share
the same address. Table 1 gives the address offset relative to the TIKDIMM module base in the virtuall
address space. Besides the FIFO ports the address of the register block and the Block SelectRAM is
shown. The latter is part of the Abstraction Layer FPGA. Itis used for debugging. A DIMM module has
four banks. The third column shows the bank number which is selected to access the FIFO port, register
block or the Block SelectRAM.

The register block is used by the driver to communicate with the firmware. See section 4.1.6 for a

11

ﬁongml : Menory Menory Menory Menory
— Control - Control - Control - Control -
| er ler | er ler
Dat a
f| oW, A A A A
< A4 A 4 v A 4
SDRAM SDRAM SDRAM SDRAM
AX BX AY BY
O] Bus 0O O] Bus 0O
Switch Swi tch
O O O O
Regi st er FI FO FI FO FI FO FI FO
Bl ock BX AY BY

!

!

!

Figure 3: Architecture of the Tikdimm

DI MM Bus

| Address offse{ bank #|

Register Block 0x0 0
AX 0xc00 1

BX 0x1400 2

AY 0x800 1

BY 0x1000 2

Block SelectRAM 0x1800 3

Table 1: Virtuall address space

12

description.

3.3 Device Driver

The driver is the connection between the user space application and the hardware. In Linux the drivers
are kernel modules. To the userspace the standard system calls are provided. Other kernel modules can
use the driver’s functionality through the kernel-mode programming interface. Figure 4 shows the envi-
ronment of the driver. For a detailed description see section 4. The driver can communicate with other
kernel modules through the TKM interface.

User Space
Appl i cation
TKDM Li brary
TKM
Kernel Mdul e | <——— Driver
Interface t
Kernel Space Har dwar e

Figure 4: Environment of the driver

3.4 TKDM Library

The TKDM library provides an interface to the TIKDIMM platform for applications running in the user
space. The TIKDIMM driver only provides simple operations, such as setting up a transaction, turn the
bus switch etc. The user must take care of the correctness of the command. He must ensure that the
right SDRAM blocks are connected to the Target if he invokes a Target operation. The library hides
this procedures from the application. The source fikelen lib.C andtkdm lib.h are in the directory
toolkit/tkdm _lib/.

3.4.1 Functional Principle

The library allows the user to define a job. This is a data structure with a buffer that holds the input data
for the Target FPGA. A second buffer takes the output from the TIKDIMM. The data of the job is split
into packets. These are small enough to be copied to a single on-board SDRAM block. So a packet is
smaller then the size of a SDRAM block (16MB). The jobs are stored in a queue. The library calls a user
defined function, when the output buffer overflows.

13

class TKDM JOB

{
unsi gned char * ptlnBuf; /1 input buffer in PC RAM
unsi gned char * pt Qut Buf; /1 output buffer in PC RAM
size_t len; /1l nunber of bytes in the job
size_t outBufSize; /1l size in bytes of the output buffer
unsi gned i nt inPacketSize; //Size of the packets on the X-side
unsi gned i nt outPacketSize; //Size of the packets on the Y-side
b

3.4.2 Job Processing

TheWAit function is the heart of the TKDM library. Its task is to perform the job. It takes the first job
from the queue and returns when this job is done. Figure 5 illustrates the data flow. The storage with
the caption "X Side SDRAMs" represents the AX and the BX SDRAM. The same applies to the Y-side
storage. "Job Data" holds input data as well as processed data of the job.

X Side TARGET Y Side
SDRAM SDRAM

Abstraction
Layer

DI WM
Bus

JOoB
DATA

Figure 5: Data flow of a job

The input of the job is written to the X-side SDRAMs, where the Target gets its input. If the bus ex-
change switch is set to plain the Target uses the AX block while new data is written to the BX SDRAM.
In position crossover the library writes to the AX SDRAM and the Target reads from the BX SDRAM.

The Target can start processing after the first packet was written to the X-side and the bus switch was
turned. Meanwhile the next packet can be written.

14

The Target stores its output in the Y-side SDRAMSs. In parallel the library reads from this side. This
procedure has a similar restriction than the one on the X-side. The Target writes a packet to AY while
the packet in BY can be read back. So the read back of the last packet can start not until the Target is done.

Since the write transfer to the TIKDIMM and the read back operation use partly the same channel
the DIMM bus, only one of them can be performed at the same time.

The library is anxious to keep the Target busy while it reads or writes to the TIKDIMM. This is
achieved by choosing the packet size so that the job contains more than one packet.

Writing As discussed above tiWait function takes care of writing the packets to the module. It must

set the bus switch and setup the memory transfers between the on-board SDRAMs of the X-side and the
concerned FIFO buffers. These are the two FIFOs for writing of the Abstraction Layer assigned to the
AX and BX SDRAM and the input FIFO of the Target. In figure 6 this process is described as finite state
machine.

t.valid=1 and

t. busy=0
\ al . val i d=0
Fo v o
t.busy=1 \\\\\N
) —
t.valid=0 ~
and t.busy=0 al . busy=1
and al .valid=1
and al . busy=0
4
Wite
al . busy=1

Figure 6: Write process of thait() function

The signals with the prefix "t." concern the SDRAM block currently connected to the Target FPGA,
"al." means the Abstraction Layer. A block is valid if it holds a packet that is ready to be processed by
the Target. The SDRAM block is marked as busy when a transfer is pending.

The FSM starts in the "Wait" state. If the SDRAM block connected to the Abstraction Layer is empty
("al.valid=0") the machine goes to "Setup Write" and initialises a write transfer, with the size of a packet,
to the TIKDIMM. Now "al.busy" is 1. The state machine remains in "Write" until the packet is com-
pletely written to the TIKDIMM, "al.valid" is then 1 and "al.busy" is 0 again. If the Target is connected
to a SDRAM block which contains valid data ("t.valid=1") and "t.busy" is 0, the state machine can switch

15

to "Setup X2T". A data transfer to the Target FPGA is started. The machine goes back to "Wait" with
"t.busy" set to 1. The variable keeps this value as long as the Target reads data. When "t.busy" is set to
0, "t.valid" is also set to 0. In the "Switch X-side" state the variables beginning with "t." are exchanged
with "al.". The bus switch is turned. If all packets of the job are written the state machine stops.

Reading TheWait function also reads back the output of the Target. The state diagram shown in figure
7 describes this operation. It is very similar to the writing process, but the packet size may differ.

o
t.valid=0 and
t. busy=0
Set up Vil 1 al .valid=0 - Set up
T2y t. busy=1
» .
t.valid=1

and t. busy=0
and al . valid=0
and al . busy=0

al . busy=1

Figure 7: Read process of théit() function

The machine starts after the Target has started its first read transfer. If "t.valid" and "t.busy" are 0 the
FSM goes to "Setup T2Y". This starts a read transfer from the Target. "t.busy" is now 1 and the state
machine goes back to "Wait". When the transfer is done "t.busy" is 0 and "t.valid" is 1. If only "t.valid" is
1, the FSM enters "Switch Y-side". Here the variables are exchanged as described above and the Y-side
bus switch is turned. In "Setup Read" a read transfer from the TIKDIMM is started. The function read a
packet of output data while the FSM is in "Read".

The exit condition of this state machine is tricky. Two different situations are possible depending on
the Target design. If input and output length of data have a known, fixed relation the library can deter-
mine when the Target is done. But if it's impossible to predict the output length (e.g. data compression)
the library waits till the read transfer from the Target times out. Then it assumes that the Target is done.

16

4 Detailed Implementation

4.1 Firmware

The Firmware is the operating system of the TIKDIMM board. It resides on the Abstraction Layer
FPGA. At power up the firmware is loaded from the on-board PROM into the FPGA. It is structured
in page zero controller, memory backend and the SelectMAP controller, they are explained below. The
parts which are of relevance for this report are discussed in more details. Figure 8 is an overview of the
firmware units.

Tar get FPGA
A A
% ”
3
= @
[8]
[}
Yol |8—j
0 @
STt s =" y _~~~“r--—"=-======7-7% |
1 1
1 Sel ect VAP !
X > Controller <> AY
SDRAM | | SDRAM
1| Menoy L) Menoy !
1 Backend Backend !
1 \ / Y !

BX ‘_IL‘ X-si de Y-si de ‘_IL‘ BY
sorRAM [T 1 —> Page Zero —> 1| SDRAM
! Controller |

1

1 Ar 1

| Abstraction Layer FPGA 1

________________________________ 1
y DI MM Bus

Figure 8: Firmware Units

4.1.1 Page Zero Controller

The page zero controller is concerned with the communication to the PC. The module appears to the PC
as DIMM module with four2 kB pages. The first 32 bytes of the page zero are mapped to a register block
(see section 4.1.6). The second and third page contain the entry points for the FIFOs. For debugging
2 kB SelectRAM are mapped to the fourth page (see table 1). The TGP-Bus is the connection to the
Target FPGA. The bus is used to access the Target registers. Furthermore it includes controll lines to
increment the FIFO buffers of the Target design. The status signals input buffer full and output buffer
empty are also part of the bus.

4.1.2 Memory Backend

The memory backend is assigned to a pair of memory blocks. There are two backends one for the blocks
on the X-side (AX, BX) and one for the Y-side. The backend provides for each assigned SDRAM block

a memory controller and a FIFO for reading operations and one for writing operations. There is a refresh
controller, a word counter and an address generater for each SDRAM block. The memory controller

17

generates the necessary commands for the SDRAMs.

The word counter holds the number of 64-bit quad-words which the memory controller should copy
from the FIFO to the SDRAM or vice versa. It is decremented after each copied quad-word. The counter
is loaded when the memory controller is in RDPREP or WRPREP (see figures 11 and 12). A transfer is
complete when the word counter is zero.

The addres generator is loaded at the same time as the word counter with the start address of the
transfer. It calculates the bank, row and column address for the SDRAM access.

Refresh Controller The SDRAM need4096 auto refresh commands @i 1s that makes one every

15.625 us (see [4]). The refresh controller generates a pulse afté clock cycles and collects them in

a counter. Every time an auto refresh command is sent to the SDRAM the refresh controller gets a signal
that increments a second counter. If the two counters have a differeriies dfie refresh controller
generates a refresh alert. The memory controller starts to send auto refresh commands to the SDRAM. If
the two counters of the refresh controller have the same value the refresh controller sends a done signal
to the memory controller. This stops the refresh session. The memory controller of the latest firmware
version is discussed in more detail in section 4.1.6.

In the discussed firmware versions the auto refresh commands are only generated during a refresh
session that means as response to a refresh alert. Therefore, the alert appears after a constant period of
time. The clock period of the DIMM bus for the 500 MHz Pentium is 10ns.

T = 10 ns

2551536 - Ty = 3.92 ms

A refresh alert signal has a period 202 ms.

4.1.3 SelectMAP Controller

The SelectMAP controller uses the SelectMAP Bus to write configuration-bitstreams to the Target FPGA.
It is also possible to read Target configurations back.

4.1.4 Firmware version 7

This is a debugged version of the firmware which was available at the beginning of the work. It still has
some known bugs, which cause serious constraints to the driver’s design.

Row boundary bug The SDRAM is organised in banks, rows and columns. To access a memory cell

the bank must be opened and the row address specified. The cells of this row are then accessible over the
column address. After the transaction the bank must be closed. Only one row per bank can be open at
one time.

Read or write operations use sequential addresses. If the row boundary is reached the page must be
closed and reopened for the next row.

The memory controller has a problem with the handling of row boundaries, if a refresh alert occurs.

Therefore, in version 7, the alert is blocked when the controller is not in IDLE mode. The memory can't
be refreshed when the controller performs a read or write operation.

18

The controller may leave the IDLE state (state diagram on pp. 55 [7]) to perform a memory operation
at most for3.92 ms (period of the refresh alert). The driver must take care that this constraint is met.
The following considerations assume that the controller has just finished a refresh session. Therefore, it
has3.92 ms time to read or write.

In case of a read operation, the memory controller reads from the on-board SDRAM right after it
has received the read command. Assume there is sufficient space in the FIFO buffer to take all words
of the programmed read transfer. This ensures that the controller is not blocked because of a buffer full
flag. The period of timeX,c qtion) fOr the whole transfer only depends on the number of bytgs ()
requested to read. The TIKDIMM readsytes per clock cycle.

N,
hutes Toy < Toperation = 3.92 ms

Npytes < 1.57 - 10°

That is far more than the FIFO can ever hold. The Abstraction Layer FIFO has a capacity of 4kB and the
FIFO buffer of the Target is 2kB. So there is no problem with the read operation, provided that no more
bytes are requested then the size of the FIFO.

For the write operation the things are different. After the controller has left the IDLE state it waits
for the data to arrive. For this reason the driver must take care that the time period between the setup
of a write operation and the last data transfer to the TIKDIMM is not more #1@thms. This can be
guaranteed when the driver starts the transfer and writes all data during the same call. The kernel module
can not be preempted and therefore the worst case execution time of such a call can be predicted.

To keep the Target working the driver must periodically setup new transfers to and from the Target.
It is safe to choose the FIFO size as length for the transfer. In this way the controller can not be blocked.
The size of the FIFO i8€ kB and the SDRAM block has6 M B. To transfer a block the driver must

setup
16 M B

2 kB
transfers instead of a single one. The driver must poltthe or bst register to determine when it is pos-
sible to setup the next transfer. In tha register the buffer full flag for the read operation and the buffer
empty flag of the output buffer is available for the Target. The other two status bits are not connected to
the Abstraction Layer FPGA (see figure 15).

= 8000

If the polling frequency is too low the Target idles and the total execution time of the application is
extended. On the other hand if the frequency is too high CPU time is wasted.

The MEMR:cmd register Thecmd byte is set to start a memory transfer on the TIKDIMM board. If
the memory controller isn’t in the IDLE state it doesn’t accept commands. The driver must assure that
its commands are accepted. A refresh session waits 9 clock cycles after each auto refresh command and
needs 2 cycles to switch between the states IDLREFR and IDLWREFR. The estimated time for a refresh
session is:

Trepr = 255+ (2+9) - Ty, = 28.05 s

The probability that a refresh is performed when the driver tries to send a command is approximately:

_ 28.05 us

=—"""—-716-10"2 ~ 0.
3.92 ms 7.16- 10 0.7%

P

19

There is a probability 0.7 % that a transfered command has no effect. The driver is forced to check
if its commands are successful and resend them if not. This can take28®5ous (Zefr)-

The abort command is not concerned by this bug. It is interpreted by another part of the the memory
backend nemctl_a_backend.vhd) and not the memory controller.

experimental result Experiments with the service module (see 4.6) have proved that it is possible to
write and read correctely with this firmware version. The driver ver$i0rda2 was used.

4.1.5 Latest Firmware version

Because of the insufficient experimental results it was decided to improve the firmware. The new version
makes it possible to write an efficient driver.

The firmware reacts on a submitted command as soon as possible. The driver doesn’t need to check
if the command is accepted. The firmware gives priority to ongoing transfers. Only the abort command
can stop them. If a transfer is done the controller takes the latest submitted command or idles.

A memory transfers can have a length up to the size of a SDRAM block (16 MB). There is no time
limitation between the setup of a transfer and the read or write access to the Abstraction Layer FIFOs.

4.1.6 Register Block

The register block is the communication interface to the operating system of the PC. The block consists
of four 64-bit registers. Commands to the module are written in the registers. Table 2 shows the registers
which accept commands, writing to the other ones takes no effect. They are marked with an X. The last
column is the offset to the module base address in the virtual address space.

\ | Byte# 7| Byte# 6| Byte# 5| Byte# 4| Byte# 3| Byte# 2| Byte# 1| Byte# 0| Offset|

GPR arp 24
MEMR X cmd SwW X 16
CFGR X | tgprc X ccs X 8
MCSR X tc 0

Table 2: Writable registers

The register MCSR:tc sets the firmware timing configuration. This is ignored by the current version.
The Target general-purpose registers configuration regiSEBR: tgprc) controls the access to the Tar-
get registers. The function of the bits is shown in table 3. The address of the Target register is written to
tgprAddr. A write access is indicated bBgprWr="1’, otherwise it is a read access. If the flagrKeep
is set, theCFGR:tgprc register is loaded from the bits 15..0 of tB&€R register at the next write access
to the register block (see 4.3.3).

Bit(s) 7 6 5.0
flag name|| tgprKeep| tgprWr | tgprAddr

Table 3: The Target general-purpose registers configuration register

20

The SelectMAP configuration controller get its command from @R&R: ccs byte. It also shows
status information there. In table 4 the register which hold information are shov@kGR:tgpldie is
set the controller is in the IDLE stat€FGR:sm shows the actual state of the SelectMAP controller.

TheMEMR:cmd is used to initiate a job request to the memory controller ("01"sets up a write opera-
tion, "10"a read operation and "11"is the abort command). The byte is assigned to the four controllers in
the order AX, BX, AY, BY, beginning with the most significant bit. The byte can be read to get status in-
formation of the memaory controller. The pattern "00"indicates that the controller is performing a refresh
session, more precisely the main memory state machine (Figure 10) is in REFRESH state. The refresh
sessions that are started, while the controller is busy with a read or write transfer, are take no effect no
the MEMR:cmd byte.

The bus exchange switches are controlled by the B\E®MR: sw. The most significant bit controlles
the X-side switch, the bit 6 the Y-side. Upon read access, the switch status is read.

\ | Byte# 7| Byte# 6| Byte# 5| Byte# 4| Byte# 3| Byte# 2| Byte# 1| Byte# 0| Offset|

GPR grp 24
MEMR bst cmd sw | misccfg] X | mode 16
CFGR | tgpldle | tgprc sm ccs X 8
MCSR fmv X | tc 0

Table 4: Readable registers

Memory controller In section 5.2.4 of [7] the memory controller is described as single state machine.
In the current version of the firmware this F5M replaced by four small state machines. These are
closely coupled, either the read or the write state machine can leave its IDLE state. The main FSM must
be in the corresponding state, READ or WRITE. It can’t leave this state until the read resp. write state
machine is entered the RDEND resp. WREND state. The refresh FSM starts when one of the state
machines read, write or main is in the REFRESH state.

The main state machine (see figure 10) initialises the SDRAM aftesah signal. Afterwards it
waits in the IDLE state. If a read transaction is requested, the main state machine enters the READ state.
The signalStateForceldlexCl goes low. That allowes the read state machine to leave the IDLE state (see
figure 11). The write mechanism works similarely. Figure 12 shows the state diagram. The main state
machine enters the REFRESH state if a refresh alert comes in and sends an enable signal to the refresh
state machine.

The main FSM generates a two bit state info signal according to the current state. The pattern '01’
stands for WRITE, '10 for READ, '11’ for IDLE and '00’ is the REFRESH state. The signal is used to
multiplex the commands for the SDRAM, since each state machine generates such commands. The info
signal also appears in tleend byte of the register block. In fact the demultiplexer is a sequence of two
demultiplexers (see figure 9). The refresh FSM runs if one of the other state machines is in REFRESH
state. Therefore, the SDRAM commands of the refresh FSM overwrite the others if a refresh session is
active ("RefrAlertxEI"="1").

%finite state machine

21

Menct | _S[at e_n’ai n statelnfo

St at el nf oxSO

Sdr anCmdx DO 11
nenct! state write ks
Sdr anCmdx DO 10 ctl ocm
.,
menct| state read 1
Sdr anCndx DO

menct| state refresh

Sdr anCmdx DO

Refr Al ert xEl

Figure 9: Demultiplexer for the SDRAM commands

In the RDPREP state the read FSM generates a signal to load the address and length of the transfer
from the general-purpose register into the counters. In the RDOPEN state the ACTIVE command is sent
to the SDRAM. This opens the page, which is addressed. The machine waits in RDWOPEN state for 3
clock cycles, so the timing requirement for the SDRAM is met. For the specification of the SDRAMs
see [4]. If arefresh alert is pending the FSM can go from RDWND to RDREFR. In this state the refresh
enable signal is set and the refresh state machine starts the session. Notag thye of the register
block still indicates that the memory controller is in read mode.

In RDRD1 and RDRD2 the FSM reads from the SDRAM into the FIFO buffer. If the buffer full
signal is high the read FSM falls back to RDWND, but the programmed read bursts are on their way.
They arrive at the FIFO after the CAS latency. Therefore, the FIFO buffer reports that the buffer is full
before there is no space left to prevent a buffer overflow.

In RDCLOSE the row is closed and the row counter incremented, this happens if the row boundary
is reached or the word counter is zero. The FSM waits in RDWCLOSE and goes to RDOPEN to con-
tinue the transfer with the next row or to RDEND if there are no more words to read. In this state the
main state machine is informed that the read operation is complete. It respons with the force idle signal.
This mechanism prevents the read state machine from overrunning the IDLE state. The force idle signal
(StateForcel delxCl) is an asynchronous reset.

The Write state machine is in many ways equal to the read FSM. If the FIFO buffer is empty it sends
a signal to the write FSM, which goes to the WRWDA state. The transition from WRWDA to WR-
CLOSE is used when the memory controller receives an abort command. In this case the word counter
is reseted and the write or read state machines get a complete $\GainipletexS or RdACompletexS).

The refresh FSM performs the refresh session. the refresh alert causes the main, read or write state
machine to go in the REFRESH state as soon as possible. Then the active machine generates the refresh
enable signalRefr AlertxEl). Now the refresh state machine becomes alive (figure 13). If there is an open
page &dramOpenxd="1"), it is closed by the FSM and reopened after the refresh session.

In the state RFREFR an auto refresh command is sent to the SDRAM and aqtkaBef() notifies

the refresh controllemiemctl_refr). The machine waits in RFWREFR as long as the RK sigRalr{
KeepxEl) is high. If the RD signalRefrDonexEl) is low, the FSM goes back to RFRERF and sends the

22

next auto refresh command. The process stops when the RD dRgidd¢nexEl) is high. The machine

goes then to RFEND and sends a refresh done signal to the other state machines. The state RWF ensures
that the timing constraint between the refresh and the open command is met. The signals RA, RK and
RD are generated by the refresh controller.

Incoming job requests, such as read ('10’) or write ('01’), are stored in a queue with one place. This
ensures that the memory controller never misses a job request, even if the main state machine is not in
IDLE. An abort command causes the read or write state machine to go back to IDLE as soon as possible,
they will close an open page. The refresh FSM is not affected by this command.

A structural overview of the memory controller is shown in figure 14. The figure represents the entity
defined inmemctl_state.vhd. The combinational logic, which generates the unconnected output signals,
is not shown in order not to overload the figure.

4.2 Target FPGA

The Target FPGA implements the very own functionality of the TIKDIMM device. The FPGA is con-
nected to the data bus of the SDRAM blocks. Beside the application the design includes two FIFO
buffers and a set of registers, which are accessed hgphaus. A schematic of the top level is shown in
figure 15. The schematic is not exhaustive.

4.2.1 Connection to the SDRAM

The Target reads data from the X-side SDRAM block. The output is written to the Y-side SDRAM
blocks. The SDRAM memory is controlled by the Abstraction Layer FPGA. The Target must act as
slave. Therefore, the incoming data is buffered. The Abstraction Layer gets 64-bit quad-word from the
DIMM bus. The SDRAM is only 32 bit wide. So the quad-words are split and stored at subsequent
address in the SDRAM. The AL memory controller programs the SDRAM to send bursts of two words
to the Target. Each write request signigp(25)) is doubled in the Target design and then sent to the
input FIFO. Because of the CAS latency the signal goes through a shift register.

The input FIFO can hold up to 512 32-bit words. The sigma(24) goes to low when the buffer
has only space free for two more words. This causes the memory controller to go from state RDRD2 to
RDWNF. It sends no more read commands to the SDRAM. The buffer has enough space to take the last
programmed read burst, which arrives after the CAS latency. The signdiNotEmpty is not connected
to the outside world.

The write transaction from Target to the Y-side SDRAM works very similarly. The output FIFO
buffer is of the same design than the input FIFO. The read request sigo@7)) indicates that the con-
troller has setup a two word burst. The outbuf FIFO must now deliver these words. ThetgjuB6)
is low when the FIFO is empty. The write state machine uses this signal to interrupt the write transaction.

4.3 The GNU / Linux device driver

The TIKDIMM is treated by the operating system as character device. The char device driver is realised
as kernel module. In [6] a exhaustive description of Linux device drivers is given.

23

»0 L

HW—XQCCQBCB
Hm—xucccﬁauwm
[Oxbayqorp)
[HXxuoyay
[HXMO| VY
HXUOYIDEUD
$xau0 | MEU]

adm
aayd
40[
ayd
vy
aLrd
aim

Figure 10: The main state machine of the memory controller

24

[HX40 YJOPUHPY
1sxat0[dwo)py
[HXauo oy
14419 VY
HxauoAIBIU)
1SXIAMYPY
10X3[P22I0ITS

ALOi

d4dd Uy

404
dND
ad
vy
aLo
44
14

rpuada’y

Figure 11: Read state machine of the memory controller

25

[HXMOYJOPULI M
1Sxa19[dwo
|1 X3U0CL Y
[HXMI[V12 Y
HXUOUA[DEID
1sxAdwymgs
1)X3[PlavAIIRIS

404
dIND
ad
vd
aLo
dd
[E]

rpudda’|

Figure 12: Write state machine of the memory controller

26

1DXI[PI0ANTS 14

1§ xusdOweIps 0as
[H¥PUO(OY ad

14 xdoo3 oy S

14 X3 Y42y vy
Hxauo(y[HEIu) aLd
rpuaday’|

v_ m‘
HAIIMAY

AU R OdSi ¥ dd

Odsi® vy

Figure 13: Refresh state machine of the memory controller

27

14340 |10
vao |1

0TVO |12

04 1ppYOo |19
30RO |10
Auoo |19

Bag mp10 |10
FO MO |12

TH MO |19
THPHO |39
108Qp 1IN0 |12
1ou | |00 |12
12U MOYO |19
S110p70 |12
1Se40U | MO |10
oU | MO |10
1se40U |p4O |10
ou |pyo |10
SIDMI PO |10
S110pd ! 00 |10

ojulalels

1no

o eieg

ul eleq

‘youhAse 1asay
uo JYyouAks 1asay

320 D

18s

1]

—

puel O
pue| 7O

L1t
pue

_IS,

OSXpuz 8 1eis I3xauog 1 jad
OSXuat) M9 1B IS Fxdady 1 o
OSXysaljaygailels 13X113 |V 1}y
0SS9s0 P Malels
[OSRCHIAERLRS ISxuadgue Ips
OaXpuaue Ips [DX3 |p 199 1048 1€ IS |«
YSoljal 91RlS |l .
H |-
0
17T
0T
10

OSXysa 1 jadad 1e 1S

OSXs |p[91eIlS ISXa 19 |duoD m

ISxA1duz jng m

OSxuadgue Jps

OQXpugLe 1ps

[DX8 |p 190 10498 1B 1S

311M 31eIS |Jaual

OX% D

ﬁ 10N TII
0SXo1IMa 1B 1S [3X8uog 1 3 {«+—
OSXpeade 1e 1S BX3IS VI 1
OSXysaljaisiels
0SXa |p 1918 1S IIxauogs 1 1M
0SX8s0 P U |8 18IS I3xsucapesy
OSX3paApT Iu 91815 b
OSX0 ju |9 1e]1S PXDRMGOL 10 1«
Oaxpuoue Ips
_ _ X1y
Ulel ajels |lwau PXl D
ﬁ OSXpu3pys e is
0OSX8so ppyalels I3XOUCA 11 [+
osXegpdpda e is
OSXTRUPY 1815 A N
OSXxuadopya 1e 1S
osxpydas ide 1e 1S
L—10SXxysaljagaiels 10 1OpuIPY
Xa |p|o1e
Osxs |pl21els ISX® 19 |duoopy
osxuadawue Ips ISX| [nd yngpy
e
Oaxpugue Ips [DX3 |p 199 1049 1B 1S
Peal 8Bl [JWA oxip
ﬁ OSXpug M3 1e 1S I3Xauoq 1 48y e
OSX9S0 D M3 1eils
0OSXZ M M3 1e 1S 13X 118 |V 143 (&
OSXT M M3 1eIS
OSXuado ma 1e 1S
0Sx Mda idd 1e1s 12>XWM0Y OpuU3 M

auogiiad v

doay 443y 1119
119 VR 1110
013ZPIgA 1112
140100 1110
M0
4apy 1110
bayqor 1110

19

19s91

NI

Figure 14: Structural connection of the four memory controller FSMs.

28

43

L jou ﬂ
dL1pign

=

ol |
baypy yng no

le— 2edB)

zu_lmm

Kep <\

J2)ing areis il

gapgnno ||| ap igw ino

9gdb) T
A1duz 10N 4nqg 1IN0

0414

elegp
bayp 1

A1duz ou

A19
19891
' leg M
bay m

| (4 jou

[4>

(ez-0)db1

uo | 1ed | |ddy
19616

mis

(43

:

Apeay 1§ jnq

baypy ynqu 1
K1duz 10N 4nqu |

A3du3 10N nq Ino

04 I

eleqgp
bayp 1

A1duz 1ou

A0
19591
eleg m
bay m

| In4 j0u

<A| Ggdb1
6cdb 1
oydb 1
43
ap Jgau 1 EA* xep
e
A|EAI v2db)
| IN4 10N 4nqu |

Figure 15: Schematic of the Target FPGA top level entity

29

Kernel modules are loaded into the linux kernel. As any other part of the system kernel the module
is non preemptive.

The Driver is build from the files located iolkit/driver/. The Makefile builds the kernel module
calledtikdimmkm.o and the command line totikdimm. Among other things this tool can load a config-
uration bit-stream into the Target FPGA. The "C"source filigkidimm cli.c. It is described in [7].

The Makefile knows two precompiler flags for the driver. The op#E#BUG definesTIKDIMM_-
DEBUG_MK, this will cause the driver to print a lot of messages. Furthermore it uses the /proc filesystem
and creates the entrfgroc/tikdimmkm.

Set to yes to activate debug nessages (printk’s)
DEBUG=yes

#Set to yes to nmke the driver sinulate a TI KDl MM nodul e
SI MULATE=no

The driver is compiled wittfTKDM_SIMULATION_MK if SMULATE is set toyes. This option is
supposed to use when no real TIKDIMM device is available. Such a driver never tries to access the
TIKDIMM hardware.

The module needs to be loaded into the kernel. Since it doesn’t have a GPL compatible MODULE-
_LICENSE string, it taints the kernel. The system automatically assigns a major device humber to the
module. This number can be foundproc/devices under the module’s nantékdimmkm. To access the
driver from user space a device node is used. The node identifies the driver through the major device
number, the name is irrelevant.

The bash script load.sh takes the above described actions. The device fildagtikdimm. With
unload.sh the module is removed from the kernel.

Organisation of the source code

ti kdi mmdriver.c
tikdimmtkmec

ti kdi mm csa.c

ti kdi mmsinmul.c
ti kdi mmdriver.h
ti kdimmtkm h
tikdi mmsinmul.h
tikdi mmregs.h
ti kdi mm h
debug_nmacros. h

The sourcecode of the driver is split in several files.

e The kernel module’s entry points aneit module and cleanup_module. These functions are lo-
cated intikdimm_driver.c. Moreover the system calls and the handler for the /proc filesystem entry
is defined here.

¢ All chipset dependent code is locatedtiikdimm csa.c.

30

e The implementation of the TKM kernel mode programming interface tgkadhmm_tkm.c. Func-
tion prototypes and constants for the for the arguments are defined in the tikdiden _tkm.h. It
is shared with every module that wants to use the TKM interface.

e The headedebug macros.h provides macros to print messages and check pointers or variables if
they are on a 8-byte boundary in memory. These macros are intended to use for debugging.

¢ Intikdimm.h constants which are used in kernel and user space are defined, socth@smmands
or the size of the TIKDIMM FIFOs.

e The moduletikdimm_simul.c implements functions to simulate a TIKDIMM device. The proto-
types are intikdimm_simul.h defined.

e The header fil¢ikdimm regs.h defines macros which are used to access the registers or a FIFO of
the TIKDIMM. Here the flagTKDM_SIMULATION_MK decides whether the macros are substi-
tuted by macros fromasm/io.h to access the DIMM bus or by functions framkdimm_simul.c

4.3.1 Kernel - Mode Programming Interface TKM

The TKM interface is a set of functions in the kernel space. It makes the driver functionality available
for other kernel modules. The function bodies are locatetikaimm_tkm.c, which is part of the driver
building tree. The header fiktkdimm_tkm.h contains the function prototypes and constants to use with
the functions.

All tkm-functions return 0 on success. Negative values describe an error. An invalid handle is
indicated by—EBADF. Some functions can return further error codes.

Get access

int tkmopen(int oflag)

Par anet er:
Ret urn val ue:

void tkmrel ease(int tkm handl e)

To use the TKM interface a handle to the TIKDIMM platform must be gained. A subsequent call
of atkm_ function takes this handle as argument. Tkra_function can determine which TIKDIMM
device should be used. On succeskes open returns a handle and in case of failure a negative value.
The current version of the driver can only deal with one TIKDIMM module and the pararoftdgris
not used. Each call ttkm_open must be balanced with a call tkm _release. The parameter is the handle
of the device returned bikm_open.

Miscellaneous function
int tkmfirmvare_version(int tkmhandle, uint32_t *fw)

The firmware version number is storedfinv. A successful call returns with 0. An error is indicated
by a negative number.

31

Target FPGA Register

int tkmreg read(int tkmhandle, int addr, uintl6_ t *val)
int tkmreg wite(int tkmhandle, int addr, uintl6_t val)

Error code: -EBADF : invalid handle
- EFAULT: invalid pointer
-EI NVAL: invalid address

This two functions deal with the Target registers. The functions assume a number of registers. The
number is defined in the macNR_OF_TARGET_REGISTERS from tikdimm.h. tkm reg read copies
the contents of the registaddr into the 16-bit variable pointed to byal . An invalid pointerval is
indicated by—EFAULT . Both functions return—EINVAL if the address is out of rangetkm reg_-
write copies the argumenial to the specified registeAddr can be in the range BIR_ OF TARGET -
REGISTERS-1. The meaning of the registers is fully application-dependant.

On-board Memory Access The following functions deal with the memory controllers or the associ-
ated FIFO buffers of the TIKDIMM. The controller or FIFO is selected by the parameter flag. It is a
bitwise OR of TKM_RAM_X, Y or XY andTKM_RAM_AL, T or ALT. If TKM_RAM_Xis part of

the flag the command is aimed to the X-sid®¥, means the Y-side andXY both sides. AL stands

for Abstraction Layer and means the SDRAM blocks currently connected to this FPGA. The other two
SDRAM blocks are connected to the Target FPGA and can be reached witKEheRAM_T bit set in

the parameter flag.

int tkmramcontrol (int tkmhandle, uint8 t flags, uint32_t cnd)

Paraneter : flags : TKM RAM X, Y, AL, T
cnmd : TKM ABORT or TKM RAM AL2A, TKM RAM AL2B
Error code: -EBADF : invalid handle

This function is used to abort an ongoing memory operation on the TIKDIMM board. The argument
cmd is set tofKM_ABORT and the flag determines which SD RAM controller is to stop.

The other functionality ofkm ram control is to set the bus switches. For this purpose cmd is set to
TKM_RAM_AL2A, AL2B, T2Aor_T2B. Of course AL2A implies_T2B and_AL2B implies_T2A.

inline int
tkmramstatus(int tkmhandle, uint8 t flags, uint32 t *stat)

The functiontkm _ram_status copies the configuration status register to the variable pointestiby
The parameteflag is ignored. It shall be set toafKM_RAM_XY | TKM_RAM_ALT) in all invocations.
The status register consists of the full and empty flags of the FIFO buffers, status information of the four
memory controllers and the position of the bus switches.

To mask the buffer status bits of the 32-bit status register 16 macro constants are defined. For exam-
ple TKM_RAM_AX_RDBE stands for the buffer empty bit attached to the FIFO buffer for read operations
on the AX SDRAM block. RDBF means the buffer full bit. WRBE and_WRBF concern the FIFO’S
for write operations. The macros exists for all four blocks depending on the ifkx_BX, _AY and_BY.

32

Each memory controller has two status bits. They show whether the controller is in IDLE, READ,
WRITE or REFRESH modeTKM_RAM_AX JOBMASK masks the two bits associated with the AX
controller. The pattern can be equaldM_RAM_AX IDLE, READING, WRITING or REFRESH-

ING. This analogously works for the other SDRAM blocks.

Finally, the position of the bus switch can be checked WiM_RAM_AL2BX and TKM_RAM _-
AL2BY. If the bit is set the BX resp. BY SDRAM block is connected to the Abstraction Layer and AX
resp. AY to the Target. If the bit is clear the connection is vice versa.

i nt
tkmramrdprep(int tkmhandle, uint8 t flags, uint32_t addr, size_t |en)

i nt
tkmramwprep(int tkmhandle, uint8 t flags, uint32 t addr, size t |en)

Parameter : flags : TKMRAM X, Y, AL, T
addr : byte address
len : length in bytes

Error code: -EBADF : invalid handle

This pair of functions initiates a transaction between the on-board memory and a FIFO buffer. Each
memory block has its own address space beginning at 0. The paraaddtetakes the source resp.
Destination address in bytes. The length of the transaction must be a multiple of 8 and represents a
number of bytes. It is passed through the parametertkm ram rdprep setup a read transfer from the
SDRAM block andtkm_ram wrprep setup a write transfer to the SDRAM block.

ssize t
tkmramread(int tkmhandle, uint8 t flags, uint8 t *buf, size t nbyte)

Parameter : flags : TKMRAM X, Y, AL, T
nbytes : numer of bytes
Error code: -EBADF : invalid handle

This command always affects a buffer that is linked to a SDRAM block which is currently connected
to the Abstraction Layer. Therefore, ti&M_RAM_AL andTKM_RAM _T bit in flags are ignored. The
function reads from the specified FIFO buffer into the buffer pointed todfy The parametenbytes
must be divisible by eight. Upon successful completitkmy ram read returns the number of bytes
read. This number is at most the size of the FIFO bufié¢é_ RDBUF_SZE8 defined intikdimm.h).

The caller oftkm_ram read is responsible that the FIFO buffer holds enough quad-words, otherwise the
function reads the last valid entry repeatedly.

ssize t
tkmramwite(int tkmhandle, uint8 t flags, uint8 t *buf, size t nbyte)

Paraneter : flags : TKM RAM X, Y, AL, _T
nbytes : nuner of bytes
Error code: -EBADF : invalid handle

The write operation work very similarly. The function writes at mokiM_WRBUF_SZE8 bytes.
Nevertheless, the buffer can overflow if there were quad-words from a previous call in the buffer. The
latest entry will be overwritten.

33

4.3.2 System Calls

The TIKDIMM driver provides the following callsopen, release, read, write andioctl . The prototypes
in a C/C++ environment are shown below. Tietease call is attached talose.

i nt open(const char *pathnane, int flags);

int close(int handle);

ssize_t read(int handle, void *buf, size_ t nbytes);
ssize_t wite(int handle, const void *buf, size_t nbytes);
int ioctl(int handle, int command, ...);

open Before any of the other calls can be invoked, open must be called. As usual it returns a handle
to the TIKDIMM device. The argumeritpathname points to a string with the device paftiev/tikdimm.

This device file is created by the load scripolkit/driver/load.sh. The parameteflags is ignored. If
something is wrong the return value-igl.

release This call is invoked when all copies of the file structure associated with the handle are closed.
Multiple copies exist when the process that called open forks after the call. The return value always 0.
Each call toopen should be balanced with a call telease.

4.3.3 ioctl

int ioctl (int handle, int conmand, ...)

The system call is implemented by the TIKDIMM driver. The type of the third argument depends
on the used command. It is passed as reference. In this section it is referred to as argument. On success
the function returns 0. If ioctl gets a command which is not supported it retdBENOTTY. If the driver
detect some problem with the hardware or the argument is not accessible the return vahrauHs T.
The commandlKDIMM_|OC_SET_CONFIG_MODE returns—EINVAL if the argument is unknown.

All constants with the prefiXIKDIMM_IOC _ (macros) are supposed to use as ioctl commands.
They are defined in tikdimm.h.

Version information The commandllKDIMM_IOC_GET_DRIVER VERSrequires a reference to a

256 bytechar array. TIKDIMM_1OC_GET _FIRMWARE_VERSneeds only a eight byte widdar array.

The first command gives the driver version as string with date and time of compilation. The second
returns a string with the firmware version.

SelectMAP configuration controller This controller handles the configuration of the Target FPGA.
Status information is read from thees byte, which is part of the module register. This command is
calledTIKDIMM_IOC_GET_CONFIG_MODE. It copies theccs byte to the argument. The biBONE,
INIT, respectivelycsO can be masked with the constafi&K DIMM_CONFIG_FLAG INIT, DONE

or _CS The masklIKDIMM_CONFIG_MODE_MASK delivers the bitfieldnode.

The commandllKDIMM_IOC_SET_CONFIG_MODE sends instruction to the SelectMAP con-
troller by setting theccs byte. Valid arguments for this ioctl call alHKDIMM_CONFIG_CANCEL,
_RECONFIGURE, READ and_WRITE.

The configuration bit-stream itself is written bytewise with the commaiDIMM_10C_WRITE-
_CONFIG_BYTE. The driver writes the argument of typhar to the fifth byte of the general purpose

34

register. The comman@ KDIMM_IOC_READ_CONFIG_BYTE retrieves the configuration bit-stream
from the Target FPGA. For more detailed information see [7].

Bus Switches The TIKDIMM has two bus switches. They connect the on board SDRAMs either to the
Target FPGA or the Abstraction Layer (see [7]).

The commandlKDIMM_10C_SET MEM_SWITCHES set both bus switches according to the pro-
vided argument. The argument is of tyg®r. It's value and meaning are described in table 5. The first
column holds the arguments’s value. The second tells whether the RAM block AX is connected to the
Abstraction Layer (AL) or the Target FPGA (T).

The commandKDIMM_IOC_GET_MEM_SWITCHESreads the switch control byte. It represents
the current switch position according to table 5.

| Argument:char &arg | AX [AY | BX | BY |
0 AL |AL | T T
TIKDIMM_MEMSWITCH_X T | AL | AL T
TIKDIMM_MEMSWITCH_Y AL T T | AL
TIKDIMM_MEMSWITCH_X & TIKDIMM_MEMSWITCH_Y T T | AL | AL

Table 5: Value and meaning of the bus switch control byte.

Register of the Target FPGA To write to a 16-bit register of the Target tvioct! calls are required.
The first command iFIKDIMM_1OC_SET TGPRC. It takes an argument of typshar with the address
and the two most significant bits set. The second stdpk®IMM_|OC_SET_GPRWO. This call has an
argument of typainsigned int. The bytes 0 and 1 are copied to the register. If the tilppgKeep is set,
the byte 2 is the nexgprc register. So the next Target register can be set with the comitiiial MM-
_1OC_SET_GPRWO. The preparation witfilKDIMM_IOC_SET_TGPRC is not needed.

The read operation starts also wWitlKKDIMM_|OC_SET_TGPRC command, but the argument holds
only the address. The commamtKDIMM_10C_GET_GPRWO copies the register value to the lower
two bytes of the argument of typesigned int.

All registers can be read by the commafi&DIMM_IOC_SET_TGPRC with 80(hex) as argument.
SubsequentIKDIMM_I0OC_GET_GPRWO commands will read the register values beginning a the ad-
dress 0.

The commandlKDIMM_IOC_GET_TGPRC reads the tgpr register byte from the configuration
status register.

Transactions to the Target FPGA All commands that set up a transaction to a SDRAM block take

an argument of typéoctiDataDesc. The argument is passed as reference. This structure is defined in
tikdimm.h. The fieldaddr contains the address of the on-board SDRAM. Each 16MB SDRAM block
has its own address space form 0 (hex) up to 1’000'000 (hex). The address is in bytes. The length in
bytes of the transaction stands in the fietd The ioctl function doesn’t write to the structure.

typedef struct {
unsi gned i nt addr;

35

unsi gned int nr;
} ioctl Dat aDesc;

The user interface of the driver is designed to support data processing from the X-side of the TIKDIMM
to the Y-side. There exist two commands to make the Target FPGA work. The conTiteDtMM-
_1OC_SETUP_X2T initiates a read transaction from X-side. whether the Target reads from AX or BX
depends on the position of the bus switch. This command doesn’t touch the switch.

The Target must write the processed data to the Y-side. This is achieved by using the command
TIKDIMM_IOC_SETUP_T2Y. Depending on the bus switch position the Target writes to AY or BY.

With the following three commands the Target activity can be supervised. The comidntMM-
_1OC_X2T_ACTIVE checks if there is an ongoing read transaction from the SDRAM block AX or BX.
The provided variable of typehar is then set to 1, if the transaction has finished the variable is 0. Sim-
ilarly, the TIKDIMM_10OC_T2Y_ACTIVE comand checks for activity on the Y-side. FinallyKDIMM-
_IOC_X2Y_ACTIVE set the argument to 1 if the corresponding X or Y-side memory controller is running.

Prepare read / write operations TheTIKDIMM_|OC_ABORT command aborts a read or write oper-
ation to the specified SD RAM block. It immediately stops the operation and clears the associated FIFO
buffer. The memaory controller state machine returns to IDLE state. The argument is one or more of the
constantsTIKDIMM_ABORT_AX, _AY, BX or_BY. They can be connected with a bitwise OR.

Beforeread can be called the TIKDIMM must prepare this read operation. This is achieved by the
commandTIKDIMM_IOC_SETUP_RD_AX, BX, AY or_BY depending on the desired source block.
The argument is of typmctlDataDesc. This command sets the affected bus switch as necessary without
regard to any ongoing memory operation.

Thewrite system call needs a similar preparation. Téel commands have the prefitKDIMM_-
IOC_SETUP_WR . The argument of typioctlDataDesc carries the destination address and the transfer
length in bytes.

4.3.4 read

size_t read(int handle, void *buf, size_t nbytes)

Theread call is implemented only as non blocking opeartion. The function tries tombgds from the
TIKDIMM. It returns the number of read bytes efEAGAIN if no bytes could be read. The function
never reads more bytes then the TIKDIMM FIFO buffer can hold and it rounds the paranbgtes

down to a multiple of eight. In the kernel space the function stores the data in a global buffer whose base
address is on a 8-byte bounding in memory. The data is then copied to the buffer pointedufoitry

user space.

If the buffer full flag is set the function reads the whole FIFO buffer without further check. If the
FIFO is not or not yet full when the function wants to start reading, it enters the so called single read
mode. Theead function checks the buffer status, before each following read access to the DIMM bus.
If the buffer is empty the function returns with the number of read bytes.

36

4.3.5 write

As soon as the read/write data is copied from the user space to kernel space it is eight aligned.
ssize_t wite(int handle, const void *buf, size_t nbytes);

First of all the function copies the number of bytes specifiediiyges from the buffer pointed to by
buf to the kernel space. At most the function copies the TIKDIMM FIFO buffer's size. The parameter
nbytes is rounded down to an eight divisible number, as the function writes quad-words. The write buffer
allocated in the kernel space is eight aligned. This is importand because the used instruction to write on
the DIMM bus requests a buffer with eight divisible address.

If the FIFO buffer is empty the function writes to the DIMM bus. It returns the number of written
bytes. When the return value is 0 the FIFO buffer wasn’t empty. Wit call is non blocking.

4.3.6 Usage of the Driver, an example

This section illustrates the usage of the system calls provided by the TIKDIMM driver mibkiiikamkm.o.
First of all the devise is opened. The the driver and firmware version numbers are retrieved.

i nt handl e;
handl e = open("/dev/tikdi nm', O RDWR | O_NONBLCCK) ;

char strDriverVersion[256];

char strFirmnvareVersion[8];

i octl (handle, TIKD MM | OC GET DRI VER VERS, &strDriverVersion);
ioctl (handl e, TIKDI MM | OC_GET_FI RMAMRE _VERS, &str Firmvar eVersion);

printf("The driver version % is |oaded and the TIKDOMMfirmvare is %",
strDriverVersion, strFirmvareVersion);

Here a write operation to the address 0x50 of the BX SDRAM is demonstrated. The datal\sidéis
ioctl call also turns the bus exchange switch of the X-side to the necessary position.

const int N = 0x100;

char *pt Buf;

pt Buf = new unsigned char[N;
int iBuf O0ffset = 0;

i nt i Count Down = N;

int n;

i oct| Dat aDesc gl oct | Dat a;

gloctl Data.nr = N,
gl oct | Dat a. addr = 0x50;
ioctl (handl e, TIKDI MM |OC SETUP_WR BX, (char*) &gloctl Data);

After the setup the buffer contens is written to the device.

do

{
n = wite(handl e, ptBuf + iBuf Offset, iCountDown);

37

if (n>0)
{
i Buf Of f set += n;
i Count Down -= n;
}
} while (iCountDown > 0);

This code lines make the Target wrebytes to the Y-side SDRAM which is currently connected to the
Target.

gl oct | Dat a. addr = 0x200;
ioctl (handl e, TIKDI MM | OC SETUP_T2Y, (char*) &gloctl Data);
do

{

i oct| (handl e, TIKDI MM | OC T2Y_ACTI VE, &b);
} while (b == 1);
printf("Transfer done.\n");

4.4 Library API

The following sections describe the member functions of the TIKDIMM class. In general the functions
return '0’ if successful and a negative value if an error occurred.

4.4.1 Initialisation
TI KD MM) ;

The standard constructor takes no argument.

int Init()
int Init(const char * target)

This method must be called before any job for the TIKDIMM hardware can be created. It is safe to call it
again but not necessary. The argument is a pointer to a pathname. The file is the configuration-bitstream
for the Target FPGA. If the pointer NULL or the version without argument is called the Target is not
configured.

After this initialisation the object uses the default value for the maximum packet RAEKET -
MAX_SZE). The constant is defined tkdm lib.h. A predictable stream ratio of 1:1 is assumed. See
section 4.4.4 for more information.

4.4.2 Main functions

i nt

CreateJdob (unsigned char * inBuf, unsigned char * out Buf,
unsi gned i nt nBytes, unsigned int nQutBuf);

This function defines a job and add it to the job list. The data which is to process is pointethiguby

The number of bytes is passednBytes, it should by a multiple of eight, since the TIKDIMM works
with 64-bit quad-words. The output is copieddatBuf. The parametemOutBuf tells the library the size
of the output buffer.

38

The TKDM library has no internal buffers. The application must provide in and output buffers. They
must be valid till the corespondingkit call returns control to the user application. The processed data
is then located abutBuf. Data atinBuf is not touched and still valid.

Since the jobs are stored in a list, t8ecateJob method can be called an arbitrary number of times,
beforeWait is invoked.

int Wait()

This method processes the next job of the job list. It returns control when the job is done. The user
application may wish to fork befordait is called.

In case of an overflow of the output buffer, the method calls the function pointeddatByffer Full.
After the instantiation this i©utBufferFullDefault. This default handler prints a message. Mt
method clears the output buffer after the handler returns. The application can define a handler of its own.

i nt
Set Over f | owHandl er (voi d (*out BF) (unsi gned char *, size_t));

The argument of thiSetOverflowHandler method is the user defined handler. It has two arguments.
The first one points to the output buffer that is about to overflow. The second one gives the number of
bytes in the buffer, so the handler knows how many bytes it has to copy to a save place. This parameter

is not identical with the size of the output buffer, that was given inGheateJob method, but of course
it is never bigger.

voi d Qut Buf f er Ful | Handl er (unsi gned char *pt, size_ t s)

{
printf("User handler\n");
[l pt: pointer to out buffer
/'l s : nunber of bytes in pt
}

4.4.3 More Methods
int Reset()

TheReset function aborts all memory transfer of the TIKDIMM module. AX and AY are connected
to the Abstraction Layer, BX and BY to the Target. The job list is cleared. The reset fails when a system
call reports an error. Packet size and stream ratio are not changed Rgséheall.

int GetLibraryVersion()

The Library has a major and a minor version number. They are definddlim lib.h as macro
constantsl(IBRARY_VERSON_MAJOR, MINOR). The function returns the sum of the minor and the
major number left shifted by eight.

i nt SdranmTest ()
i nt SdraniTest (unsigned long long N, unsigned |long | ong RamAddr);

This is a builtin SDRAM test. It writes test data to each SDRAM block and read it back. The arghiment

is the number of bytes which are used for each SDRAM block. The desired start address in the on-board
memory is given irRamAddr. Without arguments th function uses default values that are defined in the
function body intkdm lib.C.

39

4.4.4 Length of the output data

The TIKDIMM class distinguishes between predictable and unpredictable size of the output data. In the
first case the output data length has a fixed relation to the input data lengti\aittfanction calculates

from the input data size the expected output size. The function counts the output bytes and uses this in-
formation to determine when the Target is done. Per default the library assumes that the Target produces
as many output as input bytes. The metisetBtreamRatio changes this relation.

In case of an unpredictable size of the output datdhi¢ function assumes an infinite output stream.
If the read transfer from the Target times out W&t function stops data reading.

int SetStreanRatio(unsigned int z, unsigned int n)

The input to output relation is set ito n. If one of the parameters is 0 the TIKDIMM object treats the
output data size as unpredictable.

i nt ChangePacket Si ze(unsi gned i nt s)

The TIKDIMM class knows a packet size for the input stream, one for the output and a maximum
packet size, this is equal or smaller than the size of an on-board SDRAM block. The function sets the
maximum packet size ta The relation from input to output packet size is equal to the stream relation
set bySetSreamRatio. The input and output packet sizes are chosen as big as the maximum packet size
allowes. If the output size is unpredictable, both packet sizes are set to the maximum.

4.4.5 Functions related to the Target FPGA

These functions return zero on success.

i nt ConfigureFronFile(const char *fnane)

Configures the Target FPGA with a bitstream. The argument is a pointer to a string containing the
filename of the bitsream. This file is generated by the Xilinx tools and has the extelnision

i nt ReadbackToFil e(const char *fnane)

This function reads the Target FPGA configuration and stores it in a file pointed by the argument. The
file will be created or overwritten if it already exists.

i nt ReadTar get Regi ster(unsi gned regAddr, unsigned * &ptRegDat a)
i nt ReadTar get Regi st er (unsi gned * &pt RegDat a)

The Target design implements up to 64 16-bit registers. The mdiRr®©F TARGET REGISTERSIn
tikdimm.h defines their number. The first argument is the register address, valid values are between 0 and
NR_OF TARGET REGISTERS- 1. The second argument is set to a pointer to a static buffer containing
the register value. This buffer remains valid until the next call of the function. The version with only one
argument dumps all registers to the static buffer.

int WiteTargetRegi ster(unsigned regAddr, unsigned regData)

This function writes the second argument to the specified 16-bit register.

40

4.5 Reference Application

The reference application demonstrates the usage of the TKDM library. The project diredtmhité-
reference_app, it contains the application sourcefapp.C, the makefile and the bitstream for the Target
FPGA. The application assumes that the TKM library header and source are locateldittkdm lib.
Below a simplified version is discussed.

Unlike the driver the library and the reference application is written in C++. The application is
compiled and liked with the following commands. The TKDM library useslilecontainer from the
standard template library.

g++ -c -0 refapp.o refapp. C
g+t+ -c -0 tkdmlib.o tkdmlib.C
g++ refapp.o tkdmlib.o -0 refapp

The application source starts with the including of the necessary header files. Then agibyhde
of the classSTIKDIMM is globally instantiated. It only makes sense to createTdK®IMM object, since
the current driver is capable of supporting one module in slot 3. rildia function allocates the input
and output buffers for the job.

#i ncl ude <stdi o. h>
#include "../tkdmlib/tkdmlib.h"

TI KDI MM ghodul e;

int main()

{
const int N = 0x800;

unsi gned char * in;
unsi gned char * out;
in = new unsigned char[N];
out = new unsigned char[N];

Now we produce some test data, they look like "0101010101010101", "0202020202020202",. ..
int i, j, n;
/[l Create Test Data
for (i=0, j=0; i < N, j+4+)
{

for (n=0; n < 8 ;i++, n++)
infi] =7j;

Thelnit method loads theop.bin configuration-bitstream in the Target FPGA. the Target just copies data
from the X-side to th Y-side. Moreov@Module is now ready to use.

gWodul e. Init("./top. bin");
The overflow handler of section 4.4.2 can be installed.

ghModul e. Set Over f| owHandl er (Qut Buf f er Ful | Handl er) ;

41

Now a ram-test is performed. It writes 4kB to the address 0x200.
/| SDRAM Test
printf("Start SDRAM Test...\n");

gModul e. Sdr anifest (0x1000, 0x200);
printf("...SDRAM Test finished\n");

It is time to create a job. The maximum packet size is changed from the default value (16MB) to 0x80
bytes.

/| Target FPGA
e TR T
gModul e. ChangePacket Si ze(0x80) ;

gModul e. CreateJob(in, out, N, N);
The job is now ready to process and waits in the job-list.
ghodul e. VAt ();

WhenWait returns the control flow to the application the job is processed and the output (a copy of the
input buffer) is located in the buffesut. A job like the following would cause the library to call the
handler QutBuffer FullHandler). The output buffer size defined in the fourth argumeig) is to small.

/1 gModul e. CreatedJob(in, out, N, (N2));
Display the output.

/[1Print the result
printf("Result:\n");

unsigned long long * outlL;

outL = (unsigned long |l ong *)out;

for (i=0; i < N>>3; i++)
printf("0x%®1611X\n", outL[i]);

The Target desigtop.bin implements 16 registers. The application fills the 16-bit register with some test
values.

[l Target FPGA Regi ster
R e

printf("Test of the Target FPGA registers\n");
unsi gned short * ptTarget Regi ster;
for (i = 0; i < 16; i++)

gWodul e. WiteTargetRegister (i, i+(i<<8));

The register at address 5 for example can be read out.

/1l get eg. register 5
gModul e. ReadTar get Regi ster (5, ptTargetRegister);
printf("Read register R = Ox%®04X\n", 5, *ptTarget Register);

The ReadTargetRegister method can dump all registers at once. For this purpose the version without the
address argument is used.

42

printf("Read all registers:\n");
ghModul e. ReadTar get Regi st er (pt Tar get Regi ster);
for (i =0; i < 16/*64*/; i++)
printf("R¥% = 0x%®4X\n", i, *(ptTargetRegister + i));

Clean up the memory:

printf("\nEnde\n");
delete []in;

del ete []out;
return O,

}

4.6 Service module

This tool was developed for debugging. Memory transfers between the on-board SDRAM and the Ab-
straction Layer or the Target are possible. The tool can write to the TIKDIMM a set of test data generated
by the module itself. The data can be read back and verified. This is useful to thest the firmware.

The service moduleam km.o is a kernel module. It makes use of the driver's TKM interface. The
module provides aioctl system call. This allowes an application in the user space to invoke some oper-
ations. Table 6 shows the implemented commands.

RTAPP_INIT Generate a set of test data. The
size is passed as argument.
RTAPP_WRAX | write to AX

RTAPP_WRAY | write to AY

RTAPP_WRBX | write to BX

RTAPP_WRBY | write to BY

RTAPP_RDAX | read from AX

RTAPP_RDAY | read from AY

RTAPP_RDBX | read from BX

RTAPP_RDBY | read from BY

RTAPP_AX2AY | Target reads from AX and writes to AY
RTAPP_BX2BY | Target reads from BX and writes to B

—<

Table 6: loctl commans for the service module

The module defines a task queue and creates a kernel thread, which periodically awakésctEach
call creates a task. The thread works on the current task or takes the next from the queue before it goes
to sleep. This allowes other processes to run.

The /proc filesystem is supported. The emiayn test benchmarks the TKM interface and provides
statistical information.

The module source consists of several files. They can be foypaltatame/ram test. The directory
also holds files related to the project.

e ram _mod.c contains the module entry points, the handler for the /proc filesystem and the imple-
mentation of theoctl system call.

43

kthread.c provides functions to crate, clear and manage a kernel thread.
kthread.h contains structures and prototypes. It is shared weth mod.c.
ram_km.o is the kernel module.

app.c is the source of the test application. It runs in user space. When it is called without an
argument a help message is printed. The function provides several test, which are chosen by the
argument.

app.h is included fromram_mod.c andapp.c. It defines macro constants for traetl call.
TheMakefile creates the kernel modulmake app builds the test applicatioapp.

load.sh. This script takes all necessary steps to load the kernel module. The device node and the
/proc filesystem entry are created.

unload.sh removes the module from the kernel.

44

5 Status and Future Work

5.1 Status
5.1.1 |Initial firmware and driver version

The initial version of the firmware was tested intensely. It was found that the memory controller doesn’t
handle row boundaris corectely. By suppressing the refresh alert, during read and write access, this bug
was fixed. With a kernel module, which access the driver through the TKM-interface, it is possibel to
write and read from the TKDM module. These operations seem to work. Transfers from and to the
Target FPGA showed problems. The reason is unclear.

The main disadventage of the above solution is that the driver is not efficien. It must ensure that the
firmware doesn’t miss a refresh alert. Therfore, the firmware was improved. The new version can react
on refresh alerts at any time, so the driver can setup transfers with a length up to 16MB.

5.1.2 Latest firmware and driver version

A Linux driver (version 1.3.0) has been implemented which provides a rich interface to the user space.
Read and write access through the TKM-interface work. The system call read seems to have a bug. The
first quad-word of each call is lost. This bug appears not every time when read is called.

5.1.3 TKDM Library

The library provides an interface to user space applications. It is possible to use the TKDM module with
a few function calls. The library was tested as good as possible.

5.2 Future Work

The firmware generates a puls when the driver accesses the FIFO buffer. This puls indicates to the FIFO
that the driver wants to read the next quad-word. Latest experiments show that this puls comes too often,
when the first quad-word is lost appears.

45

References

[1]

2]

[3]

[4]
[5]

O.Y.H. Cheung and P.H.W. Leong. Implementation of an fpga based accelerator for virtual private
networks. InProc. of the 2002 |EEE International Conference on Field Programmable Technology
(FPT'02), pages 34-41, 2002.

K.H. Lee D.K.Y. Tong, P.S. Lo and P.H.W. Leong. A system level implementation of rijndael on
a memory-slot based fpga card. Pnoc. of the 2002 |EEE International Conference on Field Pro-
grammable Technology (FPT 02), pages 102-109, 2002.

P. Leong, M. Leong, O. Cheung, T. Tung, C. Kwok, M. Wong, and K. Lee. Pilchard - a reconfigurable
computing platform with memory slot interface. Rroceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines. IEEE CS, April 2001.

Micron. MT48LC4M32B2 - 1 Meg x 32 x 4 banks Synchronous DRAM, Rev E edition, October 2002.

Christian Plessl and Marco Platzner. TKDM - a reconfigurable co-processor in a PC's memory slot.
In Proceedings | EEE International Conference on Field-Programmable Technology (FPT 03), page
to appear, December 2003.

[6] Alessandro Rubini and Jonathan Corbé&tnux Device Drivers. O'Reilly & Associates, Inc., 981

Chestnut Street, Newton, MA 02164, USA, second edition, 2001.

[7] Andreas Schweizer. Reconfigurable computing auf einem DIMM modul. Master’s thesis, ETH

[8]

Zurich, Computer Engineering and Networks Lab, March 2003. DA-2003.10.

K.K. Ting, S.C.L. Yuen, K.H. Lee, and P.H.W Leong. An fpga based SHA-256 processor. In
Proceedings of the International Workshop on Field Programmable Logic and Applications (FPL),
pages 577-585, 2002.

[9] Xilinx. Xilinx Virtex-11 1.5V FPGA Family, v2.3 edition, October 2002.

46

A Recovering from an oop’s error

If the driver kernel module tries to access an invalid address, the kernel prints an oops error. The module
can't be unloaded because its usage counter is different from zero. The application that caused the oops
error has crashed and left an unbalanopeh call.

The moduleemergencykm.o in pathname/emergency rmmod can bring the usage counter to zero.
Thenrmmod can unload the driver. The scrigecrease.sh loads and unloads the emergency module.
This operation decreases the usage counter of the driver (works only when the driver was built with DE-
BUG=yes).

This is a brutal hack, but can save the PC from a reboot.

B Benchmark

As benchmark the TKDM library memberfuncti@lramTest is used. It writes 16 MB to each SDRAM
block and read the data back. The member function is called by a minimal application. The time is
measured with the Linux commatidne. The driver version is 1.3.0 and the firmware version is 16.

The result is

real 3.931s
user 2.946s
sys 0.871s

The measurement shows that the throughput, calculated from the total execution time of the userspace
application is

416 MB _
3 o31s. = 17.07Mbps

This is the performance that is available to the user application.

47

12th March 2004

48

