
Institut für
Technische Informatik und
Kommunikationsnetze

Wintersemester 2003/04

DIPLOMA THESIS

for

Silvan Wegmann (D-INFK)

Main Reader: Herbert Walder

Issue Date: 27. october 2003
Submission Date: 26. february 2004

Video tasks for RHWOS

ii

Contents

1 Introduction 3

1.1 The XFBoard plattform . 3
1.2 Motivation . 4

2 Project management 7

3 Short introduction to MPEG-2 9

4 Design decisions 11

4.1 MPEG-2 variation . 12
4.2 Memory considerations . 13

5 Steps to the final application 15

5.1 Drop-in solution . 16
5.2 Profiling . 16
5.3 Hardware acceleration and task decomposition 17
5.4 MPEG-2 application . 18

6 Detailed View 21

6.1 Overview of the MPEG-2 decoder source 21
6.2 Streaming Protocol . 21
6.3 Implementation of the backend 22

6.3.1 add block task . 22
6.3.2 pixel writer task . 23
6.3.3 YUV to RGB conversion 24
6.3.4 IDCT . 24

7 Conclusions 27

8 Documentation of the software tools 29

8.1 Streaming server . 29
8.2 XFBLoader . 30
8.3 MPEG encoder . 30
8.4 Expression Parser . 31

A Contents of the CD 33

iii

iv CONTENTS

List of Figures

1.1 block diagram of the XF-Board 5
1.2 image of the XF-Board . 6

2.1 Gantt diagram of the XFBoard projects 7

3.1 typical MPEG frame sequence . 9
3.2 structure of a frame . 10

4.1 distribution of the block RAM resources over the FPGA 14

5.1 drop-in solution . 16
5.2 cycles in percent . 17
5.3 cycles in percent of the accelerated version 18
5.4 logic structure of the backend . 18
5.5 hardware tasks and OS elements arranged in the final application 19

6.1 call graph for decoding one frame 22
6.2 schematic of the pixel writer hardware task 23
6.3 data dependency graph of the YUV to RGB conversion 25
6.4 data dependency graph of the IDCT conversion 26

7.1 cycles ratios of different acceleration variations 27

8.1 screen shot of the streaming application 29

1

2 LIST OF FIGURES

Chapter 1

Introduction

In the last few years FPGAs have become increasingly more powerful. Todays
FPGAs provide a few hundred I/O pins and several thousand configurable logic
blocks that correspond to millions of gate equivalents. With such components
it is possible to implement complex applications within only one device. Xilinx
fabricates a divers set of such FPGAs and with it also delivers powerful devel-
opment tools. Complex applications that consist of control flow intensive parts
often require some sort of general purpose processor. For this reason Xilinx also
provides a fully featured RISC processor called MicroBlaze.

Instead of having only one complex application it is also possible to let sev-
eral smaller applications coexist. They could be loaded and unloaded during
runtime on demand. Xilinx devices advantage this procedure as they are par-
tially reconfigurable which means that you can also change only part the FPGA
and keep the rest in the previous state.

1.1 The XFBoard plattform

The XFBoard was developed as a prototyping plattform to study the principles
of reconfigurable computing and reconfigurable operating systems. The board
embodies two Xilinx FPGAs that are called C-FPGA and R-FPGA. The C-
FPGA is used as a CPU and will not be reconfigured once the system is running.
It is used as a host for the software parts of the operating system and depending
on the type of application also for application software tasks. The R-FPGA is
managed by the C-FPGA and is treated as an allocatable resource. Certain
parts of the chip space on the R-FPGA however can not be used for application
tasks as they are occupied by OS elements like ethernet driver, video driver,
audio driver or FIFOs. On the board you will also find several IO components,
like for example ethernet links, different types of memory, VGA connectors, an
audio codec and also RS232 connectors. The FPGAs have several connecting
buses that allow the OS to communicate with the R-FPGA, provide different
types of clock signals and to access the configuration interface of R-FPGA. For
further details consult [7] for the structure of the board and [4] and [10] for the
principles of the operating system. Figures 1.1 and 1.2 give an impression of
the infrastructure that is available on the XFBoard.

3

4 CHAPTER 1. INTRODUCTION

1.2 Motivation

While the OS plattform is being developed it is necessary to have a mean to
measure its performance. In a past project [10] only small tasks could be tested
while the OS was developped. For this reason the objective of my project was
to provide a complex application consisting of several cooperating tasks that
would challenge the limits of the RHWOS.

1.2. MOTIVATION 5

Virtex-II

C-FPGA

Virtex-II

R-FPGASDRAM Left

16M X 16

SDRAM Right

16M X 16

SRAM Left

1M X 16

SRAM Right

1M X 16

SDRAM

16M X 32

SRAM

1M X 32

FlashRAM

4M X 32 BootPROM

Ethernet
PHY

Ethernet

PHY

Audio
CoDec

Video
DAC

8-LED Bar

2 LEDs

2 Switches

2 LEDs

2 Switches

JTAG
6 Pin Header

JTAG
6 Pin Header

VGA Out
15 Pin D-SUB HD

VGA Out
15 Pin D-SUB

Ethernet
RJ-45

E
th

er
n
et

R
J-

4
5

P
S

/2
6

P
in

M
in

iD
IN

P
S

/2
6
 P

in
 M

in
iD

IN

R
S

-2
3
2

9
 P

in
 D

-S
U

B

RS-232 RS-232

A
u
d
io

 I
n
 1

3
.5

m
m

 S
te

re
o

 J
ac

k

A
u
d
io

 I
n
 0

3
.5

m
m

 S
te

re
o
 J

ac
k

Audio Out
3.5mm Stereo Jack

Expansion Slot
36 Pin Header

Expansion Slot
40 Pin Header

Data Signals Configuration Signals Clocks

XC2V1000

XC2V3000

9 Pin D-SUB

(24bit)
(100Mbit/s)

(44.1kHz,
16bit, Stereo)

9 Pin D-SUB

Figure 1.1: block diagram of the XF-Board

6 CHAPTER 1. INTRODUCTION

Figure 1.2: image of the XF-Board

Chapter 2

Project management

The video decoder application is only one project of a number of other projects
that center around the XF board. While I worked on the evaluation and imple-
mentation of the video decoder other teams developed the underlying operating
system infrastructure and hardware drivers for the external components. With
this division I acted as a user of the future system and could give valuable
feedback for several parts like the communication between tasks and the OS,
resource management or task life cycles. There were also a number of thesis’
that had a different main objective but provided basic OS components like a
video driver, audio driver or ethernet transceiver. Figure 2.1 gives an overview
of all works involved.

Reconfigurable Hardware OS Prototype “C”

Reconfigurable Hardware OS Prototype “R”

Video Playback Tasks for Reconfigurable OS

Firmware for Reconfigurable Hardware OS Plattform

System Self-Test for Reconfigurable Hardware OS Plattform

Real-Time Signal Processing Tasks for Reconfigurable OS

Audio Playback Tasks for Reconfigurable OS

Okt Nov Dec Jan Feb Mar Apr Mai

TIK MA 2004-04

TIK MA 2004-05

TIK DA 2004-07

TIK SA 2004-09

TIK SA 2004-10

TIK SA 2004-11

TIK SA 2004-12

2003 2004

Figure 2.1: Gantt diagram of the XFBoard projects

7

8 CHAPTER 2. PROJECT MANAGEMENT

Chapter 3

Short introduction to

MPEG-2

The MPEG-2 standard as described in [5] defines the format of the data that
represents a video stream. This includes the order of the different frame types,
the structural elements of a frame and the sort of values that are encoding.
This chapter will give a short introduction to the basic structural elements of
an MPEG stream. For more details about Huffman coding tables, coefficient
tables or even encoding issues the reader is refered to corresponding literature.

I B PB B PB I

Figure 3.1: typical MPEG frame sequence

Generally an MPEG stream consists of a sequence of I-, B- and P-frames as
shown in figure 3.1 I frames contain complete frames encoded in a JPEG like
fashion. B- and P-frames contain only differential information that result in a
complete frame when combined with other frames. The details about B- and
P-frames will not be discussed in this document as they are not covered by the
restricted implementation for XFBoard.

A frame consists of certain number of slices as shown in figure 3.2. The
number slices can be chosen at encoding time and represents one of the design
parameters for encoders. Each slice then consist of a certain number of mac-
roblocks that again can be chosen at encoding time. All informations in MPEG
files are variable length encoded and require several decoding tables to get the
original information. A macroblock contains the encoded pixel information for
a block of 16*16 pixels in YUV format. In the given figure the YUV data is

9

10 CHAPTER 3. SHORT INTRODUCTION TO MPEG-2

slice 1

slice 2

slice n
4* 8x8 Y block

8x8 U block 8x8 V block

frame divided into slices

YUV components of a macroblock

Figure 3.2: structure of a frame

provided in chroma 4:2:0 format which means that the full Y information is pro-
vided but only a forth of the U and V components is available. The remaining
U and V components are copied four times to get the full information.

The Y, U and V blocks consisting of 8*8 pixel are the basis for the main
decoding process. Each block is IDCT converted, combined to a chroma 4:4:4
block of 16*16 pixels and added to next frame that is being built up in the
background buffer.

The following sequence of steps is therefore performed for each frame. For
more details about the operations consult chapter 6 where you find a call graph
for the decoding process or read respective literature [3], [11], [9] and [6].

• variable length decoding

• inverse discrete cosine transformation

• 4:2:0 to 4:4:4 chroma conversion

• YUV to RGB conversion

Chapter 4

Design decisions

The conceptual formulation asked for an implementation of a video decoder. It
therefore kept the type of videos as one of the design parameters. Today we have
a wide variety of formats that range from MPEG-1, MPEG-2 and Quicktime
to DivX, MPEG-4 and Windows Media. Table gives an overview of the system
requirements for some of the available players. Often these players support
different formats which means, that the system requirements only give a quite
rough idea of real performance requirements.

player video format requirements
Elecard MPEG2 Player MPEG-2 High

Level, MPEG-4
simple profile

MMX enhance CPU min. Pen-
tium, K6 or Athlon, 32 MB RAM

DivX Video DivX, MPEG-4
simple profile

Pentium II 450 MHz, 64 MB
RAM with 640 × 480 and lowest
settings for playback quality and
post-processing

QuickTime 6.5 Quicktime Movie 400 MHz PowerPC G3, 128 MB
RAM; No specific data available
for PC

Table 4.1: Players and their respective performance requirements

For a complete evaluation, the performance requirements of PC applications
do not suffice, other figures have to be considered as well. These parameters
include bit rate, screen resolutions and compression ratios, but also availability
of documentation and source code.

Among all the video formats MPEG-2 is the most widely used. MPEG-4 and
DivX spread increasingly because of theire support for low bit-rate applications
with still high image quality and they will eventually replace MPEG-2 some
day. I still decided to implement an MPEG-2 decoder because this video format
is well known and studied and one can get plenty of tools and source code for
it.

11

12 CHAPTER 4. DESIGN DECISIONS

Simple 4:2:0 sampling, only I- and P- pictures allowed
Main all core MPEG-2 capabilites including B- pic-

tures and support for interlaced video
4:2:2 same as main profile but 4:2:2 subsampling is

used
SNR as main profile but an enhancement layer is

added to provide higher visual quality
Spatial as SNR but spatial scalability may be used to

provide higher quality enhancement layers
High as Spatial but with support of 4:2:2 sampling

Table 4.2: Profiles defined in the MPEG standard

Low Up to 352 x 288 frame resolution and up to 30 fps
Main Up to 720 x 576 frame resolution and up to 30 fps
High-1440 Up to 1440 x 1152 frame resolution and up to 60 fps
High Up to 1920 x 1152 frame resolution and up to 60 fps

Table 4.3: Levels defined in the MPEG standard

4.1 MPEG-2 variation

The MPEG-2 standard allows a wide range of values for typical video parameters
like frame rate, bit rate, screen resolution and color encoding. Certain parameter
combinations are defined in so called profiles and levels The MPEG-2 standard
also defines a set of recommended combinations of profiles and levels. See tables
4.2, 4.3 and 4.4 for details.

The source code for a fully featured MPEG-2 decoder is freely available
on the webpage of MPEG ([1]) and is also included on the CD. It served as
basis for all further steps. It was clear that the XFBoard could not provide
enough resources to support all of the features explained in the MPEG standard
documents. Therefore I had to define a set of restrictions and priorities such
that the resulting application would run at a reasonable speed and would be
complete within predetermined time but would still follow the standards close
enough to be called MPEG decoder. I decided constrain movies to the following
specifications.

• I frames only (this also excludes features like spatial scalability or SNR)

• Limited to 25 frames per second

• No interleaced frames allowed (interleaced movies are mostly used for TV
recorded streams)

• Frame size limited to 160 × 120 pixel (this simplifies the hardware com-
plexity of the video core and limites the memory needs for frame buffers)

• Chroma format restricted to 4:2:0 in the hardware accelerated version

4.2. MEMORY CONSIDERATIONS 13

Low Main High-1440 High
Simple 720*576

15 Mb/s no
B frames

Main 4:2:0
352*288
4 Mb/s

Broadcast
digital TV
15 Mb/s

1440*1152
60 Mb/s

1920*1152
90 Mb/s
HDTV

4:2:2 720*576
50 Mb/s

SNR 352*288
4 Mb/s

720*576
15 Mb/s

Spatial 1440*1142
60 Mb/s

High 720*576
20 Mb/s up
to 4:2:2

1440*1152
80 Mb/s up
to 4:2:2

1920*1152
100 Mb/s
up to 4:2:2

Table 4.4: Profile and level combinations defined in the MPEG standard to-
gether with typical values for the design parameters

• Decoding of audio streams was given low priority (this feature is not sup-
ported by the orignial source code and would have needed additional stud-
ies)

4.2 Memory considerations

The XFBoard can only provide very limited resources especially in terms of
memory. The board provides SRAM, SDRAM and block RAM (BRAM) as
given in table 4.5.

type total amount comments
SRAM 4 MB 2 independant banks of 1 M × 16 bit; Alliance

AS7C34096 chips
SDRAM 64 MB 2 indepedant banks of 16 M × 16 bit; Infineon

HYB39S256160CT chips
BRAM 210 kB 96 Blocks RAM of 18 kbit each, dual ported

with configurable dimensions; integrated on
the XC2V3000 FPGA

Table 4.5: Memory available on the R-FPGA of the XFBoard

The video decoder is a quite complex application and pushes the limites
of the XFBoard. Especially the usage of memory represents a major issue.
Code memory needs were not the biggest problem as the amount of around
45’000 bytes of code space could even be satisfied by the block RAMs. The
bigger problem was the huge amount of memory used for the two video frames
(one frame to display and one to construct the next image), and the buffers

14 CHAPTER 4. DESIGN DECISIONS

SelectRAM Blocks

2
C

LB
 c

ol
um

ns

n
C

LB
 c

ol
um

ns

n
C

LB
 c

ol
um

ns

2
C

LB
 c

ol
um

ns

2
C

LB
 c

ol
um

ns

n
C

LB
 c

ol
um

ns

n
C

LB
 c

ol
um

ns

2
C

LB
 c

ol
um

ns

Figure 4.1: distribution of the block RAM resources over the FPGA

for the chroma conversions. These buffers alone used more than 100’000 bytes
and would never fit into the block RAMs. Another major problem was the
execution speed which led to the conclusion that only block RAMs were feasible
for code storage. To satisfy the needs of image buffer memory the SRAM blocks
were used. For this purpose a OPB core SRAM controller was developed and
integrated into the decoder application. For the future integration of decoder
into the OS environment it has to be considered that the amount of block RAM
memory that can be used is not equal to the total amount of available block
RAM. This is because the memory blocks are arranged in 6 columns of 16 blocks
with 18kbit per block (see figure 4.1 for chip geometry).

Chapter 5

Steps to the final

application

Because the underlying operating system was not available at the beginning of
my work I could not start with the OS based implementation of a video decoder
application straight away. Instead I concentrated my efforts on a standalone
application that allowed me to familiarise myself with the FPGA environment
and the MPEG-2 code. Based on this implementation I could later make per-
formance measurements. From the results I could then derive the calculation
intensive parts and implement them as hardware components. At the same time
I was involved in the design meetings for the operating system development.
There I could explain my needs and also give proposals for design decisions that
would influence the performance of the decoder.

The project was split up into the following consecutive steps.

Drop-in solution In this standalone version, the core consists of
a Microblaze softprocessor that is surrounded
by an ethernet lite OPB core, an UART lite
OPB core and several OPB GPIO cores that
connect to the video and audio drivers.

Profiling Based on the drop-in solution, performance
measurements are made. For this purpose an-
other OPB core was inserted that allows the
counting of execution cycles.

Hardware acceleration
task decomposition

Speed critical parts are translated into hard-
ware tasks and the Microblaze part is encap-
sulated into its own hardware task.

MPEG-2 application All hardware tasks are available as partial bit-
streams and can be downloaded one by one.
They communicate with each other via OS el-
ements.

15

16 CHAPTER 5. STEPS TO THE FINAL APPLICATION

5.1 Drop-in solution

As mentioned earlier in this chapter I could not start with the final OS based
application right away. In the first version I had to provide most the infras-
tructure myself. The video and audio drivers were built by other teams and the
ethernet receiver as well as the UART could be taken from the Xilinx EDK en-
vironment. Because the basis of the decoder was the source code of the motion
picture expert group (MPEG) from theire website, the idea was to start with
a pure software implementation. To start with we built a complete system as
given in figure 5.1 that could run on the R-FPGA of its own.

The core of the software implementation was Microblaze system

video_gpio

external
SRAM

ETH PHY

Video
RAMDAC

OPB bus

R-FPGA

xfr_sram

uBlaze

ethernet_lite

vgadrv

vgadrv
IF

UART

uart_lite

Figure 5.1: drop-in solution

5.2 Profiling

The drop-in solution showed the feasibility of a MPEG-2 decoder on the XF-
Board but the performance could not reach the necessary speed of 25 fps to
show videos in the original frame rate. 13’873’362 cycles for one frame at a
system speed of 50MHz resulted in a frame rate of 4.4fps which is far frome the
target speed. Such a result of course was expected as the low system frequency
together with a pure software implementation could not reach the performance
of even the smallest desktop PC. With a simple stop watch OPB core1 the most
time consuming operations were quickly identified. Table 5.1 shows all these
operations and an average cycle count.

The operations in table 5.1 that are marked in green are combined under
the term backend throughout the rest of this document.

1this core is also included on the CD. See appendix A for details about the CD

5.3. HARDWARE ACCELERATION AND TASK DECOMPOSITION 17

operation reference cycles percent

network handling frame 3’909’615 28
IDCT block 5’212 17.5
Chroma 4:2:0 to 4:4:4 frame 682’888 5
YUV to RGB pixel 70 9.5
store pixel pixel 116 15
VLD and other frame 3’207’899 25

a complete frame frame 13’873’362 100

Table 5.1: Average number of cycles for a complete 160 × 120 pixel frame

network handling

28%

VLD and other

25%

IDCT

17,5%
backend

29,5%

Figure 5.2: cycles in percent

5.3 Hardware acceleration and task decomposi-

tion

The next step was to accelerate the critical parts and also to prepare the sys-
tem for the OS environment. This meant that the hardware components should
become self-contained entities that could easily be transformed into tasks. The
structure becomes more decentralized and all components can later be matched
to OS elements or application tasks. For this project I decided to first concen-
trate on the backend of the decoder and still keep the rest in software. In the
Embedded Development Kit the design flow was switched from Microblaze cen-
tered view to a view where the processor becomes only a submodule of a pure
VHDL project. Two major tasks where identified and integrated as hardware
components. One of them was a task that simply stores data from the FIFO
into the YUV RAM. The other one reads the YUV RAM, performs chroma 4:2:0
to 4:4:4 and YUV to RGB conversion and stores the pixels in the VGA mem-
ory. Performance measurements of the hardware accelerated backend showed
promising results. The number of cycles used to convert and store a complete
frame dropped from around 4,8 million cycles to 192’000 cycles which is as a
reduction of 95%. However the overall performance of the system remained poor
and could only be increased by 0.5fps from 4.5fps to 5fps.

18 CHAPTER 5. STEPS TO THE FINAL APPLICATION

operation reference cycles percent

network handling frame 3’909’615 40
IDCT block 5’212 20
backend frame 192’000 2
VLD and other frame 3’207’899 38

a complete frame frame 9’853’282 100

Table 5.2: Average number of cycles for a complete 160 × 120 pixel frame
with hardware acceleration of the backend

network handling

40%

VLD and other

38%

IDCT

20%

backend

2%

Figure 5.3: cycles in percent of the accelerated version

DP BRAM

pre

proc

add

block
pixel

writer
VGA

coredone signals

ethernet

connection

orange parts mark OS elements

green parts mark tasks

Figure 5.4: logic structure of the backend

5.4 MPEG-2 application

The final version of the decoder will consist of a few hardware and software tasks
that are prepared to be load as soon as needed. The OS loads the software parts
and reconfigures the R-FPGA with the hardware tasks. All services that I pre-
viously had to implement myself, like FIFOs, network traffic, share block RAM
and the like, are now provided by the OS. When configured the partitioning of
the FPGA might look like in figure 5.5. Until the end of my project however
there was no possibility to evaluate the performance of the MPEG decoder un-
der this conditions because the OS infrastructure for R-FPGA was still under

5.4. MPEG-2 APPLICATION 19

development.

e
th

e
rn

e
t

re
c

e
iv

e
r

v
g

a
 c

o
re

d
u
a

l p
o

rt
 B

R
A

M

F
IF

O

M
ic

ro
b

la
ze

a
d

d
 b

lo
c

k

p
ix

e
l w

rit
e

r

Figure 5.5: hardware tasks and OS elements arranged in the final application

20 CHAPTER 5. STEPS TO THE FINAL APPLICATION

Chapter 6

Detailed View

6.1 Overview of the MPEG-2 decoder source

In figure 6.1 you can see the callgraph of the Decode Picture function from the
original MPEG-2 source. This function is responsible for decoding a single frame
and is therefore the starting point for performance measurements. The figure
also shows which functions of the call graph have been removed in the restricted
implementation that was used in this project. Compared to the original source
(provided on the CD in directory) also other functions, mainly those involved
in decoding B and P frames were removed.

module omitted functions

getblk.c Decode MPEG1 Non Intra Block
Decode MPEG2 Non Intra Block

stascal.c complete module omitted
motion.c complete module omitted
getvlc.c Get dmvector

Get motion code
gethdr.c picture spatical scalable extension

picture temporal scalable extension

Table 6.1: omitted functions in the MPEG-2 decoder

6.2 Streaming Protocol

The MPEG standard defines a format for packets sent via a network. This
format requires the sending of redundant information to synchronize a stream-
ing client with the server. It also means additional computation time will be
necessary on the client side to unpack the video stream data. Furthermore this
feature was not supported by the decoder source code and would have meant
additional implementation effort. Because of this I decided to create a much
simpler, UDP based streaming protocol. For a better control of the progress
of a streamed video I let the client decide when he needs new data. He simply

21

22 CHAPTER 6. DETAILED VIEW

Decode_Picture

picture_data frame_reorder

slice setBuffer Write_Frame

decode_macroblock motion_compensation

Saturate Fast_IDCT Add_Block

conv420to422 conv422to444 store frame

YUV->RGB store VGAform_predmotion_vector

Figure 6.1: call graph for decoding one frame

sends a UDP packet containing the text ’NEXT’ to a streaming server which in
return sends a UDP packet containing payload data to the client. The size of
the payload packets is defined on the server side and can vary among different
application.

6.3 Implementation of the backend

The Microblaze still runs those parts in software that are not yet hardware
accelerated. In figure 5.4 the Microblaze is contained in the task labeled ’pre
proc’ for pre processor. The connection to the output FIFO is implemented
as a simple OPB core. The backend consists of two tasks called ’add block’
and ’pixel writer’. The ’add block’ task simply fills the YUV RAM with data
that he reads from the FIFO. As soon as a complete macroblock is written to
the RAM it stops reading the FIFO and signals the pixel writer to start its
operation. The ’pixel writer’ task reads the 4:2:0 YUV data from the block
RAM, performs to 4:4:4 conversion on the fly, converts the values to RGB and
finally writes the pixels to the VGA memory. As soon as the pixel writer has
completed his work he signals the add block task, that the memory is now free
again to be filled with new data. For an integration of the Microblaze task into
the OS environment it has to noted that at least two columns of block RAMs
are necessary. This makes the pre processor task very limited in the relocation
possibilities. No detailed analysis has been made on this so far, but it seems
like only one or two fixed locations on the FPGA can suffice this needs.

6.3.1 add block task

The add block task is a simple state machine that stores data from the FIFO
into the dual ported block RAM that is used as memory for a complete YUV
4:2:0 encoded macroblock. The interface of the task has the following structure.
This task has no special requirements to a fixed location within the FPGA.
The only important things to notice are that he needs a connection to the FIFO

6.3. IMPLEMENTATION OF THE BACKEND 23

that comes from the Microblaze and another connection to the dual ported YUV
RAM.

entity s t o r e i s

port (
−− Clock and Reset

ClkxCI : in s t d l o g i c ;
RstxRI : in s t d l o g i c ;
−− s i g n a l to r e s e t counters and s t a r t wi th a new frame

Restar txSI : in s t d l o g i c ;
−− i n t e r f a c e to the FIFO tha t i s connected to the Microb laze

−− on the o ther s i d e

FIFORExEO : out s t d l o g i c ;
FIFOEmptyxSI : in s t d l o g i c ;
FIFODataxDI : in s t d l o g i c v e c t o r (7 downto 0) ;
−− i n t e r f a c e to the dua l por ted b l o c k RAM

YUVWExEO : out s t d l o g i c ;
YUVDataxDO : out s t d l o g i c v e c t o r (7 downto 0) ;
YUVAddrxDO : out s t d l o g i c v e c t o r (8 downto 0) ;
−− synchorn i za t ion s i g n a l s f o r the p i x e l w r i t e r

StoreRdyxDO : out s t d l o g i c ;
PixwrtRdyxDI : in s t d l o g i c
) ;

end s t o r e ;

6.3.2 pixel writer task

Converter
DP YUV
BRAM

vg
aC

or
e

Writer

RGBStage1 RGBStage2

WriterDoneConverterDone

Sync

WE
Data

Address

Ack

free
flag

free
flagYUV -> RGB

Data

Addr

pixel writer task

Figure 6.2: schematic of the pixel writer hardware task

The pixel writer task has no special requirements for the OS. It simply needs
access to the dual ported YUV RAM on one side and a connection to one of
the frames of VGA core. The interface of the pixel writer has the following
structure.

entity pixwrt i s

24 CHAPTER 6. DETAILED VIEW

generic (
IMAGE WIDTH : i n t e g e r := 160 ;
IMAGE HEIGHT : i n t e g e r := 120 ;
BASEADDR : s t d l o g i c v e c t o r (19 downto 0) : = (others = > ’0 ’)
) ;

port (
−− Clock and Reset

ClockxCI : in s t d l o g i c ;
ResetxRI : in s t d l o g i c ;
−− s i g n a l to r e s e t counters and s t a r t wi th a new frame

MBSwapxSI : in s t d l o g i c ;
−− messaging s i g n a l s to synchronize the p i x e l w r i t e r

−− and the add b l o c k t ask

PixwrtRdyxDO : out s t d l o g i c ;
StoreRdyxDI : in s t d l o g i c ;
−− i n t e r f a c e to the b l o c k RAMs

YUVDataxDI : in s t d l o g i c v e c t o r (7 downto 0) ;
YUVAddrxDO : out s t d l o g i c v e c t o r (8 downto 0) ;
−− i n t e r f a c e to the VGA core

WAddrxDO : out s t d l o g i c v e c t o r (19 downto 0) ;
WDataxDO : out s t d l o g i c v e c t o r (15 downto 0) ;
WWExEO : out s t d l o g i c ;
WAckxSI : in s t d l o g i c ;
WBIDxDO : out s t d l o g i c
) ;

end pixwrt ;

6.3.3 YUV to RGB conversion

In figure 6.3 you can see the data flow graph of the YUV to RGB conversion
as implemented in the software version of the MPEG decoder. To implement
the backend, this code was taken as a basis and then pipelined as shown with
the numbered registers. The numbers correlate with the numbers used in the
VHDL source code.

6.3.4 IDCT

Altough no IDCT component could be included in the final version, the devel-
opment was under way. The data flow graph in figure 6.4 is taken from the fast
IDCT conversion function in the C sources. Based on this graph a first VHDL
implementation was made and tested. The simulations proved the correctness
of the core but the synthesis some timing problems. The numbers beside the
registers correlate with the numbers used the VHDL source which allows easier
identification. The current implementation is based on 32 bit operands for all
as the original C implementation also used 4 byte wide integers. However this
turned out to be a bad approach as not all operands use the complete 32 bit
range. Fixing this problem by using appropriate bus widths can surely produce
nicer timing because simpler routing.

6.3. IMPLEMENTATION OF THE BACKEND 25

represents a register

1 2

3
4

5

6
7

8

9

10
11

v y u

intv intu

Figure 6.3: data dependency graph of the YUV to RGB conversion

26 CHAPTER 6. DETAILED VIEW

+

x0

<<

blk0 8

8192

+ -

+

x8

*

W7

- +

+

x4

*

x5

*

4

+ -

>>

x4

W1

3

+ -

>>

x5

3

+-

+

x8

*

W3

- +

+

x6

*

x7

*

4

- -

>>

x6

W5

3

>>

x7

3

x8

x1

+ -

x0

+ -

+

x1

*

W6

+-

+

x3

*

x2

*

4

-+

>>

x2

W2

3

>>

x3

3

x1

+ -

x4

+ -

x6

+ -

x5

x7 x8x3

+ -

x0

+ -

>>

x2

+

*

181

128

8

>>

x4

+

*

181

128

8

>>

blk0

14

>>

blk1

14

>>

blk2

14

>>

blk3

14

>>

blk4

14

>>

blk5

14

>>

blk6

14

>>

blk7

14

blk1

blk2 blk6

blk7 blk5 blk3

represents a register

z5

z1

y6 y7
y5

z3

y4

y3 y2

z2

q4

z4q3

q2 q1

Figure 6.4: data dependency graph of the IDCT conversion

Chapter 7

Conclusions

The acceleration of the backend part of the MPEG-2 decoder only resulted in
a fairly small speed up for the whole processing time for one frame. But when
comparing the execution time of the backend before and after the hardware
acceleration it becomes clear, that hardware implementations of more software
components can increase the performance. When additionally replacing IDCT
and the networking component by hardware cores we can achieve a speed of
around 3’750’000 cycles per frame which means 0.075s per frame or 13 fps. This
circumstance is visualized in figure 7.1.

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

pure

software

hardware

accel.

net done by

OS

IDCT accel.

VLD + other

Backend

IDCT

networking

0.08s 0.004s-95%

13
’8

73
’3

62
C

yc
le

s
9’

85
3’

28
2

C
yc

le
s

3’
75

0’
00

0
C

yc
le

s

Figure 7.1: cycles ratios of different acceleration variations

27

28 CHAPTER 7. CONCLUSIONS

Chapter 8

Documentation of the

software tools

8.1 Streaming server

This Windows application generates the special data stream that is needed
for the video and audio players in all of the XForces projects. Instead of a
standard MPEG stream as defined in [5] I decided to use a much simpler UDP
protocol. This saved me from implementing a complete TCP/IP stack and also
provide the memory or gate space for it. The streaming server simply waits for
requests from a vido and/or audio source and sends packets of a given size to
the requesting client. 8.1 shows the steps for the standard scenario.

1. choose a file you want to stream

2. start the server

3. control address of receiving client
and streaming progress

4. stop the server

server for a second application on a different port

Figure 8.1: screen shot of the streaming application

29

30 CHAPTER 8. DOCUMENTATION OF THE SOFTWARE TOOLS

8.2 XFBLoader

The XFBLoader can be used to configure the R-FPGA of the XFBoard. The
OS on the C-FPGA provides a service to receive configuration bitstreams via
the ethernet connection. On the PC side you can select a directory containing
*.bit files, set a destination IP and start transmitting the bitstreams. As soon
as the transfere is completed you can configure the R-FPGA by typing a few
shell commands on the C-FPGA OS shell. For this purpose the bitlist and
config commands are used. Listing gives an example of a typical session.

8.3 MPEG encoder

The source of MPEG decoder that served as basis for the initial software im-
plementation, was originally a standard C applications that could decode a
MPEG-2 movie file and generate a sequence of images that represent the re-
spective frames. Together with that a simple encoder was delivered that could
encode a sequence of images into a MPEG-2 stream. For my purposes I had to
reencode a given MPEG file in such a way that it would only contain I frames.
The parameters used for the encoding with mpeg2enc are given in listing 8.1.

Listing 8.1: options file for the sample video

1 MPEG−2 Test Sequence , 2 5 frames/ s e c
2 IkeaDec%d /∗ name of source f i l e s ∗/
3 − /∗ name of r e cons t ruc ted images (”−” : don ’ t s t o r e) ∗/
4 − /∗ name of i n t r a quant matrix f i l e (”−” : d e f a u l t matrix) ∗/
5 − /∗ name of non in t r a quant matrix f i l e (”−” : d e f a u l t matrix) ∗/
6 s t a t . out /∗ name of s t a t i s t i c s f i l e (”−” : s tdout) ∗ /
7 2 /∗ input p i c tu r e f i l e format : 2=∗ .ppm ∗/
8 794 /∗ number of frames ∗/
9 0 /∗ number of f i r s t frame ∗/

10 0 0 : 0 0 : 0 0 : 0 0 / ∗ timecode of f i r s t frame ∗/
11 1 /∗ N (# of frames in GOP) ∗/
12 1 /∗ M (I /P frame d i s tance) ∗/
13 0 /∗ ISO/IEC 11172−2 stream ∗/
14 0 / ∗ 0 : frame p i c tur e s , 1 : f i e l d p i c tu r e s ∗/
15 160 /∗ h o r i z o n t a l s i z e ∗/
16 120 /∗ v e r t i c a l s i z e ∗/
17 2 /∗ a s p e c t r a t i o i n f o rma t i o n 2=4:3 ∗/
18 3 /∗ f r ame ra te code 3=25 ∗/
19 50000000 .0 /∗ b i t r a t e (b i t s / s) ∗/
20 112 /∗ vbv bu f f e r s i z e (in mul t i p l e s of 1 6 kb i t) ∗/
21 0 /∗ l ow de lay ∗/
22 0 /∗ c on s t r a i n ed pa r ame t e r s f l a g ∗/
23 4 /∗ P r o f i l e ID : Main = 4 ∗/
24 6 /∗ Level ID : High 1440 = 6 ∗/
25 1 /∗ p r o g r e s s i v e s e quenc e ∗/
26 1 /∗ chroma format : 1=4 : 2 : 0 , 2=4 : 2 : 2 , 3=4 : 4 : 4 ∗ /
27 1 /∗ v ideo fo rmat : 1=PAL ∗/
28 5 /∗ c o l o r p r ima r i e s ∗/

8.4. EXPRESSION PARSER 31

29 5 /∗ t r a n s f e r c h a r a c t e r i s t i c s ∗/
30 5 /∗ ma t r i x c o e f f i c i e n t s ∗/
31 160 /∗ d i s p l a y h o r i z o n t a l s i z e ∗/
32 120 /∗ d i s p l a y v e r t i c a l s i z e ∗/
33 0 /∗ i n t r a d c p r e c i s i o n (0 : 8 b i t ∗/
34 1 /∗ t o p f i e l d f i r s t ∗/
35 0 0 0 /∗ f rame pred frame dct (I P B) ∗/
36 0 0 0 /∗ concea lment mot ion vector s (I P B) ∗/
37 1 0 0 /∗ q s c a l e t y p e (I P B) ∗/
38 1 0 0 /∗ i n t r a v l c f o rma t (I P B)∗/
39 0 0 0 /∗ a l t e r na t e s c an (I P B) ∗/
40 0 /∗ r e p e a t f i r s t f i e l d ∗/
41 0 /∗ p r o g r e s s i v e f r ame ∗/
42 0 /∗ P di s tance between complete i n t r a s l i c e r e f r e s h ∗/
43 0 /∗ r a te c on t r o l : r (r e a c t i o n parameter) ∗/
44 0 /∗ r a te c on t r o l : avg act (i n i t i a l average a c t i v i t y) ∗/
45 0 /∗ r a te c on t r o l : Xi (i n i t i a l I frame g l oba l complexity measure) ∗/
46 0 /∗ r a te c on t r o l : Xp (i n i t i a l P frame g l oba l complexity measure) ∗/
47 0 /∗ r a te c on t r o l : Xb (i n i t i a l B frame g l oba l complexity measure) ∗/
48 0 /∗ r a te c on t r o l : d0 i (i n i t i a l I frame v i r t u a l buffer f u l l n e s s) ∗/
49 0 /∗ r a te c on t r o l : d0p (i n i t i a l P frame v i r t u a l buffer f u l l n e s s) ∗/
50 0 /∗ r a te c on t r o l : d0b (i n i t i a l B frame v i r t u a l buffer f u l l n e s s) ∗/
51 2 2 1 1 1 1 / ∗ P : f o rw ho r f c od e f o rw v e r t f c o d e search width / he ight ∗/
52 1 1 3 3 /∗ B1 : f o rw ho r f c od e f o rw v e r t f c o d e search width / he ight ∗/
53 1 1 7 7 /∗ B1 : back ho r f code ba ck v e r t f c od e search width / he ight ∗/
54 1 1 7 7 /∗ B2 : f o rw ho r f c od e f o rw v e r t f c o d e search width / he ight ∗/
55 1 1 3 3 /∗ B2 : back ho r f code ba ck v e r t f c od e search width / he ight ∗/

To create your own MPEG streams that can be viewed with the MPEG
decoder you would use the following sequence. The imaginary filename ¡my-
movie.mpeg¿ is used to denote the original MPEG stream and ¡mymovie recoded.mpeg¿
to denoted the transformed MPEG stream. The mymovie.par file should contain
exactly those parameters shown in listing 8.1. The number of frames that has
to be adjusted in the .par file can be extracted from the highest frame number
that is generated.

1 mpeg2dec . exe −b <mymovie . mpeg> −o3 <mymovie recoded%d . mpeg>
2 mpeg2enc . exe mymovie . par <mymovie . mpeg>

Note: Do not forget the %d at the end of the output filename when deocding.
This part is used to generate numbered file names, one for each frame.

8.4 Expression Parser

The expression parser was developed to visualize complex data flow graphs. It
consist of a Pyhton script that can parse a very small subset of C expressions.
The grammar is restricted to the operations +, -, *, /, ¡¡, ¿¿ and the grouping
symbols () (see source code for complete supported grammar). It takes a source
file and generates a graph description in the dot format that is understood by
the Graphviz package from AT&T. A typical session would look like in listing
8.2.

32 CHAPTER 8. DOCUMENTATION OF THE SOFTWARE TOOLS

Listing 8.2: a typical session with expr parse.py

1 python expr pa r s e . py i n p u t f i l e . txt > ddg . dot
2 dot −Tps2 ddg . dot > ddg . ps

Appendix A

Contents of the CD

\root

\src Source code of all applications

\mpeg Original source of the MPEG-2 decoder and encoder

\opb xfstopwatch v1 00 a source of the OPB stopwatch core (documentation available)

\streamer source code of the Visual C++ project for the streaming server

\apps Binaries of all used applications

\streamer Streaming server for audio and video applications

\XFBloader

\exprparser Python expression parser script

\mpegtools MPEG decoder and encoder

doc

\chapters LATEXsources of the chapters

\images Corel Draw 10 files and thereof converted EPS
files used in the documentation

\pres Power Point slides of the introduction and the final presentation

33

34 APPENDIX A. CONTENTS OF THE CD

Bibliography

[1] Mpeg website. http://www.mpeg.org.

[2] Tobias Gysi Andreas Ess. Signal processing tasks, 2004. TIK SA 2004.11.

[3] Xuemin Chen. Transporting Compressed Digital Video. Kluwer Academic
Publishers, 2002.

[4] Herbert Walder et al. Reconfigurable hardware os prototype. TIK Report
168.

[5] Motion Pictures Expert Group. Iso/iec jtc1/sc29/wg11 coding of moving
pictures, and associated audio, March 1994. Part 13818-2 - Video.

[6] Heiner Ksters. Bilddatenkomprimierung mit JPEG und MPEG. Franzis’,
1995.

[7] Samuel Nobs. Prototype board for reconfigurable os, 2003. TIK SA 2003.22.

[8] Daniel Hobi Pascal Ldi. Audio playback tasks for rhwos. TIK SA 2004.12.

[9] Iain E. G. Richardson. Video Codec Design. John Wiley & Sons, Ltd, 2002.

[10] Michael Ruppen. Reconfigurable os prototype. Master’s thesis, ETH
Zurich, 2003. TIK DA 2003.11.

[11] John Watkinson. MPEG-2. Focal Press, 1999.

26th February 2004

35

	Contents
	List of Figures
	1 Introduction
	1.1 The XFBoard plattform
	1.2 Motivation

	2 Project management
	3 Short introduction to MPEG-2
	4 Design decisions
	4.1 MPEG-2 variation
	4.2 Memory considerations

	5 Steps to the final application
	5.1 Drop-in solution
	5.2 Profiling
	5.3 Hardware acceleration and task decomposition
	5.4 MPEG-2 application

	6 Detailed View
	6.1 Overview of the MPEG-2 decoder source
	6.2 Streaming Protocol
	6.3 Implementation of the backend
	6.3.1 add block task
	6.3.2 pixel writer task
	6.3.3 YUV to RGB conversion
	6.3.4 IDCT

	7 Conclusions
	8 Documentation of the software tools
	8.1 Streaming server
	8.2 XFBLoader
	8.3 MPEG encoder
	8.4 Expression Parser

	A Contents of the CD
	Bibliography

