
3/31/2004, Seite 1 von 28

Diploma thesis

Gene Expression Profiling and
Pathway Scoring

By Marius Dürr
Supervised Anja Wille, Eckart Zitzler
Professor Eckart Zitzler

3/31/2004, Seite 2 von 28

Content

Diploma thesis..1
Content…………………………………………………………………………………….2
1. Introduction..3

1.1 Biological Backgrounds..4
2. Modeling ..5

2.1 Model ...5
2.2 Data Structure ..7
2.3 Results ..8
2.4 Discussion..8
2.5 Future Work...9

3. Graph Search..10
3.1 Methods..10

3.1.1 Transformation ...10
3.1.2 Randomization..11

3.2 Implementation..12
3.2.1 Transformation ...12
3.2.2 Randomization..12
3.2.3 Search..13
3.2.3.1 Hubs ...15
3.2.3.2 Paths...15
3.2.3.3 Cliques ...15
3.2.3.4 Modules ...16

3.3 Results ..18
3.3.1 Hubs ..18
3.3.2 Paths ..19
3.3.3 Cliques ..19
3.3.4 Modules ..20

3.4 Discussion..22
4. Coexpression..23

4.1 Methods..23
4.2 Implementation..23
4.2 Results ..24

4.2.1 Links..24
4.2.2 Modules ..25
4.2.3 Hubs ..25
4.2.4 Cliques ..26

4.3 Discussion..26
5. Summary and future work...27
References ..28

3/31/2004, Seite 3 von 28

1. Introduction

In the last few years new technologies in the field of genetics allowed a closer look into
the metabolism of cells and also into the functionality of the DNA. This revealed a large
amount of data for metabolic networks and also for the underlying genetic level by using
DNA-chips.
To properly understand and analyze the global properties of a metabolic network,
methods for rationally representing and quantitatively analyzing its structure are needed.
Also its relationship to gene expression data should be examined.

The analysis of the transcriptional network of Escherichia coli revealed a high occurrence
of certain small substructures [5]. This work tries to evaluate whether such substructures
exists also in the metabolic network of the plant Arabidopsis thaliana.

Recent research in Saccharomyces cerevisiae revealed that many genes which are
arranged along the central part of a pathway are coregulated [6]. It is an open question
whether this coregulation exists also on other substructures of the network.

Also we like to model the data of Arabidopsis thaliana which has been studied and
analyzed in a wide range because of its simplicity. There is gene expression data for 793
genes as well as the metabolic network containing 524 enzymes and 566 metabolites.

The work is divided into 3 parts. At first we choose an appropriate data structure for
integrating the available data. It preserves all required information and allows us to work
efficiently on the data. This data structure is similar to the graph-like appearance of the
metabolic network itself. Nodes represent the different types of entities like enzymes,
metabolites, genes and reactions. Links represent relationship between nodes, whereas
the type of the nodes and the direction of the link determine its biological interpretation.
In a second step, we extract interesting information from the data structure. Therefore we
search the metabolic network for small substructures. There are several different
substructures [Figure 1.1]. We test for cliques, where each pair of nodes is connected
through a link. We test for paths, where each node has only 2 neighbors. We test for
hubs, which are single nodes that are defined by the number of links they have. And we
test for unspecified modules that are defined by the connectivity of the according nodes.
Further we test which of those substructures are characteristic for the network.

3/31/2004, Seite 4 von 28

Finally we are looking for correlations between substructures and gene expression data.
The aim is to construct a scoring function for to gene expression data, which allows
conclusions about the structure of the metabolic network. Such a scoring function would
simplify the work of biologists who are investigating the metabolic network.

Figure 1.1: Substructures: hub,
path, clique, unspecified module

1.1 Biological Backgrounds

We know that genes get transcript into proteins. This transcription still depends on mostly
unclear factors, but its amount – the activity of a gene, called gene expression – is
measurable and depends on the cell’s state. The new technology of DNA-Chips tells us at
once the activity of a wide range of genes. The large amount of generated data may
enhance our understanding of the interactions and collaborations of the genes and their
according proteins and give us some deeper insights into the functionality of cells at all.

Proteins can serve as enzymes. In this case they catalyze reactions which transform one
metabolite into another. Enzymes, metabolites and their relationships are together
represented in metabolic networks. Often a certain metabolite is transformed several
times by different enzymes. Such chains of reactions are interpreted as metabolic
pathways. Pathways can branch into more than just one reaction chain, but mostly there is
one central part where the main reactions happen.

3/31/2004, Seite 5 von 28

2. Modeling

2.1 Model

As starting point we have a database of a metabolic network consisting on 524 enzymes
and 566 metabolites. Enzymes and metabolites are represented as nodes, whereas
reactions of metabolites catalyzed by an enzyme are represented as links between these
nodes. Some links are directed and indicate whether a metabolite is an educt or a product
of a reaction. Each link belongs to a certain pathway, and there can be more than one link
per connection between two nodes if this connection is part of a couple of pathways.

Finally we like to search for substructures within a graph-like model of the metabolic
network. There are multiple possibilities to model the data, and we have to choose one to
work with. There is a trade-off between simplicity and expressiveness of the model, and
because at the time of modeling we do not know the final requirements, we decide to
model also the reaction flow in contrast to the original data where the reactions are
ambiguous [Figure 2.1.1].

An enzyme could be modeled as link between two metabolite-nodes; vice versa a
metabolite could be modeled as link between two enzyme-nodes. Such specialized
solutions should be used if we know that we do not need any other information. A more
complex representation like the used database models both enzymes and metabolites as
nodes. But it has no information about whether two metabolites are part of the same
reaction. They also can belong to two different reaction catalyzed by the same enzyme.
This information can be important in various contexts, for example in [3] metabolites
correspond to nodes and reactions are represented as links between them. For keeping the
model general and flexible, we decided to model the reactions too. To integrate the gene
expression data we also model genes. A gene could produce one or more enzymes.

Figure 2.1.1: database-model:
ambiguous context

3/31/2004, Seite 6 von 28

There are several possibilities to model reactions. We could model educts and products of
a reaction by using an educt and a product node to which the reaction and the reactants
are connected. We can use a directed link to indicate the reactant’s relationship to the
reaction. Or we can omit the information whether a reactant is an educt or a product of a
reaction. Since using directed links seems to be reasonable for diverse purposes, we
model enzymes, metabolites, genes and reactions as nodes and the direction of a link
indicates the reactant’s state.

There are two types of reactions. “single-way reaction” can run only in one direction, i.e.
A+B=>C+D. “two-way-reaction” can also run backwards, i.e. A+B=>C+D, C+D=>A+B
or A+B C+D. A metabolite is then an educt as well as a product of the enzyme’s
reaction. Such a two-way-reactions could be modeled with a bidirectional link between
metabolite node and reaction node. Since all reactants would get a bidirectional link, we
would not know which reactants belongs together on one side of the reaction equation.
Therefore we split up a two-way-reaction into two symmetric single-way-reactions. This
eliminates any ambiguities as shown in figure 2.1.2.

Links between nodes indicate a relationship between two nodes. All links are
unidirectional. There are three sorts of links. We have links between genes and enzymes,
links between enzymes and reactions and links between reactions and metabolites.
A link from a gene node to an enzyme node indicates that the gene produces the enzyme.
A gene can produce more than one enzyme. An enzyme can be produced by more then
one gene.
A link from an enzyme node to a reaction node indicates that the enzyme catalyzes the
reaction. An enzyme can have more than one reaction, but each reaction belongs to exact
one enzyme.
A link from a metabolite to a reaction indicates that the metabolite is an educt of the
reaction. Vice versa a link from a reaction to a metabolite indicates that the metabolite is
a product of the reaction. On the educt side as well as on the product side of the reaction
there can be one or more reactants.

Figure 2.1.2: used model

3/31/2004, Seite 7 von 28

2.2 Data Structure

The usefulness of a sophisticated data structure grows with the size of the data. Although
computing performance has been steadily increasing over the last decades, it still maters
whether an algorithm runs in linear, quadratic or even higher time. Data structures should
be optimized with respect to the used algorithms. Simultaneously a flexible and reusable
data structure can save programming time and source code size.

The presented new model of the metabolic networks is already in a graph-like form. So
we choose a graph as data structure where each node manages its links by itself. This
minimizes look-up time when traversing the graph.
Another approach is a set of tables like in a database. One table holds all connections
between nodes. Tables have an easy handling, but look-up time is logarithmic to the
number of nodes. This would lead to an immense increase of calculation time for almost
all algorithms used in this work.

Within the constructed graph the algorithms are just analyzing its structure. Once the data
is read, the structure of our graph does normally not change anymore. Accessing nodes
and links should be cheap while manipulating the graph by inserting and deleting nodes
or links may be expensive.

The links can be represented in various ways. A link may be directed, undirected or
bidirectional. We can allow more than one link between two nodes or just one. Since in
the model we use only directed links, we use them also for the data structure. To keep the
data structure flexible we allow existing more than one link between two nodes.

Since each link is directed, it always has an origin (further “from-node”) and a
destination (further “to-node”). From the view of the from-node the link is an outgoing
link (further “out-link”). From the view of the to-node the link is an incoming link
(further “in-link”). Depending on the algorithm we like to access only in-links, only out-
links or all links of a node. So the data structure provides separated sets for in- and out-
links to speed up calculation time. Simultaneously there is a set of all links where we can
access the next node without caring about the direction of the link.

For fast and easy access the content of the data structure can be stored and reloaded. A
file begins with the numbers of nodes and the number of links. Each node is written to
one line, first a unique ID, additional information on its type and content are separated
with tabs. In the second section of the file each link is written to a line, consisting only of
the IDs of the two connected nodes.

3/31/2004, Seite 8 von 28

2.3 Results

The conversion from the database into the data structure produced several problems.
Within the original data there were links between metabolites as well links between
enzymes. Some metabolites had no names which confused the database parser. Since
each link belongs to a certain pathway there were multiple links for the same connection
between two nodes.

The reactions and their according metabolites are not part of the original database. In
simple cases an enzyme posses only two or three metabolites. We can conclude that all of
them belong to the same reaction. If there are more than three metabolites connected to
an enzyme we need additional knowledge to fill our data structure. For receiving this
missing information we used the online database KEGG [7].

2.4 Discussion

The presented model demonstrated to be flexible enough for all tasks of this work. Due to
the well defined structure, transformations into other representations are easy to
implement. This is necessary for implementing fast algorithms or if we are only
interested in subparts of the metabolic network, for example the relationships of the
enzymes without any information about the metabolites.

3/31/2004, Seite 9 von 28

2.5 Future Work

In the original database each link belongs to a certain pathway. If this information is not
used, a link contains no information at all and does not have to be an independent object
since it has no properties except the relationship to the connected node. Then all links of
a node could be represented with one table and handful iterators instead of pointers to
link-objects. The entries in the table are the connected nodes. The table consists of 4
parts. In the first part are all neighbors with an undirected connection. The second part
contains the neighbors of inlinks. Part three stores bidirectional links and the last part is
filled with outlinks. Iterators administer the positions of the four parts. There are iterators
for the single parts as well as such for a combination of several parts. An all-links iterator
covers the range of the whole table; an incoming-links iterator provides access to inlinks
and bilinks etc.
This data structure is very fast and able to manage useful subsets of links.

Figure 2.4.1: Improved table

3/31/2004, Seite 10 von 28

3. Graph Search

The structure of a metabolic network is defined by its functionality. When considering
such a network the question arises whether there are substructures which are special to
this kind of metabolic representation. Knowledge about frequent substructures or
modules can improve our understanding of the metabolic network. As mentioned in the
introduction, similar work in genetic regulatory networks as already been done by [5].
They found several modules that are more frequent in a network than in a random graph
with equal numbers of nodes and links.

The question arises whether such modules can also be found in the metabolic network.
Since our model consist of 4 levels containing metabolites, enzymes, reactions and genes
we transform the representation to one single level where we search for modules. For
determining the significance of the module’s frequencies, we need a appropriate random
graph which allows us meaningful comparisons.

3.1 Methods

3.1.1 Transformation

Searching for substructures can be done in various representations of the metabolic
network. Depending on the model we get different results which have to be interpreted
differently. The graph contains different types of nodes. There are enzymes, metabolites,
reactions and genes. Since we finally like to find correlations between gene expression
data and substructures, we are looking for structures of gene nodes. The information
about enzymes, metabolites and reaction is used to determine the relationships between
the gene nodes. A link between two nodes, i.e. genes, represents a metabolite which is a
reactant of the gene’s enzymes. Since the gene nodes in our graph model are not
connected to each other but only to their corresponding enzymes we have to transform
the graph into the appropriate representation as shown in Figure 3.1.1.

3/31/2004, Seite 11 von 28

Figure 3.1.1: Transformation: The
4-Level-Model on the left side can
be transformed to a single level as
shown on the right according to the
transformtaion rules.

3.1.2 Randomization

When we want to know whether a module is significantly frequent within the graph, we
need to compare the frequency with those of random graphs. Randomization of the
consisting graph returns such a random graph.

If we would only choose a random number of nodes and links, the results would not be
comparable to our metabolic graph. The frequencies of the modules seem to be defined
through the size of the graph and the average number of links per node.

One approach of a appropriate randomization is to keep the numbers of inlinks and
outlinks per node and only change the destinations of these links. When the original
graph has x nodes with i inlinks and o outlinks, the randomized graph will also have x
such nodes. This is useful for significance testing in most cases of considered modules.
As we have seen in chapter 2 some connections are bidirectional, but the links are not.
Without special treatment the randomization destroys most of the bidirectional
connections which leads to an overrepresentation of modules containing bidirectional
connections.

If we want to test the significance of the connectivity itself we have to choose another
randomization than the presented above because that conserves all connectivities.
Anyway the randomized graph should keep the general properties of the original graph
like the number of nodes, the number of bidirectional and unidirectional links.

3/31/2004, Seite 12 von 28

3.2 Implementation

3.2.1 Transformation

The result of a transformation is a graph which nodes are connected if the nodes in the
original graph are in a well defined relationship. A gene node A is connected with a
directed link to a gene node B if there is a metabolite which is an educt of a reaction
catalyzed by an enzyme A’ and simultaneous the product of a reaction catalyzed by an
enzyme B’, where enzyme A’ is produced by gene A and enzyme B’ is produced by gene
B.

1. First a new graph G’ is created with the same number of nodes as gene nodes in
the original graph G. Each original node is mapped to a new one in G’ which is
saved in an according map M.

2. Iteration over all gene nodes in G is started.
a. For each enzyme of a gene all metabolite products of the according

reactions are collected.
b. Where this metabolite is an educt, all reactions and their enzymes are

collected.
c. Finally the gene nodes of these enzymes are collected.
d. The gene nodes in G’ that correspond to the resulting nodes are received

from the map M.
e. Directed links from the origin node to each destination node are inserted in

G’.

3.2.2 Randomization

The randomization that conserves the connectivity tries to save also bidirectional
connections. The two unidirected links are replaced by one bidirectional link. Now each
node is characterized through a defined number of inlinks, outlinks and bilinks.

1. First a new graph with an equal node set but without any links is created. Each
new node has a pendant in the original graph.

2. Three collections are created: “need bilink”, “need inlink” and “need outlink”.
3. Depending on their connectivity, the nodes are put in some of these collections.
4. A node is removed from a collection as soon it has as many links from the

collection type as its counterpart in the original graph.
5. As long the collections contain some nodes, we choose two nodes from the

collections and connect them with an according link. Either we take both nodes
from the “need bilink”-collection or one from “need inlink” and one from “need
outlink”. If we take the same node twice within such a step, we discard it because

3/31/2004, Seite 13 von 28

we do not allow self references. If we always take the same node twice because
the collections contain only one and the same node, we stop the algorithm.

Finally in the resulting randomized graph at most two links are missing which is
negligible compared to the size of the graph.

The randomization that does not conserve the connectivity is much simpler

1. First a new graph with an equal node set but without any links is created. Each
new node has a pendant in the original graph.

2. The same number of unidirectional and bidirectional links are chosen as in the
original graph.

3. These links are randomly distributed to the nodes.

The result is a graph which nodes have random characterizations while keeping the
graphs general properties as number of nodes or number of a sort of links.

3.2.3 Search

We are interested in the structure of the transformed graph. Therefore we try to find
typical patterns. Additional to the modules found in [5] we analyze the graph for hubs,
paths and cliques, which seem to be a important part of the graph. We are looking for the
statistical significance with respect to the occurrence of different substructures of the
graph. Each search target (module, path, hub, clique) requires a special search algorithm.
Independent from the target we are interested for the same information of this target. We
want to know the frequency of a target and the frequency within a randomized graph. We
want to know the involved nodes of a target and its specific structure (i.e. there are more
than 10 variations of 3-node-modules and we are interested in the organization and
frequency of every one).
All algorithms have similar outputs and equal tasks to fulfill which is expressed in the
interface of abstract search classes.

Each search happens in 3 steps as shown in figure 3.2.3.1. In the first step we choose the
graph where the search should run. This can be either a graph from a file or a randomized
graph. The second step is to choose the search itself. There are searches for modules,
hubs, paths and cliques. In the third step each found target has to be processed in one of
many ways. Targets can be counted, listed or identified.

3/31/2004, Seite 14 von 28

These three steps are represented in three objects. The first object is the main loop, where
initialization, running and evaluation of the chosen search algorithm happens.
Randomizations can be applied to the given graph and the search can run on such a
randomized graph. The second object is the implementation of the search algorithm. Each
search algorithm has methods for initialization, running and evaluation. The third object
is the target processor which is applied for each item found by the search algorithm. A
target processor has methods for initialization, target processing and evaluation.

Figure 3.2.3.1: Structure of the
search. Different algorithms can
use the same target processor.

Figure 3.2.3.2: Pseudo source code of the code.

class MainLoop
{
public:
 MainLoop(SearchAlgorithm, int nRandom=0, int
RandomType=RT1);
};
class SearchAlgorithm
{
public:
 SearchAlgorithm(TargetProcessor);
 void begin();
 void search(Graph*);
 void end();
};
class TargetProcessor
{
public:
 TargetProcessor();
 void begin();
 void process(NodeList*);
 void end();
};

3/31/2004, Seite 15 von 28

3.2.3.1 Hubs

Searching for hubs is very simple, since a hub is defined by its links. We choose a node
and collect all other nodes that are directly connected to it. The ID of the hub depends on
the number of connected nodes.

3.2.3.2 Paths

A path is a chain of nodes. Each node that is part of the path has exactly two neighbors.
At the beginning of the path search, all nodes are marked as unvisited. We choose an
unvisited node and mark it as visited. If this node has exactly two neighbors, it is the
beginning of a new path. We traverse along both of the two nodes as long the traversed
nodes have exactly two neighbors. We mark each traversed node as visited and add it to
the created path. When the traversal is finished, we pass the collected nodes in the path to
the target processor. Afterwards we search for the next path by choosing another
unvisited node.

3.2.3.3 Cliques

We choose a node and we choose the largest possible size N of a clique. Initially this is
equal to the number of connected nodes. Then we choose N nodes within the connected
ones. For each of these nodes we test whether it is connected to all other chosen nodes. If
this test succeed we found a clique and we call the Target Processor. If one such
connection is missing, we choose another set of nodes. If we have tested all sets, we
decrease the maximum clique size to N-1.

3/31/2004, Seite 16 von 28

3.2.3.4 Modules

The idea of the module search algorithm is to return all available modules of a certain
size N fixed at initialization. A module of size N consists of N nodes that form a
connected graph. Each found module get identified by a first target processor according
to its structure. Two modules with the same structure get the same ID. The idea of the
module search algorithm is choose a node, process all modules that contain this node,
mark this node as visited and go on with the next node.

1. All nodes are marked as unvisited and left-nodes-in-module is set to N.
2. The first unvisited node is marked as in-use and is added to a part-of-module-

collection. Since this node is now certainly within the module, left-nodes-in-
module is decreased to left-nodes-in-module - 1.

3. All unvisited neighbors of nodes in the part-of-module-collection which are not
in-use are marked as in-use and collected in the neighborhood-collection.

4. From the neighborhood-collection between 1 and N nodes are chosen. The other
nodes are deleted from the neighborhood–collection. The chosen nodes are added
to the part-of-module-collection.

5. If the size of the part-of-module-collection is N, the algorithm returns a found
module, else step 3 is called again

Figure 3.2.3.4.1: The module
search algorithm: All nodes in
neighborhood to part-of-module-
nodes are visited, in-use or get part
of the neighbor-collection.

3/31/2004, Seite 17 von 28

The module search algorithm produces all existing modules within the graph. For further
processing we need to identify each module and assign a unique ID to it. Comparing such
two modules is very expensive in calculation time. Instead of full comparison of the
graph we first pre-classify it. This pre-class is defined by the number of nodes and the
number of links within the module. We sort the nodes of the module, where the sorting
criteria are the number of inlinks and outlinks of a node. Then the number of inlinks and
outlinks of the nodes are written to a string. This defines the so called header-string. Two
equal modules have the same header-string. If two modules have different header strings
they are not equal. Else we do not know it and are forced to compare the modules.

Figure 3.2.3.4.2: Two modules (A
and B) contain an identical
beginning of the header string.

3/31/2004, Seite 18 von 28

3.3 Results

3.3.1 Hubs

P-value Count Average Hub-Type

0.010000 43 33.820000 hub with 0 link
0.910000 70 80.199997 hub with 1 link
0.000000 233 106.919998 hub with 2 links
1.000000 53 103.080002 hub with 3 links
1.000000 35 82.849998 hub with 4 links
1.000000 16 54.910000 hub with 5 links
1.000000 18 32.480000 hub with 6 links
1.000000 8 16.219999 hub with 7 links
0.000000 16 7.770000 hub with 8 links
0.070000 7 3.550000 hub with 9 links
0.040000 4 1.320000 hub with 10 links
0.100000 2 0.540000 hub with 11 links
0.000000 4 0.230000 hub with 12 links
0.040000 1 0.050000 hub with 13 links
0.000000 3 0.030000 hub with 14 links
0.000000 3 0.020000 hub with 15 links
0.000000 3 0.000000 hub with 16 links
0.010000 1 0.010000 hub with 17 links
0.000000 2 0.000000 hub with 21 links
0.000000 1 0.000000 hub with 23 links
0.000000 1 0.000000 hub with 28 links

Table 3.3.1.1: P-Value: Significance of a module. Count: The occurrence of the module
in the original graph. Average: The average occurrence of the module in the randomized
graphs. Hub-Type: size of the hub.

The network seems to consist of large hubs which are significant even they are not so
frequent. Hubs without any links are significant because there is a lot of reaction data
missing which leads to many nodes without any neighbor.
The randomization produces graphs which have nodes containing two or three links in
average. As expected, the frequency of random hubs decreases with their size. Significant
hubs contain null or two links or more than ten. Hubs with three to nine links are not
significant.

3/31/2004, Seite 19 von 28

3.3.2 Paths

P-value Count Average Path-Type

1.000000 112 165.820007 path with 1 node
1.000000 23 47.299999 path with 2 nodes
0.870000 15 17.959999 path with 3 nodes
0.170000 9 6.480000 path with 4 nodes
0.000000 8 2.310000 path with 5 nodes
0.000000 6 0.880000 path with 6 nodes
0.220000 1 0.250000 path with 7 nodes
0.000000 3 0.040000 path with 9 nodes
0.010000 1 0.010000 path with 11 nodes

Table 3.3.1.1: P-Value: Significance of a module. Count: The occurrence of the module
in the original graph. Average: The average occurrence of the module in the randomized
graphs. Path-Type: size of the path.

Although the metabolic network consists of pathways, the short paths are very frequent
but not significant. Paths with a length bigger than four nodes tend to be significant but
not very frequent. Paths of a certain length do not include paths with a larger length; each
one is counted just once.

3.3.3 Cliques

P-value Count Average Clique-Type

0.000000 1050 113.820000 clique with 3 nodes
0.000000 1144 44.939999 clique with 4 nodes
0.000000 1035 4.730000 clique with 5 nodes
0.000000 570 0.060000 clique with 6 nodes
0.000000 161 0.000000 clique with 7 nodes
0.000000 16 0.000000 clique with 8 nodes

Table 3.3.4.1: P-Value: Significance of a module. Count: The occurrence of the module
in the original graph. Average: The average occurrence of the module in the randomized
graphs. Clique-Type: Size of the clique.

All found cliques are significant and also frequent. Interesting is that there are more
cliques of size 4 than cliques of size 3, even also subcliques are counted. This is because
of the overlapping of some cliques. For instance two cliques of size 4 can share 3 nodes
which lead to fewer cliques of size 3 than one might expect.
The huge cliques of sizes up to 8 are probably a result of reactands like ATP which are
part of many reactions. Removal of such general metabolites could clarify the results.

3/31/2004, Seite 20 von 28

3.3.4 Modules

P-value Count Average

0.000000 25 0.930000
0.000000 111 0.950000
0.000000 53 2.060000
0.000000 97 2.040000
0.000000 54 0.360000
0.000000 6 0.640000
0.060000 4 1.740000
0.960000 134 196.520004
0.980000 684 749.789978
1.000000 129 208.419998
1.000000 382 478.540009
1.000000 236 362.799988
1.000000 210 358.420013

Table 3.3.4.1: P-Value: Significance of a module. Count: The occurrence of the module
in the original graph. Average: The average occurrence of the module in the randomized
graphs. Graph-String: A string representation of the module.

All significant modules with 3 nodes are fully connected. In the randomized graphs they
occur very rarely. This can be explained by the destruction of this full connectivity.
Otherwise all modules that are frequent in the randomized graph are neither fully
connected nor significant in the original graph.

When looking at module with 4 nodes we see that they consist mostly on a 3-nodes-
module with full connectivity which explains the significance. The fourth node is often
connected to just one other node. There are just a few modules with 4 nodes that have a
higher complexity.

It is an open question whether there is a clear interpretation of the overrepresented
modules which is more specific than the high-connectivity-explanation.

3/31/2004, Seite 21 von 28

P-value Count Average Graph-String

0.000000 24 1.630000 4n; 5l; 1*2; 1*2; 2*1; 1*0; 0>3; 0>2; 1>0; 1>2;
 2>1;
0.000000 203 4.920000 4n; 5l; 1*3; 1*2; 2*0; 1*0; 0>3; 0>2; 0>1; 1>0;
 1>2;
0.000000 187 17.570000 4n; 8l; 3*3; 2*2; 2*2; 1*1; 0>3; 0>2; 0>1; 1>2;
 1>0; 2>0; 2>1; 3>0;
0.000000 295 5.470000 4n; 6l; 2*3; 1*2; 1*1; 2*0; 0>2; 0>1; 0>3; 1>0;
 1>3; 2>0;
0.000000 32 0.710000 4n; 6l; 2*2; 1*2; 2*1; 1*1; 0>3; 0>2; 1>0; 1>2;
 2>1; 3>0;
0.000000 108 1.630000 4n; 5l; 2*2; 0*2; 1*1; 2*0; 0>2; 0>3; 1>0; 1>3;
 2>0;
0.000000 142 1.590000 4n; 6l; 3*2; 2*1; 0*2; 1*1; 0>3; 0>1; 1>0; 2>0;
 2>1; 3>0;
0.000000 161 16.219999 4n; 7l; 2*3; 2*2; 2*2; 1*0; 0>3; 0>2; 0>1; 1>0;
 1>2; 2>0; 2>1;
...
0.130000 2 0.650000 4n; 4l; 1*1; 1*1; 1*1; 1*1; 0>1; 1>3; 2>0; 3>2;
0.140000 3 1.230000 4n; 5l; 1*2; 2*1; 1*1; 1*1; 0>1; 0>2; 1>0; 2>3;
 3>1;
0.160000 9 4.630000 4n; 6l; 2*3; 1*2; 2*1; 1*0; 0>2; 0>1; 0>3; 1>2;
 1>0; 2>0;
0.160000 1 0.280000 4n; 6l; 1*3; 2*1; 2*1; 1*1; 0>2; 0>1; 0>3; 1>2;
 2>1; 3>0;
0.250000 1 1.170000 4n; 5l; 0*3; 2*1; 2*1; 1*0; 0>2; 0>1; 0>3; 1>2;
 2>1;
0.250000 8 5.170000 4n; 7l; 3*3; 1*2; 2*1; 1*1; 0>2; 0>1; 0>3; 1>2;
 1>0; 2>0; 3>0;
...
1.000000 127 251.910004 4n; 4l; 2*1; 1*1; 1*1; 0*1; 0>2; 1>0; 2>0; 3>1;
1.000000 820 1182.380005 4n; 3l; 0*2; 1*1; 1*0; 1*0; 0>1; 0>3; 1>2;
1.000000 471 1007.609985 4n; 3l; 0*2; 2*0; 0*1; 1*0; 0>1; 0>3; 2>1;
1.000000 49 314.529999 4n; 4l; 2*1; 0*2; 1*1; 1*0; 0>2; 1>0; 1>3; 2>0;
1.000000 37 125.900002 4n; 4l; 2*1; 2*1; 0*1; 0*1; 0>1; 1>0; 2>0; 3>1;
1.000000 149 401.179993 4n; 6l; 2*2; 2*2; 1*1; 1*1; 0>2; 0>1; 1>3; 1>0;
 2>0; 3>1;
1.000000 122 472.609985 4n; 5l; 2*2; 2*1; 1*1; 0*1; 0>2; 0>1; 1>0; 2>0;
 3>1;

Table 3.3.4.2: Some modules consisting of 4 nodes. P-Value: Significance of a module.
Count: The occurrence of the module in the original graph. Average: The average
occurrence of the module in the randomized graphs. Graph-String: A string
representation of the module.

3/31/2004, Seite 22 von 28

3.4 Discussion

We saw that in the network there is a significant representation of big hubs, long paths,
cliques and high connected modules. Some of these results might be caused by high
connected metabolites as ATP. Removing such metabolites could give us clearer insights
in the network.

The randomization leads to a more uniform distribution of the links. Therefore more
complex substructures like cliques, long paths and large hubs get destroyed. We do not
found an intuitive interpretation for the significance of the resulting substructures except
that they have to be characteristic for this metabolic network.

In a different context it could be interesting to search for substructures within another
representation of the metabolic network than the described one. For example we like to
find substructures within a model where a node stands for a metabolite and a link
between two metabolites means that they belong to the same reaction.

3/31/2004, Seite 23 von 28

4. Coexpression

After identifying characteristic substructures within the metabolite network we are
interested how far their occurrences correspond to patterns in the gene expression data.

4.1 Methods

Since each node represents an enzyme, we have to transform the substructure to the
according genes which are related to the gene expression data. This transformation is
very simple: For each gene connected to the first enzyme node, we introduce a new copy
of the substructure containing this gene instead of the enzyme. This is applied recursively
to all nodes. The number of resulting transformed substructure is the product of the
number of genes per enzyme node.

The gene expression data consist of vectors with 154 entries per gene. First we copy the
vectors for the genes in the substructures into a matrix. To reduce the amount of data we
calculate the correlation matrix and extract the eigenvalues. We receive as much
eigenvalues as there are nodes in the considered substructure. The ratio between the first
eigenvalue and the sum of all represents the proportion of coexpression accounted for by
the first principal component which is an indicator for the coexpression level. The
proportion of coexpression values of a certain substructure type are collected. Together
they form a density curve which simplifies interpretation.

4.2 Implementation

The implementation is done in R [8], a freeware statistic tool available for windows and
linux. Due to the low complexity of the task, the code is very straightforward. In contrast
to C/C++, R has a weak OOP-support. Classes exist, but they have a noticeable overhead
expressed in producing slowness. Therefore we used less sophisticated data structures as
lists and arrays for processing data. To reduce the code written in R we used file formats
which are already in appropriate forms for further computations.

We need two different data structures for calculating the coexpression. The first contains
the gene expression data from the DNA-chip. The second contains the genes of the
substructures and some additional information like number of nodes or type of the
substructure. Also the resulting proportion of coexpression is saved in the second data
structure. After loading the appropriate files all different substructures are processed by
one single function that calculates the proportion of coexpression. To present the results
we use the plot and density functions of R.

3/31/2004, Seite 24 von 28

4.2 Results

4.2.1 Links
Figure 4.2.1.1: Density curve of
proportion of coexpression. The
coexpression variance of
unidirectional connected nodes is
significant higher than random
chosen nodes. Bidirectional
connected nodes have even a
significant higher coexpression
variance.

Bidirectional links lead to a significant greater diversion in coexpression between the
nodes as unidirectional links, whereas unidirectional linked nodes have a significant
higher coexpression as not connected nodes.

3/31/2004, Seite 25 von 28

4.2.2 Modules

Figure 4.2.2: Modules with 3 nodes ordered by their average proportion of coexpression

Even the average coexpression value leads to a certain order of the 3-nodes-modules, it
seems not possible to find a rule for this distribution. We can see a tendency that
coexpression grows with higher connectivity of the modules.

4.2.3 Hubs

Figure 4.2.3.1: Coexpression density curve. The red line is the coexpression distribution
of random chosen nodes; the black line is the coexpression distribution of nodes in a hub.

Most interesting in the distribution are the two peaks in the diagram on the right side,
even it is not clear how these peaks could be interpreted.
Although the curves look very similar, the hubs have a significant coexpression.

3/31/2004, Seite 26 von 28

4.2.4 Cliques

Figure 4.2.4.1: Coexpression density curve. The red line is the coexpression distribution
of random chosen nodes; the black line is the coexpression distribution of nodes in a
clique.

The distribution of the clique coexpression shows a clear difference to the random
distribution. One might expect that the coexpression decreases with the size of the clique
because of redundancy or complexity of a huge structure. As we saw in chapter 3, there
are only few large cliques which perhaps depend on a common metabolite as ATP.
Removing such metabolites could change the coexpression pattern significantly.

4.3 Discussion

The results suggest that the level of coexpression of the gene expression data depends on
the connectivity of the according substructure. The genes of substructures with a high
links per node ratio are significant more coexpressed than such with a low ratio.
Additional reaction data and removing general metabolites that are part of various
reactions could strongly affect the results.

3/31/2004, Seite 27 von 28

5. Summary and future work

The chosen model was useful for all applications in this work. Reaction information is
missing in the pathway database, and even we used KEGG to complete the data, we did
not find some reaction information. An improved database would help to get more exact
results from analysis and coexpression searching.

The found substructures like modules, paths, hubs and cliques give us an insight into the
construction of the metabolic network, but for a useful interpretation we would need a
deeper analysis. For example we can search substructures in the metabolic level of the
network, where nodes represent metabolites and links between them represent genes
respective enzymes. Coexpression patterns are related to the links instead of nodes, which
perhaps will be expressed in other significant substructures. This allows another
interpretation of the gene expression data.
Also the chosen substructures are just a subset of various possibilities. Searching for
other substructures could reveal new network properties. Examples are structures where
each node has exactly 3 neighbors (instead of paths, where each node has exactly 2
neighbors), or substructures containing exactly n links (instead of modules, which consist
of n nodes).

The coding of the model and the search algorithms lead to a clear OOP-structure which
should be easy to extend for various similar applications. For minimizing calculation time
the classes would have to be broken up since the code is optimized for nice design and
not for speed.

The coexpression patterns of the substructures show that the number of links per nodes in
a substructure enlarges the coexpression level significantly. Even this is a nice result; it's
possible that there are more complex and more interesting relationships between gene
expression and substructures. Instead of finding such relations by hand, an evolutionary
algorithm could return a function that calculate possible substructures for a given
coexpression pattern.

Frequency as well as coexpression pattern of the substructure could change significantly
if we remove often used metabolites as ATP from the network.

The title of this diploma thesis is “gene expression profiling and pathway scoring”. In
contrast to that we did not found a scoring function. The proportion of coexpression in
the expression patterns reveals not enough information for generating such a function.
Nevertheless we found interesting network properties in form of significant substructures
and we saw that there is at least a very coexpression pattern within gene expression data.

3/31/2004, Seite 28 von 28

References

[1] Hanisch D, Zien A, Zimmer R, Lengauer T. Co-clustering of biological networks
and gene expression data.
Bioinformatics. 2002 Jul;18 Suppl 1:S145-S154.

[2] Ku_ner R, Zimmer R, Lengauer T. Pathway analysis in metabolic databases via
di_erential metabolic display (DMD).
Bioinformatics. 2000 Sep;16(9):825-36.

[3] Ma H, Zeng AP. Reconstruction of metabolic networks from genome data and
analysis of their global structure for various organisms.
Bioinformatics. 2003 Jan 22;19(2):270-7.

[4] Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network
motifs: simple building blocks of complex networks.
Science. 2002 Oct 25;298(5594):824-7.

[5] Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional
regulation network of Escherichia coli.
Nat Genet. 2002 May;31(1):64-8.

[6] Ihmels J., Levy R., Barkai N. Principles of transcriptional control in the metabolic
network of Saccharomyces cerevisiae.
Nat. Biotech. 2004 Jan, 22: 86-92

[7] Kyoto Encyclopedia of Genes and Genomes.
www.genome.ad.jp/kegg

[8] The R Project for Statistical Computing
www.r-project.org

