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1. Introduction  
 
In the last few years new technologies in the field of genetics allowed a closer look into 
the metabolism of cells and also into the functionality of the DNA. This revealed a large 
amount of data for metabolic networks and also for the underlying genetic level by using 
DNA-chips. 
To properly understand and analyze the global properties of a metabolic network, 
methods for rationally representing and quantitatively analyzing its structure are needed. 
Also its relationship to gene expression data should be examined. 
 
The analysis of the transcriptional network of Escherichia coli revealed a high occurrence 
of certain small substructures [5]. This work tries to evaluate whether such substructures 
exists also in the metabolic network of the plant Arabidopsis thaliana. 
 
Recent research in Saccharomyces cerevisiae revealed that many genes which are 
arranged along the central part of a pathway are coregulated [6]. It is an open question 
whether this coregulation exists also on other substructures of the network. 
 
Also we like to model the data of Arabidopsis thaliana which has been studied and 
analyzed in a wide range because of its simplicity. There is gene expression data for 793 
genes as well as the metabolic network containing 524 enzymes and 566 metabolites. 
 
The work is divided into 3 parts. At first we choose an appropriate data structure for 
integrating the available data. It preserves all required information and allows us to work 
efficiently on the data. This data structure is similar to the graph-like appearance of the 
metabolic network itself. Nodes represent the different types of entities like enzymes, 
metabolites, genes and reactions. Links represent relationship between nodes, whereas 
the type of the nodes and the direction of the link determine its biological interpretation. 
In a second step, we extract interesting information from the data structure. Therefore we 
search the metabolic network for small substructures. There are several different 
substructures [Figure 1.1]. We test for cliques, where each pair of nodes is connected 
through a link. We test for paths, where each node has only 2 neighbors. We test for 
hubs, which are single nodes that are defined by the number of links they have. And we 
test for unspecified modules that are defined by the connectivity of the according nodes. 
Further we test which of those substructures are characteristic for the network. 
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Finally we are looking for correlations between substructures and gene expression data. 
The aim is to construct a scoring function for to gene expression data, which allows 
conclusions about the structure of the metabolic network. Such a scoring function would 
simplify the work of biologists who are investigating the metabolic network. 
 
 

Figure 1.1: Substructures: hub, 
path, clique, unspecified module 
 
 
 
 
 
 
 
 
 
 
 

 

 

1.1 Biological Backgrounds 
 
We know that genes get transcript into proteins. This transcription still depends on mostly 
unclear factors, but its amount – the activity of a gene, called gene expression – is 
measurable and depends on the cell’s state. The new technology of DNA-Chips tells us at 
once the activity of a wide range of genes. The large amount of generated data may 
enhance our understanding of the interactions and collaborations of the genes and their 
according proteins and give us some deeper insights into the functionality of cells at all.   
 
Proteins can serve as enzymes. In this case they catalyze reactions which transform one 
metabolite into another. Enzymes, metabolites and their relationships are together 
represented in metabolic networks. Often a certain metabolite is transformed several 
times by different enzymes. Such chains of reactions are interpreted as metabolic 
pathways. Pathways can branch into more than just one reaction chain, but mostly there is 
one central part where the main reactions happen. 



3/31/2004, Seite 5 von 28 

2. Modeling 

 

2.1 Model 
 
As starting point we have a database of a metabolic network consisting on 524 enzymes 
and 566 metabolites. Enzymes and metabolites are represented as nodes, whereas 
reactions of metabolites catalyzed by an enzyme are represented as links between these 
nodes. Some links are directed and indicate whether a metabolite is an educt or a product 
of a reaction. Each link belongs to a certain pathway, and there can be more than one link 
per connection between two nodes if this connection is part of a couple of pathways. 
 
Finally we like to search for substructures within a graph-like model of the metabolic 
network. There are multiple possibilities to model the data, and we have to choose one to 
work with. There is a trade-off between simplicity and expressiveness of the model, and 
because at the time of modeling we do not know the final requirements, we decide to 
model also the reaction flow in contrast to the original data where the reactions are 
ambiguous [Figure 2.1.1].  
 
An enzyme could be modeled as link between two metabolite-nodes; vice versa a 
metabolite could be modeled as link between two enzyme-nodes. Such specialized 
solutions should be used if we know that we do not need any other information. A more 
complex representation like the used database models both enzymes and metabolites as 
nodes. But it has no information about whether two metabolites are part of the same 
reaction. They also can belong to two different reaction catalyzed by the same enzyme. 
This information can be important in various contexts, for example in [3] metabolites 
correspond to nodes and reactions are represented as links between them. For keeping the 
model general and flexible, we decided to model the reactions too. To integrate the gene 
expression data we also model genes. A gene could produce one or more enzymes. 
 

 
Figure 2.1.1: database-model: 
ambiguous context 
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There are several possibilities to model reactions. We could model educts and products of 
a reaction by using an educt and a product node to which the reaction and the reactants 
are connected. We can use a directed link to indicate the reactant’s relationship to the 
reaction. Or we can omit the information whether a reactant is an educt or a product of a 
reaction. Since using directed links seems to be reasonable for diverse purposes, we 
model enzymes, metabolites, genes and reactions as nodes and the direction of a link 
indicates the reactant’s state. 
 
There are two types of reactions. “single-way reaction” can run only in one direction, i.e. 
A+B=>C+D. “two-way-reaction” can also run backwards, i.e. A+B=>C+D, C+D=>A+B 
or A+B C+D. A metabolite is then an educt as well as a product of the enzyme’s 
reaction. Such a two-way-reactions could be modeled with a bidirectional link between 
metabolite node and reaction node. Since all reactants would get a bidirectional link, we 
would not know which reactants belongs together on one side of the reaction equation. 
Therefore we split up a two-way-reaction into two symmetric single-way-reactions. This 
eliminates any ambiguities as shown in figure 2.1.2. 
 
Links between nodes indicate a relationship between two nodes. All links are 
unidirectional. There are three sorts of links. We have links between genes and enzymes, 
links between enzymes and reactions and links between reactions and metabolites.  
A link from a gene node to an enzyme node indicates that the gene produces the enzyme. 
A gene can produce more than one enzyme. An enzyme can be produced by more then 
one gene. 
A link from an enzyme node to a reaction node indicates that the enzyme catalyzes the 
reaction. An enzyme can have more than one reaction, but each reaction belongs to exact 
one enzyme. 
A link from a metabolite to a reaction indicates that the metabolite is an educt of the 
reaction. Vice versa a link from a reaction to a metabolite indicates that the metabolite is 
a product of the reaction. On the educt side as well as on the product side of the reaction 
there can be one or more reactants. 
 

 
Figure 2.1.2: used model 
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2.2 Data Structure 
 
The usefulness of a sophisticated data structure grows with the size of the data. Although 
computing performance has been steadily increasing over the last decades, it still maters 
whether an algorithm runs in linear, quadratic or even higher time. Data structures should 
be optimized with respect to the used algorithms. Simultaneously a flexible and reusable 
data structure can save programming time and source code size.  
 
The presented new model of the metabolic networks is already in a graph-like form. So 
we choose a graph as data structure where each node manages its links by itself. This 
minimizes look-up time when traversing the graph. 
Another approach is a set of tables like in a database. One table holds all connections 
between nodes. Tables have an easy handling, but look-up time is logarithmic to the 
number of nodes. This would lead to an immense increase of calculation time for almost 
all algorithms used in this work. 
 
Within the constructed graph the algorithms are just analyzing its structure. Once the data 
is read, the structure of our graph does normally not change anymore. Accessing nodes 
and links should be cheap while manipulating the graph by inserting and deleting nodes 
or links may be expensive. 
 
The links can be represented in various ways. A link may be directed, undirected or 
bidirectional. We can allow more than one link between two nodes or just one. Since in 
the model we use only directed links, we use them also for the data structure. To keep the 
data structure flexible we allow existing more than one link between two nodes. 
 
Since each link is directed, it always has an origin (further “from-node”) and a 
destination (further “to-node”). From the view of the from-node the link is an outgoing 
link (further “out-link”). From the view of the to-node the link is an incoming link 
(further “in-link”). Depending on the algorithm we like to access only in-links, only out-
links or all links of a node. So the data structure provides separated sets for in- and out-
links to speed up calculation time. Simultaneously there is a set of all links where we can 
access the next node without caring about the direction of the link. 
 
For fast and easy access the content of the data structure can be stored and reloaded. A 
file begins with the numbers of nodes and the number of links. Each node is written to 
one line, first a unique ID, additional information on its type and content are separated 
with tabs. In the second section of the file each link is written to a line, consisting only of 
the IDs of the two connected nodes.  
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2.3 Results 
 
The conversion from the database into the data structure produced several problems. 
Within the original data there were links between metabolites as well links between 
enzymes. Some metabolites had no names which confused the database parser. Since 
each link belongs to a certain pathway there were multiple links for the same connection 
between two nodes. 
 
The reactions and their according metabolites are not part of the original database. In 
simple cases an enzyme posses only two or three metabolites. We can conclude that all of 
them belong to the same reaction. If there are more than three metabolites connected to 
an enzyme we need additional knowledge to fill our data structure. For receiving this 
missing information we used the online database KEGG [7]. 
 

2.4 Discussion 
 
The presented model demonstrated to be flexible enough for all tasks of this work. Due to 
the well defined structure, transformations into other representations are easy to 
implement. This is necessary for implementing fast algorithms or if we are only 
interested in subparts of the metabolic network, for example the relationships of the 
enzymes without any information about the metabolites.  
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2.5 Future Work 
 
In the original database each link belongs to a certain pathway. If this information is not 
used, a link contains no information at all and does not have to be an independent object 
since it has no properties except the relationship to the connected node. Then all links of 
a node could be represented with one table and handful iterators instead of pointers to 
link-objects. The entries in the table are the connected nodes. The table consists of 4 
parts. In the first part are all neighbors with an undirected connection. The second part 
contains the neighbors of inlinks. Part three stores bidirectional links and the last part is 
filled with outlinks. Iterators administer the positions of the four parts. There are iterators 
for the single parts as well as such for a combination of several parts. An all-links iterator 
covers the range of the whole table; an incoming-links iterator provides access to inlinks 
and bilinks etc. 
This data structure is very fast and able to manage useful subsets of links. 
 
 

 
Figure 2.4.1: Improved table 
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3. Graph Search 
 
The structure of a metabolic network is defined by its functionality. When considering 
such a network the question arises whether there are substructures which are special to 
this kind of metabolic representation. Knowledge about frequent substructures or 
modules can improve our understanding of the metabolic network. As mentioned in the 
introduction, similar work in genetic regulatory networks as already been done by [5]. 
They found several modules that are more frequent in a network than in a random graph 
with equal numbers of nodes and links. 
 
The question arises whether such modules can also be found in the metabolic network. 
Since our model consist of 4 levels containing metabolites, enzymes, reactions and genes 
we transform the representation to one single level where we search for modules. For 
determining the significance of the module’s frequencies, we need a appropriate random 
graph which allows us meaningful comparisons.  
 

 

3.1 Methods 
 

3.1.1 Transformation 
 
Searching for substructures can be done in various representations of the metabolic 
network. Depending on the model we get different results which have to be interpreted 
differently. The graph contains different types of nodes. There are enzymes, metabolites, 
reactions and genes. Since we finally like to find correlations between gene expression 
data and substructures, we are looking for structures of gene nodes. The information 
about enzymes, metabolites and reaction is used to determine the relationships between 
the gene nodes. A link between two nodes, i.e. genes, represents a metabolite which is a 
reactant of the gene’s enzymes. Since the gene nodes in our graph model are not 
connected to each other but only to their corresponding enzymes we have to transform 
the graph into the appropriate representation as shown in Figure 3.1.1. 
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Figure 3.1.1: Transformation: The 
4-Level-Model on the left side can 
be transformed to a single level as 
shown on the right according to the 
transformtaion rules. 
 
 
 
 
 
 
 

 

3.1.2 Randomization 
 
When we want to know whether a module is significantly frequent within the graph, we 
need to compare the frequency with those of random graphs. Randomization of the 
consisting graph returns such a random graph.  
 
If we would only choose a random number of nodes and links, the results would not be 
comparable to our metabolic graph. The frequencies of the modules seem to be defined 
through the size of the graph and the average number of links per node. 
 
One approach of a appropriate randomization is to keep the numbers of inlinks and 
outlinks per node and only change the destinations of these links. When the original 
graph has x nodes with i inlinks and o outlinks, the randomized graph will also have x 
such nodes. This is useful for significance testing in most cases of considered modules. 
As we have seen in chapter 2 some connections are bidirectional, but the links are not. 
Without special treatment the randomization destroys most of the bidirectional 
connections which leads to an overrepresentation of modules containing bidirectional 
connections.  
 
If we want to test the significance of the connectivity itself we have to choose another 
randomization than the presented above because that conserves all connectivities. 
Anyway the randomized graph should keep the general properties of the original graph 
like the number of nodes, the number of bidirectional and unidirectional links. 
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3.2 Implementation 
 

3.2.1 Transformation 
 
The result of a transformation is a graph which nodes are connected if the nodes in the 
original graph are in a well defined relationship. A gene node A is connected with a 
directed link to a gene node B if there is a metabolite which is an educt of a reaction 
catalyzed by an enzyme A’ and simultaneous the product of a reaction catalyzed by an 
enzyme B’, where enzyme A’ is produced by gene A and enzyme B’ is produced by gene 
B. 
 
 

1. First a new graph G’ is created with the same number of nodes as gene nodes in 
the original graph G. Each original node is mapped to a new one in G’ which is 
saved in an according map M.  

2. Iteration over all gene nodes in G is started.   
a. For each enzyme of a gene all metabolite products of the according 

reactions are collected.  
b. Where this metabolite is an educt, all reactions and their enzymes are 

collected.  
c. Finally the gene nodes of these enzymes are collected.  
d. The gene nodes in G’ that correspond to the resulting nodes are received 

from the map M.  
e. Directed links from the origin node to each destination node are inserted in 

G’. 
 
 

3.2.2 Randomization 
 
 
The randomization that conserves the connectivity tries to save also bidirectional 
connections. The two unidirected links are replaced by one bidirectional link. Now each 
node is characterized through a defined number of inlinks, outlinks and bilinks.  
 

1. First a new graph with an equal node set but without any links is created. Each 
new node has a pendant in the original graph.  

2. Three collections are created: “need bilink”, “need inlink” and “need outlink”.  
3. Depending on their connectivity, the nodes are put in some of these collections.  
4. A node is removed from a collection as soon it has as many links from the 

collection type as its counterpart in the original graph.  
5. As long the collections contain some nodes, we choose two nodes from the 

collections and connect them with an according link. Either we take both nodes 
from the “need bilink”-collection or one from “need inlink” and one from “need 
outlink”. If we take the same node twice within such a step, we discard it because 
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we do not allow self references. If we always take the same node twice because 
the collections contain only one and the same node, we stop the algorithm.  

 
Finally in the resulting randomized graph at most two links are missing which is 
negligible compared to the size of the graph. 
 
 
The randomization that does not conserve the connectivity is much simpler 
 

1. First a new graph with an equal node set but without any links is created. Each 
new node has a pendant in the original graph.  

2. The same number of unidirectional and bidirectional links are chosen as in the 
original graph.  

3. These links are randomly distributed to the nodes.  
 

The result is a graph which nodes have random characterizations while keeping the 
graphs general properties as number of nodes or number of a sort of links. 
 

3.2.3 Search 
 
We are interested in the structure of the transformed graph. Therefore we try to find 
typical patterns. Additional to the modules found in [5] we analyze the graph for hubs, 
paths and cliques, which seem to be a important part of the graph. We are looking for the 
statistical significance with respect to the occurrence of different substructures of the 
graph. Each search target (module, path, hub, clique) requires a special search algorithm. 
Independent from the target we are interested for the same information of this target. We 
want to know the frequency of a target and the frequency within a randomized graph. We 
want to know the involved nodes of a target and its specific structure (i.e. there are more 
than 10 variations of 3-node-modules and we are interested in the organization and 
frequency of every one). 
All algorithms have similar outputs and equal tasks to fulfill which is expressed in the 
interface of abstract search classes. 
 
Each search happens in 3 steps as shown in figure 3.2.3.1. In the first step we choose the 
graph where the search should run. This can be either a graph from a file or a randomized 
graph. The second step is to choose the search itself. There are searches for modules, 
hubs, paths and cliques. In the third step each found target has to be processed in one of 
many ways. Targets can be counted, listed or identified. 
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These three steps are represented in three objects. The first object is the main loop, where 
initialization, running and evaluation of the chosen search algorithm happens.  
Randomizations can be applied to the given graph and the search can run on such a 
randomized graph. The second object is the implementation of the search algorithm. Each 
search algorithm has methods for initialization, running and evaluation. The third object 
is the target processor which is applied for each item found by the search algorithm. A 
target processor has methods for initialization, target processing and evaluation.  
 
Figure 3.2.3.1: Structure of the 
search. Different algorithms can 
use the same target processor. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.3.2: Pseudo source code of the code. 
 
class MainLoop 
{ 
public: 
 MainLoop( SearchAlgorithm, int nRandom=0, int 
RandomType=RT1 ); 
}; 
class SearchAlgorithm 
{ 
public: 
 SearchAlgorithm( TargetProcessor ); 
 void begin(); 
 void search( Graph* ); 
 void end(); 
}; 
class TargetProcessor 
{ 
public: 
 TargetProcessor(); 
 void begin(); 
 void process( NodeList* ); 
 void end(); 
}; 
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3.2.3.1 Hubs 
 
Searching for hubs is very simple, since a hub is defined by its links. We choose a node 
and collect all other nodes that are directly connected to it. The ID of the hub depends on 
the number of connected nodes. 
 

 

3.2.3.2 Paths 
 
A path is a chain of nodes. Each node that is part of the path has exactly two neighbors. 
At the beginning of the path search, all nodes are marked as unvisited.  We choose an 
unvisited node and mark it as visited. If this node has exactly two neighbors, it is the 
beginning of a new path. We traverse along both of the two nodes as long the traversed 
nodes have exactly two neighbors. We mark each traversed node as visited and add it to 
the created path. When the traversal is finished, we pass the collected nodes in the path to 
the target processor. Afterwards we search for the next path by choosing another 
unvisited node. 

 

3.2.3.3 Cliques 
 
We choose a node and we choose the largest possible size N of a clique. Initially this is 
equal to the number of connected nodes. Then we choose N nodes within the connected 
ones. For each of these nodes we test whether it is connected to all other chosen nodes. If 
this test succeed we found a clique and we call the Target Processor. If one such 
connection is missing, we choose another set of nodes. If we have tested all sets, we 
decrease the maximum clique size to N-1. 
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3.2.3.4 Modules 
 
The idea of the module search algorithm is to return all available modules of a certain 
size N fixed at initialization. A module of size N consists of N nodes that form a 
connected graph. Each found module get identified by a first target processor according 
to its structure. Two modules with the same structure get the same ID. The idea of the 
module search algorithm is choose a node, process all modules that contain this node, 
mark this node as visited and go on with the next node. 
 

1. All nodes are marked as unvisited and left-nodes-in-module is set to N. 
2. The first unvisited node is marked as in-use and is added to a part-of-module-

collection. Since this node is now certainly within the module, left-nodes-in-
module is decreased to left-nodes-in-module - 1.  

3. All unvisited neighbors of nodes in the part-of-module-collection which are not 
in-use are marked as in-use and collected in the neighborhood-collection. 

4. From the neighborhood-collection between 1 and N nodes are chosen. The other 
nodes are deleted from the neighborhood–collection. The chosen nodes are added 
to the part-of-module-collection.  

5. If the size of the part-of-module-collection is N, the algorithm returns a found 
module, else step 3 is called again 

 
 
 
Figure 3.2.3.4.1: The module 
search algorithm: All nodes in 
neighborhood to part-of-module-
nodes are visited, in-use or get part 
of the neighbor-collection. 
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The module search algorithm produces all existing modules within the graph. For further 
processing we need to identify each module and assign a unique ID to it. Comparing such 
two modules is very expensive in calculation time. Instead of full comparison of the 
graph we first pre-classify it. This pre-class is defined by the number of nodes and the 
number of links within the module. We sort the nodes of the module, where the sorting 
criteria are the number of inlinks and outlinks of a node. Then the number of inlinks and 
outlinks of the nodes are written to a string. This defines the so called header-string. Two 
equal modules have the same header-string. If two modules have different header strings 
they are not equal. Else we do not know it and are forced to compare the modules.  
 
 

 
Figure 3.2.3.4.2: Two modules (A 
and B) contain an identical 
beginning of the header string. 
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3.3 Results 
 
3.3.1 Hubs 
 
P-value Count Average Hub-Type 
 
0.010000 43 33.820000 hub with 0 link 
0.910000 70 80.199997 hub with 1 link 
0.000000 233 106.919998 hub with 2 links 
1.000000 53 103.080002 hub with 3 links 
1.000000 35 82.849998 hub with 4 links 
1.000000 16 54.910000 hub with 5 links 
1.000000 18 32.480000 hub with 6 links 
1.000000 8 16.219999 hub with 7 links 
0.000000 16 7.770000 hub with 8 links 
0.070000 7 3.550000 hub with 9 links 
0.040000 4 1.320000 hub with 10 links 
0.100000 2 0.540000 hub with 11 links 
0.000000 4 0.230000 hub with 12 links 
0.040000 1 0.050000 hub with 13 links 
0.000000 3 0.030000 hub with 14 links 
0.000000 3 0.020000 hub with 15 links 
0.000000 3 0.000000 hub with 16 links 
0.010000 1 0.010000 hub with 17 links 
0.000000 2 0.000000 hub with 21 links 
0.000000 1 0.000000 hub with 23 links 
0.000000 1 0.000000 hub with 28 links 
 
Table 3.3.1.1: P-Value: Significance of a module. Count: The occurrence of the module 
in the original graph. Average: The average occurrence of the module in the randomized 
graphs. Hub-Type: size of the hub. 
 
The network seems to consist of large hubs which are significant even they are not so 
frequent. Hubs without any links are significant because there is a lot of reaction data 
missing which leads to many nodes without any neighbor. 
The randomization produces graphs which have nodes containing two or three links in 
average. As expected, the frequency of random hubs decreases with their size. Significant 
hubs contain null or two links or more than ten. Hubs with three to nine links are not 
significant. 
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3.3.2 Paths 
 
P-value Count Average Path-Type 
 
1.000000 112 165.820007 path with 1 node 
1.000000 23 47.299999 path with 2 nodes 
0.870000 15 17.959999 path with 3 nodes 
0.170000 9 6.480000 path with 4 nodes 
0.000000 8 2.310000 path with 5 nodes 
0.000000 6 0.880000 path with 6 nodes 
0.220000 1 0.250000 path with 7 nodes 
0.000000 3 0.040000 path with 9 nodes 
0.010000 1 0.010000 path with 11 nodes 
 
Table 3.3.1.1: P-Value: Significance of a module. Count: The occurrence of the module 
in the original graph. Average: The average occurrence of the module in the randomized 
graphs. Path-Type: size of the path. 
 
Although the metabolic network consists of pathways, the short paths are very frequent 
but not significant.  Paths with a length bigger than four nodes tend to be significant but 
not very frequent. Paths of a certain length do not include paths with a larger length; each 
one is counted just once.  
 
3.3.3 Cliques 
 
P-value Count Average Clique-Type 
 
0.000000 1050 113.820000 clique with 3 nodes 
0.000000 1144 44.939999 clique with 4 nodes 
0.000000 1035 4.730000 clique with 5 nodes 
0.000000 570 0.060000 clique with 6 nodes 
0.000000 161 0.000000 clique with 7 nodes 
0.000000 16 0.000000 clique with 8 nodes 
 
Table 3.3.4.1: P-Value: Significance of a module. Count: The occurrence of the module 
in the original graph. Average: The average occurrence of the module in the randomized 
graphs. Clique-Type: Size of the clique. 
 
All found cliques are significant and also frequent.  Interesting is that there are more 
cliques of size 4 than cliques of size 3, even also subcliques are counted. This is because 
of the overlapping of some cliques. For instance two cliques of size 4 can share 3 nodes 
which lead to fewer cliques of size 3 than one might expect. 
The huge cliques of sizes up to 8 are probably a result of reactands like ATP which are 
part of many reactions. Removal of such general metabolites could clarify  the results. 
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3.3.4 Modules 
 
P-value Count Average  
 
0.000000 25 0.930000  
0.000000 111 0.950000   
0.000000 53 2.060000   
0.000000 97 2.040000   
0.000000 54 0.360000   
0.000000 6 0.640000   
0.060000 4 1.740000   
0.960000 134 196.520004   
0.980000 684 749.789978   
1.000000 129 208.419998   
1.000000 382 478.540009   
1.000000 236 362.799988   
1.000000 210 358.420013  
 
Table 3.3.4.1: P-Value: Significance of a module. Count: The occurrence of the module 
in the original graph. Average: The average occurrence of the module in the randomized 
graphs. Graph-String: A string representation of the module. 
 
All significant modules with 3 nodes are fully connected. In the randomized graphs they 
occur very rarely. This can be explained by the destruction of this full connectivity. 
Otherwise all modules that are frequent in the randomized graph are neither fully 
connected nor significant in the original graph. 
 
When looking at module with 4 nodes we see that they consist mostly on a 3-nodes-
module with full connectivity which explains the significance. The fourth node is often 
connected to just one other node. There are just a few modules with 4 nodes that have a 
higher complexity. 
 
It is an open question whether there is a clear interpretation of the overrepresented 
modules which is more specific than the high-connectivity-explanation. 
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P-value Count Average Graph-String 
 
0.000000 24 1.630000 4n; 5l; 1*2; 1*2; 2*1; 1*0; 0>3; 0>2; 1>0; 1>2;  
     2>1;  
0.000000 203 4.920000 4n; 5l; 1*3; 1*2; 2*0; 1*0; 0>3; 0>2; 0>1; 1>0;  
     1>2;  
0.000000 187 17.570000 4n; 8l; 3*3; 2*2; 2*2; 1*1; 0>3; 0>2; 0>1; 1>2;  
     1>0; 2>0; 2>1; 3>0;  
0.000000 295 5.470000 4n; 6l; 2*3; 1*2; 1*1; 2*0; 0>2; 0>1; 0>3; 1>0;  
     1>3; 2>0;  
0.000000 32 0.710000 4n; 6l; 2*2; 1*2; 2*1; 1*1; 0>3; 0>2; 1>0; 1>2;  
     2>1; 3>0;  
0.000000 108 1.630000 4n; 5l; 2*2; 0*2; 1*1; 2*0; 0>2; 0>3; 1>0; 1>3;  
     2>0;  
0.000000 142 1.590000 4n; 6l; 3*2; 2*1; 0*2; 1*1; 0>3; 0>1; 1>0; 2>0;  
     2>1; 3>0;  
0.000000 161 16.219999 4n; 7l; 2*3; 2*2; 2*2; 1*0; 0>3; 0>2; 0>1; 1>0;  
     1>2; 2>0; 2>1;  
... 
0.130000 2 0.650000 4n; 4l; 1*1; 1*1; 1*1; 1*1; 0>1; 1>3; 2>0; 3>2;  
0.140000 3 1.230000 4n; 5l; 1*2; 2*1; 1*1; 1*1; 0>1; 0>2; 1>0; 2>3;  
     3>1;  
0.160000 9 4.630000 4n; 6l; 2*3; 1*2; 2*1; 1*0; 0>2; 0>1; 0>3; 1>2;  
     1>0; 2>0;  
0.160000 1 0.280000 4n; 6l; 1*3; 2*1; 2*1; 1*1; 0>2; 0>1; 0>3; 1>2;  
     2>1; 3>0;  
0.250000 1 1.170000 4n; 5l; 0*3; 2*1; 2*1; 1*0; 0>2; 0>1; 0>3; 1>2;  
     2>1;  
0.250000 8 5.170000 4n; 7l; 3*3; 1*2; 2*1; 1*1; 0>2; 0>1; 0>3; 1>2;  
     1>0; 2>0; 3>0;  
... 
1.000000 127 251.910004 4n; 4l; 2*1; 1*1; 1*1; 0*1; 0>2; 1>0; 2>0; 3>1;  
1.000000 820 1182.380005 4n; 3l; 0*2; 1*1; 1*0; 1*0; 0>1; 0>3; 1>2;  
1.000000 471 1007.609985 4n; 3l; 0*2; 2*0; 0*1; 1*0; 0>1; 0>3; 2>1;  
1.000000 49 314.529999 4n; 4l; 2*1; 0*2; 1*1; 1*0; 0>2; 1>0; 1>3; 2>0;  
1.000000 37 125.900002 4n; 4l; 2*1; 2*1; 0*1; 0*1; 0>1; 1>0; 2>0; 3>1;  
1.000000 149 401.179993 4n; 6l; 2*2; 2*2; 1*1; 1*1; 0>2; 0>1; 1>3; 1>0;  
     2>0; 3>1;  
1.000000 122 472.609985 4n; 5l; 2*2; 2*1; 1*1; 0*1; 0>2; 0>1; 1>0; 2>0;  
     3>1;  
 
Table 3.3.4.2: Some modules consisting of 4 nodes. P-Value: Significance of a module. 
Count: The occurrence of the module in the original graph. Average: The average 
occurrence of the module in the randomized graphs. Graph-String: A string 
representation of the module. 
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3.4 Discussion 
 
We saw that in the network there is a significant representation of big hubs, long paths, 
cliques and high connected modules. Some of these results might be caused by high 
connected metabolites as ATP. Removing such metabolites could give us clearer insights 
in the network.  
 
The randomization leads to a more uniform distribution of the links. Therefore more 
complex substructures like cliques, long paths and large hubs get destroyed. We do not 
found an intuitive interpretation for the significance of the resulting substructures except 
that they have to be characteristic for this metabolic network.  
 
In a different context it could be interesting to search for substructures within another 
representation of the metabolic network than the described one. For example we like to 
find substructures within a model where a node stands for a metabolite and a link 
between two metabolites means that they belong to the same reaction. 
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4. Coexpression 
 
After identifying characteristic substructures within the metabolite network we are 
interested how far their occurrences correspond to patterns in the gene expression data.  
 

4.1 Methods 
 
Since each node represents an enzyme, we have to transform the substructure to the 
according genes which are related to the gene expression data. This transformation is 
very simple: For each gene connected to the first enzyme node, we introduce a new copy 
of the substructure containing this gene instead of the enzyme. This is applied recursively 
to all nodes. The number of resulting transformed substructure is the product of the 
number of genes per enzyme node.  
 
The gene expression data consist of vectors with 154 entries per gene. First we copy the 
vectors for the genes in the substructures into a matrix. To reduce the amount of data we 
calculate the correlation matrix and extract the eigenvalues. We receive as much 
eigenvalues as there are nodes in the considered substructure. The ratio between the first 
eigenvalue and the sum of all represents the proportion of coexpression accounted for by 
the first principal component which is an indicator for the coexpression level. The 
proportion of coexpression values of a certain substructure type are collected. Together 
they form a density curve which simplifies interpretation.  
 

4.2 Implementation 
 
The implementation is done in R [8], a freeware statistic tool available for windows and 
linux. Due to the low complexity of the task, the code is very straightforward. In contrast 
to C/C++, R has a weak OOP-support. Classes exist, but they have a noticeable overhead 
expressed in producing slowness. Therefore we used less sophisticated data structures as 
lists and arrays for processing data. To reduce the code written in R we used file formats 
which are already in appropriate forms for further computations.  
 
We need two different data structures for calculating the coexpression.  The first contains 
the gene expression data from the DNA-chip. The second contains the genes of the 
substructures and some additional information like number of nodes or type of the 
substructure. Also the resulting proportion of coexpression is saved in the second data 
structure. After loading the appropriate files all different substructures are processed by 
one single function that calculates the proportion of coexpression. To present the results 
we use the plot and density functions of R. 
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4.2 Results 
 

4.2.1 Links 
Figure 4.2.1.1: Density curve of 
proportion of coexpression. The 
coexpression variance of 
unidirectional connected nodes is 
significant higher than random 
chosen nodes. Bidirectional 
connected nodes have even a 
significant higher coexpression 
variance.  
 
 

 

 

 

 
 

Bidirectional links lead to a significant greater diversion in coexpression between the 
nodes as unidirectional links, whereas unidirectional linked nodes have a significant 
higher coexpression as not connected nodes.  
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4.2.2 Modules 

 

 
Figure 4.2.2: Modules with 3 nodes ordered by their average  proportion of coexpression 
 
Even the average coexpression value leads to a certain order of the 3-nodes-modules, it 
seems not possible to find a rule for this distribution. We can see a tendency that 
coexpression grows with higher connectivity of the modules.  
 

4.2.3 Hubs 

 
Figure 4.2.3.1: Coexpression density curve. The red line is the coexpression distribution 
of random chosen nodes; the black line is the coexpression distribution of nodes in a hub. 
 
Most interesting in the distribution are the two peaks in the diagram on the right side, 
even it is not clear how these peaks could be interpreted. 
Although the curves look very similar, the hubs have a significant coexpression. 
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4.2.4 Cliques 
 

 
Figure 4.2.4.1: Coexpression density curve. The red line is the coexpression distribution 
of random chosen nodes; the black line is the coexpression distribution of nodes in a 
clique. 
 
The distribution of the clique coexpression shows a clear difference to the random 
distribution. One might expect that the coexpression decreases with the size of the clique 
because of redundancy or complexity of a huge structure. As we saw in chapter 3, there 
are only few large cliques which perhaps depend on a common metabolite as ATP. 
Removing such metabolites could change the coexpression pattern significantly. 
 

4.3 Discussion  
 
The results suggest that the level of coexpression of the gene expression data depends on 
the connectivity of the according substructure. The genes of substructures with a high 
links per node ratio are significant more coexpressed than such with a low ratio.  
Additional reaction data and removing general metabolites that are part of various 
reactions could strongly affect the results. 
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5. Summary and future work 
 
The chosen model was useful for all applications in this work. Reaction information is 
missing in the pathway database, and even we used KEGG to complete the data, we did 
not find some reaction information. An improved database would help to get more exact 
results from analysis and coexpression searching. 
 
The found substructures like modules, paths, hubs and cliques give us an insight into the 
construction of the metabolic network, but for a useful interpretation we would need a 
deeper analysis.  For example we can search substructures in the metabolic level of the 
network, where nodes represent metabolites and links between them represent genes 
respective enzymes. Coexpression patterns are related to the links instead of nodes, which 
perhaps will be expressed in other significant substructures. This allows another 
interpretation of the gene expression data. 
Also the chosen substructures are just a subset of various possibilities. Searching for 
other substructures could reveal new network properties. Examples are structures where 
each node has exactly 3 neighbors (instead of paths, where each node has exactly 2 
neighbors), or substructures containing exactly n links (instead of modules, which consist 
of n nodes). 
 
The coding of the model and the search algorithms lead to a clear OOP-structure which 
should be easy to extend for various similar applications. For minimizing calculation time 
the classes would have to be broken up since the code is optimized for nice design and 
not for speed. 
 
The coexpression patterns of the substructures show that the number of links per nodes in 
a substructure enlarges the coexpression level significantly. Even this is a nice result; it's 
possible that there are more complex and more interesting relationships between gene 
expression and substructures. Instead of finding such relations by hand, an evolutionary 
algorithm could return a function that calculate possible substructures for a given 
coexpression pattern.  
 
Frequency as well as coexpression pattern of the substructure could change significantly 
if we remove often used metabolites as ATP from the network. 
 
The title of this diploma thesis is “gene expression profiling and pathway scoring”. In 
contrast to that we did not found a scoring function. The proportion of coexpression in 
the expression patterns reveals not enough information for generating such a function. 
Nevertheless we found interesting network properties in form of significant substructures 
and we saw that there is at least a very coexpression pattern within gene expression data. 
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