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Abstract

Lustre (www.lustre.org) is a modular, distributed filesystem designed for the use with supercom-
puters and high performance clusters and is developed as an Open Source project. The goal is
to support up to 10’000 clients, 1000 Object Storage targets (OST) and 100 Metadata Servers
(MDS). The first stage of the Lustre implementation, called Lustre Lite, is limited to the use of
one MDS. If the clients use large directories, then this MDS is the bottleneck of the filesystem.
One solution to eliminate this bottleneck is to use more than one MDS, but is a complex task.
The goal of this diploma thesis is to implement an efficient Metadata management system
(files, directories) by using a SQL database.
This task can be separated into two parts. First a filesystem (sqlfs) that can be used like ext2 or
ext3 but stores the data in a SQL database was designed and implemented. This sqlfs consist
of three parts, the kernel module that implements all Virtual Filesystem (VFS) functions and
communicates with the DB-Client. This userspace program acts as a proxy between the kernel
module and the database, which in turn stores the data.
Then, this filesystem was integrated into Lustre. To accomplish this, a new filterdriver for the
MDS had to be written.
At last we benchmarked the sqlfs filesystem within Lustre and in its native mode and compared
the results with ext3 and the actual implementation of Lustre. The results were promising, as
the creation of files in large directories is faster than ext3 and it scales well.

Lustre (www.lustre.org) ist ein modulares, verteiltes Dateisystem, das für den Einsatz in Su-
percomputer bestimmt ist und als Open Source Projekt entwickelt wird. Das Ziel ist es 10’000
Clients, 10’000 Datenserver (OST) und 100 Metadaten Server (MDS) zu unterstützen. In einer
ersten Phase von Lustre, dem sogenannten Lustre Lite, wird nur ein einziger Metadatenserver
eingesetzt. Dieser wird jedoch bei grossen Verzeichnissen schnell zum Engpass. Die Ein-
führung mehrerer MDS ist eine Möglichkeit die Performance zu verbessern, ist aber schwierig
zu implementieren.
Das Ziel dieser Diplomarbeit ist es ein effizientes Metadatenverwaltungsystem auf Basis einer
SQL Datenbank zu implementieren. Diese Aufgabe kann in zwei Teile aufgeteilt werden.
Als Erstes wurde ein Dateisystem (sqlfs) implementiert, das wie ext2 oder ext3 verwendet wer-
den kann. Das sqlfs Dateisystem kann in drei Teile aufgeteilt werden, das Kernel Modul imple-
mentiert alle benötigten Virtual Filsystem (VFS) Funktionen und kommuniziert mit dem Daten-
bank Client (DB-Client). Dieses Userspace Programm arbeitet als Proxy zwischen dem Kernel
Modul und der Datenbank, die wiederum die Dateisysteminformationen abspeichert.
Anschliessend wurde das sqlfs Dateisystem ins Lustre integriert, was die Entwicklung eines
neuen MDS Filtertreibers zur Folge hat.
Als letztes wurde die Geschwindigkeit des sqlfs gemessen und mit derjenigen von ext3 und
Lustre verglichen. Die Resultate sind vielversprechend, das Erstellen von Dateien in sqlfs in
grossen Verzeichnissen ist schneller als in ext3. Zudem skaliert das sqlfs Dateisystem sehr gut.
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Einleitung

Lustre (www.lustre.org) ist ein modulares, verteiltes, paralleles Dateisystem für High Perfor-
mance Technical Computing [3]. Lustre wird als Open Source Projekt von Hewlett Packard,
CFS (Cluster File Systems), Intel, Sandia National Lab, Los Alamos National Lab und La-
wrence Livermore National Lab entwickelt [4]. Die Ziele von 10’000 Clients, 10’000 Daten-
server, 100 Meta-Daten Server, 95 % der theoretisch möglichen Performance gehen über die
Grenzen des heute technisch machbaren hinaus.
Das Lustre Filesystem ist modular aufgebaut. In der ersten Phase (Lustre Lite) [5] wird die
Metadatenverwaltung mittels eines Metadatenservers (MDS) implementiert. Der Metadaten-
server greift über einen Filterdriver auf ein Dateisystem zu. Das Dateisystem führt dann die
eigentlichen Transaktionen durch.
Bei Workloads die viele Dateien in einem Filesystem zu verwalten haben, wird dieser Metada-
tenserver schnell zum Engpass. Eine mögliche Abhilfe ist die Verwendung mehrerer Metada-
tenserver, die sich die Arbeit aufteilen. Heutige Dateisysteme arbeiten aber in der Regel mit
sehr einfachen Verzeichnisstrukturen. Die Aufteilung eines Verzeichnisses auf mehrere Server
um einen Performancegewinn zu erzielen ist nicht trivial. Operationen, welche mehrere Ver-
zeichnisse auf potentiel verschiedenen Servern beinhalten, werden sehr komplex.
In dieser Arbeit soll die Metadatenverwaltung (Verzeichnisse, Inodes) mit Hilfe einer SQL
Datenbank implementiert werden. Mit Hilfe der Datenbanktechnologie soll eine effizientere
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Verwaltung der Verzeichnisdaten implementiert werden. Dadurch soll eine höhere Metadaten-
transaktionsrate erreicht werden. Es soll ein rudimentäres Linux Dateisystem implementiert
werden, dass die von Lustre benutzten Metadatenoperationen effizient implementiert.
In einer Semesterarbeit [2] wurde ein Prototyp eines Filesystems zur Metadatenverwaltung
entwickelt. Die Metadatenverwaltung soll auf diesem Prototyp basierend weiterentwickelt
werden.

Aufgabenstellung

1. Machen Sie sich mit der Lustre Architektur und der Postgres Datenbank vertraut.

2. Identifizieren Sie die Schnittstellen zwischen Metadatenserver (MDS), dem Filterdriver
und dem unterliegenden Dateisystem.

3. Machen Sie sich mit den Ergebnissen der Semesterarbeit [2] vertraut.

4. Identifizieren Sie die fehlenden Metadatenmethoden und implementieren sie diese.

5. Entwerfen und implementieren sie eine Möglichkeit, um auch Daten in dem Dateisy-
stem zu speichern. Lustre legt nur Konfigurationsdaten auf dem Metadatenserver ab,
Zugriffe müssen deshalb nicht besonders effizient sein, aber Änderungen müssen als
Transaktionen erfolgen.

6. Führen Sie einen Systemtest durch.

7. Performance Analyse:

• Legen Sie eine Methodik für die Performance Analyse fest.

• Führen Sie die Analyse nach dieser Methodik durch.

• Identifizieren Sie Bottlenecks.

8. Tunen Sie das System für bessere Performance.

Durchführung der Diplomarbeit

Allgemeines

• Mit dem Betreuer sind regelmässige, zumindest wöchentliche Sitzungen zu vereinbaren.
In diesen Sitzungen sollen die Studenten mündlich über den Fortgang der Arbeit und
die Einhaltung des Zeitplanes berichten und anstehende Probleme diskutieren.

• Am Ende des ersten Monates muss eine Vorabversion des Inhaltsverzeichnis zur Doku-
mentation dem Betreuer abgegeben und mit diesem besprochen werden.

• Nach der Hälfte der Arbeitsdauer soll ein kurzer mündlicher Zwischenbericht abge-
geben werden, der über den Stand der Arbeit Auskunft gibt. Dieser Zwischenbericht
besteht aus einer viertelstündigen, mündlichen Darlegung der bisherigen Schritte und
des weiteren Vorgehens gegenüber Prof. Plattner.

• Am Schluss der Arbeit muss eine Präsentation von 15 + 5 Minuten im Fachgruppen-
oder Institutsrahmen gegeben werden. Anschliessend an die Schlusspräsentations soll
die Arbeit Interessierten praktisch vorgeführt werden.
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• Bereits vorhandene Software kann übernommen und gegebenenfalls angepasst werden.

• Es ist ein mit Bindespiralen gebundener Schlussbericht (am TIK vorhanden) über die
geleistete Arbeit abzuliefern (4 Exemplare). Dieser Bericht besteht aus einer Zusam-
menfassung, einer Einleitung, einer Analyse von verwandten und verwendeten Arbeiten,
sowie einer vollständigen Beschreibung der Konfiguration von den eingesetzten Pro-
grammen. Der Bericht ist in Deutsch oder Englisch zu halten. Die Zusammenfassung
muss in Deutsch und Englisch verfasst werden. Reservieren Sie sich für das Erstellen
des Berichtes ein bis zwei Wochen Zeit am Ende der Arbeit.

• Die Arbeit muss auf CDROM archiviert abgegeben werden. Stellen Sie sicher, dass
alle Programme sowie die Dokumentation sowohl in der lauffähigne, resp. druckbaren
Version als auch im Quellformat vorhanden, lesbar und verwendbar sind. Mit Hilfe
der abgegebenen Dokumentation muss der entwickelte Code zu einem ausführbaren
Programm erneut übersetzt werden können.

• Diese Arbeit steht unter der GNU General Public License (GNU GPL).

• Diese Arbeit wird als Diplomarbeit an der ETH Zürich durchgeführt. Es gelten die
Bestimmungen hinsichtlich Kopier- und Verwertungsrechte der ETH Zürich.

• Sie verfügen über einen Arbeitsplatz in der Supercomputing Systems AG mit PC und
Zugriff auf Testrechner.

• Stellen Sie Ihr Projekt zu Beginn der Diplomarbeit in einem Kurzvortrag vor.

Zürich, den 3. November 2003

Prof. B. Plattner
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Chapter 2

Introduction

2.1 Motivation and Overview

Distributed Filesystems separate computational from storage resources, which allows the
workstation to focus on their main task, the computation of complex problems. Supercomputers
usually have a high demand for storage capacity and bandwith and in the future this demand
will continually increase. So, it is crucial to have a filesystem that can scale with increasing
demand. Another important point is consistency. An enterprise filesystem always needs to be
consistent, even under heavy load. If one client changes e.g. an entry in a directory, the other
clients have to see this changes immediately.
Most of the network based filesystems like NFS do not provide the needed enterprise
features described above. NFS does not even guarantee that a client has always the actual
view of the directory. It’s just guaranteed that the filesystem on the server is in a consistent state.

Lustre [2] is a new storage and filesystem architecture designed for supercomputers and clus-
ters and provides all the above mentioned features. The Lustre filesystem consists of three main
parts, the Metadata Server (MDS), the Object Storage Target (OST) and of course the client.
The developers of Lustre aim to serve 10000 clients, 1000 object storage targets and 100 meta-
data servers. At the moment, there exists only an implementation of the Lustre Lite filesystem,
which is limited to one MDS. The MDS stores all the metadata information of Lustre, e.g. the
directory hierarchy and the location of the stored data1 If the clients work with large directories,
as it is common in scientific computation, the MDS can be identified as the bottleneck of the
system. The idea is now to implement a new filesystem based on a SQL database and integrate
it into Lustre to improve the transaction rate, as a database is built to work on large datasets.

1As Lustre is a distributed filesystem that is able to handle striped files over several OSTs, the location of each file
part has to be stored. In Lustre this information is stored in extended file attributres

15



16 Introduction



Chapter 3

The Lustre File System

The Lustre File System is an open source, high-performance distributed file system developed
by Cluster File Systems, Inc., created from scratch to become the next-generation file system
for superclusters. The name "Lustre" is an amalgam of the terms "Linux" and "Clusters". Lustre
is designed to meet the following performance goals:

• tens of thousands of clients

• thousands of storage servers

• hundreds of metadata servers

• petabytes of data

• more than 100GB/s I/O throughput

Lustre also supports redundancy by eliminating any single point of failure in the distributed file
system environment. To achieve these goals Lustre has a highly modular design, consisting of
three main components (see fig. 3.1):

• Metadata Servers (MDS)

• Object Storage Targets (OST)

• Clients

The replicated, failover metadata servers maintain the transaction-based file system changes,
while the object storage targets are responsible for the actual file system I/O. Lustre takes
advantage of using existing open technologies, like the Portals API from Sandia National Labs
for network communication or XML and LDAP for configuration purposes.
In a first phase (Lustre Lite) the management of the metadata is done by one Metadata Server
with failover, in the final version the metadata management can be clustered over many MDS.

3.1 Architecture

Lustre treats files as objects that are located through metadata servers (MDS). Metadata
servers support all namespace operations, such as file lookups, file creation and file and di-
rectory attribute manipulation. The actual file I/O is directed to the object storage targets (OST),
which manage the storage that is physically located on underlying object-based disks (OBD).
The metadata servers keep a transactional record of file system metadata changes and the
cluster status, supporting failover so that failures affecting one MDS do not affect the operation
of the file system itself.
In the Lustre file system, like in many other file systems, every regular file, directory, symbolic
link or special file is represented by a unique inode. The regular file inodes hold references to
objects on OSTs that store the file data instead of references to the actual file data itself. In
existing file systems, creating a new file causes the file system to allocate an inode. In Lustre
(see fig.3.2), creating a new file causes the client to contact a MDS, which creates an inode

17
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OSTClient
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Figure 3.1: Overview of the Lustre File System
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file locking

Figure 3.2: Interaction between Lustre components

for the file and then contacts the OSTs to create objects that will actually hold the file data,
which can be striped over several OSTs in a RAID pattern. Subsequent I/O to the newly created
file is done directly between the client and the OST, the MDS is only updated when additional
namespace changes with the new file are required.

3.2 Object Storage Target OST

Object Storage Targets handle all of the interaction between client data requests and the under-
lying physical storage, the Object-Based Disks (OBDs). This storage is not actually limited to
disks because the interaction between the OST and the actual storage device is done through
a device driver, a so-called Filter Driver1. This layered design provides a flexible way to add new
storage to the Lustre file system. New OSTs can easily be added to the pool of OSTs a cluster’s
MDS is managing. Similarly, new OBDs can easily be added to the pool of OBDs associated
with any OST.

1In the current Lustre release 1.0.2 the access to the physical storage is done through the Virtual File System (VFS)
and the Filter Driver, which restricts the OST to use devices with a file system interface as OBD
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Figure 3.3: Object Storage Target (OST) Software Modules

3.3 Meta Data Server MDS

File system metadata is information about the files and directories that make up a file system.
This information consists of the name of a file or directory, some status information, the targets
of symbolic links, and so on. Lustre uses existing file systems (EXT3, ReiserFS,...) to store this
information, which it accesses through the Linux Virtual File System (VFS) and an own Filter
Driver. The Filter Driver provides functions like support for additional metadata (e.g. file striping
information), transactions and callbacks.
Every file or directory in the Lustre File System is represented by a inode on the MDS. Additional
metadata (like file striping information) is stored by the Filter Driver. In case of EXT3 as MDS
file system, this metadata is stored in extended attributes (xattr), which can also be acessed
through VFS functions. The ability to have full access to all metadata through the normal file
system interface (VFS) is an ambition of Lustre ("Everything is a file system").

3.4 Client

The client is the user of the Lustre File System. It communicates directly with the MDS for
metadata operations and with the OSTs for file I/O. If for example the client has to create a
file (see fig. 3.6), it requests a lock from the MDS to enable a lookup operation on the parent
directory and additionally tags this request with the intended operation, namely file creation. If
the lock request is granted, the MDS then tries to execute the intended operation, creates the
file and returns a lock on the new file instead on the directory, whereas in a conventional network
file system the client would first lock the directory, do a lookup, create the file and then unlock
the directory again.
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Chapter 4

Virtual File System (VFS)

4.1 Introduction

The Linux Virtual File System (VFS) provides an abstraction layer that hides the implementation
of a specific filesystem behind a common layer. It handles all the system calls that are related
to file and directory manipulation. One can transparently mount, umount and use different kinds
of filesystems, the data itself can even be stored on a different machine, as it is done in the
Unix Network File System (NFS). This Chapter discusses the aims, designs and properties of
the VFS and focuses on the four main objects that are used: The inode, the super block, the file
and the dentry.

4.2 Overview

The VFS was first introduced with BSD 4.4 (Berkeley Software Distribution) and was first imple-
mented by Sun Microsystems which called it the virtual-inode, or vnode layer. The idea
was to introduce a layer that abstracts the filesystem interface from a specific implementation,
not by redesigning the whole filesystem, but by extending the model with filesystem specific
parts in each object and filesystem specific functions that execute the operation. Files and di-
rectories are treated the same way, directories are just files that contain directory entries as
data. This means that other filesystems like FAT which use a file allocation table to store the
location of each file, have to convert their layout on the fly to the in memory structure of the
VFS. The same applies to network file systems like the Network File System (NFS).
Every filesystem stores the data in a different way on a storage device, therefore it’s not possible
to have generic functions that create or manipulate files. Instead, the VFS uses function pointers
to handle the system calls. Every filesystem needs to implement a specific subset of these
functions to provide a minimal functionality. Let’s look at an example.
Let’s suppose that a user wants to create a directory. To accomplish this he invokes the system
call sys_mkdir. This function call switches to the kernel context and calls the vfs_mkdir func-
tion provided by the VFS. The VFS does all the necessary checks that are not directly related to
a specific filesystem but are necessary to fulfill all preconditions. This includes permission and
consistency checks, allocation of necessary ressources, etc. After this tasks are finished, the
VFS calls the mkdir function of the filesystem the new directory belongs to. Now, the directory
is going to be created and can then be used.
One can think of the common file model as an object-oriented model. In fact, the linux kernel is
not written in an object oriented language like C++, but in plain C. You can think of an object in
C as a software construct that contains data and function pointers. Now, let’s have a look at the
four main object in the VFS.

4.3 Superblock

The superblock is a special object, that contains general information and statistics of the file
system. This includes the blocksize of the filesystem, the magic number, etc. In addition it con-
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tains a pointer to the root inode object. For each mounted file system, there exists exactly one
instance of this object in the kernel memory. Usually the superblock has an exact counterpart
on the storage media. Attached to it is a structure of function pointers that provides the neces-
sary superblock functionality like creating and deleting inodes. Let’s briefly describe the most
important operations:

read_inode(inode) Fills the fields of the inode object whose pointer is passed to this function
with the corresponding entry on the disk. The inode number of the inode to be read is
already filled in this structure. The function structures are as well filled in.

dirty_inode(inode) This function is invoked, when the inode is marked dirty. Dirty means, that
the inode has changed but is not yet written back to disk.

write_inode(inode) Is called, when the system wants to write an inode back to the disk.

put_inode(inode) This is called, if the inode is no longer used and can be freed. Usually a
filesystem does not need to do anything here.

delete_inode(inode) Deletes the inode on the disk, the VFS inode and any data blocks that
contain data of the inode. This function has to call the VFS function clear_inode to
indicate to the system, that this inode is no longer useful. clear_inode calls in turn the
clear_inode function of the filesystem.

put_super(super) Releases the super block object. This function is called while unmounting
the filesystem.

write_super(super) Updates the content of the superblock on the disk.

statfs(super, buf) Fills the structure buf with statistics of the mounted filesystem.

clear_inode(inode) This function does the same as put_inode, but also releases any allo-
cated resources. Note that there is usually nothing to be done on the storage device.

Most of these functions are used within all of the common filesystems, but several are not. If a
filesystem doesn’t want to provide a specific functionality, it can simply set the function pointers
to null. It is interesting, that no read_super function exist, but that makes perfectly sense,
considering that the superblock object does not yet exist when this function should be invoked
the first time, namely during the filesystem mount operation.

4.4 Inode

All information needed by a filesystem to handle a file is stored in a data structure called inode.
You can change the name of a file, but the inode is still the same, therefore the name of a file
is not stored in the inode itself, but in a dentry object (see 4.6). Each inode contains an unique
number that identifies it. An inode object stores a lot of information, for example all data you
get, if you execute a stat filename. To improve disk performance the VFS tries to cache as
much data as it can. All of the cached inode objects are in one of three lists.

1. The list of unused inodes contains all inodes that have been put and are no longer of use
to any process. Their usage count is set to zero and they are not marked as dirty. As a
consequence, they can be reused if somebody needs an inode object, but they can also
be reactivated if a process reads the inode this inode object represented. In short term:
This list acts as a disk cache.

2. The list of in use inodes contains all inodes that are currently used by some process. Their
inode count is above zero and they are not marked as dirty.

3. The list of dirty inodes. These inodes are not yet synced with the storage device.

To improve the speed of an inode lookup operation there exists a hash table the kernel can use
if it knows the inode number and the address of the corresponding superblock object. Similar to
the superblock, an inode object has an array of function pointers that can be used to execute
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the system calls that are mapped by the VFS to inode operations. Note that not every inode
contains the same operations. For example it makes no sense that an inode attached to a file
can create other files. This particular operation is reserved for inodes that are attached to a
directory.

create(dir_inode, dentry, mode) Creates a new disk inode for a regular file with mode mode
and associates it with the dentry.

lookup(dir_inode, dentry) Searches through the directory dir_inode for a particular file
whose filename is included in dentry.

link(old_dentry, dir_inode, new_dentry) Creates a hardlink. old_dentry describes the old
file, new_dentry the new file and dir_inode represents the parent directory of
new_dir. Please note that hardlinks to directories are not allowed, because that could
result in a recursive directory structure the kernel is unable to handle.

unlink(dir_inode, dentry) Deletes the file dentry that is located in the directory dir_inode.

mkdir(dir_inode, dentry, mode) Creates a new directory in the directory dir_inode with
mode mode and attaches the dentry to it. The name of the directory to be created is
already filled in dentry. Additionally the two standard entries "." and ".." must be
created in the new directory.

rmdir(dir_inode, dentry) Removes the directory associated with dentry from the directory
dir_inode.

mknod(dir_inode, dentry, mode, rdev) Creates a new disk inode for a special file whose
name is included in dentry in the directory dir_inode. The mode and rdev specify
the filetype respectively the device’s major number.

rename(old_dir_inode, old_dentry, new_dir_inode, new_dentry) Moves a file represented
by old_dentry from the directory old_dir_inode to new_dir_inode. The new file-
name is included in new_dentry.

readlink(dentry, buffer, buflen) Copies into buffer the file pathname corresponding to the
symbolic link specified by dentry. buflen contains the size of the buffer. Note, that
buffer is a userspace buffer. If it is too small to keep the whole name, the filename
should be truncated.

follow_link(dentry,nameidata) Gets the filename to which the symbolic link in nameidata
points and copies the filename into the structure nameidata. To prevent endless loops1,
the maximal recursion depth is set to eight.

truncate(inode) This function is used to decrease or increase, if the filsystem support this, the
size of the inode inode. The field i_size of inode is already set to the new size of the
file. This function is also reponsible to free any superfluous disk pages.

getxattr(inode, name, buf, buf_size) This function fetches the extended attribute with name
name attached to the inode inode and copies the attribute into buf. The length of buf is
specified by buf_size.

listxattr(dentry, buf, buf_size) Reads all the names of the extended attributes that are at-
tached to dentry and copies then into buf. The buffer size is specified by buf_size.

removexattr(dentry, name) Deletes the extended attribute with name name attached to
dentry.

setxattr(inode, name, value, value_len, flags) This assigns the extended attribute name with
the inode inode. The value of the extended attribute is given in value and has the length
value_len. The flags determine if an existing attribute with the same name should be
replaced or not.

1The symbolic link can point to an another symbolic link
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Officially the extended attributes were introduced with the kernel 2.6, but because Lustre de-
pends on them, we included the extended attribute operations in this short description. The
return value of theses functions is always the size of the extended attribute or an error code.
If the value of buf_size while calling listxattr or getxattr is set to zero, nothing will be
copied into buf, but the size of the extended attribute will be returned.

4.5 File

A file object provides all the necessary information the kernel needs to handle file requests. Such
a file object is created, when a file is opened. In fact, a userspace file handle is an identifier for
a kernel file object. This structure has no counterpart on a storage device and does therefore
not need a dirty flag. The most important member in this structure is the file pointer, it contains
the actual reading and writing position of the file. Like the other two already described objects,
the file object contains a structure of function pointers, that every filesystem has to implement.
We like to describe some of the most important functions:

llseek(file, offset, origin) Sets the file position of the file file to offset relative to origin.
origin can be the beginning, the end, or the actual position of the file. There exists a
standard implementation for this function.

read(file, buf, count, offset) Reads count bytes from file beginning at the absolute position
*offset (usually the current file position) and copies the data into buf. Afterwards, the
*offset is incremented.

write(file, count, buf, offset) Writes count bytes from buf into the file file beginning at the
absolute position *offset (usually the current file position). Afterwards, the *offset is
incremented.

readdir(filp, dirent, filldir) This function is used to get the entries of the directory (dirent the
file pointer filp is attached to. It is somehow a special function and will be dicussed in
detail in chapter 4.7.

ioctl(inode, file, cmd, arg) Sends a command cmd to the underlying hardware. This procedure
applies only to device files.

mmap(file, vma) Maps the file file into the memory area described by vma. Reading and
writing into a file can then be performed by working with the memory area vma. Every
filesystem that wants to provide support for executables has to implement this function,
which is used to load the executables.

open(inode, file) Opens a new file by attaching the newly created file to inode.

release(inode, file) Releases the file object. This functon is called, if the file usage count hits
zero.

fsync(file, dentry) Writes all cached data belonging to the file back to disk.

readv(file, vector, count, offset) This function does the same as read but instead of a buffer
we have in this case count numbers of buffers arranged in vector.

writev(file, vector, count, offset) This function does the same as write but instead of a buffer
we have in this case count numbers of buffers arranged in vector.

4.6 Dentry

A directory entry (dentry) primarily connects an inode with a name. The kernel creates for each
directory component a new dentry object and connects it with the corresponding inode. For
example when looking up the file /etc/fstab the kernel creates for each of the components
etc and fstab a separate dentry object. To increase performance, the kernel manages a den-
try cache. It tries to keep as much dentry objects as possible in the memory without harming
other parts of the system. Because there’s always an inode connected to a dentry2 the dentry

2Except the dentry is unused or the inode attached to the dentry has already been deleted
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Figure 4.1: Inode with associated dentry

Figure 4.2: Parent dentry with children

cache controls the inode cache. To improve lookup performance, the dentries are arranged in
a hash table. The size of this table depends on the amount of installed memory. The opera-
tions connected to the dentries are called dentry operations. Usually their task is not to provide
filesystem functionality, but to manage the dentries, although a filesystem can exchange the
default functions with its own.
In figure 4.1 the connection between an inode and its corresponding dentrys is illustrated.
d_inode of a dentry points always to its associated inode. An inode can find it’s associated
dentrys by dereferencing the pointer i_dentry and using the d_alias field of the dentrys.
In figure 4.2 it’s illustrated how a directory is linked with its directory entries on the dentry
level. The parent dentry represents the directory and the two other dentries linked together
with the d_child field represent the directory entries. Note, that the entry d_subdirs is badly
named, as it is not a only a member of the linked list of all subdirectories but all entries of the
directory.

4.7 Readdir system call

The purpose of the readdir system call3 is to get the next entry of a directory. It calls the
vfs_readdir function which in turn calls the appropriate inode readdir function, which is
defined as follows:

static int

3The original readdir call is unable to handle more than one directory entry at once, therefore the system call getdents
was introduced, which gets as a parameter a user supplied buffer, the system can fill with readdir entries.
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s q l f s _ r e a d d i r (struct f i l e ∗ f i l p , void ∗ d i ren t , f i l l d i r _ t f i l l d i r ) ;

The current position in the directory is determined by the file position of the file that represents
the directory. To be independent of the physical layout and to provide the kernel itself the
ability to get a directory listing, a callback mechanism is used for the inode readdir function.
The VFS provides with this function the callback filldir that assembles a directory entry
structure (dirent) from the given parameters. The return value of filldir indicates if more
entries are requested or not. Such a dirent has the following layout:

struct d i r e n t
{

long d_ino ; /* inode number */
o f f _ t d_o f f ; /* offset to next dirent */

5 unsigned short d_reclen ; /* length of this dirent */
char d_name [NAME_MAX+ 1 ] ; /* file name (null-terminated) */

}

The offset is used to locate the next readdir entry in the current buffer. Note, that you cannot
calculate the beginning of the next dirent by using d_reclen, because there might be an
empty space between two entries.



Chapter 5

Our Approach

Figure 5.1 gives a overview over the design of our approach. According to the assignment
in chap. 1 the Lustre Metadata Server should use a database instead of a usual file system
to store it’s metadata. Unfortunately, there exists no abstraction layer for the MDS like the
OBD-layer for the OST, the MDS is designed to store it’s data on a usual journaling Linux
File System (ext3, reiserfs, xfs, ...). For accessing the file system, the MDS uses the VFS-
layer and a Lustre-specific File System Filter for functions, which the VFS does not support
(e.g. transactions, additional metadata, callbacks). The file system to be implemented, namely
sqlfs, therefore has to implement the Linux File System interface (mainly the three interfaces
superblock_operations, inode_operations and file_operations) and the functions
used by the Filter Driver fsfilt_sqlfs.
The access to the database can not be implemented in the sqlfs kernel module, because the
libraries used for connecting to the database don’t support kernel mode. The database link
is therefore established through user processes, the DB-Clients, which act as proxy for the
kernel module. Communication between the kernel module and the DB-Clients is done by a
queue which is accessible by ioctls. The DB-Client enters an ioctl which is blocking, until the
kernel module has placed a command in the queue which the waiting DB-Client then grabs and
executes. Subsequently, the DB-Client enters the ioctl again, returns the result of the preceding
and then waits for the next command.
Transactions in the file system are directly mapped to transactions on the database. Database
transactions are bound to a db-connection, and as each DB-Client maintains an own db-
connection the file system transactions are bound to the respective db-client. It is not supported
by Linux, that file system transactions occur between different processes, and that the process
which executes a transaction wants to do some file system manipulation, which is not part of
the transaction. By knowing this, running transactions can be identified through the process ID.
DB-Clients, which are in a open transaction, accept further commands only from the process
which opened the transaction, until the transaction is commited. By this mechanism it is granted,
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Socket
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Figure 5.1: Overall design overview
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that the process, which executes a transactions, gets always the same DB-Client, therefore the
same db-connection and is therefore correctly mapped to a database transaction.

5.1 Kernel module

The kernel module, as mentioned above, provides the complete kernel part of the sqlfs filesys-
tem. Basically, it implements all the necessary superblock, inode and file operations, except
mmap. This procedure is basically used to support the execution of files, but as we use a char-
acter device instead of a block device, it would need an unreasonably amount of work to to
implement this. Besides, the sqlfs filesystem was designed to interact with the Lustre MDS (see
3.3) which does not depend on mmap.

5.1.1 VFS Interface

The main part of the kernel module implements all the super block, inode and file operations
explained in chapter 4. In addition, a few extensions were introduced. One special property is
that the sqlfs filesystem is always synced. Every operation is physically written to disk, before
the system returns back to userspace. This behaviour has the advantage, that the filesystem is
always in a consistent state even if it crashes while performing some operations. However it has
the disadvantage that the delete operations are quite slow compared to other filesystems.
The other approach of deleting a file, as it is performed on most disk based filesystems, is to
perform the delete operation first in the in memory structures and cached disk blocks, and then
sync them later.
To improve the delete performance of the sqlfs it would be possible to remove (physically) the
directory entry and then delete the rest later asynchronously, but this is not implemented yet.
As a consequence of the synced operations, it’s possible that the VFS tries to delete a file
more than once even if it’s already deleted. To catch such unnecessary operations, the flag
SQLFS_INODE_DELETED was introduced and attached to the filsystem specific part of the
inode structure. This flag is set, if the inode is already physically deleted, and it’s therefore
not necessary to perform anything on the database.
A second flag called SQLFS_BLOB_ALLOCATED is used to indicate that a blob (binary large
object) which is used to store the content of the file, has been allocated on the datase. This flag
helps to speed up the deletion of a file, because it can give the database a hint whether the blob
table needs to be processed or not.
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5.1.2 Database Client Interface

The kernel module provides a character device called /dev/sqlfs to the database client. To
identify which character device belongs to which kernel module, the kernel dynamically assigns
a major number to it. If a specific major number is needed, the user can pass it as an option while
calling insmod (e.g. insmod sqlfs sqlfs_major=254). The corresponding device file can
be created with the command mknod c 254 0. This has to be done just once. Although a
character device appears to a user space program as an ordinary file, the read and write
operations are not supported. Instead, all communication is done via the I/O controls (ioctl,
see 4.5). As a parameter, an integer or a pointer can be passed to the kernel and vice versa. In
our case we pass a pointer to a sqlfs_comm structure which is defined as follows.

struct sqlfs_comm {
int cmd ; /* command number */
p id_ t t r a n s a c t i o n _ i d ; /* transaction id */
int e r r ; /* return value from db client */

5

/* inline data section */
struct sq l f s_ inode inode ; /* complete sqlfs_inode */
__u32 parent_ inode_ino ; /* inode number of parent inode */
struct s q l f s _ q s t r d_name ; /* name of directory entry */

10

int data_s ize ; /* size in bytes of data */
void ∗data ; /* data pointer used in sqlfs_readdir */

} ;

This structure is defined in a generic way to support all the variating commands. cmd contains
the command that should be executed. These are all the inode, superblock and file operations
explained in chapter 4. The transaction_id is used to provide a mapping between the pro-
cesses that operate on the filesystem and the DB-Clients that actually execute the commands.
Each such transaction contains a return value stored in err the kernel module can use to
take appropriate actions upon errors. Embedded in sqlfs_comm is a complete sqlfs_inode
structure. Such an inode represents the physically stored subset of a VFS inode. Note, that this
structure is only filled in if it’s necessary to have the whole inode data available. For several op-
erations it is essential to have the parent inode number (e.g. mkdir) or the name of a directory
entry. These two elements are stored in parent_inode_ino respectively d_name. To support
operations depending on a variable size buffer like read or write a void pointer data was
introduced. The kernel module or the DB-Client can attach a buffer of size data_size to it,
which is then copied into the approriate kernel or user space. Copying the whole data block is
suboptimal, but it simplyfies the design.
Now, let’s have a look at the used ioctl commands:

IOCTL_SQLFS_FIRST_CONNECT /* Register this DB-Client */
IOCTL_SQLFS_COMM /* Return result and wait for the next

command */
IOCTL_SQLFS_DISCONNECT /* Kernel tells DB-Client to disconnect

himself */
IOCTL_SQLFS_COPY_TO_USER /* Copy data from user space to kernel space

*/
5 IOCTL_SQLFS_CLEAR_STAT /* Clear statistics of kernel module */

IOCTL_SQLFS_READ_STAT /* Get statistics of kernel module */
IOCTL_SQLFS_DISCONNECT_DB /* Tell kernel module to disconnect all DB-

Clients */
IOCTL_SQLFS_SET_WRITE_RECORD /* Fake write record commands or not */
IOCTL_SQLFS_FORMAT_DB /* Tell kernel module to format the sqlfs */

10 IOCTL_SQLFS_FORMAT /* Format sqlfs */

IOCTL_SQLFS_FIRST_CONNECT

The dbclinet uses this ioctl to register himself in the kernel module, and waits until the com-
mand queue contains an element he can fetch and process. The main difference between this
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call and IOCTL_SQLFS_COMM is, that IOCTL_SQLFS_COMM contains always a processed com-
mand element that is returned to the kernel, whereas IOCTL_SQLFS_FIRST_CONNECT has
none. In addition, the kernel module maintains the number of connected DB-Clients by means
of this ioctl.

IOCTL_SQLFS_COMM

This ioctl is used during the normal processing of a command. It’s interesting to note that
the DB-Client does not control the kernel, as it is the usual case, but the kernel controls the
DB-Client. The DB-Client calls a ioctl, receives commands from the kernel via the command
queue, copies one of them into user space and returns out of the ioctl. Afterwards, the DB-Client
processes the sqlfs_comm structure. If the data pointer is set, the kernel has additional data
waiting that has to be copied into user space. This has to be accomplished by the DB-Client, be-
cause a user space process has to allocate the necessary memory. The copy operation is done
by executing an another ioctl this time with the command IOCTL_SQLFS_COPY_TO_USER.
After executing the received command, the DB-Client copies the results back into the
sqlfs_comm structure and calls IOCTL_SQLFS_COMM to return the results. If the data pointer
is set, the kernel allocates memory and copies the data into kernel space. The obtained result
can then be put back into the queue.

IOCTL_SQLFS_COPY_TO_USER

The ioctl command is used to copy any data attached to the data pointer into user space.
The user space process has already allocated enough memory to hold the entire buffer.

IOCTL_SQLFS_CLEAR_STAT

The kernel module maintains a statistic of all called inode, super block and file functions. This
ioctl resets the statistics.

IOCTL_SQLFS_READ_STAT

This ioctl copies the above mentioned statistics into a user space buffer. The structure of the
data is declared in the file sqlfs_fs.h.

IOCTL_SQLFS_DISCONNECT_DB

This ioctl is called by a special helper program with name stopping that orders the kernel
to diconnects all DB-Clients. As a result of this, the sqlfs kernel module can be unloaded,
provided that the filesystem is unmounted.

IOCTL_SQLFS_DISCONNECT

The kernel sends this ioctl command to a DB-Client to initiate its disconnection.

IOCTL_SQLFS_SET_WRITE_RECORD

Writing binary data into a database is usually not very fast, therefore it’s possible to fake all file
write operations by calling this ioctl.

IOCTL_SQLFS_FORMAT

Format the sqlfs filesystem, but only if it is not mounted.
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5.1.3 Command queue

The command queue is the interface between the DB-Clients and the sqlfs Kernel Module. The
queue-scheme allows a certain load-balancing by using more than one DB-Client. Commands
are packed into queue elements which are placed in the queue, where the DB-Client can fetch
them through the IOCTL_SQLFS_COMM ioctl. After placing the element in the queue, the initiator
waits on the element. It will be woken up again after a DB-Client having fetched the command,
executed it and wrote the result back in the queue element. After waking up the waiting pro-
cess, the DB-Client fetches the next command or waits on the queue, until a command arrives.
If the DB-Client is in a open transaction, it doesn’t wait for any new command, but for a com-
mand of it’s master process, the process, which started the transaction. Figure 5.3 illustrates
the functionality of the queue.
A command queue element is declared as follows:

struct sqlfs_cmd_queue_element {
struct sqlfs_cmd_queue_element ∗next ; /* pointer to next element in query

queue, protected by head_mutex */
struct sqlfs_comm sqlfs_comm_request ; /* data for/from dbclient */

5 int done ; /* 1 if command is processed */
struct semaphore element_mutex ; /* semaphore protects all fields of

element except ’next’ after
insertion in queue */

wait_queue_head_t element_cond ; /* condition variable to wait on
10 element */

int reuse ; /* indicates whether the element
will be re-used, needed for
transactions */

int wai t i ng_ fo r_ reuse ; /* if the element is being reused,
15 this is 1 if the element is

waiting */
struct sql fs_cb_element∗ cb_element ; /* pointer to first callback

function */
} ;

The command queue hosts two lists, one for busy elements and one for waiting elements. Busy
elements are elements which are fetched by a DB-Client and currently being processed or wait-
ing elements which are in a running (uncommited) transaction. If the reuse flag is set, the
element does not leave the busy-list after processing. This is used for transactions, to prevent
the element (and the DB-Client) being used by other processes than the owner of the transac-
tion. The flag waiting_for_reuse indicates whether the reused element is currently being
processed by a DB-Client or waiting for a new command.
The following methods build the interface to the command queue:

int sql fs_cmd_queue_in i t (struct sqlfs_cmd_queue ∗∗pqueue ) ;
void sqlfs_cmd_queue_add (struct sqlfs_cmd_queue ∗queue , struct

sqlfs_cmd_queue_element ∗element ) ;
struct sqlfs_cmd_queue_element ∗sqlfs_cmd_queue_wait (struct sqlfs_cmd_queue ∗

queue ) ;
struct sqlfs_cmd_queue_element ∗sqlfs_cmd_queue_find_busy (struct

sqlfs_cmd_queue ∗queue , p i d_ t t r a n s a c t i o n _ i d ) ;
5 void sqlfs_cmd_queue_return_processed (struct sqlfs_cmd_queue ∗queue , struct

sqlfs_cmd_queue_element ∗element ) ;
int sqlfs_cmd_queue_destroy (struct sqlfs_cmd_queue ∗queue ) ;

/* sqlfs query queue element -- admin functions */
int sqlfs_get_cmd_queue_element (struct sqlfs_cmd_queue_element∗∗ elem , int∗

is_new_element , p i d_ t t r a n s a c t i o n _ i d ) ;
10 int sqlfs_cmd_queue_new_element (struct sqlfs_cmd_queue_element ∗∗pelement ) ;
void sqlfs_cmd_queue_wait_on_element (struct sqlfs_cmd_queue_element ∗element )

;
void sqlfs_cmd_queue_destroy_element (struct sqlfs_cmd_queue_element ∗element ,

int is_new_element ) ;
void sql fs_cmd_queue_wait_for_reuse (struct sqlfs_cmd_queue_element ∗element ) ;
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sqlfs_cmd_queue_init(pqueue) Initializes a new command queue.

sqlfs_cmd_queue_add(queue, element) If element is a reused element, the DB-Client wait-
ing on the element is woken up and begins processing the command. If the element is a
new element, it is added to queue and a free DB-Client is woken up to process the com-
mand.

sqlfs_cmd_queue_wait(queue) Called by the DB-Client to wait for a new command. Fetches
a new command, if available, or waits until a new command queue element is added to
queue. Moves the fetched element to the busy list.

sqlfs_cmd_queue_find_busy(queue, transaction_id) Searches for a busy element in
queue with transaction_id and returns it, if found, null else.

sqlfs_cmd_queue_return_processed(queue, element) Called by the DB-Client after having
processed the command to wake up the waiting process. If reuse is set on element, the
DB-Client afterwards calls sqlfs_cmd_queue_wait_for_reuse to wait on the element
for the next command, otherwise sqlfs_cmd_queue_wait to wait for a new command.

sqlfs_cmd_queue_destroy(queue) Destroys queue.

sqlfs_get_cmd_queue_element(elem, is_new_element, transaction_id) Used for getting a
command queue element for transaction_id (usually the process ID). After the call,
elem points to the new element and is_new_element tells whether the element was
newly created or is a reused element.

sqlfs_cmd_queue_new_element(pelement) Called by sqlfs_get_cmd_queue_element
to create a new element when no reusable one exists.

sqlfs_cmd_queue_wait_on_element(element) After adding element to the queue with
sqlfs_cmd_queue_add this method is called to wait until the command is processed.

sqlfs_cmd_queue_wait_for_reuse(element) Called by the DB-Client to wait on element for
reuse instead of waiting for a new command queue element.

sqlfs_cmd_queue_destroy_element(element, is_new_element) Destroys element
if is_new_element is set. If not, just the possibly allocated memory buffer
element->sqlfs_comm_request.data is freed. Whether the element was new
or reused was returned sqlfs_get_cmd_queue_element when getting the element.

5.1.4 Readdir cache

Other filesystems that use block devices (e.g. harddisks) to store their data can take advantage
of the block caching mechanism of the VFS. Every block that is read from the block device is
cached in a similar way to the inode cache. The system tries to cache as much blocks as it can
without harming the other components of the system. To achieve this, the kernel dynamically
puts the cached blocks back to disk.
The sqlfs does not use a block device, hence it cannot take advantage of the kernel block
caching mechanims, therefore we implemented a similar caching mechanism. Instead of us-
ing cached disk blocks, we allocate and fill memory pages and attach them to the inode that
represents the wanted directory. A readdir call can now parse the memory pages instead of
querying the database. An another benefit is that we can take advantage of the previously men-
tioned dynamic freeing mechanism. While freeing an inode, the VFS subsystem calls the inode
clear_inode operation, we can use to free our allocated memory pages.
Instead of using a linear list of memory pages, as it would be the simplest approach, a hash
table in combination with a linear list was chosen, in order to find the next entry point reasonably
fast.
The basic allocated object used is a memory page (4096 bytes on the x86 system). This design
decision was made to ensure a fast allocation of a used memory objects. Besides, the size
of 4096 bytes appears reasonable. The allocated memory page is then casted to the needed
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structure. This can be the hash table itself or a readdir cache page that stores the directory
entries.
Let’s see what kind of structures are used, beginning with the smallest, a
sqlfs_readdir_cache_entry.

struct sq l f s_ readd i r_cache_en t ry {
__u32 inode ; /* Inode number */
__u16 rec_ len ; /* Directory entry length */
__u8 name_len ; /* Name length */

5 __u8 f i l e _ t y p e ; /* Type of the entry, e.g. file, directory,
pipe, ...

char name[SQLFS_NAME_LEN]; /* File name */
} ;

Such a readdir entry desribes one entry of a directory, e.g. a file, and contains the inode num-
ber, the name with length name_len and the type of the described object. The type is stored
to prevent unnecessary lookup operations, but it is not yet used. In order to properly support the
Lustre fs_readpage operation (see 5.4.1 our structure corresponds exactly to the ext2 readdir
structure. Please note, that the name element does not have the full SQLFS_NAME_LEN number
of bytes allocated, but only as much as needed. rec_len is used to find the next directory entry,
but it is important to know that there can be an empty space between two entries, because the
deletion of an entry is done by merging the current entry with the previous one.
All these entries are stored in one or several sqlfs_readdir_cache_page structures.

/* readdir cache page, fits in one memory page */
/* Contains a variable number of "sqlfs_readdir_cache_entry" elements */
struct sql fs_readdir_cache_page {

struct sql fs_readdir_cache_page ∗next ; /* Pointer to next cache page
*/

5 struct sql fs_readdir_cache_page ∗prev ious ; /* Pointer to previous cahe
page */

int num_entr ies ; /* Number of valid sqlfs_readdir_cache_entry elements in
this page */

int en t ry_s izes ; /* Size of stored data in this page. */

/* Pointer to the first struct sqlfs_readdir_cache_entry in this memory
page */

10 struct sq l f s_ readd i r_cache_en t ry ∗ f i r s t _ e n t r y ;
/* Pointer to the last struct sqlfs_readdir_cache_entry in this memory page

*/
struct sq l f s_ readd i r_cache_en t ry ∗ l a s t _ e n t r y ;

/* The rest of the memory page contains the readdir_cache_entries */
15 } ;

As mentioned above this structure is cast to a memory page. The pages are linked among
themselves in a doubly linked list (next and previous), whereas the previous pointer of the
first page and the next pointer of the last past are set to null.
The first readdir element in this structure cannot be found statically, because it can be deleted
sometime. Instead the first and the last element in this cache page can be found with the point-
ers first respectively last. The latter is not necessary, but it improves the insertion speed
of an another readdir entry. In addition, the number of valid entries in this page is stored in
num_entries and the real size of all entries (without any gaps) is saved in entry_sizes.
Note, that new elements are always inserted at the end of a memory page, primarily to provide
a fast insert operation. If a sqlfs_readdir_cache_page becomes empty, because all entries
were deleted, the cache page is released.
All these sqlfs_readdir_cache_page are attached to a hash table. This table is of type
sqlfs_readdir_hash_table.

/* Hash table of a readdir table.
We never allocate this structure directly, we allocate instead one memory

page
and cast the received pointer to a (sqlfs_readdir_hash_table *). The size

argument
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in the variable "page" is therefore only a hint for the reader to
determine the

5 array size.
The inode number is used to calculate a hash value. This value is
used as an index into the hash table.
*/

struct sq l f s_ readd i r_hash_ tab le {
10 /* pointer to first and last used cache page */

struct sql fs_readdir_cache_page ∗ f i r s t ;
struct sql fs_readdir_cache_page ∗ l a s t ;

/* hash table entries */
15 struct sq l f s_ readd i r_hash_ tab le_en t ry en t ry [SQLFS_READDIR_HASHTABLE_SIZE ] ;

} ;

Once again this structure is not directly allocated, but cast to a memory page. The a hash table
is used to improve the lookup speed of a particular element. This is necessary because the
readdir call is reentrant (see chapter 4.7). first points to the first page that is allocated in the
linked list of sqlfs_readdir_cache_pages and last to the last page. This avoids a scan
through the hash table to find the first allocated page.

The rest of the memory page is filled with sqlfs_readdir_hash_table_entries.

/* This structure defines an entry of the hash table.
struct sqlfs_readdir_hash_table_entry {

/* Points to the first sqlfs_readdir_cache_page that
contain the sqlfs_readdir_cache_entries that hash to this value */

5 struct sql fs_readdir_cache_page ∗ f i r s t ;
/* Points to the last sqlfs_readdir_cache_page that
contain the sqlfs_readdir_cache_entries that hash to this value */
struct sql fs_readdir_cache_page ∗ l a s t ;

} ;

This structure represents an entry of the hash table. As the names indicate, the pointers first
and last point to the first and last cache page that belong to this hash table entry.
To illustrate how this hash table works, let’s see how it is filled up while performing a readdir.
First of all, the readdir operation fetches all entries of the queried directories from the database.
For each of these entries, a hash value is generated that determines to which entry of the hash
table bucket the element belongs to. Then the last readdir cache page belonging to this bucket
is fetched, or if no page exists, a new one is allocated, and the element is inserted into it.
As we already know, the readdir call is reentrant, it fetches just a certain number of entries at
once, and get’s the rest by using the file position of the file representing the directory. It is now
necessary that the kernel is able find a specific entry to continue a readdir call, even if someone
added or removed a file. The chosen solution simply uses the file pointer to destinguish wether
the actual readdir call should start at the beginning of the directory or continue the last readdir
call, but the location itself is stored in a sqlfs_readdir_info structure attached to the file
object representing this directory.

/* stores the last accessed element of a readdir.
This is used to continue the last readdir call */

struct s q l f s _ r e a d d i r _ i n f o {
int inode_ino ; /* inode number */

5 struct s q l f s _ q s t r name ; /* name of the directroy entry */
/* The name is needed because of hardlinks */

int oid ; /* oid of this element in the db */
} ;

cache_entry sqlfs_get_readdir_entry( inode, name, table ) Fetches the readdir cache entry
stored in table identified by its inode number inode and name.

cache_entry sqlfs_add_dentry_to_readdir_cache(dir, dentry) Adds a VFS dentry to the
cache of the directory dir. Is used to mantain the consistency of the cache.

sqlfs_fill_readdir_cache(inode) Allocate and fill a readdir cache and attach it to inode.
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cache_entry sqlfs_add_cache_entry_to_readdir_cache(table, cache_entry) Add a
cache_entry to the readdir cache represented by the hash table table.

sqlfs_remove_dentry_from_readdir_cache(dir, dentry) Deletes the file or directory repre-
sented by dentry from the cache attached to dir.

sqlfs_remove_from_cache_page(cache_entry, previous_entry, table) Removes a
cache_entry from the cache by merging it with the previous_entry.

cache_page sqlfs_add_readdir_cache_page(page, table, hash) Allocates a new cache
page and inserts the new page after page. The hash is used to update the hash table
table.

sqlfs_release_readdir_cache_page( page, table, int hash) Removes and releases the
page of the hash table table.

table sqlfs_alloc_readdir_cache(void) Allocates an empty readdir cache (hash table).

sqlfs_release_readdir_cache(table) Deletes the readdir cache represented by table.

sqlfs_get_hash_value(inode) Calculate the hash value of the inode inode.

cache_entry sqlfs_get_next_readdir_cache_entry(entry, table) Fetches the follow-up ele-
ment of entry of the cache represented by table.

cache_entry sqlfs_get_lustre_readdir_entry(table, offset) Does the same as
sqlfs_get_readdir_entry but takes care of the ext2 boundary rules. This is
used by the sqlfs filter of Lustre (see 5.4).

sqlfs_readdir_cache_entry_size(entry) Calculate the size a cache entry

sqlfs_readdir_entry_size(dentry) Calculates the size the cache element corresponding to
dentry.

sqlfs_readdir_check_entry(name, table) Checks if an entry with name name already exists.
This was used for debugging purposes.

5.1.5 Transaction and callback support

The sqlfs File System is equipped with transaction and callback support, as this is also a pre-
requisite for the Lustre MDS. A file system transaction is directly mapped to a transaction on
the database. The transactions are identified by the process ID of the process, which initiated
the transaction. This implicates that all sqlfs file system operations called by the same process
between sqlfs_start and sqlfs_commit are part of the transaction.
A sqlfs callback function is a function pointer with a memory pointer for passing arguments. It is
defined as follows:

typedef void (∗ sq l f s_cb_ t ) (void∗ data ) ;

The following methods are used for accessing the transaction subsystem:

int s q l f s _ s t a r t (void ) ;
int sql fs_commit (void ) ;
int sq l f s_beg in (int∗ i s_new_transact ion , p i d_ t t r a n s a c t i o n _ i d ) ;
int sq l fs_end (int i s_new_t ransact ion ) ;

5 int sql fs_add_cb ( sq l f s_cb_ t cb_func , void∗ cb_data ) ;
int s q l f s _ c a l l _ c b (struct sqlfs_cmd_queue_element∗ element ) ;

sqlfs_start() Starts explicitly a new transaction for the calling process. The command queue
element used for starting the transaction on the database is marked for reuse (refer chap.
5.1.3). If this process is not already in a transaction and no other error occurs, 0 is re-
turned, else the error code.
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sqlfs_commit() Commits the running transaction for the calling process and calls all registered
callbacks. If there was no open transaction or another error occurs, the respective error is
returned, else 0.

sqlfs_begin(is_new_transaction, transaction_id) Starts a new transaction by calling
sqlfs_commit if there was none yet initiated. is_new_transaction is set to true,
if a new transaction is started or false, if there was a already a transaction running.
transaction_id is usually set to the process ID that started the transaction. This func-
tion is used for example by the sqlfs file read/write operations to ensure they run in a
transaction.

sqlfs_end(is_new_transaction) This function is just a conditional commit. sqlfs_commit is
called when is_new_transaction, which was set by a preceding sqlfs_begin, is
true.

sqlfs_add_cb(cb_func, cb_data) Adds the sqlfs callback function cb_func with parameters
cb_data to the current transaction. If no open transaction exists, an error is returned.
This function returns the error code if an error occured, or else 0. After the transaction is
commited, cb_func is called with cb_data as argument.

sqlfs_call_cb(element) This function is used internally by sqlfs_commit to call all registered
callback functions.

5.1.6 iopen extension

The iopen extension allows to open files (or directores) just by specifying the inode number
and is required by the Lustre MDS. The access occurs through the virtual hidden directory
/__iopen__, where for every inode a file with the inode number as it’s name exists.
The iopen extension consists mainly of the following 3 methods:

int sq l fs_check_for_ iopen (struct inode ∗ d i r , struct dent ry ∗dent ry ) ;
int sq l fs_ iopen_get_ inode (struct inode ∗ inode ) ;
struct dent ry ∗ iopen_connect_dentry (struct dent ry ∗de , struct inode ∗ inode ) ;

sqlfs_check_for_iopen(inode, dentry) This function is spliced into sqlfs_lookup. It
checks, whether the name in dentry is __iopen__ and inode is the root inode. If yes, it
loads the special iopen inode by calling iget with SQLFS_IOPEN_INO as inode number
and attaches the inode to the dentry. It returns 1 if the check was positive, 0 else.

sqlfs_iopen_get_inode(inode) This function is spliced into sqlfs_read_inode. It returns
1 if the inode number is the one for /__iopen__, in which case the inode is filled in
appropriately. Otherwise, this fuction returns 0.

iopen_lookup(inode, dentry) This is the only file system operation attached to the special
iopen inode, the lookup function of the inode_operations structure.

5.2 DB client

The database client (DB-Client) acts as proxy between the kernel module and the database.
The communication with the kernel module is done via ioctl as it is explained in chapter 5.1.2
To improve the performance and to take advantage of the SMP capability of today’s servers it
is highly recommanded to start more than one DB-Client. This can be accomplished with the
-n parameter of the DB-Client (see 5.2.2). Additional DB-Clients can always be added just by
starting them. In fact, as one DB-Client executes exactly one query simultaneously, the number
of started DB-Clients corresponds exactly to the number of simultaniously executed queries. Of
course the database must be able to handle the amount of started clients.
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5.2.1 Architecture

The architecture of the DB-Client is quite simple. After the startup procedure the DB-Client
basically performs a loop in which the commands received from the kernel module are executed.
To get an overview, you can take a look at figure 5.5.
During the initialisation phase, the DB-Client parses the given command line arguments, forks
himself if necessary to provide concurrent access to the database, opens the ioctl file
/dev/sqlfs and then connects to the database. Now, the DB-Client arrives the first time at the
beginning of the main processing loop. To initiate a proper connection to the kernel module, the
DB-Client performs the ioctl command IOCTL_SQLFS_FIRST_CONNECT which as well waits
for the first command. When the DB-Client returns out of the ioctl, the received sqlfs_comm
structure contains all necessary data to execute the query. The structure element cmd defines
the command that should be executed. Each of this queries is encapsulated in a function that
generates the SQL query by picking the needed data out of the sqlfs_comm structure and
putting them in the appropriate SQL query string. This string is then sent to to the database
which executes the query and returns the result.
Most of the queries are calls to a stored procedure on the database server, but some of them
contain the whole sql query. By parsing the resultset of the query, the DB-Client can determine
if everything was successfully executed and can take further actions. The result is then copied
back into the sqlfs_comm structure and returned by executing an ioctl, but from this time on
with the ioctl command IOCTL_SQLFS_COMM, as IOCTL_SQLFS_FIRST_CONNECT is only
used once. The main loop has now been executed exactly one time and it will continue until the
kernel module ends the loop by sending the ioctl command IOCTL_SQLFS_DISCONNECT.
By receiving this command, the DB-Client ends the main loop, releases all allocated ressources
and terminates.
The termination of all DB-Client can be initiated by calling the helper program stopping, which
in turn tells the kernel to send an IOCTL_SQLFS_DISCONNECT to all attached DB-Clients.

5.2.2 Synopsis

DB-Client [-h host] [-n number of DB-Clients] [-p port] [-u user] [-a auth] db

option use
-h host The host that the DB-Client connects to. Default is localhost
-n number of DB-Clients How many database client should be started.
-p port Port of the postgresql server. Default is 5432
-u user Specifies which user connects to the DB (normally lustre)
-a auth Password, if needed.
db Replace db with the name of your database (normally lustre)

Table 5.1: Options for DB-Client

5.3 Metadata database

The metadata database stores the data of the sqlfs filesystem and provides as well a certain
amount of automatic consistency checking by using primary and foreign key constraints. Most
of the superblock, inode and file operations are implemented as stored procedures. Some of
this functions cannot be implemented as stored procedures because their resultsets consist of
duples, therefore the whole query for this commands is sent to the database.

5.3.1 Database selection

The goals of the sqlfs filesystem are to provide a storage system, that is highly available, con-
sistent, stable and fast. To achieve this, the used database system has to provide the same
functionality.
The Lustre filesystem and mostly the sqlfs filesystem are published under the GPL General
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parse command line arguments
[-h host] [-p port] [-u user] [-a auth] db

connect to database

check if connection to db is ok
(conn!=CONNECTION_BAD)

No

Yes

info.c: void info(FILE *file, PGconn *conn)
check what kind of error

open sqlfsdevice

exit program with EXIT_FAILURE

initialize variables
(working = 1, error = 0, 
create  struct sqlfs_comm sqlfs_comm_s
communication struct to kernel module
make some assignments)

set querytype to
SQLFS_QUERY_FIRST_CONNECT_DBCLIENT

call ioctrl
ret = ioctl(fd, SQLFS_COMM, &sqlfs_comm_s)

if working == 1
while(working)

No

Yes

error = 0; "error internal for dbclient"
sqlfs_comm_s.error = 0; "error for kernel module"

 SQLFS_QUERY_SB_OP_READ_INODE:
      error = query_read_inode(conn, i_inode);

SQLFS_QUERY_SB_GET_ROOT_INODE_INO:
      error = query_super_block_ino(conn, i_inode);

SQLFS_QUERY_DIR_INODE_OP_MKNOD: 
      error = query_mknod(conn, i_inode, parent_inode_ino, d_name); 

SQLFS_QUERY_DIR_INODE_OP_LOOKUP:
      error = query_lookup(conn, i_inode, parent_inode_ino, d_name); 

SQLFS_QUERY_FORCE_DISCONNECT:
      working = 0; /* false */

close sqlfsdevice

close connection to db

switch decides which query should be executed.
the implementation is in queries.c

*cmd

inode

inode_ino

inode_ino

inode

loop

end loop

exit program normally

if ( data ) ; Is there any data waiting?
No

Yes

call ioctrl
ioctl(fd, SQLFS_COPY_TO_USER, &sqlfs_comm_s)

. .
 . 

. .
 .

Figure 5.5: Block diagram of DB-Client
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Public Licence, this code can therefore be freely reused and distributed, so it is reasonable not
to use a commercial database system, but a a freely available that can be used at no charge.
Three databse systems resultet as possible candidates. MySQL, SAP DB and Postgres. MySQL
is fast, but the lack of stored procedures and the incomplete support of transactions disqualifies
this database system. SAP DB supports all the necessary features, but it is not yet mature, as
it lost all the stored data when the database was stopped. The last of our three candidates ap-
peared to be the right choice. Postgres supports all the necessary features, is stable (we never
had any problems) and with Release 7.4.x it is fast. The insert and deletion speed of version
7.3.x was not yet convincing, so everbody is encouraged to switch to the new version.

5.3.2 PostgreSQL

To guarantee that the database and the sqlfs file system is always in a consistent state, it
is necessary that every operation is executed atomically. The operation has to be executed
either completely or if a problem arises nothing at all should have been done. The "undoing" of
actions is called "rollback". In other words, a transaction is a logical unit of work that must not be
subdivided. A transaction is also used to coordinate updates made by two or more concurrent
users.
Changes made by a transaction are not visible to the system until the transaction is committed
and all the changes are physically written to disk.
The easiest way to take advantage of transactions is to use stored procedures, as they are
always executed in a transaction. A stored procedure is a server side function that performs
several operations as one unit. An even better approach would be the use of precompiled state-
ments. This are compiled stored procedures, that need to be parsed only once. This feature
was introduced with postgres 7.4.x, but as we started the sqlfs filesystem with version 7.3.x we
did not use them.
Most databases use some kind of locking mechanisms to coordinate multiuser update. Post-
gres instead uses a model called multi-versioning to support concurrent accesses. The
database creates a new copy of the rows that have been modified, therefore other users see
the original values until the transaction is commited. This model still uses locks, but far less
frequently as one might expect. The commit operation simply marks the old rows as obsolete
and makes instead the new rows visible to the other users. This model is extremely useful in our
case, because it we often have concurrent updates on the same table (but not the same row)
and any unnecessary locking would cause a performance loss.
The multi-versioning model unfortunatly has a disadvantage. Data marked as obsolete is not
automatically removed from the database, instead it is hidden. The newest version of postgres
is able to reuse some of this obsolete rows, but there is nevertheless much unused space in
the database after many update and delete operations. This empty spaces cause a perfor-
mance loss and need to be periodocally removed from the database. This can be done by
the vacuum command, which garbage collects the whole database and updates the access
statistics to improve the optimizers planning. To accomplish this automatically, a helper program
called pg_autovacuum can be used. This program runs as a deamon that periodically polls
the database and performs a vacuum if it’s necessary. The disadvantage is that the row level
statistics of postgres must be activated which causes a slight but noticable performance loss
and that the vacuum operation itself is a resource and cpu intensive task.
Postgres uses like any other database system indexes to speedup the lookup operation. Post-
gres automaticaly generates an index over primary and foreign keys of a table, because these
are often used. More indexes provide faster lookup but slower insert, update and delete oper-
ations. It’s therefore necessary to find a good trade-off between read and write speed. In our
case, the default indexes were used, as we are interested in fast insert and update operations.
Database constraints (primary and foreign keys, etc) can be used to automatically verify some
integrity properties of a database. For example, it is not possible to have two inodes with the
same inode number stored in one filesystem. With a constraint this can be automatically guar-
anteed.
PostgreSQL does not support unsigned integers, but as the VFS does often use these it is
necessary to introduce a mapping between the unsigend integers of the VFS filesystem and the
signed integer types of PostreSQL as follows.
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kernel bytes database bytes
__u8 1 smallint 2
__u16 2 integer 4
__u32 4 bigint 8

Table 5.2: Numeric data types in Linux kernel and PostgreSQL

5.3.3 Database schema

The used database schema for the sqlfs filesystem is basically a mapping of the ext2 structures
to a relational schema. But because we use a database to store the data, we don’t have to care
about the physical layout of the data, that’s the job of the filesystem the database uses.
Let’s explain the chosen database schema by introducing the used tables.

inodes
oid oid inode number
i_mode integer file type and access rights
i_size bigint file length
i_uid integer low 16 bits of owner uid
i_gid integer low 16 bits of group id
i_links_count integer hard links count
i_atime bigint time of last access
i_ctime bigint time of creation
i_mtime bigint time of modification
i_flags bigint file flags
i_rdev bigint device file information
i_generation bigint file version
i_sqlfs_flags bigint internal flags of the sqlfs
i_real_dir_size integer real size of the inode, not block aligned

The data of a VFS inode is mapped into the above structure. oid represents the inode number
and has to be unique. This is guaranteed by the data type oid which represents a database
wide unique number. The oid is the primary key of this table, because an inode is uniquely
identified by its number. Except for the two last entries, the stored data correspond the their
counterpart of the VFS inode object. The field i_sqlfs_flags contains the flags explained in
chapter 5.1.1. i_real_dir_size is used by the Lustre filter driver to simulate ext2 readdir
pages.

dir_entries
inode oid inode number
name_len smallint name length
name varchar name
parent_inode oid parent inode number

The table dir_entries contains all directory entries. They provide a mapping between the
name of a file or directory and the inode representing it. Such a directory entry is uniquely
identified by the number of its parent inode (the directory containing the file) and its name. The
two entries represent together the primary key of this table.
It is possible that two files the same directory are attached to the same inode, therefore the
inode number cannot be used as an identifier. inode and parent_inode are both foreign
keys of the inode number (oid) of the inodes table.

symlinks
inode oid inode number
symlink text symlink as text

Symlinks point to a file located somewhere on all the mounted filsystems. To resolve a sym-
bolic link, the VFS calls either the inode operation readlink or follow_link which get the
symlink entry of the table symlinks by using the inode number. inode is as you might
expect a foreign key of the oid entry of the table inodes.
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superblock
id integer id for filesystem
root_inode oid inode number of root inode

The sqlfs does not need a real super block like ext2. Instead an ordinary inode which number is
saved in this table is used to represent the root directory. This table is used for nothing else and
contains exactly on entry. The primary key of this table, id, is used to identify the filsystem, but
it is not really needed and set to 1 during the initialisation of the filesystem.

xattr
inode oid inode this xattr belongs to
name varchar(256) name of the xattr
value bytea data of the xattr

The table xattr is used to store the extended attributes, that Lustre uses. The use of these
attributes is not limited to Lustre, officially they were intrudeced with the 2.6 kernel to support
access control lists and other extensions of the filesystem. The primary key consists of the two
entries oid and name. In addition, the oid has a foreign key constraint to the oid entry of the
inode table. The element value contains the data of the xattr and is of type bytea. This type
is used to store binary data of arbitrary length in escaped form.

files
inode oid inode number
lo_oid oid oid mapping to blob

This table provides a mapping between the inodes and the blob (binary large object) containing
the filedata. This table is needed, because all the blobs are stored in a system table called
pg_largeobject. The primary key of this table is the inode number inode which is as well a
foreign key of the oid stored in the inode table.

pg_largeobject
loid oid blob identifier
pageno oid page number
data bytea stored data

The pg_largeobject table is a postgres system table that stores all blob objects.
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inodes

oid              oid
i_mode           integer
i_size           bigint
i_uid            integer
i_gid            integer
i_links_count    integer
i_atime          bigint
i_ctime          bigint
i_mtime          bigint
i_dtime          bigint
i_flags          bigint
i_rdev           bigint
i_generation     bigint

dir_entries

superblock

symlinks

inode            oid
name_len         smallint
name             varchar
parent_inode     oid

id               integer
root_inode       oid

inode            oid
symlink          text

files

inode            oid
i_mode           integer
lo_oid           oid

xattr

inode         oid
name          varchar(255)
value         bytea

pg_largeobject

loid            oid
pageno          integer
data            bytea

Figure 5.6: Database schema
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5.4 Lustre sqlfs File System Filter

As mentioned in chap. 3.3, the Lustre Metadata Server uses, in addition to the VFS, a pro-
prietary File System Filter to store it’s data. Unfortunately, the File System Filter interface is
completely undocumented, so we had to reverse-engineer existing File System Filters to figure
out the specification of the interface functions.

5.4.1 Interface

The File System Filter operations are declared as follows:

struct f s f i l t _ o p e r a t i o n s {
struct l i s t _ h e a d f s _ l i s t ;
struct module ∗ fs_owner ;
char ∗ f s_ type ;

5 void ∗ (∗ f s _ s t a r t ) (struct inode ∗ inode , int op ,
void ∗desc_pr iva te ) ;

void ∗ (∗ f s_b rw_s ta r t ) (int objcount , struct f s f i l t _ o b j i n f o ∗ fso ,
int niocount , void ∗desc_pr iva te ) ;

int (∗ fs_commit ) (struct inode ∗ inode , void ∗handle ,
10 int force_sync ) ;

int (∗ fs_commit_async ) (struct inode ∗ inode , void ∗handle ,
void ∗∗wait_handle ) ;

int (∗ fs_commit_wait ) (struct inode ∗ inode , void ∗handle ) ;
int (∗ f s _ s e t a t t r ) (struct dent ry ∗dentry , void ∗handle ,

15 struct i a t t r ∗ i a t t r , int do_trunc ) ;
int (∗ f s _ i o c o n t r o l ) (struct inode ∗ inode , struct f i l e ∗ f i l e ,

unsigned int cmd, unsigned long arg ) ;
int (∗ fs_set_md ) (struct inode ∗ inode , void ∗handle , void ∗md,

int s ize ) ;
20 int (∗ fs_get_md ) (struct inode ∗ inode , void ∗md, int s ize ) ;

ss i ze_ t (∗ fs_readpage ) (struct f i l e ∗ f i l e , char ∗buf , s i z e _ t count ,
l o f f _ t ∗ o f f s e t ) ;

int (∗ fs_add_journa l_cb ) (struct obd_device ∗obd ,
__u64 las t_ rcvd , void ∗handle ,

25 f s f i l t _ c b _ t cb_func , void ∗cb_data ) ;
int (∗ f s _ s t a t f s ) (struct super_block ∗sb ,

struct obd_s ta t f s ∗osfs ) ;
int (∗ fs_sync ) (struct super_block ∗sb ) ;
int (∗ fs_map_inode_page ) (struct inode ∗ inode , struct page ∗page ,

30 unsigned long ∗blocks , int ∗created ,
int create ) ;

int (∗ fs_prep_san_wr i te ) (struct inode ∗ inode , long ∗blocks ,
int nblocks , l o f f _ t newsize ) ;

int (∗ f s_wr i t e_ reco rd ) (struct f i l e ∗ , void ∗ , int size ,
35 l o f f _ t ∗ , force_sync ) ;

int (∗ fs_read_record ) (struct f i l e ∗ , void ∗ , int size ,
l o f f _ t ∗ ) ;

int (∗ fs_setup ) (struct super_block ∗sb ) ;
} ;

Not all of these functions are needed for the MDS, as the File System Filter is used for both the
MDS and the OST. The following explanations of the respective functions are the result of our
reverse-engineering efforts. Although the MDS worked stable with these self-made specification
they are provided without any guaranty of correctness.

fs_list Used by Lustre

fs_owner The module which hosts these functions

fs_type The name of the filesystem these functions work on (e.g. ext3, reiserfs)

fs_start(inode, op, desc_private) Starts a new transaction on inode with intended operation
op. Returns a handle to the transaction.



46 Our Approach

fs_brw_start(objcount, fsfilt_objinfo, fso, niocount, desc_private) Not used by the MDS.

fs_commit(inode, handle, force_sync) Commits the transaction on inode represented by
handle.

fs_commit_async(inode, handle, wait_handle) Not used by the MDS.

fs_commit_wait(inode, handle) Not used by the MDS.

fs_setattr(dentry, handle, iattr, do_trunc) Sets the attributes of an inode.

fs_iocontrol(inode, file, cmd, arg) Maps the parameters to the underlying ioctl file opera-
tion.

fs_set_md(inode, handle, md, size) Sets the binary metadata md with size size for inode.
Returns the number of written bytes.

fs_get_md(inode, md, size) Reads the metadata from inode into the buffer md with size
size. Returns the number of bytes read (0 in case of error), or the size of the metadata
when md is null.

fs_readpage(file, buf, count, offset) Reads count bytes from file beginning at offset
into buf, which resides in kernel space. This method is currently only called by
mds_sendpage. The Lustre client uses this function to read the raw disk blocks of a
directory on the MDS to perform a readdir, expecting a ext2_dirent structure!

fs_add_journal_cb(obd, last_rcvd, handle, cb_func, cb_data) Adds a callback function
(called after commit) to the transaction represented by handle.

fs_statfs(sb, osfs) Executes a VFS statfs and fills osfs with the data.

fs_sync(sb) Flushes all data to disk.

fs_map_inode_page(inode, page, blocks, created, create) Not used by the MDS.

fs_prep_san_write(inode, blocks, nblocks, newsize) Not used by the MDS.

fs_write_record(file, buf, size, off, force_sync) A normal file write, except that buf resides
in kernel space. Writes size bytes from buf into the file, beginning at file offset off,
which must be incremented by the number of written bytes. Returns a negative number in
case of error, else 0.

fs_read_record(file, buf, size, off) A normal file read, except that buf resides in kernel space.
Reads size bytes from buf into the file, beginning at file offset off, which must be
incremented by the number of read bytes. Returns a negative number in case of error,
else 0.

fs_setup(sb) Used for setting up the filter driver.

5.4.2 Implementation of fsfilt_sqlfs

Based on the gathered specification we implemented a Lustre File System Filter Driver for sqlfs.
Transactions on the MDS never switch it’s executing process, the MDS process which starts
a transactions does also commit it and does not execute operations for other transactions in
between. For that reason the transaction handle can be ignored, transaction identification is
done by the process ID of the executing process1. The metadata is stored in xattrs, in the
same way as in fsfilt_ext3.
As mentioned above, the method fs_readpage is used for a strange way of doing a readdir.
In sqlfs, the directory information is not stored in blocks or pages as it is in disk-based filesys-
tems like ext3, but in relational format in the database. Therefore it is necessary to build these
pages or blocks dynamically, based on the current content of the directory. The readdir-call is
re-entrant, and between two calls the content of the directory can change, which causes lost

1This is the reason, why the sqlfs transaction management identifies transactions by the process ID.
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or dublicated entries, dependent whether files were created or deleted between the re-entrant
calls. For this reason, the command rm -rf * has to reread the directory several times, but at
the end it is empty.
The functions fs_write_record and fs_read_record are implemented in the sqlfs kernel
module, the filter just maps the calls to these. Additionally, the function fs_write_record can
be enabled or disabled2 through the respective ioctl (the utility sqlfs_set_write_record
in the utils directory serves for this purpose).

2This was implemented to evaluate the impact of the concurrent access to the recovery file on the MDS performance.
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Chapter 6

Benchmarks

Benchmarking is an important component of this thesis, as the goal was to improve the MDS
performance. Benchmarking and the analysis of the results is very time-consuming, and al-
though the available benchmarks were carefully chosen to show the performance of the different
file systems for the dedicated operations (namely file creation and file lookup), they give just an
idea of the behaviour of the different file systems.
Furthermore, a distributed file system like Lustre is a complex system with many different com-
ponents, whereof the MDS (and the file system being used) is just a small part. This makes it
even more difficult to gather exact information about single components by only considering the
overall performance.
At the time this thesis was written, Lustre supported only ext3 as underlying filesystem, for both
MDS and OST. Therefore sqlfs is only compared to ext3. First, the native performance of the file
systems was measured, and in a second step the Lustre performance. The observed operations
were file creation and file lookup.

6.1 Native Performance

6.1.1 Test method and Setup

The native performance was determined using the self-written utility fsbench. With this utility
it is possible to create a specified number of files or directories with multiple simultaneously
running processes, of which each works in it’s own directory (process working directory - PWD)
or all share the same working directory. The time needed to create these files or directories is
logged in specified file intervals. Files can be empty or written with random data of specified
size.
As the sqlfs is always synchronized and ext3 by default not, the ext3 file system was benched
twice, once mounted with default parameters and once mounted with parameters sync and
dirsync to force synchronisation.
The test setup is diagrammed in fig. 6.1, the configuration of the nodes is described in 8.1.11.

6.1.2 ext3 not synchronized

In this test, the time for creating 1’000’000 files in the ext3 file system (unsync’ed) was mea-
sured, with different parameters. The results of this test are shown in fig. 6.2. As expected, the
performance is much higher, if every process has it’s own working directory (PWD). If they all

DBClient

sqlfs2 sqlfs3

Figure 6.1: Test setup for native benchmarks
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work in the same directory, only one process at a time can access the working directory (inode-
lock on the directory), so the processes cannot work simultaneously, which causes poorer per-
formance the more processes run. This is effected by increased scheduling overhead. In the
second diagram (time per file of figure 6.2), we can see, that the file creation times grow linearly.

6.1.3 ext3 synchronized

The synchronized ext3 file system was tested in the same way as the unsync’ed. The results
are visualized in fig. 6.3. Again, the performance is much poorer when all processes share the
same working directory, due to serialization and scheduling overhead. It is interesting, that the
difference between the sync’ed and non-sync’ed tests when using the same working directory
is quite small! As with the unsync’ed ext3, the file creation times grow linearly.

6.1.4 sqlfs

The sqlfs file system was benchmarked the same way as the ext3-unsync’ed. Again, the time
was measured for creating 1’000’000 files in different ways. In fig. 6.4 we can see in the first
graph, that the creation times are strongly linear, so the time needed to create a file remains
almost constant, not being dependent on the number of files in the directory or filesystem. The
peaks in the second graph are caused by the vacuum-daemon of the PostgreSQL database. In
case of 300 processes, the increased scheduling overhead is responsible for the higher times.

6.1.5 Comparison

The figures 6.5, 6.6, 6.7 and 6.8 show the sqlfs file system compared to the ext3 file system.
Figure 6.8 is plotted for 1’000’000 files, while all other are plotted for 100’000 files.
In sqlfs, the time to create a file is is almost constant, not dependent of the number of running
processes nor of the number of files already stored in the directory. With ext3, sync’ed and
unsync’ed, the file creation time grows linearly, causing a square growth of the total creation
time, which implicates that at a specified amount of files in a directory, sqlfs will outperform ext3.
Compared to unsync’ed ext3, in case of one global working directory, sqlfs is faster when having
more than 40’000 files the directory(see fig. 6.5). In case of per-process working directories
(fig. 6.6) sqlfs is already faster when having more than 7000 files in each directory! So for 10
processes this is at 70’000 files, for 50 processes at 350’000 files and for 100 processes this
would be at about 700’000 files total.
Compared to synchronized ext3, in case of one global working directory, sqlfs is faster when
having more than about 27’000 files in this directory (see fig. 6.7). In case of PWDs, the turnover
is at about 100’000 files total in the file system, independent from the number of processes.
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6.2 Lustre Performance

6.2.1 Test method and Setup

The Lustre performance was determined in a similar way as the native file system benchmarks.
As here not many processes on the same node, but many nodes are required, another bench-
mark utility had to be used, fsbench_mpi, which is the MPI-version of fsbench. In comparison
to fsbench, fsbench_mpi provides three possible working directories: a global directory for
all processes, a work directory for each node or a work directory for each process (if more than
one process runs on a node).
For this benchmark, 800’000 files were created by different ways. If more processes than clients
(nodes) were used, they were distributed uniformly on the used nodes. Each node had it’s
own working directory. If the tests were marked with PWD this means that not every node, but
every process had it’s own working directory. As the graphs for creation-time-per-file are quite
divergent, a square approximated version is added each time to improve the legibility.
The test setup is diagrammed in fig. 6.9, the configuration of the nodes is described in 8.1.11.

6.2.2 ext3

Figures 6.10 and 6.11 show the file creation performance with Lustre running with the MDS
using ext3.

6.2.3 sqlfs

Figures 6.12 and 6.13 show the file creation performance with Lustre running with the MDS
using ext3.

6.2.4 Comparison

Figures 6.14 shows the Lustre performance with sqlfs and ext3 as MDS-filesystem compared
to each other. The total time using ext3 grows quadratic, when using sqlfs it grows linearly. As
can be seen in the second graph, the per-file creation time is for sqlfs as MDS-filesystem again
more or less constant, while it grows with ext3. If both keep growing as they do until 800’000
files, sqlfs will eventually outperform ext3 also when used by Lustre. If the total file creation times
are compared to the native ones, it is outstanding, that the creation times are almost the same,
so Lustre is almost as fast as the native file systems (for file creation).

6.3 Analysis

Regarding the time-per-file graphs in fig. 6.5 and fig. 6.7 it is apparent, that sqlfs outperforms
ext3 if the directories have a sufficient size, even for the case of unsync’ed ext3. This is due to
the different scaling-behaviours of the two filesystems. While in sqlfs the time-per-file is constant
(best possible scaling), in ext3 it grows linearly, which is not bad, but worse. Therefore it is just
a matter of time or directory-size until the point is reached, where sqlfs is faster.
The directory size where the turnover point is situated at can be decreased by improving the
time to create a file in sqlfs. There are several optimization possibilities:

• improving the data base schema

• using stored procedures written in C instead of plpgsql

• using prepared queries

• using binary mode for transmitting data to and from the DB instead of escaped text

• using a faster database engine
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Figure 6.9: Test setup for Lustre benchmarks
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Figure 6.12: Lustre with MDS on sqlfs, total time

Although sqlfs can outperform ext3 natively, Lustre with the MDS using sqlfs is slower than when
using ext3 (see fig. 6.14). Although sqlfs again shows a constant time-per-file while ext3 grows
linearly, it grows too slow to be beaten by sqlfs for a reasonable directory size.
The reason why sqlfs used by the MDS is not as competetive as when used native is, that a
simple file creation on the Lustre Client causes the following operations on the MDS:

1. sqlfs_lookup

2. sqlfs_start

3. sqlfs_create

4. sqlfs_add_cb

5. sqlfs_write_record

6. sqlfs_write_record

7. sqlfs_commit

8. sqlfs_write_inode

9. sqlfs_write_inode

For creating one file on the Lustre File System, the MDS performs 9 file system operations.
When using sqlfs, this means, that 8 queries (sqlfs_add_cb goes not to the DB) are sent to
the database, packed in 4 transactions (functions not packed between start and commit are
single-instruction transactions). This is an unecessary amount of transactions and queries. On
the Lustre layer for example, lookup intents are introduced. Unfortunately, this information does
not arrive at the sqlfs, because it is neither implemented in the VFS interface nor in the File
System Filter.
The following optimization possibilities exist:
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• Like in ext3, in sqlfs the Lustre metadata is stored in xattrs. This metadata could be stored
in the sqlfs inode.

• Integrating the database in a higher level than the VFS. By that, more complex operations
can be handled by the database, which reduces the number of queries and transactions.
In the best case, for a file creation just one transaction and one query is needed.

• Add intent lock capability to sqlfs and modify MDS to make use of it, which shortens the 9
transactions to a single sqlfs lookup call.



Chapter 7

Conclusion and future work

For desktop computers and file servers there exist a couple of different file systems, each
with it’s own advantages and disadvantages. Network filesystems like NFS are also already
available, and global file systems are nothing new (e.g. AFS). So why invent a new file system?
Lustre - yet another file system? Certainly not. Although distributed network filesystems, also
with global namespace and task sharing, exist already, none of them is open-source. As
more and more of the fastest supercomputers and enterprise servers are Liniux clusters,
open-source becomes also in the field of supercomputing more and more important. Lustre -
with it’s ambitious goals - is designed exactly for this purpose: high-performance, redundant,
distributed file storage.

With this diploma thesis, a new approach of storing metadata in a file system was made. The
purpose of this thesis was not to actually to improve the performance of the metadata server,
but to figure out, if it can be improved with a database. Regarding the benchmarks in chap. 6,
we did not only show, that a database could be faster than existing file systems, but in some
cases we showed that it is faster.
During this thesis, we implemented a fully functional file system (sqlfs), which run’s completely
in a database system and outperforms classic file systems like ext3 if the directories are big
enough. Aditionally, sqlfs supports transactions to meet the requirements as Lustre MDS file
system.
This approach is not yet exhausted. As explained in 6.3 there are still many potential improve-
ments, not only to sqlfs but also to the Lustre MDS, as the VFS is not the most optimal interface
to a database. Also, different DB-Engines could be evaluated, as PostgreSQL is certainly not the
fastest DB-Engine, but perhaps the fastest open-source DB-Engine meeting our requirements.
Due to it’s modular design, the sqlfs is not limited to be just the Lustre MDS-filesystem, but can
easily be extended to be used in completely different environments.
Possible applications could be:

Hierarchical Storage Management In a Hierarchical Storage Management (HSM) file system,
many different storage medias can be used (disk arrays, solid state disks, tapes, ...). On
a HSM, policies can be defined. For example it can be defined, that all files greater than
1MB, which have not been used for 10 days are stored on tapes, and all config-files are
stored on the solid state disks. Gaining this metainformation in a usual file system is hard
work, while in sqlfs it’s just one query.

Media File System The idea of this Media File System (MFS) is to store media-dependent
information of the file as metadata in the file system. For example, if a picture is copied to
the MFS, it’s header is parsed and information like size and colour-depth is automatically
stored in the file system. For an mp3-file the extracted meta-information could be the artist,
the name of the song, release year etc.
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Chapter 8

Appendix

8.1 How-To

This chapter describes how to setup and mount the sqlfs filesystem.

8.1.1 Requirements

Linux Kernel 2.4.x
PostgreSQL 7.3.x, 7.4.x recommanded for performance reasons.
libpq

For compilation:
gcc, g++
make
Linux Kernel 2.4.x sources

8.1.2 Obtaining the sqlfs sources

The sources for the sqlfs filesystem can be found on the CD-ROM. Copy them to your target
directory.

cp -r /{path to cdrom}/db /{path to target}
cp -r /{path to cdrom}/dbclient /{path to target}
cp -r /{path to cdrom}/kernel_module /{path to target}

8.1.3 Compiling

Change to your target directory. Note, that you eventually have to change some path settings in
the Makefile.

cd {path to target}

cd kernel_module
make

cd ../dbclient
make

cd ..

Create the sqlfs device (you need to be root).

mknod /dev/sqlfs c 254 0
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The first time the module sqlfs is loaded, the kernel assigns a major number to the charac-
ter device. The number 254 has to be substituted with this number. Another possibility is to
pass a specific major number as an option to the kernel module with insmod insmod sqlfs
sqlfs_major=....

8.1.4 Database setup

Install the PostgreSQL 7.3.x or preferably 7.4.x client and server.
(use rpm, apt-get, tgz, ... depending on your Linux distribution)

As user postgres do the following (su - postgres):

create a user lustre

createuser -D -A -P -E lustre

options:
-D user is not allowed to create databases
-A user is not allowed to create users
-P user needs a password to connect
-E encrypts the user password stored in the database

Choose which option you need or want.

Create a database lustre. (this can be done under any user account)

createdb lustre

Set the language for stored procedures

createlang plpgsql lustre

The database is now ready to use.

Connect to the database (use the user account which created the database).

cd db/postgres
psql postgres

Execute the install.sql script

\i ./install.sql

8.1.5 Inserting the kernel module and mounting the filesystem

For the following actions you should be root. Change to the directory sources in your target
directory.

Load the kernel module into the kernel

insmod ./kernel_module/sqlfs.o

Check if the module was successfully loaded. For this use lsmod. It should have an entry
called sqlfs.

Start the database client

If the database is located on localhost with trusted users:

./db_client/dbclient -u lustre -n num_of_dbclients lustre
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If the database is installed on a remote system with password authentication:

./db_client/dbclient [-h host] [-p port] [-u user] [-a auth] [-n num_of_dbclients] db

To improve the performance you can start more than one dbclient by adding the argument
-n num_of_dbclients to the command line.

Mount the filesystem

mount -t sqlfs sqlfs /mnt/sqlfs

The filesystem is now mounted on /mnt/sqlfs and can be used like any other filesystem.

8.1.6 Unmounting the filesystem and removing the kernel module

Unmount the filesystem by executing the following command.

umount /mnt/sqlfs/

The sql filesystem is now unmounted, but the dbclients are still connected, thus the sqlfs
kernel module cannot be unloaded. To disconnect them, you have to call the helper program
stopping which you can find on the CD-ROM.

./dbclient/stopping

Now you can remove the kernel module from the running linux kernel by calling

rmmod sqlfs

8.1.7 Obtaining the Lustre Sources

The Lustre Sources can either be downloaded from the Lustre homepage
(http://www.lustre.org/downloads.html) or our used Version (1.0.2) can be found on the
included CD-ROM.

8.1.8 Setting up & mounting Lustre

An installation manual describing the building and installation process of the Lustre kernel and
tools can be found in the Lustre How-To [3].
To include the Lustre sqlfs filter (fsfilt_sqlfs.c) driver in your Lustre project, it is necessary
to copy the fsfilt_sqlfs/fsfilt_sqlfs.c and the kernel_module/sqlfs_fs.h files
into the lvfs directory of your lustre source. To include the fsfilt_sqlfs.c in the build
process, two lines of the file lvfs/Makefile.am of the lustre source have to be modified.
These two lines should look similar to the following two:

line 25: modulefs_DATA = lvfs.o $(FSMOD).o fsfilt_reiserfs.o fsfilt_sqlfs.o
line 28: EXTRA_PROGRAMS = lvfs $(FSMOD) fsfilt_reiserfs fsfilt_sqlfs

Alternatively, the patch fsfilt_sqlfs/make_patch can be applied to the source.
Unfortunately it’s as well necessary to patch the Lustre utils/lconf file. If the file that store
the MDS data is a block device, this command initialises the block device, else it assumes
that the specified file is an ordinary file that should be used as a loopback filesystem. As a
consequence the sqlfs device file /dev/sqlfs is treated like an ordinary file, and therefore
the initialisation failes. After applying the patch fsfilt_sqlfs/lconf_patch, the lconf utility
treats the sqlfs device file like a block device.
Now, you can execute the ./configure --with-linux=/your/patched/kernel/sources --enable-zerocopy
command, as it’s described in the Lustre How-To and compile the sources.
Now you can create a Lustre config file that suits you, and mount Lustre as it is described
in the Lustre How-To. You can find sample config files in chapter 8.1.10. Note, that the file
/utils/mkfs.sqlfs of the sqlfs file system has to be in your path as it is needed to format
Lustre. Don’t forget to insert the sqlfs kernel module into the running kernel and to start as much
DB-Clients as you like.
The umounting mechanism of Lustre can be found in the the Lustre How-To. To terminate the
mounted dbclients you have to to call the kernel_module/stopping tool.



70 Appendix

8.1.9 How to get debug output

During normal operation the debug output of the kernel module and the DB-Client is disabled. To
enable it, the C preprocessor variable __KERNEL__ has to be defined at compile time of these
two programs. That can be achieved by uncommenting in their Makefiles the CFLAGS definition
that contains that contains the definition of the variable __KERNEL__.
All the debug output is written to the kernel log. Please consult your Linux Users Guide on how
to get the kernel log.
All the debug output of the sqlfs MDS filterdriver is written to the Lustre log with debug level
D_INFO. You can find a complete Lustre Debugging How-To here [4].

8.1.10 Lustre config files

sqlfs.sh

#!/bin/bash

#
# Mikael Feriencik, Thomas Trachsel, , 24-10-2003
LMC=../utils/lmc
FILE=‘basename $0 | cut -d. -f 1‘
FILE=$FILE.xml
#FILE=$1

#set -x
rm -f $FILE

# create nodes
$LMC -o $FILE --add node --node sqlfs2
$LMC -m $FILE --add net --node sqlfs2 --nid sqlfs2-g --nettype tcp

$LMC -m $FILE --add node --node sqlfs1
$LMC -m $FILE --add net --node sqlfs1 --nid sqlfs1-g --nettype tcp

$LMC -m $FILE --add node --node sqlfs0
$LMC -m $FILE --add net --node sqlfs0 --nid sqlfs0-g --nettype tcp

# mds
$LMC -m $FILE --add mds --node sqlfs2 --mds mds1 --fstype sqlfs --dev sqlfs

#lov
$LMC -m $FILE --add lov --lov lov1 --mds mds1 --stripe_sz 65536 --stripe_cnt 0 --stripe_pattern 0

# ost
$LMC -m $FILE --add ost --node sqlfs1 --ost ost1 --lov lov1 --fstype ext3 --dev /dev/hda5

# clients
$LMC -m $FILE --add mtpt --node sqlfs0 --path /mnt/lustre --mds mds1 --lov lov1
#$LMC -m $FILE --add mtpt --node sqlfs1 --path /mnt/lustre --mds mds1 --lov lov1
#$LMC -m $FILE --add mtpt --node sqlfs2 --path /mnt/lustre --mds mds1 --lov lov1

sqlfs2.sh

#!/bin/bash

#
# Mikael Feriencik, Thomas Trachsel, 24-10-2003
LMC=../utils/lmc
FILE=‘basename $0 | cut -d. -f 1‘
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FILE=$FILE.xml
#FILE=$1

#set -x
rm -f $FILE

# create nodes
$LMC -o $FILE --add node --node sqlfs2
$LMC -m $FILE --add net --node sqlfs2 --nid sqlfs2-g --nettype tcp

# mds
$LMC -m $FILE --add mds --node sqlfs2 --mds mds1 --fstype sqlfs --dev sqlfs

#lov
$LMC -m $FILE --add lov --lov lov1 --mds mds1 --stripe_sz 65536 --stripe_cnt 0 --stripe_pattern 0

# ost
$LMC -m $FILE --add ost --node sqlfs2 --ost ost1 --lov lov1 --fstype ext3 --dev /dev/hda6

# clients
$LMC -m $FILE --add mtpt --node sqlfs2 --path /mnt/lustre --mds mds1 --lov lov1

sqlfs2_ext3.sh

#!/bin/bash

#
# Mikael Feriencik, Thomas Trachsel, 24-10-2003
LMC=../utils/lmc
FILE=‘basename $0 | cut -d. -f 1‘
FILE=$FILE.xml
#FILE=$1

#set -x
rm -f $FILE

# create nodes
$LMC -o $FILE --add node --node sqlfs2
$LMC -m $FILE --add net --node sqlfs2 --nid sqlfs2-g --nettype tcp

# mds
$LMC -m $FILE --add mds --node sqlfs2 --mds mds1 --fstype ext3 --dev /dev/hda5

#lov
$LMC -m $FILE --add lov --lov lov1 --mds mds1 --stripe_sz 65536 --stripe_cnt 0 --stripe_pattern 0

# ost
$LMC -m $FILE --add ost --node sqlfs2 --ost ost1 --lov lov1 --fstype ext3 --dev /dev/hda6

# clients
$LMC -m $FILE --add mtpt --node sqlfs2 --path /mnt/lustre --mds mds1 --lov lov1
~

8.1.11 Lustre and SQLfs Test Machines

All Test were made with RedHat 9, Postgres 7.4.1, Kernel RH 2.4.20-28.9-lustre1_0_2, Lustre
Release Version 1.0.2
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Testmachines
sqlfs0 - sqlfs2 Dual 1Ghz Pentium III Xeon, 512 Mb RAM, 40 Gb
sqlfs3, sm1 - sm14 Dual 2 Ghz Pentium 4 Xeon, 1Gb Ram, 40 Gb
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