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Abstract

Storage Area Networks (SAN) enable many computers to access a set of storage
devices over a high-speed network. Because a SAN is typically used to provide
direct access to shared storage, security and integrity protection of such storage
devices are an important issue. Securing the contents of a file can be done by
using cryptographic methods to encrypt the data. Encryption alone does not
guarantee a secure filesystem because a malicious program could tamper a file
on the SAN without being detected. It is assumed that although it is not
possible to prevent this without slowing down the data path, it is at least
possible to detect tamper attacks. In this diploma thesis the aspect of integrity
protection is addressed.
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Overview

1.1 Introduction

With the growing amount of data stored, the importance of stored data to individuals, companies
and governments is also increasing. In addition to the traditional criteria, such as performance,
capacity, and reliability, security is quickly becoming an important feature of storage systems.
Storage space is typically provided by complex networked systems, in which clients communicate
directly with a disk over a network (as in network-attached storage (NAS), or in storage-area
networks (SANSs)).

The main properties of a secure storage system are the following:

Confidentiality
Protection against unauthorized disclosure, for example through eavesdropping on data.

Integrity
Protection against illegal modification, which may involve only subtle changes to the
stored data.

Availability
Protection against accidental or intentional removal of the data.

A typical networked storage system consists of many and potentially distrusting clients, the data
storages themselves (typically, these are standard disks attached to a network, but they may
also offer advanced functions), and meta-data servers, which mediate access to the data storages.
Unauthorized actions may occur on all three elements and on the network linking them. This
means that security properties are at risk in two different locations:

Data in flight
Unauthorized actions on data or on meta-data being transmitted between authorized
clients, data storages, and meta-data servers. Such attacks are similar to problems en-
countered in other communication applications.

Data at rest
Tampering with the data storages, either by physically accessing the data storages or
by sending appropriate commands to the storage system. These commands may also be
initiated by clients authorized to access other parts of the storage system. Such attacks
are unique to storage systems.

The risk of attacks on data at rest is in general rated higher than that of attacks on data in flight;
among other things, an attacker usually has more time and flexibility to access data at rest than
data in flight.

Known mechanisms in the literature include using access-control mechanisms such as per-block
access control [AJLT03] and object-based storage [ADF'03]; integrated security mechanisms
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[MFLRO2] with a file system based on PGP as one extreme [Hal99]; key-management issues
[CCDPO01, MKKW99], and tweak-able encryption for block-level security [HRO3].

1.2 Integrity Protection

By using cryptographic measures on the data alone, i.e., without change to the disk interface, it is
not possible to prevent unauthorized overwriting of data blocks. Alterations can be detected, but
not prevented, by using cryptographic integrity-protection mechanisms. After detecting an illegal
modification, the data must be restored from a backup. Mandatory versioning supported by the
storage system can also allow automatic recovery.

1.3 Task Description

As part of this work, the existing SAN File System protocol [IBM03] has to be extended to support
integrity protection. Tradeoffs between data structures and speed when accessing, modifying, and
creating data have to be investigated. The goal is that incremental changes to or partial read from
a file do not induce significant I/O or computation costs.

Issues to be evaluated include variable record sizes and the treatment of sparse files.

In addition to the theoretical study and observation, a prototype implementation based on the
IBM SAN.FS as well as performance and functionality evaluations are expected.

1.4 Chapter Overview

Chapter 2, Introduction to SAN File System
In this chapter a short introduction to the SAN File System is given. The general
architecture of the system and the key features are listed. In addition, a more detailed
introduction into data locks is given, which is essential for understanding the design
decisions in the next chapter.

Chapter 3, Design
This chapter will discuss the implementation-independent part of the design for integrity
protection in the SAN File System.

Chapter 4, Protocol Design
This chapter describes how the existing SAN File System Protocol can be extended to
support integrity protection.

Chapter 5, Implementation
This chapter covers some interesting implementation issues revealed by the prototype
implementation. A general overview of the meta-data server implementation will be
shown as well.

Chapter 6, Evaluation
This chapter provides short evaluation of the proposed solution.

Chapter 7, Conclusions
This chapter summarizes the results and provides an evaluation of this work.



Introduction to SAN File
System

As part of this work the existing SAN File System has to be extended with integrity protection.
This chapter introduces the key concepts of the SAN File System and summarizes those parts of
the protocol specification document [IBMO03] that are important for this thesis. The individual
description has been taken almost verbatim from [IBM03].

2.1 SAN File System Components

Figure 2.1 shows a typical configuration of a SAN File System, consisting of client, storage devices
and servers connected over an SAN and an IP-based network. The configuration consists of the
following components:

e A set of SAN File System clients. These nodes read and write data to the storage devices.

A cluster of meta-data servers. A meta-data server cluster manages all meta-data exported
by the file system name space of that cluster.

Some storage devices, labelled “data” in the figure. Here the storage devices are SCSI block-
storage devices.

A SAN to connect the clients, servers, and logical units (LU).

e One or more administration consoles for controlling the meta-data servers.

An IP-based network to connect clients and servers.

The SAN File System supports heterogeneous clients, so that data on the SAN can be accessed
from a Windows client or a Linux client. Although the SAN File System is a distributed and
heterogeneous file system, the design goal is to provide applications running on clients with a
single-site semantics for file-system access.

2.2 Protocols

As shown in Figure 2.1 the clients communicate with the meta-data servers over an IP-based
network, whereas for access to the storage devices a dedicated SAN network is used, although it
is also possible to use a single IP-based network such as Ethernet.

The various entities described above communicate with each other using several different protocols:
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Figure 2.1: Entities in a file system. If the SAN is IP-based, the two networks may be merged.

SAN File System protocol
Clients communicate with the meta-data servers using the SAN File System protocol.
This protocol runs on an IP-network and can either use UDP or TCP as the underlying
transport protocol.

Data-access protocol
Clients access the block-storage devices using the data-access protocol which runs over
iSCSI, SCSI over Fibre Channel, or SCSI over a parallel bus.

Cluster-group service protocol
The nodes in a cluster of meta-data servers run this protocol to form a homogeneous view
of the cluster, as individual nodes leave the cluster upon failure and rejoin when they
recover. This protocol also allows the cluster to be managed as a single virtual entity.

Administration protocol
This protocol is used by the administration console to communicate with nodes in the
meta-data server cluster for configuration and administration purposes.

2.3 Key Design Features

Centralized client-server architecture
The SAN File System is based on a client-server design. File-system clients accessing the
global name space need not be aware of each other; they are only aware of one ore more
servers that provide access to the name space.

' Administration Protocol



10 Introduction to SAN File System

Separation of meta-data from data
File-system meta-data is managed separately from the data by the server cluster.

Centralized control of application synchronization
All synchronization of application access to file-system objects is controlled by the server
cluster.

Centralized control of client caching
The SAN File System allows caching of meta-data and data on clients. Control of cached
content on clients to maintain cache consistency is the responsibility of the servers.

Cross-platform file-system access
The SAN File System allows cross-platform access to the file-system name space.

2.4 File-System Objects

The SAN File System consist of three types of objects:

Files
A file is an unstructured ordered set of bytes, containing data that is accessed by clients.
The content of a file is opaque to the file system itself.

Directories
A directory is an interior node in a file-system name-space hierarchy, whose children are
other file-system objects.

Symbolic links
A symbolic link is a point in the client’s file-system name tree at which the name lookup
of on an object is redirected.

Every file-system object has a global unique identifier (referred to as “object ID” in the remainder
of the document) that is assigned to it during object creation by the server processing the creation
command. This object ID is immutable throughout the lifetime of the object. Object IDs are only
intended for internal file-system use.

The 4-tuple <clusterID.filesetID.objectID.versionNumber> is a notation used to represent the
unique object ID of an object. In Figure 2.2, the globally unique IDs of some file-system objects
are illustrated. In the figure, the global root has the ID <0.0.0.0>, the cluster root has the ID
<4402.8.1.0>, and so on.

The latest version of an object has the versionNumber 0.

2.4.1 File-sets

The SAN File System provides the concept of a file-set, which corresponds very loosely to the
concept of a mountable file-system. Like the boundary between mountable file-systems, there is a
directory, or a file-set attach point, that forms the boundary between two file-sets and each file-set
corresponds to a subtree of the overall SAN file-system name space, as shown in the example in
Figure 2.2.

2.5 Global Name Space

The SAN File System organizes all objects in the file system into a global name space. As in other
file systems, the name space is organized as a tree.
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/
(global root, <0.0.0.0>)

STORAGETANK
(cluster root, <4402.3.1.0>)

ProjsFileset : : UserDataFileset

(container root, <4402.4.1.0>) (container root, <4402.5.1.0>)
Project Docs .flashcopy var .flashcopy
ProjA ProjB mail

Figure 2.2: The dotted lines denote file-set boundaries. The ProjsFileset and UserDataFileset
directories are file-set attach points.

2.6 Leases

In the SAN File System, all cached meta-data and the maintenance of application-level locks on
objects that a client manages are protected by various types of file-system locks. The prerequisite
for holding such locks and performing the operations permitted by those locks is that the client
continuously maintains a valid lease with the server.

A lease is a timed contract handed out by the server in which the server promises to honor the
client’s locks for a specific period of time that they both agree on.

A lease allows a client to operate efficiently when serving local file-system requests. As long as
a client has a valid lease with a meta-data server, it can access data, cache content, and assume
that the files opened by local applications are protected, without having to continuously check
with the server which owns the objects that are being operated on.

2.7 Synchronization of Client Access to File-System Objects

The server that owns the load unit! in which an object resides provides a central point of control
for the management of how those file-system objects are being accessed at any point in time by

LConceptually, objects are grouped into load units, and each load unit is served by exactly one server at any
given time
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the various clients in the network.

SAN File System provides a session-lock feature for clients to mediate their object open states
through the server, both independently and on behalf of local applications.

The UNIX and the Windows platform also provide APIs to applications for explicitly locking
access to an entire file or to a range of logical addresses in a file. The SAN File System provides
a byte range locking feature for implementing these application semantics across machines.

The SAN File System supports aggressive caching of meta-data and data on clients, when application-
access modes indicate that such caching would be useful?.

2.7.1 Session Locks: open/close

Several different modes are defined for a session lock. The semantic of a session lock mode defines
the operations the lock holder is allowed to perform on the object, and the operations on that
object that other lock holders are allowed to perform.

The SAN File System protocol is designed to minimize network traffic for such lock management.
The client is not required to communicate with the server for every application “open” call.
Instead, the client is expected to acquire a session lock in a mode compatible with an initial
application “open” call. It is allowed to hold the lock even after the application “closes” the
file and to reuse the lock if another application “opens” the file in a compatible mode, without
communicating with the server.

2.7.2 Range Locks: Access Coordination

The SAN File System provides a range-lock feature for files to allow clients to map application
requests to acquire byte-range locks on a file to SAN File System range locks, and to request the
server to allocate the lock after checking for conflicts from other (applications on other) clients. A
range lock on a file is subordinate to a session lock; therefore the client must prove that a session
lock is held in some mode before it can submit a range lock request to a server.

2.7.3 Data Locks: Caching

The SAN File System provides a data lock feature for clients to coordinate the caching of direc-
tories, symbolic links, and files.

For directories and symbolic links where caching is read-only, the data lock provides “publish-
subscribe” semantics in which any change to the object’s meta-data (including directory content)
results in notifications being sent to other clients that also hold that lock.

The locks on files are more complex. There are two shared modes for caching, one in which both
data and meta-data can be cached in read-only mode, and the other for non-cached (direct) I/0.
In each case, multiple clients can hold the lock and cache meta-data in read-only mode. There is
also an exclusive lock mode that allows a client to maintain dirty meta-data and data caches.

A client can hold at most one data lock per object. Thus, a data lock is used to control the caching
of an entire object.

A client acquires data locks to perform two key functions:

2 Applications such as database management systems manage their own caches, and typically do not benefit from
additional caching of data in the underlying file system. However, caching of meta-data such as block-allocation
maps is still useful.
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Table 2.1: Data Lock Summary
Mode Lock holder Stronger Weaker Comp. Lock
cache ops than than with semantics
R R|W W
M D|M D

C S R - C Clean mode. Directory
and symbolic links only.

SR + + | - - |- X SR Shared read. Files only,
cached I/0.

SW + - - |- X SW Shared write. Files only,
direct I/O (no data
cache).

X + + |+ + |SR,SW - - Exclusive. Files only. No
data cache for direct I/0O.

e To cache data and meta-data for all types of objects, and to protect the cache by relying on
the property that the cached content will not be modified by other client without all lock
holders being notified by the server.

e To read and write the contents of files.

A data lock is used for both data and meta-data. Furthermore data locks are completely inde-
pendent of session locks, although they are related in the sense that a client typically holds a
“matched” pair of such locks together.

Several different modes are defined for data locks. These are summarized in Table 2.1. The mode
of a data lock determines the types of cache operations the lock holder can perform. The following
four categories of operations are permitted on client-side caches:

1. Cache meta-data in read-only mode (RM).
2. Cache data in read-only mode—applicable only to files (RD).

3. Cache meta-data in read-write mode, allowing updated meta-data to be buffered in the client
and thus to be temporarily inconsistent with the server’s state (WM). This is only allowed
for files.

4. Cache data in read-write mode—applicable only to the content of the files (WD).

Clients acquire locks either explicitly or as a side effect of creating or finding an object. Certain
commands also result in the server granting locks (both session and data) to the requesting client
in an “opportunistic” manner, with the expectation that clients will need to use these locks in
timely fashion.

When a client requests a data lock on an object in a certain mode, the request will not be denied.
However before the lock can be granted, the server must coordinate changes to the data lock (and
corresponding cache) states of all other clients as necessary so that they are compatible with the
lock mode being granted to the new client. A server sends a DemandDataLock message [IBMO03,
Section 6.6.3] to a client to demand that a client downgrade its data lock to a mode compatible
with what is being requested by another client. Data locks are fully preemptible: because a data
lock does not protect application state, the SAN File System protocol rules state that a client
must honor the demand and downgrade the lock.
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Data Locks for Directories and Symbolic Links

Directories and symbolic links are “meta-data-only” objects. All content associated with these
objects is managed by the server. Clients cache directory and symbolic-link content in “read-only”
mode. The SAN File System protocol requires that all updates to the basic attributes of such
objects, such as the modification time, to security-related aspects such as permissions, and to their
content have to be performed by submitting transaction requests to the server.

As neither attributes nor content can be modified locally, none of the complexities of managing
“dirty” caches in exclusive mode need to be addressed for directories and symbolic links, resulting
in a simple set of rules for managing cache coherency for these object types.

The SAN File System provides a clean or C-mode data lock that all clients must acquire to
protect their “clean” caches of directories and symbolic links. The C-mode data lock provides a
publish-subscribe mechanism. Whenever one client submits a transaction request on a directory
of symbolic links that would result in modifications to the object’s attributes or contents, the
other clients that hold a C-mode data lock on that object can be certain that they will receive
notifications regarding such changes from the server.

Data Locks for Files

File-related caches are fundamentally different from those of directories and symbolic links in two
ways. First, unlike meta-data-only objects, files consist both of data and meta-data, which are
kept in separate block storage devices and accessed through separate paths. Therefore, the rules
for caching data versus meta-data have to be considered separately, as reflected in Table 2.1.
Secondly, most attributes of files can be modified locally by a client (under the appropriate data
lock) without issuing a transaction between a client and a server for managing meta-data, in
contrast the protocol described for directories and symbolic links. There is no publish-subscribe
model of data locks for files for maintaining cache coherency via notifications from the server.
Instead, a single client can modify meta-data locally under an exclusive-mode lock. Other clients
can compete for the lock and each client should eventually have the lock granted to it. When the
lock is granted to a client, the client can view and cache the consistent meta-data for that object.

Three data-lock modes are provided for managing file caches:

Shared Read (SR)
This mode allows clients to cache meta-data and data for read operations. The SR-mode
lock can be concurrently held by multiple clients.

Shared Write (SW)
In this mode, clients cannot cache data, but can cache meta-data in read-only mode. The
SW-mode lock can be concurrently held by multiple clients.

Exclusive (X)
This exclusive mode allows a single client to cache both data and meta-data, which the
client can read and modify.

2.7.4 Direct I/O

Certain applications such as database-management systems implement sophisticated cache-man-
agement systems for operation on top of either a block device or a file system. In parallel imple-
mentations, they use proprietary protocols to coordinate their access to disjoint ranges of a block
device of files. For such applications, the SAN File System supports a direct I/O mode. In this
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Segment 1 Segment 2..N

Virtual Blocks

Physical Blocks

Extent 1 Extent 2 LU

Figure 2.3: Block Storage Allocation.

mode, no file-system data cache is maintained for the file. Meta-data (e. g., block-allocation maps)
is cached in read-only mode?.

2.8 Managing File Access

The architecture of the SAN File System can accommodate several strategies for accessing the
contents of files on the SAN. In the current version of the protocol, only two data-access strategies
are defined:

Strategy #0
Also known as the null access strategy. Data for a file tagged with this strategy number
cannot be accessed by clients. Essentially, it is a no-op strategy used for directories and
symbolic links

Strategy #1
This strategy is used to access data in SCSI logical units discovered on the SAN, where
a file’s data is organized into units of fixed-size blocks, and higher-level organizational
units—segments and extents—are built on top of blocks. Currently this strategy is used
for all files.The details of this strategy are explained in Section 2.8.1.

2.8.1 File Data Layout for Block Disk Strategy #1

Block disk strategy #1 supports file access over a full 264-byte-long address range. It also supports
sparse files, e. g. files where parts of address space have never been written to and do not occupy
storage space on disk.

A file’s address space is split into segments. Each segment consists of exactly 256 blocks, where
the block size is variable and can be any power of 2 between 4096 bytes (4 KB) and 262144 bytes

3Shared Write (SW) data lock
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AquireDatalLockResp
B1lkDiskSegDescr (logical address space)

»| seg #23 (256 blks)

] DatalLock read blk state

write blk state

extent descr

extent descr

BlkDiskDataDescriptor

extent descr BlkDiskExtent (physical addr in LU)

blk # in segment

Y

descr of seg #22

descr of seg #23 # contiguous blks
~ File hole

descr of seg #27 global disk ID

starting phys blk #

Figure 2.4: Block-Allocation Map.

(256 KB). For a given byte offset n in a file, the corresponding segment is [n/(256 - blocksize) |.

The segments that are part of the logical address space of the file are mapped into extents, which
are part of the physical address space of a block device of the SCSI logical unit (LU) on the SAN.
In this context, an LU is a block-addressable unit of storage.

Each extent consists of a contiguous range of physical blocks on an LU. The block sizes for a
segment and for an extent have to be identical because the extent represents the physical storage
corresponding to a contiguous region of the file’s address space that consists of the same number
of blocks. The block size used for a given file is one of the attributes of the file and is fixed for all
extents of a file.

As a segment is exactly 256 blocks long, each segment requires 1 through 256 extents to store its
data, and because an extent can consist of 1 to 256 contiguous blocks, with a 4 KB block size, an
extent can be at most 1 MB long.

Blocks are always completely used or unused.

2.8.2 Block-Allocation Maps

BlkDiskExtent, BLkDiskSegDescr and BlkDiskSegDescr [IBMO03, Section 4.14] are the key data
structures used to represent the mapping between logical segments and physical extents, also
referred to as the block-allocation map. A granted data lock allowing file access contains a
BlkDiskDataDescriptor structure which includes a list of BlkDiskSegDescr structures. Each
segment descriptor represents a segment in the logical address space of the file, and the structure
in turn contains a number of B1kDiskExtent structures that describe how contiguous blocks inside
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a segment are mapped to the same number of contiguous blocks on an LU identified by the global
disk ID.

2.9 Object Versioning and File System Level FlashCopy

The SAN File System supports the creation of multiple versions of an object, all but one of which is
designed to be immutable. In the current version of the protocol, the scope of such versioning is at
the file-set level. It also supports the creation of a FlashCopylmage of a file-set as an administrative
operation. The term FlashCopylmage refers to an immutable “snapshot” or “point-in-time copy”
of an entire file-set. When a FlashCopylmage is created, the name-space subtree in the file-set
boundary, without any wormholes?*, is recreated under the .flashcopy directory under the name
assigned to the FlashCopylmage during the creation operation.

A FlashCopylmage corresponds to an immutable version of a file-set. Every FlashCopylmage
creation results in a monotonic increase in the version number of every object that belongs to
that image. Only the portion of a file-set that is not under the .flashcopy directory contains
modifiable objects, and is referred to as the primary image. The version number of objects in the
primary image is 0.

FlashCopylmage creation is not an expensive operation, because creation of the “replica” name
space does not involve copying file data. However, meta-data updates are required to represent the
new name space, to reflect new versioning information corresponding to objects in the new image,
and to update the block-allocation maps of files in the primary as well as in the new FlashCopy
image.

Immediately after the creation of a new FlashCopylmage, any given file in the primary image
and the corresponding FlashCopylmage have identical content. However, once the object in the
primary image is modified by a client, its contents diverge from that of the FlashCopylmage (as
well as from that of older images). Each file in a FlashCopylmage shares data (physical blocks
on LUs) with the primary image until the latter is modified. On modification of a file object,
copy-on-write techniques are used to preserve the immutability of the physical blocks that are
being referenced by older versions of the object.

4attachment points of other file-sets
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This chapter describes how the integrity-protection feature can be added to the SAN File System.
The proposed protocol extension does not change the existing protocol in any way. Existing clients
and servers without the protocol extension should be able to connect to clients or server that have
this extension. A policy for mixing clients and servers with or without the protocol extension must
exist.

3.1 Benefits of Distributed File Systems

Existing local file-systems for the various clients (e.g. Windows, Linux or AIX) all share the same
advantages and disadvantages: On the positive side are the performance and the integration into
the operation system!; on the negative side is the lack of support for sharing data stored on the
local disks.

In contrast, distributed file-systems such as NFS [Now89] or CIFS [CIF] provide applications
running on multiple (client) machines with access to the same file-system name space. In such
systems, a single server coordinates the access to the data.

The challenge in designing of a distributed file-system such as the SAN File System is to build
a file system that can exploit shared access to SAN storage, and provide sufficient coordination
capabilities such that individual clients on multiple machines can access the same shared storage
in a consistent manner.

The key benefits of the SAN File System is that it enables distributed file system-style sharing
while allowing clients to access a large amount of file-system data directly from SAN as in a local
file system. It can avoid some of the performance overheads of distributed file-systems in which
all access to file system objects, both data and meta-data, have to go through a single server. The
ultimate goal of the SAN File System is to provide distributed file-system sharing semantics with
local file system-like performance.

3.2 Performance versus Integrity

Adding integrity operation at storage-device access level would be a very simple solution. Of
course, all accesses would need to be first authorized by the meta-data server. This could be done
very efficient by handing out a token to the client and to the storage device. The main drawback
is the additional workload added to the storage device. Furthermore, the integrity of a file must
only be guaranteed at the end of a data lock phase.

Instead, if the client has to do integrity operations, then also the client is charged with the
additional workload. Furthermore, the client will be able to optimize the integrity operations such

1For example ACL support.
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as lazy generating of integrity information. Furthermore, the data path to the storage device is
not slowed down.

3.3 Integrity Information

Integrity can be ensured by storing a cryptographic hash of the file contents in a secure place. If
a client wants to ensure that the data has not been changed, the client computes a hash for the
file and compares it with the value retrieved from the secure place. As the meta-data server is
ultimately trusted, it is the natural place to save the additional meta-data there. Section 3.4.2
discusses the reasons for storing the hashes on the meta-data server.

All message send between the meta-data server and clients have to use an authentic channel. Note
that it does not need to be an encrypted channel.

Hash functions such as MD5 [Riv92] (Message Digest 5) and SHA-1 [EJ01] (Secure Hash Algorithm
1) have two important properties:

e They map an input string (pre-image) of variable length to a fixed-length output (image).

e They are collision-free?.

Because of these two properties, they are the perfect candidates for building a secure checksum.
First, it is necessary to map the input data to a (short) fixed-length value because we do not want
to store the complete data on the meta-data server again. Second, the resulting computed value
should be distinct so that manipulations on the data can be detected.

MD5 and SHA-1 are both one-way functions. This property is not mandatory for integrity pro-
tection because the content of a file still is readable from any client and therefore must be secured
by other means, like ciphering.

Furthermore, integrity protection must allow one to read and/or modify only parts of a potentially
large file. It is important to use data structures that allows storing of hash values as optimal as
possible for any size of a file and for any operation. A data structure that has these properties is
the hash tree, also known as Merkle Tree [Mer80).

3.4 Hash Tree

The description below has been taken almost verbatim from [Mic00].

Recall that a binary tree is a tree in which every node has at most two children, hereafter called
the 0-child and the I-child. A Merkle tree [Mer80] with security parameter n is a binary tree
whose nodes store values, some of which are computed by means of a collision-free hash function
H:{0,1}* — {0,1}" in a special manner. A leaf node can store any value, but each internal node
should store a value that is the one-way hash of the concatenation of the values in its children.
That is, if an internal node has a 0-child storing the value u and a 1-child storing a value v, then it
stores the value H (u|lv). Thus, because H produces n-bit outputs, each internal node of a Merkle
tree, including the root, stores an n-bit value. Except for the root value, each value stored in a
node of a Merkle tree is said to be a 0-value if it is stored in a node that is the 0-child of its parent,
a 1-value otherwise.

2A hash function is collision-free if collisions are hard to find. The function is weakly collision-free if it is
computationally hard to find a collision for a given message x. That is, it is computationally infeasible to find a
message x # y such that H(z) = H(y). A hash function is strongly collision free if it is computationally infeasible
to find any messages z, y such that  # y and H(xz) = H(y). [Sch96]
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Figure 3.1: Binary Hash Tree. The white boxes are the hsegments (hash segments) and the hatched
boxes are the data blocks. A normal hsegment (the figure shows only a binary tree) can cover from 1
up to 256 data blocks or hsegments. A hsegment is indexed with the virtual block start address and
the level.

The crucial property of a Merkle tree is that, unless one succeeds in finding a collision for H, it is
computationally hard to change any value in the tree (and, in particular, a value stored in a leaf
node) without also changing the root value. This property allows a party A to commit to L values,
v1,...,vr (for simplicity assume that L is a power of 2 and let d = log L), by means of a single
n-bit value. That is, A stores value v; in the i-th leaf of a full binary tree of depth d, and uses a
collision-free hash function H to build a Merkle tree, thereby obtaining an n-bit value, R, stored
in the root. This root value R “implicitly defines” what the L original values were. Assume in
fact that, at some point in time, A gives R, but not the original values, to another party B. Then,
whenever at a later point in time, A wants to “prove” to B what the value of, say, v; was, A may
just reveal all L original values to B, so that B can recompute the Merkle tree and then verify
that the newly computed root value indeed equals R.

3.4.1 Applied Hash Tree

A hsegment stores hashes for each data block or segment it covers. On top of those hsegments a
hash tree is builded. For simplicity, the inner nodes of this tree also use hsegments as their data
type. Therefore, a hsegment has a context-(level)-depending semantic:

Level O
The input string for the hash function is read from the data blocks. The pre-image size
is segment_size/2™ withn =10...8.

Level 1...5
The input string comes from the hsegment (i. e. their hash values) of the level below the
current one. The pre-image size in comparison to the Level 0 pre-image size, is rather
small. The smallest segment size is 1 MB (256 blocks - 4 KB) and the normal hsegmet
size is 5 KB for a SHA hash function with 20-byte hash values (256 blocks - 20 bytes).

Within a hsegment the pre-image size for the hash function is constant, i. e. a hsegment is generated
out of 2" for n = 0...8 equal-sized pre-image data blocks or hsegments input data. It is not
possible that a pre-image can cross a hsegment border.

If hsegment hashes 256 sub hsegments, then the hash tree has at most six levels. With the smallest
hash block size of 4 KB (12 bit) and the number of blocks per segment (8 bit), 44 bit of the address
range are left.
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[44/8] = 6

3.4.2 Storing the Hash Tree

One of the main properties of a hash tree is that the hash value stored in the root node implicitly
defines the entire file. Therefore, it would be sufficient to store the root node safely, that is the
entire tree could be stored on the same storage device as the file (and also exposed to the same
attacks). This approach has an advantage if the SAN network is faster than the IP network because
reading and writing involve network transfers, which has to be carefully considered. Furthermore,
the hash tree is separated from the root value. A small disadvantage is that real meta-data is
stored on the data disks, so that the normal data space is used. Of course one could designate a
special storage space that is not used for normal data. The real disadvantage of this approach lies
in the additional logic needed for the FlashCopylmage (Section 2.9) feature of the file-system and
buffer space management. The client duplicates server features.

Another solution is to store the complete hash tree on the meta-data server. This makes perfect
sense if the SAN network is based on the same IP network as used by the clients to communicate
with the meta-data server. This commonly is the case if iISCSI is used as the SAN network protocol.
The advantage of this strategy is that the meta-data stay together and do not require additional
space on the data storage. Another good reason for storing the hash tree on the meta-data server
is that the logic for FlashCopylmage is much simpler. For more details see the implementation
details in Section 5.1.3.

3.5 Data Locks

Section 2.7.3 introduced the basic concept of data locks and their use. The data locks allow
multiple clients to access the file system and serialize their data manipulations.

As long as a client holds a data lock in SW or X-mode, it can access the storage device and change
data. During this period it is not important that the hash values are updated immediately. Before
releasing the data lock, the client has to update the normal SAN File System object meta-data.
If integrity is supported, the client can also update the integrity information on the meta-data
server after the normal meta-data update.

For supporting integrity protection, extending the semantics of the data locks have to be consid-
ered.

The C-mode semantic does not have to be changed, because the data always is stored in the
meta-data server. Therefore, it is guaranteed that this information is never changed accidentally
or deliberately. A client needs the appropriate access rights to change data, and the meta-data
server checks the validity before executing any command.

The SR-mode is also very simple to handle because neither data nor meta-data can be changed.
The client only has to fetch hash values from the meta-data server for checking.

In the X-mode, only one client holds a data lock. No inconsistency can arise from this situation
because all changes on data and meta-data are done as transactions. So fetching the integrity
information can be done when needed. The integrity information has to be updated when the lock
is released. This allows the client to build the hash values only at the end of an X-mode session,
and no additional overhead for each write operation is needed. Only at the end of a lock session
do the hashes have to be generated. Therefore, a client can write the same block several times
without having to generate the hash values for it. As the client will cache the writes updated
anyway, the overall operation overhead for the integrity protection feature is as small as possible.
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Figure 3.2: A race condition exists for the SW-W1 mode if the meta-data server handles H 4 and then
Hp while the data storage handles first Dg and then D4

The SW-mode has to be considered in more detail, which is done next.

3.5.1 Race Conditions in SW-mode

All data lock modes except the SW-mode are fairly common and straightforward solutions to pro-
tect data from race conditions. But the SW-mode introduced in SAN File Systems has to be consid-
ered more carefully because in the SW-mode a simple update of the hash values (B1kDiskSetHash,
see Section 4.3.4) leads to a race condition.

Let us consider the case of two clients A and B who are both writing to the same block. Client A
sends the data block D4 to the storage device and the hash values H 4 to the meta-data server.
Client B does the same at the same time (Dp, Hp). The storage device executes first D4 and
then Dpg, while the meta-data server executes first Hg and then Hy.

The SW-mode is used for direct I/O (see Section 2.7.4). Unfortunately the read-only property
of the meta-data conflicts with the need to store hash values on the meta-data server. First, we
have to drop the requirement of the read-only property for the meta-data in SW-mode. Second,
we have to introduce a hash property for the SW-mode. Here is a brief list of possible solutions:

SW-NP mode
No-op. The SW-mode is not supported at all. No integrity checks when reading. No
updating.

Obviously, any SAN File System implementation which does not provide integrity pro-
tection is using this mode.

SW-FA mode
Fail. Trying to acquire the SW-mode will always fail for integrity-protected files.
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The advantage of this mode is, that in general integrity protection is supported but not
for the SW-mode.

SW-UP mode
Upgrade to X. The SW mode is updated to the X-mode.

The advantage of this mode is, that also for the SW-mode integrity protection is available
and it is very simple to handle. The disadvantage is that the concept of the Direct I/0O
mode for application with sophisticated locking in user land is completely lost.

SW-W1 mode
Update integrity information on write. This is an optimistic operation because it may
result in the race condition described above.

The advantage of this mode is that the concept of Direct I/O is not removed as with the
SW-UP mode. The disadvantage is that a race condition exists.

SW-W2 mode
Update integrity information on write, check integrity on the meta-server. This mode is
based on the SW-W1-mode. Each client has to deliver both the old hash value for the
written block as well as the new one. The meta-data server compares the old hash value
with the stored value. If these two values match, the new value can be stored. In case of
a mismatch, the block is marked as uncertain.

The advantage of this mode is that the race condition of SW-W1 mode is removed. The
disadvantage is that a client can mark all blocks as uncertain and so destroy the integrity
information. Furthermore, an additional state has to be stored for each block.

SW-W3 mode
Update integrity information on write, check integrity on the meta-data server. This
mode is based on the SW-W2 mode. Again, each client provides the old hash value and
the new hash value. The meta-data server rejects the operation if the old hash value
does not match the stored hash value. The client needs to resubmit the change later on.
This scheme guarantees that in each round at least one client can update the meta-data.

The advantage of this mode is that blocks are not marked as uncertain and it is guaranteed
that all updates are successful eventually. The disadvantage is that it is possible that
clients start thrashing with X-mode lock.

SW-RM mode
Allows clients to acquire the SW mode, but relinquishes integrity information for each
block written.

This mode is not desirable, because a faulty client can very easily destroy the integrity
information by accident or on purpose.

For the SAN File System protocol extension the SW-W3 mode is used. Generally, concurrent
writes to the same block are not expected because Direct I/O is only useful for application with
sophisticated locking in first place.
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This chapter describes how the existing SAN File System protocol can be extended to allow access
to and modify the hash tree described in Chapter 3. A design goal was that the existing protocol
is not altered. Furthermore, the new protocol should be as efficient as possible.

To achieve the design goals, several new data types have to be introduced as well as five new
messages.

4.1 Data Types

4.1.1 Integrity Block States

Even if integrity protection is available and activated, not all files should protected by the integrity-
protection mechanism because of performance reasons. On the file level, this can be achieved by
using the extended meta information about the file-like security information.

Also on the block level, it is desirable to enable or disable integrity protection on a per block basis.
For example, sparse files normally have larger parts of the file address space for which no blocks
have been allocated. For these ranges it is not necessary to create hashes. Other examples are
files opened in SW mode: Some blocks might not need integrity protection because they are used
only for synchronization when the application is running.

Therefore in addition to the allocation map, each block needs a new state which shows whether
the block has a defined hash value.

The “defined” state can be altered through an fentl() system call. The underlying SAN File System
will then emit a B1kDiskSetHash (see Section 4.3.4) or BlkDiskUpdateHash (see Section 4.3.6)
message with either a valid or an invalid (empty) hash value for the specified block.

All other states can be computed, e. g. if a client reads one of the following blocks:

sparse block, not allocated and not defined
Allocation for this block has not been done, therefore no hash value is available. When
this block is allocated, a hash value should be computed.

allocated but not defined
The block has been marked as not to be included in integrity checks.

allocated and defined
Perform normal integrity operations on read and write operations.

not allocated but defined
Not allowed.

The minimum hash block size equals the minimum data block size (4 KB). The maximum hash
block size is the size of an entire segment.
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4.1.2 Basic Data Types Overview

In the SAN File System protocol, all integral quantities must be transmitted in big-endian form.

The following list describes the basic data types that constitute the building blocks for SAN File
System protocol messages:

Vectors of Fixed-Length Data ltems
To encode variable-length lists of data item of identical size, the data type Vector is
defined. See Section 4.2.1 in [IBMO3].

Lists of Variable-Length Data Items
The encode variable-length lists of data items of variable size, the data type List is
defined. See Section 4.2.2 in [IBMO3].

Capability Bit Mask
To enable SAN File System clients and servers to discover and negotiate optional capa-
bilities, the data structure FnBitmap is defined. See Section 4.3 in [IBMO03].

Opaque Strings
Several message contain fields whose contents are variable-length arrays of bytes which are
opaque to the server. For these arrays, all bytes (including the zero byte) are legal, and
no terminating zero is required. For such opaque arrays, the data structure ArbString
is defined. See Section 4.5 in [IBMO03].

4.1.3 BlkDiskHashPair

Byte Type Description
1- 8 Uint64 Segment number (for levels > 0, this is the number of the
first segment covered by this hash)
9- 9 Uint8 Level number within the hash tree
10- 10 Uint8 Block number within this segment
1- 11 Boolean Old hash defined (0 — not, 1 — is)
12— 12 Boolean New hash defined (0 — not, 1 — is)

The old hash and the new hash (each only if defined) follows directly the BlkDiskHashPair header.

4.1.4 BlkDiskRejectedHash

1- 8 Uint64 Segment number (for levels > 0, this is the number of the
first segment covered by this hash)
9- 9 Uint8 Level number within the hash tree
10— 10 Uint8 Block number within this segment
1- 11 Boolean Hash defined (0 — not, 1 — is)

The meta-data server’s value of the hash directly follows the B1kDiskRejectedHash header, if
defined.
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Table 4.1: New message types.

Code Messages Class Response Fwd
0x80 3A | GetSecurity Transact. | GetSecurityResp N
0x40 3B | GetSecurityResp Response | - -
0x80 3C | SetSecurity Transact. | SetSecurityResp -
0x80 3D | SetSecurityResp Response | - -
0x80 66 | BlkDiskGetHash Transact. | BlkDiskGetHashResp N
0x40 67 | BlkDiskGetHashResp Response | - -
0x80 68 | BlkDiskSetHash Transact. | BlkDiskSetHashResp N
0x40 69 | BlkDiskSetHashResp Response | - -
0x80 6A | BlkDiskUpdateHash Transact. | BlkDiskUpdateHashResp N
0x40 6B | BlkDiskUpdateHashResp | Response | - -

4.1.5 BlkDiskHashDescr

1- 8 Uint64 Segment number (for levels > 0, this is the number of the
first segment covered by this hash)

9- 10 Uint16 Number of hashes that follow this structure header; can be
Zero

11— 11 Uint8 Level of this hash in the hash tree (0 — hash over block
contents, ¢ — hash over “one segment” of hashes at level
1—1)

12 - 12 Uint8 Shift count for hash-block size (0 — 1-to-1 mapping, 1 —

2 blocks per hash, 2 — 4 blocks per hash, 3 — 8, ..., 8 —
all 256 blocks in a single hash)

13- 44 Uint8[32] Occupied bitmap. (0 — block does not have a defined hash,
1 — block has a defined hash value). Hash[0] represented
of the MSB of byte 0.

The hashes come directly after the BlkDiskHashDescr header.

4.1.6 ExtendedSecurityAttributes

1- 2 Uint16 Hash algorithm (0 — undefined/not, 1 — SHA-1)
3—- 4 Uint16 Encryption algorithm (0 — not used)
5- 6 Uint16 Signature algorithm (0 — not used)
7T- 14 ArbString Signature
15— 22 ArbString Encryption Key

The extended security attributes also contain fields for file encryption. As file encryption is not
covered in this thesis not all fields have yet been completely defined.

In Appendix A, a different approach is shown. However, for simplicity the solution proposed here
has been considered for implementation because the flexibility of the first proposal is not needed.
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4.2 Message Types

4.3 Messages

In this section all SAN File System protocol extensions are listed.

Fields marked with the word Hint have a special meaning: The meta-data server is free to ignore
the information provided by the client. This optional information allows the server to perform
certain optimizations.

43.1 Identify

This is the first message a client sends to a server, to identify itself and obtain a lease [IBM03,
Section 6.1.1]. The Identify message contains a capability bit mask to discover and negotiate
optional capabilities. If Bit 0 is set, the integrity protection is supported. Up to now, no policy
has been decided how to handle situation where an entity does and another does not support
integrity protection.

4.3.2 BlkDiskGetHash

Type of message
Transaction command, client to server.

Description
Request hash values for an object.

Response
The server immediately acknowledges this request with a network-layer Ack message.
After the server finishes processing the transaction, there are two possible outcomes:

e The transaction completed successfully and a BlkDiskGetHashResp is sent.

e An error occurred. In this case, the server responds with a ReportTxnStatus mes-
sage. Typical errors include “Object not found”.

Message format

1- 40 TxnMsgHdr Transaction message header IBM03, Section 5.2].

41 - 60 ObjId Unique object ID [IBMO03, Section 4.9.2] of file.

61 - 68 Uint64 Number of first hash segment in the file for which hash
descriptors are being requested.

69 - 76 Uint64 Hint: additional number of hash segments (after the
required first segment) to be returned.

- T Uint8 Lowest level of hashes in the hash tree requested. The

least significant 8- level bits of the segment number need
to be zero (= aligned).
78— T8 Uint8 Hint: additional number of higher levels desired.

4.3.3 BlkDiskGetHashResp

Type of message
Transaction response, server to client.
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Description
This is a server’s positive response to the BlkDiskGetHash command. This message
contains a list of BlkDiskHashDescr (Section 4.1.5).

Response
The client acknowledges this message with a network-layer Ack message.

Message format

1- 40 TxnMsgHdr Transaction message header IBMO03, Section 5.2].
41 - 52 List Returned list of block hash structures
BlkDiskHashDescr.
53 — Variable data for 1 list.

4.3.4 BlkDiskSetHash

Type of message
Transaction command, client to server.

Description
Set hash values for an object. This command should be only used if the client holds an
X-mode data lock.

If the client does not provide a hash value for the block specified, the hash value stored
on the meta-data server for this block is deleted.

Response
The server immediately acknowledges this request with a network-layer Ack message.
After the server finishes processing the transaction, there are two possible outcomes:

e The transaction completed successfully, and a BlkDiskSetHashResp is sent.

e An error occurred. In this case, the server responds with a ReportTxnStatus mes-
sage. Typical errors include “Object not found”.

Message format

1- 40 TxnMsgHdr Transaction message header IBMO03, Section 5.2].
41 - 60 ObjId Unique object ID [IBMO03, Section 4.9.2] of file.
61— 72 List List of block hash structures BlkDiskHashDescr.
73— Variable data for 1 list.

4.3.5 BlkDiskSetHashResp

Type of message
Transaction response, server to client.

Description
This is a server’s positive response to the BlkdDiskSetHash command.

Response
The client acknowledges this message with a network-layer Ack message.

Message format

| 1- 40 | TxnMsgHdr | Transaction message header IBM03, Section 5.2]. |
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4.3.6 BlkDiskUpdateHash

Type of message
Transaction command, client to server.

Description
Before the client writes to a file, the client should modify the server’s hash tree, because
this prevents that a client has to write the same block several times before it receives
an successful BlkDiskUpdateHashResp response. This command requests that existing
hash values be updated, and is useful for clients in SW mode, because a race condition
may arise if the client were to use a simple B1kDiskSetHash. See Section 3.5.1 for more
information on the race conditions.

Response
The server immediately acknowledges this request with a network layer Ack message.
After the server finishes processing the transaction, there are three possible outcomes:

e The transaction completed successfully, and a GetSecurityResp is sent.

e An missmatch occurred. The old hash value did not match the actual hash value
on the meta-data server. In this case the client should first try to update its hash-
value caches, and resend the message. After repeated mismatches, the client should
upgrade its SW-mode lock to a X-mode lock and update the server.

e An error occurred. In this case, the server responds with a ReportTxnStatus mes-
sage. Typical errors include “Object not found”.

Message format

1- 40 TxnMsgHdr Transaction message header IBMO03, Section 5.2].
41 - 60 ObjId Unique object ID [IBMO03, Section 4.9.2] of file.
61 - 72 List List of block hash pairs to be updated
(BlkDiskHashPair).
73— Variable data for 1 list.

4.3.7 BlkDiskUpdateHashResp

Type of message
Transaction response, server to client.

Description
This is a server’s response to the BlkDiskUpdateHash command. There are three possible
outcomes:

e The returned vector is empty, which indicates a successful transaction.

e The returned vector is non-empty, which indicates unsuccessful transaction due a
hash value missmatch. The vector contains the current information from the meta-
data server.

e An error occurred. In this case, the server responds with a ReportTxnStatus mes-
sage. Typical errors include “Object not found”.

Response
The client acknowledges this message with a network-layer Ack message.

Message format
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1- 40 TxnMsgHdr Transaction message header IBMO03, Section 5.2].
41 — 48 Vector Vector of rejected hash updates. If empty, the
BlkDiskUpdateHash was successful. If non-empty, all
updates were rejected due to the listed mismatches in
old hashes (current values are being returned).
49 - Variable data for 1 vector.

4.3.8 GetSecurity

Type of message
Transaction command, client to server.

Description
Request security information of an object.

Response
The server immediately acknowledges this request with a network-layer Ack message.
After the server finishes processing the transaction, there are two possible outcomes:

e The transaction completed successfully, in which case a GetSecurityResp is sent.

e An error occurred. In this case, the server responds with a ReportTxnStatus mes-
sage. Typical errors include “Object not found”.

Message format

1- 40 TxnMsgHdr Transaction message header IBMO03, Section 5.2].
41 - 60 O0bjId Unique file-object identification.

4.3.9 GetSecurityResp
Type of message
Transaction response, server to client.

Description
This is a server’s positive response to the GetSecurity command. This message contains
a list of ExtendedSecurityAttributes (Section 4.1.6).

Response
The client acknowledges this message with a network-layer Ack message.

Message format

1- 40| TxnMsgHdr Transaction message header IBMO03, Section 5.2].
41 - 62 ExtSecAttr Extended security attributes.

4.3.10 SetSecurity

Type of message
Transaction command, client to server.

Description
Sets security information of an object.

Response
The server immediately acknowledges this request with a network-layer Ack message.
After the server finishes processing the transaction, there are two possible outcomes:
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e The transaction completed successfully, and a SetSecurityResp is sent.

e An error occurred. In this case, the server responds with a ReportTxnStatus mes-
sage. Typical errors include “Object not found”.

Message format

1- 40| TxnMsgHdr Transaction message header [IBMO03, Section 5.2].
41 — 60 ObjId Unique file-object identification.
61 - 82 ExtSecAttr Extended security attributes.

4.3.11 SetSecurityResp
Type of message
Transaction response, server to client.

Description
This is a server’s positive response to the SetSecurity command.

Response
The client acknowledges this message with a network-layer Ack message.

Message format

| 1- 40| TxnMsgHdr Transaction message header [IBM03, Section 5.2]. |

4.4 fcntl()s

With POSIX flags for opening a file (e.g. O_RONLY) it is not possible to express all options the
proposed integrity protection offers. The general workaround for this kind of problem in UNIX
is to introduce new fentl. Of course, any fentl that is not covered by the POSIX standard is
highly system-specific and not known to arbitrary programs. Therefore, the default behavior of
the file-system should be what the user would expect. That means that if an integrity error is
detected by the file system the corresponding read call should return an error.

The following fentls could be needed (the list is not exhaustive):

SetVerifyLevel

Set verification level.

never
Ignore all integrity-protection information for defined blocks. If the block is
written, existing integrity-protection information has to be deleted.

for defined blocks
Check integrity only for defined blocks and ignore all undefined blocks. This
should be default behavior.

always
Check integrity of all defined blocks. For undefined blocks return an error.

Defaults behavior or default values can be set in an appropriate /proc entry or similar.

SetBlkHashAggrSize
Set block hash aggregation size. The default value is one block per hash. Global default
values could be changed with an appropriate /proc entry or similar.

SetAutoAggr
Should the hash block size be updated on write or read actions to that segment?
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0 no autosize

1 autosize on new writes (append)

2 autosize on overwrites (shrink only if significant)
3

autosize on reads (if the client also has write permission) (shrink only if significant)

SetEncrypted
Set the encryption state of new files.



Implementation

This chapter covers some implementation issues of interest and the general meta-data server design.
The client has not yet been implemented.

5.1 Tank Server

The meta-data server implementation by IBM is called tank. It is written in C++, and object-
oriented design approaches are used. The tank server is divided into several components. Only
those components that are important for this implementation are briefly described here.

Object Meta-Data Manager (OM)
The instance of an Object Meta-Data Manager class is a singleton object, that manages
all Standard Containers (SC) registered with this server.

Standard Container (SC)
A Standard Container object creates a Standard Container Schema Manager. Each
instance of those standard (user-writable) container classes manages the schema for a
particular container.

Protocol Transaction Manager (TM)
The Protocol Transaction Manager instance is also a singleton. It handles transaction
requests from clients.

Database (DB)
The btree database component is the storage for the meta-data. Data members are called
records. All records are stored in pages, and each record has to fit into a page.

5.1.1 Meta-Data Storage and Load Operations

An important class is the Segment Table Entry (STE). All relevant information about the block
mapping in a segment is encapsulated in instances of this class. Of course, when the Segment
Table Entry object is written to the database (DB) only relevant information (in a compacted
form) is stored. The Segment Table Entry (STE) also handles the FlashCopylmage feature.

Each record stored in the database has a key to allow its retrieval.

5.1.2 Transaction message example

When a client initiates a transaction, a transaction object is created for the message (transaction
messages). This transaction object is then executed as dspAction!. Depending on the nature of

ldspAction stands for dispatch action.
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Figure 5.1: This UML class diagram shows a simplified overview of the classes that have to be edited in
order to extend the existing SAN File System Protocol. Only the B1kDiskSetHash message implemen-
tation is shown here. Similar changes are needed for transaction messages such as B1kDiskGetHash.

the transaction, it uses different parts of the server. Here, we are only looking at block-disk strategy
messages. Therefore, the Transaction Manager (TM) calls the Object Meta-Data Manager (OM),
which delegates the work to the appropriate Standard Containter (CS). The schema manager looks
up the file object id? in its database. With this data, a new scObject? is created—scFileObject
in this case—which then reads all necessary data from the internal database. If attributes of an
object have to be changed the scFileObject already contains the information needed. If segment
manipulations have to be performed an instance of the Segment Table Entry (STE) is created.
Loading and storing of STEs is done by the STE itself*.

5.1.3 FlashCopylmage

Section 2.9 described the basic functionality of FlashCopylmage at user level. The FlashCopylm-
age feature of the SAN File System demands a careful handling of block allocation maps.

If a snapshot is taken, the current primary image is marked with the current epoch number and
all blocks are marked as read-only. Then the epoch for this file is increased. If the client wants to
update a block, a COW segment is created and only the block which is newly written to gets a
new entry in the COW segment. The previous primary segment and the COW segment together
contain the current mapping for the file.

When another snapshot is taken, all COW segments must first be merged with the previous
primary image and a new primary image has to be created for this ending epoch. If during an
epoch a segment has not been altered no new primary image has to be created, then several epochs
can share the same primary image. Therefore, several lookups in the database could be needed
until a valid segment is found (iterating of all epochs in the worst case).

2There also exist other objects, such as symlink or directory objects
3scObject is the generic SAN File System object representation.
4The STE handles FlashCopyImage and inline loading/storing of meta-data also, see Sections 5.1.3 and 5.1.5



5.1 Tank Server 35

The current implementation of the prototype does not support the FlashCopylmage feature. For
supporting FlashCopylmage a similar scheme to the existing primary/COW segment image has
to be implemented.

If a client has an object ID with the version number of 0, then it will allways have the current
object.

5.1.4 Hash Segments

Data Type 5.1.1 A hash segment
struct HSTE
{

Header header;

uint8 level;

uint8 hash_block_size;

OM::HashState state;

OM::Hash hash[ Max_HSTE _Hashes |;

void insert_hash( int index, const OM::Hash xhashP );
void remove_hash( int index );
OM::Hash #find_hash( int rbn );

void setLevel( const uint8 level );
void setHashBlockSize( const uint8 size );

uint8 getLevel( ) const;
uint8 getHashBlockSize( ) const;

void getHashState( OM::HashState xhashStateP );

void getKey( Key xkeyP, const OM::VirtSegNo &segmentNo,
const uint8 level ) const;

Data Type 5.1.2 A packed hash segment
struct PackedHSTE
{

Header header;

uint8 block_size;

OM::HashState state;

OM::Hash hash[ Max_HSTE _Hashes |;

The Segment Table Entries (STE) are the key data structure for all file-system objects containing
per block information. Therefore, we chose it as the most natural place to add support for storing
the hashes. New data subtypes have been added to STE: scSTE: : HSTE (see Data Type 5.1.1) and
ScSTE: :PackedHSTE (see Data Type 5.1.2).

All nodes in the hash tree are called hash segments, short hsegments. There is no distinction
between the leaf nodes and the inner nodes. The only difference between leaf and inner nodes is
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that the input for the leaf nodes are data blocks whereas the input for the inner nodes are hash
segments.

scSTE: :HSTE is used for an hsegment when it is in the main memory. All hashes are stored in
a simple fixed-sized array. This makes it impossible to use a digest algorithm that produces an
image larger than Max Hash_Size bytes without truncation.

scSTE: : PackedHSTE is used for storing a scSTE: : HSTE into the database. Although the field hash
is defined as a fixed-size array, only defined hashes are stored, leaving no gap between them. The
state field contains the information which block is defined and where to put it. The total size of
this structure without the hashes is 225 bytes.

5.1.5 Store Strategy for Hashes

All meta-data is stored into a btree-based database. To prevent serious performance hits when also
hash values are stored and retrieved from the database, the hash values should be placed physically
close to the corresponding STE. The database stores data according to a key that contains three
fields which are considered according to their priority.

Field Member Meaning Order

Virtual Segment Number | The segment number of the STE increasing order

Type The type of the STE (either primary, | decreasing order
COW or HSTE level)

Version Type-specific PIT? version number
Primary: birth epoch of the STE decreasing order
COW: revert count® decreasing order

The primary field is the segment number. So all segments are clustered by segment number. Inside
a cluster, the segments are clustered by type again in decreasing order. The order of the types
is as follows: primary’, COW?®, HSTE_L0, HSTE_L1, HSTE_L2, HSTE_L3, HSTE_L4, HSTE_L5.
Thus the hash segments are sorted according to how often a type occurs.

The root hash value is stored in the file-object attributes rather than adding another hash segment
level to the hash tree.

5.1.6 Inlining

The existing Tank Server implementation takes into account that for small files (< 1 segment) the
overhead for storing two records, first, the file-object attributes and second, the segment block
mappings, is too large. To prevent this, the block mapping for small files is stored inline into the
file-attribute data and no additional database access is needed for loading the segment data.

The restricting factor for storing data inline in the file-object attributes is the additional space
needed. The current scheme allows the segment to be stored inline together with the hashes if it
fits into one page®.

5Point-In-Time

6The revert count is used for PIT cleaner which job is the remove unused STEs. Unused STEs appear when a
FlashCopylmage is removed.

"The primary image of the file-system object. See FlashCopylmage, Section 5.1.3

8Copy On Write (COW) segment

9A page is the smallest entity with which the database operates. However, several records can be stored into a
single page.



Evaluation

6.1 Building Cost

A performance-limiting factor is clearly how expensive it is to build a tree. There are various
scenarios that have to be considered. Building or updating a hash tree is done at the client so
that the client and not the server can be charged for the building cost. Furthermore, this strategy
ensures that the server is not unnecessarily loaded with work. The server only stores, loads, and
compares hash values, which should not be expensive operations.

The building cost of the tree depends on the size of a file. In general, the time needed to hash a
pre-image is proportional to the length of the image. For the following calculation, hashing a data
block costs Cgatablock and hashing a complete hsegment costs Chsegment. Furthermore we assume
a constant hash image size of simage-

Let k be the degree of a node (for block-disk strategy #1 it is always 256; see Section 2.8.1) and
e be the number of data blocks used by the total size of the file.

In the dense/contiguous case, where the entire data is stored in one contiguous block without a
gap, the total costs are the following:

{ filesize -‘
R

blocksize
[logy €]
Dc(e) = Odatablock e+ Chsegment : Z W (61)
=1

In the sparse case, where the data is stored with “gaps” between data, the costs are the following:

Fb) = 0, if b > e or the block is free,
~ |1, ifb< e and the block is used.

[log, €] I—k% (s+1)-k*—1

e |
50(67 f()) - Cdatablock : Z f(b) + Chsegment : Z Z 1-—- H (1 - f(b)) (62)

b=0 (=1 s=0 b=s-k*

0 if at least one block is used

all hsegments on a level

As Equation (6.1) implies, two terms contribute to the total costs. The first is the cost of hashing
all data blocks and the second is the cost of building the hash tree. Hashing the data blocks will
always have the complexity of O(e).

IBlocks are numbered starting at 0
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(6.3)

As Equation (6.3) shows, the total costs for building the hash tree without the leaves are of
complexity O(e), which is expected as in the worst case if k = 2 (binary tree) the total number of
inner nodes is e — 1. For a reasonably large k, the costs of building the hash tree drop significantly.

Equation (6.2) uses function f(b), which returns 0 if the data block number b is free and 1 if the
data block is used (allocated). The formula is divided into two halves. The first term sums up the
costs for hashing data blocks and the second those for hashing all hsegments. The product is 0 if
at least one data block between [s - k%, (s + 1) - k* — 1] is used (allocated). The inner sum sums
up all those hsegments on a level ¢ that are actually needed (see product). As a result of this
calculation, there will always be at least one hsegment that covers the entire file size even though
the file is completely sparse.

[log; €] |—kL-| (s+1)»k£71 [log;, €] o
- II a-sen)|< > |5 (6.4)
=2 s5=0 b=s-k* =2

Estimation (6.4) shows clearly the obvious fact that if a file is sparse the building costs are less or
equal as in the dense/contiguous case.

6.2 Space Usage

The functions that describe the space usage are very similar to the build-cost functions of the
hash function. This is not very surprising because the number of nodes (leaves and inner nodes of
the hash tree) that have to be stored equals the number of hashes calculated. Therefore, the cost
constants Cgatablock and Chgegment Can be substituted by Shasn which is the size of the hash plus
some additional space for the internal data structure (pointers etc.).

In the dense/contiguous case the formula looks like

Mogeel _
Dyfe) = Shan- [e+ . || |- (6.5)
(=1
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Figure 6.1: Building costs for a hash tree with the following properties: & = 2, Cyatablock = 1,
Chsegment = 1, and e € [0,18]. For e # 2", where n € N, the total cost can be higher than 2 - ¢
because the binary tree is not completely filled. The maximum derivation is reached for e = 2™ — 1,
when to a completely filled tree another leaf is added. The tree then needs a new leaf, a new top root
and logie — 2 inner nodes.

and in the sparse case the space usage is as follows

e Mog,, ¢ [ 7 | (s+1)-kf—1
So(e, f() = Snasn - | D FO)+ D - I a-ro) . (6.6)
b=0 (=1 s=0 b=s-k’

The facts stated in section 6.1 about Equations (6.1) and (6.2) also apply here.

6.3 Update Operations

Updating data blocks involves updating the hash tree. Besides rehashing the data blocks, [logxe]
hsegments?, and one hash root value have to be rehashed. If only a block is modified the total
costs of updating the hash tree is O(logye). If more then one block is updated, the equations for
the sparse case can be used. Function f has to be modified. f is 1 if the block has been changed.

2Because the hash tree has a height of [logye].
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Figure 6.2: Building costs for a hash tree with the following properties: k& = 3, Cdatablock = 1,
Chsegment = 1, and e € [0,18]. For a reasonably large k, the total number of inner nodes decreases
rapidly and the main costs for building the hash tree results from hashing the data blocks.

6.4 Examples

For illustration purposes, here are some examples. Let & = 256, Spash = 20 bytes, and the
hashing function has a throughput of 15 MB/s%; Cyatablock = Chsegment = 15 MB/s. Clatablock
and Chgegment have the units MB/s because the constants represent the throughput of the hashing
algorithm. The block size is 4 KB.

Files that are smaller than one segment (< 1 MB)
For a normal user installation, the scenario should be quite accurate.

A small survey over a small set of workstations (8 Unix installations, Red Hat 7.3, 2 x
Red Hat 9, 2 x Debian 3.0, Mac OS X 10.3, 2 x SunOS 5.9) has shown that the average
file size is significantly smaller than 1 MB. 2.04 million files had a total size of 143.5 GB,
which is roughly 70 KB on average. Note that the provided numbers are only for

Files with a size of 6 MB
This scenario should be applicable to systems that have audio files (songs) (in audio-
codec-like format MP3, OGG Vorbis, ACC, etc.) stored.

Files with a size of 700 MB
For systems with slightly larger files, assuming CD images are stored, this scenario should
be applied.

3 A Pentium IIT 900 MHz computer achieves approximately 15 MB/s throughput with SHA-1. This was measured
by the author.
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Figure 6.3: Building costs for a sparse hash tree with the following properties: & = 2, Cyatablock = 1,
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0, otherwise.

Files with a size of 2 TB
In the area of science, especially in physics, large files are quite common.

Largest possible file: 18 EB
Finally this scenario shows the “worst” case. Because of the data structures used in
strategy #1, the maximum size of each LU used by the SAN File System is 24* bytes
or 16 TB when using a block size of 4 KB, and up to 2°! bytes or 1 PB when using
256 KB-sized blocks. But it still is interesting to see the numbers of the theoretical limit.

The results of the calculation can be found in Table 6.1.

6.5 Implementation

6.5.1 Unmarshalling

The layouts of the B1kDiskHashDescr descriptor (Section 4.1.5) and the PackedHSTE (Section 5.1.2)
are basically the same. Only the headers differ slightly. This allows a very efficient unmarshalling
of hash descriptors: nothing at all has to be done. Furthermore, only one copy operation is
necessary when the data from the message has to be copied into the database or vice-versa. Un-
fortunately, the current implementation does not take advantage of it because the code is still in
very early development stages.
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6.5.2 Inlining

Inlining is an optimization to minimize the number of database accesses. As described in Sec-
tion 5.1.6 the restricting factor for storing data inline in the file-object attributes is the page size
of the database. There are two criteria which every record has to meet:

e At least two keys must fit into a page.

e A key and its corresponding data (record) must fit completely into a leaf. The size of the
leaf is the size of a page.

The current implementation of the database uses a net page size of 3960 bytes. The size of a key
is 16 bytes, which means a record cannot be larger than 3944 bytes. The largest packed STE is
3264 bytes, which clearly fits into a page.

However, with the additional hashes (20 bytes for SHA-1) the page is too small to hold both the
packed STE and the packed HSTE (255 4 256 - 20 bytes = 5375).

Of course, these are the worst cases—256 extents needed for 256 blocks and a hash for each block.
The anticipated case is that there will a small number of extents. Moreover, if not all blocks
are used the total size of all meta-data should still fit into the database, to benefit from of the
performance gain of having to access the database only once. The additional size checks cost much
less than an database access.
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Table 6.1: The results show that for small files sizes (< 6 MB) the build and store costs are reasonable
small.

File size [bytes| | 1,048,576 | 6,291,456 | 734,003,200 | 2,199,023,255,552
#Data blocks 256 1,536 179,200 536,870,912
#Hashes 257 1,543 179,904 538,976,289
Space Usage [bytes] 5140 | 30860 | 3,598,080 | 10,779,525,780
% of the data 0.49 0.49 0.49 0.49
Build Time [s] 0.067 0.400 46.668 139,812.810
File size [bytes| | 18,446,744,073,709,551,616
#Data blocks 4,503,599,627,370,496
ATashes 1.521,260,802,000,000
Space Usage [bytes] 90,425,216,040,000,000
% of the data 0.49
Build Time |s] 139,812.810

6.5.3 Hash Size, DB Page Size, Network Message Size

For performance reasons, a SAN File System network message is limited to a constant size of 8 KB.
This also means that the maximum size per hash is limited. Whereas SHA-1 hashes (20 bytes)
still fit into one message, SHA-256 will exceed the limits. Increasing the network message limit
to 16 KB solves this problem. Using SHA-256 (32 bytes image size) for hashing should provide
sufficient security for the foreseeable future.

The database page size limit is also exceeded when all 256 hashes have to be stored even for
SHA-1. Possible workarounds would be to trim hashes, or to introduce more key types and split
the hashes into to parts, e.g. HSTE_LO.O for the first part of the hashes and HSTE_LO_1 for the
second part of the hashes of a segment. Of course, this is not very elegant, because for SHA-256
we would have to split a hash segment into three parts and introduce new types again.

A more elegant solution is to split the message transparently into the number of necessary blocks
using another abstraction layer between the database interface and the STEs. The abstraction
layer would split up an oversized record into smaller records and tag them accordingly their
relations. During retrieval the abstraction layer would glue the smaller record together to an
oversized record. The advantage is that existing code has not to be touched and no special
handling is needed for any record size. But the disadvantage is that most likely overhead is added
to the normal records which do fit into a single page.



Conclusions

The extension to the existing SAN File System protocol fulfills the requirements of the expected
goals: It does not change the existing protocol. It merely is an add-on extension with three new
message types for integrity protection and two more for transmitting security information such as
the digest algorithm.

One design goal was to keep the workload for the server as small as possible. Because all hash-tree
calculations and integrity checks are done on the client side, the server is only used as a secure
storage space. This additional workload is rather small. The longest operation on the server is
accessing the database, which normally involves a disk access over a SAN. Because the server is
heavily multi-threaded, only more threads (actions executing threads) are required, which then
will wait until the database operations have been completed.

The entire hash-tree building and compare logic is on the client side. This reduces the network
access substantially. The client can for example decide on its own whether the current hash-block
size for a segment is too small and can optimize if necessary. As long as a client holds an X-mode
data lock, no communication whatsoever is needed. Only before the data lock is released do the
modified segments have to be transferred.

The SAN File System provides a set of data locks that allows efficient caching of file-system objects.
Among more established locks such as SR or X-mode locks, the shared write lock (SW-mode) is
more unusual. Its purpose is to allow Direct I/O operations, e.g. writing data to the storage
devices without caching. In the SAN File System protocol specification it is clearly written that
meta-data is cached as read-only when a client accesses a file-object holding a SW-mode lock. But
the proposed extension allows modification on the meta-data while the SW-mode lock is held. This
introduces a new kind of problem: Concurrent updates of the meta-data which could potentially
lead to a race condition. Several solutions were provided to this problem.

Unfortunately, the current SAN File System protocol limits the maximum size of the hashes
because the longest network message is limited to 8 KB. Digest algorithms such as SHA-1 will
work, but not SHA-256. A simple increase of the this limit to 16 KB solves this problem. Of
course, this could introduce some performance penalty on the client and the server side as well as
entail significantly heavier temporary buffer usage.

Speaking of limits, the building of complete hash trees for small files (in the MB range) does
not take much time and space. But for larger files (in the GB range), the time needed to build
a complete hash tree is noticeable. For huge files (in the TB range), the capacity needed for
building the trees can be excessive. Although with sufficient hardware support, larger hash blocks
aggregations it could still be possible to handle this large amount of data. One should not forget
that the real data also has to be transfered to the client. Of course, it is possible to disable integrity
protection for block ranges. If integration protection is disabled then the costs for hashing the
data blocks can be committed, but not those for the inner nodes.

It has been shown that the hash tree is an adequate data structure for either dense files or sparse
files. The size and access costs are logarithmic to the base k, which normally is 256 (block disk

strategy #1).
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A client can create and modify hash trees, therefore one might think that the client can modify
data without authorization. This is not a problem, because as long as a client is authorized to
access the meta-data server, the server must approve all operations. The aim of integrity protection
is to detect modifications that were done without involvement of the meta-data server. This can
clearly be detected by the proposed protocol.

On the practical part of the work, the server was extended and a client simulator written. Because
of limited time and resources as well as the utter underestimation of the project size, it was
not possible to implement the client as well. Therefore, no test results and benchmarks can be
shown. The proposed further work clearly is to complete the implementation and to measure the
performance.

Note that this extension is not an IBM product.



Extended Security
Attribute Variation

Section 4.1.6 describes how security attributes can be encoded in the SAN File System Protocol.
This appendix provides another solution. This solution was developed first but then replaced by
the simpler approach mentioned in Section 4.1.6. The solution proposed here provides a flexibility

which is not needed for the implementation of integrity protection.

A.1 ExtendedSecurityAttributes

Common header:

1-—

2

Uint16 Class/type of attribute. For most attributes, this is also the
index in the List.

Uint16 Mode/algorithm used (0—mnone; > 0 defined by individual
algorithm).

Uint16 Criticality flags for unsupported attributes.
Parameter-specific values, see below.

The criticality flag is a bit field with the following values. Each bit set indicates that not under-

standing this security attribute prevents one from performing the operation in question.

0x00 01 | Prevents data reads unless understood

0x00 02 | Prevents data writes unless understood

0x00 04 | Prevents entering SW mode unless understood

0x00 10 | Prevents entering this directory unless understood

0x01 00 | Prevents updating Unix ACL unless understood

0x02 00 | Prevents updating Windows ACL unless understood

0x04 00 | Prevents security attribute updates unless understood

0x10 00 | Allow ACL updates, but mark this attribute as invalid

0x20 00 | Allow data writes, but mark this attribute as invalid

0x40 00 | Allow security attribute updates, but mark this attribute as invalid
0x80 00 | This security attribute has been marked invalid by a non-conforming client

ESAJ0] is EncryptionAttributes, ESA[1] is Integrity Attributes, ESA[2] is SignatureAttributes; they

all follow the common header.
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A.2 AESEncryptionAttribute

1- 2 Uint16
3 - 4 Uint16
5 — 6 Uint16
7 — 8 Uint16
9 — s Key

Class=0
Algorithm=1
Criticality=0x00 01
Key length (in bytes)
Key data

A.3 SHAlIntegrityAttribute

1- 2 Uint16
3 - 4 Uint16
5 — 6 Uint16

Class=1
Algorithm=1
Criticality=0x00 02 (or, for permissive mode, 0x20 00)

A.4 MiscAttr extensions

0x00 04 00 00 | Enhanced security attributes present (deny access to clients that
do not support them, as identified during the Identify [IBMO03,
Section 6.1.1] phase)




Project Plan

Uy

Week | Begin Goal Achievement
1 | Nov. 3 | Getting an overview of the topic Done
2 | Nov. 10 | Project plan Done
General design decisions Done
Document the design decisions Done
Identify interesting spots in the
source code
3 | Nov. 17 | Define data structures Data structures defined. SAN.FS
Define functions or identify func- | protocol extended (new message
tions that need to be changed types introduced). Milestone
Get in touch with the environment | reached.
(sysadmin view and compiler envi-
ronment) — Milestone
4 | Nov. 24 | Start to implement (SW-NP mode) | Started to implement server mes-
Hash tree sage marshaling
Meta-data server
5 | Dec. 1 Client Still implementing server message
marshaling
6 | Dec. 8 | Ditto Ditto (sic!)
Dec. 15 | Test and review (maybe change) im- | Fixing compiling environment and
plemented code — Milestone. syntax errors fixed
Started to work on documentation
8 | Dec. 22 | Write mid-thesis report Gearing up debugging environment
Christmas Finished writing chapter Introduc-
tion to SAN.FS
9 | Dec. 29 | New Year’s Eve Writing documentation
10 | Jan. 5 Implement special SW cases and | Writing mid-thesis report
test them Got server started
Start working on dynamic hash
block size
11 | Jan. 12 | Ditto Got debugger working on server
Started to debug
12 | Jan. 19 | Benchmarks Setup of a dedicated new platform
Fixing obvious bugs
13 | Jan. 26 | Use insights from the benchmarks to | Added mixing code to client simula-
optimize behavior tor and server
Created clean patch of all work done
14 | Feb. 2 Ditto Writing documentation

Mini Benchmark
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15

16
17

18

Feb. 9

Feb. 16
Feb. 23

Mar. 1

Write documentation
Talk preparation
Ditto

Reserve

Writing more documentation

Ditto

Corrected documentation
Cleansed Patch
Talk prepared

Talk given
End of thesis.



Abbreviations

SAN

Storage Area Network
LU

(SCSI) Logic Units
SCSI

Small Computer System Interface
PIT

Point In Time
hsegment

Hash Segment.
segment

Virtual block address ranges on a file
extent

Physical block ranges on a SCSI LU
pre-image

A variable-length input string for a hash function ([Sch96, Chapter 2.4])
wormholes

Attachment points of other filesets

FlashCopylmage
Multiple version of a file object but all immutable
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